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Abstract of the Dissertation 

Performance of Model Selection Statistics in Growth  Mixture Modeling of 

Homogeneous Data 

by 

Ruixue Wang 

Doctor of Philosophy  

in 

Applied Mathematics and Statistics 

Stony Brook University 

2011 

 

Growth mixture modeling (GMM) is used to detect the existence of two or more 

trajectory patterns among participants in a longitudinal study.  

One crucial issue is the determination of the number of longitudinal trajectory 

patterns. I study the properties of three statistics used to identify the number of 

components in a sample of data. These are the Bayesian information criterion (BIC), Lo-

Mendell-Rubin test (LMRT), and bootstrap likelihood ratio test (BLRT). I estimate the 

probability that each of these statistics identifies that there is a single component for 

homogeneous data using the M-plus and SAS PROC TRAJ statistical packages.  

I use four distributions for the longitudinal outcome measures: the censored 

normal distribution, the gamma distribution, the zero-inflated Poisson distribution and 

the Bernoulli distribution. I considered these factors: trajectory pattern, intra-class 
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correlation, time measurements, random effects and sample size.  For the censored 

normal distribution, the BIC and LMRT (set at the 0.01 significance level) have the 

highest fraction of replicates identified as homogeneous. These rates for LMRT are 0.92 

or better at significance level 0.01 and 0.98 or better for the BIC. The identification rates 

of these two statistics are not significantly affected by the intra-class correlation in the 

trajectory, the trajectory pattern, the number of time measurements, and the sample 

size. A similar pattern was observed for the gamma distribution using the M-plus 

statistical package. The identification rate of the LMRT is better than that of the BLRT at 

both the 0.01 and 0.05 significance levels.   

For the ZIP and Bernoulli distribution, PROC TRAJ computations have a higher 

correct identification rate than those from M-plus. Larger sample size is associated with 

an increase in the probability that two or more components will be identified for ZIP 

distributed data following a linear trend and with random effects. The same pattern 

holds for Bernoulli data. Overall, the BIC statistic has the highest correct identification 

rate. These rates are on the order of 95% for homogeneous data following either a 

censored normal or gamma distribution.  
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Chapter 1 

 Introduction 

In a longitudinal study, repeated observations of the same variable at the 

individual level are made over a period of time. Longitudinal studies are commonly used 

in social science and biomedical research (White et al., 2000, Chang et al., 2009, Hong 

&Ho, 2005, Fan, 2001, Duncan et al., 1996). For instance, criminologists track 

delinquent behavior over time of a sample of individuals and relate it to variables such 

as income, life style, and health (Eklund, Kerr & Stattin, 2010). Psychologists investigate 

children’s social development and adjustment using longitudinal studies (Crick, Ostrov & 

Werner, 2006). Doctors use longitudinal studies to identify the progression patterns of 

diseases and then assess treatment approaches (Gomez et al, 2007).   

One longitudinal model is the hierarchical linear model (Raudenbush & Bryk, 

2002). The formal specification of this model is given in page 5. The concept is that 

there is one homogeneous pattern described by coefficients that are random variables 

specific to each individual. Additionally, growth mixture modeling (GMM) is used to 

detect the existence of two or more longitudinal patterns among the participants 

(Muthén & Asparaouhov, 2006).  GMM can be treated as a multilevel modeling 

technique to explore heterogeneity in a population (Kerner & Muthén, 2009). 

One crucial issue is the determination of the number of longitudinal patterns 

present in a sample of data. The Bayesian information criterion (BIC) and likelihood 

ratio test (LRT) are used to select the number of components. The determination of the 
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number of components and other modeling results in mixture modeling are sensitive to 

heteroscedasticity in the underlying stochastic process. 

My research question is: Given homogeneous data, what are the statistical 

properties of model selection procedures for the number of components selected?  How 

sensitive are model selection procedures to heteroscedasticity.  

I study the probability that  the Bayesian information criterion (BIC), entropy 

measure, Lo-Mendell –Rubin likelihood ratio test (LMRT) and bootstrap likelihood ratio 

test (BLRT)  identify that there is a single component for homogeneous data using the 

M-plus and SAS statistical packages.  
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Chapter 2 Literature Review 

2.1 Growth Mixture Modeling (GMM) 

Conventional growth modeling models longitudinal data as coming from a 

homogeneous population. The latent curve model (LCM) can be written as 

iiiy εη +Α=                                               

where iy  is a 1×p vector of repeated measures for individual i, and p is the number of 

data measurements across time. The matrix Α is a qp×  factor-loading matrix whose 

coefficients are randomly distributed; iη  is a 1×q vector of random coefficients, e.g., 

intercept and slope, and iε  is a 1×p vector of residuals. Usually, it is assumed that the 

random coefficients and residuals are normally distributed; that is, iy is normally 

distributed with probability density function 

),,()( ' Θ+ΑΨΑΑ= αφ ii yyf                                   

where α  is the mean of the random coefficients,Ψ  is the covariance matrix of random 

coefficients,  Θ is the covariance matrix of the residuals, and 2

2

2

1
)(

z

ez
−

=
π

φ , the pdf of 

the standard normal distribution. 

  The assumption of homogeneity is incorrect when individuals belong to different 

subpopulations. B.O. Nagin (1999) advanced a semiparmeteric group-based trajectory 

model.  Muthén (2001) proposed an extension of latent curve modeling methodology 

that used growth mixture models. Muthén’s growth mixture modeling uses a finite-
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mixture random effects model to represent unobserved heterogeneity. Growth mixture 

modeling partitions the population into an unknown number of latent classes. That is, 

the GMM model is that the population is composed of K latent classes, each 

characterized by its own LCM. 

The probability density function for the GMM is a mixture of normally distributed 

classes  

),,()( '

1
kkkkkkik

K

k
ki yyf Θ+ΑΨΑΑΦ=∑

=

απ
                                        

GMM estimates mean growth curves for each class and models individual 

variation by the estimation of growth factor variances for each class. GMMs are applied 

to longitudinal data that are heterogeneous and contain a finite number of latent classes. 

Each class has its own mean trajectory. Figure 1 presents a GMM with three repeated 

measures. This model has two quantitative latent parameters, the intercept (i) and the 

slope (s). The categorical latent variable that models class membership is c. The 

variables 321 ,, YYY are the repeated outcome measures. 
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Figure 1 General growth mixture model with three continuous outcomes 

The formal statement of a simple growth mixture model describes two levels. 

Level 1 models individual change with the model:  

itiiit ty εππ ++= 10 . 

Level 2 models variation between persons with the model: 

iiii uXC 00000 ++= βπ   ,    iiii uXC 11101 ++= βπ , 

where  

ity  is the outcome measure for subject i(i=1,…n) at time t. 

The random variable itε  models the within-participant random effects, which are 

independently and identically normally distributed as ),0( 2σN . 
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The random coefficient i0π  is the intercept coefficient for participant i, and the 

random coefficient i1π  is the linear rate of change for participant i. 

The random variables iu0  and iu1  are individual effects with specified probability 

distribution in the random effects model. They are not used in a fixed effects model. 

Finally,  

iX  is the group indicator. 

2.2. Probability distributions of the outcome measu res:  

I consider four distributions of the outcome measures in this research: the 

censored normal (CNORM), the gamma distribution, the zero-inflated Poisson (ZIP) 

distribution, and the Bernoulli distribution. The censored normal (CNORM) distribution is 

useful for psychometric scale data (Nagin&Tremblay, 1999).  Given that subject i 

belongs to group k, the likelihood of observing the trajectory for this subject is  

)(
1

))(1())(1(),|(
σ

µ

σσ

µ
φ

σ

µ
φ ijkij

MaxyMiny

ijk

y

ijk
iiiii

yMinMax
wWkCyYp

ijMinijkMaxij

−−
−

−
−==== ∏∏∏

<<==

where 

kijkijkijkijk wtt δβββµ ++++= ...2
2

10  , 

 ),...( 1 iTii wwW =  is a time-dependent covariate,  and ijt  denotes subject i’s time 

measurement at period j (Jones et al., 2001). 
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The gamma distribution is a two-parameter family of continuous distributions. 

The two parameters are the scale parameter and the shape parameter. Its probability 

function can be expressed as  

0,0
)(

),;( 1 >≥
Γ

=

−

− θ
θ

θ
θ

kandx
k

e
xkxf

k

x

k  

Specifically, if )2,
2

(~ ==Γ θ
υ

kX , then X has a chi-square distribution with υ  degrees of 

freedom.   

The zero-inflated Poisson (ZIP) distribution is used for integer valued outcomes 

when the count outcome is equal to zero more often than one would expect from a 

Poisson distribution. The ZIP distribution can be treated as a mixture model with two 

components, a zero component and the Poisson component. A zero count occurs with 

probability one in the zero component. The probability in the nonzero component follows 

a Poisson distribution, which includes a zero count as well. A probability is estimated for 

each outcome to be either in the zero component or the Poisson component. 

Formally, the probability mass function of the ZIP is:





>−

=−+ −

0);()1(

0)1(
~),;(

xifxP

xife
xf

λρ
ρρ

λρ
λ

 

Here ρ is the probability of the zero component, and λ is expected value for the 

Poisson component. 
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Given that there are k classes, each following a ZIP distribution, the probability of 

observing iy  given membership in class k is 

∏ ∏
= >

− −
−−+====

0 0 !

)exp(
)1())1((),|(

ij ij

ij

ijk

y y ij

y
ijkijk

ijkijkijkiiiii y
ewWkCyYp

λλ
ρρρ π  

Additionally, the model’s parameters can be linked with polynomial functions 

such as the following 

kijkijkijkijk wtt δβββλ ++++= ...)log( 2
2

10  , 

and ...)
1

log( 2
2

10 +++=
− kijkijk

ijk

ijk
tt ααα

ρ

ρ
 

Finally, the Bernoulli distribution is used for the conditional distribution of 

dichotomous data, given class membership. The probability for Bernoulli model is  

∏ ∏
=

−====
0

)1(),|(
ij ijy y

ijkijkiiiii ppwWkCyYp  

with 

)...exp(1

)...exp(

2
2

10

2
2

10

kijkijkijk

kijkijkijk
it

wtt

wtt
p

δβββ

δβββ

+++++

++++
=   

where i represents an individual and t represents time. 
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2.3 The Bayesian Information Criterion (BIC; Schwar tz, 1978) 

In a longitudinal study, determining the number of trajectory classes is a difficult 

problem, with the determination of optimal statistic unresolved. There are a number of 

criteria in use, such as the Bayesian information criteria (BIC), the likelihood ratio test 

and entropy. 

