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Semiconductor devices are becoming increasingly more complex as the number of transistors 

increases in the same Integrated Circuit (IC) area. Due to the complexity in design; processing 

and packaging of the device plays a crucial role in the IC fabrication. Package induced residual 

stress are not only detrimental to device performance but can also lead to device failure. We 

propose a non-destructive method to determine the complete stress state at each point on a 

packaged Silicon device. Surface and edge defect created as a result of various manufacturing 

steps were characterized using different techniques, primarily X-ray diffraction topography, 

optical microscopy, SEM and TEM.  

Residual stress plays an important role in the performance and lifetime of single crystal device 

material. Here we present a novel technique using white beam synchrotron X-ray diffraction 

reticulography, Stress Mapping and Analysis via Ray Tracing (SMART) in order to determine 

residual stress level at an array of points over the entire crystal area. This method has a unique 

advantage compared with other stress measurement technique in that it can evaluate all six 

components of the stress tensor. The underlying experimental technique is based on white beam 

synchrotron X-ray diffraction topography and ray tracing. An array of X-ray micro-beam is 

illuminated on the single crystal sample and multiple reflections (reticulographs) are recorded 

simultaneously on a photographic film. Crystallographic plane normal vector at the location of 
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each micro-beam in the crystal is calculated. The variation of the plane normal vector direction is 

due to residual strain (both sheer and dilatational) present in the crystal. By considering three 

different diffracting planes and corresponding reticulograph a complete state of stress is 

calculated. Principle, applications and limitations are discussed. 

White beam synchrotron reticulography is used in reflection geometry to evaluate complete 

residual stress tensor as a function of depth in a single crystal material. This novel technique, an 

extension of SMART technique is developed to determine stress tensor components at various 

depths within the crystal. In reflection geometry penetration depth is controlled by manipulating 

the geometrical parameters such as incident angle. Data is obtained from various penetration 

depth, which represents exponentially decaying weighted average of actual stress value or in 

other words this stress profile is Laplace transform of real stress profile. Mathematical procedure 

is described to determine real stress profile from Laplace profile. To demonstrate this method, a 

packaged semiconducting Silicon die is used and its complete stress tensor profile is generated. 

This method has demonstrated the capability of determining all six components of stress as a 

function of depth in the crystal. Experimental procedure, theoretical basis and mathematical 

methods along with its application, capability and limitations are discussed. 

Wafer dicing process results in edge and surface damage. Various characterization tools were 

used to detect these defects. Surface reflection topographs were taken to probe surface and 

subsurface defects, primarily scratches and micro cracks. Optical microscopy and SEM were 

used as a complementary tool for surface characterization. TEM is used for detecting sub-surface 

nano-cracks and dislocations. X-ray transmission topography is used to detect half loop 

dislocations resulting from dicing process. In order to study dynamic behavior of defects 

(dislocations) during thermal processing and operation an environmental chamber (furnace) is 

designed and built to record in-situ X-ray diffraction topographs during thermal cycling and at 

high temperature. 
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Chapter 1 Introduction 

1.1 Residual stress in integrated circuit 

Packaged Silicon integrated circuit (IC) is a complex composite structure, primarily 

composed of Silicon, solder material, Copper, interconnects, plastic backing and other materials. 

Each of these material have different coefficient of thermal expansion (CTE) and different elastic 

properties. These materials are processed at different temperature and leads to residual stress 

within the structure. Stresses are developed not only during processing of the IC but also during 

the operation due to thermal cycling [1]. Thermo-mechanical stresses build up in the package 

during manufacture and operation of the device. The residual stress in an electronic component 

not only leads to device failure but also can affect the intended electrical performance of the 

device [2]. Residual stresses can cause failure at the junction of two dissimilar materials by 

producing crack and hence reliving the stress [3]. It is also a well known fact that the transistor 

characteristic of a semiconducting chip is affected by surface residual stress. 

Integrated circuits (ICs) for microelectronics are becoming more and more complex as 

technological developments demand higher performance and improved functionality from 

electronic circuits. They are used in ever more severe environmental conditions for application in 

military, automotive or space needs. An electronic package serves as mechanical support and 

protection from external environment such as high humidity level, light radiations, etc. It also 

allows power and signal transmission to and from the chip using interconnections from the chip 

surface to leads extend outside the package.  

These types of stresses are one of the most serious concerns for the semiconductor device 

manufacturer. Problem arises due to residual stress are critical in Silicon technology. A 

substantial number of defective Silicon IC can be attributed to stresses developed during 

processing. These problems become more complex as the circuit design involves complicated 

geometry and more different kind of materials are involved. It is not only important to 

understand the nature and origin of these stresses but also quantitatively characterize and 

evaluate the residual stress by experimentation and modeling. 

The origin of residual stresses can be broadly classified into following categories [1]: 
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1. Stress due to thermal gradient: Results from non-uniform temperature distribution in a 

silicon wafer. 

2. Film stresses: Stress resulting from films such as silicon dioxide, silicon nitride which are 

overlaid on silicon substrate. 

3. Stress arising from embedded structural elements: Embedded elements such as metal 

lines on amorphous on silicon dioxide, recessed oxide isolation and trench isolation on 

silicon substrate 

4. Stress in planer and non-planer thermal oxide: Local oxidation such as converting silicon 

to SiO2 results in volume expansion. This process must be accommodated by either 

viscoelastic flow of SiO2 or the plastic deformation of Silicon resulting in dislocations. 

5. Strain and misfit dislocations in doped lattices and hetroepitaxy: This strain is due to 

lattice mismatch between epitaxial layer and the substrate. 

6. IC packaging: Residual stress resulting from encapsulation of IC in the final package. 

Quantitative understanding of residual stress is critical in optimization of manufacturing 

process, materials selection, and device structural geometries. 

1.2 Research objective 

The primary objective of this research is to study residual stress and damage incurred 

during packaging process of Silicon dies. Two problems are studied and investigated in detailed 

here: (A) thermo-mechanical stresses generated in the packaged Silicon die. (B) edge/surface 

damage and defects incurred during the saw and laser cutting of the individual Silicon dies from 

the wafer. The residual stresses and the edge defect structures are studied and measured non-

destructively and non-invasively as a function of lateral position and depth in the device using 

the technique of Synchrotron White Beam X-ray Topography (SWBXRT) and Synchrotron 

White Beam X-ray Reticulography (SWBXR). Stress mapping and measurement is carried out 

using SMART (Stress Measurement and Analysis via Ray Tracing) technique developed in our 

lab. Stress and strain maps are generated across the crystal area and at various depths. Both the 

problems were studied and addressed separately through various sets of experiment. 

The overall goal of the residual stress measurement analysis is to systematically 

characterize the effect of each packaging process step for different packaging type (flip chip or 
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wire bond etc.) on the generation of stresses in the package. From this information, it would be 

possible to identify the manufacturing processes and materials responsible for high stress 

generation. This information can be used to develop optimized packaging process and/or 

material. 

The broader goal of studying edge damage induced defects and propagation of these 

defects during subsequent processes is to help the development of cutting and edge-preparation 

procedure to minimize the deleterious effect of this damage and also to develop a complete set of 

characterization tool for qualitative and quantitative assessment of these defects. 

Excessive level of stress may degrade performance and eventually lead to failure of the 

device. It is therefore, important to be able to understand and evaluate the levels of thermo-

mechanical stress in the IC in order to gain insight of failure mechanism and improve package 

reliability. This information on the level and distribution of stresses within packaged Silicon 

substrate will also provide an understanding on how stresses are generated during packaging 

processes and aid the development of optimized packages and packaging processes which 

minimize stress generation for microelectronics.  

The generation and propagation of defects from die edges, caused by damage from 

cutting and processing strongly influence the reliability and performance of devices. For 

example, a dislocation which propagated into the device, acts as an electronic short and can 

destroy the device. Understanding of the type and density of edge defects and how they 

propagate under thermo-mechanical stress and/or during temperature cycling can facilitate the 

development of optimized cutting processes thereby minimizing the generation of edge defects. 

Various destructive and non destructive techniques are available in order to evaluate the 

residual stress [4]. Destructive method of residual stress determination generally involves two 

steps: (A) Stress relaxation by removal of material and then (B) measuring the state of strain or 

displacement due to relaxation. Some of the commonly used destructive methods for residual 

stress determination are: Hole drilling, Ring core, Bending deflection and Sectioning method. 

Macroscopic strain is measured by either strain gauge or optical technique such as moiré 

interferometry, holography, electronic shearohraphy and laser speckle interferometry. Residual 

stress can then be determined by using elasticity theory. Most common techniques using non-
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destructive methods are: X-ray and neutron diffraction [5], Raman spectroscopy [6], 

piezoresistive stress sensing method[7], Moire interferometry [8], photoelastic technique [9], 

scanning acoustic microscopy[10] and finite element modeling [11]. There are various methods 

described in literature to determine residual stress using X-rays [12-17]. All these techniques 

have their own advantages and disadvantages such as number of stress components determined, 

spatial resolution, precision or stress resolution, speed and ease of measurement. 

Silicon wafers for IC production are currently being manufactured dislocation free up to 

300mm in diameter. Excessive stress during wafer dicing process can cause defects such as 

microcracks and dislocations to originate at the surface or the edge. Microcracks in combination 

with stress can catastrophically break the crystal while dislocations can reduce the yield of 

electronic devices. Many manufacturing steps in the production of Silicon integrated circuit 

create stress in the Silicon substrate. In case when this stress level exceeds a certain level, the 

crystal will yield by generating dislocation. Various sources of stress generation during IC 

fabrication and stress-induced dislocation is Silicon IC is studied by Fahey et al. [18]. Recently, 

in-situ study of dislocation dynamics and slip band formation in Silicon single crystal by X-ray 

diffraction topography is carried out by Danilewsky et al. [19]. Apart from X-ray topography 

various other characterization tools such as TEM, SEM, and optical microscopy are used for 

studying edge damage. 

1.3 Various X-ray techniques for residual stress determination 

Many techniques for measurement of residual strain using X-ray are described in the 

literature. Different techniques have its advantages and disadvantages. A literature review of 

residual stress measurement in single crystal material, using X-ray diffraction is given in this 

section. 

The measurement of strain field by utilizing topographic equi-inclination contour 

mapping is studied by Stock et al. [16]. Characteristic X-rays from lab source or monochromatic 

radiation from synchrotron can be used to generate equi-inclination contour maps. Strain is 

calculated by analyzing a number of equi-inclination contour topograph generated by rotating 

crystal through steps of small angle. 
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Due of its technological importance, a considerable amount of work is been done in 

evaluating residual stress in integrated circuits. Recently stress measurement on flip chip 

assembly was measured by Chen et al. [12] using micron size white beam synchrotron X-ray. 

Laue pattern were recorded by scanning the crystal across horizontal and vertical lines. Using the 

deviation in the Laue pattern, curvature of the crystal was measured and then stress was 

calculated. 

Photographic technique to determine residual stress in mounted Silicon chip is reported 

by Kozaki et al. [13], [20]. Residual stress at various locations on the chip is determined by using 

characteristic X-rays of very small size (60μm diameter). Back reflection diffraction pattern is 

recorded for both the sample and the stress free Silicon sample. Strain and thereby stress is 

calculated by comparing stresses sample with stress free sample. In this method plane stress 

condition is assumed and measurements were recorded from about 15μm depth below the crystal 

surface. 

Strain field developed during packaging process of an IC is studied by Kanatharana et al. 

[21], [15], [22], [23] using synchrotron radiation. Strain developed during the reflow process for 

Lead-Tin solder bumps in a ball grid array package is studied. Lattice strain is calculated by 

determining magnitude of orientation contrast shift. 

A stress measurement technique is proposed by Suzuki et al. [17], [24] which did not rely 

on the measurement of stress free lattice parameter or stress free crystal. They also assumed the 

plane stress condition in the crystal and calculated three stress components. This method 

evaluates the plane stress state with any combination of diffraction planes. They demonstrated 

their technique by evaluating stress field in single crystal Silicon and Iron. This method 

calculates stress using multiple regression analysis using angle of at least four different 

diffraction planes. This method is capable of measuring three components of stress by assuming 

a plane stress condition.  

A quite interesting study is carried out by Ando et al. [25] where they intentionally 

applied compressive stress at diametrically opposite sides of a circular single crystal Silicon 

plate. Topographs were taken using different characteristic radiation and strain field were 

qualitatively compared with the theory. 
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Measurement of minute local strain in semiconductor using highly parallel microbeam 

(angular divergence < 2arcsecond) is studied by Matsui et al.[26]. This technique is reported to 

have capability of measuring strain of the order of 10
-5

 to 10
-6

. This technique essentially 

measures rocking curve and calculate the peak shift. This technique only evaluates only one 

component of normal strain. 

A comprehensive study on strain in semiconductor crystal, especially Silicon, was done 

by Matsui [27] and by Bonse et al. [28]. Monochromatic synchrotron radiation is used for 

determining strain using topography. Various sources of strain such as growth striation, strain 

due to minute defects were identified and studied. 

Lattice plane tilt and the relative lattice parameter /d d  (dilatational strain) is been 

calculated and mapped over the entire wafer area by Kikuta et al.[14] and later by Barnett et al. 

[29]. This method utilized double crystal topography using synchrotron source.  It is shown that 

lattice plane tilt and the dilatational strain component can be calculated using the formula: 

 
   2 1

2




r r
r

 
  Equation 1-1 

 

 

    
 

2 1

02 tan


 

o

r rd r

d r

 


 Equation 1-2 

where r is a general position on the crystal. 

 1 r is the angle through which crystal has to be rotated for diffracting condition from position 

r0 to r.  2 r angle determined at same location by rotating the crystal 180
0
 about diffraction 

vector g. 

r0 is an arbitrary chosen reference point for the entire experiment. A complete map of 

lattice tilt and lattice strain is plotted over the entire wafer area. The accuracy of this method 

depends on the chosen Braggs reflection and is increased by using high order Bragg’s reflection 

which will give large Bragg’s angle and a narrow rocking curve width. 

A compilation of above techniques is provided in tabular format below: 

Table 1-1: Residual stress measurement by X-ray techniques reported by different authors. 
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Author Reference Comments 

Stock, Chen [16] Equi-inclination contour map  

Chen [12] Curvature is measured by evaluating deviation from Laue pattern 

Kozaki [13, 20] Photographic technique 15µm depth below the crystal 

Kanatharana [15, 21-23] Strain is determined by magnitude of orientation contrast shift 

Suzuki [17, 24] Three stress components were evaluated and plane stress condition is 

assumed. 

Ando [25] Strain field were qualitatively compared with the theory by applying 

predefined stress 

Matsui [26] Local minute strain is evaluated by determination of peak shift in rocking 

curve. 

Matsui [27] Monochromatic synchrotron radiation, equi-lattice-parameter mapping 

Bonse [28] Rocking curve technique to determining minute lattice strain in Silicon 

Kikuta [14] Lattice plane variation and tilt is mapped in single crystal Silicon using 

Lab source. 

Barnett [29] Lattice plane tilt and strain in GaAs wafer is measured and mapped using 

synchrotron radiation. 

 

In any stress measurement method, stress is never measured directly, strain is first 

calculated by measuring some physical quantity and then stress is calculated. For example, in 

case of measuring applied stress, strain gauge is used which measures electrical resistance before 

and after applied stress and in case of 
2sin  method lattice parameter is measured at different 

azimuthal angle, radius of curvature on sample surface is measured in case of curvature method. 

In the method presented here, the physical quantity we are measuring is the lattice plane normal 

direction on three crystallographic planes, at a location in the crystal simultaneously using white 

beam X-rays. 

Synchrotron x-ray topography is a well established X-ray imaging technique used to 

detect defects in highly perfect single crystal. A topograph is a two dimensional image formed on 

a detector (usually photographic film) placed in the path of area-filling diffracted beam from 

single crystal exposed to an incident area-filling X-ray beam. Synchrotron X-ray topography 

technique is highly sensitive to lattice strain present within the crystal. It is used to detect 

dislocations, small angle grain boundary, lattice strain variation and other defects related to 

crystal growth. In this work we have devised a technique to determine strain (and hence stress) in 
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the crystal using the fundamental concept of X-ray topography and ray tracing. Spatially resolves 

as well as depth resolved stress values were determined in this new technique. 

1.4 Fundamentals of X-ray diffraction 

X-ray diffraction technique has been extensively used by chemists, metallurgists and 

material scientists to determine structure of materials. Diffraction is a phenomenon when a wave 

(X-ray) interacts with a crystalline material to form a constructive interference i.e. scattered 

waves mutually reinforce each other. X-rays when interact with crystalline material, diffract 

according to Braggs law. 

 2d Sin                                                    Equation 1-3 

where λ is the wavelength of the X-rays, d is interplaner spacing and θ is the angle incident ray 

makes with the crystallographic plane. 

In order to understand and explain the X-ray diffraction phenomena in crystalline 

materials, kinematical and dynamical theory of X-ray diffraction are employed. Laue’s 

kinematical theory [30] provides good approximation when X-rays interact with relatively small 

imperfect crystal, whereas dynamical theory proposed by Ewald and Darwin is useful for large 

and highly perfect crystal. Nonetheless kinematical theory plays an important role in interpreting 

topographic contrasts and is discussed latter in this chapter. In the kinematical theory, X-rays are 

assumed to be scattered by atom only once, and re-scattering is negligible. Dynamical theory 

considers re-scattering of X-rays in the lattice. 

Dynamical theory of X-ray diffraction was developed to address discrepancies from 

kinematical theory. Kinematical theory is employed satisfactorily in case of small highly 

deformed crystal. However large single crystals which are highly perfect, significant 

discrepancies exist between measured intensity and intensity predicted by kinematical theory. 

Diffracted intensity is predicted to increase continuously with increasing size of crystal in 

kinematical theory which clearly contradicts conservation of energy. In a large single crystal the 

breakdown of kinematical theory is clearly demonstrated by the phenomena of primary 

extinction. The dynamical theory of X-ray diffraction takes into account the overall wavefield 

inside a crystal while diffraction takes place as a single entity. Dynamical theory primarily solves 

Maxwell’s equations in a periodic lattice (crystal). In a large perfect single crystal, X-rays are 
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diffracted dynamically where multiple scattering occurs. Bloch waves are created inside the 

crystal as the X-ray wavefield interacts with the periodic crystal laccice. 

Assuming parallelepiped shaped crystal with iN  unit cells along ia axis, where i  is 1, 2 

or 3. Diffraction intensity is given by: 

     
2

I b F b G b        Equation 1-4 

where  F b  = Structure factor 
2 ibr

f e 




   Equation 1-5  

and  G b is Laue function,
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2 2 2
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

hN kN lN
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h k l

  

  
  Equation 1-6 

 f b
= atomic scattering factor of α

th
 atom located at 1 2 3r x a y a z a       and b is the 

scattering vector given as * * *

1 2 3b ha ka la    where * * *

1 2 3,a a and a  are reciprocal vector and h, k 

and l are integers. xα, yα and zα are the coordinates of the α
th

 atom within the unit cell and 

1 2 3, anda a a  are unit cell vectors. 

 

 

 

 

 

 

2 2 2

1 2 32

2 2 2

sin sin sin

sin sin sin
 hkl

hN kN lN
I F

h k l

  

  
   Equation 1-7 

This equation is based on kinematical theory, and work well for small crystals but breaks 

down for larger crystals. When N1, N2, N3 goes to infinity Laue function G(b) goes to infinity i.e. 

diffracted intensity is infinity which is physically impossible and contradicts conservation of 

energy. This equation is holds very well for small crystals but fails for large/thick crystals. 

Therefore dynamical theory of X-ray diffraction has to be applied in case of nearly perfect large 

size crystal. 

Structure of Silicon is Diamond cubic which is closely related to FCC crystal structure, 

two interpenetrating FCC lattices. It belongs to space group F d -3 m (space group number 227). 

Lattice parameters at room temperature are: 

a = b = c = 5.4309Å and α = β = γ = 90
0
 

Coordinate points of Silicon atoms within the unit cell are: 
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(0, 0, 0),                 (0, 1/2, 1/2),        (1/2, 0, 1/2),        (1/2, 1/2, 0) 

(1/4, 1/4, 1/4),     (1/4, 3/4, 3/4),    (3/4, 1/4, 3/4),    (3/4, 3/4, 1/4) 

Therefore the structure factor can be written as: 

 
j k i k i j i j k i j k i j k i j k

i i i i i i i
i

hkl SiF f e e e e e e e e

             
                                            

 
        

  

3 3 3 3 3 3
2 2 2 2 2 2 2

2 0 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4

Equation 1-8 

After some mathematical calculation, the diffraction criteria can be shown as: 

           
    when h, k, l are mixed  

           
       when h,k,l are odd  

           
       when h,k,l are even and h+k+l=4n  

           
    when h,k,l are even and h+k+l≠4n  

1.5 Introduction to X-ray diffraction topography  

X-ray diffraction topography is a diffraction imaging technique used for detecting defects 

in large (>1mm) nearly perfect single crystalline material[31], [32], [33]. An X-ray topograph is 

a two-dimensional image obtained by projecting the distribution of diffracted intensity in an 

area-filling diffracted beam, produced by a low-divergence area-filling X-ray beam incident on a 

single crystal set at the Bragg angle, onto a two dimensional detector (usually high-resolution X-

ray film, CCD detector or a nuclear plate). Contrasts in an X-ray topograph arises from different 

diffracting power between the region near the defect and the more perfect region. Local X-ray 

diffraction intensity variation, within the crystal, generates the contrast in the topograph. 

The foundation of X-ray diffraction topography was mainly developed by classical 

laboratory X-ray work [34-39] between 1930 and 1960. Most of these works rely on 

characteristic X-rays from laboratory source. The development of synchrotron source has further 

advanced this technique by enabling white beam topography and enhancing monochromatic X-

ray technique. 

X-ray topography technique is primarily utilized for detecting and characterizing 

extended defects in single crystal. Most common defects observed in X-ray topographs are 

dislocations, stacking fault, small angle grain boundary, inclusions and surface damage. Point 
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defects cannot be determined by topography technique. A relatively short and concise overview 

of structural defect detection using X-ray topography is written by Klapper [40]. 

