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Abstract of the Dissertation

Design and Simulation of Single-Electron
Molecular Devices

by

Nikita Simonian

Doctor of Philosophy
in
Physics
Stony Brook University
2012

This work presents a study of molecular single-electron devices
that may be used as the basic building blocks in high-density re-
sistive memories and hybrid CMOS /nanoelectronic integrated cir-
cuits. It was focused on the design and simulation of a molecu-
lar two-terminal nonvolatile resistive switch based on a system of
two linear, parallel, electrostatically-coupled molecules: one im-
plementing a single-electron transistor and another serving as a
single-electron trap. To verify the design, a theoretical analysis of
this “memristive” device has been carried out, based on a combi-
nation of ab-initio calculations of the electronic structures of the
molecules, Bardeen’s approximation for the rate of tunneling due
to wavefunction overlap between source/drain electrodes and the
molecular device, and the general theory of single-electron tunnel-
ing in systems with discrete energy spectra. The results show that
such molecular assemblies, with a length below 10 nm and a foot-
print area of about 5 nm?, may combine sub-second switching times
with multi-year retention times and high (> 10%) ON/OFF current
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ratios, at room temperature. Moreover, Monte Carlo simulations
of self-assembled monolayers (SAM) based on such molecular as-
semblies have shown that such monolayers may also be used as
resistive switches, with comparable characteristics and, in addi-
tion, be highly tolerant to defects and stray offset charges. An
important and unexpected finding in this work is that the sim-
ulated I-V curves in a few molecular junctions exhibit negative
differential resistance (NDR) with the origin so fundamental, that
the effect should be observed in most molecular junctions where
the sequential single-electron transfer limit is valid. Another im-
portant by-product of this work is a more complete understanding
of some shortcomings of the existing density functional theory ap-
proximations, including their advanced versions such as the ASIC
method.
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Chapter 1

Introduction

1.1 Motivation

Complementary metal-oxide-semiconductor (CMOS) technology, arguably the
most influential integrated circuit (IC) technology of the modern era, has seen
an unprecedented performance growth at a steady exponential rate known as
“Moore’s Law” over the past 40+ years. The ability to sustain this growth has
largely come from a continued shrinkage of the circuit components: smaller
devices allow faster switching between their states, with more devices per
die. Traditionally the IC industry has employed the “top-down” approach to
create nanoscale devices by using larger, externally-controlled processes like
patterning by optical lithography to direct their assembly. In essence the whole
CMOS technology relies on a single device: the metal-oxide-semiconductor
field-effect transistor (MOSFET), which in order to have identical properties
need to have well defined geometries, in particular the length and the width
of the conduction channel. Miniaturization of this electronic device to critical
feature dimensions at or below 10 nm requires atomically precise patterning in
order to control the rising quantum mechanical fluctuations [1-4]. Even if such
patterning precision is achieved, the cost of a semiconductor fabrication plant
will become prohibitively expensive leading to the stall of the “Moore’s-Law”.

Alternatively a “bottom-up” approach that has received much attention
over a course of more than a decade (see, e.g., [5-13]), suggests to use specifi-
cally tailored molecules that naturally come in identical size and composition
as the basic building blocks in integrated circuits. Wired single molecules that
perform functions similar to those of a transistor have been demonstrated by
several research groups [8, 9]. However, experiments were plagued by unac-
ceptably low yield of working devices, low reproducibility as well as quick
device degradation. The most common source of problems in such devices



is a poor ability to control the contacts and interfacial chemistry between a
single molecule and a metallic electrode, resulting in a wide sample-to-sample
variation of several orders of magnitude of the contact resistance and hence
a large variation of the current flowing through a molecular device. In ad-
dition in three-terminal single-molecule devices that mimic the operation of
a transistor, there is also little control over the distance from the molecular
junction to the gate electrode since the placement of a single molecule in the
gap between the two electrodes is completely random. Good control over this
distance is essential because the electric field of the gate electrode exponen-
tially decays in the narrow gap between source and drain electrodes (see Sec.
3.6) and therefore depending on where the molecular device is located in the
gap, different gate voltages are needed to control the passing source to drain
current. Moreover such devices can hardly amplify the signal; for example,
the voltage gain of a 1-nm-scale transistor, based on any known physical effect
(e.g., the field effect, quantum interference, or single-electron charging), can
hardly exceed one, i.e. the level necessary for sustaining the operation of vir-
tually any active digital circuit, and hence even if other problems are solved at
a single device level, very large scale integrated (VLSI) circuits entirely built
using such miniature devices can hardly ever be viable.

In spite of these limitations, it is still feasible to pursue more robust
molecular devices that alone or as self-assembled monolayers (SAM) have
simple functional properties for example of a two terminal resistive switch
- see e.g. [14-16]. If such devices can be built, they may be used in hybrid
CMOS /nanoelectronic circuits [17, 18] that according to recent studies are one
of the most promising architectures that can extend the exponential pace of
semiconductor integrated circuit scaling for as much as 10 to 15 years [14].
In such a hybrid circuit (Fig. 1.1a) the usual CMOS “stack” (consisting of a
layer of silicon MOSFETSs at the wafer surface and several layers of metallic
interconnects) is complemented with a dense nanoelectronic add-on, namely a
nanowire crossbar with identical nanodevices at each crosspoint (Fig. 1.1b).
The crosspoint device may include a single-bit memory cell whose state con-
trols the connection of two nearby nanowires.

The purpose of this dissertation was to design molecular assemblies with
a built-in resistive switching functionality that can be used as two-terminal
crosspoint devices in the CMOS /nanoelectronic circuits, and to simulate the
electronic transport and charging in these molecular devices alone and in their
self-assembled-monolayers (SAM)s. The devices were designed in such a way
that their key electronic states (participating in charging and transport) are
weakly coupled to the source and control electrodes . In this limit the dy-

!Generally the electric charge of each molecular component can be a multiple of the
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Figure 1.1: (a) The general idea of the hybrid CMOS /nanoelectronic circuit
(b) the crossbar add-on.

namics of the electrons in the system may be described by the theory of single-
electron charging and transport in systems with discrete energy spectra [19-
22].

In the reminder of this chapter I will review recent progress in the studies
of various device designs (both molecular and solid state) that have built in
resistive switching functionality. Some of these devices already have most char-
acteristics suitable for the initial push towards the crossbar based electronic
architectures. Since the molecular assemblies that we have designed work in
the single-electron limit, we will give a concise overview of the basic physics
of single-electron phenomena and review the key single-electron devices that
are relevant to this work. Chapter 2 of the dissertation is devoted to the novel
designs of candidate component molecules of a molecular single-electron resis-
tive switch. In Chapter 3 I introduce an adequate theoretical model that is
used in subsequent chapters to calculate transport and charging properties of
candidate molecules. Chapter 4 discusses the results of calculations of com-
ponents of initially suggested molecules: surprisingly, the resulting current
voltage (I — V') curves show negative differential resistance (NDR). A simple
yet previously missed universal negative differential resistance mechanism is
proposed, that may be observed at single-electron charging and transport in
single atoms and simple molecules. In Chapter 5 the results of a calculation
of electronic transport and charging in the final molecular single-electron re-

fundamental charge e at any instant (the weak coupling limit that we have adopted in our
designs) or may be continuous (the strong coupling limit) — see Sec. 1.3 for a more detailed
explanation.



sistive switch and results of Monte-Carlo simulations of SAMs based on such
switches are presented. The thesis is concluded (Chapter 6) with a sum-
mary of the results and possible future directions. In Appendix A it is shown
on a simple example that the effect of self-interaction in the modern density-
functional-theory (DFT) calculations (that were heavily relied on in this work)
may significantly offset the resulting properties of the system such as electronic
energy spectrum, and hence give wrong predictions. In Appendix B another
self-interaction induced problem with the DF'T theory is addressed — the level
“freezing” at voltages above certain thresholds in component molecules of the
molecular switch, this DF'T deficiency in particular creates difficulties in the
calculation of charging and discharging rates of the trap component of the
molecular switch — see Sec. 3.3.1 for details and the resolution. In Appendix
C a simple derivation of a Bardeen’s approximation is given, which is used in
calculations of electron transfer rates between source/drain electrodes and the
attached molecules — see Sec. 3.4.

I AN\
ON state
/N
OFF — ON
OFF state switching
ON — OFF ™~ v
switching —V; Vread
Vreset Vt Vset

Figure 1.2: Schematics of the I — V' curve of a bipolar resistive switch.

1.2 Resistive Switches

The most critical component of the hybrid CMOS /nanoelectronic circuit (Fig.
1.1a) is the resistive switch (alternatively called either “latching switch” or
“programmable diode”) — a two-terminal electronic device with a resistive
bistability. Figure 1.2 schematically shows a possible (bipolar) switching sce-
nario. In the ON state the dc I —V curve is similar to that of the usual diode,
with a fast increase of current above a certain voltage V;. The device may be
switched into another (OFF) state, with a very low current, by crossing the
threshold V.., and switched back by its biasing with voltage V' > V.. Such
resistive bistability has been repeatedly observed, since the middle of the past



century, in thin layers of many materials including several organic compounds
(with or without embedded metallic clusters), metal oxides, amorphous silicon,
and self-assembled molecular monolayers.
In order to be compatible with the crossbar architecture, candidate devices
must meet certain requirements.
(1) Their retention 7, and set/reset Tser, Treser times (of switching from OFF
to ON and from ON to OFF) must satisfy relations 7e;/7, & Treset/Tr >
10, Devices that feature the rentention time 7, of the order of a few seconds
can be considered candidates for dynamic-random-access-memory (DRAM)
applications, while devices with 7, ~ 10%s or higher are good candidates for
nonvolatile memory applications.
(2) The ON/OFF current ratio? (Fig. 1.2) should be sufficiently high (> 10%)
to suppress current “sneak paths” in large crossbar arrays [23, 24].
(3) The signal provided by a single crosspoint device should be able to control
either a MOSFET transistor of the CMOS sub-system or a sense amplifier of
the resistive memory block. This is only possible if the total ON current of
the crosspoint is higher (or at least not much lower) than the leakage current
of transistor’s gate, currently approaching 100 A /cm* [25].
(4) Ideally these devices should be easily scaled to below 10 nm.
(5) Device switching endurance should above ~ 10° program-erase cycles, i.e.
be comparable (or at least not much lower) than modern flash memory cells.
Clearly, designing a resistive switch that features all of the above charac-
teristics is extremely challenging. The final molecular device presented in this
work (see Chapter 5 for details) does satisfy many of the requirements out-
lined above, however much additional work is still needed towards practicable
single-electron molecular resistive switches.

1.2.1 Organic compounds, inorganic/organic nanocom-
posites.

A number of devices based on relatively thick organic layers (~ 100 nm) sand-
wiched between various metallic electrodes — see Table 1.1, as well as hybrid
organic/inorganic devices, where a semiconductor (ZnO, CdSe, Si, CuO, etc.)
or metal (Au, Ag, FeNi, etc.) nanoparticle layer [26-31] is sandwiched between
layers of organic molecules have been recently studied. Most of these mate-
rials provide a rather high ON/OFF current ratios in the range of 10? — 105;
however, only one publication [32] has reported good sample-to-sample repro-
ducibility of switching voltage thresholds, and the layer thickness in that work
was very large (~ 200 nm). It remains to be seen whether it may be scaled

2Taken at the read voltage Vj.cqq



Base | interlayer | Top ON/OFF Switching Retention Endurance Reprodu- Refs.
elec- | (nm) elec- ratio time(s) time (s)  (cycles)  cibility
trode trode
metal - organic compound - metal
Al AIDCN | Al > 10? <107%  >10? ? ? [33]
InSnQ eosin Al >10° ? > 101 > 1 ? [34]
(100)
Al | Au-DT [Al  >10° <1077 ? > 1 ? [35]
Cu | DDQ Ti ~ 103 <107  >10° ? ? [36]
(200)
Au | Cu- Al ~ 10 <1 > 10? > 10° < 20% [32]
TCNQ
(200)

Table 1.1: Some recently reported results for organic compound based resistive
switches

down while keeping good switching properties.

1.2.2 Metal oxide, Sulphides, Silicon Oxide, Amorphous
Silicon

Resistive switching in metal-oxide-metal junctions has been extensively studied
for the last 50 years, with the apparently first observation of negative resistance
in thin anodic oxide films reported in 1962 [37]. More recently a number
of different oxide materials such as TiOq [38-40], MoO, [41], CuO, [42, 43],
SiO4 [44] were used with various metallic electrodes to produce very promising
results, (For the summary of results see Table 1.2.)

There is still some degree of uncertainty regarding the exact physical mech-
anism behind the observed bistability effects in both organic and inorganic
interlayer materials. Most such materials show bipolar switching operation -
see Fig. 1.2 some - feature unipolar switching, yet others have simultaneously
both bipolar and unipolar switching operations. Most authors suggest (see
e.g., the recent review [45]) that at least the bipolar operation of these devices
is due to the reversible formation of a conducting filament between the junction
electrodes, due to ion drift in the interlayer material caused by applied electric
fields - see Figure 1.3. A recent paper [16] suggests on the atomic level that
the unipolar switching may be possible due to the existence of temperature
gradients in the interlayer materials that induces drift of positively charged
oxygen ions.

A summary of recent results in this field (see Table 1.2), indicate that
such devices may enable fabrication of CMOS /nanoelectronic hybrids with the
crossbar parameter F .., (the crossbar half-pitch) above the 10nm limit. Still



OFF state ON state

O - oxygen
@ - metal

Figure 1.3: A cartoon of the apparent nature of resistive bistability in metal
oxide junctions.

however, most publications do not give much quantitative information about
the achieved device reproducibility. Even if the reproducibility concerns are
solved in the near future, the apparent operation mechanism make metal oxide
based devices hardly scalable to or below the 10nm limit, where the crosspoint
junction area becomes comparable to or smaller than the cross-section of the
switchable filament, and hence device-to-device reproducibility would require
a system uniformity on the atomic level, which will hardly be ever possible.

1.2.3 Single molecules and self-assembled molecular mono-
layers

It appears that the only practical way towards integrating identical resistive
switches in crossbar architectures beyond the 10 nm crossbar frontier is to
use specially synthesized molecules. As was mentioned in Sec. 1.1, wiring
single molecules is a daunting task, plagued by low yield and irreproducibility.
However molecular two-terminal crosspoint devices (see Fig. 1.1b) may use
self-assembled-monolayers of identical molecules — see Fig. 1.4. The footprint
of a typical molecule in such a monolayer is very small (~ 1 nm?), so that even
with the low-limit pitch values of F),,,, the number of molecules per node
would be in the hundreds, and hence such devices may in principle be quite
reproducible.

In the beginning of crossbar circuit research, there was a substantial effort
toward the implementation of molecular resistive switches using self-assembled
monolayers (SAM) of mechanically interlocked organic molecules such as cate-
nanes [55, 56] and rotaxanes [57]; the former molecular assembly was sug-
gested to have two distinct conducting regimes depending on the position of
the macrocycle molecule, which in turn may be controlled by applying voltages



Base | interlayer | Top  ON/OFF Switching Retention Endurance Reprodu- Refs.

elec- | (nm) elec- ratio time(s) time (s)  (cycles)  cibility

trode trode

M; [ MO, (?) [ My  >10° < ? ? > 50% [41]

107%,107°

Cu CuO, TiN  ~10° <1077 > 10° > 600 ~ 40% [42]
(12)

Ag [ AgS (7) | Ag/Pt ~ 30 <1078 7 > 10° ? 46

Cu Cug_,S,; | Pt ~ 10° ? ? ? ? 47
(?)

Ni NiO, Pt ~ 102 ? ? ? ~ 15% [48]
(40)

Pt | Cul,S, [Cu >10° <0.1 > 103 > 102 ? [49]
(700)

Pt CuS, (?) | Cu/Pt ~10° ? ? 30 ? [50]

Si 7r0Oy Au ~10° ? > 10° > 102 ? [51]
(50)

W [SiO; (<[ Cu ~10° 1076 > 101 > 107 ? [44]
50)

Cu | CuO, Ni,Co > 10° <1077 7 ? ~ 30% [43]
(7)

Pt TiOq Pt ~b5 ? ? > 30 ? [38]
(27)

Si a-Si Ag > 10% <1077 > 10° > 10? ~ 15% [52]
(~9)

Ti/Pt| ZrO, Cu ~10° ~10"7 > 107 > 101 ~ 30% [53]
(43)

p-Si | a-Si (80) | Ag ~ 10* <1079 107 10° ~ 10% [54]

Ti/Pt| TiO4 Ti/Pt ~ 10% ? ? ? ? [39]
(15)

Ti/Pt| TiO4 Ti/Pt ~ 10° <1078 ? > 50 ? [40]
(50)

Table 1.2: Some recently reported results for resistive switches based on metal
oxides, sulphides, silicon oxide, and amorphous silicon
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Figure 1.4: Schematic view of a 5 x 5-switch SAM sandwiched between two
electrodes.

beyond a certain threshold. However, it has been noticed in at least some stud-
ies that the memory effects do not change much if the SAM is removed from
the junction altogether, and hence may be explained by the same conducting
filament formation as discussed in the Sec. 1.3.

