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Abstract of the Dissertation

Numerical Differential Geometry and its Applications

by

Duo Wang

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2012

We describe a unified computational framework for polynomial fit-
ting method based on weighted least squares approximations. This
framework is first motivated by computing normals and curvatures on
discrete surface mesh, then it is extended to construct the continuous
global surface and calculate high order surface integration. Finally, the
idea of generalized finite difference method is extracted by inverting
the Vandermonde matrix from local polynomial fitting, it will be used
to solve various geometric geometric partial differential equations and
an elastic membrane problem.

Different applications require different techniques and impose different
challenges including simplicity, accuracy, continuity, robustness and
efficiency. Our research focus on high order accuracy, but also give
considerations to other requirements. For normal and curvature calcu-
lations, surface reconstruction and integration, we demonstrate order
of accuracy up to 6. For numerical solution of geometric PDEs and
the elastic membrane problem, we introduce an accurate spatial dis-
cretization over triangular surface mesh and our semi-implicit schemes
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can achieve at least quadratic convergence rate while being much more
accurate and stable than using explicit schemes.
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Chapter 1

Introduction

Surface arises in various geometric and numerical applications, including meshing,
computer graphics, physical and biological simulations. The continuous theory of
surface is a well studied mathematical branch called differential geometry, while in
numerical simulations, surfaces are represented by discrete models. Discrete mesh
is the most commonly used form to represent a surface, where vertices coordinate
values and their connectivity are the only information available. In this disserta-
tion, we present a unified computational framework based on polynomial fitting to
process discrete surface mesh and demonstrate its applications in surface-related
numerical problems.
Many methods have been introduced to compute normals and curvatures over dis-
crete surface meshes, such as [58, 46, 47, 66, 54, 9, 29, 37]. Among them there
are two different types of paradigms, namely discrete and continuous. Discrete
methods fall shorts on accuracy. A few continuous methods based on polynomial
fittings have been proven to deliver converging results [46, 66, 9, 37], however, the
numerical behaviors for different parametrization schemes and numerical solvers
can differ drastically in practice, and no systematic analysis and comparison have
been reported previously for these methods. We show that our polynomial fitting
framework based on local orthogonal projection with a safeguard against folding
delivers the best combination of simplicity, accuracy, efficiency, and robustness.
Applications such as mesh smoothing and high order integration require a continu-
ous geometric support over the discrete surface mesh. We apply our framework to
reconstruct a high order continuous surface. This reconstruction problem also arises
in computer graphics [17] and geometric modeling [63], there the focus is on high
order continuity. Our method will achieve third- and even higher order accuracy,
while guaranteeing global C0 continuity.
Geometric partial differential equations (PDEs) on moving surfaces occur in vari-
ous applications, such as surface smoothing in computer-aided design [68] and the
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modeling of moving surfaces of materials [8]. Solving these high-order PDEs us-
ing explicit methods would require very small time steps to achieve stability, due to
their strong nonlinearity and stiffness, whereas using implicit methods would result
in complex nonlinear systems of equations that are expensive to solve. We propose
semi-implicit schemes for mean curvature flow and surface diffusion over triangu-
lated surfaces. Numerical experiments demonstrate that our method can achieve
second-order accuracy for both mean-curvature flow and surface diffusion, while
being much more accurate and stable than using explicit schemes.
Finally, we will use our computational framework to solve a physical problem arises
in the parachute simulations, the modeling and discretization of the curvature effect
of a thin and curved elastic interface, which separates two fluid subdomains. For
such an interface, there is often a pressure jump between the two fluid subdomains,
which is partially balanced by a normal pressure exerted by the interface due to
a curvature effect, in a manner similar to the surface tension in fluid dynamics
[41, 39]. Mathematically, this pressure is the normal component of the surface
divergence of the stress tensor. We derive an explicit, easy-to-compute formula for
the normal pressure, and develop a discretization method for evaluating it from the
stress tensor. Also we derive explicit formulas of the surface divergence of the stress
tensor, so that we can discretize the problem in a strong form using our generalized
finite difference method.
The dissertation is organized as follows. Chapter 2 introduces our computational
framework, which serves as the foundation of our research. Chapter 3 describes
its application in computing normals and curvatures. Chapter 4 extends the frame-
work from local fitting to globally constructing a continuous surface. Chapter 5 and
chapter 6 apply our framework to solve geometric PDEs and the elastic membrane
problem.

2



Chapter 2

The Computational Framework

Given a discrete surface mesh, the first step is to reconstruct its continuous pro-
totype. Due to the difficulty of global parametrization and the fact that differential
quantities used in most applications are local to the geometry, a local reconstruction
suffices. The idea of local polynomial fitting is to approximate the local surface ge-
ometry by a bivariate polynomial. There are several steps to construct such a local
polynomial. Section 2.1 introduces the neighbor points selection strategy. Sec-
tion 2.2 gives several representative methods of local parametrization. Section 2.3
describes the polynomial fitting method based on weighted least squares approxi-
mations. Section 2.4 introduces the numerical solvers and section 2.5 analyzes its
accuracy and stability.

2.1 Point Selections Strategies

The first step for local polynomial fittings is to choose a collection of nearby points.
For discrete meshes, it is typical to select the points based on mesh connectiv-
ity, and sometimes coupled with some geometry-based filtration. It is common to
use a k-ring neighborhood for some integer k, such as 1, 2, or 3 [66, 9, 23]. The
1-ring neighbor faces of a vertex v is the faces incident on v, and the 1-ring neigh-
bor vertices are the vertices of these faces. For an integer k ≥ 1, the (k+ 1)-ring
neighborhood of a vertex is the union of the 1-ring neighbors of its k-ring neighbor
vertices.

Triangular Mesh When k is constrained to integers, the numbers of vertices in
k-ring neighbors grow rapidly as k increases. For finer control, [37] proposed to
use half-ring increments by defining the 1.5-ring neighbor faces to be the faces that
share an edge with a 1-ring neighbor face, and the 1.5-ring neighbor vertices to be

3



1.5 ring

2.5 ring

1 ring

2 ring

Figure 2.1: Schematics of 1-, 1.5-, 2-, and 2.5-ring neighborhood. Each diagram
shows the neighborhood of the center (black) vertex.

the vertices of these faces. For an integer k ≥ 1, the (k+ 1.5)-ring neighborhood
is the union of the 1.5-ring neighbors of the k-ring neighbor vertices. Figure 2.1
illustrates the neighborhood definitions up to 2.5 rings. Table 2.1 shows the typical
numbers of vertices of a (d + 1)/2-ring for d up to 6, which have approximately
twice as many points as the number of unknowns of degree-d fittings. In our later
discussions, we allow k to have half increments when referring to k-ring neigh-
bors. Note that under some pathological situations (such as near the boundary of an
open surface), a (d +1)/2-ring may have insufficient number of points for degree-
d fittings. [37] proposed to adaptively enlarge the neighborhood size by half-ring
increments if the number of vertices is fewer than 1.5 times of the required number
of points. We follow such an adaptive strategy when appropriate.

Quadrilateral Mesh The above definition of n-ring neighbors for a triangular
mesh tends to produce too many points for quadrilateral meshes. We redefine the
neighborhood of a vertex as follows:

4



Table 2.1: Numbers of coefficients in dth degree fittings versus numbers of points
in typical d+1

2 rings.
degree (d) 1 2 3 4 5 6
#coeffs. 3 6 10 15 21 28

#points in d+1
2 ring 7 13 19 31 37 55

1-ring

2-ring

1.5-ring

2.5-ring

Figure 2.2: Examples of 1-, 1.5-, 2-, and 2.5-rings of typical vertex in quadrilateral
mesh. Each image depicts the neighborhood of the center black vertex.

• The 0-ring of a vertex is the vertex itself ;

• The k-ring vertices of a vertex (where k = 1,2,3, . . . ) is the set of vertices that
share an edge with a vertex in the (k-1)-ring;

• The (k+0.5)-ring of a vertex (where k = 1,2,3, . . . ) is the union of k-ring ver-
tices and the vertices that share elements with an edge between two vertices
in the k-ring.

Figure 2.2 shows the 1-, 1.5-, 2-, and 2.5-rings of a typical vertex in a quadrilateral
mesh or a quad-dominant mesh. In general for degree-d fittings, we find it most
effective to use a ring of (d +1)/2 for a mesh without noise or a ring of d/2+1 or
larger for meshes with noise.
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A k-ring neighborhood depends only on mesh connectivity. For highly irregular
meshes it could contain some points that are far away from the point of interest. One
could address this problem by choosing the vertices based on distances rather than
mesh connectivity (such as using the k nearest neighbors), but it is less efficient and
prone to the well-known problem of “short circuiting” (i.e., to choose points that
are close in Euclidean distance but are far away in geodesic distance). Under the
weighted least squares framework, we can easily filter out any vertex within a k-ring
neighbor by simply setting its corresponding weight in the weighting matrix Ω to
zero or to a very small number. Typically, the weight can be inversely proportional
to some power of the distance from the point to the vertex under consideration and
sometime can also depend on the vertex normals for better robustness [37]. There-
fore, k-ring neighbors with weighted least squares provides a simple and flexible
approach, so we do not consider other point-select strategies here.

2.2 Methods of Local Parametrizations

There are several existing methods of local parametrization, some only applies to 1-
ring neighborhood, some requires extra effort by solving a linear system. Parametriza-
tion has received significant attention in recent years in geometric modeling and
computer graphics [18, 27, 43]. See [19] for a survey of recent work on parametriza-
tion. It is important to note that polynomial fittings require only a local parametriza-
tion around a vertex, instead of a global parametrization of the whole surface mesh.
Each vertex has its own parametrization, this localization can better capture the lo-
cal geometry information and enforces no restriction on the global properties of the
surface as global parametrization does, also it simplifies the problems both theoret-
ically and computationally. Here we compare three representative parametrizations
schemes that are commonly used.

Xu’s 1-Ring Parametrization To support quadratic fittings, Xu [66, 67] pro-
posed a simple but specialized procedure to parametrize the 1-ring neighborhood
of a vertex. At high level, this procedure flattens the neighborhood while preserv-
ing both the ratios between the interior angles of the triangles at the vertex and the
lengths of the edges incident to the vertex. Such a parametrization is not unique,
subject to translation and rotation. Xu eliminated the additional degrees of freedom
by making the vertex the origin of the uv plane and choosing one of the edges as
the u direction. We refer readers to [67] for details.
Xu’s 1-ring parametrization is very simple and efficient. It is approximately isomet-
ric at the vertex, so it is likely to be smooth. However, this construction has some
limitations, among which the most notable is its limitation to 1-ring neighborhood.
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A 1-ring neighborhood sometimes does not even have enough points for quadratic
fittings, not to mention cubic or higher-degree fittings. This limitation has serious
consequences, as we will demonstrate in numerical experiments. In addition, the
algorithm in [66, 67] assumes a 1-ring neighborhood is topologically a disk so that
the sum of the interior angles at a vertex is equal to 2π after flattening. The pro-
cedure would have to be modified for boundary vertices if it were used for open
surfaces (more precisely, for 2-manifolds with boundary).

Local Orthogonal Projection with Safeguard Another simple and efficient pro-
cedure for constructing the parametrization is to project the neighborhood orthog-
onal onto a plane. We refer to this method as local orthogonal projection (LOP).
To avoid rank deficient (or ill-conditioned) Jacobian matrices, the plane should be
approximately tangential to the surface. The LOP is often used in the construction
of a local height function, as we describe in Section 3.2.2 and as done in [9] and
[37]. Therefore, LOP enjoys the flexibility of utilizing the formulas for either local
parametrization or local height function in Table 3.1.
The LOP is simple and efficient, but unlike Xu’s parametrization it is more general
and can be applied to k-rings for k≥ 1. However, if the surface is highly curved and
the mesh is too coarse, the projection of the k-ring neighborhood onto the plane may
not be one-to-one, which in turn can lead to a violation of the regularity assumption
of polynomial fittings.
The proneness to folding is the single most important issue with LOP. In the weighted
least squares framework, this problem can be addressed by utilizing the weighting
matrix to filter out vertices whose normals form too large an angle with the normal
to the uv plane, as suggested in [37]. Specifically, let m̂i denote a rough estimation
of the unit normal at the ith vertex, and let m̂0 denote the normal to the uv plane, typ-
ically equal to the approximate vertex normal at the vertex in consideration. Note
that the m̂i are used only for the construction of projection plane and the weights,
so some simple averaging of face normals suffices. [37] chose the weight for the ith
vertex to be

ωi = γi

/(√
‖ui‖2 + ε

)d/2

, (2.2.1)

where ε is a small number to prevent division by zero. The key safeguard in (2.2.1)
is γi, which is set to m̂T

i m̂0 if the angle between m̂i and m̂0 is small but set to 0
if the angle is too large. For a typical mesh, γi is approximately equal to 1 and
plays no role. For a coarse mesh with rapidly varying normals where a vertex may
“wrap around,” γi would become zero and the vertex is filtered out. This safeguard
is simple and efficient, and we employ it for LOP in our tests.
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Conformal Parametrizations of k-Ring Besides employing a safeguard, the po-
tential problem of mesh folding of LOP can also be resolved (or alleviated) by using
a more sophisticated parametrization strategy. Such an approach was advocated by
some authors, such as [23]. A number of methods have been developed for planar
parametrization of surfaces in recent years. A few have been implemented in CGAL
(www.cgal.org), including barycentric mapping [60], mean value coordinates [18],
discrete authalic parametrization [14], and least squares conformal maps (LSCM)
[43]; we refer readers to [55] for a complete list.
The planar parametrization methods in general can be categorized as either fixed
boundary or free boundary. For fixed-boundary methods, such as barycentric map-
ping and mean value coordinates, a surface is mapped onto a convex shape (such as
a circle or a convex polygon). Such mappings are typically guaranteed to be one-
to-one but are not necessarily smooth. Furthermore, because a k-ring neighborhood
is not necessarily convex even for k = 1, mapping it to a convex shape can lead to
arbitrarily large distortions and in turn large errors for polynomial fittings. Among
the free-boundary methods, the most appealing types are those based on conformal
mappings. For smooth compact surfaces, a conformal mapping is a type of har-
monic mapping that preserves angles, so it is smooth by construction. For discrete
surfaces, exact conformal mapping in general does not exist, and an approximation
is constructed by solving a linear or nonlinear system of equations. Unlike free-
boundary methods, fixed-boundary methods cannot guarantee the mapping to be
one-to-one and can even lead to flipped triangles [55], resulting in a violation of
the regularity assumption for polynomial fittings. Therefore, none of these general
parametrization methods is ideal for polynomial fittings.
After extensive experimentation, we selected LSCM of [43] as a representative
for the general parametrization methods for our comparisons, because it is a free-
boundary method based on conformal mappings, and in our tests it delivered better
results than the others available in CGAL. Although LSCM does not guarantee
against mesh folding, it is less likely to cause folding than a naive LOP without
any safeguard. However, LSCM is more expensive than LOP for its requirement of
solving a linear system. Its effectiveness compared to safeguarded LOP is unclear
and can only be examined through numerical experimentation, which we report in
Section 3.3.

Summary of Different Parametrizations We summarize a high-level compari-
son of the advantages and disadvantages of different methods in Table 2.2. Note that
each of the methods has its own disadvantages. Xu’s parametrization and LSCM
suffer from inflexibility and inefficiency, respectively. LOP seems to be promising
to deliver the best simplicity, efficiency, and flexibility. Its potential problem of
mesh folding can be resolved in a simple manner with the weighted least squares

8



Table 2.2: High-level comparison of different parametrization schemes.
advantages disadvantages

Xu simple and efficient limited to 1-ring neighborhood
LOP/LHF simple, efficient, flexible prone to folding if without safeguard

LSCM flexible expensive; no guarantee against folding

formulation. In Section 3.3, we will study the accuracy and efficiency of different
methods experimentally and verify this conclusion.

2.3 Weighted Least Squares Polynomial Fitting

In approximation theory, the Taylor series expansion is a powerful tool in deriving
numerical approximations. Local polynomial fittings are based on this well-known
Taylor polynomial around a point.
We are primarily concerned with surfaces, so the local fitting is basically an interpo-
lation or approximation to a neighborhood of a point P under a local parametrization
with parameters u and v, where P corresponds to u = 0 and v = 0. The polynomial
fitting may be defined over the global xyz coordinate system or a local uvw coor-
dinate system. In the former, the neighborhood of the surface is defined by the
coordinate function f (u,v) = [x(u,v),y(u,v),z(u,v)]. In the latter, assuming the uv-
plane is approximately parallel with the tangent plane of the surface at P, each point
in the neighborhood of the point can be transformed into a point [u,v, f (u,v)] (by a
simple translation and rotation), where f is known as the local height function.
Let u denote [u,v]T and f (u) denote a smooth bivariate function, which may be
the local height function under orthogonal projection, or the x, y, or z component
of the coordinate function for a parametric surface. Let c jk be a shorthand for

∂ j+k

∂u j∂vk f (0). Given a positive integer d, if f (u) has d + 1 continuous derivatives, it
can be approximated to (d +1)st order accuracy about the origin u0 = [0,0]T by

f (u) =
d

∑
p=0

j+k=p

∑
j,k≥0

c jk
u jvk

j!k!︸ ︷︷ ︸
Taylor polynomial

+
j+k=d+1

∑
j,k≥0

∂ j+k

∂u j∂vk f (ũ, ṽ)
ũ jṽk

j!k!︸ ︷︷ ︸
remainder

, (2.3.1)

where 0 ≤ ũ ≤ u and 0 ≤ ṽ ≤ v. We emphasize that this equality assumes that
f is continuously differentiable up to d + 1, and we refer to this as the regularity
assumption. The derivatives of the Taylor polynomial are the same as f at u0 up
to degree d, and hence the problem of estimating the derivatives reduces to the
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estimation of the coefficients c jk of the Taylor polynomial. Specifically, given a set
of data points, say [ui,vi, fi]

T for i = 1, . . . ,m− 1, sampled from a neighborhood
near a point u0 = [u0,v0, f0]

T on a smooth surface. Plugging in each given point
into (2.3.1), we obtain an approximate equation

d

∑
p=0

j+k=p

∑
j,k≥0

c jk
u j

i vk
i

j!k!
≈ fi, (2.3.2)

which has n = (d + 1)(d + 2)/2 unknowns (i.e., c jk for 0 ≤ j + k ≤ d, j ≥ 0 and
k ≥ 0), resulting in an m×n rectangular linear system. We refer to d as the degree
of fitting. Note that one could enforce the fit to pass through the point u0 by setting
c00 = 0 and removing the equation corresponding to u0, reducing to an (m− 1)×
(n−1) rectangular linear system, this may be beneficial if the points are known to
interpolate a smooth surface.
The above method for estimating the Taylor polynomial is known as polynomial
fitting or local polynomial fitting, because the fitting is in a local neighborhood
around point u0. Let us denote the rectangular linear system obtained from (2.3.2)
as

V c≈ f , (2.3.3)

where c is an n-vector composed of c jk, and V is a generalized Vandermonde ma-
trix. For a local height function, f is an m-vector composed of fi; for a parametric
surface, f is an m×3 matrix, of which each column corresponds to a component of
the coordinate function.
A careful numerical treatment of equation 2.3.3 is necessary because it is the core
of our research. By solving this equation we get the coefficient vector c, together
with the coordinate values of vertex P and the two tangent vectors, we have the full
information of the approximated local surface geometry. In section 5.1, we present
a set of formulas to calculate normal, curvature and other surface differential oper-
ators. In chapter 5.3, the idea of Generalized Finite Difference method is extracted
by inverting the Vandermonde matrix V , and we propose a semi-implicit scheme
for solving various geometric PDEs.
Numerically, (2.3.3) can be solved using the framework of weighted linear least
squares [26, p. 265], i.e., to minimize a weighted norm (or semi-norm),

min
c
‖V c− f‖Ω = min

c
‖Ω(V c− f )‖2, (2.3.4)

where Ω is a weighting matrix. Typically, Ω is an m×m diagonal matrix, whose ith
diagonal entry ωi assigns a priority to the ith point [ui,vi]

T by scaling the ith row of
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V . This formulation is equivalent to the linear least squares problem

Ṽ c≈ b, where Ṽ = ΩV and b = Ω f . (2.3.5)

In general, Ṽ is m×n and m≥ n. However, this linear system may be rank deficient
(i.e., the column vectors of Ṽ may not be linear dependent) or ill-conditioned (i.e.,
the singular values of Ṽ may have very different scales) due to a variety of reasons,
including poorly scaling, insufficient number of points, or degenerate arrangements
of points [38]. The scaling of A can be improved substantially by introducing a
scaling matrix S and change the problem as

min
d
‖Ad−b‖2, where A = Ṽ S and d = S−1c. (2.3.6)

Here S is typically a diagonal matrix. Let ṽi denote the ith column of Ṽ . The ith
diagonal entry of S is typically chosen to be either ‖ṽi‖∞ [9, 67] or ‖ṽi‖2 [37], where
the latter approximately minimizes the condition number of Ṽ S [26, p. 265]. How-
ever, the problem may still be ill-conditioned after rescaling, and we will address
this issue in the next section.

2.4 Numerical Solvers

In polynomial fittings the most difficult aspect is the solution of the least squares
system (2.3.6), because this system can be rank deficient (i.e., under-determined) or
even worse be nearly rank deficient (i.e., highly ill-conditioned). Such ill-conditioned
problems can occur even if the number of points is greater than the number of un-
knowns. Although there exist general techniques for solving ill-conditioned least
squares problems, such as SVD, an effective solution should take advantage of the
special properties of the problem at hand. In this subsection, we compare two tech-
niques, SVD, and a customization of QR factorization.

