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Abstract of the Dissertation

Optical Forces from Periodic Adiabatic Rapid Passage
Sequences on Metastable Helium Atoms

by

Daniel Thomas Stack

Doctor of Philosophy

in

Physics

Stony Brook University

2012

Over the past 30 years, optical manipulation of neutral atoms has been primarily

performed with a monochromatic laser beam. The simplest tool for the control of

atomic motion is the radiative force exerted by a monochromatic laser on a two-

level atom. The radiative force arises from absorption followed by spontaneous

emission, and its magnitude is limited by the atom’s excited state lifetime. The

coherent momentum exchanges between light fields and atoms can be exploited to

produce long-range optical forces much greater than the radiative force through

the use of absorption-stimulated emission processes.

Adiabatic Rapid Passage (ARP) is a long-existing method to invert the popu-

lation of a two-level nuclear spin system. Its extension to the optical domain
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necessitates a frequency chirped light pulse to interact with a two-level atom

via the dipole interaction. I will first present a numerical study of the proper-

ties of optical forces on moving atoms derived from purely stimulated processes

produced by multiple ARP sequences. This will be followed by experimental

observations of long-range ARP forces much larger than the radiative force in

metastable helium. Sequences of properly timed laser pulses may be used for

rapid deceleration of neutral atomic (or molecular) beams.
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Chapter 1

Introduction

The field of laser cooling and trapping has progressed tremendously since its inception

more than 30 years ago [1–3]. Laser cooling and trapping refer to the experimental techniques

that use the force exerted by laser light for the purposes of slowing and manipulation of

atomic motion. The original motivation for laser cooling and trapping was to improve

precision measurements of trapped ions for high resolution spectroscopy and atomic clocks [1,

4]. These measurements required means to suppress Doppler effects associated with ion

motion.

Around this time it was also suggested that the same principles could be applied to

neutral atoms [2]. The first observation of the laser cooling of neutral atoms was made in

1981 [5]. In the early days of atom trapping neutral atoms had to be cooled before they

were captured. From there, improvements in the experimental techniques of laser cooling,

magnetic trapping, and evaporative cooling led to the first observation of Bose-Einstein

Condensation (BEC) in a dilute atomic gas in 1995 [6, 7]. Adiabatic rapid passage could

be an additional tool to those interested in the slowing of atomic beams. Cold atomic gases

have provided a new venue for the study of nonlinear optical effects, atomic collisions, and
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basic quantum mechanical phenomena.

The magnitude of traditional optical forces used for laser cooling and slowing are funda-

mentally limited by the inherent properties of the atom and fundamental constants. This is

only true for optical forces that rely on spontaneous emission to return an atom to its ground

state. Much greater forces can be achieved with use of absorption and stimulated emission.

Very large optical forces have been demonstrated for the bichromatic [8] and adiabatic rapid

passage (ARP) force [9]. It is also very important to consider how the optical force depends

on the atomic velocity for the purposes of slowing and cooling an atomic beam. Again, the

utility of traditional optical forces are very much limited by the properties of the atom in

question. It has been suggested that the ARP force may be effective over a much larger ve-

locity range than traditional optical forces [10]. The properties of the ARP force, especially

its velocity dependence, are the subject of this thesis. The ARP force requires a sequence

of optical pulses, whose frequency is swept through an atomic resonance. This thesis will

motivate why the ARP force is important and report results of an experimental realization

of this strong, long-range force.

In this chapter I will give a brief introduction to the treatment of the interactions of light

with neutral atoms, as well as traditional optical forces and the bichromatic force. Chapter

2 delves into the theoretical description of ARP and numerical calculations. Numerical

simulations of the ARP force on atomic ensembles is the subject of Chapter 3. This is

followed by Chapters 4 and 5, which describe the experimental setup to measure the velocity

dependence of ARP. Chapter 6 will show the results of these experiments.
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1.1 Two-Level Atom

The fundamental picture most commonly used in describing optical forces on neutral

atoms is the two-level atom moving in a monochromatic light field. The following are the

necessary tools to describe the optical forces to be discussed later in this chapter as well as

the ARP force to be described in Chapter 2. The choice of variables and derivation of the

Optical Bloch Equations (OBE’s) closely follows Ref. [11] with certain choices motivated by

Ref. [12].

1.1.1 Schrödinger Equation and Rabi-Oscillations

The time evolution of a two level atom (denoted |g〉, and |e〉 for ground and excited state)

in the presence of a monochromatic light field is governed by the time-dependent Schrödinger

equation

ı~
∂ψ

∂t
= Hψ (1.1)

When the spatial extent of the atom is much smaller than the wavelength of an applied

field, one can treat the field as spatially constant E(r, t) → E(t). In this electric dipole

approximation an external electromagnetic field interacts with an electron via the time de-

pendent potential

V (r, t) = −er · E(t) (1.2)

where r is the relative electron-nuclear distance and the electric field E is a monochromatic

plane wave of the form

E(t) =
1

2
ε̂E0e

−iωlt + c.c. (1.3)

where ε̂ refers to the polarization of the field and ωl is the angular frequency of the wave.

In the limit of a two level system (ψ = agφg +aeφe with |ag|2 + |ae|2 = 1) it can be shown
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that the Schrödinger equation (1.1) reduces to

ı~ȧg(t) = Egag(t) + V ae(t) (1.4a)

ı~ȧe(t) = Eeae(t) + V ∗ag(t) (1.4b)

where En is the energy and an is the complex amplitude associated with the atomic state

wavefunction φn. This approximation is valid when there is a negligible probability of the

atom being in any state other than φg or φe.

At this point is convenient to define

ωa =
Ee − Eg

~
(1.5)

and

Ω =
−eE0

~
ε̂ · 〈φg|r|φe〉 (1.6)

as the atomic transition frequency, and the complex, resonant Rabi frequency respectively.

We may also set the zero-point energy of the system to Eg and perform the Rotating Frame

Transformation by substituting

ag(t) = cg(t) (1.7a)

ae(t) = ce(t)e
−ıωat (1.7b)

This particular transformation at ωa leads to the interaction picture.

Neglecting the rapidly oscillating terms (Rotating Wave Approximation) and substituting

4



Eq. 1.5, 1.6,and 1.7 into Eq. 1.4 leads to

ıċg = ce(t)
Ω

2
(1.8a)

ıċe = cg(t)
Ω∗

2
− ce(ωl − ωa) (1.8b)

The solutions to Eq. 1.8 are found to be

cg(t) =

(
cos

Ω′t

2
+ i

δ

Ω′
sin

Ω′t

2

)
eıδt/2 (1.9a)

ce(t) =

(
i

Ω

Ω′
sin

Ω′t

2

)
eıδt/2 (1.9b)

where we have defined the laser detuning as δ = ωl − ωa and introduced the generalized

Rabi frequency Ω′ ≡ (Ω2 + δ2)1/2. The corresponding evolution of the state populations,

ρgg(t) = |ag(t)|2 and ρee(t) = |ae(t)|2 are

ρgg(t) =
1

2

[
1 +

(
δ

Ω′

)2
]

+
1

2

(
Ω

Ω′

)2

cos Ω′t (1.10a)

ρee(t) =
1

2

(
Ω

Ω′

)2

[1− cos Ω′t] (1.10b)

It is clear from these equations that the excited state population oscillates at an angular

frequency of Ω′ with an amplitude of (Ω/Ω′)2. According to Eq. 1.10 it is not possible to

achieve complete population inversion with a nonzero, fixed laser detuning. Fig. 1.1 shows

how the population of the excited state varies in time, and with choice of Ω and δ, according

to Eq. 1.10. To tackle more complex light fields and spontaneous emission it is useful to

introduce a new approach that is discussed in the following section.

5



Ωt/2π

ee
(t
)

ρ

Figure 1.1: Oscillations of the excited state population for fixed Ω and varying δ. The thick,
thin, and dashed lines correspond to δ = 0, Ω/2, and Ω respectively. The excited state
population oscillates at an angular frequency of Ω′ with an amplitude of (Ω/Ω′)2.
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1.1.2 Optical Bloch Equations

The density matrix is a powerful formalism that has many distinct advantages to the

wavefunction approach summarized in the previous subsection. It enables the treatment of

states with partial coherence, important when dealing with spontaneous emission, and it

provides a more direct connection with physical quantities.

A usual treatment of the density matrix, ρ, begins by relating it to the complex ampli-

tudes, cg and ce, defined in Sec. 1.1.1

ρ = |ψ〉〈ψ| =

 |cg|2 cgc
∗
e

cec
∗
g |ce|2

 (1.11)

The diagonal elements represent the atomic state populations while the off-diagonal elements

represent the “coherences” of the interaction.

Repeated use of Eq. 1.8 can be used to derive the time dependence of the density matrix

elements with the relations defined in Eq. 1.11. After a convenient change of variables

u = ρeg + ρge (1.12a)

v = ı (ρge − ρeg) (1.12b)

w = ρee − ρgg (1.12c)

one is left with the Optical Bloch Equations (OBE’s)

u̇ = Ωiw − δv (1.13a)

v̇ = −Ωrw + δu (1.13b)

ẇ = Ωrv − Ωiu (1.13c)

7



where Ωr,i refer to the real and imaginary parts respectively of the Rabi frequency defined

in Eq. 1.6.

The evolution of the atomic system can be visualized on a unit sphere, the Bloch sphere.

The Bloch vector, defined as R = [u, v, w], is confined to the surface of the Bloch sphere by

conservation of atomic probability, |ce|2+|cg|2 = 1 (see Fig. 1.2). The south pole of the Bloch

sphere represents the ground state of the atom, the north pole corresponds to the excited

state. All other points on the sphere represent various superposition states. It is a versatile

tool and very useful as a geometrical representation of the Optical Bloch Equations.

The Optical Bloch Equations still require some modification to better represent the true

dynamics of a two level system. In most problems relaxation processes such as collisions and

spontaneous emission are present. Collisions are unlikely in the experiments described in this

dissertation and as such will be neglected, but spontaneous emission can be thought of as a

special type of inelastic collision where the atom may change internal energy states. These

“collisions” also have the effect of dephasing or decreasing the coherence of the interaction.

Proper treatment of spontaneous emission [14] leads to the new equations

u̇ = Ωiw − δv − (γ/2)u (1.14a)

v̇ = −Ωrw + δu− (γ/2)v (1.14b)

ẇ = Ωrv − Ωiu− γ(w + 1) (1.14c)

where γ is the spontaneous emission rate for the excited state |e〉 of the two-level atom.
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Figure 1.2: The precession of the Bloch vector around the torque vector on
the Bloch sphere. The solid line represents the Bloch vector !R and the dashed
line represents the torque vector !Ω.

6

Figure 1.2: Projections of the Bloch and torque Vectors on the Bloch sphere. The solid
line represents the Bloch vector R precessing about the torque vector Ω, represented by the
dashed line. Taken from [13]
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1.2 Optical Forces on Atoms

The notion of optical forces, derived from linear momentum conservation during atomic

absorption of light, dates back to the 19th century. When an atom of mass M absorbs light,

the light’s energy ~ω` goes mostly into the excitation of the atom, its angular momentum

~ goes into the orbital motion of the electrons, but its linear momentum ~ω`/c ≡ ~k can

go only into the overall translational motion of the atom. The atomic velocity changes

by ~k/M ∼ few cm/s. The magnitude of the resulting force is limited by how quickly this

momentum exchange can be repeated and thus by the rate of the atom’s return to the ground

state. Many sophisticated schemes have been developed using the special properties of the

atom-light interaction. To begin with, we consider the simplest optical force, the radiative

force.

1.2.1 Radiative Force on Stationary Atoms

The radiative force is the response of an atom interacting with a monochromatic light

field [12]. The momentum transfer via absorption is always in the direction of the laser

beam propagation. The decay of an atom from the excited state to the ground state via

spontaneous emission of a photon results in a force that is random in direction, so the force

from decay averages to zero over many cycles. This results in a net force from this process

each time the atom absorbs and then spontaneously emits a photon. A single absorption

and spontaneous emission event is illustrated in Fig. 1.3. Over very many cycles there will

be a net force in the direction of laser propagation.

The net force from this process is proportional to the momentum absorbed from the light

10



Figure 1.3: Cycle that produces the radiative force. Light is absorbed by an atom and
consequently receives a momentum kick in the direction of the light propagation. After
some time, the atom may spontaneously emit light in a random direction. The associated
momentum transfer from spontaneous emission averages to zero over many cycles. This leads
to a net momentum transfer in the direction of light propagation.
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field and the scattering rate of the process

~F = γp~k (1.15)

where γp = γρee is the scattering rate, consisting of the decay rate γ and time average

population probability of the excited state

γp =
s0γ/2

1 + s0 + (2δ/γ)2
(1.16)

Here s0 is ratio of the laser field intensity to the saturation intensity defined by

s0 ≡ 2
|Ω2|
γ2

=
I

IS
(1.17)

with IS ≡ πhc/(3λ3τ) (λ and τ are the wavelength and lifetime of the atomic transition

respectively). Since the two-level atom in a monochromatic light field can only stay at most

half the time in the excited state, the radiative force saturates at ~kγ/2. This can be seen

in Eq. 1.16, for the case of δ = 0 and s0 � 1 or when s0 � 2δ/γ, 1.

1.2.2 Radiative Force on Moving Atoms

To cool and trap atoms, it is necessary to consider the consequences of atomic motion.

Atoms moving with velocity v in the laboratory frame see a Doppler shift. The Doppler

shift refers to the frequency shift of the light field seen by the moving atom ωD = −k · v.

This results in a modification of the radiative force on moving atoms given by

Frad = ~k
s0γ/2

1 + s0 +
(

2
(
δ − k · v

)
/γ
)2 (1.18)
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For moving atoms δ has been replaced by an effective detuning, δ − k · v. This force is

maximum for zero-velocity atoms and on-resonance light. For off-resonant light, the force is

maximum for atoms moving with the velocity v = δk/k2.

It can be seen from Eq. 1.18 that the radiative force opposes atomic motion when the

incident light travels opposite to the atomic velocity. The radiative force is a very useful

tool for the slowing of atomic beams. However, as the atomic beam slows, the resonance

condition changes due to the Doppler effect. The Zeeman shift can be used to compensate for

this effect and may be done with a spatially varying magnetic field applied along the atomic

beam path [15]. The Zeeman shift compensates for the Doppler effect and keeps the laser

on resonance with the atomic beam until the beam is slowed sufficiently. Other methods for

compensating for the Doppler effect are: sweeping the laser frequency, spatially-dependent

electric field, diffuse light, and broadband light. See Ref. [12] for more details.

The radiative force is able to cool atoms in a standing wave configuration under the

correct conditions. In the low intensity limit, the forces from the two counter-propagating

beams can be added together. This results in the expression for the force of

F = ~k
γs0/2

1 + s+ (2(δ − k · v))/γ)2
− ~k

γs0/2

1 + s+ (2(δ + k · v))/γ)2

≈
8~k2δs0v

γ(1 + s0 + (2δ/γ)2)2
≡ −βv (1.19)

Terms of the order (kv/γ)4 and higher have been neglected in the second line. The optical

force as a function of atomic velocity is plotted in Figure 1.4 with s0 = 2 and δ = −γ. When

the laser is tuned below atomic resonance (δ < 0) the force opposes atomic motion. This

scheme was given the name optical molasses due to the viscous drag it exerts on the atoms.

Atoms with v > ±γ/k will only weakly interact with the light field and so the velocity

capture range of this force is defined to be γ/k. It should be noted that the atomic ensemble
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Figure 1.4: Force vs. velocity for optical molasses with s0 = 2 and δ = −γ. The x-axis
is scaled by γ/k (units of m/s) and the y-axis is scaled in units of the maximum radiative
force ~kγ/2. The dotted lines represent the force from each individual beam. The solid line
is just the summation of these two forces, which is valid in the low intensity regime. The
linear dashed line is an approximation of the optical force at small velocities and has a slope
−β. Modified from [13].
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does not reach T = 0 due to the heating effects from the random nature of absorption and

emission even though the mean velocity is zero. For the typical atoms used in laser cooling

experiments, alkali and metastable noble gases, this temperature limit is on the order of 100

µK [3].

1.2.3 Dipole Force

There are other optical forces whose force is not limited by the properties of the atomic

transition as in the radiative force. Forces derived from cycles of absorption and stimulated

emission may have magnitudes much greater than forces that rely on spontaneous emission.

One example of a force that relies on stimulated emission to excite an atom is the dipole

force.

Atoms present in a standing wave light field may also experience a force that derives

from the spatial gradient of their light shifts [12]. The dipole force arises from the coherent

exchange of momentum through absorption from one light field and stimulated emission

into the opposing light field. The magnitude of this dipole force Fdip is limited only by the

intensity of the light field driving these coherent processes

Fdip =
2~δs0 sin 2kz

1 + 4s0 cos2 kz + (2δ/γ)2
(1.20)

where z is the position of the atom. However, according to Eq. 1.20, the spatial dependence

of the force is oscillatory and goes to zero when averaged over a wavelength. Over a large

ensemble there is no preferred direction for absorption or emission. It is also evident from

Eq. 1.20 that the sign of the laser detuning, δ, determines if the atom will seek the nodes

or anti-nodes of the standing wave. The dipole force can be used to trap atoms but it is

unable to cool atoms due to its conservative nature. A mechanism is required to break the
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symmetry of the standing wave.

High intensity blue-detuned molasses uses spontaneous emission to break this symmetry.

In the presence of a blue detuned standing wave, the dressed atom eigenstates vary spatially

with the light field intensity. Spontaneous emission provides a directional force and the

irreversibility required for cooling of atoms. This was confirmed both numerically [16] and

experimentally [17].

There are other more complex schemes that use non-monochromatic light to make use of

the dipole force [18, 19]. The rectified dipole force refers to a scheme where a second, high

intensity, far detuned standing wave is used to modulate the atomic transition frequency on

the wavelength scale. In this case the dipole force is “rectified” to have a nonzero spatial

average and has been investigated by many groups [20–22]. The force is much larger than

the radiative force but the rectification mechanism is very sensitive to Doppler shifts. Such

sensitivity necessarily leads to a small range of velocities for which the force is effective.

