
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



Traffic Scene Understanding using Sound-based
Localization, SVM Classification and Clustering

A Thesis Presented
by

Shreyas Kodasara Rajagopal

to

The Graduate School
in partial fulfillment of the

Requirements
for the degree of

Master of Science
in

Computer Engineering

Stony Brook University
December 2010



Stony Brook University
The Graduate School

Shreyas Kodasara Rajagopal
We, the thesis committee for the above candidate for the

Master of Science degree,
hereby recommend acceptance of this thesis.

Dr. Alex Doboli, Advisor of Thesis
Associate Professor, Department of Electrical and Computer Engineering

Dr. Sangjin Hong, Associate Professor,
Department of Electrical and Computer Engineering

This thesis is accepted by the Graduate School.

Lawrence Martin

Dean of the Graduate School

ii



Abstract of the Thesis
Traffic Scene Understanding using Sound-based
Localization, SVM Classification and Clustering

by
Shreyas Kodasara Rajagopal

Master of Science
in

Computer Engineering
Stony Brook University

2010

The thesis is about an embedded system application aimed at identifying

the semantics of traffic based on acoustic data. Sound localization, classifi-

cation and clustering are used for scene understanding. The report presents

a set of experiments used to simulate different traffic scenarios.

An alternative implementation for sound localization is also explored,

where fixed point representation of rational numbers is used instead of float-

ing point numbers. The results for both the implementations are compared in

terms of execution speed and accuracy for a Programmable System-on-Chip

(PSoC).
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Chapter 1

Introduction

For human beings, visual and auditory information are important to sense the

surroundings. Acoustic information, if interpreted correctly, can be used as

an aid for behavior and semantic understanding, and analysis. To understand

a specific sound, the system needs to localize the sound source and extract

meaningful information from it.

Many research works focus on auditory signal processing but few at-

tempts have been made to use these techniques to understand underlying

scene. This thesis focuses on understanding the sound scenes by integrating

acoustic signal processing and machine learning techniques. Traffic scenarios

are used as a case study for scene understanding. The application is imple-

mented on PSoC1 and PSoC5. PSoC1 is a programmable, mixed-signal SoC

that includes 8-bit micro-controller, on-chip SRAM and flash memory, pro-

grammable digital blocks, and programmable analog blocks[4]. This makes

PSoC a very attractive architecture for this application as it supports in-

tegrated implementation of the mixed-signal front end for sound-based lo-
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calization. The analog front end of the design consists of signal condition-

ing, filtering, and analog to digital conversion (ADC). The digital processing

includes Hanning windowing, Fast Fourier Transform (FFT), phase calcu-

lation, Maximum Likelihood (ML) algorithm[15], and Data clustering and

Classification. The hardware implementation of clustering and classification

algorithms is done on PSoC5 which operates at 80 MHz and has a 32-bit

ARM Cortex core.

The organization of the report is as follows: Chapter 1 gives a descrip-

tion of the problem with the semantic elements to be identified. Chapter 2

describes the different features that can be extracted from sound. Chapter 3

offers an overview of Support Vector machine classifier and clustering. Chap-

ter 4 gives the implementation details of sound-based localization and clas-

sifier. Also, an alternative implementation for sound localization using fixed

point number representation instead of floating point is explored. Chapter

5 explains the set of scenarios used for validating the implementation. Fi-

nally, Chapter 6 presents the conclusions and the future improvements for

the application.

1.1 Problem Description

The goal of this work is to understand at run time the semantics of traffic

scenes based on auditory inputs collected through a network of embedded

nodes with sound processing features. Understanding traffic scenes requires

the following main types of capabilities:
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• Finding the components of a scene: This capability identifies the ele-

ments of a traffic scene, and their attributes. An important aspect is

establishing the needed information that is sufficient to correctly dis-

tinguish all relevant elements of a scene.

• Understanding the relationships in a scene: this capability finds the re-

lationships and correlations that exist between the elements in a scene.

This includes cause - effect relationships, in which a certain element

causes or enables a given situation, and correlations in which elements

influence reciprocally their characteristics. Getting insight into the ori-

gin of the existing relationships is a main function of this capability.

In addition to the correlations that result directly from the descrip-

tion of the application, other correlations are produced due to specific

conditions and properties of the participating elements.

