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Abstract of the Thesis 
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by 
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in 
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(Mineral Physics) 

Stony Brook University 

2011 

 

Sodium is the sixth most abundant crustal element; as such, it is found throughout a variety of 
mineral systems where it is typically represented as an oxide (Na2O). However, due to high 
reactivity, neither Na nor Na2O are naturally occurring and are volatile. The difficulties in 
acquisition and safe handling present challenges to traditional experiments. However, these 
difficulties can be overcome by advances in computational methods in solid state physics. While 
such computational experiments are demanding, the relative simplicity of structure makes Na2O 
a reasonable candidate for this type of analysis.  

This thesis presents a Density Functional Theory (DFT) based study of Na2O in both the Local 
Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). We 
calculate significant physical properties and find that in cases where experimental data exist, 
LDA and GGA form lower and upper bounds that bracket experimental values, so while 
quantities determined using DFT may not be exact, performing calculations within both 
approximations may at least provide upper and lower bounds. We find that LDA predicts a 
lattice parameter of 5.398 Å, while GGA predicts 5.583 Å; and cohesive energy is calculated to 
be 0.7383 and 0.6356 Ry for LDA and GGA, respectively. Electronic band structure calculations 
yield an LDA band gap of 0.161 Ry and a GGA band gap of 0.143 Ry, both lower than expected 
for an ionic insulator, but consistent with electronic structure calculations performed by others. 
Phonon dispersion and phonon density of states (P-DOS) are determined which allows 
calculation of longitudinal and transverse acoustic wave velocities and elastic constants. Bulk 
modulus (K) is calculated from both elastic constants and from the second derivative of total 
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energy vs. volume and found to be consistent with other calculations. Finally, we calculate 
Debye temperature (Θ0) to be 559 and 545 K for LDA and GGA, respectively.   

In addition to providing previously unrecorded data for Na2O, our calculations also present an 
unconventional way of determining the geologically significant but historically computationally 
expensive elastic constants and bulk modulus from the relatively inexpensive phonon 
calculations. 
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Chapter 1. Introduction 

 

 Sodium plays an important role in Earth Science: it is the sixth most abundant crustal 

element[1], and it’s oxide, Na2O stands out as the sixth most abundant mantle oxide[2].  As 

geoscientists, we are familiar with this oxide as a component in mineral systems. In addition, 

Sodium oxide has technological potential. Like the other alkali metal oxides, it crystallizes in the 

cubic antifluorite structure, which exhibits fast ion conduction, a property useful in solid-state 

batteries, gas detectors and fuel cells. However, despite the role it plays in geosciences and its 

potential technological utility, little experimental work has been focused on Na2O. Early 

experiments by Zintl et al. determined the room temperature lattice parameter using powder 

diffraction [3] and cohesive energy was reported in the 67th Handbook of Chemistry and 

Physics[4], but has been excluded from the online version. Finally, a 1975 Barrie and Street 

presented Auger and X-ray spectroscopic studies of both sodium metal as well as Sodium oxide 

[5].  

 Further examination of Na2O on its own was virtually non-existent until advances in 

computational techniques in solid state physics and chemistry made quantum-

mechanical/chemical treatment of reasonably sized systems feasible. The first computational 

experiments on Na2O were headed by Roetti Dovesi of the Torino group. Using their CRYSTAL 

code, they calculated binding energy, equilibrium geometry, lattice parameters, elastic constants 

(Cij), bulk modulus (K), and Γ-point phonon frequencies for Li2O, Na2O and K2O [6]. At that 

point in time, the CRYSTAL code utilized all-electron potentials and a linear combination of 

atomic orbitals in the Hartree-Fock approximation (HF-LCAO). Their determined lattice 
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parameter was overestimated by less than 1% of the experimentally determined lattice parameter 

[3], which they extrapolated to zero K; calculated cohesive energy was also in excellent 

agreement with experiment when corrections were added for ionic correlation. However, no 

experimental data exists for comparison of the central zone phonon frequencies, elastic constants 

or bulk modulus for Na2O. Comparison of calculated phonon frequencies of Li2O with 

experimental room temperature data shows good agreement, with overestimation of both the IR 

and Raman active modes by roughly 10-12%; C11 was overestimated by 8%, C12 by 11%, and 

