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2011 

Shift-variant image restoration or image deblurring is useful in many applications 

including Machine Vision, Image Processing, 3D Microscopy, medical image analysis, 

etc.  Currently, several shift-variant restoration approaches exist. However, they are 

either computationally expensive or inaccurate leading to poor image quality. This 

thesis proposes and investigates computationally efficient techniques that produce high 

quality restoration, even in the presence of noise. The methods presented here are 

general in that they are not limited to certain types of kernels to be computationally 

efficient. Detailed analysis and computational algorithms for implementing the 

methods are provided. 

This thesis addresses blurring in linear shift-variant imaging systems in both two 

and three dimensions. Image restoration in such systems corresponds to solving the 
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Fredholm Integral Equation of the Fist Kind.  In the two dimensional case, 

computational efficiency is achieved through localization. In the case of three 

dimensions, a new domain transformation is applied to achieve computational 

efficiency. These results are presented in two parts. 

In the first part, three image restoration algorithms are discussed. The first algorithm 

is a localized approach to restore highly defocused images. It is based on an existing 

method called the single-interval RT (SRT) method. The SRT method is found to restore 

only small to medium levels of blur.  It is extended to restore images blurred with large 

shift-variant point spread functions (PSFs). The new method is called the multi-interval 

RT (MRT) method. In the MRT technique, the region around a pixel, with size 

comparable to the support domain of the blurring kernel, is divided into several smaller 

regions (intervals). The blurred image in each interval is modeled separately by 

truncated Taylor-series polynomials. A linear system is derived by differentiating the 

polynomial with respect to spatial variables. A vector of blurred image derivatives is 

then expressed as sum of such linear systems. An iterative update formula is obtained 

that is evaluated to improve the focused image estimate. Experimental results for the 

MRT technique in 1D on analytic functions and in 2D on simulation data and real 

images are presented. The results show that MRT technique is effective for restoring 

highly defocused images but at a modest increase in computation cost compared to 

SRT. 

The next two restoration algorithms are iterative versions of SRT. One of them is the 

RT Iterative (RTI) method. In the RTI method, forward RT equation (of SRT) which 

expresses the blurred image as a weighted sum of focused image and its derivatives is 

rearranged to form an update equation. The RTI update equation is found to converge 

rapidly to a solution. The other method is a modification of the gradient based 

Landweber’s iteration and is called the RT based Landweber’s (RTLW) algorithm. The 

RTLW algorithm has a step-size parameter and hence provides more control over the 

convergence to the solution.  Both RTI and RTLW methods are analyzed for 

computational complexity. It is found that for deblurring defocus aberration, the RTI 

and RTLW methods are          complex per iteration. Both the methods are 

compared with Landweber’s algorithm and Tikhonov regularization (using SVD), for 

computation time, accuracy, robustness against noise and quality of restored images. 

An interesting new insight towards ill-conditioned nature of the image restoration 

problem becomes apparent by analyzing the localized methods.  

The second part of this thesis focuses on a new theorem called the Generalized 

Convolution Theorem (GCT). GCT provides the conditions under which a linear shift-

variant system could be transformed to a linear shift-invariant system. The motivation 
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for such transformation is the computational advantage of implementing shift-invariant 

systems and shift-invariant deblurring using the Fast Fourier Transform (FFT). In the 

transformed domain the shift-invariant equivalent of a shift-variant system is deblurred 

in         . Implementing the transformations is not computationally expensive. 

Hence, shift-variant restoration becomes computationally efficient. GCT is stated and 

proved in one dimension (1D). The 1D GCT is applied to a hypothetical imaging system 

for verification.  A proof of multi-dimensional version of GCT is also provided.  

Next, applications of GCT in 3D imaging with digital cameras and microscopes are 

considered. Blurred 3D image sequence is modeled as the result of shift-variant filtering 

with a 3D PSF. It is found that the 3D shift-variant kernel under geometric optics 

satisfies the conditions required by GCT for domain transformation. Therefore, GCT is 

applied to 3D deconvolution microscopy. Specifically, GCT is useful in reducing 

computational requirements of shift-variant or depth-dependent deconvolution 

techniques. Simulation experiments in 3D compare GCT with shift-invariance (SI) 

approximation and piecewise constant shift-invariance (PCSI) approximations. It is 

demonstrated that GCT provides better results both qualitatively and quantitatively 

when compared to SI and PCSI approximations. Moreover, GCT is also found to 

mitigate some of the artifacts common in deconvolution microscopy. Shape recovery 

using GCT is also briefly investigated.   
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1. Introduction 

In the past decade, there has been an exponential growth in the computing power of 

microprocessor chips. This combined with significant reduction in the cost of digital 

cameras have increased the amount of image data captured and processed on the 

computer. The advantage of digitizing an image is the access to several algorithms or 

image processing techniques that enhance the quality of the image. The term quality 

here and throughout the work refers to the perception of image quality to a human 

observer. A new field called Computational Photography is emerging that challenges 

the traditional boundaries of photography [1].  New kinds of imaging devices are being 

developed that obtain a customized image (of a scene) after processing the raw image 

using a computer [2, 3]. In general, sophisticated algorithms are making novel and 

complex manipulations of image data possible with imaging devices.  

One such topic where computer processing is useful is restoration of images 

degraded by blur. This work focuses on algorithms that restore 2D and 3D blurred 

images (due to defocus) in a computationally efficient manner. Computational 

efficiency is achieved by using new models of image formation based on the physical 

properties of typical imaging systems. For example in 2D, a concept called localization, 

which asserts that blurring is a local phenomenon is used to reduce computational 
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complexity of image deblurring. In 3D image restoration, computational efficiency is 

achieved through deblurring in a new domain. These approaches also provide some 

new insight and perspectives to image restoration.  

1.1. Motivation 

Imaging devices are used for a wide variety of applications from Machine Vision, 

Astronomy, 3D Microscopy, Medical Imaging etc. The following paragraphs present a 

brief summary of some applications of image deblurring algorithms. 

A typical machine vision task is the inspection of a manufactured product for 

quality (not to be confused with image quality). An example machine vision application 

is: Rejecting pencils that do not have erasers properly attached at the end. The task is 

done in the production line itself so as to avoid error propagating from one stage of 

production to the other. The challenge is to perform the inspection task quickly so that 

production is not slowed down. The imaging devices used in Machine Vision 

applications suffer from blurring caused by defocus or motion. The information in an 

image is contained in the edges or boundaries of an object. Blurring smoothes the edges 

and hence some information is lost due to degradations. In such cases, image 

deblurring algorithms have to be used to process the images before performing an 

inspection task.  

Microscopes are used to magnify and record images of very small objects. In 

Fluorescence Microscopy, different parts of a cell, e.g. cell nucleus, are stained by a dye 

that is illuminated by specific wavelengths of light. Several images of the illuminated 

set of points are taken by moving the specimen along the axis perpendicular to the 

imaging device. The observed set of images is a 3D blurred image, which is deblurred 
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by suitable algorithm to recover the 3D volumetric distribution of light [4]. It is 

physically impossible to record a 3D structure without defocus. Hence the 3D blurred 

image is restored. It then reveals the 3D structure of the object (the cell nucleus). Such 

3D structure helps us learn about the bio-chemical processes at the microscopic level. In 

medical imaging analysis, deblurring may be used to enhance the quality of the image 

to assist a physician.      

Other applications include deblurring telescopic images. For instance, deblurring 

Hubble Space Telescope (HST) images is well documented in literature[5, 6]. Recently, 

cameras with adaptive optics have been developed that correct themselves based on the 

degradations present in the observed data[7].   

Deblurring algorithms provide a way for overcoming imperfections of camera 

optics. With an accurate model of the imaging device, the observed data is deblurred 

such that the degradations due to camera optics are minimized. The algorithms also 

offer many insights useful for modeling other imaging modalities such as Radar 

imaging, Ultrasound imaging etc. The principles of image deblurring are also used in 

medical image reconstruction and vice versa. 

1.2. Why does blur occur? 

Before understanding the deblurring methodologies, some fundamentals of imaging 

itself have to be discussed. The simplest imaging device is an opaque planar object with 

a pin-hole in it such that light from one side of the plane travels through the hole to the 

other side. Such a device is called a pin-hole aperture camera or a pin-hole camera. The 

scene, from which light travels to the pin-hole, is said to be in front of the camera. 

Hence, the image of the object is formed behind the camera. It is possible to record a 
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real (inverted) and nearly sharp image of the whole scene by placing a detector parallel 

to the pin-hole plane. That is, every point in the image obtained by pin-hole camera is 

focused irrespective of the location of the scene points. However, due to the small size 

of the aperture the amount of light passing through it is very small. The recorded 

images would be degraded by noise, or would require a long time of exposure to collect 

sufficient amount of light. Thus the pin-hole camera is impractical. 

 

 

Figure 1.1: Two point objects being imaged by pin-hole camera. The camera forms a 

real and focused image everywhere along the detector irrespective of the location of 

the objects from the camera. 
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Figure 1.2: Two point objects imaged by a finite aperture thin lens camera. In the 

figure the detector is placed such that the point object closer to the lens is in focus. 

The farther point object is out of focus. The position of the focused image for a given 

object depends on the location of the object and the focal length of the lens.  

 

Lenses are used to bend wavefronts such that they converge to form a point image. 

Also, lenses collect more light to produce better quality images. However, the aperture 

is quite large compared to a pin-hole. This causes only the points located at particular 

distance from the lens come to focus at the image detector; as governed by the lens 

maker’s formula. The points that do not come to focus are said to be defocused or 

blurred. A point object that is defocused could be brought to focus by moving the image 

detector along the optical axis (shown as dashed line in Fig. 1.2).  Thus the amount of 

defocus thus depends of the detector location and the location of the object.  

1.2.1. Shift-variant degradation 

Since points at different distances from the lens come to focus at different image 

detector locations, an image of a 3D object suffers different amounts of degradations at 
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different points in the image. That is, the amount of blur varies from pixel to pixel. 

Hence, defocus blur is said to be shift-variant. The shift-variant characteristic is also 

observed in image degradations caused by lens aberrations and motion blur. The 

simplest motion blur example is that of an image taken from a moving car. The trees 

that are close appear smeared or blurred whereas objects that are farther, like mountain 

landscape, suffer relatively less degradation. This is due to the fact that the amount of 

magnification of trees is greater than that of mountain landscape.  Lens aberrations 

occur noticeably due to imperfections of the camera optics. 

1.3. Image deblurring process 

 Shift-variant deblurring in two and three dimensions is the focus of this work. The 

principle behind image deblurring is as follows. The image forming system is modeled 

mathematically such that the forward operation of the model produces a blurred image 

as the output of the camera system with focused image as the input, as shown in Fig. 

1.3.  

 

Figure 1.3: Block diagram of a mathematical model of an imaging system. Focused 

image is the input and blurred image is the output. The system is said to perform a 

forward operation.  

 

The deblurring problem is schematically represented by Fig. 1.4. Deblurring 

algorithms discussed in this report restore blurred images recorded by a system whose 

mathematical model is known. Obtaining the model parameters for given blurred 
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images is a research topic, generally referred to as image identification or blur 

identification [8-13]. There exist some methods called blind deconvolution algorithms 

that treat both, the model parameters and the focused image as unknowns [14, 15].  

 

Figure 1.4: Showing conceptual diagram of deblurring process. The deblurring 

algorithm accepts blurred image as the input and produces the focused image as the 

output for a given imaging system. Deblurring is therefore the opposite of Fig. 1.3, 

hence is said to perform an inverse operation. 

 

Since deblurring is an inverse problem, it is often numerically ill-conditioned or may 

not have a unique solution; i.e., it may be ill-posed[16, 17].  It is also computationally 

intensive to solve a deblurring problem, generally due to the large size of image data. A 

good restoration algorithm must: 

 be computationally efficient  

 be accurate in the mean squared error sense 

 be able to handle noisy input (blurred image) 

 not introduce visible blocking artifacts 

Artifacts here mean artificial patterns introduced at the time of processing. There are 

tradeoffs between some requirements listed above. For example, there is a tradeoff 

between accuracy and computational efficiency. The goal of this work is to device 

algorithms that sufficiently meet all the above requirements.  

1.4. Report organization 
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The rest of the report is organized as follows. In chapter 2, fundamentals of image 

formation, mathematical models of imaging systems and the prior art in shift-variant 

image restoration are discussed.  

In Chapter 3, a new deblurring algorithm that effectively recovers focused image 

from highly defocused images is investigated. It is an iterative restoration algorithm. 

The algorithm is tested on simulation experiments and real data. 

Chapter 4 presents a localized and computationally efficient iterative approach to 

shift-variant image restoration. Two algorithms are investigated and compared with 

other techniques for accuracy, computation time, robustness against noise and quality 

of restored images. The algorithms also offer new insight to ill-conditioned nature of 

deblurring problems. 

Chapter 5 introduces a new theorem called the Generalized Convolution Theorem 

(GCT). GCT is used to transform a shift-variant system to a shift-invariant system 

through domain transformation. Proof of the theorem is presented. The conditions 

under which the transformation is possible are also highlighted. The theorem is verified 

in 1D. 

Chapter 6 investigates two applications of GCT. First is 3D deconvolution 

microscopy. A shift-variant 3D imaging system is transformed to a shift-invariant 

system using GCT. A blurred 3D image is restored in the transformed domain in a 

computationally efficient manner. Through simulation experiments it is demonstrated 

that GCT improves both accuracy and computational efficiency of shift-variant image 

restoration.  Next, 3D shape recovery using GCT is briefly investigated.     

Chapter 7 summarizes the report and provides some directions for future work. 
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2. Background and Related Work 

The approach to shift-variant image restoration was introduced in the previous 

chapter at a high level. The steps involved are discussed in more detail here. Image 

formation is modeled mathematically as a linear shift-variant system. Then, several 

shift-variant image restoration algorithms are presented. The purpose of this chapter is 

to make the reader familiar with the fundamentals of image formation and standard 

techniques for processing shift-variant blurred images to recover a focused image 

estimate.  

 The rest of the chapter is organized as follows.  The theory of image formation 

under paraxial optics assumption is presented in Section 2.1. In Section 2.2, the linear 

shift-variant (LSV) model for image formation is developed. Section 2.3 further 

discusses the impulse response of LSV model called the point spread function (PSF). 

Various shift-variant image restoration techniques are presented in Section 2.4.  

2.1. Image formation in a thin lens 

Camera lenses form real images of the object that are recordable (observable) on a 

detector. Present day cameras have a set of lenses that guide the light rays to form high-
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quality images. However, for the purposes of the work reported here, it is sufficient to 

assume that a camera is a single thin lens; see Fig. 2.1. Also, it is assumed that the 

aperture (  in Fig. 2.1) is small enough so that the light rays from the object travel 

almost parallel to the optical axis. This is the paraxial optics assumption. The figure 

below shows a schematic diagram of thin lens image formation. Note that this is a cross 

section and the rays in the figure are all in the    plane that contains the optical axis.   

 

Figure 2.1: Schematic diagram of image formation of a curved surface (a cross 

section through the axis). The world coordinates are to the left of the lens and image 

coordinates are to the right. The curve in image coordinates is the set of Gaussian 

image points of the real surface.  