Still, possibilities for using other physical mechanisms of resistive switching
in molecules have not yet been thoroughly investigated. One such possibility,
presented in this thesis, is to use a molecular version of the device called the
single-electron resistive (or “latching”) switch.

1.3 Single-electron devices

1.3.1 Basics

The basic concept of single electronics is illustrated in Fig. 1.5, where two parts
of a conductor are separated by some interface. It turns out that depending
on the strength of this interface (its effective tunnel resistance R) the electric
charge of each conductor may be a multiple of the fundamental charge e ~



1.6 x 107! C (this is natural for the particle picture of matter) or may be
continuous (the wave picture allows this, because the wavefunction of each
electron may be split between the two parts). The particle picture is more
adequate when the tunnel resistance R is high

R> Rqg = h/e* = 4.1k, (1.1)

where R is the quantum unit of resistance; the wave picture is more natural
in the opposite limit.

This relation may be derived and explained in numerous ways; perhaps the
simplest interpretation is as follows. In a closed (“Hamiltonian”) quantum sys-
tem, the characteristic energy of quantum fluctuations per degree of freedom
is Fg ~ hw, where w is a characteristic frequency. In contrast, each part of the
conductor we are discussing, concerning its electric charge degree of freedom, is
an “open” system, strongly interacting with its environment (corresponding to
an RC relaxator, rather than an LC oscillator). For such a system, fiw should
be replaced by h/7, with 7 = RC, where C is the capacitance between the
two conducting parts. Transfer of a single electron between the parts causes
an electrostatic energy change of the order of Fo ~ ¢?/2C. Comparing E¢
and Eg we notice that C' cancels, and hence if R < R, quantum fluctuations
smear out the electrostatic energy difference which tries to keep the electric
charge of each part constant, in the opposite limit if R > R, the electrostatic
charge in each conducting part is a multiple of the elementary charge e.

metallic conductors

v v

LN )

*

tunnel junction

Figure 1.5: The basic concept of single-electronics; two conductors separated
by a tunnel barrier.

1.3.2 Single-electron box

The most generic single-electron device, called the “single-electron box” is
schematically shown in Fig. 1.6a. The basic physics of this device was first
understood by Lambe and Jaklevic [58] on the basis of their experiments with
disordered granular structures, while the first quantitative theory of the box
was developed by Kulik and Shekhter [59]. The device consists of just one
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Figure 1.6: Single-electron box: (a) schematics, (b) the “Coulomb staircase”,
i.e. the step-like dependence of the average charge () of the island on the gate

voltage Vj, for several
rates I'. (in) and T'_,

values of relative temperature, and (c) electron tunnel
(out) of the single-electron box.

small conductor (“island”) separated from an external electrode by a tunnel
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barrier with a high resistance

R> RQ (1'2)

An external electric field may be applied to the island using a capacitively
coupled gate electrode. The field changes the local Fermi level of the island and
thus determines the conditions of electron tunneling. Elementary electrostatics
shows that the energy of the system may be presented as

E = (Qo — ne)?/2Cs, + const, Qo = C,V,, (1.3)

where n is the number of uncompensated electrons on the island, C, is the
island-gate capacitance, while Cy; is the total capacitance of the island (includ-
ing C,). The parameter @ is usually called the “external charge”, in contrast
to the discrete island charge —ne, the variable )y is continuous, and may be
a fraction of the elementary charge e. At sufficiently low temperatures,

k?BT < Ec, EC = 62/02, (14)

the stationary number n of electrons in the island corresponds to the minimum
of F; a simple calculation using Eq. 1.3 shows that @) is a steplike function of
Qo, i.e. of the gate voltage V, (Fig. 1.6b), jumping by e when

Qo=e(n+1/2), n=0,+1,42, ... (1.5)

The physics of the “Coulomb staircase” in Fig. 1.6b is very simple: the in-
creasing gate voltage V; tries to attract more and more electrons to the island.
The discreteness of the electron charge, provided by low transparency bar-
riers (satisfying Eq. 1.2) ensures that the changes may only be discrete. If
the temperature is increased to kgl ~ E¢, the system has a non-vanishing
probability to be in other charge states. A straightforward calculation of the
average charge yields the pattern shown in Fig. 1.6b: the step-like dependence
of charge on gate voltage is gradually smeared out by thermal fluctuations.
By itself, the single-electron box is not a very useful electronic circuit com-
ponent. First, it does not have internal memory: the number of electrons in
the box is a unique function of the applied voltage V, so that it cannot be used
for information storage.> And another way to see this is to look at Fig. 1.6¢c
where we show the rates of tunneling in and out of the single-electron box.
Clearly there is no possible charge state metastability (unlike in the case of
the single-electron trap — see Sec. 1.3.4 and compare Figures 1.6¢ and 1.9¢).

3In Sec. 1.3.4 we introduce a modification of the single-electron box: the single electron-
trap that allows a metastable charge storage.
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Second, the box cannot carry dc current, so that an ultrasensitive electrometer
is necessary to measure its charge state.

1.3.3 Single-electron transistor

By simply splitting the electrode of the single-electron box into two parts
(source and drain), turns it into a much more useful device: the single-electron
transistor — see Fig. 1.7a for a geometry of this device. It was first suggested
in 1985 [60, 61] and first implemented in 1987 [62].
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Figure 1.7: Single-electron transistor: (a) schematics, and (b) a typical set
of source-drain I — V' curves of a symmetric transistor for several values of
the “external charge” @)y, i.e. of the gate voltage V,, calculated using the
“orthodox” theory of single-electron tunneling.
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Figure 1.7b shows a typical set of dc I — V' curves of such transistor, for
several values of the “external charge” (), defined in the same way as in the
single-electron box in Sec. 1.3.2. One can see that at small drain-to-source
voltage V', there is virtually no current, except at the special values of @)
given by Eq. 1.5. The physics of this phenomenon (the “Coulomb blockade”)
is easy to understand: even if V' > 0, and thus it is energy-advantageous for a
electron to go from source to drain, on its way the electron has to tunnel into
the island first, and change its charge @) by AQ = —e. Such charging would
increase the electrostatic energy E of the system

E = (Qo—ne)?/2Cx — eV (n,Cy+nyC1) /Cs +const, Cs = Cy+C1+C5 (1.6)

(where n; and ny are the numbers of electrons passed through the tunnel
barriers 1 and 2, respectively, so that n = n; — ny), and hence at low enough
temperature (kg7 < F¢) the tunneling rate is exponentially low.

At a certain threshold voltage V> the Coulomb blockade is overcome, and
currents starts to grow with V. The most important property of the single-
electron transistor is that V¢ is a periodic function of V,, vanishing in special
values of gate voltage, given by Eq. 1.5 — see Fig. 1.8. The reason for
these so-called “Coulomb blockade oscillations” can be understood from the
discussion of the single-electron box: in the special points (1.5), one electron
may be transferred to the island from either drain or source without changing
the electrostatic energy of the system even at V = 0. Hence, an electron can
tunnel from the source to the island and then to the drain even at negligible
V', so that Vo = 0. As can be shown from Eq. (1.6), at low temperatures the
dependence of Vi on V, is piecewise-linear, with its lower and upper branches
forming the so-called “diamond diagram” (Fig. 1.8) [60].

1.3.4 Single-electron trap

Another key device, the “single-electron trap”, may also be understood as
a generalization of the single-electron box. Let me replace the single tunnel
junction in Fig. 1.6a with an array of islands separated by tunnel barriers —
Fig. 1.9a. The main new feature of this system is its internal memory. Within
a certain range of applied gate voltage V, the system may be in one of two
charged states of its edge island — see the inset in Fig. 1.9b. With sufficiently
small intermediate islands (such that the charging energy e*/C of each such
island is large) the state retention time 7,* of the single-electron trap can be
made much longer than the short switching times 7., 7, of the trap (see Fig.

4The time may be defined as the inverse of the rate I',. of spontaneous switching between
two adjacent charge states at the bias point V' = V., which equilibrates their energies.
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Figure 1.8: Coulomb blockade threshold voltage Vi as a function of Qy: (a)
theoretical dependence at T' ~ 0 K, and (b) experimental contour plots of
current on the [V, V;] plane for an aluminum SET with E. ~ 100 meV at

T = 4.2 K — taken from Ref. [63]

1.9b) unlike the single-electron box, where those times are comparable (see
Fig. 1.6¢). The design similar to the one schematically shown in 1.9a has
been used, in particular, for a successful implementation of aluminum-based
latching switch prototypes (see Sec. 1.3.5) with long retention times at low
(sub-1-K) temperatures [64, 65].
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Figure 1.9: Single-electron trap: (a) schematics, and (b) electron tunnel rates
in and out of the single-electron trap with the charging energy e¢/C' = 20kgT.

1.3.5 Single-electron switch

One may combine a single-electron transistor and a single-electron trap into a
single two terminal electrostatically-coupled device placed in parallel between
two electrodes® — see Fig. 1.10a. When the charge state of the trap island is
electroneutral () = 0), the Coulomb blockade threshold Vi of the transistor is
large (Fig. 1.10b), so that at all applied voltages with |V| < V¢ the transistor

°In the switch, the third (gate) terminal of the single-electron transistor is replaced by
the single-electron trap
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carries virtually no current — the so-called OFF state of the switch. As soon
as the voltage exceeds a certain threshold value V. < Vi, the rate of tunneling
into the single-electron trap island increases sharply (1.9b), and an additional
elementary charge ¢ (either a hole or an electron) enters the trap island from
the source electrode, charging it to () = ¢ = £e. The electrostatic field of
this charge shifts the background electrostatic potential of transistor’s island
and as a result reduces the Coulomb blockade threshold of the transistor to
a lower value V/.. This is the ON state of the switch, with a substantial
average current flowing through the transistor at V' > V{.. The device may
be switched back into the OFF state by applying a reverse voltage in excess
of the trap-discharging threshold |V.,|. As was experimentally demonstrated
for metallic, low-temperature prototypes of the single-electron switch [64], its
retention time may be very long °. However, for that the scale ¢?/2C of the
single-electron charging energy of the trap island, with effective capacitance C,
has to be much higher than the scale of thermal fluctuations, kgT'. For room
temperature, requires few-nm-sized islands [66], and so far the only way of
reproducible fabrication of features that small has been the chemical synthesis
of suitable molecules — see, e.g., [67, 68].

6 A resistive switch with a sufficiently long (a-few-year) retention time at V' = 0 may be
classified as a nonvolatile memory cell.
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Chapter 2

Designing the molecular
single-electron switch

2.1 General design guidelines and components

In the usual design of the single-electron trap (see Sec. 1.3.4 and Fig. 1.9) a
long charge retention time is achieved by incorporation of several additional
single-electron islands into the trap charging path. Such multi-island design
of the trap is inconvenient for its molecular implementation. Indeed, the final
island of the trap has to be physically close to the transistor island, in order to
ensure a substantial electrostatic coupling between them. If the trap molecule
includes several intermediate islands, it becomes much longer than the tran-
sistor molecule, and has to be bent approximately as shown in Fig. 1.10a,
creating substantial difficulties for the chemical synthesis of the molecules and
their self-assembly on electrode surfaces, and increasing the device footprint
on the electrode (and hence chip) area.

Fortunately, the long molecular chains used in molecular electronics [67, 68]
as tunnel barriers, have a band structure which enables their use not only as
tunnel barriers, but as intermediate islands as well. Figure 2.1a shows the
original design of the single-electron molecular switch, proposed by A. Mayr
[69]. The design consists of a linear molecular rod featuring a central elec-
tron acceptor group (namely, naphthalenediimide or perylenediimide groups
as transistor or trap islands) and terminal surface attachment groups such as
oligo(phenylene ethynylene) (OPE) chains. The two molecules are locked to-
gether by non-conducting support groups that ensure their spatial separation.
However, already the first quantitative density-functional-theory (DFT) sim-
ulations (see Fig. 2.2 and Chapter 3 for a concise review of this theory) have
shown that the relatively narrow HOMO-LUMO bandgap of the OPE chains
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Figure 2.1: In (a) the early, OPE-tunnel chain based version of the molecular
resistive switch, and in (b) our final version of a molecular resistive switch
featuring an alkane-naphthalenediimide single-electron trap electrostatically
coupled to an alkane-benzobisoxazole-benzene single-electron transistor.

(of the order of 1.5 eV, in agreement with [70]) cannot provide a tunnel barrier
high enough to ensure sufficiently long electron retention times in traps with
acceptable lengths. Moreover, DFT calculations predict that the energies of
the orbitals, most important for device operation and spatially localized at ei-
ther naphthalenediimide or perylenediimide groups (what I call the “working”
orbital(s) in Sec. 2.2 and in Fig. 2.3b), do not fit into the HOMO-LUMO
gap of the OPE chains: depending on the charge state of those molecules, the
eigenenergies are either above the LUMO or below the HOMO energy of the
OPE chain. As a result, it was concluded that alkane chains (CHy-CHa-...),
with a bandgap of ~ 9 eV [71] — see Fig. 2.2, are much better resistive switch
components. There is also substantial experience in the chemical synthesis of
molecular electronic devices and SAMs using such chains as tunnel barriers
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(67, 68]. Figure 2.1b shows a possible realization of such a device, based on
benzene-benzobisoxazole and naphthalenediimide acceptor groups (playing the
role of single-electron islands), and alkane chains playing the roles of tunnel
barriers in both trap and transistor molecules and a set of intermediate islands
in the molecular trap.

—

_1=

HOMO-LUMO (alkane) |

| HOMO-LUMO (OPE)

eigenenergy (eV)
|
N

v

Figure 2.2: Comparison of the Kohn-Sham electron energy eigenspectra of
long (> 6 nm) OPE and long (> 5 nm) Alkane chains.

2.2 Designing the molecular trap

2.2.1 Two roles of molecular chains

In order to explain the novel approach of using molecular chains simultaneously
as tunnel barriers and as intermediate islands, let me again review the role of
intermediate islands in the conventional design of the trap (see Fig. 1.9a
and Sec. 1.3.4). If a single-electron island is so large that the electron motion
quantization inside it is negligible, its energy spectrum, at a fixed net charge @),
may be treated as a continuum. Elementary charging of the island with either
an additional electron or an additional hole raises all energies in the spectrum
by €?/2C', where C'is the effective capacitance of the island [66, 72]. As a result,
the continua of the effective single-particle energies of the system for electrons
and holes are separated by an effective energy gap €?/C — essentially, the
“Coulomb gap” [73]. If this gap is much larger than kg7 at applied voltages
V close to the “energy-equilibrating” voltage V, (see the middle panel of Fig.
2.3a), it may ensure a very low rate I'. of single-charge tunneling in either
direction and hence a sufficiently long retention time ¢, = 1/, of the trap. The

21



energy gap may be suppressed by applying sufficiently high voltages V' ~ e/C
of the proper polarity, enabling fast switching of the device into the counterpart
charge state — see the left and right panels of Fig. 2.3a.
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Figure 2.3: Schematic single-particle energy diagrams of (a) the usual single-
electron trap shown in Fig. 1.9a (for the sake of simplicity, with just one
intermediate island) and (b) A possible design of a molecular trap, each for
three values of the applied voltage V. Occupied/unoccupied energy levels are
shown in black/green. (The dotted green/black line denotes the energy level
of the “working” orbital that is either empty or occupied during the device
operation, defining its ON/OFF state.) Horizontal arrows show (elastic) tun-
neling transitions, while vertical arrows indicate inelastic relaxation transitions
within an island, a molecule, or an electrode.