Yang (2006) reported that the adjusted BIC (Sclove, 1987) is superior to other 

information criterion statistics in LCA models. Magidson and Vermunt (2004) gave 

several examples in which BIC was a good measure to select the number of classes. 

The formula for the BIC  

BIC=-2lnL+sln (n) 

where 

n =the number of observations; that is, the sample size. 

s=the number of free parameters to be estimated. 

L=the maximized value of the likelihood function of the estimated model. 

BIC value differences of 10 or more are considered as evidence favoring one model 

over another (Raftery, 1995). 
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2.4 M-plus statistical program including the Vuong- Lo-Mendell-Rubin test (LMRT) 

and bootstrapped parametric likelihood ratio test ( BLRT) 

 M-plus is a program to perform growth mixture modeling, with Monte Carlo 

procedures for power estimation. M-plus provides the entropy measure, the Vuong-Lo-

Mendell-Rubin test, and the bootstrapped parametric likelihood ratio test in addition to 

BIC.  

Entropy is not a measure of model fit. A value of entropy near 1 indicates clear 

delineation of classes (Celeux&Soromenho, 1996). An entropy value of 0.8 or higher for 

a model suggests that the model can clearly identify the trajectory class that an 

individual follows. A model with a lower value of entropy may still produce good 

parameter estimates. The entropy of a model with g classes extracted from n individuals 

is given by 

E (g) = ij

g

i

n

j

ij

∧

= =

∧

∑∑− ττ ln
1 1

 

where 
^

ijτ  is the posterior probability of membership in class i, for subject j, nj ,,1Κ= . 

The Lo, Mendell, and Rubin likelihood ratio test (Lo, Mendell, & Rubin, 2001) can 

be used to compare latent class models. The test compares the improvement in fit due 

to increasing the number of classes by one (i.e., comparing k and k-1 class models) and 

provides a p-value that can be used to determine if there is a statistically significant 

improvement due to adding one more class. That is, the null and alternative hypotheses 

are:  
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1:0 −kH  trajectory classes        VS    kH :1 trajectory classes 

A p-value less than 0.05 suggests rejecting the model with one less class in favor of the 

model with the larger number of classes. 

The likelihood ratio test is given by 

)](log)([log2
^^

ur LLLR θθ −−=    (Nylund, Asparouhv&Muthén, 2007) 

where r

^

θ  is the maximum likelihood estimator for the restricted model and u

^

θ is the 

maximum likelihood for the model with fewer restrictions. 

In the adjusted Lo, Mendell, and Rubin likelihood ratio test, the k-1 class model is 

obtained by deleting the first class in the estimated k class model. 

The parametric bootstrapped likelihood ratio test (McLachlan & 

Peel, 2000) compares the k class model to the k-1 class model. A p-value smaller than 

the significance level suggests that the model with k-1 classes is rejected in favor of the 

k class model. In M-plus, the bootstrap method estimates models for both the k class 

model and the k-1class model. Then M-plus generates several data sets using 

bootstrap draws according to the estimated parameters from the k-1 class model. These 

data are used to generated loglikelihood values and then calculate the test statistic for 

each bootstrap draw. From the initial analysis, the test statistic is compared to the 

distribution of test statistics obtained from the bootstrap draws to get a p-value. Then M-
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plus uses a minimum number of bootstrap draws to give an approximate p-value. The 

default number of bootstrap draws ranges from 2 to 100 (Muthén & Muthén, 1998-2010). 

2.5 PROC TRAJ 

PROC TRAJ, a SAS procedure, fits a discrete mixture model to longitudinal data 

(Jones et al. 2001). The model groups data to different classes with different parameter 

values. In contrast to traditional regression which models only one regression function 

within the population, PROC TRAJ is a specialized mixture model for multiple 

regression functions within the population. PROC TRAJ does not provide any individual 

level information. It focuses on class membership and identifying distinct classes. It 

assumes that every subject in a trajectory class follows the same trajectory. 

Model selection in PROC TRAJ uses the Bayesian Information Criterion (BIC) 

values to select the number of classes in the model. The BIC values given in the output 

are negative. Typically, researchers select the model with the largest BIC value, often 

with constraints on minimum group size. The posterior group membership probabilities 

can be used to explore differences in covariates between classes. 
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Chapter 3 Methods 

My simulation study is designed to examine the performance of the Bayesian 

Information Criterion (BIC) and related statistics when sampling from homogeneous 

trajectories. In my simulation study, I use a factorial design on four different families of 

longitudinal dependent variables. These are the normal distribution, the gamma 

distribution, the zero-inflated Poisson (ZIP) distribution, and the Bernoulli distribution.  

3.1 Factorial experiments 

3.1.1 Normal distribution  

There are 4 factors in this part of the simulation study: Intra-class correlations, 

trajectory patterns, sample size and number of time measurements.  

Factor 1: Intra-class correlation (ICC) 

 In the GMM model for homogeneous data,  

level 1 models individual change with the model 

Level 1: itiiit ty εππ ++= 10 . 

Level 2 models variation between persons according to the model  

Level 2: ii u0000 += βπ       ii u1101 += βπ , 

where  
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ity  : Outcome for subject i(i=1,…n) at time point t. 

itε : Within-participant random effects, which are independently and identically 

distributed as ),0( 2σN . 

 i0π  is the intercept outcome for participant i, and i1π  is the linear rate of change for 

participant i .  

The random variables iu0  and iu1 model individual effects. They are not in the fixed 

effects model. In a random effects model, they have specified probability distributions.  

Here I specify the intra-class correlation=
222

1
2
0

22
1

2
0

Rt

t

σσσ
σσ

++

+

   

where t is fixed at t=1/2.  

Two sets of variances were chosen to insure that the two intra-class correlation 

values are around ¼, ¾ and variances and standard deviations are integers. 

               Table 1 Value of Intra-class correlation at t=1/2 for Factor 1 

Intra-class correlation 2
0σ  2

1σ  2
Rσ  

Smaller intra-calss 
correlation value=0.265 

9 16 36 

larger intra-calss 
correlation value=0.765 

9 16 4 

Factor 2: Trajectory Pattern: (linear or quadratic) 

I fit the simulated data to either a linear or quadratic trajectory pattern.  
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Factor 3: Factor 3: Number of time measurements with low setting at 4 points and high 

at 6 points. With 

4 time measurements, 1,
3

2
,

3

1
,0=t  

With 6 time measurements, 1,
5

4
,

5

3
,

5

2
,

5

1
,0=t

 

Factor 4: Sample Size: low setting at 400 trajectories and high setting at 800 trajectories.
 

The general model I use to generate normal distribution data is given in section 

3.1 and Table 1. I use ity  as the dependent variable. 

3.1.2 Gamma distribution 

The parameters of the gamma distribution are (k/2, 2), where k is the mean of the 

random variable. For each time point and individual, the mean itit yk = , where ity is given 

in the preceding section.  

I generated 100 replicates for each setting of the four factors; that is, setting of  of  

intra-class correlation, distribution of error term (Normal and Gamma), sample size (400 

and 800), and number of time measurements (4 and 6).  Then they are fit to linear or 

quadratic trajectory models. 
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3.1.2 Zero-inflated Poisson distribution (ZIP) 

Factor 1: Fraction in the zero component 

Here I set the fraction of the zero component to be either constant or varying.  

When the fraction of the component is constant, the smaller fraction setting is 1/8, and 

the larger is ½. 

When the fraction in the zero component is not constant, the logit of the fraction 

changes linearly over time as following 

tii
it

it
10)

1
log( αα

ρ
ρ

+=
−

 

Factor 2: Trend of the log value of means 

I studied two trends: linear and s-shaped. 

The model for a linear trend is: tiiit 10)ln( ππλ +=  

The model for an s-shaped trend is 
2)exp1(

exp
)ln(

it

it
it π

π
λ

+
=  

Factor 3: Fixed effect or random effect 

When the effects are fixed, I treat the parameters in factor 2 as constant at the 

individual level.  

When the effects are random, the parameters in level 1 have a level 2 models given by 
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Level 2: ii u0000 += βπ  

               ii u1101 += βπ  

Here, i0π and i1π  are latent random variables that vary across individuals and follow a 

normal distribution. 

Factor 4: The sample size 

The low setting of sample size is 400, and the high setting is 800. 

Factor 5: Trajectory Pattern (linear or quadratic) 

I fit the simulated data to either a linear or quadratic trajectory pattern.  

I generate 100 replicates for every setting of the four factors and fit each replicate 

to both a linear and quadratic trajectory. There are in total 48 scenarios. 

3.1.3 Bernoulli Distribution 

The Bernoulli distribution is used to model dichotomous data, given group 

membership. The parameter for the dichotomous model is the mean of the Bernoulli 

variable itp , where 

)),(exp(1

)),(exp(

tif

tif
pit +

=  . Here i represents the individual and t the time period. 

Factor 1: Trend of f (i, t) 

I study two trends: linear and s-shaped. 
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The model for the linear trend is: ttif ii 10),( ππ +=  

The model for an s-shaped trend is 
2)exp1(

exp
),(

it

ittif
π
π

+
=  

Factor 2: Fixed effects and Random effects 

When the effects are fixed, I treat the parameters in factor 2 as constant at the 

individual level.  

When the effects are random, parameters in level 1 have a level 2 model given by 

Level 2: ii u0000 += βπ  

               ii u1101 += βπ  

Here, i0π and i1π  are latent random variables that vary across individuals and follow a 

normal distribution. 

Factor 3: Sample size: 400 and 800. 

Factor 4: Trajectory Pattern (linear or quadratic) 

I fit the simulated data to either a linear or quadratic trajectory pattern.  

I generated 100 replicates for each combination of the 3 factors and fit them to 

both a linear and quadratic trajectory. There are in total 16 scenarios. 
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3.2 Data analysis 

The performances of three primary criteria-BIC, LMR and BLRT- are compared 

under each factor. Entropy is used as a supplemental measure. I focus on the rate of 

identifying one trajectory class since my simulated data are homogeneous. 

I ran models with 1 to 4 trajectory classes and record results with non-negative 

estimated variances of latent variables. When only the1-trajectory class results had no 

negative variances, I treated the results as indicating a 1-trajectory class model. In the 

event a simulation scenario had one or more replicates in which all trajectory class 

models had one or more negative estimated variances, I ran additional replications until 

I had 100 replicates with at least the 1-trajectory class model having non-negative 

variances.  

Since a BIC value difference of 10 or more is considered as evidence favoring 

one model over another (Raftery, 1995), I report two sets of BIC rates. The first rate is 

the fraction of replicates in which the 1-trajectory class model had the best BIC value.  