 

A point   on the surface located at a distance   from the lens center  , comes to 

focus at a distance    from the lens center. The light ray passing from   to   (  ⃗⃗⃗⃗  ⃗) 

remains undeflected; this is called as the chief ray. Rays   ⃗⃗⃗⃗  ⃗ and   ⃗⃗⃗⃗  ⃗ undergo refraction 

and meet the chief ray behind the lens at location  . These rays are known as marginal 

rays. The point   at which the rays converge is called the Gaussian image point. A 

focused image is said to be formed on a plane perpendicular to the optical axis, if the 
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image detector plane contains the Gaussian image point. Under this condition, a thin 

lens satisfies the following equation: 

 

  
  

 

 
 

 

  
 (2.1) 

In Eq. (2.1),    is the focal length of the lens, and   and    are the object distance and the 

image distance respectively. However, when the image detector is translated in a 

direction parallel to the optical axis away from the Gaussian image point, the image of 

the point object is said to be out-of-focus or defocused. As shown in the figure, the image 

of the point object is then a circular patch, known as blur circle and its radius is called 

the blur circle radius.  

A surface, when being imaged by the lens, forms a surface of focused image points 

behind the lens, as shown in the figure. However, due to image detector being planar, 

this surface is not directly recordable in a camera. Often, the images recorded have 

different amounts of blur in different regions (based on the image detector position for 

the object). Hence, observed images are in general shift-variant blurred. From this, it is 

apparent that only a planar object perpendicular to the optical axis can produce a 

perfectly focused image.  

2.2. Mathematical modeling of image formation 

Image formation is modeled by a linear shift-variant system[18-20]. It is given by the 

superposition integral (also known as the Fredholm integral equation of the first kind).  

         ∫ ∫                        
 

 

 

 

 (2.2) 
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In Eq. (2.2),        is the observed (or blurred) image,        is the focused image 

and            is the shift-variant impulse response of the linear system. For a point 

object, when it is in focus, the impulse response is given by the Dirac delta function. 

However, when the object is defocused, the point image gets spread out hence it’s 

known by the name point spread function (PSF). The function            is interpreted as 

a set of 2D PSFs, where each PSF corresponds to a different pixel. Due to the 

assumption that light energy is conserved by the optical system, the PSFs (at every 

location) satisfy the following condition: 

∫               (2.3) 

Defocus is just one type of aberration of an optical system. For a non-paraxial imaging 

system, primary aberrations Spherical, Coma, Astigmatism, Field Curvature and 

Distortion become significant. The images degraded by primary aberrations are also 

described by Eq. (2.2). Thus, different kinds of degradations are described by different 

PSF models. The focus of this work is mainly towards restoring images degraded by 

defocus. However, for completeness all the PSF models are introduced in the following 

section. It is noted that shift-variant image restoration in a general sense includes other 

aberrations.  

2.3. PSF models 

In this section, analytical expressions for defocus PSF models are presented. The 

expressions are derived from geometric optics. In Chapter 6, a brief derivation of 

geometric optics PSF is given. The aberration PSFs are obtained through wave optics. The 

theory of primary aberrations is quite involved and is therefore skipped here. Instead, 

some images are given that highlight the shape of PSFs of different primary aberrations. 
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2.3.1. Defocus PSF models 

In geometric optics, the defocus PSF for a point object at       is centered at the same 

location [21]. Two models for the PSF are frequently used. One of them is the cylindrical 

PSF model given by, 

             {

 

        
                                  

                                                                       

 (2.4) 

In Eq. (2.4),   is the blur circle radius. It is a function of the Gaussian image point 

location and the image detector position. The blur circle radius and in turn the PSF is 

parameterized by camera constants like focal length    and aperture diameter  . The 

second model is the Gaussian PSF model given by 

             
 

          
    (

             

       
)  (2.5) 

The standard deviation        determines the width of the PSF. It can be shown that 

  is proportional to the blur circle radius and the following equation provides a very 

good approximation to the relation. 

   √    (2.6) 

The figure below shows mesh – grid visualization of Cylindrical and Gaussian PSFs.  
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Figure 2.2: Showing Cylindrical PSF of radius       pixels and Gaussian PSF of 

   
√ 

⁄   pixels. The mesh-grid plots were generated on       array.  

 

Note that from Figures 2.2 and 2.3, the assumption of local support domain of the 

geometric optics PSF models is valid. The Cylindrical PSF is zero outside the blur circle. 

Although the Gaussian PSF theoretically has infinite support, the values decay 

exponentially. Therefore, the PSF can be truncated beyond twice the standard deviation 

from the mean.  

 
(a) 

 
(b) 

Figure 2.3: Showing images of (a) Cylindrical and (b) Gaussian PSF model  

2.3.2. Primary aberration PSFs 

Thin lens imaging systems are affected by aberrations when the paraxial optics 

assumption is not valid. The primary aberrations except Spherical aberration are shift-
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variant even for a planar perpendicular object. The amount of aberration depends on 

the axial distance or depth of the object point. The PSFs are obtained by squaring the 

Fourier Transform of the pupil function of the imaging system. A pupil function is a 

complex exponential describing the phase of the wavefront (of light from the point 

object) at different image-coordinate points. The reader is suggested some references for 

further reading [19, 22, 23]. The figure below shows examples of all the primary 

aberrations. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 2.4: Sample primary aberration PSFs. (a) Spherical, (b) Coma, (c) 

Astigmatism, (d) Field Curvature and (e) Distortion (tilt).  

 

2.4. Shift-variant image restoration 

In the previous section, a mathematical model for thin lens imaging system was 

developed that relates a blurred image, the system’s point spread function and the 

underlying focused image. The problem of shift-variant image deblurring amounts to 

solving the superposition integral. Eq. (2.2) can be written in a matrix form        . 

Hence, solving for an unknown focused image with a given blurred image and a known 

PSF is equivalent to solving a linear system of equations. In other words, a correct 

solution to the focused image estimate satisfies the linear system of equations. An image 

of size         , where    is the height and    is the width, produces   equations 
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and the same number of unknowns. Although straightforward solutions are possible 

with such problem formulation, they are highly computationally inefficient. Moreover, 

there is an added problem of the linear systems being ill-conditioned which means that 

the system is highly sensitive to perturbations (noise) in the input, or ill-posed which 

means a unique solution may not exist. 

 A shift-invariant blurring operation is also a linear system of equations similar to 

the one described above. The key difference is that shift-invariant blurring is described 

by the convolution integral.  The convolution integral is a special case of the 

superposition integral and has been extensively studied in signal processing[24, 25]. 

Due to a special property of the Discrete Fourier Transform (DFT), the convolution 

integral is expressed as a product in the frequency domain. Therefore, shift-invariant 

deblurring, also known as Deconvolution, is efficiently implemented using the Fast 

Fourier Transform (FFT) [26-31]. However, it is not possible to directly apply FFT for a 

shift-variant deblurring problem.   

Ill-posedness of the deblurring problem is in general handled by regularization 

technique, which adds additional constraints that a solution must satisfy.  Shift-variant 

deblurring is more challenging than Deconvolution as it is computationally intensive to 

implement a straightforward solution. Therefore, the challenge is to develop algorithms 

that are computationally efficient and yet accurate. In the next section, a survey of the 

different approaches to shift-variant image restoration is presented. 

2.4.1. Literature survey 

Earlier, it was said that shift-variant deblurring is equivalent to solving a large linear 

system. Since direct inversion of such systems is not practical, iterative techniques are 
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employed to solve the problem. One such method was provided by Landweber[32]. 

Landweber’s method finds the best estimate for focused image that minimizes the 

residual (gradient) between the actual blurred image and a blurred image estimate in an 

iterative fashion. This method has been applied in image reconstruction as well as 

image deblurring [33] to restore shift-invariant images. An iteration of the algorithm 

requires computing one blurring operation which is calculating the blurred image 

estimate from the solution. Landweber’s method is known to provide accurate 

solutions. However, its convergence is linear and hence slow. Conjugate gradient 

methods improve the convergence of the gradient based approach [34-37]. Another 

iterative technique is the Lucy-Richardson algorithm [38, 39]. Lucy-Richardson 

algorithm multiplicatively updates the focused image estimate. It incorporates non-

negativity constraint within the algorithm, which is necessary to obtain good quality 

restoration. However, unlike an additive updating scheme, Lucy-Richardson algorithm 

requires two blurring operations per iteration.   

The above iterative schemes are computationally quite expensive. An assumption 

that the variation in blur is small within small regions, say       , is made that 

enables reduction in the computational cost of shift-variant deblurring. A shift-variant 

blurred image is divided into multiple shift-invariant blocks, within which blurring 

operation is expressed by convolution [8, 40]. This is the principle behind sectioning 

methods investigated by Trussel and Hunt [13, 41-43]. Nagy et al have investigated an 

iterative conjugate gradient method based on the same principle [35, 36, 44].   

An alternative to iterative techniques is offered by direct methods. They express 

convolution in each block as a matrix-vector product. The resulting system matrices are 

either Block Toeplitz or Block Circulant, which are solved using singular value 

decomposition (SVD).  However, to decompose the kernel efficiently, it is also required 
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to assume that the kernel (or the PSF) is separable. Kamm et al have investigated SVD 

based methods that invert the linear system efficiently using the Kronecker product [27, 

45-48]. The sectioning shift-variant methods are computationally efficient, however, are 

prone to blocking artifacts that can reduce the quality of the focused image estimate. 

The sectioning methods also tend to be less accurate than their exact iterative 

counterparts. Another way of reducing computational cost is by using coordinate 

transformations to warp a shift-variant blurred image such that shift-invariance holds 

true in the new space[49, 50]. However, this has been possible for only motion blurring 

and Coma in two dimensions.  Time-frequency approaches though theoretically 

interesting are quite computationally expensive [51, 52]. 

Since blurring is a local phenomenon and this observation was used to localize the 

blurring and deblurring operations, an S-Transform based sectioned method was 

investigated for shift-variant deblurring [8]. Later, a localization transformation called 

Rao Transform (RT) was introduced by Subbarao [53-56]. A region comparable to the 

size of the support domain of the PSF is expressed in terms of truncated Taylor’s series. 

This is done for each pixel. The blur integral is then transformed to a partial differential 

equation that expresses a blurred pixel value as the weighted sum of focused image 

pixel and its spatial derivatives at that location. The weights depend on the radius of the 

blur circle.  The single-interval RT (SRT) method derives a small linear system from the 

partial differential equation by differentiating it further. The solution to this local linear 

system provides an estimate of the focused image. Such localized methods do not 

produce blocking artifacts and provide reasonably accurate solutions [53].   

In the following sections some of the algorithms in prior art that are used for 

comparison are discussed in more detail. 
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2.4.2. Gradient based iterative approach 

One of the earliest methods to solve the superposition integral was the gradient based 

iterative approach [32]. It is given as follows. 

 ̂            ̂         [       ∫ ∫            ̂             
 

 

 

 
]   (2.7) 

The term inside the square braces is the gradient in the    space. The above equation 

is also written in a matrix form that is the standard gradient descent approach to 

solving linear systems. The iterative method does not make any assumptions or 

approximations about the kernel, therefore it is exact. However, it has been shown that 

it has linear convergence. The convergence is also seen to depend on the size of the 

support domain of the kernel [35]. The step size parameter   is often modified to 

improve convergence [36]. One such method is found in [33]. There the gradient at 

     iteration is denoted by    . The step-size parameter is expressed in terms of the 

gradient as follows. 

    
‖   ‖ 

‖     ‖ 
 (2.8) 

For the first iteration the mean squared value of the gradient ‖   ‖  could be used. 

The value of    however has to be truncated at      
  ;   

  is the largest singular value of 

the kernel matrix (for details see [33]). The computational complexity of Eq. (2.7) is 

       for a shift-variant kernel having     support domain. The possibility of 

reducing the complexity of Eq. (2.7) through localization is investigated in Chapter 4.  

Other gradient based methods include the Conjugate-gradient family of methods. 

Nagy et al have investigated iterative Conjugate-gradient methods for fast convergence 

[35, 36, 57]. However, the assumption of blockwise shift-invariance is made to improve 
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the computation time of iterations. Youn-sik has compared the performance of the SRT 

method with the Conjugate-gradient methods [57]. The Projection on to Convex Sets 

method is related to gradient based iterative methods [58]. 

2.4.3. The Lucy-Richardson algorithm 

Gradient based methods improve the estimate additively while a multiplicative 

update equation has come to be known by the name Lucy-Richardson algorithm after 

its two (independent) inventors [38, 39]. The Lucy-Richardson update equation for shift-

variant image restoration is given below: 

 ̂            ̂       ∫ ∫
      

 ̂       
                 

 

 

 
 

 

 (2.9) 

In Eq. (2.9),  ̂        is given by: 

  ̂         ∫ ∫  ̂                        
 

 

 
 

 

 (2.10) 

Thus, the iterative method has two blurring (forward) operations per iteration. The 

method has a Bayesian interpretation that has been used in non-linear MAP statistical 

image restoration algorithms [59, 60]. The method has an inbuilt positivity constraint 

that is very useful in image restoration. In this work, Lucy-Richardson algorithm is used 

to restore 3D shift-variant blurred images; Chapter 6.  

2.4.4. Image restoration by spectral filtering 

The direct methods, which estimate focused image in one step by inverting the 

imaging system, are discussed here in detail.  Consider an LSV system in 1D as follows: 
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      ∫              
 

 

 (2.11) 

The above equation is discretized by numerical quadrature [61, 62]  and written in 

the form of a matrix-vector equation below.  

     (2.12) 

In Eq. (2.12), let the length of vectors   and   be  . Each component of the vectors 

represents a sub-interval of interval       .  Naturally, the matrix   is of size     . The 

simplest way to obtain a solution to   in Eq. (2.12) is to invert the matrix  . The 

generalized inverse or pseudo inverse of   may be used to obtain a solution. For a 2D 

image, a system of the form in Eq. (2.12) can be arrived at by lexicographically ordering 

pixels as the components of vectors   and  .  

The above approach has mainly two properties. The system matrices obtained with 

the above approach are often ill-conditioned [17, 61, 62]. That is, they highly are 

sensitive to perturbations during inversion.  Sometimes the problem may be ill-posed, 

in that the solution may not be unique. In such cases some form of regularization, which 

is an elegant technique to produce meaningful solution in the presence of noise, has to 

be incorporated [16, 63] . The least-squares minimization, given below, is often used 

with positivity constraint to achieve meaningful results. 

     
 

   {‖    ‖ 
 }  (2.13) 

The pseudoinverse             is a closed form solution to Eq. (2.13).  

The second property is related to the computational complexity of evaluating Eq. 

(2.12) or (2.13). The complexity of evaluating the two equations grows rapidly with the 

size of the image. For example, a small image of size         pixels, the size of the 

system matrix that has to be inverted is of size         . Therefore, in practice, this 
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approach is never used. Instead, an image is divided into small shift-invariant blocks of 

say       or        and each block is inverted independently. The shift-invariant 

blocks (or convolution approximations) are expressed by a Toeplitz or a Circulant 

system matrix, depending on the boundary conditions. The following provides a 

general overview of matrix-based methods for image restoration.  

