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Abstract of the Dissertation 

Semiparametric Bayesian modeling of density dependence  

by 

Masatoshi Sugeno 

Doctor of Philosophy 

in 

Marine and Atmospheric Science 

Stony Brook University 

2012 

 

Density dependence is a foundation of population biology.  Analysis of population data 

with parametric models has long provided estimates of the maximum reproductive rate and the 

form of density dependence. These in turn determine the limit of sustainable harvest and the 

population‘s stability, respectively.  However, standard parametric analyses of population data 

generate incorrect inferences of density dependence in noisy and short series.  Therefore, there is 

a clear need for improved statistical methods for inferring density dependence. 

In this thesis, I developed new semiparametric Bayesian (SB) methods for estimating 

reproductive rates and for identifying forms of density dependence.  Using simulated data, I 

validated the superiority of the SB methods to parametric alternatives.  Then, I conducted SB 

analyses of 285 fish populations‘ datasets to estimate reproductive rates and to identify the forms 

of density dependence.  I compared the results of the SB analyses with those based on standard 

parametric analyses of the same datasets.  The SB analysis indicated that the forms of density 

dependence in 3.4% of the datasets are Allee effects, whereas the parametric analysis indicated 
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1.5%, suggesting that Allee effects are more than twice as often as previously thought.  

However, both the SB and the parametric model (the linear model) generated essentially the 

same estimates of the reproductive rates, indicating that the linear model may be a reasonable 

approach to inferring the reproductive rates of fish populations. 
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Chapter 1 

Introduction 

 

1-1. General introduction 

Density dependence is a foundation of population biology (Turchin 2003).  Density-

dependent effects arise when the intensity of these effects change with population size.  Density 

dependence can describe a wide range of patterns observed in population dynamics (e.g., steady 

state dynamics, chaotic dynamics, consumer-resource dynamics, predator-prey interactions, host-

parasite dynamics), and has consequently played a pivotal role in the development of population 

biology (Turchin 2003). 

In addition to the long-term interest in density dependence from a theoretical perspective 

(Turchin 2003), density dependence has considerable practical applications in the management 

of natural renewable resources, the conservation of endangered species, and the restoration of 

decimated populations.  For example, density dependence can be used for determining the upper 

limits to harvest (Myers et al. 1997; Myers et al. 1999; Myers 2001) and for establishing 

optimum harvesting rates for sustainable use (Lande et al. 1994).  It can also be used for 

estimating minimally viable population sizes needed for persistence of a population (Courchamp 

et al. 2008) and for estimating extinction probability of endangered species (Boukal and Berec 

2002; Dennis 2002).  Moreover, knowing the nature of density dependence in populations can 

help in understanding vulnerability to invasion by introduced species, for assessing risk of 

disease outbreak (Tayler and Hastings 2005; Tobin et al. 2011), and for developing robust 

restoration programs for collapsed populations (Grevstad 1999; Deredec and Courchamp 2007; 
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Armstrong and Wittmer 2011).  Clearly, the successful implementation of management strategies 

relies heavily on correctly identifying the form of density dependence.  

In practice, a mathematical model is used to obtain an inference of density dependence 

from population data.  The simplest model of density dependence is one where population 

growth rate is assumed to be a function of current population size: 

 𝑁𝑡+1 = 𝑁𝑡exp 𝑓 𝑁𝑡   (1) 

(Turchin 2003).  In this model, 𝑁𝑡  is population size at time 𝑡  and 𝑓 𝑁𝑡  is a function that 

specifies the form of density dependence.  In fisheries, in addition to modeling standard 

population dynamics as described in Eq. 1, density dependence is used for modeling the 

relationship between mature adult biomass (spawning stock) and offspring produced 

(recruitment).  The stock-recruitment relationship can be given by: 

 𝑅 = 𝑆exp 𝑓 𝑆   (2) 

where 𝑆 is spawning biomass and 𝑅 is recruitment biomass (Quinn and Deriso 1999).  As written, 

functions 𝑓 𝑁𝑡  and 𝑓 𝑆  specify the form of density dependence in these relationships, and the 

specific choice of parameters determines the behavior of the models.  In Table 1, some example 

functions specifying 𝑓 𝑁𝑡  are provided.   

 Inferences regarding the nature and strength of density dependence have been typically 

obtained by analyzing population data using parametric models.  In cases when it is uncertain 

what parametric model should be used to describe density dependence, the best model can be 

identified by comparing performance of multiple models via a model selection criterion (e.g., 

likelihood ratio test, AIC, BIC, DIC, posterior predictive loss) (Barrowman and Myers 2000).  In 

addition, the inference of density dependence provided by multiple models can be averaged 

based on the plausibility of each model if one is worried about the complete ignorance of less 
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plausible because of the on-and-off nature of the model selection approach (Brodziak and 

Legault 2005).   

Although this parametric approach for identifying the form of density dependence seems 

appealing, some serious drawbacks are known.  First, choice of a model usually limits the 

possible range of density dependence (e.g., Myers et al. 1994; Zhou 2007).  For example, the 

Ricker model is strictly linear in 𝑓 𝑁𝑡  (Table 1), eliminating the possibility of 𝑓 𝑁𝑡  being 

better modeled by a nonlinear function.  Therefore, when a collection of parametric models used 

for identifying the form of density dependence does not include the most plausible form of 

density dependence, an incorrectly specified model can be identified as the best model.  Second, 

although the best model for describing density dependence is expected to be the same regardless 

of model selection criteria, this is often not the case.  Analyses of typically noisy and short 

ecological time series have shown that the best model can be sensitive to choice of model 

selection criteria (Hill et al. 2007; Ward 2008).  Alternatively, different models can be 

statistically equally plausible (Wood and Thomas 1999).  Worse, a simulation study has 

demonstrated that model selection criteria can identify an incorrectly specified model as the 

better model (Shelton and Healey 1999).   

Uncertainty in the form of density dependence suggests that previous parametric-based 

approaches might have generated incorrect inferences of density dependence based on empirical 

datasets.  Using the likelihood ratio test to identify the form of density dependence in datasets of 

fish populations, Myers et al. (1995) showed that Allee effects (positive density dependence at 

low population size) were found in <2.4% of the fish populations.  Using the Ricker model 

(negative density dependence), Myers et al. (1999) conducted a meta-analysis of over 700 

datasets of fish populations, demonstrating that the maximum reproductive rate of fish 
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populations is within the 1-7 range in most species.  In addition, Myers et al. (1999) concluded 

that the Ricker model may be the best approximated form of negative density dependence in fish 

populations.  Furthermore, Gregory et al. (2010) analyzed taxonomically broader datasets with 

parametric models, concluding that Allee effects were found in <1.2% of the datasets.  These 

studies generated the consensus view that negative density dependence is a reasonable 

approximation for modeling density dependence in wild populations.  However, given the 

drawbacks in analyzing ecological data with parametric models, the inferences of maximum 

reproductive rate and of density dependence may be largely biased.   

 

1-2. Brief description of chapters in this thesis 

The aim of this thesis is to develop a flexible modeling approach to obtain the best form 

of density dependence.  Use of a flexible model was advocated previously (e.g., Bravington et al. 

2000), and non/semi-parametric statistical methods were developed for obtaining non/semi-

parametric inferences of density dependence (Evans and Rice 1988; Cook 1998; Bravington et 

al. 2000; Munch et al. 2005).  Most of them were shown to perform as good as, or even better 

than, parametric models in generating inferences of density dependence in stock-recruitment data.  

However, these methods were not designed to provide specific information for practical use (e.g., 

maximum reproductive rate and carrying capacity); doing so involves ad hoc and error-prone 

statistical methods.  Of all the methods introduced above, I will specifically focus on a 

semiparametric Bayesian (SB) method that is based on the use of a Gaussian process (GP) prior 

(Munch et al. 2005), and will extend it to provide information needed among 

conservation/management practitioners.  
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In chapter 2, I will develop a conditional GP prior for obtaining a SB estimate of the 

maximum reproductive rate.  I will conduct simulation studies to compare performance of the 

conditional GP prior with that of other GP priors (e.g., Munch et al. 2005) in terms of 

estimability of reproductive rate.  I will also compare SB estimates of reproductive rate with 

estimates provided by parametric models.  In chapter 3, I will develop a SB approach to identify 

the form of density dependence in stock-recruitment datasets.  Specifically, I will construct a SB 

index provided by the posterior inference of a GP prior and by the derivative of the GP prior.  I 

will conduct simulation studies to compare performance of the SB approach with its parametric 

alternatives.   

In the last two chapters, I will apply the SB methods developed in chapters 2 and 3 to the 

analysis of empirical stock-recruitment datasets collected from the ‗Stock recruitment database‘ 

(http://www.mscs.dal.ca/~myers/welcome.html).  In chapter 4, I will estimate reproductive rates 

of fish populations using the method developed in chapter 2.  Then, I will compare the SB 

estimates of the reproductive rate with estimates provided by parametric models (Myers et al. 

1997; Myers et al. 1999).  In chapter 5, I will obtain the SB inferences of density dependence 

using the method developed in chapter 3.  Then, I will compare the estimated frequency of Allee 

effects among fish populations with that provided by parametric alternatives (Myers et al. 1995).   

In each chapter, I will discuss the benefits and shortcomings of the SB approach in 

analyzing ecological data.  I will also discuss future directions to further refine the SB analysis. 

 

  

http://www.mscs.dal.ca/~myers/welcome.html


 

6 
 

1-3. Tables:  

Table 1.  Examples of parametric functions specifying 𝑓 𝑁𝑡  (from Turchin 2003).  𝜆 is the 

population growth rate and 𝑘 is the carrying capacity.  𝑎, 𝑏, and 𝜃 are some positive constants.  

The same functional forms are gragusually directly applicable to modeling density dependence in 

stock-recruitment relationships (Quinn and Deriso 1999; Liermann and Hilborn 2001; Needle 

2002).   

 

Density independence ln𝜆  

Quadratic map ln 𝜆 1 − 𝑁𝑡/𝑘    

Ricker ln𝜆 − 𝑎𝑁𝑡   

Theta-Ricker ln𝜆 − 𝑎𝑁𝑡
𝜃   

Beverton-Holt ln𝜆 − ln 1 + 𝑎𝑁𝑡   

Sigmoid Beverton-Holt ln𝜆 +  𝜃 − 1 ln𝑁𝑡 − ln 1 + 𝑎𝑁𝑡
𝜃   

Gompertz ln𝜆 +  𝜃 − 1 ln𝑁𝑡   
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Chapter 2 

A semiparametric Bayesian approach to estimating maximum 

reproductive rates at low population sizes 

 

Key words 

Allee effects, depensation, Gaussian process, maximum annual reproductive rate, semiparametric 

Bayesian modeling, slope at the origin, stock recruitment relationship 

 

Abstract 

The maximum annual reproductive rate (i.e., the slope at the origin in a stock-recruitment 

relationship) is one of the most important biological reference points in fisheries; it can be 

interpreted as upper limit of sustainable fishing mortality and a growth rate of a stock.  Fitting 

parametric models to stock-recruitment data may not be a robust approach because two 

statistically indistinguishable models can generate radically different estimates of the maximum 

annual reproductive rate.  To mitigate this issue, we developed a flexible semiparametric 

Bayesian approach based on conditional Gaussian process priors specifically designed to 

estimate the maximum annual reproductive rate, and applied it to analyze simulated stock 

recruitment datasets.  Compared with results based on other Gaussian process priors, we found 

that the conditional Gaussian process prior provided superior results:  the accuracy and precision 

of estimates were enhanced without increasing model complexity.  Moreover, compared with 

parametric alternatives, performance of the conditional Gaussian process prior was comparable 

to that of the data-generating model and always better than the wrong model.  
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2-1. Introduction 

The maximum annual reproductive rate of a stock is probably one of the most needed 

information in fisheries sciences.  They can be used for two important reference points in 

fisheries: stocks‘ upper limit of sustainable fishing mortality and growth rates (Myers et al. 1997; 

Myers et al. 1999; Myers 2001).  In practice, stocks can be exploited sustainably as long as their 

fishing mortality rates are maintained below their upper limit (Bravington et al. 2000; Cook 

2000; Myers et al. 1998).  The estimates of stocks‘ growth rates provide expected time for 

overharvested stocks for rebuilding (Myers et al. 1997).  Although there may be complications 

involved in applying maximum annual reproductive rates to actual fisheries management 

(Ludwig 1993; Ostrom et al. 1999; Diez et al. 2003), good estimates are nevertheless an 

important baseline for sustainable fisheries. 

The conventional approach to estimating the maximum annual reproductive rate is to 

analyze stock-recruitment (SR) data using one or several parametric models (Quinn and Deriso 

1999).  These models typically have a ‗slope at the origin‘ parameter, denoted by α, which is 

equivalent to the maximum annual reproductive rate.  After fitting several models, the estimate 

for α is either the estimate associated with the best fitting model (e.g., Barrowman and Myers 

2000) or is obtained by model averaging (e.g., Brodziak and Legault 2005). 

One potential drawback of this parametric approach is that the choice of the model can 

limit the possible range of estimates for α (e.g., Myers et al. 1994; Zhou 2007).  As a 

consequence, estimates of α are sensitive to model choice.  Worse, model selection criteria (e.g., 

AIC, BIC, DIC, posterior predictive loss, etc.) are not always robust for finding the best 

estimates for α, because different models can be statistically indistinguishable when data are few 
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or noisy, and model performance can be inconsistent across different criteria (Wood and Thomas 

1999; Hill et al. 2007; Ward 2008).  

Nonparametric statistical methods have been used to circumvent the uncertainty in model 

structure for a SR relationship (Evans and Rice 1988; Cook 1998; Bravington et al. 2000; Munch 

et al. 2005), and the need for a nonparametric approach to estimating α was first taken up by 

Bravington et al. (2000).  Bravington et al. (2000) developed constrained nonparametric 

regression methods explicitly intended to estimate α.  However, while the constraints they 

introduced are reasonable, they are not guaranteed to be true.  Moreover, additional information 

about α is frequently available and can be incorporated in models.  In a Bayesian context, for 

example, information regarding life history of fish can be used to derive an informative prior for 

α (e.g., He et al. 2006). 

Munch et al. (2005) developed a nonparametric Bayesian approach to estimating a SR 

function using a Gaussian process (GP) prior.  Their model retains nonparametric flexibility 

while allowing the incorporation of prior information and the assumption that recruitment is 

strictly positive (R>0).  This approach outperforms incorrectly specified parametric models and 

is comparable to the correct model in simulation testing.  However, there are several obvious 

ways to improve this model.  For instance, a more reasonable prior should also ensure that no 

recruitment is possible when the stock is absent (i.e., R=0 when S=0).  Moreover, although 

Munch et al. (2005) provided estimates of lnα, this was accomplished in an ad hoc way by 

numerical differentiation of the inferred SR model which was both computationally intensive and 

potentially error prone.  

In this chapter, we introduce a semiparametric Bayesian (SB) approach specifically 

designed to estimate lnα as a parameter while retaining flexibility in the shape of the fitted SR 
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model.  In order to understand the estimability of lnα, we conducted a comprehensive simulation 

study.  Specifically, we assessed how model performance, specifically bias and variance in 

estimated lnα was affected by the level of noise in the data and the availability of data close to 

the origin.  Performance was compared with that of two commonly used parametric models and 

the nonparametric Bayesian model of Munch et al. (2005). 

 

2-2. Methods 

We begin by reviewing the general approach to estimating the slope at the origin, α, in a 

SR relationship.  We then introduce a conditional Gaussian process (GP) prior that enables us to 

estimate α as a parameter under a semiparametric Bayesian (SB) framework.  Finally, we 

describe the simulation study used to test the method.  Mathematical details are given in 

Appendix A. 

 

2-2-1. Estimating α from the SR relationship 

The relationship between stock size and recruitment can be modeled by: 

 𝑅 = 𝑆exp 𝑓 𝑆   (1) 

where 𝑆 is a spawning biomass and 𝑅 is a recruitment biomass.  Density dependence is modeled 

by exp 𝑓 𝑆   using an arbitrary function 𝑓 𝑆 .  The slope at the origin, α, is obtained from Eq 1 

by taking the derivative of Eq 1 with respect to 𝑆 and setting 𝑆 = 0.  Doing so yields  

or, equivalently, ln𝛼 = 𝑓 0 .  In the absence of depensation, 𝑓 𝑆  is a monotonically decreasing 

function, and 𝛼  is guaranteed to be the the maximum reproductive rate.  Of course, in the 

presence of depensation, 𝑓 𝑆  contains a global maximum at some 𝑆 > 0 , and 𝛼  is not the 

 𝛼 = exp 𝑓 0   (2) 
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maximum reproductive rate but merely the limiting reproductive rate as population density drops 

to zero. 

In keeping with many prior studies (e.g., Myers et al. 1999; Munch et al. 2005), we 

assume that 𝑆 is observed without error and multiply Eq 1 by an error term, exp 𝜀 , to account 

for uncertainty in R given S:   

 𝑅 = 𝑆exp 𝑓 𝑆 + 𝜀  (3) 

where ε is normally distributed with mean 0 and variance 𝜎2  but without serial dependence.  

Under this modeling framework, we explicitly assume that stocks are closed populations (i.e., no 

migration and emigration) and ensure that R=0 when S=0.  For mathematical convenience (see 

section 2-2-2) and consistency with previous studies (Myers et al. 1999; Myers et al. 2001), we 

re-write Eq 3 using the transformed variate 𝑦 = ln 𝑅/𝑆 , leading to 

 𝑦 = 𝑓 𝑆 + 𝜀. (4) 

We use Eq 4 for the remainder of this chapter.   