The second rate is the fraction of replicates in which the 1-trajectory class was best or 

within 10 units of the best trajectory class result.  

M-plus reports p-values of the Vuong-Lo-Mendell-Rubin likelihood ratio test and 

the bootstrap likelihood ratio test. I use these p-values sequentially. Specifically, if the p-

value for 2 components compared to 1 is greater than the level of significance, I choose 

1 component. If this p-value is less than the level of significance, I choose a model with 

more than one component. . I use two significance levels: 0.05 and 0.01.  
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Chapter 4 Results 

4.1 Number of random starting points (RSPS) 

In M-plus, the default number of sets of random starting values is 10.  Hipp and 

Bauer (2006) reported that at least 50 to 100 sets of starting values should be used. I 

ran a study using 5 replicates and 100, 400, 800, and 1600 RSPs in each replicate to 

identify the smallest number of RSPs that had maximum value of the likelihood function 

within 0.1 of the maximum of the likelihood function from 1,600 RSPs. I studied 8 

scenarios in three factors: two intra-class correlations (V1=0.265,V2-0.765), two 

trajectory patterns(Linear(L),Quadratic(Q)), and two types of error 

terms(Normal(N),Non-normal(G)). I called these 8 scenarios: LNV1, QNV1, LNV2, 

QNV2, LGV1, QGV1, LGV2, and QGV2 respectively.  

The values of the likelihood for the 5 replicates in each of the 8 scenarios are all 

identical except replicate 5 in scenario LNV2 (linear trajectory pattern, normal 

distribution, and larger intra-class correlation setting). In replicate 5 of this scenario,, the 

likelihood using 100 RSPs for 4-classes is 0.977 higher than the maximum using 400, 

800, or 1600 RSPs. Therefore, I decided to use 100 RSPs in my simulation study. 

4.2 Computational failure rate for normal and gamma  distribution 

In the event that a replicate has one or more negative variance estimates in the 

one trajectory class model, the replicate is scored as a computational failure.   

I then generated additional replicates until there were 100 replicates without 

computational failure. I list the total numbers and proportions of extra replicates under 



 

21 

 

each scenario for the normal distribution in Table 2 and for the gamma distribution in 

Table 3.  

Tables 4 and 5 contain logistic regression results when the dependent variable is 

the computational failure rate and the independent variables are the experimental 

factors.  

Table 2 Computational failure rate statistics for normal distribution data (100 replicates 
without computational failure) 

Factors 
Total 

repliates 
Additional 
replicates 

Failure 
rates Sample 

size 
Number of time 
measurements 

Trajectory 
pattern 

Intra-class 
correlation 

400 4 Linear 0.265 102 2 0.02 
400 4 Linear 0.765 100 0 0 
400 4 Quadratic 0.265 264 164 0.62 
400 4 Quadratic 0.765 238 138 0.58 
400 6 Linear 0.265 105 5 0.05 
400 6 Linear 0.765 100 0 0 
400 6 Quadratic 0.265 252 152 0.60 
400 6 Quadratic 0.765 193 93 0.48 
800 4 Linear 0.265 104 4 0.04 
800 4 Linear 0.765 100 0 0 
800 4 Quadratic 0.265 258 158 0.61 
800 4 Quadratic 0.765 227 127 0.56 
800 6 Linear 0.265 100 0 0 
800 6 Linear 0.765 100 0 0 
800 6 Quadratic 0.265 219 119 0.54 
800 6 Quadratic 0.765 163 63 0.39 

Note: A replicate has a computation failure if there is at least one negative variance estimate for 
a one trajectory class model.  
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Table 3 Computational failure rate statistics for gamma distribution data (100 replicates 
without computational failure) 

Factor Total 
replicates 

Additional 
replicates 

failure 
rates 

Sample 
size 

Number of time 
measurements 

Trajectory 
pattern 

Intra-class 
correlation 

400 4 Linear 0.265 151 51 0.34 
400 4 Linear 0.765 128 28 0.22 
400 4 Quadratic 0.265 294 194 0.66 
400 4 Quadratic 0.765 244 144 0.59 
400 6 Linear 0.265 124 24 0.19 
400 6 Linear 0.765 105 5 0.05 
400 6 Quadratic 0.265 247 147 0.6 
400 6 Quadratic 0.765 246 146 0.59 
800 4 Linear 0.265 125 25 0.20 
800 4 Linear 0.765 110 10 0.09 
800 4 Quadratic 0.265 253 153 0.60 
800 4 Quadratic 0.765 262 162 0.62 
800 6 Linear 0.265 108 8 0.07 
800 6 Linear 0.765 104 4 0.04 
800 6 Quadratic 0.265 259 159 0.61 
800 6 Quadratic 0.765 221 121 0.55 

Note: A replicate has a computation failure if there is at least one negative variance estimate for 
a one trajectory class model.  

 

From Tables 2 and 3, the trajectory pattern factor has a significant effect on the 

computational failure rate. The computational failure rate when fitting to a quadratic 

pattern is generally higher than the computational failure rate fitting to a linear pattern. 

The computational failure rate of linear trajectory pattern of normal distributions is close 

to 0, much lower than the rate when fitting to gamma distribution data which is less than 

50%. The computational failure rates fitting to a quadratic pattern are larger than 50% 

for both distributions.  For these cases, I than ran more than 200 replicates to get 100 

replicates without computational failure. Computational failure rates for gamma data are 

generally higher than those for normal data. 
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Table 4 contains the results of using logistic regression to model the probability 

of computational failure when analyzing normal data. The trajectory pattern is the most 

significant factor (Wald chi-square 216.96, p<0.0001), with odds ratio of failure 92 for a 

quadratic pattern compared to a linear pattern (Appendix Table 23). The intra-class 

correlation factor (Wald chi-square 17.86, p<0.0001) and the number of time points 

(Wald chi-square 12.88, p=0.0003) are the next most significant factors. The lower intra-

class correlation setting, which is 0.265, is associated with a higher computational 

failure rate. Four time points has a lower computational failure rate than 6 time points. 

P-value and odds ratio of the sample size factor show that changing the sample size 

has no significant effect on the computational failure rate. 

Table 4 Analysis of factors contributing normal data computational failure rates 
 

Parameter DF Estimate 
Standard  

Error 
Wald  Chi-

Square Pr>ChiSq 
Intercept 1 -0.26 0.10 6.42 0.011 

Intra-class 
correlation 0.265 1 0.40 0.10 17.86 <.0001 
Trajectory 

Pattern Linear 1 -4.53 0.31 216.96 <.0001 
Time 

measurement 4 1 0.34 0.10 12.88 0.0003 
Sample size 400 1 0.18 0.09 3.71 0.054 

Note: A replicate has a computation failure if there is at least one negative variance estimate for 
a one trajectory class model.  

 

Table 5 contains the logistic results for the gamma distributed data. The 

trajectory pattern is still the most significant factor (Wald chi-square 444.73, p<0.0001). 

The number of time measurements (Wald chi-square 13.91, p=0.0002) and the intra-

class correlation factor (Wald chi-square 10.99, p=0.0009) are the next most significant 

factors.  The sample size factor also has a significant effect on failure rate (Wald chi-
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square 6.66, p=0.0099). Data with a linear trajectory pattern, having larger intra-class 

correlations, more time measurements, and larger sample size will have a lower 

computational failure rate for data from a gamma distribution. 

The odds ratio of failure rates for a quadratic pattern compared to a linear pattern 

is 8.21, the largest odds ratio among the four factors. The odds ratios for the other three 

factors, while significant, are relatively close to 1. See Appendix Table 24. 

Table 5 Analysis of factors contributing gamma data computational failure rates 

Parameter DF Estimate 
Standard  

Error 
Wald  Chi-

Square Pr>ChiSq 

Intercept 1 
0.03 0.08 0.11 0.745 

Intra-class 
correlations 0.265 1 

0.27 0.08 10.99 0.0009 

Trajectory 
Pattern Linear 1 

-2.11 0.1 444.73 <.0001 

Time 
measurements 4 1 

0.30 0.08 13.91 0.0002 

Sample size 400 1 
0.21 0.08 6.66 0.01 

Note: A replicate has a computation failure if there is at least one negative variance estimate for 
a one trajectory class model.  

 

I summarize the computational failure rates for  the trajectory pattern factor in 

Table 6, which contains summary statistics about the computation failure rates 

averaging over sample size, intra-class correlation coefficient, and numbers of time 

points. The differences of rates between linear and quadratic patterns are substantial. 

When fitting normal data with a linear trajectory pattern, the failure rates are no more 

than 0.05 with average 0.01, while they are larger than 0.39 with average 0.55 for 

quadratic pattern. A similar pattern occurs for gamma data. 
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Table 6 Summary statistics of computational failure rate for settings of the trajectory 
pattern factor 

Normal Trajectory pattern Mean Std dev Minimum Maximum 

Linear 0.01 0.02 0 0.05 
Quadratic 0.55 0.08 0.39 0.63 

Gamma Trajectory pattern Mean Std dev Minimum Maximum 
Linear 0.15 0.11 0.04 0.34 

Quadratic 0.60 0.03 0.55 0.66 
Note: A replicate has a computation failure if there is at least one negative variance estimate for 
a one trajectory class model.  

 

4.3 Results of Censored Normal Data 

Table 7 contains the rates of identifying one trajectory class for normally 

distributed data for 100 replicates with no computational failure. The first BIC 

identification rate, called the absolute BIC rule rate, is the fraction of replicates in which 

the one trajectory class model had smaller BIC value than the BIC for two, three, and 

four classes.  The second BIC identification rate, called the significant BIC rule rate, is 

the fraction of replicates in which the BIC statistic for one trajectory class was largest or 

within 10 units of the largest BIC.  The two rates indicate that the BIC value is effective 

at identifying the correct number of trajectories for homogeneous data for normally 

distributed data. The BIC identification rate is 98% or higher for each setting of the four 

factors. 
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Table 7 BIC Rate of identifying one trajectory class for Normal Data  

Factors (100 replicates for each scenario) Absolute 
BIC rule 

Significant 
BIC rule Sample 

size 
Number of time 
measurements 

Trajectory 
pattern 

Intra-class 
correlation 

400 4 Linear 0.265 0.99 0.99 
400 4 Linear 0.765 1 1 
400 4 Quadratic 0.265 1 1 
400 4 Quadratic 0.765 1 1 
400 6 Linear 0.265 1 1 
400 6 Linear 0.765 1 1 
400 6 Quadratic 0.265 1 1 
400 6 Quadratic 0.765 1 1 
800 4 Linear 0.265 1 1 
800 4 Linear 0.765 0.98 1 
800 4 Quadratic 0.265 1 1 
800 4 Quadratic 0.765 1 1 
800 6 Linear 0.265 1 1 
800 6 Linear 0.765 1 1 
800 6 Quadratic 0.265 1 1 
800 6 Quadratic 0.765 1 1 

 

Table 8 reports the rates of selecting a one component model using the 

LMRT (Lo-Mendell-Rubin likelihood ratio test) rule and the BLRT (Bootstrap 

likelihood ratio test) rule specified in Chapter 3 at levels of significance 0.05 or 0.01. 