For example, the traffic flow can be obstructed by an obstacle on the

road (direct correlation), or a set of drivers with specific driving profiles

that end up slowing down each other. The second situation cannot be

reasoned out from the application description, but should be figured

out from the scene characteristics. Disambiguation is a second main

function of this capability as multiple causes can produce the same ef-

fect. For example, group of vehicles slowing down can be either because

of a conservative driver or a pothole present in the road. The sensed

information must be used to infer the more likely cause that produces
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Figure 1.1: An example scenario

the situation.

• Predicting the evolution of a scene: the capability refers to the dynam-

ics (evolution) of a traffic scene, including the possible situations that

can emerge within a time window.

Example: Let’s consider the simple traffic situation in Figure 1.1 to il-

lustrate the three challenges in scene understanding. Figure 1.1 presents

five vehicles moving on the road. Scene understanding must first iden-

tify the three vehicle clusters, where a cluster comprises of the vehicles

moving using the same pattern (e.g., similar speed and speed varia-

tions), and which is different from the patterns of other clusters. If

the clusters move with different speed then only speed is sufficient for

cluster identification. However, if two clusters are moving at the same

speed then additional attributes are needed for differentiating the clus-

ters, such as the interspacing di,j between two vehicles. A possible

differentiation criterion is that interspacing is significantly larger than

the average of the other interspacings.

Hence, an important challenge in concept identification (including their at-

tributes) is the identification of the necessary and sufficient information that
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makes identification possible. Moreover, inferring the information needed for

scene understanding helps solving any ambiguities that can occur between

different concepts that have some common attributes. Note that concept

identification relies not only on finding similarities but also outliers.

The meaning of a traffic scene is defined in terms of a set of basic semantic

elements, which are indivisible tokens that can be estimated based on

inputs coming from sensors. The basic semantic elements (BSEs) to be

identified and analyzed include the following aspects:

• Vehicle attributes : some of the typical vehicle attributes include kind,

speed, acceleration, position and trajectory.

• Driver’s driving profile: this includes his/her preferred style of driving

depending on traffic and weather conditions. The driver’s profile de-

scribes the likelihood of changing the speed or trajectory (e.g., switch-

ing the lanes).

• Clusters of vehicles : clusters are formed by vehicles that travel while

having a common set of stationary attributes, such as a constant num-

ber of vehicles in the cluster and vehicle speed variations and inter-

vehicular spacings that pertain to well-defined (yet unknown) ranges.

• Cluster attributes : every cluster is characterized by attributes like size

(number of vehicles), speed range, trajectory, time of formation and
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time of dispersion. Clusters have also attributes that are different from

the attributes of vehicles, e.g., spacing between cars.

• Cluster-level social behavior : the way in which the drivers forming a

cluster change their driving behavior based on the cluster characteris-

tics, e.g., drivers decide to adapt to the speed of the other drivers in

the cluster, or start looking for opportunities to leave the cluster.

• Cluster dynamics : vehicle clusters go through modifications, such as a

cluster splitting into sub-clusters and different clusters merging into a

single clusters. Another kind of interaction is if two clusters automati-

cally correlate their attributes, like speed.

• Road conditions : this refers to special road conditions, e.g., the position

of potholes, traffic signs, and stopped vehicles.

• Weather conditions : this relates to the nature of weather conditions,

such as the position of ice and water on the road.

In this thesis, the semantics are identified by extracting features from the

sound and then applying machine learning techniques.
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Chapter 2

Feature Extraction

Feature extraction is an essential pre-processing step to pattern recognition

and machine learning problems. It is often decomposed into feature construc-

tion and feature selection. Standard machine learning techniques can be used

to understand the semantics based on the extracted features. This section

discusses about the features that can be extracted from sound signals.

Sections 2.1 to 2.4 discuss about the timbral characteristics that can be

extracted from the sound signals [11],[12],[13],[14].

2.1 Features from Time Samples

• Volume: RMS of the amplitudes of samples in a small window.

RMS =

√√√√√ N∑
n=1

(x[n])2

N
(2.1)

where, x[n] is the magnitude of time sample with index n, N is the total

number of samples.
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• Zero crossing: Number of sign changes of amplitude in a window.