In a manner similar to the conventional single-electron trap design, in the
molecular single-electron trap shown in Fig. 2.1b, the “energy-equilibrating”
voltage V, aligns the Fermi energy of the source electrode with the lowest
unoccupied level of the acceptor group that is, by design, located in the middle
of the HOMO-LUMO gap of the alkane chain (instead of the ¢?/C “Coulomb
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gap” of the intermediate island). As a result, an electron from the source
electrode may elastically tunnel into the group only with a very low rate I,
— see the middle panel in Fig. 2.3b'. The reciprocal process (at the same
voltage) may be viewed as electron tunneling from the HOMO of the singly-
negatively charged molecule. (To simplify the terminology, I call this molecular
orbital the “working orbital” (indexed W), instead of HOMO or LUMO of the
counterpart molecular ions, to make the name independent of the charge state
of the device.) The energy-balance condition of both processes is similar, and
may be expressed via the effective single-particle energy ey of the working
orbital:

ew = AE(n) = By (n) — Egy(n — 1), (2.1)

where E,,.(n) is the ground-state energy of the molecular ion with n electrons.
(In the case of singly-negative ion, n = ng + 1, where ng is the number of pro-
tons in the molecule.) In this notation, the energy-balance (level-alignment)
condition, which defines the voltage V., is

ew =W —en VL, (2.2)

where W is the work function of the source electrode material, and + is a con-
stant factor imposed by the geometry of the junction; 0 < v < 1. (Its physical
meaning is the fraction of the applied voltage, which drops between the trap-
ping island and the source electrode.) At the charging threshold voltage V._,
the energy ey crosses the valence band of the chain, allowing a fast charging
of the molecule — see the left panel in Fig. 2.3b. Similarly, as shown on the
right panel in Fig. 2.3b, at V_, this energy crosses the conduction band of the
chain, allowing a fast discharging of the molecule.

2.2.2 Molecular trap operation

As an example, Fig. 2.4 shows the atomic self-interaction corrected (ASIC)
[74] Kohn-Sham electron eigenenergy spectrum £51€(n) of the alkane- naph-
thalenediimide molecule used as the final trap design (Fig. 2.1b), with the net
charge Q(n) = —e(n—mng) = —e, as a function of the applied voltage V. (Here
i is the spin-orbital index; see Chapter 3.) Point colors in Fig. 2.4 crudely
represent the spatial localization of the orbitals: blue corresponds to their lo-
calization at the trapping (acceptor) group, while red marks the localization

at the alkane chain’s part close to the source electrode. Figure 2.5 shows the

IThe large ~ 2nm vacuum gap between the control electrode and the trapping island is
sufficient to prohibit unwanted electron tunneling between that electrode and the molecular
trap.
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probability density of the working orbital ¥4 = 257 (ng + 1) of the molec-
ular trap, integrated over the directions perpendicular to the molecule’s axis,
with blue lines corresponding to the probability density at the most negative
applied voltage. At the equilibrating voltage V, &~ 2.2 V, the working orbital is
well localized at the acceptor group, and is isolated from the source electrode
by a ~ 4.5-eV-high energy barrier. However, as Fig. 2.5 shows, the probabil-
ity density of the orbital decays into the alkane group rather slowly, with the
exponent coefficient 5 ~ O.4a]§1, corresponding (in the parabolic approxima-
tion of the dispersion relation) to the effective electron mass? mer =~ 0.1myg.
As a result, a long (~ 5 nm) alkane chain is needed to ensure an acceptable
retention time of the trap. (The 2-nm free-space separation between the other
side of the molecule and the control/drain electrode, shown in Fig. 2.1b, is
quite sufficient for preventing electron escape in that direction.)

At a sufficiently high forward/reverse bias voltage, the working orbital
energy ey crosses into the conduction/valence band of the alkane chain, so
that the group localized electron can propagate in the periodic potential of
the alkane chain, that can be seen by the rise of |1y |? at larger values of z
— see Fig. 2.5. This rise enables fast electron tunneling to/from the source
electrode, i.e. a fast switching of the device to the counterpart charge state,
in a manner similar to that of the conventional single-electron trap, as shown
schematically on the left and right panels of Fig. 2.3b. Thus the long molecular
chain, with a sufficiently large HOMO-LUMO gap, may indeed play the roles
of both the tunnel junction and intermediate islands of the conventional (see
Sec. 1.3.4 single-electron trap.

2.3 Designing a compatible molecular transis-
tor

As was already mentioned in the introduction, for the design of the second
component of the switch, the molecular single-electron transistor, the most
important challenge is to satisfy the ON and OFF state current requirements.
In particular, the ON current should not be too large to keep the power dissi-
pation in the circuit at a manageable level, but simultaneously not too small,
so that the device’s output does not vanish in the noise of a sense amplifier (for
memory applications [76, 77]) or the CMOS inverter (in hybrid logic circuits

2Experiments (for a recent summary, see, e.g., Table 1 in [75]) give for the exponent
coefficient 8 a wide range (0.26 — 0.53)@151 corresponding to the effective mass range (0.05 —
0.2)mg (assuming a rectangular, 4.5-eV-high energy barrier). It has been suggested [75]
that such a large variation is due to a complex dispersion law inside the alkane bandgap,
making  a strong function of the tunneling electron energy
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Figure 2.4: ASIC DFT Kohn-Sham energy spectrum (corrected for level “freez-
ing” at high positive and negative voltages — see Chapter 3 for details) for
the singly-negatively charged alkane-naphthalenediimide trap molecule, as a
function of the applied voltage V', with colors representing the spatial local-
ization of the corresponding orbitals — see the legend bar on the right. The
vertical lines mark voltage values V., V., and V., corresponding to the left,
middle, and right panels of Fig. 2.3b. The dashed lines labeled Er(s) and
Er(c) show the Fermi levels of the source and control/drain electrodes whose
work function was assumed to equal 5 eV.

[78]). Also, the ON/OFF current ratio should be sufficiently high to sup-
press current “sneak paths” in large crossbar arrays [77, 79]. In addition, the
transistor molecule should be geometrically and chemically compatible with
the trap molecule, enabling their chemical assembly as a unimolecular device,
with their single-electron island groups sufficiently close to provide substantial
electrostatic coupling (without it, the charge of the trap would not provide
a substantial modulation of the transistor current.). At the same time, the
molecules must not be too close, in order to prevent a parasitic discharge of the
trap via electron cotunneling through the transistor into one of the electrodes
— see Sec. 3.7 for a more detailed discussion. The chemical compatibility
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Figure 2.5: ASIC Kohn-Sham “working” orbital’s probability density for the
singly-negatively charged alkane-naphthalenediimide trap molecule, integrated
over the directions perpendicular to molecule’s axis, for a series of applied
voltages V' — see the legend bar on the right of the panel.

strongly favors the use of similar chains as the transistor’s tunnel junctions.
In the course of this study several alkane-chain based transistor devices with
naphthalenediimide, perylenediimide and benzobisoxazole acceptor groups as
transistor islands have been analyzed. However, in all these cases the long
alkane chains, needed to match the lengths of the transistor and trap molecules,
make ON currents too low. Finally, it was decided to use an unusually long
(~ 4.3-nm) benzene-benzobisoxazole [80] island group — see Fig. 2.1b and
Fig. 2.7. Figure 2.6 shows the Kohn-Sham electron eigenenergy spectrum
eMSIC(]5 + 1) of this molecule as a function of voltage V' (where [y is the num-
ber of protons in the transistor molecule). Blue/red colored points correspond
to the orbitals localized at the left /right alkane chain, while green color points
denote the orbitals extended over the whole acceptor group. This extension
is clearly visible in Fig. 2.7, which shows the probability density of the work-
ing orbital epil¢ = sﬁillc(lo + 1) of the transistor molecule. During transistor
operation, the tunneling electron may populate any of several group-localized
orbitals, resembling the operation of the usual (metallic) single-electron tran-
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sistor. As a result of such island extension, alkane chains of the transistor
could be substantially shortened, to ~ 1.5-nm-long Cy1Hss, enabling low but
still acceptable ON currents of the order of 0.1 pA, even if a small (0.25-nm)
vacuum gap between the alkane chain and the source electrode is included
into calculations to give a phenomenological description of the experimentally
observed current reduction due to unknown interfacial chemistry — see Sec.
3.4 for a more detailed discussion.
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Figure 2.6: ASIC Kohn-Sham energy spectrum for the single-negatively
charged benzene-benzobisoxazole transistor molecule, as a function of the ap-
plied voltage V', with colors representing the spatial localization (within the
junction) of the corresponding orbitals — see the legend bar on the right. The
dashed lines labelled Er(s) and Er(c) show the Fermi levels of the source and
control/drain electrodes whose work function was assumed to equal 5 eV.
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Figure 2.7: ASIC Kohn-Sham probability density of the working orbital for
the single-negatively charged benzene-benzobisoxazole transistor molecule, in-
tegrated over the directions perpendicular to the molecular axis, for a series
of applied voltages — see the legend bar on the right.
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Chapter 3

Theoretical model and
approximations

3.1 Master equations of electronic transport
in single-electron transistors

3.1.1 Applicability conditions, assumptions and prior
work

The general theory of single-electron transistors with a substantially discrete
spectrum of electron states of the island (“quantum dot”) has been developed
by Averin and Korotkov [20, 22]. The main condition of its applicability is
that the rates 'y, of electron tunneling in and out of the island need to be
sufficiently low:

W < |Ey — Ex|, (3.1)

for eigenenergies Ej of all quantum states substantially involved in the trans-
port. For most applications in hybrid integrated circuits with acceptable en-
ergy dissipation, the single-molecule current I should be below ~ 100 nA (and
much less than that at the current, initial stage of the development of this
technology - see, e.g., Ref. [81]), so that Al'yp ~ hl/e should be below
~ 1073 eV, while the typical differences between the adjacent energy levels of
molecules of interest are much larger (~ 1 eV), so that this condition is well
fulfilled.

In Ref. [20], the island energy Ej has been considered dominated by single-
electron charging:
(en — Qo)?

Ek%U(n): 202 s

(3.2)
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where )y = C,V,+ const, n = n(k) is the number of electrons on the island in
its quantum state number &, and C, and Cy, = Cs + Cy+ C, are the transistor
capacitances [60, 61] which have been assumed to be independent of n and of
the applied voltages V' and V. For molecular-size single-electron islands, small
enough for room-temperature operation of single-electron transistors (with
the single-electron charging energy well above ~100 meV [82]), this model
cannot give quantitatively correct results. For example, Fig. 3.1 shows the
differences of ground energies E,(n) of adjacent ions of a single Na atom,
calculated using an ab initio density-functional theory (DFT) software package
NRLMOL, optimized for massively-parallel computation — see Ref. [83] and
references therein . Within the approximation given by Eq. (3.2), such a
difference should be a linear function of n, with the slope given by the single-
electron addition energy €?/C'. Instead, two very different slopes corresponding
to the effective capacitances of the filled second electron shell (at n < 10) and
the third shell (for n > 10) are seen.

In the subsequent work [22], deviations of Ej, from U(n) have been allowed,
but assumed to follow a simple quasiparticle model:

E,=U(n)+ Zsipi, (3.3)

where ¢; is the kinetic energy of the electron on i-th quasiparticle level, and p;
= 0 or 1 are level occupancies (with the sum of all p;’s equal to n). However,
for general systems with strongly interacting electrons even this approxima-
tion is invalid, and the eigenenergies E) and corresponding orbitals have to be
calculated from an ab initio approach to the electronic structure, for example
DFT. Unfortunately, the Kohn-Sham equations, which are the basis for the
DFT approach, do not provide an accurate account of single-electron charg-
ing effects. Literally interpreted, they describe the Coulomb and exchange
interaction of each electron of a molecule with all n electrons, including itself,
which contradicts the principles of quantum mechanics. (See a nice discussion
of this problem in the beginning of Ref. [85]. I will come back to this in a
greater detail in Sec. 3.3.1). This is why great care should be taken when
applying the DFT approach to the sequential single-electron transport, and
this has not been done in any work [ am aware of.

As an example, Feng et al. [86] have carried out DFT-based calculations

IThis package was used for early ab initio calculations (described in Chapter 4), later
I adopted the STESTA [84] package whose performance (with the “standard” double-Zeta
polarized basis set) for ab initio calculations of large molecules (such as those shown in Fig.
2.1b) is substantially higher, though the results obtained from NRLMOL may be slightly
more accurate.
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Ey(+1) —Ex () (eV)

8 9 10 11 12
n
Figure 3.1: The difference between total energies of adjacent sodium atom ions
as a function of the total number of electrons, as calculated using the DFT-
based NRLMOL software package [83]. (The difference does not include the
free electron energy, i.e. corresponds to a single ionization step.) Case n = 11
corresponds to the neutral atom. Two dashed straight lines show two linear

approximations given by Eq. (3.2) with two sharply different values of the
single-electron charging energy: ~ 30 eV for n < 11 and ~ 3 eV for n > 11.
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of single-electron tunneling through short carbon nanotubes, but limited these
calculations to g;, still using the simple approximation (3.3) for the description
of charging effects. Moreover, they used the WKB approximation, without ac-
counting for the barrier transparency change due to finite source-drain voltage
V', and thus missed the negative differential resistance (NDR) effects which
were discovered in this work by using a more complete description of tunnel-
ing in molecules.

Toher et al. [85] were more careful in their calculation of the barrier trans-
parencies, but still used a phenomenological approach to the single-electron
charging description.

An important next step has been taken by Hedegard and Bjornholm [87]
who have used the fixed-capacitance model (3.2) only for the description of
the molecule interaction with its electrostatic image in the electrodes, while
calculating the rest of the molecular energy change at tunneling as the differ-
ence of the DFT ground state energies E,(n) of the molecule, for two values of
n, before and after tunneling. For the purposes of that paper, focused only on
the location of the conduction peaks in the limit of vanishingly small applied
voltage, their approach is close to the one described here. However, in order
to calculate the magnitude of the conductance peaks or the electric current at
a finite voltage, an adequate treatment of excited states and tunneling rates
has to be developed as well. Such a full analysis was one of the objectives of
this thesis.

u(r)

eV
d
=

\
lm
1]

Figure 3.2: Schematic energy diagram of the molecular single-electron transis-
tor.
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3.1.2 Master equations generalized for molecular single-
electron transistors

To extend the approach [22] to the general case of interacting electrons, I
should translate it from the language of quasiparticle energies ¢; to that of
total eigenenergies E). of the system, including the effects of source-drain and
gate voltages. The general theory of single-electron tunneling [22, 60] shows
that condition (3.1) allows one to neglect the coherence of sequential quantum
transitions in the system, and reduce the quantum-mechanical equations for
the evolution of its density matrix py to a set of “master” equations for its
diagonal components:

Pr = Z W' —kPk — Wk—k Pk, (3.4)
k/
n'=nt+ln

where p;, = p 1 is the probability to find the system in a quantum state number
k, and the summation is over all states k' which are connected to k by either
tunneling of one electron to/from the source or drain (n’ = n+1), or an internal
quantum transition (say, energy relaxation) inside the molecule (n’ = n). The
tunneling rates wy_,;» may be decomposed into two parts describing mutually
incoherent processes of tunneling to/from the source and drain electrodes:

s d
Wik = Wi_ypy + Whe_ypr (3.5)

and each of these parts may be presented as products of “unconditional” rates
FZ’ik,, times the electrode state occupancy factors:

s,d

FZ’ik,f(gk—m' — us?) / ;
Wyl = men (3'6)

FZ’ik' [1 — f(erow — Ms’d)] ‘n_n_l :
Here €, is the energy of the tunneling electron, while ;%% is the Fermi level
of the corresponding electrode - source or drain. The difference between these
Fermi levels is determined by the applied source-drain voltage: pu* — p¢ = eV,
see Fig. 3.2. In all realistic cases, the source and drain remain in thermal
equilibrium, and their occupancy factors f(s — u) are given by the Fermi
distribution.

