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Abstract of the Dissertation

Models and Numerical Algorithms for Fracture of Solids

by

Hongren Wei

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2012

A new mass conservative mesoscale model for the simulation of fracture of solid

materials has been developed. Our representation of solids by spring networks con-

tains two degrees of freedom necessary to match real material properties and exhibits

a stable Poisson ratio. The algorithm is based on the energy minimization of the net-

work of triangular springs with critical strain and splitting of overstressed bonds and

connected to them nodes ensuring the conservation of mass during the crack evolu-

tion. An algorithm to resolve the mesh folding and overlapping for the simulation of

compressed materials has been developed by introducing special energy penalty terms.

The main emphasis of the research is on the study of brittle fracture but elasto-plastic

models for springs have also been developed for the simulation of plastic deformations

with limited shear bands. Two regimes of the brittle fracture have been considered:

adiabatically slow deformation and breakup and instantaneously fast deformation and

the formation and propagation of cracks in stressed materials. Parallel software for

the fracture of brittle materials under strain has been developed with the integration

of packages TAO and Global Arrays. A Schwartz-type overlapping domain decompo-
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sition and the corresponding acceleration techniques have also been studied. Three

di�erent visualization techniques have been developed to capture details of fractured

zones in 3D. The software has been applied to the simulation of fracture of solids under

slow stretching deformations, the rapid disintegration of highly tempered glasses in the

phenomenon called the Prince Rupert Drop, and the fracture of thin brittle discs hit

by high velocity projectiles. The bifurcation of the fracture dynamics from the growth

of the comminuted zone to the propagation of isolated radial cracks, typical for the

fracture of glass sheets and thin ceramic plates hit by projectiles, has been reproduced

in our numerical experiments and scaling studies involving the change of material prop-

erties and projectile velocity have been performed. The fracture model has also been

used in a coupled multiscale simulation of the nuclear fuel rod failure within a study

of nuclear reactor safety issues.
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Chapter 1

Introduction

Fracture of solid materials including brittle fracture has been studied for decades.

Foundations of fracture mechanics was developed during World War I by English aero-

nautical engineer, A. A. Gri�th. Gri�th's main motivation to explain the failure of

brittle materials was inspired by the fact that the stress required to crack bulk glass is

only 1/100 of the stress required to break the atomic bonds of it. In addition, Gri�th

conducted some of his own experiments on glass �bers and concluded that the fracture

stress increases as the �ber diameter decreases. Gri�th developed a theory aimed to

explain these contradictions [1]. He suggested that the low fracture strength observed

in experiments, as well as the size-dependence of strength, was due to the presence of

microscopic �aws in the bulk material.

Gri�th created an arti�cial �aw in his experimental specimens to prove his hy-

pothesis. The arti�cial �aw was much larger than other �aws in a specimen. The

experiments showed that the product of the square root of the �aw size a and the

fracture stress σf was almost constant, which is formulated by:

σf
√
a ≈ C (1.1)
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Linear elasticity theory could not explain this relation since it predicts that the stress

and the strain at the tip of a sharp �aw in a linear elastic material is in�nite. To

avoid the problem, a thermodynamic approach was proposed by Gri�th to explain the

relation that he observed.

Further, through the experiments he performed, Gri�th found that

C =

√
2Eγ

π
(1.2)

where E is the Young's modulus of the material and γ is the surface energy density of

the material, and gives excellent agreement of Gri�th's predicted fracture stress with

experimental results.

The relation σy
√
a ≈ C still holds for ductile materials such as steel, but the

surface energy γ predicted by Gri�th's theory is usually much larger than the real

value. In 1940s, a research group working under G. R. Irwin at the U.S. Naval Research

Laboratory (NRL) found that plasticity plays a signi�cant role in the fracture of ductile

materials and introduced modi�cations to Gri�th's theory [2].

C =

√
2EG

π
(1.3)

where G = 2γ + Gp. The plastic dissipation term will dominates when the material

is ductile and Gp ≈ G. When the material is brittle Gp is neglectable. But there

was a problem to the revised model because naval materials are not perfectly elastic

but show signi�cant plasticity at the tip of a crack. One basic assumption in Irwin's

fracture model is that the size of the plastic zone is small compared to the crack length.

However, this assumption is very limited for certain types of failure in structural steels

though such steels can be prone to brittle fracture.

The processes of material fracture exhibits a rich phenomenology extending over a
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wide range of scale from the atomic level to the system scale. While it remains di�cult

to describe the complex behavior on the fundamental level, several computational

approaches have been developed to describe the �ne structure of the fracture zone

on the phenomenological level.

Solid fracture is similar to numerous other processes leading to the formation of com-

plex patterns such as dielectric breakdown, �uid-�uid displacement in porous medium,

Hele-Shaw cell, phase transition (solidi�cation, crystal growth) etc. Meakin draws a

connection of the fracture mechanics to the di�usion-limited aggregation(DLA) model

of Witten and Sander [3,4] in which the growth of probabilities in a random growth

process are controlled by a scalar �eld obeying the Laplace equation. The DLA model

also provides a basis for understanding several other random pattern formation pro-

cesses where the growth process is controlled by a �eld obeying the Laplace equation

[9,10,11,12]. One of the most important characteristics of structures generated by DLA

models is their fractal geometry [15]. A fractal dimensionality of about 1.71 for 2D

and about 2.50 for 3D [16,17,18] have been generated by the DLA model. These values

agree with the results achieved in related experiments. Numerical simulations have

been used widely to analyze di�erent aspects of mechanical failure and most of these

simulations are performed by molecular dynamics approaches [23,24,25,26].

We would like to mention another interesting approach of this class to the descrip-

tion of brittle fracture by failure waves [31]. The the model has similar features with

a simpli�ed theory of slow combustion. Therefore the brittle failure is considered as

a phase transition-type process. The internal wave structure of the wave front is ig-

nored, and the failure front is treated as a mathematical surface. Given properties of

the damaged and undamaged phases, a system of partial di�erential equations for the

evolution of each phase and jump conditions can be derived using the balance equa-

tions. Such a system describes the propagation of failure waves and their morphological
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instabilities. The complex structure of fracture zones are described as a geometrically

complex interface between the damaged and undamaged phases due to instabilities of

the failure wave front. This theory contains several de�ciencies. One of them is the

need to know material properties of the fractured zone which are di�cult or impossible

to obtain reliably from experiments or calculate theoretically. But they use a set of

parameters for material properties of the damaged zone is a big simpli�cation due to

strong non-uniformity of damaged zones. Another simpli�cation is the simple connec-

tivity assumption of the wave front: the description of the failure zone as a result of

the evolution of a geometrically complex but simply connected wave front. This how-

ever can be improved by 3D numerical simulations based on the failure wave theory

that starts from realistic initial distribution of stresses. In such numerical simulations,

numerous failure wave fronts would interact leading to more complex fracture zones.

In contrast, our model does not require properties of the damaged phase and leads to

the growth of complex fracture zones and their transition to a small number of distinct

cracks using more fundamental principles.

Peridynamics [44,45,46,47] is a meshfree method for continuum solid mechanics to

simulate discontinuities. The material is represented by a collection of particles, and

each particle interacts with other particles that are in a speci�c neighborhood, which

is called horizon.The horizon is usually 2-3 lattice spacings. The interaction between

two points is connected by a linkage bond which holds bond force density as well

as a prede�ned damage state function. When the damage state function is positive,

the bond break thus the interaction between those two points get lost. Peridynamics

solves integral equations instead of partial di�erential equations in classical continuum

mechanics.

Another method in fracture simulation is the extended �nite element method(XFEM)

[61]. XFEM is a technique to simulate the crack discontinuities that not necessarily
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conform to the �nite element mesh. A discontinuous function and crack-tip asymptotic

functions are added to the regular �nite element method. The crack interior is rep-

resented by a discontinuous function while the crack-tip by the asymptotic crack-tip

functions. XFEM retains the advantages of FEM and added new advantages, such

as avoids the need to remesh as the crack grows, so it is widely used in fracture sim-

ulation since its debut in 1999. Initially it was used only to model one crack under

tensile stress, but later been developed with capabilities to handle more complex crack

bifurcation and compression stress [62,63]. But it is fairly di�cult for XFEM to resolve

complicated discontinuity patterns [62] and the free �ow of cracked fragments. Our

model has the advantages in this aspect.

Several phenomenological models have been developed using a energy minimiza-

tion of spring networks. In his two-dimensional model for crack propagation [32] ,

Meakin used a 2D triangular network in which each bond is represented by a linear

spring with critical tension. The location of nodes in deformed solids is found by the

energy minimization and bonds which exceed the critical strain are removed from the

system. However, di�erent types of arti�cial techniques are employed to control the

crack surface propagation. Beale used a similar model [33] but randomly added some

percentage of initial defects to the system and studies the distribution of failure stress.

But the bond-breaking mechanism both of them used is removing the overstressed

bond which will generate void regions and lead to the loss of mass. When the material

is under compression, the mass loss will be large. Several other approaches based on

force methods have demonstrated satisfactory simulations of cracked zones in simple

setups.

The main de�ciencies of the described previous simulation models based on the

energy minimization of spring networks are

• Algorithms applicable only to stretched solids. Unphysical mesh folding occurs
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if these models are applied to solids under compression forces.

• Non-conservative bond removal algorithm which leads to the loss of mass. This

issue is less important if small number of isolated cracks developed in stretched

solids. But it prevents compressed solids, in particularly the simulation of com-

minuted fracture zones.

• Inability to reproduce complex patterns occurring in brittle fracture processes

(for instance a comminuted zone and a series of radial cracks in solid plates hit

by high velocity projectiles).

