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Abstract of the Dissertation

Runtime Verification of Kernel-Level Concurrency Using Compiler-Based Instrumentation

by

Justin Seyster

Doctor of Philosophy

in

Computer Science

Stony Brook University

2012

To approach the challenge of exploiting the performance potential of multi-core architectures,
researchers and developers need systems that provide a reliable multi-threaded environment: ev-
ery component of the underlying systems software must be designed for concurrent execution.
But concurrency errors are difficult to diagnose with traditional debugging tools and, as not all
schedules trigger them, can slip past even thorough testing.

Runtime verification is a powerful technique for finding concurrency errors. Existing runtime
verification tools can check potent concurrency properties, like atomicity, but have not been ap-
plied at the operating system level. This work explores runtime verification in the systems space,
addressing the need for efficient instrumentation and overhead control in the kernel, where perfor-
mance is paramount.

Runtime verification can speculate on alternate schedules to discover potential property viola-
tions that do not occur in a test execution. Non-speculative approaches detect only violations that
actually occur, but they are less prone to false positives and are computationally faster, making
them well suited to online analysis.

Offline monitoring is suited to more types of analysis, because speed is less of a concern, but
is limited by the space needs of large execution logs, whereas online monitors, which do not store
logs, can monitor longer runs and thus more code. All approaches benefit from the ability to target
specific system components, so that developers can focus debugging efforts on their own code.
We consider several concurrency properties: data-race freedom, atomicity, and memory model
correctness.

Our Redflag logging system uses GCC plug-ins we designed to efficiently log memory accesses
and synchronization operations in targeted subsystems. We have developed data race and atomicity
checkers for analyzing the resulting logs, and we have tuned them to recognize synchronization
patterns found in systems code.

Additionally, our Adaptive Runtime Verification framework (ARV) provides monitoring for
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concurrency properties when overhead constraints make it impractical to monitor every event in
the system. Even with this incomplete knowledge, ARV can estimate the state of the monitored
system and dynamically reassign monitoring resources to objects that are most likely to encounter
errors.
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Chapter 1

Introduction

For the software industry, the promise of runtime verification is the power to find programming
defects in testing before they become faults in production. Verification tools can screen for these
errors by checking for out-of-bounds accesses, leaked memory, unsanitized user input, and other
property violations. With techniques like these already taking an important place in developers’
toolboxes, runtime verification holds great potential for tackling the subtle issues of concurrent
software development.

Concurrency errors are an important target for verification because they are so difficult to find
with testing alone. Even tests that exercise all the code paths involved in an error will not expose
the error unless they run with a triggering schedule. Bugs that do appear in testing can appear
randomly during each run, frustrating debugging efforts. But a reported property violation from a
runtime verification tool can point to exactly where the problem is.

The Linux community has already adopted runtime verification for checking the correctness of
its concurrency. Lockdep is a powerful tool for checking lock ordering to ensure that test runs are
free from potential deadlocks [47].

Concurrency Errors

Concurrency errors occur when parallel threads of execution access shared data structures simul-
taneously. Without careful synchronization, these threads will step on each other’s toes, tripping
into inconsistent states and eventually crashing or, worse, producing corrupted results.

Data races A data race is the simplest example of this kind of error because it involves simulta-
neous accesses to a single variable. In a data race, one thread tries to write a variable while another
thread is also accessing it. On some architectures, just this pair of accesses is dangerous per se.
For example, on 32-bit x86, when two threads write to the same 64-bit variable, it may get half of
its value from each thread, a state that is inconsistent for both threads.

More commonly, a data race is part of a bad interleaving involving several accesses in each
thread. A simple increment operation involves two accesses: the first to read value i, the second
to write value i + 1. When two threads increment a variable at the same time, the write operation
in the first thread can form a data race with the second thread’s read. Depending on who “wins”
the race, the second thread will observe either i or i + 1 as the value to increment. In the former
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case, the second thread will also write i + 1, and the two threads together will only succeed in
incrementing the variable once, an error known as a lost update.

The Lockset algorithm [20,57] checks for data races by verifying each variable’s lock discipline.
A lapse in lock discipline, meaning a variable that is not consistently protected by some lock,
means a potential data race. We have implemented Lockset for the Linux kernel, as discussed in
Section 2.1.2

Data races do not correspond precisely with concurrency errors, however. Not all races lead to
an error, and in systems especially, developers design code that can tolerate data races rather than
accepting the cost of locking every access. More importantly, even programs that are free of data
races may have concurrency errors.

Atomicity Checking for atomicity is a more direct way to observe unintended effects from par-
allelization. Two regions of code are atomic with respect to each other if, when executed con-
currently, they produce the same result as if they executed one after the other. Clearly, the racy
increment discussed above does not satisfy this property: a pair of atomic increments will add two
to a variable whether executed in parallel or sequentially.

The block-based algorithms [67, 68] check a program execution for potential schedules that
would violate the atomicity property, leading to possible concurrency errors. Section 2.1.3 dis-
cusses these algorithms, which we also implemented for the Linux kernel.

Memory Model Errors Developers often expect sequentially consistent behavior from multi-
core systems, meaning that all memory accesses in the system follow a canonical linear order,
but modern processors do not always provide that guarantee. Processors can reorder memory
operations and delay the affects of memory writes, and these changes in order are sometimes visible
to other cores accessing the same memory. Modern systems do guarantee sequential consistency
for programs free of data races, but that is not sufficient for most systems code.

When a memory reordering could negatively affect program execution, a memory fence is
necessary to tell the compiler and processor to disallow the dangerous reordering. Finding these
buggy reorderings among all the accesses in a large system is a difficult task, however. Interleaving
code needs to execute within a very small window to be affected by a reordering, so any errors they
cause are difficult to expose.

Offline Verification

We have implemented offline verification for two of the properties discussed above, data race
freedom and atomicity, that checks kernel code. Our system, called Redflag, can target specific
data structures for comprehensive logging and then analyze those logs for concurrency errors.

Redflag uses compiler-based instrumentation to log relevant events. We have developed com-
piler plug-ins that instrument field accesses and lock operations that operate on targeted data struc-
tures. Instrumented operations pass details of the operation, such as which object was accessed or
locked, directly to our logging system.

Targeting data structures is an important part of our verification strategy because it allows users
to choose specific system components to verify. In production systems, developers are responsible
for individual subsystems. Monitoring an entire kernel, for example, would produce reports from
systems that the user has no interest in and would incur huge overheads.
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An offline analysis tool checks the log for property violations. The tool produces a report
for each potential violation that includes complete stack traces for each operation involved. For
example, when our Lockset implementation observes a possible data race, it outputs the stack trace
for each of the two racing memory accesses.

The greatest challenge to using these analysis techniques on systems-level code is avoiding a
proliferation of false positives. We found several conventions in kernel code that resulted in false
positives in the Lockset and block-based algorithms. We adapted these algorithms to recognize
these conventions. In particular our Lexical Object Availability (LOA) analysis determines when
a schedule is impossible because of multi-stage escape, described in Section 2.1.4.

Online Analysis

Checking program execution at runtime has the advantage that there is no need to store logs,
which grow indefinitely for as long as the program continues to run. Though our offline analysis
is thorough, it can only verify relatively short runs before logs grow too large. In Section 2.2, we
present an atomicity verification algorithm that can run online in kernel context.

Our algorithm maintains a shadow memory for each atomic region running in the system. The
shadow memory keeps a thread-local picture of how memory looks to the atomic region. At each
access, the algorithm checks for a discrepancy between shadow memory and global memory, which
would indicate that a remote thread interfered with the accessed variable in a way that violates its
atomicity.

Because this approach only recognizes atomicity violations as they occur, it represents another
trade-off with the offline block-based algorithms. The block-based algorithms speculate on all pos-
sible schedules, allowing them to expose errors that do not actually occur in the test run. However,
determining which schedules are possible is a difficult problem: considering schedules that are
actually impossible leads to false positives, and techniques to filter out these impossible schedules
may filter out some legitimate schedules, instead causing false negatives. The online algorithm
cannot detect errors unless they actually occur in an execution, but it will never report an impos-
sible schedule as an error. This trade-off makes sense for online verification because it can verify
longer runs, allowing it to observe many more schedules than our log-based approach.

Aspect-Oriented Instrumentation

We have found compiler-assisted instrumentation to be a simple and efficient way to monitor events
that are relevant to our verification techniques. During compilation, the compiler constructs de-
tailed type information that we use to target specific data structures for monitoring.

We use GCC for this purpose because its plug-in system gives access to its internal represen-
tation, GIMPLE, which includes the type information we need. On finding data structure accesses
that are targeted for monitoring, the plug-in can modify the GIMPLE code for the access, inserting
efficient instrumentation directly into the program.

Our INTERASPECT framework is an easy-to-use interface for targeting and adding instrumen-
tation based on the ideas of Aspect-Oriented Programming (AOP). In developing instrumentation
plug-ins for Redlfag, we found that, although GIMPLE plug-ins are powerful, a lot of work is
necessary to correctly transform GIMPLE statements. INTERASPECT makes concrete many of the
lessons we learned about implementing these kinds of transformations.
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AOP provides a natural way to express code transformations that consist of attaching additional
functionality to specific events that occur in the code. The user specifies a pointcut, which defines
the set of events, as well as advice, which defines the additional functionality. The advice is added
at each instrumentation site, or join point, in the pointcut.

INTERASPECT’s API allows for customized instrumentation. An INTERASPECT plug-in can
visit each join point, choosing custom parameters to pass to advice based on properties of the join
point. The plug-in can also choose a different advice function or elect to leave a join point unin-
strumented. We developed an example plug-in, described in Section 3.3.2, for performing integer
range analysis that uses customized instrumentation to efficiently link each join point with the
range estimate the join point is associated with. Chapter 3 describes the complete INTERASPECT

API.

Adaptive Runtime Verification and State Estimation

Finally, we focus on verification for environments in which overhead is the primary consideration.
Our tool for verifying lock discipline uses state estimation [61] to design a monitor that can operate
effectively even when it cannot observe every event because of overhead control.

State estimation is a technique that uses a system model to estimate the probability that an
incompletely monitored execution experienced a property violation. Using a model of the system,
state estimation infers what events might have occurred during “gaps,” while the monitor was
not able to observe events. Overhead control techniques like SMCO [34] cause gaps when they
temporarily disable monitoring to meet an overhead target.

Adaptive Runtime Verification (ARV) uses state estimation to allocate monitoring resources
to system objects. ARV allows overhead control mechanisms to spend more of their overhead
monitoring critical objects, those objects which are most likely to cause a property violation. In
our implementation, described in Chapter 4, we use hardware resources to fully monitor the most
critical objects, even when monitoring is disabled for the rest of the system.
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Chapter 2

Analysis of Kernel Concurrency

As the kernel underlies all of a system’s concurrency, it is the most important front for eliminating
concurrency errors. To design a highly reliable operating system, developers need tools to find
concurrency errors before they cause real problems in production systems. Understanding concur-
rency in the kernel is difficult. Unlike many user-level applications, almost the entire kernel runs in
a multi-threaded context, and much of it is written by experts who rely on intricate synchronization
techniques.

Static analysis tools like RacerX [24] can check even large systems code bases for potential
data races, but they produce moderate to large numbers of false positives. Heuristic rankings of
warnings mitigates but does not eliminate this problem. Static analysis tools that check more gen-
eral concurrency properties, such as atomicity [56] are less scalable and would also produce many
false positives for the kernel. In principle, model checkers can verify any property of any system by
exhaustive state-space exploration, but in practice, model checkers do not scale to verification of
complex properties, such as concurrency properties, for programs as large and complex as typical
kernel components.

Runtime analysis is a powerful and flexible approach to detection of concurrency errors. We
designed the Redflag framework and system with the goal of airlifting this approach to the kernel
front lines. Redflag takes its name from stock car and formula racing, where officials signal with a
red flag to end a race. Analysis begins with observing a kernel execution via targeted instrumen-
tation. Instrumentation is provided by compiler plug-ins, which target data structures in specific
kernel subsystems for observation. The Redflag framework comprises our targeted instrumentation
plug-ins and three main verification components:

1. Fast Kernel Logging produces a trace of all observed operations on targeted data structures.
It reserves an in-memory buffer to log these events, along with corresponding stack traces,
with minimal performance overhead.

2. The Redflag offline analysis tool performs post-mortem analyses on logs. Offline analysis
reduces runtime overhead and allows any number of analysis algorithms to be applied to the
logs.

3. The Redflag online analysis tool analyzes events during execution, detecting violations as
they occur. Online analysis has higher runtime overhead than offline analysis, but can handle
long executions that execute too many events to log practically.
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Currently, Redflag implements two kinds of offline concurrency analysis: Lockset [57] anal-
ysis for potential data races and block-based [67, 68] analysis for potential atomicity violations.
These two types of analyses cover a wide range of errors, from missing locks to complex inter-
leavings involving multiple variables. These analyses detect potential errors (in addition to actual
errors) in the sense that they report a warning of a potential error in the observed trace if the same
kind of error manifests itself in a permutation of the observed trace that is consistent with the
synchronization in the observed trace. For example, if one of those permutations contains an unse-
rializable interleaving of two atomic regions, then atomicity analysis reports a potential atomicity
violation in the observed trace. For efficiency, the algorithms are designed to check this without
explicitly constructing permutations of the observed trace. We developed several enhancements to
improve the accuracy of these algorithms, including Lexical Object Availability (LOA) analysis,
which eliminates false alarms (also called false positives) caused by sophisticated synchroniza-
tion during initialization. We also augmented Lockset to support Read-Copy-Update (RCU) [44]
synchronization, a synchronization pattern used in the Linux kernel.

Redflag currently implements one online analysis, for atomicity checking, based on the algo-
rithm used in AVIO [42] and the block-based algorithms [67, 68]. Our online atomicity analysis
detects only actual atomicity violations (not potential atomicity violations) and reports all accesses
involved in the violation, along with their stack traces. As our analysis does not look for poten-
tial errors, it is less susceptible to false alarms. However, it is also less likely to catch rare bugs;
nevertheless, with online analysis, the chance of catching rare bugs can be increased by analyzing
longer runs and therefore more schedules.

2.1 Offline Analysis

2.1.1 Instrumentation and Logging
Redflag inserts targeted instrumentation using a suite of GCC compiler plug-ins that we developed
specifically for Redflag. Plug-ins are a recent GCC feature that we contributed to its development.
Plug-in support is a recent GCC feature, formally introduced in the 2010 release of GCC 4.5 [30],
which we contributed to the development of. Compiler plug-ins execute during compilation and
have direct access to GCC’s intermediate representation of the code [13]. Redflag’s GCC plug-ins
search for relevant operations and instrument them with function calls that serve as hooks into
Redflag’s logging system.

Redflag currently logs four types of operations: (1) Field access: read from or write to a field
in a struct; (2) Synchronization: acquire/release operation on a lock or wait/signal operation
on a condition variable; (3) Memory allocation: creation of a kernel object, necessary for tracking
memory reuse (Redflag can also track deallocations, if desired); (4) System call (syscall) boundary:
syscall entrance/exit (used for atomicity checking).

When compiling the kernel with the Redflag plug-ins, the developer provides a list of structs
to target for instrumentation. Field accesses and lock acquire/release operations are instrumented
only if they operate on a targeted struct. A lock acquire/release operation is considered to operate
on a struct if the lock it accesses is a field within that struct. Some locks in the kernel are not
members of any struct: these global locks can be directly targeted by name.

If a field of a targeted struct is itself a struct, assignments that modify a field of the nested struct
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are treated as updates to the field of the targeted struct. For example, if inode is a targeted struct,
inode.list head.next = NULL is treated as an update to inode.list head.

To minimize runtime overhead, and to allow logging in contexts where potentially blocking I/O
operations are not permitted (e.g., in interrupt handlers or while holding a spinlock), Redflag stores
logged information in a lock-free in-memory buffer. I/O is deferred until logging is complete.

When an event occurs in interrupt context, the logging function also stores an interrupt ID that
uniquely identifies the interrupt handler. Redflag assigns a new ID to each hardware interrupt that
executes, keeping a per-processor stack to track IDs when interrupt handlers nest. Redflag also
assigns interrupt IDs to Soft IRQs, a Linux mechanism for deferred interrupt processing. Offline
analysis treats each interrupt handler execution as a separate thread.

When logging is finished, a backend thread empties the buffer and writes the records to disk.
With 1GB of memory allocated for the buffer, it is possible to log 7 million events, which was
enough to provide useful results for all our analyses.

2.1.2 Lockset Algorithm
Lockset is a well known algorithm for detecting data races that result from variable accesses that
are not correctly protected by locks. Our Lockset implementation is based on Eraser [57].

A data race occurs when two accesses to the same variable, at least one of them a write, can
execute together without intervening synchronization. Not all data races are bugs. A data race is
benign when it does not affect the program’s correctness.

Lockset maintains a candidate set of locks for each monitored variable. The candidate lockset
represents the locks that have consistently protected the variable. A variable with an empty can-
didate lockset is potentially involved in a race. Before the first access to a variable, its candidate
lockset is the set of all possible locks.

The algorithm tracks the current lockset for each thread. Each lock-acquire event adds a lock
to its thread’s lockset, and the corresponding release removes the it.

When an access to a variable is processed, the variable’s candidate lockset is refined by in-
tersecting it with the thread’s current lockset. Thus, a variable’s candidate lockset to be the set
of locks that were held for every access to the variable. When a variable’s candidate lockset be-
comes empty, the algorithm revisits every previous access to the same variable; if no common
locks protected both the current access and that previous one, we report the pair as a potential data
race.

Redflag produces at most one report for each pair of lines in the source code, so the developer
does not need to examine multiple reports for the same race. Each report contains every stack trace
that led to the race for both lines of code and the list of locks that were held at each access.

Beyond the basic algorithm described above, there are several common refinements that elimi-
nate false alarms due to pairs of accesses that do not share locks but cannot occur concurrently for
other reasons.

Variable initialization When a thread allocates a new object, no other thread has access to that
object until the thread stores the new object’s address in globally accessible memory. Most initial-
ization routines in the kernel exploit this to avoid the cost of locking during initialization. As a
result, most accesses during initialization appear to be data races to the basic Lockset algorithm.
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The Eraser algorithm solves this problem by tracking which threads access variables to de-
termine when each variable become shared by multiple threads [57]. Note that this makes the
algorithm more sensitive to thread schedule in the monitored execution. We implement a variant
of this idea: when a variable is accessed by more than one thread or accessed while holding a lock,
it is considered shared. Accesses to a variable before its first shared access are marked as thread
local, and Lockset ignores them.

Memory reuse When a region of memory is freed, allocation of new data structures in the same
memory can cause false alarms in Lockset, because variables are identified by their location in
memory. Eraser solves this problem by reinitializing the candidate lockset for every memory
location in a newly allocated region [57]. Redflag also logs calls to allocation functions, so that it
can similarly account for reuse.

Redflag does not track variables that are allocated on the stack. Instead, it ignores all accesses
to stack variables, which we assume are never shared. Shared stack variables are considered bad
coding style in C and are very rare in quality systems code.

Happened-before analysis Besides using locks for mutual exclusion, threads also synchro-
nize using order-enforcing synchronization, such as condition variables. Redflag uses Lamport’s
happened-before relation [39] to track orderings due to condition variables: there is a happened-
before ordering from a signaling event to the corresponding wake-up event in the thread that re-
ceives the signal. As usual, there are also happened-before orderings between consecutive events
on the same thread, and the overall happened-before relation is the transitive closure of these ba-
sic happened-before orderings. Thread fork and join operations are usually also considered in the
happened-before relation, but we did not find any accesses in the Linux kernel that depend on fork
or join for synchronization.

If a happened-before relation exists between two accesses, we assume that they cannot occur
concurrently even if they share no common locks. This assumption is common in concurrency
analysis, because it reduces false alarms, even though it can rule out feasible interleavings and
hence cause actual errors to be missed.

2.1.3 Block-Based Algorithms
Redflag includes two variants of Wang and Stoller’s block-based algorithm [67, 68]. These algo-
rithms check for atomicity, which is similar to serializability of database transactions and provides
a stronger guarantee than freedom from data races. Two atomic functions executing concurrently
always produce the same result as if they executed in sequence, one after the other.