I also report the 95% confidence intervals for the rates when the significance level is 

0.05 and the 99% confidence intervals when the significance level is 0.01.  
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Table 8 LMRT and BLRT rates of identifying one trajectory class for normal data with 
significance levels 0.05 & 0.01 (100 replicates for each setting)  

Factors  Significance level :0.05 

Sample 
size 

Time 
measure
-ments 

Trajectory 
pattern 

Intra-class 
correlation 

LMRT Confidence 
intervals 

BLRT Confidence 
intervals 

400 4 Linear 0.265 0.94 [0.93 0.95] 0.87 [0.85 0.89] 
400 4 Linear 0.765 0.78 [0.75 0.81] 0.79 [0.76 0.82] 
400 4 Quadratic 0.265 0.89 [0.87 0.91] 0.96 [0.95 0.97] 
400 4 Quadratic 0.765 0.9 [0.88 0.92] 0.99 [0.99 0.99] 
400 6 Linear 0.265 0.88 [0.86 0.90] 0.93 [0.92 0.94] 
400 6 Linear 0.765 0.83 [0.80 0.86] 0.78 [0.75 0.81] 
400 6 Quadratic 0.265 0.9 [0.88 0.92] 0.92 [0.91 0.93] 
400 6 Quadratic 0.765 0.93 [0.92 0.94] 0.94 [0.93 0.95] 
800 4 Linear 0.265 0.94 [0.93 0.95] 0.97 [0.96 0.98] 
800 4 Linear 0.765 0.87 [0.85 0.89] 0.93 [0.92 0.94] 
800 4 Quadratic 0.265 0.88 [0.86 0.90] 0.99 [0.99 0.99] 
800 4 Quadratic 0.765 0.83 [0.80 0.86] 0.96 [0.95 0.97] 
800 6 Linear 0.265 0.91 [0.89 0.93] 0.93 [0.92 0.94] 
800 6 Linear 0.765 0.87 [0.85 0.89] 0.82 [0.79 0.85] 
800 6 Quadratic 0.265 0.93 [0.92 0.94] 0.98 [0.98 0.98] 
800 6 Quadratic 0.765 0.93 [0.92 0.94] 0.96 [0.95 0.97] 

Factors  Significance level :0.01 

Sample 
size 

Time 
measure
-ments 

Trajectory 
pattern 

Intra-class 
correlation 

LMRT Confidence 
intervals 

BLRT Confidence 
intervals 

400 4 Linear 0.265 0.98 [0.97 0.99] 0.91 [0.89 0.93] 
400 4 Linear 0.765 0.95 [0.94 0.96] 0.87 [0.84 0.90] 
400 4 Quadratic 0.265 0.93 [0.91 0.95] 0.97 [0.96 0.98] 
400 4 Quadratic 0.765 0.96 [0.95 0.97] 0.99 [0.99 0.99] 
400 6 Linear 0.265 0.92 [0.90 0.94] 0.93 [0.91 0.95] 
400 6 Linear 0.765 0.93 [0.91 0.95] 0.78 [0.73 0.83] 
400 6 Quadratic 0.265 0.95 [0.94 0.96] 0.92 [0.90 0.94] 
400 6 Quadratic 0.765 0.96 [0.95 0.97] 0.94 [0.93 0.95] 
800 4 Linear 0.265 1 [1.00 1.00] 0.97 [0.96 0.98] 
800 4 Linear 0.765 0.94 [0.93 0.95] 0.94 [0.93 0.95] 
800 4 Quadratic 0.265 0.95 [0.94 0.96] 0.99 [0.99 0.99] 
800 4 Quadratic 0.765 0.95 [0.94 0.96] 0.96 [0.95 0.97] 
800 6 Linear 0.265 0.97 [0.96 0.98] 0.93 [0.91 0.95] 
800 6 Linear 0.765 0.97 [0.96 0.98] 0.9 [0.88 0.92] 
800 6 Quadratic 0.265 0.96 [0.95 0.97] 0.98 [0.97 0.99] 
800 6 Quadratic 0.765 0.96 [0.95 0.97] 0.99 [0.99 0.99] 

LMRT: Lo-Mendell-Rubin likelihood ratio test      BLRT: bootstrap likelihood ratio test 
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At significance level 0.05, the target correct identification rate is 0.95. At 

significance level 0.01, the target correct identification rate is 0.99. The average one 

component selection rate for LMRT was 0.89 at the 0.05 level and 0.96 at 0.01 level. 

The average one component selection rate for BLRT was 0.92 at the 0.05 level and 

0.94 at the 0.01 level. Both correct identification rates are smaller than the target 

rates, possibly reflecting the multiple testing implicit in choosing among three 

hypotheses; namely 1 component vs. 2, 2 components vs. 3, and 3 components vs. 

4.  

The probabilities of identifying one trajectory class with significance levels 

0.05 and 0.01 using LMRT or BLRT are modeled in Tables 9 and 10. In Table 9, for 

the LMRT using significance level 0.05 for normally distributed data, the setting of 

the random component is the only significant factor, with the 0.265 setting having the 

higher probability of selecting one component. The odds ratio for intra-class 

correlations using significance level 0.05 is 1.52, with a confidence interval that 

excludes 1. The confidence intervals for the odds ratio of the other factors include 

1(Appendix Table 26). 

 No factor was significant for significance level 0.01 with the LMRT on normal data.  
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Table 9 Analysis of factors determining correct identification rate of a single trajectory of 
normal data based on LMRT with significance level 0.05 and 0.01 
 

Parameter DF Estimate 
Standard  

Error 

Wald  
Chi-

Square Pr>ChiSq 
significance level 0.05 

Intercept 1 
2.16 0.18 142.81 <.0001 

Intra-class 
correlation 0.265 1 

0.42 0.16 6.80 0.009 

Trajectory 
Pattern Linear 1 

-0.22 0.16 1.82 0.177 

Time 
measurements 4 1 

-0.19 0.16 1.42 0.233 

Sample size 400 1 
-0.14 0.16 0.77 0.382 

significance level 0.01 

Intercept 1 
3.08 0.27 127.95 <.0001 

Intra-class 
correlation 0.265 1 

0.12 0.24 0.23 0.629 

Trajectory 
Pattern Linear 1 

0.12 0.24 0.23 0.629 

Time 
measurements 4 1 

0.12 0.24 0.23 0.629 

Sample size 400 1 
-0.35 0.25 2.08 0.15 

  LMRT: Lo-Mendell-Rubin likelihood ratio test 

Table 10 shows the logistic results for the BLRT identification rate using the 0.05 

and 0.01 significance levels. 

The identification rate using the BLRT at both significance levels is associated 

with the trajectory pattern (Wald chi-square with 0.05 level=35.87, p<0.0001). The 

identification rate with the quadratic trajectory pattern is higher than the rate for the 

linear trajectory pattern. The sample size and intra-class correlation are the next most 

significant effects for the BLRT at 0.05 significance level. Larger sample size results in 

higher correct identification rate at both the 0.05 and 0.01 significance levels. The intra-
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class correlation factor is not significant for the BLRT at the 0.01 level of significance. At 

the 0.05 level, the lower intra-class correlation coefficient is associated with a higher 

correct identification rate.  

Table 10 Analysis of factors determining correct identification rate of a single 

trajectory of normal data based on BLRT with significance level 0.05 and 0.01 

 

Parameter DF Estimate 
Standard  

Error 
Wald  Chi-

Square Pr>ChiSq 
Significance level=0.05 

Intercept 1 
3.16 0.25 163.14 <.0001 

Intra-class 
correlation 0.265 1 

0.69 0.20 12.36 0.0004 

Trajectory 
Pattern Linear 1 

-1.30 0.22 35.87 <.0001 

Time 
measurements 4 1 

0.36 0.19 3.52 0.061 

Sample size 400 1 
-0.65 0.20 11.14 0.0008 

Significance level=0.01 

Intercept 1 
3.41 0.27 155.50 <.0001 

Intra-class 
correlation 0.265 1 

0.50 0.21 5.58 0.018 

Trajectory 
Pattern Linear 1 

-1.17 0.23 25.01 <.0001 

Time 
measurements 4 1 

0.50 0.21 5.58 0.018 

Sample size 400 1 
-0.77 0.22 12.55 0.0004 

BLRT: bootstrap likelihood ratio test 

Compared to the linear pattern, the odds ratio for the quadratic pattern is 3.66 for 

the BLRT using the 0.05 significance level and 3.23 using the 0.01 significance level. 

The odds ratios for trajectory patterns are the largest among the four factors. The odds 

ratio for the intra-class correlations decreases from 1.99 to 1.65 while odds ratio for 

sample size increase from 1.92 to 2.17 with lower significance level.  
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LMRT and BLRT rates of identifying one trajectory class for censored normal 

data increase when the significance level decreases, as documented in Table 8.  

As shown in Table 11, the identification rate using the LMRT is different from the 

BLRT rate using McNemar’s Test.   

In Table 11, with significance level 0.05, there are five BLRT rates that are 

significantly higher than the LMRT rates, especially with the quadratic trajectory pattern. 

There is one scenario (0.265 intra-class correlation, linear trajectory, 4 time 

measurements, and sample size 400) in which LMRT has a higher identification rate.  

As expected, decreasing significance level improves the identification rates of both the 

LMRT and the BLRT. 

For significance level 0.01, four LMRT identification rates appear to be higher than rates 

using the BLRT, with no scenario having the BLRT rate significantly higher than the 

LMRT rate. That is, the identification rate of the LMRT seems to be better than the rate 

of the BLRT with significance level 0.01. 