C44 by less than 1%. This allows us to infer that calculated values for Na2O may have achieved 

similar accuracy. No experimental determinations of K are available for comparison for any of 

the alkali metal oxides. The Shukla group at Max-Planck-Institute tackled Li2O and Na2O again 

at the Hartree-Fock level, this time using Wannier function based orbitals, presenting cohesive 

energies, lattice constants, and bulk moduli [7]. The calculated lattice parameters and cohesive 

energies agreed nearly perfectly with Dovesi et al. Their calculated K was approximately 3 GPa 

higher, but still within numerical error of both programs. The Australian team of Mikajlo, Nixon 

and Ford filled gaps in experimental data with their 2003 Electron Momentum Spectroscopy 

(EMS) study for Na2O [8]. EMS was used to determine features of the electronic band structure 

of the outermost sodium and oxygen bands. The results of the experiment were then compared to 

ab initio LCAO calculations performed using CRYSTAL98, a more recent version of the earlier 

Torino CRYSTAL code, updated to include Density Functional Theory (DFT) based 

calculations. Their calculations were performed at both the HF and DFT levels. The DFT 

calculations were performed using the local density approximation (LDA), the generalized 

gradient approximation (GGA) and a hybrid GGA functional known as PB03 (which contains a 

25% exact HF exchange) for exchange and correlation. They concluded that, while HF does a 



 

3 
 

reasonably good job of predicting structural features, DFT with the PB03 functional provided the 

most reliable results when compared to the EMS experiment in all but the band gaps associated 

with different ions. Most recently, Eithiraj et al. calculated the full electronic band structure for 

the first time, as well as ground state properties for Na2O using Linear Muffin Tin Orbitals in the 

tight-binding scheme (TB-LMTO) and the LDA for exchange and correlation [9]. Their ground 

state properties agreed reasonably well with experiment, exhibiting the predictable errors 

associated with the local density approximation. However, their electronic band structure 

interestingly displayed a direct band gap of 2.241 eV which is more characteristic of a semi-

conductor than an ionic insulator.   

While the above 

computational studies have 

served to confirm multiple 

physical characteristics of 

sodium oxide, they have 

mainly focused on the 

alkali metal oxides due to 

ease of calculation. With a 

face-centered cubic crystal 

structure and only 3 atoms 

and 30 electrons per unit 

cell, Na2O lends itself well to computational experiments which become more cumbersome with 

increased complexity and system size. Most of the calculations performed have been undertaken 

as a test of the robustness of different algorithms and functionals, not necessarily to test the 

 

Figure 1.1: FCC crystal structure of Na2O.  

Atomic positions are: O (0, 0, 0); Na (¼, ¼, ¼) and (-¼, -¼, -¼) 
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nature of the material. The work we have done [10] is, at its core, an attempt to know what is 

unknown about Na2O. We approach our calculations from Density Functional Theory with the 

understanding that it is a robust and well tested approach in materials modeling.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 
 

Chapter 2. Methods 

 

2.1 Introduction to First Principles Calculations 

 While experimental work has set the standard in mineral physics, advances in computing 

have allowed ab initio or “first principles” treatment of mineral systems. The idea of first 

principles calculations in materials science is to view the many atom system as a many body 

system composed of interacting electrons and nuclei. From there, the system can be treated from 

the first principles of quantum mechanics. In this chapter, I will describe the basic concepts of 

first principle calculations and more detailed information about Density Functional Theory. The 

information I provide is condensed from multiple sources [11], [12], [13], [14], [15], [16]. There 

are many computational methods to choose from, each having its own costs and benefits. An 

overview of all computational methods is outside the scope of this paper, but is treated nicely in 

Computational Material Science: From ab initio to Monte Carlo Methods [13], by Ohno et al. In 

this study, we employ Density Functional Theory (DFT) to determine the ground state properties 

of Na2O and Density Functional Perturbation Theory (DFPT) to calculate the phonon spectra.  