Singular Value Decomposition In numerical linear algebra, singular value de-
composition (SVD) is the standard technique for solving rank-deficient least squares
problems; see for example [26, Chapter 5]. Given a linear least squares problem
Ax ≈ b, where A ∈ Rm×n and b ∈ Rn, let A = UΣV T denote the SVD of A, where
U ∈ Rm×n is composed of left singular vectors ui of A, Σ = diag(σ1,σ2, . . . ,σn)
with σ1 ≥ σ2 ≥ ·· · ≥ σn, and V ∈ Rm×n is composed of the right singular vectors
vi of A. A general solution to a rank-deficient problem Ax≈ b is

x = ∑
σi>ε

viuT
i b/σi, (2.4.1)

11



where ε is small number close 0 (such as 10−8). For an ill-conditioned problem, we
can set ε to a small factor of σ1 (such as 10−4σ1), which effectively would solve
a modified problem Ãx ≈ b, where Ã = ∑σi≥ε σiuivT

i . The condition number of Ã,
namely the ratio between its largest and smallest singular values, is bounded by
1/ε . Given that the noise in the input points is small, limiting the condition number
of Ã effectively limits the sensitivity of x with respect to the noise in b.
In the context of polynomial fittings, SVD has been used to address the poten-
tial rank deficiency in [67] and [9, 10]. [67] solved (2.3.6) by constructing the
normal equation AT Ad = AT b and then solve it using the SVD of AT A, which is
equivalent to the eigenvalue decomposition of AT A, as AT A is symmetric positive
semi-definite. Let σ̃i denote the eigenvalues of AT A and ũi denote the eigenvec-
tors of AT A. Xu solves the system as x = ∑σ̃i≥ε ũiũT

i AT b/σ̃i, where ε was chosen
to be 10−8. In contrast, [9] used SVD of A to solve (2.3.6) directly, but no detail
was given. In either case, the use of SVD does not take into account the geomet-
ric meaning of polynomial fittings, and it does not give higher priorities to lower
derivatives. In addition, SVD is far more expensive compared to techniques based
on QR factorizations, as we describe next.

QR Factorization with Safeguard Instead of using a standard technique, [37]
proposed a customized QR factorization with a safeguard for polynomial fittings.
The idea is based on the observation that given the QR factorization A = QR, the
QR factorization of the first k leading columns of A (i.e., A:,1:k using MATLAB-like
notation) are the k leading columns Q (i.e., Q:,1:k) and the k× k leading submatrix
of R (i.e., R1:k,1:k). If A has a large condition number, one can remove the columns
of A from the right to obtain a better conditioned problem. This effectively reduces
to a lower-degree fitting, so Proposition 1 is still applicable to bound the errors.
Furthermore, because the condition number (in 2-norm) of A is the same as that
of R, the condition number can be estimated efficiently. See [37] for more detail.
Compared to SVD, this QR factorization based approach is about four to five times
faster than using SVD. Note that QR factorization with partial pivoting is another
alternative for solving rank deficient least squares problem [26], but like SVD such
an approach is less appropriate because it does not give higher priorities to lower
derivatives.

2.5 Analysis of Accuracy and Stability

The weighted least-squares formulation is a well-known linear algebra technique.
However, in the context of derivative estimation for parametric surfaces, its numer-
ical analysis must be customized and does not seem to exist in the literature. We
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present an analysis in this subsection, focusing on two aspects: 1) the accuracy and
stability of the least squares problem (2.3.6), and 2) the propagation of the errors
from (2.3.6) to differential quantities.

Errors in Least Squares Formulation By the perturbation theory, the error in the
solution to Eq. (2.3.6) depends on a number of factors, including the input errors in
A and b, the condition number of A, the angle of b with respect to column space of
A, as well as the orientation of b within the column space of A [59, Lecture 18]. The
entries in A depend only on the parametrization, which we address in subsection 2.5.
Here, we focus on the errors in b and the condition number of A.
The error in b depends on both the “noise” in the input points and the residual in
(2.3.1). Note that an important assumption behind (2.3.1) is the regularity assump-
tion. If this assumption is violated, then the derivatives may be unbounded, and the
errors in the remainder may be arbitrarily large. It is therefore very important that
the coordinate functions are smooth with respect to the parametrization (i.e., with
bounded derivatives).
We now consider the condition number of Ad ≈ b. Assume the least squares prob-
lem is well conditioned and the numerical solver is stable. Let h denote the average
edge length of the mesh, and assume the maximum diameter of the neighborhood is
O(h). We bound the errors in the approximations to the partial derivatives in terms
of h.
Proposition 1: Given a set of points [ui,vi, f̃i] that interpolate a smooth height func-
tion f or approximate f with an error of O(hd+1). Assume the point distribution
and the weighing matrix are independent of the mesh resolution, and the condition
number of the scaled matrix A = ÃS in (2.3.6) is bounded. The degree-d weighted
least squares fitting approximates c jk to O(hd− j−k+1).
The proof of the proposition follows that for Theorem 4 in [37].

Error Propagation to Differential Quantities The analysis above considers the
errors in the approximations to c jk, i.e. the partial derivatives of the coordinate
functions with respect to the parameters u and v. From the coefficients c jk, we
compute the normal and curvatures using the formulas in Table 3.1. The errors in
c jk therefore can propagate into the computed normals and curvatures. Following
the same proof as Theorem 5 in [37], we obtain the following proposition.
Proposition 2: Assume the position, gradient, and Hessian of coordinate functions
that approximated to O(hd+1), O(hd) and O(hd−1), respectively, and assume the
condition number of the Jacobian matrix is bounded. a) The angle between the
computed and exact normals is O(hd); b) the components of the shape operator and
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curvature tensor are approximated to O(hd−1); c) the Gaussian and mean curvatures
are approximated to O(hd−1).
In the proposition, it is important that the condition number of the Jacobian matrix
is bounded. If the condition number of the Jacobian matrix is unbounded, the errors
in c jk can be magnified by an arbitrarily large factor. Note that this proposition
makes no claim about the principal directions, as they are inherently unstable if
the maximum and minimum curvatures are roughly equal. If the magnitudes of
the principal curvatures are well separated, then the principal directions would also
have similar convergence rates as the curvatures. When using our symmetric shape
operator introduced in Section 3.2, the computed principal directions are guaranteed
to be orthonormal.

Summary of Requirements for Accuracy and Stability The analysis above in-
dicates that polynomial fittings produce converging estimations of differential quan-
tities under certain conditions. We summarize the conditions as follows, grouped
into three categories. First of all, the input points must satisfy the following:

1. Decreasing neighborhood size: The size of the neighborhood (in terms of the
distances between points) should decrease asymptotically for finer meshes
(i.e., should be O(h)).

2. Accurate input points: For degree-d polynomial fitting, the coordinate func-
tions should be at least (d +1)st order accurate (i.e., O(hd+1)).

These requirements are necessary for asymptotically bounding the errors of the
input to polynomial fittings. These conditions are universal for any fitting method,
and they may or may not be satisfied by certain applications. Under the above
conditions, the parametrization must satisfy the following requirements:

3. Smooth coordinate functions: The partial derivatives of the coordinate func-
tions must be bounded with respect to the parameters in the given neighbor-
hood.

4. Well conditioned Jacobian: The Jacobian matrix must be far from rank defi-
ciency (i.e., must be well conditioned).

These two conditions are related to, but do not necessarily imply, each other. Fi-
nally, additional requirements must be imposed on the numerical solver of the linear
least squares system (2.3.6):

5. Robust solver: The least squares solver must be stable and at the same time be
able to resolve ill-conditioned systems.
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Under the above conditions, convergence is guaranteed theoretically for the com-
puted differential quantities, and small errors can be expected in practice for suffi-
ciently fine meshes. On the other hand, if any of the above conditions is violated,
convergence is not guaranteed and the errors can be large, although one may still
observe convergence and relatively small errors in practice. The above analysis
provides us guidelines for choosing the neighborhood, the parametrizations, and
numerical solvers. It also provides us a platform for comparing different methods,
as we will see in the next chapter.

15



Chapter 3

Normal and Curvature Computation

Computing normals and curvatures is a fundamental problem for many geometric
and numerical computations, including feature detection, shape retrieval, shape reg-
istration or matching, surface fairing, surface mesh adaptation or remeshing, front
tracking and moving meshes. But their accurate computations on discrete surfaces
are challenging.
Two types of methods are widely used in practice, discrete method and continuous
method based on polynomial fitting. Discrete method is easy to implement but
does not guarantee convergent curvature results for general surfaces; Polynomial
fitting based methods are well founded mathematically and can be proven to deliver
convergent results under reasonable assumptions, however, the numerical behaviors
for different parametrization schemes and numerical solvers can differ drastically in
practice, and no systematic analysis and comparison have been reported previously
for these methods.
This is a direct application of our framework introduced in Chapter 2. First we
give a summary of commonly used methods, then analyzes the classical formulas
for continuous parametric surfaces and presents some alternative formulas that are
more amenable to numerical computation for their numerical stability. Section 3.3
presents numerical experiments to verify our theoretical analysis and compare the
different algorithms in terms of accuracy and runtime efficiency. Our analysis
shows that the choice of parametrization and numerical solver for the least squares
problem can have significant impact on the accuracy and stability of polynomial
fittings. In addition, we show that the methods based on local orthogonal projec-
tion with a safeguard against folding delivers the best combination of simplicity,
accuracy, efficiency, and robustness.
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3.1 Related Works

Many methods have been introduced to compute normals and curvatures over dis-
crete surface meshes, such as [58, 46, 47, 66, 54, 9, 29, 37]. Among them there are
two different types of paradigms, namely discrete and continuous. Discrete meth-
ods use explicit formulas directly while continuous methods first construct a locally
parametrized surface patch, then use the exact formulas for continuous surface to
calculate normal and curvature.
For discrete method, normal is usually approximated by the weighted average of
neighboring face normals; Gaussian curvature is often approximated using angle
deficit method. For mean curvature, [47] proposed a cotangent formula, which is
closely related to the formula for Dirichlet energy of [52]. It was shown that the
cotangent formula does not produce converging pointwise mean-curvature estima-
tions except for some special cases, as noted in [7, 66, 30, 64]. As another example,
[40] proposed a tangent-weighted formula for estimating mean-curvature vectors,
whose convergence relies on special symmetric patterns of a mesh. [13] proposed
a method for curvature computation based on the theory of normal cycles, but their
error analysis is limited to the case of restricted Delaunay triangulations.
Discrete methods fall shorts on accuracy. There is a good reason for this, the dis-
crete approximations only use 1-ring neighborhood information, for a convergent
curvature approximation, a minimum of order 2 polynomial is needed, which re-
quires at least 5 adjacent vertices. Another disadvantage of discrete methods is
that it requires different formulas for different differential quantities, for example,
the approximation schemes for mean and Gaussian curvature are totally different.
This is different from polynomial-based continuous methods, as we will show in
section 3.2.
A few continuous methods based on polynomial fittings have been proven to deliver
converging results [46, 66, 9, 37]. However, these methods can have drastically
different numerical behaviors, and sometimes they can deliver very poor results
in practice. As we discussed in section 2, accuracy and stability of polynomial
fittings are subtle numerical issues, they are complicated due to the interactions
among different aspects of the methods, including point selection, parametrization,
numerical solvers, as well as their interactions with classical differential geometry
formulas. Although our focus is on polynomial fittings only, some of the numerical
issues that we address also apply to some other methods, such as those in [25] and
[54].
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3.2 Formulas for Differential Quantities

Reliable computations of differential quantities on discrete surfaces critically de-
pend on their counterparts for continuous surfaces. The latter is a subject in classical
differential geometry and has been studied extensively, but the numerical behaviors
of classical formulas have not been carefully scrutinized until recently. In [37], the
stability of the classical formulas for height functions was analyzed, and some new
formulas were proposed. Here we extend the analysis to the formulas for para-
metric surfaces and propose some alternative formulas that are more amenable to
numerical computations.

3.2.1 Formulas for Parametric Surfaces

Given a smooth surface Γ in the global xyz coordinate system, let x = f (u) be a
parametrization of a neighborhood around a vertex on Γ, where u = [u,v]T (we
consider all vectors as column vectors for consistency with the modern convention
in numerical analysis.). If the surface is smooth, the coordinate function f defines
a smooth surface composed of points x(u) ∈ R3. The Jacobian matrix of x(u) with
respect to u is then J = [xu,xv]. The vectors xu and xv form a basis of the tangent
space of the surface. Let du denote [du,dv]T . The first fundamental form of the
surface is the quadratic form

I(du) = duT Gdu, where G = JT J. (3.2.1)

G is known as the first fundamental matrix. Its determinant is g = det(G) = ‖xu×
xv‖2. Let ` denote

√
g, i.e., `= ‖xu× xv‖ , which we refer to as the “area element.”

The unit normal to the surface is then

n̂ =
xu× xv

`
. (3.2.2)

The second fundamental form in the basis {xu,xv} is given by the quadratic form

II(du) = duT Bdu (3.2.3)

where

B =−
[

n̂T
u xu n̂T

u xv
n̂T

v xu n̂T
v xv

]
=

[
n̂T xuu n̂T xuv
n̂T xuv n̂T xvv

]
, (3.2.4)

and is known as the second fundamental matrix.
The well-known Weingarten equations read [n̂u | n̂v] = − [xu | xv]W , where W is
the Weingarten matrix (a.k.a. the shape operator) with basis {xu,xv}. By left-
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multiplying JT on both sides, we have B = GW , and therefore,

W = G−1B. (3.2.5)

The mean curvature is equal to half of the trace of W . The Gaussian curvature is
equal to the determinant of W . Let κ1 and κ2 denote the eigenvalues of W , which are
the principal curvatures. Then, κH = (κ1+κ2)/2 and κG = κ1κ2. Let d̂1 and d̂2 be
the eigenvectors of W . Then ê1 = Jd̂1/‖Jd̂1‖ and ê2 = Jd̂2/‖Jd̂2‖ are the principal
directions. The principal curvatures and principal directions are sometimes used to
construct a 3×3 matrix

C = κ1ê1êT
1 +κ2ê2êT

2 . (3.2.6)

We refer to C as the principal curvature tensor or simply the curvature tensor for
brevity.
The Weingarten matrix in (3.2.5) is classical in differential geometry, but it is not
well-suited for numerical computations. The reason is that the matrix is in general
not symmetric, so its eigenvectors are not orthogonal to each other. In addition, the
eigenvalues of W are not necessarily real in the presence of round-off errors. For
robust numerical computations, we derive a symmetric shape operator as follows.
Let J = QR denote the QR factorization of J, where Q is 3× 2 with orthonormal
column vectors (i.e., QT Q = I) and R is a 2× 2 upper triangular matrix. The QR
factorization can be constructed using Gram-Schmidt orthogonalization [26]. Let
q̂1 and q̂2 denote the column vectors of Q. The shape operator in the orthonormal
basis {q̂1, q̂2} is the symmetric matrix

W̃ = R−T BR−1, (3.2.7)

and the curvature tensor is then

C = QW̃QT = J+T BJ+, (3.2.8)

where J+ =R−1QT is the pseudo-inverse of J. Note that the curvature tensor (3.2.8)
is equivalent to the embedded Weingarten map in [51, p. 20]. Eq. (3.2.8) also has the
same form as Eq. (13) in [37], but it is more general in that it applies to parametric
surfaces instead of just local height functions (see subsection 3.2.2).
After obtaining the symmetric shape operator W̃ , its eigenvalues are guaranteed to
be real and its eigenvectors are guaranteed to be orthonormal. More specifically, let
wi j denote the entries of W̃ . The principal curvatures are then

κ1,2 =
1
2

(
w11 +w22±

√
(w11−w22)

2 +4w2
12

)
. (3.2.9)
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If κ1 = κ2, we choose the principal directions to be q̂1 and q̂2, respectively. Other-
wise, the principal direction corresponding to κi is

êi =
(w11−κ3−i)û1 +w12û2

‖(w11−κ3−i)û1 +w12û2‖
=

w12û1− (w11−κi)û2

‖w12û1− (w11−κi)û2‖
(3.2.10)

for i = 1,2. For better stability, we use the first equality if |w11−κ3−i|> |w11−κi|
and use the second equality otherwise.

3.2.2 Formulas for Height Functions

The preceding formulas apply to any smooth parametrization of a neighborhood
of any point on a surface. A special parametrization is associated with the so-
called “local height function,” obtained by the orthogonal projection of the neigh-
borhood onto a plane that is nearly tangential to the surface. Specifically, given a
smooth surface in the global xyz coordinate system, it can be transformed into a
local uvw coordinate system by translation and rotation. Assume both coordinate
frames are orthonormal right-hand systems. Let the origin of the local frame be at
point [x0,y0,z0]

T . Let t̂1 and t̂2 be the unit vectors in the global coordinate system
along the positive directions of the u and v axes, respectively. Then, m̂ = t̂1× t̂2
is the unit vector along the positive w direction. Let U denote the orthogonal ma-
trix composed of column vectors t̂1, t̂2 and m̂, i.e., U = [t̂1, t̂2, m̂]. Any point x on
the surface is then transformed to a point p(x) = [u,v, f (u)]T = UT (x− x0). Con-
versely, x = U p+ x0. The function f (u) : R2→ R (more precisely, from a subset
of R2 to R) is a height function near x0. In the uvw coordinate system, the first two
components of the coordinate function are u and v, respectively, so the differential
quantities depend on only the derivatives of f with respect to u and v.

Let ∇ f = [ fu, fv]
T denote the gradient of f with respect to u and H =

[
fuu fuv
fvu fvv

]
the Hessian of f , where fuv = fvu. For this particular form, the Jacobian matrix and
the first and second fundamental matrices can be written explicitly in terms of ∇ f
and H, resulting in some simple closed-form formulas. Table 3.1 summarizes the
formulas of first- and second-order differential quantities of a parametric surface or
local height function. We separate the table into three parts by double lines. Most of
the first two parts are well known; see e.g. [15]. The formulas for mean and Gaus-
sian curvatures of local height functions were derived in [37]. To the best of our
knowledge, the third part of the table has not appeared in the literature previously.
Note that in [37] a symmetric shape operator was derived for local height functions
using the singular value decomposition (SVD) of the Jacobian matrix, but unfor-
tunately the Jacobian matrix for a parametric surface is too complex to derive an
explicit SVD, so we express the symmetric shape operator using QR factorization
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Table 3.1: Summary of formulas for continuous parametric surfaces and height
functions.

local parametrization local height function

description x = f (u,v) x =U

 u
v

f (u,v)

+ x0

Jacobian matrix J =

 xu

∣∣∣∣∣∣ xv

=

 q̂1

∣∣∣∣∣∣ q̂2


︸ ︷︷ ︸

Q

R U

 1 0
0 1
fu fv



1st fundamental matrix G = JT J
[

1+ f 2
u fu fv

fu fv 1+ f 2
v

]
area element `=

√
det(G) = ‖xu× xv‖2 1+ f 2

u + f 2
v

surface normal n̂ = xu×xv
`

1
`U

 − fu
− fv

1


2nd fundamental matrix B =

[
n̂T xuu n̂T xuv
n̂T xuv n̂T xvv

] [
fuu fuv
fvu fvv

]
︸ ︷︷ ︸

H

/`

Weingarten matrix W = G−1B 1
` (J

T J)−1H

mean curvature κH = 1
2 tr(W ) tr(H)

2` −
(∇ f )T H(∇ f )

2`3

Gaussian curvature κG = det(W ) = det(B)/`2 det(H)/`4

symmetric shape operator W̃ = R−T BR−1 = [wi j] in basis {q̂1, q̂2}
principal curvature tensor C = QW̃QT = J+T BJ+

principal curvatures κ1,2 =
1
2

(
(w11 +w22)±

√
(w11−w22)

2 +4w2
12

)
principal directions êi =

(w11−κ3−i)q̂1+w12q̂2
‖(w11−κ3−i)q̂1+w12q̂2‖

=
w12q̂1−(w11−κi)q̂2
‖w12q̂1−(w11−κi)q̂2‖

instead.

3.3 Experimental Results

In this section, we report some numerical experiments to verify our preceding anal-
ysis in Section 2.5. The experimental results can be affected by a number of factors,
such as input errors, surface topology, mesh connectivity, parametrization meth-
ods, degrees of fittings, and numerical solvers. For the input meshes, we consider
three aspects: closed versus open surfaces, noise-free versus noisy input points,
and well-shaped (or regular) versus poor-shaped (or irregular) meshes. For the al-
gorithms, we evaluate four different methods that we described earlier, including
(1) Xu’s 1-ring parametrization as detailed in [67], (2) local height functions [37],
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and parametrizations based on (3) local orthogonal projection or (4) least-squares
conformal maps [43]. When appropriate, we use different degrees of polynomial
fittings (degrees 2, 3, or 4). We denote these different methods by Xu-d, LHF-d,
LOP-d, LSCM-d, respectively, where d is the degrees of polynomial fittings.
The combinations of the above options lead to tens of cases. For each case we
compute the normals, and mean and Gaussian curvatures, principal curvatures, and
principal directions. For convergence study, we use four meshes of different reso-
lutions for each case and compute the average convergence rate as

convergence rate =
1
3

log2

(
error of level 1
error of level 4

)
. (3.3.1)

The convergence rate is showed at the right end of the curves. Let v denote the
total number of vertices, and let n̂i and ñi denote the exact and computed unit
vertex normals at the ith vertex. We measure the relative L2 errors in normals as√

∑
v
1 ‖ñi− n̂i‖2

2/v. For comprehensiveness, we sometimes also consider the L∞ er-

ror of normals, evaluated as maxi ‖ñi− n̂i‖2. Let ki and k̃i denote the exact and
computed curvatures at the ith vertex. We measure the relative errors of curvatures

in L2 norm as ‖κ̃ − κ‖2/‖κ‖2 =
√

∑
v
i=1 (κ̃i−κi)

2
/√

∑
v
i=1 κ2

i , and measure the

L∞ error as maxi |κ̃i−κi|/|κi|. Altogether, we obtain thousands of data points. In
consideration of dissertation length, we report only a representative subset of re-
sults. All of our computations use double-precision floating point arithmetic.