1.2.4 Bichromatic Force

In contrast to the rectified dipole force described above, choosing different beam param-

eters for the two frequencies of light can produce a force appropriate for cooling a thermal

beam. The bichromatic force is described in great detail in Ref. [23–25] but a short discus-

sion will be given here. Consider two counter-propagating beams with each containing two

frequencies, ωl±δ with δ � γ. Each beam can be thought of as an amplitude modulated field

with the carrier frequency at the atomic resonance, and the modulation period π/δ. If each

frequency component were to have the correct Rabi frequency, Ω = πδ/4, then each pulse

would satisfy the π-pulse condition (complete population inversion as in Fig. 1.1). That is,

a single pulse would cause an atom in the ground state to be excited and an atom in the
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excited state to be deexcited. On average, if the phase of the two envelopes is set correctly,

one beam will cause absorption, while the other beam will cause stimulated emission. This

leads to a momentum change of 2~k over a time period of δ/π or an optimum force of 2~kδ/π.

See Fig. 1.5 for a simple diagram of the bichromatic force setup. The bichromatic force is

much larger than the radiative force ~kγ/2 given by Eq. 1.16.

The forces described in this section are usually only valid in the two level approximation

and neutral atoms may have many magnetic sub-levels that are nearly degenerate. However

there are techniques to suppress transitions to these other sub-levels in certain atoms. One

of these techniques is optical pumping, described in the following section.

Two effects that need to be discussed, however, are spontaneous emission and the Doppler

shift. Spontaneous emission may occur, thereby reversing the atomic response to the light

fields. Proper choice of the envelope phase leads to more absorption by one beam and more

stimulated emission by the other so that the average force is now ~kδ/π [23, 24]. The explicit

velocity dependence of the bichromatic force is more complicated. A simple picture says the

force should be constant in the limit of kv � δ. A more detailed analysis in the doubly-

dressed atom picture and numerical calculations show the bichromatic force has an effective

velocity range of ±δ/2k [23]. The bichromatic force as a function of velocity is plotted in

Fig. 1.6.
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Figure 1.5: The two frequencies in the bichromatic laser beam create a series of π-pulses
from the beat frequency. Each π-pulse excites or de-excites the atom in a time of π/δ leading
to a force (~kδ/π) much larger than Frad. Taken from [26].
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Figure 1.6: Bichromatic Force as a function of velocity for a fixed detuning, Rabi frequency,
and relative phase. For this numerical calculation the parameters are chosen to be δ = 20γ,
Ωr = 22γ, and φ = π/4. The force and velocity axes are in units of the radiative force and
γ/k respectively. The strength and velocity range of the bichromatic force are an order of
magnitude larger than the radiative force.
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1.3 Optical Pumping

Optical pumping is a process by which atoms in many different magnetic sublevels can

be transferred into the same magnetic sublevel. The relevant transition in this experiment

is the 23S1 → 23P2 in He. Without the presence of an external magnetic field the magnetic

sublevels of the ground state are degenerate and equally populated. The 23S1 state has

three magnetic sublevels (mj = −1, 0, +1) and the 23P2 state has five magnetic sublevels

(mj = −2, −1, 0, +1, +2). With the application of an external magnetic field, the energy

associated with each sublevel shifts as

∆Emj
= mjgjµBB (1.21)

where µB = e~/2me is the Bohr magneton, B is the applied magnetic field, and gj is the

Landé g-factor given by gj = 1 + j(j+1)+s(s+1)−l(l+1)
2(j+1)

. The resulting energy shifts are generally

less than those associated with spin-orbit coupling for weak magnetic fields [27]. If the energy

shifts of these levels is larger than the natural linewidth of the transition, ~γ, then the states

are no longer degenerate.

Atoms can only undergo transitions in the presence of external fields when 〈φg|r|φe〉 (to

a first order approximation) is nonzero. There are certain selection rules that govern these

E1 or electric-dipole transitions. Important selection rules to keep in mind are ∆J = 0, ±1

[without J = 0 → J = 0], ∆S = 0, ∆L = 0, ±1, and ∆mj = 0 ± 1 [without mj = 0 →

mj = 0 when ∆J = 0].

In the presence of linearly (π) polarized light only stimulated transitions of ∆mj = 0

are allowed. Spontaneously emitted light is randomly polarized so the atom is allowed to

decay with ∆mj = 0 ±1. The probability of the atom to decay to these different sublevels is
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Figure 1.7: Transition probabilities for the optical pumping process in the presence of σ+-
polarized (left-handed) light and spontaneous decay for the 23S1 → 23P2 transition in
metastable helium. Solid lines are the allowed E1 transitions for σ+-polarized light and
are labeled by their relative transition probabilities. The dashed lines represent the allowed
transitions for the randomly-polarized spontaneous decays. Over time the population in the
mj = +1 ground state will increase at the expense of the mj = −1, 0 ground states.

based on the wavefunction overlap of the states in question. Relative transition rates may be

found by calculating the Clebsh-Gordon coefficients of each transition. For a J = 1→ J = 2

transition with π-polarized light there is a preference to decay to the mj = 0 ground state.

Based on Clebsh-Gordon coefficients in the presence of CW, resonant, π-polarized light, and

a magnetic field, there will be 4 atoms in the mj = 0 ground state for every 3 atoms in

mj = −1 or mj = +1 ground state on average over many cycles.

In laser cooling it is often favorable to use a “closed” transition. In a closed transi-

tion the atom may only traverse between a single ground and excited state. Left-handed

(right-handed) circularly polarized light will cause excitation to a state with ∆mj = +1

(∆mj = −1). Due to the Clebsh-Gordon coefficients, atoms illuminated by left-handed

(σ+), circularly-polarized, near resonant light will tend to the mj = +1 ground state over

many cycles of absorption and spontaneous emission (see Fig. 1.7). Once an atom is in the

mj = +1 ground state it can be excited only to the mj = +2 state followed by stimulated

emission or spontaneous decay back to the mj = +1 ground state. In this sense all of the
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atoms are optically pumped to the mj = +1 ground state. The relative populations of the

allowed σ+ transitions are plotted in Figure 1.8 as a function of time in the presence of

on-resonance light with Ω = 10γ (γ ≡ 1/τ where τ is the lifetime of the excited state).
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(  )
Figure 1.8: Relative populations of the states connected by the 3 possible σ+ transitions for
the 23S1 → 23P2 transition in metastable helium in the presence of CW σ+-polarized light
with Ω = 10γ. The calculation begins with equal populations in the ground state magnetic
sublevels (3 for J=1). After 20 lifetimes nearly 99% of the atoms are in a single cycling
transition.
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Chapter 2

Theory of Adiabatic Rapid Passage

The focus of this dissertation is the study of the optical force on two-level atoms in

the presence of periodic adiabatic rapid passage (ARP) sequences. ARP in the optical

regime requires a light pulse to be swept through the resonance of a two level system in

a time much shorter than the lifetime of the excited state τ = 1/γ. A series of properly

tailored, counterpropagating pulses can produce a strong unidirectional force through cycles

of absorption and stimulated emission. The magnitude of such a force is limited by the

repetition rate of these cycles. In the ideal case, a momentum transfer of 2~k in a time

T leads to a force FARP = 2~k/T which can be much greater than the radiative force,

Frad = ~kγ/2 . The work in this chapter has been published in Reference [10].

2.1 Adiabatic Rapid Passage

ARP, a well known method to invert the population of a two-level system in the magnetic

resonance community [28], is best visualized by observing the path of the Bloch Vector

R = [u, v,w] on the Bloch sphere [10]. The south pole of the Bloch sphere, R = [0, 0,−1],
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represents the ground state |g〉, while the north pole, R = [0, 0, 1], represent the excited

state |e〉.

The Schrödinger equation can be reformulated to show how the time-dependence of the

Bloch vector depends on an artificial ”torque” vector, Ω(t) ≡ [Ωr(t),Ωi(t),−δ(t)], by the

equation dR(t)/dt = Ω(t) × R(t). Here Ωr,i are the real and imaginary parts of the Rabi

frequency given by ~Ω(t) ≡ 〈g|eE(t) ·r |e〉, and δ(t) ≡ ω`(t)−ωa is the detuning of the optical

frequency ω`(t) from the atomic frequency ωa.

In the usual case of ARP, the torque vector begins near the south pole, nearly parallel to

R, and is slowly, and continuously swept towards the north pole by sweeping the detuning

from one side of atomic resonance to the other side symmetrically. The Rabi frequency

begins at 0, increases to its maximum at δ = 0, and then decreases to zero once again.

To illustrate this process, consider a sweep profile characterized by δ(t) = δ0 cos(ωmt) and

Ω(t) = Ω0| sin(ωmt)| that can start at t = 0 and last for time π/ωm with a frequency sweep

range of 2δ0 and a maximum Rabi frequency Ω0.

ARP is most robust when the parameters satisfy both the “adiabatic” and “rapid” con-

dition summarized by the inequality:

δ0 ∼ Ω0 � ωm � γ (2.1)

When this inequality is satisfied, the trajectory of the Bloch vector, R on the Bloch sphere

adiabatically tracks Ω in a nearby spiral path long before the excited state decays back to the

ground state. This process may take an atom initially in the ground state, R = [0, 0,−1], and

put it into the excited state, R = [0, 0, 1], with very high probability as shown in Fig. 2.1(a).

It has been shown in Ref [29], however, that Ω orbits like that shown in Fig 2.1(b)

can also produce robust population inversion. The parameters of this Ω are characterized

25



(a) (b)

Figure 2.1: Plot of two trajectories (the north pole shown) of R(t) (black) and Ω(t) (grey).
Part (a) has δ0 = 30ωm and Ω0 = 50ωm to show the usual ARP where R makes many
precession cycles and stays close to Ω during the sweep. Part (b) has δ0 = 1.10ωm and
Ω0 = 1.61ωm to show the unusual case where the trajectory of R is a simple arc along a
meridian that is ∼ 90◦ away from the path of Ω.

by δ0 ∼ Ω0 ∼ ωm � γ well outside the usual ARP domain as stated in Eq. 2.1. By

relaxing the adiabatic condition of ARP, the pulse duration (π/ωm) may be decreased, which

leads to faster absorption-stimulated emission cycles, and therefore larger optical forces at

reasonable values of Ω0 and δ0. These forces, predicted by Ref. [10, 29], were experimentally

corroborated [9].

The timing scheme for ARP-based absoprtion-stimulated emission cycles is illustrated by

Fig. 2.2. A pulse of duration π/ωm from one direction (e.g., from the left) is represented by

the half-period sine wave in the upper trace, and its upward frequency sweep is represented

by the curve in the lower trace. A second pulse, incident from the opposite direction (e.g.,
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from the right), is represented by the second half-period sine wave, also with an upward

frequency sweep. Then there is a dead time of 2π/ωm for experimental reasons [13] as well

as for the theoretical reasons that will become obvious with the inclusion of spontaneous

emission. The sequence can be repeated any number of times. In this simple picture, the

optical force from a single pulse pair is FARP ≡ ~kωm/π and can be orders of magnitude

larger than the ordinary radiative force Frad.

The Optical Bloch Equations enable the calculation of the optical force over multiple ARP

sequences, and may also include the effects of Doppler shifts and spontaneous emission. The

force onto the atom can be calculated using the Ehrenfest theorem [12]

F =< −∇H >= Tr
[
∇Hρ

]
=

~
2

(
u∇Ωr + v∇Ωi

)
, (2.2)

where Ωr,i and u and v are the corresponding components of torque and Bloch vectors. In

the case of two counter-propagating light fields whose wavenumber is k, the resulting force

is

F =
~k

2

((
Ω+ −Ω−

)
×R

)
3

(2.3)

where the force is given by the third component of this vector product. The torque vectors

Ω+ and Ω− refer to the right and left propagating fields respectively. The case of temporally

overlapping ARP pulses has been considered [30]. If the pulses are not temporally overlapped

one can treat them individually and write

F =
~k

2

(
Ω± × ~R

)
3

=
~k

2
ẇ. (2.4)

Identifying ẇ yields an expected result: a momenta of ~k is exchanged between the light

field and the atom if the Bloch vector is driven from one pole to the other. The force of a
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Figure 2.2: The upper trace shows the Rabi frequency Ω(t) during the pulse pair followed
by the dead time, and then the next pulse pair. The lower trace shows the frequency sweep
δ(t), in this case both upwards. (Figure adapted from Ref. [13].)
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single pulse expressed through discretization of ẇ is

F =
~k

2

ωm
π

∆w (2.5)

In the interaction picture one may use the Optical Bloch Equations (Eq. 1.14) with the

torque vector

Ωr = Ω0| sin(ωmt)| cosα(t)) (2.6)

Ωi = Ω0| sin(ωmt)| sinα(t)) (2.7)

δ = 0 (2.8)

and

α(t) = −(δ0/ωm)| sin(ωmt)|+ (k · v)t+ φ (2.9)

Here the frequency detuning δ(t) is included in the complex phase α(t) as−(δ0/ωm)| sin(ωmt)|

along with contributions that come from Doppler shifts, (k · v)t, and unavoidable phase

differences between pulses in a pair, φrel, as well as between pairs, φpp (see Fig. 2.2). The

sign of δ0 determines the direction of the frequency sweep for a single pulse. A positive δ0

signifies a sweep up in frequency (as in Fig. 2.2) and a negative δ0 signifies a sweep down.

These OBE’s (Eq. 1.14) are solved numerically in Fortran-90 using the BIM subrou-

tine [31] and an example of this code can be found in Appendix A. The next section will

describe the results of these calculations under various conditions.

29



2.2 ARP Force on Two-Level Atoms

2.2.1 ARP Force on Stationary Atoms

In the absence of spontaneous emission, stationary atoms (v = 0) are described by the

equations similar to those used previously to study dependence of optical forces from single

swept pulses [29]. However, phase differences between pulses, φrel and φpp, caused by atomic

motion and the jitter of the timing that starts each sequence respectively, are unavoidable

experimentally and their effects are discussed below.

To demonstrate the effects of phase, I choose to vary φrel while holding φpp = 0 and

calculate the average optical force over the duration of the pulse sequence. This calculation

simulates the ARP force on an atomic sample if the spatial extent of the sample along k is

much larger than the optical wavelength (typical of most experiments). Figure 2.3 shows

maps of the optical force averaged over 12 pulse pairs calculated for various values of Ω0 and

δ0 scaled by ωm. Averaging over 12 pulse pairs is sufficient to demonstrate regions of large,

robust forces in the nonadiabatic regime. These maps show that the optical force depends

strongly on relative phase as well as on the relative sign of δ0 in consecutive ARP pulses.

The ”up-up” case (top row of Fig 2.3) describes an ARP pulse pair with δ0 > 0 leading

to the upward evolution of the torque vector on the Bloch sphere. It corresponds to our ex-

periments using a retroreflected train of light pulses with appropriate delays that necessarily

resulted in pulse pairs with same upward or downward sweeps (see Ref. [13]). Figure 2.3a

shows the average calculated force with φrel = 0. The strength of the ARP force is more

sensitive to the values of Ω0 and δ0 than in Ref. [32] because those calculations were done

for a single sweep and deviations from the ideal case accumulate with each successive sweep.

Nevertheless, even after a very large number of sweeps there is a very strong ARP force for

parameter values that do not satisfy the traditional conditions given in Eq. 2.1 [32].
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Figure 2.3: Contour plots of the average force calculated over a range of the experimental
parameters, Ω0 and δ0, scaled by ωm. White regions represent areas with the greatest average
force, approximately FARP/2, and the darkest regions correspond to zero average force. The
top row (parts (a), (b), and (c)) are for all sweeps upward, corresponding to the experiments
of Ref. [13] . Part (a) shows the case for φrel = 0, part (b) shows the case for φrel = π,
and part (c) shows the average over the region between 0 and π. The bottom row shows the
corresponding results for pulse pairs with up-down sweep sequences. We leave φpp = 0 in all
plots.
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By contrast, the results when φrel = π are quite different (see Fig. 2.3b). Here, each

optical pulse has a π phase shift relative to its neighbors that clearly makes ARP much more

robust against changes in Ω0 or δ0. It is not difficult to show mathematically that the second

pulse of an ARP pair will cause R to retrace its path back to the south pole. This results

in complete cancellation of the errors associated with the first pulse pair and hence a robust

force.

The “up-down” case (bottom row of Fig. 2.3) corresponds to pairs of ARP pulses that

switch from δ0 > 0 in one pulse to δ0 < 0 in the next pulse. This case, illustrated in Fig. 2.3d,

shows that changing the nature of the sweep without changing its parameters can increase

the efficiency of ARP over a wide range of parameter values. Using φrel = π effectively

changes the sign of Ω0 so that Ω continues past the north pole as the second sweep begins

so that the torque vector evolves continuously and completes its second sweep toward the

south pole on the opposite side of the Bloch sphere. The force map for this case is in Fig.

2.3e.

As φrel is varied smoothly from 0 to π for the up-up sweeps, the region of high efficiency

ARP evolves quickly from the narrow region of Fig. 2.3a to the broader region of Fig. 2.3b

even for φrel < π/2, and then stays quite robust in the region π/2 < φrel < π. Although such

phase shifts could be controlled in principle, in any real experiment, the region occupied by

a sample of atoms always exceeds the wavelength of the light so different atoms experience

different values of φrel.

It is not difficult to imagine how averaging over values of φrel between Fig’s. 2.3a and

2.3b can result in Fig. 2.3c because the regions of efficient ARP simply expand and distort a

bit between these two extremes. By contrast, the same variation of φrel in Fig. 2.3d causes

the narrow pinch near (0, 1.6) at the left edge of Fig. 2.3d to drift toward the right, ending

near (1.7, 1.7) in Fig. 2.3e. The evolution between the limits shown in Fig’s. 2.3d and 2.3e
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is difficult to visualize without access to the several plots between them. They show that

this drift leaves a trail of high efficiency ARP region that is maintained by the wider regions

on each side of the pinch. The consequence is that the averages shown in Fig’s. 2.3c and

2.3f look surprisingly similar.