 In classical mechanics, a system of interacting nuclei and electrons can be described by 

its Hamiltonian, which is a sum of operators that describe the kinetic and potential energy of the 

system:   

Ĥ � T� � T� � V���	
 � V���	
 � V���	
 
Here TN and Te correspond to the kinetic energies of the nuclei and electrons, respectively; while 

Vee, VNe and VNN describe the potential energies rising from Coloumbic interactions between 
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electrons and electrons, nuclei and electrons, and nuclei and other nuclei. In classical mechanics, 

kinetic energy is described by the momentum (p):  

T �  �
m ,where p � m� 
However, in quantum mechanics, momentum is understood as an operator on the wave function 

and is written:  

� �  �i�� 
Thus,  

�� � �
�
2M  and �� � �
�
2m  

Here, M is the mass of the nucleus and m is the mass of an electron. Now, the Hamiltonian 

describing our system of interacting nuclei and electrons can be written as a sum of the kinetic 

and Columbic potential energies:  

Ĥ � � �
2M! �!
 � �

2m" �"
 � e


2   1$	" � 	%$
�
%&" � e
  Z!|)! � 	"|

�
"*+

,
!*+

�
"*+

�
"*+

,
!*+

� e
2   Z!Z-$)! � )-$
,
-&!

,
!*+  

Where R  = {RI}, I = 1, 2, …, P, is the set of P nuclear coordinates; and r = {ri}, i = 1, 2, …, N, 

is the set of N electronic coordinates while ZI is the charge of the Ith nucleus. In a crystalline 

solid, the interest is focused on the calculation of electronic structure. This requires solution of 

the Schrödinger equation:  
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Ĥ./�)0, 	1
 � E./�)0, 	1
 
The Hamiltonian is inserted into the Schrödinger equation which is then solved for the ground 

state wave function: ./�)0, 	1
. In practice, this solution is impossible for all but the simplest of 

systems due to rapidly increasing, coupled degrees of freedom (3N + 3P). In order to get around 

this, we turn to the Born-Oppenheimer approximation which says that nuclei and electrons exist 

on such different size and time scales that they can be treated separately thus the full wave 

function can be factorized into nuclear and electronic portions:   

.�), 	, t
 �  45�), t
65�), 	
 
Where Φm (R, r) is the electronic wave function and Θm(R, t) is the nuclear wave function, both 

at the mth stable state. In our case, this is the ground state, or m = 0. Another effect of the Born-

Oppenheimer approximation is that quantum nuclear motion can be neglected allowing nuclei to 

be treated classically with errors proportional to the anharmonicity of the potential. While this 

simplifies our problem considerably, it still leaves the formidable issue of how to deal with the 

electronic many-body problem, which is only analytically solvable for a uniform electron gas 

and for atoms with few electrons.     

 

2.2 Introduction to Density Functional Theory 

Early methods to solve this many-body problem, such as the Hartree (H) and Hartree-

Fock (HF) approximations, relied on the Ansatz that the many-electron wave function could be 

written as a product of many one-electron wave functions:  

.�	7, 	8, … , 	1
 �  67�	7
…61�	1
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 Each wave function is then a solution to a one-electron Schrödinger equation in an effective 

potential created by the collection of atomic nuclei and the interactions with the other electrons, 

by way of a mean-field. A full treatment of the H and HF approximations is outside of the scope 

of this paper; however, it is worth noting that the HF approximation is also referred to as the self-

consistent-field (SCF) approximation, which is widely used as the starting point for electronic 

structure calculations.     

The method that could be considered a grandfather of Density Functional Theory (DFT) 

is the Thomas-Fermi Method (TF). The suggestion in this method was that the quantity of 

concern in the electronic portion of the Schrödinger equation was not the N-electron wave-

function; rather it was the electron density, n(r). Thomas and Fermi were able to formulate a 

differential equation for the electron density without the introduction of a Hartree-type ansatz. 

This reduced the problem from one depending upon the number electrons in the system and their 

positions to one of only spatial dependence. The problem that arises from this reduction of 

variables is one of exchange and correlation. When dealing in electronic density, how do we 

account for the changes in energy that arise when electrons swap positions? And, how do we 

account for the movement of all the electrons that occurs when one electron is moved? The TF 

method made no accounting for this exchange and correlation. The other problems that arose 

came from the local potential used to describe the kinetic energy, which did a poor job of 

describing bonding; and from the lack of description for the shell structure of the atom, which 

led to the incorrect prediction that atoms shrink with increasing atomic number.  

The development of DFT began with Hohenberg and Kohn [17], who suggested that the 

TF method was not incorrect, instead it could be considered an approximation to an exact density 

functional theory. Their two theorems laid the groundwork for DFT:  
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1) The ground state energy for  a system of electrons acting in an external potential can 

be uniquely determined by the electron density, n(r),  

E:n; � T<:n; � =:V>?@�	
 � U�	
;n�	
B	 � ECD:n; 
2) The total energy functional E[n] is minimized by the ground state electron density.  