 

 

 

 

 

 

 

 

 

 



 

32 

 

Table 11 McNemar's Test comparing LMRT and BLRT correct identification rates with 
significance level 0.05&0.01 

Factors  Significance level :0.05 

Sample 
size 

Time 
measurements 

Trajectory 
pattern 

Intra-class 
correlation 

Difference 
LMRT-
BLRT 

p-value 

400 4 Linear  0.265 0.07 0.0156 
400 4 Linear 0.765 -0.01 1 
400 4 Quadratic  0.265 -0.07 0.0156 
400 4 Quadratic  0.765 -0.09 0.0039 
400 6 Linear 0.265 -0.05 0.0625 
400 6 Linear 0.765 0.05 0.0625 
400 6 Quadratic 0.265 -0.02 0.5 
400 6 Quadratic 0.765 -0.01 1 
800 4 Linear 0.265 -0.03 0.25 
800 4 Linear 0.765 -0.06 0.0313 

800 4 Quadratic  0.265 -0.11 0.001 
800 4 Quadratic  0.765 -0.13 0.0002 
800 6 Linear 0.265 -0.02 0.5 
800 6 Linear 0.765 0.05 0.0625 
800 6 Quadratic 0.265 -0.05 0.0625 
800 6 Quadratic 0.765 -0.03 0.25 

Factors  Significance level :0.01 

Sample 
size 

Time 
measurements 

Trajectory 
pattern 

Intra-class 
correlation 

Difference 
LMRT-
BLRT 

p-value 

400 4 Linear  0.265 0.07 0.0156 
400 4 Linear  0.765 0.08 0.0078 
400 4 Quadratic 0.265 -0.04 0.125 
400 4 Quadratic 0.765 -0.03 0.25 
400 6 Linear 0.265 -0.01 1 
400 6 Linear  0.765 0.15 0.0001 
400 6 Quadratic 0.265 0.03 0.25 
400 6 Quadratic 0.765 0.02 0.5 
800 4 Linear 0.265 0.03 0.25 
800 4 Linear 0.765 * * 
800 4 Quadratic 0.265 -0.04 0.125 
800 4 Quadratic 0.765 -0.01 1 
800 6 Linear 0.265 0.04 0.125 
800 6 Linear  0.765 0.07 0.0156 
800 6 Quadratic 0.265 -0.02 0.5 
800 6 Quadratic 0.765 -0.03 0.25 

*: cannot perform test                                                                                                              
LMRT: Lo-Mendell-Rubin likelihood ratio test      BLRT: bootstrap likelihood ratio test 
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4.4 Results of Gamma Distribution data 

Table 12 reports the BIC identification rate for data following the gamma 

distribution using the format of Table 7. The absolute BIC correct identification rates are 

lower than the significant BIC correct identification rates. The absolute BIC rule has only 

3 identification rates smaller than 0.95. While changing the distribution of data from 

normal to gamma reduces the identification rate for both BIC rules, the BIC identification 

rates are high. The BIC identification rates are significantly affected by the intra-class 

correlation factor and time measurement factor (Appendix Table 28). 

Table 12 BIC Rate of identifying one trajectory class for Gamma Data 

Factors Absolute 
BIC rule 

Significant 
BIC rule 

Sample 
size 

Time 
measurement

s 

Trajectory 
pattern 

Intra-class 
correlation 

400 4 Linear 0.265 0.99 1 
400 4 Linear 0.765 0.98 1 
400 4 Quadratic 0.265 0.93 0.99 
400 4 Quadratic 0.765 0.87 0.99 
400 6 Linear 0.265 1 1 
400 6 Linear 0.765 0.98 1 
400 6 Quadratic 0.265 0.99 1 
400 6 Quadratic 0.765 0.96 1 
800 4 Linear 0.265 1 1 
800 4 Linear 0.765 0.96 0.98 
800 4 Quadratic 0.265 1 1 
800 4 Quadratic 0.765 0.82 0.9 
800 6 Linear 0.265 0.98 1 
800 6 Linear 0.765 0.98 1 
800 6 Quadratic 0.265 0.99 1 
800 6 Quadratic 0.765 0.96 0.99 
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Table 13 contains the identification rates for the LMRT and BLRT using both the 

0.05 and 0.01 levels of significance, following the format of Table 8.   

The effect of changing significance levels improves LMRT performance as 

expected. There are two rates that are larger than 0.95 at significance level 0.05 and six 

rates larger than or equal to 0.95 at significance level 0.01.  

The average one component selection rate for LMRT is 0.90 at the 0.05 level and 

0.93 at the 0.01 level. The average one component selection rate for BLRT is 0.86 at 

the 0.05 level and 0.88 at the 0.01 level. 
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Table 13 LMRT and BLRT rates of identifying one trajectory class for gamma data with 
significance levels 0.05 & 0.01(100 replicates for each setting) 

Factors  Significance level :0.05 

Sample 
size 

Time 
measure
-ments 

Trajectory 
pattern 

Intra-class 
correlation 

LMRT Confidence 
intervals 

BLRT Confidence 
intervals 

400 4 Linear 0.265 0.93 [0.92 0.94] 0.93 [0.92 0.94] 
400 4 Linear 0.765 0.91 [0.89 0.93] 0.91 [0.89 0.93] 
400 4 Quadratic 0.265 0.84 [0.81 0.87] 0.78 [0.75 0.81] 
400 4 Quadratic 0.765 0.82 [0.79 0.85] 0.72 [0.68 0.76] 
400 6 Linear 0.265 0.88 [0.86 0.90] 0.9 [0.88 0.92] 
400 6 Linear 0.765 0.88 [0.86 0.90] 0.9 [0.88 0.92] 
400 6 Quadratic 0.265 0.97 [0.96 0.98] 0.96 [0.95 0.97] 
400 6 Quadratic 0.765 0.94 [0.93 0.95] 0.83 [0.80 0.86] 
800 4 Linear 0.265 0.91 [0.89 0.93] 0.88 [0.86 0.90] 
800 4 Linear 0.765 0.89 [0.87 0.91] 0.89 [0.87 0.91] 
800 4 Quadratic 0.265 0.9 [0.88 0.92] 0.87 [0.85 0.89] 
800 4 Quadratic 0.765 0.8 [0.77 0.83] 0.73 [0.69 0.77] 
800 6 Linear 0.265 0.89 [0.87 0.91] 0.9 [0.88 0.92] 
800 6 Linear 0.765 0.87 [0.85 0.89] 0.79 [0.76 0.82] 
800 6 Quadratic 0.265 0.96 [0.95 0.97] 0.89 [0.87 0.91] 
800 6 Quadratic 0.765 0.94 [0.93 0.95] 0.87 [0.85 0.89] 

Factors  Significance level :0.01 

Sample 
size 

Time 
measure
-ments 

Trajectory 
pattern 

Intra-class 
correlation 

LMRT Confidence 
intervals 

BLRT Confidence 
intervals 

400 4 Linear 0.265 0.94 [0.93 0.95] 0.95 [0.94 0.96] 
400 4 Linear 0.765 0.93 [0.91 0.95] 0.95 [0.94 0.96] 
400 4 Quadratic 0.265 0.87 [0.84 0.90] 0.85 [0.82 0.88] 
400 4 Quadratic 0.765 0.85 [0.82 0.88] 0.72 [0.67 0.77] 
400 6 Linear 0.265 0.95 [0.94 0.96] 0.91 [0.89 0.93] 
400 6 Linear 0.765 0.95 [0.94 0.96] 0.92 [0.90 0.94] 
400 6 Quadratic 0.265 0.97 [0.96 0.98] 0.96 [0.95 0.97] 
400 6 Quadratic 0.765 0.94 [0.93 0.95] 0.83 [0.79 0.87] 
800 4 Linear 0.265 1 [1.00 1.00] 0.96 [0.95 0.97] 
800 4 Linear 0.765 0.94 [0.93 0.95] 0.9 [0.88 0.92] 
800 4 Quadratic 0.265 0.95 [0.94 0.96] 0.89 [0.86 0.92] 
800 4 Quadratic 0.765 0.85 [0.82 0.88] 0.74 [0.75 0.83] 
800 6 Linear 0.265 0.95 [0.94 0.96] 0.9 [0.88 0.92] 
800 6 Linear 0.765 0.92 [0.90 0.94] 0.79 [0.75 0.83] 
800 6 Quadratic 0.265 0.97 [0.96 0.98] 0.89 [0.86 0.92] 
800 6 Quadratic 0.765 0.94 [0.93 0.95] 0.87 [0.84 0.90] 
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Table 14 contains the logistic results for the LMRT correct identification rate for 

gamma data. 

  Only the time measurement factor has a significant effect on the correct 

identification rate of LMRT set at the 0.05 level of significance (Wald Chi-square=7.21, 

p=0.0073). More time measurements increase the correct identification rate. For the 

LMRT set at significance level 0.01, the intra-class correlation factor is the most 

significant. Smaller intra-class correlation increases the identification rate of the LMRT 

(Wald Chi-square=7.69, p=0.0056). Trajectory pattern and sample size are not 

significant factors when the LMRT is set at either the 0.05 or 0.01 level.  

Table 14 Analysis of factors determining correct identification rate of a single trajectory 
of gamma data based on LMRT with significance level 0.05 and 0.01 
 

Parameter DF Estimate 
Standard  

Error 
Wald  Chi-

Square Pr>ChiSq 
Significance level=0.05 

Intercept 1 
2.25 0.19 144.40 <.0001 

Intra-class 
correlation 0.265 1 

0.31 0.17 3.53 0.060 

Trajectory 
Pattern Linear 1 

-0.01 0.16 0.0 0.935 

Time 
measurements 4 1 

-0.45 0.17 7.21 0.007 

Sample size 400 1 
0.01 0.16 0.01 0.935 

Significance level=0.01 

Intercept 1 
2.58 0.23 130.76 <.0001 

Intra-class 
correlation 0.265 1 

0.57 0.21 7.69 0.006 

Trajectory 
Pattern Linear 1 

0.49 0.21 5.69 0.017 

Time 
measurements 4 1 

-0.53 0.21 6.65 0.01 

Sample size 400 1 
-0.24 0.20 1.44 0.23 
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The odds ratio for each of the four factors is further from 1 when the LMRT level 

of significance is 0.01, compared to results when the LMRT level is 0.05.  

For example, the odds ratio of number of time points is 1.56 with LMRT 

significance level set to 0.05 compared to 1.70 for significance level 0.01. Similarly, the 

odds ratio of intra-class correlations set at 0.265 changes from 1.36 for significance 

level 0.05 to 1.77 at significance level 0.01. 

Table 15 contains the logistic regression results for the correct identification rate 

of the BLRT (Bootstrap likelihood ratio test) with significance level set to either 0.05 or 

0.01. 