Two important observations about the effect of φrel on the forces from ARP emerge from

Fig. 2.3. First, repetitive sweeps in the same directions are the most robust if relative phase

in a pulse pair is equal to π. Second, averaging over relative phase produces results of the

maps for optical force that are independent of the sweep directions as shown in the right

column of Fig. 2.3.

2.2.2 ARP Force on Moving Atoms

In all of the calculations described here, the atomic velocity will be kept fixed thus con-

stituting the “dragged atom approach” [12]. Sample calculations including velocity changes

were carried out. In some cases, calculation time increased considerably, but the force results

did not change in any noticeable way. Therefore I feel justified in retaining this approxima-

tion.

It is clear from Fig. 2.3 that the ARP force on atoms at rest is close to its maximum

value FARP/2 over a large range of experimental parameters. Atomic motion in the “dragged

atom approach” assumes that the velocity v along the axis of the counterpropagating ARP

pulses is fixed, leading to constant Doppler shifts ±kv. Therefore, it is reasonable to assume

that the ARP force will be in the neighborhood of ∼ FARP/2 for all atoms whose motion

leads to Doppler shifts ± kv that are well below the sweep range ± δ0.

With moving atoms, a significant change in φrel occurs during the flight of an atom if

it moves by more than λ/4 during the interaction time tint that could be estimated based
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Figure 2.4: The velocity dependence of the ARP force for various values of the light field
parameters given as (δ0/ωm, Ω0/ωm). These two sets of parameter values were chosen from
the white region of Fig’s. 2.3c and 2.3f. Here φpp was fixed at 0 but φrel was averaged.

on the velocity range of the ARP force, |kv| < δ0. Choosing (FARP/2M)tint = δ0/2k gives

tint = πMδ0/~k2ωm. Avoiding a significant phase shift then requires that the atomic velocity

be < vr(ωm/2δ0), a speed always less than the recoil velocity vr ≡ ~k/M , corresponding to

a temperature of a few µK or less. Thus the effect of φrel cannot be neglected, so one must

average over it.

To present the effect of atomic motion in more detail, I chose two sets of values for

(δ0/ωm,Ω0/ωm). The first set (2.4, 1.8) is from our previous work [32] and corresponds to

part of the narrow region of the maximum ARP force in Fig. 2.3c. The velocity dependence

in this case is presented in Fig. 2.4a where the force in units of FARP is plotted vs. velocity

(plotted in units of δ0/k, the velocity where the Doppler shift equals the range of the ARP

sweep). It shows that the velocity range where the force is half of its maximum value

is |kv| ≈ δ0/8. However, this velocity range is expanded dramatically by choosing laser

parameters to be (4.19, 3.39) that correspond to the broader region of the maximum ARP

force in Fig. 2.3c.

One of the most obvious features of Fig. 2.4 is the multitude of very narrow spikes,
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especially at higher velocities. These are resonances (which are not computational artifacts)

that occur when the atomic velocity satisfies v = fωm/4k, where f = rational fraction, as

suggested in App. B of Ref. [13]. This velocity condition implies that atoms move by an

integer number of half wavelengths during a time of (pulse pair + dead time = 2× 2π/ωm)

so that atoms experience all pulse pairs with the same value of φpp [29].

In experiments however, φpp cannot be kept fixed. During the interaction time, each

atom may experience a range of values of both φrel and φpp as discussed above. Therefore,

Fig. 2.5 is based on averages over both phases. For φrel I choose 21 evenly spaced phases

and then average all results. For φpp the phase is determined by random numbers at the

beginning of each pulse pair, and the calculation is averaged over the 21 values of φrel. Then

the procedure is repeated 25 times and the averages are averaged.

The velocity dependence of the ARP force is plotted for four sets of parameters in Fig.

2.5, chosen from our previous work. Each of the four plots in Fig. 2.5 shows that the height

of the spikes is strongly reduced by the averaging over the phases, and three of them show

that the velocity range |kv| ≈ δ0/4.
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Figure 2.5: Force vs. velocity plots with averaging over both φrel and φpp for three parameter
sets matching those of Fig. 2 of Ref. [32] (parts a, b, and d) and one (part c) corresponding
to the wide part of Fig. 2.3c.
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2.3 The Effects of Spontaneous Emission

Spontaneous emission serves as the origin of the word “rapid” in ARP by requiring that

the frequency sweep rate be much larger than the natural decay rate γ as stated in Eq. 2.1.

Otherwise, the concomitant damping reduces the atomic coherence established by the laser

light and it precludes complete atomic inversion.

A typical dependence of the force on the ratio of ωm/γ is shown in Fig. 2.6 for 12

pulse pairs with δ0 = 4.19ωm and Ω0 = 3.39ωm. The solid curve is for an atom at rest

while the other three are for atoms with v = δ0/3k and different sweep directions. When

ωm/γ ∼ 1, spontaneous emission returns the atom to the ground state frequently enough

that the counterpropagating pulse pairs are inefficient at transferring momentum 2~k to the

atoms. As ωm/γ increases, the atom-light coherence is preserved for more pulse pairs, thus

more momentum can be transferred from the light field to the atoms before a spontaneous

emission event occurs.

However, satisfying the “rapid” condition (R in ARP) by choosing ωm/γ � 1 for a single

pulse pair does not eliminate effects of the spontaneous emission during a long sequence of

pulses. The possibility of a spontaneous emission to occur before the arrival of the second

pulse of a pair can have a huge effect because the second pulse would then deliver momentum

~k in the wrong direction resulting in the reversal of the ARP force. Such a force reversal

is unlikely to be immediately repeated, thus many sequential pulses will maintain the force

in the wrong direction. On average the force would vanish. In order to ameliorate this force

reversal, we allow a dead time between each pair of pulses. In this case, an atom left in the

excited state after the second pulse in a pair has a greater chance to return to the ground

state before the arrival of the next pulse pair, effectively restoring the original direction of

the force (see Ref’s. [13, 29]).
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Figure 2.6: The ARP force depends on the sweep rate ωm/γ for v = 0 (solid) and on sweep
direction for v = δ0/3k, which is about the velocity where Fig. 2.5 shows the force has half
of its maximum value. The long dashed curve is for the down-down case; the dotted one
is for the up-down or down-up case, and the short dashed one is for the up-up case. The
arrangement of these three curves would be reversed for v < 0.
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Figure 2.7 shows the dependence of the force on the dead time resulting from multiple

ARP pulse pairs having ωm/γ = 100. Five choices for the dead time with π/ωm increments

have been considered. For zero dead time (solid curve), the ARP force is reduced to zero

after a small number of pulse pairs because of the increased probability of force reversal

during a pulse sequence. However, the inclusion of dead time allows for the ARP force to

be maintained over many more pulse pairs. The greater the amount of dead time, the faster

the sequence can be repeated, but the more likely the sign of the force can be reversed. A

simple picture of this process that does not include the finite pulse length would lead to a

force as a function of dead time for long interaction times (tint � τ) of FARP (Td/(1 + Td)2),

where Td is in units of 2π/ωm. Though the magnitude of the force is in disagreement with

the numerical results, this simple picture agrees with the numerics as to the position of the

maximal force at a dead time of 2π/ωm over very many pulse pairs, thus justifying its use

in this paper.

Choosing ωm/γ � 1 and introducing the dead time do not prevent the decrease of ARP

force over a long interaction time (� 1/γ). This reduction occurs because the damping in

the optical Bloch equations decreases the length of the Bloch vector |R| from its initial value

of unity to a steady state value less than one. This simply means that the atoms are in a

superposition of ground and excited states, and that the coherence has been reduced by the

damping associated with spontaneous emission. For the case of |R| < 1, even perfect pulse

sequences cannot transfer momentum 2~k to atoms since the Bloch vector cannot reach from

pole to pole of the Bloch sphere. This limits the magnitude of momentum transfer by each

pulse pair to a steady state value over long times so that the force scale of Fig. 2.3 is reduced

below FARP/2, but the contour plots of average force do not change shape.

The velocity dependence of the ARP force with optimal dead time of 2π/ωm is shown in

Fig. 2.8. The plots result from solving the optical Bloch equations for (δ0/ωm, Ω0/ωm) =
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Figure 2.7: Calculated force vs. number of pulse pairs for various values of the dead time
between pulse pairs. The solid curve is for zero dead time, and the increasingly smaller dashes
correspond to integer multiples of π/ωm dead time (1, 2, 3, and 4 respectively). Although the
initial force values are different for a range of dead times, they eventually converge toward
F ≈ FARP/4.
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Figure 2.8: Calculated velocity dependence of the ARP force for two sweep schemes at
(δ0/ωm, Ω0/ωm) = (4.19, 3.39) as in Fig. 2.5c. In part (a) the frequency in both pulses of
each pair are swept from red to blue. Sweeps from blue to red produce a mirror image. In
part (b) each pulse of a pair has opposite directions for the frequency sweeps, either from
red to blue or from blue-to-red. The results are the same. In both (a) and (b) both φrel and
φpp are averaged, just as in Fig. 2.5.

(4.19, 3.39) with phase averaging, and a spontaneous emission rate given by ωm/γ = 100.

Two sequences of pulse pairs have been analyzed and are represented by the upper and lower

curves for twelve and sixty pulse pairs, respectively. These curves clearly demonstrate that

spontaneous emission reduces the magnitude of the force as compared with the plots of Fig.

2.5. We have found that the steady state magnitude of the ARP force is reached after sixty

pulses which means that our recent experiments with more than sixty pulse pairs were done

in the steady state regime [9].

The most noticeable effect of spontaneous emission on the ARP force is the unexpected

asymmetry with respect to the velocity reversal when consecutive sweeps are in the same

direction, as shown in Fig. 2.8a. This dependence even survives phase averaging since it

is caused by the difference in the time spent by the atom in the excited state |e〉. Because

spontaneous emission tends to reduce the magnitude of the ARP force, the reduction must be
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larger when the atom spends most of its time in |e〉. This is difficult to see in the Bloch sphere

trajectories because they are complicated and depend strongly on the laser parameters.

In the up-up case, the frequency sweep begins below atomic resonance by δ0. In the rest

frame of an atom in |g〉 moving with positive velocity in the direction opposite to the k-vector

of the first pulse of a pair, the initial frequency of the field is Doppler shifted upward. The

light is initially closer to resonance than δ0 and the atomic state is driven quickly toward |e〉

near the beginning of the pulse, and spends the majority of the pulse duration in the upper

hemisphere of the Bloch sphere, eventually approaching the north pole. The frequency sweep

for the following pulse also begins below resonance but it propagates in the opposite direction

so that the atom experiences light with a downward Doppler shift. The initial frequency is

further below resonance than δ0 so that the atom dwells longer in the northern hemisphere

of the Bloch sphere before being driven downward toward |g〉. Therefore, after two pulses

with consecutive sweeps in the same direction, an atom moving with positive velocity spends

most of its time in |e〉 (upper hemisphere) and thus experiences a weaker ARP force.

By contrast, if an atom’s velocity is negative, then the Doppler shifts are reversed and

the atom spends most of its time in |g〉 resulting in a stronger ARP force. When the two

sweeps of a pulse pair have opposite directions the longer time spent in |e〉 during one pulse

is compensated by the shorter time spent in |e〉 during the other one, restoring the symmetry

with respect to velocity direction, as shown in Fig. 2.8b.

2.4 Velocity Capture Range

Forces suitable for laser cooling must have significant strength at some velocities and

vanish at others. This is the only way for atoms that are initially spread in velocity space

to be compressed into the region at the boundary where the force vanishes. The utility of
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such forces depends on their range and strength where they’re finite, and the steepness of

their falloff where they vanish. Thus the velocity capture range (vc) is one of the important

parameters for characterizing laser cooling forces.

For the radiative force in the low intensity limit, vc ≈ γ/k and is entirely dependent on

the atomic properties. By contrast, the ARP force remains large for velocities where the

Doppler shifts are well within the range of the frequency sweep. This means that velocity

capture range for the ARP force, vc ∼ δ0/k, can be substantially increased by choosing δ0

to be larger than γ so that it can be orders of magnitude larger than that of the radiative

force. Furthermore, the velocity capture range is not determined only by atomic properties,

and in principle can be applied to different atomic species with optical transitions within the

range of the sweep.

The results of our calculations of the velocity capture range for the ARP force in the

presence of spontaneous emission and “up-up” sweep sequences are presented in Fig. 2.9 as

a function of δ0 and Ω0. The figure confirms that the amplitude of the frequency sweep, δ0,

is the most important parameter in defining vc. It also shows that the ARP force remains

effective (i.e., half of the v = 0 value), at velocities up to ∼ δ0/3k. In particular, the ARP

force with δ0 = 4.5ωm, where ωm = 100 γ, means that vc ∼ 150 γ/k, which is two orders of

magnitude larger than the capture range of the radiative force. Such a broad velocity capture

range of the ARP force removes the need for the Doppler compensation that is required for

most beam-slowing schemes [12].
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Figure 2.9: The shaded area shows the parameter values where the force exceeds FARP/6
(in the dotted region the force is always very small as shown in Fig’s. 2.3e and 2.3f). Each
succeeding lighter area indicates a region where the force exceeds FARP/6 for the indicated
velocity. The velocity increment between regions is ωm/4k up to v = 7ωm/4k in the white
region at the right edge. Since δ0 ∼ 4.5ωm in this region, the velocity is well in excess of
δ0/3k.
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Chapter 3

Numerical Simulations

The purpose of the numerical simulations presented in this chapter is to explore slowing

(and perhaps cooling) of atomic beams via the ARP force. I will first motivate why slowing

and cooling of atomic beams is of great interest. This will be followed by a description of

the model used in these simulations. The rest of the chapter will be dedicated to results of

these numerical simulations under various operating parameters and their implications.

3.1 Motivation

Small, portable, cold atomic samples have enormous potential for use in a fully integrated

quantum mechanical device like a clock [33, 34] or inertial sensor [35, 36]. A significant

challenge to this realization is the d6 scaling of the atom number with the size of an atomic

trap, where d is the diameter of the trapping light beams [37]. A decrease in atom-number

reduces the signal to noise ratio (SNR) and will preclude evaporative cooling to produce

ultracold temperatures (below the recoil limit) if the trap density is too low [12]. These

atom traps have slow loading rates and a relatively small number of atoms. Loading times
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of > 1 s are needed for sufficient atom number to create Bose-Einstein Condensation in

many small atom traps [38]. Faster loading rates will increase SNR over a finite observation

time. A way to alleviate these problems is to use laser cooling on an atomic beam. The

most common methods to date for laser cooling rely on velocity dependent absorption and

spontaneous emission.

Many paths to cold atoms rely on the magneto-optical trap (MOT) as a means to hold

the atoms in place so that stages of laser and evaporative cooling may be applied to reach

ultracold temperatures [12]. However, it is well known that the number of atoms loaded into

a MOT from a thermal vapor scales strongly with the size of the trapping light beams [39–

41]. It has been shown that the steady-state number of atoms in a MOT, NSS ∝ d3.6, where

d is the diameter of the trapping beams, for trapping volumes greater than ∼ 1 cm3 [40, 41].

However, experiments on mm-scale traps show a stronger scaling, with NSS ∝ d6 [37].

In an atomic-beam-loaded MOT, a counter-propagating laser beam will slow fast atoms

below the capture velocity of the MOT to amplify the number of trapped atoms [42]. The

changing Doppler shift associated with the slowing of the atomic beam may be compensated

for by a spatially varying magnetic field [15] or by chirping the frequency of the slowing

laser [43]. The length required to stop a thermal atomic beam is v2max/amax [12]. Here vmax

is the maximum atom velocity to be stopped and amax is the maximum radiative force ~kγ/2

divided by the atomic mass (1/γ ≡ τ the lifetime of the excited state). For the alkali-metal

atoms this sets the stopping length to ∼ 1 m. Radiative force cycles rely on spontaneous

emission to return the atoms to the ground state so that it may be re-excited by the slowing

beam. Very many of these cooling cycles (∼ 104) are needed to stop a thermal atomic beam.

The stopping length is dramatically decreased with the use of stimulated forces, thereby

decreasing the size of the apparatus.

The bichromatic force uses stimulated emission in a standing wave to scatter photons at
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a rate much faster than γ/2 [23–25]. This force also has the additional benefit of exerting

these strong forces over a large range of velocities [19, 44]. It has been show that bichromatic

slowing of a Rb beam increased atom-number and loading rates for a MOT by more than

an order of magnitude when compared to MOT loading without bichromatic slowing [45].

The velocity dependence of radiative force in the low intensity limit, vc ≈ γ/k is entirely

dependent on the atomic properties. By contrast, the ARP force remains large for velocities

where the Doppler shifts are well within the range of the frequency sweep. This means that

velocity capture range for the ARP force, vc ∼ δ0/k, is substantially increased by choosing

δ0 to be much larger than γ so that it is much larger than that of the radiative force.

Furthermore, the velocity capture range is not determined only by atomic properties, but

also upon experimental parameters. Figure 2.5c shows the ARP force as a function of atomic

velocity for a given Ω0 and δ0. Here the force stays greater than half its maximum for all

v < ±δ0/3k. With this motivation in mind, I will now introduce our model for simulating

the slowing of an atomic beam via the ARP force.

The potential benefits of ARP on the slowing of neutral atoms may also be applied to

molecules as well. There is considerable interest in the production of samples of ultracold

molecules for applications in quantum computation [46, 47], quantum simulation of con-

densed matter systems [48–50], precision measurements [51–54], controlled chemistry [55],

and high precision spectroscopy [56]. The crucial step is to bridge typical molecular source

velocities (∼ 150− 600 m/s) and velocities for which trap loading or confinement is possible

(≤ 5 − 20 m/s) [57]. Spontaneous decays to many different ro-vibrational states has been

a significant hindrance to the direct laser cooling of molecules to ultracold temperatures.

With its decreased reliance on spontaneous emission, ARP may be a suitable candidate for

laser cooling and slowing of molecules. For these reasons it is advantageous to explore the

properties of the ARP force via numerical simulations.
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Figure 3.1: Graphical depiction of model for a single sequence of adiabatic rapid passages
with spontaneous emission for numerical simulations. Pad is the probability of an adiabatic
transition, ωm is the modulation frequency, γ is the spontaneous emission rate, and ∆v is
the velocity change for a single recoil. See text for further description.