Even though nuclear plate and photographic film provides better resolution, digital CCD 

detectors are used for rapid production of topographic image [41]. X-ray topograph is recorded 

by illuminating a single crystal sample by an X-ray beam and recording the image of the 

diffracted beam. Contrast in the image is due to imperfection in the crystal which causes 

deviation, u(r) from perfect long range atomic order.  

Variation in the topographic techniques are available, some commonly used techniques are listed 

below: 

A. Lang topography 

B. Berg-Barrett method 

C. White beam topography 

D. Plane wave topography 

E. Section topography 

F. Total external reflection topography  

 

We have used white beam topography for recording most of our topographs. 

Three main types of geometries are used for recording topographs in our research: (A) 

Transmission, (B) Back reflection, and (C) Reflection geometry. Schematic of these geometries 

are shown in Figure 1-1. 

             

(A)                                                         (B)                                                          (C) 

Figure 1-1: Schematic of most commonly used geometries in topography experiments. 

 

In order to quantitatively analyze the defect, a complete understanding of contrast 

formation mechanism in different diffracting condition is required. For example, certain 

contrasts may disappear under certain diffraction condition. 
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The development of synchrotron radiation source has enabled a new era of topography, 

synchrotron topography. Synchrotron radiation has various advantages over conventional 

radiation such as high intensity, natural collimation and tunability. High intensity drastically 

reduces the exposure time to few seconds compared to hours or even days in conventional 

technique. Two most important synchrotron topography are white beam topography [42, 43] and 

monochromatic topography. The development of synchrotron source has enhanced the field of 

white beam topography to a different level [44]. A full description of X-ray topography requires 

dynamical theory of X-ray diffraction [45-47].  

A freely available, robust and extremely useful, Windows based software program 

LauePt developed by Huang [48] is used extensively throughout this work. It is mainly used for 

indexing the Laue pattern, determination of wavelength and crystal orientation. 

1.6 Resolution in X-ray diffraction topography 

Individual defects can only be distinguishable if there is enough spatial resolution. Since 

there is no magnification in X-ray diffraction topography, the resolution can only be controlled 

by geometrical factors. Even though compared to electron microscopy, X-ray diffraction 

topography has much lower spatial resolution but it is more than sufficient for high quality 

crystals which are currently grown. In order to understand the resolution of X-ray diffraction 

topography, consider diffraction due to the Bragg’s law   sin2d . Consider a cone with 

semi-apex angle  090  and the axis of which is diffracting planes normal vector or the 

reciprocal lattice vector  g  as shown in Figure 1-2. 

Since X-ray source has a finite size, which indicates X-rays received at a point in crystal 

may have originated at two distinct points in the source. Therefore point P in the crystal will 

receive X-rays with correct Bragg’s angle from locus of points in the source defined by the 

intersection of cone and the X-ray source surface. Consider three such points a, b and c on the 

surface of the source. X-rays emanating from points a, b and c after diffraction from point P will 

form an arc onto the detector A, B and C. This arc is generated by the locus of points defined by 

intersection of detector surface and the Bragg’s cone. It can be seen that “image” of point P is 

spread over the arc A-B-C which gives rise to blurring effect in the image of that point.  The 

plane where incident and diffraction beam vector lies, is defined as the plane of incidence (for 
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example plane bPb’). The source dimension perpendicular to the plane of incidence should be 

minimized in order to reduce the blurring effect or the effective resolution. The blurring is 

proportional to specimen to film distance, source size perpendicular in the direction of plane of 

incidence and inversely proportional to source to specimen distance. 

 

 
 

Figure 1-2: Schematic of diffraction geometry and Bragg’s cone showing the effect of source 

dimension on resolution of topographic image. g is the active reciprocal lattice vector, 90-θ is the 

semi-apex angle of Bragg’s cone.  

  

 

This relationship can be mathematically written as: 

C

DS
R              Equation 1-9 

 

where S is the maximum source dimension perpendicular to the plane of incidence, D is 

specimen film distance and C is source specimen distance. 

Now let us consider the effect of source size in the direction parallel to the plane of 

incidence. Referring to Figure 1-2, the point P will accept X-rays (for diffraction) emanating 

from range of points on the source in the direction parallel to the plane of incidence (t-b-s) 

determined by the rocking curve width. Higher rocking curve width would mean wider 

acceptance angle (t-P-s) in the plane of incidence. 



14 

 

It can be shown by simple calculations that source dimension perpendicular to the plane 

of incidence is the limiting factor in determining spatial resolution rather than source dimension 

parallel to the plane of incidence. 

We have noted before that spatial resolution depends on specimen to film distance and 

should be minimized; however there is limitation on resolution of photographic detectors used in 

topography therefore there is no added benefit in reducing specimen to film distance beyond the 

resolution of detector determined by grain size in the emulsion which is around 1µm. In practice 

specimen to film distance is set such that calculated resolution (Equation 1-10) matches with 

detector resolution.  

1.7 Penetration depth 

The penetration depth is an important concept and plays a vital role in interpreting X-ray 

diffraction topograph. It provides the information of the volume from which the image is 

generated. Penetration depth, defined for a reflection is the depth (t) at which intensity drops to 

1/e. Figure 1-3 shows a reflection with a penetration depth of t.  

 

 

Figure 1-3: Schematic ray diagram for calculation of penetration depth. 
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Therefore:   
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We have used the equation 1-14 in determining penetration depth. 

Penetration depth determination and surface study of Silicon wafer using white beam 

synchrotron radiation topography in grazing Bragg-Laue geometry is carried out by Dudley et al. 

[49].  

Here we have defined and determined penetration depth based on intensity dropping to 

1/e. Many authors have sometimes defined penetration depth (t10) when intensity drops to 1/10. 

In this case: 
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1.8 Contrast formation mechanism in X-ray diffraction topograph 

Defects can be imaged using X-ray diffraction topography where there is measurable 

difference in diffracted intensity. These defects include those giving rise to localized strain field 

such as dislocations, subgrain boundary, grain boundary and growth sector boundaries. Contrast 

in an X-ray diffraction topograph is generally described by two mechanisms: orientation contrast 

and extinction contrast.  

Orientation contrast in a X-ray diffraction topograph is the non-uniform distribution of 

intensity, purely arising from convergence (overlap) or divergence (separation) of diffracted 

rays. This contrast is seen in crystal containing small angle grain boundary, twin and grain 

boundary. Misorientation in lattice plane caused by residual stress can also be observed as 

orientation contrast. Observation of orientation contrast is the result of both the nature of X-ray 

and the nature of misorientation. If either the beam divergence or the wavelength bandwidth 

available in the incident X-ray is smaller than the misorientation between two regions, then only 

one region in the crystal can diffract at a time. Therefore orientation contrast is presence or 

absence of diffracted intensity in one of the region. 

Extinction contrast is due to the difference in scattering power around the defect from 

rest of the crystal. Extinction contrast is mostly used for understanding and explaining images of 

dislocation in topographs. Image of a dislocation in a topograph consists of three different types 

of images: direct, dynamic and intermediary image due to three types of extinction contrast. In 

transmission geometry, absorption condition (µt) determines the type of image that can be 

observed. Where µ is the mass absorption coefficient and t is the thickness of the crystal. Near 

the dislocation core where the lattice is heavily distorted compared to the rest of the crystal, 

dynamical diffraction breaks down and the core region diffracts kinematically. The reason for 

rescattering being negligible is because the core region falls outside the full width at half maxima 

of rocking curve. This is similar to small size crystal diffraction which diffracts kinematically.  

Direct dislocation image: This type of image is observed when topograph is recorded 

under low absorption condition µt<1. In this case diffracted intensity from dislocation core 

region is higher than the surrounding matrix resulting in dark dislocation line.  

Dynamical dislocation image: This type of image if observed when topograph is recorded 

under high absorption condition µt>6. In this case dislocation line will appear as white line due 

to anomalous absorption also called Borrmann effect. 
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Intermediary dislocation image: This type of image if observed when topograph is 

recorded under absorption condition 6> µt>1. In intermediary absorption condition all three 

components can contribute. Usually these images appear as bead-line contrast along direct 

image. 

1.9 Application of X-ray diffraction topography 

Determination of dislocation line direction: 

Dislocations are generally created either during growth of the crystal, post growth 

deformation or during processing such as slicing and dicing. Understanding of dislocation line 

direction is quite important in order to fully characterize the given dislocation which in turn can 

be used to understand its origin and prevent its occurrence.  The line direction of a dislocation 

can be determined by analyzing by its projected image on two or more topographs with different 

reciprocal lattice vector [50, 51].  

Determination of Burgers vector in a dislocation: 

A localized strain field is associated with a dislocation. The displacements of lattice 

points are parallel to Burgers vector b . Therefore lattice planes perpendicular to b are distorted 

whereas lattice planes parallel to b are not distorted. As a result, topograph recorded from 

diffracting planes perpendicular to b  g b  will have strong contrast due to dislocation. When 

the topograph is recorded from diffracting planes parallel to b  g b , the contrast due to 

dislocation will not be present. 

This result can be used in determining Burgers vector by analyzing the contrast due to 

dislocation in several different topographs taken with different diffraction vector  g . If two 

reflections are found where contrast due to a dislocation is “extinct”  . 0g b  then the Burgers 

vector must lie along the intersection of those two planes.  

A generalized criteria dislocation contrast to disappear is given by: 

0g b  for screw dislocation        Equation 1-15 

0 0g b g b land     for edge and mixed dislocation      Equation 1-16 

where l is line direction of dislocation. 

 

Determination of Burgers vector sense and magnitude: 
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Once the direction of the Burgers vector is determined using  g b analysis, further 

detailed analysis is required in order to determine the Burgers vector sense and magnitude. 

Divergent beam technique using conventional radiation is developed by Chikawa [52] for 

determining sense in both screw and edge dislocation and can be further compared with 

theoretical calculation in order to determine magnitude of Burgers vector. 

1.10 Comparison between TEM and X-ray diffraction topography 

Fundamentally both the technique of TEM and X-ray diffraction topography are similar. 

In case of TEM, diffracted electron beam from a thin sample is imaged, whereas in case of X-ray 

diffraction topography, image of a diffracted X-ray beam is recorded. Both the techniques use 

diffraction phenomena of electron and X-rays respectively.  

Dislocations can be imaged using both the techniques. TEM is used for imaging dislocations 

where dislocation density is high (because of high magnification) whereas X-ray topography is 

used for large single crystal material with very low dislocation density.  

For comparison dislocation images recorded from Silicon crystal using TEM and X-ray 

topography is shown in Figure 1-4 below. 

 

           

                             (A)                                                                            (B) 

Figure 1-4: Comparison of images of a dislocation in Silicon crystal recorded using A. TEM and 

B. X-ray topography. 

 

X-ray topography does not provide any magnification in the imaging process whereas 

TEM technique provides a large magnification. 
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It can be seen from Figure 1-4 that the width of a dislocation image in X-ray topograph is about 

3 orders of magnitude greater than width of dislocation line in TEM micrograph. The larger 

width of a dislocation line in X-ray topography compared to TEM is direct consequence of high 

strain sensitivity of X-ray topography. This can be explained from the difference in angular 

width of diffracting range around its plane normal. In case of X-rays Full Width at Half Maxima 

(FWHM) of a rocking curve is around 10
-5

 radians whereas for electron diffraction it is about  

10
-2

 radians for 100 keV electrons. 

Now we can qualitatively explain the wider image of dislocation in X-ray topograph and 

narrower electron micrograph. Image of a dislocation line is formed due to lattice plane 

misorientation and perfect crystal diffraction cannot take place. We know that a lattice plane 

misorientation around a dislocation line is inversely proportional to distance (r) away from 

dislocation core. 

The narrower the rocking curve width (diffracting range) the further from the dislocation 

core the crystal will appear “misoriented”. 

Therefore in X-ray topography with narrower diffracting range results in a wider 

dislocation image and in electron micrograph with wider diffracting range results in narrower 

dislocation image. 

Here we also note that in X-ray topography, higher order and weak reflection have 

narrow rocking curve width and therefore will give wider dislocation image. 

1.11 Brief review of fundamental concepts in Solid Mechanics 

Stress is defined at a infinitesimally small volume inside a solid material. Consider a 

solid object as shown in Figure 1-4. Various external forces act on the material, such that the 

material is in equilibrium. Consider a very small volume at an arbitrary location within the 

material. This volume element is defined by three sets of planes perpendicular to axis x1, x2 and 

x3. If we consider components of force acting on these planes and divide it by the area will result 

in components of stress. For example: when the plane is perpendicular to axis x2 and force 

component along x3 the stress component will be
23 . In general, stress tensor has nine 

components ij where i and j can have value 1, 2 or 3. It can be shown that ij ji  , therefore total 

number of independent stress components reduces to six. 
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                         Equation 1-17 

 

 

Figure 1-5: Schematic of a solid object under applied stress 

 

Strain is a tensor defined at a location (infinitesimal small volume) in solid material as 

yx x z x
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Equation 1-18 

where i, j is x, y or z and u is the displacement. 

Small strain (elastic strain) is proportional to applied stress in the material. Both stress 

and strain can be treated as a symmetric second rank tensor. There linear dependency can be 

written in the concise form as: 

ij ijkl klC                                Equation 1-19 

where ijklC  is called the stiffness matrix. The above equation is the concise form known as 

Einstein’s notation, also note that summation over k and l is implied. It is a set of nine equations 
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for each of the component of stress tensor. As an example, one of the stress component 11 is 

written as:  

C C C C C C C C C                  11 1111 11 1112 12 1113 13 1121 21 1122 22 1123 23 1131 31 1132 32 1133 33   

Equation 1-20  

The above equation is interesting and surprising. Consider an example in which C1113 has 

a non zero value. A tensile stress in the direction 1  will cause shear strain 13 . Even though it is 

not intuitive, it is possible in single crystal with fewer symmetry elements. It can be shown by 

symmetry arguments that C1113  is zero in case of isotropic material.    

The inverse of Equation 1-20 can be written as: 

ij ijkl klS          Equation 1-21 

where ijklS is compliance matrix. 

In general there are a total of 81 constants in either compliance or stiffness matrix but 

there is relation between the components which leads to fewer numbers of elastic constants. 

Since kl lk   and therefore the terms ijkl ijlkC andC  will occur together in the Equation 1-20 and 

it is permissible to say: 

ijkl jiklC C  Equation 1-22 

 Next let us assume only one strain component 11 , then we have 

C  12 1211 11 and C  21 2111 11 since   12 21 we have C C1211 2111 . 

Or in general ijkl jiklC C      Equation 1-23 

Similar arguments will lead to the relation 

ijkl jiklS S  Equation 1-24 

ijkl jiklS S  Equation 1-25 
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These relations reduced the total number of independent constants to 36. At this point it is 

convenient to use two prefix for compliance and stiffness matrix and one prefix for strain and 

stress as given below: 

        
   
      
   
           

11 12 13 1 6 5

21 22 23 6 2 4

31 32 33 5 4 3

 Equation 1-26 

Similar contraction apply for ijklC  that is C C ,C C ,C C etc.  1123 14 1212 66 2213 25  and 

       
  

      
  
          

1 1
11 12 13 1 6 52 2

1 1
21 22 23 6 2 42 2

1 1
31 32 33 5 4 32 2

 Equation 1-27 

Therefore Equation 1-20 can be rewritten in the compact notation as:

 i ij jC   and  i ij jS    Equation 1-28 

 

or, 

1 11 12 13 14 15 16 1

2 21 22 23 24 25 26 2

3 31 32 33 34 35 36 3

4 23 41 42 43 44 45 46 23 23

5 31 51 52 53 54 55 56 31 31

6 12 61 62 63 64 65 66 12

2

2

2

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

 

 

 

   

   

  

   
   
   
   

   
    

    
   

        12

 
 
 
 
 
 
 
 
  

 Equation 1-29 

Further it can also be proved that ij jiC C and ij jiS S , thereby reducing the total number of 

independent elastic constant to 21 from 36. 

Rewriting Equation 1-25 in the compact notation yields six equations for each component of 

stress: 

    

11 11 1 12 2 13 3 14 23 15 31 16 12

22 21 1 22 2 23 3 24 23 25 31 26 12

33 31 1 32 2 33 3 34 23 35 31 36 12

23 41 1 42 2 43 3 44 23 45 31 46 12

31 51 1 52 2 53

2 2 2

2 2 2

2 2 2

2 2 2

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C

      

      

      

      

   

     

     

     

     

   3 54 23 55 31 56 12

12 61 1 62 2 63 3 64 23 65 31 66 12

2 2 2

2 2 2

C C C

C C C C C C

  

      

  

     

          Equation 1-30 
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Total number of independent elastic constant in a material is 21. Therefore in a general 

crystal, having least crystallographic symmetry elements with arbitrary orientation, total number 

of independent elastic constant is 21. As the symmetry elements in the crystal increases, the total 

number of independent elastic constants decreases. As an example, if a cubic crystal oriented 

such that the crystal axis ([1 0 0], [0 1 0] , [0 0 1]) are parallel to the reference axis (x,y,z) 

respectively, the total number of independent elastic constants are 3 

 11 22 33 12 23 31 44 55 66,C C C C C C and C C C      and rest of the terms are zero. Another 

special case example would be isotropic material (e.g. non-textured, randomly oriented grains in 

polycrystalline material) in which total number of independent elastic constants are 2 (two). 

Tensor transformation: Values of tensor components are different for different 

coordinate system. Elastic constants, say stiffness matrix, can be transformed to a new axes by 

applying standard tensor transformation equation: 

' ijkl im jn ko lp mnopC a a a a C   Equation 1-31 

where ija  is the cosine of the angle between the new axis '

ix  and the old axis jx . In the above 

equation summation in m, n, o and p is implied i.e. after expanding the right side of the Equation 

1-27, it consists of 81 terms. 

At this point it is important to note that the strain/compliance/stiffness matrix in the 

compact notation are not a true tensor and standard tensor operation cannot be applied them 

(such as transformation) but stress in compact notation is a true tensor. A comprehensive table is 

compiled by Hearmon [53] for transformation of stiffness ijC and compliance ijS in contracted 

notation. 

Elastic constants of Si crystals are [54]: 

C . ,C . andC . GPa  11 12 44165 7 63 9 79 6  Equation 1-32 

These constants represent when the crystal is oriented such that crystallographic direction [100], 

[010] and [001] coincides with x, y and z axis as shown in Figure 1-6 (A).  
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Let us consider an example in which we calculate stiffness constant in another coordinate 

system. This result will be used in the next chapter for stress calculations. Here we find the 

components of stiffness constant when the crystal is rotated 45
0
 degrees about z axis, tensor 

transformation is done from old axis (x,y,z) to new axis (x’,y’,z’) 

 

 
(A)                                                (B) 

Figure 1-6: Transformation of elastic constants. Stiffness matrix is known for orientation (A), for 

orientation (B) stiffness matrix is being determined by using tensor transformation. 

 

We use Equation 1-29 in order to determine components of stiffness tensor. But, before 

we apply equation 1-29 which uses expanded notation of ijklC  we need to convert the values of 

ijC  from compact notation to expanded notation. 

11 1111

22 2222

33 3333

44 2323 2332 3223 3232

55 1313 1331 3113 3131

66 2121 2112 1221 1212

12 1122 2211

23 2233 3322

31 3311 1133

C = C

C = C .

C =C

C =C =C =C =C

C = C =C =C =C .

C =C =C =C =C

C = C =C

C = C =C .

C =C =C

















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


165 7

79 6

63 9

                     Equation 1-33 

Next step is to calculate the ija  matrix. The relation between old coordinate system (x y z) and 

new coordinate system is defined using a matrix.  
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' ' '

' ' '

' ' '

'
x x x y x z

'

y x y y y z
'

z x z y z z

cos cos cosx x

y cos cos cos y

z zcos cos cos

                                     

Equation 1-34 

where 'x x
  is the angle between x and x’ etc. Therefore in our case  

 

' ' '

' ' '
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2 2
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2 2

0

0

0 0 1
      

Equation 1-35 

A concise Mathematica code is written to calculate the summation in equation 1-29 and to 

evaluate the transformed matrix. The code is given in Appendix E and the results, components of 

stiffness matrix after transformation are given below: 

1111 1112 1113 1211 1212 1213 1311 1312 1313

1121 1122 1123 1221 1222 1223 1321 1322 1323

1131 1132 1133 1231 1232 1233 1331 1332 1333

2111 2112 2113

2121 2122 2123

2131

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

C C C

C C C

C

     
     
     
     
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2211 2212 2213 2311 2312 2313

2221 2222 2223 2321 2322 2323

2132 2133 2231 2232 2233 2331 2332 2333

3111 3112 3113 3211 3212 3213

3121 3122 3123

3131 3132 3133

C C C C C C

C C C C C C

C C C C C C C C

C C C C C C

C C C

C C C

     
     
     
     
     

 
 
 
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3311 3312 3313

3221 3222 3223 3321 3322 3323
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194.4 0 0 0 50.9 0 0 0 79.6

0 35.2 0 50.9 0 0 0 0 0

0 0 63.9 0 0 0 79.6 0 0

C C C

C C C C C C

C C C C C C

      
      
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0 59.9 0 35.2 0 0 0 0 0

59.9 0 0 0 194.4 0 0 0 79.6

0 0 0 0 0 63.9 0 79.6 0

0 0 79.6 0 0 0 63.9 0 0

0 0 0 0 0 79.6 0 63.9 0

79.6 0 0 0 79.6 0 0 0 165.7
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 
 
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 
      
      
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Equation 1-36  
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Chapter 2 Residual stress determination in transmission geometry 

2.1 Introduction 

Silicon is the most widely used semiconducting material for the manufacturing of 

integrated circuits. Demand for higher performance has led to higher circuit density and compact 

design resulting in more complex manufacturing process. As a result residual stresses are 

unintentionally introduced in the crystal during various steps in manufacturing process and final 

packaging. Residual stresses are known to cause instability in electrical performance [55] and 

eventually kill the device if the material yields to produce dislocation. Various techniques have 

been used to determine residual stress in the crystal [4]. We have used the technique of white 

beam synchrotron X-ray diffraction topography to determine stress tensor at each point and 

mapped it over the entire surface [56]. 