Experiments for Noise-Free Closed Surfaces We first present results on noise-
free closed surfaces. We chose a torus with inner radius 0.7 and outer radius 1.3.
A torus is representative for smooth surfaces as it contains parabolic, elliptic and
hyperbolic points. In practice, a mesh can be well shaped (such as those obtained
from CAD software for finite element analysis) or poor shaped (such as those from
marching cubes for visualization purposes). To capture both types of meshes, we
generated four triangular meshes using a commercial mesh generation software
GAMBIT of Fluent Inc. (now part of ANSYS, Inc.) and four others using the
isosurface function in MATLAB. Figure 3.1 shows a coarse mesh of either type. To
eliminate potential input errors, we projected the vertices onto the torus so that the
input points are accurate up to machine precision.
We first compare quadratic fittings using the four methods described earlier, de-
noted by Xu-2, LHF-2, LOP-2, and LSCM-2, respectively. For Xu-2, 1-ring neigh-
bors were used, and for others 1.5-rings were used. Figure 3.2 shows the L2 error
and L∞ errors in the computed normals, and Figure 3.3 shows the corresponding
results for mean curvature. Note that except for Xu-2, the other methods converged
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Figure 3.1: Sample meshes of torus generated by commercial mesh generation soft-
ware (left) and by isosurface algorithm (right).

at about quadratic rates for normals in terms of both L2 error and L∞ errors, and
converged at about linear rates for curvatures in L∞ error and nearly quadratic rates
in L2 error. The super-convergence in L2 error is likely due to statistical cancella-
tion of truncation errors. For Xu-2, the behavior was inconsistent: for well-shaped
meshes it performed better than others in L2 errors but substantially worse in L∞

errors, and for poor-shaped meshes it failed to converge. This inconsistent behav-
ior is not surprising, because the 1-ring neighbors used in Xu-2 are more compact
than 1.5-ring and in turn could sometimes deliver more accurate results, but they
sometimes have too few points and lead to rank-deficient or ill-conditioned systems.
Even though the SVD employed in [67] could produce numerical solutions in such
cases, accuracy is not guaranteed. For completeness, we also report the L2 errors
in the computed Gaussian curvature and principal directions in Figure 3.4, whose
behaviors were qualitatively similar to mean curvature.
For noise-free surfaces from CAD models or analytic functions, it is possible and
sometimes desirable to obtain higher order estimations. Except for Xu’s method,
the other three methods are capable of supporting higher-degree fittings. We con-
sider only LHF and LSCM for high-degree fittings and evaluate degree-3 and 4
fittings using 2 and 2.5-rings, respectively, while adaptively increasing the ring size
at half increments if the numbers of points are insufficient. Since LHF and LOP de-
liver nearly identical results (which is evident from the results of quadratic fittings),
the primary difference between LHF and LSCM is the parametrization being used.
Figure 3.5 shows the L2 and L∞ errors in the computed normals. Figure 3.17 shows
the L2 errors in the computed mean and Gaussian curvatures. Note that LSCM-3 de-
livered slightly better accuracy than LHF-3 in most cases, but LHF-4 substantially
out-performed LSCM-4 in almost all cases. In all cases, the convergence rates of
LHF-4 were nearly an order higher than the theoretical prediction due to statisti-
cal error cancellations. In contrast, LSCM-4 converged at a rate nearly an order
lower than the theoretical prediction for well-shaped meshes and failed to converge
for poor-shaped meshes. This behavior of LSCM indicates that parametrizations
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Figure 3.2: Comparison of L2 (top) and L∞ (bottom) errors in computed normals
using degree-2 fittings for noise-free torus meshes.
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Figure 3.3: Comparison of L2 (top) and L∞ (bottom) errors in computed mean cur-
vatures using degree-2 fittings for noise-free torus meshes.
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Figure 3.4: Comparison of L2 errors in computed Gaussian curvature and principal
directions using degree-2 fittings for noise-free torus meshes.
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can affect the accuracy of high-degree fittings significantly, and LSCM seems to be
sufficiently smooth for cubic fitting but insufficient for higher-degree fittings.
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Figure 3.5: Comparison of L2 errors of in computed normals (top) and mean curva-
tures (bottom) using degree-3 and 4 fittings for noise-free torus meshes.
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Figure 3.6: Comparison of L2 errors in computed Gaussian curvatures (top) and
principal directions (bottom) using degree-3 and 4 fittings for noise-free torus
meshes.

Experiments for Noise-Free Open Surfaces In geometric modeling, surfaces
often have boundaries and/or sharp features. It is therefore sometimes necessary to
compute differential quantities using one-sided stencils. The boundaries (or sharp
features) can adversely affect the computations of the differential quantities for two
reasons: first, the neighborhood of a boundary vertex typically has fewer points,
which may lead to ill-posed or ill-conditioned equations. Second, the stencil of
boundary vertices are asymmetric, preventing statistical error cancellation associ-
ated with symmetry. Some existing methods for normal and curvature computations
actually require the surface to be closed and rely on symmetry for convergence. Al-
though polynomial fittings in general do not require closed surfaces, the accuracies
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Figure 3.7: Test meshes for open surfaces.

of different methods may vary substantially near boundaries. To assess accuracies,
we use a surface defined by the following function adopted from [66]:

z = f (x,y) = exp
(
−81

16
(
(x−0.5)2 +(y−0.5)2)) , (3.3.2)

where (x,y) ∈ [0,1]× [0,1]. We use two types of meshes, as shown in Figure 3.7,
which we refer to as irregular and 4-8 meshes, respectively. These meshes are
both well-shaped compared to the meshes from isosurfacing algorithms, but the
variations of vertex valences can pose some challenges to the algorithms.
Figure 3.8 shows the L2 and L∞ errors in the computed normals for Xu-2, LHF-2,
LOP-2, and LSCM-2. Because Xu’s parametrization is limited to 1-ring neigh-
borhoods that are topological disks, we excluded border vertices when computing
errors for Xu-2. However, boundary vertices are included for all the other meth-
ods. Figure 3.9 shows the L2 errors of the computed mean and Gaussian curvatures.
Except for Xu-2, the other three methods delivered very similar results, but the con-
vergence rates in L2 errors of mean curvatures were lower than those for the torus,
probably due to the loss of statistical error cancellations along boundaries. For Xu-
2, it is worth noting that the curvatures failed to converge for both types of meshes
due to insufficient number of points in the stencil.
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Figure 3.8: Comparison of L2 (top) and L∞ (bottom) errors in computed normals
using degree-2 fittings for noise-free open surface meshes.
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Figure 3.9: Comparison of L2 errors in computed mean (top) and Gaussian (bottom)
curvatures using degree-2 fittings for noise-free open surface meshes.

29



1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

3.2

3.4
3.5
3.6

refinement level

l2
e

rr
 n

o
rm

a
l

mesh irregular

 

 

1 1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

2.9
3.0
3.4

3.4

refinement level

mesh 4−8

LSCM 3

LHF 3

LSCM 4

LHF 4

1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

2.4

3.0
3.0

3.3

refinement level

m
a

x
e

rr
 n

o
rm

a
l

mesh irregular

 

 

1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

2.5

2.9

3.1

3.1

refinement level

mesh 4−8

LSCM 3

LHF 3

LSCM 4

LHF 4

Figure 3.10: Comparison of L2 (top) and L∞ (bottom) errors in computed normals
using degree-3 and 4 fittings for noise-free open surface meshes.
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Figure 3.11: Comparison of L2 errors in computed mean (top) and Gaussian (bot-
tom) curvatures using degree-3 and 4 fittings for noise-free open surface meshes.
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Figures 3.10 and 3.11 compare the errors for degree-3 and 4 fittings, namely LHF-
3, LHF-4, LSCM-3, and LSCM-4. LHF consistently delivered better accuracy than
LSCM for both degree-3 and 4 fittings, and LSCM-4 converged substantially slower
than LHF-4, which confirms our observation that LSCM is unsuitable for high-
degree fittings. From these tests, we conclude that LHF and similarly LOP are
more flexible and robust than Xu’s method, and they deliver higher accuracy than
LSCM for high-degree fittings.
In the proceeding results, we included both the interior and boundary vertices, ex-
cept for Xu’s method. To study the effect of border vertices, Figures 3.12 shows
the L2 errors and their convergence rates in the computed normals using LHF and
LSCM for boundary vertices and their 1-ring neighbors Figure 3.13 shows the cor-
responding results for the mean and Gaussian curvatures. It can be seen that these
convergence rates are somewhat lower than those for the interior vertices but are
very close to the theoretical analysis. These results indicate that these fitting meth-
ods do not rely on symmetry for convergence, although they can benefit from sym-
metry and statistical error cancellation in practice.

Experiments for Noisy Surface Meshes In many practical situations, the input
points are not precisely on an analytical surface but contain noise or input errors.
An example is the meshes extracted from isosurfaces, for which the vertex positions
contain inherent errors. Another example is meshes obtained from solutions of
numerical computations. We now assess the methods for these situations.
To study the effect of numerical errors, we use the meshes obtained from the iso-
surface function in MATLAB as in Section 3.3, but unlike in Section 3.3 we do
not project the vertices onto the true torus. Table 3.2 shows the errors in the vertex
positions for the surface mesh extracted using the isosurface function of MATLAB.
We compute the position error for each vertex based on its distance to the torus, and
report both L2 and L∞ errors for five different mesh resolutions. From Table 3.2, it
seems that the isosurface function in MATLAB is second-order accurate, so con-
vergence of curvature is not guaranteed theoretically.
For improved noise resistance, we increased the neighborhood size by half a ring
for LHF, LOP, and LSCM. Figure 3.14 shows the L2 and L∞ errors of the computed
normals for degree-2 fittings, and Figure 3.15 shows the L2 errors in the computed
mean and Gaussian curvatures, respectively. It can be seen that Xu-2 had the largest
errors, nearly two orders of magnitude larger than the other methods. This again
is primarily because Xu’s method uses only 1-ring neighbors. For the other three
methods, the L2 errors of the normal directions converged at about second order,
while the L∞ errors converged slower than second order. The L2 errors of the cur-
vatures converged at about first order. These rates are higher than the theoretical
predictions for noisy data, probably due to statistical error cancellation. We note
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Figure 3.12: L2 errors in computed normals for boundary vertices for noise-free
open surface meshes.
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Figure 3.13: L2 errors in computed mean (top) and Gaussian (bottom) curvatures
for boundary vertices for noise-free open surface meshes.

Table 3.2: Input position errors of torus meshes extracted using isosurface function
of MATLAB.

#volume #surface average error convergence rate
cells verts. edge length L2 L∞ L2 L∞

163 320 0.11 3.60e-3 9.30e-3 − −
323 1760 0.048 1.12e-3 3.47e-3 1.69 1.42
643 7320 0.023 2.59e-4 9.03e-4 2.11 1.94
1283 31136 0.011 6.71e-5 2.25e-4 1.95 2.00
2563 122464 0.0057 1.65e-5 5.70e-5 2.03 1.98
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that when a first-order isosurface algorithm is used, we observed no convergence
and sometimes even divergence for the curvatures.
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Figure 3.14: Comparison of L2 (left) and L∞ (right) errors in computed normals
using degree-2 fittings for noisy torus.
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Figure 3.15: Comparison of L2 errors in computed mean (left) and Gaussian curva-
tures (right) using degree-2 fittings for noisy torus.
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Figure 3.16: Comparison of L2 (left) and L∞ (right) errors in computed normals
using degree-3 and 4 fittings for noisy torus.
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Figure 3.17: Comparison of L2 errors in computed mean (left) and Gaussian curva-
tures using degree-3 and 4 fittings for noisy torus.

For completeness, we also present the results of cubic and quartic fittings in Fig-
ures 3.16 and 3.17 for the computed normals and curvatures, respectively. The
results of these higher-degree fittings were worse than those for quadratic fittings,
because a degree-d fitting requires the input errors to be order d + 1 or higher for
optimal convergence.
The input noise in the preceding test was due to numerical errors in isosurfacing,
which are beyond our control. To verify our analysis, we report experiments with
controlled errors, where the noise is added by perturbing the surface. We use the
open surface meshes in this test, and for each vertex we perturb it by adding a noise
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of αhk along the normal direction, where α is a random number between 0 and 0.1
with Gaussian distribution, h is the average edge length, and k is chosen to be 2 or
3. For brevity, we report results only for quadratic fittings.
Figure 3.18 shows the L2 and L∞ errors of computed normals for O(h3) pertur-
bation, and Figure 3.19 shows the corresponding results for O(h2) perturbations.
Figure 3.20 shows the L2 errors of the computed mean and Gaussian curvatures
for O(h3) perturbation, and Figure 3.21 shows the corresponding results for O(h2)
perturbations. We excluded boundary vertices when computing errors for Xu-2 but
included boundary vertices for the other methods. Note that for the normals, each
method performed nearly identically for the two different orders of perturbations.
Xu-2 again delivered slightly better results than the others for the 4-8 mesh due
to its use of a smaller neighborhood. However, for curvatures Xu-2 failed to con-
verge again due to insufficient number of points, and the other methods delivered
higher than linear convergence for O(h3) perturbations and generally lower than
linear convergence for O(h2) perturbations, consistent with the theoretical analysis.
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Figure 3.18: Comparison of L2 (top) and L∞ (bottom) errors of computed normals
using degree-2 fittings for noisy open surface with third-order perturbation.
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Figure 3.19: Comparison of L2 (top) and L∞ (bottom) errors of computed normals
using degree-2 fittings for noisy open surface with second-order perturbation.
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Figure 3.20: Comparison of L2 errors of computed mean (top) and Gaussian (bot-
tom) curvatures using degree-2 fittings for noisy open surface with third-order per-
turbation.

Comparison of Efficiency A key practical consideration in choosing a proper
method is runtime efficiency. Table 3.3 reports the execution times of the different
methods for the well-shaped torus mesh. We implemented the methods of Xu,
LOP, and LHF in MATLAB and then converted the MATLAB code into C using
Agility MCS (www.agilityds.com). For Xu’s method, we used the singular value
decomposition procedures in LAPACK [1]. For least-squares conformal mapping,
we used the C++ implementation of the parametrization algorithm in CGAL and
used the same C code as for LOP for the other numerical computations. All the
codes were compiled using gcc 4.2.4, with optimization enabled. We performed
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Figure 3.21: Comparison of L2 errors of computed mean (top) and Gaussian (bot-
tom) curvatures using degree-2 fittings for noisy open surface with second-order
perturbation.
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Table 3.3: Comparison of execution times in seconds of different methods for torus
mesh.

Mesh #verts. #tris. Xu-2 LOP-2 LHF-2 LHF-3 LHF-4 LSCM-2 LSCM-3 LSCM-4

1 1338 2676 0.035 0.011 0.0061 0.013 0.028 0.20 0.36 0.66

2 5246 10492 0.12 0.039 0.023 0.050 0.11 0.81 1.43 2.65

3 21156 42312 0.51 0.16 0.096 0.20 0.44 3.32 5.74 10.58

4 85208 170416 2.06 0.65 0.38 0.83 1.81 13.66 23.21 43.16

the tests on a Linux computer with a 3GHz Intel Duo Core Pentium 4 processor
and 2GB of RAM.
As can be seen in the table, LSCM was roughly an order of magnitude more expen-
sive than the others. This is partially due to the overhead of the data structures in
CGAL and the high cost for solving linear system for the conformal parametriza-
tion. With a better optimized procedure for conformal parametrizations, LSCM
may become more competitive in cost. Xu’s method was the second most expen-
sive, even though it uses only 1-ring neighbors. This is primarily because of its
use of SVD, which is substantially more expensive than QR factorization. The
most efficient algorithm was LHF. The effective performance of LHF-2 is about
450 thousand triangles per second, and the cost approximately doubles when the
degree of fitting is increased by one. For comparison, we also tested Jet_fitting_3
of [10] on the same computer, and the effective performance of Jet_fitting_3 for
second-order fitting was about 28 thousand triangles per second, consistent with
their results reported in [10]. Our algorithm and implementation is more than 16
times faster than Jet_fitting_3, probably because of their use of SVD as well as the
the overhead of the data structures in CGAL. LOP slightly under-performs LHF,
because the linear system for LOP involves three right-hand-side vectors (instead
of one in LHF) and also the formulas for parametric surfaces are more complex
than those for height functions. From these experimental results, it seems that LHF
offers the best combination of efficiency, accuracy, simplicity, and robustness.
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Chapter 4

High Order Surface Reconstruction

In chapter 3, we use our local polynomial fitting computational framework to cal-
culate normal and curvature on each vertex over a discrete surface mesh. A natu-
ral following question is: can we use this framework to reconstruct a continuous
high-order surface from the same input data? This problem is important for many
meshing operations, such as generating high-order finite elements, mesh refine-
ment, mesh smoothing and mesh adaptation. In many of these problems, a continu-
ous CAD model may not be available. Instead, only a surface mesh, typically with
piecewise linear or bilinear faces, is available.
In this chapter, we consider the problem of reconstructing a highly accurate, con-
tinuous geometric support from a given surface mesh. We refer to this problem as
high-order surface reconstruction. Besides meshing, this reconstruction problem
also arises in computer graphics [17] and geometric modeling [63]. In general, the
high-order reconstruction should satisfy some (if not all) of the following require-
ments:

Continuity: The reconstructed surface should be continuous to some degree (e.g.,
C0, C1, or C2 continuous, depending on applications).

Feature preservation: The reconstruction should preserve sharp features (such as
ridges and corners) in the geometry.

Geometric accuracy: The reconstruction should be accurate and asymptotically
convergent to the exact surface to certain order under mesh refinement.

Stability: The reconstruction should be numerically stable and must not be oscil-
latory under noise.

Different applications may have emphasis on different aspects of the problem. For
example, in computer graphics and geometric design, the visual effect may be
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the ultimate goal, so smoothness and feature preservation may be more impor-
tant. Therefore, the methods for such applications tend to focus on the first two
issues, and the numerical issues of asymptotic convergence and stability are mostly
ignored. Our focus is on meshing for finite element or finite volume computa-
tions, for which these numerical issues are very important. Indeed, the low order
of accuracy of the geometry would necessarily limit the accuracy of the solutions
of differential equations, and numerical instabilities and excessive oscillations can
have even more devastating effect to numerical simulations. Some efforts, such
as isogeometric analysis [32], aim to improve accuracy by using continuous CAD
models directly in numerical simulations, but CAD models may sometimes be too
complicated to be used directly, such as in moving boundary problems. When a
mesh is involved, a high-order reconstruction may sometimes be the best option.
We introduce two methods, called Weighted Averaging of Local Fittings (WALF)
and Continuous Moving Frames (CMF), for reconstructing a feature-preserving,
high-order surface from a given surface mesh. We assume the vertices of the mesh
accurately sample the surface and the faces of the mesh correctly specify the topol-
ogy of the surface. The two methods both utilize the numerical techniques of
weighted least squares approximations and piecewise polynomial fittings. They
apply to surface meshes composed of triangles and/or quadrilaterals, and also to
curves (such as ridge curves on a surface). Unlike existing methods, which are typ-
ically only first or second order accurate, our methods can achieve third- and even
higher order accuracy, while guaranteeing global C0 continuity. For its weighted
least squares nature, these methods are also tolerant to noise. We describe the the-
oretical framework of our methods, and also present experimental comparisons of
our methods against some others, and its applications in a number of meshing op-
erations. In addition, we show how to calculate high order numerical surface inte-
gration based on WALF method.

4.1 Two Methods of Surface Reconstruction

The local polynomial fitting method described in Section 2 only applies locally
at each individual vertex of a mesh. There was no coordination among the local
fittings at different vertices, so the method does not reconstruct a global continuous
surface. To construct a continuous surface, there are at least three different options:

1. compute multiple local fittings at vertices and then compute a weighted aver-
aging of these fittings;

2. enforce continuity of local coordinate frames and weights for local fittings;

3. introduce new control points to define continuous/smooth surface patches.
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Most methods in the literature use the latter two options. For example, the moving
least squares [42] uses the second option to construct a C∞ surface from a point
cloud. Walton’s method [63] adopted by Yams [21, 20] uses the third option. In
this section, we describe two methods that belong to the first two categories, re-
spectively. These two methods can be used to construct methods that belong to the
third category, such as finding the locations of extra control points of high-order
finite elements, as we will describe in section 4.2.1. For simplicity, we will first
focus on triangular meshes for smooth surfaces in this section, and will present the
extension to quadrilateral meshes and for meshes with sharp features in the next
section when describing their applications.

4.1.1 Weighted Averaging of Local Fittings (WALF)

A simple approach to construct a high-order surface is to compute a weighted aver-
age of the local fittings at vertices. We refer to this approach as Weighted Averaging
of Local Fittings (WALF). To achieve continuity of the surface, the weights used by
the weighted averaging must be continuous over the mesh. One such a choice is
the barycentric coordinates of the vertices over each triangle. Consider a triangle
composed of vertices xi, i = 1,2,3, and any point p in the triangle. For each vertex
xi, we obtain a point qi for p from the local fitting in the local uvw coordinate frame
at xi, by projecting p onto the uv-plane. Let ξi, i = 1,2,3 denote the barycentric
coordinates of p within the triangle, with ξi ∈ [0,1] and ∑

3
i=1 ξi = 1. We define

q(u) =
3

∑
i=1

ξiqi(u) (4.1.1)

as the approximation to point p. Figure 4.1 shows a 2-D illustration of this ap-
proach, where ξi are the barycentric coordinates of point p within the edge x1x2.

