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Abstract of the Dissertation

Potts Model and Generalizations:
Exact Results and Statistical Physics

by

Yan Xu

Doctor of Philosophy

in

Physics

Stony Brook University

2012

The q-state Potts model is a spin model that has been of longstand-
ing interest as a many body system in statistical mechanics. Via
a cluster expansion, the Potts model partition function Z(G, q, v),
defined on a graph G = (V,E), where V is the set of vertices (sites)
and E is the set of edges (bonds), is expressed as a polynomial in
terms of q and a temperature-dependent Boltzmann variable v. An
important special case (v = −1) is the zero-temperature Potts an-
tiferromagnet, for which Z(G, q,−1) = P (G, q), where P (G, q) is
the chromatic polynomial, counting the number of ways of assign-
ing q colors to the vertices of graph G such that no two adjacent
vertices have the same color.

A natural generalization is to consider this model in a general-
ized external field that favors or disfavors spin values in a subset
Is = {1, ..., s} of the total set of q-state spin values. In this disserta-
tion, we calculate the exact partition functions of the generalized
Potts model Z(G, q, s, v, w), where w is a field-dependent Boltz-
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mann variable, for certain families of graphs. We also investigate
its special case, viz. Z(G, q, s,−1, w) = Ph(G, q, s, w), which de-
scribes a weighted-set graph coloring problem.

Nonzero ground-state entropy (per lattice site), S0 6= 0, is an im-
portant subject in statistical physics, as an exception to the third
law of thermodynamics and a phenomenon involving large disorder
even at zero temperature. The q-state Potts antiferromagnet is a
model exhibiting ground-state entropy for sufficiently large q on
a given lattice graph. Another part of the dissertation is devoted
to the study of ground-state entropy, for which lower bounds on
slabs of the simple cubic lattice and exact results on homeomorphic
expansions of kagomé lattice strips are presented. Next, we focus
on the structure of chromatic polynomials for a particular class of
graphs, viz. planar triangulations {Gpt}, and discuss implications
for chromatic zeros and some asymptotic limiting quantities.
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Chapter 1

Introduction to Potts Model
and Generalizations

In this dissertation, we are interested in calculating and analyzing the
partition function of the Potts model and its generalizations for various families
of graphs {G}. Our results on this were published in Refs. [66] and [67]. We
also study an important special case, namely the partition function of the
zero-temperature Potts antiferromagnet, which is the chromatic polynomial.
Our results on this were published in Refs. [68], [69] and [70], together with a
paper in press, Ref. [71].

The main new results in this thesis work are as follows. We derive a
powerful exact general formula for the partition function of the q-state Potts
model on various families of graphs G in a generalized external magnetic field
that favors or disfavors spin values in a subset Is = {1, ..., s} of the total set
of possible spin values, Z(G, q, s, v, w), where v and w are temperature- and
field-dependent Boltzmann variables. An important property of this formula
is that it expresses Z(G, q, s, v, w) in a graph-theoretic manner as a sum of
contributions from spanning subgraphs G′ of the graph G, rather than as a
sum over spin configurations, as in the original Hamiltonian formulation. It
thus allows one to generalize q from positive integer values to positive real
values (and also to complex values, as is necessary for the analysis of the zeros
of Z(G, q, s, v, w)). Using this general formula, we derive a number of exact
properties of Z(G, q, s, v, w). These include new upper and lower bounds on
Z(G, q, s, v, w) for the ferromagnetic case in terms of zero-field Potts partition
functions with certain transformed arguments. We also prove general inequal-
ities for Z(G, q, s, v, w) on different families of tree graphs. We remark on
differences in thermodynamic behavior between our model with a generalized
external magnetic field and the Potts model with a conventional magnetic field
that favors or disfavors a single spin value. We also analyze an interesting spe-
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cial case of the zero-temperature Potts antiferromagnet, corresponding to a
set-weighted chromatic polynomial Ph(G, q, s, w) that counts the number of
colorings of the vertices of G subject to the condition that colors of adjacent
vertices are different, with a weighting w that favors or disfavors colors in
the interval Is. As part of our analysis, we elucidate how the field-dependent
Potts partition function and weighted-set chromatic polynomial distinguish,
respectively, between Tutte-equivalent and chromatically equivalent pairs of
graphs.

This dissertation work also includes new results on chromatic polynomi-
als P (G, q) and ground-state entropy of the q-state Potts antiferromagnet on
families of graphs. We calculate rigorous lower bounds for the ground state
degeneracy per site, W , of this model on slabs of the simple cubic lattice that
are infinite in two directions and finite in the third, which thus interpolate
between the square (sq) and simple cubic (sc) lattices. We give a comparison
with large-q series expansions for the sq and sc lattices and also present nu-
merical comparisons. Moreover, it is of interest to study how the ground-state
entropy of the Potts antiferromagnet depends on various properties of a graph.
To elucidate this, we present exact calculations of the chromatic polynomial
and resultant ground state entropy of the q-state Potts antiferromagnet on lat-
tice strips that are homeomorphic expansions of a strip of the kagomé lattice.
The dependence of the ground state entropy on the form of homeomorphic
expansion is elucidated.

It is noteworthy to mention that, in general, the time required for the cal-
culation of these functions (polynomials) grows exponentially with the number
of vertices n = n(G), rendering the calculation intractable even for moderate
n. Hence, it is quite valuable to develop techniques to handle complexity in
calculations and to compute these quantities exactly for arbitrarily large n for
certain families of graphs. It is also of great interest to discuss implications of
these results in statistical physics.

A graph G is defined as a network G = (V,E), where V is the set of vertices
(also called sites or nodes), and E is the set of edges (also called bonds or links).
We denote the number of vertices of G as n = n(G) = |V | and the number of
edges of G as e(G) = |E|. Further, k(G) denotes the number of (connected)
components of G. H = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and
E ′ ⊆ E. A spanning subgraph is a subgraph containing (or spanning) all the
vertices of G, i.e. G′ = (V,E ′) is a spanning subgraph of G = (V,E) if and
only if E ′ ⊆ E, and it is denoted as G′ ⊆ G. We shall use these definitions
and notations hereafter.

2



1.1 The Zero-Field Potts Model and Its Par-

tition Function as a Cluster Expansion

In this chapter we introduce the (zero-field) Potts model and its generaliza-
tions, as well as a general discussion of the statistical physics of these models.
The q-state Potts model has served as a valuable model for the study of a
many-body spin system in statistical mechanics [42], [85]. On a general graph
G = (V,E), at temperature T , this model is defined by the partition function

Z(G, q, T ) =
∑
{σ}

e−βH, (1.1)

with the (zero-field) Hamiltonian describing a local spin-spin interaction be-
tween nearest-neighbors:

H = −J
∑

<ij>∈E

δσiσj , (1.2)

where σi = 1, ..., q are the discrete (classical) spin variables on each vertex
i ∈ V . < ij > denotes pairs of adjacent (nearest-neighbor) vertices, viz. each
< ij > is an edge in the edge set E. δσiσj = 1 for σi = σj, and δσiσj = 0
otherwise. β = 1/(kBT ) and kB is the Boltzmann constant. J is the spin-spin
interaction constant.

For convenience, we use the notation

K = βJ, v = eK − 1, (1.3)

so that the physical ranges for this temperature-dependent Boltzmann variable
v are (i) v ≥ 0, corresponding to ∞ ≥ T ≥ 0 for the Potts ferromagnet
(J > 0), and (ii) −1 ≤ v ≤ 0, corresponding to 0 ≤ T ≤ ∞ for the Potts
antiferromagnet (J < 0). Thus the (zero-field) Potts model partition function
Z(G, q, v) is a function of variables q and v, also depending on the graph G.

One can express Z(G, q, v) as the following

Z(G, q, v) =
∑
{σ}

∏
<ij>∈E

(1 + vδσiσj). (1.4)

Then Z(G, q, v) can be written as the sum of spanning subgraphs G′ ⊆ G,
instead of summation over spin configurations {σ}, via a cluster expansion
[31]:

Z(G, q, v) =
∑
G′⊆G

ve(G
′)qk(G′), (1.5)
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where e(G′) and k(G′) denote the number of edges and components of G′,
respectively. Hence, we see that Z(G, q, v) is a polynomial in q and v.

Consider, for example, G = C3, where Cn is the circuit graph with n
vertices. See Fig. (1.1). Then we have

Z(C3, q, v) =
∑
{σ}

∏
<ij>∈E

(1 + vδσiσj)

=
∑
{σ}

(1 + vδσ1σ2)(1 + vδσ2σ3)(1 + vδσ3σ1)

=
∑
{σ}

[1 + v(δσ1σ2 + δσ2σ3 + δσ3σ1)

+ v2(δσ1σ2δσ2σ3 + δσ2σ3δσ3σ1 + δσ3σ1δσ1σ2)

+ v3(δσ1σ2δσ2σ3δσ3σ1)] (1.6)

From this figure, as a graphical representation of Eq. (1.6), we see that the
contribution to Z(G, q, v) in Eq.(1.4) consists of NSSG terms, each of the form
ve(G

′)qk(G′), for each of the spanning subgraphs G′ ⊆ G, where NSSG = 2e(G) is
the total number of spanning subgraphs of G. Thus, for this illustration,

Z(C3, q, v) = q3 + 3q2v + 3qv2 + qv3 = (q + v)3 + (q − 1)v3 (1.7)

1.2 Ground State Entropy of the Potts Anti-

ferromagnet and Its Connection with the

Chromatic Polynomial

In this section we discuss an important special case for Z(G, q, v). For the
Potts antiferromagnet (PAF), J < 0 so that, as T → 0 with βJ = −∞, viz.
v = −1; hence, in this limit, the only contributions to the partition function
are from spin configurations in which adjacent spins have different values. The
resultant T = 0 PAF partition function is therefore precisely the chromatic
polynomial P (G, q) of the graph G:

Z(G, q, T = 0)PAF = Z(G, q, v = −1) = P (G, q) , (1.8)

where P (G, q) counts the number of ways of assigning q colors to the vertices
of G subject to the condition that no two adjacent vertices have the same color
(for references and reviews on the chromatic polynomial, see [14], [43], [44] and

4
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Figure 1.1: An illustration of the cluster expansion of C3 graph.