When checking atomicity for the kernel, system calls provide a natural unit of atomicity. By de-
fault, we check atomicity for each syscall execution. Not all syscalls need to be atomic, so Redflag
provides a simple mechanism, discussed in Section 2.1.5, to specify smaller atomic regions.

We implemented two variants of the block-based algorithm: a single-variable variant that de-
tects violations involving just one variable and a two-variable variant that detects violations involv-
ing multiple variables.
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Figure 2.1: Illegal interleavings in the single- and double-variable block-based algorithms
Note that a final write is the last write to a variable during the execution of an atomic region [68].

Single-variable variant The single-variable block-based algorithm decomposes each syscall ex-
ecution into a set of blocks, which represent sequential accesses to a variable. Each block includes
two accesses to the same variable in the same thread, as well as the list of locks that were held for
the duration of the block (i.e., all locks that were acquired before the first access and not released
until after the second access). The algorithm then checks each block, searching all other threads
for any access to the block’s variable that might interleave with the block in an unserializable way.
An access can interleave with a block if it is made without holding any of the block’s locks, and an
interleaving is unserializable if it matches any of the patterns in Figure 2.1(a).

Two-variable variant The two-variable block-based algorithm also begins by decomposing each
syscall execution into blocks. A two-variable block comprises two accesses to different variables
in the same thread and syscall execution. The algorithm searches for pairs of blocks in different
threads that can interleave illegally. Each block includes enough information about which locks
were held, acquired, or released during its execution to determine which interleavings are possible.
Figure 2.1(b) shows the six illegal interleavings for the two-variable block-based algorithm; Wang
and Stoller give details of the locking information saved for each block [68].

Together, these two variants are sufficient to determine whether any two syscalls in a trace can
violate each other’s atomicity [68]. In other words, these algorithms can detect atomicity violations
involving any number of variables.

Analogues of the Lockset refinements in Section 2.1.2 are used in the block-based algorithm to
take variable initialization, memory re-use, and condition variables into account.

Deadlock For the block-based algorithms to produce correct results, the program trace must be
free of potential deadlocks [68]. We assume traces to be free from deadlocks because all of the
systems we analyzed with Redflag have been thoroughly tested with Lockdep, the Linux kernel’s
tool for catching potential deadlocks [47]. It would be straightforward to implement potential
deadlock detection as one of Redflag’s analysis tools, but we have not done this, because Lockdep
is already widely available to kernel developers.
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2.1.4 Algorithm Enhancements
The kernel is a highly concurrent environment and uses several different styles of synchronization.
Among these, we found some that are not addressed by previous work on detecting concurrency
violations. This section describes two of them—multi-stage escape and RCU—and discusses how
Redflag handles them. Although we observed these synchronization methods in the Linux kernel,
they may be used in other concurrent systems as well.

Multi-stage escape As explained in Section 2.1.2, objects within their initialization phases are
effectively protected from concurrent access, because other threads do not have access to them.
However, an object’s accessibility to other threads is not necessarily binary. An object may be
available to a limited set of functions during a secondary initialization phase and then become
available to a wider set of functions when that phase completes. During the secondary initializa-
tion, some concurrent accesses are possible, but the initialization code is still protected against
interleaving with many functions. We call this phenomenon multi-stage escape. As an example,
inodes go through two stages of escape. First, after a short first-stage initialization, the inode is
placed on a master inode list in the file system’s superblock. File-system–specific code performs a
second initialization and then assigns the inode to a dentry.

The block-based algorithm reported illegal interleavings between accesses in the second-stage
initialization and syscalls that operate on files, like read() and write(). These interleavings
are not possible, however, because file syscalls always access inodes through a dentry. Before an
object is assigned to a dentry—its second escape—the second-stage initialization code is protected
against concurrent accesses from file syscalls. Interleavings are possible with functions that tra-
verse the superblock’s inode list, such as functions called by the writeback thread, but they do not
result in atomicity violations, because they were designed to interleave correctly with second-stage
initialization.

To avoid reporting these kinds of false interleavings, we introduce Lexical Object Availability
(LOA) analysis, which produces a relation on field access statements for each targeted struct.
Intuitively, the LOA relation encodes observed orderings among lines of code. We use these or-
derings to infer when an object becomes unavailable to a region of code, marking the end of an
initialization phase.

In the inode example, an access from the writeback thread is evidence that first-stage initial-
ization is finished; and an access from a file syscall is evidence that first- and second-stage ini-
tialization are finished. These mean that accesses from those initialization routines are no longer
possible.

The LOA algorithm first divides the log file into sub-traces. Each sub-trace contains all accesses
to one particular instance o of a targeted type of struct S. For each sub-trace, which is for some
instance of some struct S, the algorithm adds an entry for a pair of statements in the LOA
relation for S, denoted LOAS , when it observes that one of the statements occurred after the other
in a different thread in that sub-trace. Specifically, for a struct S and read/write statements a and
b, (a, b) is included in LOAS iff there exists a sub-trace for an instance of struct S containing
events ea and eb such that:

1. ea is performed by statement a, and eb is performed by statement b, and

2. ea occurs before eb in the sub-trace, and
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3. ea and eb occur in different threads.

We modified the block-based algorithm to report an atomicity violation only if the interleav-
ing statements that caused the violation are allowed to interleave by their LOA relation. For an
event produced by statement b to interleave a block produced by statements a and c, the LOA
relation must contain the pairs (a, b) and (b, c). Otherwise, the algorithm considers the interleaving
impossible.

Returning to the inode example, consider a and c to be statements from the secondary initial-
ization stage and b to be a statement in a function called by the read syscall. Because statement b
cannot access the inode until after secondary initialization is finished, (b, c) cannot be in LOAinode,
the LOA relation for inode objects.

We also added LOA analysis to the Lockset algorithm: it reports that two statements a and b
can race only if both (a, b) and (b, a) are in the LOA relation for the struct that a and b access.

For example, the kernel sometimes uses condition variables to protect against (i.e., postpone)
certain operations by other threads to inodes that are in a startup phase, which lasts longer than ini-
tialization. While happened-before analysis (described in Section 2.1.2) is the traditional approach
to take order-enforcing synchronization into account, we found that LOA analysis is equally ef-
fective for this; for example, in our experiments, LOA analysis eliminated all false alarms cor-
responding to interleavings precluded by condition variables. After finding this, we did not use
happened-before analysis in subsequent experiments, including the experiments reported in Sec-
tion 2.4. LOA analysis can also infer destruction phases, when objects typically return to being
exclusive to one thread, even when the start of the destruction phase is not indicated by an explicit
synchronization operation.

Because LOA filters interleavings based on the observed order of events, it can eliminate warn-
ings corresponding to actual errors. The common technique of filtering based on when variables
become shared (see Section 2.1.2) has the same problem: if a variable becomes globally accessible
but is not promptly accessed by another thread, neither technique recognizes that such an access
is possible. Dynamic escape analysis addresses this problem by determining precisely when an
object becomes globally accessible [68], but it accounts for only one level of escape and hence
would not eliminate many of the false alarms successfully filtered by LOA analysis.

Syscall interleavings Engler and Ashcraft observed that dependencies on data prevent some
kinds of syscalls from interleaving [24]. For example, a write operation on a file never executes
in parallel with an open operation on the same file, because user-level programs have no way to
call write before open finishes.

These dependencies are actually a kind of multi-stage escape. The return from open is an
escape for the file object, which then becomes available to other syscalls, such as write. For
functions that are called from only one syscall, our LOA analysis already rules out impossible
interleavings between statements in syscalls with this kind of dependency.

However, when a function is reused in several syscalls, the LOA relation, as described above,
cannot distinguish executions of the same statement that were executed in different syscalls. As a
result, if LOA analysis sees that an interleaving in a shared function is possible between one pair
of syscalls, it will believe that the interleaving is possible between any pair of syscalls.

To overcome this problem, we augment the LOA relation with some context sensitivity; the
modified LOA relation contains entries of the form ((syscall, statement), (syscall, statement)).
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/* [Thread 1] */
spin_lock(inode->lock);
inode->i_state |= I_SYNC;
spin_unlock(inode->lock);

/* [Thread 2] */
spin_lock(inode->lock);
if (inode->i_state & I_CLEAR) {
/* ... */

}
spin_unlock(inode->lock);

/* [Thread 1] */
spin_lock(inode->lock);
inode->i_state &= ˜I_SYNC;
spin_unlock(inode->lock);

Figure 2.2: False-alarm atmocity violation for a bitfield variable
This interleaving appears to violate the atomicity of the i state field, but the two threads actually
access independent bits within the bitfield.

This causes LOA analysis to distinguish the possible orderings of each statement in the context of
each syscall; it achieves the same effect as making multiple copies of each function, one for each
syscall. Statements that do not execute in a syscall are instead paired with the name of the kernel
thread they execute in.

RCU Read-Copy Update (RCU) synchronization is a recent addition to the Linux kernel that
allows very efficient read access to shared variables [44]. A typical RCU-write copies the protected
data structure, modifies the local copy, and then replaces the pointer to the original copy with a
pointer to the updated copy. RCU synchronization by itself does not protect against lost updates, so
writers must also use locking if they want to prevent lost updates. A reader needs only to surround
read-side critical sections with rcu read lock() and rcu read unlock(), which ensure that
the copy of the shared data structure that they are reading does not get freed during the critical
section, even if a writer concurrently replaces that copy with an updated copy.

We extended Lockset to test for correct use of RCU synchronization. When a thread enters a
read-side critical section by calling rcu read lock(), our implementation adds a virtual RCU
lock to the thread’s lockset. We do not report a data race between a read and a write if the read
access has the virtual RCU lock in its lockset. However, conflicting writes to an RCU-protected
variable will still produce a data race report.

2.1.5 Filtering False Positives and Benign Warnings
Bit-level granularity We found that many false alarms produced by the block-based algorithms
were caused by flag variables, like the i state field in Figure 2.2, which group several boolean
values into one integer variable. Because several flags are stored in the same variable, an access to
one flag appears to access all flags in the variable. Erickson et al. observed this same pattern in the
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Windows 7 kernel and account for it in their DataCollider race detector [25].
Figure 2.2 shows an example of an interleaving that the single-variable block-based algorithm

would report as a violation. The two bitwise assignments in thread 1 both write to the i state

field. These two writes form a block between which the read of the i state field in thread 2 can
interleave; this is one of the illegal patterns shown in Figure 2.1(a). However, there is no atomicity
problem, because thread 1 writes only the I SYNC bit, and thread 2 reads only the I CLEAR bit.

We eliminate such false alarms by modifying the block-based algorithms to treat any variable
that is sometimes accessed using bitwise operators as 64 individual variables (on 64-bit systems).
Redflag’s plug-ins detect bitwise operations and pass their bitmasks to the logger so that the block-
based analysis can identify which operations read or write individual bits. Our analysis still detects
interleavings between bitwise accesses to individual flags and accesses that involve the whole
variable.

Idempotent operations An operation is idempotent if, when it is executed multiple times on the
same variable, only the first execution changes the variable’s value. For example, setting a bit to 1
in a flag variable is an idempotent operation. When two threads execute an idempotent operation,
the order of these operations does not matter, so atomicity violation reports involving them are
false positives. The user can annotate lines that perform idempotent operations. Our algorithms
filter out warnings that involve only these lines.

Choosing atomic regions We found that many atomicity violations initially reported by the
block-based algorithms are benign: the syscalls involved are not atomic, but are not required to
be atomic. For example, the Btrfs file system function btrfs file write() loops through each
page that it needs to write. The body of the loop, which writes one page, should be atomic, but the
entire function is not required to be atomic.

Redflag lets the user break up atomic regions by marking lines of code as fenceposts. A fen-
cepost ends the current atomic region and starts a new one. For example, placing a fencepost at
the beginning of the page-write loop in btrfs file write() prevents Redflag from reporting
atomicity violations spanning two iterations of the loop.

Fenceposts provide a simple way for developers to express expectations about atomicity. Even
for the largest systems we checked, about an hour of work placing fenceposts led to substantially
better reports.

To facilitate fencepost placement, Redflag determines which lines of code, if marked as fen-
ceposts, would filter the most atomicity violations. Any line of code that executes in the same
thread as a block and between the first and last operations of the block (see Section 2.1.3 for a
description of blocks) can serve as a fencepost that filters all violations involving that block. After
block-based analysis produces a list of atomicity violations with corresponding blocks, fencepost
inference proceeds by greedily choosing the fencepost that will filter the most violations, removing
these violations from its list, and repeating until no violations remain. The result is a list of poten-
tial fenceposts sorted by the number of violations they filter. The user can examine these candidate
fenceposts to see whether they lie on the boundaries of sensible atomic regions in the code. The
resulting set of fenceposts is not necessarily the smallest set of fenceposts that filters all violations,
but computing such a set is equivalent to the NP-complete minimum hitting set problem.
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2.2 Online Atomicity Checking
The block-based algorithms used in our offline atomicity checking increase the likelihood of find-
ing bugs by implicitly considering alternative schedules for (i.e., permutations of) the observed
trace, relying on sophisticated reasoning about schedule feasibility, such as that provided by our
LOA analysis technique. In contrast, our online atomicity checking algorithm reports only atom-
icity violations that actually occur in the observed run.

The illegal interleavings used in the single-variable block-based algorithm, which we list in
Figure 2.1(a), involve a pair of accesses within an atomic region interleaved by an access from a
remote thread. We categorize these atomicity-violating patterns into interleaved write violations
and interleaved read violations, based on the type of interleaved operation, and use different tech-
niques to detect them.

2.2.1 Interleaved write violations
In an interleaved write violation, a remote write interferes with a variable’s value while it is in
use by another thread. When the write interleaves a pair of reads, the two reads observe different
values, violating atomicity. Similarly, an atomic region that writes a field should observe the value
it originally wrote when it later reads that same field. A remote write that changes that value
between those two operations violates atomicity.

To detect this category of atomicity violations, our online algorithm maintains shadow memory
for each atomic region. The shadow memory for an atomic region contains a private copy of every
targeted field that the atomic region accesses. Some software transactional memories use a similar
kind of private memory to defer updates until an atomic region commits [33]. Shadow memory
does not defer writes to system memory, however, because our online analysis aims only to detect
conflicts, not prevent them.

The first time an atomic region accesses a targeted field, an entry is created for that field in
the atomic region’s shadow memory. All writes to that field by that atomic region update both
the atomic region’s shadow memory and system memory. All accesses to the field trigger a check
that the field’s actual value, in system memory, matches the shadow copy. Any discrepancy means
that an interleaved operation in another thread modified the field and indicates an atomicity vio-
lation. In contrast to interleaving 4 in Figure 2.1(a), our online algorithm does not check whether
the interleaved write is a final write (note that this condition cannot be checked until the atomic
region containing the interleaved write terminates, so checking this condition efficiently in the
online algorithm is more complicated than checking this condition in the offline algorithm). The
effect of omitting this check is that the algorithm checks conflict serializability rather than view
serializability. In future work, we plan to modify the algorithm to check this condition, to see
how many atomicity violation reports are eliminated by using the more permissive concept of view
serializability.

2.2.2 Interleaved read violations
An interleaved read violation is possible when an atomic region writes the same field more than
once. To preserve atomicity, all writes except the last one should be private to the atomic region.
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A read by another thread interleaved between two writes in an atomic region will observe a private
value, violating atomicity.

To detect interleaved read violations, our algorithm checks when overwriting a field’s value
in an atomic region’s shadow memory, whether the value being overwritten was read by another
thread. We do this by comparing the time of the most recent read by another thread with the time
that the value being overwritten was written, and reporting an atomicity violation if the former is
after the latter. To implement this, we augment each atomic region’s shadow memory so that, when
a write is saved to an atomic region’s shadow memory, the time of the write is stored along with it.
We introduce a global data structure, which we call global shadow memory, that stores the time of
the most recent read to each field by any thread. Each atomic region’s shadow memory and global
shadow memory are implemented as red-black trees.

As mentioned above, the algorithm needs the time of the most recent read by another thread,
i.e., a thread other than the current thread. In order to provide this information, the global shadow
memory stores information about two reads: the most recent read by any thread, and the runner-up
read, which is the most recent read from any thread other than the thread that made the most recent
read. When a read occurs, its timestamp gets saved as the most recent. The previously most recent
read gets saved as the runner-up if and only if it was from a different thread than the new read. It is
never necessary to store more than two reads because the two reads stored are never from the same
thread.

For efficiency, the times of reads and writes are based on a logical clock, rather than a real-time
clock. The logical clock is a system-wide counter incremented on every write to an instrumented
field. Using a real-time clock would be slower (because reading a real-time clock takes longer than
reading a counter) and would not be accurate enough to reliably determine the ordering of memory
accesses amongst multiple cores.

As another optimization, Redflag updates the timestamp of the last read in global shadow
memory only when an atomic region reads a field it has not accessed before. Any later read from
the same atomic region either observes the same value or exposes an interleaved write violation. In
the latter case, the later read is also involved in an interleaved read violation, which is not reported
due to this optimization. We consider this acceptable, because the interleaved write violation that
is reported already shows that the later read causes atomicity-violating interference between the
two atomic regions involved.

2.2.3 Instrumentation
Instrumentation for online analysis is built on the same plug-in as Redflag Logging. Just as with
Redflag Logging, instrumentation for online analysis can be configured to target specific data struc-
tures for analysis. In addition to all the information used for logging, the shadow memory also
needs to know the address of each accessed field and, for writes, the value that was written. We
modified the plug-in to provide this information.

The plug-in must directly capture the values of field writes to avoid concurrency errors in the
implementation of Redflag itself. The instrumentation could copy the written value from system
memory after the write takes place, but there is no efficient mechanism to lock the field between the
write and the copy. Instead, the plug-in modifies the write operation so that it assigns the value to
an unshared temporary variable, which is passed to the shadow memory and copied to the original
field.
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In addition to instrumenting explicit assignments to targeted fields (an explicit field assignment
has the form expr.field = expr or expr->field = expr), our plug-ins add instrumenation to observe
two other kinds of updates, described in the following paragraphs.

First, assignments that modify a field of a targeted struct through a pointer to the field are not
explicit field assignments and hence require special treatment by the plug-in. In the kernel code
we examined, such assignments occur only in contexts where the address of a field is passed as an
argument to a function, e.g., atomic inc(&(foo->counter)), where atomic inc atomically
increments the value stored in the memory location to which its argument points. Therefore, the
plug-in syntactically identifies function calls that take a pointer to a targeted field as a parameter
and, if the called function is one that we manually identified as modifying the value stored where
that argument points, the plug-in instruments the function call as a write to that field. We identified
about thirty such functions in the kernel, mostly functions, such as atomic inc, that abstract
hardware-supported interlocked arithmetic operations.

Second, functions like memcpy can modify all the fields within a block of memory without any
direct assignment statements. These functions are used extensively in Btrfs, for example, to copy
entire structs that are stored within B-tree nodes. We identified three such functions used in the
Btrfs code to which we applied our online atomicity tool, and we manually modified them to call
a shadow memcpy function after completing the system memory copy. Btrfs uses these internal
functions instead of standard memcpy because memcpy is not designed for data structures that may
reside in high memory.

The shadow memcpy function mirrors the effects of the actual memcpy operation in the atomic
region’s shadow memory. First, the shadow memcpy finds all the fields in the memcpy source
memory region that have entries in the atomic region’s shadow memory. This search is performed
as a range query on the red-black tree used to store the shadow memory. Each of these fields’
entries is copied into the atomic region’s shadow memory for the destination memory region.

Redflag treats a memcpy operation from a source struct to a destination struct differently from
individually copying each field with an assignment (as in dest.a = source.a) in three ways.
First, any source region fields that the atomic region never accessed will appear in the destination
region as if they were never accessed. The shadow memcpy function does not create new entries
in the destination region for such entries, and it erases any entries that already exist. Second, the
destination field does not appear in shadow memory to have been written by the memcpy; it appears
as if it were accessed in the same way as the corresponding source field, because its entry in the
shadow memory is copied verbatim. These shadow memcpy semantics can suppress violations that
would be triggered by a write and not a read. They also change which operation Redflag implicates
in its error reports. We designed these semantics to treat copied objects as if they existed in only
one place throughout their lifetimes, because we believe this produces more useful error reports.
Finally, for performance reasons, the shadow memcpy operation does not alter the global shadow
memory: no read timestamps are recorded, and stack traces used for debugging are not copied
(these stack traces are discussed in Section 2.2.4).