We note that temporal autocorrelation appears to be present in many fisheries data 

(Myers and Barrowman 1995) and several methods (e.g., Walters 1990; Bence 1995; Pyper and 

Peterman 1998) are available to correct bias in fitted parametric models.  However, we are not 

aware of comparable bias correction methods for non/semi-parametric models.  Development of 

bias correction terms for semiparametric models is an important area for future research that is 

beyond the scope of this paper.   

 

2-2-2. A conditional GP prior 

Our goal is to develop a semiparametric method that enables us to estimate lnα as a 

parameter. To do so, we begin with a GP prior (Munch et al. 2005) which models random 
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functions 𝑓 𝑆  in Eq 4 under a nonparametric Bayesian framework.  We then condition this GP 

prior such that 𝑓 0 = ln𝛼 is ensured for all realizations of the random function 𝑓 𝑆  resulting in 

a semiparametric specification. 

A GP is a generalization of a multivariate normal distribution whose dimension is infinite 

(i.e., 𝑆 is a continuous variable).  Typically, a GP prior is specified with a mean function 𝜇 𝑆  

and a covariance function 𝛴(𝑆, 𝑆′) and we write this prior specification as 

 𝑓 𝑆 ~GP 𝜇 𝑆 , 𝛴(𝑆, 𝑆′) . (5) 

Although many mean functions are possible, here we set the prior mean function to 

 𝜇 𝑆 = ln𝛼 + 𝛽𝑆/max 𝑆 , (6) 

meaning that the random function 𝑓 𝑆  is, on average, linear in the prior over 𝑆.  Importantly, 

the posterior mean of this GP prior is not necessarily linear, but will be driven largely by the 

shape of the data (Munch et al. 2005). 

The covariance function 𝛴(𝑆, 𝑆′) determines how deviations from the mean covary across 

the input space 𝑆.  Because commonly used SR functions are continuous and smooth, and we 

have no a priori reason to assume that the uncertainty in 𝑓 𝑆  varies with 𝑆, we used an isotropic 

covariance function among other choices (Rasmussen and Williams 2006): 

 
𝛴(𝑆, 𝑆′) = 𝜏2exp  −𝜙  

𝑆 − 𝑆′

max 𝑆 
 

2

 , 
(7) 

where 𝜙 determines the wiggliness of the random function 𝑓 𝑆  and 𝜏2  determines its vertical 

range (see Rasmussen and Williams 2006 for details). 

Note that ln𝛼 appears explicitly in the model formulation through specification of the 

prior mean function (Eq 6).  However, the realized slope at the origin is 𝑓 0  and under this prior 

specification 𝑓 0 ~N 𝜇 0 , 𝛴(0,0)  where the mean is given by 𝜇 0 = ln𝛼 and the variance is 
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𝛴(0,0)  = 𝜏2.  Thus the actual slope at the origin 𝑓 0  in this naive specification is random.  It is 

not exactly equal to ln𝛼  and realizations of 𝑓 0  may deviate widely from true ln𝛼 .  We 

eliminate this ambiguity by conditioning the GP prior such that all realizations of 𝑓 𝑆  have 

𝑓 0  exactly equal to ln𝛼, thereby ensuring that ln𝛼 is the slope at the origin in the fitted SR 

model (see Appendix A).  The conditional GP prior is the same as the unconditioned prior (Eqs 

5-7) except that the covariance function is replaced by the conditional covariance function 

𝛴𝑐(𝑆, 𝑆 ′), i.e., 

 
𝛴𝑐(𝑆, 𝑆′) = 𝜏2exp  −𝜙  

𝑆 − 𝑆′

max 𝑆 
 

2

 − 𝜏2exp  −𝜙  
𝑆2 + 𝑆′2

max 𝑆 2
  . 

(8) 

 

2-2-3. Prior specification 

We used uninformative priors developed previously for parameters ln𝛼 and 𝛽 in the prior 

mean and for the noise variance 𝜎2  (Millar 2002), specifically Pr ln𝛼, 𝛽 ∝ 1  and Pr 𝜎2 ∝

𝜎−2 .  More careful consideration was needed in specifying prior distributions for 𝜙 and 𝜏2 , 

because the posterior distributions may not converge when improper priors, such as Pr 𝜙, 𝜏2 ∝

𝜙−1𝜏−2 , are used.  As in Munch et al. (2005), we used the range of 𝑦 (i.e., 𝑟𝑦 = max 𝑦 −

min 𝑦 ) to provide prior information on the total variance.  Since the total prior variation in 𝑦 is 

given by Var 𝑦 = Var 𝑓(𝑆) + 𝜎2, we assigned the expected prior variance to 𝑓 0  by setting 

E(𝜏2) = 𝑟𝑦 .  We used a gamma prior, Pr 𝜏2 ∝ 𝜏2exp −2𝜏2/𝑟𝑦 .  The preliminary prior 

sensitivity analysis with different parameterization for this prior did not change estimates for ln𝛼 

and fits of the GP models to data.  

As noted previously, 𝜙 controls the wiggliness of realizations of 𝑓 𝑆 .  A GP prior with 

large values for 𝜙 generates random functions 𝑓 0  that have many local extrema over the range 
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of 𝑆.  However, biologically plausible SR functions have very few local extrema.  For example, 

the Ricker model has a single maximum and the Beverton-Holt (BH) model has only an 

asymptote (Quinn and Deriso 1999).  In the prior, we therefore allowed f(S) to have not more 

than 2 local maxima over S so that more complex shapes in f(S) (such as f(S) modeling 

depensatory SR relationship, Quinn and Deriso 1999) were admissible.  Although the expected 

number of local extrema can be found analytically for a zero-mean GP with a stationary 

covariance function (e.g., Ylvisaker 1965), this is not the case for the present model and we 

determined the relationship between 𝜙 and the expected number of turns in f(S) by simulation.   

To do so, we generated random functions f(S) using the unconditional GP prior (Eqs 5-7) 

for different combinations of 𝜙  and 𝜏2 , and counted the number of inflection points in 

𝑆exp 𝑓 𝑆  .  We found that the result is independent of 𝜏2  and that 𝑆exp 𝑓 𝑆   has 2 local 

extrema on average when 𝜙 = 8.  Based on this information, we used an informative gamma 

prior whose mean is E 𝜙 = 8, which is specified by Pr 𝜙 ∝ 𝜙exp −𝜙/4 .  Note that this 

prior specification is not overly restrictive; data that are strongly informative about the presence 

of a greater number of inflection points will overwhelm this prior choice.  By specifying the 

prior in this manner we are seeking to incorporate biological realism and to prevent the model 

from ‗fitting the noise‘. 

 

2-2-4. Parameter estimation 

For notational convenience, we collect the set of hyperparameters into the vector 

𝜣 =  ln𝛼, 𝛽, 𝜙, 𝜏2 , 𝜎2 .  With 𝑛  years of stock biomass and recruitment data,  𝑺, 𝑹 =

  𝑆1, … , 𝑆𝑛 ,  𝑅1, … , 𝑅𝑛  , we have 𝒚 =  ln 𝑅1/𝑆1 , … , ln 𝑅𝑛/𝑆𝑛   and f(S) evaluated at the 

points in S is a sample from an n-dimensional multivariate normal distribution, i.e., 
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 𝑓 𝑺 |ln𝛼, 𝛽, 𝜙, 𝜏2~MVN 𝜇 𝑺 , 𝛴𝑐(𝑺, 𝑺′)  (9) 

where the mean vector 𝜇 𝑺  is given by  

 𝜇 𝑺 = ln𝛼𝟏𝒏 + 𝛽𝑺/max 𝑺  (10) 

and the 𝑖, 𝑗𝑡ℎ  element of the 𝑛 × 𝑛covariance matrix is 

 
𝛴𝑐(𝑆, 𝑆 ′) = 𝜏2exp  −𝜙  

𝑆𝑖 − 𝑆𝑗

max 𝑺 
 

2

 − 𝜏2exp  −𝜙  
𝑆𝑖

2 + 𝑆𝑗
2

max 𝑺 2
  . 

(11) 

Here, 𝟏𝒏  is an 𝑛 × 1  vector of ones.  As specified so far, the full Bayesian model is 

computationally cumbersome to work with.  To simplify posterior inference, we integrated over 

f(S) (see e.g., Munch et al. 2005) and worked with the marginal posterior given by: 

 𝒚|𝑺, 𝜣~MVN 𝜇 𝑺 , 𝛴𝑐 𝑺, 𝑺′ + 𝜎2𝐈𝒏  (12) 

 𝜣~Pr 𝜣 , (13) 

where 𝐈𝐧 is an 𝑛 × 𝑛 identity matrix.  As described earlier, the prior distribution of Eq 13 is 

given by Pr 𝜣 ∝ 1 ∙ 𝜙exp −𝜙/4 ∙ 𝜏2exp −2𝜏2/𝑟𝑦 ∙ 𝜎−2.  In this way, we omitted obtaining 

posterior inference for 𝑓 𝑺 , which is not relevant to estimating ln𝛼,while updating 𝜣.  Note that 

the model (Eq 12) is an 𝑛-dimensional multivariate normal distribution conditioned on 𝜣 (Eq 

13). 

We used a Markov Chain Monte Carlo method (Metropolis algorithm, (e.g., Gelman et al. 

2003)) to obtain the posterior distribution for 𝜣.  The convergence of the Monte Carlo runs was 

assessed by comparing the variance within a single run with the variance among multiple runs, 

where their initial values for the runs were dispersed around initial maximum likelihood 

estimates (Gelman et al. 2003).  
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2-2-5. Simulation study 

We evaluated the performance of our SB approach using simulated data.  Because the 

Ricker and the BH models are the most common choices for studying a SR relationship (Myers 

et al. 1999; Quinn and Deriso 1999; Myers et al. 2001; Zhou 2007), we used these two models 

for generating data sets.  Lack of data at low stock sizes and the noise level in data are likely to 

be the two main sources of uncertainty and bias in estimating lnα (Hilborn and Walters 1992).  In 

designing our simulation, therefore, we initially generated data from Ricker and BH models with 

a range of minimal stock sizes, noise levels, and values for lnα.  Preliminary analyses indicated 

that the results are relatively insensitive to variation in lnα over a reasonable range of values and 

we therefore used a fixed value of lnα=ln4.   

We based our simulation design on a preliminary analysis of data from 25 Atlantic cod 

(Gadus morhua) stocks for which 10 or more years of data were available from Ransom Myers‘ 

Stock Recruitment Database (http://www.mscs.dal.ca/~myers/welcome.html).  In keeping with 

previous analyses (e.g., Myers et al. 1999), recruitment data for each stock was multiplied by 

 1 − 𝑝 SPRF=0  where 𝑝 = exp −𝑀  and 𝑀  is natural mortality and  SPRF=0  is the spawning 

biomass resulting from each recruit in the limit of no fishing mortality.  In principle, this 

transformation provides us with standardized units for α, ‗annual‘ reproductive rates, which 

allow meaningful comparison across stocks.  For each stock, we found the stock size that 

maximized recruitment and used this to set the scale: the minimum stock size was always less 

than half of this value while the range of observed stock sizes was less than 1.5 times this value 

for 19 of the 25 stocks.  Further, fitting a Ricker model to these data, we found that 88% of the 

data sets had estimated values of σ
2
 between 0.1 and 1.  This analysis is intended to provide us 



 

17 
 

with a ‗realistic‘ baseline around which to construct our simulation study and is not intended as a 

rigorous analysis of the cod data. 

Using these observations to constrain the design of our simulation, we generated data sets 

from both the Ricker and the BH models with σ
2
 between 0.1 and 1.  Since, for simulation 

purposes, the actual units for stock and recruitment are less important than the level of noise and 

the relative distance to the origin, we set maximum recruitment equal to 1, which sets the stock 

size that maximizes recruitment equal to e/α=0.68 in our simulated data.  With this scaling in 

mind, we set minimum stock sizes, 𝑆min , between 0 and 0.34 and the range of stock sizes equal 

to 1.02.  For each combination of model, σ
2
, and 𝑆min , we generated 500 replicate data sets 

which consisted of 30 observations each.  Simulated stock sizes were drawn from a uniform 

distribution on [Smin, Smin+1.02] and recruitment was calculated using the Ricker or the BH 

model according to Eq 3.   

For each of these data sets, we estimated lnα using the Ricker model, the BH model and 

the SB approach described above. In what follows, we will refer to this SB approach as the 

‗linear‘ model, for reasons that should become clearer shortly.  To evaluate the importance of 

prior specification we also compared the ‗linear‘ model to three alternative GP models that relax 

the specification of prior information on the shape of the SR function.   Note that using posterior 

predictive loss (Gelfand and Ghosh 1998) as a selection criterion, we confirmed that the 

performance of all four of these GP models were statistically equivalent within the range of the 

data.  However, GP models are typically much worse at extrapolating than interpolating (Munch 

et al. 2005; Rasmussen and Williams 2006) and we therefore expect that these GP models will 

differ in their ability to accurately estimate lnα.  To address this, we evaluated model 
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performance in terms of the average bias ( E ln𝛼|data − ln𝛼true ) and posterior variance 

(V ln𝛼|data ) based on the analysis of 500 replicates for given σ
2 

and 𝑆min . 

The first alternative GP model is the model proposed by Munch et al. (2005), i.e., 

ln𝑅 = 𝑓(ln𝑆) + 𝜀 

𝑓~GP(𝜇′, Σ′) 

where the prime on the mean and covariance functions is included to indicate that they are 

specified in terms of lnS.  Specifically, the mean function is  𝜇′ = ln𝛼  and the covariance 

function was 𝛴′ = 𝜏2exp −𝜙| ln𝑆 − ln𝑆 ′ / max ln𝑆 − min ln𝑆  |2  by analogy with Eq 5.  

The range of lnS was standardized in the covariance function and the same priors for 𝜙 and 𝜏2 

were used as in Eq 12.  In the remainder of this paper we refer to this as the ‗lnS‘ model.   

The second GP model we used was the model given by Eqs 5-7, which is the GP model 

without conditioning f(0)=lnα.  Prior specification was otherwise identical to that described for 

the ‗linear‘ model.  We refer to this prior specification as the ‗S‘ model and included it primarily 

to evaluate the gain in posterior precision obtained by conditioning on f(0).  The third alternative 

GP model we tested was identical to the ‗linear model‘ except that we used a constant mean 

function.  That is, we replaced the mean function in Eq 6 with µ(S)=lnα.  Within the range of the 

data, this model should be identical to the ‗linear‘ model.  However, because estimation of lnα 

requires some extrapolation beyond the range of the data, this prior mean was included to assess 

the gain in posterior accuracy obtained by including a linear mean function.  We refer to this as 

the ‗constant‘ model. 

We may think of this collection of GP models as supplying sequentially more 

information about the shape of the SR model.  The ‗lnS‘ model merely constrains recruitment to 

be positive. The ‗S‘ model asserts that recruitment must be positive, and that it must be zero 
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when S is zero.  The ‗constant‘ model includes these constraints and specifies the slope at the 

origin as a parameter, but asserts no prior expectation about how recruits per spawner should 

change with stock biomass.  Finally, the ‗linear‘ model asserts the same constraints, specifies the 

slope at the origin as a parameter and asserts that recruits per spawner should decrease with stock 

biomass. 

 

2-3. Results 

For sake of clarity, we begin by describing results for a single simulated data set before 

moving on to the overall simulation.  In the single example, the Ricker model was used to 

generate data with lnα= ln4, Smin=0.34, and σ
2
=0.1 (Fig. 1a).  The credibility intervals based on 

variance of estimated lnα indicate that the posterior variance and bias in the posterior mean are 

the smallest for the Ricker model, followed by the ‗linear‘ model (Fig. 1b).  Of the four GP 

models, the ‗linear‘ model was the least biased and most precise, the ‗constant‘ model was 

second best and the ‗S‘ and the ‗lnS‘ models performed equivalently poorly.  All of these models 

gave better estimates than the BH model.  

Turning now to the overall simulation, we found that averaging across both data-

generating models and all combinations of Smin and 𝜎2, the ‗linear‘ model produced the least 

biased estimates of lnα (bias=-0.1829, variance=0.3517, Table 1c).  Considering the Ricker and 

the BH data sets separately, the ‗linear‘ model produced the least biased estimates for the Ricker 

data (Table 1a) and was second best for the BH data (Table 1b).  The ‗linear‘ model produced 

better estimates of lnα for the Ricker data than for the BH data.  When the generating model was 

the BH, estimates of lnα by the ‗linear‘ model were negatively biased (bias=-0.3659, Table 1b).  

Results for the bias are somewhat smaller than those obtained with the use of the Ricker model.  
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However, the magnitude of the variance was consistently larger for the ‗linear‘ model than for 

the Ricker model (Table 1a,1b). 

For all models, posterior variance in lnα increases with both Smin and 𝜎2  (Fig. 2,3).  

However, when Smin was small, bias in estimates of lnα were small at any 𝜎2 for all models.  

This result supports the intuitive assertion that an absence of data around the origin makes it 

difficult to generate accurate and precise estimates of lnα (Hilborn and Walters 1992; Shelton 

and Healey 1999).  

In keeping with previous simulation results (Zhou 2007), we found that the Ricker model 

generated negatively biased estimates of lnα for both data sets (Table 1a,1b), whereas the BH 

model generated positively biased estimates (Table 1b).  The degree of bias for BH estimates 

depended on both 𝜎2 and Smin in a more complicated way (Fig. 2e,3f), especially for the Ricker 

data (Fig. 2e).  When 𝜎2 = 0.1, the magnitude of the bias increased monotonically with the 

increase of Smin.  However, when 𝜎2 = 0.8, the magnitude of the bias increased with Smin up to 

0.2 and decreased thereafter.  Posterior uncertainty in lnα was also greater when estimated with 

the BH model than when the Ricker model was used, and generally increased with 𝜎2 and Smin 

(Fig. 2k,2l,3k,3l). 