3.2 Model

Semi-classical numerical calculations were performed to simulate the longitudinal inter-

action of an atomic beam with a series of periodic adiabatic rapid passage sequences over a

finite interaction time. The atomic beam consists of 5,000 atoms unless otherwise noted. The

initial longitudinal velocity of a single atom is a pseudo random number from a Maxwellian

distribution centered at v = 1050 m/s, a FWHM of 520 m/s, and zero transverse velocity.

A flow chart of the model used for a single ARP sequence can be seen in Fig. 3.1.

A single ARP sequence consists of counterpropagating ARP pulses separated in time

with a finite amount of time where there is no light interacting with the atom as shown in

Fig. 2.2. The first pulse in each sequence is labeled L, and the second pulse R. Each pulse
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has some finite probability Pad to transfer a single atom between two states, labeled |g〉 and

|e〉. An atom initially in |g〉 will go to |e〉 with a probability Pad, and an atom initially

in |e〉 will go to |g〉 with a probabilityPad. If pulse L (R) drives the atom from |g〉 → |e〉

(|e〉 → |g〉), then the atoms velocity will change by - 0.1 m/s. If pulse L (R) drives the atom

from |e〉 → |g〉 (|g〉 → |e〉), then the atoms velocity will change by + 0.1 m/s.

The effects of spontaneous emission may be taken into account in this model as well. If

the atom is in state |e〉, there is some probability the atom will return to state |g〉 before

interacting with the next ARP pulse. That probability for the atom to return to the ground

state is 1−e−γt, where γ is the spontaneous emission rate and t is the time between pulses. In

this simple model there is no momentum kick associated with spontaneous emission. Using

the timing sequence in Fig. 2.2, the time between L and R in a single sequence is π/ωm, and

a time of 3π/ωm between R of one sequence and L of the next.

It is also possible to include the velocity dependence of the ARP force by making Pad

velocity dependent that can vary the width of the atomic velocity distribution. Broaden-

ing of the velocity distribution is characteristic of heating, and narrowing of the velocity

distribution is characteristic of cooling.

3.3 Effect of Spontaneous Decay and Moving Atoms

This section will discuss the effects of spontaneous emission and Pad on the ARP force. As

shown in Sec 2.3, the ARP force decreases by a factor of ∼ 2 in the presence of spontaneous

emission for interaction times much longer than the excited state lifetime. To mitigate this

effect, all simulations without spontaneous emission use 5,000 pulse pairs, and simulations

with spontaneous emission use 10,000 pulse pairs. Motivated by experimental values, the

spontaneous emission rate is chosen to be γ = ωm/100. This leads to an interaction time
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with spontaneous emission of ∼ 800 lifetimes.

To begin with, consider the case of perfect ARP (Pad =1) with and without spontaneous

emission. Fig. 3.2 shows that spontaneous emission has very little effect on final atomic

velocities when compared to the simulation with no spontaneous emission. The widths of

the initial and final velocity distributions are very nearly the same in both plots. Without

a velocity dependent force, the ARP force is unable to cool a sample, but it is possible to

cause heating. Since the width of the velocity distribution is related to the temperature of

the sample, we may infer that perfect ARP, with and without spontaneous emission, does

little to change the temperature of the sample.

Variations in experimental parameters (intensity, atomic velocity, frequency sweep, etc.)

lead to imperfect ARP (Pad 6= 1). Such small imperfections can rapidly lead to a dramatic

decrease in the ARP force over time as these errors may compound themselves. Fig. 3.3

shows the effect of imperfect ARP with and without spontaneous emission over 10,000 and

5,000 pulse pairs respectively. This figure shows that without spontaneous emission, even a

1% error makes the ARP force very ineffective. The final atomic velocity is very nearly the

initial atomic velocity. However, with spontaneous emission, a 1% error in a single ARP only

reduces the force by ∼ 15%. A 4% error in a single ARP only reduces the force by ∼ 50%.

As in the previous figure, it should also be noted that the width of the velocity distributions

are relatively unchanged so little heating or cooling is observed.

It may seem counterintuitive that spontaneous emission, an incoherent process, should

have such a profound positive effect on a coherent process such as ARP. Fig. 3.4 shows how

quickly the ARP force deteriorates when a small imperfection is present (Pad = 0.99) and

spontaneous emission is turned off. The simulation begins with 500 atoms at zero velocity.

For 250 pulse pairs and perfect ARP with ∆v = −0.1 m/s, a final velocity of - 50 m/s for

all 500 atoms would be expected. Fig. 3.4a shows the atomic velocity distribution after 250
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Figure 3.2: The effect of of spontaneous emission on the ARP force. The top plot shows 5000
pulse pairs acting on a velocity distribution without spontaneous emission. The bottom plot
shows 10000 pulse pairs acting of the same ensemble with ωm = 100γ.
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pulse pairs acting without spontaneous emission for Pad = 1, 0.99, and 0.96. The bottom
plot shows 10000 pulse pairs acting of the same ensemble and ωm = 100γ.
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pulse pairs for Pad = 0.99 . This figure shows that a 1% error in a single ARP leads to

an average velocity of only - 5 m/s and a width of ∼ 50 m/s. Fig. 3.4b shows how the

average final velocity of the ensemble varies with the number of pulse pairs for imperfect

ARP. According to this figure, the average velocity levels off at ∼ - 5 m/s after 50 pulse

pairs. After 50 pulse pairs (100 pulses) there should be almost as many atoms in the ground

state as the excited state if there is a 1 % error for a single pulse. As a consequence, any

additional pulse pairs will not increase the mean of the velocity distribution. The width

of the distribution will increase over time as additional pulse pairs cause a random walk in

velocity space. Though imperfect ARP may heat an ensemble of atoms in this example,

imperfect ARP can be used to cool atoms under the right conditions.

The velocity dependence of an optical force plays a critical role in determining its utility

for laser cooling. Fig. 3.5 shows that ARP may be suitable for the cooling of an atomic sam-

ple. It is required to know the velocity dependence of Pad to study the velocity dependence

of ARP in this model. Fig. 3.5a shows a numerical calculation of Pad as a function of atomic

velocity for a single pulse with parameters δ0 = 3.0 ωm and Ω0 = 4.4 ωm (Plot b in Fig. 2.5).

The velocity frame is centered at 1050 m/s to match the peak of the initial atomic velocity

distribution. Also shown in this figure is a Gaussian fit to Pad to be used in the numerical

simulation that is nearly perfect between the velocities of 0 and 2000 m/s and has a 1/e

width of ± 795 m/s.

With Pad(v) from the Gaussian fit, numerical simulations of 2,000, 6,000, and 10,000 pulse

pairs are carried out upon an atomic ensemble containing 5,000 atoms with a Maxwellian

velocity distribution (most probable velocity of 1050 m/s and a velocity spread of ± 260

m/s). The final velocity distribution in Fig. 3.5b shows both slowing and significant velocity

compression. The peak final velocity for ∼ 750 m/s and the velocity spread is ∼ ±50 m/s.

The ARP force reduces the peak atomic velocity by ∼ 25% and reduces the velocity spread
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by ∼ 80%. Reducing the velocity spread by a factor of 5 is equivalent to reducing the

temperature of the ensemble by a factor of 25. It should also be noted that there are very

few atoms with velocities > 1000 m/s for 10,000 pulse pairs. From this observation it can

be concluded that the ARP force can slow and cool atoms over a wide range of velocities.

The total interaction time for 10,000 pulse pairs in this simulation is ∼ 1250 lifetimes for

ωm = 100γ. If the ensemble was under the influence of a constant radiative force, each atom

would have received at most 300 velocity recoils in that same interaction time (see Eq. 1.16).

The resulting change to the atomic velocity would be ∼ 30 m/s. For the chosen parameters,

the ARP force is ∼ 10 times greater than the maximum radiative force and shows significant

cooling.

Magnetic and optical trapping of neutral atoms is used in many areas of atomic physics

such as high resolution precision spectroscopy, collision studies, Bose-Einstein condensation,

and atom optics [12]. However, atoms traveling at high velocity that do not come to rest

by the end of the trapping region cannot be trapped. Typical velocity capture ranges for

magneto-optical traps are of the order 10-100 m/s. It would then be desirable to discover

under what circumstances the ARP force could slow an atomic beam to a velocity that most

atoms could be trapped.

The amount of beam slowing capable of being produced by the ARP force depends on

the width of the force vs. velocity distribution (∼ δ0/k) and the interaction time. The ARP

force in Fig. 3.5b with δ0 = 3.0 ωm, Ω0 = 4.4 ωm, and ωm = 100γ, reduces the peak atomic

velocity by ∼ 25% for an interaction time of 1250τ . One way to increase the rate and

magnitude of slowing is to increase ωm from 100γ to 400γ, resulting in an increase of the

magnitude and velocity range of the ARP force by a factor of 4. Fig. 3.6 shows an atomic

beam with 5000 atoms can be slowed to ∼ 75 m/s in a time of 1000τ , via the ARP force

with δ0 = 3.0 ωm, Ω0 = 4.4 ωm, and ωm = 400γ. The interaction time corresponds to 32,000
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Figure 3.5: Longitudinal slowing of an atomic beam. Shown at the top is Pad(v) for ARP
with δ0 = 3.0 ωm and Ω0 = 4.4 ωm (solid line) and a Gaussian fit to the distribution (dotted
line). The bottom figure shows the result of 8000 pulse pairs acting on 5000 atoms using the
Gaussian fit for Pad(v) from the top. The ensemble is slowed by ∼ 25% and its temperature
is reduce by more than an order of magnitude.
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pulse pairs with an average force ≈ 40 times the maximum radiative force.

The width of final velocity distribution in Fig. 3.6 is roughly 4 times larger than that of

Fig. 3.5b. The steady state temperature of a sample acted upon by a damping force should

be proportional to the ratio of the diffusion rate to the damping rate [12]. The damping

rate of a force is proportional to FMax/vc which does not depend on ωm. The diffusion rate,

however, should depend on ωm as a single spontaneous emission event will reverse the sign of

the ARP force for many cycles until another spontaneous emission event restores the correct

sign to the force. The number of cycles it will take for the force to be corrected (and hence

the diffusion rate) will therefore be proportional to ωm.

It should also be noted that the beam is slowed over a distance of ≈ 5 cm in a time of

≈ 100 µs, both of which are more than an order of magnitude less than slowing distances

and slowing times achievable via the radiative force. Most of the atoms in the resultant

velocity distribution could be trapped by a traditional magneto-optical trap.

Adiabatic Rapid Passage has many potential advantage over traditional beam slowing

techniques. The average force can be more than an order of magnitude larger while still

reducing the temperature of the ensemble. The shorter interaction time required to stop

an atomic beam also decreases the amount of distance required for the slowing apparatus.

It should also be noted that this laser cooling is done without the aid of any spatially

dependent magnetic field found in most slowing apparatuses. Also, the use of the ARP force

significantly decreases the number of unwanted spontaneous emission events. Spontaneous

emission causes heating in all dimensions via random walk and the atom may result in decay

to a dark state that will disrupt the cooling cycle. I will now describe the apparatus used to

create and image a metastable helium beam for our experiments using the ARP force .
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shows the result of 8000 pulse pairs acting on 5000 atoms using the Gaussian fit for Pad(v)
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is reduced by roughly a factor of 4.
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Chapter 4

Metastable Helium Apparatus

The 23S1 − 23P2 transition in helium is an ideal choice for experiments using adiabatic

rapid passage. Various important properties and the relevant energy levels for this transition

can be found in Table 4.1 and Fig. 4.2 respectively. The transition wavelength of ∼ 1083 nm

allows the use of fiber-coupled electro-optical modulators and optical fiber amplifiers that are

discussed in 5. The lifetime of the 23P2 electronic state is relatively long compared to most

laser cooling transitions which helps satisfy the rapid condition for ARP. The relatively low

saturation intensity also helps by making it easier to at least partially satisfy the adiabatic

condition for ARP. Finally, the energy levels of the 23P are well separated and thus make the

two level atom approximation valid in the context of the experiments to be discussed in this

thesis. This chapter will discuss the vacuum system used in the production and detection of

metastable helium (He*) after a transverse interaction with ARP light.

A top view schematic of the vacuum system can be seen in Fig. 4.1. First I will discuss

the components of the beamline. Then a discussion of how the metastable helium beam

is produced by a reverse flow DC discharge source (A in Fig 4.1). This will be followed

by details of how the atomic beam travels inside a stainless steel vacuum system before
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Figure 4.1: A top view schematic of the atomic beam setup which show the positions of the
source, interaction, and detection regions (A, B, and C respectively). The counterpropagat-
ing laser beams (L) cross the atomic beam (dashed line) at right angles. All dimensions are
in cm.

Quantity λ ~ωa τ γ/2π Isat ωr/2π
Units (nm) (eV) (ns) (MHz) (mW/cm2) (kHz)

1083.33 1.144 98.04 1.62 0.17 42.46

Table 4.1: Values for the various properties of the 23S1−23P2 Helium transition used in this
experiment, taken from [12].

it is collimated by a narrow vertical slit and interacts with ARP light transversely (B in

Fig 4.1). Lastly, there will be a discussion of the positional detection of the He* atoms by

the combination of a multichannel plate (MCP) and phosphor screen (PS) (C in Fig 4.1).
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Figure 4.2: Relevant energy levels for the ARP experiments in helium. The lifetime of the
metastable state 23S1 is ∼ 7900 s and serves as the “ground state” for our experiments [58].
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4.1 Metastable Helium Beamline

The metastable He beamline can be broken into three distinct sections: source, interac-

tion, and detection chambers. A schematic of the vacuum system can be seen in Fig. 4.3.

The interaction and detection chambers will be referred to as the beam chamber at times.

The system consists mainly of 4 inch diameter cylinders of stainless steel with 6 inch copper

sealed ConFlat flanges. The experiments described in this dissertation are carried out on a

high vacuum (HV) chamber with a background pressure of ∼ 10−7 Torr measured by Lesker

G100F ion gauges. The mean free path of the He* atoms is much longer than that of the

length of the beamline due to the small collisional cross section even at HV pressures.

The source chamber opens into the interaction chamber through a 0.5 mm aperture (as

described in detail below) which allows differential pumping between the two regions. The

source chamber is pumped by a Pfeiffer TPH 330 turbo molecular pump backed by a Pfeiffer

Duo 110 mechanical pump. These pumps must handle a large influx of helium gas when

the source is running. The interaction and detection chambers are pumped by a separate

Pfeiffer TPH 330 turbo molecular pump backed by a Welch 1376 mechanical pump. The

detection region can be closed off from the interaction region by a copper-sealed gate valve.

This allows for the changing of detector parts without the need to bring the entire beamline

up to atmospheric pressure.

The vacuum system is protected from the back-streaming of oil in the event of a sudden

power outage by foreline shut-off safety vent valves placed between the mechanical and the

turbo molecular pumps. The Pfeiffer Duo 110 is protected by a Pfeiffer ONF 25 safety fore-

line valve, while the Welch 1376 pump has a Lesker auto-off safety vent valve. In both cases

the valves remain open as long as the power is on and pressure on the mechanical pump side

is lower than that of the fore-line. The valves will close within 30 ms in the event of a power
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Figure 4.3: The vacuum system is divided into three distinct sections: source, interaction,
and detection chambers. The system consists mainly of 4 inch diameter cylinders of stainless
steel with 6 inch copper-sealed ConFlat flanges. Modified from [26]
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outage and slowly vent to atmospheric pressure. The safety valves will not open the moment

power has returned but only when the pressure on each side of the valve has equalized to

prevent the back-streaming of oil into the vacuum system.

4.2 Metastable Helium Source

The optical transition 11S0 → 23S1 in helium is doubly forbidden by selection rules and

is also at a wavelength where no simple laser exists. Therefore the production of metastable

helium must be accomplished via some other method. The atomic beam source used in our

laboratory is a reverse flow DC discharge designed modeled after the design of Shimizu [59],

with modifications originated by Mastwijk et al.[60]. A diagram of the source can be seen

in Fig. 4.4. Our source was originally built at Universiteit Utrecht and then assembled and

tested at Stony Brook University in 1999.

The source consists of a 1 cm diameter glass tube mounted in the center of a 3 cm stainless

steel jacket cooled by liquid N2. The glass tube is held in place by a Teflon spacer between

it and the jacket as well as an O-ring spacer near the input of the helium gas. Helium flows

between the tube and the jacket towards the tip of the tapered glass tube. The helium gas

is cooled as it comes into contact with the jacket.

A 1 mm diameter tungsten needle is placed inside the glass tube with its point toward

the tapered end of the tube to serve as the cathode of the source. The anode is a grounded

aluminum plate with a 0.5 mm aperture placed at the front end of the LN2-filled jacket,

called the nozzle plate. The distance between the tungsten needle and the nozzle plate can

be adjusted by a linear feedthrough connected to the end of the rod holding the needle in

place. A second plate, called the skimmer, with a 0.5 mm aperture is placed directly behind

the nozzle plate. The skimmer plate geometrically defines the He* beam while also allowing
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discharge

Figure 4.4: Top view schematic for DC discharge source for the production of metastable
helium.

for differential pumping between the discharge chamber and the beam chamber. A Welch

1402 mechanical vacuum pump pulls the He gas though a small hole at the end of the glass

tube and then pumps the gas out of the system. The typical outlet pressure is measured

to be ≈ 1.10 Torr by an MKS Instruments convectron gauge and a Terranova 926 gauge

controller. The remaining gas flow sustains a glow discharge between the needle and the

nozzle plate when the needle is placed at a high negative voltage (typically -2200V provided

by an HP 6525A). The plasma formed creates metastable He (23S1) via electron impact or

ion-electron recombination. A large fraction of the produced He* is immediately quenched

by the collisions in the dense plasma. The He* atoms produced in the dilute afterglow of

the discharge survive and fly through the skimmer plate aperture to define the beam line.

The efficiency (measured by the number of metastable He atoms produced relative to the

number of ground state He atoms flowing into the source chamber) of the source is quite

low (∼ 10−5 − 10−4). The source will also produce helium in the 21P state that decays

quickly to the ground state with emission at 62.6 nm. This ultraviolet emission will serve
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as an unwanted source of background in our measurements. Atoms are also produced in the

21S state with a lifetime of 19.7 ms (longer than the ∼ 1 ms flight time of the beam) [61].