The matrix   is decomposed as follows: 

         (2.14) 

In Eq. (2.14),   is the Fourier basis and   contains the coefficients of spectral 

components of  . Then, by filtering the spectral components, noise amplification is 

minimized thereby achieving regularization. Such methods are analyzed using singular 

value decomposition as follows: 

           

 
⇒  ̂  ∑

  
   

  

 

   

    (2.15) 

By scaling the singular values    with filter factors      regularization is achieved. 

Thus the focused image estimate  ̂    is obtained:  

 ̂    ∑   
  

   

  

 

   

    (2.16) 

The simplest form of regularization is the Truncated SVD (TSVD), where the filter 

factors cutoff singular values after a specified number. That is, 

    {
                                 
                          

 (2.17) 
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The Tikhonov regularization method is obtained if the filter factors are defined as 

follows: 

    
  

 

  
     

                 (2.18) 

The Tikhonov regularization method solves the following optimization problem. 

    
 

 {  ‖    ‖ 
    ‖ ‖ 

   }  (2.19) 

The generalized Tikhonov regularization method solves the following minimization 

problem.  

    
 

 {  ‖    ‖ 
    ‖  ‖ 

   }  (2.20) 

In the equation above,   is the Laplacian operator. Eq. (2.20) has the following 

closed form solution, derived by Hansen et al [63]. 

 ̂                       (2.21) 

The above closed form solutions are not suitable for implementation. Instead they 

suggest a quadratic minimization of Eq. (2.20) using Newton’s method. Although the 

methods are analyzed using SVD, the implementation uses Fast Fourier Transform 

(FFT) to perform restoration using Shift-invariance approximation, thereby reducing 

computational requirements. As a consequence, the accuracy of the solution is reduced. 

The restored images contain blocking artifacts that introduce discontinuity at the block 

boundaries. Therefore, quality of the restored image is compromised.  
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2.4.5. Localized shift-variant image restoration 

Section 2.4.4 provided a brief overview of matrix-based methods for shift-variant 

image restoration. They are global in nature, in the sense that the focused image 

estimate is recovered through inversion of large (global kernel) matrices. However, the 

blur kernel due to defocus has limited support domain that is often small compared to 

the size of the image.  For example, a PSF may be of size       whereas, images are 

often much larger than that. This local support is exploited to reduce the computation 

complexity of the superposition integral. This is achieved through a localization 

transformation called the Rao Transform (RT)[53]. The RT method for shift-variant 

image restoration is a matrix-based method called single-interval RT (SRT) method. The 

details of the SRT method are presented here.  

A blurred pixel   at       receives contribution from any pixel whose blur circle 

encloses the current location      . Using change of variables the LSV system can be 

made to express blurred pixel as weighted sum of focused image pixels from a local 

neighborhood centered at the current pixel. This is the central idea of RT and is 

illustrated below. Shift-variant imaging is expressed by the following expression. 

        ∫ ∫                         
 

 

 

 

  (2.22) 

Substituting          and          in Eq. (2.22), the following is obtained: 

        ∫ ∫                                 
   

   

   

   

  (2.23) 

By defining a new localized kernel                           , the above 

equation is rewritten in the following localized form.   
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        ∫ ∫                                  
   

   

   

   

  (2.24) 

The     partial derivative with respect to   and     partial derivative with respect to 

  of a function   of variables   and    is denoted by       . A similar convention is 

followed for other functions. The     moment with respect to   and     moment with 

respect to   of   is denoted by     . Then the various moments of the PSF and its 

derivatives are defined by: 

    
     

  ∫ ∫                             
   

   

   

   

  (2.25) 

In the equation above,                 . The truncated Taylor’s series expansion 

of                , with respect to           is given below. 

                ∑    ∑  
                   

 

   

 

   

  (2.26) 

In Eq. (2.26)     
     

  
  and   

  is the binomial coefficient of the Taylor’s series. 

Similarly, the truncated Taylor’s series expansion of            about       is given 

by: 

            ∑    ∑  
                   

 

   

 

   

  (2.27) 

Substituting Eqns. (2.26) and (2.27) in Eq. (2.24) and changing the order of 

summations and integration, the following expression is obtained.  

        ∑    ∑  
           

 

   

 

   

 ∑    ∑  
               

       

 

   

 

   

 (2.28) 

The coefficients of          above are written in a concise form below, 
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  ∑    ∑  

               
       

 

   

 

   

   (2.29) 

By substituting Eq. (2.29) in Eq. (2.28), the expression for forward RT is obtained: 

        ∑  ∑        
       

 

   

 

   

  (2.30) 

A linear system is obtained by differentiating the above expression w.r.t variables   

and   up to order   and truncating the derivative terms of order higher than  .  
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⇒                (2.31) 

Eq. (2.31) is the localized linear system obtained through RT. The above expression 

is localized in the sense that at each pixel, the blurred image value is expressed in terms 

of the local information (derivatives) of the focused image. The above system of 

equations contains               unknowns and equations. The solution to the 

focused image         is obtained by solving it with standard techniques like TSVD or 

Tikhonov regularization.  

The SRT method is highly computationally efficient and is also parallel. It is possible 

to obtain a closed form solution to focused image based for defocus PSF models derived 

from geometric optics. The SRT system matrices are typically of size     or       

and therefore solving the system is not as expensive as SVD based methods. Moreover, 

since no sectioning is made, no discontinuity or blocking artifacts are produced in 

restored images. However, the truncated Taylor’s series expansion hinders the 
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performance of SRT method for large amounts of defocus. This problem is addressed 

through the multi-interval RT (MRT) method in Chapter 3.  

In spite of SRT being computationally efficient, its performance could be improved 

by solving the system iteratively rather than through a direct inversion. Iterative 

implementation provides more control over the progression of the solution towards a 

focused image estimate.  This approach is investigated in Chapter 4.  

2.5. Summary 

In this chapter, image formation in a thin lens was presented. The optical system 

was modeled as a linear shift-variant system. The relation between a blurred image, its 

underlying focused image and the optical system was expressed as a superposition 

integral. The problem of deblurring image was stated as equivalent to solving the 

superposition integral. The Landweber’s method and the Lucy-Richardson algorithm 

were presented in detail. Computationally efficient sectioning methods like SVD based 

Tikhonov regularization was also discussed in detail. Finally, localized approach to 

shift-variant image deblurring (SRT) was presented in detail.  

The sectioning methods presented in this chapter produce blocking artifacts that can 

reduce the quality and accuracy of the focused image estimate. The exact iterative 

methods are very expensive to implement. Although the SRT method avoids blocking 

artifacts at lower computational cost, it has some drawbacks. Mainly, the SRT methods 

perform well for images blurred by low amount of defocus. Moreover, inverting a small 

linear system at every pixel is not necessarily the best approach to finding the focused 

image estimate. In Chapter 3, the MRT method is investigated, which alleviates the 

issue of restoring non smooth (high-frequency) images.  Then in Chapter 4, the SRT 
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method is modified to produce an iterative update equation that makes the method 

more computationally efficient and stable. 
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3. Restoring Highly Defocused 

Images 

In the previous chapter the fundamentals of shift-variant image restoration were 

presented. RT based matrix method called single-interval RT (SRT) was also discussed 

in detail. The computationally efficient SRT method exploited the localized nature of 

degradation due to blur in image forming systems. However, due to truncated Taylor’s 

series expansion the SRT method was found to be not suitable for restoring highly 

defocused images in which the support domain of the PSF is quite large. In this chapter, 

the multi-interval RT (MRT) approach to solve the problem of large support domain is 

investigated.  In the MRT method, the local support domain is divided into several sub-

regions and then expressed in terms of truncated Taylor’s series polynomial. The 

focused image estimate is then recovered iteratively. In such an approach the 

advantages of localization and parallelizability of RT are retained, however, at 

increased computational cost.  

The rest of the chapter is organized as follows. In section 3.1, the background and 

motivation for MRT approach are presented by analyzing the shortcomings of the SRT 

method. In section 3.2 and 3.3, detailed derivation of MRT method in 1D and 2D are 

presented. Section 3.4, discusses some implementation details and presents the 
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computational iterative algorithm for shift-variant image restoration. Section 3.5 

discusses the properties and experimental results of the algorithm. In Section 3.6, a fast 

deblurring MRT technique is presented.  

3.1. Background 

In the RT based methods, due to the truncated Taylor’s series expansions blurred 

images are expressed in terms of derivatives of focused image. Therefore, an explicitly 

local approach to shift-variant image deblurring is possible with RT.  Taylor’s series 

expansion central to RT based methods, however, is inaccurate for defocus with large 

support domains.  Such inaccuracies can be reduced by including additional higher 

order terms in the Taylor’s series polynomial of the SRT method. This approach will 

increase the size of the kernel matrix at each pixel, keeping all the advantages of the RT 

based technique. However, in practice, this is approach is not feasible as numerical 

differentiation of data for higher order derivatives are often corrupted by noise.  

An alternative approach is to divide the local support domain into multiple smaller 

intervals as illustrated in Fig. 3.1. In this Figure, the largest support domain is taken to 

be a region of size       pixels. It is divided into 9 sub-regions of     pixels. Each 

sub-region is denoted by    , with    containing current pixel at      . The sub-regions 

also contain reference points         as shown in the figure. Following the same 

principle as in the SRT method, the focused image in each sub-region is modeled by a 

local truncated Taylor’s series about its reference point. Then, a system of equations is 

derived for each sub-region. At each pixel, the MRT system then becomes a sum of 

matrix-vector products; each product term coming from a sub-region. MRT approach 

for 1D will be a projection of the 2D diagram shown below. 
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Figure 3.1: Illustrates the multi-interval RT approach for a PSF of       pixels 

support domain. The sub-regions are     pixels in size. A     highlighted area at 

the center shows the extent of the support domain of SRT method for which accurate 

restoration is possible.     

3.2. The Multi-interval RT technique in 1D 

The blur integral in 1D with blurred image  , focused image   and the shift variant 

PSF   is given by,  

      ∫       
 

 

        (3.1) 

Following the Multi-interval idea, let the local region       be split into          

non-overlapping parts. Now define:  
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         {
                                
                                            

 (3.2) 

And 

        {
                                 

                                                
 (3.3) 

Now, Eq. (3.1) is rewritten as, 

      ∑  ∫        
  

  

        

 

     

 (3.4) 

 
⇒       ∑        

 

     

 (3.5) 

Eq. (3.5) is the sum of partial blur integrals and       is the partial blur contribution 

from     sub-region to pixel at  . A reference point    is chosen such that it is within the 

    sub-region (usually at the center) for each sub-region. The partial blur integrals in 

the above equation are transformed by applying RT. Substitute          with    being 

the reference point for that interval. After the transformation       becomes: 

        ∫                      
     

     

 (3.6) 

The function          expanded in Taylor’s series with respect to the reference 

point is given below. 

          ∑         
   

    

 

   

 (3.7) 

In the expression above              and   
   

     is the     derivative of the 

function. Substituting for           in Eq. (3.6) from Eq. (3.7), the following expression 

is obtained. 
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        ∑       
   

    

 

   

∫                
     

     

 (3.8) 

Define the     partial moment of the PSF as, 

           ∫                
     

     

 (3.9) 

Differentiating Eq. (3.8) w.r.t     times and truncating at order   a linear system is 

derived, as in SRT. 
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 (3.10) 
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(3.11) 

The above equation is written in a matrix form as below. 

                   (3.12) 

Hence, the original SRT matrix relation is now written as a sum of matrix-vector 

products due to multi-interval formulation. The multi-interval matrix relation is given 

below, 

     ∑            

 

     

  (3.13) 

In Eq. (3.12),        corresponds to the sub-region at the center of the support 

domain of the PSF. The unknown focused image at the current pixel is in the vector   . 

The         estimate for    is found by the following update equation: 
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     [     ∑        
     

 
       
   

 ]   (3.14) 

In the computer implementation, the iterative scheme was terminated after 4-5 

iterations. 

3.3. The Multi-interval RT technique in 2D 

In the previous section, the Multi-interval RT technique was derived for one-

dimensional signals. It will now be extended to 2D. The blur integral with blurred 

image,    focused image   and the shift-variant PSF    is given by: 

         ∫ ∫                        
 

 

 

 

 (3.15) 

Following the multi-interval the local region,       and       , is splint into 

         non-overlapping parts.  An example of it for a       support is shown in 

Fig. 1. In the figure, the size of each sub-region is     with a total of nine sub regions, 

i.e., l = 4. Now, similar to 1D case, define: 

             {
                                               

                                                                           
 (3.16) 

                  {
                                                       
                                                                               

 (3.17) 

Eq. (3.15) is then expressed as the sum of partial blur integrals by using Eqns. (3.16) 

and (3.17). 

         ∑ ∫ ∫                           
  

  

  

  

 

     

 (3.18) 
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               ∑                                                            

 

     

 (3.19) 

In Eq. (3.19),         is the partial blur contribution from     sub-region to the 

blurred pixel at      . Reference point         is chosen such that the point is within the 

    sub-region. Then, each partial blur integral in the above equation is transformed by 

changing variables,   and   to          and          with         being the 

reference point for that interval. Then the partial blur contribution          is expressed 

by, 

          ∫ ∫                                       
     

     

     

     

 (3.20) 

The function               expanded in Taylor’s series with respect to the 

reference point         is given below. 

               ∑ ∑     
            

       
       

 

   

 

   

 (3.21) 

In the expression above,              and   
       

        is         and 

    partial derivative of the function w.r.t variables   and   respectively. Also   
  is the 

binomial coefficient of Taylor’s series expansion. Substituting for                in 

Eq. (3.20) from Eq. (3.21), the following expression is obtained. 

        

 ∑ ∑     
     

       
       

 

   

 

   

∫ ∫                                
     

     

     

     

 
(3.22) 

Define the           partial moment with respect to variables   and   as follows: 

                 ∫ ∫                                
     

     

     

     

 (3.23) 
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Substituting Eq. (3.23) in Eq. (3.22) the partial blur is expressed in terms of the 

derivatives of the function    at the reference point         . 

          ∑ ∑     
     

                               

 

   

 

   

 (3.24) 

Derivatives of the above equation w.r.t   and   truncated at order    is expressed by:  

  
          

  ∑ ∑     
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(3.25) 

Where               and the truncation function    defined as: 

           {
                                          
                                                       

 (3.26) 

By grouping the coefficients of   
               together, the partial blur integral in the 

    sub-region is written as a matrix-vector product:  
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 (3.27) 

                            (3.28) 

The SRT matrix relation is then expressed as a sum of matrix-vector products: 

        ∑                 

 

     

 (3.29) 

Carrying out similar algebraic manipulations as in the 1D multi-interval case the 

following iterative update equation is derived. 
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       [       ∑          
        

 
       
   

 ]   (3.30) 

The term   
        in the equation above is computed using SVD. Using SVD, 

Tikhonov regularization can be readily incorporated in to the method; see Sec 2.4.4.  

3.4. Computer implementation of MRT 

In the previous sections, mathematical formulations of the MRT method were 

presented. In the SRT method, PSF moments were computed through analytical 

expressions [53]. The partial moments in Eq. (3.23) have to be computed through 

numerical integration of the global form PSF  .  A global form PSF is obtained from the 

PSF models through simple variable transformations.   