• Only 2D dimensional models

• Serial codes for running on single-processor computers

In this thesis, we describe new mathematical models, numerical algorithms, parallel

software, and numerical simulations that resolve all de�ciencies described above. The

structure of the thesis is as following. In chapter 2, we will introduce the main notions

and equations of theory of elasticity and establish the mathematical model for brittle

fracture of solids in chapter 3. In chapter 4, the main components of the numerical al-

gorithms and software mesh generation, energy minimization, mass-conservative crack

propagation algorithm, parallelization and visualization will be introduced. In chapter

5, we will show several numerical results, validation and applications. The thesis will

conclude with future work in chapter 6.
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Chapter 2

Main Notions and Equations of

Theory of Elasticity

Before writing the equations of the theory of elasticity, we give a brief introduction

to the parameters that are used frequently hereafter in this article.

Stress is a parameter to describe the force applied per unit area. Suppose in the

Cartesian coordinate system, the vector sum of all the forces acted on the material is

zero. Take a slice orthogonal to the x-axis and let a small area in this slice to be ∆Ax.

De�ne the total forces acting on ∆Ax to be:

∆F = ∆Fxî+ ∆Fy ĵ + ∆Fzk̂ (2.1)

The following parameters can be de�ned:

σxx = lim
∆Ax→0

∆Fx

∆Ax

, σxy = lim
∆Ax→0

∆Fy

∆Ax

, σxz = lim
∆Ax→0

∆Fz

∆Ax

(2.2)

The subscripts i and j in σij are the directions of plane and force respectively. Similarly,
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the stresses in the plane orthogonal to the y and z axes can be derived:

σyx = lim
∆Ay→0

∆Fx

∆Ay

, σyy = lim
∆Ay→0

∆Fy

∆Ay

, σyz = lim
∆Ay→0

∆Fz

∆Ay

(2.3)

σzx = lim
∆Az→0

∆Fx

∆Az

, σzy = lim
∆Az→0

∆Fy

∆Az

, σzz = lim
∆Az→0

∆Fz

∆Az

(2.4)

Those quantities form the following stress tensor matrix:

σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (2.5)

Stresses are categorized into two types: normal stress, which has i = j in σij and shear

stress, which has i 6= j in σij. The one used in this article is the normal stress, which

can also be de�ned approximately as the normal force applied per unit area of material

section.

σ = Fn/A (2.6)

The material under deformation bears an internal restoring force, and the deformation

is called strain. Assume there are a pair of points ~x and ~x + d~x, which moved to

x + u(x) and x + dx + u(x + dx) respectively after the deformation. The distance

between the deformed points is:

∑
i

(dxi + ui(x+ dx)− ui(x))2 (2.7)

Assuming dx is small, the following can be derived by a Taylor expansion about the

point x
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∑
i

(dxi +
∑
j

∂ui
∂xj

dxj)
2 =

∑
i

dx2
i + 2

∑
i,j

dxi
∂ui
∂xj

dxj +
∑
i,j,k

∂ui
∂xj

dxj
∂ui
∂xk

dxk

=
∑
i,j

dxi

[(
∂ui
∂xj

+
∂uj
∂xi

)
dxj +

∑
k

∂uk
∂xi

∂uk
∂xj

]
dxj

= 2
∑
i,j

dxiεijdxj

Where εij is the components of the strain tensor:

εij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

+
∑
k

∂uk
∂xi

uk
xj

]

Assuming ∂uk

∂xi
� 1, the second order can be neglected, and we can have

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (2.8)

And we can have the strain tensor matrix:

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 (2.9)

Note that when i = j, εii = ∂ui

∂xi
. This is the normal strain and all other components

are called shear stain.
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Intuitively, strain is the deformation per unit length along the direction of stress

ε =
(L− L0)

L
(2.10)

ε is positive if the material is stretched, negative if compressed.

The Young's modulus E is used to describe the tensile sti�ness of elastic solid

materials. It is de�ned as the ratio of tensile stress σ over the tensile strain ε in the

direction,

E = σ/ε (2.11)

Poisson e�ect is the phenomena that when a solid material is compressed in one direc-

tion, it usually expands in other two directions, and Poisson's ratio ν is a quantitative

measure of Poisson e�ect. For isotropic material, if the it is compressed along X axis,

ν = −εy
εx

= − εz
εx

(2.12)

Similarly, the following are also correct:

ν = −εx
εy

= −εz
εy
, ν = −εy

εz
= −εx

εz
(2.13)

Another important measure in solid material description is the stress-strain curve,

which shows how the stress and stain are correlated. Usually strain is taken as the

abscissa, stress as the ordinate.

The curve in the top of the picture represents typical ductile materials, including

gold, lead etc., and the bottom one represents typical brittle materials, including glass,

concrete, carbon �ber etc.. For both types of materials, we can see that when the

deformation(strain) is smaller than a speci�c threshold, the stress-strain curve can be
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Figure 2.1: Typical stress-strain curves of plastic and brittle materials

treated as linear.

For linear isotropic materials subjected only to normal forces, the parameters men-

tioned above are coupled by following three equations:

εx =
1

E
[σx − ν(σy + σz)]

εy =
1

E
[σy − ν(σx + σz)] (2.14)

εz =
1

E
[σz − ν(σx + σy)]
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Chapter 3

Mathematical Models for Brittle

Fracture of Solids

3.1 Model for Elastic Media

In our model, an elastic medium is represented by a network of springs that satisfy

a speci�c stress-strain relationship. Under the action of external forces, the locations

of network nodes are derived by the minimization of the total system energy function.

Since the deformation dynamics is not resolved in real time, the springs do not contain

mass. Such an approach allows us to eliminate unwanted fast waves in the system such

as the sound waves and use relatively large time steps in the process of deformation of

solid objects.

Our approach also eliminates the need for an arti�cial damper term often used in the

description of solid dynamics with a mass-spring network. The damper term is relevant

and important only for a dynamic spring model which is evolved by calculating the force

and acceleration. One of the main features of our model is the avoidance of dynamics

by the energy minimization. Consider a simple example of a harmonic spring. Without

12



damping, it will continue vibrating if the initial state is o� the equilibrium. However

the energy minimization gives the unique and stable equilibrium state corresponding

to the given external force.

The di�erence between the dynamic description of solids by either using di�erential

equations of elasticity[34] of the dynamic mass-spring model and our energy minimiza-

tion approach is similar to the Lagrangian and Hamiltonian formalisms for classical

mechanics. In order to move the system from the initial state to the �nal state, one

can solve the dynamic Hamiltonian or Lagrangian equations[35]. The solution describes

the temporal evolution of the system along the correct trajectory in the phase space.

Alternatively, one can �nd the correct trajectory among all possible trajectories, the

one along which the functional of action S =
∫
L(q, q̇, t), dt is minimal, δS = 0, where

L(q, q̇, t) is the Lagrangian function of generalized coordinates q, velocities q̇, and time

t.

The elastic spring and mass spring models are widely used in the �eld of computer

graphics [37,38,39]. However the important question of the ability of a spring network to

accurately represent elastic properties of a real material needs additional clari�cations.

In particular, we need to discuss the possibility to choose springs constants in such a

way that a set of two independent material moduli out of Bulk modulus (K), Young's

modulus (E), Lame's �rst parameter (λ), Shear modulus (G), Poisson's ratio (ν), P-

wave modulus (M), are satis�ed.

Meakin [32] used a two-dimensional network of elastic springs to represent the

material. Each spring has an initial equilibrium length l0 and a spring constant kij.

kij = k if nodes i, j are joined, kij = 0 otherwise. The total energy of the network is

E =
1

2

∑
ij

kij(lij − l0)2 (3.1)

13



But this model does not have enough freedom to reproduce two independently experi-

mentally observable moduli: the Poisson's ratio and Young's modulus. To improve it,

Gelder [37] proposed a modi�cation of the spring constant k which is dependent on

Poisson's ratio and Young's modulus and made it suitable to the irregular triangular

meshes.

For a mesh edge c, let |c| be its length. The spring constant kc is de�ned by the

equation f = kc∆|c|, or Energy = 0.5kc(∆|c|)2, where f is the stretching force, ∆|c| is

the change in length in response of f , and Energy is the potential energy held in the

spring. All previous papers presumed that the spring constants are equal. He claimed

that this presumption is the reason for the quite noticeable distortions of the meshes.

He derived a formula for varying the spring constants of an edge according to the

geometry of the triangles incident on that edge as following:

kc = (
E2

1 + ν
)

∑
e area(Te)

|c|2
+ (

E2ν

1− ν2
)
|a|2 + |b|2 + |c|2

8area(Te)
(3.2)

But all his implemented experimental validations are based on ν = 0, which is

simpli�ed to the following formula,

kc =
E2
∑

e area(Te)

|c|2
(3.3)

where the sum is over the triangles Te incident upon edge c and the coe�cient E2

is the two-dimensional Young's modulus of the membrane to be simulated.

However this method was disproved by Baudet in [38]. He tested the model with

materials whose ν ≥ 0 on a square object meshed by four symmetrical Van Gelder

triangles. The input Young's modulus EV G and input Poisson's ratio νV G. The spring

constants were calculated by equation mentioned above, and then calculate the elastic

parameters E, ν, which should be consistent with the input parameters EV G, νV G.

14



But the test showed an error of 25% on Young's modulus when input Poisson's ratio

νV G = 0, and the errors increased as input Poisson's ratio increased, where when

νV G = 0.5 the error is as large as 44%. Further more, he derived that the Young's

modulus depends on the Poisson's ratio, although the two parameters should be totally

independent in linear, isotropic and homogeneous materials.

