

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Design and Analysis of Structured Graph based

Wireless Sensor Networks

A Dissertation Presented

by

Jung Hun Ryu

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

December 2012

Copyright by

Jung Hun Ryu

2012

Stony Brook University

The Graduate School

Jung Hun Ryu

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree,

hereby recommend acceptance of this dissertation.

K. Wendy Tang, Advisor of Dissertation

Associate Professor, Department of Electrical and Computer Engineering

Thomas Robertazzi, Chairperson of Defense

Professor, Department of Electrical and Computer Engineering

Carlos Gamboa, Adjunct Professor

Department of Electrical and Computer Engineering

Yanni Ellen Liu, Assistant Professor

Department of Computer Science

Eric C. Noel, Co-advisor of Dissertation

AT&T Laboratories

This dissertation is accepted by the Graduate School

Charles Taber

Interim Dean of the Graduate School

ii

Abstract of the Dissertation

Design and Analysis of Structured Graph based Wireless

Sensor Networks

by

Jung Hun Ryu

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2012

Wendy Tang, Dissertation Advisor

Eric Noel, Dissertation Co-Advisor

In dense wireless sensor networks, a sensor node may have several neighbor

nodes within radio range. In this case, efficient network design is more challeng-

ing than with sparse networks. Researches on efficient network design for dense

networks are often based on random networks and include comprehensive network

performance analysis. Random networks have many advantages for wireless sen-

sor networks, such as short-distance radio range, flexibility for nodes to join or

leave the network, and self-organization. However, there are also disadvantages

inherent to random networks such as difficulty to guarantee global properties such

as diameter and connectivity. On the other hand, there have not been a lot of

research on the use of structured graphs for wireless sensor networks. This ob-

servation motivated us to investigate the benefits and limitation of applying struc-

tured graphs on wireless sensor networks and to take advantage of such graphs’

guaranteed global properties.

iii

We focus on Borel Cayley graphs (BCG) as a family of structured graph,

which have been shown to be an efficient candidate as a logical topology for sen-

sor networks. BCGs are known to have small diameters and average path lengths.

Also, BCGs are symmetric graphs, a property that enables distributed routing.

Even though BCGs have these favorable properties, there are practical limita-

tions in applying BCGs to wireless sensor networks. One of them is the possi-

ble existence of long-distance communication edges between logically connected

sensors since BCG connections are not based on nodes’ geographical positions.

Connections of BCGs look like pseudo-random connections. It is this pseudo-

randomness that enables BCGs to have a small diameter and a short average path

length between nodes. However, when overlaying a BCG on a sensor network,

such pseudo-randomness makes it possible to produce long-distance connections.

Another practical limitation is the lack of fault-tolerant routing algorithms: ex-

isting BCG routing algorithms do not account for node or communication link

failures.

In this dissertation, we present results on the practical realization of BCGs

as structured graphs for wireless sensor networks. In particular, we present node

ID assignment algorithms that allow topology construction of BCGs with consid-

eration of the nodes’ geographical distribution; and also present a fault tolerant

routing algorithm, accounting for node or communication link failures.

Our node ID assignment algorithms assign node IDs to a wireless sensor net-

work based on a pre-defined BCG connection rule. The goal of our algorithms

is either to (1) reduce the average physical communication distance based on the

geographical positions of the network nodes, assuming all nodes are within com-

munication distance of each other; or (2) to assign IDs that enables the network

topology to represent most but not necessarily a complete representation of the

BCG due to out of range nodes. With our fault tolerant routing algorithm, the

routing tables of nodes are updated distributively in response to node/link fail-

ures. We quantify the performance of the routing algorithm by considering packet

reachability and End-to-End delay for different levels of communication link fail-

ures and packet generation.

From our research, we show that with our proposed node ID assignment and

fault tolerant routing algorithm, BCGs are good candidates as structured graph

topologies for wireless sensor networks.

iv

Contents

1 Introduction 1

1.1 Wireless Sensor Networks . 1

1.2 Routing Algorithms in Wireless Sensor Networks 2

1.3 Topology Control for Wireless Sensor Networks 4

1.4 Structured Graph based Networks 6

1.5 Our Contributions . 6

1.6 Organization of Thesis . 7

2 Preliminary 8

2.1 Borel Cayley Graph . 8

2.2 Routing for Borel Cayley Graph 12

3 Node ID Assignment for Borel Cayley Graph 16

3.1 Introduction . 16

3.2 Problem Statement . 17

3.2.1 Average communication distance minimization when the

radio range covers the deployment area 17

3.2.2 Completing communication edges with finite radio range . 19

3.3 Simulated Annealing based Node ID Assignment 20

3.4 Chordal Ring Based Node ID Assignment 23

3.4.1 CR representation and node ID conversion between GCR

and CR . 23

3.4.2 Algorithm . 25

3.4.3 Average communication distance 27

3.5 Distributed Node ID swapping Assignment 30

3.5.1 Terminologies . 30

3.5.2 Assumption . 31

3.5.3 Algorithm . 31

v

3.5.4 Example . 32

3.5.5 Completeness of resultant graph 34

3.6 Data Dissemination . 36

3.6.1 Consensus protocol . 36

3.6.2 Simulation setup . 37

3.6.3 Comparison between BCG-0 and BCG-1 39

3.6.4 Comparison between our proposed topology control and

existing topology controls 39

3.6.5 Consensus protocol analysis with considering interferences 44

4 Distributed and Fault-tolerant Routing for Borel Cayley Graph 50

4.1 Introduction . 50

4.2 Topology Comparison . 51

4.2.1 Network model . 51

4.2.2 Topologies . 52

4.3 Data Structure of Exhaustive Routing 58

4.3.1 Static Routing Table . 59

4.3.2 Dynamic Routing Table 60

4.4 Phases of Exhaustive Routing . 61

4.4.1 Phase 1 . 61

4.4.2 Phase 2 . 62

4.5 Simulation . 65

4.5.1 Static performance analysis 66

4.5.2 Dynamic performance analysis 69

4.5.3 Comparison Exhaustive routing with AODV 72

5 Conclusion and Future Research 77

5.1 Contribution . 77

5.2 Future Research . 79

vi

List of Figures

2.1 Examples of generalized chordal ring and chordal ring. 9

2.2 Example of a routing table for Borel Cayley Graph. 13

2.3 Example of Vertex-transitive routing from node 0 to node 16. . . . 14

3.1 Graph representation with radio range enough to cover whole de-

ployment area. 18

3.2 Graph representation with finite radio range. 19

3.3 Illustration of matrix M when node ID 0 and 4 are swapped. . . . 22

3.4 Examples of generalized chordal ring and chordal ring. 24

3.5 Illustration of CR assignment. Note that each alphabet represents

a physical sensor node and a dashed line represents distance. . . . 26

3.6 Average communication distance of resultant graphs by node ID

assignments in the case of sufficient radio range to cover whole

sensor deployment area. 28

3.7 Histograms of communication distance by the proposed algorithms

with N = 272 and a solid line shows polynomial fit line. 29

3.8 Host graph used as example of Dist-swap assignment. 33

3.9 Edge construction percentage with distributed node ID assignment. 34

3.10 Connected network percentage with node ID assignments. 35

3.11 Example of status agreement with consensus protocol on BCG. . . 36

3.12 Histograms of communication distance by the proposed algorithms

with N = 1081. 40

3.13 Power consumption comparison between BCG-0 and BCG-1. . . 41

3.14 BCG-0, BCG-3 with radio range 40m, Max with 25m, E-MST,

K-Neigh with k = 10 and 25m, Gabriel Graph. N = 272 42

3.15 Comparison of diameters. 43

3.16 Comparison of average path lengths. 43

3.17 Comparison of consensus steps. 44

3.18 Comparison of power model 0 for consensus protocol. 44

vii

3.19 Comparison of power model 1 for consensus protocol. 45

3.20 Collision percentage as a function of packet generation rate. . . . 47

3.21 Comparison of consensus step for STDs of 0.25 and 0.1 with

0.005 packet generation rate. 48

3.22 Comparison of consensus step, packet collision and power con-

sumption with various packet generation rates and 30m radio range. 49

4.1 Node model. 51

4.2 Toroidal mesh network and de Bruijn graph. 52

4.3 End-to-End Delay with infinite buffer. 55

4.4 Reachability with buffer length 10. 56

4.5 Reachability with buffer length 5. 57

4.6 Original Vertex-transitive routing table and Static Routing Table

of BCG in Figure 2.1(a). Note that some part of routing tables are

omitted for brevity. 60

4.7 Exhaustive routing algorithm flow. 64

4.8 Network to illustrate a loop of Exhaustive routing. The dot line

between nodes indicates that the communication is disconnected . 65

4.9 Connected BCG percentage as a function of edge elimination. . . 66

4.10 Routability with 1081 BCG after edges are eliminated. 67

4.11 Average hop count with 1081 BCG after edges are eliminated. . . 68

4.12 Hop count distribution of BCG with 1081 nodes after 35% edge

elimination. Note that hop counts exceeding 40 are not shown for

brevity. 68

4.13 Reachabilities of routings with a packet generation rate of 0.05
and an Edge failure rate of 0.001 by simulation ticks. 70

4.14 Comparison of fault-tolerant routing reachability with buffer length

5 and 0.0005 edge failure rate according to packet generation rate.

Note that the result is accumulated during the whole simulation

time. 70

4.15 Comparison of fault-tolerant routing reachability and power con-

sumption with buffer length 5 and 0.05 packet generation rate ac-

cording to edge failure rate. Note that the result is accumulated

during the whole simulation time. 71

4.16 Reachabilities of AODV and Exhaustive routing according to packet

generation rate. 73

4.17 End-to-End Delay of AODV and Exhaustive routing according to

packet generation rate. 74

viii

4.18 Reachabilities of AODV and Exhaustive routing according to edge

failure rate with 0.001 packet generation rate. 74

4.19 Reachabilities of AODV and Exhaustive routings as a function of

packet generation rate with interferences. 75

4.20 Reachabilities of Exhaustive routing function of packet generation

rate and with interferences. 75

4.21 Reachabilities of Exhaustive routing function of edge failure rate

and considering interference. 76

ix

List of Tables

2.1 Parameters of Borel Cayley Graphs used in this thesis. 12

2.2 Vertex-transitive routing algorithm for Borel Cayley Graphs. . . . 14

2.3 A summary of Vertex-transitive routing example. 15

3.1 Dist-swap assignment operation after a node receives the Token

packet. 32

3.2 Dist-swap assignment operation after a node receives the Info

packet. 33

3.3 Dist-swap assignment operation after a node receives the Swap

packet. 33

3.4 Summary of our proposed algorithms. 35

3.5 Radio model parameters. 38

3.6 Consensus protocol performance after 10000 ticks with 30m ini-

tial radio range and a packet generation rate of 5× 10−3. 46

4.1 Mesh networks parameters. 54

4.2 Static property. 54

4.3 Summary of routing tables for Exhaustive routing. 61

4.4 Routing comparison with infinite buffer, 0.05 packet generation

rate, and 0.0005 edge failure rate. Note that the result is accumu-

lated during the whole simulation time. 69

x

Chapter 1

Introduction

1.1 Wireless Sensor Networks

An ad-hoc wireless sensor network (WSN) is a self-organized and distributed net-

work consisting of a large number of small and light sensor nodes [1,2]. A sensor

node includes a processor, a wireless radio, and various sensors to monitor and

sense environmental parameters such as temperature, moisture, pressure, etc. In

a WSN, sensor nodes interchange information and collaborate with each other to

achieve a common mission.

The flexibility, fault tolerance, high sensing fidelity, low cost, and rapid de-

ployment characteristics of sensor networks create many new and exciting appli-

cation areas for remote sensing [3]. Ad-hoc wireless sensor networks applications

include building monitoring [4], environmental sensing [5–7], traffic monitor-

ing [8], and surveillance [9]. This has been enabled by the availability, particularly

in recent years, of sensors that are small, cheap, and intelligent.

Any realization of sensor networks must satisfy the constraints introduced by

factors such as fault tolerance, scalability, cost, hardware, topology change, envi-

ronment, and power consumption. Lack of any centralized control and possible

node mobility give rise to many issues at the network, medium access, and phys-

ical layers, which have no counterparts in wired networks such as Internet or in

cellular networks.

Selecting efficient algorithms such as routing, topology control, and informa-

tion dissemination for WSNs depends on the application goal and its operating

environment. Hardware specification of sensor nodes varies [10]. Each sensor has

limited battery or relatively long-term power supplies. Also transmission power,

1

modulation schemes, and data transmission rates vary from vendor to vendor.

A wireless sensor node needs various storage such as Random Access Memory

(RAM) to store application related data and Read Only Memory (ROM) to store

program code, which needs to be stored permanently. Usable routing table size in

sensors affects the design of routing algorithms. Depending on the applications,

the number of nodes in WSNs ranges from hundreds to thousands, and nodes can

be static or mobile. The moving speed of nodes also affects routing algorithm per-

formance. Clearly, efficient algorithms should be different for each application.

1.2 Routing Algorithms in Wireless Sensor Networks

In wired networks, link state and distance vector protocols are mostly used. While

in link state routing protocols nodes flood the network with local information,

distance vector routing protocols exchange network-wide information only with

local nodes. These protocols, although scalable for a large number of nodes, are

computationally expensive for wireless sensor nodes and introduce a large amount

of overhead. In wireless sensor networks, their applications are limited to small

networks.

Different approach routing algorithms exist to support wireless sensor net-

works [11, 12]. Flooding is a common technique that can be used for routing in

sensor networks. In flooding, each packet received by a node is broadcasted to its

neighbors; unless the receiving node is the destination or the packet has reached

its maximum hop limit. Flooding is a reactive technique, and it does not require

costly topology maintenance and complex route discovery algorithms. However,

it has several deficiencies such as duplicated messages, redundant messages gen-

eration, and resource blindness without energy awareness [13].

A derivation of flooding algorithm is gossiping in which nodes do not broad-

cast but send the incoming packets to a randomly selected neighbor [14]. A sensor

node randomly selects one of its neighbors to send the data. Once the neighbor

node receives the data, it randomly selects another sensor node. Rumor routing is

another strategy to reduce the overhead of flooding mechanisms. Rumor routing

is based on the idea that two random lines in a square have a relatively high prob-

ability to intersect. As such, the protocol sends service agents to set routing and

event information in all the nodes that they visit. When one of the nodes in the

network detects an important sensing data, another service agent is generated that

goes through the network until it intersects with one of the nodes that has been

previously embedded with routing and event information.

2

Data centric routing is based on the following idea: Routing, storage, and

querying mechanisms can be performed more efficiently if communication is

based on application data instead of the traditional IP global identifiers [13, 15].

This data centric approach to routing provides additional energy savings derived

from the communication overhead of binding identifiers that are no longer needed.

Besides the above routing algorithms, there are classic routing algorithms that

exploit wireless sensor network characteristics: Dynamic Source Routing in Ad

Hoc Wireless Networks (DSR) [16] and Ad-hoc On-Demand Distance Vector

Routing (AODV) [17]. These routing protocols create routes only when required

by the source node. When a node requires a route to a destination, it initiates a

route discovery process within a network. Each node receiving the information

caches the route information and uses it for future packets toward the destination.

Some wireless sensor networks have the unique geographical information for

each node from the global positioning system (GPS). Geographical routing uses

nodes’ geographical locations to determine how packets are routed. As a result,

nodes do not need to make complex computations to find the next hop since rout-

ing decisions are made based on local information. Moreover, because of locality,

nodes do not need to maintain large data structures. Geographical routing reduces

the communication overhead substantially because routing table advertisements

are not needed. Greedy routing, a geographical routing, was originally proposed

in [18]. In greedy routing, a message is forwarded to the neighboring node that is

closest to the destination. It assumes that the network is sufficiently dense, nodes

know their own location and their neighbors’ locations, and multi-hop forwarding

is reliable.

The performance of geographical routing relies on topology construction al-

gorithms. Face routing requires a planar graph as the topology of a network [19]1.

A message is routed along the interior of a plane (face) of the communication

graph. When a message crosses the source-destination line, it moves to an ad-

jacent plane. In this case, the efficient construction of planar graphs is a critical

issue. Several planar graphs have been proposed: the Relative Neighborhood

Graph [20], the Gabriel Graph [21], and the Delaunay Graph [22]. Face routing

and Greedy routings have limitations. When there is no node close to the desti-

nation, Greedy routing gets stuck although an alternative path exits through other

nodes. Face routing can also get stuck when there are errors in measuring the

sensor’s position.