[29]). This is called a proper q-coloring of (the vertices of) graph G. Thus, the
ground state degeneracy (per site) is connected to the chromatic polynomial
via the following relation

W ({G}, q) = lim
n→∞

P (G, q)1/n . (1.9)

Nonzero ground state entropy (per lattice site), S0 6= 0, is an important
subject in statistical mechanics, as an exception to the third law of thermody-
namics and a phenomenon involving large disorder even at zero temperature
[41]. Since S0 = kB lnW , where W = limn→∞W

1/n
tot. and n denotes the num-

ber of lattice sites, S0 6= 0 is equivalent to W > 1, i.e., a total ground state
degeneracy Wtot. that grows exponentially rapidly as a function of n. One
physical example is provided by H2O ice, for which the measured residual en-
tropy per site (at 1 atm. pressure) is S0 = (0.41 ± 0.03)kB, or equivalently,
W = 1.51 ± 0.05 [41] [32] [1] (a recent theoretical study is [7], which gets
W = 1.50738±0.00016). In ice, the ground state entropy occurs without frus-
tration; that is, each of the ground state configurations of the hydrogen atoms
on the hydrogen bonds between water molecules minimizes the internal en-
ergy of the crystal. This is in contrast to systems where nonzero ground state
entropy is associated with frustration, including the Ising antiferromagnet on
the triangular lattice.

5



Here the q-state Potts antiferromagnet (PAF) serves as a model that ex-
hibits ground state entropy without frustration and hence provides a useful
framework in which to study this phenomenon [85],[4] on a given lattice Λ or,
more generally, a graph G, for sufficiently large q. An interesting question
concerns how this ground state entropy, or equivalently, the ground state de-
generacy per site, W , depends on properties of the graph. One can study this
using such methods as Monte Carlo simulations, calculations of rigorous upper
and lower bounds, and large-q series [53] [55]. One can also gain considerable
insight from exact solutions for W on the n→∞ limits of certain families of
graphs.

The determination of W ({G}, q) is thus equivalent to the determination
of S0({G}, q), and we shall generally give results in terms of W ({G}, q). The
minimal integer value of q for which one can carry out a proper q-coloring of
G is the chromatic number, χ(G) [34]. In general, for certain special values of
q, denoted qs, one has the following noncommutativity of limits [52]

lim
n→∞

lim
q→qs

P (G, q)1/n 6= lim
q→qs

lim
n→∞

P (G, q)1/n , (1.10)

and hence it is necessary to specify which order of limits one takes in defining
W ({G}, q). This will be indicated below, where it is not obvious. For the
families of graphs considered here, the set {qs} includes {0, 1, 2}. For lattice
strips that are m-fold repetitions of some basic subgraph, one can take a limit
n→∞ by taking the limit m→∞ [46].

1.3 Potts Model in a Generalized External Field

and Weighted-Set Graph Colorings

A natural generalization is to study the q-state Potts model in a general-
ized external magnetic field that favors or disfavors a certain subset of spin
values Is = {1, ..., s}, out of the total set of spin values Iq = {1, ..., q} [66] and
[67]. The full Hamiltonian of this generalized Potts model contains two parts:
the local (nearest-neighbor) spin-spin interaction and the global spin-field in-
teraction, viz.

H = −J
∑
<ij>

δσiσj −
q∑
p=1

Hp

∑
l

δσl,p, (1.11)

where the external field is defined as the following: Hp = H for 1 ≤ p ≤ s and
Hp = 0 for s+ 1 ≤ p ≤ q.

We employ the notation h = βH, w = eh, so w is a field-dependent Boltz-
mann variable. It is very useful to obtain a general graph-theoretic formula
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for Z(G, q, s, v, w) that does not make any explicit reference to the spins σi,
or the summation over spin configurations, but instead expresses this function
as a sum of terms arising from the spanning subgraphs G′ ⊆ G:

Z(G, q, s, v, w) =
∑
G′⊆G

ve(G
′)

k(G′)∏
i=1

un(G′
i)

(1.12)

where
um = q − s+ swm = q + s(wm − 1) (1.13)

This is a major part of the present dissertation work. The derivation of this
result and studies of properties of Z(G, q, s, v, w) and applications are given
in [66] and [67]. Our results generalize earlier work for the case s = 1 by F.
Y. Wu [84] [85] and by Chang and Shrock [25] [27]. In the special case H = 0,
Eq. (1.1) reduces to the cluster formula for the zero-field Potts model partition
function Eq. (1.5).

An important special case is the zero-temperature Potts antiferromagnet
in a generalized field, i.e., v = −1, and we denote

Ph(G, q, s, w) ≡ Z(G, q, s,−1, w) . (1.14)

In this case the only contributions to Z are those such that no two adja-
cent spins have the same value. Thus, Ph(G, q, s, w) counts the number of
proper q-colorings of the vertices of G with a vertex weighting that either
disfavors (for 0 ≤ w < 1) or favors (for w > 1) colors in the interval Is.
We have denoted these coloring problems as DFSCP and FSCP for disfavored
or favored weighted-set graph vertex coloring problems [66]. The associated
set-weighted chromatic polynomial constitutes a generalization of the conven-
tional (unweighted) chromatic polynomial, which counts the number of proper
q-colorings of a graph G [66].

For w = 0, one is prevented from assigning any of the s disfavored colors to
any of the vertices, so that the problem reduces to that of a proper coloring of
the vertices of G with q − s colors, without any weighting among them. This
is described by the usual (unweighted) chromatic polynomial P (G, q − s), so

Ph(G, q, s, 0) = P (G, q − s) . (1.15)

Thus, the DFSCP, described by Ph(G, q, s, w) may be regarded as interpolat-
ing between P (G, q) and P (G, q − s) as w decreases through real values from
w = 1 to w = 0. (The case of no weighting, w = 1, may be considered to
be the border between the DFSCP and FSCP regimes.) See Fig. (1.2) as an
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Physical ranges of w for Ph(G,q,s,w)

total set of q=5 possible colors

weighted-set
s=2

unweighted-set
q-s=3

weighted-set disfavored

weighted-set favored

H=0, w=1 (no weighting)H>0, w>1 (FSCP) H<0, 1>w>0 (DFSCP)

weighted-set prevented

Energy

H   >       , w=0
0 0

3with the q=5, s=2 weighted-set colorings of C  graph as an illustration

Figure 1.2: Physical ranges of w with the weighted-set colorings of C3 graph
as an illustration.

illustration of DFSCP and FSCP as well as the borderline cases w = 0 and
w = 1.

There are several motivations for the study of weighted-set graph colorings,
arising from the areas of mathematics, physics, and engineering. One motiva-
tion is the intrinsic mathematical interest in graph coloring problems. Indeed,
we are not aware of previous study of weighted-set graph coloring. A second
motivation stems from the equivalence to the statistical mechanics of the Potts
antiferromagnet in a set of magnetic fields that disfavor or favor a correspond-
ing set of spin values. Third, although we focus here on theoretical properties
of weighted-set graph coloring, there are real-world situations that could be
modeled by this type of restricted coloring. For example, the weighted-set
graph coloring problem with 0 ≤ w < 1 (i.e., the DFSCP) describes, among
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Potts model (zero-field) 

Potts partition function Z(G,q,v)

Potts model in a generalized external field 

Generalized Potts partition function Z(G,q,s,v,w)

Weighted-set graph-vertex coloring problem 
Weighted-set chromatic polynomial Ph(G,q,s,w)

Graph-vertex coloring problem 

Chromatic polynomial P(G,q)

w=1 or s=0
T=0 antiferromagnetic Potts model

v=  1

Ground state degeneracy P(G,q) = Z(G,q,  1)

P(G,q  s)

Ground state entropy per site 

v=  1

S  = k  ln W B0

Ground state degeneracy per site 

 
n

1/n
W({G},q) = lim P(G,q)

oo

Favored weighted-set

(FSCP)

viz. planar triangulation graphs G

P(G  ,q)
pt

pt

Statistical physics model 
Functions (polynomials) associated

with the corresponding model or problem
or graph theory problem

G = {G  }

Colorings of a particular family of graphs,

Equivalent
pt

Implications for statistical physics

Chapters 3 & 4

Chapters 1 & 2
Chapters 5 & 6

w=1 or s=0

S  > 0 0 W > 1

Nonzero ground state (residual) entropy  
0<w<1

w>1
w=0

graph coloring problem

Disfavored weighted-set

(DFSCP)
graph coloring problem

special case

Figure 1.3: Potts model and generalizations, as well as implications for statis-
tical physics: the distribution of chapters.

other things, the assignment of frequencies to commercial radio broadcasting
stations in an area such that (i) adjacent stations must use different frequen-
cies to avoid interference and (ii) stations prefer to avoid transmitting on a
set of s specific frequencies, e.g., because these are used for data-taking by
a nearby radio astronomy antenna. The weighted-set graph coloring problem
with w > 1 (i.e., the FSCP) describes this frequency assignment process with
a preference for a set of s frequencies, e.g., because these are most free of
interference.