Zt = 0.5 ∗
N∑
n=1

|sign(x[n])− sign(x[n− 1])| (2.2)

• Low Energy: Percentage of sample amplitudes, smaller than RMS, on

each window.

2.2 Features from Frequency Spectrum

• Spectral Centroid: Center of gravity of magnitude spectrum of Short-

time Fourier Transform (STFT). It is a measure of spectral shape.

Ct =

N∑
n=1

Mt[n] ∗ n

N∑
n=1

Mt[n]

(2.3)

where, Mt[n] is magnitude of Fourier transform at frame t and fre-

quency bin n.

• Spectral Roll off: Frequency Rt below which 85% of the magnitude

distribution is concentrated.

Rt∑
n=1

Mt[n] = 0.85 ∗
N∑
n=1

Mt[n] (2.4)

• Spectral Flux: Squared difference between normalized magnitudes of

successive spectral distributions. It is a measure of the amount of local

spectral change.

Ft =
N∑
n=1

(Nt[n]−Nt−1[n])2 (2.5)
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• Spectral Bandwidth: Bandwidth of Fourier Transform of frame t.

B2
t =

N∑
n=1

(n− ci)2|Mt[n]|2

N∑
n=1

|Mt[n]|2
(2.6)

• Band Energy Ratio: It is the following ratio,

BERt =

N/4∑
n=1

Mt[n]

N∑
n=1

Mt[n]

(2.7)

• Spectral Flatness: Quantifies how tone-like a sound is, as opposed to

being noise-like.

Flatness =

N

√
N∏
n=1

Mt[n]

NP
n=1

Mt[n]

N

(2.8)

• Spectral Crest Factor: Ratio of peak of the spectrum to the RMS value

of the spectrum.

2.3 Features from Linear Regression of Spec-

trum

• SpecReg Slope: Slope of linear regression of spectrum. Regression for-

mula can be represented as M = a+ b ∗ n.

Slope(b) =
(N
∑

(M ∗ n)− (
∑
M) (

∑
n))(

N
∑
n2 − (

∑
n)2) (2.9)
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• SpecReg Y Intercept: Intercept point of regression line and Y axis

Intercept(a) =
(
∑
M − b (

∑
n))

N
(2.10)

2.4 Features from Modified Frequency Scale

• Mel magnitudes: Obtained by converting frequency spectrum using Mel

scale.

Mel(f) = 2595 ∗ log10

(
1 +

f

700

)
(2.11)

• ERB Magnitudes: Obtained by converting frequency spectrum using

Equivalent Rectangular Bandwidth (ERB) scale.

ERB (f) =
107

5
∗ log10

(
10000

437
f + 1

)
(2.12)

• Octave Magnitudes: Obtained by converting frequency spectrum using

Octave scale.

Oct(f) =

{
0 if f ≤ 55

128

log2

(
128
55
f
)

else
(2.13)

2.5 Localization features

Sound localization is the process of identifying the spatial coordinates of a

sound source based on the sound signals received by a microphone array

[15]. In this implementation, sound based localization is used to extract the

intra-cluster vehicular distance.
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Figure 2.1: Sound Localization: (a) TDOA estimation (b) Process of trian-
gulation

A simple method of localization is to estimate the time delay of arrival

(TDOA) of a sound signal between the two microphones. This TDOA esti-

mate is then used to calculate the Angle of Arrival (AoA). Combining the

data from two microphone pairs and by using the process of triangulation,

we compute the distance of sound source from the microphone pairs as shown

in Figure 2.1

In Figure 2.1(a), TDOA = Y−X
v

, where v is speed of sound and θ is the

AoA. In Figure 2.1(b), ’dist’ gives the perpendicular distance between the

sound source and line joining the microphone pairs.

The overall process of sound localization is shown in Figure 2.2.
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Figure 2.2: Sound Localization Data flow
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Chapter 3

Classification and Clustering

The main operators used for scene analysis were Support Vector Machine

(SVM) based classifier and clustering. The algorithms are written in ANSI C.

This chapter gives an overview of the SVM and the implementation method.