WALF constructs a C0 continuous surface, as can be shown using the properties
of finite-element basis functions: The barycentric coordinates at each vertex of a
triangle corresponds to the shape function of the vertex within the triangle, and the
shape function of the vertex in all elements forms a C0 continuous basis function
(i.e., the linear pyramid function for surfaces or the hat function for curves). Let φi
denote the basis function associated with the ith vertex of the mesh, and it is zero
almost everywhere except within the triangles incident on the ith vertex. Therefore,
q can be considered as a weighted average of the polynomials at all the vertices,

q(u) =
n

∑
i=1

φi(u)qi(u), (4.1.2)
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Polynomial fitting at x2

 

Figure 4.1: 2-D illustration of weighted averaging of local fitting. The black
(dashed) curve indicates the exact curve. The blue (darker, solid) and green (lighter,
solid) curves indicate the fittings at vertices x1 and x2, respectively. q is the WALF
approximation of point p and is computed as a weighted average of the points q1
and q2 on the blue and green curves, respectively.

and then it is obvious that q is C∞ within each triangle and C0 over the whole mesh.
The idea of WALF is intuitive, but the analysis of its order of accuracy is by no
means straightforward. If the coordinate systems were the same at all vertices,
then the analysis would have been easy, as q would have inherited the accuracy of
qi. In WALF, the local fittings at the three vertices of a triangle are in general in
different coordinate systems, and this discrepancy of coordinate systems can lead to
additional error terms. Under the same assumptions as Proposition in Section 4.3.2,
we obtain the following property of WALF.
Proposition: Given a mesh whose vertices approximate a smooth surface Γ with
an error of O(hd+1), the distance between each point on the WALF reconstructed
surface and its closest point on Γ is O(hd+1 +h6).
Proof: We analyze the accuracy for triangles, but it helps to refer to Figure 4.1
for a 2-D illustration. Let q∗i denote the intersection of the exact surface with the
direction ni from a point p (i.e., q∗i is the exact solution for qi in the fitting at vertex
xi). Let q̄ denote the closest point to point q = ∑

3
i=1 ξiqi on the exact surface. Let

q∗ = ∑
3
i=1 ξiq∗i and q̄∗ be its closest point on the surface. Then,

‖q− q̄‖ ≤ ‖q− q̄∗‖ ≤ ‖q−q∗‖+‖q∗− q̄∗‖. (4.1.3)

For ‖q− q∗‖, note that ‖q− q∗‖ ≤ ∑
3
i=1 ξi‖qi− q∗i ‖. When dth degree fittings are

used, ‖qi−q∗i ‖= O(hd+1), so

‖q−q∗‖= O(hd+1). (4.1.4)

For ‖q∗− q̄∗‖, note that ‖q∗1− q∗2‖ = |cosθ1|‖q∗1− p‖+ |cosθ2|‖q∗2− p‖, where
θi is the angle between q∗1q∗2 and n̂i. Note that cosθi = O(h), since by assumption

44



n̂i is at least a first order approximation to the normal at xi, and also a first order
approximation to the normals at q∗1 and q∗2, whereas the line segment q∗1q∗2 is at least
a first order approximation to a tangent direction at q∗1 and q∗2. Because p is a point
on triangle x1x2x3, whose edge length is O(h) by assumption, ‖p− q∗i ‖ = O(h2).
Therefore,‖q∗1−q∗2‖ = O(h3), and similarly for ‖q∗1−q∗3‖ and ‖q∗2−q∗3‖. Because
q∗ is a point on triangle q∗1q∗2q∗3,

‖q∗− q̄∗‖ = O(h3)2 = O(h6). (4.1.5)

Combining (4.1.3-4.1.5), we conclude that ‖q− q̄‖= O(hd+1)+O(h6) = O(hd+1+
h6). �

The above proposition gives an upper bound of the error, and it shows that the error
term is high order. The O(h6) term is due to the discrepancy of local coordinate
systems at different vertices. However, in most applications we expect d < 6, so
the total error would be dominated by the degree of polynomials used in the least
squares fitting.

4.1.2 Continuous Moving Frames (CMF)

WALF is a simple and intuitive method, but its order of accuracy has a theoretical
limit. We now present a method that can overcome this limitation by using local
coordinate frames that move continuously from point to point. We refer to such
a scheme as continuous moving frame (CMF). The basic idea is to use the finite-
element basis functions to construct continuous moving frames and weights for
local fittings. In particular, assume each vertex has an approximate normal direction
at input. Consider a triangle x1x2x3 and any point p in the triangle. Let n̂i denote
the unit vertex normal at the ith vertex. We compute a normal at p as

n̂ =
3

∑
i=1

ξin̂i

/∥∥∥∥∥ 3

∑
i=1

ξin̂i

∥∥∥∥∥ . (4.1.6)

Given n̂, we construct a local uvw coordinate system along axes ŝ, t̂, and n̂, where ŝ
and t̂ form an orthonormal basis of the tangent plane. Within this local coordinate
frame, we formulate the weighted least squares as

‖ΩV X−ΩF‖2, (4.1.7)

where V again is the generalized Vandermonde matrix, and Ω is the weight matrix.
In practice, the Vandermonde matrix for a point p should involve a small stencil
in the neighborhood of the triangle. We use the union of the stencils of the three
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vertices of the triangle. Conceptually, it is helpful to consider the Vandermonde
matrix involving all the points of the mesh, but the weight matrix Ω assigns a zero
weight for each point that is not in the stencil. For the reconstructed surface to
be smooth, it is important that Ω is continuous as the point p moves within the
geometric support of the mesh. In addition, it is also important that Ω is invariant
of rotation of tangent plane (i.e., be independent of the choice of ŝ and t̂).
We define the weight as follows: For p within the triangle x1x2x3, we first define a
weight for each vertex (for example the jth vertex) in the mesh that is in the stencil
of vertex i as

wi j =
(
n̂T

i n̂ j
)+

/

(√
‖x j− p‖2 + ε

)d/2

, (4.1.8)

and set wi j = 0 otherwise, where ε is a small number, and

(
n̂T

i n̂ j
)+

=

{
n̂T

i n̂ j if n̂T
i n̂ j ≥ η

0 otherwise
(4.1.9)

for some small η ≥ 0. Then for the weighting matrix Ω, the weight for vertex j
is then ∑

3
i=1 wi j. Note that the introduction of ε in (4.1.8) is to prevent division by

very small numbers when p is very close to a vertex. In practice, we set ε to be 0.01
times the average distance from p to the points in the stencil.
Similar to WALF, CMF constructs a C0 continuous surface, because Ω, V , and F
are all C0 continuous, as long as the resulting linear system is well-conditioned. The
accuracy of CMF follows that for weighted least squares approximation in [37], and
we obtain the following property of CMF.
Given a mesh whose vertices approximate a smooth surface Γ with an error of
O(hd+1), the shortest distance from each point on the CMF reconstructed surface
to Γ is O(hd+1).
Relationship with Moving Least Squares. The idea of using moving frames is not
new, and goes back to Élie Cartan in differential geometry. One of the incarnations
of the idea of using moving frames for discrete surfaces is the so-called moving least
squares (MLS) for point clouds [42]. CMF shares some similarities to MLS. In par-
ticular, they are both based on weighted least squares approximations within some
local frames. However, they also differ in some fundamental ways. First, moving
least squares uses global weighting functions that are exponential in the distance,
and theoretically, MLS is C∞. However, because global weighting functions are too
expensive to compute, practical implementations typically truncate small weights
to zeros, leading to a loss of continuity. In contrast, CMF uses only a local support
by construction. Second, MLS does not guarantee the order of accuracy, because
its weights are global and purely based on Euclidean distance. Although its con-
vergence was conjectured in [42], we have observed that MLS sometimes fails to
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converge even for simple geometries such as a torus. In contrast, CMF uses the
mesh connectivity as a clue in selecting the stencils, instead of based on Euclidean
distance. Third, CMF can take into account the normals in the weighting function,
to filter out points across sharp features. This allows CMF to handle surfaces with
sharp features in a natural way, which is important for meshing operations. On the
other hand, it is difficult to treat sharp features in the framework of MLS. Because
of their local supports, CMF is more easily adapted to treat sharp features, as we
describe in the next section.

4.1.3 Safeguards Against Oscillations

High degree Taylor polynomials in general are accurate near the origin of the lo-
cal coordinate system. However, higher degree polynomials also tend to be more
oscillatory than lower degree polynomials. Such oscillations may be particularly
problematic for WALF, for which we evaluate the polynomial in a neighborhood of
the origin (i.e., within the faces incident on a vertex) instead of at the origin (i.e., the
vertex) of the local coordinate system at a vertex. Therefore, large errors may occur
if care is not taken. To address this issue, we introduce a safeguard to downgrade
the degree of polynomial if necessary. In particular, when solving (2.3.3) to obtain
the coefficients for a degree-d fitting, for 2 ≤ p < d (where p = j+ k in (2.3.1)),
we solve each pth-order coefficient twice: once by using a degree-p fittings, and
once for a degree-d fitting. Let ĉp denote the solution of the coefficient from the
degree-p fitting, and cp from the degree-d fitting. We consider ĉp as a more reli-
able (i.e., less oscillatory) estimate of the coefficient. If |ĉp− cp| > max{|ĉp|,ε},
where ε is a small number such as 0.01, then we consider the degree-d fitting to be
overly oscillatory, and decrease the degree of fittings by 1. We repeat the process
to check the coefficients and reduce the degree of fittings until all the coefficients
pass the test or the degree of polynomial is decreased down to 2. To demonstrate
the effectiveness of our safeguards in Section 4.2.2, Table 4.1 shows the number of
vertices for which the safeguards were invoked to downgrade the degrees of fittings
for the coarsest torus mesh in Figure 4.2. This mesh had 328 vertices. About 26%
of vertices were downgraded for degree-six fittings, and about 16% of vertices were
downgraded for degree-five fittings.

4.1.4 Treatment of Sharp Features.

Sharp features, such as ridges and corners, are challenging problems in their own
right. We have so far implemented a simple treatment for sharp features. First,
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Table 4.1: Number of vertices for which safeguards were invoked for coarsest torus
mesh.

degree 2 degree 3 degree 4 degree 5 degree 6
#total downgraded 0 2 6 51 85

downgraded to degree 2 - 2 3 2 2
downgraded to degree 3 - - 3 3 18
downgraded to degree 4 - - - 46 57
downgraded to degree 5 - - - - 8

we identify feature edges and vertices and connect the feature edges to form ridge
curves using an algorithm such as that in [33, 34]. We treat the ridge edges as
internal boundaries within the mesh and require that the k-ring neighbors of vertices
do not go across ridge curves. This is accomplished by virtually splitting the mesh
along ridge curves in our mesh data structure. For ridge curves themselves, we
separate them into sub-curves that do not have corners in their interior. For each
sub-curve, we perform a high-order reconstruction using either WALF or CMF for
curves. This treatment is sufficient for most meshing operations.

4.1.5 Experimental Results

We report some experimental results of our two proposed methods, and compare
them with some other methods. We first show the mesh convergence study of
WALF and CMF. While it is typically unnecessary to use schemes with higher
than third or fourth order accuracy, to demonstrate the capabilities and limitations
of these two methods, we report results with polynomials of up to degree 6. We
performed our experiment using a torus with in-radius of 0.7 and outer-radius of
1.3, with an unstructured triangular mesh. We considered four levels of mesh re-
finement. The coarsest mesh has 328 vertices and 656 triangles, whereas the finest
mesh has 85,276 vertices and 170,552 triangles. Figure 4.2 shows the coarsest mesh
used in our experiments. In this test, we randomly generated 10 points on each face
of the mesh, then project them onto a high-order surface constructed using WALF
or CMF. We compute the error as the shortest distance from each approximate point
to the torus.

Accuracy Figure 4.3 shows the L∞ errors of WALF and CMF for the meshes. In
the figure, the horizontal axis corresponds to the level of mesh refinement, and the
vertical axis corresponds to the L∞ errors. In the legends, the “degree” indicates
the degree of polynomial fittings used, and “linear” indicates the error for linear
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Figure 4.2: Coarse mesh of torus used in our mesh convergence study.

interpolation within triangles. We show the average convergence rates along the
right of the plots for each curve, calculated as

convergence rate =
log(error4/errorbase)

log(h4/hbase)
, (4.1.10)

where errori denotes the L∞ error of all the randomly inserted points for the ith
coarsest mesh, and hi is the maximum edge length of the corresponding mesh.
From the figures, it is obvious that quadratic and higher-degree fittings produced
far more accurate results than linear interpolation. Both WALF and CMF achieved
a convergence rate of (d +1) when d is odd and about (d +2) when d is even. The
superconvergence for even-degree fittings is likely due to statistical error cancel-
lations of the leading error terms, which are of odd degrees. However, such error
cancellations are not guaranteed when the points are very far from being symmetric,
especially near boundaries or sharp features.
Some conclusions can be drawn from our comparisons between WALF with CMF.
In terms of accuracy, we note that WALF gave smaller errors (up to 50% smaller
for L∞ errors and 75% smaller for L1 errors) than CMF for finer meshes, although
they delivered very similar convergence rates. The reason for the smaller errors for
WALF was probably that WALF uses a smaller stencil for each polynomial fitting.
Also notice that for coarse meshes, high-order polynomial fittings do not converge
at expected rate, because the safeguards automatically reduce the degree to avoid
large oscillations, so their convergence rates are the same as quadratic or cubic
polynomials at first.

Approximate Continuity of Normals Both WALF and CMF construct C0 con-
tinuous surfaces, so the surface normal and curvatures can be discontinuous across
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Figure 4.3: L∞ errors of WALF (left) and CMF (right) under mesh convergence
for torus. Both WALF and CMF achieve (d + 1)st or higher order accuracy for
degree-d polynomials.

edges and at vertices. However, this discontinuity (or jump) decreases as the de-
gree of the fittings increases or as the mesh is refined. Specifically, given a mesh
whose vertices approximate a smooth surface Γ with an error of O(hd+1), where h
denotes the maximum edge length and d ≤ 6, it can be shown that the jump of sur-
face normal across two adjacent face elements is O(hd) for both WALF and CMF.
The proof of this convergence is similar to that of Proposition 2. Instead of proving
it formally, we illustrate this convergence experimentally in Figure 4.4. The figure
shows the errors in the normal directions at some randomly sampled points on the
surface reconstructed by WALF. The error in the normal direction converges at a
rate of at least dth order for dth degree fittings. Therefore, the discontinuity of dif-
ferential quantities along edges is small (specifically, O(hd)) when approximating
a smooth surface. This is in contrast with some other methods that can achieve
higher-order continuity at the cost of lower-order accuracy.

Comparison with Other Methods Besides WALF and CMF, some other meth-
ods have been developed for high-order reconstructions and been used in the mesh-
ing community. One method that is worth noting is that proposed by Walton [63]
and adopted by Frey for surface meshing [20]. One property of Walton’s method
is that it achieves C1 (or G1) continuity for the reconstructed mesh. However, there
does not seem to be any analysis of the accuracy of Walton’s method in the liter-
ature. Figure 4.5 shows a comparison of the errors of Walton’s method as well as
WALF using quadratic and cubic fittings, with linear interpolation as the baseline
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Figure 4.4: L2 and L∞ errors of normal directions of the surface reconstructed using
WALF method.

of comparison. The two figures show the errors in L∞ and L2 norms for the torus.
From the result, it is evident that Walton’s method converges only linearly and is
actually less accurate than linear interpolation for finer meshes. The inaccuracy of
Walton’s method is probably due to its dependence on the tangent directions of the
edges, which are in general unavailable and can be estimated only to low accuracy.
Therefore, it is obvious that C1 (and in fact even C∞) continuity does not imply
accuracy of the reconstruction, although they may produce smooth appearance. On
the other hand, high-order methods with C0 continuity typically produce errors that
are too small to cause any noticeable discontinuities.

Efficiency In terms of efficiency, WALF and CMF are comparable when approxi-
mating a single point because they both construct and solve a weighted least square
problem. However, there is an important difference between the two methods: CMF
does not actually reconstruct the whole surface, so whenever we need a point on the
surface, a least square problem has to be solved. For WALF, however, once the local
polynomials at the mesh vertices have been obtained, we have all the information
needed to reconstruct the whole surface. Therefore, the coordinates and differential
quantities at any point on the surface can be calculated by polynomial evaluation
and weighted averaging. This distinction allows WALF to reuse the polynomial
fittings at vertices, and hence it can have smaller amortized cost.
To demonstrate this difference, Tables 4.2 and 4.3 show the timing results of using
piecewise linear as well as CMF and WALF methods with degrees 2 to 4, on a
Linux desktop with a dual-core 3.16GHz Intel E8500 processor and 4GB of RAM.
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Figure 4.5: Comparison of errors using linear interpolation, Walton’s method (la-
beled as G1), and WALF using quadratic and cubic fittings.

Table 4.2: Timing comparison (in seconds) when approximating one point on each
triangle.

mesh #triangle linear degree 2 degree 3 degree 4
CMF WALF CMF WALF CMF WALF

1 658 0.0066 0.026 0.024 0.031 0.027 0.034 0.031
2 26,76 0.027 0.11 0.10 0.17 0.11 0.15 0.13
3 10,492 0.11 0.43 0.39 0.67 0.44 1.13 0.52
4 42,312 0.43 1.74 1.58 2.67 1.78 4.49 2.09
5 170,416 1.73 7.03 6.40 10.82 7.19 18.15 8.45

We list the times for approximating one point on each face in Table 4.2 and for
approximating six points per face in Table 4.3. The results are comparable in the
former case, but WALF significantly outperforms CMF in the latter case, as we
expected.

4.2 Applications to Meshing and Finite Elements

The targeted applications for high-order surface reconstruction in this dissertation
are meshing for finite element analysis. We hereafter further customize our frame-
work for meshing and then apply the resulting techniques to meshing operations.
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Table 4.3: Timing comparison (in seconds) when approximating six points on each
triangle.

mesh #triangle linear degree 2 degree 3 degree 4
CMF WALF CMF WALF CMF WALF

1 658 0.039 0.14 0.098 0.16 0.10 0.19 0.11
2 26,76 0.16 0.60 0.40 0.94 0.41 0.83 0.44
3 10,492 0.63 2.38 1.58 3.74 1.63 6.47 1.73
4 42,312 2.51 9.44 6.37 14.81 6.59 25.73 6.95
5 170,416 10.16 38.12 25.64 59.84 26.71 103.89 28.06

4.2.1 High-Order Finite Elements

An application of our method is to construct a high-order (in particular, quadratic
or cubic) finite element mesh from a given mesh with only linear elements and
accurate vertex coordinates. This problem has practical relevance, because some
mesh generators produce only a mesh with linear elements from an accurate CAD
model, and it may be desirable to reconstruct high-order elements without having
to access the CAD model. In addition, these high-order elements can also be used
to define a C0 continuous surface with high-order accuracy.
We formally stated the problem as follows: Given a mesh with linear elements,
assume the vertices are sufficiently accurate (e.g., they are exact or are at least third
or fourth-order accurate), construct a finite element mesh with quadratic or cubic
elements with third or fourth order accuracy.
When using high-order surface reconstruction, this problem can be solved in the
following procedure:

1. For each element σ , loop through its edges. If there is not an element that
is abutting σ and has an ID smaller than that of σ , assign a new node ID to
each node on the edge; if a node ID has already been assigned in the adjacent
element, retrieve the node ID from that adjacent element.

2. Loop through all elements to assign new nodes IDs for new nodes on faces.

3. Expand the array for nodal coordinates, and evaluate the position for each
new vertex using high-order surface reconstruction.

We have implemented this procedure for reconstructing quadratic and cubic ele-
ments from linear triangles or bilinear quadrilaterals using WALF and CMF. Fig-
ure 4.6 shows an example for meshes generated with quadratic and cubic elements
for a triangulated torus. The high-order schemes produced notable improvements to
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Figure 4.6: Illustration of generating high-order finite elements from given mesh.
Left: a coarse torus with linear elements; Middle: same mesh but with quadratic
elements, visualized by decomposing each triangle into four triangles. Right: same
mesh but with cubic elements, visualized by decomposing each triangle into nine
triangles.

the smoothness of the surface to linear approach, and the overall errors are signifi-
cantly smaller. Note that in actual numerical simulations, not only the geometry but
also some field variables defined on the mesh need to be reconstructed to high order.
The same high-order reconstruction we presented can be used for that purpose, but
it is beyond the scope of this dissertation.

4.2.2 Uniform Mesh Refinement

A problem related to generating a high-order mesh is the uniform refinement of
a surface mesh. The problem may be stated as follows: Given a coarse surface
mesh with sufficiently accurate vertex coordinates, construct a finer surface mesh
by subdividing the elements. Like the previous problem, uniform mesh refinement
introduces additional nodes to edges and/or faces, but in addition it also introduces
new edges to subdivide the elements. Figure 4.7 shows an example of refining a
quadrilateral mesh with sharp features. Note that if the new points are added onto
the linear edges and faces, the refined mesh is not only inaccurate but also notice-
ably nonsmooth, as evident in the left image of the figures. This problem is resolved
by using high-order reconstructions. The right image of Figure 4.7 shows the re-
finement result using WALF with cubic fittings and virtual splitting of the mesh
along ridge curves. We show the results both with safeguard and without safe-
guards describe in Section 4.1.3. It is evident that the surface obtained from WALF
is overall much smoother and accurate, and the safeguards significantly improves
the accuracy and robustness of the method.
As another example, the bottom-right image of Figure 4.8 show a refinement dragon
mesh using WALF and feature treatments. The resulting meshes are much smoother
and more accurate. This procedure can be useful for generating high-quality finer
resolution meshes from a mesh without requiring access to the CAD model.
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Figure 4.7: Example of refining quadrilateral mesh by subdividing each element
into nine quadrilaterals. In the left image, dark lines show the original coarse mesh,
and dashed lines show a mesh obtained by bilinear interpolation. The middle image
shows the refined mesh using cubic fitting with WALF but without safeguards, and
the right image shows the refined mesh with WALF and safeguards.