Let me now follow Ref. [22] in assuming that the speed of internal transi-
tions is much faster than that of tunneling:

[t s e, (3.7)
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Actually, the internal relaxation times in typical organic molecules range from
a few tens of femtoseconds to a few picoseconds (see, e.g., Ref. [88]), while for
the transistor currents, the shortest time interval e/l between the tunneling
events is above 1 ps. Thus, the above condition is readily satisfied in most
cases; but even if it is not, the effects of the finite speed of relaxation on
transistor characteristics are very limited - see, e.g., Fig. 1in Ref. [20]. Under
the assumption (3.7), eigenstates with the same number of electrons have time
to thermalize and their conditional probability may be described by the Gibbs
distribution:

pr = o(n)pr(n), pe(n) = 27 (m)e /T, Z(n) =Y e T, (3.8)

where the summation is carried over all states with the number of electrons
(n) fixed. Now, summing Eqs. (3.4) over each of such state subsets, we get
a master equation for the dynamics of the total probabilities o(n) to have n
electrons on the island:

do(n)
dt

= [w.(n+Do(n+1) —we(n)o(n)]+[we(n —1)o(n —1) —w,(n)o(n)],
(3.9)

where w4 (n) is the total rate of tunnel transitions in and out of the state with

n electrons:

w=(n) = wi(n) + wi(n), (3.10)
with )
w(n) =S peln) 3wt
k K’
wontl (3.11)
s s,d :
w_’fl(n) = Zpk(”) Wyt
k K
n’'=n—1

Equation (3.9) is equivalent to Eq. (12) of Ref. [22], and has a steady state
solution described by similar recurrent relations

 we(n)
on+1)= ma(n), (3.12)

plus the normalization condition ) o, = 1. The solution of the set of these
equations enables one to calculate the transistor current:

[=T=I"=%e) o(n)w(n) —w(n). (3.13)

34



The only difference between the results presented here and those of Ref. [22]
is that the full tunneling rates are calculated by a more regular and general
formula (3.11) which is valid for the case of strongly interacting electrons.
The price to pay for this generalization is that the summation should be car-
ried over all possible quantum states of the molecular island, rather than the
quasiparticle states as in Eq. (11) of Ref. [22].

Equations (3.10, 3.11, 3.12, 3.13) may be directly used to calculate single-
electron transport in single molecules. In the molecular switch, however, one
must be careful as each transistor molecule electrostatically couples to the
complementary molecular trap. This coupling influences its charging rate(s).
To take this influence into account one must add an extra index [ that distin-
guishes between the charge states of the complementary molecular island. The
following notation is adopted throughout the remainder of the thesis: [ is the
number of electrons on the transistor island and n is the number of electrons
on the trap island, the tunnel rates in and out of the transistor are hence
wfl’ff:(l), while the conditional probabilities o, () of certain charge states [ of
the transistor island provided that the trap is in the n-electron charge state,
satisfy the following normalization condition:

> oa(l)=1. (3.14)

3.1.3 Charging rates in single-electron molecular traps

A crucial difference between the trap and the transistor molecules (that was
already briefly mentioned in Chapter 2) is that the molecular transistor has
similar but much more frequent single-charge transitions. This rate hierarchy
allows the molecular trap to be described by averaging rates I' of tunneling
events in it over a time interval much longer than the average time period
between tunneling events in the molecular transistor, but still much shorter
than 1/T". These average rates may be calculated as

(Ce(n) = onlwie(n), (3.15)
l
for electron tunneling from the source into the trap molecule, and
To(n+1) =Y ona(w(n+1), (3.16)
!
for the reciprocal event. See for example Chapter 5 Fig. 5.2, where in par-

ticular I show the effect of such averaging taken into the account, compared
to rates calculated without the transistor effect. (Rather surprisingly, for our
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design, the effect of the tunneling events in the transistor on the charging
and discharging rates in the trap has turned out to be quite mild, while the
reciprocal effect is quite substantial.)

3.1.4 Elastic cotunneling in molecular traps

trap’s alkane chain
island valence band ﬂ

N

~ d\;ac ~ dig ~ dehn ~ dvac
vacuum gap between trap’s
trap’s island alkane
and drain electrode chain

Figure 3.3: Mechanism of elastic cotunneling into the molecular trap’s acceptor
group (schematically).

In complex molecules (such as the molecular trap) there are two mech-
anisms of changing the charge state of the acceptor group. First is the di-
rect tunneling between the orbitals (indexed '), localized at the acceptor
group and the metallic electrode(s). As was mentioned in Sec. 2.2.2, tunnel
times between these orbitals and the metal are significantly reduced at high
forward /reverse bias voltage, when their energies e; cross into the conduc-
tion/valence band of the alkane chain and hence the group localized electrons
are allowed to propagate in the periodic structure of the molecular chains —
see. Fig. 2.5.

Second, within the same voltage ranges, the group’s charge state may be
also changed via elastic cotunneling? through chain localized orbitals see Fig.
3.3. The contribution of this effect to the charging rate may be estimated
using the following formula [89, 90:

cot __ A2F
©OR2T2 4 2A2 4 4e2’

(3.17)

2A process where an electron charges the trap, violating the energy conservation law, by
briefly occuping (allowed by the Heisenberg uncertainty principle) an orbital in the alkane
chain valence band that generally has an energy different from that of the electron addition
energy.
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where A is the matrix element of electron tunneling between the trap-localized
orbital and the chain-localized orbital, ¢ is the difference between eigenenergies
of these states, and I is the rate of tunneling between the source electrode and
the chain localized orbital. In our trap molecule, the parameters participating
in this formula have the following values: A ~ 107® eV (see Appendix B),
hI' ~ 1073 eV, while the typical value ¢ ~ 107! eV is given by the scale of the
distance between the chain-localized levels (see Fig. 2.4).

As a result, the contribution described by Eq. 3.17 gives very sharp peaks
at voltages that align energies of the group and chain localized orbitals (¢ =
0), with the peak height of the order of I'® ~ 10? 1/s, and a much lower
background I'*°* ~ 1072 between these peaks (each peak may be spit in two
due two the charge shaking of the single-electron transistor.) As will be shown
in Chapter 5, in the voltage ranges in question, this background is substantially
lower than the rate due to the first mechanism (the direct tunneling between
the electrodes and the acceptor group orbital).

Because of this fact, our final results (shown in Fig. 5.2) take into account
only the direct tunneling mechanism.

3.2 Density Functional Theory

3.2.1 Introduction

Because of the large size and complexity of the molecules used in my design
— see Fig. 2.1, the only practical way to calculate their electronic structure
is to use a software package (such as NRLMOL or SIESTA [84]), based on
the density-functional-theory (DFT). What follows is a brief overview of this
theory. Let us consider an N-electron system in a state described by the
wavefunction W(zy, xs, ..., xy), where z; represents both the electron position
r and electron spin ¢ degrees of freedom. The non-relativistic Hamiltonian
operator for this system (including the electron self-interaction) is

ﬁzz; (—%V$+ui(r)+%zi>, (3.18)

1 2 - . . . o K Zg .
where —3 V7 is the electronic kinetic energy, vi(r) = >_ _; 7 is the electro-
1

static interaction with all the nuclei and %Ejvzl — is the electron-electron
Y

interaction. It may be shown that — see e.g., [91] the total energy of this
system may be written as
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1
E :/ {(—§V2) p(r,r’)} d3r—|—/ d37‘+/ —pg ri,ro)d’r dry
r=r’ 1,2

(3.19)
where p(r,1’) is the spinless one-electron density matrix that may be calculated
from

p(r,r'):/ |:N/\Il(x,l'2,...,$N)‘Ij*($,,$2,...,$N)dx2...d$N:| ds, (3.20)

!

=<
p(r) is the electron density
p(r) = [p(r,x)],_, (3.21)
and po(ry,re) is the two-electron density
P2(I‘1,I'2) =
N(N —1
/{%/\I’(xl,x%...,:z:N)\I/*(:z:l,xQ,...,J:N)dxg...de ds1dss, (3.22)

normalized to the number of electron pairs N(N — 1)/2. Equation (3.19)
suggests that the expectation value of H for an N-electron system may be
evaluated without knowing the full N-electron wavefunction, and explicit ex-
pressions for the two-electron density (3.22) and the one-electron density ma-
trix (3.20) will suffice.

3.2.2 The Hohenberg-Kohn Theorem

In 1964 Hohenberg and Kohn showed [92] that the ground state total energy
of an N-electron system is a functional of the electron density p(r)

Eg. = Elp]. (3.23)

The proof of the theorem goes as follows: construct two N-electron Hamil-
tonians H and H' for two different external potentials v(r) and o/(r). Then,
their difference is

H-H = Z[U(ri) —'(x,)]. (3.24)



Assume that the ground states of both Hamiltonians are non-degenerate and
are represented by their corresponding ground-state wavefunctions ¥, and
W, with total ground energies Ej, and Ej, and total electronic densities p(r)
and p(r’) calculated using Eq. (3.21). Now, show that these two densities can
not be identical. Since W, and W{  are the wavefunctions of the ground states
of the corresponding Hamiltonians, it is evident that

(W |[H' [ y,) > B,
<‘I]gr|H|\I’gr> =FE

grs

<\Ij;r’H’\P;r> > EgT7
(v, | H'|W,,) = B, (3.25)

The relations in Eq. (3.25) can be rewritten

(U | H — H'|U,,) — (W |H — HV ) >0, (3.26)

using Eq. (3.24) we get

/ W () — v(r)] p(r)dr + / () — o' (1)) (£)dr > 0. (3.27)

if we now assume that p’ = p the relation (3.27) becomes a contradiction,
hence for each v(r) there is a unique p(r), that satisfies

/p(r)d3r = N. (3.28)

and vice versa, each p(r) determines v(r). In turn, the external potential v(r)
uniquely determines (except when the ground state is degenerate) the ground
state wavefunction W,,. Hence Uy, is determined by p(r), or in other words ¥,
is a functional of p(r) and therefore the ground state kinetic and interaction
energies that enter H are also functionals of p(r). Therefore we can conclude
that the total ground state energy E,, is a functional of p(r). Now, given a
potential v(r) the energy <\IJ9T|PAI\\IJW> is a minimum when WU, is the exact
ground state wavefunction, therefore 0 E[p| vanishes when p is varied about its
exact ground state density, therefore E[p| is a minimum with respect to such
variations and is equal to the ground state total energy £,,.
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3.2.3 The Kohn-Sham Equations

The Hohenberg-Kohn theorem does not give any prescriptions for how to cal-
culate the ground state total energy F,,.. One way to do this is via Kohn-Sham
equations [93]. A brief overview may be started from writing the two-particle
density in (3.22) as

1
pz(I'l,I‘Q) ==z

5 (p(r1)p(rz) + Cs(r1, 1)), (3.29)

where Cy(ry,rs) is usually called the two-electron correlation function. Then
Eq. (3.19) may be written as

E— / K__V2) ol r’)] i+ / (£)p(x)dPr
/ / mrz &ridiry + / / Clnry) o g, (3.30)

It was suggested by Kohn and Sham that Eq. (3.30) may be presented as

B > [owvioma + / o(r)plr)ds

// o dPridPry + B[], (3.31)

where ¢;(r) are the Kohn-Sham orbitals, that are required to satisfy

Z ¢} (r)i(r) = p(r), (3.32)

where p is the exact one-electron density. It may be shown (se e.g., [91]) that
the orbitals ¢;(r) satisfy the one-electron Kohn-Sham equations

{37+ 00+ @)+ o) o, 63
where vo(r) = [ %d?)r is the classical Coulomb potential, and v,.(r) = %Ep“”—(ﬂ)p]
is called the exchange-correlation potential which is generally unknown. Ap-
proximations such as local density approximation (LDA) derived from the
homogeneous electron gas model are employed in practice to solve the Kohn-
Sham equations. In Sec. 3.3.1 I will show that such approximations have
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significant self-interaction errors that need to be accounted for (and are of
pivotal importance), when considering single-electron charging and transport
in molecular junctions.

3.3 Quasiparticle approximation

Table 3.1: Comparison between the calculations of energy €, _,xs of the tunnel-
ing electron in the sodium atom and an OPE molecule, using two methods.
In the “direct Kohn-Sham” method, these eigenenergies are calculated using
the NRLMOL [83] software package after the explicit specification of level
occupancies (see two right columns). In the second method, these energies
are calculated from Eq. (3.36) after using NRLMOL to calculate the energy
spectrum of the corresponding ions.

sodium
Ep(n+1) — Eg(n) occupations
direct Kohn-Sham | Eq. (3.36) | pi(n+1) | pi(n)
-4.0490 eV -4.0490 eV | 1111000 | 1110000
-2.1368 eV -1.9128 eV | 1110010 | 1110000
-0.5822 eV -0.4544 eV | 1111010 | 1111000
OPE
-4.7648 eV -4.7648 eV | 1111000 | 1110000
-4.7648 eV -5.0050 eV | 1111000 | 1101000
-5.5770 eV -5.5155 eV | 1111000 | 1011000
-5.5770 eV -5.6997 eV | 1111000 | 011100
-7.6557 eV -7.5954 ¢V | 1111000 | 1010010

For the practical application of the master equations derived in Sec. 3.1.2,
we need to know the tunneling electron energies ¢;_,, given by the natural
generalization of Eqs. (2.1) and (2.2):

Epsk = W —eyV, (3.34)

and the corresponding tunneling rates w,‘i’ik, for all essential pairs of states
k =n,iand® k' = n £ 1,i. These energies may be readily calculated from the
tunneling elasticity condition (see, e.g., Ref. [60]):

Ek—k! = Ek/ — Ek, (335)

3Here I assume that tunneling changes only a single occupation number p; corresponding
to the i-th orbital.
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so we need to know “only” the energy eigenstates Ej. Generally, these ener-
gies depend on all quantum numbers characterizing the molecular excitation.
However, I have found (see, e.g., Table A.1) that for some molecules* I have
analyzed, the lowest excited states needed for calculations, satisfy, with the
accuracy of the order of 107! eV, the following quasiparticle approximation:

Ey = )+ ein)pi =Y ei(n)(1 - py), (3.36)

>n i<n

where E,,(n) is the ground state energy of the molecule with the same number
of electrons, the set of £;(n) is its energy spectrum, and p; = 0, 1 are the level
occupation numbers whose sum over all ¢ should equal n. This approximation
is more general than Eq. (3.3) in two aspects:

(1) it uses the ab initio calculated values for the ground state energies E,,.(n)
rather than the simple quadratic dependence given by Eq. (3.2), and

(ii) the quasiparticle energy spectrum &;(n) may be very much different for
different n.

3.3.1 Correcting the DFT self-interaction deficiencies

As T have already mentioned, the DFT theory may provide a reasonably accu-
rate ground state energy E})""(n) and a single-particle spectrum P (n) at a
fraction of the computational cost of more correct ab initio methods. Unfortu-
nately, for such strongly correlated electronic systems as molecules considered
in this dissertation, results obtained using standard DFT software packages °
have significant self-interaction errors [95].

Apparently, the source of such errors is that the approximate treatment of
the exchange-correlation term in the Kohn-Sham Hamiltonian does not com-
pletely cancel the self-interaction energy present in the “Hartree term” of the
Hamiltonian . Indeed, the standard DFT approach leads to errors, in the key
energies (2.1), of the order of the single-electron charging energy e?/2C, where
C is the effective capacitance of the island group — see Appendix A for details.

4Unfortunately, I do not have similar data for the more complex molecules analyzed in
this work. A similar calculation for molecules used in the design of the resistive switch failed
to converge in the SIESTA package, while for the NRLMOL package it has turned out to
be a too computationally intensive.

5This is valid not only for the DFT packages based on the local spin density approxi-
mation (LSDA), such as the standard version of STESTA. Another popular DFT functional,
the generalized gradient approximation (GGA) [94], does not provide much improvement
on these results

6In contrast, in the Hartree-Fock theory the exchange energy is exact (of course, in the
usual sense of the first approximation of the perturbation theory), and the self-interaction
errors are absent [95].
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This error may be rather substantial; for example in the naphthalenediimide-
based trap molecule (Fig. 2.1b), it is approximately equal to 1.8 eV. For this
reason, the electron affinity Ey,.(ng + 1) — E,,(no), calculated using the LSDA
DFT for the singly-negatively charged ion of the molecular trap, is signifi-
cantly (by ~ 3.2 eV) larger than the experimental value of similar molecules
(96, 97]. The LSDA energies may be readily corrected to yield a much better
agreement with experiments (see Table 1 in Appendix A). However, it is not
quite clear how such a theory may be used for a self-consistent calculation of
the corresponding working orbital 1y (r).

A significant improvement may be achieved by using the recently proposed
Atomic Self-Interaction Corrected DFT scheme (dubbed ASIC [74]) imple-
mented in a custom version of the SIESTA software package. For the most
important molecules that I have considered here, this approach gives the Kohn-
Sham energy €,,+1(no + 1) very close to the experimental electron affinity.
However, using even this advanced approach for our task faces two challenges.

First, the algorithm gives (at least for my molecular trap states with n =
no + 1 and n = ny + 2 electrons) substantial deviations from the fundamental
relation ey = e,41(n + 1) for n = ny (which has to be satisfied in any exact
theory [74, 98]), with the ground energy difference (2.1) close to the LSDA
DFT results. This means that Eq. (3.35) cannot be directly used with the
ASIC results; instead, for the electron transfer energy between adjacent ions
n and n — 1 I have used the following expression:

Ek—ok! = S?SIC(n). (337)

This relation implies that the differences £9°“(n) — e25°(n) describe all
possible single-particle excitations within the acceptor group, if the index ¢’ is
restricted to orbitals localized on the group. (Other orbitals, localized on the
alkane chain are irrelevant for our transport and charging calculations since
they do not directly contribute to the elastic tunneling between the molecular
group and the electrode, and the cotunneling effects, described in 3.1.4 can be
ignored).