Herve Delingette [39] proposed a model with the extra angular sti�ness terms for

modeling nonlinear membranes, with the following relationship:

Energy =
3∑

i=1

κTP
i

4
(l2i − L2

i )
2 +

∑
i

cTP
k

2
(l2i − L2

i )(l
2
j − L2

j) (3.4)

where

κTP
i =

2cot2αi(λ+ µ) + µ

16AP

=
E(2cot2αi + 1− ν)

16(1− ν2)AP

cTP
k =

2cotαicotαj(λ+ µ)− µ
16AP

=
E(2cotαicotαj + ν − 1)

16(1− ν2)AP

In our study, we use general triangular spring meshes and energy minimization meth-

ods, with improvement of mass-conservative breaking mechanism and quasi mesh-

overlapping resistant methods.

In the next section, we will demonstrate the applicability of our spring model by

calculating Young's modulus and the Poisson's ratio.

3.2 Material properties of the spring model and their

validation

Our model is based on triangular �nite element mesh which is used to represent

the material and construct the computational algorithms. The material sti�ness is
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Figure 3.1: spring network represented by unstructured mesh

composed by edge sti�ness and element sti�ness. The edges in the mesh are treated

as elastic springs and thus the edge sti�ness is constructed. The element sti�ness is

constructed by introducing virtual bonds between the incenters of each neighbored pair

of triangles, and those virtual bonds are treated the same to the edges except the value

of the spring constants. The details are stated below.

A linear elastic spring is a spring that the deviation L − L0 from the equilibrium

state is proportional to the tension F in the spring, F = kbond(L−L0), from which the

energy Ei held in the spring can be derived as

E =
1

2
kbond(L− L0)2 (3.5)

where the coe�cient kbond is the elastic coe�cient or spring constant used to describe

the sti�ness of the spring.

The spring constant of bond kbond is selected according to Young's modulus E which

satis�es k ∝ E . Physically, the selection of kbond doesn't a�ect the equilibrium loca-

tions of the mesh nodes in the model. It only a�ects the numerical stability of the

optimization algorithms. However, if kbond is changed, as a result, the tension of the
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Figure 3.2: Illustration of edge bonds and virtual element bonds. The solid lines
represent edge bond, and the dashed lines represent virtual bonds between incenters.

bond and the force applied to each mesh node will be changed. So we can put an ad-

justable constant c before kbond to make the system consistent with di�erent mesh sizes.

And the equilibrium length d of the virtual bonds among the triangle incenters are

also been initialized at the beginning of the simulation. Similarly, we have

Eele =
1

2
kele(d− d0)2 (3.6)

As we mentioned before, kbond can only change the sti�ness of the material, but with this

additional energy constraint we have more freedom to control the Poisson's ratio. The

Poisson's ratio is estimated within the small deformation. From our results, we show

that when the deformation is controlled under 10%, with kbond = 1.0 and kele = 1.0, the

result is almost linearly increasing from 0.298 to 0.301. If keep kbond = 1.0 constantly,

and change kele, we �nd that the bigger kele is, the bigger Poisson's ratio is, but it

never exceeds 0.44. Our Poisson's ratio estimation is established as following: Initially,

we discretized a unit 1 × 1 square into a triangular mesh, and then keep the top and
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Figure 3.3: Poisson's ratio calculation from a unit square mesh. Left: Initial mesh;
Right: one intermediate frame

bottom �xed vertically but can move horizontally. The bottom side moves down δy

each step, At each step N , we calculate the current average width and height of the

material, noted by 1−∆x and 1 + ∆y respectively. Poisson's ratio at this step can be

given by,

ν =
∆y

∆x
(3.7)

For each kele the relationship of Poisson's ratio ν changes with ∆y is shown by a curve

in the picture. kele = 0, 0.01, 0.1, 1, 10, 100, 500, 5000 are tested. Here is the Poisson's

ratio with respect to di�erent kelei

From the picture, we know that when k ≥ 1, the Poisson's ratio ν changes very

little when the deformation increases. And even when k is very large (5000 in our test),

ν is still less than 0.44, which is reasonable because typically ν < 0.5. We can see that

the Poisson's ratio in our model is adjustable. In later simulations, k = 1, or Poisson's
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Figure 3.4: Poisson's ratio with kbond = 1 and di�erent kele which is k in the picture.
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Figure 3.5: Tested Poisson's ratio in Gelder's model and Delinette's model.

ratio ν = 0.328 is used.

The Poisson's ratio in Gelder's model and Delinette's model have also been tested.

In both models, ν is an explicit input parameter. We tested the output Poisson's ratio

using the same setup as above. The test found that, in Gelder's model, when the input

ν = 0, the value used in all the veri�cation simulations in his paper, the output ν

is between 0.343 and 0.360 with deformation rate 1% to 34%. When input ν = 0.3,

the output ν is between 0.364 to 0.381 which means the error is greater than 20%. In

Delinette's model, where angular sti�ness was introduced, with a input ν = 0.3 the

output is between 0.334 and 0.347 with a deformation rate up to 20%. The Poisson's

ratio in these two models are also adjustable since they take it as an explicit parameter,

but the real output Poisson's ratio is quite far to the input value and it signi�cantly

changes when the deformation increases.
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3.3 Crack Formation and Propagation Models

There are two deformation regimes: fast deformation and slow deformation used in

the simulation. In the slow deformation regime, we assume that the speed of the crack

propagation is slower than the speed of deformation. In the algorithm, after moving the

boundary for one step, we apply the mesh manipulation algorithm to process the mesh

where there is overstressed bond followed by the energy minimization algorithm to fully

minimize the energy after that. The application of a small strain, energy minimization

and mesh manipulation algorithm are repeated until the total deformation reaches the

desired value. The algorithm is schematically shown in �gure 3.6.

In the fast deformation regime, the speed of the crack propagation is assumed to be

much faster than the speed of the deformation. Therefore the deformation and energy

minimization steps are applied to the system without the mesh manipulation algorithm

until the desired total strain is reached. As a result of this strain, a relatively large

portion of the solid body might be overstressed. Then the mesh manipulation algorithm

is applied to split the overstressed bonds. And then do the energy minimization and

mesh manipulation in the way mentioned above iteratively until no bond is overstressed.

The theoretical foundation of this algorithm will be described later.

3.4 Plastic Deformations

As is mentioned in chapter 2, elastic deformation will create an internal force which

is in the opposite direction of the external force that generates the deformation, and the

bigger the deformation, the bigger the internal force. If the external force is released,

the material goes back to its original shape. In the process of plastic deformation, the

internal force almost remains the same while the deformation increases. The deforma-

tion created by plastic deformation is irreversible. The transition of material behaviors
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Move boundary for one step

Apply energy minimization 
and output data if needed
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No

No

Figure 3.6: �owcharts of slow regime and fast regime
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Figure 3.7: stress-strain curves of di�erent plastic materials.

from elasticity to plasticity is called yield.

In the fracture of plastic materials there is an apparent linear elasticity region when

the deformation is small. When the deformation grows further, the material will show

the properties of plasticity, as shown in �gure 3.7. Currently, our model is only capable

of handling the materials with positive stress-strain curve slope, e.g. the curve in the

middle. For the curve that has non-positive slope, e.g. the one in the left and right,

one stress value may correspond to two strain states. Thus the problem is ill-posed

and we cannot guarantee the iterative energy minimization method will converge to one

speci�c state out of the two. So we assume the stress-strain curve is non-negative for all

the plastic material simulations later. Another di�culty in plastic deformation is that,

in practice, when the material fractures there is an amount of permanent deformation

after the load is released, which means the deformation will not fully go back to initial

equilibrium state as the elastic deformations.
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Chapter 4

Numerical Algorithms and Software

4.1 Mesh Generation

The 2D �nite element meshes used in the simulations are generated by Triangle

[36], a package developed by J. Shewchuk.

Triangle is 2D mesh generator that can produce Delaunay triangulations, con-

strained Delaunay triangulations, conforming Delaunay triangulations, Voronoi dia-

grams, and high-quality triangular meshes or re�ne a previous generated mesh. For

the high-quality triangular meshes, user have the control of the minimum angle allowed

in all triangles and the maximum triangle area. The output �les include, but user have

the right to suppress or activate, vertex list, edge list, face list, a list of triangles neigh-

boring each triangle and Voronoi diagrams and optional boundary markers for vertex

and edge lists. 4.1 is a sample mesh generated by Triangle.

The 3D tetrahedral meshes are generated by TetGen, a package created by Si Hang

of Weierstrass Institute for Applied Analysis and Stochastics, Germany.

TetGen [56] is a package that can generate tetrahedral meshes of any 3D polyhedral

domains. TetGen generates exact constrained Delaunay tetrahedralizations, boundary
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Figure 4.1: A sample 2D meshes generated by Triangle.

conforming Delaunay meshes, Voronoi partitions as well as mesh re�nement/coarsening

and surface mesh re�nement.

The mesh quality is controlled by the radius-edge ratio Q = R/L, where R is the

radius of the circumsphere of the tetrahedron, and L is the length of the shortest edge

of the tetrahedron.

For well-shaped tetrahedron, this measurement is e�ective where the ratio is usually

small, and for most badly-shaped ones, this ratio is large. Even though it cannot

guarantee that tetrahedrons with small radius-edge ratios are always in good quality, it

is the most natural and elegant measure for analyzing Delaunay re�nement algorithms.

Figure 4.2 is a sample 3D tetrahedral mesh generated by TetGen.

4.2 Energy Minimization

Most of the energy minimization is performed by calling the package Toolkit for

Advanced Optimization(TAO) [52], a package developed by Argonne National Labo-

ratory. TAO is suitable for both single-processor and multiple-processor architectures

and the current version of TAO has algorithms for unconstrained and bond-constrained
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Figure 4.2: A sample 3D mesh generated by TetGen

optimization. The bond-constrained optimization is the problem to minimize,

F (~x)w.r.t.~c1 ≤ ~x ≤ ~c2 (4.1)

where ~c1 and ~c1 are two constant vectors.