We devised a novel technique to determine all the components of stress tensor in single 

crystal bulk material. This technique, also known as SMART (Stress Mapping Analysis via Ray 

Tracing), is a non-destructive, non-invasive method based on the principle of X-ray diffraction 

imaging. This method uses the technique of Synchrotron White Beam X-ray Topography 

(SWBXT) in combination with a fine grid made out of X-ray absorbing material and therefore, it 

can also be referred to as Synchrotron White Beam X-ray Reticulography (SWBXR). The grid 

essentially breaks the area-filling X-ray beam into an array of micro-beams, each micro-beam is 

then traced separately. This novel technique utilizes the method of SWBXR to determine stress 

level at an array of points over the entire crystal area. The experiments were carried out in 

transmission geometry; the results are the average of the through thickness of the crystal. In the 

next chapter, we discuss the depth profiling in which experiments were carried out in the 

reflection geometry, providing stress tensor component as a function of depth. This method has a 

unique advantage compared with other stress measurement technique in that it can evaluate all 

six components of the complete stress tensor in a nondestructive way. 

The hypothesis in our technique is that there exists a relationship between the state of 

strain in a crystal and the local plane orientation. This relationship can be exploited to determine 

full strain tensor as a function of position within the crystal. From the known components of 

strain tensor, components of stress tensor can be calculated by using the crystal’s elastic 
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constants. Local lattice plane orientation can be measured and mapped accurately using the 

nondestructive technique of SWBXR. The measurement (lattice plane orientation) of three 

independent reflections (from three crystallographic planes) is input into the mathematical 

relationship between the strain tensor and the local lattice plane orientation. It allows 

computation of complete strain and hence stress tensor as a function of lateral position of the 

crystal.  

X-ray reticulography is an applied technique based on the technique of X-ray diffraction 

topography [57-60]. Synchrotron X-ray diffraction reticulography has capability to measure 

angular lattice plane mis-orientation between point-to-point on a crystal with a sub-arc second 

angular resolution capability [57]. This technique involves placing a fine scale reticule 

(sometimes may be referred as grid or mesh in various literatures) in the path of incident or 

diffracted beam very close to the crystal. Inverse image of the grid or the “shadow” from the grid 

is formed due to diffraction from the crystal and is recorded on a photographic film, known as a 

reticulograph. A schematic of experimental setup for reticulography in a back reflection Bragg’s 

geometry is shown in Figure 2-1. In this example, the grid partially absorbs the diffracted area-

filling X-ray beam and the image is recorded in the detector. Also note that, in this example, only 

one reticulograph is recorded. 

 

Figure 2-1: Schematic of X-ray diffraction reticulography in the back-reflection geometry. C, M, 

and P indicate crystal, mesh and photographic X-ray film respectively. 

 

The grid essentially splits the area filling X-ray beam into an array of individual micro-

beam. The relative divergence and convergence of individual micro-beam is determined by the 

relative displacement among the individual cells in the reticulograph. Figure 2-1 shows basic 

elements involved in an X-ray reticulographic experiment. In the figure, M represents the square 

mesh, C is the specimen, S is synchrotron source, and P is photographic X-ray film. Uneven 
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spacing (δ1>δ2) between the array points in the recorded image indicates the convergence or 

divergence in the diffracted beam, which arises due to lattice plane misorientation. 

Shape (distortion) of reticulograph under known applied stress: 

In our technique, essentially we are determining residual stress from the data of recorded 

reticulograph. In this section we will analyze the shape of reticulograph resulting from the 

known stress components. Here we consider separately different stress components and the 

resulting distortion in the reticulograph.  

Assuming that only one component of stress exists in a small volume element V within 

the sample and rest of the crystal is stress free. This is only a hypothetical example and such a 

state of stress may not be realistic. As a result of this stress, distortion in the reticulograph is 

shown in Figure 2-2. We have considered three different stress component, xx , yy  and zz  

individually and distortion due to them is shown in schematic of reticulograph. 

 
(A)                                           (B)                                                  (C) 

Figure 2-2: Schematic of distortion in a reticulograph due to various stress components. A B and 

C represents stress component along x, y and z direction. 

 

2.2 Theory and mathematical principle 

The underlying principle in this technique is that there is a relationship between any plane 

(crystallographic plane) normal and state of stress at a given location within crystal. In other 

words, if a stress is applied to a single crystal, not only is there a change in its lattice parameter 

but there is also a change in orientation in various crystallographic planes. A schematic of 

change in crystallographic plane orientation due to applied stress is illustrated in Figure 2-3. 

When normal stress yy  is applied to a single crystal, plane normal direction 0n changes to n . This 



29 

 

is because interplaner spacing of planes perpendicular to y-axis increases and interplaner spacing 

of the planes perpendicular to x-axis decreases. The relationship between local state of stress or 

strain and local plane orientation is exploited in order to fully characterize strain or stress tensor 

at any general location within the crystal. Even though we are not directly measuring normal 

strain in y direction, we are able to detect tilt of another crystallographic plane by calculating 

strain in the y direction. On the reticulographic image of plane perpendicular to y-axis, there will 

be no significant detectable change; but on the image of plane which is perpendicular to n , the 

shift is detectable and measurable. 

 

Figure 2-3: Schematic illustration of change in lattice plane orientation due to application of 

stress. A stress is applied to a stress free crystal (on left) and the changes in various lattice planes 

are shown (on right)  

 

Traditionally lattice strain is measured by the detecting the peak shift in the intensity (I) 

versus Bragg’s angle (2θ) diagram. A change in peak position is due to a change in lattice 

parameter. Since wavelength (λ) is known and constant in these measurements, strain can be 

calculated simply as cosd
d

    . This technique only allows the measurement of the normal 

or the dilatational strain. In contrast to other techniques, here we are measuring lattice plane 

orientation at array of points in the crystal.  

In our technique we have used area-filling white beam synchrotron radiation in 

transmission geometry in which the entire crystal is imaged. Unlike monochromatic beam, 

diffraction occurs from every location in the crystal, even if the crystal is highly strained locally. 
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Strained location is going to choose a slightly different wavelength in order to satisfy diffraction 

criteria. A schematic of the experimental setup is shown in Figure 2-4. Figure 2-5 illustrates the 

schematic of difference in reticulographs obtained from a stress free and stressed sample. 

 

Figure 2-4: Schematic of diffraction from a strained crystal. Unlike monochromatic beam, using 

white beam has the advantage that the diffraction data is obtained from the entire crystal 

simultaneously. 

 

 



31 

 

Figure 2-5: Schematic comparison of reticulographs. Left side is perfect crystal - horizontal and 

vertical lines are perfectly parallel and perpendicular to each other. Right side is strained crystal- 

distortion in the reticulographs is shown.  

 

  One of the advantages of using the white beam, as discussed earlier, is that the diffraction 

condition can be met at each location in the crystal. Another advantage of the white beam which 

really makes this technique possible is that multiple diffraction spots can be recorded 

simultaneously. Since the diffraction data is recorded from every location in the crystal, which 

essentially means residual stress can be calculated at each point in the crystal. But this is limited 

by the grid spacing: the finer the grid, the better spatial resolution can be achieved. In other 

words, stress is calculated at two distinct points defined by the grid, but the stress 

values/distribution between those two points is not known. In some cases where features in the 

device are much bigger than the grid spacing, it may be safe to assume linear stress distribution 

between those two stress points. The cases where feature size is comparable or smaller than the 

grid spacing, there may be non-linear distribution of stress between the two points. The spatial 

resolution of this technique is limited by the grid spacing. 

Plane normal vector  , ,n x y z for any particular set of (h,k,l) plane varies continuously 

within the single crystal. Constant plane normal vector  , ,n x y z either implies zero stress or 

uniform stress. The fact that there exists a relationship between state of stress at a point within 

the crystal and the local lattice plane orientation has been exploited. State of stress at an arbitrary 

location within the crystal is a function of change in plane normal direction with respect to the 

stress-free location of any three general planes. In general form this relationship can be written 

as: 

          ij x, y,z n x, y,z ,n x, y,z ,n x, y,z ,n x , y ,z 
1 2 3 0 0 0 0

f
                

Equation 2-1
 

 

 where  1n x,y,z ,  2n x,y,z  and  3n x,y,z  are plane normal vector at a location  x,y,z  of the 

crystallographic plane 1, 2 and 3 respectively and  0 0 0 0n x ,y ,z is the plane normal vector at a  
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stress free location  0 0 0x ,y ,z . Plane normal vector at a point in the crystal can be detected and 

measured by using X-ray microbeam incident on a crystal and recording a Laue pattern. 

Consider a plane “A” which is distorted due to stress, as shown in Figure 2-6. When there 

is no strain, assume that the perfect plane is perpendicular to the z-axis. When the plane is 

distorted, the plane normal vector also changes direction. Plane normal vector n  continuously 

changes direction from one point to another. Discontinuity in plane normal implies a grain 

boundary. 

 

Figure 2-6: A schematic representation of a distorted crystallographic plane. Plane is 

perpendicular to z axis in undistorted condition, after distortion this plane is warped and the 

plane normal vector is different at different location on the surface. 0n  is the plane normal vector 

at a strain free location and  n x, y,z  is the plane normal vector at any general (strained) 

location  , ,x y z   

 

Plane normal vector at any general (strained) location  n x, y,z is related to plane normal 

at strain free location  n
0  by the equation: 

   n x, y,z n n .u x, y,z   0 0                  Equation 2-2 

where  u x, y,z  is the displacement vector at a location  x, y,z  

Equation 2-2 is the central equation in our analysis and stress determination. The theory 

and the proof of SMART technique is based on the Equation 2-2. This equation is the direct 
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result of Taylor expansion, the proof of this equation is given in Appendix A. A schematic 

representation of Equation 2-2 is given in Figure 2-7. In this particular example, the top half of 

the crystal has undergone distortion (strain) which is shown by the tilt in the lattice plane. The 

displacement vector is along x-axis, which increases linearly as y increases. 

 0
ˆu k y y i    

where k and 0y are constants. 

Also note that the plane normal vector 0n is along x direction i.e. 0
ˆn i , and therefore 

 0 0n u k y y   . The gradient of 0n u is along y axis as shown in Figure 2-7 or, 

 0
ˆn u k j     

It should be noted here that Equation 2-2 is a vector equation and can be split into three scalar 

component equations. 

 

Figure 2-7: 2-D schematic of plane normal variation and its relationship to the divergence of 

displacement component. 

 

Writing 0n and u in terms of its scalar components: 
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0 0x 0y 0z
ˆ ˆ ˆn n i n j n k                      Equation 2-3 

x y z
ˆ ˆ ˆu u i u j u k                           Equation 2-4 

 Since n0 is constant and can be taken out of derivative term, Equation 2-2 can be expanded to its 

x, y and z components:

y y yx x x z z z
x y z 0x 0y 0z 0x 0y 0z

u u uu u u u u uˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆn i n j n k n i n j n k n i j k n i j k n i j k
x y z x y z x y z

           
                 

            

                                                                                                                              Equation 2-5 

Equating i, j and k components:

 

yx z
x 0x 0x 0y 0z

uu u
n n n n n

x x x

 
   

  
                               Equation 2-6 

 

yx z
y 0y 0x 0y 0z

uu u
n n n n n

y y y

 
   

  
                               Equation 2-7

 

yx z
z 0z 0x 0y 0z

uu u
n n n n n

z z z

 
   

  
                                Equation 2-8 

These set of three equations can be written in the form of a matrix equation using the dot 

product: 

0 0

0 0

0 0

yx z

x x x

yx z
y y y

z z z

yx z

uu u

x x x
n n n

uu u
n n n

y y y
n n n

uu u

z z z

  
 
        

      
          

           
  
 
   

                             Equation 2-9 

The aforementioned equations 2-6, 2-7, 2-8 are the underlying equation in our technique. 

These three equations contain nine (9) derivative terms: 

y y yx z x z x z
u u uu u u u u u

, , , , , , , ,
x x x y y y z z z

       

        
. Once these nine terms are calculated, strain can 

easily be determined using equation 2-12. 
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For convenience we define the all the nine derivative terms in form of matrix: 

yx z

yi x z
ij

yx z

uu u

x x x

uu u u
u wherei, j x, yor z

j y y y

uu u

z z z

  
 
   

   
   

   
 
  
 
   

    Equation 2-10 

Therefore the most important part of our problem is to calculate the nine (9) 

displacement-derivative terms. These terms are invariant, meaning they are independent of the 

crystallographic planes used for measurement. But these values depend on the choice of 

coordinate system and can be determined for different coordinate system by using tensor 

transformation.  

In our experimental technique, multiple diffraction spots (reticulographs) are recorded 

simultaneously. Each diffraction spot represents reflection from an independent crystallographic 

plane. In the three equations stated above (2-6, 2-7, 2-8), plane normal vector components 

 , ,x y zn n n  are calculated experimentally by location of diffraction spot on the topograph. If we 

choose three independent reticulographs, we can generate nine independent linear equations 

which can be solved simultaneously to determine all nine (9) displacement-derivative terms. 

Given below is a set of nine (9) equations (equations 2-11 a to i) generated by using three 

reticulographs. Three set of equations are generated from each reticulographic image. 

Stress free location is estimated by inspecting the reticulographs, where the grid 

intersecting lines are not distorted with respect to the rest of the crystal. Given the geometry of 

the experimental setup (specimen to film distance), plane normal vector can be determined. A 

detailed description of the procedure is given in the experimental method section of this chapter. 

By determining the local plane normal vectors  1 2 3n ,n and n at a particular location in 

the crystal, one can determine all the components of matrix iu

j




(where i,j belongs to x,y or z) by 

solving equations 2-11 a to i and hence determine strain and stress tensor at that location.  
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yx z
x x x y z

yx z
y y x y z

yx z
z z x y z

yx
x x x y

uu u
n n n n n Equation 2.11a

x x x

uu u
n n n n n Equation 2.11b

y y y

uu u
n n n n n Equation 2.11c

z z z

uu
n n n n

x x

  
    

   

  
    

   

  
    

   


   

 

0 0 0 0

1 1 1 1 1

0 0 0 0

1 1 1 1 1

0 0 0 0

1 1 1 1 1

0 0 0

2 2 2 2
z

z

yx z
y y x y z

yx z
z z x y z

yx z
x x x y z

u
n Equation 2.11d

x

uu u
n n n n n Equation 2.11e

y y y

uu u
n n n n n Equation 2.11f

z z z

uu u
n n n n n Equation 2.11g

x x x

n

 
 

 

  
    

   

  
    

   

  
    

   

0

2

0 0 0 0

2 2 2 2 2

0 0 0 0

2 2 2 2 2

0 0 0 0

3 3 3 3 3

yx z
y y x y z

yx z
z z x y z

uu u
n n n n Equation 2.11h

y y y

uu u
n n n n n Equation 2.11i

z z z

  
    

   

  
    

   

0 0 0 0

3 3 3 3 3

0 0 0 0

3 3 3 3 3

 

Solving equations 2-11a, 2-11d and 2-11g simultaneously, (i component) we get 

yx z
uu u

, &
x x x

 

  
 

Solving equations 2-11b, 2-11e and 2-11h simultaneously, (j component) we get 

yx z
uu u

, &
y y y

 

  
 

Solving equations 2-11c, 2-11f and 2-11i simultaneously, (k component) we get 

 
yx z

uu u
, &

z z z

 

  
 

Once the matrix iju  is fully determined, strain tensor can be calculated using this matrix. 
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Strain tensor ij  is calculated according to the Equation 1-19. 

 

From the values of strain components, all the values of stress components can be 

calculated using Equation 1-20. In order to demonstrate our technique we have used a Silicon die 

(packaged IC) as a test sample to calculate residual stress. Details of the experimental techniques 

and results are discussed in the next section. 

2.3 Experimental method 

In this section, experimental steps used for determining residual stress in transmission X-

ray diffraction mode are described. The test specimen used is a packaged IC Silicon die. An area 

filling synchrotron white beam is used for recording reticulographs in the experiments. 

Synchrotron experiments were carried out at NSLS beamline X-19C located at Brookhaven 

National Laboratory (BNL). As the name implies, in transmission mode, X-ray interacts with the 

entire crystal volume by passing through the thickness of the material. Data obtained by 

transmission method represents the average value over the entire sample depth represented by 

the Equation 2-12. 

 
t

ij ij z dz  
0

        Equation 2-12 

A schematic of experimental setup is shown in Figure 2-4 and 2-5, topographs are 

recorded in the transmission geometry. A grid is placed on the incoming side of the synchrotron 

beam. The grid effectively splits the area filling beam into an array of square shaped micro-

beams. The purpose of the grid is to locate points on the crystal to the corresponding points in 

reticulographs. Corner points of all the micro-beam represent a set of points forming an array. 

Figure 2-8 shows the schematic of splitting of X-ray by the grid. Grid is made out of X-ray 

absorbing material tungsten. A complete design and description of the grid used for the 

experiment is given in the Appendix [B]. 
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Figure 2-8: Schematic of an area filling x-ray beam (A) is split into an array microbeams (B) by 

placing a grid in the path of incident beam. Filled area with grey color represents x-ray and the 

white region is where the X-rays are absorbed by the grid. The corner points of small square is 

located in the reticulographic image from which diffracted beam direction is determined.  

 

X-ray reticulographs are recorded at a particular specimen to film distance. In our 

experiments we have used specimen to film distance of 8cm. Multiple diffracted spots 

(reticulographs) are recorded simultaneously on photographic film Agfa Structurix D3-SC. 

Following the exposure to X-ray, the film is developed, fixed, washed and dried. Finally the film 

is scanned at a high resolution in an electronic Tagged Image File Format (.TIFF file). Films 

were scanned at a resolution of 2400 dpi (dots per inch). A typical image of the film is given in 

Figure 2-11. Figure 2-13 shows magnified view of the reticulographs and the radiograph used for 

calculations. 

Care has to be taken while choosing the reticulographs, the images must be clear enough 

to distinguish the pattern features produced by the grid. Three reticulographs were chosen such 

that they do not belong to the same zone. In this particular example, three reticulographs chosen 

are: -2 4 2, 2 4 2, 4 2 2 as indicated in the Figure 2-13. 

Unit plane normal vector of these three planes are: 

 

 

 

n i j k

n i j k

n i j k

   

  

  

1
1 24

1
2 24

1
3 36

2 4 2

2 4 2

4 2 4
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V n n n



     1
1 2 3 24 24 36

2 4 2
1

2 4 2 0
6

4 2 4
 

Since the above determinant is not zero, these three planes do not belong to the same zone and 

hence can be used for calculations.  

Specimen to film distance (sfd) should be optimized during the experiment. Too small sfd 

may lead to overlapping of reticulographs and too large sfd can cause diffracted spots to go 

outside of film area.  

Exposure time should also be chosen properly, over-exposure to X-rays can cause 

darkening of the film due to noise and will reduce the contrast and the image quality. 

Underexposure can lead to poor contrast and the features may not be distinguishable. 

Lead thickness used for blocking the direct beam is important in experiment. Thin Lead 

piece attached to the X-ray film acts as a partial beam stop. Thin piece of Lead is used because 

the image of the radiograph is also used in calculation of diffraction vector. Without the Lead 

piece the image will be too dark at the center where the direct beam after passing through Silicon 

sample hits the film. Similarly with the use of too thick Lead piece the image of the radiograph 

cannot be seen. 

In case where sample size is larger than the area of the X-ray beam, scanning method is 

to be used. In the scanning method, sample, grid and the film are connected together such that 

they move together and the sample stage is scanned across the X-ray beam as shown in Figure 2-

9. The exposure time in this geometry is determined by the scanning velocity (v) and the height 

of incident beam height (h). 

Exposure time 
h

t
v

         Equation 2-13 
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Figure 2-9: Schematic of scanning geometry. It is used when the beam size is unable to fully 

cover the sample. In this geometry the sample, grid and the film are attached rigidly that is there 

is no relative movement among them as the assembly moves from top to bottom. This can be 

achieved by mounting sample, grid and the film on the same stage. 

 

 

Next step in the calculation is to evaluate plane normal vector at each array point defined 

by the grid. This can be calculated simply by subtracting incident beam unit vector S0  from 

diffraction unit vector S  and as shown in Figure 2-10.  
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Figure 2-10: Schematic of diffraction in transmission geometry, incident beam vector S0
, 

diffracted beam vector S  and plane normal vector n  are shown. Axis of reference is chosen such 

that the origin is defined somewhere arbitrarily on the sample and z axis is perpendicular to the 

plane of the film. Therefore the z coordinate of any point in the film is -(sfd) 

 

 

Assuming  x, y is a grid-corner array point on a reticulograph and  S Sx , y is the 

corresponding point on the sample surface. 

       
     

   

S S

S S

ˆ ˆ ˆx x i y y j sfd k
S

x x y y sfd

   


   
2 2 2

         Equation 2.14 

      
ˆS k 

0                                                    Equation 2-15 

       

S S
n

S S






0

0

                                             Equation 2-16 

Where S0 = Unit incident beam vector k̂   

S = Unit diffraction beam vector 

n = Plane unit normal vector 
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 x, y = Coordinates of point on the film where diffracted beam intersects the film 

 S Sx , y = Corresponding points of  x, y on the sample surface.  

sfd = Specimen to film distance 

 x, y,z   Coordinate system defined such that origin is on the film surface and z axis is 

perpendicular to film. 

From the recorded reticulographs, diffraction vector and the plane normal vector is 

calculated at each array points on the crystal.  This calculation is done for three different 

reticulographic images.  

Plane normal vectors  n ,n ,n
1 2 3  of three independent crystallographic planes  , ,1 2 3  

are determined at each array point on the crystal. By inspecting the reticulographs, a stress free 

(or relatively low stress) location is determined. Assume stress free location on the crystal is

 x , y , sfd
0 0 . Using equation 2-11 a to i, the complete nine components of i

ij

du
[u ]

dj
  (where i, 

j are x, y or z) tensor is determined at each array point in the crystal. From idu

dj
tensor, strain ans 

stress tensors are calculated using Equation 1-17 and Equation 1-18 respectively.  