The alternative GP models did not perform as well as the ‗linear‘ model.  The ‗constant‘ 

model performed well when data were available at low stock sizes, but its performance 

deteriorated as Smin increased.  The performance of the other two GP models (‗S‘ and ‗lnS‘) was 

poor: posterior means were negatively-biased estimates for all combinations of Smin and 𝜎2 (Fig. 

2a,2b,3a,3b) and the magnitude of the variance was much larger than that based on the 

conditional GP models (Fig. 2g,2h,3g,3h). 
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2-4. Discussion 

Our simulation study showed that the ‗linear‘ model generated the least biased estimates 

for lnα of the four GP models for both the Ricker data sets and the BH data sets.  The 

performance of the ‗linear‘ model is relatively robust to noise and works at least as well as 

parametric models over a range of minimum stock sizes.  It is worth recalling that the four GP 

models were statistically equivalent within the range of the data in that they gave nearly identical 

scores for model selection criteria (section 2-2-5).  In light of this, we suggest that the use of 

model selection criteria to determine the ‗best‘ estimate of lnα (e.g., Barrowman et al. 2003; 

Wang and Liu 2006) may not be the best approach.  Moreover, the ‗constant‘ model provided 

good estimates of lnα only when data were available close to the origin.  This is because the GP 

models are typically worse at extrapolation than interpolation (Munch et al. 2005; Rasmussen 

and Williams 2006).  In this respect, the ‗linear‘ model, which has an additional term in the mean 

function to model linear density dependence, does a better job of extrapolating to the origin.  

Performance of the Ricker model is nearly as good as that of the ‗linear‘ model in terms 

of bias, implying that there may be no need for using the apparently complex ‗linear‘ model.  We 

expect, however, that the ‗linear‘ model will outperform the Ricker model when the generating 

models are more complex, such as models that include depensation (i.e., Allee effects) (Quinn 

and Deriso 1999; Courchamp et al. 2008). 

To illustrate this point, we conducted a much smaller simulation study using the Saila-

Lorda (SL) model to generate the data (R=αS
γ
exp(-βS+ε), ε~N(0,σ

2
), α=11.5416, β=2.5330, γ=2, 

Quinn and Deriso 1999).  We chose α and β, so values of the carrying capacity for the SL model 

and the Ricker model used in this study are same and the linear approximation of the SL model 

at the carrying capacity is identical to the Ricker model.  The data sets were generated with the 
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SL model using the same range for stock sizes and σ
2
 used for the Ricker and the BH data sets 

(Fig. 2,3).  Note that for 𝛾 ≠ 1 the true slope at the origin for the SL model is simply 0 regardless 

of the value of lnα.  We therefore estimated the slope at S=0.01 for which the true value is lnα=-

2.1845.  This simulation showed that the ‗linear‘ model performed better than the Ricker model 

did (Table 2, Fig. 4) particularly when data were available at smaller stock sizes.  Averaging 

over the simulation, the bias and variance in the ‗linear‘ model were 2.5427 and 0.3912, 

respectively, whereas those in the Ricker model were 2.8836 and 0.1395 (Table 2).  In our 

experience, this is a general property of parametric models – they produce greater apparent 

certainty at the cost of increased bias.  Moreover, the ‗linear‘ model significantly outperformed 

the Ricker model at smaller minimum stock sizes.  In light of the fact that the true model is never 

known and that the underlying dynamics may be complex, the ‗linear‘ model may be preferable 

for estimating lnα despite the apparent increase in computational complexity.  

 

Extensions 

The modeling framework used in this study is specifically designed to obtain an estimate 

for lnα for a single stock.  This is adequate if SR relationships of different stocks are mutually 

independent.  However, with mixing among populations (Bohonak 1999; Campana 1999) or 

similarity of environmental characteristics, this approach may be inefficient or inappropriate.  

Although the process error term ε in Eq 4 is intended to account for these effects implicitly, it 

would be more desirable to include environmental effects explicitly.  Several nonparametric 

methods have been developed to include environmental covariates in a SR relationship (Chen 

and Ware 1999; Chen et al. 2000; Chen and Irvine 2001; Wang et al. 2009).  Extending the 



 

23 
 

nonparametric Bayesian method to account for environmental effects while simultaneously 

providing robust estimates of lnα is an important direction for future work. 

In addition, it is reasonable to assume the presence of some common characteristics 

among different stocks of a single species.  Meta-analysis is a common approach to obtaining 

common characteristics from different data sets.  In the context of a SR relationship, Myers et al. 

(1999) and Myers et al. (2001) used the Ricker model and the BH model, respectively, to 

conduct across-species comparison of maximum annual reproductive rates by obtaining species-

specific estimates of the slope at the origin.  In spite of the diversity of the fish life histories and 

their habitats, Myers et al. (1999) obtained the general conclusion that the maximum annual 

reproductive rates for fish ranges only from 1 to 7.  However, this conclusion may be highly 

conditional on the choice of a parametric model, and a more flexible approach may be needed to 

account for possibility that the shape of the SR relationship may vary across species and across 

stocks.  To address this possibility, our SB method could be extended in a hierarchical manner to 

enable meta-analysis of annual reproductive rates without specific SR model forms. 
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2-5. Tables  

Table 1.  The performance of the six models for estimating lnα.  a-b: For the Ricker data (a) and 

the BH data (b), bias and variance in estimated lnα were averaged over the number of replicates, 

the noise level, and the minimum stock size.  c: Bias and variance were further averaged over 

data-generating models. 

 

(a) The Ricker data 
     

  lnS S Constant Linear BH Ricker (true) 

Bias -1.0021 -1.0000 -0.5116 0.0002 0.5943 -0.0010 

Variance 1.1300 1.1301 0.3666 0.3534 0.7774 0.1315 

 

(b) The BH data 
     

 
lnS S Constant Linear BH (true) Ricker 

Bias -1.1672 -1.1657 -0.7768 -0.3659 0.0605 -0.4680 

Variance 1.0042 1.0073 0.3085 0.3500 0.6171 0.1324 

 

(c) Average of the two data-generating model 
    

 
lnS S Constant Linear BH Ricker 

Bias -1.0847 -1.0829 -0.6442 -0.1829 0.3274 -0.2345 

Variance 1.0671 1.0687 0.3376 0.3517 0.6973 0.1319 
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Table 2.  The performance of the ‗linear‘ model and the Ricker model when data sets are 

depensatory.  Bias and variance in estimated lnα were averaged over the number of replicates, 

the noise level, and the minimum stock size. 

 

 
Linear Ricker 

Bias 2.5427 2.8836 

Variance 0.3912 0.1395 
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2-6. Figures  

 

 

 

Figure 1.  An example result.  a: The Ricker model (black) was used to generate data (lnα=ln4, 

Smin=0.34, and σ
2
=0.1).  The true value of lnα is indicated by the black dot.  Means of posterior 

predictive distributions of the four GP models and the two parametric models are plotted: ‗lnS‘ 

model (magenta), ‗S‘ model (green), the ‗constant‘ model (blue), the ‗linear‘ model (red), the BH 

model (blue dash), and the Ricker model (red dash).  Note that within the range of the data all 

models seem to fit equally well, but only the ‗linear‘ and the Ricker models come close to the 

correct value of lnα.  b: Bias and credibility intervals of estimated lnα.  Deviation of posterior 

means (black dot) from the true lnα (vertical dash) indicates magnitude of bias in estimated lnα.  

The credibility intervals (horizontal black solid) are based on posterior variances of lnα.  The 

intervals cover ±2 standard deviation of the estimated lnα from the mean of estimated lnα.  
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Figure 2.  The results of the comprehensive analysis on the Ricker datasets.  a-f: The bias in the 

estimates for lnα using (a) the ‗lnS‘ model, (b) the ‗S‘ model, (c) the ‗constant‘ model, (d) the 

‗linear‘ model, (e) the BH model (the false model), and (f) the Ricker model (the true model).  g-

l: The variance in the estimates for lnα using (g) the ‗lnS‘ model, (h) the ‗S‘ model, (i) the 

‗constant‘ model, (j) the ‗linear‘ model, (k) the BH model (the false model), and (l) the Ricker 

model (the true model). x axis is Smin={0,0.068,0.136,0.204,0.272,0.340} and y axis is 

σ
2
={0.1,0.2,…,1}.   
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Figure 3.  The results of the comprehensive analysis on the BH datasets.  a-f: The bias in the 

estimates for lnα using (a) the ‗lnS‘ model, (b) the ‗S‘ model, (c) the ‗constant‘ model, (d) the 

‗linear‘ model, (e) the ‗Ricker‘ model (the false model), and (f) the BH model (the true model).  

g-l: The variance in the estimates for lnα using (g) the ‗lnS‘ model, (h) the ‗S‘ model, (i) the 

‗constant‘ model, (j) the ‗linear‘ model, (k) the Ricker model (the false model), and (l) the BH 

model (the true model).  x axis is Smin={0,0.068,0.136,0.204,0.272,0.340} and y axis is 

σ
2
={0.1,0.2,…,1}. 
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Figure 4.  The performance of the ‗linear‘ model and the Ricker model when data sets are 

depensatory.  The data-generating model was the SL model with a multiplicative log normal 

error exp(ε) (R=αS
γ
exp(-βS+ε), ε~N(0,σ

2
), α=11.5416, β=2.5330, γ=2).  Given γ=2, we chose α 

and β so that the carrying capacity for the SL model and the Ricker model used in this study are 

the same, and the linear approximation of the SL model at the carrying capacity is identical to the 

Ricker model.  The data sets were generated using the same range for stock size and σ
2
 used for 

the Ricker and the BH data sets.  Because lnα in the SL model is negative infinite, we 

approximated it by substituting S=0.01 in the SL model, and obtained lnα=-2.1845.  a-b: The 

bias in the estimates for lnα using (a) the ‗linear‘ model and (b) the Ricker model.  c-d: The 

variance in the estimates for lnα using (c) the ‗linear‘ model and (b) the Ricker model. 
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Chapter 3 

A semiparametric Bayesian model for detecting Allee effects 

 

Key words 

Allee effects, depensation, Gaussian process, semiparametric Bayesian modeling 

 

Abstract 

The importance of Allee effects has long been recognized both in theoretical studies of 

population dynamics and in conservation sciences.  Although the necessary conditions for Allee 

effects to occur (e.g., difficulty in finding mates and mortality driven by generalist predators at 

low density, etc.) would seem to apply to many species, evidence for Allee effects in natural 

populations is equivocal at best.  This apparent scarcity might be an artifact driven by poor 

power to detect them with traditional parametric models.  To circumvent this potential problem, 

we developed a semiparametric Bayesian model based on a Gaussian process prior.  We 

validated the model using simulated data and applied it to three example datasets.   

 

3-1. Introduction 

Allee effects, the reduction of per capita population growth rates with the decrease of 

population size, have long been recognized in theoretical studies of population dynamics and 

hypothesized as potential contributors to population extinction (Courchamp et al. 2008).  In 

fisheries science this phenomenon is also known as depensation, defined as the decrease in per-

capita recruitment with decreasing spawner abundance at low stock levels (Quinn and Deriso 

1999). 
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Theoretical studies suggest important implications of Allee effects for conserving and 

managing wild populations.  Extinction probabilities for endangered species (Boukal and Berec 

2002; Dennis 2002), vulnerability to invasion by introduced species and risk of disease outbreak 

(Tayler and Hastings 2005; Tobin et al. 2011), robust restoration programs for collapsed 

populations (Grevstad 1999; Deredec and Courchamp 2007; Armstrong and Wittmer 2011), and 

optimum harvesting rates for the sustainable use of wild populations (Lande et al. 1994), are all 

dependent on whether or not Allee effects are incorporated in model analysis.  Allee effects may 

also offer an explanation for the ineffectiveness of fishing moratoria to rebuild collapsed 

fisheries (Swain and Sinclair 2000; Walters and Kitchell 2001).  

Several mechanisms contribute to generating Allee effects, including increased difficulty 

in finding mates (Gascoigne et al. 2009), increased mortality driven by generalist predators 

(Gascoigne and Lipcius 2004), and decreased fitness due to inbreeding depression (Willi et al. 

2005).  Each of these potential mechanisms has been observed at reduced population sizes 

(Berec et al. 2007; Courchamp et al. 2008; Gascoigne et al. 2009; Kramer et al 2009).  Because 

the conditions for Allee effects to occur seem likely to apply in many species, we would expect 

Allee effects to manifest at the population level, referred to as ‗demographic‘ Allee effects 

(Stephens and Sutherland 1999).  However, evidence for the presence of demographic Allee 

effects (hereafter Allee effects) is equivocal at best.  Previous analyses of ecological time series 

for both terrestrial and aquatic species (Saether et al. 1996; Sibly et al. 2005; Gregory et al. 2010) 

and fisheries data (Myers et al. 1995; Liermann and Hilborn 1997; Chen et al. 2002; Barrowman 

et al. 2003; Nash et al. 2009) found limited evidence for Allee effects, leading to a general 

consensus that demographic Allee effects are quite rare.   
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However, there are two potential pitfalls regarding previous methods for detecting Allee 

effects.  First, the conclusions of the previous analyses are clearly conditional on the parametric 

model used to test for Allee effects.  This is particularly important for noisy ecological data 

because many different models may fit equally well (or poorly) but produce qualitatively 

different predictions (e.g., Wood and Thomas 1999).  Second, even when the correct model is 

known, Allee effects may be difficult to detect in noisy, short data sets (Shelton and Healey 

1999).  Using simulated data generated by an Allee effects model (the sigmoid Beverton-Holt 

model), Shelton and Healey (1999) demonstrated that likelihood ratio tests favored the true Allee 

effects model over the non-Allee effects model (the BH model) only when (1) simulated data 

clearly show the shape of the true Allee effects model, or (2) large samples (n>60) are available.   

Because we do not know the correct model and data clearly exhibiting Allee effects are 

rarely available, we hypothesize that the empirical rarity of Allee effects may be an artifact 

driven by poor power to detect them with traditional parametric models.  To circumvent this 

limitation, we developed a semiparametric Bayesian (SB) model using a Gaussian process (GP) 

prior (Munch et al. 2005, Rasmussen and Williams 2006) to construct an index for assessing the 

presence of Allee effects.  While some non/semi-parametric models are available for modeling 

simple population dynamics (e.g., Evans and Rice 1988; Cook 1998; Bravington et al. 2000; 

Munch et al. 2005), none of these directly addressed the detection of Allee effects.  We validated 

the model using simulated data and applied the method to data for three different herring 

populations.  
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3-2. Methods 

We begin this section by developing a general approach to modeling Allee effects and 

Gaussian process (GP) modeling of density dependence.  We then develop a semiparametric 

Bayesian (SB) approach to determining the presence of Allee effects.  Finally, we describe 

simulation studies used for model validation and three herring data used for case studies.  

Mathematical details are given in Appendices  B, C, and D. 

 

3-2-1. The Allee effects model 

The relationship between adult (𝐴) and juvenile (𝐽) biomass can be written as: 

 𝐽 = 𝐴exp 𝑓 𝐴   (1) 

where the arbitrary function, 𝑓 𝐴 , determines the form of density dependence (Quinn and 

Deriso 1999; Courchamp et al. 2008).  For mathematical convenience, we re-write Eq 1 using 

𝑦 = ln 𝐽/𝐴 , and work with the log-transformed version of Eq 1,  

 𝑦 = 𝑓 𝐴 . (2) 

Allee effects occur when 𝑓 𝐴 < 0 for some small adult biomass so that juvenile biomass 

falls below the level required for a population to persist.  If this is the case, then there must also 

be some small adult biomass for which 𝑓 𝐴  is increasing (i.e., a particular value of 𝐴 where 

𝑓 ′(𝐴) ≡ 𝑑𝑓/𝑑𝐴 > 0) otherwise persistence would be impossible at any adult biomass (Quinn 

and Deriso 1999; Courchamp et al. 2008).  Therefore, general conditions for the presence of 

Allee effects are: 

 𝑓 𝐴 ≤ 0, 𝑓′ 𝐴 > 0 (3) 

for some small values of 𝐴 (see Fig. 1 for an illustration).  Eq 3 indicates that there is a particular 

adult biomass below which 𝑓 𝐴 = 0 is met, which we define as 𝐴𝑇 .  Since a population whose 
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adult biomass is below 𝐴𝑇  fails to maintain the current adult biomass, the population is 

considered to be at the edge of extinction when reduced below 𝐴𝑇  (Quinn and Deriso 1999; 

Courchamp et al. 2008).  For this reason, 𝐴𝑇  is called an Allee effects threshold (Courchamp et 

al. 2008) or a critical depensation biomass (Quinn and Deriso 1999).  The sigmoid Beverton-Holt 

(SBH) model (Myers et al. 1995) and the Saila-Lorda (SL) model (Saila et al. 1988) are common 

parametric models incorporating Allee effects, though other choices are possible (Liermann and 

Hilborn 2001; Boukal and Berec 2002). 

In practice, Eqs 1 and 2 are only approximate.  In keeping with a standard analysis of 

population time series (e.g., Myers et al. 1995; Gregory et al. 2010), we append an additive noise 

term 𝜀 to Eq 2, which is normally distributed with the mean 0 and the variance 𝜎2. 

 

3-2-2. Modeling 𝑓 𝐴  with a GP prior 

Our semiparametric framework involves Bayesian inference for 𝑓 𝐴  starting from a GP 

prior, and uses the inference for 𝑓 𝐴  for detecting Allee effects.  A GP prior is a generalization 

of the multivariate normal distribution to spaces of random functions (i.e., 𝐴 is, in principle, a 

continuous variable), and analogously, the distribution is specified in terms of a mean function 

𝜇 𝐴  and a covariance function 𝛴𝑓 ,𝑓 𝐴, 𝐴′  (Rasmussen and Williams 2006).  A GP prior 

generates random functions 𝑓 𝐴  to model density dependence.  The application of a GP prior to 

Bayesian analysis was introduced by O'Hagan and Kingman (1978), and a GP prior was applied 

to modeling density dependence by Munch et al. (2005).  Rasmussen and Williams (2006) 

provide an excellent introduction to GP-based inference. 