In the first theorem, Ts is electron-electron interaction free kinetic energy of a system with 

density n, while U is the Coulomb potential arising from electron-electron interactions. Vext is the 

external potential from the nuclei and Exc is the exchange and correlation energy. Proof of the 

Hohenberg-Kohn theorems will not be reproduced in this paper. Instead, we will give an 

overview of the development of DFT to introduce terms which will be encountered later when 

we discuss the parameters of our calculations on Na2O. 

 Following the general derivation of Mel Levy [18], the Hamiltonian of our interacting N-

electron system can now be written:  

Ĥ � TE< � UE �=V�CF�	
nG�	
d	 
where nG�	
 is the electron density operator: ∑ δ�	 � 	"
�"*+ .  

Referring back to the second theorem, the ground state energy is found by minimizing the 

expectation value of the Hamiltonian over the antisymmetric wave functions 

E �J Ĥ K� min. �L.$HE$.N 
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This minimization can be achieved by redefining the electron density as the expectation value of 

the electron density: OnG PP�	
Q, which allows the minimization of energy to be broken into two 

steps:  

E � minR�	
 SF:n; � =V�CF�	
n�	
d	U 
F:n; � min.VRL.$TEW � UE$.N 

Notice that F[n] formulated in this way is independent of system or external potential, so can be 

thought of as a universal functional of the electron density.  

The electron density we are concerned with is the one that minimizes the total electronic energy. 

Thus, the optimal electron density is found by applying the Euler-Lagrange equation to the 

density functional F[n], which gives:  

δFδn�	
 � V�CF�	
 � µ 
Where, µ is the Legrange multiplier corresponding to the constant particle number of the system 

and  
YZY[�	
 is a functional derivative.  

From here, an effective potential is established:  

V�\\�	
 � V�CF�	
 � =2 n�	]
|	 � 	^| d	d	] � VCD�n
 
This effective potential takes into consideration the external potential from the nuclei, the 

Hartree potential and the potential arising from the exchange and correlation we spoke of in the 
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discussion of the TF method. For noninteracting particles, the Schrödinger equation is known as 

the Kohn-Sham equations.  

:��8 � V�\\�	
;./�	
 � _"./�	
 
_i are referred to as one-electron Kohn-Sham energies and the corresponding density functional 

F[n] is:  

F:n; � TW:n; � ==n�	
n�	]
|	 � 	^| d	d	] � ECD:n; 
where Exc is the exchange and correlation energy arising from a system of interacting electrons 

with a density n(r). Upon solution of the Kohn-Sham equations, the total electronic charge 

density is calculated as 

n�	
 � ./̀ �	
./�	
1
/*7  

Finally, the total energy is calculated:  

E:n; � _"�
"*+ �==

n�	
n�	]
|	 � 	^| d	d	] �=VCD�	
n�	
d	 � a?b:[; 
Within DFT, a relationship has been established between an interacting system of electrons and a 

simplified non-interacting system. The relationship is exact in that the density of the non-

interacting system is equal to the density of the interacting system. All of the terms which cannot 

be treated exactly have been displaced onto exchange and correlation effects, the forms of which 

are unknown.  

 



 

12 
 

2.3 Exchange and Correlation 

 Despite the fact that the exact forms of Exc and Vxc are unknown, we can construct an 

exchange-correlation energy based on things we do know. First, that electron movement obeys 

the Pauli exclusion principle; secondly, that electrons are repulsed by one another. This creates a 

so-called exchange-correlation hole which is an area around an electron that cannot be occupied 

by any other electron. In this construction, exchange-correlation energy arises from the 

interaction between an electron and its hole.  

ECD:n�	
; � =n�	
_CD:n�	
;d	 � =n�	
d	=nCD�	, 	]
|	 � 	]| d	^ 
Here, _xc refers to the exchange-correlation energy density which is expressed in terms of the 

exchange-correlation hole density, nxc(r,r’). Assuming that the exchange-correlation hole density 

can be split into separate effects, nxc(r,r’) = nx(r,r’) + nc(r,r’), the following sum rules must hold 

true:  

1. An electron is surrounded by an effective positive volume created by the absence of 

negative charge 

n?�	, 	]
 c 0. 
2. Each exchange hole can contain only one electron at all r 

=nC�	, 	]
d	] � �1 
3. Correlation only moves electrons so the number of particles stays constant 

=nD�	, 	]
d	] � f 
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Jones and Gunnarsson showed that, by making the substitution R = r – r’, Exc is dependent on 

the spherical average of nxc(r, R) [19]. This means that the exchange-correlation energy provides 

a reasonable estimation even for the nonspherical parts of nxc.   