In [23], the authors introduce and analyze the concept of virtual coordinates

1A planar graph is a graph that can be embedded in the plane without graph edges crossing

3

for routing. They convert physical positions to virtual positions to circumvent

stuck packets. More recently, Matthew Caesar et al. propose to use virtual position

not related to the sensor’s physical position [24]. They use Virtual Ring Routing

(VRR), inspired by overlay routing algorithms in Distributed Hash Tables (DHTs).

It is implemented directly on top of the link layer. VRR provides both traditional

point-to-point network routing and DHT routing to the node responsible for a hash

table key. The nodes are given arbitrary identifiers and organize themselves into a

virtual ring in the increasing order of their IDs cyclically.

Landmark concept is used for routing protocols, similar to how human uses

landmarks for routing [25, 26]. They divide the map into several parts with land-

marks. Routing takes place between divided parts and then routing takes place

inside the part that contains the destination.

Another approach is cluster-based routing to reduce routing complexity and

therefore make routing more scalable and reduce energy consumption. In this

category, one of routing protocols is Low-Energy Adaptive Clustering Hierarchy

(LEACH) protocol [27]. LEACH is a distributed algorithm by which nodes group

together in clusters and select themselves as cluster heads. Since cluster heads

perform more energy consuming functions than the rest of the nodes, LEACH

not only changes them periodically but it also makes sure that cluster heads are

selected in a fair and uniform manner, so energy is consumed in an even manner.

Once a node is selected as a cluster head, the algorithm makes sure that it has a

low probability of becoming a cluster head again. Nodes only communicate with

their respective cluster head.

1.3 Topology Control for Wireless Sensor Networks

Some WSN applications require very dense networks. Hundreds to several thou-

sands of nodes can be deployed throughout a sensor field. For example, some ma-

chine diagnosis applications use up to 3000 nodes in a 100m by 100m area [28], or

sensors can be deployed within tens of feet of each other for object tracking [15].

The topology of a large and dense sensor network has direct impact on its perfor-

mance. For example, topology control algorithms are essential in reducing energy

consumption and radio interference [29]; thus expanding the network’s lifetime.

Our goal is to control the topology of the graph representing the communica-

tion links between network nodes in order to maintain some of the graph’s prop-

erties such as network robustness and small diameter. For sparse wireless sensor

networks, nodes within communication range are viewed as connected neighbors.

4

On the other hand, for densely populated wireless sensor networks, the number

of neighbors (or degree) of sensor nodes should be small to save battery power.

However, when the nodal degree is limited, a network can become disconnected

if proper neighbors are not chosen.

To achieve a fully connected ad hoc network, there must be at least one wire-

less multi-hop path between any node pairs. Therefore. the connectivity depends

on the number of nodes per unit area (node density) and their radio transmission

range [30]. Each single node contributes to the connectivity of the entire network.

In ad hoc network, the nodes’ transmission power determines the network topol-

ogy. When the transmission power of a node is increased, a longer transmission

range results, which in turn increases the possible number of nodes to be directly

connected. Conversely, when a node’s transmission power is too low, it can be-

come isolated in the network [31, 32].

According to [33], topology control algorithms can be first classified as homo-

geneous and nonhomogeneous approaches. In the former case, nodes are assumed

to use the same transmission range, and the topology control problem reduces to

one of determining the minimum radio range such that a certain network-wide

property is satisfied. In the latter case, nodes are allowed to choose different

transmission ranges.

Nonhomogeneous topology control algorithms can be classified as location-

based, direction-based, and neighbor-based approaches. In all these approaches,

a network topology is formed in an ad-hoc manner based on sensor nodes’ loca-

tion, direction or some sort of neighbor ordering. Examples of neighbor-based

approaches are K-Neigh and XTC [34, 35]. The goal of K-Neigh is to keep the

number of neighbors of a node equal to, or slightly below a given value k. A pro-

tocol that shares many similarities with K-Neigh is the XTC protocol presented

in Wattenhofer and Zollinger [35]: the neighbors of a node u are ordered accord-

ing to some metric (e.g., distance or link quality), and based on a simple rule, u
decides which nodes are kept as immediate neighbors in the final network topol-

ogy. However, there is no guarantee on the topology’s overall properties such as a

bounded diameter and average path length.

Our approach is to impose a logical topology on a physical network. Then

the resulting network is connected and has a small constant degree and a short

diameter. The advantage of imposing a logical topology is that computing opti-

mal routes is independent of the physical topology and generates little message

overhead. Moreover, a sparse communication graph requires little maintenance in

the presence of node mobility.

5

1.4 Structured Graph based Networks

Structured graphs have been studied for a long time and are good candidates for

interconnection networks [36, 37]. Various graph based interconnection networks

have been applied to wavelength division multiplexed optical networks [37, 38],

distributed parallel computation [39], distributed control [40], satellite constel-

lations [41], and chip design [42–44]. In peer-to-peer (P2P) overlay network

schemes, structured graphs are investigated and compared against unstructured

P2P overlay networks [45]. As an example of structured P2P overlay networks,

k ring lattices are used in Chord [46] and de Bruijn graphs are used in Koorde

and Distance Halving [47,48]. Also, there are theoretical results on de Bruin and

Cayley graphs applied to P2P [49, 50].

Graph based wireless sensor networks have also been explored by other re-

searchers [24, 51–55]. In general, a predefined graph topology with a determin-

istic connection rule facilitates performance analysis. In addition, some graph

topologies have advantageous properties for WSNs such as: symmetry, hierarchy,

hamiltonicity, constant low-degree, and distributed routing protocols.

1.5 Our Contributions

We focus on Borel Cayley graphs (BCG), a member of the Cayley graph fam-

ily [56]. In [57, 58], Borel Cayley graphs have been shown to be efficient logical

topologies for dense WSNs. BCGs are known to have small diameters, short av-

erage path lengths, and low constant degree connections. Moreover, BCGs are

symmetric graphs, a property that enables distributed routing [59].

Consensus protocol has been used to quantify how fast a network is capa-

ble of distributing information [60, 61]. It is a distributed node-to-node message

exchange rule to drive nodes to an agreement for a quantity of interest. BCGs

showed good performance for consensus protocol when compared to mesh, torus,

and small world networks [62]. Also, because of its dense property (small degree

and diameter), BCG can be used in interconnection networks [63,64], wavelength

division multiplexed optical networks [65], and VLSI layout design [66]. More

recently, efforts to circumvent inherent limitations of Borel Cayley graphs, such

as choosing a good generation set and rendering size more flexible have been pub-

lished in [67, 68]. Through these efforts and our following contributions, BCGs

are becoming a feasible solution for wireless sensor networks.

Topology Control for Borel Cayley Graphs We propose topology control for Borel

6

Cayley structured graphs applied to wireless sensor networks. A structured

graph is constructed by connection rules with identifiers. Connection rules

are not related directly to geographical location. Without a proper algorithm

to assign IDs to sensors, there could be unnecessary long-distance commu-

nication edges. Therefore, we propose reducing average communication

distance of BCGs overlaid on WSNs. We also consider how to maximize a

partial BCG topology in the limited radio range scenario.

Distributed and Fault-tolerant Routing for Borel Cayley Graphs We propose

a fault-tolerant routing algorithm for BCG. Routing performance depends

on traffic patterns (many-to-one data collection, one-to-many data dissemi-

nation, point-to-point routing), traffic load (frequency of message delivery),

expected network operational time, and data packet size and format. Sen-

sors can be disabled due to energy depletion, and communication links can

be interrupted by obstacles. In case of sensor failure or communication

fault, we quantify routing performance as a function of the fault rate in

terms of reachability and End-to-End delay.

1.6 Organization of Thesis

The rest of this thesis is organized as follows. In Chapter 2, we review the ba-

sic concept and definitions for BCGs and related terminology. In Chapter 3, we

present our node ID assignment algorithms (Topology Control) for BCGs to re-

duce communication distance or improve completeness of connections. In Chap-

ter 4, we show our fault tolerant routing algorithm when edges fail. Conclusions

and future work are presented in Chapter 5.

7

Chapter 2

Preliminary

2.1 Borel Cayley Graph

In this chapter, we review the definitions of the generalized chordal ring, Cayley

graphs in general, and Borel Cayley graphs in particular. Much of the material in

this chapter was taken from Dr. Tang’s papers [56, 59, 69].

Definition 1 (GCR [69]). A graph R is a generalized chordal ring (GCR) if nodes

of R can be labeled with integers modulo the number of nodes N , and there exists

a divisor q of N such that node i is connected to node j if and only if node i + q
(mod N) is connected to node j + q (mod N).

Figure 2.1(a) shows a degree 4 GCR with 21 nodes V = {0, 1, 0, . . . , 20},
q = 3 classes and the connection rules for node i ∈ V given by:

if i mod 3 =







“0”: i is connected to i+ 3, i− 3, i+ 4, i− 10 (mod 21)
“1”: i is connected to i+ 6, i− 6, i+ 7, i− 4 (mod 21)
“2”: i is connected to i+ 9, i− 9, i− 7, i+ 10 (mod 21)

The connection rules of elements are defined by connection constants. Connection

constants of i and i + q are the same according to the definition. There are four

connection constants when the graph is four regular. For example, the 21-node

graph used connection constants +3, −3, +4, and −10 for class 0. We call those

constants GCR constants.

A chordal ring (CR) is a special case of GCR, in which every node i has

connections to node i+1 modulo N and i−1 modulo N . In other words, all nodes

8

(a) Generalized chordal ring. (b) Chordal ring.

Figure 2.1: Examples of generalized chordal ring and chordal ring.

on the circumference of the ring are connected to form a Hamiltonian cycle. 1

Figure 2.1(b) shows a degree 4 CR with 21 nodes V = {0, 1, 0, . . . , 20}, q = 7
classes, and the connection rules for i ∈ V given by:

if i mod 7 =







































“0”: i is connected to i+ 1, i− 1, i− 10, i+ 6 (mod 21)
“1”: i is connected to i+ 1, i− 1, i+ 7, i− 7 (mod 21)
“2”: i is connected to i+ 1, i− 1, i+ 10, i− 6 (mod 21)
“3”: i is connected to i+ 1, i− 1, i+ 6, i− 5 (mod 21)
“4”: i is connected to i+ 1, i− 1, i+ 9, i+ 10 (mod 21)
“5”: i is connected to i+ 1, i− 1, i+ 5, i− 10 (mod 21)
“6”: i is connected to i+ 1, i− 1, i− 6, i− 9 (mod 21)

There, connection constants, or CR constants, for class 0 are +1, −1, −10, and

+6.

Definition 2 (Cayley Graph [56]). A graph C = C(V,G) is a Cayley graph with

vertex set V if two nodes v1, v2 ∈ V are adjacent, there exists g ∈ G such that

v1 = v2 ∗ g, where (V, ∗) is a finite group and G ⊂ V \{I}. G is called the

generator set of the graph and I is the identity element of the finite group (V, ∗).

The definition of a Cayley Graph requires vertices to be elements of a group

1Hamiltonian cycle is a graph cycle through a graph that visits each node exactly once.

9

but does not specify a particular group.

Definition 3 (Borel Subgroup). If V is a Borel subgroup of the general linear 2×2
matrices set, then

V =

{(

x y
0 1

)

: x = at mod(p), y ∈ Zp, t ∈ Zk

}

, (2.1)

where a ∈ Zp\{0, 1}, p is prime, and k is the order of a. That is, k is the smallest

positive integer such that ak = 1 (mod p).

Definition 4 (Borel Cayley Graph (BCG) [57]). Let V be a Borel-subgroup and let

G be a generator set such that G ⊆ V \ {I}, then B = B(V,G) is a Borel Cayley

graph with vertices the 2 × 2 matrix elements of V and with directed edge from

v to u if u = v ∗ g where u 6= v ∈ V , g ∈ G and ∗ is a modulo-p multiplication

chosen as a group operation.

As an example, consider a Borel Cayley graph with p = 7, a = 2, k = 3,

t1 = 0, t2 = 1, y1 = 1, and y2 = 1 and generator set G = g1, g
−1
1 , g2, g

−1
2 . We

assume

g1 =

(

1 1
0 1

)

, g2 =

(

2 1
0 1

)

. (2.2)

Then two directed edges generated by one generator and its inverse are given by :

(

1 1
0 1

)

∗ g2 =

(

2 2
0 1

)

,
(

2 2
0 1

)

∗ g−1
2 =

(

1 1
0 1

)

.

When two nodes are linked by one directed edge, the opposite directed edge is

constructed with the inverse generator. So, we only need to consider undirected

edges.

Proposition 1. For any finite Cayley graph with vertex set V and any T ∈ V
such that Tm = I , there exists a GCR representation of C with divisor q = N/m,

where I is the identity element and T is referred to as the transform element.

Proposition 2. All degree-4 Borel Cayley graphs have CR representations.

10

The proofs of these propositions are given in [69] [56] and not repeated here.

Let ai be a class representing element. Then to simplify GCR representation

we use T and ai as follows [69]:

T =

(

1 1
0 1

)

, ai =

(

a 0
0 1

)i

. (2.3)

So any vertex v ∈ V can be represented with T and ai as follows [56]:

v = T j ∗ ai =

(

1 j
0 1

)(

ai 0
0 1

)

=

(

ai j
0 1

)

. (2.4)

Since BCGs are defined over a group of matrices, we define a, a mapping of

BCG representation from the group domain to the integer domain. This allows

us to take advantage of BCGs’ systematic representation of connections to the

integer domain, which includes simple routing tables. The node v representation

in GCR (IDg(v)) is denoted as follows [69]:

IDg(v) = q ∗ j + i, (2.5)

where q is k. As an example, Figure 2.1(a) shows a GCR representation of a Borel

Cayley graph in the integer domain.

A Borel Cayley is represented as a GCR which has connection rules expressed

in terms of GCR constants. When a Borel Cayley graph is represented in the inte-

ger domain, its GCR constants can be calculated by a systematic method. In [69],

for any Borel Cayley graph with n = p × k, and ak = 1 (mod p), we assume the

generators g1, g2, and their inverses to be:

g1 =

(

at1 y1
0 1

)

, g2 =

(

at2 y2
0 1

)

,

g−1
1 =

(

ak−t1 −ak−t1y1
0 1

)

, g−1
2 =

(

ak−t2 −ak−t2y2
0 1

)

.
(2.6)

Using the transform element T =

(

1 1
0 1

)

and the representing element of

class i,

(

ai 0
0 1

)

, we can create a GCR representation of the graph with divisor

q = k. To understand BCG representation in the GCR domain, lets consider

vertex j in class i. Then j is connected to j + αi, j + α−1
i , j + βi, j + β−1

i (mod

11

Table 2.1: Parameters of Borel Cayley Graphs used in this thesis.

N p k a t1 t2 y1 y2

272 17 16 3 1 2 1 1

506 23 22 7 1 7 1 1

1081 47 23 2 1 7 1 1

1474 67 22 3 1 7 1 1

2265 151 15 2 1 7 1 1

n) that corresponds to generators g1, g−1
1 , g2, and g−1

2 , where

αi = (〈i+ t1〉q + 〈a
i × y1〉p)× q − i,

α−1
i = (〈i− t1〉q + 〈−a

i−t1 × y1〉p)× q − i,

βi = (〈i+ t2〉q + 〈a
i × y2〉p)× q − i,

β−1
i = (〈i− t2〉q + 〈−a

i−t2 × y2〉p)× q − i,

and 〈i+ t〉q denotes (i+ t)(mod q).

From these equations, we can construct a BCG topology in the integer domain

with low computation cost and not in the matrix domain.

In Table 2.1, we list the parameter values for all the BCGs used in this thesis.

Parameters p and a determine N and BCG parameter k. Parameters t1 and y1
were used to construct the first generator. Parameters t2 and y2 were used to

construct the second generator. Using two different generators and their inverse,

we construct undirected BCGs. We arbitrarily chose parameters ts and ys for

generators.

2.2 Routing for Borel Cayley Graph

Symmetry or vertex-transitivity is a preferable attribute for an efficient intercon-

nection network topology. Informally, a symmetric or vertex-transitive graph

looks the same from any node. This property makes it possible to use an iden-

tical routing table at every node. Mathematically, this implies that for any two

nodes a and b in the graph there exists an automorphism of the graph that maps a
to b. This property is very useful for practical implementation of interconnection

networks. Most of the well-known interconnection graphs, such as the toroidal

mesh, hypercube and cube-connected cycle, exhibit such property [70–72].

12

Figure 2.2: Example of a routing table for Borel Cayley Graph.

Proposition 3. All Cayley graphs are vertex-transitive [59].

As shown in the previous section, every Cayley graph can be represented with

integer node labels through a transformation into a generalized chordal ring topol-

ogy. However, generally speaking, GCR graphs are not fully symmetric. In [59],

the authors provide a framework for the formulation of the complete symmetry (or

vertex-transitivity) of Cayley graphs in the integer domain of GCR representation.