From the strain tensor, stress can be calculated using the elastic constants of silicon. In case of Si 

stiffness matrix is C11=165.7GPa, C44=79.6GPa and C12=63.9 GPa [54]. Stress tensor is 

determined at each array point. Note that these components are valid when the reference axis 

(x,y,z) is parallel to the crystallographic axis [100], [010] and [001] respectively. We have to 

transform the stiffness matrix components for the new set of axis where 
'x [110] , 

'y [110]  

and 
'z [001] . Referring to Section 1-12 and Appendix E, a procedure for transformation of 

axis and calculations are given. We have ijC  matrix (which is not a true tensor) for the new set of 

axis 
' ' 'x , y ,z    given by: 
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194.4 35.2 194.4 0 0 0

35.2 194.4 63.9 0 0 0

194.4 63.9 165.7 0 0 0

0 0 0 50.9 0 0

0 0 0 0 79.6 0

0 0 0 0 0 79.6

GPa

 
 
 
 
 
 
 
 
 

 

 

Therefore the six set of equation xyz, is written as: 

 

11 1 2 3

22 1 2 3

33 1 2 3

23 23

31

194.4 35.2 194.4 Equation 2 17

35.2 194.4 63.9 Equation 2 17

194.4 63.9 165.7               Equation 2 17

2*50.9                                         Equation 2 17

   

   

   

 



a

b

c

d

   

   

   

 

 31

12 12

2*79.6                                         Equation 2 17

2*79.6                                         Equation 2 17



 

e

f



 
 

 

Even though the calculations are relatively straightforward as it involves solving simple 

linear equations, but the large amount of data requires us to use a computer program. A computer 

code is written in Mathematica for strain and stress computation. Initially the code calculates the 

plane normal vector at each array points for three different crystallographic planes. Coordinate 

points of three reticulographs and a radiograph are input to the program in the form of text files. 

Once the plane normal vectors are calculated and the stress free region is identified, nine linear 

equations can be readily solved for nine unknown terms. Finally strain and stress components are 

readily calculated using equations 1-19 and 2-17. The Mathematica code is also extended to 

calculate principal stresses and rotational components. A copy of the code is given in Appendix 

G. 

2.4 Results and discussion 

A typical X-ray film recorded from packaged silicon die is shown in Figure 2-11 and the 

corresponding simulated Laue pattern generated using software LauePt [48]. A magnified image 

of three reticulographs used for the calculations and the radiograph are shown in the Figure 2-13. 

Since white beam is used, multiple reticulographs are recorded in single exposure. It can be seen 

in the Figure 2-13 that the reticulographs are highly distorted compared to the sample dimension. 
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Heavy distortion of the grid lines in the reticulographs implies high distortion in crystallographic 

plane or high residual strain. This uneven distortion in the reticulograph indicates non-

homogeneous distribution of strain. In the ideal case when there is no lattice distortion the 

reticulographs will have almost same shape and size as radiograph.  

To determine plane normal before distortion, a minimum stress point is selected that 

exhibited the least distortion or no distortion in all the reticulographs. As described previously 

the coordinate points of grid intersection corner is calculated in three reticulographs and the 

radiograph. These coordinate data are which is saved as text file, is input to the Mathematica 

program.   Strain and stress values are calculated at an array of points on the crystal. Strain and 

stress maps are generated from these values are shown in Figure 2-14 and 1-15 respectively. 

   

Figure 2-11: A scan of the X-ray film with recorded Laue pattern in transmission mode. Three 

chosen reticulogtaphs are indicated. 
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Figure 2-12: Simulated Laue pattern using program LauePt . Front surface plane facing the beam 

is (0 0 1) and the right side plane is (1 1 0). This simulated pattern is used as comparision with 

the recorded topograph and also for indexing the pattern. 
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(A)                                                                        (B) 

           
(C)                                                                      (D) 

Figure 2-13: Magnified image of reticulographs and radiographs used for calculation. (A) 

Radiograph, (B) g= -2 4 2, λ=.91 (C) g= 2 4 2, λ=.91 (D) g= 4 2 2, λ=.91 
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xx                                                      yy                                                       zz  

   

yz                                                    xz                                                              xy  

Figure 2-14: Strain maps generated using data in transmission geometry 

 

All the six components of residual strain are mapped over the crystal area. This strain 

value represents the average strain value over the thickness of the crystal (Equation 2-12) or in 

other words strain variation along the thickness of crystal is ignored. A more detailed depth 

profiling method strain variation as a function of depth is considered in next chapter.  

Maximum and minimum value (variation) of strain is given in Table 2-1 below. 

Table 2-1: Maximum and minimum value (variation) of strain 

 
xx  yy  zz  yz  xz  xy  

Minimum -.0007 -.0052 -.0145 -.0063 -.0065 -.0093 

Maximum .0023 .0037 .0153 .0158 .0097 .0139 
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xx                                                       yy                                                       zz  

   

yz                                                          xz                                                         xy  

Figure 2-15: Stress maps generated from strain data in transmission geometry 

  

In Figure 2-10 all the six components of residual stress are mapped over the crystal area. 

Maximum and minimum value (variation) of stress is given in Table 2-2 below.  

Table 2-2: Maximum and minimum value (variation) of stress (in GPa) 

 
xx  yy  zz  yz  xz  xy  

Minimum -2.94 -1.34 -2.52 -.64 -1.05 -1.47 

Maximum 3.33 1.26 2.85 1.61 1.55 2.19 

 

A 3-D maps of strain and stress components are also plotted is given in Figure 2-16 and 

Figure 2-17 respectively. These types of maps are helpful in quickly spotting the high stress 

region in the crystal and its magnitude. 
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xx                                                      yy                                                       zz  

   

yz                                                    xz                                                              xy  

Figure 2.16: 3D Strain map 

     

xx                                                         yy                                                             zz  

     

yz                                                        xz                                                            xy  

Figure 2-16: 3D Stress plot 
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Strain and stress variation across any length of crystal can also be easily plotted from the 

data generated. As an example 2-D graphs given in Figure 2-17 and 2-18 are plotted in order to 

show stress and strain components variation across x-axis of the crystal at constant y (=20). The 

Mathematica command used for plotting these 2D and 3D plots are listed in Appendix F. 

 

   

xx                                                      yy                                                       zz  

 

  

yz                                                    xz                                                              xy  

Figure 2-17: Variation of strain as a function of x at constant y (=20). 

   

xx                                                         yy                                                             zz  

   

yz                                                        xz                                                            xy  

 

Figure 2-18: Variation of stress as a function of x at constant y (=20). 
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2.5 Identification and characterization of sources of error 

In this section we will analyze various sources of error in the SMART technique. Both 

experimental and geometrical factors affect the stress values calculated using the SMART 

technique. Two kinds of errors, random error and systematic error, occur in any experimental 

measurement. Random errors are those errors which can be revealed by repetition of 

measurement; those which cannot be revealed are systematic error. The concept of precision is 

related to random error. Minimizing the random error in measurement increases the precision of 

the result whereby increasing the repeatability and reproducibility (R and R)
1
. The concept of 

accuracy is related to systematic error. Systematic error is the bias in the experimental system 

which pushes the results in the same direction. If identified, this kind of error can be eliminated 

most of the time. It is also been argued that the in our analysis and interpretation, random error 

are more of a concern than systematic error. Here we will analyze both the components of error 

and suggested ways to eliminate or minimize them. 

 

Choice of three crystallographic planes: 

Three reticulographs to be chosen must not have same zone axis. If all the three planes 

belong to same zone axis then their plane normal will lie on a plane and hence they will not be 

independent. Therefore three planes  1 1 1h k l ,  2 2 2h k l  and  3 3 3h k l must be chosen 

such that 

1 1 1

2 2 2

3 3 3

0

h k l

h k l

h k l

                                         Equation 2-18 

  Plane normal of all the three chosen plane should be as “perpendicular to each other” as 

possible, this will reduce the error in calculations. In this section we discuss the error arising 

from choice of three reticulograph. This error will fall in the category of systematic error. This 

error is inherent to the system and is fundamental to the technique. This error cannot be 

                                                 
1
 Repeatability is the closeness of agreement between mutually independent test results obtained with the same 

method on identical test material in the same laboratory by the same operator using the same equipment within 

short intervals of time. Reproducibility is the closeness of agreement between test results obtained with the same 

method on identical test material in different laboratories with different operators using different equipment. 
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minimized simply by increasing the precision of the measurement but rather by changing the 

experimental setup.  

Considering three plane normal vectors: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆn h i k j l k,n h i k j l k and n h i k j l k        
1 1 1 1 2 2 2 2 3 3 3 3 . Assuming that the plane normal 

vector n1
, n2

 and n3
are unit vector. Volume V of the parallelepiped defined by the three vectors

n1
, n2

 and n3
is 

1 2 3V=n n n                                 Equation 2-19 

This volume is zero (0) when all the three vectors are coplanar. The maximum value of V 

is 1 when all the three vectors are perpendicular to each other. In order to maximize the precision 

or reduce the error of calculations, three reticulographs should be chosen in order to maximize V. 

This is demonstrated below mathematically: 

Consider equations 2-11A, 2-11D and 2-11G 

yx z
x x x y z

yx z
x x x y z

yx z
x x x y z

uu u
n n n n n

x x x

uu u
n n n n n

x x x

uu u
n n n n n

x x x

  
    

   
  

    
   

  
    

   

0 0 0 0

1 1 1 1 1

0 0 0 0

2 2 2 2 2

0 0 0 0

3 3 3 3 3
 

Rearranging we get 

yx z
x y z x x

yx z
x y z x x

yx z
x y z x x

uu u
n n n n n

x x x

uu u
n n n n n

x x x

uu u
n n n n n

x x x

  
    

   
  

    
   

  
    

   

0 0 0 0

1 1 1 1 1

0 0 0 0

2 2 2 2 2

0 0 0 0

3 3 3 3 3

 

Solution to these equations will be: 
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x x y z x x x z x y x

x x y z x x x z

x x y z x x x zyx z

x y z x y z

x y z x y z

x y z x y z

n n n n n n n n n n n

n n n n n n n n

n n n n n n n nuu u
, ,

x x xn n n n n n

n n n n n n

n n n n n n

 

 

  
  
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0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0

2 2 2 2 2 2 2 2

0 0 0 0 0 0

3 3 3 3 3 3 3 3

0 0 0 0 0 0

1 1 1 1 1 1

0 0 0 0 0 0

2 2 2 2 2 2

0 0 0 0 0 0

3 3 3 3 3 3

x

x y x x

x y x x

x y z

x y z

x y z

n

n n n n

n n n n

n n n

n n n

n n n







1

0 0 0

2 2 2 2

0 0 0

3 3 3 3

0 0 0

1 1 1

0 0 0

2 2 2

0 0 0

3 3 3

 

Equation 2-20 A, B, C 

Similarly solving equation 2-11B, 2-11E and 2-11H we get: 

y y y z x y y z x y y

y y y z x y y z

y y y z x y y zyx z

x y z x y z

x y z x y z

x y z x y z

n n n n n n n n n n n

n n n n n n n n

n n n n n n n nuu u
, ,

y y yn n n n n n

n n n n n n

n n n n n n

 

 

  
  
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0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0

2 2 2 2 2 2 2 2
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3 3 3 3 3 3 3 3
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0 0 0 0 0 0

2 2 2 2 2 2
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3 3 3 3 3 3

y

x y y y

x y y y

x y z

x y z
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n
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n n n
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1

0 0 0

2 2 2 2
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3 3 3 3
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2 2 2

0 0 0

3 3 3

 
Equation 2-20 D, E, F 

Solving equation 2-11C, 2-11F and 2-11I we get: 

z z y z x z z z x y z

z z y z x z z z

z z y z x z z zyx z

x y z x y z

x y z x y z

x y z x y z

n n n n n n n n n n n

n n n n n n n n

n n n n n n n nuu u
, ,

z z zn n n n n n

n n n n n n

n n n n n n

 
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x y z z

x y z z

x y z
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n

n n n n

n n n n

n n n

n n n

n n n







1

0 0 0

2 2 2 2

0 0 0

3 3 3 3

0 0 0

1 1 1

0 0 0

2 2 2

0 0 0

3 3 3

 
Equation 2-20 G, H, I 

In all nine (9) of the displacement derivative terms iu

j




, denominator is constant V 

volume defined by the three unit plane normal vector. In order to minimize the error or maximize 

the accuracy of the calculations, V should be maximized. Therefore ideally one should chose 
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three plane normal perpendicular to each other. Practically it may not be possible to 

simultaneously record three reticulograph such that their plane normal vectors are perpendicular 

to each other. In the section 2-6, it is proved mathematically that the results (strain or stress 

values) are independent of choice of reticulographs but the precession or the accuracy of 

measurement depend on the choice of the reticulographs or the diffracting planes. 

Error in the values of strain and stress arising due to experimental measurements, random 

error is discussed next. Main sources of experimental error come from the measurement of 

specimen to film distance and the measurement of coordinate points on the reticulograph. These 

errors are possible to minimize using precise experimental setup and sophisticated detector. 

However these errors may not be completely eliminated.  

Some other minor source of error such as warpage of film due to uneven film holder can 

be analyzed as error in the coordinate point measurement. Because, slight tilt and twist of the 

film will result in slight deviation of array points. 

Error due to specimen to film distance: Specimen to film distance is measured using a 

ruler in the beamline prior to the exposure. After processing the X-ray film, it is compared with 

the simulated Laue pattern program [ref] and more precise specimen to film distance (sfd) value 

is determined. It is estimated that the precision with which sfd measurement can be determined is 

about 1mm. A schematic representation of the error introduced due to inaccuracy in film position 

is shown in Figure 2-19. 

 

Figure 2-19: Schematic of experimental setup showing the error introduced in the calculations 

due to error in measurement in specimen to film distance. C, L, FP1 and FP2 represents crystal 

sample, Lead beam-stop, film position 1 and film position 2 respectively. 
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Two positions of film, film position 1 (FP1) and film position 2 (FP2) are separated by a 

small distance  sfd . Assuming that the diffracted beam is at an angle , with respect to 

incident beam. It can be shown that: 

   sfd   tan   Equation 2-21 

Similarly for stress free location: 

   sfd   tan0 0  Equation 2-22 

Displacement in the diffracted beam position on the film caused by variation of sfd is in 

same direction for all locations in the crystal including stress free location. Therefore the net 

error is the difference between the displacement at a stressed location and stress free location. 

Net error in displacement =         sfd sfdtan tan        0 0  

or,                                              sfdtan tan         0 0         Equation 2-23                            

In order to estimate the error in stress due to variation in specimen to film distance we first 

estimate the maximum limit of    0 . 

Assuming 422 reticulograph, 47  0

0 , 
047.01  ,  sfd 1mm   we get   m    .0 35  

Since the resolution of X-ray film is about 2μm, therefore the error due to specimen to film 

distance is not detectable with our current detection system. 

Error due to determination of coordinate points: Coordinate points are determined on a 

TIFF format image using image recognition software [Appendix G]. This software determines 

the coordinate points of the grid-corner by analyzing the change in contrast in the image. The 

possible error is due to the resolution of the X-ray film and the blurring in the film image itself. It 

is estimated that the maximum error in determining the coordinate point on the film is about 

2μm. This error in displacement on the film will contribute to the error in the plane normal 

direction. Error in plane normal vector direction will result in error in the displacement 

derivative components i
ij

u
u or

j

 
      

. Uncertainty or error in displacement-derivative 
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components will in turn lead to uncertainty in strain components. Error in strain will cause error 

in stress components. A schematic 2D diagram shown in Figure 2-21 indicates the variation in 

plane normal caused by uncertainty in the coordinate position in the reticulograph. 

 

Figure 2-20: Schematic representation of error introduced in the plane normal vector due to 

variation in coordinate position in the reticulograph.  is the error in diffracted beam position in 

the reticulograph.  change in diffracted beam angle leads to 
2


angular rotation in plane 

normal vector. 

 

Assuming  is the error of measurement in the X-ray film. This implies that the error 

generated in finding the coordinate points will translate into error in determining diffraction 

direction which in turn will create error in plane normal direction. It can be shown that variation 

in diffracted beam angle   will cause 
 

 
 2

variation in plane normal vector. It can also be 

shown that the error in the angle   is related to error in coordinate point measurement  by 

the Equation 2-24: 

 
sfd


     Equation 2-24 
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This is schematically shown in Figure 2-20. 

First we determine analytical expression of displacement-derivative terms. We start with 

the expression of xu

x




 (Equation 2-19 a). 

x x y z

x x y z

x x y zx

x y z

x y z

x y z

n n n n

n n n n

n n n nu

x n n n

n n n

n n n










0 0 0

1 1 1 1

0 0 0

2 2 2 2

0 0 0

3 3 3 3

0 0 0

1 1 1

0 0 0

2 2 2

0 0 0

3 3 3

 

Expanding the numerator and assigning the denominator as V, we get: 

       x

x x y z z y y y x y x z x z x z y x y x y x y x

u
n n n n n n n n n n n n n n n n n n n n n n n n

x V


          



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 2 3 2 3 1 3 2 3 2 2 3 2 3 1 3 2 3 2 2 3 2 3

1
 

Equation 2-25 

Therefore, 

     x

x y z z y y y x z x z y x y x

u

x V
n n n n n n n n n n n n n n n






                  

0 0 0 0 0 0 0 0 0 0

1 2 3 2 3 1 3 2 2 3 1 3 2 2 3

1
 

After rearranging: 

     x

x z y y z x z y y y x z y y z

u

x V
n n n n n n n n n n n n n n n






             

0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 2 3 2 1 3 1 3 3 1 2 1 2

1
 

Simplifying further we can write the right hand side in the determinant format: 

 

 

Similar expression can be written for all the nine components: 

x

x x x

z z y

y y y

u

x V

n n n

n n n

n n n






  
 

 
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1 2 3

0 0 0

1 2 3

0 0 0

1 2 3

1
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                                               Equation 2-26 A, B, C, D, E, F, G, H, I 

 

From the above analytical expressions for error in displacement derivative terms, error in the 

strain components can be readily calculated. 

For normal component   x

xx

u

x






 
   

 
  Equation 2-27  

and for sheer component 

  
1

2

y x

xy

u u

x y


 

 

    
       

   
 Equation 2-28 

Similar equations can be written for other strain components. This error in strain will translate to 

error in stress, for example: 

11 12 13 14 15 162 2 2xx xx yy zz xz zx xyC C C C C C                   Equation 2-29 

Using the above generalized analytical results we can now estimate the error in the residual 

stress. This will be the resolution or the minimum amount of absolute residual stress that can be 

calculated without ambiguity. 

Using value of δ as 2μm, resolution of X-ray films used for the experiments we estimate 

the value of error in stress in Silicon dies to be 10MPa 

In most engineering investigation, usually precision is more important than accuracy. Precision is 

achieved by reducing the random error while accuracy is achieved by increasing the systematic 

error. It has been pointed out by Norton [61] that the investigator is more interested in precision 
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than accuracy. Investigator usually wants to know the difference in stress level from one location 

to another or the change in stress level at a point before and after processing. A large error say 30 

percent of the absolute magnitude of measured stress would rarely change the conclusion 

reached in the investigation. 

Error due to shape of crystal: Assuming a rectangular shaped crystal before packaging. 

After processing at higher temperature and subsequent cooling of the package leads to bending 

of the packaged assembly as shown in the Figure 2-21. 

 

         

(A)                                                                                   (B) 

Figure 2-21: Schematic of a Silicon die (A) before packaging and (B) after packaging 

 

As a result of this bending in-plane normal stress are maximum at the top (tensile) and 

minimum (compressive) at the bottom. Shape of the crystal itself does not play a role in stress 

determination using SMART technique. However, bending of crystallographic plane will occur 

if the crystal changes shape due to bending. The bending of crystallographic planes is 

incorporated in the smart technique and no special consideration is required for change in shape. 

In summary a table is generated for various sources of error and the possible error in stress value. 

 

Table 2-3: Maximum value of error resulting from different sources 

Source of random error Maximum error in stress level in Si 

Specimen to film distance 2 MPa 

Coordinate point determination 10 MPa 
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2.6 Analytical proof of SMART technique  

In this section a proof of the SMART technique is described. Here we have proved that 

the results obtained (strain and stress values) in this technique are independent of the choice of 

reticulograph. The fact that any three diffracting planes can be used for calculation is one of the 

useful results which make the SMART technique a powerful tool. 

In order to mathematically validate this technique, it is necessary and sufficient to prove 

that same results are obtained by choice of any three randomly selected reticulographs.  