For the relations among Potts model and generalizations, as well as various
special cases and implications for statistical physics, the reader may refer to
Fig. (1.3).
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Chapter 2

Exact Results on the
Generalized Potts Model
Partition Function and
Weighted-Set Graph Colorings
for Certain Families of Graphs

2.1 General Properties of Z(G, q, s, v, w) and Ph(G, q, s, w)

First we discuss some basic results about Z(G, q, s, v, w) and Ph(G, q, s, w)
that will be needed in subsequent discussion. These are from our Refs. [66]
and [67], generalizing [25] and [27]. Applying the factorization

wm − 1 = (w − 1)
m−1∑
j=0

wj (2.1)

in Eq. (1.12) withm = n(G′i), one sees that the variable s enters in Z(G, q, s, v, w),
and Ph(G, q, s, w) only in the combination

t = s(w − 1) . (2.2)

Since Is ⊆ Iq, whence 0 ≤ s ≤ q, and since w ≥ 0 for any real external field
H, it follows that

um = q − s+ swm ≥ 0 . (2.3)

Therefore, for the ferromagnetic case v ≥ 0, each term in the sum over
spanning subgraphs in Eq. (1.12) is nonnegative. For a given spanning
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subgraph G′ ⊆ G, consisting of a sum of k(G′) connected components G′i,
where i = 1, ..., k(G′), the contribution to Z(G, q, s, v, w) in Eq. (1.12) is
the number of spanning subgraphs G′ of a particular topology, NG′ , times
ve(G

′)
∏k(G′)

i=1 un(G′
i)

, which has the generic form

NG′ ve(G
′)

k(G′)∏
j=1

un(G′
j) . (2.4)

Here
k(G′)∑
i=1

n(G′i) = n . (2.5)

Since some of the componentsG′i andG′j may have the same number of vertices,
n(G′i) = n(G′j), the product in Eq. (2.4) can also be written as

∏
j(urj)

pj ,
where rj takes on certain values in the set {1, ..., n} and the exponents pj are
integers taking on certain values in the set {1, ..., k(G′)}. As a consequence of
Eq. (2.5), these satisfy the relation∑

j

pjrj = n . (2.6)

Note that um satisfies the identity

um(q, s, w) = wm um(q, q − s, w−1) (2.7)

where we have written um as a function of its three arguments q, s, w. A given
spanning subgraph G′ corresponds to a partition of the total set of vertices
depending on which edges are present and which are absent. The sum of the
coefficients NG′ of the various terms NG′

∏
j(urj)

pj that multiply a given power

ve(G
′) in Eq. (1.12) is

(
e(G)
e(G′)

)
since this is the number of ways of choosing e(G′)

edges out of a total of e(G) edges. These satisfy the relation

e(G)∑
e(G′)=0

(
e(G)

e(G′)

)
= 2e(G) . (2.8)

This reflects the fact that there are 2e(G) spanning subgraphs of G, as follows
from the property that these are classified by choosing whether each edge is
present or absent, and there are 2e(G) such choices. In mathematical graph
theory, a loop is defined as an edge that connects a vertex to itself and a
cycle is a closed circuit along the edges of G. In the following we restrict to
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loopless graphs. For any such n-vertex graph G, the terms in Z(G, q, s, v, w)
proportional to v0, v1, and ve(G) can be given in general, as

Z(G, q, s, v, w) = un1 + e(G)vu2u
n−2
1 + ...+ ve(G)un . (2.9)

The partition function Z(G, q, s, v, w) satisfies the following identities [25]
[27] [66]

Z(G, q, s, v, 1) = Z(G, q, 0, v, w) = Z(G, q, v) , (2.10)

(where, as above, Z(G, q, v) is the zero-field Potts partition function),

Z(G, q, s, v, w) = wn Z(G, q, q − s, v, w−1) , (2.11)

(c.f. Eq. (2.7)) and

Z(G, q, q, v, w) = wn Z(G, q, v) . (2.12)

Setting v = −1 in these identities yields the corresponding relations for Ph(G, q, s, w);
for example, Eq. (2.11) yields

Ph(G, q, s, w) = wn Ph(G, q, q − s, w−1) . (2.13)

There are a number of equivalent ways of writing Z(G, q, s, v, w) as sums
of powers of a given variable with coefficients depending on the rest of the
variables in the set {q, s, v, w}. The basic spanning subgraph formula (1.12)
is a sum of powers of v. A second convenient form in which to express
Z(G, q, s, v, w) is as a sum of powers of w with coefficients, denoted as βZ,G,j(q, s, v),
which are polynomials in q, s, and v:

Z(G, q, s, v, w) =
n∑
j=0

βZ,G,j(q, s, v)wj . (2.14)

The symmetry (2.11) implies the following relation among the coefficients:

βZ,G,j(q, s, v) = βZ,G,n−j(q, q − s, v) for 0 ≤ j ≤ n . (2.15)

For the special case v = −1, we write

Ph(G, q, s, w) =
n∑
j=0

βG,j(q, s)w
j , (2.16)

where
βG,j(q, s) ≡ βZ,G,j(q, s,−1) . (2.17)
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From (2.15), we have

βG,j(q, s) = βG,n−j(q, q − s) for 0 ≤ j ≤ n . (2.18)

We have proved further that [66]

βZ,G,n(q, s, v) = Z(G, s, v) (2.19)

and
βZ,G,0(q, s, v) = Z(G, q − s, v) , (2.20)

so that for v = −1, βG,0(q, s) = P (G, q − s) and βG,n(q, s) = P (G, s). Various
general factorization results were also given in Ref. [66] for these coefficients
βZ,G,j(q, s, v) and βG,j(q, s), including the following:

For 1 ≤ j ≤ n, βZ,G,j(q, s, v) and βG,j(q, s) contain a factor of s . (2.21)

For 0 ≤ j ≤ n−1, βZ,G,j(q, s, v) and βG,j(q, s) contain a factor (q−s) . (2.22)

The minimum number of colors needed for a proper q-coloring of a graph G is
the chromatic number, χ(G). A further factorization property is that

βG,n(q, s) contains the factor

χ(G)−1∏
j=0

(s− j) , (2.23)

and

βG,0(q, s) contains the factor

χ(G)−1∏
j=0

(q − s− j) . (2.24)

A third useful type of expression for Z(G, q, s, v, w) is

Z(G, q, s, v, w) =
n∑
j=0

αZ,G,n−j(s, v, w) qn−j . (2.25)

With the notation

αG,n−j(s, w) ≡ αZ,G,n−j(s,−1, w) , (2.26)

we then have

Ph(G, q, s, w) =
n∑
j=0

αG,n−j(s, w) qn−j . (2.27)

This form is particularly convenient for comparisons with the conventional
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unweighted chromatic polynomial P (G, q) = Ph(G, q, 0, w) = Ph(G, q, s, 1).
For a graph G, the number of linearly independent cycles, c(G) (the cyclo-

tomic number), satisfies the relation

c(G) = e(G) + k(G)− n(G) . (2.28)

A connected n-vertex graph with no cycles is a tree graph, Tn, while a general
graph with no cycles, which can be disconnected, is called a forest graph. We
denote a graph G with no cycles as Gnc and define

q′ ≡ q

s
, v′ ≡ v

s
. (2.29)

In Ref. [66] we proved that for such a cycle-free graph Gnc,

Z(Gnc, q, s, v, w) = snZ(Gnc, q
′, 1, v′, w) . (2.30)

This relation allows us to obtain Z(Gnc, q, s, v, w) from Z(Gnc, q, 1, v, w) for
any cycle-free graph Gnc. In particular, all of the results for Z(G, q, s, v, w) for
various types of tree graphs calculated in Ref. [27] for s = 1 can be used to
obtain the analogous results for general s.

For a graph G, let us denote the graph obtained by deleting an edge e ∈ E
as G− e and the graph obtained by deleting this edge and identifying the two
vertices that had been connected by it as G/e. The Potts model partition
function satisfies the deletion-contraction relation (DCR)

Z(G, q, v) = Z(G− e, q, v) + vZ(G/e, q, v) , (2.31)

and, setting v = −1, the chromatic polynomial thus satisfies the DCR

P (G, q) = P (G− e, q)− P (G/e, q) . (2.32)

However, as we showed in Ref. [66], in general, neither Z(G, q, s, v, w) nor
Ph(G, q, s, w) satisfies the respective deletion-contraction relation, i.e., in gen-
eral, Z(G, q, s, v, w) is not equal to Z(G − e, q, s, v, w) + vZ(G/e, q, s, v, w).
The only cases where this deletion-contraction relation holds are for the val-
ues s = 0, w = 1, and w = 0 where Z(G, q, s, v, w) reduces to a zero-field Potts
model partition function.
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Wh5C5

S5

L5

Y5

Figure 2.1: Representatives for several families of graphs: Sn, Ln, Yn, Cn and
Whn.

2.2 Star Graphs Sn

A star graph Sn consists of one central vertex with degree n− 1 connected
by edges with n− 1 outer vertices, each of which has degree 1 (see Fig. (2.1)).