For the BLRT at either significance level 0.05 or 0.01, the intra-class correlations 

(Wald Chi-square=11.40, p=0.0007 at 0.05 level, Wald Chi-square=19.82, p <0.0001 at 

0.01 level) and the trajectory pattern factor (Wald Chi-square=10.47, p=0.0012 at 0.05 

level, Wald Chi-square=16.13, p<0.0001 at 0.01 level) are strongly associated with the 

correct identification rate when analyzing data with a gamma distribution.  The odds 

ratio of intra-class correlations 0.265 versus 0.765 is 1.65 at the 0.05 level and 2.03 at 

0.01 level. (Appendix Table 30) The odds ratio of the linear versus the quadratic pattern 

changes from 1.61 at 0.05 level to 1.89 at 0.01 level. 

For data following a gamma distribution, smaller random component and linear 

trajectory pattern are associated with higher BLRT correct identification rate. The 

number of time measurements and the sample size are not significant. 
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Table 15 Analysis of factors determining correct identification rate of a single trajectory 
of gamma data based on BLRT with significance level 0.05 and 0.01 
 

Parameter DF Estimate 
Standard  
Error 

Wald  Chi-
Square Pr>ChiSq 

Significance level=0.05 

Intercept 1 
1.49 0.16 91.97 <.0001 

Intra-class 
correlations 0.265 1 

0.50 0.15 11.40 0.0007 

Trajectory 
Pattern Linear 1 

0.48 0.15 10.47 0.0012 

Time 
measurements 4 1 

-0.35 0.15 5.68 0.017 

Sample size 400 1 
0.12 0.15 0.64 0.425 

Significance level=0.01 

Intercept 1 
1.36 0.16 73.23 <.0001 

Intra -class  
correlations  0.265 1 

0.71 0.16 19.82 <.0001 

Trajectory 
Pattern Linear 1 

0.64 0.16 16.13 <.0001 

Time 
measurements 4 1 

-0.13 0.15 0.72 0.397 

Sample size 400 1 
0.18 0.15 1.33 0.248 

 

For data with the gamma distribution, the correct identification rate of the LMRT 

performance is often higher than the correct identification rate of BLRT at both 

significance levels according to McNemar’s Test as shown in Table 16.  

Seven LMRT identification rates are significantly larger than the BLRT 

identification rate using the setting of significance level to either 0.05 or 0.01. For either 

significance level, there is no scenario in which the rate for the BLRT is significantly 

higher than the rate for LMRT.  
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Table 16 McNemar's Test comparing LMRT and BLRT identifying rates with significance 
level 0.05 and 0.01 

Factors  Significance level :0.05 
Sample 

size 
Time 

measure-
ments 

Trajectory 
pattern 

Intra-class 
correlation 

Difference 
LMRT-BLRT 

p-value 

400 4 Linear 0.265 0 * 
400 4 Linear 0.765 0 * 
400 4 Quadratic 0.265 0.06 0.0313 
400 4 Quadratic 0.765 0.1 0.002 
400 6 Linear 0.265 -0.02 0.5 
400 6 Linear 0.765 -0.02 0.5 
400 6 Quadratic 0.265 0.01 1 
400 6 Quadratic 0.765 0.11 0.001 
800 4 Linear 0.265 0.03 0.25 
800 4 Linear 0.765 0 * 
800 4 Quadratic 0.265 0.03 0.25 
800 4 Quadratic 0.765 0.07 0.0156 
800 6 Linear 0.265 -0.01 1 
800 6 Linear 0.765 0.08 0.0078 
800 6 Quadratic 0.265 0.07 0.0156 
800 6 Quadratic 0.765 0.07 0.0156 

Factors  Significance level :0.01 
Sample 

size 
Time 

measure-
ments 

Trajectory 
pattern 

Intra-class 
correlation 

Difference 
LMRT-BLRT 

p-value 

400 4 Linear 0.265 -0.01 1 
400 4 Linear 0.765 -0.02 0.5 
400 4 Quadratic 0.265 0.02 0.5 
400 4 Quadratic 0.765 0.13 0.0002 
400 6 Linear 0.265 0.04 0.125 
400 6 Linear 0.765 0.03 0.25 
400 6 Quadratic 0.265 0.01 1 
400 6 Quadratic 0.765 0.11 0.001 

800 4 Linear 0.265 0.04 0.125 
800 4 Linear 0.765 0.04 0.125 
800 4 Quadratic 0.265 0.06 0.0313 
800 4 Quadratic 0.765 0.11 0.001 
800 6 Linear 0.265 0.05 0.0625 
800 6 Linear 0.765 0.13 0.0002 
800 6 Quadratic 0.265 0.08 0.0078 
800 6 Quadratic 0.765 0.07 0.0156 

*: cannot perform test                                                                                                              
LMRT: Lo-Mendell-Rubin likelihood ratio test      BLRT: bootstrap likelihood ratio test 
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4.5 Zero inflated Poisson (ZIP) data 

I studied three selection criteria: BIC, LMRT, and BLRT. I chose the optimal 

number of class using the significant BIC rule; that is, the difference in BIC scores must 

be at least 10 to choose more than one group. The significance level for the LMRT and 

for the BLRT was set to 0.01.  

There were 5 factors with 48 scenarios in my factorial design for ZIP data.  I ran 

100 replicates for each scenario. The rates of identifying one trajectory class given that 

the ZIP data are homogeneous were zero for the three criteria. I computed the average 

of the number of components selected for each scenario using the three criteria For 

example, suppose that a scenario had the result that the LMRT procedure chose a 2- 

trajectory model twenty times and a 3-trajectory model eighty times. Then, the average 

number of components selected for this scenario is 2.8. (2*0.2+3*0.8=2.8).  I listed 

these averages using the BIC, LMRT and BLRT for each scenario in Appendix Table 31. 

I compared the performance of BIC, LMRT and BLRT using a randomized block 

analysis. That is, the 48 scenarios were blocks and the BIC, LMRT, BLRT criteria were 

treatments.  

The analysis of variance documented that the average of the number of components 

selected was significantly different among the different scenarios and that the number of 

components selected by the three criteria are different.  

Tukey’s multiple comparisons test indicated that the average number of 

components selected by BIC, LMRT and BLRT were significantly different from each 

other at the 0.0001 level of significance.  
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The BIC criterion had the lowest number of components selected on average.  BIC 

chose two classes in 50% of the 48 scenarios and three   classes in the other 50% of 

scenarios so that the mean number of classes selected was 2.5. The number of classes 

selected by the LMRT was 3 for 36 out of 48 scenarios. The mean of LMRT number of 

classes is three with minimum two and maximum four classes. BLRT chose 4-class 

results in most of the scenarios and had mean number of selected classes 3.5.  

Table 17 Analysis of ZIP average number of selected components using BIC, LMRT 
and BLRT with M-plus: means comparisons  

 Least Squares Means        Adjustment for Multiple  Comparisons: Tukey 

Treatments Averages LSMean number (i) Std dev min max 

BIC  2.5 1 0.505 2 3 

LMRT  2.96 2 0.505 2 4 

BLRT 3.5 3 0.546 2 4 

Least Squares Means for effect treatment    Pr > |t| for H0: LSMean(i)=LSMean(j) 

i/j BIC LMRT BLRT 

BIC  <.0001 <.0001 

LMRT <.0001  <.0001 

LMRT: Lo-Mendell-Rubin likelihood ratio test    BLRT: bootstrap likelihood ratio test 

Since the rates of identifying one Trajectory class in M-plus were zero for each 

scenarios, I ran the same replicates using PROC TRAJ. PROC TRAJ assumes that 

every subject in a trajectory group follows the same trajectory. The PROC TRAJ rates of 

identifying one trajectory class were always 100% except for the scenario of linear trend 

data with random effect and 1/8 proportion of extra zeroes or changing proportion of 

extra zeros.  
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 Table 18 contains the scenarios for which the identification rates were not equal 

to one using the significant BIC rule. The effect of sample size was substantial. The 

correct identification rate for linear trend data with random effect and sample size of 400 

were more than 0.8 while is the rate was less than 0.5 with sample size 800. 

Table 18 Partial table of correct identification rates for ZIP data using PROC 

TRAJ for scenarios with correct identification rates less than 1 

scenarios  Fit to Significant BIC rule 

1/8 Linear 
trend 

Random 
effect 

400 linear 
0.85 

1/8 Linear 
trend 

Random 
effect 

400 Quadratic 
0.91 

itρ  Linear 
trend 

Random 
effect 

400 linear 
0.82 

itρ  Linear 
trend 

Random 
effect 

400 Quadratic 
0.88 

1/8 Linear 
trend 

Random 
effect 

800 linear 
0.18 

1/8 Linear 
trend 

Random 
effect 

800 Quadratic 
0.3 

itρ  Linear 
trend 

Random 
effect 

800 linear 
0.22 

itρ  Linear 
trend 

Random 
effect 

800 Quadratic 
0.3 

 

Table 19 contains the results of the logistic regression analysis for ZIP data with 

BIC criterion using PROC TRAJ. The significant factors were  S-shaped  trend as 

opposed to linear trend (Wald Chi-Square=152.74, p<0.0001, odds ratio=190.96), 

sample size 400 compared to 800 (Wald Chi-Square=236.29, p<0.0001, odds 
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ratio=16.18 (Appendix Table 32), ½ fraction of extra zeros compared to 1/8 and varying 

proportions (Wald Chi-Square=109.18, p<0.0001, odds ratio=95.54), and fixed effect 

(Wald Chi-Square=49.16, p<0.0001, odds ratio>999.999). That is, the fraction of 

replicates identified as having one trajectory group was higher for data with S-shaped 

trend than for data with a linear trend, was higher with fixed effect than random effect 

data, higher with sample size 400 than sample size 800, and higher with proportion of 

extra zeroes set to ½ compared to other proportions. 

 

Table 19 Analysis of factors determining correct identification rate of one trajectory of 
ZIP data based on significant BIC rate 
 

Parameter DF Estimate 
Standard  

Error 

Wald  
Chi-

Square Pr>ChiSq 

Intercept 1 
4.05 0.43 90.4 <.0001 

Proportion 
of extra 
zeros 1/2 1 

4.56 0.44 109.18 <.0001 

Proportion 
of extra 
zeros 1/8 1 

0.03 0.17 0.03 0.863 

Trend linear 1 
-5.25 0.43 152.74 <0.0001 

Effects Fixed 1 
7.06 1.01 49.16 <0.0001 

Sample 
size 400 1 

2.78 0.18 236.29 <0.0001 

Trajectory 
pattern Quadratic 1 

0.43 0.17 6.31 0.012 
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4.6 Bernoulli Distribution 

I used the same method to compute and analyze the number of components 

selected using Bernoulli data. There were 100 replicates for each scenario. The number 

of scenarios was 16. 