Figure 4.8: Example of refining triangular mesh by subdividing each element into
four triangles. Upper row shows a dragon mesh and the zoom in near the head.
Lower left image shows a refined mesh using linear interpolation. Lower right im-
age shows refined mesh using WALF with quadratic fitting and feature treatments.
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Figure 4.9: Example of applying high-order reconstruction in meshing smooth-
ing. The left image shows the original torus mesh, and the right image shows the
smoothed mesh.

4.2.3 Mesh Smoothing and Mesh Adaptivity
More general meshing applications of our techniques are the smoothing and adap-
tivity of surface meshes. In these settings, existing vertices may also be moved, and
new vertices may be added. For these operations, a common approach is to keep
the original mesh during mesh smoothing/adaptation, and project new vertices onto
the faceted, piecewise linear geometries (see e.g., [22]). Such an approach has only
second order accuracy. Another approach taken by Frey [20] was to construct a G1

continuous surface using Walton’s method [63], but our experiments have shown
that Walton’s method is only about first order accurate despite its G1 continuity.
Other methods have been developed (such as [56]), but none could deliver high-
order accuracy.
Instead of using low-order methods, we propose to use high-order surface recon-
structions. As an example, we integrate high-order surface reconstruction with the
variational mesh smoothing framework described in [36]. The method reduces the
discrepancies between the actual elements and ideal reference elements by mini-
mizing two energy functions defined based on conformal and isometric mappings,
and it works for both surface and volume meshes. For surface meshes, the method
in [36] moves a vertex within an approximate tangent plane at the vertex, and it is
only second order accurate at best. To achieve higher accuracy, after computing
the motion in the tangent plane, we project the new vertex onto the reconstructed
high-order surface, which incurs a high-order correction term. Figure 4.9 shows an
example of a smoothed surface mesh using WALF method compared to the original
mesh generated by the isosurface function in MATLAB. As it is apparent that the
quality of the original mesh is very poor. The maximum and minimum angles were
166.1 and 0.65 degrees before smoothing. After smoothing, they were improved to
128.8 and 23.8 degrees, respectively. This process significantly improved the mesh
quality while preserving the geometry to high-order accuracy.
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4.3 High Order Surface Integration

Surface integration is a fundamental operation for many scientific and engineering
problems. It is a core procedure for a variety of numerical methods such as the
boundary integral method, finite element method, integral transforms, finite vol-
ume method etc. In geometric processing, computing the surface area and solid
volume are fundamental primitives, both of which require surface integration. In
computational fluid dynamics, the computation of the flux across a curved inter-
face between different materials requires surface integrals. Another application of
surface integration is found in fluid-structure interactions, where the integral of the
pressure over the structure is the force applied by the fluid to the structure.
For these applications, the standard method for surface integration is to integrate
over the individual triangles, but its accuracy is limited by the piecewise linear
approximations to the geometry and the function. The relative error is reduced by
either global or adaptive mesh refinement until a set tolerance is reached. A natural
but yet fundamental question is whether we can achieve high order of accuracy
given a piecewise linear approximation to the surface. In this section we use our
computational framework to solve the problem of accurate numerical integration of
a function over a triangulated curved surface.
Numerical integration might appear to be an easy problem, as integration in general
is a smoothing process and tends to be more stable than differentiation. Although
low-order integration schemes are easy, high-order integration schemes are as dif-
ficult as high-order differentiation schemes, if not more so. For these problems,
numerical integration over discrete surfaces is more than just quadrature rules. The
reason is that accurate numerical integration requires high-order approximations (or
reconstructions) of the geometry as well as that of the function. Since our research
focus on high-order differential quantities computation and surface reconstruction,
we can solve the problem high-order numerical integration over surfaces using the
same framework.

Related Work We review a few approaches that are generally used to get high-
order approximation of surface integrals. In finite element methods, high-order
approximations are achieved by using high-order isoparametric elements [71]. Un-
fortunately, in problems such as fluids simulations involving moving interfaces,
high-order elements are rarely used due to difficulties in the generation and adap-
tation of high-order finite element meshes. Meshless methods, such as moving
least squares, offer another set of alternatives for constructing high-order approx-
imations, but accurate numerical integration over such surfaces is subtle [5], and
meshless methods are in general expensive in terms of computational cost. In [11],
Chien presented a method for high-order surface integration using a high-order in-
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terpolated function and geometry. He approximated the function and the surface
based on high order piecewise interpolants using Lagrange polynomials. The points
chosen for high order interpolation is based on a uniform subdivision of individual
triangles. His method requires the function values to be available at any point on
the surface, and it becomes inapplicable when only a discrete set of values of the
function is given. Also, Lagrange polynomial interpolation tends to be unstable for
high degree polynomials.
Another approach is presented in [24], in which adaptive refinement of the mesh is
used to minimize relative error along with simplification of trapezoidal rule, which
is second order accurate, though the relative error can be minimized to a set tol-
erance using adaptive mesh refinement. An assumption of that method is that the
surface is represented as an implicit function, so that a retraction can be defined
from a neighborhood of the triangulated surface to the exact surface to obtain a
better approximation of the exact surface.
We propose a novel method for accurate surface integration over discrete surfaces.
Our techniques can deliver higher convergence rates, both in theory and in practice,
than one would expect from the given piecewise linear approximations. Our method
has three key components: the stabilized least-squares fitting to obtain higher order
approximation of the geometry and the integrand, a blending procedure based on
WALF reconstruction method, and high-degree numerical quadrature rules. Our
resulting algorithm is simple and efficient. We demonstrate experimental results of
up to sixth order accuracy with our method.

4.3.1 Integration of Continuous Functions over Smooth Surfaces

Let a parametrization of a smooth surface Γ be given as Γ= {x(ξ ) |U⊂R2→R3},
with coordinates ξ ∈ R2, x ∈ R3 and Jacobian J = ∂x/∂ξ , where

ξ ≡
[

ξ

η

]
, x≡

 x
y
z

 , J ≡


∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∂ z
∂ξ

∂ z
∂η

 . (4.3.1)

Let g denote
√

det(JT J), which has the geometric meaning of the “element area”
and is equivalent to the Jacobian determinant if the surface were in the xy-plane.
The surface integral of a scalar function ϕ : Γ→ R is

ˆ
Γ

ϕ da≡
ˆ

U
ϕ(ξ )g(ξ )dξ dη . (4.3.2)

58



In the following discussion, we will omit the function arguments ξ for conciseness.
The simplest application of (4.3.2) is the surface area A =

´
Γ

da, where ϕ = 1.
Similarly, given a vector-valued function ϕ : Γ→ R3, the surface integral of ϕ is

ˆ
Γ

ϕ ·da≡
ˆ

Γ

ϕ · n̂da =

ˆ
U

ϕ · n̂gdξ dη , (4.3.3)

where n̂ denotes the unit surface normal. Let jk denote the kth column of J for
k = 1,2. Assume j1, j2, and n̂ form a right-hand system, and let n≡ gn̂ = j1× j2,
which we refer to as the Jacobian-weighted normal. The surface integral of ϕ can
be written as ˆ

Γ

ϕ ·da =

ˆ
U

ϕ · ( j1× j2)dξ dη . (4.3.4)

The simplest application of (4.3.4) is the volume V =
´

Γ
x ·da/3 for a closed surface

Γ, where ϕ = x/3. Generally, a global parametrization of the whole surface is com-
putationally difficult. To overcome this difficulty, the surface may be decomposed
into non-overlapping regions. Let Γ be decomposed into non-overlapping regions
σi whose union is Γ, i.e., Γ =

⋃
σi. The previous formulas then become

ˆ
Γ

ϕda = ∑
i

ˆ
σi

ϕgdξ dη (4.3.5)

and ˆ
Γ

ϕ ·da = ∑
i

ˆ
σi

ϕ · ( j1× j2)dξ dη , (4.3.6)

where the integral over σi can be computed using local parametrizations of σi. Our
computations for triangulated surfaces will approximate these formulas based on
local parametrizations.
From (4.3.2) and (4.3.4), it is clear that surface integral of a scalar or vector-valued
function requires the Jacobian of the surface. The computation of the Jacobian is
significantly simplified if we transform the surface from the global xyz coordinate
system onto a local uvw coordinate system. Assume both xyz and uvw coordinate
frames are orthonormal right-hand systems. Let the origin of the local frame be
at x0. Let t̂1 and t̂2 be unit vectors in the xyz coordinate system along the positive
directions of the u- and v-axes, respectively, and m̂ = t̂1× t̂2 be the unit vector along

the positive w direction. Let T =

 t1

∣∣∣∣∣∣ t2

 denote the matrix consisting of the

unit vectors in the tangent plane, and Q the rotation matrix

 t̂1

∣∣∣∣∣∣ t̂2

∣∣∣∣∣∣ m̂

. Any
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point x on Γ is then transformed to a point

 u
v

f (u,v)

 ≡ QT (x− x0). We refer

to f (u,v) as the height function in the uvw coordinate frame. In general, f is not
a one-to-one mapping over the whole surface, but if the uv plane is not too far
from the tangent plane at a point x ∈ Γ close to x0, f would be one-to-one in the
neighborhood of x.
Let p(u,v) = [u,v, f (u,v)]T denote the points on the surface Γ in the uvw coordinate
frame. Let ∇ f ≡ [ fu, fv]

T denote the gradient of f with respect to u ≡ (u,v). The
Jacobian of p with respect to u is then

J =

 pu

∣∣∣∣∣∣ pv

=

 1 0
0 1
fu fv

 . (4.3.7)

The vectors pu and pv form a basis of the tangent space of the surface at p, but
they may not be orthogonal to each other. Then, g =

√
1+ f 2

u + f 2
v . The Jacobian-

weighted normal and unit normal in the xyz coordinate system are then

n = Q

 − fu
− fv

1

= m̂− fut̂1− fvt̂2 and n̂ =
n
g
. (4.3.8)

These formulas are exact for smooth surfaces.

Quadrature Rules for Integrating Functions Integration in the continuum is
defined as a limiting process. However, in many practical applications numerical
integration require the use of quadrature rules, which are based on polynomial in-
terpolations and approximate an integral as a weighted sum of function values at
some quadrature points. In general, a degree-d quadrature rule is exact for degree-d
polynomials, and it is accurate for integrands that are continuously differentiable to
dth derivatives.
As a numerical problem, integration is in general well-conditioned because of its
smoothing effect. Let integration of ϕ : Γ⊆ Rd → R be given by

Iϕ =

ˆ
Γ

ϕ(x)dx. (4.3.9)

The error in Iϕ is bounded by the inequality

‖Iϕ̃− Iϕ‖ ≤ Kϕ‖ϕ̃−ϕ‖∞, (4.3.10)
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where ϕ̃ denotes an approximation of ϕ , and Kϕ = area(Γ) is the condition number
of Iϕ with respect to changes in ϕ . Therefore, integrating an approximated function
does not change the result drastically. The condition number of the quadrature rules
is the sum of the absolute value of its weights. If all the weights are positive, then
the condition number of quadrature rule is equal to that of Iϕ . However, numerical
integration also has an inherent uncertainty due to an infinite number of choices for
ϕ̃ that approximate ϕ . The distance between ϕ̃ and ϕ could be arbitrary, so the
error in the numerical integration may be arbitrarily large for an improper choice of
ϕ̃ .
In one dimension it suffices to define quadrature rules on a “standard” interval, as
any other interval could be transformed to this standard interval. However, this
is not the case for two or higher dimensions, since an arbitrary shape may not be
mapped into a “standard” shape. For example, an annulus cannot be mapped into
a triangle. Therefore, high-dimensional quadrature rules are defined over some
primitive shapes, such as triangles or rectangles. In [44], a survey of quadrature
rules over triangles can be found. These quadrature rules are then applied to a
tessellation of the domain. In this section, we assume the domain of integration is
given by a triangulated surface, so we will utilize quadrature rules for triangles.

4.3.2 High-Order Numerical Integration

Now we describe how to evaluate the first-order differential quantities (normals
and Jacobians) and the function values at the quadrature points, which are required
by the quadrature rules. The main technique here is similar as WALF method for
reconstructing discrete surface meshes, here we extend the method to include esti-
mations of high order interpolant functions.

High-Order Piecewise Smooth Geometry The key idea behind our methods is
that the polynomial at each vertex gives a high-order approximation to the surface
and its differential quantities in the neighborhood of the vertex. Therefore, any
weighted average of these polynomials associated with the vertices of a triangle
would also give a high-order approximation. However, the matter is complicated
by the fact that different local coordinate frames are used at different vertices, so a
change of coordinates is necessary.
Our approach is to combine the fittings using the shape functions of a triangle. Let
ξ and η denote the natural coordinate of a triangle σ , and let Ni denote the shape
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function (or the barycentric coordinate) with respect to the ith vertex of σ , given by

N1 = 1−ξ −η

N2 = ξ

N3 = η .

From the polynomial fitting at each vertex of σ , we first compute a high-order ap-
proximation for an arbitrary point q ∈ σ with natural coordinate ξ = (ξ ,η) within
the triangle in the corresponding local uvw coordinate at the vertex. This is per-
formed by interpolating the uv coordinates at q from the those at the vertices and
then evaluating the Taylor polynomial. The resulting point is then transformed into
the global xyz coordinate system. For each point q ∈ σ , let pi(ξ ) denote the recon-
structed point associated with the ith vertex for i = 1,2,3. We then average these
points using the shape functions. The geometry of the blended surface within the
triangle is then defined by

p(ξ ) =
3

∑
i=1

Ni(ξ )pi(ξ ). (4.3.11)

For conciseness, we will drop out the parameters (ξ ,η) in the notation. Following
[35], we refer to the blended surface as the WALF (Weighted Average of Least-
squares Fittings) surface. It is clear that the blended function is infinitely differen-
tiable within each triangle. In addition, it is C0 continuous across the boundaries of
triangles due to the continuity of the shape functions [35].
To perform integration, we need to compute the differential quantities such as the
Jacobian and surface normal at the quadrature points. We compute them using the
same WALF method. To compute the surface normal of the polynomial fittings at
each vertex, we take their weighted average in the global coordinate system, i.e.,

n̂ =
3

∑
i=1

Nin̂i, (4.3.12)

where n̂i denote the unit normal in the global coordinate system computed from
local fitting at the ith vertex of the triangle.

High-Order Piecewise Smooth Function When evaluating the functions at the
quadrature points for numerical integration, if an analytical formula is available for
the function, one can simply evaluate the analytical formula. However, in most
cases the function values are available only at the vertices of the triangulated sur-
face. Similar to surface reconstruction, we blend these local fittings using the shape
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function to reconstruct a piecewise smooth function. Let ϕ̃i(ξ ) denote the function
reconstructed from the polynomial at the ith vertex. The blended function within
the triangle is then

ϕ̃(ξ ) =
3

∑
i=1

Ni(ξ )ϕ̃i(ξ ). (4.3.13)

When the function is a vector function, different components are blended indepen-
dently. In the next section, we will analyze the accuracy of these reconstructions
and also show that both high-order geometry and high-order function reconstruc-
tions are necessary for high-order accuracy of numerical integration.

Convergence of Proposed Methods Now we analyze the order of accuracy of
our proposed methods. Our results are given in terms of the maximum edge length h
in the triangulation. The main result of theoretical analysis is given by the following
theorem and corollary:
Theorem: Let Γ be a smooth surface and ϕ be a scalar function defined over Γ. Let S
denote the triangulation of Γ, and S̃ and ϕ̃ be the surface and function reconstructed
from values at vertices on S using weighted average of local fittings of degree d,
respectively. Then

∣∣´
S̃ ϕ̃ da−

´
Γ

ϕ da
∣∣= O(hd +h6).

As a corollary, we also obtain the following estimation of the errors in surface
integral of vector-valued functions.
Corollary: Let Γ be a smooth surface and ϕ : Γ→ R3 be a vector-valued function
defined over Γ. Let S denote the triangulation of Γ, and S̃ and ϕ̃ : S̃ → R3 be
the reconstructed surface and the reconstructed function using weighted average of
local fittings of degree d, respectively. Then

∣∣´
S̃ ϕ̃ ·da−

´
Γ

ϕ ·da
∣∣= O(hd +h6).

4.3.3 Numerical Experiments

We now present some numerical results, focusing on assessing the accuracy and
convergence.

Convergence of High-order Integrations The main objectives of our experi-
ments are to verify the high-order convergence predicted by our theoretical analysis,
and to assess the effects high-order reconstructions of the geometric and function.
For these purposes, it suffices to use simple smooth geometries. We use a unit
sphere and a torus (with inner radius 0.7 and outer radius 1.3) as test geometries.
For each geometry, we first generated a set of high-quality meshes using the mesh
generator Gambit from ANSYS Inc. Note that by construction our method has lit-
tle requirement on mesh quality. To demonstrate this, for each geometry we also
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generated another set of poor-quality meshes using marching cubes. Some exam-
ple meshes are shown in Figure 4.10 and 4.11, along with the distributions of the
angles of the meshes. For mesh convergence study, we generated five meshes of
different resolutions for each set of our test meshes, and numbered these meshes
from the coarsest (mesh 1) to the finest (mesh 5). The average edge lengths are
approximately halved between adjacent mesh resolutions. We use the finest meshes
to compute the reference solutions when exact solutions are unknown, and use the
other four meshes to estimate convergence. We estimate the error for each mesh as

relative error =
‖ numerical solution− reference solution ‖

‖ reference solution ‖
, (4.3.14)

and compute the average convergence rate as

convergence rate =
1
3

log2

(
error of mesh 1
error of mesh 4

)
. (4.3.15)

To avoid poor convergence due to inaccurate inputs, in all cases we project the
vertices onto the exact surface, so all the vertices are accurate to machine precision
of double-precision floating point numbers.

Surface Integral of Scalar Function We first investigate the integration of a
scalar function. A simple example is the computation of surface area, for which
the integrand is ϕ = 1. In this case, we need to reconstruct only the geometry. For
sphere and torus, the exact surface areas can be computed analytically, so we use
the exact answers as the reference solutions.
Figure 4.12 plots the relative errors of the computed surface areas for the sphere
using polynomial fittings of degrees between 1 and 6 under mesh refinement. Fig-
ure 4.13 shows the corresponding results for the torus. The average convergence
rates are shown on the right end of the curves in the plot. It can be seen that the
order of convergence is at least as high as that predicted by the theory. The even-
degree polynomials exhibited higher convergence rates than predicted, probably
because of statistical error cancellation due to some symmetry of the geometry and
the mesh.
For generality, we also test integrating a scalar test function ϕ(x,y,z)= sin(x+yz)+
exy on both the sphere and the torus. Since the exact integrals are unavailable, we
use the solutions form the finest meshes as the reference solutions. The errors for
this case are shown in Figure 4.14. These results are qualitatively similar to those
of surface areas, and the convergence rates again confirm the theoretical results.
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Figure 4.10: Coarsest high quality test meshes for sphere and torus used in our
numerical experiments and histograms of the angles of the meshes.
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Figure 4.11: Coarsest poor quality test meshes for sphere and torus used in our
numerical experiments and histograms of the angles of the meshes.
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Figure 4.12: Relative errors and average convergence rates of surface areas of
sphere under mesh refinement for high-quality (left) and low-quality (right) meshes.
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Figure 4.13: Relative errors and average convergence rates of surface areas of torus
under mesh refinement for high-quality (left) and low-quality (right) meshes.
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Figure 4.14: Relative errors and average convergence rates for integration of a test
scalar function ϕ(x,y,z) = sin(x+ yz)+ exy on the sphere (left) and torus (right).
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Figure 4.15: Relative errors and average convergence rates of computed volume of
sphere under mesh refinement for high-quality (left) and low-quality (right) meshes.

Surface Integral of Vector Functions We now present the results of integrat-
ing vector-valued functions (i.e., flux computation) over surfaces. The simplest
example is the computation of the volume bounded by a closed surface. By the
divergence theorem, the volume is equal to one third of the surface integral of the
position vector of the surface, i.e.,

V =

ˆ
Γ

ϕ ·da =

ˆ
Γ

ϕ · n̂da, (4.3.16)

where ϕ = x/3 and n̂ is outward unit normal to the surface Γ. For simple geometries
such as sphere and torus, the exact volumes are available analytically and hence we
use them as reference solutions in our test.
Figure 4.15 shows the relative errors of the computed volume of the sphere using
polynomial fittings of degrees between 1 and 6 under mesh refinement, and Fig-
ure 4.16 shows the corresponding results for the torus. The average convergence
rates are shown on the right of the plots, which again confirm our theoretical re-
sults.
For generality, we also report the result of integrating a vector-valued test function
ϕ(x,y,z) = (xcos(y), ey, z+ ez) over the sphere and torus. The reference surface is
computed using the finest mesh. The relative errors and the average convergence
rates are shown in Figure 4.17, which again confirm our theoretical analysis.
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Figure 4.16: Relative errors and average convergence rates of computed volume of
torus under mesh refinement for high-quality (left) and low-quality (right) meshes.
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Figure 4.17: Relative errors and average convergence rates for surface integral of
test function ϕ(x,y,z) = (xcos(y), ey, z+ ez) on sphere (left) and torus (right).
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Chapter 5

Geometric PDEs

Geometric partial differential equations (PDEs) on moving surfaces occur in vari-
ous applications, such as surface smoothing in computer-aided design [68] and the
modeling of moving surfaces of materials [8]. Equations such as mean-curvature
flow and surface diffusion are challenging to solve numerically due to their strong
nonlinearity and stiffness. Solving these high-order PDEs using explicit methods
would require very small time steps to achieve stability, whereas using implicit
methods would result in complex nonlinear systems of equations that are expen-
sive to solve. In addition, accurate spatial discretizations of these equations pose
challenges in their own rights, especially on triangulated surfaces. We propose new
methods for mean curvature flow and surface diffusion using triangulated surfaces.
Our method uses a weighted least-squares approximation for improved accuracy
and stability, and semi-implicit schemes for time integration for larger time steps
and higher efficiency. Numerical experiments demonstrate that our method can
achieve second-order accuracy for both mean-curvature flow and surface diffusion,
while being much more accurate and stable than using explicit schemes.
In this chapter, we first present an expanded set of surface differential operators in
section 5.1, including surface gradient, surface divergence and surface Laplacian,
they will be used to solve the surface diffusion equation and an elastic problem on
membrane interface in chapter 6. Then we introduce two types of geometric PDEs,
namely mean-curvature flow and surface diffusion. The numerical explicit scheme
for solving these equations is a direct application of our work in section 3. Then we
introduce the Generalized Finite Difference method and propose the semi-implicit
schemes.