The graph S2 is degenerate in the sense that it has no central vertex but
instead coincides with L2. The graph S3 is nondegenerate, and coincides with
L3, while the Sn for n ≥ 4 are distinct graphs not coinciding with those of
other families. For n ≥ 2, the chromatic number is χ(Sn) = 2. By the use of
combinatorics and Eq.(2.4), we have derived the following general formula for
Z(Sn, q, s, v, w):

Z(Sn, q, s, v, w) =
n−1∑
j=0

(
n− 1

j

)
vj uj+1u

n−1−j
1

=
n−1∑
j=0

(
n− 1

j

)
(q − s)vj un−1−j

1 +
n−1∑
j=0

(
n− 1

j

)
sw(wv)j un−1−j

1

= (q − s)(u1 + v)n−1 + sw(u1 + wv)n−1
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= (q − s)
[
q + s(w − 1) + v

]n−1

+ sw
[
q + s(w − 1) + wv

]n−1

.

(2.33)

Here j is the number of edges in a given spanning subgraph G′, and the
numerical prefactor

(
n−1
j

)
in the first line of Eq. (2.33) is the number of ways

of choosing j edges out of the total number of edges, n− 1, in Sn. Evaluating
Eq. (2.33) for v = −1 yields Ph(Sn, q, s, w).

As an explicit example, for the graph S4, we calculate

Z(S4, q, s, v, w) = q(q + v)3w4 + s(q − s)(4s2 + 6sv + 3v2)w3

+ 3s(q − s)[2s(q − s) + qv]w2 + s(q − s)
[
4(q − s)2 + 6(q − s)v + 3v2

]
w

+ (q − s)(q − s+ v)3. (2.34)

2.3 Path graphs Ln

The path graph Ln is the graph consisting of n vertices with each vertex
connected to the next one by one edge (see Fig. (2.1)). One may picture
this graph as forming a line, and in the physics literature this is commonly
called a line graph. We use the alternate term “path graph” here because
in mathematical graph theory the line graph L(G) of a graph G refers to a
different object (namely the graph obtained by an ismorphism in which one
maps the edges of G to the vertices of L(G) and connects these resultant
vertices by edges if the edges of G are connected to the same vertex of G). For
n ≥ 2, the chromatic number is χ(Ln) = 2. Here we present a general formula
for this partition function. Let

TZ,1,0 =

(
q − s+ v sw
q − s w(s+ v)

)
(2.35)

H1,0 =

(
1 0
0 sw

)
(2.36)

ω1 =

(
q − s

1

)
(2.37)

and

s1 =

(
1

1

)
. (2.38)
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Then
Z(Ln, q, s, v, w) = ωT1 H1,0 (TZ,1,0)n−1 s1 (2.39)

and Ph(Ln, q, s, w) = Z(Ln, q, s,−1, w). It is straightforward to verify that
our result for Z(Ln, q, s, v, w) satisfies the relation (2.30). We note that

det(TZ,1,0) = v(q + v)w , (2.40)

independent of s, and

Tr(TZ,1,0) = q − s+ v + w(s+ v) . (2.41)

The eigenvalues of TZ,1,0 are the same as the eigenvalues with coefficients of
degree d = 0 for the circuit graph Cn, which will be given in Eq. (2.47) of the
next section, namely

λZ,1,0,± =
1

2

[
q − s+ v + w(s+ v)±

[
{q − s+ v + w(s+ v)}2 − 4vw(q + v)

]1/2
]
.

(2.42)

Thus, we can also write

Z(Cn, q, s, v, w) = Tr[(TZ,1,0)n] + (s− 1)(vw)n + (q − s− 1)vn . (2.43)

The graphs Ln, Cn, and, more generally, lattice strip graphs of some trans-
verse width Ly and length Lx = m are examples of recursive families of graphs,
i.e., graphs Gm that have the property that Gm+1 can be constructed by start-
ing with Gm and adding a given graph H or, if necessary, cutting and gluing
in H. For these graphs, Z(Gm, q, s, v, w) has the structure of a sum of coeffi-
cients that are independent of the length m multiplied by m’th powers of some
algebraic functions.

Note that, by Eq. (2.9), the term in Z(Cn, q, s, v, w) of highest order in v
is vnun = [q + s(w − 1)

∑n−1
j=0 w

j ]vn, part of which gives rise to the last two
terms in Eq. (2.47). We note that for s = 0 or w = 1, one can check that our
expressions for Z(Ln, q, s, v, w) and Z(Cn, q, s, v, w) simplify, respectively, to
Z(Ln, q, v) = q(q + v)n−1 and Z(Cn, q, v) = (q + v)n + (q − 1)vn. Going from
the case of sw(w − 1) = 0 to sw(w − 1) 6= 0, Z(Ln, q, s, v, w) expands from a
sum of one power to a sum involving two powers, and Z(Cn, q, s, v, w) expands
from a sum of two powers to a sum of four powers.

As our exact solutions for Z(Ln, q, s, v, w) and Z(Cn, q, s, v, w) (see the next
section) show, the field-dependent Potts partition functions Z(G, q, s, v, w) do
not, in general, have any common factor. This contrasts with the case of
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the zero-field Potts partition function, which always has an overall factor of
q. Similarly, in the v = −1 special case defining the set-weighted chromatic
polynomial, the resultant polynomials Ph(G, q, s, w) do not, in general, have
a common factor. For special values of s, Ph(G, q, s, w) may reduce to a form
with a common factor. The case s = 0 (and the case w = 1) for which
this reduces to the conventional chromatic polynomial is well-known; in this
case P (G, q) has, as a common factor,

∏χ(G)−1
j=0 (q − j). Similarly, for s = q,

Ph(G, q, q, w) has this common factor multiplied by wn. For the special case
s = 1 and for a connected graph G with at least one edge, it was shown in
Ref. [27] that Ph(G, q, 1, w) contains a factor (q − 1). However, it is not true
that for a special case such as s = 2, a connected graph G with at least one
edge contains a factor of (q − s). For example, using the elementary result

Z(L2, q, s, v, w) = s(s+ v)w2 + 2s(q − s)w + (q − s)(q − s+ v) (2.44)

Z(L3, q, s, v, w) = s(s+ v)2w3 + s(q − s)(3s+ 2v)w2

+ s(q − s)
[
3(q − s) + 2v

]
w + (q − s)(q − s+ v)2(2.45)

Z(L4, q, s, v, w) = s(s+ v)3w4 + 2s(q − s)(s+ v)(2s+ v)w3

+ s(q − s)
[
− 3(s2 + (q − s)2) + 3q(q + v) + 2v2

]
w2

+ 2s(q − s)(q − s+ v)[2(q − s) + v]w

+ (q − s)(q − s+ v)3 . (2.46)

One sees that Ph(L2, q, 1, w) = (q − 1)(q − 2 + 2w), but Ph(L2, q, 2, w) =
2w2 + 4(q − 2)w + (q − 2)(q − 3), which has no common factor.

2.4 Circuit Graphs Cn

The circuit graph Cn, or equivalently, the 1D lattice with periodic boundary
conditions, see Fig. (2.1), has chromatic number χ(Cn) = 2 if n ≥ 2 is even
and χ(Cn) = 3 if n ≥ 3 is odd.
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In general, Z(Cn, q, s, v, w) has the structure

Z(Cn, q, s, v, w) =
2∑
j=1

[λZ,1,0,j]
n + (s− 1)(vw)n + (q − s− 1)vn . (2.47)

where λZ,1,0,j has been defined in Eq. (2.42), with j = 1, 2 corresponding to ±
here. It is readily checked that this expression for Z(Cn, q, s, v, w) (i) reduces
to the zero-field Potts model partition function

Z(Cn, q, v) = (q + v)n + (q − 1)vn (2.48)

for s = 0 or w = 1, (ii) satisfies the general symmetry property (2.11), and
(iii) reduces to wnZ(Cn, q, v) for s = q, in agreement with Eq. (2.12).

The result (2.47) shows a qualitative difference between the case s = 1
considered previously [27] and the more general set of cases with s ≥ 2 in
the interval Is, namely the fact that the third term, (s − 1)(vw)n, is absent
for s = 1 but is present for other values of s ∈ Is. By the s ↔ q − s
symmetry in Eq.(2.11), this also means that another term vanishes identically
for s = q − 1 but is present for other values of s ∈ Is; this is the last term
in (2.47), (q − s− 1)vn. It is interesting to observe that the symmetry (2.11)
applies not just to the total Z(Cn, q, s, v, w), but also to parts of this function.
Specifically, under the replacement s→ q− s, one sees that (i) the sum of the
last two terms in (2.47), (s− 1)(vw)n + (q− s− 1)vn, transforms into wn[(q−
s−1)vn+(s−1)(vw−1)n] and (ii) the first two terms,

∑2
j=1[λZ,1,0,j(q, s, v, w)]n

transform into wn
∑2

j=1[λZ,1,0,j(q, q − s, v, w−1)]n, so that each of these parts,
(i) and (ii), individually satisfies the symmetry (2.11).

We exhibit Z(Cn, q, s, v, w) for n = 2 and n = 3 below. To keep the
equations as compact as possible, we write the coefficients of the terms of
maximal degree in w and of degree 0 in w in terms of zero-field partition
functions using the general results (2.19) and (2.20). We find

Z(C2, q, s, v, w) = Z(C2, s, v)w2 + 2s(q − s)w + Z(C2, q − s, v) (2.49)

Z(C3, q, s, v, w) = Z(C3, s, v)w3 + 3s(q − s)(s+ v)w2

+ 3s(q − s)(q − s+ v)w + Z(C3, q − s, v) (2.50)

As usual, one obtains the Ph(Cn, q, s, w) for each n by setting v = −1 in
Z(Cn, q, s, v, w). For s = 1, the parts of Z(Cn, q, 1, v, w) were given in Ref.
[26] and Ph(Cn, q, 1, w) was given in Ref. [27].
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K4 K5

Figure 2.2: The complete graphs K4 and K5.