Since the linear model is a common starting point for modeling density dependence 

(Myers et al. 1999; Sibly et al. 2005; Gregory et al. 2010), we assumed linearity in the prior 
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mean function.  Because we have no a priori reason to assume that the uncertainty of 𝑓 𝐴  or its 

curvature vary predictably with 𝐴, we used an isotropic covariance function.  Specifically, we 

use the GP prior: 

 𝑓 𝐴 ~GP 𝜇 𝐴 , 𝛴𝑓 ,𝑓 𝐴, 𝐴′   (4) 

 𝜇 𝐴 = ln𝛼 + 𝛽𝐴/max 𝐴   

 
𝛴𝑓 ,𝑓 𝐴, 𝐴′ = 𝜏2exp  −𝜙  

𝐴 − 𝐴′

max 𝐴 
 

2

 ,  

where ln𝛼 and 𝛽 are unbounded while 𝜏2 and 𝜙 are strictly positive.  In this parameterization, 𝜏2 

determines the vertical range of sampled 𝑓 𝐴  and 𝜙 determines its smoothness; a GP with a 

large (small) 𝜙 generates realizations of 𝑓 𝐴  which contain many (few) inflection points over 𝐴.  

Note that this choice for 𝜇 𝐴  and 𝛴𝑓 ,𝑓 𝐴, 𝐴′  does not severely limit the range of possible 

functional forms in the posterior within the range of the data (Munch et al. 2005; Rasmussen and 

Williams 2006); almost any functional shape clearly visible in the data may be recovered.  We 

specified reference priors for ln𝛼  and 𝛽  and minimally informative priors for 𝜏2  and 𝜙 

(Appendix B).  We fit the GP prior using Metropolis sampling after marginalizing over 𝑓 𝐴  

(Munch et al. 2005, Rasmussen and Williams 2006).  Details for prior specification and posterior 

inference are given in Appendix B. 

 

3-2-3. Allee effects detection 

The core idea of this paper is that we can use the GP machinery to calculate the 

probability that Allee effects are present.  Specifically, we are interested in evaluating the 

probability that some adult biomass satisfies the conditions for the presence of Allee effects laid 

out in Eq 3, i.e., Pr 𝑓 𝐴 ≤ 0, 𝑓′ 𝐴 > 0|data .  To simplify notation in what follows, all the 
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parameters in the model are collected in the vector 𝜣 =  ln𝛼, 𝛽, 𝜙, 𝜏2, 𝜎2 .  We note that because 

the derivative of a GP is also a GP (See Appendix C and Rasmussen and Williams 2006), the 

joint distribution for 𝑓 𝐴  and 𝑓′ 𝐴  at a specific 𝐴  given the parameters, i.e., 

Pr 𝑓 𝐴 , 𝑓′ 𝐴 |𝜣, data ,  is bivariate normal (see Appendix C).  Therefore, to calculate the 

posterior probability of the presence of Allee effects given 𝜣 at 𝐴, we evaluate the cumulative 

bivariate normal.  

We are of course more interested in the posterior inference of Allee effects that are 

exclusively conditioned on data and not dependent on specific choice of 𝜣.  However, since 

these probabilities, Pr 𝑓 𝐴 < 0, 𝑓′ 𝐴 > 0|data , are not analytically tractable, we obtained 

them by Monte Carlo integration over the posterior for 𝜣 and evaluated them over the entire 

range of 𝐴 ∈  0, 𝑚𝑎𝑥 𝐴  .  For more details on these calculations, see Appendices C and D.  

Our assessment framework for determining the presence of Allee effects is simply based 

on comparison of the prior and the posterior probability for the presence of Allee effects, 

Pr 𝑓 𝐴 < 0, 𝑓′ 𝐴 > 0|data , which is clearly a function of 𝐴.  Since this probability is most 

relevant to Allee effects at small 𝐴, we used the probability evaluated at 𝐴 = 0 as an index, 𝜋, 

for the presence of Allee effects:  

 𝜋 = Pr 𝑓 0 ≤ 0, 𝑓′ 0 > 0|data . (5) 

In light of our prior specification, the value of 𝜋 prior to collecting any data is 0.25, providing a 

convenient benchmark against which to compare specific results (see Appendix C).  Thus, a 

given data set suggests that Allee effects are present if 𝜋 > 0.25. 
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3-2-4. Simulation study 

We tested our method with simulated data.  Because the strength of Allee effects, the 

noise level in data, and the data availability at low adult biomass should influence our ability to 

correctly assess the presence of Allee effects (Hilborn and Walters 1992; Shelton and Healey 

1999), our simulation study was designed to assess these factors comprehensively.  For each 

treatment combination (i.e., Allee effect strength, noise level, and minimum adult biomass) we 

generated 500 replicate data sets.  For each simulated data set, we set the total number of 

observations to 30, which is representative of many ecological data sets. 

We used the Saila-Lorda (SL) model (Saila et al. 1988), 𝐽 = 𝛼𝐴𝛾exp −𝛽𝐴 , to generate 

data with and without Allee effects (Table 1).  The parameter 𝛾 controls the strength of Allee 

effects.  We used three different strength levels: 𝛾 = 1 for data with negative density dependence 

(the Ricker model, hereafter ‗no effect‘), 𝛾 = 1.5 for data with mild Allee effects (‗mild‘), and 

𝛾 = 2  for data with strong Allee effects (‗strong‘).  In the ‗no effect‘ case (𝛾 = 1), we used a 

value of 4 for 𝛼 and set 𝛽 = 𝛼/𝑒 = 1.47.   For the ‗mild‘ and ‗strong‘ cases we parameterized 

our simulation to isolate the influence of Allee effect strength on our ability to detect Allee 

effects.  Specifically, we set parameters in the SL model so that the adult biomass which can be 

replaced by the juvenile biomass (i.e., the largest 𝐴 that satisfies 𝐴 = 𝐽) and the slope, 𝑑𝑦/𝑑𝐴 at 

that adult biomass were constant across all three models.  The list of parameters used is given in 

Table 1. 

Variability in 𝐽  was modeled by a multiplicative log-normal noise without serial 

autocorrelation, 𝐽 = 𝛼𝐴𝛾exp −𝛽𝐴 + 𝜔 , where 𝜔~N 0, 𝜎𝐽
2  and 𝜎𝐽

2  is the variance.  We used 

𝜎𝐽
2 over the interval 0.1 to 1. 
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To evaluate model performance with respect to the availability of data at low adult 

biomass independently of the range of adult biomass values, we sampled 𝐴 from a uniform 

distribution with constant width and variable minimum adult biomass.  Preliminary analysis of 

data for Atlantic cod (Gadus morhua) indicates that the range of observed adult biomass is 

typically on the order of 1.5 times the adult biomass that generates the maximum juvenile 

biomass (see chapter 2).  In the ‗no effect‘ model with 𝛼 = 4 and 𝛽 = 1.47, this adult biomass is 

given by 0.68.  Therefore, by multiplying this value with 1.5, we obtained 1.02 as the width and 

then set the minimum adult biomass for this distribution as a proportion of 0.68, ranging from 0 

to 0.34.     

We compared the performance of our SB approach with the likelihood-based parametric 

approach in terms of type I (false positive detection of Allee effects) and type II (false negative 

detection of Allee effects) error rates.  In keeping with previous parametric assessments of Allee 

effect frequency, we used the likelihood ratio to test for Allee effects, by comparing the fit of the 

SL model to the fit of the Ricker model (i.e., the SL model with 𝛾 = 1).  To do so, we compared 

the likelihood ratio to a 𝜒2 distribution with 1 df and concluded that Allee effects are present if 

the nominal confidence level exceeded p=0.05.  To evaluate the sensitivity of our conclusions to 

parametric model choice, we also conducted likelihood ratio tests comparing the fit of the SBH 

model where 𝐽 = 𝛼𝐴𝛾/ 1 + 𝛽𝐴𝛾  to the standard Beverton-Holt (BH) model (i.e., when 𝛾 = 1).  

For the SB model, we concluded that Allee effects were present whenever the posterior value for 

𝜋 exceeded the prior of 0.25.  For each of these approaches (SL, SBH, and SB), we estimated 

error rates from the 500 replicates for each parameter combination.  All calculations were carried 

out using code written in Matlab 7 (The MathWorks, Nattick, MA). 
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3-2-5. Herring data 

To illustrate application of this method to real data, we analyzed three different Atlantic 

herring (Clupea harengus) data sets from the ‗Stock Recruitment Database‘ 

(http://www.mscs.dal.ca/~myers/welcome.html).  We used data on Iceland spring spawner (ICE, 

n=23, 1947-1969), Downs stock (DOWN, n=65, 1923-1987), and Georges bank (GB, n=15, 

1961-1975).  In keeping with previous work (Myers et al. 1995), the raw juvenile biomass data 

(in the unit of the number of individuals) were multiplied by weight per individual so that 𝑦 was 

dimensionless. 

 

3-3. Results 

3-3-1. Simulation results: case studies 

For clarity, we begin by describing a single set of simulations before describing the 

results of the broader simulation study.  In this illustrative example (Figs. 2,3), we examined 

model performance under ‗no‘, ‗mild‘, and ‗strong‘ Allee effects fixing zero minimum adult 

biomass and 𝜎𝐽
2 = 0.5.  In each case, the SB fit reasonably recaptures the shape of the data-

generating models (Figs. 2a,b,c).  More importantly, the probability of the presence of Allee 

effects clearly corresponds to the truth in the simulated data.  In the ‗no effect‘ case the 

probability is zero for all points close to the origin (Fig. 2d).  In the ‗strong‘ effects case, there is 

a clear region in which the probability is close to 1 (Fig. 2f).  In the ‗mild‘ case, there is a peak in 

the probability at the origin, but with wide confidence intervals.  In these examples, the 

probability for the presence of Allee effects, 𝜋, generated correct assessment for the ‗no effect‘ 

and ‗strong‘ data, while the assessment for ‗mild‘ data was somewhat more ambiguous (Fig. 3).  
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3-3-2. Allee effects detection frequency 

We turn now to summarizing the results of the simulation in general.  Overall, averaging 

across data-generating models, noise levels, and the minimum adult biomass, the SB model is the 

best model for correctly assessing for the presence of Allee effects (Table 2).  The error rate for 

the SB model is 0.49, whereas those for parametric models were 0.53 (SL) and 0.54 (SBH), 

respectively.  When type I errors (false positive) and type II errors (false negative) are considered 

separately, the SB model performed best when data were ‗no effect‘ and ‗strong‘, followed by 

the SL and the SBH model (Table 2).  When the data are ‗mild‘, the three models performed 

equivalently, with a slight advantage for the SL model, followed by the SB model and the SBH 

model.  

 To compare the performance of the SB model with parametric alternatives in detail, we 

generated Fig. 4 using subsets of the comprehensive analysis to show how the error rates were 

affected by the data-generating models, the noise level, and the minimum adult biomass.  For ‗no 

effects‘ cases, the type I error rate for all three methods is quite low overall (Figs. 4a,d,g,j).  With 

data close to the origin (0 for the minimum adult biomass) and the low noise level in data 

(𝜎𝐽
2 = 0.1), the SB model is the only method that showed 0 error rate.  The error rate for the SL 

model (0.02) is within acceptable levels, but that for the SBH model (0.18) is more than 3 times 

the nominal 0.05 level. 

For ‗mild‘ and ‗strong‘ cases, the type II error rates for all three models are greater and 

clearly increased with minimum adult biomass.  In keeping with previous results (Shelton and 

Healey 1999), the type II error rate is larger in the ‗mild‘ case than in the ‗strong‘ case.   In 

addition, as the noise level and minimum adult biomass increase, detection probability goes 

down significantly and the performance of the parametric models is equivalent.  The SB model 
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performed better than the parametric models in general, particularly when the noise level was 

large and was only outperformed by parametric alternatives at low noise (𝜎𝐽
2 = 0.1). 

 

3-3-3. Empirical results: herring data 

Using 𝜋 calcualted for herring data, we found evidence for the presence of Allee effects 

in Iceland spring spawner population (ICE) and in the Georges bank population (GB), but no 

evidence in the Downs stock population (DOWN) (Fig. 6).  ICE is the population in which Allee 

effects was found using the SBH model (Myers et al. 1995).  The confidence intervals in 𝜋 show 

that the results for ICE and GB are ambiguous, suggesting that Allee effects are ‗mild‘.  

However, note that these probabilities are ambiguous for GB, probably due to the limited sample 

size (𝑛 = 15). 

 

3-4. Discussion 

In the context of Allee effects detection, type I (false positive) and type II (false negative) 

errors are not equivalent:  the cost of a type I error is reduced harvesting on a viable population 

while the cost of a type II error is extinction (Table 3) (e.g., Courchamp et al. 1999; Stephens and 

Sutherland 1999; Mieszkowska et al. 2009).  Our results suggest that the SB model could reduce 

chance of overexploitation and population collapse due to making a type II error: the SB model 

is clearly better at detecting Allee effects when present compared to parametric alternatives, 

including the true model, especially when ‗strong‘ Allee effects are present.  Moreover, the SB 

approach is effective regardless of the ‗true‘ model. This alone should make it broadly applicable 

in ecology where the underlying dynamics are rarely certain. That said, the success of the 
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approach is tempered somewhat by the fact that type II error rates were still above 50% for most 

cases, indicating the need for caution.   

In this study, the SB approach to detecting Allee effects was based on comparison of the 

probability for the presence of Allee effects, 𝜋, with 0.25 detection threshold which emerges 

from the specification of the prior.  Using this threshold, the SB approach reduced the chance of 

making a type II error compared with parametric models, but the error rate was still quite high.  

Because of asymmetric cost of incorrect assessment for the presence of Allee effects (Table 3) 

and need for precautionary approaches to managing natural populations (e.g., Hilborn et al. 

2001), it may be desirable to set the detection threshold at some lower value in order to further 

reduce the chance of making a type II error.  In broad terms, a precautionary threshold might 

allow for a greater probability of a type I error in order to avoid rejecting Allee effects when they 

are hard to detect.  Of course, adopting an excessive safety margin would result in unnecessary 

losses to society as well (e.g., Hilborn et al. 2001) and we agree with many prior studies that a 

decision-theoretic approach (Berger 1985; Francis and Shotton 1997; Punt and Hilborn 1997; 

Wade 2000; Fenichel et al. 2008) should be taken to determine the most reasonable threshold 

level.  This process usually requires considerable discussion between scientists, environmental 

practitioners, and local communities and is beyond the scope of the present paper.  

Previous studies have concluded that Allee effects are quite rare in natural populations.  

Using parametric models and likelihood ratio tests, Gregory et al. (2010) analyzed 1198 data that 

include both terrestrial and aquatic species and Myers et al. (1995) analyzed 129 data on 

commercially harvested fish species.  These studies concluded that Allee effects appear in <1.1% 

and <2.3% of populations, respectively.  Given the results of our simulation study, however, we 
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suspect that Allee effects are more prevalent than currently believed.  Re-analysis of these data 

with a more sensitive tool such as the SB model developed here seems warranted. 
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3-5. Tables 

Table 1.  Parameters for the data-generating models, 𝐽 = 𝛼𝐴𝛾exp −𝛽𝐴 .  𝐴𝑇  is not available in 

‗no effect‘ model because the model shows density dependence without Allee effects. 

 

 
α β γ AT 

No effect 4 1.4712 1 N/A 

Mild 6.7964 2.0023 1.5 0.0238 

Strong 11.5416 2.533 2 0.1163 
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Table 2.  The error rates of the SB model, the SL model, and the SBH model in assessing for the 

presence of Allee effects.  ‗Average‘ is the error rate averaged over the noise level, the minimum 

adult biomass, and data-generating models.  Error rates for the three models in ‗no effects‘, 

‗mild‘, and ‗strong‘ data are also shown.  The number indicated with bold type indicates the best 

model in each category. 

 

 

Average No effects Mild Strong 

SB model 0.4890 0.0265 0.8572 0.5832 

SL 0.5271 0.0284 0.8508 0.7021 

SBH 0.5432 0.0416 0.8580 0.7301 
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Table 3.  The consequence of incorrect assessment for the presence of Allee effects on 

populations.  
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3-6. Figures 

 

 

Figure 1.  a: An example of a function for density dependence without Allee effects [soild line].  

b: An example of a function with Allee effects [solid line], the Allee effects threshold 𝐴𝑇  [dot], 

and the slope of the example function at 𝐴𝑇  [broken line].  c: The probability for the presence of 

Allee effects, Pr 𝑓 𝐴 ≤ 0, 𝑓′ 𝐴 > 0 , obtained from the example function used in (a).  d: The 

probability for the presence of Allee effects obtained from the example function used in (b).  
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Figure 2.  An illustration of the SB approach to detecting Allee effects using simulated data with 

0 for minimum adult biomass and 𝜎𝐽
2 = 0.5.  The data models used to generate simulated data 

were the ‗no effect‘ model (𝛾 = 1  in the SL model) (a,d), the ‗mild‘ Allee effects model 

(𝛾 = 1.5 in the SL model, 𝐴𝑇 = 0.024) (b,e), and the ‗strong‘ Allee effects model (𝛾 = 2, 

𝐴𝑇 = 0.12) (c,f).  a-c: Fit of the GP model to simulated data.  We plotted the true functions 

[solid black line], simulated data [circles], the mean [solid blue line] and the 95% confidence 

intervals [broken blue line] of the posterior predictive 𝑓 𝐴 .  The true 𝐴𝑇  is indicated by the 

vertical dotted line.  d-f: The posterior probability for the presence of Allee effects.  We plotted 

the mean [solid line] and the 95% confidence intervals of the posterior probability [broken line].    