3.1 Classification

Support Vector Machine (SVM) is a supervised learning system used for clas-

sification [3]. SVM is used to predict the class of a feature vector based on

the training of the system. SVM performs classification by using a non-linear

mapping to transform training data into a higher dimension and construct-

ing hyperplane that optimally separates the data into two categories. The

hyperplane is such that the classification error is minimum.

There can be two cases which are discussed in the following sections.

3.1.1 Separable Case

Consider the set of training data that consist of two classes,
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S = {xi, yi} i = 1 to n, yi ∈ {−1, 1},xi ∈ Rd (3.1)

A linear classifier able to separate the positive from the negative examples

will be a hyperplane Rd in characterized by a normal w called weights and

an offset b given by:

h(x) = w.x + b (3.2)

For a linearly separable data set S, there exists a hyperplane that satisfies all

the points in S:

w.xi + b ≥ 0 for yi = +1 (3.3)

w.xi + b < 0 for yi = −1 (3.4)

The above two equations can be written as,

yi(w.xi + b) ≥ 0 ∀i (3.5)

The decision function will be of the form:

D(x) = sign(w.x + b) (3.6)

There are an infinite number of (w,b) pairs satisfying the above inequality,

since for any (w,b) satisfying the inequality 3.5 (aw, ab),∀a> 0, also satisfies

it. To make the solution unique, (w,b) can be rescaled so that the closest

13
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Figure 3.1: Linear SVM for the separable case

points to the hyperplane satisfy |(wTxi+b)| = 1. This normalization leads

to the following canonical form for SVM,

yi(w
Txi + b) ≥ 1 ∀i (3.7)

Let d+, d− be the distances from the separating hyperplane to the clos-

est positive, negative examples, respectively. The margin of the separating

hyperplane is defined as d+ + d−. It can be seen from Figure 3.1 that, the

closest positive, negative examples to the separating hyperplane are those

points lying on the hyperplanes H1, H2, respectively, and hence the margin

size equals

d+ + d− =
1

||w||
+

1

||w||
=

2

||w||
(3.8)

The goal of SVM is to find the pair of hyperplanes H1, H2 that maximize

the margin, subject to the constraints 3.7. This can be formulated as the

14



following constrained optimization problem:

min
w,b

1

2
wTw,

subject to yi(w
Txi + b)≥ 1 ∀i (3.9)

This is a convex optimization problem for which we are guaranteed to obtain

its global optimal solution.

3.1.2 Non-separable case and the Kernel Trick

In the real world, there are many data sets that are not linearly separable.

When the SVM derived above is applied to non-separable data sets, some

data points xi could be at a distance ξi/||w|| on the wrong side of the margin

hyperplane (Figure 3.2). To extend the SVM to handle non-separable data,

the constraint 3.7 can be relaxed and a further cost can be added for doing

so. More precisely, positive slack variables ξi are introduced, one for each

data point xi, and the constraint 3.7 is transformed to

yi(w
Txi + b)≥ 1− ξi, ξi > 0 ∀i (3.10)

For a misclassification error to occur, the corresponding ξ must exceed

unity, hence 1
n

∑n
i=1ξ is an upper bound of the average loss on the training

data. Therefore, a way to assign an extra cost for errors is to add a new

term C
n

∑n
i=1ξ to the cost function, where C is a parameter to be chosen

by the user. A larger C corresponds to a higher penalty to errors, with

15
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Figure 3.2: Linear SVM for the non-separable case

C = ∞ meaning that no error can be tolerated at all. Now the SVM for

non-separable case can be casted as the following optimization problem:

min
w,b,ξi

1

2
wTw +

C

n

n∑
i=1

ξi

subject to yi(w
Txi + b)≥ 1− ξi, ξi > 0 ∀i (3.11)

Again, this is a convex optimization problem, and the Lagrange multiplier

method can be applied to obtain the globally optimal solution.

The Kernel trick is used when the classification boundary is non-linear.

It attempts to map the original feature space, into a feature space of higher

dimension where the data can be linearly separated using a kernel function.

In this new feature space linear SVM can be used for classification.