 From here, there are several different ways to describe the character of the exchange-

correlation interactions. In our research, we use two approximations which are known to 

systematically over and underestimate ground state properties to obtain results which provide 

upper and lower bounds.  

2.3.1 The Local Density Approximation 

The Local Density Approximation (LDA) is built on the assumption that the exchange 

and correlation energy of an electron located at r is equal to that of a homogeneous electron gas 

with an average density equal to the local electron density n(r), or _CDghi:n�	
; � _CDjkl:n�	
;. 
This approximation, though simple, offers an exact description for cases where electron density 

is uniform or varies slowly. It has also worked well for accurately predicting some properties of 

crystals, like bond lengths, bond angles, vibrational frequencies as well as elastic and bulk 

moduli; but does tend to overbind, underestimate lattice parameters by 1% - 5%  as well as 

underestimate the band gaps in insulators and semi-conductors [12]. Many of the problems that 

arise from the LDA come from the simplified view of electron density as uniform.  

2.3.2 The Generalized Gradient Approximation 

The Generalized Gradient Approximation (GGA) can be thought of as an expansion on 

the LDA. Where the LDA assumes a uniform electron density, the GGA incorporates a gradient 

of the electron density and Exc is written in the following form:   
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ECD:n�	
; � =n�	
_CD:n�	
;d	 � =FCD :n�	
, �n�	
;d	 
where, Fxc must satisfy conditions for the exchange-correlation hole. There is no unique method 

to satisfy the conditions, so a variety of recipes have been proposed. For the purposes of our 

research, we use the Perdew-Burke-Erzerhof (PBE) exchange-correlation functional [20]. This 

particular functional is ideal because it retains the correct features of the LDA while including 

the most energetically important features arising from the inhomogeneity of the electron density 

[11].  GGA improves binding and atomic energy as well as bong lengths and angles. It tends to 

underestimate lattice parameter and does not make appreciable improvements to the band gap 

problem.  

 

2.4 Parameters of Calculations for Na2O 

 The work presented determines lattice parameter, cohesive energy, electronic band 

structure, phonon spectra, phonon density of state (pDOS), elastic constants, bulk modulus, 

Debye temperature, and specific heat using the plane wave self-consistent field (PWscf) code. 

PWscf is part of the QUANTUM ESPRESSO [21] distribution which is a set of open source 

codes which solves the self-consistent Kohn-Sham equations for a periodic solid within a DFT 

framework. A plane-wave basis set is used to expand the atomic orbitals and we use Vanderbuilt 

ultrasoft pseudo potentials [22] with both the LDA and GGA to account for exchange and 

correlation. For LDA, the Perdew-Zunger (PZ) [23] exchange-correlation energy formulation is 

used, while we use the Perdew-Burke-Erzerhof (PBE) [20] for the GGA. The sodium 

pseudopotential includes the 2s22p63s1 basis orbitals and the oxygen the 2s22p4.  
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 Convergence tests were performed to determine the optimal energy cutoffs and size of k-

point grid. For both the LDA and GGA calculations, the energy cutoffs are 30 Ry for wave 

functions and 420 Ry for charge density. 10x10x10 Monkhorst-Pack k-point grids are used. 

Figures 2.1 and 2.2 show the convergence tests for LDA and GGA, respectively. The error 

associated with both energy cutoffs and k-point sampling is 0.002 Ry.  

  

Figure 2.1: Convergence tests for LDA.  Figure 2.2: Convergence tests for GGA 
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Chapter 3. Results 

 

3.1 Lattice Parameter and Cohesive Energy 

We began by calculating lattice parameter (a). Structures were relaxed to equilibrium at 

different lattice parameters and then total energy was plotted as a function of lattice parameter. 

Figure 3.1 shows third order polynomial fits for both LDA and GGA. Lattice parameter was 

chosen by minimizing the first derivative of the associated polynomial.  