2.2.4 Debugging information
Providing comprehensive debugging information for each reported violation, as Redflag’s offline
analysis does, requires storing additional information for each access.

Each time Redflag saves a value in an atomic region’s shadow memory, it stores a stack trace
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address Address of the field.
value The atomic region’s view of the field’s value: set on the first ac-

cess within the atomic region and on each subsequent write by the
atomic region.

was written True iff this field has been written within this atomic region.
stacktrace Stack trace saved when the value field of this entry was last up-

dated.
write timestamp Timestamp of the first write to this field in the atomic region.

Table 2.1: Data stored in an atomic region’s shadow memory
Each atomic region has its own shadow memory, which has an entry for each targeted field it has
accessed.

address Address of the field.
remote reads Struct containing information about the most recent read and the

runner-up read from this field. This struct stores thread id,
stacktrace, and timestamp fields for each read.

remote writes Struct containing information about the most recent write and the
runner-up write to this field. This struct stores thread id and
stacktrace fields for each write.

Table 2.2: Data stored in global shadow memory
There is one global shadow memory shared by all atomic regions, which contains an entries for
every targeted field.

with it. On detecting a violation, Redflag reports that saved stack trace and the current stack trace,
providing debugging information for the two accesses occurring in the violating atomic region.

Equally important for debugging is information about the interleaved access that caused the
violation. This information is not available in the atomic region’s shadow memory, because that
access is performed by a different thread. To provide that information, Redflag stores, in the global
shadow memory, a stack trace for the most recent write to every field. When an interleaved write
violation is detected, this stack trace is reported as the stack trace associated with the interleaved
write. Similarly, when Redflag updates a field’s last-read timestamp in global shadow memory, it
also saves a stack trace along with the timestamp, in order to report stack traces for interleaved
reads.

Under rare circumstances, the interleaved write implicated in a violation can appear to be from
the same thread as the two accesses in the violated atomic region. This happens because we do
not update the global shadow memory and actual system memory in one atomic operation, making
it possible for the stack trace saved in global memory to not correspond to the actual most recent
write to a field. When the global memory shows an interleaving write from the same thread, we
instead report the stack trace associated with a runner-up write, which is the most recent write
from any thread other than the thread that made the most recent write. This is analogous to the way
that we sometimes report a runner-up read as part of an interleaved-read violation, as described in
Section 2.2.2. Even when the reported write is not actually the most recent, it will have occurred in
between the two accesses in the violated atomic region, making it a legitimately violating access.
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2.2.5 Pseudo-code
For reference, Tables 2.1 and 2.2 summarize the information stored in each atomic region’s shadow
memory and global shadow memory, respectively, including the debugging information discussed
in Section 2.2.4. The fields described in these figures are referenced in the pseudo-code for the
online atomicity algorithm, which is presented in Figures 2.3 and 2.4.

2.3 Weak memory model errors
Weak memory models are an oft overlooked source of concurrency errors in systems code. Under
weak memory models, the compiler and processor can reorder memory accesses for performance
reasons. Reorderings are invisible to single-threaded code, but developers of multi-threaded pro-
grams must account for them.

In the sequentially consistent memory model, loads and stores across all processors are totally
ordered, such that a load always observes the value written by the most recent store to the same
address [40]. Furthermore, the total order is consistent with each processor’s order of execution.
Figure 2.5(a) shows a sequentially consistent trace of a simple parallel program.

Weak memory models are those models that do not provide the sequential consistency guar-
antee. Either the global ordering of memory events may be inconsistent with some processor’s
execution order, or there might not be a global ordering. Figure 2.5(b) shows the same program
executing on a weak memory model.

The paradoxical result shown would not be possible with sequential consistency. Under any
sequentially consistent ordering, the last load must execute after both store operations, meaning
that at least one of r1 and r2 would have a final value of 1.

The result in Figure 2.5(b) is possible, though, on architectures that implement store buffering
because store buffers do not enforce sequential consistency. In store-buffered memory models,
writes are held temporarily in the buffer so that the processor does not have to wait for the write
to complete before retiring subsequent instructions, similar to how file systems use write caches
to optimize write system calls. In our example, the load from v1 can execute after the concurrent
store retires but before CPU 1 propagates the new value of v1 from its store buffer to memory,
allowing CPU 2 to observe the now stale initial value. The Total Store Order (TSO) memory model
formalizes the memory reorderings allowed by store buffers [12, 51].

In systems code that avoids locks for performance reasons, programmers often rely on the
ordering of memory accesses for synchronization. Atig et al. note that the pattern in Figure 2.5
appears in Dekker’s mutual exclusion protocol [4]. We also found this pattern in the Linux ker-
nel, embedded in the synchronization between consumer threads polling a network socket and a
producer thread receiving a packet on that socket, as described in a Linux Kernel Mailing List
(LKML) bug report [50]. Burckhardt and Musuvathi found a similar producer/consumer bug in a
Microsoft concurrency library [12].

For this kind of lockless synchronization to work, programmers need to manually enforce se-
quential consistency using memory fences1. On encountering a full memory fence, the processor

1Among programmers, the term memory barrier is often used to describe a fence, though there is no relation the
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OnAccess(newAccess):
address := FieldAddress(newAccess)
prevAccess := ReadShadowEntry(address)
glEntry := ReadGlobalEntry(address)
isFirstAccess := !Exists(prevAccess)

if !Exists(glEntry) then:
glEntry := new GlobalEntry(address)

fi

if !isFirstAccess then:
CheckAtomicity(newAccess, prevAccess, glEntry)

; update the atomic region’s shadow memory
if isFirstAccess then:

prevAccess := new LocalEntry(address)
fi

if IsWrite(newAccess) or isFirstAccess then:
prevAccess.value := GetValue(newAccess)
prevAccess.was_written := prevAccess.was_written or IsWrite(newAccess)
prevAccess.stacktrace := GetCurStack()
prevAccess.write_timestamp := GetLogicalTime()
WriteShadowEntry(address, prevAccess)

fi

; update global shadow memory
if IsWrite(newAccess) then:

lastWrite := glEntry.remote_writes.most_recent
newWrite.thread_id := GetCurThread()
newWrite.stacktrace := GetCurStack()

if (last_write.thread_id != GetCurThread()) then:
glEntry.remote_writes.runner_up := last_write

fi
glEntry.remote_writes.most_recent := newWrite

else if isFirstAccess then:
lastRead := glEntry.remote_reads.most_recent
newRead.thread_id := GetCurThread()
newRead.timestamp := GetLogicalTime()
newRead.stacktrace := GetCurStack()

if last_read.thread_id != GetCurThread() then:
glEntry.remote_reads.runner_up := lastRead

fi
glEntry.remote_reads.most_recent := newRead

fi

WriteGlobalEntry(address, glEntry)

if IsWrite(newAccess) then:
IncrementLogicalClock()

fi

Figure 2.3: Pseudo-code for the Redflag online atomicity checking algorithm.
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CheckAtomicity(newAccess, prevAccess, glEntry):
if prevAccess.value != GetValue(newAccess) and

!(prevAccess.was_written and IsWrite(newAccess)) then:
; interleaved write violation
remoteWrite := ChooseRemoteAccess(glEntry.remote_writes)
ReportViolation(prevAccess.stacktrace,

remoteWrite.stacktrace,
GetCurStack())

fi

if IsWrite(newAccess) and prevAccess.was_written then:
remoteRead := ChooseRemoteAccess(glEntry.remote_reads)
if Exists(remoteRead) and remoteRead.timestamp > prevAccess.write_timestamp then:

; interleaved read violation
ReportViolation(prevAccess.stacktrace,

remoteRead.stacktrace,
GetCurStack())

fi
fi

; Among a pair of accesses, choose the most recent
; from another thread, unless no such access exists.
ChooseRemoteAccess(accesses):

if Exists(accesses.most_recent) and
accesses.most_recent.thread_id != GetCurThread() then:
return accesses.most_recent

else:
return accesses.runner_up

fi

Figure 2.4: Pseudo-code for the Redflag online atomicity checking algorithm, continued.

CPU 2

store v2  1
load r1  v1

r1 = 1

CPU 1
store v1  1
load r2  v2

Finally:
r2 = 0

Initially:
v1 = 0
v2 = 0

(a) Sequentially consistent

CPU 1
store v1  1
load r2  v2

Finally:
r2 = 0

CPU 2
store v2  1
load r1  v1

r1 = 0

Initially:
v1 = 0
v2 = 0

(b) Violating sequential consistency

Figure 2.5: Two possible executions of a star-crossed data race
One is possible on sequentially consistent architectures and one is only possible on a weak memory
model, like Total Store Order (TSO) [12].
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is not allowed to execute any memory operations that follow the fence until the effects of all prior
memory operations are committed. Compilers also honor memory fences and will not reorder
variable reads and writes across fences.

A pair of correctly placed fences can prevent the inconsistent result in Figure 2.5(b): one in
each thread between the store and the load. Linux developers chose this approach to fix the
previously mentioned network socket bug [50]. Note that a single fence is not enough to enforce
sequentially consistent behavior here. The LKML discussion of the network socket bug informally
acknowledges this requirement, noting that a fence needs to “pair” with another fence in a racing
thread to be useful.

The socket error essentially results in a deadlock when a thread attempts to poll a socket at the
exact moment that another processor is reading an incoming packet bound for the same socket. As
with Dekker’s protocol, each processor proceeds in two steps, first with a write to indicate it has
initiated the protocol and then with a read to check if a racing thread is simultaneously executing
the protocol. For the polling thread, this means 1) placing itself on the list of threads waiting for
packets from the socket then 2) checking whether packets are already available. Meanwhile, the
receiving processor 1) updates a variable to indicate an available packet then 2) checks if there are
any waiting threads that need to be notified of the new packet.

The sequentially inconsistent outcome in Figure 2.5(b) deadlocks because the polling threads
believes there are no incoming packets, and the incoming packet believes there are no polling
threads. As a result, the polling thread waits on a condition variable, but the receiving processor
does not wake it, leaving it to sleep indefinitely unless another packet eventually arrives.

To see how the socket polling process embeds the pattern in Figure 2.5, it helps to know exactly
what pair of variables are involved. In this case, v1 is the TCP/IP sequence number of the socket’s
next unread byte, tp->rcv nxt, and v2 is the head pointer for the socket’s waiter list.

We focus our bug-finding efforts on this specific pattern of memory accesses, which we refer
to as a star-crossed data race. A star-crossed data race exists between a pair of variables v1 and
v2 when 1) there are racing read and write accesses to v1, 2) the write is followed by a read from
v2 and the read is preceded by a write to v2, and 3) at least one of the two racing threads lacks
a protecting memory fence. Here, a protecting memory fence is one that separates the v1 access
from the corresponding v2 access. A star-crossed data race is still possible if v2 is protected by a
lock, so long as that lock does not also protect v1. On many architectures, releasing the v2 lock
would serve as a fence, preventing the sequentially inconsistent behavior, but this guarantee does
not hold for all Linux-supported systems.

2.3.1 Star-crossed block-based algorithm
We propose a star-crossed data race dectector that operates like the two-variable block-based algo-
rithm. Like the block-based algorithms, our new detector begins by collecting a set of blocks for
each thread.

Each block has a write operation that is followed by a read operation in the same thread but
from a different field. For each read operation in the thread from any variable v2, we create one

barriers synchronization primitive.
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block for each previously written variable v1 s.t. v1 6= v2. The block comprises a pair of the latest
write to v1 preceding the read and the read itself. Each block is also annotated with any fence
operations that executed between the write and read operations and the set of locks protecting each
of the two accesses.

Two blocks are potentially conflicting if operate on the the same pair of variables but in opposite
order and they execute in different threads. For example, a blocking consisting of a write to v1 then
read from v2 potentially conflicts with a block that writes to v2 then reads from v1.

Unlike the two-variable block-based algorithm, our detector does not need to check for any
kind of interleaving between two potentially conflicting blocks. It only checks that the intersection
of the read lockset from one block and the write lockset from the other block is empty, meaning
the two accesses can race, and that one of the blocks has no memory fences. Any potentially
conflicting blocks that meet these criteria indicate a star-crossed data race. As with the our Lockset
implementation we will also need to use Lexical Object Availability (LOA) analysis to filter out
any pair of blocks where initialization prevents the race from actually occuring.

Our current implementation of the star-crossed block-based algorithm generates too many false
alarms to be of use in most situations. Improving the algorithm’s accuracy is a subject of future
work.

2.4 Evaluation
To evaluate Redflag’s accuracy and performance, we exercised it on three kernel components:
Btrfs, Wrapfs, and Noveau. Btrfs is a complex in-development on-disk file system. Wrapfs is a
pass-through stackable file system that serves as a stackable file system template [70]. Because of
the interdependencies between stackable file systems and the underlying virtual file system (VFS),
we instrumented all VFS data structures along with Wrapfs’s data structures. We exercised Btrfs
and Wrapfs with Racer [62], a workload designed to test a variety of file-system system calls
concurrently. Nouveau is a video driver for Nvidia video cards. We exercised Nouveau by playing
a video and running several instances of glxgears, a simple 3D OpenGL example.

Lockset results Lockset revealed two confirmed locking bugs in Wrapfs. The first bug results
from an unprotected access to a field in the file struct, which is a VFS data structure instru-
mented in our Wrapfs tests. A Lockset report shows that parallel calls to the write syscall can
access the pos field simultaneously. Investigating this race, we found an article describing a bug
resulting from it: parallel writes to a file may write their data to the same location in a file, in
violation of POSIX requirements [18]. Proposed fixes carry an undesirable performance cost, so
this bug remains.

The second bug is in Wrapfs itself. The wrapfs setattr function copies a data structure from
the wrapped file system (the lower inode) to a Wrapfs data structure (the upper inode) but does not
lock either inode, resulting in several Lockset reports. We discovered that file truncate operations
call the wrapfs setattr function after modifying the lower inode. If a truncate operation’s call
to wrapfs setattr races with another call to wrapfs setattr, the updates to the lower inode
from the truncate can sometimes be lost in the upper inode. We confirmed this bug with Wrapfs
developers.
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useless struct untraced
setattr stat atime read counting granularity lock other

Btrfs 5 61 6 2 40
Wrapfs 34 6 14 43 2
Nouveau 1 21 2 1

Table 2.3: Summary of results of block-based algorithms
From left to right, the columns show: reports caused by wrapfs setattr, reports caused by
touch atime, reports caused by reads with no effect, reports involving counting variables, re-
ports caused by coarse-grained reporting of struct accesses, and reports that do not fall into the
preceding categories. Each column has two sub-columns, with results for the single-variable and
two-variable algorithms, respectively. Empty cells represent zero.

Lockset detected numerous benign races: 8 in Btrfs, and 45 in Wrapfs. In addition, it detected
benign races involving the stat syscall in Wrapfs, which copies file metadata from an inode to a
user process without locking the inode. The unprotected copy can race with operations that update
the inode, causing stat to return inconsistent (partially updated) results. This behavior is known
to Linux developers, who consider it preferable to the cost of locking [7], so we filter out the 29
reports involving stat.

Lockset produced some false alarms due to untraced locks: 2 for Wrapfs, and 11 for Noveau.
These false alarms are due to variable accesses protected by locks external to the traced structs.
These reports can be eliminated by telling Redflag to trace those locks.

Block-based algorithms results Table 2.3 summarizes the results of the block-based algorithms.
We omitted four structs in Btrfs from the analysis, because they are modified frequently and are
not expected to update atomically for an entire syscall. The two-variable block-based algorithm is
compute- and memory-intensive, so we applied it to only part of the Btrfs and Wrapfs logs.

For Wrapfs, the wrapfs setattr bug described above causes atomicity violations as well as
races; these are counted in the “setattr” column. The results for Wrapfs do not count 86 reports for
the file system that Wrapfs was stacked on top of (Btrfs in our experiment). These reports were
produced because we told Redflag to instrument all accesses to targeted VFS structures. A Wrapfs
developer uninterested in these reports could easily eliminate them by telling Redflag to instrument
accesses to those structures only in Wrapfs code.

For Wrapfs, the unprotected reads by stat described above cause two-variable atomicity vio-
lations, which are counted in the “stat” column. These reads do not cause single-variable atomicity
violations, because inconsistent results from stat involve multiple inode fields, some read before
an update by a concurrent operation on the file, and some read afterwards.

For Noveau, the report in the “untraced lock” column involves variables protected by the Big
Kernel Lock (BKL), which we did not tell Redflag to track.

The “counting” column counts reports whose write accesses are increments or decrements (e.g.,
accesses to reference count variables). Typically, these reports can be ignored, because the order
in which increments and decrements execute does not matter—the result is the same. Our plug-ins
mark counting operations in the log, so Redflag can automatically classify reports of this type.
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Fenceposts Bit-level granularity LOA Unfiltered
Btrfs 44 0 159 108
Wrapfs 81 6 215 79
Nouveau - 2 70 22

Table 2.4: Number of false positives filtered out by various techniques

The “struct granularity” column counts reports involving structs whose fields are grouped
together by Redflag’s logging. Accesses to a struct that is not targeted get logged when the
non-targeted struct is a field of some struct that is targeted and the access is made through
the targeted struct. However, all the fields in the non-targeted struct are labeled as accesses
to the field in the targeted struct, so they are treated as accesses to a single variable. Revisiting
the example in Section 2.1.1, if inode is targeted and list head is not, then accesses to all
fields in inode.list head (such as inode.list head.next) are treated as accesses to the
field inode.list head. This can cause false alarms, in the same way that bit-level operations
can (see Section 2.1.5). These false alarms can be eliminated by adding the non-targeted struct to
the list of targeted structs.

Filtering Table 2.4 shows how many reports were filtered from the results of the single-variable
block-based algorithm (which produced the most reports) by manually chosen fenceposts, bit-level
granularity, and LOA analysis. We used fewer than ten manually chosen fenceposts each for Btrfs
and Wrapfs. Choosing these fenceposts took only a few hours of work. We did not use fenceposts
for our analysis of Nouveau because we found that entire Nouveau syscalls are atomic.

LOA analysis is the most effective among these filters. Only a few structs in each of the
modules we tested go through a multi-stage escape, but those structs are widely accessed. It is
clear from the number of false alarms removed that a technique like LOA analysis is necessary to
cope with the complicated initialization procedures in systems code.

Some reports filtered by LOA analysis may be actual atomicity violations, as discussed in Sec-
tion 2.1.4. This happened with a bug in Btrfs’ inode initialization that we discovered during our
experiments. The Btrfs file creation function initializes the new inode’s file operations vector field
just after the inode is linked to a dentry. This linking is the inode’s second stage of escape, as
discussed in Section 2.1.4. When the dentry link makes the new inode globally available, there
is a very narrow window during which another thread can open the inode while the inode’s file
operations vector is still empty. This bug is detected by the single-variable block-based algorithm,
but the report is filtered out by LOA analysis. LOA analysis will determine that the empty op-
erations vector is available to the open syscall only if an open occurs during this window in the
logged execution, which is unlikely. Dynamic escape analysis correctly recognizes the possible
interleaving in any execution, but has other drawbacks, because it accounts for only one level of
escape. In particular, the bug can be fixed by moving the initialization of the file operations vector
earlier in the function: before the inode is linked to a dentry, but still after the inode’s first escape.
Dynamic escape analysis would still consider the interleaving possible, resulting in a false alarm.

We tested the fencepost inference algorithm in Section 2.1.5 on Btrfs. We limited it to placing
fenceposts in Btrfs functions (not, e.g., library functions called from Btrfs functions). In our first
tests, the fenceposts that filtered the most violations were in common functions, like linked-list op-
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erations, that occurred frequently in the log. We improved these results by limiting the algorithm to
placing fenceposts in Btrfs functions. After this, The algorithm produced a useful list of candidate
fenceposts. For example, the first fencepost on the list is just before the function that serializes an
inode, which is reasonable because operations that flush multiple inodes to disk are not generally
designed to provide an atomicity guarantee across all their inode operations.

Online atomicity results We evaluated the online atomicity algorithm on Btrfs and Wrapfs with
two kinds of application workloads: the Racer [62] workload that we used for evaluating offline
atomicity analysis, and more targeted workloads that exercise two specified system calls. The
following paragraphs discuss the results for these two kinds of workloads in turn. We found, with
both of these kinds of workloads, that the online algorithm is effective at detecting atomicity bugs,
even though it detects only actual violations, not potential violations.