Radial basis (Gaussian Kernel) is used in the implementation for the

transformation and it is given by:
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k(x, y) = e
−||x−y||2

2σ2

3.2 Clustering

Data clustering is the process of partitioning a collection of data into a num-

ber of cluster based on some criterion function. The criterion function de-

termines the accuracy of clustering. An SVM-based clustering algorithm

clusters data with no a priori knowledge of input classes [16]. The algo-

rithm initializes by first running a binary SVM classifier against a data set

with each vector in the set randomly labelled, this is repeated until an initial

convergence occurs. In order to obtain convergence, an acceptable number

of KKT violators must be found. This is done by running the SVM on the

randomly labeled data with different numbers of allowed violators until the

number of violators allowed is near the lower bound of violators needed for

the SVM to converge on the particular data set. Once this initialization step

is complete, the SVM confidence parameters for classification on each of the

training instances can be accessed. The lowest confidence data (e.g., the

worst of the mislabelled vectors) then has it’s labels switched to the other

class label. The SVM is then re-run on the data set (with partly re-labelled

data) and is guaranteed to converge in this situation since it converged previ-

ously, and now it has fewer data points to carry with mislabelling penalties.

This continues until no more progress can be made.

17



Chapter 4

Implementation overview

4.1 Sound Localization

The entire implementation for sound localization is first coded in C. This soft-

ware implementation is run for the sound signal samples, obtained through

PSoC1 using serial communication. The hardware implementation is done

on PSoC1. The microphone circuitry is mounted on the breadboard of the

PSoC Eval board. The analog modules are implemented using reconfigurable

analog blocks inside the PSoC while the digital modules are implemented in

C code [15].

An alternative implementation to the floating point computations is done

using fixed point arithmetic in order to speed up the execution [8]. The float-

ing point computations require very large number of clock cycles to perform

basic multiplications and additions. Also, the floating point implementation

requires 32 bits to store a single value, whereas the fixed point arithmetic can

be fit in half of this value or any other feasible size. In order to accommodate
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rational numbers with relatively high accuracy we 7 bits are used to store the

decimal part, 8 bits for fraction part and 1 bit for the sign. This representa-

tion is called Q7.8 notation (Figure 4.1). For example to store, π= 3.140625,

we will have to store 3 in decimal part and 0.140625 ∗ 28 = 0x24 in fractional

part as shown in Figure 4.1:

00 00 0 0 0 1 1 0 1 0 0 1 0 0

sign integer fraction

Figure 4.1: Q7.8 representation of π

Using 8-bits for fraction part gives a precision of 2−8 = 0.00390625 which

sufficient to perform the FFT and all other computations required for sound

localization. The addition in Q7.8 notation can be performed using standard

2’s complement adder without any modifications. Q7.8 multiplication can

be performed using standard fixed point multiplication, but at the end of

multiplication the 32-bit result has to be shifted right by 8. Then the 16 bits

from the middle of 32-bit result are taken, and other bits are discarded.

-0.5 ∗ 1.375 = 11111111.10000b(Q7.8) ∗ 00000001.0110000b(Q7.8)

= 1111111111010100.0000000000000000b(Q15.16) (4.1)

= 11010100.00000000b(Q7.8)

= 0.6875
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4.2 Support Vector Machine

The SVM classifier is implemented in C and compiled using gcc compiler.

The SVM optimization problem (Equation 3.11) can be solved using La-

grangian multiplier method. The training set contains a set of feature vectors

where each feature vector is a tuple of the form X = [x1, x2, x3,...xn] .Here

x1, x2, x3,...xn are the features.

4.2.1 Lagrange Multiplier method

First, a Lagrange function is defined using a set of non-negative Lagrangian

multiplier [1], [3] α = {αi}and β = {βi}, as:

Lp =
1

2
wTw +

C

n

n∑
i=1

ξi −
n∑

i=1

αi

(
yi

(
wTxi + b

)
− 1 + ξi

)
−

n∑
i=1

βiξi (4.2)

Next, the unconstrained minimum of the Lagrangian function Lp is com-

puter with respect to w,b and ξi.
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δLp

δw
= w −

n∑
i=1

αi yi xi = 0

w =
n∑
i=1

αi yi xi (4.3)

δLp

δb
= −

n∑
i=1

αi yi = 0

n∑
i=1

αi yi = 0 (4.4)

δLp

δξi
=

C

n
− αi − βi = 0

αi =
C

n
− βi (4.5)

The dual of the Lagrangian function is,

LD =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αi αj yi yj xi xj (4.6)

The minimum solution of the optimization problem can be obtained by

maximizing the dual of the objective function.

max
α

LD(α)

subject to
n∑
i=1

αi yi = 0, 0 ≤ αi ≤
C

n
∀i (4.7)

Once α is obtained, the optimal classifier is given by,
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fα (x) = sign

(
n∑

i=1

αiyi (xi.x) +b

)
(4.8)

The feature vectors for which αi 6= 0 are called support vectors.