These atoms will not interact with the ARP beams but will be detected by the MCP/PS as

discussed later.

The source is very sensitive to the pressure in the discharge region and the voltage on

the discharge needle. The discharge may run stably for discharge currents between 2 and 12

mA based on pressure and voltage. The choice of 6 mA for normal use is made as a trade-off

between metastable production and source reliability and longevity. The source output flux

is ≈ 1014 He∗ atoms/s·sr [62, 63]. The atoms have a roughly Maxwellian distribution of

longitudinal velocities centered at ∼ 1000 m/s with a FWHM of ∼ 400 m/s as measured by

time of flight [62].

4.3 Interaction Region

The source and skimmer protrude into a six-way Conflat cross that is directly welded

onto the Tee of the source chamber. Four of these arms have windows ±45 deg from the

vertical with anti-reflection coatings for λ = 1083 nm and λ = 389 nm light. The purpose of

this setup is to allow optical access to the He* beam as close as possible to the point at which

the atoms emerge from the skimmer. This region is used in the experiments concerning the

use of the bichromatic force to show cooling without spontaneous emission. It is not used in

the ARP experiment.

The beam then arrives at another six-way cross oriented with arms in the vertical and

horizontal directions. The atomic beam travels for 24 cm from the skimmer before impinging

on a gold slit 250 µm wide by 1 cm tall as seen in Figure 4.5a. The vertical slit is required

to geometrically define the atomic beam so the atoms have very little transverse velocity.
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Behind the atomic slit is a small Helmholtz coil setup. The Helmholtz coils are designed to

produce a homogeneous magnetic field along the optical axis of the ARP light (perpendicular

to the atomic beam) for optical pumping (see Section 1.3). There were two important

considerations that had to be made when placing the coils in the vacuum system. First, all

of the materials had to be vacuum compatible. The coil holder is made of the machineable

glass-ceramic Macor and its dimensions can be seen in Figure 4.5b. It was also important to

consider the poor thermal conductivity of the volume inside the vacuum system. Relatively

low currents must be used in order to minimize the need to dissipate heat in the coils used

to generate the magnetic field. A B-field of a few Gauss (1G = 10−4 T) is sufficient to

lift the degeneracy of the magnetic sublevels (1.4 MHz/G·B[G] > γ/2π = 1.62 MHz). The

assembly was built with an average coil radius of R ≈ 2.3 cm with n = 18 turns on each

side. The wires were made of copper with Kapton insulation. The B-field as a function of

applied current in the center of the Helmholtz coils was measured to be ≈ 5 G/A. The ARP

experiments were carried out with 2 Amps of current for a B-field of 10 Gauss. The ARP

beams traverse the atomic beam approximately in the center of the Helmholtz coils.
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Figure 4.5: Part (a) shows a schematic of the slit for the atomic beam. A thin slit is cut into
a metal foil that is glued on a piece of aluminum. The slit is 1 cm tall and 250 µ wide. Part
(b) shows a side-view of the Helmholtz coils including mount and slit for the atomic beam.

4.4 Detection Chamber

He* atoms carry nearly 20 eV of internal energy which may be released via collision.

Such a collision with a metallic surface will release an energy that is much larger than

the work function of that material and result in the ejection of an electron. This effect is

used in the ARP experiment for the detection of He* atoms. A microchannel plate (MCP)

and phosphor screen (PS) combination are used to image the cross section of the atomic

distribution thereby measuring the deflection caused by the ARP force.

An MCP is a thin disc of lead glass comprised of many parallel channels perpendicular

to the disc surface as seen in Figure 4.6. The 10 µm diameter channels are arranged in a

hexagonal lattice with lattice spacings of 12 µm. The large internal energy of the He* atom

results in near unit efficiency conversion of He* atoms to electrons. A negative bias voltage
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Figure 4.6: Schematic of the MCP/PS detector. Metastable helium atoms hit a multichannel
plate and eject electrons, which causes a cascade that can be made visible by the fluorescence
of a phosphor screen. Images of the screen are then taken with a CCD camera. Figure
modified from [63]

is placed across the MCP to cause electron multiplication and acceleration of the electrons

through the channels. The MCP’s used in this experiment are produced by the company

Photonis. They are specified to be 25 mm in diameter and provide gain of ∼ 103 for a bias

voltage of -1000 Volts.

The electrons are detected by a 1 inch diameter Lexel phosphor screen placed directly

behind the MCP. The phosphor screen consists of a 1.16 inch diameter glass plate with a thin

layer of Indium-Tin Oxide (ITO) and aluminum for conductivity. A layer of P43 phosphor
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particles are deposited on top of the glass plate for an active phosphor area with a diameter of

0.96 inch. A large positive voltage (∼ 2000V) is applied to the phosphor screen to accelerate

the electrons from the output of the MCP to the PS. The electrons will then cause the PS

to fluoresce with a brightness at a particular position that is roughly proportional to the

electron flux. Therefore the brightness of the PS is related to the number of He* atoms

incident upon the MCP channel directly in front of the PS.

To capture this image, a 35 mm X 50 mm front surface mirror is mounted directly behind

the PS at 45◦. The mirror is glued to a piece of sheet metal and is assembled together with the

MCP/PS detector with Kimball Physics standard eV parts. The detector is constructed with

Alumina (Al2O3) rods, C7X7 stainless steel plates with centered one inch diameter holes,

springs, spacers, and retaining rings. Copper wires with Kapton R© insulation are spot welded

to the stainless steel plates and connected to high voltage power supplies through a 1.33 inch

electrical feedthroughs on a flange multiplexer (see Figure 4.6 for electrical connections). The

detector is mounted onto a feedthrough on the top flange of the detection region.

The image is viewed through a side window of the detection chamber and captured by

a CCD camera with 640 X 480 resolution. The images of the camera are captured using a

TV tuner card (AverMedia TV98). These images can be viewed on a computer screen with

the program VLC Media Player and saved by the screen capture program CMD Capture

in bitmap format. The default of CMD capture is to take images in RGB color format

so the file size per image can be quite large (≈ 1.4 MB). A video of the deflected atoms

can also be taken using the open source program VirtualDub when needed. Considerable

hard drive space and analysis time is saved by converting the images to 8-bit (greyscale)

and cropping the images to just the area of interest before converting the images into TIFF

format. This part of the analysis is done with ImageJ, a freeware Java application developed

at the National Institutes of Health. The data is then analyzed with a Mathematica code,
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especially written for this purpose.

The MCP/PS detection scheme is not without some disadvantages. The detector reacts

strongly to the UV light from the source discharge and results in fluorescence just like the

He* atoms. Also, the relationship between the fluorescence of the PS and electron number

is entirely unknown and there is no absolute calibration between atom flux and the image

pixel value. The PS detector is also nonlinear and nonuniform in its sensitivity to atomic

flux. The non-uniformity is mainly the result of the aging of the PS under high flux impact.

These disadvantages make relative measurements of atomic flux difficult, but not impossible,

over a single image. The techniques used will be described in Section 6.1.
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Chapter 5

Laser Systems

In this chapter I will describe how ARP light is produced for experiments in the laboratory

by diode lasers, fiber amplifiers, and electro-optic modulators to drive the desired transition

in metastable helium (23S1 → 23P2) at λ = 1083 nm (τ(23P2) ≈ 97 ns). These experiments

measured the ARP force at fixed atomic velocity (varying Ω0 and δ0) and varying atomic

velocity (fixed Ω0 and δ0). The chapter begins with a discussion of the frequency tuning,

locking, and measurement of diode lasers. Next, it will be shown how the chirped pulses

required for ARP are produced by LiNb03-based fiber-coupled, electro-optic modulators.

From there, I will discuss how the frequency spectra and intensity distributions of the lasers

are measured using a Fabry-Perot spectrometer and fast InGaAs photodiode respectively.

This will be followed by a discussion of the Yb-doped fiber amplifiers used to produce the

required intensity of the ARP beams. At the end of the chapter, I will describe the optics

required to transport the optical beams to the interaction region.
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Figure 5.1: Configuration of the diode laser extended cavity. After collimation by a spherical
lens, the laser light is sent through a 70/30 beam splitter. The light reflected off the beam
splitter is retroreflected by a high reflectivity mirror to provide 9% optical feedback to the
laser. A PZT is mounted on the kinematic mirror mount so that the external cavity length is
tunable by voltage applied to the PZT. The 70% transmitted beam is used for the experiment
and the 21 % leakage beam is used for saturated absorption spectroscopy.

5.1 The Diode Laser

The ARP experiments described in this thesis were done using two Spectra Diode Labs

SDL-6702-H1 Distributed Bragg Reflector lasers. The distributed Bragg reflector configura-

tion for a diode laser involves making corrugations in the substrate outside the gain region

to force the diode to oscillate in a single axial mode that satisfies the Bragg condition [64].

Frequency control and stabilization of the diodes used in the ARP experiments was first
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investigated by C. Avila [65].

The SDL-6702-H1 diode laser comes in a standard 8-pin TO-3 window package with a

thermistor and a thermoelectric cooler included. A Newport model 325 temperature con-

troller and a Newport model 505 current controller are used for temperature stabilization

and current injection for one diode. The other diode operated with a Lightwave LDT-5910

temperature controller and Thorlabs LDC-500 current controller. The injection current to

the diode may be modulated at up to 500 KHz for the purpose of frequency locking to be

described later.

5.1.1 Laser Frequency Tuning

For the ARP experiment and for most experiments in atomic and molecular physics it

is crucial to control and stabilize the laser frequency on both short and long time scales.

The laser frequency may be coarsely controlled by adjusting the temperature of the diode

with a tuning coefficient of -22 GHz/◦C [65]. Fine control of the laser frequency is achieved

through injection current control and has a tuning coefficient of -300 MHz/mA. To achieve

the wavelength of the 23S1 → 23P2 in He* (λ = 1083.3307 nm) the thermistor on one diode

was typically set to 9.83 kΩ (∼ 25◦C) and its current controller to roughly 140 mA. The

second diode operated at a temperature of 23.3◦C and ∼ 140 mA. At these settings, the

typical diode output power is ∼ 30 mW.

The active optical feedback required for frequency stabilization is achieved through the

use of 70/30 beam splitter and a high reflectivity mirror mounted on a piezo-electric trans-

ducer (PZT), driven by a homemade, high voltage controller (see Fig. 5.1). An “extended

cavity” (EC) is formed between the back Bragg reflector of the diode and the high reflectivity

mirror. Some of the light (9%) is reflected back into the diode for frequency stabilization.
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A larger portion of the light (21%) is used for Saturation Absorption Spectroscopy (see

Sec 5.1.2) and is hereafter referred to as the ”leakage” beam. Most of the light (70%) is

coupled into an optical fiber and sent to the experiment. Applying a voltage to the PZT

will change the position of the EC mirror, thereby changing the length of the cavity. A

change in the cavity length will in turn change the resonance condition of the laser and, as

a consequence, tune the frequency of the laser.

The EC is sensitive to both mechanical vibrations, air flows, and temperature drifts. To

alleviate the effects of vibrations the cavity is rigidly mounted on a solid 305 mm X 710

mm X 76 mm slab of aluminum. To diminish the effects of air flow and changes in room

temperature the cavity is enclosed on 5 sides with 51 mm thick Owens-Corning R© polystyrene

foam. In addition to providing fine tuning of the laser frequency, the EC also dramatically

reduces the laser linewidth [66, 67] to ∼ 125 KHz [13]. This linewidth is much smaller than

the natural linewidth (1.6 MHz) of the 23S1 → 23P2 in He* used in the ARP experiment.

5.1.2 Laser Frequency Locking

To further reduce frequency fluctuations and long term drift more action must be taken.

A Doppler-free Saturated Absorption Spectroscopy (SAS) signal is derived from the inter-

action of the leakage light and an He* cell to lock the laser frequency to the desired atomic

transition [68]. The leakage light may be incident on an acousto-optical modulator (AOM)

so as to produce light at some frequency δ above or below the original laser frequency based

on the orientation of the AOM.

AOM’s consist of a crystal into which an RF acoustic wave is launched. This acoustic

wave generates a sinusoidal refractive index gradient that may act as a grating. A laser

beam incident on this grating may be diffracted if the Bragg condition is satisfied. The laser
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frequency is shifted either up or down by an integer multiple of the RF frequency equal to the

diffraction order. The efficiency of this diffraction depends upon the laser’s angle of incidence

and the strength of the RF wave [69]. AOM’s typically operate in the frequency range 20 -

1000 MHz, with a bandwidth typically 50% of the AOM’s center frequency, and efficiencies

upwards of 80% in the first order diffracted beam. Optical beams to lock off resonance are

produced by an Isomet 1205-1-804B, Isomet 1250-2BS-943A, or a Brimrose TEF-270-100

AOM. These AOM’s allow the laser to be detuned from atomic resonance anywhere from

30-350 MHz from atomic resonance. Each AOM is driven by a voltage controlled oscillator

(VCO) and a ZHL-2W-1 Minicircuits RF amplifier. The VCO’s used in this experiment were

the Minicircuits ZX95-100 -S+, ZX95-200A-S+, and the ZX95-400-S+.

The beams required to do Saturated Absorption Spectroscopy are produced by the small

(4%) reflection from each surface of a thick piece of uncoated glass as well as the beam

transmitted through the glass (see Fig 5.2). The transmitted beam is much stronger and is

referred to as the “pump” beam. The two reflected beams are referred to as “reference” and

“probe” beams. The reference and probe beams pass through a He discharge cell and 50/50

beam splitter before striking two photodiodes. The pump beam is reflected from the 50/50

beam splitter and couter-propagates with the probe beam through the discharge cell. As the

laser frequency is swept, the absorption peak of the reference and probe beams is the normal

Doppler-broadened signal. However, there is a decrease in absorption at atomic resonance

in the probe beam due to the presence of much stronger pump beam that saturates the

transition and has the opposite Doppler detuning for a given velocity class of atoms. The

resulting signal is referred to as the Doppler-free Lamb dip. The photodiode signal from the

probe is subtracted from the reference to give a Doppler-free absorption spectrum.

The absorption signal alone is not enough to provide feedback to the laser. The laser

frequency is dithered at 10 KHz for lock-in detection. The absorption signal is then sent
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Figure 5.2: Schematic for laser frequency locking to the 23S1 → 23P2 transition of He* by
Saturation Absorption Spectroscopy. The right side of the diagram shows how the SAS signal
is derived from the 21% leakage beam of the diode laser. The left side of the figure shows
how the SAS signal is used to produce electronic feedback for laser frequency stabilization.
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to a PAR model 126 Lock-in Amplifier to produce the desired error signal. Afterwards, the

error signal is sent to an SRS PID, whose output signal is sent to the PZT of the EC mirror

to keep the laser frequency stable with respect to atomic resonance. If the laser light used

in the SAS setup is shifted via an AOM by a frequency δ relative to the leakage light, the

laser light sent to the experiment is locked at a frequency −δ from atomic resonance.

A variant of the setup in Figure 5.2 was also used at times for locking the laser at

a frequency other than −δ. Rather than place the AOM before the glass plate, it is also

possible to place the AOM in the transmitted beam from the glass plate and use the diffracted

beam for the pump beam. The Doppler subset which will be simultaneously excited by both

beams will be the one with a Doppler shift equal to one half of the AOM frequency shift [70].

This results in frequency locking at −δ/2. As a result, it becomes much easier to lock the

diode laser to a specific frequency relative to atomic resonance when only AOM’s of certain

frequencies are available.

5.1.3 Relative and Absolute Frequency Measurements

For the variable velocity measurements of the ARP force it was required to sweep the

frequency of the diode lasers in a controllable fashion. An atomic velocity was simulated by

the Doppler shift from oppositely-detuned, counter-propagating optical beams. By applying

a slow, periodic, ramp voltage to the PZT of each diode’s EC mirror, the velocity dependence

of the ARP force could be studied for fixed intensity and chirp on the minute time scale.

The voltage tuning of each diode laser was calibrated using the scheme shown in Fig. 5.3.

In this setup one of the diode lasers was locked to atomic resonance by SAS while the other

diode’s frequency was swept. The ramp voltage was supplied by a Wavetek 142 function

generator and amplified by a homemade voltage amplifier. The ramp signal was monitored
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Figure 5.3: Shown above is the schematic for calibrating the frequency sweep of the diode
lasers.

by a Lecroy WaveAce 232 oscilloscope. The lasers were then fiber-coupled seperately and

combined by a 50/50 O/E Land fiber splitter (used in reverse). The combined light was

then coupled into a scanning Fabry-Perot (FP) interferometer. Locking one of the lasers to

a reference will negate any slow changes to the FP cavity from changes in the room tem-

perature. The out-coupled light was measured on a photodiode, monitored by a Tektronix

210 oscilloscope. The interferometer is scanned quickly (∼ 500 Hz) relative to the diode

frequency sweep (∼ 0.1 Hz). The oscilloscope trace is saved periodically and the frequencies

are found by fitting a Lorentzian to each peak (see Fig. 5.4 for an example). To obtain a

frequency scale for the FP one of the lasers contained two frequency components separated

by a known frequency (80 MHz) created by an AOM. The frequency sweep of each diode

was measured to be 56.67(45) MHz/V and 393.8(24) MHz/V. The uncertainties in each

measurement correspond < 1%.
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Figure 5.4: Shown here are plots used to determine the frequency sweep amplitude as a
function of applied voltage to the PZT of an EC mirror for a single diode. Plot (a) is a
spectrum of the combined diode light (points) fitted with 3 Lorentzians (solid line). Plot
(b) is the relative frequency of the two diodes as one of the diodes is swept as a function of
time. The solid line corresponds to a best fit to the experimental data represented by points
on the plot. From this plot the frequency of a diode can be known as a function of applied
voltage when measured against a reference.

5.2 Electro-optic Modulators

For the ARP experiment electro-optic modulators were used to produce two separate

pulsed and chirped optical beams. This is made possible by the linear electro-optic effect in

LiNb03 crystals. The linear electro-optic effect refers to the change in the refractive index of

a material in the presence of an applied electric field [71]. The NIR-MX-LN03 from Photline

Technologies1 amplitude modulator creates an optical pulse from CW light. The Photline

NIR-MPX-LN03 phase modulator adds a frequency chirp to the input light field.