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
(f)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
(e)

A
0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

P
r(

f
0
,f

'>
0
)

(d)

-2

-1

0

1

2

ln
(J

/A
)

(a)

-2

-1

0

1

2
(b)

-2

-1

0

1

2
(c)



 

49 
 

 

 

Figure 3.  The probability for the presence of Allee effects at zero adult biomass level, 𝜋, for data 

with three different Allee effects strength.  We plotted the probability [dot] and the 95% 

confidence intervals [solid line].  
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Figure 4.  Frequency of making incorrect assessment for the presence of Allee effects.  The left 

column describes results for data without Allee effects (‗no effects‘).  Hence we focus on a type I 

error (false positive).  The middle and right columns describe results for ‗mild‘ and ‗strong‘ 

Allee effects and therefore we focused on a type II error (false negative).  In each panel, the 

horizontal axis is minimum adult biomass in simulated data and the vertical axis is the frequency 

of making an incorrect assessment for the presence of Allee effects.  Rows of the plots 

correspond to noise levels 𝜎𝐽
2 =  0.1,0.4,0.7,1 .  Blue lines give error rates for the SB model, the 

red and green lines give error rates for the SL and the SBH likelihood ratio tests respectively.  In 

the middle and right columns, the vertical line indicates values of Allee effects thresholds 𝐴𝑇  

(𝐴𝑇 = 0.024 for ‗mild‘ Allee effects and 𝐴𝑇 = 0.12 for ‗strong‘ Allee effects).  



 

51 
 

 

 

Figure 5.  Data analysis on three herring data.  They are ICE (a,d), DOWN (b,e), and GB (c,f).  

a-c: The posterior predictive distributions for 𝑓 𝐴  were obtained for checking fits of the SB 

model.  We plotted data [circles] and the mean [solid line] and the 95% confidence intervals of 

the posterior predictive 𝑓 𝐴  [broken line].  d-f: The posterior probability for the presence of 

Allee effects.  We plotted the mean [solid line] and the 95% confidence intervals of the posterior 

probability [broken line].   
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Figure 6.  The probability for the presence of Allee effects at zero adult biomass level, 𝜋, for 

three herring data, ICE, DOWN, and GB. We plotted the probability [dot] and the 95% 

confidence intervals [solid line].  
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Chapter 4 

The limits to productivity: Semiparametric Bayesian estimation of 

reproductive rates at low densities 

 

Key words 

Allee effects, Bayesian modeling, depensation, Gaussian processes, reproductive rate, stock-

recruitment relationship 

 

Abstract 

The maximum annual reproductive rate of fish stocks plays an important role in many 

aspects of fisheries science.  A meta-analysis of available stock-recruitment datasets using the 

Ricker model has estimated these maximum annual reproductive rates to be within the 1-7 range 

for most species.  However, this result may be a statistical artifact caused by the use of the 

Ricker model, which may be corrected by estimating these rates via semiparametric Bayesian 

models.  In this study, we compared semiparametric and parametric analyses of 285 stock-

recruitment datasets.  The results showed that estimates of annual reproductive rates provided by 

the semiparametric Bayesian model are more dispersed than those based on the Ricker model.  

However, we also show that the estimates of annual reproductive rates provided by these two 

models are qualitatively similar.  Because the semiparametric Bayesian model can provide good 

estimates of annual reproductive rate in various kinds of density dependence in the stock-

recruitment relationship, we conclude that the Ricker model may be a reasonable approximation 

for estimating annual reproductive rates in empirical stock-recruitment datasets. 
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4-1. Introduction 

Maximum reproductive rates play an important role in many aspects of conserving and 

managing fish populations (Myers 2001).  In fisheries, maximum annual reproductive rates can 

be used for determining the upper limit to fishing mortality beyond which harvesting is 

unsustainable (Myers and Mertz 1998; Bravington et al. 2000; Cook 2000).  From a conservation 

perspective, they can be used to assess the likelihood of a stock recovering from a depleted state 

and for designing recovery plans (Myers et al. 1997; Hutchings 2000).  Despite their importance, 

previous estimates of maximum reproductive rate have been called into question.  For example, 

Atlantic cod (Gadus morhua) stocks with positive population growth rates—obtained from 

calculations of maximum reproductive rate using the Ricker model (Myers et al. 1997) —do not 

show evidence of recovery 20+ years after a moratorium was implemented in 1992.   

This suggests the possibility that the analyses of stock-recruitment (SR) data with the 

Ricker model may produce incorrect inferences of the maximum annual reproductive rate, α.  In 

a meta-analysis of over 700 different stocks using the Ricker model, α was found to be within the 

1-7 range in many species (Myers et al. 1999).  However, it may be that α is better estimated 

with other parametric SR models such as the Beverton-Holt (BH), the sigmoid BH (SBH), or the 

Saila-Lorda (SL) models (Quinn and Deriso 1999; Liermann and Hilborn 2001; Needle 2002). 

Thus, it is important to identify the best estimate of α, and also its range among species. 

Selecting the best model via model selection criteria (e.g., Barrowman and Myers 2000) may not 

work because the ‗correct‘ model is not always chosen over ‗incorrect‘ models (Shelton and 

Healey 1999; see chapter 2), and different model selection criteria are inconsistent in selecting a 

single best model (Barrowman et al. 2003; Wang and Liu 2006; Zhou 2007; Ward 2008).   
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There are two approaches for resolving these statistical difficulties in inferring α.  One 

approach is to use model averaging for producing a consensus estimate of α as a weighted 

average of model-specific estimates, where the weights are determined by the plausibility of the 

models (e.g., Brodziak and Legault 2005).  In this way, it is possible to avoid the on-off nature of 

the model selection approach.  Unfortunately, it is often the case that many models are equally 

plausible and averaging across the suite of estimates does not guarantee correction of bias in α.   

The other, and probably better, approach is to abandon parametric forms entirely (e.g., 

Evans and Rice 1988; Bravington et al. 2000; see chapter 2).  In chapter 2, we developed a 

semiparametric Bayesian (SB) model with a conditional Gaussian process (GP) model to obtain 

semiparametric estimates of α.  Unlike previous nonparametric methods that require ad hoc and 

error-prone numerical calculation for estimating α (Evans and Rice 1988; Cook 1998; Cook 

2000; Munch et al. 2005), the SB model developed in chapter 2 guarantees the direct 

interpretability of estimated α as the slope at the origin.  Furthermore, unlike a previous 

nonparametric model designed to obtain inferences on α in compensatory SR relationships 

(Bravington et al. 2000), the SB model can also account for α in depensatory ones.  Importantly, 

the SB model outperforms incorrect parametric models, and is nearly as good as the data-

generating model, both in estimating α and in describing SR data (see chapter 2).  Therefore, the 

SB model may be an ideal tool for obtaining unbiased estimates of α in empirical SR datasets 

where SR relationships are largely unknown.   

It is therefore of interest to compare the SB and parametric estimates of α in empirical 

datasets and to examine the possibility that the generality in α across species is a statistical 

artifact.  In this study, we compare SB estimates of lnα with maximum likelihood estimates 
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(MLE) of lnα provided by the Ricker and the BH model in stock-recruitment datasets available 

from the ‗Stock recruitment database‘ (http://www.mscs.dal.ca/~myers/welcome.html).   

 

4-2. Methods 

4-2-1. Datasets 

We obtained all the SR datasets analyzed in this study from the ‗Stock Recruitment 

database‘ (http://www.mscs.dal.ca/~myers/welcome.html).  The database, as of 2011, has 788 

SR datasets.  The database provides information on taxonomy, sampling sites, methods for data 

collection, units for stock (usually weight, but number of individuals is used for salmonid 

species) and for recruitment (usually in number of individuals), and life history characteristics 

such as age at maturation, spawner biomass resulting from each recruit in the limit of zero 

fishing mortality (SPRF=0), and natural mortality estimates (M). 

 We limited our analyses to datasets for which information on SPRF=0 and M were 

available.  This was done to allow for direct comparison with previous estimates of annual 

reproductive rate provided by the Ricker model (Myers et al. 1997; Myers et al. 1999).  To 

maintain consistency with previous analyses, we multiplied raw data on recruitment by estimates 

of both SPRF=0 and 1-exp(-M) before fitting models.  Using adjusted recruitment enabled us to 

estimate the annual reproductive rate of stocks (Myers et al. 1997; Myers et a. 1999).  Raw data 

on recruitment was multiplied only by SPRF=0 in four semelparous salmon species, chum salmon 

(Oncorhynchus keta), pink salmon (Oncorhynchus gorbuscha), sockeye salmon (Oncorhynchus 

nerka), and chinook salmon (Oncorhynchus tshawytscha).  This usually results in estimates of 

the biomass of spawners produced per each spawner over its lifetime (lifetime reproductive rate) 

in fish species (Myers et al. 1997; Myers et al. 1999).  However, since reproduction is once-in-a-
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lifetime event for the salmon species, annual reproductive rates and lifetime reproductive rates 

can be used interchangeably (Myers et al. 1997; Myers et al. 1999).  Furthermore, we limited our 

analysis to datasets with over five years of paired stock and recruitment.  The length of data 

varies from five years (sole, Solea vulgaris, identified as SOLEIIIa) to 74 years (whiting, 

Merlangius merlangus, identified as WHITNS2).  After applying these data selection criteria, we 

obtained and analyzed 285 of the 788 SR datasets.  

 

4-2-2. Estimation of annual reproductive rates 

A general model for estimating annual reproductive rate, α, using SR data is given by: 

 R=Sexp[f(S)] (1) 

where S is spawning biomass and R is recruitment biomass adjusted for estimating α.  The term 

exp[f(S)] describes the form of density dependence in this relationship; the specification of f(S) 

will be described shortly.  Since α is a tangent drawn to a SR function at S=0 (e.g., Myers et al. 

1997; Myers et al. 1999; Myers et al. 2001), α can be obtained from the derivative of Eq. 1 with 

respect to S and evaluated at S=0.  We therefore have α=exp[f(0)], or equivalently 

Therefore, Eq. 2 indicates that lnα can be interpreted as the intercept of a SR relationship when 

the SR relationship is represented in terms of recruits per spawner, i.e., in a variant of Eq. 1 with 

y= f(S), where y=ln(R/S) (e.g., Myers et al. 1997; Myers et al. 1999; Myers et al. 2001).   

The form of density dependence specified in f(S) can affect the interpretation of α.  When 

density dependence is compensatory, a monotonically decreasing function with S is used for f(S), 

which guarantees lnα to be the log of maximum annual reproductive rate.  When it is 

depensatory, f(S) is monotonically increasing at small values of S, with a global maximum at 

 lnα= f(0). (2) 
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some nonzero S, indicating that lnα is merely the limiting annual reproductive rate as population 

density drops to zero (Liermann and Hilborn 2001; Courchamp et al. 2008). 

In order to account for the two forms of density dependence using the same model, we 

used a conditional GP model for f(S), with mean function µ(S) and covariance function Σ(S,S’): 

 f(S)~GP[µ(S), Σ(S,S’)], (3) 

 µ(S)= lnα+β/Smax,  

 Σ(S,S’)=τ
2
exp(-υ |S-S’|

2
 /Smax

2
)-τ

2
exp[-υ (S

2
+S’

2
) /Smax

2
],  

and obtained the estimate of annual reproductive rates under the SB framework (see chapter 2).  

The mean function in this GP model is linear with a parameter for the intercept, lnα, and a 

parameter that determines the strength of density dependence, β.  This choice of mean function 

makes our prior guess for the shape of f(S) to be similar to that of the Ricker model, but this 

guess can be easily overwhelmed by SR data that clearly show a different SR relationship (see 

chaper 2).  The covariance function in this GP model is specified with a parameter determining 

the variance at a specific value of S, τ
2
, and a parameter defining the smoothness of f(S) over S, 

υ.  Scaling by the maximum observed stock biomass, Smax, allows us to specify a generic prior 

for υ for all populations based on the expectation that reasonable SR models will have fewer than 

2 turning points over the observed range of stock sizes (see chapter 2).  This covariance function 

is non-stationary (i.e., the variance changes with S) and the variance is reduced to 0 at S =0.  

Therefore, with S=0, the viability in f(0) is strictly determined by the posterior distribution for 

lnα, guaranteeing interpretability of estimated lnα as annual reproductive rate (see chapter 2).   

In fitting this model to SR data, we appended an error term ε to Eq. 1, R=Sexp[f(S)+ ε], to 

model R as an admixture of observation error and process uncertainty, where ε has a normal 

distribution with mean 0 and variance σ
2
.  We assumed S to be observed without error.  The 



 

59 
 

inference for lnα, along with those for other parameters specifying the mean and covariance 

functions and the noise level in data σ
2
, was obtained via MCMC (see chapter 2).   

Myers et al. (1999) provided α values obtained from maximum likelihood estimates using 

the Ricker model.  We therefore compared the posterior mode of the SB estimate of lnα (lnαSB) 

to MLE of lnα obtained from parametric models.  The parametric models were the stochastic 

Ricker (R=αSexp(-βS+ε), where ε~N(0,σ
2
)), for which the MLE of lnα was calculated (lnαR), and 

the stochastic Beverton-Holt (R=αS/(1+γS)exp(ε), where ε~N(0,σ
2
)), for which the MLE of lnα 

was estimated (lnαBH).  

 

4-3. Results 

The SB model generated posterior distributions for lnα on 264 of 285 SR datasets.  In the 

remaining 21 data sets, the minimum observed stock size was too far from the origin to permit 

estimation of lnα.  We restrict further attention to the 264 datasets for which estimates could be 

obtained.     

 To seek patterns in estimates of lnα across the different models, we plotted the maximum 

likelihood estimates (MLE) of lnα provided by the Ricker model (lnαR) and the BH model 

(lnαBH) against posterior modes of lnα estimated with the SB model (lnαSB) (Fig. 1).  These 

figures show that, for most stocks, lnαR and lnαSB are similar (Fig. 1a), whereas estimates of 

lnαBH are much greater (Fig. 1b).  Ranges for lnαR and lnαSB are also narrower than those for 

lnαBH: -4 to 6 for lnαSB and lnαR, while those for lnαBH are from -5 to 35.  Recall that the values 

previously reported by Myers et al. (1999) were typically between 1 and 7.  The percentage of 

stocks whose lnα is within ln1 and ln7 is 64.77% in the SB analysis, 70.45% when using the 

Ricker model, and 2.65% when using the BH model (Table 1).  
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Analysis of these results on a species-by-species basis does not change the patterns 

observed in Fig. 1: lnαR and lnαSB are similar, and lnαBH is much greater than both (results not 

shown).  However, the percentage of stocks whose lnα is within ln1 and ln7 differ considerably 

across different species (Table 1).  For example, there is a clear difference in range for lnαSB 

across four salmonids.  The percentage of stocks whose lnα is within ln1 and ln7 is 71.43% for 

chum salmon, 82.35% for pink salmon, 73.47% for sockeye salmon, and 42.86% for chinook 

salmon. 

 

4-4. Discussion 

The main finding in this paper is that estimates of lnα provided by the SB model are more 

dispersed than those based on the Ricker model.  This result indicates that, as Myers et al. (1999) 

were concerned, the generality in lnα across stocks may be due to the usage of the Ricker model.   

However, we also show that estimates of lnα provided by these two models (SB and Ricker) are 

still qualitatively similar.  Because the SB model can provide good estimates of lnα in both linear 

and nonlinear functions of f(S) in the SR relationship (see chapter 2), we suggest that the Ricker 

model, although strictly linear in f(S), is a reasonable approximation for empirical SR datasets.  

In contrast, we find that the estimates of lnα provided by the BH model are unreasonably large in 

most SR datasets (as was previously shown by, e.g., Barrowman and Myers 2000), indicating 

that the BH model is not recommended for describing SR relationships at low stock levels. 

We are aware that our analysis is not completely comparable to that of Myers et al. 

(1999).  While we obtained estimates of lnα assuming stocks are independent, Myers et al. 

(1999) considered meta-population structure in stocks of the same species and obtained estimates 

of lnα using a hierarchical Ricker model.  This generated species-specific estimates of lnα as 
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well as stock-specific estimates of lnα, and they used the former to conclude that lnα for most 

species are within ln1 and ln7.  In this study, we simply used this range as a benchmark against 

which to investigate the sensitivity of the choice of a model on stock-specific lnα.  Therefore, for 

a SB analysis to be comparable to the previous analysis with the hierarchical Ricker model 

(Myers et al. 1999), the SB model used in this study has to be extended to obtain hierarchical 

estimates of lnα.   

The SB estimation of lnα under meta-population modeling framework seems like a 

reasonable approach.  In reality, fish populations cannot be easily identified as ‗stocks‘, as 

chemical (e.g., Campana 1999) and genetic markers (e.g., Bohonak 1999) indicate that 

individuals move across different stocks.  Moreover, spatial autocorrelation and shared 

environments among different stocks of a species (e.g., Caley et al. 1996) suggest similarity of 

life history characteristics across different stocks.  Currently available models incorporating 

meta-population structure are limited to the use of parametric models (e.g., Myers et al. 1999; 

Myers et al. 2001; Chen and Holtby 2002; Barrowman et al. 2003; Michielsens and McAllister 

2004; Gurney et al. 2010), with occasional incorporation of environmental variables (e.g., Dorn 

2002; Forrest et al. 2010; Liermann et al. 2010).  Therefore, more complex density dependence 

in the SR relationship is not accounted for.  In light of this, a hierarchical SB model may be 

useful not only for examining the universality in lnα across species but also for better 

understanding the complex interactions of population structure with their respective 

environments.  