Related Work The numerical solutions of geometric PDEs have attracted sub-
stantial attentions in recent years. Several methods have been proposed, including
methods using triangulated surfaces, as well as methods using implicit surfaces,
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such as the level set method.
[8] reviewed a number of approaches. [2] investigated the numerical solutions of
surface diffusion on graphs. [3] proposed a semi-implicit finite element method for
solving the diffusion equation governed by the surface Laplacian of the mean curva-
ture, this method converts the fourth-order nonlinear equation into a system of linear
elliptic equations with respect to curvature and velocity. The Schur complement ap-
proach is then used to solve the resulting linear system. Though the curvature and
velocity are evaluated implicitly, the geometric information is approximated at the
current time step, i.e. the surface Laplacian operator.
[69] provided a systematic framework to solve a class of geometric partial differen-
tial equations. The first-order derivatives, second-order partial derivatives, surface
gradient, divergence and Laplacian are expressed as a linear combination of the
vertex coordinates, thus a linear system is formed when the overall differential op-
erator is approximated as a linear combination of the p vertex coordinate values in
the next time step.
Level set method has also been used to solve geometric PDEs. [50] devised an algo-
rithm for front propagation with curvature-dependent speed, the equation is treated
as a Hamilton-Jacobi equation with a viscosity term and it is solved numerically us-
ing techniques from hyperbolic conservation laws. [12] solved the surface diffusion
equation with the fourth order operator calculated through a hybrid narrow band ap-
proach near the interface. Methods based on level set can easily handle singularities
during propagation and a non-smooth initial front, but no accuracy analysis is given
in the literature. Additionally, the time step for these explicit methods has to be
very small to ensure stability.
A semi-implicit scheme is introduced in [57] for mean curvature flow based on the
level set framework. The idea is to separate the linear term of the mean curvature
term from nonlinear term, then apply the implicit scheme to the linear part while
evaluating the nonlinear term at the current time step. The finite difference formula
is used on a higher dimensional regular grid to approximate the nonlinear differen-
tial operator.

5.1 Extended Surface Operator

In section 3 we present the application of our computational framework to com-
pute normals and curvatures over discrete surface, those differential quantities are
geometric properties of the surface itself, in applications such as fluid dynamics,
electromagnetics and geometric flows, we need to study functions defined over the
surfaces. Physical equations are often written in terms of gradient, divergence, curl,
and Laplacian of those functions. The definition and calculation of those operators
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on surface are different from when they are in Euclidean space.
In this section, we derive those surface operators using numerical linear algebra.
The formula of surface gradient, divergence and Laplacian can be found in [15, 16,
68], but they use the differential geometry terms, which is complicated to under-
stand and difficult to compute numerically. Our alternative derivation provides a
intuitive way to understand these operators and make their numerical high order
calculations well suited under our polynomial fitting computation framework. First
we review those operators in Euclidean space.

5.1.1 Differential operators in Euclidean space

Let ϕ : R3→ R and ψ : R3→ R3 denote a scalar and vector function respectively
in Euclidean space, the gradient, Hessian, Laplacian of ϕ and Jacobian, divergence,
curl of ψ are classic differential operators in calculus. We list their formulas in
the table using terms of linear algebra. Among those operators, the gradient of a
scalar function and Jacobian of a vector function are fundamental, all the other op-
erators can be derived using these two operators by composition(Hessian), measure
of trace(divergence and Laplacian) and skewness(curl), this observation is the key
to our derivation on surface.

scalar function ϕ : R3→ R vector function ψ : R3→ R3

gradient vector ∇ϕ ≡


∂ϕ

∂x
∂ϕ

∂y
∂ϕ

∂ z

 Jacobian matrix ∇ψ ≡
[

∂ f j
∂xi

]
Hessian H(ϕ)≡ ∇(∇ϕ) divergence ∇ ·ψ ≡ tr(∇ψ)

Laplacian ∆ϕ ≡ tr(H(ϕ)) curl ∇×ψ ≡ sk(∇ψ)

5.1.2 Surface operators in parametric space

Consider a smooth surface Γ : U ⊆ R2 → R3 embedded in R3. Let {u,v} denote
a local parametrization of Γ in a neighborhood of a point p on Γ. The Jacobian
matrix(tangent space) and normal vector of the surface Γ in the neighborhood are

J = [xu | xv]

n = xu× xv,

respectively. Now we define the two fundamental differential operators on surface,
surface gradient of a scalar function and surface Jacobian of a vector function.
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Surface gradient Surface gradient is the gradient of function ϕ : Γ→ R defined
over surface Γ, We denote it as ∇Γϕ , which is 3-vector in principle, generally,
surface gradient is not equal to the gradient in Euclidean space, it is the projection
of the gradient into the tangent space, ∇Γϕ = T ∇ϕ , this is intuitive to understand
in Euclidean space, but the formula in parametric space is a little bit complicated.
In [15] p.102-103, Gradient on Surface is defined as a differentiable map ∇Γϕ :
Γ→R3 which assigns to each point p ∈ Γ a vector ∇Γϕ(p) ∈ Tp(Γ)⊂R3 such that

< ∇Γϕ(p), v >= dϕ(v) for all v ∈ Tp(Γ)

Algebraically, ∇Γϕ = [xu,xv][gαβ ](ϕu,ϕv)
T [68]. Now we derive the computation

formula using the term of numerical linear algebra. By the differential-geometry
definition above, let v be xu and xv respectively, we have following two equations:

xu ·∇Γϕ = ϕu and xv ·∇Γϕ = ϕv (5.1.1)

Let ∇ϕ =

[
∂ϕ

∂u
∂ϕ

∂v

]
and J ≡ [xu | xv]. Above equations simplify to (the chain rule)

JT
∇Γϕ = ∇uϕ (5.1.2)

If J has full rank (i.e., JT J is nonsingular), then ∇Γϕ has unique solution in column
space of J (i.e. tangent space)

∇Γϕ ≡ J+T
∇ϕ (5.1.3)

where J+T is transpose of pseudo-inverse of J. This is equivalent to the formula

in [68]. In a coordinate system aligned with tangent space, ∇Γϕ =

[
∇uϕ

0

]
, it is

the tangent direction where ϕ changes most rapidly in the tangent space, and its
magnitude is equal to the rate of change.

Surface Jacobian Given a vector field defined on the surface ψ : U ⊆ R3→ R3,
we define surface Jacobian of a tangent vector function ψ as

∇Γψ = J+T (∇ψ)JJ+, where ∇ψ ≡

[
∂ f1
∂u

∂ f2
∂u

∂ f3
∂u

∂ f1
∂v

∂ f2
∂v

∂ f3
∂v

]
.

For an arbitrary vector field, we define its surface Jacobian as
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∇Γψ = J+T ∇(JJ+ψ)JJ+

This definition has a geometric meaning: JJ+is projection matrix of tangent space,
so JJ+ψ projects ψ into tangent space, then J+T ∇(JJ+ψ) takes the surface gra-
dient of each coordinate function, finally J+T ∇(JJ+ψ)JJ+ projects every row of
J+T ∇(JJ+ψ) into tangent space. Besides its geometric meaning, this definition
resembles the Jacobian in Euclidean space in that, together with surface gradient
definition, it unifies the surface differential operator theory, all the other operators
can be derived from these two operators.

Surface Divergence In Euclidean space, divergence can also be defined as limit
of surface integral, i.e.,

∇ ·ψ ≡ lim
V→0

˜
∂V ψ ·da

V
(5.1.4)

where V , ∂V , and da are defined the same as before, this definition should general-
ize to surface directly, i.e.,

∇Γ ·ψ ≡ lim
A→0

´
∂A ψ ·ds

A
(5.1.5)

In parametric space, for tangential vector field, it is easy to see that

∇Γ ·ψ = ∂ϕ1
∂u +∂ϕ2

∂v =tr
(
J+T

∇ψ
)

(5.1.6)

We show that tr(J+T ∇ψ) is rotation invariant. Let P denote rotation matrix and
ψ̃ ≡ PT ψ and J̃ = PT J. Therefore,

J̃+T
∇ψ̃ = PT J+T

∇(PT
ψ) = PT (J+T

∇ψ
)

P, (5.1.7)

so J̃+T
∇ψ̃ and J+T ∇ψ have same eigenvalues and in turn the same trace. If ψ is

an arbitrary vector field, decompose ψ into tangential and normal components,

ψ = JJ+ψ + n̂n̂T
ψ. (5.1.8)

From Taylor series expansion, ∇Γ ·
(
n̂n̂T

ψ
)
= 0, therefore,

∇Γ ·ψ = ∇Γ ·
(
JJ+ψ

)
= tr

(
J+T

∇
(
JJ+ψ

))
(5.1.9)
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In the literature, the surface divergence is sometimes defined as [28, page 21]

∇Γ · f =
(
∇x−nnT

∇x
)
·
(

f −nnT f
)
, (5.1.10)

where ∇x is the gradient operator with respect to x, or as [53, 70]

∇Γ · f =
1
√

g
∇u ·

(√
gJ+ f

)
, (5.1.11)

where g = det(JT J). It can be shown that these definitions are equivalent. Notice
that

∇Γ ·ψ = tr
(
J+T

∇
(
JJ+ψ

))
= tr

(
J+T

∇
(
JJ+ψ

)
JJ+

)
(5.1.12)

So surface divergence is actually the trace of surface Jacobian matrix.
Note that if f is tangent to Γ, then f = JJ+ f , the formula can be further simplified
to

∇Γ · f = tr
(
J+ (∇u f )

)
= J+1,: f u + J+2,: f v, (5.1.13)

where J+j,: ( j = 1,2) denotes the jth row of J+.

Surface Hessian Surface Hessian on surfaces/manifolds was defined in [16]. Let
us denote it by HΓ(ϕ), which defines an operator over tangent space, i.e., xT HΓ(ϕ)y
for x and y in tangent space, intuitively, surface Hessian should be∇Γ (∇Γϕ), where
∇Γ is the surface gradient operator defined above, in another word it is the Jacobian
of the gradient of a scalar function, thus,

HΓ (ϕ) = ∇Γ (∇Γϕ) = J+T ∇
(
J+T ∇ϕ

)
JJ+

We use the fact that ∇Γϕ is a tangent vector field. Surface Hessian such defined is
a symmetric matrix, we omit the proof here.

Surface Laplacian Surface Laplacian, sometimes called Laplace-Beltrami oper-
ator, in [68], surface Laplacian is given as

∆Γϕ =
1
g
(g11 f22 +g22 f11−2g12 f12) = tr

(
G−1

[
f11 f12
f12 f22

])
(5.1.14)

where fi j = ϕuiu j − (∇Γϕ)T xuiu j

We give an alternative derivation using the trace of surface Hessian,

∆Γϕ = tr(HΓ (ϕ)) = tr
(
J+T ∇

(
J+T ∇ϕ

)
JJ+

)
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using product rule for differentiation

∇
(
J+T

∇ϕ
)
= (∇(∇ϕ))︸ ︷︷ ︸

Hessian of ϕ

J++

[
(∇ϕ)T J+u
(∇ϕ)T J+v

]
(5.1.15)

Because J+J = I and (J+J)u = 0, so J+u J =−J+Ju. Similarly J+v J =−J+Jv. There-
fore [

(∇ϕ)T J+u
(∇ϕ)T J+v

]
J =−

[
(∇ϕ)T J+Ju
(∇ϕ)T J+Jv

]
=−

[
(∇Γϕ)T Ju
(∇Γϕ)T Jv

]
(5.1.16)

We note that

tr
(
J+T

∇
(
J+T

∇ϕ
)

JJ+
)
= tr

(
J+J+T

∇
(
J+T

∇ϕ
)

J
)
. (5.1.17)

Therefore,

∆Γϕ = tr
(

G−1
(
(∇(∇ϕ))J+J−

[
(∇Γϕ)T Ju
(∇Γϕ)T Jv

]))
= tr(G−1M), (5.1.18)

where

M = ∇(∇ϕ)−
[
(∇Γϕ)T Ju
(∇Γϕ)T Jv

]
. (5.1.19)

This is equivalent to the definition in [68]. Later we will see its simplified form
under local coordinate system.

Surface Curl Given vector field ψ(x), the Curl operator∇×ψ measures “rotation
per unit area”, given a plane Γ at point x0, Curl is defined as

n̂T
Γ · (∇×ψ) = lim

a

¸
∂a ψ · tds

a
, (5.1.20)

where a is area of a neighborhood of x0 within Γ and n̂Γ denotes unit normal to Γ.
Algebraically,

∇×ψ =

(
∂ f3

∂y
− ∂ f2

∂ z

)
ê1 +

(
∂ f1

∂ z
− ∂ f3

∂x

)
ê2 +

(
∂ f2

∂x
− ∂ f1

∂y

)
ê3. (5.1.21)

This formula does not directly generalize to surfaces. However, the definition based
on the skewness of the Jacobian matrix does,

∇Γ×ψ ≡ sk(∇Γψ) (5.1.22)
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Summary Here we list the whole set of surface operator definitions.

scalar function ϕ : R3→ R vector function ψ : R3→ R3

gradient vector ∇Γϕ = J+T ∇ϕ Jacobian matrix ∇Γψ ≡ J+T ∇(JJ+ψ)JJ+

Hessian HΓ (ϕ) = ∇Γ (∇Γϕ) divergence ∇Γ ·ψ = tr(∇Γψ)
Laplacian ∆Γϕ = tr(HΓ(ϕ)) curl ∇Γ×ψ ≡ sk(∇Γψ)

Local height function parametrization Under local height function parametriza-
tion, the above formulas have simplified forms. In this local coordinate system, the
surface is given as x≡ (u,v, f (u,v)), and the Jacobian of the surface itself is,

J =

 1 0
0 1
fu fv

 (5.1.23)

Similarly,

xuu =

 0
0
fuu

 ,xuv =

 0
0
fuv

 , xvv =

 0
0
fvv

 (5.1.24)

Thus the formulas can be simplified, we list them in the following table.

scalar ϕ : R3→ R vector ψ : R3→ R3

gradient ∇Γϕ = J+T ∇ϕ Jacobian nT ψJWJ++ J+T (∇ψ)JJ+

Hessian J+T
(

Hϕ − (∇ϕ)T
∇ f

g H f

)
J+ divergence 2HnT ψ + tr

(
J+T (∇ψ)

)
Laplacian tr

(
(JT J)−1

(
Hϕ − (∇ϕ)T

∇ f
g H f

))
curl sk

(
J+T (∇ψ)JJ+

)
where W is the Weingarten matrix W = 1

` (J
T J)−1H f , Hϕ and H f denote Hessian

matrices of the function ϕ and the surface itself f respective to u and v.

5.2 Mean Curvature Flow and Surface Diffusion

5.2.1 Mean Curvature Flow

The continuum formulation of the mean-curvature flow is as follows. Given a mov-
ing surface Γ, the coordinates x of points on Γ are functions of time t as well
as some surface parametrization u = (u,v), which can be local instead of global
parametrizations. Assume the surface is differentiable. The mean-curvature flow
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is a second-order nonlinear PDE modeling the motion of the surface driven by the
mean curvature, given by

∂x
∂ t

= Mn̂, (5.2.1)

where M denotes the mean curvature and n̂ denotes the unit normal vector. The
vector n̂ involves first-order partial derivatives of x with respect to the parameters u,
whereas M involves second-order partial derivatives of x with respect to u.
For a parametric surface, the normal and mean curvature under global coordinate
system are(see Table 3.1),

n =
1
`
(J:,1× J:,2) (5.2.2)

M =
1
2

tr(G−1B) (5.2.3)

where ` = ‖xu× xv‖2 =
√

1+ f 2
u + f 2

v , G is the first fundamental form and B is
the second fundamental form. Under local coordinate system, the formulas are
simplified as,

n =
1
`

 − fu
− fv

1

 (5.2.4)

M =
tr(H)

2`
− (∇ f )T H(∇ f )

2`3 (5.2.5)

where the gradient ∇ f = [ fu, fv]
T and the Hessian matrix H =

[
fuu fuv
fvu fvv

]
.

Compared to formula 5.2.3, the mean curvature formula 5.2.5 under local coordi-
nate system has no normal term n(the second fundamental form B has normal term),
this separation of normal and curvature is useful when we derive the semi-implicit
scheme in section 5.3.
The numerical solutions of geometric PDEs include spatial discretization and tem-
poral discretization. In this dissertation, we consider high order spatial discretiza-
tion only, temporal discretization will be the future research topic. The explicit
scheme is simple and direct given the formulas in section 3, using forward Euler
scheme,

x(n+1)
i −x(n)i =4t ·M(n)

i n(n)
i (5.2.6)

Equation 5.2.1 is analogous to the parabolic equations (such as the heat equation)
in terms of its stiff time-step constraints for explicit schemes. If solved explicitly,
the time step must be second order to the minimum edge length of a triangulated
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surface. That is why we want to introduce a semi-implicit scheme in the next sec-
tion.

5.2.2 Surface Diffusion

The surface diffusion is a fourth-order nonlinear PDE modeling the motion driven
by the surface Laplacian of the mean curvature, given by

∂x
∂ t

= (4ΓM)n̂, (5.2.7)

where4Γ denotes the surface Laplacian operator (i.e., the surface divergence of the
surface gradient). Because the term 4ΓM involves fourth-order partial derivatives
of x with respect to u, the surface diffusion is much more difficult to solve than the
mean-curvature flow. If solved explicitly, the time step must be fourth order to the
minimum edge length of a triangulated surface, making it extremely inefficient to
solve. On the other hand, a fully implicit scheme would be very difficult to derive
and to solve due to its strongly nonlinearity.
Similar to mean-curvature flow, we discretize the surface diffusion into a system
of ODEs, and obtain an ODE at each vertex of the triangulation, using the forward
Euler scheme, we obtain the equation

x(n+1)
i = x(n)i +4t (4ΓM)

(n)
i n̂(n)i . (5.2.8)

To solve (5.2.8), the key step is to discretize the surface Laplacian of the mean
curvature. As described in section 5.1, the surface Laplacian of the mean curvature
in the local coordinate system is,

4ΓM = tr

(
G−1

(
∇

2M− (∇M)T
∇ f

`2 H

))
, (5.2.9)

where ∇2M and H denote the Hessian matrices of M and f , respectively, i.e.,

∇
2M =

[
Muu Muv
Muv Mvv

]
and H =

[
fuu fuv
fuv fvv

]
, (5.2.10)

and

G−1 =
1
`2

[
1+ f 2

v − fu fv
− fu fv 1+ f 2

u

]
. (5.2.11)

79



The mean curvature is given by

M =
tr(H)

2`
− (∇ f )T H∇ f

2`3 . (5.2.12)

Since M is a second-order differential quantity, ∇M and HM are third-order and
fourth-order differential quantities, respectively. Let `u and `v denote the partial
derivatives of ` with respect to u and v, respectively, i.e.,

`u =
fu fuu + fv fuv

`
and `v =

fu fuv + fv fvv

`
. (5.2.13)

It is easy to show that

Mu =
`tr(Hu)− `utr(H)

2`2 −
`
(
2(∇ fu)

T H∇ f +(∇ f )T Hu∇ f
)
−3`u(∇ f )T H∇ f

2`4

=
tr(Hu)

2`
− (∇ f )T Hu∇ f

2`3︸ ︷︷ ︸
A

−`u

(
tr(H)

2`2 −
3(∇ f )T H∇ f

2`4

)
︸ ︷︷ ︸

B

− (∇ fu)
T H∇ f
`3︸ ︷︷ ︸
C

,

(5.2.14)
where Hu involves third-order derivatives with respect to u and v. Similarly,

Mv =
`tr(Hv)− `vtr(H)

2`2 −
`
(
2(∇ fv)

T H∇ f +(∇ f )T Hv∇ f
)
−3`v(∇ f )T H∇ f

2`4

=
tr(Hv)

2`
− (∇ f )T Hv∇ f

2`3 − `v

(
tr(H)

2`2 −
3(∇ f )T H∇ f

2`4

)
− (∇ fv)

T H∇ f
`3 ,

(5.2.15)
where Hv involves third-order derivatives with respect to u and v. In summary, we
can denote the gradient of mean curvature flow as

∇M =
∇tr(H)

2`
− (∇ f )T (∇H)∇ f

2`3 −
(

tr(H)

2`2 −
3(∇ f )T H∇ f

2`4

)
∇`− H2

`3 ∇ f ,

(5.2.16)
where ∇H denotes a third-order tensor. Similarly we can expand the fourth-order
term∇2M, we omit the formulas due to the length of this dissertation. Note that for
∇M and ∇2M, no term contains the product of third-order and fourth-order differ-
ential quantities, this observation is the key when we introduce the semi-implicit
scheme for surface diffusion equation in the next section.
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5.3 Generalized Finite Difference Method

To overcome the time step restriction imposed by CFL condition for mean-curvature
flow and surface diffusion, we prefer to use implicit scheme. From equation 5.2.5,
mean curvature is a nonlinear term with product of first and second order differential
quantities, a fully implicit scheme would be complicated to solve,

x(n+1)
i −x(n)i =4t ·M(n+1)

i n(n+1)
i (5.3.1)

Here both normal and mean curvature are evaluated in the next time step. Alterna-
tively, we devise a semi-implicit scheme by evaluating all the first order derivatives
in the current time step and all the second order derivatives in the future time step
to avoid this nonlinear issue,

x(n+1)
i −x(n)i =4t · M̃(n+1)

i n(n)
i (5.3.2)

and

M̃(n+1)
i =

tr(H̃)

2`
− (∇ f )T H̃(∇ f )

2`3 (5.3.3)

where˜indicates a implicit term that will be evaluated in the next time step. Similar
for surface diffusion, we can use explicit first and second order differential quan-
tities, while implicitly evaluating third and fourth order terms. For simplicity, we
will use the mean-curvature flow to demonstrate the generalized finite difference
method.
This semi-implicit scheme is possible if the Hessian term H can be expressed as
linear expressions of vertices’ coordinate values. Recall the least square fitting
equation at a vertex,

Ac≈ f , (5.3.4)

we observe that the matrix A plays a fundamental role. Since Ac ≈ f , the polyno-
mial coefficients of function f are given by c = A+ f . We refer to C = A+ as the
coefficient matrix. Each coefficient of the polynomial can be expressed as a linear
combination of f , with the rows of C as the weights. In addition, we can express
the derivatives of f at the vertex as linear combinations of the values of f at its
neighboring vertices. This procedure can be viewed as a generalization of classic
finite difference schemes. For example, the coefficient matrix for a classical 9-point
central difference scheme on regular rectangular grid is simply
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C =



0 0 0 0 1 0 0 0 0
0 0 0 1

2∆x 0 − 1
2∆x 0 0 0

0 1
2∆y 0 0 0 0 0 − 1

2∆y 0
0 0 0 1

∆x2 − 2
∆x2 0 1

∆x2 0 0
1

4∆x∆y 0 − 1
4∆x∆y 0 0 0 − 1

4∆x∆y 0 1
4∆x∆y

0 1
∆y2 0 0 − 2

∆y2 0 0 1
∆y2 0


.