3.4.1. Selecting the sub-regions 

The formulation of the multi-interval method allows for the sub-regions to be 

rectangles of different sizes. The segmentation depends on the shape of the PSF. For 

defocus, since the PSFs are circularly symmetric sub-regions were of equal size as 

shown in Fig. 3.1.   

3.4.2. Computing the PSF partial moments 

The expression for computing the partial moments of PSF and its derivatives are 

given in Eq. (3.23). The kernel   is in global form. Therefore, the kernel at every location 

has to be computed through the following relation between the PSF models.  
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                          (3.31) 

In the equation above,   corresponds to the PSF models discussed in Chapter 2; see 

Section 2.3.1.  Note that the PSF   changes for every position           . The partial 

moment is then computed using simple numerical integration techniques. Derivatives 

of the PSF are obtained by differentiating the PSFs w.r.t   and  . The moments of the 

derivatives of the PSF are then computed using numerical integration.  

3.4.3. Image differentiation filters 

Differentiation in 1D is carried out by centered differences derived from Taylor’s 

series [61, 62]. For computing image derivatives, convolution differentiation filters 

provide an inexpensive way to estimate image derivatives. Many differentiation filters 

exist [64-66]. However, the choice of the filter depends on the data and its noise 

characteristics. Two filters were used in implementation of localized shift-variant 

restoration algorithms. The noise robust gradient operator (NRIGO) is provided by 

Holborodko[66]. It performs well under the presence of noise and thus limiting noise 

amplification during restoration. The   derivative is given by: 

 

  
          [

       
       
       

] (3.32) 

The   derivative is given by the transpose of the filter above. Higher order 

derivatives (up to order 3) are obtained by repeated differentiation.  

The second filter computes the coefficients of a local bivariate cubic polynomial in a 

    region. The cubic polynomial is expressed below. 
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(3.33) 

The coefficients themselves provide the values of the derivatives at the current pixel. 

They are obtained by convolving the image with the filters in Fig. 3.2. 

The MRT method is summarized below. 

The MRT method  

                      
                                                      
                                              

            
           

       [            ∑          
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Algorithm 3.1: The Multi-interval RT iterative algorithm to obtain focused image 

estimate, given a blurred image and 2D shift-variant PSFs  
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Figure 3.2: Showing different convolution filters for computing the coefficients of 

Eq. (1.31). Filter    computes the coefficient    . For a derivation of the filter and 

further discussions refer [67, 68].  
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3.5. Experiments and discussion 

An experiment with a 1D sine function is presented first, which verifies the theory 

behind the MRT method. The simulation experiments demonstrate that the MRT 

method converges. The behavior of the MRT method is discussed with some simulation 

experiments. It is also compared with the SRT method in experiments.  

3.5.1. Sine function example 

A sine wave, with a period T = 13, was blurred by a Gaussian PSF in 1D. The size of 

the blurring Gaussian kernel was      . The blur parameter    of Gaussian PSFs varied 

from 20% to 40% of T. In all cases, Taylor’s series expansions were truncated at third 

order.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3.3: Shows the progression of solutions from MRT algorithm.  (a) Sine 

function and its shift-variant blurred version. (b) Restoration at first iteration, 

RMSE=0.0229. (c) & (d) Restoration at second (RMSE=0.0110) and third iterations 

(RMSE=0.0147). (e) Restoration at fourth (RMSE=0.0117) and (f) SRT restoration 

(RMSE=0.0277) 
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Figure 3.3 shows clearly that the restored signal follows the original signal closely 

even for an analytic function and that a local truncated Taylor’s series provides 

approximation with sufficient accuracy. The small discrepancy towards the end is 

attributed to errors due to boundary conditions, see Fig. 3.3. 

 

Figure 3.4: Showing RMS errors of blurred and restored signals. The     iteration 

corresponds to the RMS error between blurred and original signal. The errors for 

iterations 1-5 show that the RMS is not strictly convex. This type of behavior was 

seen for iterations starting with blurred signal as the initial guess.  

3.5.2. Simulation experiments 

All experiments in 2D were carried out with a maximum PSF size of 21×21 pixels 

with each sub-region being 7×7 pixels. The MRT method was implemented in Matlab 

without any kind of code optimization. PSF moments were computed using simple 

numerical integration. In all the experiments the blur parameter was assumed to vary 
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linearly in image coordinates. This linear variation was used as a hash function to store 

and fetch PSFs based on its       location. This is an efficient way of storing shift-

variant PSFs. The worst case scenario is to store the PSFs at each pixel. However, such 

cases do not occur often in practice. It was observed that for sufficiently smooth images 

regularization was not required. A regularization method such as Tikhonov 

regularization should be used for restoring noisy images.  

The Pumpkins image in Fig. 3.5 (a) was obtained at from the URL in [46]. The image 

was blurred by Gaussian PSF   increasing from 1.5 pixels at the top to 4.0 pixels at the 

bottom; see Fig. 3.5(b). The restored image at      iteration with zeros as the initial 

solution is shown in Fig. 3.5(c). The relative MSE between the focused image and the 

restored solution was 0.0175. Fig. 3.5(d) shows the image in Fig. 3.5(b) restored by the 

SRT method. Although the overall quality of the restored image is acceptable, the image 

has ripple-like artifacts around step edge features in the image; see the cropped images 

in Fig. 3.6. This type of artifact is seen in MRT restoration as well, however, to a lesser 

extent.  It is also noted that the relative MSE between the focused image and the 

restored solution was 0.05. 

 Another example is the Poster image in Fig. 3.7(a). It was acquired using Olympus 

C3030 digital camera by placing the poster perpendicular to the camera axis. The Poster 

image was blurred with Gaussian PSF   varying from 2.0 pixels at left top corner to 4.0 

pixels at right bottom corner. Fig. 3.7(b) shows the blurred image.  Restored image at 

     iteration with zero as the starting solution is show in Fig. 3.7(c). The relative MSE 

after 5 iterations was 0.0436. Fig. 3.7(d) shows the result of SRT restoration. The 

highlighted part in Fig. 3.8 shows that MRT restoration performs better when the 

underlying focused image is not smooth.  
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The MRT method was found to converge to a solution in about 4-5 iterations. It was 

also observed that the relative MSE starts growing slowly after a few iterations. The 

table below shows relative MSE for the two simulation cases.  

Image Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Poster 0.1210 0.0515 0.0444 0.0437 0.0436 

Pumpkins 0.0847 0.0233 0.0189 0.0176 0.0177 

Table 3.1: Shows the relative mean squared error between the focused image and the 

restoration estimates at different iterations. 

 

The MRT method is spent about 2 min per iteration (for         image) on an 

Intel core-2 PC with 2GB of RAM. The SRT method is at least twice as fast and provides 

the solution in one step. Some of the computational cost issues are addressed through 

an iterative variant of the SRT method in the next chapter.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.5: (a) Original Pumpkins image, (b) Pumpkins image blurred by shift-

variant Gaussian PSF (         pixels from top to bottom) and (c) Focused image 

estimate after 4 iterations relative MSE = 0.0175 (d) SRT restoration relative MSE = 

0.05. 



47 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.6: (a) Pumpkins image at original scale (cropped), (b) Blurred image, (c) 

MRT restoration (crop) (d) SRT Restoration (crop) 
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Figure 3.7: (a) Original Poster image, (b) Poster image blurred by shift-variant 

Gaussian PSF (       pixels from top-left to bottom-right), (c) Focused image 

estimate after 5 iterations; relative MSE = 0.043 and (d) SRT restoration; relative MSE 

= 0.074 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.8: (a) Poster image at original scale (cropped), (b) Blurred image and (c) 

MRT restoration (crop) (d) SRT Restoration (crop). The highlighted region shows the 

ineffectiveness of SRT restoration when the underlying focused image is not smooth. 

3.5.3. Experiments on real images 

Fig.3.9 shows results for a naturally blurred image. The Alphabet image was 

acquired by Olympus C3030 digital camera by placing a planar printed object inclined 

with respect to the camera axis. The resolution of the original Alphabet image is 

        pixels. For tests with Alphabet image, the PSF was assumed to be a shift-

variant Gaussian function. The blur parameter   was assumed to vary only along the 

horizontal direction (along x-axis or rows). It was estimated to change linearly from 4.5 

pixels at the left border to 1.5 pixels near the center (column 230) and then increase back 

to 5.0 pixels at the right border. The results shown in Fig. 3.9(c) were obtained after 

three iterations, with regularization parameter value 0.1. Fig 3.9(b) shows the SRT 

restoration for the same parameters. It is clear that the quality of restoration is better 

from MRT algorithm. 
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(a) 

 
(b) 

 
(c) 

  

 

(d) 

Figure 3.9: Restoration examples for real image. (a) Input blurred image, (b) SRT 

restoration, (c) MRT restoration and (d) Comparison of SRT and MRT restorations at 

70% of original scale. 

3.6. Fast deblurring by extrapolation of local solution 

The solution vectors         contain the function value f and its various partial 

derivatives at each pixel. This could be exploited to save computation time at the cost of 

some reduction in accuracy. For every     block centered at       , the solution to all 

pixels can be obtained through extrapolation using Taylor’s series. This way, each 
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    block requires one solution computed iteratively using the MRT technique. This 

fast extrapolation could result in a factor of     improvement in computation time.  

For experiments, the blurred images were divided into      blocks, and solution 

was computed at the center pixel for each block. A factor of 6~7 improvement was 

observed in computation time. Example results are shown in comparison with the MRT 

method in Fig. 3.10.  For the Alphabet image, a regularization parameter of 0.1 was 

used. The figure shows results that are visually acceptable with significant reduction in 

computational cost. The fast technique permits tradeoff on quality for significant 

improvements in computation time.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.10: (a) & (b) MRT and Fast extrapolation MRT restoration for Alphabet 

image, (c) & (d) MRT and Fast extrapolation MRT for Poster image. Relative MSE for 

the Poster image was 0.048 

 

3.7. Summary 

A multi-interval approach to deblur highly defocused images was presented. The 

MRT method iteratively recovers a solution for focused image. It was observed that the 

method converged after about 4-5 iterations in most cases. Through experiments, it was 

demonstrated that the MRT method is effective in deblurring highly defocused images 

that are not smooth. The MRT method also improved the accuracy of the solutions 
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compared with the SRT method. Using the SVD formulation, Tikhonov regularization is 

easily incorporated in to the method. However, the MRT method is very expensive in 

terms of computational cost. Most of the time is spent on the matrix-vector products, 

including the final product with the inverse of the central sub-kernel matrix. It is noted 

that alternative iterative update equations are possible with the multi-interval 

approach. One such example is by algebraic manipulation of Eq. (3.24) and substituting 

it in Eq. (3.19). This bypasses the matrix-vector formulation of the deblurring problem 

and hence should be more computationally efficient. A similar iterative update 

equation is investigated for the SRT method in the next chapter.      
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4. Localized and Efficient Iterative 

Restoration Algorithms  

The MRT method for deblurring highly-defocused images was investigated in the 

previous chapter. It provided better restoration results than the previously discussed 

SRT algorithm for images that are not smooth and highly defocused. Although the MRT 

method was effective, it was computationally expensive compared to the SRT method. 

An alternative to matrix formulation for estimating the focused image is provided by 

iterative update equation derived from the forward operation equation.  Since the 

iterative methods improve solutions gradually, they tend to provide more control over 

the solution.  

In this chapter two localized iterative methods, based on SRT, are investigated in 

detail. The first method is directly derived from the forward RT equation and the second 

method simply uses the forward RT equation to estimate the gradient for the 

Landweber’s method discussed in Chapter 2; see Section 2.4.2. Computational 

algorithms are analyzed for complexity, numerical stability and conditioning. The 

iterative methods also provide some new insight into the ill-conditioned nature of the 

deblurring problem. Deblurring noisy images is also discussed in detail. Throughout 

the experiments, the iterative methods are compared against the Landweber’s method 
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and the Tikhonov regularization method (Section 2.4.4) for computation time, accuracy, 

robustness against noise and quality of restoration. The methods are also tested on real 

data.    

4.1. RT iterative method derivation 

The two new iterative techniques are derived from the forward RT equation. A 

detailed derivation of the SRT method is presented in Sec 2.4.5.  Since the iterative 

techniques have similar derivation up to the forward part, the steps are skipped here to 

avoid redundancy. Therefore, the derivation begins from the forward RT equation. 

  The relation between the blurred image and the underlying focused image can be 

expressed through the differential equation: 

        ∑ ∑      
        

 

   

 

     

 

   

 (4.1) 

where, 

            
  ∑    ∑  

                  
       

 

   

 

   

   (4.2) 

In the equation above,     is 
     

  
 and   

   is the binomial coefficient. Eq. (4.2) is 

called forward RT. An iterative equation for estimating the focused image is derived by 

algebraic manipulation of the equation above. The function value at       is isolated 

from the summation as, 
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 (4.4) 

Eq. (4.4) is used to obtain an iterative updating scheme to obtain           at step 

       using the estimated solution          at step   as: 

          
 

     
[               ∑ ∑       

        

 

   

 

     

 

   

  ]  (4.5) 

Eq. (4.5) recovers the focused image estimate iteratively by starting with a suitable 

initial guess. In the equation, the coefficient      is usually equal to one. Therefore, with 

zero as the initial guess the first iteration solution is the blurred image. At every step, 

the estimate   is differentiated to compute the summations on the right hand side. The 

coefficients      consist of the moments of the PSF. For symmetrical PSFs such as 

Cylindrical and Gaussian, the odd moments vanish. Hence the number of terms in the 

summation on the right hand side is reduced. Later, analytical expressions for these 

moments will be presented.  

4.2. Computational algorithm and implementation  

The step by step procedure for the RT iterative (RTI) technique is given by 

Algorithm 4.1. The method above lacks a step-size parameter.  It is sometimes useful to 

have a step size parameter that controls the rate of convergence of an iterative 

technique. Therefore, as an alternative to the above equation, the Landweber’s method 

[33] is implemented using RT to have more control. The blurring operation required in 
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the Landweber’s method is efficiently implemented using forward RT, i.e. Eq. (4.1). The 

step by step procedure for implementing the Landweber’s method using RT (RTLW) is 

presented in Algorithm 4.2. 

 

Algorithm 4.1: RTI Algorithm for estimating focused image for a given blurred 

image and 2D shift-variant PSFs 

 

The RT  based Landweber Iteration 

                                                              

                                           

             ̂            ∑ ∑          
 
   

                
     

                                   [        ̂          ]  

               (                      ) 

                     

                               

                       Compute      

                                       
                  
                                   

Algorithm 4.2: RTLW Algorithm for estimating focused image for a given blurred 

image and 2D shift-variant PSFs 

 

 

The RT Iterative Technique 

                                                              

                                           

               (                      ) 
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4.2.1. Computing PSF moments 

The PSFs for Defocus aberration are modeled by 2D Cylindrical and 2D Gaussian 

functions. The Cylindrical PSFs are parameterized by blur circle radius  . In case of a 

Gaussian PSF model the spread parameter is    and it is proportional to the blur circle 

radius. For simplicity only linear variation in the spread parameters is considered. That 

is, the blur circle radii of the PSFs are modeled by the following equation: 

                        (4.6) 

In the above equation    and    represent the slopes along   and   axes 

respectively. A similar equation could also be written for the parameter        . The 

moments of the PSFs are expressed in terms of the blur parameters of the PSFs. For 

Cylindrical PSF, the moment coefficients are computed using: 

    
     

  

       

        
                

                     ∫            
  

 

      
(4.7) 

For a Gaussian PSF, the moments are computed using: 

    
  (

 

  
)    √       (

   

 
) (

   

 
)                       (4.8) 

The moments of derivatives of the Gaussian PSF are obtained by differentiating 

        in the above expression.  