From a statistical perspective, the use of meta-population modeling for the SR datasets 

would help obtain estimates of lnα in the 21 SR datasets for which the SB model was not able to 

generate reasonable posterior distributions of lnα.  These datasets are short in length, highly 
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variable, and lacking in information at low stock sizes, all of which make it difficult for the SB 

model to generate inferences for lnα (see chapter 2).  Meta-analysis may enable us to borrow 

information of different SR datasets to increase information for defining the SR relationships of 

the 21 SR datasets (Hilborn and Liermann 1998), whilst allowing for local variability in different 

stocks and avoiding fitting a model to noise (Stewart 2010).   

Recently, a new database, ‗RAM Legacy Stock Assessment Database‘ 

(http://ramlegacy.marinebiodiversity.ca/ram-legacy-stock-assessment-database) has updated the 

‗Stock recruitment database‘ to include information beyond 1995.  In this study, we did not 

analyze SR datasets available from this newer database because some key information (e.g., 

SPRF=0) was only given in a very limited number of datasets. 

The results presented in this study have implications to management and conservation of 

fish stocks.  Since lnα of a stock can be best estimated by the SB and Ricker models, the estimate 

of lnα can be considered as the best inference of the upper limit to harvest (Myers and Mertz 

1998; Bravington et al. 2000; Cook 2000).  Of course, harvesting below the upper limit does not 

always increase abundance of a fish stock (e.g., Atlantic cod stocks and Atlantic herring stocks), 

indicating that there remain a need for investigating other factors that may be delaying the 

rebuilding.  For example, rebuilding of stocks may be halted by changes in species interactions 

(e.g., Walters and Kitchell, 2001) or by climate changes (e.g., Roessing et al. 2004), both of 

which can reduce recruitment.  

In this study, we applied the SB model exclusively to fish stocks to compare the SB 

estimates of lnα with estimates of lnα provided by parametric models.  The use of the SB model 

is applicable not only to fisheries problems, however, but also to more general ecological 

problems such as estimation of populations‘ growth rates.  Like lnα, populations‘ growth rates 

http://ramlegacy.marinebiodiversity.ca/ram-legacy-stock-assessment-database
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are also usually estimated by identifying the most appropriate form of density dependence in 

population dynamics.  For example, Brook and Bradshaw (2006) and Gregory et al. (2010) 

estimated forms of density dependence in populations‘ time series, including both terrestrial and 

aquatic species available from the ‗Global Population Dynamics Database‘ 

(http://www3.imperial.ac.uk/cpb/research/patternsandprocesses/gpdd).  Importantly, they used 

parametric models, leaving open the possibility that growth rates and density dependence can be 

better approximated by other functional forms.  Given the good performance of the SB model to 

correctly estimate lnα on simulated data (see chapter 2), a re-analysis of these datasets may be 

warranted.  
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4-5. Tables 

Table 1.  The frequency that estimated lnα is smaller than ln1, within ln1 and ln7, and greater than ln7 (in percentage).  The results are 

based on the semiparametric Bayesian (SB) and parametric (Ricker, BH) analyses.  N is the number of samples for each species. 

 

Species N 

  SB     Ricker     BH   

lnα<ln1 ln1<lnα<ln7 lnα>ln7 lnα<ln1 ln1<lnα<ln7 lnα>ln7 lnα<ln1 ln1<lnα<ln7 lnα>ln7 

Anadromous alewife (Alosa pseudoharengus) 5 0 40 60 0 80 20 0 40 60 

Atlantic herring (Clupea harengus) 16 25 68.75 6.25 25 68.75 6.25 6.25 6.25 87.5 

Atlantic cod (Gadus morhua) 24 12.5 62.5 25 16.67 66.67 16.67 0 0 100 

Haddock (Melanogrammus aeglefinus) 11 9.09 90.91 0 9.09 90.91 0 0 0 100 

Whiting (Merlangius merlangus) 6 0.33 0.5 0.17 0.33 0.5 0.17 0 0 100 

Pollock or saithe (Pollachius virens) 5 20 80 0 0 100 0 0 0 100 

Sole (Solea vulgaris) 5 40 40 20 20 60 20 0 0 100 

Plaice (Pleuronectes platessa) 5 20 80 0 20 80 0 0 0 100 

Chum salmon (Oncorhynchus keta) 7 0 71.43 28.57 0 71.43 28.57 0 0 100 

Pink salmon (Oncorhynchus gorbuscha) 51 1.96 82.35 15.69 3.92 88.24 7.84 0 3.92 96.08 

Sockeye salmon (Oncorhynchus nerka) 49 0 73.47 26.53 0 67.35 32.65 0 0 100 

Chinook salmon (Oncorhynchus tshawytscha) 7 0 42.86 57.14 0 42.86 57.14 0 0 100 

           

264 stocks (56 species ) mixed 264 13.26 64.77 21.97 13.26 70.45 16.29 0.76 2.65 96.59 

 

  

6
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4-6. Figures 

 

 

Figure 1. Comparison of the maximum likelihood estimates (MLE) of lnα (y axis) against modes 

of posterior distributions for lnα with the SB model (x axis) for 264 stocks.  The vertical and 

horizontal lines indicate lnα to be ln1 and ln7 respectively.  a: The Ricker model was used to 

obtain MLE for lnα.  b: The BH model was used to obtain MLE for lnα.  
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Chapter 5 

Allee effects may be more common than previously thought: a 

semiparametric assessment. 

 

Key words 

Allee effects, Allee effects threshold, depensation, quasi-extinction population size, 

semiparametric Bayesian modeling, Gaussian processes, stock-recruitment relationships 

 

Abstract 

Allee effects have long been recognized in theoretical studies of population dynamics, 

and hypothesized as potential contributors to population extinction.  Although the necessary 

conditions for occurrence of Allee effects would seem to apply to many species (e.g., difficulty 

in finding mates at low density, mortality driven by generalist predators, etc.), evidence for Allee 

effects in biological populations is equivocal at best.  We hypothesize that this apparent 

contradiction is due to insufficient power of previously used parametric models.  We propose use 

of a semiparametric Bayesian model for improved detection of Allee effects.  We test this 

hypothesis by comparing the frequency of Allee effects in fish populations estimated with 

parametric models to estimations from the semiparametric Bayesian model.  Of 285 datasets 

analyzed, we found Allee effects in nine populations using the semiparametric Bayesian model, 

more than twice as many as were found in parametric models.  These results suggest that Allee 

effects may be more common than previous studies have estimated. 
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5-1. Introduction 

The reduction of per capita population growth at low population size is known as an 

Allee effect in honor of Dr. Warder Clyde Allee who first noted that small populations might fail 

because of difficulty finding mates at low densities, etc. (Courchamp et al. 2008).  Allee effects 

are considered a primary driver of extinction (Boyce 1992; Dennis 2002; Morris and Doak 2002; 

Dulvy et al. 2004; Courchamp et al. 2008).  To avoid extinction, populations must be maintained 

at sufficiently high densities to prevent Allee effects from dominating the dynamics (e.g., 

Grevstad 1999; Fischer and Lindenmayer 2000; Swain and Sinclair 2000; Walters and Kitchell 

2001; Deredec and Courchamp 2007; Armstrong and Wittmer 2011).  On the other hand, Allee 

effects can, in principle, be used to prevent harmful species invasions; by reducing the density of 

invading populations to the levels necessary for Allee effects to dominate population dynamics 

an invasion can be curtailed (e.g., Tayler and Hastings 2005; Tobin et al. 2011).   

There is considerable evidence for ‗component‘ Allee effects, i.e., Allee effects which are 

strongly tied to a reduced chance of conspecific presence at low population sizes (Stephens and 

Sutherland 1999).  Increased difficulty in finding mates (e.g., Gascoigne et al. 2009), decreased 

cooperative defense against generalist predators (e.g., Gascoigne and Lipcius 2004), and 

decreased cooperative feeding (e.g., Grunbaum and Beit 2003) all occur at low population 

densities and can reduce individual fitness.  Moreover, since decreased population size can 

reduce genetic heterogeneity, decreased fitness due to inbreeding depression can also occur (e.g., 

Willi et al. 2005).  Furthermore, ‗component‘ Allee effects can also occur when mortality by 

generalist predators to the small size classes increases, resulting in insufficient production of 

highly reproductive adults (Swain and Sinclair 2000; Walters and Kitchell 2001). 
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In light of their contributions to fitness, the existence of ‗component‘ Allee effects found 

in many species (Berec et al. 2007; Kramer et al. 2009) suggests that Allee effects should also be 

apparent at the population level and detectable in population time series (‗demographic‘ Allee 

effects, Stephens and Sutherland 1999).  However, evidence for ‗demographic‘ Allee effects 

(hereafter Allee effects) is equivocal at best.  Previous analyses of time series data for terrestrial 

and aquatic populations (Saether et al. 1996; Sibly et al. 2005; Gregory et al. 2010) and 

commercially harvested fish populations (Myers et al. 1995; Liermann and Hilborn 1997; Chen 

et al. 2002; Barrowman et al. 2003; Nash et al. 2009) found limited evidence for Allee effects.  

Specifically, <1.2% of data sets in terrestrial and aquatic (Gregory et al. 2010) and <2.4% of data 

sets in commercially harvested fish populations (Myers et al. 1995) were found to exhibit Allee 

effects, leading to a general consensus that Allee effects are quite rare or hard to detect.   

Some simulation studies have suggested that these results are due to insufficient 

statistical power of the parametric models for detecting Allee effects in typically short and highly 

variable ecological data (Shelton and Healey 1999; see chapter 3).  That is, when data sets are 

short and noisy, the fit of parametric models incorporating Allee effects is not necessarily 

superior to analogous models without them (Sherton and Healey 1999; see chapter 3).  Therefore, 

we hypothesize that the apparent rarity of demographic Allee effects is due in part to 

methodological shortcomings and that more powerful methods may reveal a greater prevalence 

of Allee effects.  We test this hypothesis by comparing prevalence based on parametric models to 

that estimated from our recently developed semiparametric Bayesian approach using 285 

datasets representing 56 species of commercially harvested fish populations.  
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5-2. Methods 

5-2-1. Datasets 

We compiled data on commercially harvested fish populations from the ‗Stock 

Recruitment database‘ (http://www.mscs.dal.ca/~myers/welcome.html).  The database, as of 

2011, contains 788 datasets covering a wide range of taxa.  Data are annotated with information 

regarding taxonomic details, data collection sites and sampling methods, adult weights (except 

for salmon species), number and weight of juveniles, and life history characteristics such as 

weight per individual for juveniles and natural mortality estimates.  

 For the SB analysis to be comparable to previous parametric analyses (Myers et al. 1995), 

we only analyzed the subset of cases for which (i) data on both adult biomass (A) and number of 

individuals for juveniles, and (ii) the adult biomass resulting from each juvenile were available.  

The original data on juveniles were multiplied by adult biomass resulting from each juvenile so 

that A and adjusted juvenile biomass (J) had the same units.  This unit standardization enabled us 

to assess contribution of adult biomass to juvenile biomass production on a lifetime basis, 

making it possible to interpret the replacement line (i.e., A=J) as a benchmark against which to 

determine the presence of Allee effects.  Based on these criteria, 285 datasets were used for 

analysis.  The length of data ranged from 5 years (sole, Solea vulgaris, from the North Sea) to 74 

years (whiting, Merlangius merlangus, from the North Sea).  Unlike previous parametric 

analyses (Myers et al. 1995) that excluded datasets of less than 10 years, we included these for 

an additional15 datasets.  
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5-2-2. Allee effects detection 

The relationship between adult biomass (A) and adjusted juvenile biomass produced (J) 

can be described by the model: 

 J=Aexp[f(A)+ε], ε~N(0,σ
2
) (1) 

where exp[f(A)] models density dependence.  Observation and process uncertainty is accounted 

for by ε, which is normally distributed with mean 0 and variance σ
2
.  

The form of density dependence is specified by the shape of f(A) (Fig. E1 in Appendix 

E).  If there is negative density dependence, f(A) is a monotonically decreasing function with 

f(A)>0.  If there are Allee effects, f(A) near the origin is negative and increasing with A (Quinn 

and Deriso 1999; Liermann and Hilborn 2001; Needle 2002; Boukal and Berec 2002; 

Courchamp et al. 2008; see chapter 3).  To be precise, the two conditions for Allee effects to be 

present are (i) f(A)≤0 and (ii) f’(A)>0 where f’(A)≡df/dA.  

Unlike traditional approaches, which specify f(A) with some parametric functions (e.g., 

Myers et al. 1995; Gregory et al. 2010), we modeled f(A) with a Gaussian process (GP) model 

and inferred its form from data under a semiparametric Bayesian framework (see chapter 3).  At 

a given adult mass, the inferred f(A) and its derivative are bivariate normal, conditional on the 

GP hyperparameters.  Therefore, we easily obtain the probability of the presence of Allee effects, 

Pr[f(A)≤0, f’(A)>0|data], by integration of a bivariate normal for f(A) and f’(A) given the 

parameters, followed by marginalization over distributions of the parameters.  Because the 

presence of Allee effects is most relevant at small population sizes, we define an Allee effect 

index, π, as the probability evaluated at A=0 (Fig. E1 in Appendix E), i.e.,  

 π=Pr[f(0)≤0, f’(0)>0|data]. (2) 
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This inferred probability was compared to its prior probability, Pr[f(0)≤0, f’(0)>0]=0.25 (see 

chapter 3), which provides a convenient benchmark against which to compare specific results.  

Thus, we ascertained the presence of Allee effects when data generated π>0.25.  Details for 

implementing the SB model are given in chapter 3. 

 For the parametric assessment, we repeated the analysis of Myers et al. (1995) which 

used a likelihood ratio test to compare the fit of the sigmoid Beverton-Holt model [SBH, 

J=αA
γ
/(1+βA)] with that of the Beverton-Holt (BH) model [J=αA/(1+βA)].  We refer to this 

likelihood ratio as LRTBH.  In addition, we compared performance of the Saila-Lorda model [SL, 

J=αA
γ
exp(-βA)] with that of the Ricker model [J=αAexp(-βA)] (Quinn and Deriso 1999) and 

label this likelihood ratio LRTR.  In keeping with Myers et al. (1995), we used a χ
2
 distribution 

with 1 degree of freedom and nominal confidence level of p=0.05, to test significance.  Allee 

effects are deemed present when the maximum likelihood estimate of 𝛾 is greater than 1 and a 

likelihood test favors the SL or SBH models over the Ricker and the BH models respectively.     

 

5-3. Results 

The SB model generated posterior distributions for the probability of the presence of 

Allee effects, π, in 264 of 285 datasets; in 21 datasets π was not estimated because good 

estimates of π cannot be generated when data at low adult biomass are sparse (see chapter 3).  

Therefore, we analyzed the frequency of Allee effects based on the results of the 264 datasets.  

Supplementary figures show posterior inferences of f(A) (Fig. E2 in Appendix E).  A summary of 

assessments for the presence of Allee effects in the 264 data sets is given in Table E1 in 

Appendix E.   
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Comparison of the SB analysis with the parametric analyses showed that Allee effects 

were detected more often with the SB analysis than with the parametric analyses.  The SB 

analysis detected Allee effects in 9 of 264 datasets (3.41%), whereas LRTRicker and LRTBH 

detected them in 3 (1.14%) and 4 (1.52%) datasets, respectively (Table 1).   

In the SB analysis, estimates of π and 95% credibility intervals showed that there is 

variation in the strength and uncertainty of evidence for Allee effects across the populations 

(Table 2, Fig. 1).  Among the nine populations found to exhibit Allee effects, the strongest 

evidence for Allee effects was found in the Atlantic cod population from The Newfoundland 

(Canada), with π=0.92.  The very narrow confidence intervals of π for this population indicated 

that the uncertainty level in the assessment is the lowest of the nine populations.  The narrowest 

evidence for Allee effects among the nine populations was found in the bigeye tuna population 

of the West Atlantic, with π=0.32.  The population with the most ambiguous evidence of Allee 

effects was pink salmon of Burke, British Columbia (Canada).  π for this population was 0.68 but 

the confidence intervals were the widest of the nine populations.   

The probabilities of Allee effect presence for these nine populations were calculated over 

entire range of adult biomass (A) (Fig. 2).  There were ranges of A in which the probabilities 

were close to 1, and the probabilities were monotonically decreasing over A (Fig. 2).  Of the nine 

populations, Atlantic herring (Iceland spring spawner) (Fig. 2b), Atlantic cod (The Newfound 

land, Canada) (Fig. 2c), bluefish (East Coast, USA) (Fig. 2e), and bigeye tuna (West Atlantic) 

(Fig. 2f), all displayed clear Allee effects.   The other five populations (Atlantic herring (Georges 

bank), whiting (North Sea), red porgy (Atlantic ocean off North Carolina), sablefish (West 

Coast, USA), pink salmon (Burke, B.C., Canada)) also exhibited Allee effects, but the evidence 

was weaker.   
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With the exception of a population of Atlantic herring (Iceland spring spawner), Allee 

effects were not detected in any population consistently with all three methods (the SB analysis, 

LRTRicker, LRTBH) (Table 2).  Although the SB analysis and LRTBH detected Allee effects in a 

population of Atlantic herring (Georges bank), LRTRicker did not.  Similarly, the SB analysis and 

LRTRicker detected Allee effects in a population of Atlantic cod (The Newfoundland, Canada) but 

LRTBH did not.  In addition to these three populations, the SB analysis uniquely detected Allee 

effects in six other populations: whiting (North Sea), bluefish (East Coast, USA), bigeye tuna 

(West Atlantic), red porgy (Atlantic ocean off North Carolina), sablefish (West Coast, USA), and 

pink salmon (Burke, B.C., Canada).  In contrast, there were three populations in which only 

parametric analyses detected Allee effects: a pink salmon population from Utka river 

(Kamchatka, Russia) with LRTRicker, and a pink salmon population from Kitimat (B.C., Canada) 

and a sockeye salmon population from Adams Complex (B.C., Canada) with LRTBH.  