But in our objective function, the constraints are inequalities and/or equalities:

F (~x)w.r.t.g(~x) ≤ c1and/orh(~x) = c2 (4.2)

where c1 and c2 are two constant scalars.

In this case, which TAO cannot handle directly, we use an algorithm called penalty

method. A constrained optimization is given by Minimize F (~x), w.r.t.x ∈ S

where F (~x) is a continuous function on Rn, and S is a set of constraints in Rn. In

general, S is a set of explicitly functional constraints. Several speci�c examples of

constraints are given below.

Inequality: A projectile comes from the left and hits the left side of the square.
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Figure 4.3: Illustration of di�erent nonlinear constraints for the optimization

The constraints requires that no mesh node can be inside of the projectile which is

represented by a circle (x−xi)2 +(y−yi)2 = r2. So, for any mesh node (x,y), it should

locate outside of the circle: (x− xi)2 + (y− yi)2 ≤ r2. And the right side of the square

cannot move to the right direction x ≤ 1, otherwise the projectile will not fracture

with the square but instead push the whole square move.

Equality: A projectile passes through the center of a high elastic material, the

inside boundary can be constrained to be on the circle x2 + y2 = r2
i .

The penalty method [57] replaces the constrained optimization with an uncon-

strained optimization of the form

F (~x) +mP (~x) (4.3)

where m is a positive constant and P is a function on Rn and satisfying (1) P (x) is

continuous, (2) P (x) ≥ 0 for all x ∈ Rn and (3) P (x) = 0 if and only if x ∈ S

When S is in the form of h(x) = 0, a commonly used P is 1
2
(h(x))2, and when S is in

the form of g(x) ≤ 0, the corresponding P could be 1
2
(max(g(x), 0))2

Based on this, a penalty method for the nonlinear equality/inequality constraints
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can be constructed,

F (~x) +m(max(g(~x)− c1, 0))2 +m(h(~x)− c2)2 (4.4)

where m is a positive constant but increases at each iteration step from zero to a

number large enough until the accuracy desired is reached.

For unconstrained nonlinear optimization Minimizef(x), TAO has Nelder-Mead

Method, Limited-Memory, Variable-Metric Method, Nonlinear Conjugate Gradient

Method, Newton Line Search/Trust Region Method.

The Nelder-Mead Method is a direct search method for �nding the local mini-

mum of a unconstrained function. It does not need gradient or Hessian information to

perform the optimization, so it is easier to implement and is suitable for solving the

problem whose gradient or Hessian information does not exist. The downside is, due

to the lack of detail information about the function, it can be slow to converge or can

even stagnate, and it does not perform well for large numbers of variables.

The limited-memory, variable-metric method calculates a positive de�nite ap-

proximation to the Hessian matrix from a limited number of previous iterates and

gradients calculations. With this Hessian evaluation, the direction can be calculated

by which a More-Thuente line search is applied to compute a step length. Then the

iterate and Hessian are updated, and the process is repeated until it converges to the

desired accuracy. For the best e�ciency, function and gradient evaluation should be

performed simultaneously when using this algorithm. This algorithm is the default

unconstrained minimization solver.

The nonlinear conjugate gradient method is a generalization of the conjugate

gradient method for solving symmetric positive de�nite linear systems of equations.

The algorithm need only function, gradient evaluation and a line search. The line
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search method used by TAO to obtain the step length is a More-Thuente line search.

For the best e�ciency, function and gradient evaluation should be performed simulta-

neously when using this algorithm. The method incorporates automatic restarts when

successive gradients are not su�ciently orthogonal.

The Newton line search method obtain a search direction from the Hessian matrix

and gradient. After that a step length is calculated by More-Thuente line search and

the process is repeated until the desired accuracy is reached. For the best e�ciency,

function and gradient evaluations should be performed simultaneously when using this

algorithm.

The Newton trust-region method �rstly tentatively set a search radius, which is

called trust-region radius, and then obtain a best direction by a constrained quadratic

programming. If the obtained direction can su�ciently reduce the value of the objec-

tive function, the step is accepted and the minimum is updated. If not, the trust-region

radius is reduced, and the quadratic programming is re-solved by the updated trust-

region radius. For the best e�ciency, function and gradient evaluations should be

performed separately when using this algorithm.

Most of our simulations are performed by nonlinear conjugate gradient and limited

memory, variable-metric methods.

4.3 Mass-Conservative Crack Propagation Algorithm

As we mentioned before, the material is represented by the unstructured mesh. The

mesh modeling method used by Beale and Meakin is to remove the overstressed bonds.

This can create reasonable results if the stretching force applied to the material is not

very big and not many cracks are created. But in our case the impact between the

projectile and material modeled might be explosively huge, if the same method is used,
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a large amount of materials might be removed and cause the simulation results have

big void region, as shown in �gure 4.4.

There is one more restriction in the crack propagation scheme in Meakin's method:

the new cracks can only be created to the bonds that are adjacent to the current

crack surface. So we proposed and developed a mass conservative mesh manipulation

method. In order to make the material conservative, when a bond is overstressed, it

cannot be treated being simply deleted. One end of the bond will be split following

some rules described as below. Before introducing the splitting mechanism, let's give

some de�nitions �rst. When a point is on the boundary, either the original boundary

or the afterward generated crack boundary, this point is called to be on crack surface.

If a triangle have no other triangles connected to it, it is called an isolated triangle. the

number of bond connected to a node is called number of neighbour bonds of this node.

the number of triangles connected to a node is called number of neighbour elements

of this node. If a bond is overstressed, and it is not a edge of a isolated triangle, this

bond is selected to be the bond that one of the two ends will be split.

1. If neither of the two ends is on crack surface, the splitting end can be selected

arbitrarily, here we always select the �rst end of the bond.

2. If one end is on crack surface and the other isn't, the splitting end is the end that

is on the crack surface.

3. If both ends are on the crack surface

(a) and both have the number of neighbor bonds greater than 2, the splitting

end is selected as (1);

(b) and one has the number of neighbor bonds greater than 2, the other has
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Figure 4.4: Comparison of mass-non-conservative method and mass-conservative
method. Top left: initial mesh; Top right: mass-non-conservative method created large
mass loss; Bottom: The mass conservative method can show the cracks under big
tension.
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number of neighbor bonds equal to 2, the �rst is selected to be the splitting

end.

(c) it is impossible that both ends have number of neighbor bonds equal to 2,

because in this case, the triangle that contains the bond will be an isolated

triangle, or the triangle is connected to another triangle only by one vertex,

which will be eliminated in the node splitting process.

After bond splitting, if two chunks are only connected by only one node, the node

needs to be split, as indicated in Figure 4.5.

4.4 Folding and overlapping elimination

When the deformation is greater than the mesh size, without special treatment,

the mesh may fold to achieve the minimum energy of the system, which is unphysical

for brittle material, as shown in �gure 4.6. During the crack propagation, there might

be mesh overlapping around the crack surface, particularly when there are separated

fragments in the system, and the locations of the fragments will not a�ect the total

energy of the system. This should be eliminated, because the interaction between the

cracked material is one of the reasons causing the crack propagation. In other words,

whether the folding and overlapping is eliminated will a�ect how the crack propagates

in the material. Some scientist (e.g. M. Ortiz [59]) proposed successful algorithms to

solve this from the point view of force. But here we propose a method by means of

energy.

Before the mesh overlap is resolved, it should be detected �rst. A standard way

is to do the polygon(here the polygons are all triangles) collision detection pair by

pair, or do the detection to all mesh elements that have at least one edge on crack
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(1)

(2)

or

(3)

(4)

(5)

Figure 4.5: Illustration of mesh splittings in the mass-conservative fracture propaga-
tion.

33



Figure 4.6: Left: Mesh overlap sample with fracture; Right: Crack overlap after frac-
ture

Figure 4.7: Illustration of polygon collision detection

surface. The collision detection of a pair of polygons is given by the following. Select

any polygon, and draw a straight line along one edge of the polygon. Project both

polygons along this straight line to a line that is perpendicular to this line, and check

if those two projections intersect, as shown by red lines in the �gure 4.7. Then go to

next edge of the selected polygon and check by the same procedure. After all the edges

have been checked, if any pair of projections of the two polygons intersects, the two

polygons intersect. Otherwise, the two don't intersect.

The exact numerical implementation of the polygon collision detection leads to a
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very high computational cost. In our work, we use an approximate method to do the

polygon collision detection and response by penalty method. First, from the coordi-

nates of each triangle in the initial mesh, �nd the corresponding inradius r , and keep

it to be a constant in the computation,

r =

√
(s− a)(s− b)(s− c)

s
(4.5)

where s = 1
2
(a+b+c), and a, b, c are length of three edges. We can assume the inradius

doesn't change during the computation since the material is brittle.