(5.3.5)
The matrix C is independent of the right hand side vector f . It only depends on
the local parametrization, which reflects the local geometric information around the
vertex. Let N(i) denote the set of vertices in the neighborhood of vertex i (including
itself). The gradient of the displacement vector φ and its derivatives are

fu = ∑
j∈N(i)

C2, j f j fv = ∑
j∈N(i)

C3, j f j

fuu = 2 ∑
j∈N(i)

C4, j f j fuv = ∑
j∈N(i)

C5, j f j fuu = 2 ∑
j∈N(i)

C6, j f j

Now the mean curvature term is,

M̃(n+1)
i = fuu+ fvv

2` − f 2
u f̃uu+2 fu fv f̃uv+ f 2

v f̃vv
2`3

which can be further expanded to

1
2`3 ∑

j∈N(i)

(
(1+ f 2

v )C4, j−2 fu fvC5, j +(1+ f 2
u )C6, j

)
·(x(n+1)

j −x(n+1)
i ) ·n(n)

i (5.3.6)

Equation 5.3.2 now becomes a linear relation with respect to the vertices coordinate
values at next time step, we can aggregate these equations over all vertices to form
a global linear system,

B(k)
φ
(k+1) = φ

(k) (5.3.7)

where B(k) is a 3n×3n matrix, and φ
(k+1) and φ

(k) are column vectors of length 3n,
composed of the coordinate values at time step k+1 and k.
At the kth step, we solve a linear system

M(k)
φ
(k) = p(k), (5.3.8)

where M(k) is a 3m×3m matrix, and p(k) and φ
(k) are column vectors of length 3m,

composed of the traction vectors and displacement vectors at the vertices, respec-
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tively. Note that M(k) and p(k) depend on φ
(k−1).

For closed surfaces, the linear system (5.3.8) is underdetermined when no bound-
ary conditions are specified, because there are three extra degrees of freedom for
translation, because the solution is invariant of translation. We use the procedure of
truncated singular value decomposition (SVD) to solve the linear system. Let the
SVD decomposition of M(k) be

M(k) =UΣV T , (5.3.9)

where U and V are orthogonal matrices, and Σ is a diagonal matrix composed of
the singular values of M(k). The last six diagonal entries of Σ are nearly 0. To solve
for φ

(k), we discarded the last six singular values and their corresponding singular
vectors and compute φ

(k) as

φ
(k) =

3n−3

∑
j=1

1
s j

v juT
j p(k), (5.3.10)

where s j denotes the jth entry of Σ, and u j and v j denote the jth column of U and
V , respectively. This numerical discretization also applies to open surfaces with
Dirichlet or other boundary condition.

5.4 Numerical Experiments and Comparisons

In this section, we perform numerical experiments to verify our preceding analysis.
The mean curvature flow test will focus on our semi-implicit method and its rate of
convergence. The test will measure the error in the total surface area and the error
in the encapsulated volume of a spherical mesh. These values will then produce a
rate of convergence for each measure of error. We will compare our semi-implicit
methods to their explicit counterparts in terms of accuracy, convergence, and stabil-
ity. Overall, we want to see our semi-implicit method produce better accuracy, and
maintain higher stability than its explicit counterpart, while achieving second-order
convergence in surface area errors and encapsulated volume errors.

Mean Curvature Flow - Semi-Implicit Method Convergence Results
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Figure 5.1: The evolution of a closed ellipsoid mesh (axes = 4, 6, 8) under mean
curvature flow using our semi-implicit method. The colormap reflects the mean
curvature. (left) surface before evolution. (center) surface after 3.00 seconds of
evolution. (right) surface after 3.75 seconds of evolution.

This test will examine the accuracy and stability of our semi-implicit method. We
will work with a spherical mesh of radius = 1, an ellipsoid mesh with axes of length
4, 6, and 8, and a torus mesh with major radius = 1, and minor radius = 0.25. We
will use three levels of refinement for our initial mesh, with total number of vertices
being 368, 1450, and 5804. For all refinement levels, we will use 50 time steps
at 4t = 0.001. For both tests, we will measure the surface area error and the en-
capsulated volume error. For spherical mesh test, we will also measure L∞ error.
For surface area calculation, we simply sum the surface area of all triangular ele-
ments. For volume calculation, we connect all mesh vertices to the origin, forming
tetrahedrons, then sum the volume of all tetrahedrons to obtain the total volume
encapsulated by the surface mesh.
For a sphere, the exact calculation for the radius using mean curvature flow is the
following:

Rexact =
√

R2
initial−2t

Rexact is the exact radius of the sphere we expect to obtain after time t, from an initial
sphere with radius of Rinitial. Additionally, we will measure convergence using the
following equation:

Oconv = Log2(
errori

errori+1
) (5.4.1)

For our sphere test, we obtain the following results, shown in Table 5.1
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Table 5.1: L∞errors of vertex placement, surface area errors, encapsulated volume
errors and convergence rates for our semi-implicit mean curvature flow method on
a spherical mesh of radius = 1, after 50 time steps for4t = 0.001.

re f npts areaerr O volumeerr O L∞
err

1 368 9.17e-2 n/a 5.26e-2 n/a 1.68e-4
2 1450 2.19e-2 2.07 1.27e-2 2.05 8.76e-5
3 5804 3.98e-3 2.46 2.47e-3 2.36 8.33e-5

As can be seen in Table 5.1 both the surface area error and the volume error exhibit
greater than quadratic convergence rate in all cases.
Since we do not have an exact value for comparison in the ellipsoid test, we use
a super-refined mesh of 23188 vertices to get an approximation of our errors. As
before, we will use three levels of refinement for our initial mesh, with 368, 1450,
and 5804 vertices. For each refinement level, we will use 50 time steps at 4t =
0.001. For ellipsoid test, we obtain the results shown in Table 5.2

Table 5.2: Surface area errors, encapsulated volume errors and convergence rates
for our semi-implicit mean curvature flow method on an ellipsoid mesh with axes
4, 6 and 8, after 50 time steps at4t = 0.001.

re f npts areaerr O volumeerr O
1 368 4.78e-1 n/a 4.84e-1 n/a
2 1450 1.18e-1 2.02 1.16e-1 2.07
3 5804 2.52e-2 2.22 2.32e-2 2.32

Surface Diffusion - Semi-Implicit Method Convergence Results This test will
examine the accuracy and stability of our semi-implicit method for surface diffu-
sion. We will work with the same ellipsoid from before, with axes of length 4, 6,
and 8. We will use three levels of refinement for our initial mesh, with our number
of vertices being 368, 1450, and 5804. For all refinement levels, we will use 50
time steps at4t = 1.e−6. Because we do not have an exact value for comparison
in the ellipsoid test, we will again use a super-refined mesh of 23188 vertices to get
an approximation of our errors, to test for convergence. With our ellipsoid test, we
obtain the results seen in Table 5.3
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Table 5.3: Surface area errors, encapsulated volume errors and convergence rates
for our semi-implicit surface diffusion method on an ellipsoid mesh with axes 4, 6
and 8 after 22 time steps at4t = 5e−6.

re f npts areaerr O volumeerr O
1 368 8.97e-1 n/a 1.50e-0 n/a
2 1450 2.20e-1 2.03 3.60e-1 2.06
3 5804 4.41e-2 2.32 7.20e-2 2.32

As can be seen, our obtained errors lead to a greater than quadratic convergence
rate in all cases.

Comparison of Explicit and Semi-Implicit Methods Here we will compare our
semi-implicit method with its explicit counterpart on a spherical surface with a
radius of 1. We will use three levels of refinement for our initial mesh, with 368,
1450, and 5804 vertices. Overall, we want to see our semi-implicit method produce
better accuracy, and maintain higher stability than its explicit counterpart, while
achieving second-order convergence in surface area errors and encapsulated volume
errors. We obtain the results seen in Figure 5.2.
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Figure 5.2: A comparison of our semi-implicit mean curvature flow method and its
explicit counterpart on a spherical mesh of radius = 1 after 0.005 seconds. Com-
pared are the explicit method after 5 time steps at4t = 1.e−3 and 500 time steps at
4t = 1.e−5, and our semi-implicit method for 5 time steps at4t = 0.001, with re-
finement levels of 368, 1450, and 5804 vertices. (left) Displays the L∞error of both
methods, with the explicit method diverging in both cases and our semi-implicit
method converging. (right) Displays the surface area error of both methods with
the explicit method (4t = 1.e− 3) diverging, the explicit method (4t = 1.e− 5)
converging with a rate of 1.88 and our semi-implicit method (4t = 1.e− 3) con-
verging with a rate of 2.04.

Because of their differences in stability, the explicit method cannot be compared
effectively with our semi-implicit method using the same size time step. As can be
seen in Figure 5.2, the explicit method after 5 time steps at 4t = 1.e− 3 diverges
in both L∞ errors and surface area errors, opposed to our semi-implicit method
which converges in both cases. The results for the encapsulated volume errors were
excluded because of their similarity to the surface area errors. Since the explicit
method is less stable than our semi-implicit method, it requires a much smaller time
step of4t = 1.e−5 in order to produce convergent results in the surface area error
and volume error. To create an equivalent realtime measure of 0.005 seconds, we
must use 500 time steps with4t = 1.e−5. By shrinking the time step, the explicit
method’s surface area error converges with a rate of 1.88, with similar results in
its volume error. However, we still see divergence in its L∞ errors. In order to
produce convergent results in its L∞ errors, we would have to shrink the time step
to 4t = 1.e− 8. While the explicit method can produce convergent results with a
small enough time step, the results are still slightly worse than our semi-implicit
method, and more importantly, even with comparable results in accuracy the major
issue of requiring such small time steps for explicit method ultimately results in
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very long runtimes, as will be explored soon. Overall, we see our semi-implicit
method all of our goals: it produces better accuracy, and maintains higher stability
than its explicit counterpart, while achieving second-order convergence.
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Chapter 6

An Elastic Membrane Problem

In this chapter, we will use our computational framework to solve a physical prob-
lem, the modeling and discretization of the curvature effect of a thin and curved
elastic interface, which separates two fluid subdomains. For such an interface, there
is often a pressure jump between the two fluid subdomains, which is partially bal-
anced by a normal pressure exerted by the interface due to a curvature effect, in a
manner similar to the surface tension in fluid dynamics [41, 39]. In 3-D space, such
an interface is a two-dimensional object, commonly referred to as a membrane or
membrane shell [62, Chapter 13]. Examples of a membrane include the canopy of
a parachute, the biological membrane of a cell, airbags, balloons, etc. We refer to
the normal pressure exerted by a membrane interface as the interface pressure, and
refer to its corresponding stress vector as interface stress.
For a membrane interface, the interface pressure is an important part of the physics
as it corresponds to the actual load distribution on a membrane. Mathematically,
this pressure is the normal component of the surface divergence of the stress tensor.
However, since the surface divergence of the stress tensor is typically not computed
explicitly in most computations for membranes (or shells), as a derived quantity,
this normal pressure is not readily available in the simulation results. One primary
goal here is to derive an explicit, easy-to-compute formula for the normal pressure,
and develop a discretization method for evaluating it from the stress tensor, so that
it can be visualized and verified directly. Another goal is to derive explicit formulas
of the surface divergence of the stress tensor, so that we can discretize the prob-
lem in a strong form with a generalized finite difference method or some meshless
method, which are less demanding in mesh quality than finite element methods and
are sometimes advantageous in dynamic simulations where the mesh quality may
be difficult to maintain [5].
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Background and Related Work An elastic membrane is a special case of a shell,
where the ratio between the thickness and other dimensions is very small (typically
less than 0.01 [62]). The modeling of shells is an important subject in structural
mechanics. Because of its complexity and its practical relevance, there is vast lit-
erature on the modeling of shells. For an excellent comprehensive review on shell
modeling, see [6].
For membranes, the interface pressure is in many ways similar to the effect of sur-
face tension on thin films or interfaces in fluid mechanics. The effect of surface
tension is given by the well-known Young-Laplace equation in fluid mechanics
[41, 39], which states that when all the forces are balanced, the pressure differ-
ence between two sides of an interface (a.k.a. the Laplace pressure) is equal to
twice the mean curvature times surface tension. In 1993, Povstenko [? ] performed
a theoretical investigation of the generalization of the Young-Laplace equation to
heterogeneous surface tension in solids, and showed that the jump in interface stress
across an interface is equal to the normal component of the surface divergence of
interface stress tensor. However, the equation in [? ] did not explicitly refer to
curvatures, unlike the Young-Laplace equation. In [? ], a connection between the
interface stress and principal curvature was stated, but no derivation was given, and
the equation appeared to have an inconsistency in terms of rotation invariance (more
in Section 6.2.2). In this chapter, we derive a generalization of the Young-Laplace
equation, which can be expressed in terms of either the interface stress tensor and
the shape operator, or the Cauchy stress tensors and the curvature tensor.
The modeling of shells and membranes involve many different aspects, including
the kinematic hypotheses, constitutive models, boundary conditions, dynamics, and
discretizations. The focus here is only on the computation and the discretizations
of the curvature effect and of the surface divergence of the stress tensor. We do
not propose any new constitutive laws or boundary conditions. However, we will
investigate the coupling of our formulas with a number of constitutive laws (includ-
ing Kirchhoff-Love and Mindlin-Reissner models [6]) and some simple boundary
conditions to verify our computations of the interface pressure.
Some discrete models have been developed for membranes in the literature. The
most common approach in engineering is the finite element method using shell el-
ements or membrane elements; see survey articles such as [6]. Among these mod-
els, the membrane elements are designed for relatively thin structures, including
fabric-like objects such as tents or cots. These models are very accurate in practice.
However, since the finite element methods are formulated in a weak form, the di-
vergence of the stress tensor is not computed explicitly, so the interface pressure is
not readily available from the simulation results.
Another type of models is the spring mesh models (or mass-spring models). A
spring mesh is a system of vertices and edges, in which each edge is a spring, and the
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springs are connected by “pin-joints” at the vertices. These models are conceptually
simple and computationally efficient, so they are widely used in computer graphics
(see e.g., [4, 48]). However, the accuracy of these models is questionable. In [61],
Van Gelder showed that the common practice of assigning the same stiffness to all
springs causes significant distortions, even for uniform elastic membranes. New
formulas were proposed in [61] to assign spring stiffness based on the angles and
areas of the triangles, but this model needs to assume Poisson’s ratio to be zero for
general triangular meshes. Like finite element methods, the spring-mesh models do
not compute the interface pressure, which is the subject of our research.

Contributions and Organization In this chapter, we derive the equations for the
interface pressure of elastic membranes due to the curvature effect. Our main result
is Theorem 6.2.2, or the interface-pressure theorem, which states that the interface
pressure is equal to the trace of the matrix product of the curvature tensor and the
Cauchy stress tensor in the tangent plane. This theorem is applicable to stress ten-
sors computed from a broad range of constitutive models. We also describe how
to discretize the equation on triangulated surfaces to high-order accuracy. From
a theoretical point of view, this theorem can be viewed as a generalization of the
well-known Young-Laplace equation for surface tension in fluid mechanics, as it
includes the this equation as a special case (Corollary ??). This theorem is also
useful from a practical point of view, as its discretization allows coupling with vari-
ous membrane models and finite-element methods to compute the interface pressure
for visualization or further processing. In addition, we explore a strong-form dis-
cretization of the surface divergence of the stress tensor, so that an elastic model
may be solved with our generalized finite difference method, which are advanta-
geous in some dynamic simulations. We present the theoretical derivations and
numerical verifications of our theorems and discretizations.

6.1 Background of Elasticity Theory

In this section, we review some fundamental concepts in elasticity theory for solids
using linear algebra notation (i.e., matrices and vectors), instead of the indicial no-
tation that is common in the literature of mechanics and differential geometry. Note
that order-one and order-two tensors are similar to vectors and matrices, so our no-
tation is not a large departure from the standard convention. We will in general treat
vectors as column vectors, and whenever possible we will make matrices consistent
with the convention for order-two tensors.
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6.1.1 Elasticity of Solid

We first review elasticity for solid bodies. This material can be found in standard
textbooks in structural mechanics (such as [31] and [45]). We will present its ex-
tension to membranes in Section 6.1.2.

Elasticity Equation of a Solid For a solid body, the elasticity equation is given
as

ρ
∂ 2φ

∂ t2 = f +∇ ·σ , (6.1.1)

where φ denotes the displacement vector, f is the body force (such as gravity),

σ =

 σ1

∣∣∣∣∣∣ σ2

∣∣∣∣∣∣ σ3

=

 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (6.1.2)

is the Cauchy stress tensor with σi j = σ ji, and ∇ ·σ is the divergence of σ , i.e.,

∇ ·σ =

 ∇ ·σ1
∇ ·σ2
∇ ·σ3

=


∂σ11
∂x1

+ ∂σ12
∂x2

+ ∂σ13
∂x3

∂σ21
∂x1

+ ∂σ22
∂x2

+ ∂σ23
∂x3

∂σ31
∂x1

+ ∂σ32
∂x2

+ ∂σ33
∂x3

 . (6.1.3)

Strain and Stress Tensors The key terms in the elasticity equation are the Cauchy
stress tensor and its divergence. For a linear elastic material, the stress tensor is de-
termined by the Green-Lagrangian strain tensor ε and a constitutive equation that
relates the stress and strain.
To define the strain, let x=(x1,x2,x3) denote a point in the undeformed (unstressed)
configuration of a solid body B. For a vector field f (x) : B ⊂ R3 → R3 in the
undeformed configuration, let ∇ f denote the gradient operator of f , i.e.,

∇ f =
[

∂ fi

∂x j

]
i j
=


∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3

 . (6.1.4)

This convention is consistent with the tensor-based definition of the gradient of a
vector in [65]. Let y = (y1,y2,y3) denote the point in the deformed configuration
corresponding to x, and then the deformation vector is φ = y− x. For finite-strain
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theory, the Lagrangian finite strain tensor is

ε =
1
2

(
∇φ +(∇φ)T +(∇φ)T

∇φ

)
, (6.1.5)

which is nonlinear and is invariant under rigid-body motion. For very small defor-
mations, the strain tensor may be linearized to be

ε linear =
1
2

(
∇φ +(∇φ)T

)
, (6.1.6)

which is not invariant under rigid-body motion.
The Cauchy stress tensor, which we denoted by σ , is a measure of internal forces
on the deformed configuration. As stated by Cauchy’s stress theorem (see e.g. [31,
Chapter 2]), this stress tensor has the physical meaning that, the stress vector at a
point on the plane with unit normal vector d is equal to σd. Because of its physical
meaning, the Cauchy stress tensor will be used, unless otherwise noted. In com-
putational mechanics, the 2nd Piola–Kirchhoff stress tensor, denoted by S, is also
often used. S is related to the Cauchy stress tensor through the transformation

σ =
1

det(F)
FSFT , (6.1.7)

where F = ∇y is known as the deformation gradient. In words, S relates force
in the reference configuration to volume in the reference configuration, so some
computational models often use it instead of σ .
The strain and stress tensors are related through the constitutive equation, which
depends on the material properties. The theoretical results in this chapter are in-
dependent of the constitutive models. In most of our examples, we assumes small
strain but allow large deformation and large rotation (as in the St. Vernant-Kirchhoff
model [31, Chapter 4]). Under this assumption, the Cauchy stress tensor is obtained
from the generalized Hooke’s law

σ = C : ε, (6.1.8)

where C is a fourth-order tensor known as the elasticity tensor. In matrix notation,
we can write the relationship as σ11

σ22
σ33

=
E

(1+ν)(1−2ν)

 (1−ν) ν ν

ν (1−ν) ν

ν ν (1−ν)

 ε11
ε22
ε33

 (6.1.9)
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and
σi j =

E
1+ν

εi j for i 6= j, (6.1.10)

where E is Young’s modulus and ν is Poisson’s ratio. More concisely, let λ =
Eν/((1+ν)(1−2ν)) be Lamé’s first parameter, and µ = E/(2+ 2ν) be Lamé’s
second parameter or shear modulus. We then have

σ = λ tr(ε)I +2µε, (6.1.11)

where I is the identity matrix and tr(ε) = ∑
3
i=1 εii is the trace of ε .