After inserting fenceposts, results from Racer on Btrfs were similar to the results obtained
with the single-variable block-based algorithm: 60 out of 83 violations were caused by counting
variables. The remaining reports were for atomicity violations (recall that the online algorithm
produces no false alarms) that we concluded are permissible based on the semantics of the system
calls, but do not span distinct atomic operations that should be separated by a fencepost.

For example, one such violation involves the btrfs add link function, which adds a link to
a file. This function performs two separate B-tree updates. The first update is done by the func-
tion btrfs insert dir item, which adds a file to its parent directory by inserting a dir item

into the B-tree. The second update is done by btrfs update inode, which searches the B-tree
for the parent directory’s inode and updates it to reflect its increased size. A B-tree update by
another system call can be interleaved between these two updates, causing the two B-tree traver-
sals in btrfs add link to each observe different keys as they navigate down the B-tree’s in-
ternal nodes, resulting in atomicity violation reports. These violations are permissible, because
btrfs update inode is still able to locate the correct inode in the B-tree. A fencepost added
between these two updates in btrfs add link would also break up all of the system calls that
call this function, potentially in places where atomicity is required for other data structures.

Our experiments with Racer also confirmed that online analysis allows for much longer test
runs than logging. After running the Racer workload for just two minutes, the online algorithm
had processed 29 million targeted reads and writes. In offline analysis using the Racer workload,
Redflag logging was able to capture only 5.9 million reads and writes before filling its 1GB buffer.

We developed targeted workloads designed to check whether two specified system calls can
interfere with each other. Each targeted workload contains two concurrent threads, each making
repeated calls to a specified system call, all on the same file. On Wrapfs, we tested simultaneous
write and simultaneous truncate calls to reproduce the file pos and wrapfs setattr races
discussed in our Lockset results. On Btrfs, we tested an open call executing simultaneously with
file creation to reproduce the Btrfs inode initialization error described above. In all cases, the online
atomicity algorithm reported the violating interleavings that we expected, successfully identifying
the threads involved in the violation and pinpointing the three responsible memory operations.
Although we manually wrote the programs that implement these targeted workloads, it would be
practical to automatically generate similar programs to comprehensively test every pair of system
calls on each type of supported file.
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Performance To evaluate the performance of our instrumentation and logging, we measured
overhead with a micro-benchmark that stresses the logging system by constantly writing to a tar-
geted file system. For this experiment, we stored the file system on a RAM disk to ensure that I/O
costs did not hide overhead. This experiment was run on a computer with two 2.8GHz single-core
Intel Xeon processors. The instrumentation targeted Btrfs running as part of the 2.6.36-rc3 Linux
kernel.

We measured an overhead (i.e., the ratio of the running time of the modified system to the
running time of the unmodified system) of 2.44× for an instrumented kernel with logging turned
off, and 2.65× with logging turned on. The additional overhead from logging includes storing
event data, copying the call stack, and reserving buffer space using atomic memory operations.

We evaluated the performance of our online atomicity checking algorithm on a dual-core
2.4GHz Core 2 processor, targeting the same Btrfs data structures as in our logging test. The
overhead in our test was 16.2×. As expected, this is significantly higher than the runtime overhead
of offline analysis, but it compares quite favorably with the overhead of other online atomicity
checking tools, such as AVIO, which reports 25× overhead [42], and SVD (the Serializability
Violation Detector), which reports 65× overhead [69].

Schedule sensitivity of LOA Although LOA is very effective at removing false alarms, it is
sensitive to the observed ordering of events, potentially resulting in missed errors, as discussed
in Section 2.1.4. We evaluated LOA’s sensitivity to event orderings by repeating the Racer work-
load on Btrfs under different configurations: single-core, dual-core, quad-core, and single-core
with kernel preemption disabled. We then analyzed the logs with the single-variable block-based
algorithm.

The analysis results were quite stable across these different configurations, even though they
generate different schedules. The biggest difference is that the non-preemptible log misses 13 of
the 201 violations found in the quad-core log. There were only three violations unique to just one
log.

2.5 Related Work
A number of techniques, both runtime and static, exist for tracking down difficult concurrency er-
rors. This section discusses tools from several categories: runtime race detectors, static analyzers,
model checkers, and runtime atomicity checkers.

Static data race detection Static analysis tools, typically based on the Lockset approach of iden-
tifying variables that lack a consistent locking discipline, have uncovered races even in some large
systems. For example, RacerX [24] and RELAY [65] found data races in the Linux kernel. Static
race detection tools generally produce more false alarms than runtime tools (such as Redflag),
due to the well-known difficulty of accurately and statically analyzing aliasing, function pointers,
calling context, etc.

Static atomicity checking Static analysis of atomicity has also been studied [28, 56, 64] but
not applied to large systems software. Generally, these analyses check whether the code follows
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certain safe synchronization patterns and are not completely automatic, relying on user-supplied
annotations in the code. Static analysis of atomicity, like static analysis of data races, generally
produces many false alarms when applied to large, complex systems.

Runtime data race detection Our Lockset algorithm is based on the Eraser algorithm [57].
Several other variants of Lockset exist, implemented for a variety of languages. To the best of our
knowledge, none of these other Lockset-based race detectors have been applied to components of
an OS kernel. LOA analysis is the main distinguishing feature of our version. As shown in Sec-
tion 2.4, LOA analysis is effective at eliminating false alarms not eliminated by other techniques.
Some features of other race detectors could be integrated into Redflag: for example, the use of
sampling to reduce overhead, at the cost of possibly missing some errors, as in LiteRace [43]. We
explore this possibility with the lock discipline monitor discussed in Chapter 4.

Microsoft Research’s DataCollider [25] is the only other runtime data race detector that has
been applied to components of an OS kernel, to the best of our knowledge. It was applied to several
modules in the Windows kernel and detected numerous races. At runtime, DataCollider pauses a
thread about to perform a memory access and then uses data breakpoint registers in the CPU to
intercept conflicting accesses that occur within the pause interval. Thus, it detects actual data races
when they occur, in contrast to Lockset-based tools that analyze synchronization to detect potential
races. DataCollider’s approach produces no false alarms but may take longer to find races and may
miss races that occur only rarely. DataCollider uses sampling to reduce overhead.

Runtime atomicity checking To the best of our knowledge, Redflag is the first runtime atom-
icity checker that has been applied to components of an OS kernel. Redflag implements two
kinds of atomicity checking algorithms: the block-based algorithms to detect potential atomicity
violations, and the Redflag algorithm to detect (actual) atomicity violations. In principle, either
algorithm could be used online or offline, although the block-based algorithms would incur too
much overhead for practical online use. LOA analysis is the main distinguishing feature of our
version of the block-based algorithms, compared to the original version [67, 68].

Runtime atomicity checking algorithms based on Lipton’s reduction theorem [27, 41, 68] also
detect potential atomicity violations. They are computationally much cheaper than the block-based
algorithms, but they check a simpler condition that is sufficient but not necessary for ensuring
atomicity; hence, they usually produce more false alarms than the block-based algorithms [68].
Algorithms based on Lipton’s reduction theorem rely on runtime race detection and hence produce
false alarms due to multi-stage escape and other complex order-enforcing synchronization used in
the Linux kernel—unless the underlying race-detection algorithm are extended with a technique
such as LOA analysis, which takes such synchronization into account.

Redflag’s algorithm for detecting atomicity violations is similar to the runtime atomicity check-
ing algorithms in AVIO [42] and CTrigger [52]. All of these algorithms detect only actual—not
potential—atomicity violations, by detecting problematic interleavings of a few memory accesses
from two threads. AVIO and CTrigger use heuristics to infer programmers’ expectations about
atomicity, and then check for violations thereof (i.e., atomicity violations). AVIO and CTrigger,
unlike Redflag, do not allow instrumentation to be targeted to specific data structures. Their im-
plementations use binary instrumentation and are not integrated with the compiler, so it would be
difficult to modify them to provide this feature. In addition, AVIO and CTrigger’s algorithms are
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harder to localize to part of a software system, because their algorithms detect interleaved write
violations and interleaved read violations only if the code executed by both of the involved threads
is instrumented. In contrast, Redflag’s algorithm for detecting interleaved write violations works
even if only the code executed by the “interfered-with” thread (i.e., the thread corresponding to
thread-1 in Figure 2.1(a)) is instrumented. The only disadvantage of executing the other thread
without instrumentation is that Redflag will not provide debugging information about the inter-
leaved write. Redflag’s algorithm for detecting interleaved reads does rely on instrumentation of
the code executed by each involved thread. This requirement could be eliminated by modifying
the algorithm to use data-breakpoint registers in the CPU to intercept interleaved reads; the disad-
vantage of this approach is that there is a limited number of such registers (e.g., four in the Intel
x86 architecture), so sampling would need to be used.

Velodrome [29] detects atomicity violations in executions of Java programs. Velodrome con-
structs a happens-before relation on events, uses it to construct a happens-before relation on trans-
actions (i.e., executions of atomic regions), and reports an atomicity violation if the happens-before
relation on transactions contains a cycle. Velodrome’s algorithm is more complicated and expen-
sive than Redflag’s online atomicity checking algorithm, but Velodrome’s algorithm has the advan-
tage of detecting violations involving multiple variables. Recall that Redflag’s online algorithm
detects only the single-variable unserializable interleavings shown in Figure 2.1(a).

Logging Feather-Trace uses a lock-free buffer similar to ours to log kernel events [11]. A reader
thread simultaneously empties the buffer, storing the log entries to disk. For logging memory
accesses, we found that the rate of events was so high that any size buffer would fill too fast for
a reader thread to keep up, so Redflag limits logging to a fixed sized buffer and defers all output
until after logging is turned off.

2.6 Conclusions
We have described the design of Redflag and shown that it can successfully detect data races and
atomicity violations in components of the Linux kernel. To the best of our knowledge, Redflag is
the first runtime race detector applied to the Linux kernel and the first runtime atomicity detector
applied to components of any OS kernel.

Redflag’s offline race detector and offline atomicity checker detect potential concurrency prob-
lems even if actual errors occur only in rare schedules not seen during testing. The analyses are
based on well-known algorithms but contain a number of extensions to significantly improve the
accuracy of our analysis. Redflag automatically identifies variables accessed using bit-wise oper-
ations and analyzes them with bit-level granularity, and it filters harmless interleavings involving
idempotent operations. Redflag logs RCU synchronization and checks for correct usage of it.
Finally, we developed Lexical Object Availability (LOA) analysis, which takes into account order-
enforcing synchronization (in contrast to mutual exclusion), including synchronization in compli-
cated initialization code that uses multi-stage escape. LOA significantly reduced the number of
false positives in our experiments.

Although the cost of thorough system logging can be high, we have shown that Redflag’s
performance is sufficient to capture traces that exercise many system calls and execution paths.
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We also believe that Redflag is a good demonstration of the usefulness of GCC plug-ins for
runtime monitoring. We further explore this potential in the following chapter, which discusses the
framework we designed to simplify the process of writing instrumentation plug-ins.
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Chapter 3

Compiler-Assisted Instrumentation

GCC is a widely used compiler infrastructure that supports a variety of input languages, e.g., C,
C++, Fortran, Java, and Ada, and over 30 different target machine architectures. GCC translates
each of its front-end languages into a language-independent intermediate representation called
GIMPLE, which then gets translated to machine code for one of GCC’s many target architectures.
GCC is a large software system with more than 100 developers contributing over the years and a
steering committee consisting of 13 experts who strive to maintain its architectural integrity.

In earlier work [13], we extended GCC to support plug-ins, allowing users to add their own
custom passes to GCC in a modular way without patching and recompiling the GCC source code.
Released in April 2010, GCC 4.5 [30] includes plug-in support that is largely based on our design.

GCC’s support for plug-ins presents an exciting opportunity for the development of practical,
widely-applicable program transformation tools, including program-instrumentation tools for run-
time verification. Because plug-ins operate at the level of GIMPLE, a plug-in is applicable to all
of GCC’s front-end languages. Transformation systems that manipulate machine code may also
work for multiple programming languages, but low-level machine code is harder to analyze and
lacks the detailed type information that is available in GIMPLE.

Implementing instrumentation tools as GCC plug-ins provides significant benefits but also
presents a significant challenge: despite the fact that it is an intermediate representation, GIM-
PLE is in fact a low-level language, requiring the writing of low-level GIMPLE Abstract Syntax
Tree (AST) traversal functions in order to transform one GIMPLE expression into another. There-
fore, as GCC is currently configured, the writing of plug-ins is not trivial but for those intimately
familiar with GIMPLE’s peculiarities.

To address this challenge, we developed the INTERASPECT program-instrumentation frame-
work, which allows instrumentation plug-ins to be developed using the familiar vocabulary of
Aspect-Oriented Programming (AOP). INTERASPECT is itself implemented using the GCC plug-
in API for manipulating GIMPLE, but it hides the complexity of this API from its users, presenting
instead an aspect-oriented API in which instrumentation is accomplished by defining pointcuts. A
pointcut denotes a set of program points, called join points, where calls to advice functions can be
inserted by a process called weaving.

INTERASPECT’s API allows users to customize the weaving process by defining callback func-
tions that get invoked for each join point. Callback functions have access to specific information
about each join point; the callbacks can use this to customize the inserted instrumentation, and to
leverage static-analysis results for their customization.
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Figure 3.1: A simplified view of the GCC compilation process

We also present the INTERASPECT Tracecut extension to generate program monitors directly
from formally specified tracecuts. A tracecut [66] matches sequences of pointcuts specified as a
regular expression. Given a tracecut specification T , INTERASPECT Tracecut instruments a target
program so that it communicates program events and event parameters directly to a monitoring
engine for T . The tracecut extension adds the necessary monitoring instrumentation exclusively
with the INTERASPECT API presented here.

In summary, INTERASPECT offers the following novel combination of features:

• INTERASPECT builds on top of GCC, a widely used compiler infrastructure.

• INTERASPECT exposes an API that encourages and simplifies open-source collaboration.

• INTERASPECT is versatile enough to provide instrumentation for many purposes, including
monitoring a tracecut specification.

• INTERASPECT has access to GCC internals, which allows one to exploit static analysis and
meta-programming during the weaving process.

The full source of the INTERASPECT framework is available from the INTERASPECT website
under the GPLv3 license [36].

To illustrate INTERASPECT’s practical utility, we have developed a number of example program-
instrumentation plug-ins that use INTERASPECT for custom instrumentation. These include a heap
visualization plug-in designed for the analysis of JPL Mars Science Laboratory software; an inte-
ger range analysis plug-in that finds bugs by tracking the range of values for each integer variable;
and a code coverage plug-in that, given a pointcut and test suite, measures the percentage of join
points in the pointcut that are executed by the test suite.

3.1 Overview of GCC and the INTERASPECT Architecture
Overview of GCC As Figure 3.1 illustrates, GCC translates all of its front-end languages into
the GIMPLE intermediate representation for analysis and optimization. Each transformation on
GIMPLE code is split into its own pass. These passes, some of which may be implemented as
plug-ins, make up GCC’s middle-end. Moreover, a plug-in pass may be INTERASPECT-based,
enabling the plug-in to add instrumentation directly into the GIMPLE code. The final middle-end
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int main() { 1. int main {
int a, b, c; 2. int a, b, c;
a = 5; 3. int T1, T2, T3, T4;
b = a + 10; 4. a = 5;
c = b + foo(a, b); => 5. b = a + 10;
if (a > b + c) 6. T1 = foo(a, b);

c = b++ / a + (b * a); 7. c = b + T1;
bar(a, b, c); 8. T2 = b + c;

} 9. if (a <= T2) goto fi;
10. T3 = b / a;
11. T4 = b * a;
12. c = T3 + T4;
13. b = b + 1;
14. fi:
15. bar (a, b, c);
16. }

Figure 3.2: Sample C program (left) and corresponding GIMPLE representation (right)

passes convert the optimized and instrumented GIMPLE to the Register Transfer Language (RTL),
which the back-end translates to assembly.

GIMPLE is a C-like three-address (3A) code. Complex expressions (possibly with side effects)
are broken into simple 3A statements by introducing new, temporary variables. Similarly, complex
control statements are broken into simple 3A (conditional) gotos by introducing new labels. Type
information is preserved for every operand in each GIMPLE statement.

Figure 3.2 shows a C program and its corresponding GIMPLE code, which preserves source-
level information such as data types and procedure calls. Although not shown in the example,
GIMPLE types also include pointers and structures.

A disadvantage of working purely at the GIMPLE level is that some language-specific con-
structs are not visible in GIMPLE code. For example, targeting a specific kind of loop as a point-
cut is not currently possible because all loops look the same in GIMPLE. INTERASPECT can
be extended with language-specific pointcuts, whose implementation could hook into one of the
language-specific front-end modules instead of the middle-end.

INTERASPECT architecture INTERASPECT works by inserting a pass that first traverses the
GIMPLE code to identify program points that are join points in a specified pointcut. For each such
join point, it then calls a user-provided weaving callback function, which can insert calls to advice
functions. Advice functions can be written in any language that will link with the target program,
and they can access or modify the target program’s state, including its global variables. Advice
that needs to maintain additional state can declare static variables and global variables.

Unlike traditional AOP systems which implement a special AOP language to define pointcuts,
INTERASPECT provides a C API for this purpose. We believe that this approach is well suited to
open collaboration. Extending INTERASPECT with new features, such as new kinds of pointcuts,
does not require agreement on new language syntax or modification to parser code. Most of the
time, collaborators will only need to add new API functions.

The INTERASPECT Tracecut extension API uses INTERASPECT to generate program monitors
from formally specified tracecuts. Tracecuts match sequences of pointcuts, specified as regular
expressions. The instrumentation component of the extension, which is implemented in C, benefits
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Figure 3.3: Architecture of the INTERASPECT framework with its tracecut extension
The tracecut specification is a simple C program. The tracecut extension translates events in the
specification to pointcuts, and the INTERASPECT framework directly instruments the pointcuts
using GCC’s GIMPLE API. The instrumented binary sends events to the tracecut monitoring

engine, and monitors signal matches by calling advice functions, which are compiled alongside
the target program. It is also possible to specify just pointcuts, in which case the tracecut

extension and monitoring engine are not necessary.
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struct aop pointcut *aop match function entry(void);

Creates pointcut denoting every function entry point.

struct aop pointcut *aop match function exit(void);

Creates pointcut denoting every function return point.

struct aop pointcut *aop match function call(void);

Creates pointcut denoting every function call.

struct aop pointcut *aop match assignment by type(struct aop type *type);

Creates pointcut denoting every assignment to a variable or memory location that matches a type.

Figure 3.4: Match functions for creating pointcuts

from INTERASPECT’s design as an API: it need only call API functions to define and instrument
the pointcuts that are necessary to monitor the tracecut.

Figure 3.3 shows the architecture of a monitor implemented with INTERASPECT Tracecut. The
tracecut itself is defined in a short C program that calls the INTERASPECT Tracecut API to specify
tracecut properties. Linking the compiled tracecut program with INTERASPECT and the tracecut
extension produces a plug-in that instruments events relevant to the tracecut. A target program
compiled with this plug-in will send events and event parameters to the tracecut monitoring engine,
which then determines if any sequence of events matches the tracecut rule. The target program can
include tracecut-handling functions so that the monitoring engine can report matches directly back
to the program.

3.2 The INTERASPECT API
This section describes the functions in the INTERASPECT API, most of which fall naturally into
one of two categories: (1) functions for creating and filtering pointcuts, and (2) functions for
examining and instrumenting join points. Note that users of our framework can write plug-ins
solely with calls to these API functions; it is not necessary to include any GCC header files or
manipulate any GCC data structures directly.

Creating and filtering pointcuts The first step for adding instrumentation in INTERASPECT is
to create a pointcut using a match function. Our current implementation supports the four match
functions given in Figure 3.4, allowing one to create four kinds of pointcuts.

Using a function entry or exit pointcut makes it possible to add instrumentation that runs with
every execution of a function. These pointcuts provide a natural way to insert instrumentation at the
beginning and end of a function the way one would with before-execution and an after-returning
advices in a traditional AOP language. A call pointcut can instead target calls to a function. Call
pointcuts can instrument calls to library functions without recompiling them. For example, in
Section 3.3.1, a call pointcut is used to intercept all calls to malloc.