Proposition 4. Consider a Borel Cayley graph in the GCR representation with

transform element T =

(

1 1
0 1

)

and representing elements of each class i de-

fined by ai =

(

ai 0
0 1

)

. Let i = m1q + c1, j = m2q + c2 and i′ = m′q + c′.

If i is connected to j with a sequence of generators, then i′ is connected to j′

with the same sequence of generators, where j′ = 〈m′ + a〈c
′−c1〉q(m2 −m1)〉pq+

〈c′ − c1 + c+ 2〉q [59].

Table 2.2 shows an optimal routing algorithm, Vertex-transitive Routing, that

exploits the inherent symmetry of Cayley graphs and uses an identical routing

table at any node.

13

Table 2.2: Vertex-transitive routing algorithm for Borel Cayley Graphs.

For a degree-4 Borel Cayley graph in the GCR representation with T =
(

1 1
0 1

)

and ai =

(

ai 0
0 1

)

, we have q = k classes, where ak = 1 (mod

p). Assume the generators to be g1, g2, g
-1
1 and g-1

2 , where

g1 =

(

at1 y1
0 1

)

and g2 =

(

at2 y2
0 1

)

.

Given the source i = m1q + c1 and the destination j = m2q + c2.

While (i 6= j)

Step 1: Identify new destination,

j′ = 〈aq−c1(m2 −m1)〉pq + 〈c2 − c1〉q,

where 〈 〉p signifies the operation within the bracket 〈 〉 is modulo p.

Step 2: From row j′ of a precalculated routing table, determine which link

to take.

Step 3: Identify new source, i′ = mq + c and

m = y1, c = t1, if link g1 was chosen

m = y2, c = t2, if link g2 was chosen

m = p− 〈aq−t1y1〉, c = q − t1, if link g-1
1 was chosen

m = p− 〈aq−t2y2〉, c = q − t2, if link g-1
2 was chosen

Step 4: i = i′ and j = j′

Figure 2.3: Example of Vertex-transitive routing from node 0 to node 16.

14

Table 2.3: A summary of Vertex-transitive routing example.

Iteration i j j′ i′ link

0 0 16 16 4 g2
1 4 16 6 3 g1
2 3 6 3 3 g1
3 3 3 - - -

As an example, we consider the Borel Cayley graph shown in 2.1(a). At each

node, we store the size 20×4 routing table shown in Figure 2.2 where the number

of nodes is 20 and the number of generators is 4. Suppose we need to route a

message from node 0 to node 16. There are three shortest paths between nodes 0
and 16 as shown in Figure 2.3. The iterations for this example are summarized in

Table 2.3.

15

Chapter 3

Node ID Assignment for Borel

Cayley Graph

3.1 Introduction

In this chapter, we propose two node ID assignment algorithms for applying BCGs

as logical topologies in WSNs. The first one, the chordal ring node ID assign-

ment algorithm, uses a specific representation (the chordal ring representation) of

BCG to assign node IDs of the entire graph. Its goal is to minimize edges asso-

ciated with long distance radio links. The second algorithm, the distributed node

ID swapping assignment, accounts for network nodes’ finite radio transmission

range. In this case, the imposition of the entire BCG is not always possible.

We will show that the proposed chordal ring node ID assignment algorithm

requires a smaller radio range (57% that of the random node ID assignment).

When the nodes are constrained to a finite transmission range and the imposi-

tion of an entire BCGs is not feasible, the proposed distributed node ID swapping

assignment imposes more edges of the original graph (43% more edges in com-

parison to random ID assignment). There are other node ID assignments related

researches that mostly focus on scalability and energy consumption of an ad hoc

WSN [73, 74]. Their main goal is to support dynamic and temporary node ID as-

signment when unicast routing is needed. They do not consider topology controls

with node ID’s connections.

16

3.2 Problem Statement

A WSN can be represented as a graph where each node of the graph corresponds

to a sensor node and each edge represents a radio connection between nodes. Ob-

viously, for dense WSNs, the number of physical neighbors (nodes within radio

range) is large. For ease of description, we call the topology representing the phys-

ical neighbors a host graph. Besides representing the number of neighbors within

communication reach of each other, an edge of a host graph is also weighted by

the communication distance or communication cost between nodes.

We are interested in the problem of imposing a BCG with a small degree on a

dense WSN. We call the BCG topology the target graph; and the host graph after

the imposition, the resultant graph. We consider two cases:

• The radio range of each node covers the whole sensor deployment area. In

this case, any node ID assignment always produces a resultant graph with

fully connected BCG topology. But depending on a node ID assignment,

the communication distances between neighbors vary. So in this case, the

goal of our node ID assignment is to reduce the communication distance

between connected nodes.

• The radio range does not cover the whole sensor deployment area. Careful

node ID assignment is required to produce a resultant graph as similar as

possible to the target graph (a BCG topology). In this case, the goal is to find

the ID assignment that establishes most communication edges following

BCG connection rules.

3.2.1 Average communication distance minimization when the

radio range covers the deployment area

Our node ID assignment problem can now be described in terms of finding the

assignment that yields the minimum sum of weights of the resultant graph after

imposing a target graph onto the host graph. Figure 3.1 illustrates these termi-

nologies. Figure 3.1(a) is the host graph with each node’s physical neighbors and

weights on the edges that represents the connections communication cost. Fig-

ure 3.1(b) is the target graph. Figure 3.1(c) and Figure 3.1(d) show two example

resultant graphs, where each graph has a different sum of weights, depending on

how node IDs were assigned.

17

A

B

C D

E

4

1

1

4

3 3

1

5

3

3

(a) Host graph.

1

2

3 4

5

(b) Target graph.

A, 1

B, 4

C, 2 D, 5

E, 3

1

1

3

1

3

(c) Resultant graph 1.

A, 1

B, 2

C, 3 D, 4

E, 5

4
4

3

5

3

(d) Resultant graph 2.

Figure 3.1: Graph representation with radio range enough to cover whole deploy-

ment area.

Let a host graph G = (V,E) in the Euclidean space represents the underlying

network before applying our proposed methods with V being the set of sensor

nodes and E representing the set of communication distances between nodes. We

assume that the radio range of each node in the host graph is large enough to cover

the whole deployment area (So the host graph is a fully connected graph). The

weight of E(u, v), denoted by wuv, represents the Euclidean distance between

nodes u and v. The weight between two nodes u and v with coordinates (ux, uy)
and (vx, vy) is computed as

wuv =

√

(ux − vx)
2 + (uy − vy)

2. (3.1)

The weights are symmetric because if node u is in the radio range of node v, then

18

A

B

C D

E

(a) Host graph.

1

2

3 4

5

(b) Target graph.

A, 1

B, 4

C, 2 D, 5

E, 3

(c) Resultant graph 1.

A, 1

B, 2

C, 3 D, 4

E, 5

(d) Resultant graph 2.

Figure 3.2: Graph representation with finite radio range.

node v is also in the radio range of node u. Thus, the edges are undirected.

3.2.2 Completing communication edges with finite radio range

This node ID assignment problem can be described as finding the maximum num-

ber of edges of the resultant graph after imposing a target graph onto the host

graph. Figure 3.2 illustrates these terminologies. Figure 3.2(a) is the host graph

that shows the physical neighbors of each node. Figure 3.2(b) is the target graph.

Figure 3.2(c) and Figure 3.2(d) show two different ways to impose the target graph

on the host graph where each results in a different number of edges, depending on

how node IDs were assigned.

The edge E(u, v) is determined by the radio range and the Euclidean distance

between nodes u and v. The distance between two nodes u and v with coordinates

19

(ux, uy) and (vx, vy) is wuv. The edge E(u, v) is defined as follows:

E(u, v) =

{

1 if wu,v ≤ Radio range

0 otherwise
(3.2)

In the remaining sections, we will propose algorithms to solve these two prob-

lems: (a) reducing the average communication distance of BCG based networks

and (b) completing as many as possible communication edges that follow the BCG

connection rules. Each problem is dealt with by a distributed method. Regardless

of the application type, a distributed method is preferred in wireless sensor net-

works.

3.3 Simulated Annealing based Node ID Assignment

Simulated annealing (SA) is a probabilistic and iterative algorithm used in several

domains [75]. We apply simulated annealing to solve our BCG node ID assign-

ment problem (SA assignment). Readers interested in more details on SA and its

applications are referred to [76]. Algorithm 1 represents the Simulated Annealing

algorithm. We only focus on defining the application dependent functions in SA

used for our node ID assignments.

The SA assignment has some known limitations. Its convergence is sensitive

to SA parameters ts, te, kmax, and temperature decrement interval α defined in

Algorithm 1. Note that it is a centralized algorithm that requires positions of

sensor nodes, heavy computation load, and a routing protocol for notifying node

IDs from a central machine to sensor nodes. However it gives us guidelines for

the optimal performance when evaluating our proposed methods.

Case of finite radio range

Recall that one of our goals is to minimize the communication distance between

nodes when imposing a BCG target graph on a host graph with sufficient long-

distance radio range. We denote the weighted adjacency matrix of the host graph

by H and the adjacency matrix of the target graph by M . As mentioned previ-

ously, a host graph is assumed to be a fully connected graph from which we obtain

the distance matrix for all pairs of nodes in a network. Thus, a matrix element h
of H is as follows:

huv = wuv, ∀u, v ∈ V. (3.3)

20

Algorithm 1 Simulated Annealing.

Require: H: Adjacency matrix of host graph

Require: M0: Adjacency matrix of Borel Cayley graph

1: procedure SA(H,M0)

2: t← ts ⊲ ts: initial temperature

3: M ←M0

4: curDistance← SCORE(H , M)

5: while te ≤ t do ⊲ te: finished temperature

6: while k ≤ kmax do ⊲ kmax: iterative count

7: v1, v2 ← SELECT(M)

8: MT ← SWAP(v1, v2,M) ⊲ MT is a trial set

9: trialDistance← SCORE(H , MT)

10: ∆S ← trialDistance− curDistance

11: if ∆S > 0 then

12: curDistance← trialDistance

13: M ←MT ⊲ Update M

14: else

15: trialProb← RANDOM(0, 1)

16: if trialProb < e−
∆S

t then

17: curDistance← trialDistance

18: M ←MT

19: end if

20: end if

21: k ← k + 1
22: end while

23: t← αt ⊲ 0 < α < 1
24: end while

25: return M, curDistance

26: end procedure

21

Figure 3.3: Illustration of matrix M when node ID 0 and 4 are swapped.

A BCG target graph has an adjacency matrix M0 of elements muv defined by:

muv =

{

1 if there is a BCG edge between nodes u, v ∈ V
0 otherwise

(3.4)

The SELECT function chooses two node IDs uniformly at random. The SWAP

function interchanges rows of selected nodes, and then interchange columns in M
as follows:

∀k ∈ [0, N),

{

mik,mjk = mjk,mik

mki,mkj = mkj,mki
(3.5)

where mαβ is a matrix element of M , i and j are selected nodes, k is the row or

column index, and N is the number of nodes.

Figure 3.3 shows an example of M for the graph in Figure 3.1(b) when node

ID 0 and 4 are exchanged with the SWAP function. The first node of ID 0 was

connected to the second node of ID 1 and the fifth node of ID 4 before exchange.

After the exchange, the first node having node ID 4 is connected to the fourth

node of ID 3 and the fifth node of ID 0. Therefore, each sensor node is assigned a

different node ID while the target graph topology is preserved.

The SCORE function calculates the sum of weights as followings:

SCORE(H,M) =
N−1
∑

j=0

N−1
∑

i=0

hij ∗mij/2. (3.6)

22

Equation (3.6) is the sum of communication distances once the edges that do not

follow the BCG connection rules are removed.

Case of infinite radio range

The simulated annealing based node ID assignment for completing connections is

almost identical to the simulated annealing node ID assignment for reducing the

average communication distance. The difference is with the SCORE function and

the update condition. Line 11 of Algorithm 1 is changed from ∆S > 0 to ∆S < 0
because the SCORE function calculates the sum of disconnected edges in a target

graph as follows:

rij =

{

1 if hij −mij = −1
0 otherwise

(3.7)

SCORE(H,M) =
n−1
∑

j=0

n−1
∑

i=0

rij/2. (3.8)

In this thesis, for the SA assignment, we set te = 30, ts = 0.1, kmax = N , and

α = 0.98. SA parameter values were selected heuristically based on simulation

results.

3.4 Chordal Ring Based Node ID Assignment

3.4.1 CR representation and node ID conversion between GCR

and CR

Recall that nodes of ID n in a chordal ring (CR) have neighbors ID n + 1 mod

N and n − 1 mod N . In other words, all nodes on the circumference of the ring

are connected to form a Hamiltonian cycle. In the CR representation of BCG, the

transform element and class representing elements are function of BCG parame-

ters. Let T be a transform element in CR and a be the set of class representing

elements in CR. Then, any vertex v ∈ V is represented by T and ai′ in a as

follows:

v = T
j′ ∗ ai′ . (3.9)

Since there is no systematic representation for CR and no conversion method

between GCR ID and CR ID, we propose (a) a CR representation in the integer

23

(a) Generalized chordal ring. (b) Chordal ring.

Figure 3.4: Examples of generalized chordal ring and chordal ring.

domain and (b) a conversion method between GCR ID and CR ID. The number of

classes, q, can be different in the CR and GCR domains [56]. Therefore, we use

qg for the number of classes in the GCR domain and qc in the CR domain. The

node ID representation in the CR domain (IDc(v)) is given as follows:

IDc(v) = qc ∗ j
′ + i′, (3.10)

where qc is k or p, and IDc(v) is the node ID of v in the CR domain. Figure 3.4(b)

shows the CR representation of a Borel Cayley graph in the integer domain. The

graphs shown in Figure 3.4 represent the same BCG represented in both the CR

and GCR domains.

By combining Eq. (2.5) and Eq. (3.9), the conversion formulation from CR

ID to GCR ID is

IDc(v) = qc ∗ j
′ + i′,

v = T
j′ ∗ ai′ =

(

ai j
0 1

)

,

IDg(v) = qg ∗ j + i,

(3.11)

where IDg(v) is the node ID representation in the GCR domain.

24

Similarly, the conversion formulation from GCR ID to CR ID is

IDg(v) = qg ∗ j + i,

v = T j ∗ ai =

(

ai j
0 1

)

= Tj′ ∗ ai′ ,

IDc(v) = qc ∗ j
′ + i′.

(3.12)

Based on the set of class representing elements a given in [56], integers i′ and

j′ can be calculated by Algorithm 2. Note that Algorithm 2 does not have any

infinite loop since the matrix v is Tj′ multiplied by ai′ .

Algorithm 2 Calculating j′ and i′

Require: T is nonsingular.

1: procedure CALCULATING j′ AND i′(T, v)

2: j′, i′ ← 0
3: while Not v ∈ a do ⊲ Find j′ of T using Eq. (3.9)

4: v ← T
−1v

5: j′ ← j′ + 1
6: end while

7: while v 6= ai
′ do ⊲ Find i′ of ai′ using Eq. (3.9)

8: i′ ← i′ + 1
9: end while

10: return j′, i′

11: end procedure

We already discussed the relationship between GCR ID and the CR ID. The

GCR and CR representations of BCG have different advantages. The GCR repre-

sentation of BCG has an optimal routing algorithm to identify the shortest paths

between any sources and destination pairs [59]. On the other hand, the CR rep-

resentation supports a Hamiltonian cycle and a simple sub-optimal routing algo-

rithm. Therefore, we assign IDs in the CR domain to minimize the communication

distance between neighboring nodes and then map them to the GCR domain for

optimal routing performance.

3.4.2 Algorithm

The chordal ring based method (CR assignment) consists of three main steps:

1. Making a Hamiltonian cycle in the CR domain,

25

0

A

BD

C

5

3560

5
0

3
0

6
5

7
0

1
5

(a) Select the closest edge.

0

1

BD

C

g
1

3560

5
0

3
0

6
5

7
0

1
5

(b) Assign the next node ID to

the selected node.

0

1

620

11

g
1

35g2
-1

5
0

3
0

6
5

7
0

1
5

(c) All sensors are assigned

node IDs using a Hamiltonian

cycle.

0

3

1811

4

g
1

35g2
-1

5
0

3
0

6
5

7
0

1
5

(d) Convert to GCR

0

3

1811

4

g
1

g1
-1g2

-1

g
2

(e) Establish connections.

Figure 3.5: Illustration of CR assignment. Note that each alphabet represents a

physical sensor node and a dashed line represents distance.