In the SVM learning step, the optimal Lagrangian multipliers α that

maximize the dual LD (α)are obtained using sequential minimal optimization

(SMO) [6]. SMO decomposes SVM problem into smallest possible Quadratic

programming problem and solves this subproblem analytically. At each step,

SMO picks two Lagrangian multipliers according to some heuristic rules,

optimizes the two multipliers jointly and updates SVM to reflect the optimal

values. For this purpose, Karush–Kuhn–Tucker (KKT) conditions are used.

In the classification step, the unknown feature vector is classified based

on the support vectors computed in the learning step.
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Chapter 5

Experiments

The following 6 scenarios are simulated to identify some of the semantics of

the traffic. The test setup for each of the scenarios is shown in Figures 5.1 to

5.4. Two sensing nodes, which are PSoC1, are used for sound localization.

The distance between the two nodes, D, is 72 inches. Four different positions

are considered to simulate the movement of vehicles. Experiments are done

with 1, 2 and 3 sound sources to simulate different cluster size for different

scenarios. First, the feature vectors are clustered into into different classes

using SVM based clustering and then the clustered data is used to train the

SVM classifier.

5.1 Single vehicle in favourable driving con-

ditions

In this scenario, only one vehicle is tracked (Figure 5.1). By favorable driving

conditions, we mean that there is no sudden change in the speed of the

vehicle from one position to the other, that is, it remains constant. With

23



�����
�
�
�

��
��
��
��

��

�
�
�
�

Object(vehicle)

Position

PSoC1

D
N1 N2

p1

p2 p3

p4

Figure 5.1: Simulation of a single vehicle

the distances from one position to the other known and by assuming the

time it takes for the vehicle to move from one position to the other, speed is

obtained.

5.2 Cluster of vehicles in favorable driving

conditions
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Figure 5.2: Simulation of a cluster of vehicles

A cluster of vehicle is simulated using multiple sound sources, one for

each vehicle in the cluster (Figure 5.2). The favorable driving conditions are

simulated as described in the previous section.
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5.3 Single vehicle in bad driving conditions

This scenario is simulated as described in Figure 5.1 but in this case, the

speed of the vehicle varies at different positions. In real environment, the

variation of speed may be due to potholes, bad weather or road conditions.

Even with varying speed, the classifier can identify the class of unknown

feature vectors based on the intra-cluster object distance.

5.4 Cluster of vehicles in bad driving condi-

tions

A cluster of vehicles in bad driving conditions is simulated using multiple

sound sources (Figure 5.2). In this case, the speed of the cluster is changing

with time but the speed of all the vehicles within the cluster is the same.

Also, the intra-cluster vehicular distance remains same at different sampling

positions.

5.5 A vehicle joining a cluster of vehicles
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p2 p3
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Figure 5.3: A vehicle joining a cluster
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Figure 5.3 describes the scenario of a vehicle joining a cluster. A single

vehicle is present at positions p1 and p2 and a new vehicle joins it at position

p3and creates a cluster of size 2. This is simulated using a single sound source

at p1and p2 and two sound sources at positions p3and p4. Experiments are

also performed with different cluster sizes.

5.6 A vehicle splitting from a cluster of vehi-

cles
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Figure 5.4: A vehicle splitting from a cluster

Figure 5.4 describes the scenario where a vehicle splits from the cluster.

This is simulated using two sound sources at position p1 representing two

vehicles and a single sound source at positions p2,p3and p4.

5.7 Results

The experimental results for sound-based localization, clustering and classi-

fication are discussed in this section.
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5.7.1 Sound localization results

Table 5.1 gives the measured intra-cluster object distances for a cluster of size

3. The second column gives the distances between the first and the second

object and the third column gives the distances between the second and third

objects at four different positions. The actual O1to O2 and O2to O3 distance

used in the experiment was 8 inches.