The assignment pointcut is useful for monitoring changes to program values. For example,
we use it in Section 3.3.1 to track pointer values so that we can construct the heap graph. We
plan to add several new pointcut types, including pointcuts for conditionals and loops. These new
pointcuts will make it possible to trace the complete path of execution as a program runs, which is
potentially useful for coverage analysis, profiling, and symbolic execution.
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void aop filter call pc by name(struct aop pointcut *pc, const char *name);

Filter function calls with a given name.

void aop filter call pc by param type(struct aop pointcut *pc, int n,

struct aop type *type);

Filter function calls that have an nth parameter that matches a type.

void aop filter call pc by return type(struct aop pointcut *pc,

struct aop type *type);

Filter function calls with a matching return type.

Figure 3.5: Filter functions for refining function-call pointcuts

void aop join on(struct aop pointcut *pc, join callback callback,

void *callback param);

Call callback on each join point in the pointcut pc, passing callback param each time.

Figure 3.6: Join function for iterating over a pointcut

After creating a match function, a plug-in can refine it using filter functions. Filter functions
add additional constraints to a pointcut, removing join points that do not satisfy those constraints.
For example, it is possible to filter a call pointcut to include only calls that return a specific type or
only calls to a certain function. Figure 3.5 summarizes filter functions for call pointcuts.

Instrumenting join points INTERASPECT plug-ins iterate over the join points of a pointcut by
providing an iterator callback to the join function, shown in Figure 3.6. For an INTERASPECT

plug-in to instrument some or all of the join points in a pointcut, it should join on the pointcut,
providing an iterator callback that inserts a call to an advice function. INTERASPECT then invokes
that callback for each join point.

Callback functions use capture functions to examine values associated with a join point. For
example, given an assignment join point, a callback can examine the name of the variable being as-
signed. This type of information is available statically, during the weaving process, so the callback
can read it directly with a capture function like aop capture lhs name. Callbacks can also cap-
ture dynamic values, such as the value on the right-hand side of the assignment, but dynamic values
are not available at weave time. Instead, when the callback calls aop capture assigned value,
it gets an aop dynval, which serves as a weave-time placeholder for the runtime value. The call-
back cannot read a value from the placeholder, but it can specify it as a parameter to an inserted
advice function. When the join point executes (at runtime), the value assigned also gets passed
to the advice function. Sections 3.3.1 and 3.3.2 give more examples of capturing values from
assignment join points.

Capture functions are specific to the kinds of join points they operate on. Figures 3.7 and 3.8
summarize the capture functions for function-call join points and assignment join points, respec-
tively.

AOP systems like AspectJ [37] provide Boolean operators such as and and or to refine point-
cuts. The INTERASPECT API could be extended with corresponding operators. Even in their
absence, a similar result can be achieved in INTERASPECT by including the appropriate logic in
the callback. For example, a plug-in can instrument calls to malloc and calls to free by joining
on a pointcut with all function calls and using the aop capture function name facility to add
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const char *aop capture function name(aop joinpoint *jp);

Captures the name of the function called in the given join point.

struct aop dynval *aop capture param(aop joinpoint *jp, int n);

Captures the value of the nth parameter passed in the given function join point.

struct aop dynval *aop capture return value(aop joinpoint *jp);

Captures the value returned by the function in a given call join point.

Figure 3.7: Capture functions for function-call join points

const char *aop capture lhs name(aop joinpoint *jp);

Captures the name of a variable assigned to in a given assignment join point, or returns NULL if the join point does not assign to a named

variable.

enum aop scope aop capture lhs var scope(aop joinpoint *jp);

Captures the scope of a variable assigned to in a given assignment join point. Variables can have global, file-local, and function-local

scope. If the join point does not assign to a variable, this function returns AOP MEMORY SCOPE.

struct aop dynval *aop capture lhs addr(aop joinpoint *jp);

Captures the memory address assigned to in a given assignment join point.

struct aop dynval *aop capture assigned value(aop joinpoint *jp);

Captures the assigned value in a given assignment join point.

Figure 3.8: Capture functions for assignment join points

advice calls only to malloc and free. Simple cases like this can furthermore be handled by using
regular expressions to match function names, which would be a straightforward addition to the
framework.

After capturing, a callback can add an advice-function call before or after the join point using
the insert function of Figure 3.9. The aop insert advice function takes any number of param-
eters to be passed to the advice function at runtime, including values captured from the join point
and values computed during instrumentation by the plug-in itself.

Using a callback to iterate over individual join points makes it possible to customize instru-
mentation at each instrumentation site. A plug-in can capture values about the join point to decide
which advice function to call, which parameters to pass to it, or even whether to add advice at all.
In Section 3.3.2, this feature is exploited to uniquely index named variables during compilation.
Custom instrumentation code in Section 3.3.3 separately records each instrumented join point in
order to track coverage information.

Function duplication INTERASPECT provides a function duplication facility that makes it pos-
sible to toggle instrumentation at the function level. Although inserting advice at the GIMPLE

void aop insert advice(struct aop joinpoint *jp, const char *advice func name,

enum aop insert location location, ...);

Insert an advice call, before or after a join point (depending on the value of location), passing any number of parameters. A plug-in

obtains a join point by iterating over a pointcut with aop join on.

Figure 3.9: Insert function for instrumenting a join point with a call to an advice function
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level creates very efficient instrumentation, users may still wish to switch between instrumented
and uninstrumented code for high-performance applications. Duplication creates two or more
copies of a function body (which can later be instrumented differently) and redefines the function
to call a special advice function that runs at function entry and decides which copy of the function
body to execute.

When joining on a pointcut for a function with a duplicated body, the caller specifies which
copy the join should apply to. By only adding instrumentation to one copy of the function body,
the plug-in can create a function whose instrumentation can be turned on and off at runtime. Alter-
natively, a plug-in can create a function that can toggle between different kinds of instrumentation.
Section 3.3.2 presents an example of using duplication to reduce overhead by sampling.

3.3 Applications
In this section, we present several example applications of the INTERASPECT API. The plug-
ins we designed for these examples provide instrumentation that is tailored to specific problems
(memory visualization, integer range analysis, code coverage). Though custom-made, the plug-ins
themselves are simple to write, requiring only a small amount of code.

3.3.1 Heap Visualization
The heap visualizer uses the INTERASPECT API to expose memory events that can be used to
generate a graphical representation of the heap in real time during program execution. Allocated
objects are represented by rectangular nodes, pointer variables and fields by oval nodes, and edges
show where pointer variables and fields point.

In order to draw the graph, the heap visualizer needs to intercept object allocations and deallo-
cations and pointer assignments that change edges in the graph. Figure 3.10 shows a prototype of
the visualizer using Graphviz [5], an open-source graph layout tool, to draw its output. The graph
shows three nodes in a linked list during a bubble-sort operation. The list variable is the list’s
head pointer, and the curr and next variables are used to traverse the list during each pass of the
sorting algorithm. (The pn variable is used as temporary storage for swap operations.)

The INTERASPECT code for the heap visualizer instruments each allocation (call to malloc)
with a call to the heap allocation advice function, and it instruments each pointer assignment
with a call to the pointer assign advice function. These advice functions update the graph. In-
strumentation of other allocation and deallocation functions, such as calloc and free, is handled
similarly.

The INTERASPECT code in Figure 3.11 instruments calls to malloc. The plug-in’s main in-
strumentation function, instrument malloc calls, constructs a pointcut for all calls to malloc
and then calls aop join on to iterate over all the calls in the pointcut. Only a short main function
(not shown) is needed to set GCC to invoke instrument malloc calls during compilation.

The aop match function call function constructs an initial pointcut that includes every
function call. The filter functions narrows the pointcut to include only calls to malloc. First,
aop filter call pc by name filters out calls to functions that are not named malloc. Then,
aop filter pc by param type and aop filter pc by return type filter out calls to func-
tions that do not match the standard malloc prototype, which takes an unsigned integer as the first
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struct node*
0x1392010 [16]

struct node*
0x1392030 [16]

struct node*
0x1392050 [16]

.next
0x1392018

.next
0x1392058

sort.c:52
updates:2

.next
0x1392038 sort.c:50

updates:3

list
0x7FFF1675ACD8 sort.c:50

updates:3

*pn
0x7FFF1675ACB0

sort.c:55
updates:5

curr
0x7FFF1675ACA8

sort.c:45
updates:5

next
0x7FFF1675ACA0

sort.c:46
updates:5

Figure 3.10: Visualization of the heap during a bubble-sort operation on a linked list
Boxes represent heap-allocated structs: linked list nodes in this example. Each struct is

labeled with is size, its address in memory, and the addresses of its field. Within a struct, ovals
represent fields that point to other heap objects. Ovals that are not in a struct are global and
stack variables. Each field and variable has an outgoing edge to the struct that it points to,
which is labeled with 1) the line number of the assignment that created the edge and 2) the

number of assignments to the source variable that have occurred so far. Fields and variables that
do not point to valid memory (such as a NULL pointer) have dashed borders.

parameter and returns a pointer value. This filtering step is necessary because a program could
define its own function with the name malloc but a different prototype.

For each join point in the pointcut (in this case, a call to malloc), aop join on makes a call
to malloc callback. The two capture calls in the callback function return aop dynval ob-
jects for the call’s first parameter and return value: the size of the allocated region and its address,
respectively. Recall from Section 3.2 that an aop dynval serves as a placeholder during compila-
tion for a value that will not be known until runtime. Finally, aop insert advice adds the call
to the advice function, passing the two captured values. Note that INTERASPECT chooses types
for these values based on how they were filtered. The filters used here restrict object size to be
an unsigned integer and object addr to be some kind of pointer, so INTERASPECT assumes that
the advice function heap allocation has the prototype:

void heap_allocation(unsigned long long, void *);

To support this, INTERASPECT code must generally filter runtime values by type in order to capture
and use them.

The INTERASPECT code in Figure 3.12 tracks pointer assignments, such as

list_node->next = new_node;

The aop match assignment by type function creates a pointcut that matches assignments,
which is additionally filtered by the type of assignment. For this application, we are only interested
in assignments to pointer variables.

For each assignment join point, assignment callback captures address, the address as-
signed to, and pointer, the pointer value that was assigned. In the above examples, these would
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static void instrument_malloc_calls(void)
{

/* Construct a pointcut that matches calls to: void *malloc(unsigned int). */
struct aop_pointcut *pc = aop_match_function_call();
aop_filter_call_pc_by_name(pc, "malloc");
aop_filter_call_pc_by_param_type(pc, 0, aop_t_all_unsigned());
aop_filter_call_pc_by_return_type(pc, aop_t_all_pointer());

/* Visit every statement in the pointcut. */
aop_join_on(pc, malloc_callback, NULL);

}

/* The malloc_callback() function executes once for each call to malloc() in the
target program. It instruments each call it sees with a call to
heap_allocation(). */

static void malloc_callback(struct aop_joinpoint *jp, void *arg)
{

struct aop_dynval *object_size;
struct aop_dynval *object_addr;

/* Capture the size of the allocated object and the address it is
allocated to. */

object_size = aop_capture_param(jp, 0);
object_addr = aop_capture_return_value(jp);

/* Add a call to the advice function, passing the size and address as
parameters. (AOP_TERM_ARG is necessary to terminate the list of arguments
because of the way C varargs functions work.) */

aop_insert_advice(jp, "heap_allocation", AOP_INSERT_AFTER,
AOP_DYNVAL(object_size), AOP_DYNVAL(object_addr),
AOP_TERM_ARG);

}

Figure 3.11: Instrumenting all memory-allocation events

be the values of &list node->next and new node, respectively. The visualizer uses address
to determine the source of a new graph edge and pointer to determine its destination.

The function that captures address, aop capture lhs addr, does not require explicit fil-
tering to restrict the type of the captured value because an address always has a pointer type. The
value captured by aop capture assigned value and stored in pointer has a void pointer type
because we filtered the pointcut to include only pointer assignments. As a result, INTERASPECT

assumes that the pointer assign advice function has the prototype:

void pointer_assign(void *, void *);

3.3.2 Integer Range Analysis
Integer range analysis is a runtime tool for finding anomalies in program behavior by tracking the
range of values for each integer variable [26]. A range analyzer can learn normal ranges from
training runs over known good inputs. Values that fall outside of normal ranges in future runs are
reported as anomalies, which can indicate errors. For example, an out-of-range value for a variable
used as an array index may cause an array-bounds violation.

Our integer range analyzer uses sampling to reduce runtime overhead. Missed updates because
of sampling can result in underestimating a variable’s range, but this trade-off is reasonable in
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static void instrument_pointer_assignments(void)
{

/* Construct a pointcut that matches all assignments to a pointer. */
struct aop_pointcut *pc = aop_match_assignment_by_type(aop_t_all_pointer());

/* Visit every statement in the pointcut. */
aop_join_on(pc, assignment_callback, NULL);

}

/* The assignment_callback function executes once for each pointer assignment.
It instruments each assignment it sees with a call to pointer_assign(). */

static void assignment_callback(struct aop_joinpoint *jp, void *arg)
{

struct aop_dynval *address;
struct aop_dynval *pointer;

/* Capture the address the pointer is assigned to, as well as the pointer
address itself. */

address = aop_capture_lhs_addr(jp);
pointer = aop_capture_assigned_value(jp);

aop_insert_advice(jp, "pointer_assign", AOP_INSERT_AFTER,
AOP_DYNVAL(address), AOP_DYNVAL(pointer),
AOP_TERM_ARG);

}

Figure 3.12: Instrumenting all pointer assignments

many cases. Sampling can be done randomly or by using a technique like Software Monitoring
with Controllable Overhead [34].

INTERASPECT provides function-body duplication as a means to add instrumentation that can
be toggled on and off. Duplicating a function splits its body into two copies. A distributor block
at the beginning of the function decides which copy to run. An INTERASPECT plug-in can add
advice to just one of the copies, so that the distributor chooses between enabling or disabling
instrumentation.

Figure 3.13 shows how we use INTERASPECT to instrument integer variable updates. The call
to aop duplicate makes a copy of each function body. The first argument specifies that there
should be two copies of the function body, and the second specifies the name of a function that
the distributor will call to decide which copy to execute. When the duplicated function runs, the
distributor calls distributor func, which must be a function that returns an integer. The dupli-
cated function bodies are indexed from zero, and the distributor func return value determines
which one the distributor transfers control to.

Using aop join on copy instead of the usual aop join on iterates only over join points in
the specified copy of duplicate code. As a result, only one copy is instrumented; the other copy
remains unmodified.

The callback function itself is similar to the callbacks we used in Section 3.3.1. The main
difference is the call to get index from name that converts the variable name to an integer index.
The get index from name function (not shown for brevity) also takes the variable’s scope so
that it can assign different indices to local variables in different functions. It would be possible to
directly pass the name itself (as a string) to the advice function, but the advice function would then
incur the cost of looking up the variable by its name at runtime. This optimization illustrates the
benefits of INTERASPECT’s callback-based approach to custom instrumentation.
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static void instrument_integer_assignments(void)
{

struct aop_pointcut *pc;

/* Duplicate the function body so there are two copies. */
aop_duplicate(2, "distributor_func", AOP_TERM_ARG);

/* Construct a pointcut that matches all assignments to an integer. */
pc = aop_match_assignment_by_type(aop_t_all_signed_integer());

/* Visit every statement in the pointcut. */
aop_join_on_copy(pc, 1, assignment_callback, NULL);

}

/* The assignment_callback function executes once for each integer assignment.
It instruments each assignment it sees with a call to int_assign(). */

static void assignment_callback(struct aop_joinpoint *jp, void *arg)
{

const char *variable_name;
int variable_index;
struct aop_dynval *value;
enum aop_scope scope;

variable_name = aop_capture_lhs_name(jp);

if (variable_name != NULL) {
/* Choose an index number for this variable. */
scope = aop_capture_lhs_var_scope(jp);
variable_index = get_index_from_name(variable_name, scope);

aop_insert_advice(jp, "int_assign", AOP_INSERT_AFTER,
AOP_INT_CST(variable_index), AOP_DYNVAL(value),
AOP_TERM_ARG);

}
}

Figure 3.13: Instrumenting integer variable updates

The aop capture lhs name function returns a string instead of an aop dynval object be-
cause variable names are known at compile time. It is necessary to check for a NULL return value
because not all assignments are to named variables.

To better understand InterAspect’s performance impact, we benchmarked this plug-in on the
compute-intensive bzip2 compression utility using empty advice functions. The bzip2 package
is a popular tool included in most Linux distributions. It has 137 functions in about 8,000 lines of
code. The instrumented bzip2 contains advice calls at every integer variable assignment, but the
advice functions themselves do nothing, allowing us to measure the overhead from calling advice
functions independently from actual monitoring overhead. With a distributor that maximizes over-
head by always choosing the instrumented function body, we measured 24% runtime overhead.
Function duplication by itself contributes very little to this overhead; when the distributor always
chooses the uninstrumented path, the overhead from instrumentation was statistically insignificant.

3.3.3 Code Coverage
A straightforward way to measure code coverage is to choose a pointcut and measure the percent-
age of its join points that are executed during testing. INTERASPECT’s ability to iterate over each
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join point makes it simple to label join points and then track them at runtime.

static void instrument_function_entry_exit(void)
{

struct aop_pointcut *entry_pc;
struct aop_pointcut *exit_pc;

/* Construct two pointcuts: one for function entry and one for function exit. */
entry_pc = aop_match_function_entry();
exit_pc = aop_match_function_exit();

aop_join_on(entry_pc, entry_exit_callback, NULL);
aop_join_on(exit_pc, entry_exit_callback, NULL);

}

/* The entry_exit_callback function assigns an index to every join
point it sees and saves that index to disk. */

static void entry_exit_callback(struct aop_joinpoint *jp, void *arg)
{

int index, line_number;
const char *filename;

index = choose_unique_index();
filename = aop_capture_filename(jp);
line_number = aop_capture_lineno(jp);

save_index_to_disk(index, filename, line_number);

aop_insert_advice(jp, "mark_as_covered", AOP_INSERT_BEFORE,
AOP_INT_CST(index), AOP_TERM_ARG);

}

Figure 3.14: Instrumenting function entry and exit for code coverage

The example in Figure 3.14 adds instrumentation to track coverage of function entry and exit
points. To reduce runtime overhead, the choose unique index function assigns an integer index
to each tracked join point, similar to the indexing of integer variables in Section 3.3.2. Each index is
saved along with its corresponding source filename and line number by the save index to disk

function. The runtime advice needs to output only the set of covered index numbers; an offline
tool uses that output to compute the percentage of join points covered or to list the filenames
and line numbers of covered join points. For brevity we omit the actual implementations of
choose unique index and save index to disk.

3.4 Tracecuts
In this section, we present the API for the INTERASPECT Tracecut extension, and discuss the
implementation of the associated tracecut monitoring engine. We also present two illustrative
examples of the Tracecut extension: runtime verification of file access and GCC vectors.

Our INTERASPECT Tracecut extension showcases the flexibility of INTERASPECT’s API. Since
one of our goals for this extension is to serve as a more powerful example of how to use IN-
TERASPECT, its instrumentation component is built modularly on INTERASPECT: all of its access
to GCC are through the published INTERASPECT interface.
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struct tc tracecut *tc create tracecut(void);

Create an empty tracecut.

enum tc error tc add param(struct tc tracecut *tc, const char *name,

const struct aop type *type);

Add a named parameter to a tracecut.

Figure 3.15: Function for initializing tracecuts

Whereas pointcut advice is triggered by individual events, tracecut advice can be triggered by
sequences of events matching a pattern [66]. A tracecut in our system is defined by a set symbols,
each representing a possibly parameterized runtime event, and one or more rules expressed as
regular expressions over these symbols. For example, a tracecut that matches a call to exit or
execve after a fork would specify symbols for fork, exit, and execve function calls and the
rule fork (exit | execve), where juxtaposition denotes sequencing, parentheses are used for
grouping, and the vertical bar “|” separates alternatives.

Each symbol is translated to a function-call pointcut, which is instrumented with advice that
sends the symbol’s corresponding event to the monitoring engine. The monitoring engine signals
a match whenever some suffix of the string of events matches one of the regular-expression rules.

Parameterization allows a tracecut to separately monitor multiple objects [2,14]. For example,
the rule fclose fread, designed to catch an illegal read from a closed file, should not match an
fclose followed by an fread to a different file. When these events are parameterized by the file
they operate on, the monitoring engine creates a unique monitor instance for each file.