Let us consider a general experimental setup in transmission geometry in which multiple 

reticulographs were recorded. First consider the results are obtained by choosing three 

reticulograph (R1, R2 and R3). 

x x y z

x x y z

x x y zx

R ,R ,R x y z

x y z

x y z

n n n n

n n n n

n n n nu

x n n n

n n n

n n n










0 0 0

1 1 1 1

0 0 0

2 2 2 2

0 0 0

3 3 3 3

0 0 0
1 2 3 1 1 1

0 0 0

2 2 2

0 0 0

3 3 3

 Equation 2-30 (Result obtained by choosing R1, R2 and R3) 

Now if we consider another set of reticulographs (say R1, R2 and R4) then 

x x y z

x x y z

x x y zx

R ,R ,R x y z

x y z

x y z

n n n n

n n n n

n n n nu

x n n n

n n n

n n n










0 0 0

1 1 1 1

0 0 0

2 2 2 2

0 0 0

4 4 4 4

0 0 0
1 2 4 1 1 1

0 0 0

2 2 2

0 0 0

4 4 4

 Equation 2-31 (Result obtained by choosing R1, R2 and R4) 

Now we are only required to prove x x

R ,R ,R R ,R ,R

u u

x x

 


 1 2 3 1 2 4

 

Since all the four plane normal are not parallel to each other, fourth vector can be written 

as a combination of other three. 
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i.e.  n n n n    4 1 2 3    Equation 2-32  

In the above equation the constants , and   can be chosen such that n4 is a unit vector. Change 

in plane normal before and after distortion can be written as: 

n n0

1 1
 

n n0

2 2
 

n n0

3 3
 

Combining these three equations after multiplying with appropriate constants we get: 

n n n n n n

or, n n where

n n n n Equation 2-33

n n n n

0 0 0

1 2 3 1 2 3

0

4 4

0 0 0 0

4 1 2 3

4 1 2 3

       



    

      

Separating x, y and z components:  

x x x x y y y y z z z z

x x x x y y y y z z z z

n n n n ; n n n n ; n n n n

n n n n ; n n n n ; n n n n

              

              

0 0 0 0 0 0 0 0 0 0 0 0

4 1 2 3 4 1 2 3 4 1 2 3
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Starting with RHS of Equation 2-31: 

x x y z
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where N and D represents numerator and denominator. 

x y z x y z

x y z x y z

x y z x x x y y y y y y

n n n n n n

D n n n n n n
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Performing the determinant operation: Row Row Row 3 3 1  

x y z

x y z

x x y y y y

n n n

D n n n

n n n n n n



        
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Performing the determinant operation: Row Row Row 3 3 1  

x y z x y z

x y z x y z
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Now consider N, 
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Performing the determinant operation: Row Row Row 3 3 1  
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Performing the determinant operation: Row Row Row 3 3 1  
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Substituting x x x xn n n n   4 1 2 3  
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Substituting expressions for N and D we get: 
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Similarly other displacement-derivative terms can be proved. 

Without the loss of generality, using the above result we can say that: 

x x x
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and by similar argument, equivalency of rest of the components can be 

demonstrated, i.e. 
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Therefore strain or the stress results are independent of any three randomly chosen 

reticulographs.  
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2.7 Conclusion 

A new technique is developed for determination of residual stress tensor at any point in a 

single crystal. This technique Stress Mapping Analysis via Ray Tracing (SMART) is based on 

the X-ray diffraction and ray tracing method. This method is applied successfully using 

synchrotron radiation because of its unique properties such as high intensity, low divergence and 

natural collimation. Residual stress maps are generated over the crystal area. Synchrotron white 

beam reticulography is used and Laue pattern is recorded on the X-ray film. Applying basic 

geometrical analysis and mathematical calculations analytical expression for residual strain is 

determined. Further applying fundamentals of solid mechanics and Hook’s law in tensor form, 

residual stress is determined. Transmission X-ray geometry is used in carrying out synchrotron 

experiments, calculated stress values represents average stress in the thickness of the material. 

This technique has various advantages over other available residual stress measurement 

techniques. The technique described in this chapter determines all the six tensor components of 

strain and stress in a non-invasive and non-destructive method. A computer program is written 

which calculates the strain and stress components at an array of points on the crystal and 

generates stress and strain maps. Even though calculations are relatively simple and 

mathematically not complicated the huge amount of data points in the system makes it necessary 

to use a computer program. Various sources of error are documented and an estimation of error 

in residual stress calculation is determined. Mathematical proof of SMART technique is also 

presented which validates our technique. This technique has been applied to various other single 

crystal materials such as SiC and Sapphire.   
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Chapter 3 Residual stress mapping and depth profiling in packaged 

silicon integrated circuit using white beam synchrotron x-ray diffraction 

topography 

3.1 Introduction 

In the previous chapter we have determined the residual stress in transmission geometry 

using SMART technique. The results obtained were the average value of stress level through the 

thickness of the crystal. This result provides information about the spatial stress distribution in 

the crystal which is average over the thickness of the crystal. It did not provide stress value at a 

particular depth inside the crystal, or the stress level at the surface of the crystal. Sometimes it is 

useful to estimate the stress level at a particular depth in the crystal. The knowledge of stress 

level at particular depth is useful in designing the devise for its mechanical and electrical 

stability and performance.  Here we have applied the same principle of SMART and X-ray 

reticulography in reflection geometry in order to determine stress depth profile of individual 

stress components as a function of depth. In this method stress tensor at an arbitrary point within 

the crystal can be determined.  

Small angle geometry, also referred as reflection geometry, is used for the reticulographic 

experiments. Reflection geometry is used in order to limit the interaction of X-ray with the 

crystal to a particular depth so that the information received from the reticulographic image 

(stress value) is the result from a particular depth. The amount of material (volume or the depth) 

with which X-ray interacts, can be controlled by the diffraction geometry. For example, by 

varying the angle of incident one can control the penetration depth [49]. Other factors such as 

diffracted beam angle and wavelength also affect penetration depth. In our approach of 

determining residual stress as a function of depth, we have used the concept of penetration depth. 

A short review of the concept of penetration depth in X-ray diffraction topography is given in 

Section 1-8. 

Due to absorption, intensity of X-rays reduces exponentially as it penetrates into the 

crystal. Therefore, in all the X-ray diffraction method used for stress determination, provides the 

exponentially weighted average (Laplace profile) of strain and stress with respect to penetration 

depth of the X-rays [62], [63]. Here we have derived the actual stress profile from the weighted 
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average (Laplace profile) stress profile. The solution of this problem can get quite complicated 

and requires numerical solution [64] 

X-ray reticulographs were recorded in reflection geometry by placing a grid close to the 

sample and parallel to the sample surface. The purpose of grid is to track the corresponding 

points in individual reticulograph.  A schematic of the experimental setup is shown in Figure 3-1. 

Typically a range of angle is chosen between 1
0
 and 10

0
 for recording the reticulographs.  

The central idea behind the stress depth profiling is same as in the stress determination in 

the transmission geometry as described in Chapter 2. The deviation of crystallographic plane 

normal at a point from its original stress free plane normal is due to strain at that location. Plane 

normal vector at any arbitrary location in the crystal and at a stress free location is determined 

using experimental data. Each corner point in a reticulographic image can be traced to the 

corresponding point in the crystal surface, which in turn can be used in calculating diffraction 

vector. From the knowledge of incident and diffracted beam vector, the plane normal vector is 

determined. Plane normal vector direction varies from one point to another point is due to the 

fact that the active diffraction plane is warped due to residual strain in the crystal. 

In reflection geometry, interaction of X-rays with the material depends on the penetration depth. 

Penetration depth pt is given by the expression  

     0

1

cos cos
p

h

t
ec ec   


  

    Equation 3-1 

where 

0 is the entrance angle that is the angle between the incident beam and the surface 

h is the exit angle or the angle the diffracted beam makes with the crystal surface 

   is the mass absorption coefficient which is a function of wavelength   

For derivation of the above equation refer to Section 1-8.  

A plot of mass absorption coefficient of Silicon as a function of wavelength is given in 

Figure F-1 in Appendix F. An analytical function is determined for mass absorption coefficient 

as a function of wavelength using curve fitting technique. This function is used for determining 

mass absorption coefficient at any wavelength. 
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6 5 4 3 2μ = -0.1508λ  + 1.3684λ  - 7.2723λ  + 50.179λ  - 6.6116λ  + 2.775λ - 0.0166    Equation 3-2 

Where mass absorption coefficient  is in cm
-1

 and wavelength  is in Angstrom, within the 

range of .3A to 2.75A. 

 

Figure 3-1: Schematic of experimental setup in reflection geometry for recording X-ray 

reticulograph. Grid is placed parallel and very close to the sample. C, G and F represents crystal, 

grid and X-ray film respectively. D is the direct beam.  

 

3.2 Penetration depth calculation 

Each reticulograph is from a specific crystallographic plane and have different interplaner 

spacing. Penetration depth of each reticulograph is calculated individually since each reflection 

has different penetration depth because of different angle of diffraction and different wavelength. 

In order to determine the penetration depth, we need to determine the exit angle h . Let us first 

consider a general case where crystal surface makes an angle 0 with respect to incident beam. 

The measured value of 0 can further be determined precisely, by comparing the recorded Laue 
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pattern with the simulated Laue pattern generated by the software LauePt [48]. X-Y coordinate 

points of the diffraction spot on the film can also be determined from the LauePt program. 

a= X coordinate of diffraction spot 

b=Y coordinate of diffraction spot 

The exit angle h can be calculated as: 

 
h

b
tan

a sfd



 
   
  

1

0
22

           Equation 3-3 

The above equation can be readily derived using geometry. A schematic of diffraction in 

reflection geometry for the purpose of deriving Equation 3-3 is shown in Figure 3-2. All the 

variables on the right side of equation are known and therefore h can be calculated. Wavelength 

for particular reflection is determined from LauePt [48] program and therefore mass absorption 

coefficient can be calculated using Equation 3-2. 

 

Figure 3-2: Schematic of reflection geometry. Intersection of diffracted beam and the film is 

point D. Intersection of direct beam and the film is point A. B is the intersection of horizontal 

and vertical line passing through A and D respectively. 
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As an example, penetration depth is calculated for the reflection -4 0 -8 when crystal is 

placed at an angle of   0

0 5 with respect to incident beam. A screen shot of LauePt program is 

given in Figure 3-2 and the X-ray film with recorded reticulographs. 

 

Figure 3-3: (A) A screen shot of LauePt program[48] (HKL)=(-1 1 0), (hkl)= (1 1 0),  
x =5

0
. 

Reflection -4 0 -8, indicated in circle (B) An example of reticulographs recorded in reflection 

geometry and  

 

 

In this particular example: 

a= -75mm, b= 206mm, sfd= 210mm, 
0

0 5   

Therefore    
037.73h  

Since .48 A , according to Equation 3-2, mass absorption coefficient
-1μ=5.5056cm . 

Substituting values of 0 , and   into Equation 2-1, we determine penetration depth as 

150.9μmpt  

For each reticulographs penetration depth increases continuously with increasing    and 

reaches a maximum. Figure 3-4 shows the variation of penetration depth with respect to tilt angle 

of -2 2 -8 reflection in the crystal. Intuitively, penetration depth should increase as the tilt is 

increased, but this is not the case as it can be seen from Figure 3-4. The reason being, we are 
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tracking the same reflection as the crystal is tilted, by further tilting the sample Bragg’s angle 

increases which implies longer wavelength is required to satisfy the Bragg’s law λ=2dsinθ . 

Longer wavelength (lower the X-ray energy) have higher mass absorption coefficient which 

results in lower penetration depth at higher tilt angle. 

 

Figure 3-4: Variation of penetration depth of -2 2 -8 reflection as a function of sample rotation x

. Note that the penetration depth reaches maximum value of about 140μm. 

 

3.3 Theory and mathematical principle  

In determining the stress profile of a crystal, we have used the fundamental concept of 

SMART technique as previously described in transmission geometry. Point-to-point variation in 

crystallographic plane normal is measured and this variation forms the basis for strain 

determination. Using the three chosen reticulographs, residual stress is determined using the 

SMART technique. This calculated stress value represents a weighted average (exponentially 

decaying) stress value. This stress value is of very little use and importance than the actual stress 
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distribution in the real space. The reason that the stress value is weighted average and not a 

simple average is that the diffraction data has more information from volume which is near the 

surface rather than further deep into the crystal because X-ray intensity reduces exponentially as 

it penetrates into the crystal. In general any diffraction technique in the reflection geometry will 

result in a stress value     which is Laplace transform of real space stress distribution  z  

given by Equation 3-4 [62-65]: 

     
z

z , z e dz



 

         

0

1 1 1
L            Equation 3-4 

where 

  is the penetration depth 

   is the Laplace transform of real-space stress profile which is equivalent to experimentally 

determined stress value by diffraction experiment 

 z is the real-space stress function or profile 

z =depth from the crystal surface 

 

Figure 3-5: Schematic of reflection geometry. z is the coordinate axis going into the crystal, z=0 

at the surface of crystal. τ is the penetration depth for a particular reflection. hand 0 are 

incident and exit beam angles with respect to the surface plane. S and S0 are incident and 

diffracted beam vector. C and G represent crystal and grid respectively. 
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A brief review of Laplace transformation and inverse Laplace transformation is provided 

in Appendix C. Note that in Equation 3-4    is a continuous function and therefore in order to 

determine analytical form of function    a number of experimental results are required for 

various penetration depth. In order to calculate the stress value at a depth z, the inverse Laplace 

transform has to be applied on the experimentally calculated stress distribution    . 

Experimentally, a number of data points can be obtained for various values of penetration depth

k , where k is 1,2,3 . . .n. Where n is the total number of data points obtained. Various data 

points can be generated by tilting the crystal to a different angle and recording reticulographs. 

Tilting the sample to a different angle, effectively changes the penetration depth of 

reticulographs. A schematic of diffraction in reflection geometry is presented in Figure 3-1 for 

illustration. 

Assuming that an analytical function     is determined that fits the data points. In order 

to further simplify the Equation [3-4] and to reduce the equation to a standard form of Laplace 

transform we apply the following substitution: 

s 


1
     Equation 3-5 

  zss z e dz
s



 
   
 


0

1
   Equation 3-6 

Rearranging we get 

  zsz e dz
s s



 
   
 


0

1 1
 Equation 3-7 

Defining another function  F s and substituting 

 F s
s s

 
  

 

1 1
 Equation 3-8 

We get 
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    zsF s z e dz



 
0

 Equation 3-9 

or,    F s z   L  Equation 3-10 

The above Equation 3-10 is now the standard form of Laplace transform. Now  z can be 

determined by evaluating inverse Laplace of the function  F s provided we have already 

determined the function  F s  

   z F s    
-1L  Equation 3-11 

Since the function    has already been determined, therefore calculating the function  F s is 

straightforward.  F s can be simply determined by replacing  by 
1

s
in the function     and then 

multiplying it by 
1

s
.  

As an example if  
a

b c d e        


2 3
then  

1 b c d
F s as e

s s s s

 
     

 
2 3

 

By taking inverse Laplace transform of the analytical function  F s we can determine the stress 

distribution function  z and thereby the actual stress value at particular depth z.  

There are mainly two problems in determination of stress function  z . Firstly the 

scatter of data points can cause difficulty in determining the analytical form of the function    . 

The scatter in data points can generate uncertainty in  z . Second, the choice of analytical 

function of    has an impact on the function  z . More than one analytical function can fit the 

data points which can lead to uncertainty in the function  z . The variation due to error in the 

experimental data or the scatter in the data can lead to unstable mathematical condition in case 

the analytical fitting function has too many fitting parameter. This problem can only be handled 
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by reducing the scatter of data. A similar problem related to stress distribution in case of 

polycrystalline material is discussed in [65]. 

3.4 Experimental method 

White beam synchrotron X-ray diffraction reticulography experiments were performed at 

NSLS beamline X19C located at Brookhaven National Laboratory. Multiple images were 

recorded in reflection geometry by varying the incident angle in steps of 1
0
. Reflection geometry 

allows us to vary experimental parameters to achieve optimum diffraction condition. A fine scale 

tungsten grid, described in Appendix x, is placed just above and parallel to the sample. Spacing 

between the bars in the grid is .020” (508μm) and bar width is .004” (102μm). Depth profiles are 

calculated at locations beneath the surface of the crystal at points defined by the grid-bar 

intersection locations. It should be noted here that the spatial resolution of this technique is solely 

depends on the spacing between the bars in the grid. A finer grid (having higher price) will 

provide better spatial resolution. Incident X-ray beam after interacting with the crystal up to 

certain depth (penetration depth) diffracts in certain direction governed by Bragg’s law. 

Diffracted beam after passing through the tungsten grid forms an image on the photographic film 

(Agfa structurix D3-SC) which essentially is the shadow or the inverse image of the grid. 

Reticulographic images were recorded using Agfa Structurix D3-SC photographic film.  

A series of scans of the X-ray film recorded at various incident beam angle is given in 

Figure 3-6. A simulated plot of Laue pattern is generated using the software LauePt for 

comparison and indexing purpose. In the transmission geometry it was not necessary to index the 

reticulographs and it was also not necessary to determine the wavelength or the penetration depth 

of a particular reticulograph. Unlike transmission geometry it is necessary to index the 

reticulograph because wavelength information is required for penetration depth calculations. 

LauePt program not only provides the index of the pattern but also the wavelength for each 

diffraction spot and the geometrical location of the spot on the film. These data are required for 

penetration depth calculation. 
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                                                      (A) 

 
                                                  (B) 



76 

 

 
                                                    (C) 

 
                                                     (D) 

Figure 3-6: Scan of a X-ray films,Laue pattern is recorded in the reflection geometry. LauePt [] 

program is used for indexing the pattern, calculating the location of the diffracted spot and the 

wavelength of the diffracted beam. (A) is recorded at 1
0
 tilt, (B) is recorded at 5

0
 tilt, (C) is 

recorded at 7
0
 tilt and (D) is recorded at 9

0
 tilt, 
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After exposure to X-rays, films are processed by developing, fixing rinsing and followed 

by drying. Films are scanned at a resolution of 2400 dots per inches (dpi). An electronic image 

file (.tiff) is generated. Image recognition software is used to detect the grid corner points in the 

three chosen reticulograph.  

In principle any three reticulographs can be chosen but in general, an arbitrarily chosen 

reticulograph can have widely different penetration depth. In order to resolve this issue, three set 

of reticulographs are to be chosen whose peneteration depth are close to each other. First we 

determine penetration depth of all the reticulographs that were recorded on the X-ray film, and 

then we chose a set of three reticulograph with penetration depth which are as close as possible 

to each other. One way to do this is to select a reticulograph from the vertical center line (line of 

symmetry) and other two symmetrical reflections having penetration depth near the previous 

reflection. The average of three penetration depth is considered as the “information depth” as the 

calculated stress represents the average (exponentially decaying) from that depth. Three chosen 

reticulographs in each of the film are shown in Figure 3-6.  

Using image recognition software program, grid corner coordinate points in the three 

reticulographs are calculated. Corner points of three reticulographs formed by the intersection of 

grid-bars are calculated. 

 F F F

i i i iF x y z, ,1 1 1 1 : Array of coordinate points from reticulograph 1 

 F F F

i i i iF x y z, ,2 2 2 2 : Array of coordinate points from reticulograph 2 

 F F F

i i i iF x y z, ,3 3 3 3 : Array of coordinate points from reticulograph 3 

F indicates points on the film and i is 1, 2, 3, . . . n array of points formed by grid at which stress 

is being measured. 

Coordinate points on the crystal surface  C C C

i i i iC x y z, ,  are also known. C indicates points on 

the crystal and i as previously defined. 
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Diffraction vector S is determined simply by subtracting coordinate points of 

rericulograph  iF  from corresponding coordinate points of crystal  iC . We divide this vector by 

its magnitude in order to make the diffraction vector a unit vector.   

 i i

i

i i

F C
S

F C






1

1

1

: Unit diffraction vector of reticulograph 1 of array point i.      Equation 3-12 

 i i

i

i i

F C
S

F C






2

2

2

: Unit diffraction vector of reticulograph 2 of array point i.      Equation 3-13 

 i i

i

i i

F C
S

F C






3

3

3

: Unit diffraction vector of reticulograph 3 of array point i.      Equation 3-14 

Incident beam vector is S ĵ 0 following the coordinate system of Figure 3-1.  

Unit plane normal vector n can therefore be calculated by subtracting the incident and diffracted 

beam vector. 

i i i
i i i

i i i

S S S S S S
n n n

S S S S S S

  
  

  

1 0 2 0 3 0
1 2 3

1 0 2 0 3 0

; ;   Equation 3-15 

This calculation is repeated for each point on the crystal to generate local plane normal at 

each array point i and for three different reticulographs. These plane normal are then used in the 

equation 2-11 A through I to calculate nine unknown tensor components i
ij

u
u

j


    

where i,j 

are x, y or z at each array points. By using the values of iu

j




strain and hence stress is calculated 

using Equation 1-18 and 1-19 respectively at each array point i. The strain and stress values are 

generated and mapped over the entire crystal surface. An example is shown in Figure 3-7 

Experimental condition: tilt angle 5, reticulograph used -2 2 -8, -4 0 -8, 0 4 -8 . This strain and 

stress values represent exponentially weighted average of strain and stress up to the 

“information” (penetration) depth. As mentioned previously these weighted average stress and 

strain values are of very little use. Real space stress values are calculated using the Laplace stress 

profile. 
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3.5 Results and discussion 

Three reticulographs were selected in a X-ray film based on the criteria that all three of 

them have similar penetration depth. Even though, it is not a requirement of the SMART 

technique to have a symmetric diffraction pattern, it is useful for calculation purposes if one 

starts with a symmetric diffraction pattern. It can be seen that the recorded Laue patterns in 

Figure 3-6 are symmetrical about its vertical center line. A comparison of simulated Laue pattern 

generated by program LauePt is shown side by side which is useful in indexing the pattern. It 

should be noted that the corresponding symmetrical spots belong to the same family of 

crystallographic planes in the Silicon and also because of symmetry reasons, both of the 

diffraction spots have same penetration depth.  

    
         

xx                        yy                    
zz                       

xx                    yy                     
zz  

 

      
         yz                        

xz                    xy                       yz                    
xz                     xy  

Strain xx  
yy  zz  

yz  xz  
xy  

Min. -0.0017 0.0000 0.0000 0.0000 -0.0028 -.0011 

Max. 0.0021 0.0027 0.0034 0.0011 0.0028 .0010 

 

Stress xx  
yy  zz  

yz  xz  
xy  

Min. -0.4945 0.0000 0.0000 -0.3460 -0.8536 0.0000 

Max. 1.4099 1.4000 1.9486 0.3248 0.8413 3.1617 

 

Figure 3-7: Weighted average strain and stress maps at the depth of 50 μm. 
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Strain and stress calculations were done for four different penetration depths by choosing 

x-ray films recorded at different incidence angle. Summary of experimental condition, 

reticulograph used, and penetration depth information is given in table below: 

Table 3-1: Summary of reflections used and corresponding penetration depth 

Sl. No. Tilt angle 

0  

Reticulograph1 

 h k l   , tp 

Reticulograph2 

h k l   , tp 

Reticulograph3 

h k l   , tp 

Avg. penetration 

depth 

A 5
0
 -2 2 -8 (.53), 118 -4 0 -8 (.48), 155 0 4 -8 (.48), 155 142.6 

B 7
0
 -2 2 -8(.57), 129 -2 0 -6(.58), 116 0 2 -6(.58), 116 120.3 

C 9
0
 -1 1 -7(.53), 184 -4 0 -8(.55), 173 0 4 -8(.55), 173 176.7 

D 1
0
 -2 2 -8(.45), 38 -4 0 -8(.4), 46.5 0 4 -8(.4), 46.5 43.7 

 

In order to calculate stress depth profile at an arbitrary location, we first plot calculated 

weighted average stress versus penetration depth and generate a best fit curve. This weighted 

average stress function is then transformed in order to reduce the equation into standard Laplace 

transform. Inverse Laplace Transform of this function will give the stress as a function of depth 

(z).  