The linear optic effect in a crystal is relatively simple if the electric field applied and the

polarization of the light field are along one of the principle axes of the crystal. The strongest

electro-optic coefficient for LiNbO3 (r33 along the Z direction) dictates the applied E-field

and the polarization of the light field to be along the Z axis (see Fig 5.5). A light wave

1Photline Technologies, 16 rue Jouchoux, 25000 Besancon, France. Phone: +33 (0) 381 85 31 80.
www.photline.com
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traveling perpendicular to the E-field will experience a change in optical path length due to

the change in the index of refraction of the material. This results in a modulation of the

phase of the light field (and therefore frequency) if the applied E-field is time dependent.

The electro-optic effect is generally very small (r33 = 32 pm/V in LiNbO3). This requires

a large E-field to be applied to create a sizable phase shift. This can be accomplished,

however, with the use of a waveguide-type integrated modulator. In this type of modulator

the electrodes are placed very close together, producing a large E-field with a much lower

drive voltage when compared to that of bulk modulators.

5.2.1 Phase Modulator

When a time dependent voltage is applied to the electrodes of a phase modulator the

total phase delay that is introduced to the light traveling along the waveguide is given by

φ(t) = κM(ωm)V (t) (5.1)

with

κ =
π

λG
n3
er33ηL (5.2)

where L and G represent the length of and gap in between the electrodes respectively, r33 is

the electro-optic coefficient, and ne is the index of refraction for the light polarized in the

extraordinary direction. The η term refers to an overlap coefficient of the electric and optical

fields. The dimensionless parameter M(ωm) describes the frequency dependence of the phase

delay as a result of RF losses and RF to optical phase mismatch.

An important quantity for characterization of a phase modulator is the voltage required

to produce a π phase shift, or Vπ. This is the voltage required to delay the signal by half of
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Figure 5.5: Schematic layouts of the NIR-MPX-LN03 phase and NIR-PX-LN03 amplitude
modulator ((a) and (b) respectively). The principle axes of the crystal are shown in the
corner of the figure.
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a wave and is sometimes referred to as the half-wave voltage. Vπ for a given drive frequency

(ωm) can be calculated with the equation

Vπ(ωm) =
λG

n3
er33ηLM(ωm)

(5.3)

M(ωm) = 1 for DC modulation and decreases as a function of ωm.

In the ARP experiment a sinusoidal RF modulation signal is applied to the phase mod-

ulators resulting in an optical field in the form of

E(t) = E0 cos[ωlt− β sin(ωmt)] (5.4)

where E0 is the amplitude of the light field and ωl is the unmodulated laser frequency. β is

commonly known as the modulation index and is the amplitude of the phase modulation.

From Eq. 5.1, Eq. 5.3, and Eq. 5.4 it can be shown that

β =
πV

Vπ(ωm)
(5.5)

In practice it is not easy to determine Vπ(ωm) for a phase modulator. One way is to

measure it by calculating β from the measured Fourier spectrum of the phase modulated

signal when a sinusoidal modulation voltage is applied. Measurement and calculation of the

half-wave voltage is described later in the chapter.

It is well known that the instantaneous angular frequency of a light field is just the time

derivative of the overall phase. Therefore it can be shown that phase modulation leads to

frequency modulation of the form

ω(t) =
dφ(t)

dt
= ωl − βωm cos(ωmt) (5.6)
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Sinusoidal phase modulation results in cosinusoidal frequency modulation at the same fre-

quency ωm.

5.2.2 Amplitude Modulator

The amplitude electro-optic modulator is very similar to the phase modulator with the

exception that instead of a single waveguide, a Mach-Zehnder interferometer is patterned

into the LiNb03 substrate (refer to Figure 5.5b) [72]. In this configuration a single waveguide

is split into two parallel waveguides and then recombined into a single waveguide. In the

Photline NIR-MX-LN03, grounded electrodes are placed outside the arms of the interferom-

eter. Two other electrodes are placed in between the two arms. A DC voltage is applied

to one of the electrodes to cause destructive interference in the presence of no RF. An RF

pulse is applied to the other electrode to produce the desired optical pulse.

The output electric field can be described in general as

E(t) =
E0

2
[sin(ωlt+ φ(t)) + sin(ωlt− φ(t)] = E0 sinφ(t) sinωl(t) (5.7)

where φ(t) is the total phase shift in one arm of the Mach-Zehnder interferometer pro-

portional to the voltage applied to the DC and RF electrodes. Light in each arm of the

interferometer experiences a phase shift of the same magnitude but opposite sign. This is

done so there is no net phase modulation on the output pulse. The resulting output power

is

P (t) =
P0

2
[1 + sin 2φ(t)] (5.8)

where P0 is the maximum output power.
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5.2.3 Production of Chirped Pulses

Two trains of counterpropagating, periodic, chirped pulses are required to study the ve-

locity dependence of the optical forces from periodic adiabatic rapid passage. In experiments

to measure the ARP force at a fixed atomic velocity the first step in this process is the cre-

ation of the optical pulses. The pulses are produced from a single NIR-MX-LN03 amplitude

modulator whose transfer function is sinφ(t) (see Eq. 5.7). The desired output is a ≈ 25%

duty cycle, sinusoidal optical pulse of duration 3.125 ns (as modeled in Chapter 2). This

required a triangle-shaped electric pulse of the same duration and duty cycle. Experiments

to measure the ARP force for varying atomic velocity required two separate laser diodes and

hence two separate amplitude modulators. This subsection will describe the production of

chirped pulses for the fixed velocity experiments but the techniques are readily applicable to

experiments with variable atomic velocity.

The RF signal sent to the amplitude modulator is supplied by an HP8082A pulse gen-

erator triggered by an HP8657A signal generator (see Fig. 5.6). The HP8657A signal is set

to a frequency of 80 MHz and an output power of +7 dBm, setting the repetition rate of

the pulses at 80 MHz. The HP8082A creates a triangle-shaped electronic pulse at ≈ 25%

duty cycle, with an amplitude of ≈ 4 volts, and a base width of ≈ 3.4 ns (see Fig. 5.7).

This is done by proper selection of the pulse width, transition time, and amplitude settings.

Technical limitations of the HP8082A are chiefly responsible for the discrepancies between

the desired and actual pulses. The DC voltage is supplied by a Power Design Inc. model

2005 precision power supply.

Two phase modulators are required in the experiment to create frequency sweeps of op-

posite directions. The 160 MHz RF signal to drive the 2 NIR-MPX-LN03 phase modulators

originates from a single HP8657D signal generator. The signal is then amplified by a Mini-
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Figure 5.6: RF signal generation for use with EOM’s. The RF signal to the NIR-MX-LN03 is
supplied by an HP8082A pulse generator triggered by an HP8657A signal generator. The DC
voltage is supplied by a Power Design Inc. model 2005 precision power supply. The signal is
then amplified by a Mini-Circuits ZHL-5W-1 RF amplifier powered by a Power Design Inc.
model 6105 power supply. Afterwards the signal is split into two equal parts with one signal
sent directly to a phase modulator and the other is delayed by an RF trombone before it
arrives at the other modulator.

Circuits ZHL-5W-1 RF amplifier. This amplifier has a gain of ≈ 43 dB at an input RF

frequency of 160 MHz. The ZHL-5W-1 is powered by 24 Volts DC from a Power Design

Inc. model 6105 power supply. The resultant signal is then sent to a Minicircuits 50/50 RF

splitter. One arm of the RF splitter is sent directly to a phase modulator. To control the

relative phase of the RF signals, the other signal is sent to an RF trombone for delay before

being sent to the second phase modulator. The amount of phase modulation is limited by

the maximum input power to a single phase modulator of +29 dBm.

It is necessary to synchronize the frequency chirping and amplitude modulation in order

to produce the chirped pulses needed for ARP. The HP8657D signal generator is synchronized

to the HP8657A signal generator through the high precision frequency reference output of

the HP8657D. The relative phase of the signal generators will remain relatively constant for
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Figure 5.7: Electronic and optical pulses used in the ARP experiment. Light pulses as mea-
sured by a Thorlabs D400FC fast photodiode. The data was taken with a Lecroy WaveAce
232 oscilloscope.
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upwards of 1 hour. By adjusting the delay knob on the pulse generator and the length of the

RF trombone, control of the relative phase between the electronic signals sent to the three

modulators is obtained.

5.3 Characteristics of Chirped Pulses

The use of fiber-coupled electro-optical modulators allows for the creation of nanosecond

scale optical pulses whose frequencies can span a few GHz by properly synchronizing the

modulator drivers. The intensity of the pulse profiles is measured by a D400FC Thorlabs fast

photodiode. The frequency spectrum is measured by a home-built Fabry-Perot spectrometer

(see Fig. 5.8).

For sinusoidal amplitude and phase modulation, the optical electric field for 0 < t < π/ωm

is

E(t) = E0 sin (ωmt)︸ ︷︷ ︸
amplitude

cos [ω`t+ β sin(ωmt) + φ]︸ ︷︷ ︸
phase

(5.9)

where ω` is the laser frequency and β = δ0/ωm. The instantaneous frequency of the light

field is ω` + δ0 cosωmt which sweeps a frequency of 2δ0 in the requisite time of π/2ωm. The

relative phase of the amplitude and phase modulation is represented by φ.

In general the Fabry-Perot spectra can be calculated from the equation

IFP,n(ωl + nωc) =

∣∣∣∣ 2

T

∫ T

0

E(t)exp(−i(ωl + nωc)t)dt

∣∣∣∣2 (5.10)

where n refers to the nth peak relative to the carrier frequency.

The Fabry-Perot spectra of the purely amplitude modulated spectrum (β = 0) is

IFP,n(ωl + nωc) =
4

4− n2
cos2(

nπ

4
) (5.11)
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Figure 5.8: Schematic of the Fabry-Perot spectrometer used to measure the laser spectrum.
the length of the cavity is 25 mm, the mirror diameters are 12.7 mm, with a focal length of
25 mm and thickness of 9.5 mm.
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(a) Effects of a bias light field (b) Phase dependence between PM and AM

Figure 5.9: Calculated FP spectra. Plot (a) shows how a DC bias field effects the carrier
frequency. The stated DC offset is measured as a percentage of Vπ. Plot (b) represents the
effects of the relative phase between AM and PM on a calculated FP spectrum.

The peaks are separated by the repetition rate of the pulse (ωc = ωm/2). There are two

critical requirements for ARP, one of which is the absence of any residual CW light. This

may be monitored by the height of the carrier frequency peak to the other peaks of the

spectra. The effect of residual CW light on the Fabry-Perot spectra can be seen in Fig. 5.9a.

The Fabry-Perot spectra of the purely phase modulated spectrum is given by

IFP,n(ωl + nωm) = J2
n(β) (5.12)

where Jn(β) is the nth order Bessel function of the first kind evaluated at β. An example of

a purely phase modulated spectrum can be seen in Fig. 5.10a.

The time-averaged, modulus squared frequency spectrum of each pulse is analyzed by a

≈ 30 MHz resolution Fabry-Perot cavity. The second critical requirement for ARP is that

the relative phase between the amplitude and phase modulation signals (φ from Eq. 5.9) is
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either 0 or π. If φ = 0 the frequency sweep is upward and if φ = π the frequency sweep is

downward. Both instances sweep symmetrically about the carrier frequency and as a result

the Fabry-Perot spectra are symmetric about the carrier frequency. If φ 6= 0, π then the

Fabry-Perot spectra will not be symmetric about the carrier frequency. The effect of φ on

the FP spectra can be seen in Fig. 5.9b.

The Fabry-Perot spectra used in the ARP agree qualitatively with the calculated Fourier

transform of a phase and amplitude modulated light field. Discrepancies between calculated

and experimental spectra arise mostly from limitations of the HP8082A pulse generator.

Examples of measured Fabry-Perot spectra can be seen in Fig. 5.10.

91



(a) (b)

Frequency (MHz)

Signal (Arb. units)

(c) (d)

Figure 5.10: Measured Fabry-Perot spectra. Fig. 5.10a and Fig. 5.10b show examples of the
frequency spectrum for phase-modulated only and amplitude-modulated only light respec-
tively. Fig. 5.10c is the combined AM-PM spectrum with β = 4.5. Fig. 5.10d is the timing
sequence for the intensity and frequency sweeps.
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5.4 ARP Light Production

The diode lasers used in the ARP experiment typically put out ∼ 30 mW of power (20

mW after EC). Insertion losses from each EOM, the amplitude modulator running at 25%

duty cycle, free space fiber coupling, and splitting into two beams would result in optical

power in each ARP beam less than 0.1 mW. ARP requires a large Rabi frequency (Ω� ωm),

and hence large optical power, for the atomic state to adiabatically follow the optical field

during an ARP sequence. To achieve such a large Rabi frequency 4 fiber amplifiers are

required in each experiment. A generalized schematic of the setup for fixed and variable

atomic velocity experiments can be seen in Fig. 5.11 and Fig. 5.12.

For the fixed atomic velocity experiments the diode light from the extended cavity is

fiber-coupled and amplified by a Keopsys model 0IYB30 1W fiber amplifier. The optical

amplifiers used in the experiment use Yb-doped fibers as the gain medium. Yb-ions doped

in the fiber core absorb strongly near 980 nm, where high-power, broad-stripe diode lasers

are commercially available. Pump light is injected from a V-groove mechanically formed in

the outer cladding of the fiber and propagates in the inner cladding. The seed light, at 1083

nm, is amplified by stimulated emission with a gain proportional to the pump power of the

980 nm diode lasers inside the amplifier. Both the input and output fiber connection of each

fiber amplifier is single transverse mode, FC/APC to prevent harmful back reflections to the

fiber amplifiers and the diode lasers.

The output of this fiber amplifier is amplitude modulated by a Photline model NIR-

MX-LNO3, and amplified by another Keopsys 0IYB30 1W fiber amplifier. The light is then

incident on an AOM operating at frequency 2δ (with respect to SAS AOM) to produce

two spatially separate pulses of frequency δ and −δ (relative to atomic resonance) from the

undiffracted and first order diffracted beams. The undiffracted beam goes through a delay

93



SAS

DBR
Amplify,

Pulse,
Amplify

A
m

plify&
P

hase

PBS

Deflected Atoms

v e r t i c a l  s l i t

vertical slitS
haping&

T
ransport

Shaping&Transport

Fabry-Perot &
Fast Photodiode

A
O

M

MCP &
Phosphor 

Screen

λ/4

λ/4

He* beam

v = 1000 m/s

A
m

plify&
P

hase

AOM

vertical slit

Figure 5.11: Experimental setup for deflection of He* with pulsed, chirped light at a fixed
atomic velocity. Diode light is amplitude and phase modulated using EOM’s while the
absolute frequency is locked at a chosen frequency δ from atomic resonance. Using both
undeflected and deflected beams from an AOM produces two optical beams at frequencies
shifted by +δ and −δ. More details can be seen in Fig. 5.13. Multiple fiber amplifiers
are used to achieve sufficient optical power. The two pulses interact transversely with a
He* beam sequentially to produce an atomic deflection that is detected using an MCP and
phosphor screen.
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Figure 5.12: Experimental setup for deflection of He* with pulsed, chirped light with vari-
able atomic velocity. Diode light is amplitude and phase modulated using EOM’s while the
frequency of each laser is swept slowly to simulate an atomic velocity. Multiple fiber ampli-
fiers are used to achieve sufficient optical power. The two pulses interact transversely with a
He* beam sequentially to produce an atomic deflection that is detected using an MCP and
phosphor screen.
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stage to enable proper timing of the ARP sequence. Then each beam is frequency modulated

by separate Photline model NIR-MPX-LNO3 phase modulators before being amplified by

two Keopsys model KPS-BT2-YFA 4W amplifiers separately in order to supply the necessary

∼ 1 W of average power, modulated light. The KPS-BT2-YFA amplifier requires an average

input optical power of at least 0.5 mW. A detailed picture of the experimental setup before

the 4W fiber amplifiers can be seen in Fig. 5.13.

After the 4W amplifiers, each beam goes through a waveplate and a polarizing beam

splitter (PBS) to control the optical power delivered to the experiment. The total optical

power delivered to the experiment can also be manipulated by changing the current to the

diodes of the fiber amplifiers. The leakage light from the PBS’s are coupled to optical fibers

and sent to fast photodiodes and a Fabry-Perot spectrometer for monitoring (see Sec. 5.3).

The optical power of each beam is measured by separate Newport 1825-C power meters

using the reflection from a microscope slide placed before a spherical telescope. The output

power readings are sent to a single Tektronix 210 oscilloscope to be sent to a PC through

a Prologix GPIB adapater. The voltage reading on the oscilloscope is calibrated using a

Coherent 210 power meter placed at the focus of the cylindrical telescope. See Fig. 5.14 for

a detailed picture of how the optical power is monitored.