2. Converting node IDs from the CR domain to the GCR domain, and

3. Establishing edges.

Figure 3.5 illustrates the CR assignment algorithm. There, the algorithm starts

by choosing the lowest weighted edge of sensor node ID 0 and then assigns 1 plus

node ID 0 to the corresponding node (Figure 3.5(b)). Selection of the closest

sensor can be implemented at a reasonable computational cost in today’s sen-

sor technology. Existing localization methods include global positioning system

(GSP), beacon nodes, and proximity-based localization [77–81]. The next node

selects the edge with the lowest weight among edges that are not already con-

nected to assigned nodes. The algorithm repeats until the last node ID is assigned

26

(Figure 3.5(c)). Then, the node IDs are mapped from the CR domain to the GCR

domain (Figure 3.5(d)). Finally, the actual connections are established using GCR

connection constants following the BCG connection rule (Figure 3.5(e)). Algo-

rithm 3 summarizes the CR assignment.

Algorithm 3 CR assignment.

1: procedure CR ASSIGNMENT(T, a)

2: v ← v0 ⊲ v0: starting node

3: IDc(v)← 0
4: while IDc(v) 6= N do ⊲ Until all nodes are assigned

5: vn ← select unassigned node closest to v
6: IDc(vn)← IDc(v) + 1
7: v ← vn
8: end while

9: Convert all IDs from CR to GCR ⊲ Using Eq. (3.11)

10: Establish the remained edges using GCR constants

11: end procedure

The CR assignment guarantees that at least the lowest weighted edges of con-

secutive node IDs are selected as communication links, except for the edge be-

tween the starting node and the last assigned node. As a result, we optimize

two out of four edges per node excluding first and last ones. We expect the total

weights of edges from the CR assignment to be smaller than those of a random

node ID assignment. Moreover, the CR assignment is a fully distributed algorithm

and does not require pre-assigned node IDs.

3.4.3 Average communication distance

We define the average communication distance as the average weights of the target

graph communication distance between pairs of nodes. Our goal is to minimize

the average communication distance. To evaluate our assignment algorithm, we

calculated the expected communication distance analytically. From Eq. (3.1),

the expected communication distance between randomly chosen positions is as

follows:

E(D) =
1

a2b2

∫ b

0

∫ b

0

∫ a

0

∫ a

0

wuv duxdvxduydvy , (3.13)

where a and b represent the horizontal and vertical dimensions (m), respectively.

27

Figure 3.6: Average communication distance of resultant graphs by node ID as-

signments in the case of sufficient radio range to cover whole sensor deployment

area.

Figure 3.6 shows the average communication distance for each node ID as-

signment algorithm where a, b = 100m. The Random assignment algorithm uni-

formly and randomly assigns a unique BCG node ID to all the sensors. We call

the resultant network topology with Random assignment BCG-0 and the resul-

tant network topology with CR assignment BCG-1. The average weight of the

Random assignment and the expected distance are both approximately equal to

52.

We also calculated the standard deviation for the average communication dis-

tance from 100 CR assignment samples. The results show that selection of the

initial node does not affect the average communication distance. For graphs of

sizes N = 272, 506, 1081, 1474, and 2265, the standard deviations for the CR

assignment were 0.58, 0.53, 0.62, 0.72, and 0.60, respectively.

Figure 3.7 shows the histograms of the communication distance for N = 272
generated by the proposed node ID assignment algorithms. The histogram of the

SA assignment exhibits a right skewed distribution with a high frequency of short

edges. The CR assignment also show a right skewed distribution although it is

less regular. We also obtained similar histograms for other network sizes listed in

Table 2.1.

28

0 20 40 60 80 100 120 140
Communication Distance

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

b
a
b
ili

ty

(a) Random assignment.

0 20 40 60 80 100 120 140
Communication Distance

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

b
a
b
ili

ty

(b) SA assignment.

0 20 40 60 80 100 120 140
Communication Distance

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

b
a
b
ili

ty

(c) CR assignment.

Figure 3.7: Histograms of communication distance by the proposed algorithms

with N = 272 and a solid line shows polynomial fit line.

29

3.5 Distributed Node ID swapping Assignment

In the previous section, we showed the CR assignment algorithm for reducing

average communication distance with infinite radio range. In this section, we pro-

pose the distributed node ID swapping assignment for completing communication

edges when radio range is finite. The distributed node ID swapping assignment

(Dist-swap assignment) consists of four main steps:

1. Broadcast its node ID to its physical neighbors,

2. Collect IDs of physical neighbors that can be swapped,

3. Select the best-fit node ID to be swapped with, and

4. Swap node IDs and update each logical neighbor table of its physical neigh-

bors.

3.5.1 Terminologies

We denote the logical node ID of node x by xid and define the following:

• D(xid): Set of logical neighbors of node ID xid in the target graph,

• T (x): Set of logical IDs of node x’s physical neighbors, and

• L(xid, y) = |D(xid) ∩ T (y)|: The number of logical neighbors of node ID

xid that are also physical neighbors of node y.

We define four different packet types:

1. Token packet: Forwarded by nodes and used to initiate the node swapping

algorithm by the node recipient. Also contains counter reptCnt.

2. Info packet: Used by the current node holding the token to broadcast xid to

its physical neighbors so as to identify candidate nodes to be swapped.

3. Request packet: Supports collection of candidate nodes. If a physical

neighbor node y receiving an Info packet from node x determines it can be

swapped, it sends a Request packet back to node x. The Request packet

contains yid, L(yid, y), and L(xid, y).

4. Swap packet: Used by the current node x to announce to its physical neigh-

bors swapping with node y. Contains the pair (xid, yid). Nodes having those

node IDs in T () need to update the swapped IDs.

30

3.5.2 Assumption

We assume that (a) a host graph is a connected graph (There is a path between all

node pairs), (b) nodes have pre-assigned unique IDs ranging from 0 to N − 1, (c)

T (x) (a set of logical IDs of its physical neighbors) at each node x ∈ V is obtained

before the swapping process, and (d) the order of nodes to perform operation is

based on token method.

3.5.3 Algorithm

The Dist-swap assignment is performed by one node at a time using a token pro-

cedure (i.e., there is one token in the network, and only the node holding the token

executes the swapping algorithm). To prevent an infinite loop, we rely on a token

counter (repCnt) to track the number of times of the token being passed around.

At the beginning of the Dist-swap assignment, the node that starts the operation

sets repCnt to repTotal that was heuristically selected based on previous simula-

tion studies. As the token travels around the network, each node decreases repCnt
by one before forwarding the token to the next node. The Dist-swap assignment

ends once repCnt reaches zero.

We describe in details the Dist-swap assignment as follows:

• Table 3.1 describes the Dist-swap assignment operation after node x re-

ceives a Token packet. First, node x determines whether or not it needs to

execute the swapping process based on its current number of logical neigh-

bor IDs among its physical neighbors and based on its target number of logi-

cal neighbors within the target graph. If those are not the same, node x sends

an Info packet to its physical neighbors. After receiving Request packets

from its physical neighbors, node x determines which node ID swapping

is most beneficial. Because the Request packet from node y contains yid,

L(yid, y), and L(xid, y), node x can calculate the change in the number of

logical neighbors from the physical neighbors when node IDs xid and yid

are swapped. If a candidate node for swapping exists, node x sends a Swap

packet with its own node ID and the selected node ID to its neighbors.

• Table 3.2 illustrates node y operation after receiving an Info packet. To

determine whether or not to reply with a Request packet, node y checks

the number of its logical neighbors that would be assigned to its physical

neighbors if it were assigned node ID xid. If it is larger than the number

31

Table 3.1: Dist-swap assignment operation after a node receives the Token packet.

1. A node x receives a Token packet.

(a) If |D(xid)| = L(xid, x), forward the Token packet randomly to

one of its physical neighbors.

(b) Otherwise, sends an Info packet to all its physical neighbors.

2. Node x collects the Request packets.

(a) If there is no Request packet received, forward the Token packet

randomly to one of its physical neighbors.

3. Node x creates a list of candidate nodes. A node y is a candidate node

if L(yid, x) + L(xid, y)− L(xid, x)− L(yid, y) > 0.

(a) If there is no candidate node, forward the Token packet randomly

to one of its physical neighbors.

(b) Otherwise, select the node y maximizing the number of logical

neighbors when two node IDs are swapped.

4. Node x sends Swap packet with (xid, yid).

5. Node x sends Token packet to node y.

of its logical neighbors with the current node ID, node y sends a Request

packet.

• Table 3.3 shows the operation when node z receives a Swap packet. Swap

packet contains node IDs (xid, yid). If yid is the same as zid, then the Re-

quest packet sent by z is accepted. Next, node z changes its node ID to

xid and sends a Swap packet with (zid, xid) to its physical neighbors so that

they update their T ()s. If xid is the same as zid, node z ignores that packet.

Otherwise, node z updates T (z) to reflect that node ID xid is changed to yid.

3.5.4 Example

Next, we use an example to illustrate the Dist-swap assignment operation. The

physical nodes of the host graph are denoted by nodes x, y, and z, and the logical

32

Table 3.2: Dist-swap assignment operation after a node receives the Info packet.

1. A node y receives an Info packet.

2. Node y calculates the number of its logical neighbors among its physi-

cal neighbors if it were assigned node ID xid.

(a) If that number is larger than or equal to the number of logical

neighbors of the current ID, send the Request packet.

(b) Otherwise, ignore the Info packet.

Table 3.3: Dist-swap assignment operation after a node receives the Swap packet.

1. A node z receives a Swap packet that contains node IDs (xid, yid).

(a) If zid is equal to yid, change zid to xid and send a Swap packet with

node IDs (zid, xid) to its physical neighbors.

(b) If zid is equal to xid, ignore the Swap packet .

(c) Otherwise, change xid to yid in T (z).

x, 5y, 8

13

4 6

1

3

z, 15

17

7

9

Figure 3.8: Host graph used as example of Dist-swap assignment.

node IDs of the target graph are denoted by 1, 2,...,etc. Figure 3.8 shows that logi-

cal node IDs 5, 8, and 15 have been preassigned to nodes x, y, and z, respectively.

We assume the target graph has a simple connection rule, namely: node ID i is

connected to i− 4, i− 2, i+ 2, and i+ 4. Given the connection rule in the target

graph, the neighbors of node ID 5 in the target graph are: D(5) = {1, 3, 7, 9}.
Similarly, D(8) = {4, 6, 10, 12}, and D(15) = {11, 13, 17, 19}.

Let node x receive a Token packet first. Then node x decides whether or not

33

Figure 3.9: Edge construction percentage with distributed node ID assignment.

to perform the swapping process based on the current number of logical neighbors

among its physical neighbors (L(5, x)). Since T (x) = {4, 6, 8, 13, 15}, D(5) =
{1, 3, 7, 9}, and L(5, x) = 0, the number of node x logical neighbors among its

physical neighbors is not the same as the maximum number of logical neighbors

4. So, node x sends an Info packet to its physical neighbor nodes. Swapping node

IDs is beneficial to node y because L(8, y) is zero and L(5, y) is two, which means

node y gains two more logical neighbors after swapping IDs with node ID 5. Thus,

node y sends the Request packet to node x. Node z also sends a Request packet

to node x through the same process. Finally, node x determines to swap IDs with

node y because L(8, x) + L(5, y) = 4 is greater than L(15, x) + L(5, z) = 3.

3.5.5 Completeness of resultant graph

Recall that an efficient ID assignment method should incorporate as many as pos-

sible target graph edges in the resultant graph from a given host graph where

sensor nodes are limited to a specific radio range. Therefore, to measure the per-

formance of our assignment methods, we define Rc, the ratio of the number of

edges of the resultant graph over that of the target graph. That is,

Rc =
Number of edges in resultant graph

Number of edges in target graph
. (3.14)

34

Table 3.4: Summary of our proposed algorithms.

Resultant graphs Algorithms

BCG-0 Random assignment

BCG-1 Chordal ring based node ID assignment

BCG-2 Distributed node ID swapping assignment

BCG-3 Distributed node ID swapping assignment & Random node selection

Figure 3.10: Connected network percentage with node ID assignments.

For a given radio transmission range, the assignment method with the largest

Rc indicates that the most edges of the target graphs are incorporated in the resul-

tant graph. We define the resultant network topology with Dist-swap assignment

BCG-2. Figure 3.9 shows Rc for BCGs target graphs with N = 1081. The

Dist-swap assignment (BCG-2) produces an Rc larger than that of the Random

assignment (BCG-0) and less than that of the SA assignment. Especially, with

50m radio range in 100m by 100m area, it showed 43% more edges than the Ran-

dom assignment.

When applying BCGs to wireless sensor networks, we also need to consider

network connectivity. Because the Dist-swap assignment maximizes Rc without

considering network connectivity, we apply a random node selection algorithm on

processed nodes that do not have the right number of logical neighbors. We define

the resultant graph from this method BCG-3. Table 3.4 summarizes resultant

35

Figure 3.11: Example of status agreement with consensus protocol on BCG.

graphs from our proposed algorithms.

Figure 3.10 shows the percentage of connected network function of assign-

ments for 100 network samples. BCG-0 with a 105m radio range produces a

100% connected network while BCG-2 and BCG-3 requires 65m and 10m radio

range, respectively to produce a connected network. All connections of BCG-2
are satisfied by the connection rules of BCGs. However, BCG-3 has non-BCG

connections since some are logical neighbors randomly selected for improved

connectivity.

3.6 Data Dissemination

3.6.1 Consensus protocol

We use the consensus protocol as a benchmark to evaluate our topology control

algorithms. Consensus protocol is a distributed node-to-node message exchange

rule to achieve a network-wide agreement over a quantity of interest (e.g., average

of sensory data). Consensus protocol has a long history in distributed comput-

ing and has been used in a variety of applications. Moreover, it has been widely

accepted as a reliable measure of data fusion performance of network topolo-

gies [82, 83]. In WSN, consensus protocol research has been focusing on time

synchronization and gossip algorithms [84–86]. Readers further interested with

consensus protocol and its application are referred to [60].

36

The consensus agreement value can be an average, a maximum, a minimum,

or any function. Consensus protocol only depends on the initial states of the

nodes in the network. Furthermore, the speed of consensus is a good measure of

the efficiency of a network topology to distribute information. In this study, we

consider the distributed average consensus protocol proposed in [60] which we

summarize next.

Let us consider a network system of which the underlying logical network

topology is represented by an unweighted, undirected graph. Each node v ∈ V in

the system communicates its state value xv to its immediate neighbors N(v) := u
where ev,u ∈ E(V) and E is an edge set. At each iteration τ , nodes exchange

their current state value xv(τ) with their immediate neighbors. Given the state

values xu(τ) received from their neighbors u ∈ N(v), each node u updates its

state according to

xu(t+ 1) = xu(t) +
1

ω

∑

v∈N(u)

(xv(t)− xu(t)), (3.15)

where ω is typically 0 < 1
ω
< 1

2dmax(G)
and dmax(G) is the largest nodal degree.

We set ω to 2 × dmax(G) + 1 in this thesis. Consensus convergence can be con-

trolled by ω. However, finding an optimal value for ω is out of scope in this thesis.

Following the method in [87], we use the average consensus protocol (Eq. 3.15)

to measure the information fusion performance of the network generated by the

proposed topology control protocol. Figure 3.11 shows an example of agreement

steps by a consensus protocol. BCGs have already been shown to exhibit better

consensus protocol performance than mesh, torus, and small world networks [68].

However, that research compared only topology level without considering nodes’s

physical geographical information and radio range. In this thesis, we compare a

BCG with other network topologies when applied to a wireless sensor network.

3.6.2 Simulation setup

We evaluated our proposed topology control algorithms in terms of consensus

speed and power consumption. The simulations were executed on 100 host graphs;

each with sensors uniformly and randomly distributed over a 100m× 100m area.

Consensus protocol was initialized with nodes state value set to integers randomly

chosen between -5 and 5 inclusive. We declared a network topology to have

reached an agreement once all node values equal the average of all initial state

37

Table 3.5: Radio model parameters.

Parameters V alues

n 2
β1 45nJ/bit
β2 10pJ/bit
γ 135nJ/bit
B 320bits(= 40bytes)

values within a precision of 0.001. The performance of the consensus protocol

was measured as the number of steps needed to reach a network-wide consensus.

We also computed the energy needed for all the nodes in the network to reach

a consensus using the average consensus protocol. To do this, we utilized the

radio model described in [88]. For the sake of simplicity, we only considered the

energy consumptions from data transmission (Etx) and reception (Erx) defined as

follows:

Etx = B(β1 + β2ω(v, u)
n), (3.16)

Erx = Bγ, (3.17)

where n is the path loss exponent which ranges from 2 to 6. The constants β1,

β2, and γ correspond to the energy dissipated by the transmitter module, transmit

amplifier, and receiver module, respectively. We denote the estimated distance

between nodes v and u by ω(v, u) and the length of the transmitted messages

by B. We set n = 2, equivalent to the free-space pass loss model and assume

that a sensor node v, regardless of the topology control protocols considered, can

adjust its transmission power to reach its neighbors w. The parameters used in the

simulation are summarized in Table 3.5.