Due to circular symmetry the odd moments of both the PSFs vanish. By limiting the 

order of Taylor’s series expansion to two, Eq. (4.1) can be expanded and written 

explicitly as, 
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(4.9) 

Similarly, for a third order Taylor’s series expansion the following expression is 

obtained. 

                    
     

                 
     

           

           
     

                      
     

           

           
     

                      
     

           

           
     

                      
     

              

(4.10) 

Eqns. (4.9) and (4.10) are used in step 3 of the iterative algorithms. Note that         in 

Eq. (4.9). This is due to the requirement of PSF to conserve energy. For cases when the 

change in PSF is abrupt or if the PSFs are not smooth, the Taylor’s series expansion 

above may not be suitable. Then, the moments have to be estimated through numerical 

integration. Note that moments are required to be computed only once in the 

preprocessing step of the iterative algorithms. 

4.3. Analysis 

A discussion of the different features of RT based iterative techniques is presented 

here. The algorithm is analyzed in terms of its computational complexity.  Some 

comments are provided on its parallelizability and stability.   
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4.3.1. Computational complexity 

For the purposes of this discussion an image of size       is considered. The total 

number of pixels in the image is        .  The iterative computations in both RTI and 

RTLW algorithms can be divided into two main steps. 

The first step is the estimation of derivatives of the current solution. Differentiating 

an image is a convolution operation; see Section 3.4.3. Therefore it is possible to use FFT 

to estimate the derivatives in          operations or lesser. If the size of the 

differentiation filter is less than       then the spatial domain implementation is 

possible with              .  

The second step is to update the focused image estimate. Since RT expresses blurred 

image as a weighted sum of focused image and its derivatives, there are   operations 

per pixel or,       operations for the entire image. Note that     and       . 

For Defocus blur many of the weights vanish making     , see Eq. (4.9), which is 

quite less than      for most images.  

Therefore, the number of operations per iteration is                  

          .  

4.3.2. Parallelizability 

Due to localization of the blur integral equation, the RT method makes 

parallelizability of computation explicit. Convolution operation of differentiating the 

focused image estimate is easily parallelized if implemented in the spatial domain. The 
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second step involves finding a sum of products at every pixel, which also is 

straightforward for a parallel implementation.  

4.3.3. Numerical stability and conditioning 

It is well known that ill-posed inverse problems are solved using some form of 

regularization. By choosing smooth differentiation filters and truncated Taylor’s series, 

RT based methods implicitly perform regularization during restoration.  

An interesting observation can be made from the RT iteration update equation. It is 

that, in updating the focused image estimates the derivatives (which amplify noise) are 

multiplied by the PSF moments; see Eqns. (4.9) and (4.10). The PSF moments are 

proportional to a power of the blur circle parameter. In fact, roughly the     moment is 

proportional to the     power of the blur circle parameter. Therefore with increasing 

blur, the moments grow rapidly and in turn multiply the derivatives. This provides a 

localized perspective to the conditioning of the inverse problem. That is, in regions of 

the image affected by large blur the inversion is more sensitive to noise amplification.  

Therefore it is imperative that the noise in the derivative estimates be suppressed more 

in regions where there is large blur. In extreme cases, it may be necessary to truncate the 

derivative estimates to keep the errors in check. 

4.4. RT iterative, MRT and SRT methods 

In this section, a brief comparison of RT iterative methods is made with the MRT 

and the SRT methods. The Poster image, shown in Fig. 4.1(a), was blurred with 

Gaussian PSF   varying from 2.0 pixels at left top corner to 4.0 pixels at right bottom 
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corner. The blurred and the restored images from various RT based methods are shown 

in Figs. 4.1(b)-(e). The cropped images of restoration in Fig. 4.2 show that the MRT 

method is slightly better in terms of accuracy and quality of restoration. However, the 

RTI technique recovered the restored images in five iterations and the total time spent 

was about 3.6 seconds. The MRT method on the other hand spent about 120 seconds per 

iteration. The comparisons only provide a broad idea of computational complexity of 

the methods as the time measurements were for unoptimized Matlab implementations. 

In general, the RT iterative method is faster as it has to perform only sum-of-products 

operation at every pixel instead of matrix-vector products. The same argument holds 

for comparing SRT and RT iterative methods. Additionally, the SRT methods are 

known to be not suitable for large blur and the RT iterative method may perform better 

compared to SRT method for highly defocused images. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 4.1: Showing original, blurred and restored Poster image. (a) Original Poster 

image, (b) Blurred image, (c) MRT restoration (ReMSE = 0.043), (d) SRT restoration 

(ReMSE = 0.074) and (e) RT iterative restoration (ReMSE = 0.050).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 4.2: Showing cropped parts from Fig. 4.1.  (c), (d) and (e) correspond to MRT 

restoration, SRT restoration and RT iterative restoration respectively. The 

highlighted part shows that MRT method is able to recover the underlying structure 

better than SRT and RT iterative methods.  

4.5. Comparison with other deblurring methods 

In this section RT iterative method and RT based Landweber’s method are 

compared with modified Landweber’s method [33] and Tikhonov regularization using 

SVD [63]. For comparison, the implementation of SVD available on the internet [46] was 

used. The table below denotes the abbreviations used in plots and the discussion below. 

Name  Description 

RT 

RTLW 

LW 

Tikh32 

Tikh64 

RT based method (Algorithm 1) 

RT based Landweber iteration (Algorithm 2) 

Modified Landweber iteration 

32x32 blocked Tikhonov regularization (SVD) 

64x64 blocked Tikhonov regularization (SVD) 
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The methods are compared both quantitatively and qualitatively. For quantitative 

comparison relative mean squared error (ReMSE) was chosen as the metric to determine 

accuracy.  

       
∑( ̂   )

 

∑  
 

Two kinds of quantitative comparison experiments were carried out. First set of 

experiments measured the computation time (in seconds) to obtain the most accurate 

estimate for the focused image. The second set of experiments focused on a comparison 

of noise sensitivity of the different deblurring algorithms. Gaussian noise was added at 

different SNRs, ranging from 30dB to 10dB, and the best ReMSE of the outputs of 

different techniques were recorded.  

4.5.1. Computation time comparisons 

The Sine image in Fig. 4.4 was blurred with Cylindrical PSFs with radii increasing 

linearly from left to right. The minimum radius was 1.5 pixels and the maximum radius 

was 11.0 pixels. The size of the blurred images considered varied from         

to           . The different shift-variant restoration techniques were run on a PC 

with Intel’s Core 2 processor with 2.13 GHz clock speed and 2 GB of RAM. The 

algorithms were implemented in Matlab. The numbers give a general idea of the 

computation time requirements of different methods without any kind of code 

optimization. The time to obtain best estimate is tabulated below. 
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 Pixels RT RTLW LW Tikh32 Tikh64 

Computation 

time (ratio 

with RT) 

128 128 

256 256 

512 512 

1024 1024 

0.0364s 

0.1965s 

0.6316s 

2.4090s 

1 

1 

1 

1 

2.54 

1.61 

2.28 

1.91 

177.39 

136.00 

168.05 

175.58 

4.40 

5.40 

5.30 

5.49 

2.21 

1.66 

2.55 

2.22 

Table 4.1. Measured time (in seconds) to generate best ReMSE estimate for blurred 

images of different size 

 

The table clearly shows the computational efficiency of RT. It was observed that the 

RT method converges to the best solution within three-four iterations on average. The 

RT based Landweber’s (RTLW) method behaved almost exactly as the Landweber’s 

method, see Figure 4.3. It compares the typical behavior of RT based methods against 

Landweber’s (LW) method. The restoration results of various techniques are shown in 

Fig. 4.4. Careful inspection of the solutions obtained from Tikhonov regularization 

show blocking artifacts. It is noted that block size has to be chosen through trial and 

error to obtain the best results. On the other hand, the methods proposed in this paper 

produce no visible blocking artifacts.  
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Figure 4.3: Showing a typical pattern of ReMSE error versus iterations of RT and 

RTLW algorithm compared against LW algorithm. 
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               (a) 
 

 

               (b) 
 

 

               (c) 
 

 

              (d) 
 

 

               (e) 
 

 

               (f) 
 

Figure 4.4: Showing restoration for Sine image, (a) Blurred image, (b) Restoration by 

LW method (c) RTLW method, (d) RT method, (e) Tikh32 and (f) Tikh64. 
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4.5.2. Restoration of noisy images 

Several images were blurred with both Cylindrical and Gaussian shift-variant PSFs. 

The blurred images were then degraded with different amounts of noise. The amount of 

noise considered for the experiments were in the 0.1 to 10 percent range of signal 

power. This is indicated in the plots through SNR from 10dB to 30dB.  

The blurred images were computed at double precision, digitized and stored, hence 

also adding quantization noise. The noisy blurred images were smoothed with a small 

Gaussian filter before feeding into the restoration algorithms. This was done to keep 

noise levels at a minimum in iterative techniques as they do not regularize noise 

amplification. The RT based methods implicitly minimize noise amplification at the 

time of computing the derivatives. The application of a noise suppressing derivative 

filter is critical to obtain satisfactory results from RT based methods in the presence of 

noise. 

Figure 4.5 suggests that the LW method estimates the solution with highest 

accuracy. The RT based methods are slightly more accurate compared to Tikhonov 

regularization methods. The improvement in accuracy over Tikhonov regularization 

depended on the local smoothness of images. The RT based methods are expected to 

behave this way as they approximate the focused image through a truncated Taylor-

series polynomial. Tikhonov regularization loses accuracy by assuming shift-invariance 

in small blocks. For applications where accuracy is critical the estimate obtained 

through RT could be used as the starting solution for the LW method. This should 

greatly speed up the process of obtaining a more accurate estimate to focused image. 

Figures 4.6 and 4.7 show the restored images obtained for a 20dB SNR and a 10dB SNR 

case respectively. The plots in Figure 3 indicate that the RT based methods work quite 
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satisfactorily up to 20dB SNR. It appears that more noise suppression in computation of 

the derivatives is required to obtain better results at higher levels of noise, that is, when 

SNR is less than 20dB. It is also observed that Tikhnov regularization performs well 

under large amounts of noise. 

 

 

Figure 4.5: Noise sensitivity plot for Sine image (top) and Lena image (bottom). The 

amount of noise roughly doubles every step on the horizontal axis. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.6: Noisy Lena image restoration. (a) Blurred Lena image (with Cylindrical 

SV-PSFs, radius: 1.5 pixel at the top - 4 pixels at the bottom) at 20dB SNR, 

Restoration by (b) LW method, (c) RTLW method, (d) RT method, (e) Tikh32 and (f) 

Tikh64. 
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Figure 4.7: Order: Left to right and top to bottom, Blurred Sine image (with Gaussian 

SV-PSFs, sigma: 1.5-6 pixels) at 10dB SNR, restoration by LW method, RTLW 

method, RT method, Tikh32 and Tikh64. 
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4.5.3. Qualitative comparison 

The blocking artifacts observed with sectioning methods are discussed here. The 

figure below highlights the region in the image that is compared at original scale. Both 

Pumpkin and Sine images shown are obtained from RT iterative method. To the right of 

the scaled image is the highlighted part (        crop) at original scale. The bottom 

part of the figure shows         pixels taken from the restored images obtained from 

Tikh32 and Tikh64 methods respectively. It was noted that the sectioning methods 

produce blocking artifacts. In some cases, such as the Sine image the blocking artifacts 

were visible even without careful inspection. On the other hand, the iterative methods 

did not introduce blocking artifacts in any region.    
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(a) 

 

(c) 

    

 

 

 

 

(b) (d) 

Figure 4.8: Showing blocking artifacts produced in sectioning methods for image 

restoration such as SVD based Tikhonov regularization. (a) Pumpkin image restored 

by RT iterative method and (b) qualitative comparison of RT and Tikhonov 

methods. (c) Sine image restored by RT iterative method and (d) qualitative 

comparison of RT and Tikhonov methods.    

4.5.4. Experiment on real data           

The details of experiments on real data are presented here. Images of different 

planar objects were taken such that they were inclined at an angle to the optical axis. 

The RT based shape recovery algorithm [10] was used to acquire the information about 

the shift-variant PSFs. Another shape recovery technique based on Depth from Defocus 
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can also be used to estimate the shift-variant PSFs [11]. The RT based technique suits 

our algorithm as it estimates the blur parameter (e.g., radius) by fitting a plane. The blur 

parameter at a position       can be easily obtained by evaluating the equation of the 

plane. 

For the experiments images were acquired through a computer controlled Olympus 

C3030 digital camera. The objects were placed between 50 cm to 100 cm from the 

camera. The estimates generated through RT based shape recovery technique were used 

to compute the moments of shift-variant PSFs and restore the blurred images.  Figure 

4.9 shows an example of shift-variant image restoration using a Cylindrical PSF model 

for a real image. The blurred input image is shown in Figure 4.9(a). Figures 4.9(b) and 

4.9(c) show the result of RTI algorithm and the actual focused image.  The outputs of 

different restoration algorithms taken from the highlighted region in respective images 

are shown in Figure 4.9(d) at original scale. It is evident from the figure that the output 

of the RT based technique closely matches the focused image. Tikhonov regularization 

produces some artifacts. RT based techniques produced the restored result fastest 

followed by Tikhonov regularization and LW method. This example demonstrates that 

the RT based techniques provide good quality restoration results at minimum 

computational cost. 