In order to appreciate the second problem, look at Fig. 3.4 which shows
the voltage-dependent Kohn-Sham spectra of the singly-negatively charged
molecular trap, calculated using the ASIC SIESTA package for T" > 0 K. Notice
that above voltage V; ~ 13V, and below voltage V/ ~ —7V, the eigenenergy
spectrum is virtually “frozen”. (The LSDA SIESTA gives similar results.).
As explained in Appendix B using a simple but reasonable model (similar
to that used in Appendix A), at V' > V; such “freezing” originates from the
spurious self-interaction of an electron whose wavefunction cloud is gradually
shifted from the top occupied orbital of the valence band of the chain, with
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energy &,, into the initially empty group-localized orbital with energy ey 1.
(A similar freeze at voltages V' < V/, is due to the spurious gradual transfer
of the electron wavefunction cloud from the working orbital, localized at the
acceptor group, with energy ey, to the lowest orbital of the conduction band of
the chain, with energy e..) It is somewhat surprising that this spurious effect
(which should not be present in any consistent quantum-mechanical approach
— see Appendix B) is so strongly expressed in the ASIC version of the SIESTA
code, which was purposely designed to get rid of the self-interaction in the first
place. Being no SIESTA expert, I may only speculate that the nature of this
artifact is related to the smoothing of the derivative discontinuity present in
the ASIC method as the electron number passes through an integer value,
which is mentioned in [74] — see also Fig. 7 in that paper.

Fortunately, there is a way to correct this error very substantially by fol-
lowing the iterative process of self-consistent energy minimization within ASIC
SIESTA. Indeed, for a fixed temperature 7" > 0 K (when the program auto-
matically populates molecular orbitals in accordance with the single-particle
Fermi-Dirac statistics) and voltages V' >V, ~# 13 Vand V < V/ =~ —7 V| its
iterative process converges to a wrong solution with the energy levels frozen
at their V; and V/ values, as is discussed above — see Fig. 3.4. However,
if the temperature in that program is fixed at 7' = 0 K, its iterative process
ends up in quasi-periodic oscillations between different solutions — most of
them with frozen levels (just like in Fig. 3.4), but some of them with the
group localized energies like the working orbital energies ey, ey 41 and the va-
lence/conduction band edge energies ¢, €. close to their expected (unfrozen)
values. (Those values were obtained by a linear extrapolation of their volt-
age behavior calculated at V! < V < V;.) Since such a solution is repeated
almost exactly at each iterative cycle (see the vertical boxes in Fig. 3.5), we
believe that it is close to the correct solution expected from the self-consistent
quantum-mechanical theory — see Appendix B. These approximate solutions
were used in our calculations both above V; and below V/; they are illustrated
in Fig. 2.4, where we have substituted the incorrect “frozen” solutions for
T > 0 K with solutions for T = 0 K, with ey =~ 5%, Ewal R~ 5%‘}“ and
g.~eltat V< V/ ore, ~ellat V > V,. Let me emphasize that the approx-
imate nature of these solutions may have affected my calculations (I believe,
rather insignificantly), only at V' >V, ~ 13 Vand V < V/ = —7 V, i.e. only
the device recharging time results, but not the most important retention time
calculations for smaller voltages — see Fig. 5.2.
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Figure 3.4: The Kohn-Sham spectra of the singly-negatively charged molecu-
lar trap, calculated with the ASIC SIESTA at T" = 10 K. At voltages below
V! &~ —7 V, the spectrum is virtually frozen due to a spurious gradual shift
of the highest-energy electron from the “working” orbital (with energy ey,
shown with a solid blue line) localized on the acceptor group, to the lowest
orbital (with energy &., shown with a solid red line) of the conduction band
of the alkane chain. As a result, the calculated spectrum is virtually voltage-
insensitive (“frozen”). In the voltage range V/ < V < V; ~ 13 V, ASIC
SIESTA gives apparently correct solutions, with the working orbital ey, fully
occupied, and the next group-localized orbital (with energy ey 41, the dashed
blue line) completely unoccupied. However, at V' > V; the package describes
a similar spurious gradual shift of the highest-energy electron from the high-
est level €, of the valence band of the chain to orbital ey 1, resulting in a
similar spectrum “freeze”. The spectrum evolution, calculated after the (ap-
proximate) correction of this spurious “freezing” effect, is shown in Fig. 2.4 in
Sec. 2.2.1 above.

3.4 Calculation of tunneling electron rates

To evaluate the transport and charging properties in molecules, the master
equations in Sec. 3.1.2 need to be supplied with tunneling rates I Z’ik,. These
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Figure 3.5: The Kohn-Sham energy spectrum of our trap molecule, as calcu-
lated by successive iterations within ASIC SIESTA for T'=0 K and V = 14.9
V, i.e. above the threshold voltage V; ~ 13 V. Vertical boxes mark the appar-
ently correct solutions with energies of the working orbital (e5°), the next
group-localized orbital (e4?19), and the highest orbital of the valence band of
the alkane chain (¢251¢) all close to their respective values efit, i\ | and efit
obtained by a linear extrapolation of their voltage dependence calculated at
V! <V < V,. Just like in Figs. 4a, 5a and 6, point colors represent the spatial
localization of the corresponding orbitals. Lines are only guides for the eye.

rates may be calculated using Fermi’s Golden Rule:
2
s,d s,d s,
Ulw = T Z ‘Tk,k"2y ‘ (3.38)
k

where v*¢ is the density of states in the corresponding electrode, and the sum
is over all electronic states in the source or drain, with energy e 1 given
generally by Eq. (3.35) (or when ASIC DFT was used by Eq. (3.37)), i.e.
essentially an integral over a half-sphere in the momentum space. Since the
main condition (3.1) of single-electron tunneling is satisfied only if the overlap
matrix elements T,f:,ff, are much smaller than e ., they may be calculated
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using the Bardeen’s approximation [99] — see Appendix C for the derivation
of Eq. (3.39) 7

h2 * a¢% 0 :,d
(%,d% - 1/}2 0z

Here S'is a plane in x, y which separates the single-electron island from the cor-
responding electrode, and )5 4 is a wavefunction which describes the electron
which is tunneling from the electrode into the island — see Fig. 3.6.

e, = )dS. (3.39)

2m Js

AN N AN

I .
0 d/2 d z

Figure 3.6: Wavefunctions v;, 15 and 14 describing (schematically) the tun-
neling between the source or drain electrodes and the island of the molecular
single-electron transistor.

3.5 Solving the Schrodinger equation for the
wavefunction of the tunneling electron.

3.5.1 Boundary conditions for a direct, finite-difference
solution.

Generally the tunneling electron wavefunctions ¥4 and 1)y may be calculated
by solving the effective Schrodinger equation:

h2
(—=—V?+ Ugs — € )thsq = 0, (3.40)

2m

with the following boundary conditions:

Voa = (e™* — Re %) at z = [0,d], (3.41)

"The currently fashionable “nonequilibrium (Keldysh) Green function” (NEGF) formal-
ism, while being more cumbersome, does not seem to provide any additional information,
unless it is used to account for inelastic processes.
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Ysqa =0, at z =d/2, (3.42)

where R is a complex reflection coefficient (with |R| ~ 1). Such boundary
conditions are justified by the fact that at small transparency of the effective
potential barrier separating the single-electron island and source-drain elec-
trodes, the wavefunction 1, 4 (Fig. 3.6) is constant inside the corresponding
electrode and decays rapidly (exponentially) inside the barrier. As a result,
one can neglect the effect of the molecule on the reflection coefficient R, and
the non-zero value of the function in the center of the island, provided that
the surface S along which integral (3.39) is taken somewhere in the barrier re-
gion. (In this region both v; and 1) 4 decay exponentially, but in the different
directions, so that the integral does not much depend on the exact position of
this surface - see, e.g., Fig. 3.7).

The potential Ukg participating in Eq. (3.40) is the Kohn-Sham potential
calculated for the ground state of the molecule with the number of electrons
corresponding to the island state without the tunneling electron. The justifica-
tion of this choice is that the bulk of the function 154 is in the corresponding
electrode, so that its contribution to the island charge is negligible. Reversing
this argument, for calculation of the molecular orbital ); the potential Ukg is
used, which corresponds to the tunneling electron inside the molecule.

3.5.2  Analytical approximation for the wavefunction of
the tunneling electron.

Numerically solving the three dimensional Schrodinger equation for v, 4 is a
computationally intensive task that for large molecules (such as those used in
my final switch design) becomes impractical®. Fortunately the wavefunctions
of electrons located inside the source or drain electrodes may be calculated in
a simpler way. Namely, one of the key conditions of validity of the Bardeen
formula for the tunneling matrix elements is that the result given by Eq. (3.39)
is independent of the position of the surface S. Due to electrostatic screening
of the electric field by the electrode (see Sec. 3.6 for details), the Kohn-Sham
potential is very close to the vacuum potential at just a few Bohr radii ag away
from the interface with the electrode — see Fig. 3.8. Therefore, if the surface S
is selected inside the vacuum gap between the molecule’s end and the electrode
surface, the effect of the molecule on wavefunctions 1,4 is negligible with
good accuracy (corresponding to a fraction of one order of magnitude in the
resulting current). Hence, these wavefunctions may be calculated analytically

8For example an appropriately fine finite difference mesh for these molecules is too big
and largely exceeds the compute node’s memory that was available to me. Using a more
cumbersome finite element mesh was not an option at the time.
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Figure 3.7: The tunneling rate as a function of the position of the integration
plane S in Eq. (3.39), for four values of the source-drain voltage V', calculated
for the early “toy model” transistor based on a 3-ring-OPE molecule (shown

in the inset).
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to describe the usual exponential 1D decay into vacuum:
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Figure 3.8: The image-corrected Kohn-Sham potential and for a 3-ring-OPE-
based molecule (shown in the inset of Fig. 3.7) as a function of the center line
coordinate

eir ghes (3.43)

/2 k.,
A=\ 7——=¢ )
V /K2 + k2
where k., and k,; are the wavevectors in z and perpendicular to z directions,

k. is the wavevector under the barrier, and V is the total volume®. Then the
expression for the matrix element in the Bardeen’s approximation becomes:

/ (61(% + @eikmwi) “
S aZ

And the rate of tunneling (using Fermi’s Golden Rule):

¢(er Z)S,

2

(3.44)

K2 2 9 k2e—2k=d:
%) V K2+ k2

Ty w|? =
[T ( V k24 k2

9Extending infinitely into the source or drain electrodes. Note, that in the final expres-
sion (3.45) this volume naturally drops out.
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s,d 2m 2 2V /2 o 2 2 2
Fk%k’ = f zk: |Tk,k" vV = m . dgb ; dg(kz + kl) sm(gb)|Tk_>k/| ,

(3.45)
where 6 and ¢ are the polar and azimuthal angles in the momentum space.
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Figure 3.9: The tunneling rate as a function of the position of the integration
plane S, calculated using the full Schrodinger solver for s 4 and compared
to the tunneling rate calculated using the approximate Eq. (3.45), using two
integration grids: same grid as used in the Schrodinger solver and a much finer
grid (too fine for the Schrodinger solver to handle).

Figure 3.9 shows the comparison between tunnel rates calculated using the
numerical solution of the Schrodinger equation for the 1), described in Sec.
3.5.1 wavefunction and the 1D approximation given by Eq. 3.45.

3.6 Electrostatics

3.6.1 External Potentials

In this work, it was assumed that the environment of each molecule (that
includes the electrodes as well as other molecules in the system) responds in-
stantaneously to changes in the charge state of a molecule of interest, and
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therefore the applied source-to-drain voltages, intermolecular Coulomb inter-
action, gate voltage (where applicable), and the image charge effects [87] may
all be treated as parts of a total external electrostatic potential. Indeed the
most important polarization response of typical metals (given by the plasmon
frequency) is ~ 107'%s, i.e. 5 orders of magnitude faster than the “fastest”
electron tunnel time ~ 107 in single-electron molecular devices analyzed
here.

Another assumption is that molecules are embedded between plane, infinite
surfaces of source and drain/control electrodes. (This assumption is natural
for the eventual SAM implementation of the resistive switches see Sec. 5.2.)
In such geometry, the source-drain voltage V' creates an electrostatic potential
with a linear gradient:

z—d/2

d Y
where z is the coordinate perpendicular to the source and drain surfaces (with
the origin at the source electrode), and d is the distance between the electrodes.
For a single-electron transistor calculations (described in Chapter 4) with a
gate not too close to the single-electron island, its potential in this geometry
may be well approximated by a quadratic parabola'?:

1- (Z;—/Z/Qﬂ , (3.47)

where o < 1 is a coupling constant.

The approximations (3.46) and (3.47) imply that the electrostatic screening
length A of the source, drain and gate materials are much smaller than d ~
few nm. For metallic electrodes (with A ~ 0.1 nm) the requirement A < d is

well fulfilled.

Psd = -V (346)

g =aVy

3.6.2 Intermolecular electrostatics and image charge ef-
fects.
The electrostatic interaction between the two molecules is taken into account

by an iterative incorporation of the numerically calculated Coulomb potential
created by both molecules (as well as by the series of their charge images in

10Consider the solution of the Laplace equation in a box of size a x b x d with d < a < b
with the bottom side in the d,a plane at a constant potential V; and all other sides taken
at a zero potential. The solution will be ¢4(x,y,2)/V, x sin(mz/a)sin(rz/d)exp(—my/d)
assuming that the molecule lies flat in the y, z and is located at x =~ a/2 then to the first
order T get Eq. (3.47).
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Figure 3.10: A schematic view of charge densities participating in Eq. (3.48).

the metallic electrodes of the system — see Fig. 3.10) into the Kohn-Sham
potentials''. From elementary electrostatics, this potential may be expressed
as

pC(rO) 3
s — d
2 (I‘) |I‘—I‘0| To
pc ;i) + ps(r
+ E / .]) p ( .])d TJ’
v — ;]
J#0

N jd, for j even, (3.48)
ri=ro+n, X< . , :
7= (j + 1)d — 2z, for j odd.

where ps(ro), pe(ro) are the total charge distributions of the molecule under
analysis and the complementary molecule, and p,(r;), p.(r;) are the corre-
sponding charge images in the source (j > 0) and the drain (j < 0) electrodes
— see Fig. 3.10. The first term in Eq. (3.48) is the potential created by
the complement molecule and the second term describes the potential of the
infinite set of charge images of both molecules in the source and control/drain
electrodes. The total electrostatic potential is then:

Y =Ps+ Psa + Py (349)

At the O-th iteration, the first term is taken equal to zero. Fortunately, the
iterations give rapidly converging results, so that there was actually no need
to go beyond the second iteration — see Fig. 3.11.

HThe same equation is used in calculations in Chapter 4, where the transport properties
of a three terminal molecular single-electron transistor are evaluated, with terms due to the
complement molecule in Eq. (3.48) set to zero.
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Figure 3.11: Differences between the energies of the working orbital of the
molecular trap, calculated with ASIC SIESTA at the k-th and (k — 1)-th iter-
ations of the Coulomb interaction potential, given by Eq. (3.48), as functions
of the applied voltage.

3.7 Parasitic discharge of the trap molecule

As was already mentioned in Sec. 2.2.1, the trap and transistor molecules have
to be placed sufficiently far from each other at a distance d, (see Fig. 2.1b to
prevent a parasitic discharge of the trap via the elastic cotunneling through
the transistor island, into one of the electrodes. This effect may be estimated
using the same formula for I'°°* (3.17), used in Sec. 3.1.4 to describe elastic
cotunneling between the acceptor island of the trap molecule and its tail.

In this context, A is the matrix element of electron tunneling between the
trap and the transistor islands (that exponentially depends on the distance
d, between the molecules), ¢ is the difference between eigenenergies of these
states, and I' is the rate of tunneling between the source and drain electrodes
and the transistor’s island. The process is schematically shown in Fig. 3.12

The parasitic cotunneling rates I'S* were calculated for all possible escape
routes (such as electron escape from the trap via an excited states of the
transistor). It was found that in order for the cotunneling rate I'%" to be
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Figure 3.12: Parasitic discharge of the trap molecule via the elastic cotunneling
through the transistor island, into the source electrode (schematically).

below the retention rate of the trap I, the distance d, between the trap and
the transistor molecular islands should not be lower than ~ 1.5 nm. Such
relatively large separation justifies separate DFT calculations of the electronic
structures of the trap and the transistor, related only by their electrostatic
interaction described in Sec. 3.6.2.