Then we calculate the distances dij between incenters of any pair of neighbor tri-

angles Ti and Tj during the computation, if any dij is less than the summation of the

corresponding inradii ri0 and rj0 of Ti and Tj:

dij < ri0 + rj0 (4.6)

take it to be a penalty term of the energy function:

E = E +
1

2
c(dij − ri0 − rj0)2 (4.7)

Under this treatment, like in Figure 4.8, the mesh may still have overlapping, since

these forces can only guarantee no overlapping among incircles. However, this can be

improved by put more layers of circles in the blank area of the triangles like in Figure

4.9. If we keep doing this, the whole area of each triangle will be covered by the circles,

which means this will converge to the exact solution. If we put one more layer of

inscribed circles, which is three, into any triangle Ti, we can calculate the coordinates

of three centers O1, O2, O3 and radii rik , where k ∈ {1, 2, 3}, of the three circles. Here

we take calculating O1 as an example,
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Figure 4.8: Illustration of the two-layer-inscribed-circle approximation for polygon
collision detection and response.

|AO0|
|O0O1|

=
R

R− r
⇒ |AO0|

R + r
=

R

R− r
(4.8)

Since coordinates of vertex A is known, R and coordinates of O0 are already calcu-

lated in the previous step, we can easily calculate the radius

r = (1− R

|AO0|
)
R|AO0|
R + A|O0|

(4.9)

and point O1 divide the line segment AO0 into two parts with ratio

λ =
|AO1|
|O1O0|

=
r

R− r
(4.10)

So we have coordinates of O1:

xO1 =
xA + λxO0

1 + λ
, yO1 =

yA + λyO0

1 + λ
(4.11)

After calculating all the radii and coordinates of centers of second layer incircles, we

compare dikjl , which is the distance between the center of kth circle in triangle Ti and

the center of lth circle in the triangle Tj, and the summation of the two corresponding

inradii rik + rjl . If
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Figure 4.9: Initial triangles with one and two layers of inscribed circles.

dikjl < rik + rjl

we take it to be a penalty term of the energy function like we did in the previous

case. But a disadvantage of the re�ned method is that it is much slower. If there

are Nele triangles in the mesh, this will increase the number of comparison from N2

to (4N)2 = 16N2, as well as the increase of number of penalty terms. However, the

computation complexity can be reduced to Nlog(N) by using quadtree partition and

search of the computation domain. If the triangles are regular triangles with side

length 2, the area of the triangle is
√

3 ≈ 1.732, the area of the inscribed circle is π/3

≈ 1.05 and the area of the inscribed circle with one more layer of inscribed circles is

π/3+3×π/27 = 4π/9 ≈ 1.40. With more and more layers of inscribed circles added,

this number will converge to
√

3.

4.5 Parallelization

4.5.1 Parallelization based on Global Arrays and parallel TAO

Global Arrays(GA) [53] is an inter-process message communication package devel-

oped by Paci�c Northwestern National Laboratory. It is implemented to make the pro-

gramming interfaces of the distributed-memory clusters look like shared-memory ones,

but internally GA does the data communication by MPI(Message Passing Interface)

and MA(Dynamic Memory Allocator). GA has been integrated into the optimization
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package TAO.

The well-known programming model of MPI or a typical distributed memory par-

allelization is organized as follows.

When a processor needs the data residing on any other processor, the �rst thing to do

is to check the processor ID where the requested data resides, and then let the remote

processor send the data to the local one. Finally, the local processor receives the piece

of data from the remote processor.

At the remote processor where the needed data resides, execute:

MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag,

MPI_Comm comm);

where buf is the pointer to the initial address of the sending bu�er, datatype indi-

cates the type of data that will be sent, count is the number of elements in the sending

bu�er, dest is the processor where the data will be sent to, tag is a integer massage

tag and comm is the communicator.

And at the local processor where the data is needed, execute:

MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int

tag, MPI_Comm comm, MPI_Status *status);

where buf is the pointer to the initial address of the receiving bu�er, datatype indi-

cates the type of data that will be received, count is the number of elements in the

receiving bu�er, source is the processor where the data that will be received from, tag

is a integer massage tag, comm is the communicator and status is status object.

In comparison, the programming model of GA is organized as follows.

Create a global array which holds the parallelized data. Then when a processor needs

the data residing on any other processor, get the piece of data from the global array,

and if the local processor updated the data it owns, put the data to the global array

to keep the data on global array up-to-date.
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Figure 4.10: The data communication models of MPI(left) and GA(right).

NGA_Get(int g_a, int lo[], int hi[], void* buf, int ld[]);

where g_a is the global array handle, ndim is the number of dimensions of the global

array, lo/hi is the array of starting/ending indices for global array section, buf is the

pointer to the local bu�er array where the data goes, ld is an array specifying leading

dimensions/strides/extents for bu�er array.

The computational domain is decomposed by �xed non-overlap domain decomposi-

tion according to the coordinates of each mesh node. As the location of cracks during

the solid fracture process is unknown at the time of domain decomposition, the load

balance might not be optimal all the time during the simulation. A domain with more

cracks will have more computational loads than a domain with less cracks.

4.5.2 Schwartz-type Domain Decomposition for Parallelization

Usually, the domain is decomposed completely without any overlap, and message

passing is required to explicitly transmit data between processors if the memory is

distributed. But when the problem size becomes larger, data communication may

contribute a big portion of the computational time. To overcome this, we derived a

Schwartz-type alternating domain decomposition method(DDM) similar to the elliptic
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Figure 4.11: An overlapping domain decomposition with four subdomains.

boundary value problem. As shown in �gure 4.11, a computational domain ABCD, if it

is decomposed into four parts, we have four overlapped sub-domains: AGUN , EBJW ,

HCMQ, KDPS, rather than AFY O, FBIY , ICLY , LDOY as usual. The shaded

area KDPS in the picture is one of them. Initially, the computation is performed

on the four sub-domains independently. When it is done, the boundaries of each sub-

domain are updated by its neighbor domains, and the computation continues as in the

previous step until the values at the boundaries are the same to that in the neighbor

domains under some small tolerance ε.

In this DDM, no data communication is required at each speci�c iteration, commu-

nication is only required between iterations. The method is easier to implement, has

less data communication, but the convergence rate maybe slow.

Here, a two-subdomain test case has been analyzed, as shown in �gure 4.12.

This domain is a two dimensional disk with a small hole in the center. Increasing

the diameter of the inside circle, while leave the outer boundary free, the mesh nodes
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Figure 4.12: The analyzed overlapping domain decomposition with two subdomain

in the body will be redistributed to achieve a minimum energy state. The Schwartz

DD is adopted in the computation of the energy minimization.

Initial values are assigned to be the locations before the boundary is moved. After each

iteration, the iteration number and the reduced total energy from every processor are

recorded. The result is convergent but oscillatory, and quite slow. The red curve in

�gure 4.13 showed the convergence history. It took almost 250 iterations to converge

to the tolerance of 1.0e-6.

To achieve advantage in the computational time, the method must converge in

10 iterations. To improve the convergence, several sequence acceleration methods are

researched and analyzed.
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Figure 4.13: Total energy of the two subdomains v.s. the number of iterations.
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4.5.3 Sequence Accelerations

Sequence acceleration techniques are critical in the improvement of rate of conver-

gence in iterative methods. It can be categorized as linear and nonlinear, and both

have the form

x
′

n = f(x0, x1, ..., xLn) (4.12)

where Ln is a positive integer, {xn} is the original sequence and {x
′
n} is the transformed

sequence.

In the linear acceleration, we have

x
′

n =
Ln∑
i=0

θiAi (4.13)

where
Ln∑
i=0

θi = 1, and θi is independent of Ai.

In the nonlinear case θi is dependent of Ai.

In most cases, the convergence acceleration methods are applied to series that

analytical forms are already known. However, in the study of our Schwartz-type DD,

the analytical form is unknown, which causes di�culty in acceleration. In order to �nd

appropriate acceleration algorithms for the sequence we have, the rate of convergence

should be evaluated.

Assume a sequence {xn} is convergent to a value L, and the following is satis�ed:

lim
k→∞

|xk+1 − L|
|xk − L|

= µ (4.14)

if µ ∈ (0, 1), the sequence is de�ned to be linearly convergent;

if µ = 0, the sequence is de�ned to be superlinearly convergent;

if µ = 1, the sequence is de�ned to be sublinearly convergent.
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Figure 4.14: Our test shows that the sequence is sublinearly convergent.

Furthermore, if {xn} is sublinearly convergent and

lim
k→∞

|xk+2 − xk+1|
|xk+1 − xk|

= 1 (4.15)

holds, the sequence is de�ned to be logarithmically convergent.

First, we use the original data and print sequence
{
|xk+1−L|
|xk−L|

}
, where k = 0, 1, 2, ..., n−

1, as shown in �gure 4.14.

From the picture, we can easily know that the limit of the sequence
{
|xk+1−L|
|xk−L|

}
is 1,

from which we can draw the conclusion that sequence {xk} is sublinearly convergent.

Furthermore, the following sequence has been printed:

{
|xk+2 − xk+1|
|xk+1 − xk|

}

as in �gure 4.15.
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Figure 4.15: Further more, our test shows that the sequence is almost logarithmically
convergent.

The values are around 1 except a few on the tail, which is very likely the result of

the numerical precision. Therefore, we can assume that the sequence is logarithmically

convergent.

The typical acceleration algorithms [41] for logarithmically convergent sequence in-

cludeWynn's ρ algorithm, Levin's µ-Transformation, Lubkin's IteratedW -Transformation

and Brezinski's θ Algorithm. All those algorithms need a broad range of values in the

original sequence to predict even one term. Here, as an example of them, we give more

details of Wynn's ρ Algorithm, which performed the best in all 11 tests taken by Valko

[40]. It is given by,

ρ
(n)
−1 = 0, ρ

(n)
0 = xn, n ≥ 0,

ρ
(n)
k = ρ

(n+1)
k−2 +

k

ρ
(n+1)
k−1 − ρ

(n)
k−1

, k ≥ 1 (4.16)
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Figure 4.16: The acceleration using Wynn's ρ algorithm with di�erent stencil length
k. Top left: k = 50; Top right: k = 100; Bottom left: k = 150; Bottom right: k = 200.

It explicitly depends on only three terms of previous calculated results, but implicitly,

it depends on from x0 to xk. Our result show that the did no improvement to the

sequence we obtained. The pictures in �gure 4.16 are convergence history for k =

50, k = 100, k = 150, k = 200 respectively,

When k is small(k ≤ 100), the accelerated sequence converged to the same value as

the original one, but the speed is even worse. When k is big(k ≥ 150), the accelerated

sequence even didn't converge to the same value as the original one, which might be

caused by the accumulated errors in the iteration. To reduce the accumulated errors

as much as possible, Valko [40] used 50 signi�cant digits and Tuyl [41] used 28. In
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our tests, we have 22 signi�cant digits, this is why the accumulated error is doubted.