2.5 Complete Graphs Kn

The complete graph Kn is the graph with n vertices such that each vertex
is connected to every other vertex by one edge, see Fig. (2.5) for illustrations
of K4 and K5. The chromatic number is χ(Kn) = n and the number of edges
is e(Kn) =

(
n
2

)
.

The weighted-set chromatic polynomial for the complete graphs has the
following form:

Ph(Kn, q, s, w) =
n∑
`=0

βKn,`(q, s)w
` (2.51)

where

βKn,`(q, s) =

(
n

`

)[ `−1∏
i=0

(s− i)
][ n−`−1∏

j=0

(q − s− j)
]
. (2.52)

Here it is understood that if the upper index on either of the two products
in Eq. (2.52) is negative, that product is absent, so that the first product is
absent for ` = 0 and the second one is absent for ` = n.

This result is proved by a combinatoric coloring argument. Accordingly, we
take q to be a non-negative integer. The resultant Eqs. (2.51) and (2.52) allow
the extension of q to R (and C). First, if q < χ(Kn) = n, then Ph(Kn, q, s, w)
vanishes identically. Hence, we shall formally take q ≥ n to begin with; once
we have obtained the results (2.51) and (2.52), it will be seen that they allow
an extension of q away from this range. If s ≥ n, then one can assigning
n different colors to the n vertices of Kn from the set Is, and this gives rise
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to a term with degree n in w. To determine the coefficient of this term, we
enumerate the number of ways this color assignment can be made. We pick
a given vertex and assign some color from Is to this vertex, which we can do
in any of s ways. Then we go on to the next vertex and assign one of the
remaining s− 1 colors in Is to that vertex, and so on for the n vertices. The
number of ways of making this color assignment, i.e., the coefficient of the
term in Ph(Kn, q, s, w) of maximal degree in w, viz., wn, is therefore

βKn,n(q, s) =
n−1∏
j=0

(s− j) = P (Kn, s) . (2.53)

The fact that this coefficient is P (Kn, s) agrees with the v = −1 special case
of the general result of Eq. (2.19). Similarly, the term of order w0 is obtained
by assigning n different colors to the n vertices of Kn from the orthogonal set
S⊥. By reasoning analogous to that given above, it follows that the number
of ways of doing this is given by replacing s by q − s in Eq. (2.53), so

βKn,0(q, s) =
n−1∏
j=0

(q − s− j) = P (Kn, q − s) . (2.54)

Having illustrated the logic on these two extremal terms, let us next consider
the general w` term with 0 ≤ ` ≤ n. This term arises from color assignments
in which we pick ` different colors from the set Is and assign them to ` of the n
vertices of Kn, and then n−` different colors from the orthogonal complement
set S⊥, which are assigned to the remaining n − ` vertices. The number of
ways of doing this is

βKn,`(q, s) =
[ `−1∏
i=0

(s− i)
][ n−`−1∏

j=0

(q − s− j)
]
. (2.55)

This proves the result in Eqs. (2.51) and (2.52).
Evidently, with the polynomial Ph(Kn, q, s, w) as specified in these equa-

tions, one can extend q and s away from non-negative integer values. Our
result in Eqs. (2.51) and (2.52) generalizes the result for the case s = 1 given
in [27]. As is evident, for w = 1 or s = 0, Ph(Kn, q, s, w) reduces to the (usual,
unweighted) chromatic polynomial

P (Kn, q) =
n−1∏
j=0

(q − j) . (2.56)
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A corollary of Eqs. (2.51) and (2.52) is that

If s < n , then βKn,j(q, s) = 0 for s < j ≤ n (2.57)

and hence
degw(Ph(Kn, q, s, w)) = min(n, s) . (2.58)

Note that
βKn,`(q, s) = βKn,n−`(q, q − s) , (2.59)

in agreement with the general symmetry (2.18). Substituting this in Eq. (2.51)
shows explicitly that our result for Ph(Kn, q, s, w) satisfies the symmetry re-
lation (2.13). Note that Kn is not a recursive family of graphs, so one does
not expect Ph(Kn, q, s, w) to have the form of a sum of coefficients multi-
plied by powers of certain algebraic functions, and it does not, in contrast to
Ph(Gn, q, s, w) for recursive families Gn such as Cn or Ln.

The calculation of Ph(Kn, q, s, w) for the cases K1 and K2 = L2 are ele-
mentary. For K3 = C3 our general formula (2.51) yields

Ph(K3, q, s, w) = P (K3, s)w
3+3s(s−1)(q−s)w2+3s(q−s)(q−s−1)w+P (K3, q−s)

(2.60)
while for K4 we have

Ph(K4, q, s, w) = P (K4, s)w
4 + 4s(s− 1)(s− 2)(q − s)w3 + 6s(s− 1)(q − s)(q − s− 1)w2

+ 4s(q − s)(q − s− 1)(q − s− 2)w + P (K4, q − s) . (2.61)

2.6 The p-Wheel graphs Wh
(p)
n = Kp + Cn−p

The p-wheel graph Wh
(p)
n is defined as

Wh(p)
n = Kp + Cn−p , (2.62)

i.e., the join of the complete graph Kp with the circuit graph Cn−p. (Given two
graphs G and H, the join, denoted G + H, is defined as the graph obtained
by joining each of the vertices of G to each of the vertices of H). (Here and
below, no confusion should result from the use of the symbol H for a graph
and H for the external field; the meaning will be clear from context.) The

family of Wh
(p)
n graphs is a recursive family. For p = 1, Wh

(1)
n is the wheel

graph, see Fig. (2.1). The central vertex can be regarded as forming the axle
of the wheel, while the n − 1 vertices of the Cn−1 and their edges form the
outer rim of the wheel. This is well-defined for n ≥ 3, and in this range the
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chromatic number is χ(Whn) = 3 if n is odd and χ(Whn) = 4 if n is even.

Although Kp is not defined for p = 0, we may formally define Wh
(0)
n ≡ Cn.

For the zero-field case, i.e., for the usual, unweighted chromatic polynomial
and for an arbitrary graph G,

P (Kp +G, q) = P (Kp, q)P (G, q − p) = q(p)P (G, q − p) , (2.63)

where q(m) is the falling factorial, defined as

q(m) =
m−1∏
j=0

(q − j) . (2.64)

This result is a consequence of the fact that in assigning colors to the p vertices
of Kp, one must use p different colors, and then, because of the join condition,
one must select from the other q − p colors to color the vertices of G. In
particular, for Wh(p), this gives

P (Wh(p)
n , q) = P (Kp, q)P (Cn−p, q − p)

= q(p)

[
(q − 1− p)n−p + (q − 1− p)(−1)n−p

]
. (2.65)

Note that, for arbitrary p, this chromatic polynomial consists of the prefactor
times the sum of the (n− p)’th powers of NWh(p),λ = 2 terms. For p = 1, this
number can be seen to be the Ly = 1 special case of a general formula in Eq.
(3.2.15) of Ref. [23] for the join of K1 with a width-Ly cyclic strip.

For the weighted-set chromatic polynomial, we generalize this coloring
method as follows. Consider first K1 + G. There are two possible types of
choices for the color to be assigned to the vertex of K1. One type is to choose
this color to lie in the set Is. There are s ways to make this choice, and each
gets a weighting factor of w. For each choice, one then performs the proper
coloring of the vertices of G with the remaining q − 1 colors, of which only
s− 1 can be used from the set Is; this is determined by Ph(G, q− 1, s− 1, w).
The second type of coloring is to choose the color assigned to the K1 vertex to
lie in the orthogonal set I⊥s . There are (q − s) ways to make this choice, and
since this is not the weighted set, there is no weighting factor of w. For each
such choice, one then performs the proper coloring of the vertices of G with
the remaining q− 1 colors, of which all s colors in the set Is are available, but
only q − s − 1 colors in the orthogonal set I⊥s are available. This yields the
result

Ph(K1+G, q, s, w) = swPh(G, q−1, s−1, w)+(q−s)Ph(G, q−1, s, w) . (2.66)
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To calculate Ph(Kp +G, q, s, w) for a given graph G, one first carries out the
proper coloring of K1 + G, using the result (2.66). One then joins the next
vertex of Kp to K1 + G to get K2 + G, using the relation K1 + (Kr + G) =
Kr+1 +G and iteratively applies Eq. (2.66). One continues in this manner to
carry out the proper coloring of the full join Kp +G. This yields

Ph(Kp +G, q, s, w) =

p∑
`=0

βKp,`(q, s)Ph(G, q − p, s− `, w)w` . (2.67)

Utilizing this coloring method, we have calculated Ph(Wh
(p)
n , q, s, w) for

arbitrary n. Let us define

a(p, q, s, w) = q − s− (p+ 1) + (s− 1)w = q − (p+ 1) + s(w− 1)−w (2.68)

and

λWh(p),`,±(q, s, w) =
1

2

[
a(p, q, s− `, w)± [a(p, q, s− `, w)2 + 4w(q − p− 1) ]1/2

]
for 0 ≤ ` ≤ p . (2.69)

We note that for ` = 0, these λWh(p),`,±(q, s, w) are equal to the v = −1 special
case of λZ,1,0,± given in Eq. (2.42) of the earlier section for the circuit graph
with the replacement of q by q − p. This is in accord with the fact that the
effect of the join of Kp with G is that the proper q-coloring of G can only
use q − p of the original q colors. We define two additional terms that do not
depend on q or s,

λWh(p),2p+3 = −w (2.70)

and
λWh(p),2p+4 = −1 . (2.71)

The total number of λ’s for Ph(Wh
(p)
n , q, s, w) is thus

NPh(Wh(p)),λ = 2(p+ 2) . (2.72)

Note that in contrast to the unweighted chromatic polynomial of Wh
(p)
n , where

the number of λ’s, NP (Wh(p)),λ = 2, is independent of p, here this number
depends on p. In terms of these quantities, we find, for the weighted-set
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chromatic polynomial for Wh
(p)
n , the result

Ph(Wh(p)
n , q, s, w) =

p∑
`=0

βKp,`(q, s)

[
[λWh(p),`,+(q, s, w)]n−p + [λWh(p),`,−(q, s, w)]n−p

]
w`

+

[
p∑
`=0

βKp,`(q, s) (s− `− 1)w`

]
(−w)n−p

+

[
p∑
`=0

βKp,`(q, s) (q − s− p+ `− 1)w`

]
(−1)n−p .