3.8 Geometry relaxation

The molecular geometry of each component molecule was relaxed, using the
LSDA SIESTA package, only for isolated neutral molecules, at no applied
bias voltage and without accounting for image charge effects. In the relaxed
geometry all force components on atoms are smaller than 0.05 eV/ A.

To justify this procedure, I have verified that the most important trap
charging and discharging rates are little affected by changes in the molecular
geometry induced by a high constant external electric field. For example Fig.
(3.13) shows electron tunnel rates in and out of the molecular trap calculated
using two geometries: one, relaxed in the presence of a high (8 V) external
bias voltage, and the other, relaxed at V' = 0. The resulting curves differ so
insignificantly that there hardly is any sense in performing a computationally
demanding geometry minimization loop at every voltage step.
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Figure 3.13: The trap switching rates; in red — calculated using the traps
geometry relaxed at no applied external bias voltage (without the level “freez-
ing” correction), in black — using the geometry, relaxed at V=~ 8 Volts also

without the level “freezing” correction).
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Chapter 4

Negative differential resistance
at sequential single-electron
tunneling through atoms and
molecules

4.1 NDR in a single atom, single-electron tran-
sistor

The approach described in Chapter 3 was first applied to a very simple model
of an atomic single-electron transistor - a single sodium atom positioned in
the middle of a 1.45-nm gap between two gold electrodes. This model is of
course not too realistic, because it does not describe the additional chemical
groups necessary to fix the atom in such position - see, e.g., experiments [100]
with a single-Co-atom transistor. The particular choice of the atom in these
calculations was a certain compromise: a desire to avoid very simple atoms
which cannot be adequately described by the DFT approach, as well as very
complex atoms which would be well described by the simple charging model
(3.2). (As Fig. 3.1 shows, in Na the deviations from this simple behavior are
still very strong.)

The self-interaction corrections that are discussed at length in Sec. 3.3.1
were not included into this calculation, and the NRLMOL software package
was used to calculate the quasiparticle energies and corresponding Kohn-Sham
orbitals, directly as was discussed in Sec. 3.3

!The single-electron transistors, described in this chapter, consist of either a single Na
atom or a simple OPE molecular chain. The main effect of self-interaction in these transis-
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First, the ground state energies E,,.(n) and the Kohn-Sham orbitals v;(n)
for a limited set of charged states (ions) of the atom were calculated. Knowl-
edge of E,.(n) allows sketching the approximate position of the lowest dia-
mond of Coulomb diagram [V, V] of the system (see Sec. 1.3.3), neglecting
the effects of the source-drain and gate voltages on the atom, in particular
its polarization. For that, it is sufficient to mark the Coulomb blockade node
points [61, 101]

aeVy(n) = Ey(n+1) — Ey(n) (4.1)

on the gate voltage axis, and pass through each of them two straight lines
with slopes dV/d(aV,) = £1/2 - see Fig. 4.1. The equal factors 1/2 reflect
the equal division of the source-drain voltage between two similar halves of the
device; for asymmetric devices (such as atoms placed away from the middle
of the gap between the two electrodes or asymmetric molecules) the slopes
would be different. This sketch, which is actually pretty close to the finally
calculated diagram, allows the selection of the appropriate range of source and
gate voltages and the necessary set of states k participating in the transport?,
for the exact calculations of the diamond diagram (shown in Fig. 4.1) as well
as a set of I — V curves in Fig. 4.2.

The dashed lines in Fig. 4.1 show the Coulomb diamond diagram of the
sodium-atom transistor for moderate positive values of the gate voltage. The
regions below the lowest lines correspond to the Coulomb blockade, i.e. sta-
ble ions of the Na atom, without noticeable current [82, 101]. When the
source-drain voltage is negligible, the change of V results in the transition
from one ion (with, say, n electrons) to the adjacent ion (with, e.g., n + 1
electrons) in each of special points V,(n) given by Eq. (4.1). If the source-
drain voltage V' is increased, the transition occupies a finite gate voltage range
[aVy(n) —V/2 <V, < aVy(n) + V/2], within which the atom cycles quasi pe-
riodically between the two ion states, with one electron per period transferred
through the system [61, 101].> Note that this process involves only the ground
states of both ions. On the other hand, in the language of orbitals, the trans-
port corresponds to a periodic tunneling in and out of one quasiparticle state
with a fixed number i (either n or n+1). As the source-drain voltage is further
increased, other transfer channels open, involving orbitals with other values of
i. On the [V,, V] plane, boundaries of the channel openings are almost linear

tors is a simple shift of energy levels (as described in Appendix A), which may be readily
compensated by the applied gate voltage V,. Hence, the omission of the self-interaction
corrections here is not as crucial.

2The larger is the voltage range, and the more complex is the junction, the larger is the
latter set.

3In the chemical language, this is just a quasi-periodic redox reaction.
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Figure 4.1: The Coulomb diamond diagrams for a single-Na-atom transistor:
Solid lines show the “exact” (DFT) results that include the effects of image
charges, gate and source-drain electric fields on the atom (including its polar-
ization), while dashed lines correspond to the approximation in which these

effects are ignored.
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- see Fig. 4.1.

Figure 4.2 shows a set of calculated I — V' curves corresponding to three
values of the gate voltage: one very close to a special point V,(n) (in this case,
n = 10) and two values separated by that point by nearly equal increments up
and down from that point. As was expected, crossing the Coulomb blockade
threshold, i.e. opening the first transport channel, leads to a sharp current
step. What was unexpected is the reduction of the current with a further
increase of the applied voltage V. Each of these regions of negative differential
resistance (NDR) with dI/dV < 0, is extended almost to the next current
step.

4
ay, =1.0V 0.5
2,
~ 1.5
0 1
_2,
Na

-1.5 -1 -0.5 0 0.5 1 1.5
V (Volts)

Figure 4.2: A set of the I —V curves for a Na-atom-based transistor for three
values of gate voltage, each for two values of temperature (30 and 300 K).
Within the shown range of voltages, either none or just a single transport
channel is open, corresponding to an alternating occupation of the 3.5, orbital

(t=11), which is the HOMO level for a neutral Na atom and the LUMO level
for its singly-positive ion.

4.2 NDR in single-electron transistors based
on OPE molecules

In order to verify that this effect is not accidental or atom-specific, the cal-
culations have been extended to single-electron transistors based on short,
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isocyanide-terminated OPE chains (Fig. 5a) with three and four benzene
rings. (At the time of this work, such molecules were considered the leading
candidates for the future implementation of molecular single-electron latching
switches [18].) The Kohn-Sham spectrum and orbital structure of these two
molecules are rather similar - see Fig. 4.3. For our study, the ends of such
molecules were separated from gold electrodes by vacuum gaps. The width
of the gaps was selected rather large, Az ~ 0.35 nm, to provide currents of
practical interest (below one nA). As a result, the role of the single-electron
island was played by the molecule as a whole (cf. Refs. [102, 103]). A change
of Az within reasonable limits (Az > 0.2 nm) changes only the current scale,
but not the shape of the I — V' curves.
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Figure 4.3: The energy spectrum and orbital structure of neutral OPE
molecules with (left column) three and (right column) four benzene rings.

The Coulomb diamond diagrams of single-electron transistors based on
these two OPE molecules are shown in Fig. 4.4, while Fig. 4.5 shows a
set of I —V curves of one of them (with three benzene rings). Due to the
more complex structure of the molecule (compared to the single atom), more
channels open as the source-drain voltage is increased, but the NDR effect is
similar to that calculated for the single-atom transistor.
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Figure 4.4: The Coulomb diamond diagrams for two (3-ring and 4-ring) single
OPE molecules: Solid lines show the “exact” (DFT) results (without the self-
interaction corrections), while dashed lines correspond to the approximation
in which the effects of the gate and source-drain electric fields on the molecules

(i.e., its polarization) are ignored.
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Figure 4.5: A family of I —V curves of a transistor based on a three-ring OPE
molecule, for three values of aV, and two values of temperature (30 and 300
K). Each current step corresponds to opening of one more transport channel,
i.e., crossing one more line on the Coulomb diamond [V, V] diagram shown in

Fig. 4.4.
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4.3 Universal NDR mechanism

After careful examination, we have been able to interpret the effect as fol-
lows, see Fig. 4.6. At sequential tunneling, an additional electron first tunnels
through one barrier of the system, and then through another one. In ac-
cordance with this physical picture, the formulas of Sec. 3.1 show that the
transistor current beyond the Coulomb blockade threshold is always of the

order of . .
rsr 1 1\

I~ = — + — 4.2

T e(rs+rd) : (4.2)

and thus crudely corresponds to the serial connection of tunneling resistances
of the two barriers. Figure 4.6 shows that, since the eigenenergy of the electron
on the island is fixed (quantized), the increase of the source-drain voltage leads
both to a suppression of the height of one of the barriers, and to an increase
of the height of the other barrier, so that one of the I's in Eq. (4.2) grows,
while the other one decreases. Evidently, as Eq. (4.2) shows, the current
roughly follows the lower transparency (i.e. the larger tunnel resistance) and
thus drops with increasing voltage.

Generally the NDR effect has been observed in quite a few measurements
of electron transport through molecules. Typically it takes place at the back of
sharp current peaks, which have been attributed to electron transfer between
two energy levels (or narrow energy bands) which are aligned at a certain
voltage, and then misaligned at its increase. On the contrary, the NDR mech-
anism discussed above takes place within broad ranges of voltages, and may
be quite resilient. Such NDR effect has already been observed experimentally
by at least two groups:

First, Grobis et al. [104] observed I — V' curves similar to those in Fig.
4.2 and 4.5, while doing scanning tunneling spectroscopy of double Cgq layers
on a metallic surface. Their interpretation, basically the same as ours, was
generously credited by the authors to an older paper by Esaki and Stiles [105]
which actually describes a rather different situation. Grobis et al. have made
an approximate calculation for the case of a highly asymmetric system, with
one tunnel barrier much more transparent than another one. In this case the
NDR effect is much simpler than in our symmetric case, because the situa-
tion is reduced to tunneling, from a Fermi sea continuum, through a single
barrier, into a set of discrete energy levels. In that asymmetric case the bar-
rier increases with V', and hence NDR takes place, only for one polarity of the
applied voltage. (A similar situation has been briefly mentioned in Ref. [106].)

Second, Khondaker et al. [107] have observed (though not explained) simi-
lar NDR effects for both polarities of applied voltage through a short phenylene-
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Figure 4.6: A schematic conduction band edge diagram of the simplest system
with one quasiparticle energy level, explaining the mechanism of the negative
differential resistance in our systems: the increase of one of the tunnel barriers
by the source-drain voltage V.
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Figure 4.7: (a) Experimental [ —V curve for a phenylene-ethynylene molecule
with four benzene rings (copied, with permission, from Fig. 2b of Ref. [107])
for T'= 4.2 K, and (b) a result of our calculations for a three-ring OPE
molecule for 7" = 40 K, with the current scaled up by a factor of 100. Such
scaling corresponds to the reduction of the molecule-electrode gap Az from
0.35 nm down to approximately 0.23 nm.

ethynylene chain, very similar to our OPE chains. Figure 4.7 shows a compar-
ison of their data with a typical result of our simulation for a three-ring OPE
molecule. Given the fact that the molecules are somewhat different, and no at-
tempt has been made to fit the value of V, and the gaps between the molecule
and the electrodes at calculations, it is striking how strong the similarity is.
The slight asymmetry of the experimental curve may be readily explained by
the possible asymmetry of the molecule attachment to electrodes.

An important question is why the NDR effect is not observed in other
molecular conduction experiments. (In a typical experiment, current through
a molecule increases monotonically with voltage.) There could be several rea-
sons.

First, our calculations pertain only to sequential tunneling at which the
molecule (or its part), playing the role of the single-electron island, is sepa-
rated from electrodes by tunnel barriers with small transparencies - see Eq.
(3.1). Second, the effect appears only when the applied source-drain voltage
becomes comparable with the tunnel barrier height. Though the molecular
field may suppress the barrier considerably below the electrode work function
level of 4 to 5 eV, its typical height is still above 1 eV, so that the NDR effect
may hardly show up at voltages much below that value, and some molecular
junctions may not be strong enough mechanically to endure such fields. Next,
the more complex is the molecule, the more eigenstates it has within a certain
energy interval, so that the increasing voltage opens more and more transport
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channels (compare, for example, the I — V' curves of the single-atom transistor
shown in Fig. 4.2 with those of the more complex OPE chains - Fig. 4.5 and
with the complex single-electron transitors in Chapter 5 Fig. 5.1). As the
molecule complexity grows, the increased number of current steps will mask,
and eventually completely overwhelm the NDR effect. In particular, this ef-
fect is completely absent in the “orthodox” theory of single-electron tunneling
[101] which considers the set of island eigenstates as a continuum.

Despite these qualifiers, I believe that the NDR effect with the mechanism
described in this work may be implemented in single-electron transistors based
on many relatively simple molecules suitable for their incorporation into re-
producible SAM-based crosspoint devices. This is why possible applications of
this effect in the hybrid semiconductor/nanoelectronic (e.g., CMOL) circuits
[108, 109] should be carefully analyzed. The most immediate opportunity is to
connect crosspoint devices into the so-called Goto pairs [110] with two stable
states which may be used for coding binary zeros and ones. Logic circuits based
on such pairs (see, e.g., Ref. [111]) may enable the digital signal restoration
without help from the semiconductor-transistor subsystem, used in the cur-
rent generation of hybrid logic circuits [78]. This may boost the circuit density
very substantially. (Rose and Stan have proposed [112] a three-level crossbar
to integrate nanoscale Goto pairs into hybrid circuits, but this structure would
require nanoscale alignment of the layers and hence is hardly practicable.)
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Chapter 5

Simulations of molecular
nonvolatile single-electron
resistive switches

5.1 Simulation results for a single resistive switch

Unlike devices that were considered in Chapter 4, the calculation of transport
and charging properties in the molecular resistive switches requires a more
careful approach that includes self-interaction corrections described in detail
in Sec. 3.3.1.

Figures 5.1 and 5.2 show the main results of a simulation of the resistive
switch shown in Fig. 2.1b, for a temperature 7" = 300 K. Figure 5.1 shows the
dc I — V curves of the transistor, plotted for both charge states of the trap.
These plots show that the I — V' curves fit the initial specifications rather
well, with a broad voltage window (from ~ 2.0 to ~ 2.5 V) for the trap state
readout, with a large ON/OFF current ratio (inset in Fig. 5.1), and a very
reasonable ON current I ~ 0.2 pA.

Fig. 5.2 shows the rates of transitions between the neutral and single-
negatively charged states of the trap, with and without accounting for the
transistor effect on the trap molecule. The plots show that the trap features a
high retention time, 7, > 10%s, for both charge states, within a broad voltage
range, —2V < V' < 45V (it is somewhat surprising how little the trap retention
is affected by the electrostatic “shot noise” generated by fast, quasi-periodic
charging and discharging of the transistor island, which is taken into account
by the theory in Chapter 3.). The range includes point V' = 0, so that the
device may be considered a nonvolatile memory cell.

At the same time, the device may be switched between its states relatively
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Figure 5.1: Calculated dc I —V curves of the transistor for two possible charge

states of the trap molecule. The inset shows the ON/OFF current ratio of the
transistor on a semi-log scale, within the most important voltage interval.
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quickly by applied voltages outside of this window. The price being paid for
using alkane chains with their large HOMO-LUMO gap is that the voltages
necessary for fast switching are rather large — they must align the valence or
conduction band of the alkane chain with the group-localized working orbital
— see Fig. 2.4.

10°

-10

-10 -5 0 5 10 15
V (Volts)

10

Figure 5.2: The trap switching rates, calculated with (solid lines) and without
(black dashed lines) the account of transistor’s back action, as functions of
the applied voltage. Red dashed lines show the trap switching rates calcu-
lated without the level “freezing” correction (Sec. 3.3.1 and Appendix B) and
without taking into the account transistors back action.