Using the average consensus protocol, a node transmits and receives to and

from each of its neighbors at every iteration. Thus the node’s energy consumed

by the network at the τ th iteration is given by

P0(v) = τB
(

∑

∀(v,u)∈Ev 6=u

(

β1 + β2ω(v, u)
n
)

+ γdeg(v)
)

, (3.18)

where deg(v) is the number of logical neighbors, (v, u) is a logical connection

and E denotes the edge set. The average nodal energy consumption is given by

P0 =
∑

v∈V P0(v)/|V |. We call this power consumption model Power model 0.

38

In wireless sensor networks, a network can support multi-casting routing to

transmit at once to multiple nodes inside the radio range. In this case, power con-

sumption is calculated not with each communication edge but with the maximum

distance communication edge as follows.

P1(v) = τB
(

β1 + β2Max{r(v, u), u ∈ adj(v)}n + γdeg(v)
)

. (3.19)

We call this power consumption model Power model 1.

3.6.3 Comparison between BCG-0 and BCG-1

Figure 3.12 shows the histograms of the communication distance for N = 1081
generated by the proposed node ID assignment algorithms. The histogram of

the CR assignment (BCG-1) exhibits a right skewed distribution with a high

frequency of short edges. The Dist-swap assignment (BCG-2) shows all con-

nection distance are under the maximum radio range 80m. We obtained similar

histograms for the network sizes listed in Table 2.1. We compared the average

power consumption between the Random assignment and the CR assignment be-

cause they require a radio range that covers the whole node deployment area. Fig-

ure 3.13 summarizes the resulting consensus protocol energy consumption. We

found BCG-1 consumed 8% less energy than BCG-0 with power model 0 and

2% less with power model 1.

3.6.4 Comparison between our proposed topology control and

existing topology controls

We compared our topology control algorithms with existing topology controls.

The evaluation was done in terms of diameter, average path length, consensus

steps, and nodal energy consumption.

We used the following topologies for comparison against our approach:

• Max: Network where all nodes within the maximum radio range are logical

neighbors. Without any topology control, a network is called Max topology.

• E-MST [89]: The Euclidean minimum spanning tree is a minimum span-

ning tree whose edge weight is the distance between nodes. This algorithm

minimizes the summed weight of edges and generates a connected network.

39

0 20 40 60 80 100 120 140
Communication Distance

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

b
a
b
ili

ty

(a) Random assignment(BCG-0).

0 20 40 60 80 100 120 140
Communication Distance

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

b
a
b
ili

ty

(b) CR assignment (BCG-1).

0 20 40 60 80 100 120 140
Communication Distance

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

b
a
b
ili

ty

(c) Dist-swap assignment (BCG-2).

Figure 3.12: Histograms of communication distance by the proposed algorithms

with N = 1081.

40

Figure 3.13: Power consumption comparison between BCG-0 and BCG-1.

• K-Neigh [34]: Network where the number of neighbors of a node equal to,

or slightly below a given value k.

• Gabriel Graph [90]: A planar graph (no edges cross one another) supports

geographical routings and is defined such that an edge (v, u) exists if no

other node is inside the circle with the diameter uv.

Figure 3.14 provides illustrations of the topologies constructed with (a) the

Random assignment (BCG-0), (b) the Dist-swapping assignment (BCG-2), (c)

Max, (d) E-MST, (e) K-Neigh, and (f) Gabriel graph. (For ease of description,

we show sample graphs with N = 272. However, we simulated networks of size

N = 1081 in this section.)

In Figure 3.15 and Figure 3.16, we show the diameter and average path length

function of the transmission range, respectively. We only compared the cases

where the resultant graph is a connected graph. From these figures, we confirm

again that BCGs have the smallest diameter and the shortest average path length

for a given radio range except Max topology. This is because as a radio range

increases, BCGs have a constant number of logical neighbors while Max topology

has much more logical neighbors than others.

From Figure 3.17, at radio range 30m, consensus protocol convergence for

BCG-3 was 35.5, 2932, and 15.9 times faster than that of Gabriel, E-MST, and K-

Neigh topologies. At radio range 50m, convergence of BCG-3 was 81.2, 6756.9,

and 39.9 times faster than that of Gabriel, E-MST, and K-Neigh topologies. Even

41

(a) BCG-0. (b) BCG-3.

(c) Max. (d) E-MST.

(e) K-Neigh. (f) Gabriel Graph.

Figure 3.14: BCG-0, BCG-3 with radio range 40m, Max with 25m, E-MST,

K-Neigh with k = 10 and 25m, Gabriel Graph. N = 272

42

Figure 3.15: Comparison of diameters.

Figure 3.16: Comparison of average path lengths.

though Max topology has the best consensus steps, due to its large number of

logical neighbors, it consumed 23 times more nodal power than BCG in Fig-

ure 3.18. When considering multi-cast routing (Power model 1), the Max topology

has an obvious advantage as only the maximum radio range is used in the power

consumption computation. However, even with this advantage, our simulations

showed that BCG continues to outperform the Max topology in Figure 3.19. This

better performance is explained by the fact that the Max topology have a larger

43

Figure 3.17: Comparison of consensus steps.

Figure 3.18: Comparison of power model 0 for consensus protocol.

number of logical neighbors and hence larger power is consumed at the receiver

modules.

3.6.5 Consensus protocol analysis with considering interferences

In wireless sensor networks, signals travel from a sender to a receiver through

radio channels. These signals sent at a particular transmit power by the transmitter

44

Figure 3.19: Comparison of power model 1 for consensus protocol.

suffer attenuation through the radio channel. The receiver on the other end is

only able to receive signals with power levels greater than the sensitivity of its

transceiver. The attenuation, commonly known as the path loss of the channel,

directly depends on the distance between sender and receiver, the frequency of

operation and the radio channel interference. Those factors are considered for

design of efficient topology controls.

We simulated consensus protocol on a 1081-nodes BCG-3 (Distributed node

ID swapping assignment & Random node selection) and on other topology control

algorithms with a simple interference model. Sensors uniformly and randomly

distributed over a 100m × 100m area. Consensus protocol was initialized with

nodes state value set to integers randomly chosen between -5 and 5 inclusive. Our

interference model is based on the signal-to-interference-ratio (SIR) and capture

threshold model presented in [91].

When the following two conditions are satisfied, we assume that a packet is

delivered successfully:

• Capture threshold model: A received signal power is larger than some

threshold (set to −96dBm by default).

• SIR condition: A received signal power is larger than the sum of interfer-

ence noise power from other nodes. (The typical minimal SIR for correct

signal decoding is 10dB.)

We use the log-distance path loss model as the radio propagation model to

45

Table 3.6: Consensus protocol performance after 10000 ticks with 30m initial

radio range and a packet generation rate of 5× 10−3.

Mean STD AVG. Power (J) CollidedPkts
GeneratedPkts

BCG-3 −0.063 0.102 0.013 4.71%
K-Neigh 0.044 0.292 0.027 0.85%

MST 0.069 0.948 0.006 0.52%
Gabriel −0.070 0.514 0.014 0.78%

predict the signal power loss [92]. The signal energy loss is calculated as follows:

Pl(d) = Pl(d0) + n10 log10(
d

d0
), (3.20)

where the path loss exponent n is set to 2, the reference distance d0 is set to 1.0m,

and the reference energy Pl(d0) is based on a Friis propagation model:

Pl(d0) =
PtGtGrλ

2

16π2d20L
, (3.21)

where Pt represents the transmission power, Gt the transmission gain (set to 1

dbym by default), Gr the reception gain (set to 1 dbym by default), λ the carrier

wavelength, and L is the system loss (set to 1 by default).

An agreement of consensus protocol used in 3.6.2 is difficult to achieve from

packet collision by radio interference. We tried different simulation termination

conditions. One was to measure performance after running for a fixed simulated

time. The other was to record the number of consensus steps when the standard

deviation (STD) of the current state of all nodes is less than a certain value.

When packets are sent at every simulation ticks, a consensus protocol cannot

be achieved due to a lot of packet collisions. So we send packets with a packet

generation rate that nodes generate packets at a constant average rate of R packets

per time slot. First, we used a packet generation rate of 5 × 10−3 and then used

various packet generation rates.

In Table 3.6, BCG-3 produced larger packet collision percentage because it

sends packets with higher transmission power to support a longer communication

radio than the other networks. Even though it has more collision packets, BCG-3
showed the smallest STD calculated from status of all nodes. It means that nodes

in a network have more similar values than the other topologies. Figure 3.20

46

Figure 3.20: Collision percentage as a function of packet generation rate.

shows that BCG-3 produced much more collisions as packet generation increases.

Figures 3.21(a) and 3.21(b) show consensus steps required to achieve each

STD of 0.25 and 0.1 with a packet generation rate of 5 × 10−3, as a function of

radio range. BCG-3 showed the best performance in both conditions. BCG-3
required 71% and 88% less consensus steps when compared against K-Neigh and

Gabriel graphs with 30m radio distance and a STD of 0.25, respectively. In case

of a STD of 0.1, BCG-3 with 30m radio distance required only 80% and 90% less

consensus steps than K-Neigh and Gabriel graphs, respectively.

We also simulated with various packet generation rates with 30m radio range

and a STD of 0.1. In Figure 3.22, BCG-3 is efficient in terms of consensus

steps and power consumption under a packet generation rate of 0.04. However,

as increases a packet generation rate, BCG-3 required more consensus steps. It

is because the number of collisions are rapidly increased more than others due to

longer communication radio constructed. Consensus protocol on BCG-3 showed

worse performance than K-Neigh and Gabriel above a 0.04 packet generation rate.

47

(a) Comparison of consensus step for a STD of 0.25 with 0.005
packet generation rate.

(b) Comparison of consensus step for a STD of 0.1 with 0.005
packet generation rate.

Figure 3.21: Comparison of consensus step for STDs of 0.25 and 0.1 with 0.005
packet generation rate.

48

(a) Consensus step.

(b) Packet collision.

(c) AVG. Power consumption.

Figure 3.22: Comparison of consensus step, packet collision and power consump-

tion with various packet generation rates and 30m radio range.

49

Chapter 4

Distributed and Fault-tolerant

Routing for Borel Cayley Graph

4.1 Introduction

Deterministic characteristics for connections between nodes in structured graphs

allow theoretical analysis and guarantee global properties such as diameter and av-

erage path length [93]. Also graph based networks can have symmetry, hierarchy,

connectivity, and hamiltonicity [36,50]. Those properties are desirable comparing

random graph based networks.

Even though BCGs have such favorable properties, there are practical limita-

tions in applying BCGs. One of them is the lack of fault-tolerant routing algo-

rithms: existing BCG routing algorithms do not account for node or communica-

tion link failures.

In this section, we present a fault-tolerant routing algorithm for BCGs, which

accounts for communication link failures. For our proposed fault-tolerant rout-

ing, the routing tables of nodes are updated distributively in response to link

failures. We quantify the performance of the routing algorithm by considering

packet reachability and average hop count for different levels of communication

link failures. Our simulation results show our proposed method to improve packet

delivery performance from 20% to 350%. We also investigate packet congestion

with our proposed algorithms for different packet generation rates.

50

Figure 4.1: Node model.

4.2 Topology Comparison

4.2.1 Network model

A network consists of a set of nodes connected by full duplex point-to-point links.

Our node model is depicted in Figure 4.1. Each node consists of an input queue for

transit messages (Rx), a packet generator, a switching fabric, and an output queue.

Modules inside a node are connected by zero delay links. It takes a single time

unit for a packet to move from an output queue to an input queue. Time is slotted

and synchronized so that all nodes receive and transmit packets simultaneously.

The input queue is FIFO served and accepts up to the number of packets equal

to the degree of a node at a single time unit. The output buffer size is one and one

packet is transmitted from a node at each time slot. This is consideration of our po-

tential application of wireless sensor networks. Each wireless sensor node has one

transmitter and one receiver as usual. The node model receives multiple packets

simultaneously. On the other hand in section 4.5.3 it considers interference effect;

only one packet is received successfully when there are multiple receiving pack-

ets. Depending on our simulation setup, the input buffer size ranges from one to

infinity. Incoming packets are discarded when the input buffer is full.

The packet arrival module removes packets from the input queue if the current

node is the destination node. The switching fabric determines the next node of

the packet taken from the input queue by a routing algorithm. Every node in the

network can be a source, a destination, or a relay. We assume that nodes generate

information at a constant average rate of R packets per time slot with uniform

distribution (Packet generator).

Three traffic patterns are considered in this paper: All-to-All traffic pattern

51

(a) 4 x 4 toroidal mesh network. (b) 2-dimensional

de Bruijn graph of 3
symbols.

Figure 4.2: Toroidal mesh network and de Bruijn graph.

(Pattern 0), All-to-one traffic pattern (Pattern 1), and All-to-M traffic pattern (Pat-

tern 2). In Pattern 0, all nodes are the source and destination nodes, which gen-

erates packets to uniformly randomly selected destination node. The probability

of any source node communicating to any destination node in the network is con-

stant and equal to 1/n where n is the number of destination nodes. In Pattern 1,

nodes send packets to node 0, the only destination node. That is, the one node

(sink) gathers the information generated by all other nodes in the network [94]. In

Pattern 2, nodes send packets to a group of nodes, 5% of the total nodes in this

thesis. This traffic pattern model depicts a situation having multiple sink nodes.

It is also used in integrated devices. Nodes located on the borders of device chips

can be connected to high-capacity transmission lines.

4.2.2 Topologies

Toroidal mesh networks and de Bruijn graphs are popular topologies for inter-

connection networks [37] [41] [49]. In the following, we provide a definition for

toroidal mesh networks and de Bruijn graphs. Then we show simulation results

comparing Borel Cayley graphs with the aforementioned traffic patterns.

52

Toroidal Mesh Network

Figure 4.2(a) shows a toroidal mesh network (torus) which consists of R rows by

C columns. When a node is represented by rC+ c, neighboring nodes are defined

as follows: ((r− 1) mod R)C + c, rC + (c− 1) mod C , ((r+ 1) mod R)C + c,
and rC+(c+1) mod C. We use a Greedy row-first routing algorithm on the torus

mesh network [95]. If a packet is not in the destination column, then the packet

is routed along the row towards the destination column. Otherwise the packet is

routed along the column toward the destination node.

De Bruijn

The undirected de Bruijn graph (UDB) has N = dk nodes of degree 2d [37].

We use binary de Bruijn graphs DG(2, k) of N = 2k nodes. A node of the

network with binary address ak−1ak−2 · · ·a1a0 has neighbors: ak−2ak−3 · · ·a0ak−1,

ak−2ak−3 · · · a0ak−1, a0ak−1 · · · a2a1, and a0ak−1 · · · a2a1. Figure 4.2(b) shows

an undirected de Bruijn graph for k = 3 and d = 2 where self-loops are removed.

Algorithm 4 Undirected de Bruijn graph routing algorithm.

1: procedure ROUTING ALGORITHM FOR UDB(cur, dst) ⊲ cur: the current

node, dst: the destination node

2: i← match fwd(cur, dst)
3: j ← match bwd(cur, dst)
4: if i < j then

5: using FP sent to the particular left neighbor

6: else if i = j then

7: randomly using FP or BP

8: else

9: using BP sent to the particular right neighbor

10: end if

11: end procedure

Algorithm 4 corresponds to the routing algorithm for UDB. The routing al-

gorithm consists of transmitting a packet to either its left or right neighbors [96].

Algorithm 4 defines the Forward Path (FP) as the path taken by a packet when

a left neighbor is chosen as the next node and the Backward Path (BP) when a

right neighbor is chosen. From de Bruijn graph’s properties, it is easy to calculate

the number of hops that it needs to reach the destination using FP or BP. This is

53

done by matching the postfix portion of the source address with the prefix portion

of the destination address. The more digits are matched, the shorter is the path

between source and destination. For example, in Figure 4.2(b), assume node 011
needs to transmit a packet to node 110. Since 11 is the postfix of the source and

the prefix of the destination , node 011 will reach node 110 in one hop. In [96],

it defined match fwd(cur, dst) to be an operation which returns the number of

hops required to reach the destination along a FP. Similarly, match bwd(cur, dst)
returns the number of hops along a BP.