The Gaussian beams are shaped by spherical and cylindrical telescopes to have horizontal

and vertical waists of 5.9 mm and 1.7 mm respectively (Figure 5.15). A maximum intensity

of ∼ 26 W/cm2, about 1.6 ∗ 105 IS, where the saturation intensity is IS ≡ πhc/(3λ3τ), is

achieved when the fiber amplifiers are running at ∼ 1.1 W output power (Typical maximum

running optical power used in the experiment). The output beam of each fiber amplifier is σ+

polarized by a λ/4 waveplate to drive the closed transition between 23S1 → 23P2 ∆mj = +1

He* transition. The laser beam is occluded at the edges by a vertical slit of width d = 4

mm to limit the interaction time to ≈ 4µs (∼ 40τ) with v` ∼ 1000 m/s and to ensure that
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Figure 5.13: Optical system to produce two spatially separate chirped pulses. The diode
laser goes through an isolator before being coupled into a SM optical fiber. The light is
amplified and amplitude modulated before being amplified again. The resultant beam in
sent through an AOM operating at 2δ. The deflected beam is phase modulated before being
sent to a 4W YDFA. The undeflected beam is delayed and then phase modulated before
amplification.
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Figure 5.14: The optical power of light reflected from a piece of glass in each collimation
line is measured by a Newport 1825-C power meter. The power readings are sent to a single
Tektronix 210 oscilloscope to be sent to a PC through a Prologix GPIB adapter. A signal
may then be sent by the PC to change the diode current in either 4W YDFA to achieve the
desired optical power in each beam at the interaction region. The power measurement is
calibrated with a Coherent 210 power meter before running the experiment.

the Rabi frequency will only vary by ∼ 6.4% across the interaction region. A small fraction

of the output of the first amplifier is used to optically pump the He* atoms to the mj = +1

ground state. This is done by an additional 2.4 mm vertical slit 5.2 mm upstream from the

ARP slit. The vertical slits are placed ∼ 13 cm from the interaction region to minimize the

effects of diffraction.
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Figure 5.15: Optical setup for the interaction region. The optical beams are collimated and
expanded by spherical and cylindrical telescopes. The resultant beam has a Gaussian profile
with ωz = 5.9 mm and ωy = 1.7 mm. The z-axis (direction of atomic beam propagation) is
further defined with a 4 mm vertical slit for both beams. An additional 2.4 mm vertical slit
is present 5.2 mm upstream from the ARP slit in one beam for optical pumping.
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Chapter 6

Measurement of Optical Forces

6.1 Experiment Overview

The goal of this experiment is to investigate the velocity dependence of the optical force

on atoms associated with many adiabatic rapid passage sequences. A general overview of

the experimental setups can be seen in Fig. 5.11 and Fig. 5.12. Details of the atomic beam

apparatus and the optical system are described in Chapters 4 and 5.

In this experiment, chirped laser pulses interact with an atomic beam of He* at 90◦ to

impart a transverse momentum kick of ~k to the atoms. The first chirped pulse, duration

π/ωm = 3.125 ns, drives the atom to the excited state and a momentum of ~k is transfered

to the atom. This pulse is immediately followed by a counter-propagating, chirped laser

pulse of the same duration that drives the atom back to the ground state. The atom recoils

in the same direction as the first momentum kick for a net change of the atomic momentum

by 2~k. The next pulse pair arrives 2π/ωm = 6.25 ns later, as shown in Fig. 2.2, leading to

the expression of the average optical force for a single ARP sequence to be F = ∆p/∆t =

2~k/(4π/ωm).
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Atoms

Gaussian Fit
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Figure 6.1: Part (a) shows an image of a phosphor screen that is illuminated by electrons
amplified by an MCP that are emitted by the impact of He* atoms and uv light from the
source discharge. The bright vertical line is the image of a 250 µm slit that is used to define
the transverse velocity of the He* atoms. Since the atom displacement is ∝ 1/v2l , the atoms
appear to be horizontally smeared out in the region of strong deflection.

An image of the atomic distribution is viewed 33 cm downstream from the interaction

region for particular laser parameters as shown in Fig. 6.1a. A line-out, shown in Fig. 6.1b,

is taken from the image by averaging over 11 rows of pixels and contains both atoms and uv

light from the source discharge. Under the assumption that a constant force F is applied to

an atom with mass m and over a time tint, the final transverse atomic velocity should be

vt =
F

m
· tint =

F

m

Lint
vl

(6.1)

where Lint = 4 mm is the interaction length, and vl is the longitudinal velocity of the atoms.

The longitudinal velocity distribution is measured by TOF [63]. F can be calculated by

measuring the deflection x of the atomic beam on the MCP/PS detector,

X = vt · tflight =
F

m

Lint
vl

Lflight
vl

(6.2)

where the time of flight is denoted tflight. The flight time in this experiment is determined by
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the 33 cm flight distance, Lflight, and the longitudinal velocity. By Eq. 6.2 X is proportional

to the inverse square of vl. Therefore the inverse square of the vl distribution is required

to obtain the corresponding X distribution. The characteristic force F due to ARP is

calculated using the peak displacement Xpeak and the peak of the v−2l distribution vp. The

v−2l distribution is calculated from the distribution of vl and its profile is plotted in Fig 6.2

with a vp of 1080 m/s (different from peak velocity of the vl distribution).

The peak displacement of the atomic distribution is found by fitting a Gaussian to the

measured atomic distribution (Fig. 6.1b) and subtracting that value from the position of

the peak of the UV distribution. The magnitude of the ARP force may then be calculated

from Eq. 6.2 using vp. However, a more accurate way to determine F is to measure Xpeak

of the ARP force, measure Xpeak of the maximum radiative force over the same interaction

length, and then take the ratio of the two measurements. The resulting number tells how

many times larger F is than Frad directly. Both methods of measuring F agree with each

other but there is less uncertainty in the ratio technique. All measurements of F will be in

reported units of Frad or FARP .
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Figure 6.2: Probability distribution function of the 1/v2l distribution normalized to a peak
value of 1. The parameters vp and va are the peak and average of the distribution.
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6.2 ARP Force at Atomic Resonance

Large optical forces are only possible for certain combinations of Ω0 and δ0 in the non-

adiabatic parameter range. This range has been carefully studied numerically and has shown

that such large forces are indeed possible [10, 29]. It has also been shown experimentally

that large optical forces can be produced with retro-reflected light [9]. However, since it may

be desirable to have two independent beams, we present here our study of the ARP force in

the v = 0 regime with different frequency sweep direction protocols.

It is natural to systematically study the dependence of F on the chirping amplitude

δ0 and pulse amplitude Ω0, resulting in a measurement of the force in a two dimensional

parameter space we call a force map. In Fig. 6.4 we plot the measured force in units of

the radiative force as a function of both δ0 and Ω0 for various sweep protocols, with both

of the frequency sweeps centered about atomic resonance. The chirp and pulse amplitudes

are varied by a Pascal-based program communicating via GPIB with the HP8567D signal

generator driving the phase modulators and the 4 W fiber amplifiers respectively. During

these measurements the protocol was to start by fixing the sweep direction (sign of chirp)

and the Rabi frequency of each beam to Ω0 = ΩMax (roughly 4.1 ωm), while increasing the

chirp frequency range from zero to ±5ωm in 80 steps. A single image of the deflected atoms

on the phosphor screen is captured and saved at each step and the set of 80 steps constitutes

a row on a single force map (details of image capture can be found in Sec. 4.4). The power

in the optical beams is then reduced by changing the current in the 4 W fiber amplifiers

so that Ω0 = ΩMax − Ωstep (typically 0.15 ωm). The chirp amplitude is swept again and a

new set of 80 images is taken. This process is repeated many times with decreasing Ω0 until

Ω0 ≈ ωm.

Fig. 6.4 shows large regions of parameter space with forces much greater than the radiative
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force and agrees qualitatively with our numerical calculations shown in Fig. 2.3. The peak

forces for each plot were very nearly 10 times the radiative force. The same sweep direction

plots show very good agreement with numerical simulations up to a small scaling factor for

δ0. Discrepancies between the various frequency sweep protocols, the smaller than predicted

maximum force, and the scaling of δ0 may be attributed to non-ideal pulse shapes. Nonlinear

effects in the phase modulators and fiber amplifiers may also play a role in the observed

deviations of the ARP force from the predictions of the numerical calculations.
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(a) (b)

(c) (d)

Figure 6.4: Relief plots of the force measured over the experimental parameters Ω0 and
δ0. Lighter regions correspond to larger forces up to a maximum of ∼10Frad. The top row
portrays opposite frequency sweep directions (Down-Up and Up-Down respectively), and the
bottom shows same frequency sweep directions (Down-Down and Up-Up respectively).
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6.3 Force vs. Velocity

6.3.1 Fixed Velocity Measurements

This subsection describes the ARP force as a function of the atomic velocity simulated

by using the apparent Doppler shift of detuned, chirped, counter-propagating laser pulses.

The force at a particular atomic velocity (δ/k) to be measured was chosen by locking the

diode laser at frequency δ from atomic resonance and using the frequency shift from an

AOM to make optical beams with frequencies ±δ as seen in Fig. 5.13. Thus ±δ is the center

of the frequency sweep of each optical beam, which is not related to the amplitude of the

frequency sweep δ0. A force map is made as described in the previous section and the process

is repeated many times with different values of δ and different sweep protocols. From these

measurements a force vs. velocity plot can be made for a particular sweep protocol, δ0, and

Ω0.

Fig. 6.5 shows the ARP force as a function of atomic velocity for nearly the same values

of δ0 and Ω0 but different signs of the frequency chirp. Fig. 6.5a has the sweep protocol

Down-Down and a peak force of 12 Frad at -0.1 δ0/k (-50 m/s). Fig. 6.5b (Up-Up) shows

similar properties except that it is peaked at +0.1 δ0/k (+50 m/s). These velocities should

be very well known as their uncertainties are tied to the uncertainty of the frequency of the

RF signal driving the AOM’s used to produce the separate optical beams. A force profile

peaked at v 6= 0 is further confirmation that the frequency spectrum of the chirped pulses

are not symmetric about atomic resonance as seen in Fig. 5.10c.

Though no single effect seems likely to explain these offsets from v = 0, nonlinear pro-

cesses in phase modulation and optical amplification, as well as the Zeeman effect (Sec. 1.3)

could offer a partial explanation. The RF fields applied to the phase modulators may induce

nonlinear changes in the index of refraction causing deviations in the frequency sweep from

107



(a) (b)

Figure 6.5: ARP force as a function of simulated atomic velocity labeled by (δ0,Ω0). Plots
(a) and (b) are frequency sweeps Down-Down and Up-Up respectively with each point cor-
responding to a single measurement. The maximum force measured is ≈ 12 Frad (75% of the
maximum predicted force) and the distributions have an approximate FWHM of 150 m/s.

the desired half cosine shape. Each ARP beam is modulated using a separate phase modu-

lator and these may have slightly different nonlinear characteristics. Also, nonlinearities in

the optical amplifiers may change the characteristic frequency spectrum of the ARP beams

if the intensity profiles are asymmetric. These nonlinearities are driven by the high optical

intensity. Finally, the laser is locked to atomic resonance, not the frequency shifted (≈ 20

MHz) resonance in the interaction region with a magnetic field due to the Zeeman effect.

This leaves a puzzle since each of these effects may partially contribute to the measured plots

in Fig. 6.5, but none of these mechanisms depend on the sign of the frequency chirp.

Besides experimental “dirt” effects, another possible explanation could be spontaneous

emission as seen in Fig. 2.8a. Atoms may undergo more or less spontaneous emission depend-

ing on their Doppler shift and the relative sign of the chirp. A brief discussion describing

the dynamics of this process in the Bloch sphere picture is given in Sec. 2.3. The shift of

the peak force in numerical and experimental plots (Fig. 2.8 and Fig. 6.5) is ≈ 0.1 δ0/k
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though it should be mentioned the widths of these plots differ significantly. Spontaneous

emission may be the origin of this velocity shift but either the numerical model is insufficient

to describe experimental ARP or imperfections in the experimental setup may reconcile the

large discrepancies between the two force vs. velocity distributions.

The magnitude and velocity range of the ARP force is much greater than that of the

radiative force. The velocity range should increase with Ω0 and δ0 in the π-pulse regime.

Seen in Fig. 6.7 is the average ARP force over a fixed velocity range (±380 m/s) as a function

of sweep protocol and pulse parameters. Each of these plots has a roughly linear shape with

approximately the same slope. The quantity
√

Ω2
0 + δ20 is a natural choice as a scaling factor

for the width of the force vs. velocity distribution in the π-pulse regime as it is somewhat

akin to a time-averaged generalized Rabi frequency. This is an oversimplification of the

physics but seems to be a good rule of thumb in the non-adiabatic regime. In each plot of

Fig. 6.7 there seems to be a slight saturation effect that may correspond to the change over

to the adiabatic regime. When ARP is truly adiabatic it is typically δ0 alone that acts as

the scaling factor as in the simple picture given by Sec. 2.2.2.

6.3.2 Strong Forces Far From Zero Velocity

Beyond the pulse parameters that have a large force peaked near v = 0 there are many

other combinations of δ0 and Ω0 which can lead to very interesting force vs. velocity profiles.

Fig. 6.8 shows one of these interesting profiles that has a definite double peak structure

where the peaks occur at approximately -80 m/s and +220 m/s (-0.12 δ0/k and +0.27 δ0/k

respectively). Such structures occurred mostly for sweep directions Up-Up and Down-Down

at the largest values of δ0 and Ω0 as seen in Figs. B.8-11. In numerical calculations the

bimodal structure comes about when moving to the right of red curves shown in Fig. 6.6
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Figure 6.6: Approximate points used in Fig. 6.7 are shown by solid line for each sweep
protocol.
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Figure 6.7: Average force integrated from -380 m/s to +380 m/s for each sweep protocol as
a function of

√
Ω2

0 + δ20 (ωm) for velocity distributions peaked near v = 0 (see Fig. 6.6).
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Figure 6.8: A measured force vs. velocity distribution with two distinct peaks.

(increasing δ0). Starting from a force profile that has a single peak at v = 0, increasing δ0

leads to a symmetric splitting of the distribution that grows larger. A small splitting in a

numerical simulation can be seen in Fig. 2.5c.

6.3.3 Variable Velocity Measurements

The previous measurements of the velocity dependence of the ARP force took many

weeks to produce just one force vs. velocity plot at a particular δ0, Ω0, and sweep protocol.

The experiment needed to be modified so that these measurements could be made on a
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much shorter time scale with many more data points. Details of the changes can be found

in Fig. 5.12.

In the modified setup, a particular δ0, Ω0, and sweep protocol is chosen arbitrarily. Then

the relative frequency of each diode laser is swept by ≈ 600 MHz in opposite directions by

applying a slow, periodic, ramp voltage (f = 0.4 Hz) to the PZT of each diode’s extended

cavity mirror and the absolute frequency is measured via SAS of the 23S1 → 23P2 transition

in He*. The absorption profile measured via SAS is only ≈ 25 MHz wide but this infor-

mation, along with the linearity and periodicity of the frequency sweep, allows for accurate

determination of the absolute frequency of each laser. At the same time the atomic beam

deflection is recorded via the open source program VirtualDub for ∼ 1 minute at a frame

rate of 30 Hz. From measurements of the applied ramp signals, SAS, and atom deflection

a plot like Fig. 6.9 can be created which shows the simulated velocity and ARP force as a

function of video frame number. In this figure v = (δ1 − δ2)/2k where δi is the detuning of

each laser from atomic resonance. The process can then be repeated with new choices for δ0

and Ω0 to make more of these plots. Fig. 6.9 is an example of very preliminary data and it

should be noted that more data will be taken in the future to clarify the meanings of these

results.

From plots like Fig. 6.9 the force from each half period of the frequency sweep can

be overlapped to make one of the plots seen in Fig. 6.10. A single point in one of these

plots corresponds to ∼ 10 force measurements in a single run located within an ≈ 8 m/s

velocity bin. The peak force gets larger as both δ0 and Ω0 are increased which is consistent

with previous measurements. However, these peak forces are smaller than the previous

measurements by ∼ 50%. This may be attributable to the preliminary nature of these

results as well as the additional technical complications present when using two separate

diode lasers that are not locked to a frequency reference. The frequency of the diode lasers
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Figure 6.9: ARP force and simulated atomic velocity as a function of video frame number for
sweeps Down-Down, δ0 = 3.23ωm and Ω0 = 3.61ωm. The force and velocity are measured in
arbitrary units and m/s respectively. The force minimums do not line up with the velocity
extremes as perhaps expected in this figure. This is the result of a slight variation in the
frame rate as data is collected and is corrected for in post-processing.

fluctuates by a few MHz on a short time scale due to mechanical vibrations and may drift up

to 10 MHz over an entire sequence of measurements due to changes in the room temperature.

Besides the magnitude of the forces, the shape of the force vs. velocity profiles provides a

multitude of information.

The structure of the plots in Fig. 6.10 is quite varied which is interesting by itself.

Fig. 6.10a shows the velocity dependence of the ARP force from a train of π-pulses yet the

peak force is located at nearly v = +130 m/s. There is no simple explanation for why this

may be but it may be related to nonlinear effects in the fiber amplifiers. Fig. 6.10b has a

relatively broad central peak like that of Fig. 2.5c. While Fig. 6.10c looks very similar to

Fig. 6.5b though not as strong. Fig. 6.10d has the largest central peak force but it also has
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Figure 6.10: Shown above are plots of the ARP force as a function of simulated atomic
velocity labeled by the beam parameters used (δ0 and Ω0). Each point corresponds to an
average of ∼ 10 force measurements located within a ≈ 8 m/s velocity bin. The vertical
axes are not the same for each plot.
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a very strong peak located at ≈ +190 m/s with a hint of another peak at ≈ +320 m/s.

This may be the strongest side peak but there is clear evidence of modulation of the force

profile in each of the plots. The origin of this modulation is a mystery at this time but it

may be related to the narrow spikes seen in Fig. 2.4. The widths of the central peaks in each

distribution are on the order of 100− 200 m/s (170 m/s ≈ 100γ/k ≈ ωm/k).
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Chapter 7

Conclusions

We have experimentally observed very strong optical forces from periodic adiabatic rapid

passage sequences resulting from counter-propagating, chirped, light pulses. The slightly

smaller absolute value of the forces (≤ 12 Frad) measured relative to the theoretical expec-

tation (16 Frad) can be attributed mostly to the non-ideal pulse shape and nonlinearities

of the phase modulator and fiber amplifier. The optical pulses were asymmetric and the

tails extended longer than the 3.125 ns required for 25% duty cycle described in Fig. 2.2.

Also, the amplitude modulators used in these experiments could only partially extinguish

the light during the “dark time” of Fig. 2.2. A residual DC level of as much as 5% of the

peak Rabi frequency ∼ 100 IS was always present in each of the optical beams possibly

disrupting the coherence of the ARP sequence. Nonlinearities in the phase modulation and

fiber amplifiers may have also caused a degradation of the chirped pulse spectrum, leading

to a smaller observed force. Despite these difficulties the forces measured were still much

larger than the maximum radiative force and agree qualitatively with the theoretical and

numerical predictions.