. The correct identification rates for Bernoulli data using BIC, LMRT and BLRT 

were always zero using the M-plus statistic package (Appendix Table 33). Table 20 

contains the results from the complete block analysis. The average number selected 

was significantly different for the three criteria.  

Table 20 Analysis of Bernoulli average number of selected components using 

BIC, LMRT and BLRT with M-plus: means comparisons  

 Least Squares Means         Adjustment for Multipl e Comparisons: Tukey 

Treatments Averages LSMean number (i) Std dev min max 

BIC  2.63 1 0.719 2 4 

LMRT 3.19 2 0.403 3 4 

BLRT 3.31 3 0.602 2 4 

Least Squares Means for effect treatment Pr > |t| for  H0: LSMean(i)=LSMean(j) 

i/j BIC LMRT BLRT 

BIC  <.0001 0.0007 

LMRT <.0001  0.6285 

BLRT 0.0007 0.6285  

LMRT: Lo-Mendell-Rubin likelihood ratio test    BLRT: bootstrap likelihood ratio test 
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Tukey’s multiple comparison procedure indicated, at the 0.001 significance level; 

the average numbers of selected components using BIC was significantly less than the 

number selected using LMRT and BLRT. The numbers selected by LMRT and BLRT 

were not significantly different. 

Due to the low correct identification rate, I again ran the same replicates using 

PROC TRAJ. The results showed that BIC is a good indicator for Bernoulli data except 

for linear trend data with random effect and 800 sample size. The optimal choice was 

always 1 trajectory class except for the two scenarios listed in Table 22. None of the 

factors appeared to have significant effect on BIC correct identification rate. (Appendix 

Table 34) 

Table 21 Partial table of correct identification rates for Bernoulli using PROC TRAJ for 
scenarios with correct identification rates less than 1 

Scenario  Fit to BIC BIC (Dif>10) 

Linear 
trend 

Random 
effect 

800 linear 0.05 0.05 

Linear 
trend 

Random 
effect 

800 Quadratic 0 0 
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Chapter 5 Conclusions 

My simulation study examined the performance of the BIC, LMRT and BLRT 

statistics for identifying one trajectory class when the data were homogenous. 

Computational failure rate 

With the M-plus program, there was a high probability of computational failure for 

both normal and gamma distributed data. The level of intra-class correlation, trajectory 

pattern and time measurements were significant factors related to the computational 

failure rate.  

A decreased computational failure rate was associated with data having higher 

intra-class correlations, linear trajectory pattern, and more time measurements. As 

expected, a larger sample size was associated with decreasing computational failure 

rate. Compared to the normal distribution, gamma distribution data had a larger 

computational failure rate in every scenario. When the estimated variances are negative 

and not significant, the M-plus creators suggest fixing them to zero (Muthén L.K. M-plus 

Discussion, 2007). Otherwise, the original model should be replaced.  

Comparison of the BIC and likelihood ratio test  

Overall, the BIC statistic had the highest correct identification rate. These rates 

are of the order of 95% for homogeneous data following either a censored normal or 

gamma distribution. For normal and gamma distribution data, the BIC rate for correctly 

identifying one trajectory class is greater than the rate using the LMRT or the BLRT as 

calculated in M-plus. The four factors considered appeared to have no significant effect 
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on the BIC performance for normally distributed data. I randomly chose 10 replicates 

without computational failure and analyzed them using PROC TRAJ. The BIC 

identification rates results were identical to the M-plus results. 

None of the three criteria correctly identified that there is only one trajectory class 

for ZIP and Bernoulli data. Table 18 showed that the BIC was a better indicator than the 

LMRT and the BLRT in the sense that it selected models with fewer trajectory 

components. The BIC identified 2-classes in twenty four of the scenarios considered 

and 3-classes as optimal results for the remaining twenty four scenarios of ZIP data. 

The LMRT chose a 3-class model as the most optimal result in 36 (out of 48) scenarios, 

and the BLRT chose a 4-class model as the most optimal result in 25 (out of 48) 

scenarios. As a special case of ZIP, I ran 10 replicates of Poisson data (the probability 

of the zero component equals zero). The results were similar to other ZIP replicates. 

The correct identification rates for Poisson data were zero using M-plus. PROC TRAJ 

provided more accurate BIC results for ZIP. 

For Bernoulli data, the average numbers of trajectory classes selected for 16 

scenarios using the three criteria equaled 3 after rounding. Using the BIC I observed 

significantly fewer components compared to the LMRT and the BLRT. The LMRT and 

the BLRT chose the same number of trajectory components on average. PROC TRAJ 

produced better BIC results. The correct identification rate is 1 except for linear 

Bernoulli data with random effect. 
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Factor effects and comparison of LMRT and BLRT 

In general, the LMRT was less affected by the four factors considered than the 

BLRT for normal and gamma data. The LMRT tended to choose a smaller number of 

selected components than the BLRT for ZIP data. Consequently, I conclude that the 

performance of the LMRT is somewhat better than the BLRT. 

Table 22 Summary of significant factor of LMRT and BLRT for normal and gamma data  

 Normal   Gamma   

 0.05  0.01  0.05  0.01  

LMRT Intra-class 
correlations 

None  Number of time 
measurements  

Intra-class 
correlations 

BLRT  Trajectory 
pattern 

Intra-class 
correlations 
Sample size  

Trajectory 
pattern 

Sample 
size  

Intra-class 
correlations  

Trajectory pattern  

Intra-class 
correlations  

Trajectory pattern  

  

The setting of the intra-class correlations factor was the only significant factor on 

LMRT with significance level 0.05 for normal data. At significance level 0.01, none of the 

four factors was significant for the correct identification rate of LMRT for normal data. 

For gamma data, time measurements were the only significant factor for the correct 

identification rate of the LMRT at significance level 0.05. The intra-class correlation 

factor was also significant for the correct identification rate of the LMRT at significance 

level 0.01. Lower intra-class correlations and higher time measurements increased the 

correct identification rate of LMRT. 
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The trajectory pattern factor was the significant factor for the BLRT correct 

identifying rate at each significance level for both distributions of data. 

For normally distributed data, trajectory pattern, intra-class correlations and 

sample size were significant factors for BLRT correct identifying rate at significance 

level 0.05. The intra-class correlation factor was not significantly associated with the 

correct identification rate of the BLRT with significance level setting 0.01. Quadratic 

pattern, lower intra-class correlation and larger sample size were associated with higher 

correct identification rate of the BLRT with significance level set at both 0.05 and 0.01. 

  For gamma distribution data, intra-class correlations and trajectory patterns were 

significant factors. Lower intra-class correlations and linear trajectory pattern increased 

BLRT correct identification rate. 

According to McNemar’s test, the correct identification rate of the LMRT is  

higher than rate of the BLRT for normal distribution data at significance level 0.01 and 

gamma distribution data at both significance levels. For ZIP and Bernoulli data, none of 

the tests considered correctly identified that there was one trajectory class.  The 

average number of the selected number of components for the LMRT was lower than 

that of the BLRT for both ZIP and Bernoulli distributions with lower standard deviation. 

The BLRT usually chose 4 trajectory components the most frequently for the ZIP 

distributed data.  

In conclusion, it is better to use either the BIC or LMRT with significance setting 

at 0.01 as the model selection criterion. For normal and gamma distribution, a higher 

level of intra-class correlations was associated with a decreased failure rate but also a 
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decreased correct identification rate. A linear trajectory pattern was associated with 

lowered the failure rate and lowered correct identification rate for data with normal 

distribution errors. None of the four factors effects were consistent across failure rate, 

normal distribution and gamma distribution data.  

I suggest PROC TRAJ instead of M-plus for ZIP and Bernoulli data. For the ZIP 

and Bernoulli distribution, PROC TRAJ computations had a higher correct identification 

rate than those from M-plus. Larger sample size was associated with an increase in the 

probability that two or more components will be identified for ZIP distributed data 

following a linear trend and with random effects. The same pattern held for Bernoulli 

data. 

Future Work  

My research studied the null hypothesis of various model selection criteria using 

four types of distributions. I observed that there were computational failure rates for 

normal and gamma data as evidenced by the negative estimated variances. As 

suggested in M-plus Online Discussion, if the variances are negative and not significant, 

they can be set to zero. However, what can we do if the estimated variances are 

significant and negative?  

 My proposed future research would investigate whether application of the Box-

Cox transformation will help to improve the model selection precision. I ran a pilot study 

using normally distributed data with four time measurements and 800 sample size. The 

lamda values I used were 0.86 and -1. For my randomly selected 10 effective replicates, 

I used the maximum likelihood estimation presented in Box&Cox (1964) and identified 
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the lamda value of 0.86. The identification rates were identical to the original data. 

However, the -1 value of lamda changed some of the 10 replicates results to ineffective 

ones with negative estimated variances.  

In my future study, I will also study the property of model selection criteria for that 

alternative hypothesis that there are two or more components with unequal probabilities? 

It would also be interest to see if allowing for the mixture of binomials makes the 

detection of components more difficult.   

My future study will also examine ordinal data besides the ZIP and Bernoulli data 

with growth mixture models. The correct identification rates for ZIP and Bernoulli data 

were zero using M-plus but 1 for most scenarios using PROC TRAJ.  