A tracecut with multiple parameters can monitor properties on sets of objects. A classic exam-
ple monitors data sources that have multiple iterators associated with them. When a data source is
updated, its existing iterators become invalid, and any future access to them is an error. Parameter-
izing events by both data source and iterator creates a monitor instance for each pair of data source
and iterator.

The monitoring engine is implemented as a runtime library that creates monitor instances and
forwards events to their matching monitor instances. Because rules are specified as regular expres-
sions, each monitor instance stores a state in the equivalent finite-state machine. The user only has
to link the monitoring library with the instrumented binary, and the tracecut instrumentation calls
directly into the library.

3.4.1 Tracecut API
A tracecut is specified by a C program that calls tracecut API functions. This design keeps the
tracecut extension simple, eliminating the need for a custom parser but still allowing concise defi-
nitions. A tracecut specification can define any number of tracecuts, each with its own parameters,
events, and rules.

Defining Parameters The functions in Figure 3.15 create a new tracecut and define its parame-
ters. Each parameter has a name and a type. The type is necessary because parameters are used to
capture runtime values.
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enum tc error tc add call symbol(struct tc tracecut *tc, const char *name,

const char *func name,

enum aop insert location location);

Define a named event corresponding to calls to the function named by func name.

enum tc error tc bind to call param(struct tc tracecut* tc,

const char *param name,

const char *symbol name, int call param index);

Bind a function call parameter from an event to one of the tracecut’s named parameters.

enum tc error tc bind to return value(struct tc tracecut *tc,

const char *param name,

const char *symbol name);

Bind the return value of an event to one of the tracecut’s named parameters.

enum tc error tc declare call symbol(struct tc tracecut *tc, const char *name,

const char *declaration,

enum aop insert location location);

Define a named event along with all its parameter bindings with one declaration string.

Figure 3.16: Functions for specifying symbols

Defining Symbols The tc add call symbol function adds a new symbol that corresponds to
an event at every call to a specified function. The tc bind functions bind a tracecut parameter to
one of the function call’s parameters or to its return value. Figure 3.16 shows tc add call symbol

and the tc bind functions.
The tracecut API uses the symbol and its bindings to define a pointcut. Figure 3.17 shows

an example symbol along with the INTERASPECT API calls that Tracecut makes to create the
pointcut. In a later step, Tracecut makes calls needed to capture the bound return value and pass it
to an advice function.

As a convenience, the API also provides the tc declare call symbol function (also in
Figure 3.16), which can define a symbol and its parameter bindings with one call using a simple
text declaration. The declaration is syntactically similar to the C prototype for the function that
will trigger the symbol, but the function’s formal parameters are replaced with tracecut parameter
names or with a question mark “?” to indicate that a parameter should remain unbound. The code
in Figure 3.17(c) defines the same symbol as in Figure 3.17(a).

Defining Rules After symbols and their parameter bindings are defined, rules are expressed as
strings containing symbol names and standard regular expression operators: (, ), *, +, and |. The
function for adding a rule to a tracecut is shown in Figure 3.18.

3.4.2 Monitor Implementation
The monitoring engine maintains a list of monitor instances for each tracecut. Each instance has
a value for each tracecut parameter and a monitor state. Instrumented events pass the values of
their parameters to the monitoring engine, which then determines which monitor instances to up-
date. This monitor design is based on the way properties are monitored in Tracematches [2] and
MOP [14].
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struct tracecut *tc = tc create tracecut()
tc add param(tc, "object", aop all pointer());
tc add call symbol(tc, "create", "create object", AOP INSERT AFTER);
tc bind to return value(tc, "object", "create");

(a) Code to define a tracecut symbol.

pc = aop match function call();
aop filter call pc by name(pc, "create object");
aop filter call pc by return type(pc, aop all pointer());

(b) The values that the tracecut API will pass to INTERASPECT functions to create a corre-
sponding pointcut.

struct tracecut *tc = tc create tracecut()
tc add param(tc, "object", aop all pointer());
tc declare call symbol(tc, "create", "(object)create object()",

AOP INSERT AFTER);
(c) A more compact way to define the event in Figure 3.17(a).

Figure 3.17: An example of how the tracecut API translates a tracecut symbol into a pointcut
Because the create symbol’s return value is bound to the object param, the resulting pointcut
is filtered to ensure that its return value matches the type of object.

enum tc error tc add rule(struct tc tracecut *tc, const char *specification);

Define a tracecut rule. The specification is a regular expression using symbol names as its alphabet.

Figure 3.18: Function for defining a tracecut rule

When a symbol is fully parameterized—it has a binding for every parameter defined in the
tracecut specification—the monitoring engine updates exactly one instance. If no instance exists
with matching parameter values, one is created.

For partially parameterized symbols, like push in Figure 3.21, the monitoring engine only
requires the specified parameters to match. As a result, events corresponding to these symbols
can update multiple monitor instances. For example, a push event updates one monitor for every
element pointer associated with the updated vector. As in the original MOP implementation,
partially parameterized symbols cannot create a new monitor instance [14]. (MOP has since de-
fined semantics for partially parameterized monitors [45].)

When any monitor instance reaches an accepting state, the monitoring engine reports a match.
The default match function prints the monitor parameters to stderr. Developers can implement
their own tracecut advice by overriding the default match function. Function overriding is possible
in C using a linker feature called weak linkage. Placing a debugger breakpoint at the match function
makes it possible to examine program state when a match occurs.

Monitoring instances get destroyed when they can no long reach an accepting state. The trace-
cut engine does not attempt to free instances parameterized by freed objects because it is not always
possible to learn when an object is freed in C and because parameters are not required to be pointers
to heap-allocated objects.

A developer can ensure that stale monitor instances do not waste memory by designing the rule
to discard them. The easiest way to do this is to define a symbol for the function that deallocates
an object but not to include the symbol anywhere in the tracecut’s rule. Deallocating the object
then generates an event that makes it impossible for the tracecut rules to match.
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3.4.3 Verifying File Access
As a first example of the tracecut API, we consider the runtime verification of file access. Like
most resources in C, the FILE objects used for file I/O must be managed manually. Any access to
a FILE object after the file has been closed is a memory error which, though dangerous, might not
manifest itself as incorrect behavior during testing. Designing a tracecut to detect these errors is
straightforward.

tc = tc_create_tracecut();

tc_add_param(tc, "file", aop_t_all_pointer());

tc_declare_call_symbol(tc, "open", "(file)fopen()", AOP_INSERT_AFTER);
tc_declare_call_symbol(tc, "read", "fread(?, ?, ?, file)", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "read_char", "fgetc(file)", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "close", "fclose(file)", AOP_INSERT_BEFORE);

tc_add_rule(tc, "open (read | read_char)* close (read | read_char)");

Figure 3.19: A tracecut for catching accesses to closed files
For brevity, the tracecut only checks read operations.

The tracecut in Figure 3.19 defines symbols for four FILE operations: open, close, and two
kinds of reads. The rule matches any sequence of these symbols that opens a file, closes it, and
then tries to read it.

The rule matches as soon as any read is performed on a closed FILE object, immediately
identifying the offending read. We tested this tracecut on bzip2 (which we also use for evaluation
in Section 3.3.2); it caught an error we planted without reporting any false positives.

3.4.4 Verifying GCC Vectors
We designed a tracecut to monitor a property on a vector data structure used within GCC to store
an ordered list of GIMPLE statements. The list is stored in a dynamically resized array. The vector
API provides an iterator function to iterate over the GIMPLE statements in a vector. Figure 3.20
shows how the iterator function is used. At each execution of the loop, the element variable
points to the next statement in the vector.

A common tracecut property for data structures with iterators checks that the data structure is
not modified while it is being iterated, as can occur in Figure 3.20. Figure 3.21 specifies a tracecut
that detects violations of this property.

The tracecut monitors two important vector operations: the VEC gimple base iterate func-
tion, which is used in the guard of a for loop to advance to the next element in the list, and the
VEC gimple base quick push function, which inserts a new element at the end of a vector. With
the symbols defined, the rule itself is simple: iterate push iterate. Any push in between
two iterate operations indicates that the vector was updated within the iterator loop.

Parameterizing the iterate symbol on both the vector and the element pointer used to
iterate makes it possible to distinguish different iterator loops over the same vector. This distinction
is necessary so that a program that finishes iterating over a vector, updates that vector, and then
iterates over it again does not trigger a match. Though, the tracecut monitor will observe events
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int i;
gimple element;

/* Iterate over each element in a vector of GIMPLE statements. */
for (i = 0; VEC_gimple_base_iterate(vector1, i, &element); i++) {

/* If condition holds, copy this element into vector2. */
if (condition(element))

VEC_gimple_base_quick_push(vector2, element);
}

Figure 3.20: Standard pattern for iterating over elements in a GCC vector of GIMPLE statements
This example copies elements matching some condition from vector1 to vector2. If vector1
and vector2 happen to point to the same vector, this code may modify that vector while iterating
over its elements.
tc = tc_create_tracecut();

tc_add_param(tc, "vector", aop_t_all_pointer ());
tc_add_param(tc, "element_pointer", aop_t_all_pointer ());

tc_declare_call_symbol(tc, "iterate",
"VEC_gimple_base_iterate(vector, ?, element_pointer)",
AOP_INSERT_BEFORE);

tc_declare_call_symbol(tc, "push", "VEC_gimple_base_quick_push(vector, ?)",
AOP_INSERT_BEFORE);

tc_add_rule(tc, "iterate push iterate");

Figure 3.21: A tracecut to monitor vectors of GIMPLE objects in GCC

for the symbols iterate push iterate, the first and last iterate events (which are from
different loops) will normally have different values for their element pointer parameter.

When monitoring this same property in Java, usually an iterator object serves the purpose of
parameterizing an iterator loop. In Figure 3.20, the element variable is analogous to an iterator, as
it provides access to the current list element at each iteration of the loop. The element pointer

identifies the iterator-like variable by its address.
Keeping specifications simple is especially important in C because the language does not pro-

vide any standard data structures. A tracecut written for one program’s vector type is not likely to
be useful for monitoring any other program.

We applied the tracecut in Figure 3.21 to GCC itself, verifying that, in our tests, GCC did not
update any vectors while they were being iterated. The tracecut did match a synthetic error that
we added for testing, in the form of a call to VEC gimple base quick push that we deliberately
placed in an iterator loop.

3.5 Related Work
Aspect-oriented programming was first popularized for Java with AspectJ [22,37]. There, weaving
takes place at the bytecode level. The AspectBench Compiler (abc) [6] is a more recent extensible
research version of AspectJ that makes it possible to add new language constructs [10]. Similarly
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to INTERASPECT, it manipulates a 3A intermediate representation (Jimple) specialized to Java.
Other frameworks for Java, including Javaassist [16] and PROSE [49], offer an API for instru-

menting and modifying code, and hence do not require the use of a special language. Javaassist
is a class library for editing bytecode. A source-level API can be used to edit class files without
knowledge of the bytecode format. PROSE has similar goals.

AOP for other languages such as C and C++ has had a slower uptake. AspectC [17] was one
of the first AOP systems for C, based on the language constructs of AspectJ. ACC [46] is a more
recent AOP system for C, also based on the language constructs of AspectJ. It transforms source
code and offers its own internal compiler framework for parsing C. It is a closed system in the
sense that one cannot augment it with new pointcuts or access the internal structure of a C program
in order to perform static analysis.

The XWeaver system [55], with its language AspectX, represents a program in XML (srcML,
to be specific), making it language-independent. It supports Java and C++ . A user, however, has to
be XML-aware. Aspicere [53] is an aspect language for C based on LLVM bytecode. Its pointcut
language is inspired by logic programming. Adding new pointcuts amounts to defining new logic
predicates. Arachne [21, 23] is a dynamic aspect language for C that uses assembler manipulation
techniques to instrument a running system without pausing it.

AspectC++ [60] is targeted towards C++. It can handle C to some extent, but this does not
seem to be a high priority for its developers. For example, it only handles ANSI C and not other
dialects. AspectC++ operates at the source-code level and generates C++ code, which can be
problematic in contexts where only C code is permitted, such as in certain embedded applications.
OpenC++ [15] is a front-end library for C++ that developers can use to implement various kinds of
translations in order to define new syntax and object behavior. CIL [48] (C Intermediate Language)
is an OCaml [35] API for writing source-code transformations of its own 3A code representation
of C programs. CIL requires a user to be familiar with the less-often-used yet powerful OCaml
programming language.

Additionally, various low-level but mature tools exist for code analysis and instrumentation.
These include the BCEL [3] bytecode-instrumentation tool for Java, and Valgrind [63], which
works directly with executables and consequently targets multiple programming languages.

INTERASPECT Tracecut is informed by several runtime monitoring systems, including Declar-
ative Event Patterns [66], which introduced the term tracecut. Monitor parameterization is based
on the monitor implementations in Tracematches [2] and MOP [14]. These three systems are de-
signed to monitor Java programs. For C, Arachne and Aspicere provide tracecut-style monitoring.
Arachne can monitor pointcut sequences which have similar semantics to INTERASPECT Trace-
cut’s regular expressions [21]. The cHALO extension to Aspicere adds predicates for defining
sequences [1]. These predicates are designed to give developers better control over the amount of
memory used to track monitor instances. Using the INTERASPECT API for our tracecut monitor-
ing greatly simplified its design, which we believe makes a case for the extensibility of the tracecut
API.

3.6 Conclusions
We have presented INTERASPECT, a framework for developing powerful instrumentation plug-ins
for the GCC suite of production compilers. INTERASPECT-based plug-ins instrument programs
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compiled with GCC by modifying GCC’s intermediate language, GIMPLE. The INTERASPECT

API simplifies this process by offering an AOP-based interface. Plug-in developers can easily
specify pointcuts to target specific program join points and then add customized instrumentation at
those join points. We presented several example plug-ins that demonstrate the framework’s ability
to customize runtime instrumentation for specific applications. Finally, we developed a more full-
featured application of our API: the INTERASPECT Tracecut extension, which monitors formally
defined runtime properties. The API and the tracecut extension are available under an open-source
license [36]. To that we also intend to add the source code for our Redflag system, discussed in the
previous chapter.

As future work, we plan to add pointcuts for all control flow constructs, thereby allowing
instrumentation to trace a program run’s exact path of execution. We also plan to investigate API
support for pointcuts that depend on dynamic information, such as AspectJ’s cflow. Dynamic
pointcuts can already be implemented in INTERASPECT with advice functions that maintain and
use appropriate state, or even with tracecut advice, but API support would eliminate the need to
write such advice functions.
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Chapter 4

Adaptive Runtime Verification

4.1 Introduction
In [61], we introduced the concept of runtime verification with state estimation (RVSE), and
showed how it can be used to estimate the probability that a temporal property is satisfied by a
partially or incompletely monitored program run. In such situations, there may be gaps in ob-
served program executions, making accurate estimation challenging.

Incomplete monitoring can arise from a variety of sources. For example, in real-time em-
bedded systems, the sensors might have intrinsically limited fidelity, or the scheduler might skip
monitoring of internal or external events due to an impending deadline for a higher-priority task.
Incomplete monitoring also arises from overhead control frameworks, such as [34], which repeat-
edly disable and enable monitoring of selected events, to maintain the overall overhead of runtime
monitoring at a specified target level. Regardless of the cause, simply ignoring the fact that un-
monitored events might have occurred gives poor results.

The main idea behind RVSE is to use a statistical model of the monitored system, in the form
of a Hidden Markov Model (HMM), to “fill in” gaps in event sequences. We then use an extended
version of the forward algorithm of [54] to calculate the probability that the property is satisfied.
The HMM can be learned automatically from training runs, using standard algorithms [54].

When the cause of incomplete monitoring is overhead control, a delicate interplay exists be-
tween RVSE and overhead control, due to the runtime overhead of RVSE itself: the matrix-vector
calculations performed by the RVSE algorithm to process an observation symbol—which can be a
program event or a gap symbol paired with a discrete probability distribution describing the length
of the gap—are expensive. Note that we did not consider this interplay in [61], because the RVSE
calculations were performed post-mortem in the experiments described there.

The relationship between RVSE and overhead control can be viewed as an accuracy-overhead
trade-off: the more overhead RVSE consumes processing an observation symbol, with the goal of
performing more accurate state estimation, the more events are missed (because less overhead is
available). Paradoxically, these extra missed events result in more gap symbols, making accurate
state estimation all the more challenging.

This tension between accurate state estimation and overhead control can be understood in terms
of Heisenberg’s uncertainty principle, which essentially states that the more accurately one mea-
sures the position of an electron, the more its velocity is perturbed, and vice versa. In the case
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Figure 4.1: The Adaptive Runtime Verification Framework

of RVSE, we are estimating the position (state) and velocity (execution time) of a “computation
particle” (program counter) flowing through an instrumented program.

With these concerns in mind, we present Adaptive Runtime Verification (ARV), a new approach
to runtime verification in which overhead control, runtime verification with state estimation, and
predictive analysis are synergistically combined. In ARV, as depicted in Figure 4.1, each monitor
instance1 has an associated criticality level, which is a measure of how “close” the instance is to
violating the property under investigation. As criticality levels of monitor instances rise, so will
the fraction of monitoring resources allocated to these instances, thereby increasing the probability
of violation detection and concomitant adaptive responses to property violations.

The main contributions discussed in this chapter are:

• In ARV, the overhead-control subsystem and the RVSE-enabled monitoring subsystem are
coupled together in a feedback control loop: overhead control introduces gaps in event se-
quences, whose resolution requires HMM-based state estimation (RVSE); state estimation
informs overhead control, closing the loop. Up-to-date state estimates enable the overhead-
control subsystem to make intelligent, criticality-based decisions about how to allocate the
available overhead among monitor instances.

• A key aspect of the ARV framework is a new algorithm for RVSE that performs the calcula-
tions offline (in advance), dramatically reducing the runtime overhead of RVSE, at the cost
of introducing some approximation error. We analyze the cumulative approximation error
incurred by this algorithm.

1A monitor instance is a runtime instance of a parameterized monitor. For example, our monitor for concurrency
errors in the Linux kernel is parameterized by the id (address) of the structure being monitored.
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• To compute the criticality levels of monitor instances, the ARV framework performs reward-
based reachability queries over the Discrete Time Markov Chain (DTMC) derived from the
composition of the HMM model of the monitored program and the monitor, represented as a
Deterministic Finite State Machine (DFSM). These queries determine the expected distance
to the monitor’s error state. These queries are also computed in advance, and the results are
stored in a data structure.

• We demonstrate the utility of the ARV approach on a significant case study involving runtime
monitoring of concurrency errors in the Linux kernel.

4.2 Background
Hidden Markov Models (HMMs) An HMM [54] is a tuple H = 〈S,A, V,B, π〉 contain-
ing a set S of states, a transition probability distribution A, a set V of observation symbols
(also called “outputs”), an observation probability distribution B, and an initial state distribu-
tion π. The states and observations are indexed (i.e., numbered), so S and V can be written
as S = {s1, s2, . . . , sNs} and V = {v1, . . . , vNo}, where Ns is the number of states, and No is
the number of observation symbols. Let Pr(c1 | c2) denote the probability that c1 holds, given
that c2 holds. The transition probability distribution A is an Ns × Ns matrix indexed by states
in both dimensions, such that Ai,j = Pr(state is sj at time t + 1 | state is si at time t). The ob-
servation probability distribution B is an Ns × No matrix indexed by states and observations,
such that Bi,j = Pr(vj is observed at time t | state is si at time t). Following tradition, we define
bi(vk) = Bi,k. Prior distribution πi is the probability that the initial state is si.

An example of an HMM is depicted in Figure 4.3 a). Each state is labeled with observation
probabilities in that state; for example, P(LOCK)=0.99 in state s1 means B1,LOCK = 0.99. Edges
are labeled with transition probabilities; for example, 0.20 on the edge from s2 to s3 means A2,3 =
0.20.

Learning HMMs Given a set of traces of a system and a desired number of states of the HMM,
it is possible to learn an HMM model of the system using standard algorithms [54]. The main idea
behind these algorithms is to maximize the probability that the HMM generates the given traces.
In our experiments, we chose an HMM model with three states, used the Baum-Welch learning
algorithm [8], and provided the learning algorithm with 1,000 traces as input. Figure 4.3 a) depicts
the transition and observation probability distributions of the resulting HMM model. The related
case study (Section 4.6) provides further details.