Position O1to O2 (inches) O2to O3(inches)

1 8.03 8.79
2 7.65 4.87
3 7.66 8.27
4 8.55 7.88

Table 5.1: Intra-cluster vehicular distance for a cluster of size 3

Table 5.2 gives the measured intra-cluster object distances for a cluster of

size 2. The second column gives the distances between the two object. The

actual O1to O2 was 16 inches.

Position O1to O2 (inches)

1 16.30
2 12.00
3 13.90
4 14.04

Table 5.2: Intra-cluster vehicular distance for a cluster of size 2

The possible factors that resulted in localization errors are:

• As the distance between the microphone pair and the sound source

decreases, the DoA estimates become coarser.
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• Physical parameters such as speaker width and sensitivity of the mi-

crophone contributing towards measurement errors.

• Accuracy of experimental setup and error due to elevation of micro-

phone and sound source.

5.7.1.1 Execution time profiling of sound localization

The test setup for sound localization on PSoC is as shown in Figure 5.5 .

The microphone pair is situated at least 1 m away from either wall and at

least 1 m above the floor. This is done to reduce effect of reverberations.

Readings were taken for values of DOA ranging from -90 to +90 in steps of

15 degrees.

θ

Y

Mic1

X

Mic2

L

1m

0.1m 0.1m

keeping L constant

Wall

Move in steps of 15 degrees

Figure 5.5: Test setup

Table 5.3 and Figure 5.6 give the comparison between floating and fixed

point implementations of sound localization in terms of execution time. The
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execution times of the performance-critical routines for computing FFT and

FFT peak values is are greatly reduced with the fixed point implementation.

The reduction in execution time is achieved due to faster fixed point compu-

tations when compared to floating point operations. Figure 5.7 compares the

results of the fixed point and floating point implementations for localizing a

sound source. The floating point implementation does slightly better than

the fixed point implementation.

Routine Floating point (µs) Fixed point (µs)

Hanning w. 19867 8857
FFT reorder 10929 90

FFT 259938 110613
FFT peak 43450 2168
CORDIC 4470 580

AOA 882 882

Table 5.3: Execution Time

5.7.2 SVM-based Clustering and Classification results

The SVM-based clustering and classification algorithms are executed on the

PC (Intel Core2Duo, 1.3GHz, 1GB RAM) and PSoC 5 (ARM Cortex core,

80MHz) and the respective execution times for the learning step are 3 ms

and 13 ms. The clustering accuracy for a data set with 8 feature vectors

used for the experiment is 87.5%. The classification accuracy in identifying

the 6 scenarios is 100%.
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Chapter 6

Summary

6.1 Related work

There has been relatively less emphasis on sound-based scene understanding

[2], [10] as compared to its vision-based counterpart [5],[7],[9]. Also, there

has been less work on implementing and experimenting the same realized as

customized electronic designs. This is important to achieve low cost require-

ment which in turn is important for large-scale deployment of the application

in a real-world environment.

Kim et al. [10] describe a method for audio scene understanding us-

ing topic models. The topic models are extensively used in text modeling

applications. The work proposes to build an acoustic dictionary for scene

understanding. The Mel frequency cepstral coefficients (MFCC) feature vec-

tors are extracted and each of the feature vectors is classified based on a

pre-trained acoustic word dictionary built using vector quantization.

Canton-Ferrer et al. [2] focus on activity detection and recognition based
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on audiovisual data. The spectro-temporal audio features and localization

features are used in conjunction with visual features for tracking, recognition

and scene understanding.

6.2 Future Scope

In the work presented in this report, only the localization features and speed

of the vehicle are extracted using which the clustering and classification is

done. The other features described in sections 2.1 to 2.4 could give a better

description of the scene and a lot more behaviors could be understood.

The BSEs described in section 1.1 define a simple ontology for traffic

applications. They are the basic elements involved in traffic and are used for

expressing the interactions and correlations in traffic scenes. Every particular

traffic scene is a specific instance of the ontology. Based on this ontology,

different traffic scenarios could be understood.
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