Performance comparison

The parameters for the mesh networks we used for performance comparison are

described in Table 4.1. BCG and Torus are degree 4 graphs. Most nodes of UDB
have degree 4 except the few nodes with self-loops. Table 4.2 shows our bench-

mark mesh networks topological properties such as the diameter and the average

path length. The diameter is the greatest distance between any two nodes. The

average path length is the average number of edges between all possible node

pairs. Constrained by degree 4, BCGs have the smallest diameter and the shortest

average path length.

Table 4.1: Mesh networks parameters.

N Parameters

BCG 1081 p = 47, k = 23, a = 2,

t1 = 1, t2 = 7, y1 = 1, y2 = 1
Torus 1088 R = 32, C = 34
UDB 1024 d = 2, k = 10

Table 4.2: Static property.

AVG. Path length Diameter

BCG 5.54 7
Torus 16.52 33
UDB 6.77 10

54

(a) Pattern 0 (All-to-All).

(b) Pattern 1 (All-to-One).

(c) Pattern 2 (All-to-M).

Figure 4.3: End-to-End Delay with infinite buffer.

55

(a) Pattern 0 (All-to-All).

(b) Pattern 1 (All-to-One).

(c) Pattern 2 (All-to-M).

Figure 4.4: Reachability with buffer length 10.

56

(a) Pattern 0 (All-to-All).

(b) Pattern 1 (All-to-One).

(c) Pattern 2 (All-to-M).

Figure 4.5: Reachability with buffer length 5.

57

We also considered the performance of our network models using the follow-

ing two metrics: (a) End-to-End delay and (b) Reachability. We define End-to-End

delay as the time required by packets to travel from a source to a destination and

the reachability as the number of packets reaching destination over the number

of generated packets. When running our simulations, we used the three types of

traffic patterns presented in 4.2.1. We set the input buffer length to infinite, 5, and

10. Our simulation time was 100, 000 ticks.

Figure 4.3 shows End-to-End delay (ETE delay) as a function of packet gener-

ation rate for our three traffic patterns. BCG exhibits the smallest End-to-End de-

lay across all traffic patterns. Each network shows that End-to-End delay increases

rapidly above a certain traffic generation rate called traffic congestion point. An

efficient network topology should consider both End-to-End delay and network

saturation. BCG shows a small End-to-End delay and a more robust traffic con-

gestion point than UDB and Torus.

When a buffer at each node is finite, packets can be overflowed for large packet

generation rates and thus reachability degrades. Figures 4.4 and 4.5 show reach-

abilities with buffer length 10 and 5, respectively. Reachability with finite buffer

decreases above certain packet generation rate. Packet generation rate of decreas-

ing reachability of BCG is higher than others even though they have almost the

same number of nodes and edges.

4.3 Data Structure of Exhaustive Routing

Vertex-transitive routing guarantees the shortest path between any source-destination

pair based on a routing table identical at every node. However, Vertex-transitive

routing only applies to a static network and cannot account for node/link failures.

The goal of our proposed routing algorithm (Exhaustive routing) is to route mes-

sages in the presence of link failures. We define two types of routing tables to

account for link failures : (a) a Static Routing Table and (b) a Dynamic Routing

Table. The following provides a more detailed description of the two types of

routing tables.

Exhaustive routing has two phases. In Phase 1, packets are routed through

the shortest path according to the Static Routing Table. If there is a link failure

making the shortest path unavailable, a Dynamic Routing Table for Type 1 packets

is updated and other shortest paths (following the Static Routing Table) will be

used. However, when all shortest paths from the BCG are disconnected, there

can still be a path between the source and destination. In that case, Phase 2 of

58

Exhaustive routing is used.

Phase 2 exploits the path length information in the Static Routing Table to

search for possible routes in addition of BCG shortest paths (Static Routing Ta-

ble). A Dynamic Routing Table for Type 2 packets is created to indicate “next

best” paths as well as any unusable links due to failures. Basically in Phase 2
packets are routed according to the path length information and are used to update

unusable links in the Dynamic Routing Table.

4.3.1 Static Routing Table

The Static Routing Table is pre-calculated and identical across all nodes. The

Static Routing Table is defined for reference source node 0. Each time a message

needs to be routed from a node different than node 0, the destination ID is mapped

from an absolute ID (Global ID of the destination in a network) to a relative ID

(ID of the destination in the view of the current node regarded as a reference node)

as follows, referring to Table 2.2.

j′ = 〈aq−c1(m2 −m1)〉pq + 〈c2 − c1〉q,

where the current node’s absolute ID is m1q + c1, the destination node’s absolute

ID is m2q + c2, and j′ is the relative destination ID. We denote the absolute ID

of node u by aID(u) and the relative ID of node u at node v by rID(u, v). Row

indexes in the Static Routing Table are relative IDs.

The number of rows in the Static Routing Table is the number of nodes minus

one and the number of columns is the number of generators (nodal degree). In

Figure 4.6(a), a number 1 in the routing table for Vertex-transitive routing indi-

cates the shortest path through that generator link. For instance, for the relative

destination ID 4, the shortest path at node u is through generator g2.

The Static Routing Table for Exhaustive routing (SRTBL) includes the short-

est path lengths to destination through an indicated generator. The shortest path

lengths are calculated from Dijkstra’s algorithm [97].

The first row of the Vertex-transitive routing table in Figure 4.6(a) shows

an entry of 1 in the generator g-1
1 cell. On the other hand, in the first row of

SRTBL in Figure 4.6(b), the shortest path is through generator g-1
1 and is two

hops from destination. If we choose the generator g2 not g-1
1 , it would take four

hops to reach destination. We denote the routing data to node v from node u by

SRTBL(rID(v, u)) and the hop count through generator g from node u to node

v by SRTBL(rID(v, u), g). For example, SRTBL(rID(3, 0)) = (1, 3, 3, 3) and

59

(a) Routing table for Vertex-

transitive routing.

(b) Static Routing Table for

Exhaustive routing.

Figure 4.6: Original Vertex-transitive routing table and Static Routing Table of

BCG in Figure 2.1(a). Note that some part of routing tables are omitted for brevity.

SRTBL(rID(3, 0), g2) = 3.

4.3.2 Dynamic Routing Table

The Dynamic Routing Table (DRTBL) is generated or updated based on route

availability. From the contents of a received packet, a node can determine whether

or not certain shortest path links are no longer available. We will explain how to

determine when links are no longer available in Section 4.4. DRTBL is generated

for each destination node, hence the size of DRTBL will vary. For example, node

u detects that the g2 link for node v is no longer available. If there is no DRTBL for

node v, node u generates a new DRTBL for node v. Otherwise, it sets the g2 link

to zero in the existing DRTBL for node v. DRTBLs are unique at each node. So

the relative ID is no longer needed. The index of DRTBL is the absolute ID. We

denote routing data for node v at node u by DRTBL(aID(v), aID(u)) and data

indicated by generator g for node v at node u by DRTBL(aID(v), aID(u), g).
The Exhaustive routing algorithm has two phases during which Type 1 and

Type 2 packets are forwarded in the first phase and the second phase, respectively.

We denote DRTBL for Type 1 packets by D1RTBL and DRTBL for Type 2 pack-

ets by D2RTBL. Table 4.3 summarizes routing tables for Exhaustive routing.

60

Table 4.3: Summary of routing tables for Exhaustive routing.

SRTBL Pre-calculated

Cells are not changed

Cells are path lengths via generator

Used in Phase 1 and Phase 2

DRTBL Generated dynamically

Cells are bits indicating the available links

Cells are updated when node/link failures occur

D1RTBL For Phase 1
Initialized with cells indicating shortest path links

D2RTBL For Phase 2
Initialized with cells indicating all links are to be explored

4.4 Phases of Exhaustive Routing

4.4.1 Phase 1

Phase 1 of Exhaustive routing exploits all shortest paths extracted from BCG with

SRTLB and D1RTBL.

Forwarding Rule of Phase 1

In Phase 1 of Exhaustive routing, the goal of forwarding a packet is to identify

links corresponding to the shortest paths for each destination defined in SRTBL.

Then packets are forwarded to a randomly selected link among the identified

shortest path links. When a node can no longer forward a packet using the SRTBL,

because one or more shortest path links are disconnected, the node forwards the

packet to the previous node using the packet’s Path history. Path history is an

ordered list of nodes traversed by the packet being routed. The Path history is

included in the packet frame as follows:

Packet frame = {Source,Destination, Packet Type, Path history}.

61

Generating Dynamic Routing Table of Phase 1

Once a node receives a packet, it uses the Path history of the packet to determine

whether or not the packet is a returned packet. If the node ID is found at the

position before the last in the Path history, the received packet is a returned packet.

When a node receives a returned packet, its D1RTBL is generated or updated. The

SRTBL consists of path lengths via each generator. The links in SRTBL with

smallest cell for a given rID are used.

For example, when node a determines the packet whose destination is node b
(rID(b, a) = 5) is a returned packet via generator g1, it generates the D1RTBL

for node b using Figure 4.6(b). we get D1RTBL(aID(b)) = (1, 1, 1, 0) since the

smallest number is 3 in the SRTBL(rID(b, a) = 5) = (3, 3, 3, 4). This sets the

entry indicated by generator g1 to zero. Finally, node a has D1RTBL(aID(b)) =
(0, 1, 1, 0)

The generator link used by a returned packet is set to zero in the D1RTBL.

Upon receiving a returned packet, if another shortest path exits (D1RTBL entry

for the destination is 1), the node forwards the packet to a node indicated by the

generator link. Otherwise the node removes the last node ID from the Path history

and forwards the packet to the previous node. If the packet goes back all the way

to the source node and the source node does not have any shortest path to the

destination from D1RTBL, the node changes the packet type from Type 1 to Type

2. Phase 1 of Exhaustive routing supports routing delivery as long as there is at

least one shortest path extracted from BCG. Algorithm 5 summarizes Phase 1 of

our Exhaustive routing algorithm.

4.4.2 Phase 2

Table generation rules and packet forwarding rules for Type 1 and Type 2 packets

are different. A Type 1 packet returns to its source when there is no shortest path

within D1RTBL. At the point the source node changes the packet type from Type

1 to Type 2. The Type 2 packet is forwarded via a communication link having the

smallest value in the SRTBL when a node does not have a D2RTBL entry for the

packet’s destination.

A packet gets stuck at a node having no available shortest paths in Phase 1.

In Phase 2, the node receiving Type 2 packets updates or generates a D2RTBL

entry for the destination node. The D2RTBL is initialized to 1 for all edges when

generated. Type 2 packets directly refer to all path lengths information from the

SRTBL. The node chooses the link having the smallest path length in SRTBL and

62

Algorithm 5 Phase 1 of Exhaustive routing.

1: procedure PACKET FORWARDING(pkt)
2: if pkt.dst = curID then ⊲ pkt.dst: destination of packet

3: Packet delivery is successful ⊲ curID: node ID of current node

4: Return

5: end if

6: if pkt is a returned packet then

7: Update Dynamic Routing Table ⊲ Case: node in Path history

8: end if

9: if pkt.dst is in Dynamic Routing Table then

10: if There is an available link in row of destination in Dynamic Routing

Table then

11: Forward the packet to randomly selected available generator link

in Dynamic Routing Table

12: Return

13: else if pkt.src = curID then

14: Change a type of pkt from Type 1 to Type 2 ⊲ There is no

available shortest path from BCG

15: Go to Phase 2 of Exhaustive routing

16: else

17: Update Path history and forward the packet to the previous node

18: end if

19: else if Row of destination in Static Routing Table then

20: Forward the packet to randomly selected available generator link,

which has the smallest path length within the same row, in Static Routing

Table

21: Return

22: end if

23: end procedure

63

an entry of 1 in the corresponding D2RTBL. When no outgoing link can be iden-

tified, a node forwards the packet back to the previous node in the Path history.

From this, Exhaustive routing exploits more routes to destination. This mecha-

nism improves the reachability by exploiting more available paths to destination.

Figure 4.7 shows our Exhaustive routing algorithm flow.

Figure 4.7: Exhaustive routing algorithm flow.

The phase 2 of Exhaustive routing can create loops as shown in Figure 4.8.

64

Figure 4.8: Network to illustrate a loop of Exhaustive routing. The dot line be-

tween nodes indicates that the communication is disconnected

Assume node s sends a packet to node d via a. The packet reaches node e via c
but the communication link is disconnected. Then, after excluding the incoming

link, the packet can only be forwarded to node f . The packet follows in a circle

like a → b → c → e → f → h → a → b. To prevent loops, Phase 2 uses

a different method to check whether or not a packet is a returned packet. In the

case of Phase 1, a node checks whether the previous node of the last node in the

Path history is itself. However, in the case of Phase 2 of Exhaustive routing, the

node checks all the Path history node IDs. Then when node a receives a returned

packet, it refers to the Path history (s, a, b, c, e, f, h). Node a sets to zero the entry

for the generator link to node b in D2RTBL(d, a). Node a also sets the entry for

the generator link to node h to zero through the same method. Finally, node a
delivers the packet via node m using Path history (s, a).

4.5 Simulation

We have designed simulators and performed experiments to evaluate our proposed

fault-tolerant routing algorithm. We simulated BCG networks with N = 1081 (N
is the number of nodes). We list the parameter values for BCGs used in Table 4.1.

Parameters p and a determine N and BCG parameter k. Parameters t1 and y1 were

used to construct the first generator. Parameters t2 and y2 were used to construct

65

Figure 4.9: Connected BCG percentage as a function of edge elimination.

the second generator. Using two different generators and their inverse generators,

we constructed an undirected degree-4 BCG. We arbitrarily chose parameters ts
and ys for generators.

4.5.1 Static performance analysis

First, we simulated network disconnection by edge eliminations on BCG. We ran-

domly selected edges to be eliminated. For each simulated case and each % edges

eliminated, we generated 100 networks, then ran our routing algorithms, and eval-

uated their performance. The BCG is originally a connected graph. When we

eliminate some edges, the network can consist of multiple network components

(Components are not connected to one another). We measured packet delivery

performance to the largest component only if the largest component has over 95%
of the total nodes. Figure 4.9 shows the percentage of connected graphs among

the 100 network samples for each edge elimination fraction. From those results,

we simulated BCG ranging from 5% to 35% elimination of edges because the

connected graph is kept within that range.

We showed the following two metrics to evaluate our proposed routing algo-

rithms:

• Routability: the number of reachable source and destination pairs among all

pairs of nodes in the largest component of a network.

• Average Hop Count: the average number of nodes traversed by a packet

66

Figure 4.10: Routability with 1081 BCG after edges are eliminated.

between its source and destination within the largest component.

In this section, the simulator did not generate a packet before the previously

sent packet was dropped or reached to its destination (only one packet exist in the

network), which help measure the routing algorithm performance regardless of

packet congestion and buffer length.

We compared Exhaustive routing with Phase 1 Exhaustive routing (Phase 1
routing) and Vertex-transitive routing (VT routing). Results for the Exhaustive

routing were acquired once the dynamic routing tables stabilized. For comparison

purpose, in our implementation of the original VT routing, an optimal link is

randomly selected chosen in cases where multiple optimal links exist. When there

is no available link, the packet is discarded.

Routability

Figure 4.10 shows the routability metric for a 1081 ndoes BCG after edges elim-

ination. Phase 1 routing has a larger routability than Vertex-transitive routing be-

cause Phase 1 routing exploits all shortest paths between source and destination.

Exhaustive routing has the best routability.

Average Hop Count

Figure 4.11 shows the average hop count metric for a 1081 nodes BCG with 35%
edge elimination. Comparing the average hop count of our proposed algorithms

67

Figure 4.11: Average hop count with 1081 BCG after edges are eliminated.

Figure 4.12: Hop count distribution of BCG with 1081 nodes after 35% edge

elimination. Note that hop counts exceeding 40 are not shown for brevity.

is unfair when routability is not the same. For example, one routing algorithm

supports packet delivery to only nodes within a short distance from their sources

and another routing algorithm supports packet delivery to all the nodes. In this

case, the average hop count of the second algorithm is larger than the former. So

we only compared the average hop count of Exhaustive routing with the results

of Optimal routing in which the shortest path from the current network between

the source and destination node are used. When a packet is not delivered to the

68

destination, we exclude it from the average hop count computation.

Distribution of Hop Counts

We also investigated the frequency of hop counts after node elimination. Fig-

ure 4.12 shows the hop counts distribution. The histogram of hop counts exhibits

a right skewed distribution with a high frequency of short hop counts.

4.5.2 Dynamic performance analysis

Next, we investigate the dynamic properties of our routing algorithms. This con-

sists of measuring the performance when multiple packets are flowing simultane-

ously in the network while edges are being eliminated, as opposed to the static

case in Section 4.5.1. In this case, packet generation rate and buffer length be-

come important parameters. We used the network model described in Section 4.2

and removed a randomly chosen edge each time unit according to the edge failure

rate. Simulation run time was 1, 000, 000 ticks that is ten times longer than in the

static case. This was required since more time is needed to observe the effects of

link failures. The evaluation was done in terms of reachability function of packet

generation rate, edge failure rate, and buffer length.