As an example, calculation for stress depth profiling of the component zz is 

demonstrated at a location on crystal surface. Experimentally determined weighted average stress 

at various penetration depth is given in Table 3-3 below: 

Table 3-2: Table of penetration depth  p and calculated stress value  zz pt  

Reticulograph # Penetration depth 
zz  

- 0 0 

1 52 -1.88 

2 120 -0.8855 

3 143 2.29 

4 177 .266 
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A plot of average stress as a function of depth is shown in Figure 3-8 and the analytical function 

for this set of data is determined using Mathematica is: 

zz
=           . - . . - . *2 6 3

0 082 0 112 0 0016 5 323 10  Equation 3-16 

Transforming Equation 3-16 by substituting  by 1/s and multiplying by 1/s we get:  

 F s
s s s s

    
-. * . .

. - -
 

  
 

6

3 2

1 5 323 10 0 0016 0 112
0 082  Equation 3-17 

Taking Inverse Laplace of this function will give the real stress depth profile, is given by the 

analytical function: 

    zz z z z   2 7 30 082 0 112 0 0008 8 88 10-. - . . - . *   Equation 3-18 

A plot of the stress profile is given in Figure 3-8 up to 200μm in depth. 

   
                                      (A)                                                      (B) 

Figure 3-8: (A) Experimentally calculated weighted average stress profile (zz component), best 

fit curve is generated using the data points (B) Real stress profile is generated by taking inverse 

Laplace transform of function F(s) generated by weighted average stress profile. 

 

Given below is the code in Mathematica that is used for generating these equations and plots: 

datazz={{0,0.00}, {52,-1.88},{120,0.88},{143,2.29},{177,0.266}}; 

curvezz = Fit[datazz,{1,x,x^2,x^3},x]; 

 % 

Plot[curvezz,{x,0,200}] 

curvezz1=(1/s)*(curvezz/.x1/s); 
curvezz1 

sigmazz=InverseLaplaceTransform[curvezz1,s,t]; 

Plot[sigmazz,{t,0,200}] 
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Similar calculation is been done for other five stress components. A complete stress depth profile 

at a location in the crystal is given in Figure 3-9.  

We have repeated this calculation over the crystal area in order to determine the full state 

of stress determined at each point within the crystal. Using the stress depth profiles we have 

generated stress maps at a depth below the surface, as an example stress maps at 50μm, 100μm 

and 150μm is plotted in Figure 3-10. 

 

Figure 3-9: Six components of stress at a location as a function of depth. 
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Figure 3-10: Stress maps of all six stress components at a depth of 50μm, 100μm and 150μm 

below the surface. 

 

Errors in stress calculations in reflection geometry are similar to the errors in 

transmission geometry, namely error in determination of coordinate points and specimen to film 

distance. The definition of penetration depth whether 1/e or 1/10 also affects the depth profile by 

the same proportion but the overall shape of the curve remains the same. 

3.6 Alternate approach to SMART technique 

In our approach to stress measurement using SMART technique we have assumed a 

stress free location in the crystal. In many instances a stress free location in the crystal does not 

exist. In those cases we have taken least stress location, determined by the least distortion at the 

same corresponding location in three reticulographs simultaneously. 

SMART technique of stress measurement calculates stress at a location which is relative 

to the least stress location. Therefore all the stress values are relative stress values with respect to 

least stress location. 
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In order to determine absolute stress, we have calculated stress free plane normal by 

determining diffraction spot’s coordinate in the stress free crystal. This stress free plane normal 

can then be used for determining stress at any arbitrary location in the crystal. This alternative 

approach for stress determination is applied in both transmission and reflection geometry. A 

description of this technique and the results obtained are discussed below. In this approach 

essentially the stress free plane normal vector is calculated from the theoretical location of Laue 

points in stress free crystal. 

Transmission geometry: A packaged Silicon die is used for determining stress at selected 

locations in the crystal. Similar to SMART technique, a Laue pattern is recorded at a known 

specimen to film distance. Crystal is aligned as much as possible such that a symmetric Laue 

pattern is recorded. Using the software program LauePt [48], a theoretical Laue pattern is 

generated with spot size same as the sample size as shown in Figure 3-11. X-ray film is 

superimposed on the theoretical Laue pattern on the computer screen. Angular rotation (θx, θy & 

θz) and specimen to film distance is precisely adjusted in the LauePt program such that all the 

Laue spots on X-ray film matches with the simulated program. Coordinates of selected Laue 

spots are determined from the LauePt software by double clicking left mouse button on the spot. 

From the stress free (theoretical) coordinate points, stress free plane normal vector is calculated. 

Plane normal vectors at selected locations are also calculated from the film. From these two 

plane normal vectors stress tensor is determined following the procedure of SMART technique 

as described in section 2-2. Stress tensor values calculated at selected locations are given in 

Figure 3-12. 
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Figure 3-11: Simulated Laue pattern generated to match with the X-ray film. 

 

 

Figure 3-12: Stress tensor values determined at selected locations using alternate approach to 

SMART. 

 

Reflection geometry: In reflection geometry, same concept is applied as in transmission 

geometry where the stress free plane normal vector is calculated from theoretical coordinate 

points of Laue spots. X-ray films superimposed on the computer screen of LauePt program and 

angles (θx, θy & θz) and specimen to film distance are precisely adjusted such that the Laue spots 

on the film matches with the Laue spots on the computer screen of the program. Coordinate 

points of theoretical Laue spots are calculated for selected three spots. Three Laue spots are 

chosen such that they have similar penetration depth. 

Stress free plane normal vector is calculated from the coordinate points of theoretical 

Laue spots. Plane normal vector of the selected points on the crystal is calculated from the 

coordinate points on the film. 

Following the procedure, described in Section 3-3 stress tensor at selected location is 

calculated from stress free and stressed plane normal vectors. 

A total of four sets of calculations were carried out for different penetration depths. Stress 

values were measured at same location on crystal surface and at different penetration depth.  
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Summary of reflection used and penetration depths are given in Table 3-3 below. Results of the 

stress values at different penetration depth are summarized in Figure 3-13 below. 

Table 3-3: Summary of reflections used and penetration depth. 

Sl. No. Tilt angle Reflection 1 Reflection 2 Reflection 3 Avg. pen. depth 

A 5
0 

-1 1 -5 -3 1 -7 -1 3 -7 63µm 

B 7
0 

-2 2 -8 -1 3 -7 -3 1 -7 83µm 

C 5
0 

-2 2 -8 -2 0 -6 0 2 -6 120µm 

D 9
0 

-1 1 -7 -4 0 -8 0 4 -8 176µm 

 

   
(A)                                                                         (B) 

   
(C)                                                                       (D) 

Figure 3-13: Stress values calculated at different penetration depth (tp) using alternate method of 

SMART 
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From the calculated stress values at different depths and applying the procedure of 

Section 3-3, depth profile of each stress component is determined. Values of stress tensor at 

surface are determined from the stress profile at z=0 is given in Figure 3-14 below. Note that the 

surface stress tensor value can be determined either by setting z=0 in the depth profile (real space 

stress profile) or by setting z=0 in the weighted average stress profile (Laplace space stress 

profile). 

 

Figure 3-14: Surface stress tensor values after extrapolation to z=0. 

 

xx and yy are positive implying tensile in-plane stress which is considerably greater than rest of 

the components. zz is relatively small and ideally will be zero. 

Error associated with depth profiling: Error associated with stress values in depth 

profiling is more than error for stress calculation at a location using SMART technique. This can 

be seen quite simply from the schematic graph in Figure 3-14.  
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Figure 3-15: Schematic plot of depth profile showing error associated in determining surface 

stress. 

Assuming an error of ±10% in stress value, error bars are shown for corresponding stress 

values. In case the top point in A and the bottom point for B is chosen the stress value at surface 

is significantly higher (max). In the opposite case if lowest value of stress at point A and highest 

value of stress at point B is taken the resultant stress at surface is significantly lower (min). 

Therefore, in depth profiling the error in surface stress value derived from curve fitting and 

interpolation is higher than error in direct stress calculation using SMART. 

As an example if we consider stress profile xx of bottom left corner, surface stress is 

2.07GPa. If we consider stress at 63µm to be 10% higher (1.155GPa) and stress at 83µm to be 

10% lower (.657GPa) then after interpolation the surface stress is 2.44GPa. In the other case, if 

we consider stress at 63µm to be 10% lower (.945GPa) and stress at 83µm to be 10% higher 

(.803GPa) then after interpolation the surface stress is 1.69GPa. Therefore in this example the 

error in surface stress estimation is from 2.44GPa to 1.69GPa. 

3.7 Conclusion 

A novel non-destructive technique using white beam synchrotron X-ray reticulography to 

determine all strain and stress tensor components has been demonstrated in packaged silicon die 

and can be extended to any single crystal material. Using this method, strain and stress tensor 
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components are determined at an arbitrary location inside the crystal up to the penetration depth 

of the crystal. The spatial resolution of this technique is dependent on the grid spacing. A finer 

scale grid will have higher spatial resolution.  

Diffraction data if generated by utilizing white beam synchrotron radiation in reflection 

geometry. Reflection geometry allows us to control the penetration depth of X-ray. Residual 

stress is calculated using these data, which represents exponentially decaying weighted average 

stress value with respect to penetration depth. Combining various weighted average stress value 

for different penetration depth we generated an analytical form of Laplace stress profile. Inverse 

Laplace transform of this stress profile will yield real space stress profile. This calculation is 

repeated for each array points on the crystal surface defined by the grid and complete stress 

profile is generated for the crystal up to penetration depth. 

Thermo-mechanical stresses introduced in the crystal during semiconductor processing 

and final packaging can be determined as the crystal goes through various processing steps. This 

can provide as a standard quality tool which can be incorporated in the production and can 

provide insight into state of stress within the crystal which can be used for process optimization. 

Understanding of state of stress at various locations within the crystal is critical in designing the 

integrated circuit. Residual stress can create not only unintended electrical performance but also 

crack the crystal.  

Efforts is been made in order to transfer this technique from synchrotron source to lab 

source. Because of this techniques uniqueness, versatility and the simplicity a completely 

automated turnkey system can be developed for use in industrial setup. Steps taken toward this 

goal and future work are described in Chapter 5.   
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Chapter 4 Edge defect characterization of dies 

4.1 Introduction 

During microelectronic chip manufacturing, wafers are sliced into rectangular dies before 

they are encapsulated into a package. The dicing process usually performed using diamond saw, 

laser, scribing and breaking or with their combination. These process causes damage to the 

newly formed surface. Cut quality of Silicon wafer and the effect of various processing 

parameters is studied by Tang et al. [66]. The effect of ultra-precision grinding on the 

microstructural changes in single crystal silicon and grinding induced subsurface cracks in 

Silicon wafers are studied by Zarudi et al. [67, 68]  and Pei et al. [69] respectively.   These 

damages including surface scratch, dislocations and nano-crack that can propagate into the bulk 

of the crystal and interfere with the device function and ultimately may destroy the device. 

Therefore, understanding the nature and origin of these defects is important in order to prevent or 

minimize its occurrence. Here we have done an in-depth characterization of surface defects using 

various characterization techniques including synchrotron white beam X-ray diffraction 

topography (SWBXT), Nomarski optical microscopy (OM), scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM). 

The mechanical and electrical reliability of a semiconducting chip is affected by the 

quality of the surface created by the dicing and grinding process. The substrate is attached to the 

die using an under-fill which acts as an adhesive between the die and the substrate. The thermal 

mismatch between the die and substrate causes residual stress and bending in the assembly. 

Surface and edge defects are the main cause of concern for mechanical reliability of the device. 

Defects, which are the weak spot in any crystal, can act as a crack initiating region. Three 

different modes of crack initiation and propagation are shown schematically in Figure 4-1, cracks 

can initiate in a die surface at the tension side or from the edge of die[3]. In our current study we 

have investigated defect structure at the edge caused by dicing process. 
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Figure 4-1: Schematic of various crack modes in a die. 

 

The nucleation and propagation of defects from die edges, caused by damage from 

cutting and processing, strongly influence the reliability and performance of the device. 

Understanding of the type and density of edge defects and their propagation under thermo-

mechanical stress during temperature cycling can facilitate the development of optimized cutting 

process by minimizing the generation of edge defects. In order to simulate temperature cycle in a 

working chip we designed and developed an environmental chamber for in-situ X-ray diffraction 

topography. Design of the environmental chamber (furnace) and the experimental setup is 

described in Section 4-5.  

4.2 Surface characterization 

Various techniques has been cited in literature for inspecting surface and subsurface 

damage including optical microscopy [70], X-ray diffraction [71], transmission electron 

microscopy [72] and laser light scattering [73] . X-ray diffraction topography is an important tool 

for surface characterization of single crystal material [74]. It is a non-destructive method to 

inspect surface and sub-surface damage. X-ray diffraction topography provides information 

(image) of strain fields around the defect and crystallographic misorientation. Standard 
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commercial X-ray diffraction equipments are available for imaging as large as 300 mm diameter 

wafers in both reflection and transmission geometry [75] 300mm Silicon wafers are topographed 

using white beam is reported by Danilewsky et al. [76]. Monochromatic 300mm-wide 

synchrotron radiation is used by Kawado et al. [77] in asymmetric reflection geometry to detect 

point-to-point variation in surface strain at different stages of Silicon wafer manufacturing such 

as slicing, lapping, etching, grinding and polishing. Glancing angle X-ray topography, where 

incident angle is greater than critical angle for total external reflection is reported by Black et al. 

[78] to image Silicon thin film to penetration depth as little as 6nm. Grazing incident X-ray 

diffraction topography using total external reflection where incident and exit angle are less than 

critical angle is also been reported for observing surface and up to few Angstrom in depth. For 

example synchrotron X-ray topography is used in total external reflection mode to observe strain 

induced surface bumps due to underlying misfit dislocation [79, 80].   X-ray diffraction 

topography is used as a complimentary technique used along with other surface characterization 

method in order gain richer understanding of surface and sub-surface defect structure. One of the 

advantages of this technique is the tunability of the depth from which information is extracted or 

the penetration depth. Penetration depth can be changed simply by changing the diffraction 

condition i.e. angle of incident (or exit) between incoming (or diffracted) X-ray beam and crystal 

surface. By varying the imaging conditions such as choice of diffracting planes, wavelength 

(energy) of X-rays, angle of incidence and diffraction angle one can control the penetration depth 

and hence isolating the structure below the penetration depth.  

An X-ray diffraction topograph is an image recorded on a detector, of a diffracted beam 

when an area-filling X-ray beam illuminates a crystal sample. Synchrotron white beam X-ray 

topography (SWBXT) experiments were carried out at the Stony Brook Topography Facility 

(Beamline X-19C) at the National Synchrotron Light Source, at Brookhaven National 

Laboratory. The X-ray beam had a wavelength spectrum ranging from 0.1 to 2.00 Å, with peak 

intensity at around 0.8 Å. Primarily two different geometries are used for recording surface X-

ray diffraction topograph. Schematic of experimental setup for both configurations are shown in 

Figure 4-1 A and B respectively. In configuration A, edge is perpendicular to incident beam 

whereas in configuration B edge is parallel to the incident beam. X-ray film can be place 

anywhere around the sample, two film positions which were commonly used in order to image 

desired topograph are shown in the schematic, one in front and another on top of sample. The 
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specimen-film distances were set to be 15cm -20cm in front geometry and about 40-45 cm in top 

geometry, depending on background noise and desired diffraction topograph. 

  

Figure 4-2: Schematic of experimental setup for recording surface X-ray diffraction topograph in 

reflection geometry. 

 

X-ray topographic images were recorded from the edge surface of the die as shown in 

Figure 4-2. The Laue pattern is recorded on the photographic film (Agfa Structurix D3-SC), 

enabling us to observe multiple topographic images simultaneously. Selected topograph of the 

edge is shown in Figure 4-2 and high magnification image of a selected region in the topograph 

is also shown.  

 

 

 

       

Figure 4-3: Topograph of the entire edge and high magnification image of a selected region in 

the topograph with different g vector. (A) -3 3 3 reflection (B) 6 -2 0 reflection (C) High 

g=-3 3 3 

g=6 -2 0 

100µm 



95 

 

magnification image of selected region in the of -3 3 3 topograph (D) High magnification image 

of selected region in the of 6 -2 0 topograph. Strain fields are more pronounced with sharper 

contrast in the 6 -2 0 topograph as the g vector is parallel to the edge indicating that the strain 

fields are parallel to the edge due to cutting process. 

 

Comparison with optical images: Optical images of die edge are taken using Nomarski 

optical microscope. The Nomarski optical microscopy was performed using a Nikon Ellipse 

E600 JSL Optical Microscope. Image of a section of the edge is shown in Figure 4-3. A high 

magnification image of a selected area on the edge is also shown. Features such as surface 

striation, scratch and an interface can be seen on both the low and high magnification images. 

 

 

 

 
100µm 
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Figure 4-4: Optical images taken using Nomarski microscope. (A) Section of the edge is shown 

and (B) high magnification image of a selected area is shown. 

 

Comparison with scanning electron microscopy (SEM): SEM images were taken using 

microscope model LEO1515. Optical observation (Figure 4-4) and SEM observation (Figure 4-

5) revealed the rough surface, which agree with the result from SWBXT. Detailed investigation 

of the microstructures of the films is carried out using cross sectional TEM. 

 

 
(A) 

  
(B) 

Figure 4-5: (A) SEM micrograph of selected area of the surface created by the dicing process. 

Surface roughness near the top of the edge can be seen. (B)Magnified image of a region from the 

top of the edge is shown.  
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4.3 X-ray diffraction topography in transmission geometry 

Many problems in semiconductor manufacturing can be traces to stress in the device. 

Edges of the devices are in general more susceptible to stress. It has been reported by many 

researchers [1, 18] that the dislocations nucleate on defects such as surface damage, oxide 

precipitates or preexisting dislocations. Dislocations structure in Silicon is well known and can 

be described with the use of Thompson’s tetrahedron [81]. Generation, motion and interaction of 

dislocations in Silicon during thermal treatment have been studied by many investigators [82-86] 

by X-ray diffraction topography. 

In order to investigate defect structure near the edge of the die, X-ray diffraction 

topographs of die near the edge is taken in transmission geometry. Topographs were taken such 

that the beam covers only a small area near the edge as shown in Figure 4-4. Specimen is 

mounted on the goniometer and the beam size is adjusted, such that entire edge of the sample is 

covered by the beam. 

Crystal orientation and diffraction geometry: First the Silicon die is oriented such that the 

(0 0 1) plane is oriented perpendicular to the incident beam and right side plane is (1 1 0) as 

shown in Figure 4-5. In order to record -2 2 0 topograph sample is rotated by 12
0
 about y-axis 

and is also be verified by using LauePt software[48].  
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Figure 4-6: (A) Crystal orientation and diffraction geometry (B) Laue pattern generated using 

simulation software LauePt [48]. -2 2 0 topograph is recorded (λ=.80 A) 

 

-2 2 0 topograph  is recorded on the Agfa X-ray film. All four edges of the die are imaged. 

Topograph of the entire edge of the die crystal is given in Figure 4-6. In order to observe finer 

features in the topographs, high magnification images of selected regions is also given in Figure 

4-7. 

 

Figure 4-7: -2 2 0 transmission topograph recorded from edge of the die. 

 

 

g 
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Figure 4-8: High magnification images of selected region in the -2 2 0 topograph. Half looped 

shaped features are observed over the entire length of crystal edge. 

 

4.4 Results and discussion 

 

In the topographs, contrast in the shape of half loop can be seen. These half loop 

structure, maked by arrow in the Figure 4-7 are uniformly distributed along the length of the 

crystal. These contrasts appear to be arising from the dislocations present near the edge. A 

further validation of our assumption is in the next section where we carried out high temperature 

in-situ topography. These dislocations may have originated during the dicing process. 

Dislocations can lie on {1 1 1} slip plane in a Silicon crystal, which essentially comprised of 

four independent slip planes: (1 1 1), (-1 1 1), (1 -1 1) and (1 1 -1) having slip direction <1 -1 0>. 

These four possible slip planes are shown schematically in Figure 4-8.  

 

100µm g 

g 

g 

g 
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(A)                                                                       (B) 

Figure 4-9: Four possible dislocation half loop configuration in Silicon. In configuration (A) 

dislocation can move (slip) sideways and can have any possible length and in configuration (B) 

dislocations end are restricted at the side of crystal and therefore have restricted length. 

 

 

In the configuration (A) which includes the slip planes (-1 1 1) and (1 -1 1), dislocation 

can expand sideways by slip process and can have any arbitrary length. Whereas in the case of 

slip planes (1 1 1) and (1 1 -1), as shown in configuration (B) the length of dislocation is 

confined to the thickness of the crystal. Since we observed the contrast of dislocation in the 

topograph as constant size, we suspect the dislocations are of the configuration (B), since the 

dislocations in configuration (A) have possibility of variable lengths. A substantial evidence of 

this hypothesis is provided by the high temperature topography results and is described in the 

following section. 

Since the Burger’s vector is invariant for a dislocation, i.e. the magnitude and the 

direction of the Burger’s vector is constant throughout the length of the dislocation line, the 

character (% screw and % edge) of the dislocation changes along the length of the dislocation. 