 

5-4. Discussion 

In this study, we showed that the SB analysis detected Allee effects in fish populations 

more than twice as often as the parametric analyses (Table 1).  These results support our 

hypothesis that insufficient power of parametric models to correctly detect Allee effects (Shelton 

and Healey 1999; see chapter 3) may contribute to their apparent scarcity among fish populations 

(Myers et al. 1995; Liermann and Hilborn 1997; Barrowman et al. 2003).   

Despite the fact that we detected twice as many populations with Allee effects, 

demographic Allee effects still appear to be quite rare.  Either this apparent rarity is a statistical 

artifact or demographic Allee effects don‘t emerge except in highly idealized circumstances.  

The prevalence of Allee effects in fish populations is still ambiguous due to insufficient data; for 

9 of the 12 populations demonstrating Allee effects, the uncertainty level in π was quite large.  
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Except for two Pink salmon populations (Kitimat of B.C. in Canada N=11 and Utka river of 

Kamchatka in Russia N=10) whose short time series clearly exhibit no Allee effects (Fig. 1, Fig. 

E1 in Appendix E, and Table 2), the uncertainty in π is inversely related to sample size (Table 2).   

Moreover, the inferred rarity of Allee effects in fish populations may be due to 

oversimplification to the models we used.  At present, our model treats all unexplained variation 

as noise, ignoring environmental effects and assumes no migration.  Although our 

semiparametric model can readily include environmental covariates (e.g., Chen and Ware 1999; 

Chen et al. 2000; Chen and Irvine 2001; Wang et al. 2009), we have not yet extended our Allee 

effect index to address environmental effects.  However, mechanisms connecting environmental 

drivers to Allee effects are not clear and Gregory et al. (2010) found minimal gain in ability to 

detect Allee effects when environmental variable were included.  

 Reassessment with models accounting for migration may change the estimated 

prevalence of Allee effects.  However, Allee effects detected using models with migration may 

be irrelevant to extinction risk of marine populations.  A simulation study using a model with 

Allee effects and migration showed a greater chance of persistence in populations with migration 

than without (Brassil 2001).  Given the empirical evidence indicating the commonness of 

migration in marine populations (e.g., Campana 1999), marine populations may be more resistant 

to extinction via Allee effects than terrestrial ones are.   

That said, it may well be that demographic Allee effects are rare in marine fish 

populations.  Demographic Allee effects occur only when component Allee effects are present 

(Courchamp et al. 2008), but traits common in marine fishes are likely to dampen Allee effects.  

For example, schooling behavior, pervasively found in marine fishes (e.g., herring, sprat, cod) 

(Froese and Pauly 2012), may facilitate finding mates even at very low densities (e.g., Gascoigne 
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et al. 2009).  Schooling also enhances the effectiveness of cooperative defense against generalist 

predators (e.g., Gascoigne and Lipcius 2004).  Moreover, typical forms of predation by marine 

fishes (e.g., filter feeding, opportunistic feeding) (Froese and Pauly 2012) do not require 

cooperation with conspecifics.  Furthermore, migration reduces the chance of inbreeding 

depression to occur (Campana 1999).   

Even if some traits of marine fishes cause component Allee effects, complex interactions 

among different traits may dampen or prevent demographic Allee effects (Stephens et al. 1999; 

Courchamp et al. 2008; Mieszkowska et al. 2009).  For example, temporal benefits of 

conspecifics with increasing population density at the low level may be offset by reduced 

resource availability for an individual.  Finally, although size-selective harvest is hypothesized as 

a driver for component Allee effects (e.g., Atlantic cod (Gadus morhua)) (Walter and Kitchell 

2001; Rowe et al. 2004), to our knowledge no study has been conducted to rigorously examine 

the link between size-selective harvest and component Allee effects among marine fishes. 

In this study, we applied the SB model exclusively to fish populations, making a direct 

comparison of the SB and parametric assessments (Myers et al. 1995).  However, the use of the 

SB model is applicable to any population time series.  Given the high performance of the SB 

model for correct detection of the presence of Allee effects on simulated data (see chapter 3), we 

suggest that re-analysis of datasets analyzed in previous studies, including those on terrestrial 

species (Sibly et al. 2005; Gregory et al. 2010), may be warranted.  
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5-5. Tables 

Table 1.  The frequency of Allee effects in 264 fish populations determined with the SB analysis 

and the parametric analyses (LRTRicker and LRTBH).  The frequency is compared with that 

determined in Myers et al. (1995). 

 

 
Total SB analysis LRTRicker LRTBH 

Myers et al. 1995 129 N/A N/A 2.33% (3/129) 

This study 264 3.41% (9/264) 1.14% (3/264) 1.52% (4/264) 
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Table 2.  Assessment for the presence of Allee effects using the SB model (π) and parametric models (LRTRicker and LRTBH) for 12 

populations.  𝑁 is sample size of population data.  Symbols (Y and N) for LRTRicker and LRTBH indicate populations with Allee effects 

[Y] and without Allee effects [N].  Var(π) is the variance of π.  π written with a bold font indicates populations with Allee effects.   

 
Genus, species (common name) Sampling sites N LRT(R) LRT(BH) π Var(π) 

Clupea harengus (Herring) Georges bank 15 N Y 0.68 0.06 

 
Iceland (spring spawner) 23 Y Y 0.67 0.04 

Gadus morhua (Cod) The Newfound land, Canada 27 Y N 0.92 0.02 

Merlangius merlangus (Whiting) North Sea 74 N N 0.84 0.03 

Pomatomus saltatrix (Bluefish) East Coast, USA 14 N N 0.52 0.07 

Thunnus obesus (Bigeye Tuna) West Atlantic 35 N N 0.32 0.07 

Pagrus pagrus (Red porgy) Atlantic ocean off North Carolina 20 N N 0.87 0.04 

Anoplopoma fimbria (Sablefish)  West Coast, USA 18 N N 0.47 0.08 

Oncorhynchus gorbuscha (Pink salmon)  Burke, B.C., Canada  11 N N 0.68 0.09 

 
Kitimat, B.C., Canada 11 N Y 0.00 0.00 

 
Utka river, Kamchatka, Russia 10 Y N 0.00 0.00 

Oncorhynchus nerka (Sockeye salmon)  Adams Complex, B.C., Canada 39 N Y 0.00 0.00 

 

  

7
7
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5-6. Figures 

 

 

 

Figure 1.  The probability of the presence of Allee effects, π [dot], and its 95% confidence 

intervals [solid] for 12 populations: (a) Atlantic herring (Georges bank), (b) Atlantic herring 

(Iceland spring spawner), (c) Atlantic cod (The Newfound land, Canada), (d) whiting (North 

Sea), (e) bluefish (East Coast, USA), (f) bigeye tuna (West Atlantic), (g) red porgy (Atlantic 

ocean off North Carolina), (h) sablefish (West Coast, USA), (i) pink salmon (Burke, B.C., 

Canada), (j) pink salmon (Kitimat, B.C., Canada), (k) pink salmon (Utka river, Kamchatka, 

Russia), and (l) sockeye salmon (Adams Complex, B.C., Canada).  The vertical dotted line 

indicates prior probability of the presence of Allee effects (0.25).  
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Figure 2.  The posterior probability for the presence of Allee effects for 12 populations which 

exhibit Allee effects.  ‗Allee‘ indicates populations which the SB model detected Allee effects 

(a-i).  ‗No Allee‘ indicates populations which only parametric models detected Allee effects (j-l).  

We plotted the mean of the posterior probability [thick solid line] and the 95% confidence 

intervals of the posterior probability [thin solid line].  Note that scales in x axis differs across 

different populations.  (a) Atlantic herring (Georges bank), (b) Atlantic herring (Iceland spring 

spawner), (c) Atlantic cod (The Newfound land, Canada), (d) whiting (North Sea), (e) bluefish 

(East Coast, USA), (f) bigeye tuna (West Atlantic), (g) red porgy (Atlantic ocean off North 

Carolina), (h) sablefish (West Coast, USA), (i) pink salmon (Burke, B.C., Canada), (j) pink 

salmon (Kitimat, B.C., Canada), (k) pink salmon (Utka river, Kamchatka, Russia), (l) sockeye 

salmon (Adams Complex, B.C., Canada).   
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Appendices 

Appendix A: The conditional Gaussian process prior (chapter 2) 

The conditional GP prior 𝑓 𝑆  can be derived first by applying the techniques for 

obtaining the conditional normal distribution from a joint normal distribution.  In the standard 

multivariate normal setting, when 𝑥1  and 𝑥2  are jointly normal with mean  𝜇1, 𝜇2 
𝑇  and 

covariance 𝛴, the distribution for 𝑥2 given 𝑥1 is  

 𝜇2|1 = 𝜇2 + 𝛴2,1 𝛴1,1 
−1

 𝑥1 − 𝜇1  

𝛴2|1 = 𝛴2 − 𝛴2,1 𝛴1,1 
−1

𝛴2,1
𝑇 , 

(A1) 

where 𝛴𝑖 ,𝑗  denotes the partition of Σ corresponding covariance among 𝑖  and 𝑗 , e.g., Σ1,2, 

represents the covariances among elements of vectors 𝑥1 and 𝑥2 (e.g., Hogg et al. 2004). 

To make use of this we construct a joint GP prior:  

 
 
𝑓 𝑆 

𝑓 0 
 ~GP   

𝜇 𝑆 

𝜇 0 
 ,  

𝛴(𝑆, 𝑆′) 𝛴(𝑆, 0)

𝛴(𝑆, 0)𝑇 𝛴(0,0′)
  . 

(A2) 

𝛴(𝑆, 𝑆′) is a covariance function for 𝑓 𝑆 , which is given by 𝛴(𝑆, 𝑆′) = 𝜏2exp −𝜙/max 𝑆 |𝑆 −

𝑆′|2 .  𝛴(𝑆, 0)  is a covariance between 𝑓 𝑆  and  𝑓 0 , which is 𝛴(𝑥, 0) = 𝜏2exp −𝜙/

max 𝑆 |𝑆|2 .  𝛴(0,0′) is a variance for an univariate Gaussian process prior 𝑓 0 , which is 

𝛴(0,0′) = 𝜏2. With Eqs A1 and A2, we can derive the conditional GP prior: 

 𝑓 𝑆 |𝑓 0 = ln𝛼~GP 𝜇𝑐 , 𝛴𝑐  (A3) 

where 

 𝜇𝑐 = 𝜇 𝑆 + 𝛴(𝑆, 0) (0,0′) −1 ln𝛼 − 𝜇 0  = 𝜇 𝑆  (A4) 

 𝛴𝑐 = 𝛴 𝑆, 𝑆 ′ − 𝛴 𝑆, 0′  𝛴 0,0′  −1𝛴 𝑆, 0′ 𝑇 

= 𝜏2exp  −𝜙  
𝑆 − 𝑆′

max 𝑆 
 

2

 − 𝜏2exp  −𝜙  
𝑆2 + 𝑆′

2

max 𝑆 2
  . 

(A5) 



 

89 
 

Appendix B: Prior specification and parameter estimation (chapter 3) 

B-1.  Prior specification  

In order for prior distributions to play a minimal role in posterior inference, we want prior 

distributions for lnα, 𝛽, 𝜙, 𝜏2, 𝜎2 to be as uninformative as possible.  In an extreme case where 

𝜏2 → 0, fitting the GP prior is equivalent to fitting the Ricker model.  Therefore, we used 

uninformative reference priors developed for the Ricker model (Millar 2002); for the location 

parameters Pr ln𝛼, 𝛽 ∝ 1 and for the scale parameter Pr 𝜎2 ∝ 𝜎−2.   

However, priors for 𝜙 and 𝜏2 had to be specified informatively because our preliminary 

results showed that the posterior distributions did not converge when uninformative priors were 

used.  Since 𝜙 controls the number of inflection points in realizations of 𝑓 𝐴  (section 3-2-2), 

the prior for 𝜙 was determined in light of available biologically plausible models for density 

dependence, including Allee effects models.  These models are usually simple smooth functions 

with at most 1 inflection point over 𝐴.  We allowed 𝑓 𝐴  to have, on average, 2 inflection points 

over the range, 0 to max 𝐴 , to capture somewhat more complex shapes.  We determined the 

relationship between 𝜙 and the expected number of inflection points in 𝑓 𝐴  by simulation.  We 

generated 𝑓 𝐴  in 𝐴/max 𝐴 ∈  0,1  from the GP prior in Eq 4 and counted the number of 

inflection points in 𝐴exp 𝑓 𝐴  .  We found that 𝜙 = 8 generates 2 inflection points on average 

over 𝐴.  With this information, we used an informative gamma prior distribution with the mean 

E 𝜙 = 8 , which is given by Pr 𝜙 ∝ 𝜙exp −𝜙/4 .  Note that this prior can be easily 

overwhelmed by data which clearly show different number of inflection points over 𝐴.   

For 𝜏2 , we note that the total variance in 𝑦  is V 𝑦 = V 𝑓 𝐴  + 𝜎2 , and obtain a 

ballpark for the variance in 𝑦 from its observed range (i.e., 𝑟𝑦 = max 𝑦 − min 𝑦 ).  Assigning 

the prior variance in 𝑦 to uncertainty in 𝑓 𝐴 , we used a gamma prior, Pr 𝜏2 ∝ 𝜏2exp 2𝜏2/𝑟𝑦  
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which has E 𝜏2 = 𝑟𝑦 .  We conducted prior sensitivity analysis using different parameterization 

of the gamma prior to determine possibility that the inference of the presence of Allee effects, 𝜋, 

is an artifact of prior specification, and confirmed that 𝜋 does not change qualitatively across 

different priors. 

 

B-2. Parameter estimation 

With n years of data for data,  𝑨, 𝑱 =   𝐴1, … , 𝐴𝑛 ,  𝐽1, … , 𝐽𝑛  , we have 𝒚 =

 ln 𝐽1/𝐴1 , … , ln 𝐽𝑛/𝐴𝑛  .  With data, 𝑓 𝑨  is a sample from an n dimensional multivariate 

normal distribution: 

 𝑓 𝑨 |ln𝛼, 𝛽, 𝜙, 𝜏2~MVN 𝜇 𝑨 , 𝛴𝑓 ,𝑓 𝑨, 𝑨′   (B1) 

where 𝜇 𝑨 = 𝑙𝑛𝛼𝟏𝒏 + 𝛽𝑨/max 𝑨   and 𝟏𝒏 is an 𝑛 × 1 vector of 1‘s.  The 𝑖, 𝑗𝑡ℎ  element in the 

covariance is given by 𝛴𝑓 ,𝑓 𝑨, 𝑨′ 𝑖 ,𝑗 = 𝜏2exp −𝜙| 𝐴𝑖 − 𝐴𝑗 ′ /max 𝑨 |2 .  Obtaining posterior 

inference for parameters in this model is computationally cumbersome, but marginalizing over 

𝑓 𝑨  can speed up the computation (Munch et al. 2005):  

 𝒚|𝑨, 𝜣~MVN 𝜇 𝑨 , 𝛴𝑓 ,𝑓 𝑨, 𝑨′ + 𝜎2𝑰𝒏  (B2) 

 𝜣~𝑃𝑟 𝜣 .  

𝑰𝒏  is 𝑛 × 𝑛  identity matrix.  Parameters in the model are collected in the vector 𝜽 =

 ln𝛼, 𝛽, 𝜙, 𝜏2 , 𝜎−2  and Pr 𝜣 ∝ 1 ∙ 𝜙exp −𝜙/4 ∙ 𝜏2exp 2𝜏2/𝑟𝑦 ∙ 𝜎−2 .  In light of this, the 

SB model is essentially identical to an n dimensional multivariate normal likelihood.  

We used Metropolis sampling to obtain posterior distributions for 𝜏2 , 𝜙, 𝜎2, at log scale, 

and Gibbs sampling for ln𝛼, 𝛽 .  The assessment for convergence in the updated posterior 

distributions was conducted using multiple over-dispersed chains (Gelman et al. 2003).  
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Obtaining inference for an unknown function 𝑓 𝐴  was deferred until the posterior distributions 

for 𝜣 were updated.  It follows simply from the fact that the inference for 𝑓 𝐴  is sampled from 

a posterior predictive GP specified with the posterior mean function and the posterior covariance 

function (see Appendix D) (Munch et al. 2005). 
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Appendix C: The derivative of a GP, 𝒇′ 𝑨  (chapter 3) 

Given a GP, i.e., 𝑓 𝐴 ~GP 𝜇 𝐴 , 𝛴𝑓 ,𝑓 𝐴, 𝐴′  , its derivative, 𝑓′ 𝐴 , is also a GP with 

mean function 𝜇′ 𝐴  and the covariance function 𝛴𝑓′ ,𝑓′ 𝐴, 𝐴′ .  Specifically,   

 𝑑𝑓

𝑑𝐴
≡ 𝑓′ 𝐴 ~GP 𝜇′ 𝐴 , 𝛴𝑓′ ,𝑓′ 𝐴, 𝐴′  . 