Deterministic Finite State Machines (DFSMs) We assume that the temporal property φ to be
monitored is expressed as a parametrized deterministic finite state machine. A DFSM is a tuple
M = 〈SM ,minit , V, δ, F 〉, where SM is the set of states, minit in SM is the initial state, V is the
alphabet (also called the set of input symbols), δ : SM × V → SM is the transition function, and
F is the set of accepting states (also called “final states”). Note that δ is a total function. A trace O
satisfies the property iff it leaves M in an accepting state.
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pi(m,n) =
∑

v∈V s.t. δ(m,v)=n
bi(v) (4.1)

g0(i,m, j, n) = (i = j ∧m = n) ? 1 : 0 (4.2)

g`+1(i,m, j, n) =
∑

i′∈[1..Ns],m′∈SM

g`(i,m, i
′,m′)Ai′,jpj(m

′, n) (4.3)

α1(j, n) = (4.4)
(n = δ(minit , O1)) ?πjbj(O1) : 0 if O1 ∈ V
L(0)(n = minit ?πj : 0) +

∑
`>0,i∈[1..Ns]

L(`)πig`(i,minit , j, n) if O1 = gap(L)

(n = minit ∧ n ∈ Sp) ?πj : 0 if O2 = peek(Sp)
for 1 ≤ j ≤ Ns and n ∈ SM

αt+1(j, n) =




∑

i∈[1..Ns]

m∈pred(n,Ot+1)

αt(i,m)Ai,j

 bj(Ot+1) if Ot+1 ∈ V

L(0)αt(j, n) +
∑
`>0

L(`)
∑

i∈[1..Ns]

m∈SM

αt(i,m)g`(i,m, j, n) if Ot+1 = gap(L)

(n ∈ Sp) ?αt(j, n) : 0 if Ot+1 = peek(Sp)
for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns and n ∈ SM

(4.5)

Figure 4.2: Forward algorithm for Runtime Verification with State Estimation
pred(n, v) is the set of predecessors of n with respect to v in the DFSM, i.e., the set of states m
such that M transitions from m to n on input v.

RVSE Algorithm In [61], we extended the forward algorithm to estimate the probability of hav-
ing encountered an error (equivalent to be in an accepting state) in the case where the observation
sequence O contains the symbol gap(L) denoting a possible gap with an unknown length. The
length distribution L is a probability distribution on the natural numbers: L(`) is the probability
that the gap has length `.

The Hidden Markov Model H = 〈S,A, V,B, π〉 models the monitored system, where S =
{s1, . . . , sNs} and V = {v1, . . . , vNo}. Observation symbols of H are observable actions of the
monitored system. H need not be an exact model of the system.

The property φ is represented by a DFSM M = 〈SM ,minit , V, δ, F 〉. For simplicity, we take
the alphabet of M to be the same as the set of observation symbols of H . It is easy to allow the
alphabet of M to be a subset of the observation symbols of H , by modifying the algorithm so that
observations of symbols outside the alphabet of M leave M in the same state.

The goal is to compute Pr(φ | O,H), i.e., the probability that the system’s behavior satisfies φ,
given observation sequence O and model H . Let Q = 〈q1, q2, . . . , qT 〉 denote the (unknown) state
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sequence that the system passed through, i.e., qt denotes the state of the system when observation
Ot is made. We extend the forward algorithm [54] to compute αt(i,m) = Pr(O1, O2, . . . , Ot, qt =
si,mt = m | H), i.e., the joint probability that the first t observations yield O1, O2, . . . , Ot and
that qt is si and that mt is m, given the model H . We refer to a pair (j, n) of an HMM state and a
DFSM state as a compound state, and we sometimes refer to αt as a probability distribution over
compound states.

In this work, we further extend the algorithm to revise its probability estimate when O contains
symbols of the form peek(Sp), where Sp ⊂ SM . A peek event represents knowledge from an
oracle that the DFSM can only be in one of the states in the set Sp: i.e., Ot = peek(Sp) implies
that ∀sn ∈ SM , 1 ≤ j ≤ Ns : sn ∈ Sp ∨ αt(j, n) = 0.

Peek events are useful when some DFSM states imply program properties that can be indepen-
dently checked at any time. In our case study (Section 4.6), one of the DFSM states implies that a
lock is held. At any time, the runtime verification framework can examine the lock directly; if the
lock is not held, the framework rules out that DFSM state by emitting a peek observation.

The extended algorithm appears in Figure 4.2. The desired probability Pr(φ | O,H) is
the probability that the DFSM is in an accepting state after observation sequence O, which is
psat(α|O|+1), where psat(α) =

∑
j∈1..Ns,n∈F α(j, n) /

∑
j∈1..Ns,n∈SM

α(j, n). The probability of
an error (i.e., a violation of the property) is perr(α) = 1− psat(α).

4.3 The ARV Framework: Architecture and Principles
Figure 4.1 depicts the architecture of the ARV framework. ARV uses GCC plug-ins [13] to insert
code that intercepts monitored events and sends them to the monitoring framework. The monitoring
framework maintains a separate RVSE-enabled monitor instance for each monitored object.

Each monitor instance uses the RVSE algorithm in Section 4.4 to compute its estimate of
the composite HMM-DFSM state; specifically, it keeps track of which pre-computed probability
distribution over compound states characterizes the current system state.

Each instance uses this probability distribution over compound states to compute the its error
probability (EP), i.e., the probability that a property violation has occurred, as described in Sec-
tion 4.4. Each instance also uses this probability distribution over compound states to compute its
criticality level, based on the expected number of transitions before a violation occurs, using the
predictive analysis of Section 4.5.

The overhead-control subsystem is structured, as in SMCO [34], as a cascade controller com-
prising one primary controller and a number of secondary controllers, one per monitor instance.
The primary controller allocates monitoring resources (overhead), and the secondary controllers
enforce the overhead allocation by disabling monitoring when necessary. A key feature of ARV’s
design is the ability to redistribute overhead so that more critical monitor instances are allowed
more monitoring overhead.

4.4 Pre-computation of RVSE Distributions
Performing the matrix calculations in the RVSE algorithm during monitoring incurs very high
overhead. This section describes how to dramatically reduce the overhead by pre-computing
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Figure 4.3: HMM and DFSM examples
Left (a): An example of an HMM. Right (b): Two examples of DFSM. States with a double border
are accepting states.

compound-state probability distributions α and storing them in a rooted graph. Each edge of the
graph is labeled with an observation symbol. At runtime, the algorithm maintains (for each monitor
instance) a pointer curNode, indicating the node associated with the current state. The probability
distribution in the current state is given by the matrix associated with curNode. Initially, curNode
points to the root node. Upon observing an observation symbol O, the algorithm finds the node n′

reachable from curNode by an edge labeled with O, and then assigns n′ to curNode. Note that this
takes constant time, independent of the sizes of the HMM and the monitor.

In general, an unbounded number of probability distributions may be reachable, in which case
the graph would be infinite. We introduce an approximation in order to ensure termination. Specif-
ically, we introduce a binary relation closeEnough on compound-state probability distributions,
and during the graph construction, we identify nodes that are close enough.

Pseudo-code for the graph construction appears in Figure 4.4. successor(α,O) is the prob-
ability distribution obtained using the forward algorithm—specifically, Equation 4.5—to update
compound-state probability distribution α based on observation of observation symbol O. Note
that each edge is marked as exact or approximate, indicating whether it introduces any inaccu-
racy. normalize(α) is the probability distribution obtained by computing

∑
j,n α(j, n) and then
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g = input gap probability distribution
Vpeek = input set of possible peek events
α0 = the probability distribution with α0(j,minit) = π0(j), and α0(j, n) = 0 for n 6= minit

workset = {α0}
nodes = {α0}
while workset 6= ∅
α = workset .removeOne();
for each observation symbol O in (V ∪ Vpeek ∪ {gap(g)})
α′ = normalize(successor(α,O))
if dead(α′)
continue

endif
if α′ ∈ nodes

add an exact edge labeled with O from α to α′

else if there exists α′′ in nodes such that closeEnough(α′, α′′)
add an approximate edge labeled with O from α to α′′

else
add α′ to nodes and workset
add an exact edge labeled with O from α to α′

endif
endfor

endwhile

Figure 4.4: Pseudo-code for graph construction

dividing every entry in α by this sum; the resulting matrix α′ satisfies
∑

j,n α
′(j, n) = 1. Normal-

ization has two benefits. First, it helps reduce the number of nodes, because normalized matrices
are more likely to be equal or close-enough than un-normalized matrices. Second, normalization
helps reduce the inaccuracy caused by the use of limited-precision numerical calculations in the
implementation (cf. [54, Section V.A]), which uses the term “scaling” instead of “normalization”).
Normalization is compatible with our original RVSE algorithm—in particular, it does not affect
the value calculated for Pr(φ | O,H)—and it provides the second benefit described above in that
algorithm, too, so we assume hereafter that the original RVSE algorithm is extended to normalize
each matrix αt.

A state s of a DFSM is dead if it is non-accepting and all of its outgoing transitions lead to
s. A probability distribution is dead if the probabilities of compound states containing dead states
of the DFSM sum to 1. The algorithm does not bother to compute successors of dead probability
distributions, which always have error probability 1.

During construction, the nodes list is stored as a k-d tree, in which each node is a vector with
dimension (|S||SM |). Searching nodes for an element that satisfies closeenough becomes the most
time-consuming operation of the construction once nodes contains more than a thousand elements.
The k-d tree is optimized for this style of search, providing a best-case O(log(n)) lookup when the
tree is perfectly balanced [9].
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We define the close-enough relation by: closeEnough(α, α′) iff ||α − α′||sum ≤ ε, where ε is
an implicit parameter of the construction, and ||α||sum =

∑
i,j |α(i, j)|. Note that, if we regard α

as a vector, as is traditional in HMM theory, then this norm is the vector 1-norm.

Termination We prove termination of the graph construction using the pigeonhole principle.
Consider the space of Ns × Nm matrices with entries in the range [0..1], where Nm = |Sm|.
Partition this space into cells (hypercubes) with edge length ε/NsNm. If two matrices α and α′

are in the same cell, then the absolute value of the largest element in α − α′ is at most ε/NsNm,
and ||α − α′||sum is at most the number of elements times the largest element, so ||α − α′||sum ≤
NsNmε/NsNm, hence ||α − α′||sum ≤ ε. The contrapositive of this conclusion is: if two matrices
satisfy ||α − α′||sum > ε, then they are in different cells. Therefore, the number of nodes in the
graph is bounded by the number of cells in this grid, which is (NsNm/ε)

NsNm . Note that this
termination proof applies even if normalization is omitted from the algorithm.

Cumulative Inaccuracy Use of the closeEnough relation during graph construction introduces
inaccuracy. We characterize the inaccuracy by bounding the difference between the probability
distribution matrix associated with curNode and the probability distribution matrix that would
be computed by the original RVSE algorithm. Let α′1, α

′
2, . . . , α

′
t be the sequence of matrices

labeling the nodes visited in the graph, for a given observation sequence O. Let α1, α2, . . . , αt be
sequence of matrices calculated by the RVSE algorithm for the same observation sequence O. The
cumulative inaccuracy is expressed as a bound err t on ||αt−α′t||sum. First, we consider inaccuracy
assuming that the original and new RVSE algorithms do not normalize the probability distributions
(recall that normalization is not needed to ensure soundness or termination), and we show that the
cumulative inaccuracy does not increase along an exact edge and increases by at most ε along an
approximate edge.

We define err t inductively. The base case is err 0 = 0. For the induction case, we suppose
||α′t − αt||sum ≤ err t and define err t+1 so that ||α′t+1 − αt+1||sum ≤ err t+1.

If the transition from α′t to α′t+1 traverses an exact edge, then the inaccuracy remains un-
changed: err t+1 = err t. To prove this, we show that the following inequality holds:

||successor(α′t, Ot+1)− successor(αt, Ot+1)||sum ≤ err t.

To prove this, we expand the definition of successor and simplify. There are two cases, depending
on whether Ot+1 is a gap. If Ot+1 is not a gap,∑

j∈[1..Ns],n∈SM
|successor(α′t, Ot+1)− successor(αt, Ot+1)|

=
∑

j∈[1..Ns],n∈SM

∑
i∈[1..Ns],m∈pred(n,Ot+1)

|α′t(i,m)− αt(i,m)|Ai,jbj(Ot+1)

// M is deterministic, so each m is predecessor of at most one n for given Ot+1,
// so for any f ,

∑
n∈SM ,m∈pred(n,Ot+1)

f(m) ≤
∑

m∈SM
f(m).

≤
∑

j∈[1..Ns],i∈[1..Ns],m∈SM
|α′t(i,m)− αt(i,m)|Ai,jbj(Ot+1)

A is stochastic, i.e.,
∑

j∈SM
Ai,j = 1, and bj(Ot+1) ≤ 1

≤
∑

i∈[1..Ns],m∈SM
|α′t(i,m)− αt(i,m)|

≤ err t
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If Ot+1 is a gap,∑
j∈[1..Ns],n∈SM

|successor(α′t, Ot+1)− successor(αt, Ot+1)|
=

∑
j∈[1..Ns],n∈SM

L(0)|α′t(j, n)− αt(j, n)|
+
∑

`>0 L(`)
∑

i∈[1..Ns],m∈pred(n,Ot+1)
|α′t(i,m)− αt(i,m)|g`(i,m, j, n)

// definition of err t
≤ L(0)err t

+
∑

`>0 L(`)
∑

i∈[1..Ns],m∈pred(n,Ot+1)
|α′t(i,m)− αt(i,m)|

∑
j∈[1..Ns],n∈SM

g`(i,m, j, n)

// g`(i,m, ·, ·) is stochastic, i.e.,
∑

j∈[1..Ns],n∈SM
g`(i,m, j, n) = 1, and def. of err t

≤ L(0)err t +
∑

`>0 L(`)err t
//
∑

`≥0 L(`) = 1
≤ err t

If the transition from α′t to α′t+1 traverses an approximate edge, then, by definition of the
closeEnough relation, the traversal may add ε to the cumulative inaccuracy, so err t+1 = err t + ε.
Note that the same argument used in the case of an exact edge implies that the inaccuracy in err t
is not amplified by traversal of an approximate edge.

Now we consider the effect of normalization on cumulative inaccuracy. We show that nor-
malization does not increase the inaccuracy. Let α̂′t and α̂t be the probability distributions com-
puted in step t before normalization; thus, α′t = normalize(α̂′t) and αt = normalize(α̂t). Note
that

∑
j,n α̂

′
t(j, n) and

∑
j,n α̂t(j, n) are at most 1; this is a property of the forward algorithm

(cf. [54, Section V.A]). Also, every element of α̂′t, α̂t α
′
t, and αt is between 0 and 1. Thus, nor-

malization moves each element of α̂′t and α̂t to the right on the number line, closer to 1, or leaves
it unchanged. For concreteness, suppose

∑
j,n α̂

′
t(j, n) <

∑
j,n α̂t(j, n); a completely symmetric

argument applies when the inequality points the other way. This inequality implies that, on aver-
age, elements of α̂′t are to the left of elements of α̂t. It also implies that, on average, normalization
moves elements of α̂′t farther (to the right) than it moves elements of α̂t. These observations to-
gether imply that, on average, corresponding elements of α̂′t and α̂t are closer to each other after
normalization than before normalization, and hence that ||α′t − αt||sum ≤ ||α̂′t − α̂t||sum. Note that
elements of α̂′t cannot move so much farther to the right than elements of α̂t that they end up being
farther, on average, from the corresponding elements of α̂t, because both matrices end up with the
same average value for the elements (namely, 1/NsNm).

Stricter Close-Enough Relation To improve the accuracy of the algorithm, a slightly stricter
close-enough relation is used in our experiments: closeEnough(α, α′) holds iff ||α−α′||sum ≤ ε ∧
(pdead(α) = 0⇔ pdead(α

′) = 0), where pdead(α) is the sum of the elements of α corresponding to
compound states containing a dead state ofM . It is easy to show that the algorithm still terminates,
and that the above bound on cumulative inaccuracy still holds.

On-Demand Computation We have observed that monitored executions usually visit only a
small fraction of the pre-computed nodes in the graph. Because the graph goes mostly unused, it
is practical to compute the graph on demand, as the monitored program executes.

The on-demand algorithm operates similarly to Figure 4.4, except there is no workset. Instead,
individual edges get chosen for computation when they are needed: i.e., when a monitor instance
in state α needs to process observation O but there is not yet an outgoing edge from α with label
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O. This approach is similar to memoization of the RVSE computation, except that edges can be
placed approximately.

Computing the entire graph can take hours to days, depending on what ε the user chooses (i.e.,
how much approximation is allowed), so on-demand computation can save a lot of time. The
downside to on-demand computation is that event processing takes a variable amount of time:
some events require only an edge traversal, while others incur an expensive RVSE computation. It
makes sense to use on-demand computation alongside overhead control techniques that measure
and account for event processing time, such as SMCO [34].

4.5 Predictive Analysis of Criticality Levels
Criticality Level We define the criticality level of a monitor instance to be the inverse of the
expected distance (number of steps) to a violation of the property of interest. To compute this
expected distance for each compound state, we compute a Discrete Time Markov Chain (DTMC)
by composing the HMM model H of the monitored program with the DFSM M for the property.
We then add a reward state structure to it, assigning a cost of 1 to each compound state. We
use PRISM [38] to compute, as a reward-based reachability query, the expected number of steps
for each compound state to reach compound states containing dead states of M . Note that these
queries are issued in advance of the actual runtime monitoring, with the results stored in a table for
efficient access.

Discrete-Time Markov Chain (DTMC) A Discrete-Time Markov Chain (DTMC) [38] is a
tuple D = (SD, s̃0,P), where SD is a finite set of states, s̃0 ∈ SD is the initial state, and
P : SD × SD → [0, 1] is the transition probability function. P(s̃1, s̃2) is the probability of making
a transition from s̃1 to s̃2.

Reward Structures DTMCs can be extended with a reward (or cost) structure [38]. A state
reward function ρ is a function from states of the DTMC to non-negative real numbers, specifying
the reward (or cost, depending on the interpretation of the value in the application of interest) for
each state; specifically, ρ(s̃) is the reward acquired if the DTMC is in state s̃ for 1 time-step.

Composition of an HMM with a DFSM Given an HMM H = 〈S,A, V,B, π〉 and a DFSM
M = 〈SM ,minit , V, δ, F 〉, their composition is a DTMC D = (SD, s̃0,P), where SD = (S ×
SM) ∪ {s̃0}, s̃0 is the initial state, and the transition probability function P is defined by:

• P(s̃0, (si,minit)) = π, with 1 ≤ i ≤ |S|,

• P((si1 ,mj1), (si2 ,mj2)) = Ai1,i2
∑
∀vk∈V :δ(mi1

,vk)=mi2
bi1(vk).

We extend D with the state reward function such that ρ(s̃) = 1 for all s̃ ∈ SD. With this reward
function, we can calculate the expected number of steps until a particular state of the DTMC
occurs.
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Computing the Expected Distance The expected distance ExpDist(s̃, T ) of a state s̃ of the
DTMC to reach a set of states T ⊆ SD is defined as the expected cumulative reward and is
computed as follows:

ExpDist(s̃, T ) =


∞ if PReach(s̃, T ) < 1
0 if s̃ ∈ T
ρ(s̃) +

∑
s̃′∈SD

P(s̃, s̃′) · ExpDist(s̃′, T ) otherwise

where PReach(s̃, T ) is the probability to eventually reach a state in T starting from s̃. For
further details on quantitative reachability analysis for DTMCs, see [38]. The expected dis-
tance for a monitor instance with compound-state probability distribution α is then defined by
ExpDist(α, T ) =

∑
i,j α(i, j) · ExpDist((si,mj), T ).

4.6 Case Study
We evaluate our system by designing a monitor for the lock discipline property and applying it to
the Btrfs file system. This property is implicitly parameterized by a struct type S that has a lock
member, protected fields, and unprotected fields. Informally, the property requires that all accesses
to protected fields occur while the lock is held.