Therefore the dislocation is mostly a mixed type of dislocation because the dislocation line is a 

curved line. We apply g b  analysis to this dislocation in order to determine Burger’s vector. 

 Stereographic projection of cubic crystal is given in Figure 4-10 with (0 0 1) as front 

plane and (1 1 0) as the side plane. Several planes lie on the equator of the stereographic 

projection. Topographs of some of these planes are recorded by rotating the crystal to various 

angle and recording the topograph on the horizontal plane. Some of the recorded topographs are: 

2 2 0, -3 -3 3, -2 -2 4, 2 2 4, 3 3 3 
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Figure 4-10: Stereographic projection of cubic crystal such that (001) is front plane and (110) is 

right side plane. 
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A                                                                                 B 

 
C                                                                              D 

 
E 

Figure 4-11: Magnified image of selected region of topograph recorded with different g vector. 

Images are from the same region of the sample. A -2 2 0 B -3 3 -3 C 2 -2 -4 D 3 -3 -3 E 2 2 4 

 

Out of four available slip system we have identified two possible slip systems by 

observing the uniform length of all dislocation. (1 1 1) and (1 1 -1) are two slip systems where 

dislocation length is restricted to a constant projected length. Table 4-1 given below summarizes 

two slip systems and corresponding slip direction (Burger’s vector). In Figure 4-11, contrasts due 

to dislocations are very week which indicate the slip plane (1 1 1) and (1 1 -1). 

 

 

 

100µm 
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Table 4-1: List of possible slip systems 

Slip plane  Slip direction  

1 1 1 1 -1 0 

1 1 1 1 0 -1 

1 1 1 0 1 -1 

1 1 -1 1 -1 0 

1 1 -1 1 0 1 

1 1 -1 0 1 1 

 

 

4.5 TEM studies 

It is a well known fact that grinding and polishing of Silicon dies edges, introduces sub-

surface damage such as cracks [67-69]. TEM studies were carried out to verify that the nature of 

defect features observed on X-ray topographs i.e. dislocations and cracks. In order to study sub-

surface defects such as dislocations and nano-cracks created by cutting and grinding operation of 

the die, TEM studies were carried out. Samples were chosen from the edge of the die and were 

thinned down to make it electron transparent. One of key step for success in TEM analysis is the 

sample preparation i.e. cutting, polishing, and ion milling. Steps involved in sample preparation 

are outlined below. Schematic of steps used for sample preparation are shown in Figure 4-12. 

 

 
(A) 
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(A)                                                                                (B) 

Figure 4-12: Schematic of sectioning steps for TEM sample preparation. (A) Two small pieces 

are cut from edge of the sample (B) both pieces with front faces glued together. 

 

As shown in the Figure 4-12 (A), two small pieces are is first cut using low speed 

diamond saw (cutting wheel). Both the pieces were treated with Nitric Acid (HNO3) to clean the 

metallization layer on top and prepare it for gluing together. Both the pieces were glued together 

using TEM glue (M-Bond 610 epoxy resin). Pieces were glued together in order to protect the 

edge of the sample during thinning process. Standard procedure for TEM wedge method of 

sample preparation was followed. Sample is mounted using wax on the polishing fixture (T-

Tool). Sample is polished using “Diamond Lapping Film”. Lapping film of size 30µm, 15µm, 

6µm, 3µm, 1µm and .5µm respectively to achieve sample thickness of approximately 5µm. 

Sample is first lapped to a thickness about 20μm using coarse lapping film (30μm and 15μm) 

followed by successive polishing with finer lapping film (6μm, 3μm, 1μm and .5μm), until 

surface is scratch free under optical microscope to achieve final sample thickness of about 5 μm. 

Sample is then mounted on a Copper grid followed by ion milling (Fischione Instruments, Model 

1010). Sample was then analyzed using TEM (JEOL model number 2100F). Polishing was 

carried out at our lab, ion milling and TEM imaging were carried out at Brookhaven National 

Laboratory. 

TEM micrographs were recorded; various dislocation configurations and nano-size 

cracks were observed. Some images of micrographs are shown in Figure 4-13 and 4-14. 
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Figure 4-13: TEM micrographs, various dislocation configurations can be seen. 

 

50nm 50nm 

.2µm .2µm 
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Figure 4-14: Cracks are seen on the micrographs, plastic deformation resulting in dislocation 

network formation at the end of crack can be seen. 

 

4.6 In situ high temperature diffraction topography 

Defects created at the edges during the fabrication process could propagate or change its 

character during life cycle of the device. Dislocations or other defects if extends into the device, 

can effectively destroy the device. During the life cycle of the device, it goes through electrical 

on-off cycle which essentially leads to thermal cycling of material. In order to mimic the actual 

device condition, we have designed a furnace for thermal cycling of IC and simultaneously take 

the topographs. 

High intensity X-ray source available from synchrotron radiation have made possible in-

situ studies of solid state processes. Very short exposure time required for synchrotron radiation 

.1µm .1µm 

.1µm .1µm 
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has enabled dynamic and real time observation of experiments. For example, dislocation 

movement can be observed by taking a series of topographs while applying external stimuli to 

the crystal such as heat. Various real time in-situ X-ray diffraction topography experiments have 

been carried out, such as observation of phase transformation [87], plastic deformation [88] and 

residual stress due to applied electrical bias voltage [89]. In-situ studies have been carried out 

using laboratory X-ray sources, but these are far from real time as the time required for imaging 

is very long. Synchrotron X-ray diffraction topography is an excellent technique, useful for 

understanding real time defect structure and propagation in single crystal material by setting up 

in-situ experiments. 

Furnace design and description: 

In order to understand defect behavior at higher temperature and during thermal cycling 

we have designed and manufactured an environmental chamber (furnace) capable of in-situ X-

ray diffraction topography. Even though there is substantial amount literature on high 

temperature diffractometer and powder diffraction there is very few literature reported on high 

temperature X-ray diffraction topographgy such as Kune [90] and recently by Danilewisky et al. 

[19]. High temperature diffraction study has been pursued for many years. A comprehensive 

survey of the literature and the devices has been compiled by Goldschmidt [91]. We designed 

and assembled a compact furnace in order to study real time defect behavior using X-ray 

diffraction topography. 

The important features of our furnace are:  

1. Lightweight and small size: Furnace is designed to be light so that it can be easily 

mounted (and demounted) on top of goniometer inside the hutch of X-19C beamline at 

BNL-NSLS. 

2. Flexibility for sample alignment during operation allows us to adjust the orientation of 

sample to precise angular position for topographic imaging. 

3. Lower thermal gradient: Uniform distribution of heating element and small size helped 

achieve lower thermal gradient. 

4. Simple and compact design which can be adaptable with different beamline or 

diffractometer. 
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Furnace is designed such that not only fine angular rotation is possible during high temperature 

furnace operation but also large rotation about vertical (Y) axis is possible. 

Main elements of the furnace are: 

1. Frame or the structure of furnace 

2. Window for incoming and diffracted beam 

3. Heating elements 

4. Insulation 

5. Temperature controller and thermocouple 

6. Fixture for holding sample 

A description of each of the furnace elements and the reason to choose one over the other is 

given. 

Frame description: The frame of the furnace is made out of square Aluminum alloy 

tubing (Ultra-Corrosion-Resistant Architectural Aluminum (Alloy 6063)), McMaster Carr part 

number: 88875K48. The square tubing has dimension of 4”(H)X4”(W)X6’(L) and has a wall 

thickness of 1/8” +\- .013”. This tubing is cut to the desired length of the furnace (7 inches). 

Aluminum alloy is chosen instead of Steel, as we intended to keep the furnace light for direct 

mounting on goniometer. The schematic drawing of the Aluminum tubing used for furnace is 

given in Figure 4-15. Two sidewalls are also made out of Aluminum and both of the pieces are 

attached to the frame using screws for easy mounting and removal of sample. 
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                 A                                                                                    B 

Figure 4-15: (A) Aluminum alloy square tubing is used for furnace construction. Length of 

furnace is chosen to be 6” and height X width is 4”X4” (B) 2 X Side walls are also made out of 

Aluminum alloy 

 

Furnace window: One of the design requirements of the furnace is to have at least two X-

ray transparent windows, one for incoming beam and another for diffracted beam. We have 

intentionally kept the window for diffracted beam to be wide enough, such that broad range of 

diffraction angle can be accepted by the window. In the literature, various materials are used and 

described as window material, such as Kapton, Mylar, Aluminized Mylar, Beryllium, high purity 

Aluminum foil, Mica and Silicon Nitride Si3N4 [92], [93]. Beryllium is generally used as 

vacuum window for hard X-ray in synchrotron radiation beam-line. The important criteria for 

window material are high X-ray transmittance and mechanical strength. 

We have chosen .002” thick Kapton sheet, McMaster Carr part number: 2271K2. This 

material has an operating temperature range from -425° to +752° F. In order to reduce the heat 

loss from the window we kept the window size to smallest possible without interfering with the 

X-rays.  

Heating element:  Finned strip heater is used as heating element. It is attached at the base 

of the furnace. Sketch, specification, drawing and description of these strip heaters are given in 

Appendix D. 
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Furnace insulation: Insulation is used inside the furnace frame to prevent heat loss to the 

surrounding. Flexible ceramic insulation is used in all the area of the inside walls of the furnace 

except the window area. Six different pieces of the flexible ceramic insulation is cut to the size of 

inside wall dimension of the furnace. In two of those pieces extra cut has been made to clear the 

window of the furnace. 

McMaster Carr part number 4057K9:  Extra-High Temp Ceramic Insulation Strip 1/8" Thick, 3" 

X 25' 

McMaster Carr part number 9323K21: Fiberglass Insulation Paper 1/8" Thick, 16" Width, 10' 

Length 

 

Temperature controller, relay and thermocouple: Temperature controller is used in order 

to monitor and regulate the process temperature. The controller was acquired from Omega 

Engineering Inc. (Part number: CN7823 1/16 DIN Controller). The control method use by this 

controller is PID (proportional–integral–derivative). This controller can be programmed for 

desired temperature profile or temperature cycling. An image of the controller is shown in Figure 

4-16A. During operation, two temperature value are displayed, PV and SV. PV indicates present 

value or the current temperature of the furnace, whereas SV represents set value or the current 

set point or the desired temperature at that time. The operation manual of this controller can be 

found at Omega’s web site http://www.omega.com/Manuals/manualpdf/M4437.pdf 

A solid state relay is used to control the resistance heating furnace in conjunction with 

temperature controller. A relay is basically a SPST (single pole single throw) switch which turns 

on and off the power to the furnace, after receiving the signal (in form of small voltage) from the 

controller. A relay from Omega Engineering Inc. part number SSRL240DC10 is chosen for 

controlling input power to the furnace is shown in Figure 4-16B. The operation, installation and 

users manual can be found at Omega’s web site: 

http://www.omega.com/manuals/manualpdf/m3813.pdf.   

 

http://www.omega.com/Manuals/manualpdf/M4437.pdf
http://www.omega.com/manuals/manualpdf/m3813.pdf
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Figure 4-16: (a) PID temperature controller and (b) Solid state relay for controlling the furnace 

temperature 

 

Thermocouple type K is used for measuring temperature of the furnace and as a feedback 

loop to the controller. We have chosen thermocouple from Omega Engineering Inc. (Part 

number: TC-GG-K-24-36). Each term in the part number is explained as follows: 

TC : Thermocouple 

GG: Glass braid insulated 

K   : K type thermocouple 

24  : 24 AWG (American Wire Gauge) or .0201 inch diameter 

36  : Thermocouple length in inches 

 

Fixture for holding sample: A very simple fixture is designed to hold the sample. Fixture 

height is adjusted such that the region in the crystal to be topographed is in the same height as 

furnace window. 

Electrical wiring diagram of the controller and the furnace is given in the Figure 4-12. 

One end of the thermocouple wire is connected to the controller and the other end is inserted 

inside the furnace through a very small hole on top of the furnace. Output of the controller is 
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connected to the solid state relay control voltage which in turn acts as an on/off switch for the 

voltage to the furnace 

 

Figure 4-17: Schematic of wiring diagram of the controller and the furnace. 

 

Table 4-2: Features of high temperature X-ray diffraction furnace 

Heating 

method 

Shape Atmosphere Max. 

temp. 
0
C 

Heating 

element 

Sample Use 

Radiation 

/convection 

Rectangular 

box 

Air 250
0
C Strip resistance 

heater 

Single 

crystal Si 

Diffraction 

topography 

 

The furnace is placed on top of goniometer, a small ceramic washer is placed between 

goniometer and the furnace for heat insulation. No trouble occurred during the continuous 

operation of thermal cycling for 48hrs. 
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A                                                                                    B 

Figure 4-18: (A) Photograph of furnace with controller (B) Inside view of furnace 

 

4.7 Results and discussion 

Sample is placed in the furnace and a symmetric Laue pattern is recorded, in this 

configuration (0 0 1) plane is perpendicular to the incoming X-ray beam and the plane (1 1 0) is 

the right side plane. Furnace/Sample assembly is then rotated 12
0
 about Y-axis and 2 2 0 

topographs were recorded at 13cm specimen to film distance. Referring to Figure 4-6(B), the 

simulated LauePt program [48], it can be seen that 2 2 0 reflection can be recorded at about 

57mm to the left of direct beam. 

Sample is subjected to thermal cycling in order to simulate the IC during operation. 

Furnace was thermally cycled and topographs were taken at regular interval. Cycle profile is 

given below in Figure 4-19. Even though controller was programmed to cycle between 200
0
C 

and 50
0
C in 1/2 hr period, furnace could not reach 50

0
C in ½ hr, it was able to reach only 100

0
C. 

In order to understand the real time dynamic behavior of defects and specially dislocations, 

topographs were taken every ½ hr and the experiment was carried out for 40hrs. 
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Figure 4-19: Temperature cycle profile. Furnace subjected to thermal cycle and topographs 

recorded at regular interval, at lower temperature and at elevated temperature. 

 

Selected topographs at various time intervals are shown in Figure 4-20. Comparison of 

topographs from the same region shows that dislocations have moved toward the crystal edge 

and in some cases completely disappeared. This result was somewhat expected, because without 

any external driving force, such as external or residual stress in the crystal (in the region where 

crystal is located), dislocations should reduce in length. This can be explained with the help of 

thermodynamics, as reduction in length of dislocation results in reduction of free energy of the 

system. 

A 

B 

100µm 
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C 

D 

Figure 4-20: 2 2 0 Topograph from same selected region of the crystal at various interval of time. 

A: t=0hrs ; B: t=0.5hrs ; C: t=21.5 hrs ; D: t=39.5 hrs. 
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Chapter 5 Conclusion and future work 

5.1 Conclusion 

In this work we have addressed few problems frequently found in Silicon semiconductor 

industry. Issues primarily studied in this work are related to residual stress calculation and 

crystallographic defect characterization. A new method is developed to determine all six 

components of residual strain and stress tensor. This novel technique, stress mapping analysis by 

ray tracing (SMART), is based on synchrotron X-ray reticulography and the principle of ray 

tracing.  This nondestructive and non-invasive technique has the capability to measure all six 

components of stress tensor. In this method an area filling polychromatic X-ray beam is directed 

at the single crystal sample. A grid made out of X-ray absorbing material is placed in front of the 

sample. Multiple Laue spots were recorded on the X-ray film. The purpose of grid is to locate 

corresponding point in crystal to the corresponding point in the Laue spots. 

Traditionally strain is measured by measuring change in lattice parameter. Instead of 

measuring change in lattice parameter we have measured change in plane normal vector 

direction. Plane normal direction(s) at a location in the crystal is determined from the location(s) 

of corresponding point in the Laue pattern. 

A mathematical model is developed which utilizes three independent plane normal vector 

of an arbitrary location in the crystal and compared to the plane normal of a non-stressed crystal 

in order to determine strain tensor. Using the stiffness matrix of the crystal stress at that location 

is determined. A computer code is written in Mathematica which repeats the calculation for a 

array of points in the crystal and stress maps are generated. 

We applied this technique in the transmission geometry to map the strain and thereby the 

stress state averaged through the thickness of the die. We also further developed this technique to 

measure and map the stresses along the depth of the die. To achieve this, we have recorded X-ray 

reticulographs in grazing incidence geometry to limit the interaction of X-ray only to the desired 

depth of the die. Laue pattern of the crystal is recorded in reflection geometry. Residual stress is 

calculated in similar method as in transmission geometry using SMART technique. This 

calculated stress value represents a weighted average (exponentially decaying) stress value. The 

reason that the stress value is weighted average and not simple average is because the X-ray 
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intensity drops exponentially as it penetrates the crystal. Multiple data points (stress values) are 

generated by tilting the crystal at different angle whereby changing the penetration depth. An 

analytical form of the stress (weighted average) function is generated which is the Laplace 

transform of real space stress distribution. Real space stress function is determined by evaluating 

inverse Laplace transform of calculated exponentially weighted average stress function. A code 

in Mathematica is developed to generate analytical form of experimentally calculated stress 

function and for calculation of inverse Laplace transform to generate real space stress profile. A 

complete mathematical validation and analysis is performed. Various sources of error have been 

identified and quantitative analysis is carried out.  

Structural defects are another major concern for semiconductor industry. These defects 

include dislocations, surface scratches and subsurface cracks, stacking faults, grain boundaries, 

and precipitates. We have mainly focused in edge surface defects primarily caused by wafer 

slicing process. X-ray diffraction topography in various geometries is used for detection and 

characterization of surface and subsurface defects. Other complimentary techniques such as 

optical microscopy, SEM and TEM are also used. Finally an environmental chamber is designed 

and manufactured in order to study and analyze defect behavior at high temperature and thermal 

cycling. High temperature in-situ X-ray topography by temperature cycling is carried and 

dislocation movements were recorded real time.   

5.2 Future work 

The part of the goal of this project was to study the feasibility of this new technique, 

SMART, using synchrotron radiation. We were successfully able to demonstrate on single 

crystal Silicon device in both transmission and reflection geometry. Transmission geometry 

provides spatially resolved stress values which is average of the stress in thickness whereas 

transmission geometry provides both spatially resolved as well as depth resolved stress tensor 

components. 

Technology transfer and implementation into Lab source: 

We like to design and develop a system using lab source with substantial automation in 

which the complete stress analysis can be done. With the use of a very long collimator and a 

target to produce white radiation (such as Molybdenum) one can achieve this goal. With the use 
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of a high precision digital X-ray detector, the complete coordinate points in the reticulographs 

can be determined automatically. Once the coordinate points are digitally recorded, the strain and 

stress calculation can be carried. In the calculations of strain and stress one need to account for 

small divergence in the X-ray beam which may enhance the error in the measurements. The 

system can be built in such a way such that it can be used for both transmission and reflection 

geometry. The concept of SMART technique for use in lab source is shown schematically in 

Figure 5-1 below. Both transmission and reflection geometries can be achieved using same 

equipment. 

 
(A) 
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(B) 

Figure 5-1: Schematic concept of lab source design for SMART technique: (A) Transmission 

geometry and (B) Reflection geometry. L is collimator length,  is collimator diameter, D is 

specimen to film distance and δ is the distance between the end of collimator to sample. 

 

Divergence of the beam is calculated as: 

Divergence 2 tan
L

  
  

 

1

2
 Equation 5-1 

A very long collimator can be used in order to reduce the divergence of the beam. Resolution of 

the system can be calculated using Equation 5-2. 

SD
R

L
                        Equation 5-2 

where S is the source size. 

Substituting L=2.5m, D=10cm and S=50μm we get resolution R as 2μm. 

Four steps are been identified which are required in order to complete the design and assembly of 

the stress measurement system using lab source: 
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• Imaging system: rotating anode, collimator and detector (CCD or film based) 

• Data acquisition: automation in detecting coordinate points.  

•  Data processing: software code to incorporate specific geometry of lab source. 

• Stress (or strain) data presentation and graphical representation.  

Other techniques used for residual stress determination:  

Two other techniques for determining residual stress, micro Raman method and 

simulation in Abacus has been tried for the purpose of comparison with SMART technique. In 

case of micro Raman technique, stress is calculated from the shift in Silicon phonon mode with 

respect to unstrained controlled Silicon standard. 514nm laser light is used for micro Raman 

experiments and have sampling depth of about 400nm. The formula used for the calculation is: 

 
 1

11.92
xx yy

Shift cm
GPa

cm
 




  

                                
Equation 5-3 

A biaxial stress (xx+yy) values at selected location is given below in Figure 5-2. 

 

Figure 5-2: Biaxial stress measurement using micro Raman technique at selected location, stress 

values are in MPa. 
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A computer simulation is carried out using Abacus. Silicon crystal’s bottom surface is 

attached to the plastic packaging material at high temperature. No slip condition is assumed 

between attached surfaces. After cooling down to room temperature a bending occurs due to 

difference in coefficient in thermal expansion as shown schematically in Figure 2-21. Abacus 

simulation is run to determine stress level at various locations in the crystal. 

Both the micro Raman experiments and the Abacus simulations were carried out by Intel 

Corporations Oregon and Arizona facility respectively. Further studies are required to correlate 

all the three techniques namely micro Raman, Abacus simulation and SMART. 
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Appendix A: Proof of plane normal equation 

Consider a crystallographic plane perpendicular to z axis as shown in Figure A-1.  

 

Figure A-1: Schematic of a general warped crystallographic plane, n represents plane normal at 

an arbitrary location. 