However, the accumulated error is not the main reason for the slow convergence rate

when k ≤ 100.

We also tried to eliminate the oscillation in the original sequence by applying Aitken

∆2 process for only one iteration. Aitken ∆2 process is an algorithm to do the accel-

eration with little e�ort, which uses only three consecutive terms from the original

sequence(or previous sequence if iterative aitken method is been used) to construct the

new sequence. Suppose there is a series {xn} → x of linearly convergence. The new

series {x′
n} are constructed by:

x
′

n =
xn+2xn − x2

n+1

xn+2 − 2xn+1 + xn
(4.17)

This algorithm is for linearly convergent sequence, but can be used to successfully

eliminate oscillations in our sequence, as shown by the green curve in the �gure 4.13.

Apply the ρ algorithm to this oscillation eliminated sequence doesn't work as well, plus

the accelerated sequence has a couple of large spikes in the middle.

But what we want to have is a accelerator that works e�ciently only with a small

number (e.g. < 10) of terms in the previous sequence, because the optimization pro-

cess with our overlapping DD is an iterative method, the values of the sequence can

only be obtained sequentially one by one. If the accelerator needs too many terms

in previous sequence, it becomes ine�ective, since we have already spent signi�cant

computational time to obtain the accurate enough value. Delahaye et al. [42] showed

that a general accelerator that can successfully work on any logarithmically convergent

sequence doesn't exist. A new sequence acceleration technique need to be created for

this sequence in the future.

But this method could be relatively e�cient compared to the non-overlapping do-
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Figure 4.17: The acceleration using Wynn's ρ algorithm to the oscillation eliminated
sequence.

main decomposition when there are a large number of subdomains. For example, if the

sequential time complexity of the problem is N2, with p processors, the conventional

method can theoretically reduce the time complexity to N2/p at most. Furthermore,

the optimization methods usually have small parallel e�ciency when the number of

processors becomes large. But with the overlapping method, at each iteration the time

complexity is reduced to (N/p)2 exactly, because no data communication is required at

each iteration and only small data communication between each two iterations. This

leaves us big room for the number of iterations in the overlapping domain decompo-

sition. The convergence improves with larger overlapping to subdomains, but at the

same time this will increase the size of each subdomain. The convergence is also very

fast for some special cases of extra symmetry in boundary conditions. Another domain

decomposition method which uses the same idea is change the domain decomposition

after each iteration, as in �gure 4.18.

This method can be very e�cient with shared memory machines, since no data com-

munication is required and the computation is total local without interaction among
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Figure 4.18: switch domain decomposition between two iterations

Figure 4.19: Visualization of crack surface in 2D

processors.

4.5.4 Data Analysis and Visualization

For the purpose of crack visualization in 2D, the mesh edges which are on the crack

surface or initial boundary are labeled and redirected to a separate set of �les. Only

the crack surfaces are visualized. See �gure 4.19.

In 3D, the visualization is much more complex and any one method is di�cult to

display enough information to the simulation results. Therefore, we developed three

di�erent types of visualizations: a particle based method, an iso-surface method and a

normal plane method which are complementary to one another.

If any edge overstressed and afterward be broken, the two end vertices of this edge

will be labeled to be displayed in a di�erent color. Furthermore, in order to see the
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Figure 4.20: The calculation and visualization of normal plane of the broken bond.

interior cracks, the normal plane across its middle point of the edge is visualized.

The coordinates of the edge end points P0(x0, y0, z0) and P1(x1, y1, z1) are known, and

by taking their average we will have the coordinates of the middle point Pm(xm, ym, zm),

where xm = 1
2
(x0 + x1), ym = 1

2
(y0 + y1), zm = 1

2
(z0 + z1)

also the vector
−−→
P0P1 is:

−−→
P0P1 = (x1 − x0, y1 − y0, z1 − z0) (4.18)

Three unparallel vectors that are perpendicular to
−−→
P0P1 can be easily derived,

~v0 = (0, z0 − z1, y1 − y0), ~v1 = (z0 − z1, 0, x1 − x0), ~v2 = (y0 − y1, x1 − x0, 0)

In the case of the length of those vectors might be very large, which may result in

large aspect ratio in the �nal triangle, we normalized all of them to a length d. The
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normalized vectors are
−−→
PmA,

−−→
PmB, and

−−→
PmC as shown in the �gure 4.20. Now, the

coordinates of A,B,C can be easily calculated by

A : (xA, yA, zA) = (xm, ym, zm) +
−−→
PmA

B : (xB, yB, zB) = (xm, ym, zm) +
−−→
PmB

C : (xC , yC , zC) = (xm, ym, zm) +
−−→
PmC (4.19)

Triangle ABC will be drawn to represent the normal plane, which is used to visualize

the crack surface, of the broken edge.

In computational �uid dynamics simulation, iso-surface visualization technique is

commonly used. The �uid density at each mesh node is calculated and then use the

interpolation to form the surfaces that have the same �uid density. Because the mesh-

free particle method is used here, a mesh needs to be created to do the interpolation.

An intuitive and less di�cult way is to set each particle density to 1, and map the

particle density by tri-linear interpolation to the corners of a structured mesh cell.

Assume cubic shown in �gure 4.22 is a 3D mesh cell with values known at the eight

mesh nodes. The trilinear interpolation is to �nd the value at a point P who is in

the interior of the cubic according to those eight values based upon the assumption

that the values change linearly in the 3D space. The trilinear mapping talked here is

a reverse process of the trilinear interpolation. First, the density value f at point P is

mapped to the two ends P0 and P1 of line segment P0P1,

f(P0) = f(P )
(z2 − z)

(z2 − z1)
, f(P1) = f(P )

(z − z1)

(z2 − z1)
(4.20)

then map the value at P0 to the ends of line segment P00P10 and value at P1 to the
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Figure 4.21: 3D visualization. Top: Two di�erent views of a particle based crack
visualization. Green particles are that have connected bonds broken. Bottom: Crack
visualization by the normal planes.
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ends of line segment P01P11

f(P00) = f(P0)
(y2 − y)

(y2 − y1)
, f(P10) = f(P0)

(y − y1)

(y2 − y1)

f(P01) = f(P1)
(y2 − y)

(y2 − y1)
, f(P11) = f(P1)

(y − y1)

(y2 − y1)
(4.21)

Finally, map values at P00, P10, P01, P11 to the ends of line segments P000P001, P010P011,

P001P101, and P011P111, which are exactly the eight cell vertices we want to map to by

the following.

f(P000) = f(P00)
x2 − x
x2− x1

, f(P001) = f(P00)
x− x1

x2− x1

f(P010) = f(P10)
x2 − x
x2− x1

, f(P011) = f(P10)
x− x1

x2− x1

f(P001) = f(P01)
x2 − x
x2− x1

, f(P101) = f(P01)
x− x1

x2− x1

f(P011) = f(P11)
x2 − x
x2− x1

, f(P111) = f(P11)
x− x1

x2− x1
(4.22)

All mappings a mesh node received are accumulated. Figure 4.23 is a visualization of

a unit cubic being pulled apart. Note that the upper part of the body is removed in

order to see more interior structures of the fracture.
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Figure 4.22: How the density of a particle is distributed to the eight mesh cell corners
by trilinear interpolation.

Figure 4.23: A 3D crack visualization by iso-surface method
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Chapter 5

Numerical Results, Validation, and

Applications

5.1 Prince Rupert's Drops

Prince Rupert's Drops are one type of glass drops that is named after Prince Rupert

of Germany. The drops are of high internal stress and can be created by pouring melted

glass into cold water, which cools down the surface layers very fast. The glass forms

into a tadpole-shaped droplet with a long and thin tail. The outer surface of the

drop was cooled very fast by the water with the solidi�cation of the shell, while the

temperature of the interior of the drop remains signi�cantly hotter. When the interior

of the glass �nally cools down, it generates very big tensions among the granules of

the interior, because of the solidi�cation of the shell, and these tensions cannot be

released. Rupert's drops show two perplexing mechanical properties: the main body

of the drop can sustain a large extreme impact, but the tail can be quite easily broken

by a small external pressure and the whole drop will disintegrate within microseconds

producing a �ne powder. It is widely accepted now that the surface of a Rupert's drop
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is in compression and the interior is in tension. From the experiments performed by

Chandrasekar [58], the surface compressive layer of drops of head diameters 6.4-7.9mm

was estimated to be ∼ 0.9mm and the fragment size were in the range of 15µm to

2.3mm. Chandrasekar [58] showed that the drop having a head with the diameter of

6-8mm could be pressed between two hardened steel rollers to a load of as large as

15,000N without breaking. If apply a very small perturbation or damage in the drop

tail, the drop will disintegrate with a speed of fracture zone propagation as large as

1450-1900 m/s and reasonably constant[58]. Most of the crack propagation features

seen in a disintegrating drop are very similar to that observed from tempered glass.

Here, we use our model to simulate this process in 2D. After the mesh is loaded,

we set the tension of central zone arti�cially and apply a disturbance to the tail.

In the initial mesh, the left part is a unit circle, and the tail of the drop extends to

x=6cm to the right. Then a perturbation is introduced by moving the part of mesh in

the right of vertical line x=5cm a amount of 0.01cm to the left. The cracks propagate

very quickly to the left side, and the whole drop become completely disintegrated in a

very short time. See �gure 5.1.