Table 4.4: Routing comparison with infinite buffer, 0.05 packet generation rate,

and 0.0005 edge failure rate. Note that the result is accumulated during the whole

simulation time.

Reachability ETE Delay Buffer Length

VT 56.97% 6.14 0.23
Phase1 60.71% 6.23 0.19

Exhaustive 92.75% 9.19 0.43

Table 4.4 shows reachability, the average ETE delay, and average occupied

buffer length with infinite buffer and an edge failure rate of 0.0005 during the

whole simulation time. Exhaustive routing produced the highest reachability but

also the longest End-to-End delay. End-to-End delay excludes non-reached pack-

ets.

Figure 4.13 shows reachability as a function of simulation time with a packet

generation of 0.05 and a failure rate of 0.001. Exhaustive routing shows much

69

Figure 4.13: Reachabilities of routings with a packet generation rate of 0.05 and

an Edge failure rate of 0.001 by simulation ticks.

Figure 4.14: Comparison of fault-tolerant routing reachability with buffer length

5 and 0.0005 edge failure rate according to packet generation rate. Note that the

result is accumulated during the whole simulation time.

better reachability up to simulation time of about 600, 000. However, after that

point, the advantage decreased continuously. It is because a BCG network can be

multiple components when over 30% edges are removed. Among nodes at each

component, it does not have a path to route. The number of node pair having no

path rapidly increases as the number of components increases.

70

(a) Routing reachability.

(b) Power consumption.

Figure 4.15: Comparison of fault-tolerant routing reachability and power con-

sumption with buffer length 5 and 0.05 packet generation rate according to edge

failure rate. Note that the result is accumulated during the whole simulation time.

Figure 4.14 showed the reachability result as a function of packet generation

rate ranging from 0.05 to 0.25. Exhaustive routing with a 0.05 packet generation

rate produced 56% and 47% better reachability than VT routing and Phase 1, re-

spectively. However as a packet generation rate increases, the performance of our

71

routing algorithms becomes similar because of network capacity and overflowed

packets.

Phase 1 routing with a packet generation rate of 0.25 produced 26% better

reachability than Exhaustive routing because Exhaustive routing has a longer av-

erage hop count to support high reachability in the static case. With finite input

buffers, long average hop count and high reachability make buffer length full,

which causes more dropped packets. Phase 1 routing produced better reachabil-

ity than VT routing even at high packet generation rates. The only shortest path

length guaranteed packets are generated because Phase 1 routing uses the Dy-

namic Routing Table to send packets. This results in the buffer length occupancy

of Phase 1 smaller than one of VT.

In Figure 4.15(a), we investigated the reachability metric as a function of edge

failure rate for a packet generation rate of 0.05. When we changed edge failure

rate, the frequency of edge failure and the total number of fault edges during the

whole simulation time changes. The total edge number of a degree-4 BCG with

1081 nodes is 2162 and at the edge failure rate of 0.0005, 0.00075, 0.001, 0.00125,

and 0.0015, the expected number of eliminated edges at the end of simulation are

500, 750, 1000, 1250, and 1500, respectively.

Regardless of the edge failure rate, Exhaustive routing shows 50% to 100%
better reachability. Reachabilities of VT routing, Phase 1 routing, and Exhaus-

tive routing decreased by 42%, 47%, and 56%, respectively, as edge failure rate

increases from 0.0005 to 0.0015. In Figure 4.15(b), Exhaustive routing consumed

more power than other routing algorithms because of its better reachability and

longer average hop count.

4.5.3 Comparison Exhaustive routing with AODV

AODV

Ad hoc On Demand Distance Vector protocol (AODV) is a routing algorithm be-

tween mobile computers, which is basically an improvement of DSDV [17, 98].

As opposed to DSDV, AODV is a reactive protocol that establishes paths when

needed. Nodes only know the next hop to destination and send packets through

their neighbors to destination nodes with which they cannot directly communicate.

AODV achieves routing by discovering the routes along which messages can

be passed. When a source node needs to send packets to a destination and cannot

get the routes from its routing table, it will broadcast a Route Request (RREQ). If

the receiver has a route to the destination, it unicasts a Route Reply (RREP) back

72

Figure 4.16: Reachabilities of AODV and Exhaustive routing according to packet

generation rate.

to the source node. Otherwise, the RREQ is rebroadcasted further. If a RREP is

sent, all nodes along that path record the route to the destination from this packet.

A node can receive the same RREQ more than once when there exist multiple

paths between two nodes.

To prevent the same request from being broadcast repeatedly, RREQ is uniquely

identified by a source node ID and a broadcast ID. A node keeps track of its neigh-

bors by listening for a HELLO packet that each node broadcasts at set intervals.

Nodes send out Route Error (RERR) packets to their neighbors when they do not

receive a HELLO packet. To avoid routing loops and identify the freshness of

a route, sequence number is used. A larger sequence number denotes a fresher

route. More details about AODV can be found in [17].

Simulation

We simulated 506 nodes BCG networks for 10, 000 simulation ticks. We set pa-

rameters p = 23, a = 7, t1 = 1, and t2 = 7. In AODV simulation, we as-

sume nodes immediately recognize disconnection with neighbors without HELLO

packets.

In Figure 4.16, the reachability of AODV decreases rapidly beyond a packet

generation rate of 0.00175. On the other hand, Exhaustive routing reachability is

stable for a packet generation rate up to 0.17. Because AODV uses broadcasting to

communicate, the network using AODV saturates earlier than the network using

Exhaustive routing. Regarding power consumption, AODV consumed more 400

73

Figure 4.17: End-to-End Delay of AODV and Exhaustive routing according to

packet generation rate.

Figure 4.18: Reachabilities of AODV and Exhaustive routing according to edge

failure rate with 0.001 packet generation rate.

times than Exhaustive routing. Although Exhaustive routing showed better ETE

delay than AODV in Figure 4.16, AODV is more robust than Exhaustive routing

regarding topology changes by edge failure. Figure 4.18 shows both reachabilities

function of edge failure rate. At 0.04 edge failure rate, AODV produced a 96%
reachability while Exhaustive routing produced a 71% reachability.

74

Figure 4.19: Reachabilities of AODV and Exhaustive routings as a function of

packet generation rate with interferences.

Figure 4.20: Reachabilities of Exhaustive routing function of packet generation

rate and with interferences.

Simulation with interference

We used the same interference model as the one described in Section 3.6.5. When

considering interference, packets can be lost due to communication distance or

transceivers near the same receiver which send packets simultaneously. Figure 4.19

shows reachabilities of AODV and Exhaustive routing for a packet generation rate

ranging from 1× 10−4 to 5× 10−4. Exhaustive routing shows better performance

because the network using AODV has more transmitting packets, which means

the chance of packet collision increases.

75

Figure 4.21: Reachabilities of Exhaustive routing function of edge failure rate and

considering interference.

Figure 4.20 shows the reachability of Exhaustive routing for a packet genera-

tion rate ranging from 0.01 to 0.05. It shows a performance degradation of about

30% due to packet collisions. Figure 4.21 compares reachability for different

edge failure rates and packet generation rates. For packet generation rates 0.001
and 0.01, their reachabilities are similar. When considering interferences, the net-

work with a packet generation rate 0.01 shows a large performance degradation.

The performance of packet generation rate 0.01 decreased more 30% than that of

packet generation rate 0.001.

76

Chapter 5

Conclusion and Future Research

In this dissertation, we investigated structured graph based wireless sensor net-

works to achieve fast information dissemination and efficient data exchange in

large and dense networks. In particular, we focused on the strengths, limitations

and solutions, and applications of Borel Cayley graphs (BCG). We summarize our

contributions and provide future research plans.

5.1 Contribution

We applied Borel Cayley graphs to wireless sensor networks for topology con-

trol. We proposed node ID assignment methods to reduce the communication

distance between nodes or to distributively increase the number of logical connec-

tions following the predefined graph connection rules. In particular, we proposed

the Chordal Ring based node ID assignment method and the distributed node ID

swapping assignment method.

In the Chordal Ring based method, we exploited the fact that all BCGs have

CR representations which imply the existence of a Hamiltonian cycle with con-

secutive integer numbers. With this observation, node IDs can simply be pro-

gressively assigned in numerical order based on their physical locations. Once

the node IDs are assigned in the CR domain, we provide an explicit formulation

to convert the CR domain ID to the GCR domain ID; which supports efficient

routing. Our simulation results over networks of sizes ranging from 300 to 2000
nodes showed that the CR based node ID assignment requires a smaller radio

range (57%) than that of the random ID assignment.

In the distributed node ID swapping assignment method, we consider that

77

nodes have a limited transmission range. In WSNs, it is challenging to impose

an entire logical graph to a physical network of finite radio range. An efficient

node ID assignment will allow more connections to be imposed. For a range

of network sizes from 200 to 1, 000 nodes, simulation showed that our proposed

method achieved 43% more desired connections than that of the Random assign-

ment.

We quantified the performance of our proposed topology control algorithms

by consensus protocol when compared to existing topology controls such as K-

Neigh, Gabriel, and E-MST. We also investigated the effects of interferences on

BCG based networks for consensus protocol. Wireless packet transmission is

interfered by simultaneous transmission of packets among nodes in the network.

In networks, communication failures are common. The existing Vertex-transitive

routing for Borel Cayley graphs cannot efficiently tolerate node/link failures. We

proposed a fault-tolerant routing algorithm, the “Exhaustive routing” that uses an

identical routing table at each node and exploits multiple shortest paths.

Exhaustive routing has two phases. In Phase 1, packets are routed through

the shortest paths available in the Borel Cayley graph. When BCG shortest paths

are disconnected, Phase 2 of Exhaustive routing is used to exploit non-shortest

paths in the Borel Cayley graph. Through simulation, we found that the proposed

Exhaustive routing produced 20% to 350% better routability than Vertex-transitive

routing with various amount of link failures. Regarding the average hop count,

Exhaustive routing produced paths 30% longer than Optimal routing. We also

compared BCG network topology properties to torus and de Bruijn graphs with

various traffic patterns.

When we consider simultaneous multiple packets flowing, Exhaustive rout-

ing for certain packet generation rates produced over 50% better reachability than

Phase 1 and VT routings. However, with a high packet generation rate, Phase 1
routing produced better reachability because it sends packets along the guaran-

teed shortest paths of the original Borel Cayley graph. We also characterized the

interference effects due to simultaneous transmission.

In summary, our proposed fault-tolerant routing and node ID assignment algo-

rithms make it possible for Borel Cayley graphs to be deployed in realistic network

scenarios.

78

5.2 Future Research

Wireless Sensor Networks

When wireless sensor nodes are mobile (mobile ad hoc networks), nodes may

move in and out networks. When a node moves out the network or is deactivated

due to power depletion, its node ID should be deregistered and stored for the next

new incoming node. So that when a new node joins the network, it needs to be

assigned a new node ID that is unique to the network. Especially within structured

graph based networks, it is important to efficiently assign new node IDs due to

limitation of node ID range. Size inflexibility of BCG makes this problem more

difficult. Also a flexible node ID assignment can be used to reduce communication

distance when nodes move.

In addition to flexible node ID assignment, hierarchial network construction

is an issue. When a sensor deployment area becomes larger and radio range is

limited, it may be difficult to map all nodes within one network component. In

this case, we need to divide our network into multiple clusters. We envision that

BCG topology can be applied within a cluster or between cluster heads. This

concept could be used as basis for developing hierarchial behavior within BCGs.

Another application in wireless sensor networks is to apply BCG to distributed

hash table (DHT). DHT can be used to routing algorithms, which is achieved by

multi-hop communications between adjacent logical neighbors [24] or to resource

management like P2P [99].

Network-on-Chip

In Network-on-Chip (NoC), a switching network consists of the interconnection

of many switching units. The function of the switching is to enable these units

to communicate with each other. A NoC interconnection is characterized by its

topology, which is basically the underlying graph. Various topologies such as

mesh networks, hypercubes, shuffle networks, butterfly networks, binary trees

and fat trees have been proposed to build interconnection networks for many-core

systems [42–44]. Network diameter, connectivity, bandwidth and latency are im-

portant metrics in NoC. BCGs are good candidates as the topology for NoC with

those desired properties.

79

Bibliography

[1] D. Culler, D. Estrin, and M. Srivastava, “Guest editors’ introduction:

Overview of sensor networks,” Computer, vol. 37, no. 8, pp. 41 – 49, 2004.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on

sensor networks,” Communications Magazine, IEEE, vol. 40, pp. 102 – 114,

aug 2002.

[3] C. E. Perkins, “Ad hoc networking,” ch. Ad hoc networking: an introduction,

pp. 1–28, Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 2001.

[4] T. Schmid, H. Dubois-ferriere, and M. Vetterli, “Sensorscope: Experiences

with a wireless building monitoring sensor network,” in In Proc. First Work-

shop on Real-World Wireless Sensor Networks (REALWSN05), 2005.

[5] K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J. Lees, “De-

ploying a wireless sensor network on an active volcano,” in IEEE Internet

Computing, pp. 18–25, 2006.

[6] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu,

W. Kang, J. Stankovic, D. Young, and J. Porter, “Luster: wireless sensor

network for environmental research,” in Proceedings of the 5th international

conference on Embedded networked sensor systems, SenSys ’07, (New York,

NY, USA), pp. 103–116, ACM, 2007.

[7] K. Martinez, J. Hart, and R. Ong, “Environmental sensor networks,” Com-

puter, vol. 37, no. 8, pp. 50 – 56, 2004.

[8] S. Coleri, S. Y. Cheung, and P. Varaiya, “Sensor networks for monitoring

traffic,” in In Allerton Conference on Communication, Control and Comput-

ing, 2004.

80

[9] T. Yan, T. He, and J. A. Stankovic, “Differentiated surveillance for sensor

networks,” pp. 51–62, 2003.

[10] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy, “The platforms enabling

wireless sensor networks,” Commun. ACM, vol. 47, pp. 41–46, June 2004.

[11] K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor

networks,” Ad Hoc Networks, vol. 3, pp. 325–349, 2005.

[12] J. Al-Karaki and A. Kamal, “Routing techniques in wireless sensor net-

works: a survey,” Wireless Communications, IEEE, vol. 11, no. 6, pp. 6 –

28, 2004.

[13] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for

information dissemination in wireless sensor networks,” in Proceedings of

the 5th annual ACM/IEEE international conference on Mobile computing

and networking, MobiCom ’99, (New York, NY, USA), pp. 174–185, ACM,

1999.

[14] S. M. Hedetniemi and A. Liestman, “A survey of gossiping and broadcasting

in communication networks,” Networks, vol. 18, pp. 319–349, 1988.

[15] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scal-

able and robust communication paradigm for sensor networks,” in MOBI-

COM, pp. 56–67, ACM, 2000.

[16] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless

networks,” in Mobile Computing, pp. 153–181, Kluwer Academic Publish-

ers, 1996.

[17] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,”

in Proceedings of the Second IEEE Workshop on Mobile Computer Systems

and Applications, WMCSA ’99, (Washington, DC, USA), pp. 90–, IEEE

Computer Society, 1999.

[18] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia, “Routing with guaranteed

delivery in ad hoc wireless networks,” in Proceedings of the 3rd interna-

tional workshop on Discrete algorithms and methods for mobile computing

and communications, DIALM ’99, (New York, NY, USA), pp. 48–55, ACM,

1999.

81

[19] F. Zhang, H. Li, A. Jiang, J. Chen, and P. Luo, “Face tracing based ge-

ographic routing in nonplanar wireless networks,” in INFOCOM 2007.

26th IEEE International Conference on Computer Communications. IEEE,

pp. 2243 –2251, May 2007.

[20] G. T. Toussaint, “The relative neighbourhood graph of a finite planar set,”

Pattern Recognition, vol. 12, pp. 261–268, 1980.

[21] K. R. Gabriel and R. R. Sokal, “A new statistical approach to geographic

variation analysis,” Systematic Zoology, vol. 18, no. 3, pp. pp. 259–278,

1969.

[22] J. M. Keil and C. A. Gutwin, “Classes of graphs which approximate the com-

plete euclidean graph,” Discrete Comput. Geom., vol. 7, pp. 13–28, January

1992.

[23] T. Watteyne, I. Augé-Blum, M. Dohler, S. Ubéda, and D. Barthel, “Centroid

virtual coordinates - a novel near-shortest path routing paradigm,” Comput.

Netw., vol. 53, pp. 1697–1711, July 2009.