 

Assuming the plane is slightly distorted at a location A and as a result plane normal 

vector is tilted at an angle with respect to plane normal vector n0 at undistorted region in the 

crystal. Let us consider the equation of surface as 

 z f x, y     Equation A-1 

or,    F x, y,z f x, y z 0       Equation A-2  

Plane normal vector at any general location can be written as: 

   n x, y,z F x, y,z       Equation A-3 

Applying Taylor’s expansion to the function f, we get 

0 0 0 0
0 0 0 0

( , ) ( , )
( , ) ( , ) ( ( ) ( ))

 
    

 

f x y f x y
f x y f x y x x y y

x y
Equation A-4 

 0 0
ˆ ˆ( )   r x x i y y j  Equation A-5 

Now consider the term  0 0. ( , ) r f x y z  

   
   

 
   

0 0 0 0

0 0 0 0

0 0 0 0
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  
             

 
   

 

f x y f x y
r f x y z x x i y y j i j k

x y

f x y f x y
x x y y

x y

 

Substituting the above result into Equation A-4, we have 

 0 0 0 0( , ) ( , ) . ( , )   f x y f x y r f x y z  

or,  0 0 0 0( , ) ( , ) . ( , )     f x y z f x y z r f x y z  

or,      0 0 0 0( , ) ( , ) . ( , )       
 

f x y z f x y z r f x y z  

or,  0 0[ . ] n n r n   
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Appendix B: Grid design and description 

Figure B-1: Engineering drawing of X-ray absorbing grid used for reticulography experiments 

(SWBXR) in case of both transmission and reflection geometry. 

 

The grid was manufactured by Tecomet Inc. (http://www.tecomet.com) using 

photochemical etching. Out of two materials: Molybdenum and Tungsten we selected Tungsten 

because of its superior X-ray absorbing capability in the range of .2A to 1.8A. 

  

http://www.tecomet.com/
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Appendix C: Mathematica code for SMART technique 

resolution=2400; 

dsf=80000; 

(***** specimen-film distance, in micron, and resolution of scanning *****) 

 

spotrow=48; 

spotcolumn=42; 

(***** number of row and columns measured *****) 

 

Transmissionx=Table[0,{48},{42}]; 

Transmissiony=Table[0,{48},{42}]; 

(***** define two X×Y matrixes which record the transmission spot coordinates *****) 

 

Diffraction1x=Table[0,{48},{42}]; 

Diffraction1y=Table[0,{48},{42}]; 

Diffraction2x=Table[0,{48},{42}]; 

Diffraction2y=Table[0,{48},{42}]; 

Diffraction3x=Table[0,{48},{42}]; 

Diffraction3y=Table[0,{48},{42}]; 

(***** define six X×Y matrixes which record the diffraction spot coordinates *****) 

 

Bridge=Array[b,2016]; 

Bridge=ReadList["C:\vs_lab\ReRun\B05x.txt"]; 

k=1; 

Do[Transmissionx[[i,j]]=(2.54*10000/resolution)*Bridge[[k]];k=k+1,{i,1,spotrow},{j,1,spotco

lumn}]; 

 

Bridge=ReadList["C:\vs_lab\ReRun\B05y.txt"]; 

k=1; 

Do[Transmissiony[[i,j]]=(2.54*10000/resolution)*Bridge[[k]];k=k+1,{i,1,spotrow},{j,1,spotco

lumn}]; 

 

Bridge=ReadList["C:\vs_lab\ReRun\B02x.txt"]; 

k=1; 

Do[Diffraction1x[[i,j]]=(2.54*10000/resolution)*Bridge[[k]];k=k+1,{i,1,spotrow},{j,1,spotco

lumn}]; 

 

Bridge=ReadList["C:\vs_lab\ReRun\B02y.txt"]; 

k=1; 

Do[Diffraction1y[[i,j]]=(2.54*10000/resolution)*Bridge[[k]];k=k+1,{i,1,spotrow},{j,1,spotco

lumn}]; 

 

Bridge=ReadList["C:\vs_lab\ReRun\B04x.txt"]; 

k=1; 

Do[Diffraction2x[[i,j]]=(2.54*10000/resolution)*Bridge[[k]];k=k+1,{i,1,spotrow},{j,1,spotco

lumn}]; 

 

Bridge=ReadList["C:\vs_lab\ReRun\B04y.txt"]; 

k=1; 

Do[Diffraction2y[[i,j]]=(2.54*10000/resolution)*Bridge[[k]];k=k+1,{i,1,spotrow},{j,1,spotco

lumn}]; 

 

Bridge=ReadList["C:\vs_lab\ReRun\B06x.txt"]; 

k=1; 

Do[Diffraction3x[[i,j]]=(2.54*10000/resolution)*Bridge[[k]];k=k+1,{i,1,spotrow},{j,1,spotco

lumn}]; 

 

Bridge=ReadList["C:\vs_lab\ReRun\B06y.txt"]; 

k=1; 

Do[Diffraction3y[[i,j]]=(2.54*10000/resolution)*Bridge[[k]];k=k+1,{i,1,spotrow},{j,1,spotco

lumn}]; 

(***** save the data into the matrix *****) 

 

FC=Array[fc,3]; 

FC[[1]]=Transmissionx[[25,13]]; 
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FC[[2]]=Transmissiony[[25,13]]; 

FC[[3]]=0; 

(***** coordinates of stress free point from the transmission spot *****) 

 

F1=Array[f1,3]; 

F1[[1]]=Diffraction1x[[25,13]]; 

F1[[2]]=Diffraction1y[[25,13]]; 

F1[[3]]=0; 

(***** coordinates of stress free point from the diffraction spot 1 *****) 

 

F2=Array[f2,3]; 

F2[[1]]=Diffraction2x[[25,13]]; 

F2[[2]]=Diffraction2y[[25,13]]; 

F2[[3]]=0; 

(***** coordinates of stress free point from the diffraction spot 2 *****) 

 

F3=Array[f3,3]; 

F3[[1]]=Diffraction3x[[25,13]]; 

F3[[2]]=Diffraction3y[[25,13]]; 

F3[[3]]=0; 

(***** coordinates of stress free point from the diffraction spot 3 *****) 

 

OR=Array[or,3]; 

OR[[1]]=Transmissionx[[25,13]]; 

OR[[2]]=Transmissiony[[25,13]]; 

OR[[3]]=-dsf; 

(***** coordinates of stress free point on the crystal *****) 

 

Incidentbeam={0,0,1}; 

(***** vector of the indicent x-ray beam *****) 

 

Diffractbeam01=F1-OR; 

Diffractbeam01=Diffractbeam01/Norm[Diffractbeam01]; 

(***** vector of the diffract x-ray beam of spot 1 *****) 

 

Diffractbeam02=F2-OR; 

Diffractbeam02=Diffractbeam02/Norm[Diffractbeam02]; 

(***** vector of the diffract x-ray beam of spot 2 *****) 

 

Diffractbeam03=F3-OR; 

Diffractbeam03=Diffractbeam03/Norm[Diffractbeam03]; 

(***** vector of the diffract x-ray beam of spot 3 *****) 

 

N01=Diffractbeam01-Incidentbeam; 

N01=N01/Norm[N01]; 

N02=Diffractbeam02-Incidentbeam; 

N02=N02/Norm[N02]; 

N03=Diffractbeam03-Incidentbeam; 

N03=N03/Norm[N03]; 

(***** plane normal of the stress free point *****) 

 

uxxmatr=Table[0,{48},{42}]; 

uxymatr=Table[0,{48},{42}]; 

uxzmatr=Table[0,{48},{42}]; 

uyxmatr=Table[0,{48},{42}]; 

uyymatr=Table[0,{48},{42}]; 

uyzmatr=Table[0,{48},{42}]; 

uzxmatr=Table[0,{48},{42}]; 

uzymatr=Table[0,{48},{42}]; 

uzzmatr=Table[0,{48},{42}]; 

exxmatr=Table[0,{48},{42}]; 

exymatr=Table[0,{48},{42}]; 

exzmatr=Table[0,{48},{42}]; 

eyxmatr=Table[0,{48},{42}]; 

eyymatr=Table[0,{48},{42}]; 

eyzmatr=Table[0,{48},{42}]; 

ezxmatr=Table[0,{48},{42}]; 
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ezymatr=Table[0,{48},{42}]; 

ezzmatr=Table[0,{48},{42}]; 

(***** defining matrixes of strain components *****) 

 

Do[  S1=Array[s1,3]; 

       S1[[1]]=Diffraction1x[[i,j]]; 

       S1[[2]]=Diffraction1y[[i,j]]; 

       S1[[3]]=0; 

       (***** coordinates of stress point from the diffraction spot 1 *****) 

   

       S2=Array[s2,3]; 

       S2[[1]]=Diffraction2x[[i,j]]; 

       S2[[2]]=Diffraction2y[[i,j]]; 

       S2[[3]]=0; 

       (***** coordinates of stress point from the diffraction spot 2 *****) 

   

       S3=Array[s3,3]; 

       S3[[1]]=Diffraction3x[[i,j]]; 

       S3[[2]]=Diffraction3y[[i,j]]; 

       S3[[3]]=0; 

       (***** coordinates of stress point from the diffraction spot 3 *****) 

   

       SOR=Array[sor,3]; 

       SOR[[1]]=Transmissionx[[i,j]]; 

       SOR[[2]]=Transmissiony[[i,j]]; 

       SOR[[3]]=-dsf; 

       (***** coordinates of stress point on the crystal *****) 

   

       Incidentbeam={0,0,1}; 

       (***** vector of the indicent x-ray beam *****) 

        

       Diffractbeam1=S1-SOR; 

       Diffractbeam1=Diffractbeam1/Norm[Diffractbeam1]; 

       (***** vector of the diffract x-ray beam of spot 1 *****) 

   

       Diffractbeam2=S2-SOR; 

       Diffractbeam2=Diffractbeam2/Norm[Diffractbeam2]; 

       (***** vector of the diffract x-ray beam of spot 2 *****) 

   

       Diffractbeam3=S3-SOR; 

       Diffractbeam3=Diffractbeam3/Norm[Diffractbeam3]; 

       (***** vector of the diffract x-ray beam of spot 3 *****) 

   

       N1=Diffractbeam1-Incidentbeam; 

       N1=N1/Norm[N1]; 

       N2=Diffractbeam2-Incidentbeam; 

       N2=N2/Norm[N2]; 

       N3=Diffractbeam3-Incidentbeam; 

       N3=N3/Norm[N3]; 

      (***** plane normal of the stress point *****) 

       

       Sol=NSolve[{N01[[1]]-N01[[1]]*uxx-N01[[2]]*uyx-N01[[3]]*uzx==N1[[1]],N02[[1]]-

N02[[1]]*uxx-N02[[2]]*uyx-N02[[3]]*uzx==N2[[1]],N03[[1]]-N03[[1]]*uxx-N03[[2]]*uyx-

N03[[3]]*uzx==N3[[1]]},{uxx,uyx,uzx}]; 

      {uxxmatr[[i,j]]}=uxx/.Sol; 

      {uyxmatr[[i,j]]}=uyx/.Sol; 

      {uzxmatr[[i,j]]}=uzx/.Sol; 

   

   

      Sol=NSolve[{N01[[2]]-N01[[1]]*uxy-N01[[2]]*uyy-N01[[3]]*uzy==N1[[2]],N02[[2]]-

N02[[1]]*uxy-N02[[2]]*uyy-N02[[3]]*uzy==N2[[2]],N03[[2]]-N03[[1]]*uxy-N03[[2]]*uyy-

N03[[3]]*uzy==N3[[2]]},{uxy,uyy,uzy}]; 

      {uxymatr[[i,j]]}=uxy/.Sol; 

      {uyymatr[[i,j]]}=uyy/.Sol; 

      {uzymatr[[i,j]]}=uzy/.Sol; 

   



132 

 

       Sol=NSolve[{N01[[3]]-N01[[1]]*uxz-N01[[2]]*uyz-N01[[3]]*uzz==N1[[3]],N02[[3]]-

N02[[1]]*uxz-N02[[2]]*uyz-N02[[3]]*uzz==N2[[3]],N03[[3]]-N03[[1]]*uxz-N03[[2]]*uyz-

N03[[3]]*uzz==N3[[3]]},{uxz,uyz,uzz}]; 

      {uxzmatr[[i,j]]}=uxz/.Sol; 

      {uyzmatr[[i,j]]}=uyz/.Sol; 

      {uzzmatr[[i,j]]}=uzz/.Sol; 

       (***** solve the nine equations *****) 

   

        

       exxmatr[[i,j]]=uxxmatr[[i,j]];exymatr[[i,j]]=1/2 (uxymatr[[i,j]]+uyxmatr[[i,j]]);     

       exzmatr[[i,j]]=1/2 (uxzmatr[[i,j]]+uzxmatr[[i,j]]);eyymatr[[i,j]]=uyymatr[[i,j]]; 

       eyzmatr[[i,j]]=1/2 (uyzmatr[[i,j]]+uzymatr[[i,j]]);ezzmatr[[i,j]]=uzzmatr[[i,j]], 

       (***** convert into the strain and save the data into the matrix *****)  

   

  {i,1,spotrow},{j,1,spotcolumn}];  

     (***** use the loop to calculate every spot *****) 

 

Do[Extract[exxmatr,{i,j}]>>>exxmatr12.txt,{i,1,spotrow},{j,1,spotcolumn}]; 

Do[Extract[eyymatr,{i,j}]>>>eyymatr12.txt,{i,1,spotrow},{j,1,spotcolumn}]; 

Do[Extract[ezzmatr,{i,j}]>>>ezzmatr12.txt,{i,1,spotrow},{j,1,spotcolumn}]; 

Do[Extract[exymatr,{i,j}]>>>exymatr12.txt,{i,1,spotrow},{j,1,spotcolumn}]; 

Do[Extract[exzmatr,{i,j}]>>>exzmatr12.txt,{i,1,spotrow},{j,1,spotcolumn}]; 

Do[Extract[eyzmatr,{i,j}]>>>eyzmatr12.txt,{i,1,spotrow},{j,1,spotcolumn}]; 

 

temp=Table[0,{48},{42}]; 

<<PlotLegends` 

exxmatr 

ShowLegend[ListDensityPlot[exxmatr, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,".0023","-.0007",LegendPosition {1,-.4}}] 
eyymatr 

ShowLegend[ListDensityPlot[eyymatr, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,".0037","-.0052",LegendPosition {1,-.4}}] 
ezzmatr 

ShowLegend[ListDensityPlot[ezzmatr, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,".0153","-.0154",LegendPosition {1,-.4}}] 
exymatr 

ShowLegend[ListDensityPlot[exymatr, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,".0139","-.0093",LegendPosition {1,-.4}}] 
exzmatr 

ShowLegend[ListDensityPlot[exzmatr, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,".0097","-.0065",LegendPosition {1,-.4}}] 
eyzmatr 

ShowLegend[ListDensityPlot[eyzmatr, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,".0158","-.0063",LegendPosition {1,-.4}}] 
 

sigmaxx=Table[0,{48},{42}]; 

sigmayy=Table[0,{48},{42}]; 

sigmazz= Table[0,{48},{42}]; 

sigmayz=Table[0,{48},{42}]; 

sigmaxz=Table[0,{48},{42}]; 

sigmaxy=Table[0,{48},{42}]; 

c11=194.4 ;c22=194.4;c33=165.7; c44=50.9 ;c55=79.6; c66=79.6; c12=35.4; c13=194.4; 

c23=63.9; 

sigmaxx=c11*exxmatr + c12*eyymatr + c13*ezzmatr; 

sigmayy=c12*exxmatr + c22*eyymatr +c23*ezzmatr; 

sigmazz=c13*exxmatr + c23*eyymatr + c33*ezzmatr; 

sigmayz= c44*2*eyzmatr; 

sigmaxz= c55*2*exzmatr; 

sigmaxy= c66*2*exymatr; 

sigmaxx 

ShowLegend[ListDensityPlot[sigmaxx, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,"3.33","-2.94",LegendPosition {1,-.4}}] 
sigmayy 

ShowLegend[ListDensityPlot[sigmayy, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,"1.26","-1.34",LegendPosition {1,-.4}}] 
sigmazz 
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ShowLegend[ListDensityPlot[sigmazz, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,"2.85","-2.52",LegendPosition {1,-.4}}] 
sigmayz 

ShowLegend[ListDensityPlot[sigmayz, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,"1.61","-.64",LegendPosition {1,-.4}}] 
sigmaxz 

ShowLegend[ListDensityPlot[sigmaxz, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,"1.55","-1.05",LegendPosition {1,-.4}}] 
sigmaxy 

ShowLegend[ListDensityPlot[sigmaxy, MeshFalse], {ColorData["LakeColors"][1-
#1]&,10,"2.19","-1.47",LegendPosition {1,-.4}}] 
 

pstressxx=Table[0,{spotrow},{spotcolumn}]; 

pstressyy=Table[0,{spotrow},{spotcolumn}]; 

pstresszz=Table[0,{spotrow},{spotcolumn}]; 

Do[ 

 tempmatr={{sigmaxx[[i,j]], 

sigmaxy[[i,j]],sigmaxz[[i,j]]},{sigmaxy[[i,j]],sigmayy[[i,j]],sigmayz[[i,j]]},{sigmaxz[[i,j

]], sigmayz[[i,j]],sigmazz[[i,j]]}}; 

 {pstressxx[[i,j]],pstressyy[[i,j]],pstresszz[[i,j]]}=Eigenvalues[tempmatr], 

 {i,1,spotrow},{j,1,spotcolumn} 

 ] 

pstressxx 

ShowLegend[ListDensityPlot[pstressxx, MeshFalse], {ColorData["LakeColors"][1-#1]&,10,"-
4","6",LegendPosition {1,-.4}}] 
pstressyy 

ShowLegend[ListDensityPlot[pstressyy, MeshFalse], {ColorData["LakeColors"][1-#1]&,10,"-
3","3",LegendPosition {1,-.4}}] 
pstresszz 

ShowLegend[ListDensityPlot[pstresszz, MeshFalse], {ColorData["LakeColors"][1-#1]&,10,"-
1","1",LegendPosition {1,-.4}}] 
 

Null 
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Appendix C: Laplace transforms: fundamental concepts 

Laplace transform is a type of integral transform. Laplace transform has various useful 

properties and has many important applications in science and engineering. It is an operator, 

which operates on a function  f t with real arguments t  0 and transforms it to a function  F s

with complex argument. Laplace integral of the function  f t defined for t  0 is defines as: 

       stF s f t f t e dt



 
0

=L  

A table of few important Laplace transform are given below: 

Table C-1: Table of frequently used Laplace transmorm 

 f t   F s    f t   F s  

 1  s
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Appendix D: Electrical, mechanical and thermal specification for finned 

strip heater 

Finned strip heater, used as a heating element for the furnace was manufactured by 

Watlow Electric Manufacturing Company (http://www.watlow.com). 

Watlow code number: SGA1J5JY3 [120Volt, 250Watts] 

Description: 375 Finned Strip heater 

 

Figure D-1: Cutaway view of finned strip heater. 

 

 

Figure D-2: Engineering drawing of finned strip heater. A=5.5inches is used.  

http://www.watlow.com/
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Appendix E: Mathematica code for stiffness tensor ijklC  transformation 

When the axis of reference changes by rotation, the individual component of the tensor 

also changes. As shown in the diagram for the case of stress tensor, the values of each 

component of stress changes as the axis of reference changes.  

 

Figure E-1: Schematic illustration of stress components due to transformation of axis 

The transformation equation in case of a stress tensor which is tensor of rank two is given by: 

' ij im jn mna a   

where ija  is the cosine of the angle between the new axis '

ix  and the old axis jx . In the above 

equation summation in m, n, o and p is implied. 

In case of tensor of rank four tensor transformation such as stiffness tensor ijklC  is given by: 

' ijkl im jn ko lp mnopC a a a a C   Equation [10] 

Similar expression can be written in case of tensor of any rank  

1 2 3 4 1 1 2 2 3 3 4 4 1 2 3 4

'

.... .......
n n n nx x x x x x y x y x y x y x y y y y y yT a a a a a T  

where T is a general tensor of rank n. 

A simple Mathematica program is written to convert stiffness constant Cijkl from one coordinate 

system to another. 

A={{1/Sqrt[2],1/Sqrt[2],0},{-1/Sqrt[2],1/Sqrt[2],0},{0,0,1}} 

stiffness=Table[0,{i,1,3},{j,1,3},{k,1,3},{l,1,3}] 

stiffness[[1]][[1]][[1]][[1]]= stiffness[[2]][[2]][[2]][[2]]= 

stiffness[[3]][[3]][[3]][[3]]=165.7 
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stiffness[[1]][[1]][[2]][[2]]=stiffness[[2]][[2]][[3]][[3]]=stiffness[[3]][[3

]][[1]][[1]]=stiffness[[2]][[2]][[1]][[1]]=stiffness[[3]][[3]][[2]][[2]]=stif

fness[[1]][[1]][[3]][[3]]=63.9 

stiffness[[3]][[2]][[3]][[2]]=stiffness[[3]][[2]][[2]][[3]]=stiffness[[2]][[3

]][[3]][[2]]=stiffness[[2]][[3]][[2]][[3]]=stiffness[[3]][[1]][[3]][[1]]=stif

fness[[3]][[1]][[1]][[3]]=stiffness[[1]][[3]][[3]][[1]]=stiffness[[1]][[3]][[

1]][[3]]=stiffness[[2]][[1]][[2]][[1]]=stiffness[[2]][[1]][[1]][[2]]=stiffnes

s[[1]][[2]][[2]][[1]]=stiffness[[1]][[2]][[1]][[2]]=79.6 

Table[Sum[A[[m]][[i]] A[[n]][[j]] A[[o]][[k]] A[[p]][[l]] 

stiffness[[i]][[j]][[k]][[l]],{i,1,3},{j,1,3},{k,1,3},{l,1,3}],{m,1,3},{n,1,3

},{o,1,3},{p,1,3}] 

MatrixForm[%] 

tensor=MatrixForm[Table[1000i+100j+10k+l,{i,1,3},{j,1,3},{k,1,3},{l,1,3}]] 
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Appendix F: Plot of mass absorption coefficient of Silicon as a function 

of wavelength 

 

 

Figure F-1: Plot of mass absorption coefficient of Silicon as a function of wavelength between 

wavelength .3A to 2.75A. Data of mass absorption coefficient is collected from various sources 

and a plot is generated. A polynomial function is generated which is used for analytical 

calculation of mass absorption coefficient at any wavelength.  

y = -0.1508x6 + 1.3684x5 - 7.2723x4 + 50.179x3 - 6.6116x2 + 2.775x - 0.0166 
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