5.2 Fracture of Thin Discs hit by Projectiles

In this section, we report 2D simulation results of the fracture of thin brittle disks

hit by high velocity projectiles. The characteristic feature of such fracture process is

the bifurcation of the fracture dynamics from the growth of the comminuted zone to

the propagation of isolated radial cracks. Figure 5.2 shows experimental images of a

glass sheet and a SiC plate hit by projectiles. In both cases, a completely fractured

(comminuted) zone is located around the projectile hole, and a number of distinct

cracks extend from this comminuted zone in the radial direction. The goal of our
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Figure 5.1: Top: The initial mesh; Second top to bottom: Simulation of the crack
propagation of Prince Rupert's Drop with its tail disturbed.
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simulations is to reproduce this characteristic behavior of the fracture process and

investigate its dependence on material properties and other parameters.

We represent a thin brittle disk with a 2D meshed circle of 10 cm diameter. When

it is hit by a projectile with the diameter of 0.1 cm, a very small seed hole is initially

created in the center of the disk. We increase the radius of the hole to its �nal value

by means of constraints applied to the inner circle boundary conditions while there

are no constraints applied to the outer boundary of the disc. After each increase of

the hole, the energy minimization and crack formation algorithms are applied. As it

is shown in Figure 5.3, our simulations exhibit both the formation of the comminuted

zone and then the growth of 7 radial cracks. The mesh containing 8,000 nodes was

used in this simulations, the critical strain was set to 0.1%, and the step size of the

hole increase was chosen as 0.01 cm. By changing the critical strain to 1% and keeping

other parameters �xed, we obtained the results shown in Figure 5.4 (a). The increase

of the critical strain corresponds to the change of the brittle properties (the material

becomes less brittle), resulting in the reduction of radial cracks from 7 to 3. This

qualitatively agrees with observations. In the right part of �gure 5.4, the simulation

result corresponding to the mesh size if 5,000 nodes is shown. It is clear that the

main features of the fracture process are independent of the mesh size: the size of the

comminuted zone and the number of cracks are the same as in the left image.

In the last test, we check the relationship between cracks and the projectile velocity

by decreasing the step size of the hole increments from 0.01 cm to 0.001 cm and keeping

the mesh size of ∼ 5,000 nodes and the critical strain of 1%. This decrease of the step

size corresponds to the reduction of the projectile velocity and results in the formation

of only two cracks.
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Figure 5.2: Left: A piece of glass hit by a projectile; Right: A chunk of SiC hit by a
projectile [60](use with permission from the author).

5.3 2D Simulation of Thick Wall Fracture

Another set of tests is a projectile with diameter 0.01m hit a thick wall in 2D,

which is represented by a 1m × 1m mesh, see �gure 5.6. The boundary condition for

the simulation shown in the left picture is the top and bottom is only allowed to move

horizontally. The boundary condition for the simulation in the right picture is the right

boundary of the square cannot move to the right direction. The critical strain is 0.003.

The projectile comes from left and passes through the center of the square. The result

obtained by utilizing the one-layer inscribed circle approximation algorithm is shown

in the left picture, and the result obtained by utilizing two layers of inscribed circle

approximation is shown in right picture. Apparently, the picture simulated with two

layers of inscribed circles is more brittle.

59



Figure 5.3: Simulation of crack formation and propagation in a 2D unit disc with
critical length 0.1%, mesh size ∼ 8,000 and step size 0.001m.
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Figure 5.4: Simulation of crack formation and propagation in a 2D unit disc with
critical length 1%, mesh size ∼ 8,000 and step size 0.001.

Figure 5.5: Simulation of crack formation and propagation in a 2D unit disc with
critical length 1%, mesh size ∼ 5,000 and step size 1e-4cm
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Figure 5.6: 2D simulation of a projectile hit a thick wall. Left: result obtained by
one-layer inscribed circle; Right: result obtained by two-layer inscribed circle

5.4 3D Simulations

In our 3D simulation, we use a particle mesh method. A tetrahedral mesh is gener-

ated and the material volume is stored in the mesh nodes. In our �rst 3D simulation a

unit cube is stretched until the fracture occurs. The mesh has approximately 320,000

mesh nodes, and run by 32 processors.

Figure 5.7: 3D cube pulled apart visualized by particles

To keep the total volume conserved in the simulation, a method to prevent particle

62



Figure 5.8: 3D cube pulled apart visualized by iso-surface

collapse is developed. The accurate way is to do polyhedron collision detection and

response which is very computationally intensive. To speed up computation, we devel-

oped an approximate method. For each node, the average length of all edges that the

node connected to is calculated.

Lavg =
i=N∑
i=1

Li, Lmin = Min(L1, L2, ...LN) (5.1)

where N is the number of edges the the node connected to.

Half of this average length is the benchmark radius of the node. To prevent the gen-

eration of cracks where there is no deformation, we take the radius to be

r = (Lavg + Lmin)/2 (5.2)

If any pair of those spheres collides, as before, a penalty term is added to the objective

energy function.

E = E + c ∗min2(0, d− r0 − r1) (5.3)

where d is the distance between the centers of the two spheres, and r0, r1 are the radii

of the two spheres.

In our second example, a projectile hits the center of a thin plate.
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Figure 5.9: 3D cube pulled apart visualization by normal plane, result from one pro-
cessor

The normal plane visualization is also from one processor. We can �nd that the

approximation is not close enough, because the radial cracks and the comminuted

region is not fully formed. In order to get a better solution, the best way is to use a

accurate polyhedron collision detection and response algorithm. This will be completed

in the future work.
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Figure 5.10: A 3D thin plate hit by a projectile in the center

5.5 Multiscale Computer Simulations of Fission Gas

Discharge During Loss-of-Flow Accident in Sodium

Fast Reactor

The purpose of this Section is to present the multiscale modeling approach for

mechanistic three-dimensional transient computer simulations of the injection of a jet

of gaseous �ssion products into a partially blocked SFR coolant channel following local-

ized cladding overheat and breach. The described scenario is resolved on three di�er-

ent scales by inter-communicating computational multiphase �uid dynamics (CMFD)

codes: FronTier, PHASTA and NPHASE-CMFD.

The smallest scale under consideration deals with the following processes: fuel rod

stainless steel cladding failure, melting of the nuclear fuel and the subsequent �ssion gas
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discharge through the failure opening into the liquid sodium coolant. The characteristic

size of this part of the problem is around 1 mm. Those processes are resolved using

FronTier code. FronTier is a multiphysics code for the simulation of multiphase/free-

surface �ows based on the method of front tracking, which has been developed at Stony

Brook University in collaboration with BNL and LANL. FronTier analyzes the shape

of the cladding failure and provides the computed out�ow rate of the �ssion gas to the

PHASTA code.

The second scale of the simulation deals with the �ssion products being injected

into the liquid sodium coolant. Using the geometry of the failure in the cladding and

the gas injection �ow rate a direct numerical simulation (DNS) of two-phase turbu-

lent �ow is performed by the two-phase version of PHASTA, combined with Level Set

method. The characteristic size of this part of the problem is about 10 mm. PHASTA

is a parallel, hierarchic (between 2nd- and 5th orders of accuracy, depending on func-

tion choice), adaptive, stabilized (�nite element) transient analysis DNS �ow solver

(both incompressible and compressible). The turbulent two-phase PHASTA out�ow is

averaged over time to obtain mean phasic velocities and volumetric concentrations, as

well as the liquid turbulent kinetic energy and turbulence dissipation rate, all of which

serve as the input to the next scale of the simulations using the NPHASE-CMFD code.

A sliding window time-averaging has been used to capture mean �ow parameters for

transient cases.

The largest scale of the simulation considers the �ow of the liquid sodium coolant

with �ssion gas in a reactor region around the failure with characteristic size of 0.5

m. This simulation is performed by NPHASE-CMFD code. NPHASE-CMFD is an

advanced Computational Multiphase Fluid Dynamics computer program for the sim-

ulation and prediction of combined mass, momentum and energy transfer processes in

a variety of multiphase/multiscale systems. It uses two-phase k− ε models along with
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Figure 5.11: A general schematic of a Gen-IV Sodium-Cooled Fast Reactor (Source:
A Technology Roadmap for Generation IV Nuclear Energy Systems by the U.S. DOE
Nuclear Energy Research Advisory Committee and the Generation IV International
Forum)

transient in�ow boundary conditions supplied by PHASTA to perform turbulent �ow

simulation in the reactor coolant during the accident transient. NPHASE-CMFD also

supplies the pressure value back to the PHASTA domain out�ow. PHASTA, in turn,

provides the pressure found at the in�ow of its domain back to FronTier out�ow. Thus,

all the three codes used for the described multi�eld simulation are fully coupled. The

use of such a multiple code platform allows one to perform full scale simulations of

hypothetical accidents in future Gen-IV reactors (Fig. 42-43), while maintaining the

required level of detail assured by the multiscale approach.
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5.5.1 Description of individual computer codes

FronTier

FronTier is a computational package for direct numerical simulation of multiphase

�ows [65] developed at Stony Brook University in collaboration with LANL and BNL.

It is based on front tracking [66], a numerical method in which surfaces of disconti-

nuity are given explicit computational degrees of freedom. This method is ideal for

problems in which discontinuities are an important feature, and especially where their

accurate computation is di�cult by other methods. FronTier supports compressible

and incompressible Navier-Stokes equations and MHD equations in the low magnetic

Reynolds number approximation [67], and phase transitions such as melting and vapor-

ization [69]. The FronTier code has been used for large scale simulations of a variety of

physical problems [67,68,70] on various platforms including the IBM BlueGene super-

computer New York Blue located at Brookhaven National Laboratory. The application

of FronTier to the present problem has been two-fold. First, it has been used to model

solid-state mechanics phenomena governing cladding heat-up and breach. Secondly,

using the initial conditions of pressurized �ssion gas inside the reactor fuel pins prior

to cladding failure, simulations have been performed of gas �ow through the cracked

cladding.