6.1.2 Elastic Models of Membranes

The preceding elasticity concepts and equations can be degenerated to two dimen-
sions to model the mid-surface of a membrane (or more generally, of a thin shell).
The most important change is the surface divergence of the stress tensor ∇Γ ·σ in
the elasticity equation, replacing the divergence in Euclidean space,

ρ
∂ 2φ

∂ t2 = f +∇Γ ·σ . (6.1.12)

where φ is the displacement on S, ρ is the mass per unit area, F is the body force,
and σ is the Cauchy stress tensor. The use of ∇Γ ·σ is valid under the assumption
that the variation of σ is negligible in the normal direction to the membrane.
The Cauchy stress tensor σ is related to the strain tensor ε through the constitutive
equation under some kinematic hypothesis about the membrane (or shell), such as
the Kirchhoff-Love assumptions or Mindlin-Reissner assumptions [6]. In particu-
lar, one common assumption for these models is the following:

The thickness of the membrane (or shell) does not change during de-
formation.

As a consequence, ε33 (i.e., the strain in the normal direction) is assumed to be zero.
Let ε∗ denote the modified strain tensor for the membrane, which we will discuss
further in Section 6.3. Let J = [yu |yv] denote the Jacobian matrix of the deformed
configuration, where y = x + φ . Let T = JJ+ denote the orthogonal projection
matrix onto the tangent space. For linear elastic models, the Cauchy stress tensor is
then

σ = λ
∗tr(ε∗)T +2µε

∗, (6.1.13)

where

λ
∗ =

2µλ

λ +2µ
=

νE
1−ν2 (6.1.14)
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is the Lamé’s first parameter for plates and shells. Compared with (6.1.11), λ , ε ,
and I are replaced by λ ∗, ε∗, and T , respectively.1 Note that although based on
linear elasticity, (6.1.13) is in fact nonlinear in the displacements, since T is on the
deformed configuration. Given the modified strain tensor, we note the following
property of the Cauchy stress tensor:
Proposition: In a membrane model, nT σn = 0, where σ is the Cauchy stress tensor
and n denotes the unit normal to the deformed surface.
This property is satisfied by virtually all models for thin shells, because nT σn is the
internal pressure in the direction normal to the mid-surface, which was observed to
be close to zero in practice. From Property 6.1.2, the interface pressure is not due
to the normal component of σ ; instead, it is an effect from the surface divergence
of σ , which we analyze in the next section.

6.2 Interface Pressure of Membranes

We now analyze the surface divergence of the stress tensor and the interface pres-
sure of membranes. We note that all of our results are described in terms of the
Cauchy stress tensor, so nearly all the geometric differential operators in this sec-
tion are computed on the deformed configuration unless otherwise noted.

6.2.1 Surface Divergence of Stress Tensor

The surface divergence of the stress tensor σ over the deformed configuration Γ is
defined as

∇Γ ·σ =
3

∑
i=1

(∇Γ ·σ i,:)ei =

 ∇Γ ·σ1,:
∇Γ ·σ2,:
∇Γ ·σ3,:

 , (6.2.1)

where σ i,: denotes the ith row of σ , ∇Γ · σ i,: is the surface divergence given in
Section 5.1 and ei denotes the ith standard unit vector. We decompose ∇Γ ·σ into
its tangential component ∇T ·σ and normal component ∇N ·σ , i.e.,

∇Γ ·σ = ∇T ·σ +∇N ·σ , (6.2.2)

where ∇T · σ = JJ+∇Γ · σ and ∇N · σ = nnT ∇Γ · σ , n denotes the unit outward
normal to Γ. We obtain the following lemma regarding the surface divergence and
its tangential component.

1Replacing I by T is justified from (6.1.7), det(J)≈ 1 for small strains, and S33 = 0 in the 2nd
Piola-Kirchhoff stress tensor. Replacing λ by λ ∗ is needed since ε33 = 0 in ε∗.
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Lemma:The surface divergence of the stress tensor on the membrane, denoted by
∇Γ ·σ , is

∇Γ ·σ = (T σ)u J+T
:,1 +(T σ)v J+T

:,2 , (6.2.3)

where T = JJ+ and J+T
:, j denotes the jth column of J+T . The tangent component of

∇Γ ·σ with base vectors xu and xv is

J+∇T ·σ = J+
(
(T σ)u J+T

:,1 +(T σ)v J+T
:,2

)
. (6.2.4)

Proof. From (5.1.10), we have

∇Γ ·σ i = tr
(
(∇u (T σ i))J+T) (6.2.5)

and
∇Γ ·σ = (T σ)u J+T

:,1 +(T σ)v J+T
:,2 . (6.2.6)

Then, J+∇T ·σ = JJ+∇Γ ·σ = J+
(
(T σ)u J+T

:,1 +(T σ)v J+T
:,2

)
.

If there is no shear stress on Γ, then T σ = σ , and ∇Γ ·σ simplifies to

∇Γ ·σ = σuJ+T
:,1 +σ vJ+T

:,2 . (6.2.7)

6.2.2 Interface Pressure

Both ∇Γ ·σ and its tangent component involve partial derivatives of σ . For nonlin-
ear constitutive models, it may appear daunting to compute the interface pressure
(namely nT ∇Γ ·σ ), directly from (6.2.3). In the following, we show that the inter-
face pressure can be computed without differentiating σ . We will give our result in
the global coordinate system, which is easier to understand and is independent of
local parametrizations. However, computationally it is more convenient to use an
equation in a local coordinate system. For the latter, we introduce a new symbol τ̂

to denote a 2×2 stress tensor in a local uv coordinate system with basis vectors yu
and yv on the deformed membrane. In particular,

τ̂ = λ
∗tr(ε∗)I +2µJ+ε

∗J, (6.2.8)

where I is the 2× 2 identity matrix. Let σT = T σT = Jτ̂J+, and it is equal to
σ if there is no shear stress. Note that τ̂ is asymmetric unless JT J = gI with g =
det
(
JT J
)
. The symmetry can recovered by right-multiplying τ̂ by G−1, i.e., τ̄ =

τ̂G−1. We now give our main result, which we refer to as the interface-pressure
theorem.
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Theorem: The interface pressure is equal to

nT
∇N ·σ = tr(CσT ) = tr(CσT ), (6.2.9)

in the global xyz coordinate system, where n is the unit normal to the deformed
surface, and C is the curvature tensor of the deformed surface, and σT = T σT . In
the local uv coordinate system with yu and yv as the base vectors,

nT
∇N ·σ = tr(W τ̂), (6.2.10)

where W is the Weingarten matrix of the deformed surface.

Proof: From (6.2.3) and J+T
:, j = J

(
JT J
)−1

:, j , the normal component of ∇ ·σ is

nT
∇N ·σ = nT (T σ)uJ+T

:,1 +nT (T σ)vJ+T
:,2

= nT (T σ)uJ
(
JT J
)−1

:,1 +nT (T σ)vJ
(
JT J
)−1

:,2 . (6.2.11)

Since T σ = T σT +T σnnT = Jτ̂J++T σnnT = J
(
τ̂J++ J+σnnT), by the chain

rule

nT (T σ)uJ = nT (Ju
(
τ̂J++ J+σnnT)+ J

(
τ̂J++ J+σnnT)

u

)
J

= nT Juτ̂,

where the second equality uses the facts that nT J = 0 and J+J = I. Similarly,
nT σ vJ = nT Jvτ̂T . Substituting these into (6.2.11), we have

nT
∇N ·σ = nT Juτ̂

(
JT J
)−1

:,1 +nT Jvτ̂
(
JT J
)−1

:,2

= tr
(
Bτ̂(JT J)−1)

= tr
(
(JT J)−1Bτ̂

)
= tr(W τ̂) ,

where B = [Jun |Jvn] is the second fundamental matrix, and W = (JT J)−1B is the
Weingarten matrix. Because the curvature tensor is W = J+CJ and τ̂ = J+σJ, we
obtain nT ∇N ·σ = tr(W τ̂) = tr(J (J+CJ)(J+σJ)J+) = tr(CσT ) = tr(CσT ).
Note that this theorem does not require σ to be free of shear stress or nT σn= 0, so it
can be coupled with linear or nonlinear models for membranes. Our formulas do not
require differentiating the stress tensor, but requires only computing the curvature
tensor on the deformed geometry.
Note that our result is analogous to the Young-Laplace equation [41, 39] for the
surface tension effect in fluid dynamics. In effect, the Young-Laplace equation is a

97



special case.
For a smooth membrane, if the force density is equal to f in all directions at a point
x, then the interface pressure at any point due to the tangential stress around x is
p = 2H f , where H = (κ1 +κ2)/2 is the mean curvature.
Because τ̂ = f I and tr(W ) = 2H, from equation6.2.9 we have nT ∇Nσ = tr(W f I) =
f tr(W ) = 2H f .

6.3 Coupling with Constitutive Models

In this section, we investigate the coupling of the interface-pressure theorem with
constitutive models. We first propose a continuum model for thin membranes with-
out shear deformation, which we solve by projecting the strain and stress tensors
onto the tangent space, and verify it through two examples. For completeness, we
also show an example of coupling the theorem with Mindlin-Reissner model, which
considers shear deformation.

Linear Elastic Model Without Shear Deformations For thin membranes, it is
often reasonable to assume that there is no shear deformations, as in the Kirchhoff-
Love shell theory. In this situation, to allow easier matrix manipulations we write
the modified strain tensor as

ε
∗ = T εT , (6.3.1)

and then substitute it into (6.1.13) to compute the stress tensor. This expression is
equivalent to setting γxz = γyz = εz = 0 (as required by the Kirchhoff-Love assump-
tions) in

ε =

 εx γxy γxz
γxy εy γyz
γxz γyz εz

 , (6.3.2)

at a point where the tangent plane is parallel to the xy-plane. In the following, we
apply our theorem to two examples with simple geometries that have other reference
solutions.

Elastic Spherical Balloon We first consider an example of an inflated spherical
balloon, which was analyzed in [49]. In this situation, the normal displacement is
uniform. Assume large displacements but small strain, and suppose the radii of the
balloon without stress and under stress are r0 and r1, respectively. Let I3×3 and I2×2
denote the 3×3 and 2×2 identity matrix, respectively. Since φ = (r1−r0)/r0x and

98



∇xφ = (r1− r0)/r0I3×3, we have

ε
∗ =

1
2

(
2

r1− r0

r0
+

(
r1− r0

r0

)2
)

JJ+ =
1
2

r2
1− r2

0

r2
0

JJ+, (6.3.3)

and tr(ε∗) = (r2
1 − r2

0)/r2
0. The Weingarten matrix W for the inflated sphere is

W = 1
r1

I2×2. From (6.2.8), the stress tensor in the tangent space is

τ̂ = λ
∗tr(ε∗) I2×2 +2µJ+ε

∗J

= λ
∗
(

r2
1− r2

0

r2
0

)
I2×2 +µ

(
r2

1− r2
0

r2
0

)
I2×2

= (λ ∗+µ)
r2

1− r2
0

r2
0

I2×2.

From (6.2.10), the interface pressure is then

p = tr(W τ̂) = tr
(

1
r1

τ̂

)
= 2(λ ∗+µ)

r2
1− r2

0

r2
0r1

=
E

1−ν

r2
1− r2

0

r2
0r1

. (6.3.4)

If the deformation is small, then (r1 + r0)/r0 ≈ 2, and we obtain

p≈ 2E
1−ν

r1− r0

r0r1
=

2E
1−ν

(
1
r0
− 1

r1

)
. (6.3.5)

This is similar to the result p ≈ 2K (1/r0−1/r1) in [49], where K = E if ν = 0.
From (6.3.5), we can see that interface pressure is approximately inversely propor-
tional to the radius, so it is harder to inflate a spherical balloon at the initial stage.

Uniformly Expanding Cylinder Next, consider a cylinder that expands along the
radial direction. Unlike the example of spheres, for cylinders the 2×2 Weingarten
matrix is no longer a multiple of identity matrix, so this case tests our theorem
for an anisotropic geometry. Suppose the axis of the cylinder passes the origin
and is parallel to the z-axis, and the radii of the cylinder without stress and under
stress are r0 and r1, respectively. Consider the point (r0,0,0), and suppose the u
direction is tangent to the cross section curve and the v direction is parallel z-axis,

so J =

 0 0
1 0
0 1

 and W = 1
r1

[
1 0
0 0

]
. Since φ = [(r1− r0)/r0x,(r1− r0)/r0y,0]T
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and ∇xφ = diag
(

r1−r0
r0

, r1−r0
r0

,0
)

, we have

ε
∗ =

1
2

diag
(

r2
1− r2

0

r2
0

,
r2

1− r2
0

r2
0

,0
)

JJ+ =
1
2

diag
(

0,
r2

1− r2
0

r2
0

,0
)
, (6.3.6)

and tr(ε∗) = 1
2(r

2
1− r2

0)/r2
0. Then,

τ̂ = λ
∗tr(ε∗)

[
1 0
0 0

]
+2µJ+ε

∗J

=
λ ∗

2
r2

1− r2
0

r2
0

[
1 0
0 0

]
+µ

r2
1− r2

0

r2
0

[
1 0
0 0

]
=

(
λ ∗

2
+µ

)
r2

1− r2
0

r2
0

[
1 0
0 0

]
,

and

p = tr(W τ̂) =

(
λ ∗

2
+µ

)
r2

1− r2
0

r2
0r1

=
E

2(1−ν2)

r2
1− r2

0

r2
0r1

. (6.3.7)

To obtain a reference solution, we apply a model for curves for the case of ν = 0 to a
circular cross section passing through the origin. Under small deformation, we can
use an analysis analogous to [49]: The tension at any point on the circle is K(r1−
r0)/r0, where K is a spring constant. The balance of force requires p ≈ K(r1−
r0)/(r0r1) = K(1/r0−1/r1) along any arc, which approximates (6.3.7) when K =
E, ν = 0, and (r1 + r0)/r0 ≈ 2.

6.4 Numerical Experimentation

We present a series of examples and numerical experiments to verify our formu-
lation and numerical discretization. In equation 6.2.10, the local stress tensor τ̂ is
first-order quantities of the displacements and the Weingarten matrix W is second-
order quantities of the surface itself, which can be calculated into high-order accu-
racy under our polynomial fitting computational framework

6.4.1 Numerical Experiments Under Nonuniform Expansion

First, we present some numerical experiments to demonstrate the accuracy and con-
vergence of our discretizations of the tangential stress and interface pressure on a
surface triangulation. For this purpose, we artificially expand a torus with inner
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Figure 6.1: A torus with inner and outer radii 0.3 and 1 m was artificially expanded
into one with inner and outer radii 0.32 and 1.05 m. Colors of left and right images
indicate the tangential stress and interface pressure, respectively.

radius 0.3 m and outer radius 1 m into a torus with inner radius 0.32 m and outer
radius 1.05 m, and compute the tangential stress and interface pressure using linear
elastic model described in Section 6.1.2 with the scaled Young’s modulus E = 100
kPa and Poisson ratio ν = 0.2. Figure 6.1 shows the deformed surface color-coded
by the “mean” tangential stress and also by the interface pressure. It can be seen
that the stress (and also pressure) is larger at the outside than at the inside. The
reason is that those areas have larger relative displacements in the tangent space.
To verify the accuracy of our numerical computations, we performed a grid conver-
gence study. We used a series of five successively refined triangular meshes for the
torus, where the average edge lengths are approximately halved at each refinement.
We computed the reference solution analytically, and computed the numerical so-
lutions using quadratic, cubic, and quartic least squares fittings. Figure 6.2 shows
the L2 and L∞ errors of the computed interface pressure for the meshes. The av-
erage convergence rates are shown on the right-end of each curve, computed as
log2 |ε5/ε1|/4, where εi denotes the error on the ith mesh. The numbers of vertices
of the meshes are 328, 1,348, 5,269, 21,103 and 85,276, the numbers of faces are
565, 2,696, 10,538, 42,206 and 170,552 respectively.
The computation of interface pressure involves second-order derivatives. Based on
the analysis in [37], when using dth-order polynomial fitting, the curvature tensor
and hence the interface pressure are (d− 1)st order accurate, given that the vertex
positions are at least (d+1)st order accurate. The numerical result for cubic fitting
agrees with this prediction. For quadratic and quartic fittings, the numerical results
exhibited better convergence rates than predicted, most likely due to statistical error
cancellation.
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6.4.2 Deformation Under Pressure Differences

To demonstrate how our theory can be useful for more complex problems, we show
some examples of computing the displacements of a membrane interface under
given normal pressure differences. The equation we need to solve is

∇Γ ·σ = [p]n, (6.4.1)

given [p] is a given pressure jump, and n is the normal to the deformed surface.
This is the inverse problem of the one in the previous subsection and is much more
difficult. It is relevant to fluid-structure interaction problems, where some pressure
jump may be posed on the two sides of a membrane interface. For simplicity, we
assume small strain and no shear deformation.
Here it is similar to the semi-implicit scheme for solving mean-curvature flow in
Section 5. The gradient of the displacement vector φ and its derivatives are

∇uφ =

[
∑

j∈N(i)
C2, jφ j

∣∣∣∣∣ ∑
j∈N(i)

C3 jφ j

]
,

[
∂ 2φ

∂u2

∣∣∣∣ ∂ 2φ

∂u∂v

∣∣∣∣∂ 2φ

∂v2

]
=

[
∑

j∈N(i)
2C4 jφ j

∣∣∣∣∣ ∑
j∈N(i)

C5 jφ j

∣∣∣∣∣ ∑
j∈N(i)

2C6 jφ j

]
,

where φ j denotes the displacement vector at vertex j, and Ci j denotes the (i, j) entry
of the coefficient matrix C.
To discretize (6.4.1), we need to discretize the derivatives of φ , the Jacobian ma-
trices J̄ = ∇x and J = ∇(x+φ) for the undeformed and deformed configurations,
respectively, as well as J̄u, J̄v, Ju, and Jv. These derivatives can all be discretized
as above. However, because of the presence of φ in J, (6.4.2) results in a nonlinear
system of equations after discretization. To solve this nonlinear system, we devise
an iterative process to compute J, its derivatives, and n explicitly using the displace-
ment vector from the previous iteration, starting with φ

(0) = 0 in the first step. Let
m denote the number of vertices of the surface mesh. At the kth step, we solve a
linear system

M(k)
φ
(k) = p(k), (6.4.2)

where M(k) is a 3m×3m matrix, and p(k) and φ
(k) are column vectors of length 3m,

composed of the traction vectors and displacement vectors at the vertices, respec-
tively. Note that M(k) and p(k) depend on φ

(k−1).
For closed surfaces, the linear system (6.4.2) is underdetermined when no boundary
conditions are specified, because there are six extra degrees of freedom for transla-
tion and rotation, because the solution is invariant of translation and rotation. We
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use the procedure of truncated singular value decomposition (SVD) to solve the
linear system. Let the SVD decomposition of M(k) be

M(k) =UΣV T , (6.4.3)

where U and V are orthogonal matrices, and Σ is a diagonal matrix composed of
the singular values of M(k). The last six diagonal entries of Σ are nearly 0. To solve
for φ

(k), we discarded the last six singular values and their corresponding singular
vectors and compute φ

(k) as

φ
(k) =

3n−6

∑
j=1

1
s j

v juT
j p(k), (6.4.4)

where s j denotes the jth entry of Σ, and u j and v j denote the jth column of U and
V , respectively. This numerical discretization also applies to open surfaces with
Dirichlet or other boundary condition.
For demonstration purpose, we report some experimental results for the deforma-
tions of an ellipsoid under some uniform pressure difference. We use the scaled
Young’s modulus E = 100 kPa and Poisson ratio ν = 0.2. Figure 6.3(a) shows the
result for an ellipsoid with semi-axes 1.2, 1, and 1 under a pressure load difference
[p] = 2 kN/m. Figure 6.3(b) shows the result for a unit half sphere under the same
configuration with the boundary fixed fixed. Displacement vectors are shown in the
figures.
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Figure 6.2: Convergence results for computed interface pressure under grid refine-
ment for the torus. Average convergence rates are shown on the right-end of each
curve.

(a) (b)

Figure 6.3: Expansion of an ellipsoid (a) and a half sphere (b) under a small pres-
sure load under a pressure difference [p] = 2 kPa.
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Chapter 7

Conclusions and Future Work

In this dissertation, we propose a computational framework to process discrete sur-
face mesh based on weighted least square polynomial fitting. Several applications
have been presented with rigorous theoretical analysis and extensive numerical ex-
perimental results, including calculation of differential quantities, surface recon-
struction and integration, numerical solutions to geometric PDEs and an elastic
membrane problem. In all those applications, our approach delivers high order ac-
curacy results and is tolerant to noise due to its least square nature.
For the future work, there are several directions we could further explore. For
the local parametrization, we adopt the local orthogonal projection method, mesh
folding is avoided by imposing different weights to different neighbor points. When
there are few points around a highly curved area, we could use the parametrization
based on cylindrical or spherical mappings. For surface reconstruction, we assume
vertices coordinate values are the only information available, but for some models,
normal directions are also given, we can modify our framework to incorporate this
additional information, thus improve the accuracy of the reconstructed surface. For
mean curvature flow and surface diffusion, a high order temporal discretization is
needed to achieve overall high order accuracy. The generalized finite difference and
finite volume methods could be unified under the same theoretical framework.
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