5.2 SAMs of resistive switches

Probably the largest problem of molecular electronics [67, 68] is the low re-
producibility of interfaces between molecules and metallic electrodes. How-
ever, recent results [113] indicate that this challenge may be met at least for
self-assembled monolayers (SAMs) encapsulated using special organic counter-
electrodes. This is why I have explored properties of SAMs consisting of square

70



arrays of N x N resistive switches described above — see Fig. 1.4. In order
to increase the tolerance of the resulting SAM devices to self-assembly de-
fects and charged impurities, it is beneficial to place the component molecular
assemblies (Fig. 2.1b) as close to each other as possible, say at distances com-
parable to that (~ 1.5 nm) between the trap and transistor. In this case, the
Coulomb interactions between the component molecules are very substantial,
and properties of the system have to be calculated taking these interactions
into account.

A system of N x N resistive switches has 2IV x 2N single-electron islands
and hence at least 22V*2V possible charge states, which would require solving
that many master equations for their exact description. Even for relatively
small N, this approach is impracticable, and virtually the only way to explore
the properties of the system is to perform Monte Carlo simulations [66, 72].

5.2.1 Monte Carlo algorithm

Generally, a Monte Carlo simulation requires prior calculation of tunnel rates
in all molecular devices for all possible charge states of a N x IV resistive switch
SAM (it will be shown in Sec. 5.2.2 that for our uniform system this require-
ment may be relaxed.). Let K be some charge state of the SAM.! Rewriting
our notation in Sec. 3.1.2 to fit a more general problem, let w}f{:(i) be an
in/out () tunnel rate from the i’th molecule in the SAM in its K’th global
charge state. Assuming that each tunnel rate w}gf:(i) pertains to a random
independent event of a single-electron charge change at the i-th molecule, a
well-known equation for the exponential decay of the initial state probability

can be used to calculate the time interval between two such events:

—log(randy)
> (wf(,: (4) + w?{,: (1))

where rand; is a random number, with the probability distributed uni-
formly between 0 and 1.

Then a second, independent random number rand,, with the same proba-
bility distribution, may be used to decide which specific tunneling event takes
place, by finding j’ such that:

S wk () S wie(j)

: <randy < —5——, (5.2)
> wic () > wic(f)

(5.1)

T —

!The single index K represents a charge state of all molecules in the SAM, ie. K =
{k1,ko..., ki, .. kgn2} where k; is a charge state of each molecule.
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where the index j is over all indices in w: s,d, <, i. Thus wg(j') gives
a particular rate of tunneling from/into the i-th molecule into/from either
source or drain.

As was discussed in Sec. 3.1.3, the peculiarity of my system is that it
features two very different time scales: the first one (for our devices, 7, ~
e/Ion ~ 1071 —107% s) characterizes the fast charge tunneling through single-
electron transistors, while the second one corresponds to the lifetimes of trap
states (1, = 1/T ~ 10® — 1072 s). In order to gather reasonable statistics
of the switching rates, the data accumulation time (for each parameter set)
corresponded to a physical time of up to 10 s, i.e., included up to a million
transition tunneling events in the system’s transistors, i.e. the Monte Carlo
simulation loop was run L times before the condition EZL 71 > 10 s was met.
At each step [, the number of electrons that arrived from the source electrode
n?_ and the number of electrons that left back to the source electrode n®, were
recorded. The total current through the SAM is then:

I/e = (n{ —n®) ZTI : (5.3)

As a check of the validity of the procedure, the Monte Carlo algorithm
was first applied to a single resistive switch, and it indeed gave virtually the
same result as the master equation solution. The approach was then used for
a direct simulation of SAM fragments with two and more coupled resistive
switches.

5.2.2 Nearest neighbor approximation

As the fragment is increased beyond a 2 x 2 switch array, even the Monte Carlo
method runs into computer limitations, because of the exponentially growing
number of the possible charge configurations. The calculations may be very
significantly sped up by using the approximation in which each molecule’s
state affects the potential of only its nearest neighbors. This approximation
has turned out to be very reasonable and may be justified by the fact that
metallic electrodes of the system substantially screen the Coulomb potential
of the charges of distant molecules: the distance between the acceptor group
centers and the electrodes, d/2 ~ 4 nm, is of the same order as the 3-nm
distance between the molecule and its next-next neighbors (Fig. 5.3). In this
nearest-neighbor approximation, each molecule (a trap or a transistor) is still
affected by 8 other molecules.

In order to limit the number of the charge configurations even further, all
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Figure 5.3: Effect of a single charge of a trap molecule on the electron affinity

of another molecule, located at distance r without and with the account of the
electric field screening by the common metallic electrodes.
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“essentially similar” of them (having charge pairs at equal distances, irrespec-
tive of their angular position) were treated as identical. As Fig. 5.4 shows,
this is a very reasonable approximation.

102 L L L |

O - empty transistor
O - empty trap
® - charged trap

I (1/s)
=
o

10

V (Volts)

Figure 5.4: Trap tunnel rates as functions of the applied voltage for two quasi-
similar nearest-neighbor charge configurations shown in the insets. Trap tunnel
rates with all nearest neighbour charges set neutral is shown for a reference
(in red).

Even with the significant charge configuration reductions outlined above,
the calculation of the remaining configurations still required massive com-
putational resources — about 100,000 node-hours on fast IBM P6 4.2 GHz
Processors.

5.2.3 Monte Carlo results

Figure 5.5 shows the results of calculations, based on this approach, for a
5 x 5-switch SAM, with the total area close to 10 x 10 nm?. The switching and
state readout properties are very comparable with those of a single switch (Fig.
5.1), despite a significant mutual repulsion between single electrons charging
neighboring traps.

74



0.5
25F

lorr

I (A)

f
2.5

V (Volts)

Figure 5.5: Monte-Carlo simulated dc I —V curves of a 25-switch SAM. The
top inset shows the fraction [ of single-negatively charged traps, averaged over
40 sweeps of applied voltage between -8V and 13V. The bottom inset shows
the ON/OFF current ratio averaged over the voltage sweeps, and its maximum

sweep-to-sweep spread.
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In order to better understand why such a repulsion does not have adverse
effects on the operation of the SAM as a whole, I have calculated the cor-
relation coefficients K (r) of charging of two (same type) molecules A and B
as a function of the distance between them. The correlation coefficient (at a
constant V') may be calculated using the following formula (for its derivation,
see Appendix D):

K Pyp— PaPp
(r) = ,
\/PA<1 —PA)PB(l —PB)

where P, p is the probability of both molecules A and B to be simultane-
ously charged (the joint probability), and P, is the total probability that the
molecule A is charged (and similarly for B).

At voltages above the transistor Coulomb blockade, the transistor molecules
switch their charge state quickly and the correlation coefficient K(r) between
two transistors was calculated directly from their time evolution records at
each fixed voltage. On the other hand, trap molecules have quasi-stationary
charge states, so that the correlation between two trap molecules had to be
calculated from a set of snapshots of their charge states (at some voltage of
interest) taken at repeated, slow sweeping of the applied voltage throughout
the whole voltage range.

Figure 5.6 shows the resulting average correlation between molecules (and
its fluctuations) as a function of the distance between them in the 5 x 5-switch
SAM. The charge states of neighboring traps are significantly anticorrelated,
while the next-next neighbor charge states are positively correlated. This
means that the switching is due to a nearly-simultaneous entry of electrons
into roughly every other trap 2. This explains why in the top inset in Fig. 5.5
the average fraction of charged traps is close to 1/2. Thus the only adverse
effect of the Coulomb interaction between individual resistive switches is the
approximately two-fold reduction of the average ON current per device. Figure
5.7 presents a summary characterization of the SAM operation as a function
of its size (and hence its area).

(5.4)

5.2.4 SAM defect tolerance

The fact that even the fractional charging of traps in SAMs is sufficient for a
very good modulation of their net current suggests that these devices should
have a high tolerance to defects and stray electric charges [66]. In order to
verify this, I have carried out a preliminary evaluation of the defect tolerance

2There is virtually no correlation between the transistor molecules, just as with their
autocorrelation in time [114], because at least two transition channels are open at any time.
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by artificially fixing charge states of certain, randomly selected component
molecules. The results, shown in Fig. 5.8, are rather encouraging, implying
that the switches may provide the ON/OFF current ratios above 100 at de-
fective switch fractions up to ~ 10%, and at a comparable concentration of
random offset charges.

x10*

5 x 5 SAM
ON/OFF =10

(lon) (A)

& & "
© VvV V9V V— VvV V— V%

5 10 1 20 25
number of random defects

Figure 5.8: Defect tolerance of the 5 x5 SAM switch: ON current as a function
of a number of molecules held artificially in a fixed, random charge state, at
random locations, at the applied voltage values necessary to ensure a certain
level of the ON/OFF current ratio. Error bars show the r.m.s. spread of
results.
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Chapter 6

Summary

The main objective of this work was to explore possibilities of using single-
electron tunneling effects in molecular assemblies for the implementation of
bistable memristive devices (“resistive switches”).

6.1 Design of switch components

The original molecular switch design (see Fig. 2.1a) featured OPE chains that
linked the transistor and the trap acceptor groups to the metal electrodes. My
DFT calculations have shown that OPE chains can hardly provide a tunnel
barrier high enough to ensure sufficiently long electron retention times in traps
with acceptable lengths. I have instead proposed to use alkane chains that
feature a much larger HOMO-LUMO gap, and designed a molecular resistive
switch (see Fig. 2.1b) based on such chains and suitable acceptor groups.

Instead of following the conventional design of the single-electron trap,
which is based on the incorporation of several additional single-electron is-
lands into the trap charging path!, I proposed to use the non-conducting
alkane chains performing two roles simultaneously: those of tunnel barriers
and intermediate islands. The results show that this idea does indeed work,
and may be used in future designs of molecular single-electron devices.

6.2 Theoretical model

In this dissertation a novel approach to the ab initio calculation of electron
transport through molecular-scale single-electron transistors and charging of
molecular single-electron traps was presented. The approach was based on

'Making the trap molecule unreasonably long and complex.
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a (generalized to molecular structures) combination of the Averin-Korotkov
theory of single-electron tunneling [22], Bardeen’s formula [99] for tunneling
rates, and the DFT approximation [115] for electronic structure. Initially the
approach was tested on a toy model of a single-Na-atom transistor, and on
a more realistic model of short (three- and four-ring) OPE chains stretched
between two gold electrodes.

During this work, two serious shortcomings of the density-functional theory
for the description of single-electron charging have been uncovered; they are
described in detail in Appendices A and B. Despite these difficulties, I have
managed to combine the advanced (ASIC) version of the DFT code to analyze
the possibility of using single-electron tunneling effects in designed molecular
assemblies for the implementation of bistable memristive devices (“resistive
switches”).

6.3 Results

The first (unexpected) important finding was a general mechanism for negative
differential resistance described in Sec. 4.3, caused by the enhancement of one
of the tunnel barriers by the applied source-drain field. Apparently, this effect
has been observed in at least two experiments [104, 107] with single molecules.
The results presented in Chapter 5 indicate that chemically-plausible molecules
and self-assembled monolayers of such molecules may indeed operate, at room
temperature, as nonvolatile resistive switches which would combine multi-year
retention times with sub-second switching times, and have ON/OFF current
ratios in excess of 103. Moreover, strong evidence that operation of the SAM
version of the device may be tolerant to a rather high concentration of defects
and randomly located charged impurities was obtained. The ON current of a
single device (~ 0.1 pA at V &~ 2 V) corresponds to a very reasonable density
(~ 4 W/cm?) of the power dissipated in an open SAM switch, potentially en-
abling 3D integration of hybrid CMOS/nano circuits [116]. In this context it
is important to note that the average power density in a crossbar is at least 4
times lower than the cited number, because of the necessary crosspoint device
spacing (Fig. 1.1b); besides that, in most applications, at least 50% of the
switches (and frequently much more) are closed, decreasing the power even
further.
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6.4 Future work

Even the best design developed in this thesis (Fig. 2.1b) still requires addi-
tional work. First, proper spatial positions of the functional molecules have
to be enforced by some additional molecular support groups which have not
been taken into account. If the spacer groups, fixing the relative spatial ar-
rangement of the islands, can be constructed from saturated molecular units
similar to the alkane chains used to separate the islands from the electrodes,
then the calculations presented here should be applicable to complete devices,
but this expectation still has to be verified.

There is also a substantial room for improvement in the choice of molecular
chains used as tunnel barriers and intermediate islands. For example, the low
calculated effective mass, meg =~ 0.1mg, of electrons tunneling along alkane
chains makes it necessary to use rather long chains, despite their large HOMO-
LUMO gaps (which, in turn, require large switching voltages — see Figs. 2.4,
5.2). The use of a molecular chain with a higher m.; and a narrower gap would
decrease switching voltages (and hence energy dissipation at switching), and
also reduce the total device length, resulting in shorter switching times (at the
same charge retention).

Also, the theoretical model presented in Chapter 3 ignores the possible
strong excitation of molecule vibrations by tunneling electrons, whose evidence
has been seen in several experiments with molecular single-electron transistors
- see, e.g., Refs. [10, 11, 100, 102, 117]. They show that additional current
steps may appear in the I — V' curve at voltages corresponding to phonon
energy multiples. The incorporation of a theoretical description of such effects
(see, e.g., Refs. [118, 119]) into the ab initio framework presented in this
dissertation is one of possible future research topics.

The defect tolerance of SAM-based switches should be evaluated in more
detail, for charged impurities located not only on the molecular acceptor
groups, but also between them — say, inside the (still unspecified) support
groups.

Finally, an experimental verification of the predictions in this thesis looks
imperative for the further progress of work towards practical molecular resis-
tive switches.
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Appendix A

Single-electron charging
correction

Let us consider a simple but reasonable model of a well-conducting (say, metal-
lic) island, of a size well above the Thomas-Fermi screening length, in which
the single-electron addition energies are simply

AE() = K, — ey, (A.1)

where K is i-th electron’s kinetic energy (which, as well as the island capac-

itance C', is assumed to be independent of other electron state occupancies,

but is an arbitrary function of i), and the second term describes the potential
energy of that electron in the net electrostatic potential of all other charges,
e

¢z - ¢0 (Z 1) Ca

where ¢ is the background potential of the nuclei, and the second term is due

to the previously added electrons. In this model the total ground-state energy
of an n-electron ion (besides the electron-independent contributions) is

(A.2)

Egq(n) = Y AE()

i=1

n K ¢’ A
= _— — 1

él ; mwo+20nm/ ), (A.3)

so that the energy difference created by the last charging is
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AE(n) = Egu(n)— Exu(n—1)
2
e
= K, —epo+ E(n —1). (A.4)
On the other hand, in a hypothetical naive DF'T theory, without the partial
self-interaction corrections present in its LSDA, GGA and ASIC versions, the
single-particle (Kohn-Sham) energies of ion n of this model are written as

e
er" " (n) = Ki — edp, bn = o — o (A5)
For the calculation of the full ground-state energy of ion n, such generic DFT

sums up these energies from ¢ = 1 to ¢ = n, adding the “double-counting
correction” term [115], in the Gaussian units equal to

1 p(r)p(r')
) D —— 3 Bpr N A.
corr B /d 7n/‘d r ’I' — I'/| ) ( 6)

where p(r) is the total electron charge density at point r. For our simple
model, this correction is just e?n?/2C, so that

- e’n?
EDFT  _ ZEDFT n) —
qar — KA ( ) 20
1=

- e’n?
— E K, — — A7
2 engg + 5C ( )

and

AEP™(n) = EPT(n) — EDT(n — 1)

= Kn—e(ﬁo—l—e—;(n—%). (A.8)

Comparing this result with Eq. (A.4), we obtain the following relation:

62

20"
Thus in the naive DFT theory, the single-electron addition energy differs
from the correct expression (A.4) by e?/2C. Moreover, it does not satisfy the

AE(n) = AEPFT(p) (A.9)
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fundamental Eq. (2.1). Indeed, for i = n, Eq. (A.5) gives the following result,

2

P (n) = Ky — edo + (A.10)

which, according to Eqs. (A.4) and (A.8) may be rewritten either as

AE(n) = e (n) — (A.11)

Ea

or as

62

DFT DFT

AE” " (n)=¢,"(n) T (A.12)
This error is natural, because such DFT version ignores the fundamental phys-
ical fact that an electron does not interact with itself, even if it is quantum-
mechanically spread over a finite volume. This difference can become quite
substantial in small objects such as molecular groups. For example, Table 1
shows the results using LSDA SIESTA calculations for two different ions of our
trap molecule (Fig. 2.1b), with n = ng + 1 and n = ny + 2, where ng = 330 is
the total number of protons in the molecule. The results show that the incon-
sistency described by Eq. (A.12) is indeed very substantial and is independent
(as it should be) of the applied voltage V' in the range keeping the working
orbital’s energy inside the HOMO-LUMO gap of the alkane chain. The two
last columns of the table show the values of €?/2C calculated in two different
ways: from the relation following from Eq. (A.5):

e? eDFT(n) — eDFT(n — 1)

and from the direct electrostatic expression
e? 1 DFT /. \|2 73
5 =3 ¢n(r) |¢n (r)‘ dr, (A.14)

where ¢,(r) is the part of the electrostatic potential, created by the electron
of the n-th orbital of the n-th ion. The values are very close to each other and
correspond to capacitance C' ~ 4.5 x 1072 F which a perfectly conducting
sphere of diameter d ~ 0.8 nm would have. The last number is in a very
reasonable correspondence with the size of the acceptor group of the molecule
— see Fig. 2.1b.