In conclusion, the BIC and LMRT are effective for censored normal and gamma 

data. The correct identification rates for ZIP and Bernoulli data using M-plus are 0.  I 

suggest PROC TRAJ instead of M-plus for ZIP and Bernoulli data. More research will 

be done in the future. 
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Appendix 

Table 23 Odds Ratio Estimates for factors of normal data computational failure rates 
 

Effect 
Point 

estimate 
95% Wald Confidence 

Limits 

Intra-class correlations 
0.265 

vs0.765 
1.49 1.24 1.80 

Trajectory Pattern 
Quadratic vs 

Linear   
92.80 80.78 169.56 

Time measurements 4 vs 6 
1.41 1.17 1.69 

Sample size 
400 vs 

800 
1.20 1.00 1.44 

 

Table 24 Odds Ratio Estimates for factors of gamma data computational failure rates 

Effect 
Point 

estimate 
95% Wald 

Confidence Limits 
Intra-class 

correlations 
0.265 

vs0.765 
1.31 1.12 1.54 

Trajectory Pattern 
Quadratic vs 

Linear   
8.21 6.75 9.98 

Time 
measurements 4 vs 6 

1.36 1.16 1.59 

Sample size 400 vs 800 
1.23 1.05 1.45 

 
 
Table 25 Analysis of factors determining correct identification rate of a single trajectory 
of normal data based on BIC with minimum BIC rule 
 

Parameter DF Estimate 
Standard  

Error 
Wald  Chi-

Square Pr>ChiSq 

Intercept 1 
26.53 210.40 0.02 0.90 

Intra-class 
correlations 0.265 1 

0.70 1.23 0.32 0.57 

Trajectory 
Pattern Linear 1 

-11.11 148.80 0.01 0.94 

Time 
measurements 4 1 

-11.11 148.80 0.01 0.94 

Sample size 400 1 
0.70 1.23 323.00 0.57 
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Table 26 Odds Ratio Estimates for correct identification rate of normal data using LMRT 
with significance level 0.05 and 0.01 
 

Effect Point estimate 
95% Wald Confidence 

Limits 
significance level 0.05 

Intra-class 
correlations 0.265 vs0.765 

1.52 1.11 2.09 

Trajectory 
Pattern 

Quadratic vs  
Linear   

1.24 0.91 1.70 

Time 
measurements 6 vs 4 

1.21 0.89 1.65 

Sample size 800 vs 400 
1.15 0.84 1.57 

significance level 0.01 
Intra-class 
correlations 0.265 vs0.765 

1.12 0.70 1.81 

Trajectory 
Pattern Linear vs Quadrati       

1.12 0.70 1.81 

Time 
measurements 4 vs 6 

1.12 0.70 1.81 

Sample size 800 vs 400 
1.42 1.12 1.71 

 
Table 27 Odds Ratio Estimates for correct identification rate of normal data using BLRT 
with significance level 0.05 and 0.01 

Effect 
Point 

estimate 
95% Wald 

Confidence Limits 
Significance level=0.05 

Intra-class 
correlations 

0.265 
vs0.765 

1.99 1.36 2.92 

Trajectory 
Pattern 

Quadratic vs  
Linear   

3.66 2.39 5.60 

Time 
measurements 4 vs 6 

1.43 0.98 2.08 

Sample size 800 vs 400 
1.92 0.30 2.66 

Significance level=0.01 
Intra-class 

correlations 
0.265 

vs0.765 
1.65 1.09 2.50 

Trajectory 
Pattern 

Quadratic  vs 
Linear 

3.23 2.04 5.11 

Time 
measurements 4 vs 6 

1.65 1.09 2.50 

Sample size 800 vs 400 
2.17 1.41 3.33 
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Table 28 Analysis of factors determining correct identification rate of a single trajectory 
of gamma data based on BIC with absolute BIC rates 
 

Parameter DF Estimate 
Standard  

Error 
Wald  Chi-

Square Pr>ChiSq 

Intercept 1 
4.93 1.02 23.64 <0.0001 

Intra-class 
correlations 0.265 1 

2.71 1.04 6.78 0.009 

Trajectory 
Pattern Linear 1 

1.94 0.77 6.39 0.012 

Time 
measurement 4 1 

-2.71 1.04 6.78 0.009 

Sample size 400 1 
1.94 0.77 6.39 0.012 

 

 
Table 29 Odds Ratio Estimates for correct identification rate of gamma data using 
LMRT with significance level 0.05 and 0.01 
 

Effect 
Point 

estimate 
95% Wald 

Confidence Limits 
Significance level=0.05 

Intra-class 
correlations 

0.265 
vs0.765 

1.36 0.99 1.89 

Trajectory Pattern 
Quadratic vs  

Linear   
1.01 0.74 1.40 

Time 
measurements 6 vs 4 

1.56 1.13 2.17 

Sample size 400 vs 800 
1.01 0.74 1.40 

Significance level=0.01 
Intra-class 

correlations 
0.265 

vs0.765 
1.77 1.18 2.66 

Trajectory Pattern 
Linear  vs 
Quadratic 

1.63 1.09 2.44 

Time 
measurements 6 vs4 

1.70 1.14 2.55 

Sample size 800 vs 400 
1.27 0.86 1.89 
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Table 30 Odds Ratio Estimates for correct identification rate of gamma data using BLRT 
with significance level 0.05 and 0.01     
         

Effect 
Point 

estimate 
95% Wald 

Confidence Limits 
Significance level=0.05 

Intra-class 
correlations 

0.265 
vs0.765 

1.65 1.23 2.20 

Trajectory Pattern 
Linear  vs 
Quadratic 

1.61 1.21 2.15 

Time 
measurements 6 vs 4 

1.42 1.06 1.89 

Sample size 400 vs 800 
1.12 0.85 1.49 

Significance level=0.01 
Intra-class 

correlations 
0.265 

vs0.765 
2.03 1.49 2.78 

Trajectory Pattern 
Linear  vs 
Quadratic 

1.89 1.39 2.58 

Time 
measurements 4 vs 6 

1.14 0.84 1.54 

Sample size 400 vs 800 
1.20 0.88 1.62 
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Table 31 Average selected number of classes of BIC, LMRT and BLRT for ZIP model 

scenarios  Fit to BIC LMRT BLRT 

Fraction Trend Effects Sample 
size 

 

1/8 Linear trend Fixed  400 linear 2 3 3 

1/8 Linear trend Fixed  400 Quadratic 2 3 3 

1/8 Linear trend Random  400 linear 2 2 4 

1/8 Linear trend Random  400 Quadratic 2 2 3 

1/8 s-shaped trend Fixed  400 linear 2 3 3 

1/8 s-shaped trend Fixed  400 Quadratic 2 3 3 

1/8 s-shaped trend Random  400 linear 2 3 3 

1/8 s-shaped trend Random  400 Quadratic 2 3 3 

1/2 Linear trend Fixed  400 linear 2 3 4 

1/2 Linear trend Fixed  400 Quadratic 2 3 3 

1/2 Linear trend Random  400 linear 2 2 3 

1/2 Linear trend Random  400 Quadratic 2 2 4 

1/2 s-shaped trend Fixed  400 linear 2 3 3 

1/2 s-shaped trend Fixed  400 Quadratic 2 3 3 

1/2 s-shaped trend Random  400 linear 2 3 3 

1/2 s-shaped trend Random  400 Quadratic 2 3 3 

itρ  Linear trend Fixed  400 linear 2 3 3 

itρ  Linear trend Fixed  400 Quadratic 2 3 3 

itρ  Linear trend Random  400 linear 2 2 3 

itρ  Linear trend Random  400 Quadratic 2 2 4 

itρ  s-shaped trend Fixed  400 linear 2 3 3 
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itρ  s-shaped trend Fixed  400 Quadratic 2 3 2 

itρ  s-shaped trend Random  400 linear 2 3 3 

itρ  s-shaped trend Random  400 Quadratic 2 2 3 

1/8 Linear trend Fixed  800 linear 3 3 4 

1/8 Linear trend Fixed  800 Quadratic 3 4 4 

1/8 Linear trend Random  800 linear 3 3 4 

1/8 Linear trend Random  800 Quadratic 3 3 4 

1/8 s-shaped trend Fixed  800 linear 3 4 4 

1/8 s-shaped trend Fixed  800 Quadratic 3 3 4 

1/8 s-shaped trend Random  800 linear 3 4 4 

1/8 s-shaped trend Random  800 Quadratic 3 3 4 

1/2 Linear trend Fixed  800 linear 3 3 3 

1/2 Linear trend Fixed  800 Quadratic 3 3 4 

1/2 Linear trend Random  800 linear 3 3 4 

1/2 Linear trend Random  800 Quadratic 3 3 3 

1/2 s-shaped trend Fixed  800 linear 3 3 4 

1/2 s-shaped trend Fixed  800 Quadratic 3 3 4 

1/2 s-shaped trend Random  800 linear 3 3 3 

1/2 s-shaped trend Random  800 Quadratic 3 3 4 

itρ  
Linear trend Fixed  800 linear 3 4 4 

itρ  
Linear trend Fixed  800 Quadratic 3 3 4 

itρ  
Linear trend Random  800 linear 3 3 4 

itρ  
Linear trend Random  800 Quadratic 3 3 4 

itρ  
s-shaped trend Fixed  800 linear 3 4 4 
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itρ  
s-shaped trend Fixed  800 Quadratic 3 3 4 

itρ  
s-shaped trend Random  800 linear 3 3 4 

itρ  
s-shaped trend Random  800 Quadratic 3 3 4 

 
 
 
 
Table32 Odds Ratio Estimates for correct identification rate of ZIP data using BIC  
 

Effect 
Point 

estimate 
95% Wald Confidence 

Limits 
Proportion of extra 

zeros ½ vs rho 
95.54 40.62 224.72 

Proportion of extra 
zeros 1/8 vs rho 

1.03 0.74 1.44 

Trend linear 
190.96 83.03 439.22 

Effects Fixed 
>999.999 161.79 >999.999 

Sample size 400 
16.18 11.34 23.07 

Trajectory pattern 
Quadratic vs 

linear 
1.53 1.10 2.14 
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Table 33 Average selected number of classes of BIC, LMRT and BLRT for bernoulli 
model 

Scenario  Fit to BIC LMRT BLRT 

Linear trend Fixed effect 400 linear 2 3 3 

Linear trend Fixed effect 400 Quadratic 2 3 3 

Linear trend Random effect 400 linear 2 3 3 

Linear trend Random effect 400 Quadratic 2 3 3 

S-shaped 
trend 

 Fixed effect 400 linear 2 3 3 

S-shaped 
trend 

 Fixed effect 400 Quadratic 2 3 3 

S-shaped 
trend 

 Random effect 400 linear 2 3 3 

S-shaped 
trend 

 Random effect 400 Quadratic 2 3 2 

Linear trend Fixed effect 800 linear 3 4 4 

Linear trend Fixed effect 800 Quadratic 3 3 4 

Linear trend Random effect 800 linear 4 4 4 

Linear trend Random effect 800 Quadratic 4 3 4 

S-shaped 
trend 

 Fixed effect 800 linear 3 4 4 

S-shaped 
trend 

 Fixed effect 800 Quadratic 3 3 3 

S-shaped 
trend 

 Random effect 800 linear 3 3 4 

S-shaped 
trend 

 Random effect 800 Quadratic 3 3 3 
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Table 34 Analysis of factors determining correct identification rate of a single trajectory 
of gamma data based on BIC with significant BIC rate 
 

Parameter DF Estimate 
Standard  

Error 

Wald  
Chi-

Square Pr>ChiSq 

Intercept 1 
26.24 217.80 0.02 0.90 

Trend linear 1 
-29.19 217.80 0.02 0.89 

Effects Fixed 1 
-29.19 217.80 0.02 0.89 

Sample 
size 400 1 

-29.19 217.80 0.02 0.89 

Trajectory 
pattern Quadratic 1 

-11.23 119.60 0.01 0.93 

 

 

 