(2.73)

This formula applies for integer p ≥ 1 and also for p = 0 if one sets βKp,`(q, s) ≡
δ`,0 for p = 0. It can be checked that for p = 0, Eq. (2.73) reduces to our
result for Ph(Cn, q, s, w) given as the special v = −1 case of Eqs. (5.3)-
(5.5) in Ref. [66]. It can also be verified that for p = 1 and s = 1, Eq.
(2.73) reduces to the result given for this case in Eqs. (3.30)-(3.32) in Ref.

[27]. Furthermore, since the graph Wh
(1)
4 = K1 + K3 = K4, it follows that

Ph(Wh
(1)
4 , q, s, w) = Ph(K4, q, s, w). The symmetry (2.13) is realized as fol-

lows: the summation on the first line of Eq. (2.73) goes into itself, while
the sum of the expressions on the two subsequent lines of Eq. (2.73) trans-
forms into itself with the replacement of w by w−1 in these expressions and
the prefactor wn appearing overall. One could also study Z(Wh

(p)
n , q, s, v, w),

but we have focused here on Ph(Wh(p), q, s, w), since its calculation can be
performed by combinatoric methods associated with the proper q-coloring
condition. For some explicit examples of set-weighted chromatic polynomi-
als Ph(Wh

(p)
n , q, s, w) obtained from the general formula (2.73), see Appendix

1 of [67].
Following our notation in Ref. [66] and earlier works, the n → ∞ limit

of a family of n-vertex graphs Gn is denoted {G} and the continuous accu-
mulation set of the zeros of Ph(Gn, q, s, w) in the complex q plane is denoted
Bq. For recursive families of graphs, this locus is determined as the solution of
the equality in magnitude of two (or more) λ’s of dominant magnitude, as a
function of q (with other variables held fixed) [13]. The other loci Bv, etc. are
defined in an analogous manner. These loci are typically comprised of curves
and possible line segments. For studies of the n→∞ limit of chromatic poly-
nomials and their generalization to weighted-set chromatic polynomials, the
locus Bq is of primary interest. Depending on the family of graphs, the locus
Bq may or may not cross the real q axis. If it does cross the real q axis, we de-
note the maximum (finite) point at which it crosses this axis as qc. Extending

25



our previous result for the p = 0 case of {G} = {Wh(p)} in Eq. (7.17) of Ref.
[66], we find the following result for general p:

qc = 2 + p+
s(1− w)

1 + w
for {G} = {Wh(p)} and 0 ≤ w ≤ 1 and 1 ≤ s ≤ p+ 2 .

(2.74)

Regarding connections of this general formula to previously determined special
cases, (i) for s = 0 or w = 1, this reduces to the result qc = 2+p for the n→∞
limit of the chromatic polynomial P (Wh(p), q) given in Eq. (22) of Ref. [54];
(ii) for p = 0, this reduces to the result for the n→∞ limit of Ph(Cn, q, s, w)
given in Eq. (7.17) of Ref. [66], and (iii) for s = 1, this reduces to the result for
the n→∞ limit of Ph(Wh(1), q, 1, w) given in Eq. (10.1) of Ref. [27] (with the
obvious notation change {C} → {Wh}). For the relevant interval 0 ≤ w ≤ 1,
the value of qc in Eq. (2.74) is (a) greater than the value qc = 2 + p for the
unweighted chromatic polynomial; (b) a monotonically increasing function of s
for fixed w in this DFSCP interval; and (c) a monotonically decreasing function
of w. These properties are consequences of the greater suppression of color
values in the set Is as w decreases in the DFSCP interval, finally restricting the
vertex coloring to use colors from the orthogonal set I⊥s as w reaches 0. Thus,
as w decreases from 1 to 0, qc increases continuously from 2+p to 2+p+s. In
contrast, the left-hand part of the boundary locus Bq changes discontinuously;
as w decreases by an arbitrarily small amount below 1, the point on the left
where Bq crosses the real q axis jumps discontinuously from q = p to q = p+s.
This behavior is in agreement with the fact that in the two limits w = 1 and
w = 0, Bq is comprised, respectively, of the unit circle centered at q = 1 + p
and the unit circle centered at q = 1 + s+ p. The change in the nature of the
locus for s > 2 + p follows via the corresponding generalization of the analysis
in Ref. [66] to p ≥ 0.

2.7 Upper and Lower Bounds on Z(G, q, s, v, w)

for v ≥ 0

In this section we derive powerful new two-sided upper and lower bounds for
the generalized field-dependent partition function of the ferromagnetic (v ≥ 0)
Potts model, Z(G, q, s, v, w) on an arbitrary graph G in terms of the zero-field
Potts model partition functions Z(G, u1, v) and Z(G, u1/w, v), where u1 =
q + s(w − 1) (c.f. Eq. (1.13)). These are especially useful because the zero-
field Potts model partition function is considerably easier to calculate than
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Z(G, q, s, v, w). Throughout this section, it is understood that q ≥ 0, 0 ≤ s ≤
q, and v ≥ 0. The former two conditions are obvious for our present analysis,
while the latter will often be indicated explicitly.

We first derive a lower bound for Z(G, q, s, v, w) for the range w ≥ 1. To
begin, we observe that, from its definition in Eq. (1.13) and factorization
property (2.1), um satisfies

um = q + s(wm − 1) = q + s(w − 1)
m−1∑
j=0

wj

≥ q + s(w − 1) = u1 for w ≥ 1 . (2.75)

Substituting this inequality into the expression for Z(G, q, s, v, w) in Eq. (1.12)
in terms of contributions from spanning subgraphs G′ ⊆ G, we have, for the
same conditions

Z(G, q, s, v, w) =
∑
G′⊆G

ve(G
′)

k(G′)∏
i=1

un(G′
i)

≥
∑
G′⊆G

ve(G
′) (u1)k(G′) for v ≥ 0 and w ≥ 1 .(2.76)

But the expression on the second line of Eq. (2.76) is just the zero-field Potts
model partition function given in Eq. (1.5) with its argument q replaced by u1,
namely Z(G, u1, v). Hence, we have derived a lower bound on Z(G, q, s, v, w):

Z(G, q, s, v, w) ≥ Z(G, u1, v) for v ≥ 0 and w ≥ 1 . (2.77)

For the interval 0 ≤ w ≤ 1, the inequality (2.75) is reversed:

um ≤ u1 for 0 ≤ w ≤ 1 , (2.78)

and thus Eq. (2.76) is replaced by

Z(G, q, s, v, w) ≤
∑
G′⊆G

ve(G
′) (u1)k(G′) for v ≥ 0 and 0 ≤ w ≤ 1(2.79)

Therefore, we obtain a second inequality, which is an upper bound:

Z(G, q, s, v, w) ≤ Z(G, u1, v) for v ≥ 0 and 0 ≤ w ≤ 1 . (2.80)

To derive two-sided inequalities, we make use of the symmetry relation
(2.11), which maps the interval w ≥ 1 to the interval 0 ≤ w ≤ 1 and vice versa.
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Let us start with the case w ≥ 1, for which we have proved the lower bound
(2.77). Now, from the symmetry relation (2.11) we know that Z(G, q, s, v, w) =
wnZ(G, q, ŝ, v, ŵ) where ŝ ≡ q−s and ŵ ≡ w−1. Since ŵ ∈ [0, 1], we can apply
our upper bound (2.80) to Z(G, q, ŝ, v, ŵ), getting the inequality

Z(G, q, ŝ, v, ŵ) ≤ Z(G, û1, v) , (2.81)

where
û1 ≡ q + ŝ(ŵ − 1) = q + (q − s)(w−1 − 1) =

u1

w
. (2.82)

Combining (2.81) with (2.77), we derive the two-sided inequality

Z(G, u1, v) ≤ Z(G, q, s, v, w) ≤ wn Z(G,
u1

w
, v) for v ≥ 0 and w ≥ 1 .

(2.83)
For the interval 0 ≤ w ≤ 1, by the same type of reasoning, we extend our
upper bound (2.80) to the two-sided inequality

wn Z(G,
u1

w
, v) ≤ Z(G, q, s, v, w) ≤ Z(G, u1, v) for v ≥ 0 and 0 ≤ w ≤ 1 .

(2.84)
As two-sided inequalities, these are powerful restrictions on the generalized
field-dependent Potts model partition function in terms of zero-field Potts
model partition functions with q replaced by u1 and u1/w.