[24] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron, “Vir-

tual ring routing: network routing inspired by dhts,” in Proceedings of the

2006 conference on Applications, technologies, architectures, and proto-

cols for computer communications, SIGCOMM ’06, (New York, NY, USA),

pp. 351–362, ACM, 2006.

[25] M. Gerla, X. Hong, and G. Pei, “Landmark routing for large ad hoc wireless

networks,” in Global Telecommunications Conference, 2000. GLOBECOM

’00. IEEE, vol. 3, pp. 1702 –1706 vol.3, 2000.

[26] Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang, “Glider: gradi-

ent landmark-based distributed routing for sensor networks,” in INFOCOM

2005. 24th Annual Joint Conference of the IEEE Computer and Communi-

cations Societies. Proceedings IEEE, vol. 1, pp. 339 – 350 vol. 1, 2005.

[27] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-efficient

communication protocol for wireless microsensor networks,” in System Sci-

ences, 2000. Proceedings of the 33rd Annual Hawaii International Confer-

ence on, p. 10 pp. vol.2, jan. 2000.

82

[28] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chan-

drakasan, “Physical layer driven protocol and algorithm design for energy-

efficient wireless sensor networks,” in Proceedings of the 7th annual inter-

national conference on Mobile computing and networking, MobiCom ’01,

(New York, NY, USA), pp. 272–287, ACM, 2001.

[29] R. Rajaraman, “Topology control and routing in ad hoc networks: a survey,”

SIGACT News, vol. 33, pp. 60–73, June 2002.

[30] C. Bettstetter, “On the minimum node degree and connectivity of a wireless

multihop network,” in Proceedings of the 3rd ACM international symposium

on Mobile ad hoc networking & computing, MobiHoc ’02, (New York, NY,

USA), pp. 80–91, ACM, 2002.

[31] R. Ramanathan and R. Rosales-Hain, “Topology control of multihop wire-

less networks using transmit power adjustment,” in INFOCOM 2000. Nine-

teenth Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE, vol. 2, pp. 404 –413 vol.2, 2000.

[32] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang, “Distributed topology con-

trol for power efficient operation in multihop wireless ad hoc networks,” in

INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1388 –1397

vol.3, 2001.

[33] P. Santi, “Topology control in wireless ad hoc and sensor networks,” ACM

Comput. Surv., vol. 37, pp. 164–194, June 2005.

[34] D. M. Blough, M. Leoncini, G. Resta, and P. Santi, “The k-neigh protocol for

symmetric topology control in ad hoc networks,” in Proceedings of the 4th

ACM international symposium on Mobile ad hoc networking & computing,

MobiHoc ’03, (New York, NY, USA), pp. 141–152, ACM, 2003.

[35] R. Wattenhofer and A. Zollinger, “Xtc: a practical topology control algo-

rithm for ad-hoc networks,” in Parallel and Distributed Processing Sympo-

sium, 2004. Proceedings. 18th International, p. 216, Apr. 2004.

[36] S. B. Akers and B. Krishnamurthy, “A group-theoretic model for symmet-

ric interconnection networks,” IEEE Trans. Comput., vol. 38, pp. 555–566,

April 1989.

83

[37] K. N. Sivarajan and R. Ramaswami, “Lightwave networks based on de bruijn

graphs,” IEEE/ACM Trans. Netw., vol. 2, pp. 70–79, February 1994.

[38] K. Zhu and B. Mukherjee, “Traffic grooming in an optical wdm mesh net-

work,” Selected Areas in Communications, IEEE Journal on, vol. 20, pp. 122

–133, jan 2002.

[39] R. Duncan, “A survey of parallel computer architectures,” Computer, vol. 23,

pp. 5–16, February 1990.

[40] R. D’Andrea and G. Dullerud, “Distributed control design for spatially in-

terconnected systems,” Automatic Control, IEEE Transactions on, vol. 48,

pp. 1478 – 1495, sept. 2003.

[41] J. Sun and E. Modiano, “Capacity provisioning and failure recovery for low

earth orbit satellite constellation,” 2003.

[42] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of

network-on-chip,” ACM Comput. Surv., vol. 38, June 2006.

[43] H. Moussa, A. Baghdadi, and M. Jezequel, “Binary de bruijn interconnection

network for a flexible ldpc/turbo decoder,” in Circuits and Systems, 2008.

ISCAS 2008. IEEE International Symposium on, pp. 97 –100, may 2008.

[44] A. El Gamal, “Trends in cmos image sensor technology and design,” in Elec-

tron Devices Meeting, 2002. IEDM ’02. Digest. International, pp. 805 – 808,

2002.

[45] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and com-

parison of peer-to-peer overlay network schemes,” Communications Surveys

Tutorials, IEEE, vol. 7, no. 2, pp. 72 – 93, 2005.

[46] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”

in Proceedings of the 2001 conference on Applications, technologies, ar-

chitectures, and protocols for computer communications, SIGCOMM ’01,

(New York, NY, USA), pp. 149–160, ACM, 2001.

[47] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal dis-

tributed hash table,” 2003.

84

[48] M. Naor and U. Wieder, “Novel architectures for p2p applications: The

continuous-discrete approach,” ACM Trans. Algorithms, vol. 3, August

2007.

[49] D. Loguinov, J. Casas, and X. Wang, “Graph-theoretic analysis of structured

peer-to-peer systems: routing distances and fault resilience,” IEEE/ACM

Trans. Netw., vol. 13, pp. 1107–1120, October 2005.

[50] C. Qu, W. Nejdl, and M. Kriesell, “Cayley dhts - a group-theoretic frame-

work for analyzing dhts based on cayley graphs,” in In International Sym-

posium on Parallel and Distributed Processing and Applications (ISPA),

Springer-Verlag, 2004.

[51] E. Noel and W. Tang, “Novel sensor mac protocol applied to cayley and

manhattan street networks with crossbow mica2,” in Sensor and Ad Hoc

Communications and Networks, 2006. SECON ’06. 2006 3rd Annual IEEE

Communications Society on, vol. 2, pp. 626 –631, Sept. 2006.

[52] A. Taleb, J. Mathew, and D. Pradhan, “Fault diagnosis in multi layered de

bruijn based architectures for sensor networks,” in Pervasive Computing and

Communications Workshops (PERCOM Workshops), 2010 8th IEEE Inter-

national Conference on, pp. 456 –461, 2010.

[53] S. S. Iyengar, D. N. Jayasimha, and D. Nadig, “A versatile architecture for

the distributed sensor integration problem,” IEEE Trans. Comput., vol. 43,

pp. 175–185, February 1994.

[54] A. A.-B. Al-Mamou and H. Labiod, “Scatterpastry: An overlay routing us-

ing a dht over wireless sensor networks,” Intelligent Pervasive Computing,

International Conference on, vol. 0, pp. 274–279, 2007.

[55] F. Araujo, L. Rodrigues, J. Kaiser, C. Liu, and C. Mitidieri, “Chr: a dis-

tributed hash table for wireless ad hoc networks,” in Distributed Computing

Systems Workshops, 2005. 25th IEEE International Conference on, pp. 407

– 413, 2005.

[56] K. W. Tang and B. W. Arden, “Representations of borel cayley graphs,”

SIAM J. Discret. Math., vol. 6, pp. 655–676, November 1993.

85

[57] B. Arden and K. Tang, “Representations and routing for cayley graphs [com-

puter networks],” Communications, IEEE Transactions on, vol. 39, pp. 1533

–1537, Nov. 1991.

[58] J. Yu, E. Noel, and K. W. Tang, “Degree constrained topology control for

very dense wireless sensor networks,” in Proceedings of the IEEE Global

Communications Conference (GLOBECOM’10), pp. 1–6, Dec. 06–10, 2010.

[59] K. W. Tang and B. W. Arden, “Vertex-transitivity and routing for cayley

graphs in gcr representations,” in Proceedings of the 1992 ACM/SIGAPP

symposium on Applied computing: technological challenges of the 1990’s,

SAC ’92, (New York, NY, USA), pp. 1180–1187, ACM, 1992.

[60] R. Olfati-Saber and R. Murray, “Consensus problems in networks of agents

with switching topology and time-delays,” Automatic Control, IEEE Trans-

actions on, vol. 49, pp. 1520 – 1533, sept. 2004.

[61] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in

networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1,

pp. 215 –233, 2007.

[62] J. Yu, E. Noel, and K. W. Tang, “Pseudo-random graphs for fast consensus

protocol,” in Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications (PDPTA’09), pp. 828–

834, July 13–16, 2009.

[63] J.-C. Bermond, D. C., and J.-J. Quisquater, “Strategies for interconnection

networks: some methods from graph theory,” J. Parallel Distrib. Comput.,

vol. 3, pp. 433–449, December 1986.

[64] M. Miller and J. Siran, “Moore graphs and beyond: A survey of the de-

gree/diameter problem, electron,” Electronic Journal of Combinatorics, Dy-

namic survey D, vol. 14, 2005.

[65] G. Panchapakesan and A. Sengupta, “On a lightwave network topology us-

ing kautz digraphs,” Computers, IEEE Transactions on, vol. 48, pp. 1131

–1137, oct 1999.

[66] J. Dı́az, J. Petit, and M. Serna, “A survey of graph layout problems,” ACM

Comput. Surv., vol. 34, pp. 313–356, September 2002.

86

[67] J. Yu, D. Kim, E. Noel, and K. W. Tang, “Dense and symmetric graph formu-

lation and generation for wireless information networks,” in Proceedings of

the International Conference on Wireless Networks and Information Systems

(WNIS’09), pp. 379–384, Dec. 28–29, 2009.

[68] J. Yu, E. Noel, and K. W. Tang, “A graph theoretic approach to ultrafast

information distribution: Borel Cayley graph resizing algorithm,” Computer

Communications, vol. 33(17), pp. 2093–2104, 2010.

[69] K. Tang and B. Arden, “Class-congruence property and two-phase routing of

borel cayley graphs,” IEEE Trans. Comput., vol. 44, no. 12, pp. 1462–1468,

1995.

[70] M. Ben-Ayed, Dynamic routing for regular direct computer networks. PhD

thesis, Rochester, NY, USA, 1990.

[71] J. P. Hayes, T. N. Mudge, and Q. F. Stout, “Architecture of a hypercube

supercomputer.,” in ICPP’86, pp. 653–660, 1986.

[72] F. P. Preparata and J. Vuillemin, “The cube-connected cycles: a versatile

network for parallel computation,” Commun. ACM, vol. 24, pp. 300–309,

May 1981.

[73] J. Lin, Y. Liu, and L. Ni, “Sida: Self-organized id assignment in wireless

sensor networks,” in Mobile Adhoc and Sensor Systems, 2007. MASS 2007.

IEEE Internatonal Conference on, pp. 1 –8, Oct. 2007.

[74] E. Ould-Ahmed-Vall, D. M. Blough, B. H. Ferri, and G. F. Riley, “Dis-

tributed global id assignment for wireless sensor networks,” Ad Hoc Netw.,

vol. 7, pp. 1194–1216, August 2009.

[75] C. Sechen, “Chip-planning, placement, and global routing of macro/custom

cell integrated circuits using simulated annealing,” in Proceedings of the

25th ACM/IEEE Design Automation Conference, DAC ’88, (Los Alamitos,

CA, USA), pp. 73–80, IEEE Computer Society Press, 1988.

[76] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization by simulated

annealing, pp. 551–567. Cambridge, MA, USA: MIT Press, 1988.

87

[77] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust distributed network

localization with noisy range measurements,” in Proceedings of the 2nd in-

ternational conference on Embedded networked sensor systems, SenSys ’04,

(New York, NY, USA), pp. 50–61, ACM, 2004.

[78] M. Maróti, P. Völgyesi, S. Dóra, B. Kusý, A. Nádas, A. Lédeczi, G. Balogh,

and K. Molnár, “Radio interferometric geolocation,” in Proceedings of the

3rd international conference on Embedded networked sensor systems, Sen-

Sys ’05, (New York, NY, USA), pp. 1–12, ACM, 2005.

[79] R. Stoleru, T. He, J. A. Stankovic, and D. Luebke, “A high-accuracy, low-

cost localization system for wireless sensor networks,” in Proceedings of

the 3rd international conference on Embedded networked sensor systems,

SenSys ’05, (New York, NY, USA), pp. 13–26, ACM, 2005.

[80] L. Lazos and R. Poovendran, “Serloc: secure range-independent localization

for wireless sensor networks,” in Proceedings of the 3rd ACM workshop on

Wireless security, WiSe ’04, (New York, NY, USA), pp. 21–30, ACM, 2004.

[81] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Mobile-assisted

localization in wireless sensor networks,” in INFOCOM 2005. 24th Annual

Joint Conference of the IEEE Computer and Communications Societies. Pro-

ceedings IEEE, vol. 1, pp. 172 – 183 vol. 1, march 2005.

[82] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion

based on average consensus,” in Information Processing in Sensor Networks,

2005. IPSN 2005. Fourth International Symposium on, pp. 63 – 70, april

2005.

[83] Y. Hatano and M. Mesbahi, “Agreement over random networks,” in Decision

and Control, 2004. CDC. 43rd IEEE Conference on, vol. 2, pp. 2010 – 2015

Vol.2, dec. 2004.

[84] L. Schenato and G. Gamba, “A distributed consensus protocol for clock syn-

chronization in wireless sensor network,” in Decision and Control, 2007

46th IEEE Conference on, pp. 2289 –2294, dec. 2007.

[85] P. Braca, S. Marano, and V. Matta, “Running consensus in wireless sensor

networks,” in Information Fusion, 2008 11th International Conference on,

pp. 1 –6, 30 2008-july 3 2008.

88

[86] A. Dimakis, S. Kar, J. Moura, M. Rabbat, and A. Scaglione, “Gossip algo-

rithms for distributed signal processing,” Proceedings of the IEEE, vol. 98,

pp. 1847 –1864, nov. 2010.

[87] R. Olfati-Saber, “Ultrafast consensus in small-world networks,” in American

Control Conference, 2005. Proceedings of the 2005, pp. 2371 – 2378 vol. 4,

june 2005.

[88] M. Marta and M. Cardei, “Using sink mobility to increase wireless sensor

networks lifetime,” in World of Wireless, Mobile and Multimedia Networks,

2008. WoWMoM 2008. 2008 International Symposium on a, pp. 1 –10, june

2008.

[89] N. Li, J. Hou, and L. Sha, “Design and analysis of an mst-based topology

control algorithm,” Wireless Communications, IEEE Transactions on, vol. 4,

pp. 1195 – 1206, may 2005.

[90] B. Karp and H. T. Kung, “Gpsr: greedy perimeter stateless routing for wire-

less networks,” in Proceedings of the 6th annual international conference on

Mobile computing and networking, MobiCom ’00, (New York, NY, USA),

pp. 243–254, ACM, 2000.

[91] H. Li and P. Mitchell, “Full interference model in wireless sensor network

simulation,” in Wireless Communication Systems, 2009. ISWCS 2009. 6th

International Symposium on, pp. 647 –651, sept. 2009.

[92] M. Lacage and T. R. Henderson, “Yet another network simulator,” in Pro-

ceeding from the 2006 workshop on ns-2: the IP network simulator, WNS2

’06, (New York, NY, USA), ACM, 2006.

[93] G. Barrenetxea, B. Berefull-Lozano, and M. Vetterli, “Lattice networks:

capacity limits, optimal routing, and queueing behavior,” Networking,

IEEE/ACM Transactions on, vol. 14, pp. 492 –505, june 2006.

[94] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Di-

rected diffusion for wireless sensor networking,” IEEE/ACM Trans. Netw.,

vol. 11, pp. 2–16, Feb. 2003.

[95] B. Parhami, Introduction to Parallel Processing: Algorithms and Architec-

tures. Norwell, MA, USA: Kluwer Academic Publishers, 1999.

89

[96] Z. Feng and O. Yang, “Routing algorithms in the bidirectional de bruijn

graph metropolitan area networks,” in Military Communications Conference,

1994. MILCOM ’94. Conference Record, 1994 IEEE, pp. 957 –961 vol.3, oct

1994.

[97] E. W. Dijkstra, “A note on two problems in connection with graphs,” Nu-

merische Mathematik, vol. 1, pp. 269–271, 1959.

[98] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced

distance-vector routing (dsdv) for mobile computers,” in Proceedings of the

conference on Communications architectures, protocols and applications,

SIGCOMM ’94, (New York, NY, USA), pp. 234–244, ACM, 1994.

[99] C. Canali, M. Renda, P. Santi, and S. Burresi, “Enabling efficient peer-to-

peer resource sharing in wireless mesh networks,” Mobile Computing, IEEE

Transactions on, vol. 9, pp. 333 –347, march 2010.

90