PHASTA

PHASTA is a parallel, hierarchic (higher order accurate from 2nd-5th order accurate

depending on function choice), unstructured/adaptive, stabilized (�nite element) tran-

sient analysis �ow solver (both incompressible and compressible) [71,72]. PHASTA

(and its predecessor, ENSA) was the �rst unstructured grid LES code [73] and has

been applied to turbulent �ows ranging from validation benchmarks (channel �ow,

decay of isotropic turbulence) to complex �ows (airfoils at maximum lift, �ow over a

cavity, near lip jet engine �ows and �n-tube heat exchangers). The PHASTA code
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uses advanced anisotropic adaptive algorithms and the most advanced LES/DES mod-

els [74]. Note that DES, LES, and DNS are computationally intensive even for single

phase �ows. The two-phase version of PHASTA utilizes the Level Set method to de�ne

the interface between the gas and liquid phases [75]. Here, it has been used to simulate

gas jet injection into the coolant region using the boundary conditions provided by

FronTier. Turbulent two phase PHASTA out�ow is averaged over time to obtain mean

velocities for each phase, turbulent kinetic energy and turbulence dissipation rate of

each phase. This time-averaged data provides the input to the next scale of the sim-

ulation using the NPHASE-CMFD code. A sliding window time averaging has been

used to capture slow changes to the mean �ow parameters. Also, PHASTA provides

the pressure found at the in�ow of its domain back to FronTier out�ow.

NPHASE-CMFD

NPHASE-CMFD is an advanced Computational Multiphase Fluid Dynamics computer

program [79] for the simulation and prediction of combined mass, momentum and en-

ergy transfer processes in a variety of single-phase [76] and multiphase/multiscale sys-

tems, including gas/liquid, solid/liquid [77,78] and gas/solid/liquid [79] �ows. It uses

two-phase k-ε models of turbulence (the user can chose between the High Reynolds

Number and Low Reynolds Number options of the model). In the present work, tran-

sient in�ow boundary conditions have been supplied by PHASTA to simulate �ssion-

gas/liquid sodium two-phase �ow along and around the failed fuel element and the

elements adjacent to it. NPHASE-CMFD also supplies the pressure value back to the

PHASTA domain out�ow. Thus, all the three codes used for the described multi�eld

simulation are fully coupled.
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Figure 5.12: Schematic of fuel degradation and transport in SFR during fuel rod failure
accidents

5.5.2 Plastic model simulation of fuel rod fracture

In this section, we illustrate the application of our algorithm to the study of accident

scenarios in nuclear fuel rods. A nuclear fuel rod contains 8 mm diameter pellets of

metallic or oxide uranium fuel in a stainless still cladding of 0.5 mm thickness. The

total length of the fuel rod is about 2.5 m. A narrow (0.1 mm), irregular gap between

the fuel and the cladding is used to transport �ssion gases from the fuel to the gas

plenum on the top of the reactor core. Fuel rods are assembled in hexagonal structures

and places into liquid sodium coolant that circulates in the reactor core and transports

the thermal energy from fuel rods to the heat exchangers. The cross-section of the fuel

rod is shown schematically in �gure 5.13.

The temperature distribution across the fuel rod at normal operating conditions

is shown in �gure 5.15. The power production of about 60 kW/m in the fuel rod is

balanced by the heat removal by the sodium coolant so that the temperature is in the

steady state. The picture shows rapid changes of the temperature gradients across the
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Figure 5.13: Schematic of the nuclear fuel rod cross-section: (a) is the fuel pellet, (b)
is the gas gap, (c) is the stainless steel cladding, and (d) is the liquid sodium.

fuel rod due to sharp changes of the heat conductivity in the fuel, gap, and cladding.

After years of operation, the surface of the fuel erodes and comes to a point-wise contact

with the clad as shown in �gure 5.14. The interior of the gas gap is not resolved on

the mesh level and an empirical formula for the temperature jump across the gap [64]

is applied for the heat transport calculations. For the related problem of the transport

of �ssion gases in the gas gap, the �ow in porous media equations are solved.

During either transient overheating or loss of coolant accidents, the heat transfer

balance is changed and the temperature in the fuel rod increases. It can cause melting

of the fuel rod and even stainless steel cladding. However because of the change of

cladding properties with the temperature increase, the cladding usually fails before

melting, causing the ejection of molten fuel and �ssion gases into the coolant reservoir.

Figures 5.15 and 5.16 depict the increase of temperature and melting of the fuel in the

transient overheating accident.

Using the solid fracture code, we have simulated the failure of the stainless steel
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Figure 5.14: Shape of the gas gap between the fuel and cladding.

Figure 5.15: Temperature across the fuel rod at normal operating conditions and tran-
sient overheating.
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Figure 5.16: Temperature distribution across the fuel rod during transient overheating
and the surface of the molten fuel.
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cladding of the overheated nuclear fuel rod. In the present case, the cladding failed

before melting, causing the ejection of �ssion gases into the coolant channels. The

increasing fuel temperature caused the pressure inside the fuel rod to increase as well,

thus augmenting the mechanical load on the cladding wall. The combined e�ects of el-

evated gas pressure and cladding temperature weaken the cladding wall and eventually

lead crack formation. As no exact data on properties of the cladding material in a wide

temperature range were available, our computational model is only qualitatively cor-

rect. We also employed a simpli�es �uid-structure interaction model. Fluid-structure

interaction is the interaction of some movable or deformable structure with an internal

or surrounding �uid �ow. The following picture is a sketch map of the basic mechanics

of �uid-structure interaction. The connected line segments present the interface be-

tween the �uid and the solid, or the part lower than the line segments presents the

�uid and the line segments presents the very thin solid shell whose thickness can be

neglected. This is a constrained problem which we can take point as an example. is the

projection of the area of and to tangent direction, and is the projection of composition

of forces and to normal direction. is the average pressure to the area . According to

Newton's third law, the constraints should be . The same idea is applicable to both

2D and 3D.

The exact model requires optimization with a several complex nonlinear constraints

per each computational node. Such an optimization problem is very costly and the

present research aims at the reduction of complexity of constraints without the re-

duction of the accuracy. The simpli�ed model assumes that due to local change of

properties as the materials enters the plastic deformation regime, the local deforma-

tion in the direction normal to the surface is a function of the material strength. Such

an approach led to a micro-swelling of the fuel rod under the in�uence of pressure and

temperature and the failure of cladding. The predicted crack side is shown in Fig.
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Figure 5.17: fuel rod modeling initial setup and fracture

5.17.

After the cracks are calculated, other packages will use the result to do other parts

of the simulations in the project. For instance, FronTier will do the simulation of

two-phase �ow of the fuel and coolant.
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Chapter 6

Conclusion

A new mass conservative mesoscale model for the simulation of fracture of solid

materials has been developed. Our representation of solids by spring networks contains

two degrees of freedom necessary to match real material properties and exhibits a stable

Poisson ratio. The algorithm is based on the energy minimization of the network of

triangular springs with critical strain and splitting of overstressed bonds and connected

to them nodes ensuring the conservation of mass during the crack evolution. An

algorithm to resolve the mesh folding and overlapping for the simulation of compressed

materials has been developed by introducing special energy penalty terms. The main

emphasis of the research is on the study of brittle fracture but elasto-plastic models

for springs have also been developed for the simulation of plastic deformations with

limited shear bands.

In 2D the mass is stored in mesh elements where the mesh in generated by Triangle.

The method is material mass-conservative achieved by mesh splitting combined with

overlapping prevention with approximately keeping the total area of the triangular

mesh conservative. Due to the resolution of the mesh overlapping, the method can be

applied to materials not only under tensile stress but also can deal with compression
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stress and explosive fragmentation simulation. The separated chunks of materials can

freely move to any possible locations to form fragment �ow if it agreed to the mechanical

principals.

The model is also developed in 3D, where a particle method similar to smooth

particle hydrodynamics is used. The mesh structure is standard unstructured tetra-

hedral mesh generated by TetGen, and the mass is stored in the particles which are

the mesh nodes. Several preliminary simulations are presented, since the polyhedron

collision detection and response are fully developed yet. Our software is implemented

in parallel with di�erent parallelization strategies. The �rst is the standard distributed

parallelization with Global Arrays, which is a wrapper of standard MPI. The second

is the parallelization with iterative Schwartz-type overlapping domain decompositions.

During each iteration, each processor performs the optimization totally locally without

data communication and the data is only been communicated after the iteration step is

�nished to update the boundary information of each subdomain. Due to the slow con-

vergence of the overlapping domain decomposition, a number of sequence accelerating

algorithms are analyzed.

One data visualization technique for 2D and three methods for 3D visualization are

created. The 2D result is visualized by only displaying the crack surface and natural

boundaries. In 3D, the three are a particle based visualization, iso-surface and trilinear

interpolation based visualization and a normal plane visualization. Three di�erent

methods have their own advantages and disadvantages so that can be complementary

to each other.

The software has been applied to the simulation of fracture of solids under slow

stretching deformations, the rapid disintegration of highly tempered gases in the phe-

nomenon called the Prince Rupert drop, and the fracture of thin brittle discs hit by high

velocity projectiles. The bifurcation of the fracture dynamics from the growth of the
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comminuted zone to the propagation of isolated radial cracks, typical for the fracture

of glass sheets and thin ceramic plates hit by projectiles, has been reproduced in out

numerical experiments and scaling studies involving the change of material properties

and projectile velocity have been performed. The fracture model has also been used in

a coupled multiscale simulation of the nuclear fuel rod failure within a study of nuclear

reactor safety issues. In the future, out can be applied to DOD fracture research of

brittle materials and DOE nuclear reactor research. As steel and nuclear materials

become brittle after su�ciently long exposure to the radiation of the level typical for

nuclear rectors, the brittle fracture model may become a tool for the assessment of the

reactor safety.
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