 

Figure 3.1: Energy plotted as a function of lattice parameter (a). Energies associated with 

LDA appear on the left y-axis while those associated with GGA are on the right y-axis.  
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A comparison of our results for lattice parameter and cohesive energy with others is 

reported in table 3.1. As expected, LDA underestimates lattice parameter (5.398 Å), while GGA 

overestimates (5.556 Å), resulting in lattice parameters that bracket the experimental 0 K 

extrapolated lattice parameter of 5.49 Å by approximately 1% in either direction. These results 

are consistent with what we would expect and are in good agreement with similar studies so 

provide a foundation for the rest of our calculations. 

 

Energy considerations are 

important in the calculation of physical 

properties and cohesive energy is a good 

test of the quality of your functional in ab 

initio calculations. Cohesive energy is 

defined as the energy that has to be added 

to a crystal to separate it into neutral free 

atoms at rest and is calculated:  

EDkj � EFkF � Eii  

Where Etot is the equilibrium total energy 

of a crystal and EA is the sum of the total 

energies of the free atoms at equilibrium. For this study, we used the total energy of the 

optimized lattice from table 4.1; atomic energies were calculated in a 10 Å supercell with spin-

polarized atoms, assuming atomic oxygen. Referring back to Table 4.1, notice the overbinding 

 Method a (Å) Ecoh (Ry) 

Expt.   5.49[6] 0.6442[4] 

This Study LDA 5.398 0.7383 

 GGA 5.583 0.6356 

Mikajlo[8] LDA 5.393  

 GGA 5.559  

 PBE0 5.498  

Eithiraj[9] TB-LMTO 5.465  

Dovesi[6] LCAO 5.484 0.6642 

Shukla[7] HF 5.481 0.3766 

Table 3.1: Comparison of lattice parameters 

and cohesive energies from experiment and 

calculations.  
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apparent in LDA, which overestimates cohesive energy by about 15%. This overbinding is 

corrected to a large extent by the GGA functional which underbinds, but only by about 1%. 

These results are consistent with our expectations and give us confidence in the quality of our 

functionals.  

 

3.2 Electronic Band Structure 

The electronic band structure of a solid plays an important role in understanding the 

properties of the material. The band structure not only provides a useful way for determining the 

electrical conductivity of a material, it can also allow for prediction of optical properties.  

The occupied bands show very 

little dispersion; calculated data are 

in reasonable agreement with 

experimental data and in good 

agreement with other calculations. 

The band structure plots between 

LDA and GGA are almost 

identical, thus Figure 3.2 shows our 

calculated electronic band structure 

within the LDA around the center 

of the Brillouin zone. Figure 3.2.1 

provides an illustration of the f.c.c. Brillouin zone for reference. The band gap is direct at the Γ 

point and is between the cation “p”-like valence band and the anion “s”-like conduction band. At 

 

Figure 3.2: Electronic band spectra around the Γ-point 



 

 

 

 

  

 Expt [8] 

O 2p – O 2s  1.165 

O 2s – Na 2p  0.863 

Na 2p – Na 2s  2.315 

Eg   

W (O 2p)  0.044 

W (O 2s)   

Table 3.2 Comparison of selected key energies (Ry) from experiment and 

other calculations  

 

 

 

Figure 3.2.1: f.c.c Brillouin zone
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0.161 Ry (2.19 eV), the band gap is smaller than 

expected for an ionic insulator but is consistent with 

the gap calculated by Eithiraj et al. and with what we 

would expect from the LDA.  However, no 

experimental data exist for comparison. Table 3.2 

presents selected key energies from the electronic band 

structure calculations. 

 

This Study Mikajlo [8] Eithira

 LDA GGA LDA GGA PBE0 TB-

1.055 1.073 1.046 1.078 1.777  

0.515 0.530 0.542 0.537 0.568  

2.007 2.051 2.015 2.059 2.188  

0.161 0.143    0.178

0.044 0.045 0.074 0.071 0.079 0.036

0.027 0.019 0.024 0.023 0.025  

.2 Comparison of selected key energies (Ry) from experiment and 

 

zone [24] 

0.161 Ry (2.19 eV), the band gap is smaller than 

expected for an ionic insulator but is consistent with 

and with what we 

uld expect from the LDA.  However, no 

experimental data exist for comparison. Table 3.2 

presents selected key energies from the electronic band 

Eithiraj [9] 

-LMTO 

0.178 

0.036 

.2 Comparison of selected key energies (Ry) from experiment and 
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3.3 Phonon Spectra, Phonon Density of States (pDOS) and related calculations 