We next prove some factorization properties of the upper and lower differ-
ences in these two-sided inequalities. First, if w = 1, then since Z(G, q, s, v, 1) =
Z(G, q, v) and u1 = q, it follows that the two-sided inequalities (2.84) and
(2.83) reduce to equalities, i.e., both the upper and lower differences vanish.
Second, if v = 0, then the only contributions in the respective Eqs. (1.12) and
(1.5) are from the spanning subgraph with no edges (called the null graph, Nn),
so Z(G, q, s, 0, w) = (u1)n, and Z(G, q, 0) = qn, whence Z(G, u1, 0) = (u1)n

and wn Z(G, u1/w, 0) = (u1)n. Hence, again, in this v = 0 case, the inequali-
ties (2.84) and (2.83) reduce to equalities and the upper and lower differences
vanish. Third, if s = 0, then Z(G, q, 0, v, w) = Z(G, q, v) and u1 = q, so
that Z(G, u1, v) = Z(G, q, v). Hence, if s = 0, then the lower difference
in (2.83) and the upper difference in (2.84) vanish. Fourth, if w = 0, then
Z(G, q, s, v, 0) = Z(G, q− s, v) and u1 = q− s, so Z(G, u1, v) = Z(G, q− s, v);
therefore, again, the lower difference in (2.83) and the upper difference in
(2.84) vanish. Together, these four results prove that the difference

Z(G, q, s, v, w)− Z(G, u1, v) contains the factor w(w − 1)sv . (2.85)

Fifth, if s = q, then Z(G, q, q, v, w) = wn Z(G, q, v) and u1 = qw, so wn Z(G, u1/w, v) =
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wn Z(G, q, v). Hence, if s = q, then the upper difference in (2.83) and the lower
difference in (2.84) vanish. Combining this with the first two results above,
we have shown that

wn Z(G,
u1

w
, v)−Z(G, q, s, v, w) contains the factor (w−1)(q−s)v . (2.86)

It is also useful to characterize the difference between the zero-field Potts
model partition functions that constitute the upper and lower bounds in these
two-sided inequalities (2.83) and (2.84). For an arbitrary graph G, we have

wnZ(G,
u1

w
, v)− Z(G, u1, v) =

∑
G′⊆G

ve(G
′) (u1)k(G′)

[
wn(G)−k(G′) − 1

]
, (2.87)

where G′ is a spanning subgraph of G. Now the right-hand side of Eq. (2.87) is
nonzero only if G has at least one edge, and, in this case, the only nonvanishing
contributions have n(G)− k(G′) ≥ 1. It follows that

wnZ(G,
u1

w
, v)− Z(G, u1, v) contains a factor vu1(w − 1) . (2.88)

It is worthwhile to give some illustrations of these two-sided inequalities
(2.83) and (2.84). We first do this for tree graphs. For any n-vertex tree graph
Tn, if w ≥ 1, then the inequality (2.83) reads

u1(u1 + v)n−1 ≤ Z(Tn, q, s, v, w) ≤ u1(u1 + wv)n−1 for v ≥ 0 and w ≥ 1 .
(2.89)

where we have used Z(Tn, q, v) = q(q+v)n−1. If w ∈ [0, 1], then the inequality
(2.84) reads

u1(u1+wv)n−1 ≤ Z(Tn, q, s, v, w) ≤ u1(u1+v)n−1 for v ≥ 0 and 0 ≤ w ≤ 1 .
(2.90)

(This example also shows how the apparent singularity at w = 0 arising from
the u1/w argument in Z(G, u1/w, v) on the left-hand side of the inequality
(2.84) is removed by the wn factor, yielding a nonsingular expression.) One
gains further insight by calculating the differences between the polynomials
that constitute the upper bound, the middle term, Z(Tn, q, s, w, v), and the
lower bound for various tree graphs. For the path graph L2 and w ≥ 1, the
differences that enter in the two-sided inequality (2.89) are

u1(u1 + wv)− Z(L2, q, s, v, w) = (w − 1)(q − s)v ≥ 0 (2.91)

29



and
Z(L2, q, s, v, w)− u1(u1 + v) = w(w − 1)sv ≥ 0 . (2.92)

For w ∈ [0, 1] the differences that enter in (2.90) are obvious reversals of these,
viz., u1(u1 + v) − Z(L2, q, s, v, w) = w(1 − w)sv ≥ 0 and Z(L2, q, s, v, w) −
u1(u1 + wv) = (1 − w)(q − s)v ≥ 0. For the path graph L3 and w ≥ 1, the
differences in (2.89) are

u1(u1 +wv)2−Z(L3, q, s, v, w) = (w− 1)(q− s)v
[
2u1 + v(w+ 1)

]
≥ 0 (2.93)

and

Z(L3, q, s, v, w)− u1(u1 + v)2 = w(w − 1)sv
[
2u1 + v(w + 1)

]
≥ 0 , (2.94)

and similarly for w ∈ [0, 1].
Among n-vertex tree graphs, the star graph Sn has a particularly simple

field-dependent Potts partition function, which was given in Ref. [66] and also
has been derived in Eq. (2.33). Here we recall the general formula of Sn (for
any v):

Z(Sn, q, s, v, w) = (q − s)
[
q + s(w − 1) + v

]n−1

+ sw
[
q + s(w − 1) + wv

]n−1

= (q − s)(u1 + v)n−1 + sw(u1 + wv)n−1 . (2.95)

For v ≥ 0, substituting this result (2.95) into the two-sided inequalities
(2.89) and (2.90), we can derive general formulas for the respective upper and
lower differences. If w ≥ 1 we find, for the lower difference in (2.89),

Z(Sn, q, s, v, w)− u1(u1 + v)n−1 = sw
[
(u1 + wv)n−1 − (u1 + v)n−1

]
= sw

n−1∑
j=0

(
n− 1

j

)
(u1)n−1−j vj (wj − 1)

= sw(w − 1)v
n−1∑
j=1

(
n− 1

j

)
(u1)n−1−j vj−1

[ j−1∑
`=0

w`
]

≥ 0 . (2.96)

In the same way, if w ∈ [0, 1], then the upper difference u1(u1 + v)n−1 −
Z(Sn, q, s, v, w) in (2.90) is given by minus the right-hand side of Eq. (2.96).
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Similarly, if w ≥ 1, then for the upper difference in (2.89) we calculate

u1(u1 + wv)n−1 − Z(Sn, q, s, v, w) = (q − s)
[
(u1 + wv)n−1 − (u1 + v)n−1

]
= (q − s)(w − 1)v

n−1∑
j=1

(
n− 1

j

)
(u1)n−1−j vj−1

[ j−1∑
`=0

w`
]

≥ 0 . (2.97)

Again, if w ∈ [0, 1], then the lower difference Z(Sn, q, s, v, w)−u1(u1 +wv)n−1

in (2.90) is given by minus the right-hand side of Eq. (2.97).
For the circuit graph Cn, if w ≥ 1, the inequality (2.89) reads Z(Cn, u1, v) ≤

Z(Cn, q, s, v, w) ≤ wn Z(Cn, u1/w, v). Using the fact that Z(Cn, q, v) = (q +
v)n + (q − 1)vn, we can write this explicitly as

(u1+v)n+(u1−1)vn ≤ Z(Cn, q, s, v, w) ≤ (u1+wv)n+(u1−w)wn−1vn . (2.98)

For C2 (which has a double edge), the differences that enter in this two-sided
inequality are

w2 Z(C2, u1/w, v)− Z(C2, q, s, v, w) = (q − s)(w − 1)v(v + 2) ≥ 0 (2.99)

and

Z(C2, q, s, v, w)− Z(C2, u1, v) = w(w − 1)sv(v + 2) ≥ 0 . (2.100)

Similar illustrations of the general inequalities (2.89) and (2.90) can be given
for Ln and Cn with higher values of n and for other families of graphs.

2.8 Use of Z(G, q, s, v, w) and Ph(G, q, s, w) to

Distinguish Between Tutte-Equivalent and

Chromatically Equivalent Graphs

Two graphs G and H are defined to be (i) chromatically equivalent if they
have the same chromatic polynomial, and (ii) Tutte-equivalent if they have
the same Tutte polynomial, or equivalently, zero-field Potts model partition
function. Here the Tutte polynomial T (G, x, y) of a graph G is defined as

T (G, x, y) =
∑
G′⊆G

(x− 1)k(G′)−k(G)(y − 1)c(G
′) , (2.101)
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where G′ is a spanning subgraph of G (and c(G′) and k(G′) were defined above
as, respectively, the number of linearly independent cycles and the number of
connected components of G′). This is equivalent to the zero-field Potts model
partition function, via the relation

Z(G, q, v) = (x− 1)k(G)(y − 1)n T (G, x, y) , (2.102)

where y = v + 1 and x = 1 + (q/v). The Tutte polynomial is of consid-
erable interest in mathematical graph theory, since it encodes much infor-
mation about a graph [74] [75]. However, although it distinguishes between
many graphs, there exist other pairs of graphs G and H that are different but
have the same Tutte polynomial. An important property of our generalized
field-dependent Potts model partition function Z(G, q, s, v, w) is that it can
distinguish between many Tutte-equivalent graphs. Similarly, an important
property of the weighted-set chromatic polynomial is that it can distinguish
between many chromatically equivalent graphs. We study this further in this
section. This property is true for all w and s values except the special values
w = 1, w = 0, s = 0, and s = q, for which Z(G, q, s, v, w) is reducible to
a zero-field Potts partition function (as well as the trivial case v = 0) and
similarly for Ph(G, q, s, w). reducible to a chromatic polynomial. In Ref. [66]
we proved that for any two Tutte-equivalent graphs G and H,

Z(G, q, s, v, w)− Z(H, q, s, v, w) contains the factor s(q − s)vw(w − 1) .
(2.103)

In the following, we will generally phrase our analysis in terms of how the field-
dependent Potts partition function distinguishes between Tutte-equivalent graphs;
the special cases of the various expressions for v = −1 then show how the
weighted-set chromatic polynomial distinguishes between different chromati-
cally equivalent graphs.