The ARP force is also very effective over a much larger velocity range than the radiative
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force. We have mapped out the velocity dependence of the ARP force over a large parameter

space including δ0, Ω0, and sweep protocol using two different methods. The first method

enabled the study of the velocity dependence of the ARP force for many different values of

δ0 and Ω0. While, the second method allowed us to measure the velocity dependence for a

few beam parameters though with much greater resolution. Although the amplitudes and

widths of the force vs. velocity distributions were not as large as expected from our numerical

model, they are still very large when compared to radiative processes.

The numerical and experimental results presented in this dissertation prove that the ARP

force has many significant advantages over other laser cooling techniques. The structure of

the velocity dependence of the ARP force will continue to be studied in greater detail. Beyond

studying the velocity dependence more carefully, there is significant interest in the prospects

of creating even larger optical forces by temporally overlapping the ARP pulses [30]. There

is also interest in using the ARP to slow an atomic beam of metastable helium. This would

potentially be a proof of principle of ARP’s ability to both slow and cool neutral atoms

which has not been shown previously.

In the past it was difficult to create high intensity, chirped pulses with the high repetition

rate required to produce large optical forces via ARP. So, large optical forces from periodic

adiabatic rapid passage sequences have only been studied quite recently but it does shows

significant potential.
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Appendix A

Code for Numerical Calculations

! author Danie l Stack and John Elg in

! date 1/24/2011

! d e s c r i p t i o n : De f i n i t i on o f Op t i ca l Bloch Equat ions to be s o l v e d

! us ing the BIM subrou t ine f o r a f i x e d Omega 0 and

! d e l t a 0 , vary ing atomic v e l o c i t y , and random phase

Program f o r c e

Implicit None

! De f i n i t i on o f Fundamental Constants

double precision pi , lambda , k , hbar , gamma,wm, f o r f a c t , v e l f a c t

parameter ( p i =4.0∗ATAN( 1 . 0 ) , lambda=1083.33E−9,hbar =1.054571E−34)

parameter ( k=2.0∗ pi /lambda ,gamma=1.62E6∗2∗ pi )
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parameter (wm=160E6∗2∗ pi ) ! Modulation Frequency

parameter ( v e l f a c t=gamma/k , f o r f a c t=hbar∗k∗gamma)

! Var iab l e s

integer npu l s e s ! Number o f pu l s e s

integer npa i r s ! Number o f pu l s e pa i r s

integer phasepo ints ! Number o f p h i r e l po in t s

double precision sweep ! Sweep Direc t ion

double precision d , ! Detuning

w, ! Rabi Frequency

d0 , ! Detuning ampl i tude

w0 , ! Peak Rabi f requency

minimum , !minimum d0 ,w0

maximum, !maximum d0 ,w0

vmin , !Minimum v e l o c i t y

vmax , !Maximum v e l o c i t y

dkv , ! Step s i z e in Doppler s h i f t

vstep , ! Step s i z e in v e l o c i t y

dopof f , ! Doppler o f f s e t

o f f s e t , ! Ve l o c i t y o f f s e t

random , !Random number

t imes ! Number o f t imes to run program

double precision : : t p u l s e = (1 . 0∗ pi /wm) ! S i n g l e pu l s e durat ion

double precision : : p = (4 . 0∗ pi /wm) ! Pulse pa i r sequence dura t ion
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∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

!ODE so l v e r parameters

double precision : : r t o l = 1 .0E−5

double precision : : a t o l = 1 .0E−5

integer i

integer j

integer l

integer m

integer neqn ! number o f d i f f e r e n t i a l e qua t i ons

double precision h0 ! i n i t i a l s t e p s i z e f o r ODE so l v e r

integer lwork , l iwork

parameter ( neqn=3)

parameter ( lwork=24+neqn∗(48+2∗neqn ) , l iwork=37+neqn )

double precision work ( lwork )

integer iwork ( l iwork )

double precision rpar (10) ! r e a l parameters f o r the ODE so l v i n g

integer i pa r ! i n t e g e r parameters f o r the ODE so l v i n g

integer i d i d ! r e turn code o f the ODE so l v e r

external f eva l , j eva l , s o l o u t

integer i j a c , mljac , mujac , i ou t

double precision u (3) ! 3 rd component o f Bloch vec t o r

double precision v , ! Ve l o c i t y

dF , ! Change in f o r c e
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t s t a r t , ! S t a r t time

tstop , ! End time

phi , ! Phase o f torque vec to r

phistep , ! Step−s i z e f o r phase

FF, ! Force

term0 ! u (3) at beg inn ing o f pu l s e

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Write (∗ ,∗ ) ”How many phasepo ints ?”

Read(∗ ,∗ ) phasepo ints

Write (∗ ,∗ ) ”How many pu l s e pa i r i n t e r a c t i o n s ?”

Read(∗ ,∗ ) npu l s e s

Write (∗ ,∗ ) ”What i s d e l t a 0 ? ( in un i t s o f wm) ”

Read(∗ ,∗ ) d

d0 = d ∗ wm

Write (∗ ,∗ ) ”What i s omega 0? ( in un i t s o f wm) ”

Read(∗ ,∗ ) w

w0 = w ∗ wm

Write (∗ ,∗ ) ”What i s the minimum value o f KV? ( in un i t s o f gamma/k and i f negat ive in c lude i t ) ”

Read(∗ ,∗ ) minimum
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vmin = minimum ∗ v e l f a c t

Write (∗ ,∗ ) ”What i s the maximum value o f KV? ( in un i t s o f gamma/k ) ”

Read(∗ ,∗ ) maximum

vmax = maximum ∗ v e l f a c t

Write (∗ ,∗ ) ”Doppler Detuning o f f s e t , where should the curve be cente red ? ( in un i t s o f gamma/k ) ”

Read(∗ ,∗ ) o f f s e t

dopo f f = k∗ o f f s e t ∗ v e l f a c t

Write (∗ ,∗ ) ”How many s t ep s in KV?”

Read(∗ ,∗ ) dkv

vstep = (vmax−vmin )/ dkv

Write (∗ ,∗ ) ”The step s i z e o f kv i s ” , vstep / v e l f a c t , ”gamma/k”

Write (∗ ,∗ ) ”How many times ?”

Read(∗ ,∗ ) t imes

! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

do i = 1 ,14 ! use d e f a u l t parameters f o r work

work ( i ) = 0 .0

end do

i d i d = 0

i j a c = 0

mljac = neqn
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mujac = neqn

iou t = 0

iwork (1 ) = 10E5 !max number o f i n t e g r a t i o n s t e p s

iwork (2 ) = 4 ! min order f o r ode s o l v i n g proces s ( between 4 and 12)

iwork (3 ) = 12 !max order f o r ode s o l v i n g proces s ( between min order and 12)

iwork (4 ) = 10

!max number o f b l ended i t e r a t i o n s per i n t e g r a t i o n step , method o f order 4

iwork (5 ) = 12

!max number o f b l ended i t e r a t i o n s per i n t e g r a t i o n step , method o f order 6

iwork (6 ) = 14

!max number o f b l ended i t e r a t i o n s per i n t e g r a t i o n step , method o f order 8

iwork (7 ) = 16

!max number o f b l ended i t e r a t i o n s per i n t e g r a t i o n step , method o f order 10

iwork (8 ) = 18

!max number o f b l ended i t e r a t i o n s per i n t e g r a t i o n step , method o f order 12

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

rpar (1 ) = gamma ! Decay ra t e o f popu la t i on

rpar (2 ) = −gamma/2 ! Decay ra t e o f coherences

rpar (3 ) = w0 ! w0

rpar (4 ) = d0/wm ! d0/wm

rpar (5 ) = 0 .0 ! k∗v

rpar (6 ) = 0 .0 ! Phase

rpar (7 ) = wm ! Modulation f requency
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rpar (8 ) = dopo f f ! Doppler o f f s e t

rpar (9 ) = 0 .0 ! Pulse number in sequence

npa i r s = 4∗ npu l s e s ! Pu l ses per sequence

term0 = −1.0 ! r3 o f Bloch vec to r

open( unit=88, f i l e=’ s ing lepointrpUU . dat ’ ) ! Save f i l e

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

npa i r s = 4∗ npu l s e s

term0 = −1.0

ph i s t ep =2.0∗ pi /( phasepo ints ) ! Step−s i z e f o r p h i r e l

do j =1, phasepoints , 1 ! Phase loop

phi = ph i s t ep ∗ j

rpar (6 ) = phi

do l =1, dkv+1, 1 ! Ve l o c i t y loop

v = vmin +(l −1)∗vstep

rpar (5 ) = k∗v

dF = 0.0 ! I n i t i a l c ond i t i on s

t s t a r t = 0 .0

FF = 0.0
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h0 = t p u l s e /100 .0

do m = 1 , t imes

! i n i t i a l Bloch vec t o r

u (1) = 0 .0

u (2 ) = 0 .0

u (3 ) = −1.0

do i = 1 , npa i r s

t s top = t s t a r t + t p u l s e

! Ca l l random phase

rpar (9 ) = real ( i )

ca l l i n i t random seed

I f (mod( i , 4 ) . eq . 1) then

ca l l random number ( random )

rpar (10) = mod( random∗2∗pi , 2∗ pi )

End I f

!OBE so l v e r

ca l l bim( neqn , f eva l , t s t a r t , tstop , u , h0 , r t o l , a to l , j eva l , i j a c ,&

mljac , mujac , work , lwork , iwork , l iwork , rpar , ipar , iout , i d i d )
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I f ( i d i d . ne . 0 ) then

write (∗ ,∗ ) ’ERROR: returned i d i d=’ , i d i d

End i f

! Force c a l c u l a t i o n

I f (mod( i , 4 ) . eq . 1) Then

dF = (u(3)− term0 )∗ hbar∗k /(2 . 0∗ t p u l s e )

Else i f (mod( i , 4 ) . eq . 2) Then

dF = −(u(3)− term0 )∗ hbar∗k /(2 . 0∗ t p u l s e )

Else

dF = 0

End I f

FF = FF+dF

term0=u (3) !New i n i t i a l r3

End do

End do

! Write r e s u l t s to f i l e

write (88 ,9999) phi , v /( v e l f a c t ) , FF/(2 . 0∗ npu l s e s ∗ f o r f a c t ∗ t imes )

End do

End do
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9999 format (3 F20 . 5 )

stop

End

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

! Subrout ine to produce random number

SUBROUTINE i n i t random seed ( )

INTEGER : : i , n , c l o ck

INTEGER, DIMENSION( : ) , ALLOCATABLE : : seed

CALL RANDOM SEED( s ize = n)

ALLOCATE( seed (n ) )

CALL SYSTEM CLOCK(COUNT=c lock )

seed = c lock + 37 ∗ (/ ( i − 1 , i = 1 , n) /)

CALL RANDOM SEED(PUT = seed )

DEALLOCATE( seed )

END SUBROUTINE

! Subrout ine implements Opt i ca l Bloch Equations (OBEs)
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subroutine f e v a l ( neqn , t , u , du , i e r r , rpar , i pa r )

integer neqn , i e r r , i pa r

double precision t , u ( neqn ) , du ( neqn ) , rpar (10 ) , a , b

rpar (1 ) = gamma ! Decay ra t e o f popu la t i on

rpar (2 ) = −gamma/2 ! Decay ra t e o f coherences

rpar (3 ) = w0 ! w0

rpar (4 ) = d0/wm ! d0/wm

rpar (5 ) = 0 .0 ! k∗v

rpar (6 ) = 0 .0 ! Phase

rpar (7 ) = wm ! Modulation f requency

rpar (8 ) = dopo f f ! Doppler o f f s e t

rpar (9 ) = 0 .0 ! Pulse number in sequence

! F i r s t Pulse

I f (mod( i d i n t ( rpar ( 9 ) ) , 4 ) . eq . 1) Then

! Omega real

a = dabs ( rpar (3)∗ ds in ( rpar (7)∗ t ) )∗ ds in(− rpar (4)∗ ds in ( rpar (7)∗ t )+( rpar (5 )

−rpar (8 ) )∗ t+rpar (6)/2 +rpar ( 10 ) )

! Omega imaginary

b = dabs ( rpar (3)∗ ds in ( rpar (7)∗ t ) )∗ dcos(− rpar (4)∗ ds in ( rpar (7)∗ t )+( rpar (5 )

−rpar (8 ) )∗ t+rpar (6)/2 +rpar ( 10 ) )
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! Second Pulse

Else I f (mod( i d i n t ( rpar ( 9 ) ) , 4 ) . eq . 2) Then

! Omega real

a = dabs ( rpar (3)∗ ds in ( rpar (7)∗ t ) )∗ ds in ( rpar (4)∗ ds in ( rpar (7)∗ t )−( rpar (5 )

−rpar (8 ) )∗ t−rpar (6)/2 +rpar ( 10 ) )

! Omega imaginary

b = dabs ( rpar (3)∗ ds in ( rpar (7)∗ t ) )∗ dcos ( rpar (4)∗ ds in ( rpar (7)∗ t )−( rpar (5 )

−rpar (8 ) )∗ t−rpar (6)/2 +rpar ( 10 ) )

! Dead time

Else

a = 0

b = 0

End I f

!OBE’ s

du (1) = rpar (2)∗u (1) − a∗u (3)

du (2) = rpar (2)∗u (2) − b∗u (3)

du (3) = a∗u (1) + b∗u (2) − rpar (1 )∗ ( u (3)+1.0)

return
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end

! Subrout ine f o r e v a l u a t i n g the Jacobian o f the func t i on

! Jus t Dummy, s ince Jacobian i s c a l c u l a t e d numer ica l l y

subroutine j e v a l ( neqn , t , y , jac , ldim , i e r r , rpar , i pa r )

integer neqn , ldim , i e r r , i pa r

double precision t , y ( neqn ) , j a c ( ldim , neqn ) , rpar

return

end

! Subrout ine f o r output a f t e r each s t ep

! Jus t Dummy, s ince no output a f t e r each s t ep

subroutine s o l o u t (m, t , y , f , k , ord , i r t r n )

integer m, k , ord , i r t r n

double precision t ( k ) , y (m, k ) , f (m, k )

return

end
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Appendix B

Force Maps and Force vs kv Plots

B.1 Same Sweep Direction Velocity Dependence

Figure B.1: Legend for Appendix B force maps.
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Figure B.2: Force maps for v < 0 and sweep directions Up-Up. Plots are labeled with the
simulated atomic velocity in units of ωm/k (ωm/k ≈ 170 m/s)
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Figure B.3: Force maps for v > 0 and sweep directions Up-Up. Plots are labeled with the
simulated atomic velocity in units of ωm/k (ωm/k ≈ 170 m/s)
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Figure B.4: Force maps for v < 0 and sweep directions Down-Down. Plots are labeled with
the simulated atomic velocity in units of ωm/k (ωm/k ≈ 170 m/s)
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Figure B.5: Force maps for v > 0 and sweep directions Down-Down. Plots are labeled with
the simulated atomic velocity in units of ωm/k (ωm/k ≈ 170 m/s)
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Figure B.6: Force vs velocity plots for sweep UU peaked near v = 0. Plots are labeled by
{δ0,Ω0}.
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Figure B.7: Force vs velocity plots for sweep DD peaked near v = 0. Plots are labeled by
{δ0,Ω0}.
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Figure B.8: Selected force vs velocity plots for sweep UU. Plots are labeled by {δ0,Ω0}.
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Figure B.9: Selected force vs velocity plots for sweep UU. Plots are labeled by {δ0,Ω0}.

145



-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

83.465 Ωm , 4.13044 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

84.95 Ωm , 3.81825 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

84.33125 Ωm , 3.52245 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

84.455 Ωm , 3.97741 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

84.51688 Ωm , 4.13044 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

82.90813 Ωm , 3.67333 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

84.455 Ωm , 4.13044 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

84.39313 Ωm , 4.13044 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

84.455 Ωm , 4.13044 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

84.51688 Ωm , 4.13044 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

84.39313 Ωm , 4.13044 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL
F

or
ce

HF r
ad

L

84.51688 Ωm , 4.13044 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

82.78438 Ωm , 4.13044 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

82.84625 Ωm , 3.97741 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

82.84625 Ωm , 3.97741 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

82.16563 Ωm , 2.61232 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

82.84625 Ωm , 3.07585 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

82.53688 Ωm , 3.97741 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

82.41313 Ωm , 4.13044 Ωm <

-2 -1 0 1 2
0

2

4

6

8

10

12

14

Velocity HΩm�kL

F
or

ce
HF r

ad
L

82.28938 Ωm , 3.36482 Ωm <

Figure B.10: Selected force vs velocity plots for sweep DD. Plots are labeled by {δ0,Ω0}.
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Figure B.11: Selected force vs velocity plots for sweep DD. Plots are labeled by {δ0,Ω0}.
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B.2 Opposite Sweep Direction Velocity Dependence
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Figure B.12: Force maps for v < 0 and sweep directions Up-Down. Plots are labeled with
the simulated atomic velocity in units of ωm/k (ωm/k ≈ 170 m/s)
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Figure B.13: Force maps for v > 0 and sweep directions Up-Down. Plots are labeled with
the simulated atomic velocity in units of ωm/k (ωm/k ≈ 170 m/s)
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Figure B.14: Force maps for v < 0 and sweep directions Down-Up. Plots are labeled with
the simulated atomic velocity in units of ωm/k (ωm/k ≈ 170 m/s)
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Figure B.15: Force maps for v > 0 and sweep directions Down-Up. Plots are labeled with
the simulated atomic velocity in units of ωm/k (ωm/k ≈ 170 m/s)
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Figure B.16: Force vs velocity plots for sweep UD peaked near v = 0. Plots are labeled by
{δ0,Ω0}.
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Figure B.17: Force vs velocity plots for sweep DU peaked near v = 0. Plots are labeled by
{δ0,Ω0}.
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Figure B.18: Selected force vs velocity plots for sweep UD. Plots are labeled by {δ0,Ω0}.
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Figure B.19: Selected force vs velocity plots for sweep UD. Plots are labeled by {δ0,Ω0}.
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Figure B.20: Selected force vs velocity plots for sweep DU. Plots are labeled by {δ0,Ω0}.
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Figure B.21: Selected force vs velocity plots for sweep DU. Plots are labeled by {δ0,Ω0}.
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