 

 

 

 



75 

 

 

 

 

Figure 4.9: An example of RT iterative implementation for real data, (a) Blurred 

image (estimated radius 2.0075 at the left end, 0.559 at the right end), (b) Restored by 

RT iteration technique; ReMSE = 0.0101 with (c), and (c) Actual focused image 

(captured at a different camera setting) 

 

   

   

Figure 4.10: Restoration samples from different techniques (at original scale). Order: 

left – right and top – bottom. Blurred image, focused image, restoration by LW 

method, RTLW method, RT method and Tikh32.  
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4.6. Conclusions 

Two new RT based iterative techniques were presented for shift-variant image 

restoration.  It was demonstrated that the techniques have significant computational 

advantage over other iterative methods. The techniques perform well for smooth 

images. The accuracy of solution is sufficient but not as much as the Landweber’s 

method. The algorithms perform implicit regularization and provide robustness against 

low to medium levels of noise. A new insight into the ill-conditioned nature of the shift-

variant image restoration problem was also discussed. Based on this, it may be possible 

to perform localized regularization in the spatial domain at regions blurred by large 

amounts of defocus. The current investigation indicates interesting possibilities in this 

direction. Another extension of this work is possible with restoration of shift-variant 

motion blur and other shift-variant aberrations. 
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5. Generalized Convolution 

Theorem: Proof and Verification 

Many physical processes, including image formation, are modeled by the Fredholm 

Integral Equation of the First Kind [69, 70]. Numerically evaluating this integral 

through quadrature is generally computationally expensive. The order of computations 

is       when the kernels are not localized. In the previous chapters, the computational 

complexity was brought down due to local support domain of kernel       . In this 

chapter, a new theorem called the Generalized Convolution Theorem (GCT) is 

investigated. GCT was first proposed and proved by Dr. M. Subbarao (see US patent 

application filed in August 2011 by M. Subbarao, S. Sastry, and S. Dutta). GCT is useful 

in transforming the Fredholm Integral Equation of the First Kind to a Convolution 

integral. In other words, GCT transforms some linear shift-variant (LSV) system to a 

linear shift-invariant (LSI) system. The purpose of such transformation is to make use of 

the Fast Fourier Transform (FFT) to reduce the computational complexity of a computer 

implementation of LSV systems and their inverses. The transformation is possible when 

the kernel        is in a suitable form. GCT provides a general framework to describe 

the form of the kernels under which it is possible to transform an LSV system to an LSI 

system.   
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This and the next chapter explore the possibility of reducing the computational 

complexity of Eq. (5.1) even when the kernels do not have a local support domain. The 

rest of the chapter is organized as follows. A brief background on numerical 

computations of an LSV system is presented. The GCT is then stated and proved in 

Section. 5.2. Computational algorithms are developed to apply GCT to LSV systems in 

Section 5.3. In section 5.4, some numerical examples are presented that verify the GCT.    

5.1. Background 

A linear shift-variant system is modeled by the following equation. 

      ∫             
 

 
  for              (5.1) 

For kernels that do not have limited support domain, the systems of the form in Eq. 

(5.1) are computed using a matrix – vector multiplication, as shown below. 

      (5.2) 

The above linear system is obtained by discretizing Eq. (5.1). Its computational 

complexity is       . The element on the     row and     column of matrix    are 

denoted by      . Now, let   and   in Eq. (5.1) vary as,  

          
     

     
       .  

Then the following relation is obtained through two point quadrature of Eq. (5.1).  

      (     )
     

     
  (     )    . (5.3) 

Now, Eq. (5.2) is an approximation to the continuous integral in Eq. (5.1) 
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5.2. GCT: Statement and proof 

Statement: Let  

      ∫             
 

 
  for             . (5.4) 

Also, let there exist one-to-one and onto functions        defined on [a, b] with 

continuous first derivatives such that their inverses        are also one-to-one and onto, 

and have continuous first derivatives. Let                    then, 

 (      )   ∫                  
 

 
, (5.5) 

if and only if                          for all                 and        . 

Proof: The theorem states that the following condition must be satisfied to transform 

Eq. (5.1)   

                           (5.6) 

Let: 

                         (5.7) 

                          (5.8) 

            
      

  
         

       (5.9) 

Note that 

    
      

  
      

          (5.10) 

        (     )        (5.11) 

        (     )       (5.12) 

Now consider Eq. (5.4), from Eqns. (5.7), (5.8), (5.9) and (5.10) it is rewritten as, 

⇒         (     )  ∫  (           )                    
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  ∫  (           )                
 

 

 
 

⇒ ∫  (           )         
 

 

  ∫              
 

 

   
 

Since this is true for all   , Eq. (5.6) is satisfied if the above equation is satisfied. By 

changing variables           and           the Eq. (5.4) becomes: 

 (     )  ∫  (           )   (     )   
         

 

 
   (5.13) 

Making use of the condition in Eq. (5.6) and by substituting Eqns. (5.7), (5.8) and 

(5.9) in appropriate places in Eq. (5.13) the following is obtained. 

        ∫  (           )          
 

 

    ∫              
 

 

   (5.14) 

Hence the Generalized Convolution Theorem is proved. 

5.3. Computational algorithm 

In this section the computational algorithms to apply GCT to a system of the form in 

Eq. (5.1) are presented. The further discussions will refer to Eq. (5.2) as the LSV system 

unless otherwise stated. Evaluating an LSV system by computing the matrix – vector 

product is an       operation.  This is generally referred to as the forward operation. 

Finding the unknown   with a given   and   is known as the inverse operation. GCT is 

useful in computing both forward and inverse operations. Evaluating          is a 

necessary step in both forward and inverse operations, using GCT. The following 

algorithm provides one of the ways         could be computed.  
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Computing the transformed domain kernel    

1. Let    ; ⇒       

2. Compute                                                    . 

3. Compute     sample                                  where           , 

        
     

     
 

4. Compute                            
  

  
.  

Algorithm 5.1: Algorithm to compute the transformed domain kernel   from the 

shift-variant kernel        

 

For computing the forward operation, it is necessary to evaluate       from     . The 

kernel          is computed from Algorithm 5.1. Note that         has      

samples. The integral in Eq. (5.14) is linear convolution and appropriate zero padding 

must be used for computing the integral using FFT. The computational steps necessary 

to apply GCT for forward operation is as follows: 

Forward operation using GCT 

1. Interpolate       from      using Eqns. (5.8) and (5.9) 

2. Compute          using Eq. (5.6); See Algorithm 5.1 

3. Compute                     

4. Using inverse FFT, compute       
    
⇔          

5. Transform       back to the original domain using Eqns. (5.7) and (5.11)  

Algorithm 5.2: Algorithm to compute the blurred image in the original domain, 

given a focused image   and the shift-variant kernel        through GCT. 

  

For computing the inverse operation through GCT the observed signal   is first 

transformed to the new domain using Eq. (5.7) through some interpolation method. The 

kernel in the new domain is computed using Algorithm 5.1. Then an estimate for the 

unknown in the new domain  ̂  is obtained through a Deconvolution algorithm. Finally, 

the estimate is brought to the new domain through Eqns. (5.9) and (5.8) with the help of 

interpolation. The computational algorithm for finding the unknown   is as follows. 
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Inverse operation using GCT 

1. Transform      to       using Eq. (5.7). 

2. Compute the convolution kernel                  using Algorithm 5.1 

3. Deconvolve:          

4. Recover   ̂     using  ̂      
 ̂    

      
⁄     (Eq. (5.9)) 

5. Invert domain transformation:   ̂           ̂     (Eq. (5.8)) 

Algorithm 5.3: Algorithm for applying GCT to solve the integral equation. 

 

5.4. Verification 

In this section, GCT is verified through numerical simulation experiment on a 

hypothetical image forming system in 1D. The image forming system is briefly 

described. Then, the transformation relations between the     domain and the new     

domain are derived. That is, the expressions for functions        and        are derived.  

5.4.1. Hypothetical image forming system 

A schematic diagram of the 1D image forming system is shown in Fig. 5.1. In the 

figure, the real-world coordinates are to the left of the lens and image coordinates are 

on the right. The system is assumed to work within paraxial optics assumption. A 1D 

object placed parallel to the optical axis, as shown, forms a 1D image behind the lens. 

Such a system is governed by the image formation equation, Eq. (5.15).  

 

  
  

 

 
  

 

 
 (5.15) 

The intensity distribution shown in the figure is expressed by: 

                            (5.16) 
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Figure 5.1: Showing the hypothetical image forming system 

 

Defocus aberration is modeled in geometric optics by the cylindrical function. It is 

expressed by the following. 

        
 

            
  

  (5.17) 

The radius   is given by,  
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(5.18) 

From Eq. (5.17) and (5.18),        is written as, 
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Comparing the above expression with          –       , the forward transformation 

relations are obtained. Therefore,          (
 

 
) is in the required form to obtain the 

correct transformation relations according to GCT. The variables of transformation are, 

                 
 

(5.20) 

                 

 
(5.21) 

From the above relations, the inverse transformations are readily derived. They are,  

             
 

(5.22) 

             

 
(5.23) 

5.4.2. Numerical example 

The transformation relations developed in 5.4.1 are used in the numerical example. 

The system parameters used are tabulated below.  

Parameter name Value 

Focal length -     10 mm 

F/# 2.8 

Aperture –   
  

   
         

               

Table 5.1: System parameters used for experiments in 1D.  

 

The figure below shows the shift variant kernel         and the shift-invariant PSF 

        obtained through Algorithm 5.1 for the parameters in the Table 5.1.  
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(a) 

 
(b) 

Figure 1.5.2: (a) Showing the shift-variant kernel matrix  . (b) Showing the shift-

invariant PSF         obtained from   

 

The figure below shows different stages of a forward operation using GCT. 

Algorithm 5.2 was implemented in Matlab. The function      is of the form in Eq. (5.16). 

The number of sampling points was        .  
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(a) 

 
(b) 

(c) (d) 

(e) (f) 

Figure 5.3: Showing forward operation through brute force computations and GCT. 

3(a) and (b): Original function      and it in the transformed domain –        3(c) and 

(d) Blurred function      in the original domain and the transformed domain 

respectively. 3(e) and (f): Blurred function computed through GCT in the original 

domain and the transformed domain respectively. 

 

Figs. 5.3(b), (d) and (f) show the plots in the transformed domain. The last row of 

Fig. 5.3 show the results obtained from computations through GCT. From Figs. 5.3(c) 
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and (d) it is clear that the output of GCT matches very closely to the output of a brute 

force computation. The relative mean squared error between brute force computation 

and forward operations through GCT was found to be   1e-5. 

The inverse operation was also tested for the same example. The Deconvolution 

method used was the Landweber’s algorithm [32]. The focused image estimate in the 

transformed domain   ̂    was obtained after 80 iterations. It was then transformed 

back to the original domain using spline interpolation. The inverse operation was 

implemented in Matlab and executed on an Intel Core i-3 2.4GHz CPU with 4GB of 

RAM. Total time of execution of Algorithm 5.3 was 0.4211 seconds. The total time of 

execution of direct inversion of the kernel matrix was 2.1971 seconds. That means GCT 

improved the computation time for inverse operation by a factor of five. The relative 

mean squared error between the original function and the estimate obtained through 

GCT was 0.0065 (or 0.65%). The relative mean squared error for direct inversion was 

0.0012.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.4: Results of inverse operation through GCT in 1D. 5.4(a) and 5.4(b) show 

the input to Algorithm 5.3; blurred image in the original and transformed domain. 

5.4(c) shows the focused image estimate  ̂    . 5.4(d) shows the focused image 

estimate  ̂ (black) and  (red); relative MSE = 0.0065. 

5.5. Multi-dimensional GCT 

The following proof for multi-dimensional GCT was given by Dr. Satyaki Dutta 

(personal communication). Multi-dimensional GCT is a natural extension of the 1D 

GCT and provides the most general transformation of the Fredholm Integral Equation. 

The proof uses the change of variable theorem of multivariable calculus. The statement 

and proof are as follows.   
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Statement: Let  

              ∫                                                
 

 

 (5.24) 

Where                            and              for       . Assume 

that for        and      , there exist functions   
  defined on   with continuous 

derivatives such that        
    

     
   defines change of variables, with inverse 
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(5.25) 

If and only if 

 (  
   ̃    ̃     

   ̃    ̃      
   ̃    ̃      

   ̃    ̃     
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   ̃    ̃  )

   ̃  ̃   ̃   ̃   ̃    ̃   ̃   
(5.26) 

Where 

   ̃    ̃    (
   

 

  ̃ 
) (5.27) 

is the Jacobian determinant. 
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 Proof of if part: 

By change of variables, we get: 
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(5.28) 

By assumption, 
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Proof of only if part: 
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is true for any arbitrary function     Therefore 
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 (  
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   ̃    ̃      
   ̃    ̃      

   ̃    ̃     
   ̃    ̃      

   ̃    ̃  )

   ̃  ̃   ̃   ̃   ̃    ̃   ̃    
(5.31) 

Thus, the multi-dimensional GCT is proved. 

5.6. Conclusions 

The Generalized Convolution Theorem for transforming an LSV system to an LSI 

system under suitable conditions was proved in 1D. Based on the GCT, two 

computational algorithms were developed to perform the forward and inverse operations 

on an LSV system.  An algorithm to compute the kernel in the transformed domain was 

also presented. The theorem proves that the necessary conditions for transforming an 

LSV system to an LSI system are (i) the kernel should be in a separable form as in Eq. 

(5.6), and (ii) the domain transformations       are invertible and differentiable.  

The correctness of the theorem was verified by a numerical example on a 

hypothetical 1D image-forming system. The improvement in computation time to 

obtain the focused image estimate from a blurred image was also highlighted. Although 

the GCT was applied to an imaging system, it is possible to apply it to any LSV system 

whose kernel satisfies the required conditions. In the next chapter, applications of GCT 

to 3D microscopy and 3D shape recovery are investigated.  
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6. Generalized Convolution 

Theorem: Applications 

The Generalized Convolution Theorem (GCT) was introduced in the previous 

chapter. It was proved that with GCT, it is possible to transform some linear shift-

variant (LSV) systems to linear shift-invariant (LSI) systems. Conditions to be satisfied 

by an LSV system’s kernel for transformation to be possible were discussed in detail. 

In 3D Microscopy, the objective is to recover a 3D image of an object through a set of 

defocused images acquired at different focal planes. It is possible to relate the observed 

3D image, underlying focused image and 3D point spread functions as a linear system. 

In fact, such a system is shift-variant in the   (axial) variable. The focused image is then 

estimated through deconvolution. By applying GCT to 3D Microscopy, the 

computational complexity of shift-variant deconvolution is reduced to             . 

This provides significant gains in computations compared to a piecewise constant shift-

invariance (PCSI) approximation method. GCT based deconvolution models shift-

variant system more accurately than shift-invariant (SI) approximation.  Therefore it 

provides more accurate estimates compared to the standard SI and PCSI deconvolution 

techniques.  
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Another application of GCT is in the 3D shape recovery of surface objects. This is 

discussed with two simulation examples.  It is demonstrated that GCT can recover the 

shape information quite accurately after restoration.  

The rest of the chapter is organized as follows. The fundamentals of image 

formation in three dimensions are discussed in 6.1. A brief introduction to the literature 

in 3D microscopy is presented in Section 6.2, followed by a discussion on how to apply 

GCT to it. Details of computer implementation of GCT are discussed in Section 6.4. 

Sections 6.5 and 6.6 present results of simulation experiments of forward and inverse 

operations using GCT. Quantitative and qualitative comparisons with standard 

techniques and noise analysis are presented. In section 6.7 application of GCT towards 

shape recovery is briefly discussed with some examples. 

6.1.  Background 

Consider a 3D object being imaged. It is made up of point light sources weighted by 

the intensity of light at that point. A point light source forms a perfectly focused point 

image at the location determined by lens maker’s formula; Eq. (5.15) (Chapter 5).  

 A focused image surface (FIS) of a surface object is defined as the collection of its 

image points in the image space. Another way of (conceptually) defining FIS is: image of 

FIS is the object. A focused image volume (FIV) is the equivalent of FIS for volume 

objects.  