(C1) 

where 𝜇′ 𝐴  is given by 

 𝜇′ 𝐴 = E 𝜕𝑓 𝐴 /𝜕𝐴 =  𝜕 /𝜕𝐴 E 𝑓 𝐴  = 𝛽/max 𝐴 . (C2) 

And 𝛴𝑓′ ,𝑓′ 𝐴, 𝐴′  is given by 

 
𝛴𝑓 ′ ,𝑓 ′  𝐴, 𝐴′ = E  

𝜕𝑓 𝐴 

𝜕𝐴
−

𝜕𝜇 𝐴 

𝜕𝐴
  

𝜕𝑓 𝐴′ 

𝜕𝐴′
−

𝜕𝜇 𝐴 

𝜕𝐴′
 

𝑇

=
𝜕

𝜕𝐴
E 𝑓 𝐴 − 𝜇 𝐴   𝑓 𝐴′ − 𝜇 𝐴  𝑇

𝜕

𝜕𝐴′

𝑇

=  
𝜕2

𝜕𝐴𝜕𝐴′
𝛴𝑓 ,𝑓 𝐴, 𝐴′  

= 2𝜙𝜏2  1 − 2𝜙  
𝐴 − 𝐴′

max 𝐴 
 

2

 exp  −𝜙  
𝐴 − 𝐴′

max 𝐴 
 

2

 . 

(C3) 

Similarly, we can determine the covariance between 𝑓 𝐴  and 𝑓′ 𝐴 , i.e.,  

 
𝛴𝑓 ,𝑓 ′  𝐴, 𝐴′ = E   𝑓 𝐴 − 𝜇 𝐴   

𝜕𝑓 𝐴′ 

𝜕𝐴
−

𝜕𝜇 𝐴′ 

𝜕𝐴′
 

𝑇

 

= E   𝑓 𝐴 − 𝜇 𝐴   𝑓 𝐴′ − 𝜇 𝐴′  𝑇}  
𝜕

𝜕𝐴′
 

𝑇

 

=
𝜕

𝜕𝐴′
𝛴𝑓 ,𝑓 𝐴, 𝐴′  

= 2𝜙𝜏2  
𝐴 − 𝐴′

max 𝐴 
 exp  −𝜙  

𝐴 − 𝐴′

max 𝐴 
 

2

 . 

(C4) 
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Putting these together, the joint distribution for 𝑓 𝐴  and 𝑓′ 𝐴  at a specific point 𝐴  is the 

bivariate normal distribution given by: 

 
 
𝑓 𝐴 

𝑓′ 𝐴 
 ~N   

ln𝛼 + 𝛽𝐴/max 𝐴 

𝛽/max 𝐴 
 ,  

𝛴𝑓 ,𝑓 𝐴, 𝐴 𝛴𝑓 ,𝑓′ 𝐴, 𝐴 

𝛴𝑓 ,𝑓 𝐴, 𝐴 𝑇 𝛴𝑓′ ,𝑓′ 𝐴, 𝐴 
  . 

(C5) 

where 𝛴𝑓 ,𝑓 𝐴, 𝐴  is the variance in the GP evaluated at 𝐴, 𝛴𝑓′ ,𝑓′ 𝐴, 𝐴  is the variance of 𝑓′ 𝐴  at 

𝐴, and 𝛴𝑓 ,𝑓′ 𝐴, 𝐴  is the covariance between 𝑓 𝐴  and 𝑓′ 𝐴  evaluated at 𝐴. Plugging 𝐴 = 𝐴′ 

into Eqs C2-4, these are given by: 

 𝛴𝑓 ,𝑓 𝐴, 𝐴 = 𝜏2 (C6) 

 𝛴𝑓 ,𝑓′ 𝐴, 𝐴 = 0 (C7) 

 𝛴𝑓′ ,𝑓′ 𝐴, 𝐴 = 2𝜙𝜏2. (C8) 

Since Allee effects are only relevant for small adult biomass, we used the probability of 

the presence of Allee effects evaluated at the zero adult biomass, Pr 𝑓 0 ≤ 0, 𝑓′ 0 > 0 , to 

assess for the presence of Allee effects.  To obtain this probability, we marginalized the bivariate 

normal distribution, 𝑓 0 , 𝑓′ 0 |𝜽 over 𝜽, and integrated numerically:  

 
𝜋 ≅

1

𝑁
  Pr 𝑓 0 ≤ 0, 𝑓′ 0 > 0|𝜽𝒊 𝑑𝑓𝑑𝑓′

𝑓∈ −∞ ,0 ,𝑓 ′ ∈{0,∞]

.
𝑁

𝑖=1
 

(C9) 

Because the prior distribution for ln𝛼 and 𝛽 are improper, 𝜋 prior to incorporating data is also 

improper.  However, because expectation of the joint probability 𝑓 0 , 𝑓′ 0  given 

ln𝛼𝑖 , 𝛽𝑖 , 𝜙𝑖 , 𝜏𝑖
2  is  ln𝛼𝑖 , 𝛽𝑖 

𝑇  and the covariance is 0, this joint distribution is symmetric.  

Therefore, since we are effectively looking at the probability of being in the upper left quadrant, 

𝜋 prior to incorporating data is 0.25.   
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Appendix D: Allee effects detection (chapter 3) 

The joint multivariate normal distribution for 𝑓 𝐴 , 𝑓′ 𝐴 , 𝒚  given the 𝑗  th set of 

posterior distributions for the parameter 𝜣 (𝜣 =  ln𝛼, 𝛽, 𝜙, 𝜏2 , 𝜎2 ) is given by: 

 

 

𝑓 𝐴 

𝑓′ 𝐴 
𝒚

 𝑨, 𝜣 ~N   

𝜇 𝐴 

𝜇′ 𝐴 

𝜇 𝑨 
  , 

  

𝛴𝑓 ,𝑓 𝐴, 𝐴′ 𝛴𝑓 ,𝑓′ 𝐴, 𝐴′ 𝛴𝑓 ,𝑓 𝐴, 𝑨′ 

𝛴𝑓 ,𝑓′ 𝐴, 𝐴′ 𝑇 𝛴𝑓′ ,𝑓′ 𝐴, 𝐴′ 𝛴𝑓′ ,𝑓 𝐴, 𝑨′ 

𝛴𝑓 ,𝑓 𝐴, 𝑨′ 𝑇 𝛴𝑓′ ,𝑓 𝐴, 𝑨′ 𝑇 𝛴𝑓 ,𝑓 𝑨, 𝑨′ + 𝜎2𝐼𝑇

   

(D1) 

where 𝜇 𝐴 = ln𝛼 + 𝛽𝐴/max 𝐴 , 𝜇′ 𝐴 = 𝛽/max 𝐴 , and 𝜇 𝑨 = ln𝛼 + 𝛽𝑨/max 𝐴 . 

𝛴𝑓 ,𝑓 𝐴, 𝐴′ , 𝛴𝑓 ,𝑓′ 𝐴, 𝐴′ , and 𝛴𝑓′ ,𝑓′ 𝐴, 𝐴′  are given in Appendix B (Eq B1) and C (Eqs C3-4). 

𝛴𝑓 ,𝑓 𝐴, 𝑨′  is the covariance between the GP evaluated at 𝐴  and data, 𝛴𝑓′ ,𝑓 𝐴, 𝑨′  is the 

covariance between the derivative of the GP evaluated at 𝐴 and the data, and 𝛴𝑓 ,𝑓 𝑨, 𝑨′  is the 

covariance for data.  They are given by: 

 
𝛴𝑓 ,𝑓 𝐴, 𝑨′ = 𝜏2exp  −𝜙  

𝐴 − 𝑨

max 𝑨 
 

2

  
(D2) 

 𝛴𝑓′ ,𝑓 𝐴, 𝑨′ = E 𝜕𝑓 𝐴 /𝜕𝐴 − 𝜕𝜇 𝐴 /𝜕𝐴  𝜕𝑓 𝐴 /𝜕𝐴 − 𝜕𝜇 𝐴 /𝜕𝐴 𝑇

=  𝜕/𝜕𝐴 E 𝑓 𝐴 − 𝜇 𝐴   𝑓 𝐴 − 𝜇 𝐴  𝑇

= −2𝜙𝜏2  
𝐴 − 𝑨′

max 𝑨 
 exp  −𝜙  

𝐴 − 𝑨′

max 𝑨 
 

2

  

(D3) 

 
𝛴𝑓 ,𝑓 𝑨, 𝑨′ = 𝜏2exp  −𝜙  

𝑨 − 𝑨′

max 𝑨 
 

2

 . 
(D4) 

The conditional distribution can be derived by applying a theorem for a standard 

multivariate normal distribution (e.g., Hogg et al. 2004): 
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 𝑓 𝐴 , 𝑓′ 𝐴 |𝑨, 𝒚, 𝜣~N 𝜓post  𝐴 , 𝛺post  𝐴, 𝐴′  , (D5) 

where the posterior mean function 𝜓post  𝐴  and the posterior covariance function 𝛺post  𝐴, 𝐴′  

are given by: 

 
𝜓post  𝐴 =  

ln𝛼 + 𝛽𝐴/max 𝑨 

𝛽/max 𝑨 
 

+  
𝛴𝑓 ,𝑓 𝐴, 𝑨′ 

𝛴𝑓′ ,𝑓 𝐴, 𝑨′ 
  𝛴𝑓 ,𝑓 𝑨, 𝑨′ + 𝜎2𝐼𝑇 

−1
 𝒚

−  ln𝛼 + 𝛽𝑨/max 𝑨    

(D6) 

 
𝛺post  𝐴, 𝐴′ =  

𝛴𝑓 ,𝑓 𝐴, 𝐴′ 𝛴𝑓 ,𝑓′ 𝐴, 𝐴′ 

𝛴𝑓 ,𝑓′ 𝐴, 𝐴′ 𝑇 𝛴𝑓′ ,𝑓′ 𝐴, 𝐴′ 
 

−  
𝛴𝑓 ,𝑓 𝐴, 𝑨′ 

𝛴𝑓′ ,𝑓 𝐴, 𝑨′ 
  𝛴𝑓 ,𝑓 𝑨, 𝑨′ + 𝜎2𝐼𝑇 

−1
 
𝛴𝑓 ,𝑓 𝐴, 𝑨′ 

𝛴𝑓′ ,𝑓 𝐴, 𝑨′ 
 

𝑇

. 

(D7) 

As written in section 3-2-3, we are interested in the posterior inference of Allee effects 

that are exclusively conditioned on data,  𝑨, 𝑱 , and not dependent specific choice of 𝜣.  We 

obtained this probabilities, Pr 𝑓 𝐴 < 0, 𝑓′ 𝐴 > 0|data , by Monte Carlo integration over 

posteriors for 𝜣.  To do so, we first consider a joint posterior distribution for 𝑓 𝐴 , 𝑓′ 𝐴 , 𝜣 

given data, which can also be written using a rule of a conditional distribution: 

 Pr 𝑓 𝐴 , 𝑓′ 𝐴 , 𝜣|data = Pr 𝑓 𝐴 , 𝑓′ 𝐴 |𝜣, data Pr 𝜣|data , (D8) 

where Pr 𝑓 𝐴 , 𝑓′ 𝐴 |𝜣, data  appeared in Eq D5.  We first obtained Pr 𝑓 𝐴 < 0, 𝑓′ 𝐴 >

0|𝜣, data  with numerical integration.  Then, using N=1000 random samples of 𝜣 from the 

posterior distributions for 𝜣, Pr 𝜣|data , we marginalized this distribution over 𝜣 to obtain 

Pr 𝑓 𝐴 < 0, 𝑓′ 𝐴 > 0|data .  We evaluated this probability for the entire range of 𝐴 ∈

 0, max 𝑨   to generate Figs 2 and 5.  We used this posterior probability evaluated at the zero 

adult biomass, 𝜋 = Pr 𝑓 0 ≤ 0, 𝑓′ 0 > 0|data , as an index for detecting Allee effects.   
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Appendix E: Supplementary results (chapter 5) 

Table E1.  The summary of parametric (LRTRicker and LRTBH) and SB analyses (π) of 264 

populations‘ data.  𝑁 is number of populations of a species.  Number in cells for LRTRicker, 

LRTBH, and π, indicates number of populations that exhibit evidence for the presence of Allee 

effects. 
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Order Family Genus, species (common name) N LRT(R) LRT(BH) π 

Aulopiformes Synodontidae Harpodon nehereus (Bombay duck) 1 0 0 0 

Clupeiformes Clupeidae Alosa aestivalis (Blueback herring) 3 0 0 0 

    Alosa pseudoharengus (Anadromous alewife) 5 0 0 0 

    Alosa sapidissima (Anadromous american shad) 1 0 0 0 

    Brevoortia patronus (Gulf Menhaden) 1 0 0 0 

    Brevoortia tyrannus (Atlantic Menhaden) 1 0 0 0 

    Clupea harengus (Herring) 16 1 2 2 

    Sardina pilchardus (Spanish sardine) 1 0 0 0 

    Sardinops sagax (Sardine) 2 0 0 0 

    Sprattus sprattus (Sprat) 3 0 0 0 

  Engraulidae Coilia dussumieri (Gold-spotted grenadier anchovy) 1 0 0 0 

    Engraulis encrasicolus (Anchovy) 2 0 0 0 

    Engraulis mordax (Northern anchovy) 1 0 0 0 

Gadiformes Gadidae Gadus morhua (Cod) 24 1 0 1 

    Melanogrammus aeglefinus (Haddock) 11 0 0 0 

    Merlangius merlangus (Black Sea whiting) 2 0 0 0 

    Merlangius merlangus (Whiting) 6 0 0 1 

    Merluccius bilinearis (Silver hake) 2 0 0 0 

    Merluccius capensis (S.A. Hake) 1 0 0 0 

    Merluccius merluccius (Hake) 2 0 0 0 

    Merluccius productus (Pacific hake) 1 0 0 0 

    Micromesistius poutassou (Blue whiting) 1 0 0 0 

    Pollachius virens (Pollock or saithe) 5 0 0 0 

    Theragra chalcogramma (Walleye pollock) 2 0 0 0 

Perciformes Carangidae Trachurus mediterraneus (Mediterranean horse mackerel) 1 0 0 0 

    Trachurus trachurus (Horse mackerel) 1 0 0 0 

  Centrarchidae Promoxis annularis and nigromaculatus (Crappie) 4 0 0 0 

  Percichthyidae Morone saxatilis (Striped bass) 2 0 0 0 

  Percidae Stizostedion vitreum (Walleye) 2 0 0 0 

  Pomatomidae Pomatomus saltatrix (Bluefish) 1 0 0 1 

  Sciaenidae Cynoscion guatucupa (Weakfish) 1 0 0 0 

  Scombridae Scomber japonicus (Chub mackerel) 1 0 0 0 

    Scomber scombrus (Mackerel) 2 0 0 0 

    Thunnus albacares (Yellowfin tuna) 1 0 0 0 

    Thunnus maccoyii (Southern bluefin tuna) 1 0 0 0 

    Thunnus obesus (Bigeye Tuna) 3 0 0 1 

    Thunnus thynnus (Atlantic bluefin tuna) 1 0 0 0 

  Sparidae Pagrus pagrus (Red porgy) 1 0 0 1 

  Xiphiidae Xiphias gladius (Swordfish) 1 0 0 0 

Pleuronectiformes Pleuronectidae Pleuronectes ferrugineus (Yellowtail flounder) 2 0 0 0 

    Pleuronectes platessa (Plaice) 6 0 0 0 

    Reinhardtius hippoglossoides (Greenland halibut) 3 0 0 0 

  Soleidae Solea vulgaris (Sole) 5 0 0 0 

Scorpaeniformes Anoplopomatidae Anoplopoma fimbria (Sablefish)  2 0 0 1 

  Hexagrammidae Pleurogrammus monopterygius (Atka mackerel)  1 0 0 0 

  Scorpaenidae Sebastes alutus (Pacific ocean perch)  4 0 0 0 

    Sebastes goodei (Chilipepper rockfish)  1 0 0 0 

    Sebastes sp. (Redfish)  1 0 0 0 

Salmoniformes Esocidae Esox lucius (Pike)  2 0 0 0 

  Plecoglossidae Plecoglossus altivelis (Ayu)  1 0 0 0 

  Salmonidae Salmo salar (Atlantic salmon)  3 0 0 0 

    Oncorhynchus gorbuscha (Pink salmon)  51 1 1 1 

    Oncorhynchus keta (Chum salmon)  7 0 0 0 

    Oncorhynchus nerka (Sockeye salmon)  49 0 1 0 

    Oncorhynchus tshawytscha (Chinook salmon)  7 0 0 0 

    Salvelinus namaycush (Lake trout)  1 0 0 0 

              

Total     264 3 4 9 
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Figure E1.  (a) An example of none Allee effects function [solid line].  (b) An example of an 

Allee effects function [solid line], the derivative of Allee effects function at some 𝐴 [dot], and 

the linear approximation of the example Allee effects function at 𝐴  [broken line].  (c) The 

probability for the presence of Allee effects, Pr[f(A)≤0, f’(A)>0|data], obtained from the example 

function used in (a).  (d) The probability for the presence of Allee effects obtained from the 

example function used in (b). 
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Figure E2.  The posterior inference of f(A) for 12 population datasets which exhibit Allee effects.  

‗Allee‘ indicates populations which the SB model detected Allee effects (a-i).  ‗No Allee‘ 

indicates populations which only parametric models detected Allee effects (j-l).  We plotted data 

[dots], the mean of the posterior f(A) [thick solid line], and the 95% confidence intervals of the 

posterior f(A)  [thin solid line].  Note that scales in 𝑥  and y axis differ across different 

populations. (a) Atlantic herring (Georges bank), (b) Atlantic herring (Iceland spring spawner), 

(c) Atlantic cod (The Newfound land, Canada), (d) whiting (North Sea), (e) bluefish (East Coast, 

USA), (f) bigeye tuna (West Atlantic), (g) red porgy (Atlantic ocean off North Carolina), (h) 

sablefish (West Coast, USA), (i) pink salmon (Burke, B.C., Canada), (j) pink salmon (Kitimat, 

B.C., Canada), (k) pink salmon (Utka river, Kamchatka, Russia), (l) sockeye salmon (Adams 

Complex, B.C., Canada).   

 

 