The DFSM MLD(t, o) for the lock discipline property is parameterized by a thread t and an
object o, where o is an instance of the struct with type S. There are four kinds of events:
LOCK(t, o) (thread t acquires the lock associated with object o), UNLOCK(t, o) (thread t releases
the lock associated with object o), PROT(t, o) (thread t accesses a protected field of object o), and
UNPROT(t, o) (thread t accesses an unprotected field of object o). The DFSM MLD(t, o) is
shown in the lower part of Figure 4.3(b); the parameters t and o are elided to avoid clutter. It
requires that thread t’s accesses to protected fields occur while thread t holds the lock associated
with object o, except for accesses to protected fields before the first time t acquires that lock (such
accesses are assumed to be part of initialization of o).

When it is not in its error state (state 4), the state of DFSMMLD(t, o) represents whether thread
t holds the lock on object o. Note that a LOCK(t, o) event from any non-error state will transition
the DFSM to state 2, and an UNLOCK(t, o) will never transition the DFSM to state 2. As a result,
when t holds the lock on o, the actual DFSM state must be state 2 or the error state, and when it
does not hold the lock, the DFSM must be in some state other than state 2.

This correspondence between the state of the lock and the state of the DFSM makes peek events
(discussed in Section 4.2) useful in this case study. Our runtime framework has the ability to di-
rectly inspect an object o to see if it is held by a thread t and then generate a LOCK HELD(t, o) or
LOCK NOT HELD(t, o) peek observation as appropriate. These events cause our state estima-
tion algorithm (shown in Figure 4.2) to zero out the probabilities of DFSM states that are ruled out
by the inspection: states 1 and 3 for LOCK HELD(t, o) and state 2 for LOCK NOT HELD(t, o).

4.7 Implementation
Implementing the case study requires a gap-aware monitor and instrumentation that can intercept
monitored events. Both these subsystems must integrate with our overhead control mechanism.
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The monitor must be able to recognize potential gaps caused by overhead control decisions, and
the instrumentation must provide a means for the controller to disable monitoring by halting the
interception of events. In addition, our implementation adapts to RVSE’s criticality estimates by
allocating hardware debugging resources to exhaustively monitor a small number of risky objects.
This section discusses the implementation of these systems.

4.7.1 Gaps
On updating a monitor instance, the monitor processes a gap event before processing the current
intercepted event if monitoring was disabled since the last time the monitor instance was updated.
The gap event indicates that the monitor may have missed one or more events for the given instance
during the time that monitoring was disabled.

The monitor determines whether a gap event is necessary by comparing the time of the last
update to the monitor instance’s state, which is stored along with the state, with the last time that
monitoring was disabled for the current thread. For efficiency, we measure time using a counter
incremented each time monitoring is disabled—a logical clock—rather than a real-time clock.

4.7.2 Peeking
When peeking is enabled, the monitor potentially performs a peek operation on a monitor in-
stance immediately after processing a gap event for that instance. This operation examines a vari-
able within the object’s lock that indicates which thread currently holds it. The LOCK HELD or
LOCK NOT HELD event is sent to the instance depending on whether the thread that holds the
lock is the thread associated with the instance.

Peeking is designed to work in scenarios where directly inspecting a monitored object may
be expensive. For example, determining whether an iterator points to an element in a list would
require an O(n) search through the list. The monitor can use an overhead control mechanism to
determine whether or not to perform the peek. Our implementation has the ability to augment a
user-specified fraction of gap events with peek operations, but it would also be possible to support
an approach that applies peek operations to the most critical monitor instances.

4.7.3 Instrumentation
For our case study, we monitor the lock discipline property for the btrfs space info struct in
the Linux Btrfs file system. Each btrfs space info object has a spinlock, eight fields protected
by the spinlock, and five fields not protected by the spinlock.

Using a custom GCC plug-in, we instrument every kernel function that may operate on a
btrfs space info object, either by accessing one of its fields or by acquiring or releasing its
spinlock. The instrumented function first has its function body duplicated so that there is an active
path and an inactive path. Only the active path is instrumented for full monitoring. This allows
monitoring to be efficiently enabled or disabled at the granularity of a function execution. Select-
ing the inactive path effectively disables monitoring. When a duplicated function executes, it first
calls a distributor function that calls the overhead control system to decide which path to take. We
enable and disable monitoring at the granularity of function executions, because deciding to enable
or disable monitoring at the granularity of individual events would incur too much overhead.
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Every btrfs space info operation in the active path is instrumented to call the monitor,
which updates the appropriate monitor instance, based on the thread and the btrfs space info

object involved. For fast lookup, all monitor instances associated with a thread are stored in a hash
table local to that thread and indexed by object address.

4.7.4 Hardware Supervision
Our system prioritizes monitoring of objects with high criticality by placing them under hardware
supervision. Specifically, we use debug registers to monitor every operation on these objects even
when other monitoring is disabled (i.e., when the inactive path is taken). The debug registers cause
the CPU to raise a debug exception whenever an object under hardware supervision is accessed,
allowing the monitor to observe the access. Note that this allows monitoring to be enabled and
disabled on a per-object basis, for a limited number of objects, in contrast to the per-function-
execution basis described above. The overhead remaining after monitoring the hardware super-
vised objects is distributed to the other objects in the system using the normal overhead control
policy.

Our current implementation keeps track of the most critical object in each thread. Each thread
can have its own debug register values, making it possible to exhaustively track events for one
monitor instance in each thread for any number of threads.

Because an x86 debug register can at most watch one 64-bit memory location, we need a small
amount of additional instrumentation to monitor all 13 fields in a supervised btrfs space info

object. Our plug-in instruments every btrfs space info field access in the inactive path with an
additional read to a dummy field in the same object. Setting the debug register to watch the dummy
field of a supervised object causes the program to raise a debug exception whenever any field of
that object is accessed from the inactive path. The debug exception handler calls the monitor to
update the monitor instance for the supervised object.

For btrfs space info spinlock acquire and release operations, we instrument the inactive
path with a simple check to determine if the spinlock belongs to one of the few supervised objects
that should be updated even though monitoring is disabled. We could use debug registers to remove
the need for this check, but we found that overhead from checking directly was very low, because
lock operations occur infrequently compared to field accesses.

4.7.5 Training
We collected data from completely monitored runs to train the HMM and learn the gap length
distribution. During training runs for a given overhead level, the distributor makes monitoring
decisions as if overhead control were in effect but does not enforce those decisions; instead, it
always takes the active path. As a result, the system knows which events would have been missed
by taking the inactive path. Based on this information, for each event that would have triggered
processing of a gap event, we compute the actual number of events missed for the corresponding
monitor instance. The gap length distribution for the given overhead level is the distribution of
those numbers.

Our case study uses a simple overhead-control mechanism in which the target “overhead level”
is specified by the fraction f of function executions to be monitored. For each function execution,
the distributor flips a biased coin, which says “yes” with probability f , to decide whether to monitor
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Sampling No Supervision Random Supervision Adaptive Supervision
Probability FalseAlarm ErrDet FalseAlarm ErrDet FalseAlarm ErrDet
50% 30.3 23.0% 11.7 57.4% 12 50.1%
75% 47 31.2% 36 69.3% 17 79.4%
85% 5502 34.1% 5606 72.3% 5449 85.1%

Table 4.1: Benchmark results for ARV on BTRFS

the current function execution. We tested three different sampling probabilities: 50%, 75%, 85%,
and 95%. For each sampling probability, we precomputed the RVSE distributions with ε = 0.1,
thereby obtaining four RVSE graphs having 12,177, 33,234, 30,645 and 11,622 nodes, respectively.

4.7.6 Evaluation
We used two different tests to measure how well our prioritization mechanism improved ARV’s
effectiveness. The first test runs with an unmodified version of Btrfs, which does not contain any
lock discipline violations, in order to test how well prioritization avoids false alarms. The second
test runs on a version of Btrfs with an erroneous access that we inserted, to test if prioritization
improves our chances of detecting it. For both of these tests, we run Racer [62], a workload
designed specifically to stress file system concurrency, on top of a Btrfs-formatted file system, and
we report results that are averaged over multiple runs.

We tested three configurations: 1) hardware supervision disabled, 2) randomly assigned hard-
ware supervision, and 3) adaptive hardware supervision that prioritizes critical objects, as described
above. Most threads in the Racer workload had two associated monitor instances. At any time, our
prioritization chose one of those from each thread to supervise.

The table below shows the results for these tests. Each row in the table is for one of the three
sampling probabilities. For our false alarm test, the columns labeled FalseAlarm in the table show
how many monitor instances had an error probability higher than 0.8 at the end of the run. Because
the run had no errors, lower numbers are better in this test. For our error detection test, we checked
the corresponding monitor instance immediately after our synthetic error triggered; the columns
labeled ErrDet in the table show the percentage of the times that we found that monitor instance
to have an error probability higher than 0.8, indicating it correctly inferred a likely error. For this
test, higher numbers are better. All results are averaged over multiple runs.

In all cases, hardware supervision improved the false alarm rate and the error detection rate.
For the 75% and 85% sampling profiles, adaptive prioritization provides greater improvement than
simply choosing objects at random for supervision. With 50% sampling, adaptive sampling does
worse than random, however. In future work, we intend to improve our criticality metric so that it
performs better at lower overheads. The table also shows that ARV takes advantage of increased
sampling rates, successfully detecting more errors in the error detection test. However, we see
that false alarm rates increase with higher sampling rate. Our experiments on a micro-benchmark
provide insight into this problem.
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Micro-benchmark

We constructed a micro-benchmark, arv-bench, to measure ARV’s performance when there are
many objects per thread. An arv-bench run spawns five threads, which access 100 shared objects,
allowing for a total of 500 monitor instances (one for each possible pair of thread and object). Each
thread runs in a loop that continously calls a work function.

P(PROT) = 0.2

P(UNPROT) = 0.8

P(PROT) = 0.6

P(UNPROT) = 0.4

P(PROT) = 1 x 10

P(UNPROT) = 1 − 1 x 10

0.6

0.4

0.9

0.11

0.2

1

0.8

P(LOCK) = 1 P(UNLOCK) = 1

−6

−6

Figure 4.5: HMM used to generate work function operations in arv-bench.

The work function is itself a loop, each iteration of which randomly chooses one of the 100
objects to perform a randomly chosen operation on. The operation itself, which is one of LOCK,
UNLOCK, PROT, or UNPROT (as described in Section 4.6), is chosen according to a manually
constructed HMM. We use this same manually constructed HMM in the RVSE computation; there
is no need to learn an HMM for the micro-benchmark, because we know a priori that objects follow
the HMM we specified. The HMM that arv-bench uses is shown in Figure 4.5.

Depending on the decision made by the distributor, either all of the operations performed by
an execution of the work function will be monitored or none of them will. The total number of
operations that any work function execution will perform is chosen randomly according to the
normal distribution with µ = 2 and σ = 0.5 and rounded to the nearest non-negative integer.
Grouping operations into random-length function executions makes arv-bench’s gap distribution
more realistic.

Additionally, we need to restrict the operation of the benchmark so that the threads never enter
a deadlock. We enforce a lock order by restricting which objects threads are allowed to operate on.
The benchmark objects are indexed, and a thread will never choose to operate on an object with
index n if it holds the lock on an object with an index greater than n, thereby ensuring that locks
are always acquired in the same order.

So that threads do not hold locks for a long time, we give precedence to the highest-indexed
locked object when randomly choosing an object to operate on, so as to unlock it sooner. The
object choice chooses this preferred object with probability 1/3; otherwise it chooses from the
remaining available objects with uniform probability.
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Sampling No Supervision Random Supervision Adaptive Supervision
Probability FalseAlarm ErrDet FalseAlarm ErrDet FalseAlarm ErrDet
50% 68.2 92.2% 68.1 91.9% 68.1 92.3%
75% 124 96.2% 121 96.0% 123 96.0%
85% 127 96.1% 128 97.1% 128 96.9%
95% 107 95.9% 104 95.5% 106 95.5%

Table 4.2: Benchmark results for arv-bench with ε = 0.03

Sampling No Supervision Random Supervision Adaptive Supervision
Probability FalseAlarm ErrDet FalseAlarm ErrDet FalseAlarm ErrDet
50% 1.60 20.8% 1.20 32.5% 0.900 29.4%
75% 8.40 50.7% 7.10 47.6% 6.60 49.4%
85% 12.9 62.9% 10.8 60.2% 9.90 58.3%
95% 16.4 76.9% 15.2 72.4% 12.7 72.7%

Table 4.3: Benchmark results for arv-bench with ε = 0.0005

As with BTRFS, our initial results for micro-bench (Table 4.2) also show that increasing the
percentage of monitored function executions causes an unexpected increase in the number of false
alarms.

We found that the false alarms for higher distributor probabilities are a result of error caused by
approximate edges in our offline RVSE computation. When we repeated the micro-bench test
with RVSE computed on the fly, there were no false alarms for any of the distributor probability
values we tested.

Because running RVSE on the fly is prohibitively expensive, we sought to instead reduce ap-
proximation error by using a lower value for ε. Table 4.3 shows that with ε = 0.0005, false alarms
occur at a lower rate than with ε = 0.03. The lower ε would have created an impractically large
graph, so we used the on-demand RVSE computation (described in Section 4.4) for this test, al-
lowing us to compute only the portion of the graph that was necessary for each execution.

The results in Table 4.3 more closely match our expectations: increasing the amount of moni-
toring increases error detection monotonically, and even though false alarms increase as well, they
increase only modestly. The higher ε (lower accuracy) experiment in Table 4.2 has higher error
detection results across the board but only because the monitor flags so many instances as erro-
neous that it is likely to flag most errors. We do not see consistently better performance when
enabling hardware supervision in these tests. Because there are many more instances per thread in
arv-bench, it is more difficult for supervision to choose which objects are likely to cause a fault.

The micro-benchmark also shows that on-demand RVSE dramatically reduces the number of
nodes we need to compute in the RVSE graph. For example, with ε = 0.03, the largest graph
we computed (for the 95% sampling probability) has 164,671 nodes, but a monitored run of
arv-bench visits 830 of these on average: only 0.5% of the total nodes. In the smallest graph
(for the 50% sampling probability), an average arv-bench execution visits 866 of 47,494 nodes,
or 1.8%. This picture is even more dramatic when ε = 0.0005. With 95% sampling probabil-
ity, an averaged monitored run computed 6,334 on-demand nodes. An offline computation of the
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RVSE graph computed more than 13 million nodes, over the course of three days, before we finally
terminated it.

Though we expected peeking to improve results in arv-bench, we actually found that en-
abling peeking increased the false alarm rate, even for on-the-fly RVSE. These false alarms occur
when a peek result eliminates all state possibilities except the error state. That is, a monitor in-
stance sees a peek event Ot, and as a result ∀j, n ∈ F : αt(j, n) = 0 (according to the RVSE
formula described in Section 4.2). Informally, consider a monitor instance that believes either its
lock is held or it is in the error state. When it sees a peek event indicating its lock is not held, the
error probability becomes 1. We are still investigating how to prevent these false positives so that
we can use peeking to improve our error detection accuracy.

4.8 Related Work
In [19], the authors propose a method for the automatic synthesis and adaptation of invariants from
the observed behavior of an application. Their overall goal is adaptive application monitoring, with
a focus on interacting software components. In contrast to our approach, where we learn HMMs,
the invariants learned are captured as finite automata (FA). These FA are necessarily much larger
than their corresponding HMMs. Moreover, error uncertainty, due to inherently limited training
during learning, must be dealt with at runtime, by modifying the FA as needed. They also do not
address the problem of using the synthesized FA for adaptive-control purposes.

A main aspect of our work is our approximation of the RVSE forward algorithm for state esti-
mation, which pre-computes compound-state probability distributions and stores them in a graph.
In the context of the runtime monitoring of HMMs, the authors of [59] propose a complemen-
tary method for accelerating the estimation of the current (hidden) state: Particle filters [32]. This
sequential Monte-Carlo estimation method is particularly useful when the number of states of the
HMM is very large, in particular, much larger than the number of particles (i.e., samples) necessary
for obtaining a sufficiently accurate approximation. This, however, is typically not the case in our
setting, where the HMMs are relatively small. Consequently, the Particle filtering method would
have introduced at least as much overhead as the forward algorithm, and would have therefore also
required a priori (and therefore approximate) state estimation.

The runtime verification of HMMs is explored in [31, 58], where highly accurate deterministic
and randomized methods are presented. In contrast, we are considering the runtime verification of
actual programs, while using probabilistic models of program behavior in the form of HMMs to
fill in gaps in execution sequences.
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Chapter 5

Conclusion

Any effort to make useful systems concurrency verification tools faces many challenges. Software
systems consist of millions of lines of code, and that code is not designed with verification in mind.
Developer assumptions about which regions should be atomic or when a data structure needs to be
protected by a lock are not formally specified, and the assumptions can be subtle, as in the case
of multi-stage escape (Section 2.1.4). And for any debugging tool, any extra slowdown makes the
tool less valuable in the eyes of developers. At the kernel level, these tools must be designed to
work even in interrupt context, where delays can slow down the entire system.

This work addresses several of these challenges. We use targeted logging and monitoring to
cope with the size of systems codebases. Our analysis tools are designed with complex systems
code in mind, using LOA analysis to infer assumptions about object life cycles and taking into ac-
count false positives caused by bitfield accesses or idempotent operations. For the monitoring and
logging itself, we focus on performance while still ensuring that we can capture all the information
necessary to diagnose problems. Logging captures full stack traces for all events and never drops
events, even when they occur within interrupt handlers.

Our INTERASPECT framework addresses the instrumentation challenges inherent in runtime
monitoring. GCC plug-ins are an effective platform for targeted instrumentation because of their
access to compiler type information, and INTERASPECT streamlines plug-in development by hid-
ing GCC’s internal complexity. Using INTERASPECT to design GCC plug-ins, developers can
quickly implement instrumentation for new runtime monitors.

Finally, Adaptive Runtime Verification (ARV) demonstrates how to make the most out of avail-
able resources when it is not practical to monitor every event in a system. Techniques like ARV
may be the key to moving verification techniques from debugging toolboxes to production systems,
where computing resources are at a premium.

It is our hope that the contributions presented here will benefit both the research and devel-
opment communities. The INTERASPECT source is already available for download, along with
complete documentation of its API [36].
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5.1 Future Work
Locking performance

Though the runtime verification techniques we have described so far verify correctness, we could
apply similar techniques to discover performance bottlenecks. As with correctness, performance
problems at the system level are magnified by the fact that they can become problems for all of the
applications running on the system.

Unnecessarily long critical sections make lock contention more likely, potentially squeezing
parallelism out of the system. Using a profiler to find contended critical sections, we could design
analyses to see where they can be broken up without introducing new data races or atomicity
violations.

On the other hand, overly fine-grained locking also has a performance cost. In the absence
of contention, breaking up critical sections introduces overhead from lock acquire and release
functions without actually allowing more parallelism. Merging critical sections will not introduce
races or atomicity violations, so we would only need to check for potential deadlock. At the kernel
level, threads are not permitted to sleep while holding spinlocks, so we would also need analysis to
ensure that merging a pair of spinlock-protected critical sections does not pull blocking operations
into the spinlock.

Hardware support

Clever applications of existing hardware can sometimes improve performance of online runtime
analysis. The NAP detector, for example, uses memory protection hardware to selectively monitor
some regions for utilization without any performance penalty for accesses to other regions [34].
To check for data races, DataCollider uses debug registers to efficiently check if a specific memory
operation occurs concurrently with another access to the same address [25].

We could augment the online atomicity checker in Section 2.2 to use debug registers instead
of shadow memory to find violating accesses. Debug registers would only able to monitor a small
number of variables for violations at any one time, but they could monitor these variables very
efficiently. If we had a metric to determine which variables are more likely to be involved in a vio-
lation, we could prioritize those, as we do with hardware supervision in our ARV implementation
(Section 4.7.4).

Schedule perturbation

For concurrency verification techniques that require a violating schedule in order to report an error,
such as the online atomicity checker we present in Section 2.2, it is helpful to have a scheduler that
is designed to trigger violating schedules. We would like to design a scheduler that tracks which
variables are in the working set of each active atomic region so that it can schedule atomic regions
together when they are accessing the same variables. Our hope is that encouraging atomic regions
to access data structures simultaneously will make errors more likely.

Initial experiments with a modified scheduler did not show a measurable improvement in the
probability of triggering a violating schedule. Further investigation is necessary to understand
how we can better determine which atomic regions should be scheduled together to expose more
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errors. Additionally, scheduler perturbation could be useful for the LOA analysis we presented in
Section 2.1.4, which gives more accurate results when it observes a wider variety of interleavings.
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