It is impossible to either measure or observe an FIS (or FIV) with conventional 

imaging systems. However, it is possible to formulate a relationship between FIS (or 

FIV) and a sequence of images of the same scene, recorded by varying camera 
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parameters. In practice, it is common to move the image detector along the optical axis 

while keeping the other camera parameters fixed.  

The following expression relates a sequence of images         , 3D shift-variant 

kernel (PSF)                   and FIS (or FIV)            : 

         ∫ ∫ ∫                                            

 

 

 
  

  

  

  

 (6.1) 

The above equation is shift-variant in all three variables     and  . This way of 

modeling image formation is required for wave optics when the imaging system 

exhibits significant amounts of primary aberrations (Note: Spherical Aberration is shift-

invariant in the    plane).  

A detailed discussion of modeling 3D images can be found here [71-74]. Since a 

planar object perpendicular to the optical axis is degraded by equal amount of blur at 

every pixel, the integral becomes shift-invariant in   and   variables and we obtain, 

         ∫ ∫ ∫                                            

 

 

  
  

  

  

  

 (6.2) 

The limits of integration        are positions at which the first and the last 2D image 

are acquired by moving the detector. The 3D PSF of a point object is a collection of its 

2D PSFs at different focal positions in the range       . The assumption that all 

parameters of imaging except the detector distance   remain fixed shapes the 3D PSF 

like an hourglass as shown in Fig. 6.1. In the figure, a 3D PSF of a point coming to focus 

at     is shown. The symbol   is the blur circle radius of the 2D PSF and it is a function of 

image detector position    for a given point object. The aperture diameter is  . A 

derivation of the relation between these variables will follow. Note that the 3D PSF is 
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does not have local support domain; typically the domain occupies the entire interval 

[a, b] in the   variable.     

 

Figure 6.1: Schematic of 3D imaging system and 3D PSF 

 

Fig. 6.2 below is a geometric diagram of image formation of a point object   under 

paraxial optics assumption. The point object   is located at a distance   from the optic 

center  . The rays    ⃗⃗⃗⃗⃗⃗ ⃗⃗ ,    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗    and    ⃗⃗⃗⃗ ⃗⃗ ⃗⃗   meet at a distance    from the optic center. The 

image detector is placed at a distance   from the optic center. The observed image    is 

therefore defocused. The light from the point source is spread out into a circular region 

called the blur circle with radius  . Blur circle radius   is a function of variables   

and    , such that the system in Eq. (6.2) is shift-variant. The relation between them is 

derived from similar triangles       and      as follows. 
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(6.3) 

 

 

Figure 6.2: Schematic diagram of image formation under geometric optics 

 

From Eq. (6.3), a cylindrical 3D PSF is given by, 

                   {

 

          
                   

        
    

                                                            

 (6.4) 

Noting that the blur circle radius is proportional to the standard deviation   of a 

Gaussian PSF model, the expression for it is written as follows. 
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) (6.5) 
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6.2. Introduction to 3D microscopy 

Imaging of biological microscopic objects is performed by a high magnification 

microscope to construct its 3D model. One way to do that is by using a confocal 

microscope [75]. In a Confocal Scanning Microscope a pin-hole is placed just in front of 

the detector. Then light from different axial sections of the object is scanned by axially 

moving the object. The pin-hole filters the light coming from planes that are not in 

focus. Hence, a direct 3D image of microscope object is constructed. Some 

disadvantages of confocal microscopy are: (i) the acquired images contain low light 

hence more noise, (ii) the process of acquisition is slow which limits their imaging 

capability to non-live cells/tissues [59].  

An alternative to confocal microscopy is provided by Widefield Microscope 

Imaging. Widefield microscopes collect light from the section that is in focus (or the 

focal plane) as well as light coming from the sections behind, and in front of, the focal 

plane.  This essentially degrades the image of the focal plane by blurring it with light 

from outside the plane. The blurred image is then processed by a computer to recover 

the underlying 3D focused image of the object. From here on, 3D deconvolution refers 

to widefield microscopy. 

Early investigations in 3D deconvolution were carried out by Castleman, and Agard 

and Sedat [4, 76-78]. Castleman derived three-dimensional convolution approximation 

to microscope image formation. The blurred image of each focal plane was processed by 

considering only a few neighboring planes [76]. Such an algorithm is highly efficient in 

terms of computational requirements however, do not produce accurate solutions. 

Agard et al processed the 3D data by deconvolving the blurred image in an iterative 

fashion. Erhardt et al approached the problem of deconvolution through linear system 
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theory [79]. They used inverse filtering in the frequency domain to deconvolve the 

entire 3D blurred image. Using the linear system framework, many 2D deconvolution 

algorithms have been extended to deconvolution microscopy [59, 80-82].  Some of the 

standard methods include Lucy-Richardson deconvolution [60], Landweber’s method 

[83, 84], maximum-likelihood techniques [84] and constrained iterative algorithms [85]. 

A survey of different deconvolution techniques, including their performance 

evaluations can be found here [86]. All the above methods assumed that the PSF is 

known. Some blind deconvolution techniques have been proposed to handle cases 

where PSF of the imaging system is not adequately modeled theoretically [15, 59].   

Gibson and Lanni derived an analytical expression to accurately model microscope 

PSFs [72] and made the case for axial shift-variance of 3D imaging systems. In general, 

for thick specimens the axial shift-variance becomes a problem. Kam et al proposed an 

adaptive iterative algorithm that considers shift-variance of 3D PSFs [87, 88]. Hanser et 

al made phase measurements to recover the shift-variant PSF and performed a 

blockwise restoration using the Lucy-Richardson algorithm [89]. Blockwise restoration 

involves deconvolving the sub-volume data with different PSFs and assembling them at 

the final step to construct the complete 3D object. The sub-volumes are small enough so 

that the change in PSF is minimal. Such methods produce discontinuities between sub-

volumes of the constructed 3D object. Preza et al developed methods that deconvolve 

non-overlapping strata (or blocks) independently and then mitigate the problem of 

discontinuity by performing interpolation of PSFs between different strata [90, 91].   

At present, a 3D shift-variant blurred image is deconvolved by processing a number 

of small shift-invariant blocks, say  . Due to large support of the PSF, complete data has 

to be processed by   shift-invariant PSFs (one per block). Then from each restored 

images, only the block of restored data that corresponds to its PSF is retained. Such an 
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approach is computationally expensive both in terms of time and memory storage. With 

the help of GCT, shift-variant imaging system is transformed into a shift-invariant 

system without losing much accuracy. Then, the 3D blurred image is restored in the 

transformed domain through simple iterative deconvolution. This improves the 

computation time by a factor of   compared to a blockwise shift-variant deconvolution. 

The transformations require interpolation only along the axial direction hence do not 

add much overhead in the processing of 3D blurred images.  

In the following section, the transformation relations for a 3D imaging system are 

derived under geometric optics assumption.  

6.3. Derivation of transformation relations 

Eq. (6.2) is the shift-variant image formation equation in 3D.  It is shift-variant in 

only the   variables. Therefore, 1D GCT is applied to   and    variables to transform Eq. 

(6.2) to a convolution integral in 3D. From Eqns. (6.3), (6.4) and (6.5), the 3D PSF   can 

be written in the following form.  

                    (          
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   (                         )                       (6.6) 

From the above equations, the transformation relations are obtained: 

                  (6.7) 
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                    (6.8) 

The inverses transformations are as follows: 

              (6.9) 

               (6.10) 

                    (6.11) 

After transformations, the blurred image   and the focused image   become: 

              (          )               (6.12) 

               (            )                 (6.13) 

Changing the variables   and    in Eq. (6.2) according to the relations in Eqns. (6.7) 

and (6.8), we get: 
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(6.14) 

From Eqns. (6.6), (6.11), (6.12) and (6.13), the above equation is rewritten as, 

            

∫ ∫ ∫                                       
               

       

        

  

  

  

  

 
(6.15) 

The scaling factor       resulting from the change of variables is taken inside the 

function    and the above equation is rewritten as follows.  
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           ∫ ∫ ∫                                             

 

  

  

  

  

  

 (6.16) 

Where,  

                             
                  (6.17) 

6.4. Computer implementation 

Eq. (6.16) is in the continuous domain; however, the images observed are discrete. 

The imaging model in Eq. (6.16) is represented by 3D convolution operation as follows. 

            (6.18) 

The above equation is an approximation to the forward operation in Eq. (6.16). The 3D 

PSF does not have local support along  . To prevent coarse approximation, a large 

aperture has to be used so that the PSF values become negligible within a few planes 

from the Gaussian image point.  The algorithm for computing the forward operation 

using GCT for a given focused image   and PSF   is as follows.   

Forward operation using GCT (3D) 

1. Interpolate              from             using Eqns. (6.10), (6.13) and (6.17); 

2. Compute                      using Eq. (6.6); assume    
     

 
 ;        

3. Compute                                using FFT; 

4. Using inverse FFT, compute            
    
⇔             ; 

5. Transform             using:                          ; Eq. (6.12) 

Algorithm 6.1: To compute the 3D blurred image using GCT given a focused image 

and the shift-variant kernels. 
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The procedure for computing the focused image estimate from a given blurred 

image with known PSF is similar to the algorithm discussed in the previous chapter. For 

the sake of completeness, the algorithm to compute the inverse operation using GCT is 

presented below. 

Inverse operation using GCT (3D) 

1. Transform          to            using              (          ) 

2. Compute                      using Eq. (1.6); assume    
     

 
 ;         

3. Deconvolve:            

5. Recover               using              
                 

6. Invert domain transformation:                 (            ) through interpolation 

Algorithm 6.2: To estimate the focused image using GCT given blurred image and 

shift-variant kernels 

 

Note that step 3 in the above algorithm suggests that any deconvolution method 

could be used. The behavior of deconvolution methods depend on the shape and 

structural properties of the underlying object. In practice, iterative methods like Lucy-

Richardson or Landweber iteration are used. In the presence of significant amount of 

noise some constrained regularization is performed for estimating the focused image.    

6.5. Forward operation simulation  

In this section, the blurred image is computed using GCT based forward operation 

algorithm. It is then compared with shift-invariant and piecewise constant shift-

invariant approximations. The blurred image computed using a brute force 

implementation of Eq. (6.2) is the reference against which the accuracy of other blurred 

images is measured. The metric used for measuring the accuracy is the relative mean 

squared error: 
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  (6.19) 

The figure below shows shift-variant PSFs. 

 
(a) 

 
(b) 

 
(c) 

Figure 6.3: Shows cross section of 3D Gaussian PSFs at different points along the 

axis; (a) PSF at                    (b) PSF at              ; (c) PSF at    

           . Camera parameters,         ,             and interval 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.4: Shows focused image and blurred images obtained from different 

techniques; (a) Focused image; (b) Focused image after transformation; (c) Actual 

blurred image; (d) GCT blurred image in the transformed domain; (e) GCT forward 

operation blurred image ReMSE with (c) = 0.0031; (f) PCSI blurred image ReMSE 

with (c) = 0.0053 . The images are cross sections in the    plane containing the 

midpoint in the   variable.  

 

 Figure 6.3 shows the variation of PSFs along the    axis. The change in the shape of 

the PSF is clearly visible. The imaging parameter                corresponds to an 

object located between 10.42 to 11.54 mm from the lens. The degree of change in the PSF 

increases for thicker objects. Fig. 6.4(a) shows the cross section of the object – Pipes. The 

blurred images of the object computed through GCT and PCSI method match very 

closely to the blurred image computed by brute force. However, GCT does slightly 

better in terms of accuracy. It was observed that ReMSE between SI approximation and 
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the brute force blurred image was 0.0173. GCT based method was about three times 

faster than the PCSI method with three shift-invariant blocks.  

6.6. 3D deconvolution using GCT  

The GCT based deconvolution algorithm discussed in the previous section is 

analyzed from three perspectives. First, some simulations are carried out by varying the 

size of the interval      . Increasing the size makes the system more shift-variant. The 

behavior of GCT based deconvolution is analyzed and focused image estimates are 

compared with results from SI and PCSI approximations. Next experiment considers 

test objects of different sizes to compare the computation times of GCT, SI and PCSI 

deconvolution. The final experiment discusses restoration of noisy blurred 3D images. 

The Lucy-Richardson algorithm [38, 39] was used in GCT, SI and PCSI deconvolution in 

all experiments. For all the experiments the following imaging parameters were kept 

fixed. 

Parameter name Value 

Focal length      10 mm 

F/# 2.8 

Aperture    
  

   
         

Table 6.1: System parameter values that were kept fixed are listed above.  

6.6.1.  Experiment 1 – varying       

The following table presents results of deconvolution with three different intervals. 

The size of the interval is changed by increasing the value of   .  For a lens of focal 

length 10 mm, image space location of 20 mm corresponds to object located on a plane 
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at a distance of 20 mm from the lens. Similarly, the location 60 mm, 100 mm and 170 

mm correspond to object at 12 mm, 11.11 mm and 10.625 mm respectively.  All the 

intervals correspond to objects that are less than 1 cm long.  

The readings for different methods are the relative mean squared error between the 

estimate and the actual object. From the table it is evident that GCT improves accuracy 

of solution for shift-variant deconvolution. To be more precise, GCT is useful when the 

system is significantly shift-variant. Earlier, it was said that due to full support of the 

PSF, discretization of the imaging interval inherits some errors. For the purpose of this 

discussion, let the error be called Type A. Additional error is present in the shift-

invariant model due to approximation. Let this error be called Type B. The GCT based 

deconvolution is effective in reducing Type B errors, which is the error resulting from 

shift-invariance approximation of a shift-variant system. GCT models the shift-variant 

system accurately, thus the relative mean squared error is expected to be less for a shift-

variant system.  

Object 

type 
Method 

[a, b] =  

[20, 60] 
Iterations 

[a, b] =  

[20, 100] 
Iterations 

[a, b] = 

[20, 170] 
Iterations 

Pipes 

GCT 

SI 

PCSI 

0.0917 

0.1641 

0.1121 

60 

60 

60 

0.0426 

0.1609 

0.1316 

200 

60 

60 

0.0366 

0.1695 

0.1391 

200 

60 

60 

Helix 

GCT 

SI 

PCSI 

0.166 

0.24 

0.1978 

140 

80 

80 

0.0915 

0.2325 

0.1678 

150 

70 

70 

0.0995 

0.2285 

0.1626 

200 

70 

70 

Sine 

GCT 

SI 

PCSI 

0.0654 

0.1102 

0.12 

45 

50 

50 

0.0387 

0.1033 

0.0875 

120 

45 

45 

0.0314 

0.1086 

0.0923 

170 

40 

40 

Table 6.2: Shows minimum relative mean squared error and the number of iterations 

of Lucy-Richardson deconvolution required to achieve it. The three rows correspond 

to three objects: Pipes, Helix and Sine. The columns highlight different sizes of the 

interval       that were considered for this set of experiments. 
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(a) 

 
(b) 

 
(c) 

Figure 6.5: Showing volume rendering of (a) Helix object, (b) Pipes object and (c) 

Sine object. (Images generated by ImageJ software.) 