Phonon spectra and pDOS can give us a wealth of information about the thermoelastic 

properties of a material. Figure 3.3 presents the first determination of phonon spectra and pDOS 

for Na2O along selected paths in the Brillouin zone (refer to Fig 3.2.1). The phonon spectra  

 

displays nine modes, as expected for a material with three atoms in a unit cell. The three lowest 

frequency modes are the acoustic modes while the remaining six higher frequency modes are the 

 

Figure 3.2: Phonon spectra along lines of high symmetry and pDOS from the LDA 

calculations. Color shown follows the continuous crossing of the modes of different 

symmetries. Notation along colored lines denotes symmetries as originally proposed by 

Bouckaert, Smoluchowski and Wigner [25].  
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optical modes. Our results are consistent with central-zone frequencies for the two lowest 

transverse optical modes calculated by Dovesi; however, no other calculated or experimental 

data exists for comparison.  

 

3.3.1 Acoustic Wave Velocities, Elastic Constants and Bulk Moduli 

 Analysis of the acoustic modes in the linear regime near the Γ point allows calculation of 

both longitudinal and transverse acoustic velocities: 

m � nonp  

 

Figure 3.3.1: Acoustic modes in linear regime with fit equations and R
2
 values displayed 
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Figure 3.3.1 shows the acoustic modes near the Γ point fit with linear equations and R2 values. 

To get to velocity from the fits, the slope of the line (in Hz) is simply multiplied by the lattice 

parameter (in m).  Our calculated acoustic velocities are presented in Table 3.3.  

Recall that in a cubic crystal, the only non-zero elastic moduli are C11, C12, and C44. 

Customarily, when using DFT to calculate elastic constants, the equilibrium structure is distorted 

by applying small normal and shear strains then calculating the stress tensor. Varying the 

magnitude of the strains allows derivation of elastic constants from the stress-strain relationship. 

However, these calculations can become cumbersome and computationally expensive very 

quickly. In our calculations, we use the known relationships between elastic constants and 

acoustic velocities [26] to derive the elastic constants and bulk modulus from the acoustic 

velocities calculated from the phonon spectra.  

 In the [100] direction, the transverses acoustic modes are degenerate and two equations 

relate elastic constants with acoustic velocity:  

 q
r � s++t
(longitudinal) 

 q
r � suut
 (transverse);  

in the [110] direction, the transverse waves are not degenerate, so three equations relate elastic 

constants with the acoustic velocity:  

 q
r � +
 �s++ � s+
 � 2suu
t
 (longitudinal)  

 q
r � suut
 (transverse) 

 q
r � +
 �s++ � s+

t
 (transverse);  
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and, in the [111] direction, the transverse waves are also degenerate, so we again have two 

equations:  

 q
r � +v �s++ � 2s+
 � 4suu
t
(longitudinal) 

 q
r � +v �s++ � s+
 � suu
t
 (transverse).  

Where, ρ is the density per unit cell, ω is the frequency and k is the wave vector. These seven 

relationships give us an overdetermined system of equations. In order to find the elastic 

constants, we calculated v2
ρ for all of the acoustic modes and found least squares solutions for 

C11, C12, and C44 using Excel Solver. Table 3.3.details the acoustic velocities and elastic 

constants with associated errors.  

  LDA GGA 

Table 3.3: 

Acoustic velocities 

and elastic 

constants from 

phonon spectra. 

Numbers in 

parenthesis are 

errors associated 

with fitting. 

Velocities (10
3xy ) 

z100LA 6.679 6.442 

z100TA 3.461 3.080 

z110LA 5.832 5.707 

z110TA1 3.723 3.022 

z110TA2 4.054 4.045 

z111LA 6.990 6.619 

z111TA 4.673 4.584 

Cij (GPa) 

C11 114(8) 114(7) 

C12 37.8(1.3) 34.7(1.3) 

C44 32.8(0.6) 27.4(0.5) 
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 While there are no experimental data with which to compare our results, our calculations 

are in reasonable agreement with those of Dovesi et al[6]: 126.3 GPa (C11), 23.0 GPa (C12) and 

37.8 GPa (C44). Another good test of the validity of our elastic constants and acoustic velocities 

from phonon spectra is to calculate the bulk modulus from elastic constants:  

{ � 13 �s++ � 2s+

 
and compare the results with other calculations. Table 3.4 provides a comparison of our K 

calculated from both elastic constants and from the second derivative of total energy with respect 

to volume with those calculated in other studies. Our K values calculated from the volume are 

low compared to other calculations, but those calculated with acoustic velocities are within 

fitting error of those calculated by others [6, 7, 9].  