The second and third columns of the table present the genuine electron
addition energies AFE(n) calculated from, respectively, Eq. (A.9) and (A.11),
using the average of the above values of ¢?/2C. Not only do these values
coincide very well; they are in a remarkable agreement with experimentally
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Table A.1: Columns 2 and 3: values of the single-electron transfer energy
AFE(n) for the trap molecule ions with n = ng+ 1 and n = ny + 2 electrons,
calculated in LSDA SIESTA and then self-interaction corrected as discussed
in Appendix A, as functions of the applied voltage (Column 1). Columns 3
and 4 list the values of parameter ¢?/C' | calculated as discussed in Appendix

A.

AE(n)  AE(n) e?/2C e?/2C
Voltage from Eq. from Eq. from Eq. from Eq.
V (V) (A.9) (A.11) (A.13) (A.14)

(eV) (eV) (eV) (eV)
n=ng+1
-2.36 -3.08 -3.01 1.84 1.79
-1.18 -3.38 -3.37 1.84 1.79
0.00 -3.73@  _3.73() 1.84 1.79
1.18 -4.07 -4.10 1.84 1.79
2.36 -4.42 -4.46 1.84 1.79
3.53 477 -4.82 1.84 1.79
n=ng+2
7.07 -1.91 -2.02 1.82 1.79
8.24 -2.29 -2.39 1.82 1.79
9.42 -2.61 2.75 1.82 1.79
10.60 -2.97 -3.11 1.82 1.79
11.78 -3.32 -3.47 1.82 1.79

(@) The numbers to be compared with experimental values of electron affinity:

-3.31 eV Ref. [96] and -3.57 eV Ref. [97].

measured electron affinities [96, 97] of molecules similar to our molecular trap.

We believe that these results show that, first, LSDA SIESTA provides very
small compensation of the self-interaction effects in the key energy AFE(n)
and, second, that (at least for the lowest negative ions of our trap molecules),

an effective compensation may be provided using any of the simple relations
(A.9) and (A.11).
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Appendix B

Level freezing in DFT

For the analysis of the fictitious “level freezing” predicted by a naive DFT at
V >V, (see Fig. 3.4), let us consider the following simple model: a molecule
consisting of a small acceptor group with just one essential energy level, and
a spatially separated chain with a quasi-continuous valence band. Figure B.1
shows the energy spectrum of the system at V' < V;. (As before, the occupied
levels are shown in black, while the unoccupied ones are shown in green.)

first empty
group level I —e(V =W

Ev A1

chain valence band

z

Figure B.1: The schematic energy spectrum of our model at a voltage V' below
voltage V; that aligns the group localized level ¢ with the valence band edge
Ey-

The edge ¢, of the band is separated from the first unoccupied level in
the group by energy —e(V — V}), where V' is the fraction of the voltage drop
between the centers of the group and the tail of a molecule, and V; is its value
which aligns the level with ¢,. Now let V' be close to V;, so that the occupancy
p of the discrete level is noticeable. If the effect of group charging on the
exchange-correlation energy is negligible, a generic DFT theory (e.g., LSDA)
would describe the system energy as
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E = Ey—e(V-V)p
_/d?) /d3 /p pO( )p()(rI)? (Bl)

Ir — |

where index 0 marks the variable values at p = 0.

Now let me simplify Eq. (B.1) by assuming that due to a small size of the
acceptor group, the Coulomb interaction of electrons localized on it is much
larger than that on the chain, so that the latter may be neglected. (For the
trap molecule shown in Fig. 2.1b, this assumption is true within ~5%.) Then
Eq. (B.1) is reduced to

B~ By—e(V-Vip—5 [ o)@)]dr

group

N IR (B2)

where ¢(r) is the electrostatic potential created by the part of the electronic
wavefunction that resides on the group.

d(r) = —e / dr '||1f”(_ 3,’| (B.3)

In the simple capacitive model of the group (used in particular in Appendix
A), ¢(r) = —ep/C', where C' is the effective capacitance of the group, so that

€2p2
ExFEy—e(V -V — B.4
0 e( t)p+ Yol ( )

On the other hand, in accordance with Eq. (A.7), the total energy in the
DFT may generally be presented in the form

e? () p(r
E= sz'&' -y /d37“/d37“ —p|(r )_p(r,|), (B.5)

where ¢; are all occupied (or partially occupied) single particle energies and p
is the total electronic density. Then in our simple model the index ¢ may be
dropped and we get

€2p2
RS E() + (5 — 51})[) — % (BG)
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Comparing Egs. (B.4) and (B.6), we arrive at the following expression:

2
e—epm—e(V—V)+ %. (B.7)

In most DFT packages, level occupancies p; are calculated from the single-
particle Fermi distribution,

1
exp{(e; — p)/kT} + 1’
for our simple model, and (due to the valence band multiplicity) u ~ ,.
As is evident from the sketch of Eqgs. (B.7) and (B.8), in Fig. B.2, if the
thermal fluctuation scale kg7’ is much lower than the charging energy scale

e?/C', then almost within the whole range V; < V' < Vi +¢/C, the approximate
solution of the system of these equations is

Di (B.8)

C
p%E(V—V}), £ R &y (B.9)

Eq. (B.6)

SV -V

—e(V —Vy) Iz €
Figure B.2: A sketch of Egs. (B.7) and (B.8).

Panel (a) in Fig. B.4 shows (schematically) the resulting dependence of
the energy spectrum of our model system on the applied voltage V', with level
freezing in the range V; < V < V;+¢/C. The dashed black-green line indicates
the region with a partial occupancy 0 < p < 1 of the group-localized orbital.
In panel (b) in (Fig. B.4) we show the evolution which should follow from the
correct quantum-mechanical theory, in which electrons do not self-interact and
as a result there is the usual anticrossing of energy levels € and ¢, at V = V.
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For clarity, Fig. B.4 strongly exaggerates the anticrossing width, which is less
than 1073 eV for our trap. A direct SIESTA calculation — see. Fig B.3 has
shown that the anticrossing energy splitting is less than the calculation error
(of the order of 107 eV). An indirect calculation using Eq. (3.39), with vy,
and 1, substituted instead of 1; and 15 ., suggests that this overlap is as small
as ~ 107% eV.

-7.39
LT e tail localized
-7.395¢ st
S . e
<L . RIS
**.. . "<«—group localized
-7.4
-7.405

12.05 12.06 12.07 12.08 12.09

V (Volts)

Figure B.3: The energy anticrossing of a group localized working orbital and
the tail localized (valence band orbital). Evidently the anticrossing energy
width is smaller than the DFT precision (of the order of 1073 eV.)

The actual spectrum of our molecular trap is somewhat more complex
than that of the simple model above — see Figs. 2.4 and 3.4. First, not
only the valence energy band of the alkane chain, but also its conduction
band is important for electron transfer in our voltage range. Second, the
molecular group has not one, but a series of discrete energy levels, with the
most important of them corresponding to the working orbital (energy ey ),
and one more group-localized orbital with energy ey 1 ~ ey + 0.7 eV.

Nevertheless, the behavior of the spectrum, predicted by uncorrected ver-
sions of DFT (Fig. 3.4) may still be well understood using our model. Just as
was discussed above, for voltages V' above the threshold value V; (which now
corresponds to the alignment of e, with ey, rather than ey ), it describes a
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Figure B.4: (a) A sketch of the evolution of the energy spectrum from Fig.
B.1 as a function of the applied voltage V', illustrating how the self-interaction
errors give rise to a spurious level freezing in the V; < V' <V, 4 ¢/C voltage
range. The dashed black-green line indicates the region with a partial occu-
pancy 0 < p < 1 of the group-localized orbital. (b) A sketch of the evolution of
the same energy spectrum in a correct quantum-mechanical theory, in which
electrons do not self-interact.

(a) (b)
N chain conduction band

1 1 N N

5N N N

- T S S,
Y - I‘\ \\‘L\\‘

I Ec

<e/C» 3 ! €c

| / | W+l ! EW+1

I I W : »

:€v : «e/C» Ev ! !

1 1 ; ! ‘\ ‘\

1 1 S ‘I . ‘\I \\
—— — — ——

I I | | chain vajence band LN

v/ Vi Y v/ Vi Y

Figure B.5: (a) A sketch of the evolution of the molecular energy spectrum
of our trap molecule as a function of the applied voltage V, illustrating how
the self-interaction errors give rise to a spurious level freezing in voltage ranges
V/—e/C <V <V/and V, <V < Vi+e/C. Asif Fig. B.4, dashed black-green
line indicate the regions with a partial occupancy 0 < p < 1 of the group-
localized orbitals with energies ey or ey 41. (b) A sketch of the evolution of
the molecular energy spectrum but in a correct quantum-mechanical theory,
in which electrons do not self-interact.

gradual transfer of an electron between the top level of the valence band and
the second group-localized orbital, with its occupation number py .1 gradually
growing in accordance with Eq. (B.9) — see panel (a) in Fig. B.5. Similarly,
at voltages V' below V) (which corresponds to the alignment of the working
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orbital’s energy ey with the lowest level e, of the chain’s conduction band),
there is a similar spurious gradual transfer of an electron between the cor-
responding orbitals. In both voltage ranges, a spurious internal electrostatic
potential is created; as is described by Eq. (B.9), it closely compensates the
changes of the applied external potential, thus “freezing” all orbital energies
of the system at their levels reached at thresholds V' and V; — see panel (a)
in Fig. B.5.

Figure B.6 shows that results of both the LSDA and ASIC DFT calcula-
tions at V' > V; agree well with Eq. (B.9), with the value C' = 4.5 x 10~
F calculated as discussed in Appendix A, indicating that the electron self-
interaction effects remain almost uncompensated in these software packages,
at least for complex molecules such as our trap.

0.1
0.09} A A
o
0.08} Ny 1
0.07} 7 ]
0.06} 7 1
§ 0.05 2
.05¢ 7%/ 1
S 7 o
0-047 - g 7
0.03} 7 - & - ptPA(ny) |
-7 —— paas (o)
0.02+ ////// — % - p\'7VS+DlA(n0 + 1) 7
—o— pASIC(ng + 1
0017 //// E:W 1( 0 ) 7
7 — <V —Vy)
0 0.5 1 1.5
V — V; (Volts)

Figure B.6: The DFT-calculated occupancy py .1 of the (W + 1)st orbital of
the acceptor group of the trap molecule at voltages above the threshold voltage
V; of the alignment of its energy ey with alkane chain’s valence band edge
£,. Black lines show results of two versions of DF'T theory, for two ion states:
the singly-negatively charged ion and the neutral molecule, while the red line
shows the result given by Eq. (B.9) with C' = 4.5 x 1072 F.

Again, in the correct quantum-mechanical theory, there should be a simple
(and in our molecules, extremely narrow) anticrossing between the effective
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single-particle levels of the acceptor group and the alkane chain — see panel
(b) in Fig. B.5. As described in Sec. III of the main text, we have succeeded
to describe this behavior rather closely, using the internal iteration dynamics
of ASIC SIESTA with T'= 0 K.
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Appendix C

Bardeen’s Approximation

Figure C.1a shows a schematic potential profile of a molecular island attached
to a metallic electrode via a non-conducting molecular chain is shown. The po-
tential well of the metallic electrode is assumed to be constant and expanding
infinitely into the negative z direction. Let wavefunctions ¢ ; and ¢; be the
eigenfunctions of the potentials U ; and U; (both with the same eigenenergy
¢’), as schematically shown in Figs. C.1bc.

If the two potential wells are now brought close together as shown in Fig.
C.1a, the small probability of tunneling between the two wells must be taken
into account. This may be done by means of setting the off-diagonal terms in
the expectation value of the Hamiltonian matrix of the system equal to Ae/2:

e Ae/2
i = pl 507 1)
The Hamiltonian in Eq. (C.1) can be diagonalized by eigenfunctions v, =
1/v/2( cat i) and Y = 1/V2(, 4 — }) with the corresponding eigenergies
equal to ¢’ — Ae/2 and ¢ + Ae/2.

I want to express the unknown Ae through the known quantities. Let us
assume that the wavefunction ¢ ; is vanishingly small in the potential well cre-
ated by the molecular island, similarly the wavefunction ¢} is vanishingly small
in the potential well of the metallic electrode. Therefore the product ¢ ;1
is vanishingly small everywhere. Then let us write the following Schréedinger
equations:

2
V2 4 T (e = U =0
V3r + ﬁ(@ — Uyt =0, (C.2)
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Multiplying the first equation by ¢% and the second equation by 1; and sub-
tracting the first of the from the second one yields

VIR, — LV = S (- U — (e~ U)ue) . (C3)
Now let us integrate this equation over the volume V' where the potentials U
and U’ coincide:

2
/V V- (V0L — i) dV = S [l — e ptyl) BV, (CA)

w2 J,

where I have used the relation
/ (Ui — Ug0l) &V = 0
1%

(that holds because the wavefunction v} in the region where U’ # U’ is negli-
gibly small), together with the relation

(VIV2s — = V) = V- (P — ot V)

Next, we can apply the divergence theorem to a box so large that only the side
of the box between the two potential wells gives a non-vanishing component
(at other sides the wavefunctions 1] and ¢} are equal to zero). Taking into
account the definition eigenenergy definition, we get

. . 2m1
[ v -0y ve) dts = 5 @ - ). (C.5)
s
where S is an arbitrary surface separating the left and right wells, and n is
the normal to this surface, in particular it can be taken to be a plane in z,y,

then (assuming that 1)) is real) we arrive at

B2 . dyl o dys s
’ (1/; — ) dz7d) dS = Aej2 =T, (C.6)

2m s dz

where the integral is taken on a plane S in x,y at z = 2, (in the the gap
between the two wells — see Fig. C.1).
Eq. (C.6) allows the calculation of matrix elements 7, ,i’g, and hence of the

tunneling rates FZ’ik, given by Eq. (3.38) in the main text.
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Figure C.1: In (a) the schematic potential profile along the molecule’s axis
with a potential well of the metallic electrode in the left and the potential well
of the molecular island, attached to the metallic electrode via a non-conducting
molecular chain in the right. The energy &’ is the electron eigenenergy if the
two wells are infinitely far away, as shown in (b) and (¢). When the small
probability of tunneling is taken into account, the level &’ splits into two levels
with a splitting width corresponding to Ae, schematically shown in (a).
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Appendix D

Correlation between charge
states of two molecules

By definition, the coefficient of correlation between two independent random
variables A and B is:

cov(A, B)
o(A)a(B)’

where cov(A, B) is the covariance between A and B. For discrete variables
(where E(X) is the expected value of the discrete random variable X),

K(A,B) = (D.1)

cov(A, B) = E(A, B) — E(A)E(B)
- ZA B;P(A;, B;) (ZA P(A ) (Z Bl-P(Bi)> , (D.2)

where P(A;), P(B;) are the probabilities of random variables A, B to have
values A;, B;, and P(A;, B;) is their joint probability. The r.m.s. fluctuations
oa,0p can be calculated from

o(A) = /var(A) \/Z 2P(A;), (D.3)

where p(A) = >, A;P(4;), and similarly for o(

In the simplest case of just two states (i.e., our electrlc charge states), each
of variables A, B has only two values: 0(the molecular group is neural), and
1(the group is charged), we have:
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(A) =0 P4(0)+ 1% Pa(1) = Pa(1),
uw(B) =0xPg(0)+ 1% Pg(1) = Pg(1),
cov(A, B) = P(1,1) — PA(l)P (1),
(4) = /Pa(l) = Pa(1)?,
(B) = /Pp(1) — Pp(1)% (D.4)

In order to write the final result more compact, let us define Py = Px(1),
Pp = Pg(1) and P4 g = P(1,1); then the correlation coefficient is

Pyp — PaPp
V/Pa(l — Pa)Pg(1— Pg)’
as used in Eq. (5.4) of the main text.

K(A,B) =

(D.5)
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