 

The figure above shows three example objects Helix, Pipes and Sine that were the 

input in simulation experiments. Fig. 6.5(a) shows an object in which the intensity in the 

volume is a pipe in the shape of a coil. This is referred to by the name Helix in the 

discussions. Fig. 6.5(b) shows three hollow pipes; it is called by the name Pipes in the 

discussions. Fig. 6.5(c) shows a sphere in which the light intensity is varying as a 

sinusoidal wave in all three directions. This object is simply called Sine.  

 

 

 

 

z 

z z 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 6.6: (a) Helix volume object sliced at the center in    plane. (b) Blurred image; 

the markers indicate change in the shape of the PSF. Restoration by: (c) GCT, (d) 

PCSI and (e) SI deconvolution. The markers indicate the axes. The limits of 

integration for this example are               . Refer Table 6.2 for relative mean 

squared errors. 

 

Figure 6.6 presents a case of deconvolution of the Helix object. The images are sliced 

through the center of the object in the    plane. In fig. 6.6(b), the red colored markers 

highlight the shift-variant nature of the system. Fig. 6.7 shows the 3D views of the 

reconstructed objects. It is apparent from the figure that the reconstruction from PCSI 

z 
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and SI deconvolution introduce some structural artifacts that are absent in the result 

from GCT deconvolution.  

 
(a) 

 
(b) 

 
(c) 

Figure 6.7: 3D view of recovered Helix object, (a) GCT, (b) PCSI and (c) SI 

deconvolution 

 

In Figs. 6.8 and 6.9, the restoration of blurred Pipes object and 3D views of the 

reconstructed objects are presented respectively. Figure 6.8(d) shows results from PCSI 

deconvolution that has some blocking artifacts. They are visible in figure 6.9(b) as well. 

The original Pipes object has uniform intensity pattern along    direction. The 

restoration from SI deconvolution near       has visibly less intensity. This is due to 

shift-invariance approximation. 

 

 

 

 

 

z z z 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 6.8: (a) Pipes volume object sliced at its center and along the    plane. (b) 

Blurred image. Restoration by: (c) GCT, (d) Piecewise constant shift-invariance 

(PCSI) and (e) Shift-invariance approximation. Note that PCSI method introduces 

blocking like artifacts after restoration. The markers indicate the axes. The limits of 

integration for this example are              . Refer Table 6.2 for relative mean 

squared errors. 

 

z 
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(a) 

 
(b) 

 
(c) 

Figure 6.9: 3D view of recovered Pipes object, (a) GCT, (b) PCSI and (c) SI 

deconvolution 

 

Figure 6.10 and 6.11 show original, blurred and deconvolved Sine object. Blocking 

artifacts from PCSI are visible in Fig. 6.10(d) and 6.11(b). The reconstruction from GCT 

deconvolution appears stretched. This type of behavior has been attributed to Fourier 

based techniques in the literature [92]. However, GCT based deconvolution does 

minimum deformation to the spherical structure as is evident from the 3D views in Fig. 

6.11.  

 

 

 

 

 

 

 

z z 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 6.10: (a) Pipes volume object sliced at the center in    plane. (b) Blurred 

image. Restoration by: (c) GCT, (d) Piecewise constant shift-invariance (PCSI) and 

(e) Shift-invariance approximation. Note that PCSI method introduces blocking 

artifacts after restoration. The markers indicate the axes. The limits of integration for 

this example are              . Refer Table 6.2 for relative mean squared errors. 

 

z 
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(a) 

 
(b) 

 
(c) 

Figure 6.11: 3D view of reconstructed Sine object, (a) GCT, (b) PCSI and (c) SI 

deconvolution 

6.6.2. Experiment 2 - Computation time measurement 

For computation time analysis the Helix object was created at three 

resolutions,                        and             voxels. The imaging 

parameters in Table 6.1 were used along with the interval of integration being       

         . Lucy-Richardson deconvolution algorithm was used to obtain the 3D focused 

image estimate. The number of iterations for which SI deconvolution converged was 

used as the limit for GCT and PCSI deconvolution methods. Running the three 

algorithms for same number of iterations helps to compare the computation time in a 

straightforward way. The algorithms were executed on Intel Core i3 2.54 GHz processor 

with 4GB memory. The implementation was in Matlab and the code was not optimized 

to reduce computation time.  

The table below shows the results of the time measurement experiment. It is also 

worth noting that GCT deconvolution method provided highest accuracy for the same 

number of iterations. Thus, GCT deconvolution converges faster towards the solution 

than PCSI or SI deconvolution methods. A   blocks PCSI algorithm deconvolves the 

z z z 
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complete data   times.  Therefore, both SI and GCT deconvolution are roughly a factor 

of   faster than PCSI deconvolution. The value of   for PCSI in the table was 3. 

Therefore in the table it is seen that GCT and PCSI algorithms are roughly three times 

faster. However, GCT deconvolution produced more accurate results.  

Compared deconvolution in the original domain using SI approximation, the GCT 

deconvolution involves interpolating the data in the transformed domain. Such 

interpolations are computed twice. First interpolation is for computing the blurred 

image in the transformed domain. The second interpolation is for transforming the 

focused image estimate back to the original domain.  Since only the   axis is 

transformed under GCT, interpolation is required for only one dimension of the three. 

Using this knowledge a simple linear interpolation scheme was implemented that is fast 

and reasonably accurate. The measured computation time includes the time taken for 

performing both the interpolations. It is evident from the table that the overhead of 

computing the interpolations is very less compared to the time taken for estimating the 

solutions.  

Size Iterations 
GCT PCSI SI 

Time ReMSE Time ReMSE Time ReMSE 

           70 25.957s 0.0442 78.1513s 0.0846 25.9522s 0.0921 

           95 125.5615s 0.0565 373.7095s 0.0961 125.072s 0.1374 

            75 238.2996s 0.1513 715.3748s 0.1636 238.576s 0.2322 

Table 6.3: Shows computation time measurements for GCT, PCSI and SI 

deconvolution for Helix object tabulated row-wise at different resolutions. 
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6.6.3. Experiment 3 - Deconvolution of noisy data 

The final set of simulation experiments was on noisy data. Gaussian noise was 

added at three different power levels; 0.1%, 1% and 10% of signal power. The amount of 

noise added is indicated by signal-to-noise ratio (SNR) in the discussion. Lucy-

Richardson algorithm was implemented to deconvolve noisy blurred images. To 

provide some robustness against noise, each image in the stack was smoothed by a 

    Gaussian filter of             . Such a smoothing operation has been proved to 

provide reasonably accurate results [75]. The imaging parameters used are listed in 

Table 6.1. The interval of integration was fixed to be               . The following 

table compares the results of deconvolution of noise-free and noisy image. 

Object 

type: 
Method 

Noise 

free 
Iterations 

30dB 

SNR 
Iterations 

20dB 

SNR 
Iterations 

10dB 

SNR 
Iterations 

Pipe 

 

GCT 

SI 

PCSI 

0.0426 

0.1609 

0.1316 

200 

60 

60 

0.0619 

0.1677 

0.1284 

100 

80 

80 

0.0626 

0.1679 

0.1286 

100 

80 

80 

0.0684 

0.169 

0.1340 

100 

80 

80 

Helix 

 

GCT 

SI 

PCSI 

0.0915 

0.2325 

0.1678 

150 

70 

70 

0.1364 

0.2585 

0.1983 

150 

70 

70 

0.137 

0.2585 

0.198 

150 

70 

70 

0.1391 

0.259 

0.1906 

150 

80 

80 

Sine 

 

GCT 

SI 

PCSI 

0.0387 

0.1008 

0.0875 

120 

45 

45 

0.0441 

0.1045 

0.0901 

110 

45 

45 

0.053 

0.1081 

0.0918 

100 

45 

45 

0.0637 

0.1115 

0.1041 

100 

55 

55 

Table 6.4: ReMSE for GCT, PCSI and SI deconvolution at 30 dB, 20 dB and 10 dB 

SNR are tabulated. The rows list the errors for different objects, and the amount of 

noise varies along columns. The columns labeled “Iterations” list the number of 

iterations of Lucy-Richardson required to obtain listed accuracies/ReMSE. The input 

for all the methods were smoothed versions of noisy blurred image.  

 

From the table, it is noted that GCT deconvolution loses some accuracy while 

restoring noisy data. It was observed that the scaling operation, which is part of the 

final interpolation step, could amplify noise and reduce the accuracy of the solution in 
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the original domain. Therefore, smoothing of noisy input data is necessary. For both 

PCSI and SI deconvolution scheme, the accuracy of the solutions did not change much 

with added noise, as compared to the noise free case.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.12: Shows an example restoration in the presence of noise. (a) Helix object’s 

     cross section through its center, (b) 10 dB SNR blurred image, (c) blurred image 

after smoothing, (d) result of GCT deconvolution, (e) result of PCSI deconvolution 

and (f) result of SI deconvolution. Refer Table 6.4 for ReMSE. 
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6.7. 3D shape recovery examples 

The focused image (3D) of a surface is a volume object where a point light source of 

position       comes to focus at its Gaussian image location along the     axis. Therefore 

for every       coordinate position there is only one light source and zero everywhere 

else. Two such surface objects are considered: spherical surface and an inclined plane.  

The surface objects were blurred by the Gaussian PSF. Recovering shape from 3D 

blurred image amounts to restoring impulses along the   direction. After recovering the 

focused image estimate the location of the maximum intensity for each       is 

collected. This is the shape describing function of the surface object. 

First example is an inclined plane as shown in Figs. 6.13 and 6.14. Fig. 6.13 shows 

mesh-grid of the surface. The plane was texture mapped with random dot pattern. 

Imaging parameters used were          ,          and               . The 

ReMSE between the original and recovered shape functions was 0.0044. 

Figs. 6.15 and 6.16 show shape recovery of a spherical surface. The imaging 

parameters used were          ,         and              . The ReMSE between 

the original and recovered shape functions was 0.0158. 

The GCT based method was not able to recover the texture information satisfactorily 

(ReMSE ~ 0.75). The shape recovery results are encouraging enough to motivate further 

investigations on GCT based shape recovery techniques.    
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Figure 6.13: Shows the mesh grid plots of original and recovered surfaces. 

 

 
 

 
 

Figure 6.14: Range images of original and recovered planar object. 

 

 
 

 
 

Figure 6.15: Shows the mesh grid plots of spherical object example 
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Figure 6.16: Range images of original and recovered planar object. 

 

6.8. Conclusions 

This chapter presented application of GCT in 3D restoration of 3D blurred images. 

Two applications were considered: 3D microscopy and shape recovery. GCT was used 

to restore the 3D blurred images under conditions that made the 3D imaging system 

shift-variant along the axial direction. Using GCT, such shift-variant systems were 

transformed to shift-invariant systems that improved both the accuracy and 

computation time of restoration. In 3D microscopy application, GCT deconvolution was 

compared with SI and PCSI deconvolution methods. It was demonstrated that GCT 

recovers more accurate focused images compared to SI and PCSI methods. GCT was 

also about a factor of   faster than  -block PCSI deconvolution method. Noisy blurred 

images were also considered for restoration. A filtered Lucy-Richardson algorithm was 

employed to restore noisy blurred images in which the noisy images were smoothed 

before performing restoration. GCT based deconvolution provided accurate and high 

quality estimates and avoided blocking artifacts. Although shape recovery was possible, 
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more investigations are needed in the direction of texture recovery from blurred images 

through GCT.  

Possible future applications of GCT in three-dimensional imaging are in restoration 

of confocal microscope images and restoration of depth dependent spherical aberration 

in Widefield Microscopes. Some details regarding this are provided in the next chapter. 

It is also of interest to investigate application of GCT to other fields. 
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7. Conclusions and Future Work 

In this work, computationally efficient algorithms to restore shift-variant blurred 

images have been discussed. The algorithms in 2D exploited the local nature of point 

spread functions to derive iterative update equations that can efficiently restore blurred 

images. Three algorithms MRT, RTI and RTLW methods were discussed in detail. The 

methods were compared to another localized approach the SRT method for accuracy, 

quality and efficiency. The MRT method was demonstrated to be effective in restoring 

highly defocused images. However, its computational cost was higher than the SRT 

method. The other two methods are iterative approaches using localization as opposed 

to direct inversion. Through experiments it was demonstrated that the RTI and RTLW 

methods provide rapid convergence, with usually solutions (best MSE) obtained after 

three to four iterations.  

Of all the methods considered in this work, the MRT method most effective in 

restoring sharp edges in highly defocused images. The RTI method was the fastest 

method in all experiments. The comparisons with the exact Landweber’s iteration and 

Tikhonov regularization techniques showed gains in computational efficiency of RTI 

and RTLW methods. Among these algorithms RTI and RTLW provided the best 

tradeoff between accuracy, computational efficiency and image quality.  Experiments 



122 

 

with noisy input in Chapter 4 show that for low-medium levels of noise, RTI and RTLW 

methods perform satisfactorily. The new insight due to the localized update equation 

provided the perspective to handle noisy input. Frequency domain filtering for 

differentiation was suggested as a way to control noise amplification.  

  A new theorem called the Generalized Convolution Theorem (GCT) was 

introduced in Chapter 5. GCT provides the conditions under which a superposition 

integral can be transformed to a convolution integral. Proofs for one dimensional and 

multi-dimensional GCT were provided. GCT is applied to linear shift-variant systems to 

represent them as linear shit-invariant systems in the new space. The resulting 

convolution equation is computationally efficient to implement and thus shift-variant 

restoration is greatly simplified by GCT.  

The shift-variant kernels of a 3D imaging systems under geometric optics satisfy the 

required conditions. GCT was applied to 3D microscopy to the shift-variant blur along 

the   axis. The new shift-invariant system was solved to obtain solution to the focused 

image in the new space. It was then transformed to the original space. Using GCT, it 

was demonstrated that the computational cost of shift-variant restoration became 

comparable to shift-invariant restoration (Deconvolution). Results obtained by using 

GCT were more accurate than shift-invariant and piecewise shift-invariant 

approximations. GCT was considerably faster than PCSI approach to restoration. 

Results of initial investigations in application of GCT for shape recovery were also 

presented. These results provide a glimpse of the possibilities for other applications that 

solve integral equations.     
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7.1. Future work 

Although the algorithms discussed in this work perform satisfactorily, some 

improvements are possible. One such improvement is possible for the MRT method for 

achieving better computational efficiency by observing the RTI method. The forward 

MRT equation can be rearranged to produce an iterative update formula that is a multi-

interval version of the RTI algorithm. This approach should be explored as a way to 

efficiently restore highly defocused images. The other extensions include restoring shift-

variant motion blur and degradations due to primary aberrations.  

The investigation involving GCT is in its initial stage. In 3D microscopy, there are at 

least two extensions possible. First is in incorporating wave optics PSFs derived from 

pupil functions. According to the PSFs developed in Section 6.4.4 of Ref. [19], the 

aberration function satisfies the conditions required to apply GCT. The other possibility 

is in deconvolution of confocal microscopy images. A Confocal Microscope’s PSF has 

local support in the   variable as well, unlike the PSFs considered in Chapter 6. It may 

be possible to incorporate localized approaches to efficiently restore confocal 

microscope images.  

The principle behind other imaging modalities such as Radar imaging is similar to 

that of optical imaging. It is interesting to investigate applications of GCT to other 

image modalities.   
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