 Method K (GPa) 

Table 3.4: 

Comparison of 

calculated bulk 

moduli (K) from 

this study and 

others. 

This Study 

LDA 

From Cij 63(4) 

From 
}~�}�~ 56 

GGA 

From Cij 61(3) 

From 
}~�}�~ 54 

Eithiraj [9] TB-LMTO 59 

Dovesi [6] LCAO 58 

Shukla [7] HF 61.1 
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3.3.2 Thermodynamic Parameters 

 Using elastic constants and the pDOS from phonon calculations, we can calculate some 

thermodynamic parameters for Na2O under the harmonic approximation. In the harmonic 

approximation, the specific heat is defined as:  

s��
 � �������= n����
�
�� 2����

���� ��q 2���� ��

�

�
 

Where �Ω) is the density of states and Vcell is the cell volume. The pDOS is normalized as 

3� � �n����
, where n is the number of atoms per unit cell, 3 for Na2O. At low temperature, 

the pDOS scales as Ω2, with a coefficient that depends on the elastic constants. The 

corresponding specific heat is:  

s��
 � �12�u���5����� � � ����
v
 

The Debye temperature (ΘD) is related to the elastic constants through a complicated angular 

average. An approximate version of this angular average is known to work well with cubic 

insulators at low temperature [27]:  

 �� � s�� �� ¡¢£ �+ ¤� ;   

 ¦�� � §suu ¨�©ªª«©ª~
©¬¬
 ­+ 
� �©ªª«©ª~®©¬¬v �¯+ v� 3 

Here, Θ0 is the low temperature Debye temperature, M is the average atomic weight and a is the 

lattice parameter. Both Cav and n are empirically derived model parameters which, for f.c.c. 
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insulators are set to 18.56 K and 2, respectively. We find Θ0 = 559K for LDA and 545K for 

GGA. From this we can predict specific heat for temperatures less than Θ0. At higher 

temperatures, the factor 
�Ω
�±² is small over the whole spectrum and the specific heat is the 

DuLong-Petit value:  

 s��
 � v¤�³´�µ¶·· . 

It is also useful to define the moments, Oq¤Q of the pDOS spectrum and characteristic 

temperatures Tn. These can be calculated by:  

  Oq¤Q � ��³´̧� �¤ � �}¹��¹
¹¸�}¹��¹
  

Then, the harmonic specific heat can be Taylor expanded at high T, giving the first correction:  

  s��
 � v¤�³�µ¶·· S1 � ++
 � ~́́�
 �ºU 
From our predicted spectrum, we find T2 = 377 K for LDA.  

Another important quantity is the absolute harmonic entropy, which can be written as 

  » � 3¼��½¾¿ � ´´·ÀÁ� 
The logarithmic temperature is defined: ����ÂÃ � �q�ÂÃ, where the logarithmic average is the 

limit as n→0 of Oq¤Qª̧ , or  

 q�ÂÃ � expOlogqQ 
For the LDA, we find Tlog = 332 K.   
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Chapter 4. Conclusion 

 

 Sodium and its oxide, Na2O play an important role in the Earth Sciences. They are found in 

abundance in both crustal and mantle minerals. Additionally, Na2O, with its cubic antifluorite crystal 

structure, is a candidate material for solid state batteries, fuel cells and gas detectors.  Up until recently, 

very little data existed for this important material. Recent computational experiments have done little to 

add to the existing data, focusing instead on validating new computational methodology. In the current 

study, we have used the well tested Density Functional Theory to present new data on Na2O . We 

calculated the lattice parameter, cohesive energy, bulk modulus and electronic band structure for 

comparison with other data and reported new data including phonon spectra and phonon density of states, 

elastic constants and thermodynamic parameters such as harmonic entropy and the low temperature 

Debye temperature (Θ0) [10]. Our calculations are in good agreement with experimental and 

computational data, where data exist. All electronic structure calculations were performed by 

Meagan Thompson with guidance from Xiao Shen. Thermoelastic parameters, excluding Θ0, 

were calculated by Phil Allen; Θ0 calculated by Meagan Thompson.   
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