A class of Tutte-equivalent (and, hence also chromatically equivalent) graphs
of particular interest is comprised of tree graphs, generically denoted Tn. For
these, T (Tn, x, y) = xn−1, so

Z(Tn, q, v) = q(q + v)n−1 and P (Tn, q) = q(q − 1)n−1 . (2.104)

Note that e(Tn) = n − 1 (and a tree graph cannot have any multiple edges).
There is only one tree graph with n = 1 vertex, one with n = 2 vertices, and
one with n = 3 vertices. There are two different tree graphs with n = 4 ver-
tices, namely the path graph, L4, and the star graph, S4. Enumerations of tree
graphs with larger numbers of vertices are given, e.g., in Refs. [33] and [45]. Let
us consider two different n-vertex tree graphs (which thus have n ≥ 4), denoted
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Figure 2.3: Use of Z(G, q, s, v, w) to distinguish between Tutte/chromatic
equivalent tree graphs Sn and Ln.

Gt and Ht. Since these have the same number of edges, inspection of the gen-
eral Eq. (2.9) shows that for the difference Z(Gt, q, s, v, w)− Z(Ht, q, s, v, w),
not only the v0 and vn terms, but also the v1 terms cancel. Hence,

Z(Gt, q, s, v, w)− Z(Ht, q, s, v, w) contains the factor v2 . (2.105)

We recall that Is ⊆ Iq, so that 0 ≤ s ≤ q, and that w ≥ 0, as follows
for any physical field H. These properties will be understood implicitly in
the following. As preparation for the derivation of an inequality concerning
Z(Gt, q, s, v, w) for Sn and Ln graphs, it is useful to give some explicit ex-
amples. Let us consider the two tree graphs with n = 4 vertices, namely S4

and L4 (see Fig. (2.3)). In the following, we will usually omit the arguments
q, s, v, w in Z(G, q, s, v, w) for brevity of notation. We have given exact expres-
sions for Z(Sn) in Eq. (3.5) of Ref. [66] and for Z(Ln) in Eq. (2.39) above.
For our present purposes, we focus on the expressions in terms of the spanning
subgraph expansion. For S4, this is

Z(S4) = u4
1 + 3vu2u

2
1 + 3v2u3u1 + v3u4 , (2.106)
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while for L4 we have

Z(L4) = u4
1 + 3vu2u

2
1 + v2(2u3u1 + u2

2) + v3u4 . (2.107)

The difference in the structure of the term proportional to v2 arises from the
differences in the spanning subgraphs with two edges in S4 and L4. Hence,

Z(S4)− Z(L4) = v2(u3u1 − u2
2) = v2s(q − s)w(w − 1)2 . (2.108)

Since the last expression will appear as a factor in the differences Z(Gt)−Z(Ht)
to be presented below, we give it a symbol:

µ ≡ s(q − s)v2w(w − 1)2 (2.109)

and note that
µ ≥ 0 , (2.110)

so that Z(S4)− Z(L4) ≥ 0.
There are three different tree graphs with n = 5 vertices: S5, L5, and a

graph that we denote as Y5, which has the form of a Y , with the vertical part
made up of three vertices and two edges (shown in Fig. (2.1)). The graph Yn
is the generalization of this graph in which the vertical part is comprised of
n − 2 vertices forming a path graph Pn−2 (so that Y4 = S4). The spanning
subgraph expansions for these graphs, in order of decreasing maximal vertex
degree, are

Z(S5) = u5
1 + 4vu2u

3
1 + 6v2u3u

2
1 + 4v3u4u1 + v4u5 ,

(2.111)

Z(Y5) = u5
1 + 4vu2u

3
1 + 2v2(2u3u

2
1 + u2

2u1) + v3(3u4u1 + u3u2) + v4u5 ,(2.112)

and

Z(L5) = u5
1 + 4vu2u

3
1 + 3v2(u3u

2
1 + u2

2u1) + 2v3(u4u1 + u3u2) + v4u5 .(2.113)

Thus, for the differences, we have

Z(S5)− Z(Y5) = 2v2(u3u
2
1 − u2

2u1) + v3(u4u1 − u3u2)

= µ[2u1 + v(w + 1)] , (2.114)
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Z(S5)− Z(L5) = 3v2(u3u
2
1 − u2

2u1) + 2v3(u4u1 − u3u2)

= µ[3u1 + 2v(w + 1)] , (2.115)

and

Z(Y5)− Z(L5) = v2(u3u
2
1 − u2

2u1) + v3(u4u1 − u3u2)

= µ[u1 + v(w + 1)] . (2.116)

Now (remembering that 0 ≤ s ≤ q and w ≥ 0), for the ferromagnetic range
v ≥ 0, for nonnegative a and b, one has

au1 + bv(w + 1) ≥ 0 . (2.117)

Hence, for the ferromagnetic case, each of the differences Z(S5) − Z(Y5),
Z(S5)− Z(L5), and Z(Y5)− Z(L5) is non-negative.

From these explicit examples, one sees that the origin of these inequalities
can be traced to inequalities among products of the ur’s. We proceed to prove
two lemmas and then a general theorem. Our first lemma is

un−1 u1 ≥ un−` u` for n ≥ 2 and 2 ≤ ` ≤ n− 2 . (2.118)

To verify this lemma, we expand and factor the given expression:

un−1 u1 − un−` u` = s(q − s)w(1 + wn−2 − w`−1 − wn−`−1)

= s(q − s)w(wn−`−1 − 1)(w`−1 − 1)

= s(q − s)w(w − 1)2
[ n−`−2∑

i=0

wi
][ `−2∑

j=0

wj
]
≥ 0 .(2.119)

This lemma shows that the difference u3u1−u2
2 that appears multiplying v2 in

Eqs. (2.108), (2.114), (2.115), and (2.116) is nonnegative, and similarly that
the difference u4u1−u3u2 that appears multiplying v3 in the last three of these
equations is nonnegative.

Differences of the form Z(Gt)−Z(Ht) for higher values of n involve differ-
ences of higher products of ur factors, and there is an analogous inequality for
these products. We prove this as a second lemma. Let us consider a generic
term in Eq. (1.12), for the spanning subgraph G′ = ⊕G′i with k(G′) connected
components, G′i, each with n(G′i) vertices. This has the form (2.4) satisfying
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the relation (2.5). Our second lemma is, with ` = n− k(G′) + 1,

u` u
n−`
1 ≥

k(G′)∏
j=1

un(G′
j) for n ≥ 2 and 1 ≤ ` ≤ n, i.e., 1 ≤ k(G′) ≤ n .

(2.120)
For example, for the case n = 6, this lemma yields the inequalities u4u

2
1 ≥ u2

3,
u4u

2
1 ≥ u3

2, and u4u
2
1 ≥ u4u2. This lemma is proved by applying Lemma 1

iteratively.
Combining the expression for Z(Sn, q, s, v, w) in the first line of Eq. (2.33)

with our other results above, we have the following theorem: For the ferro-
magnetic case,

Z(Sn, q, s, v, w)− Z(Tn, q, s, v, w) ≥ 0 for v ≥ 0 (2.121)

for any tree graph Tn. This is proved by applying the two lemmas above to
the terms in the spanning subgraph expansions of these partition functions
for Sn and a generic tree graph Tn. In the second appendix we give further
explicit results for differences of field-dependent partition functions for tree
graphs with n = 6 vertices.

The difference Z(Y5)−Z(L5) in Eq. (2.116) (where we omit the arguments
for brevity of notation) can also be understood using the recursive relation for
n ≥ 5:

Z(Yn)− Z(Ln) =
n−4∑
j=1

vj−1uj[Z(Yn−j)− Z(Ln−j)]

+vn−4(
n−4∑
j=0

wj)[Z(Y4)− Z(L4)] , (2.122)

where Z(Y4)− Z(L4) = Z(S4)− Z(L4) = µ was given in Eq. (2.108). For the
ferromagnetic range v ≥ 0, each term on the right-hand side of Eq. (2.122) is
nonnegative, and hence this proves the inequality

Z(Yn, q, s, v, w)− Z(Ln, q, s, v, w) ≥ 0 for v ≥ 0 . (2.123)

Combining (2.121) and (2.123), we have

Z(Sn, q, s, v, w) ≥ Z(Yn, q, s, v, w) ≥ Z(Ln, q, s, v, w) for v ≥ 0 . (2.124)
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Chapter 3

Ground State Entropy of the
Potts Antiferromagnet:
I. Lower Bounds for Slabs of the
Simple Cubic Lattice

In the present chapter we derive lower bounds on W ({G}, q) for sections
of a three-dimensional lattice, namely the simple cubic lattice, which are of
infinite extent in two directions (taken to lie along the x and y axes) and
finite in the third direction, z. By comparison with large-q expansions and
numerical evaluations, we show how the lower bounds for the W functions for
these slabs interpolate between the values for the (respective thermodynamic
limits of the) square and simple cubic lattices. The results reported here were
published in Ref. [68]. These bounds are of interest partly because one does
not know the exact functions W (sq, q) or W (sc, q) for general q.

3.1 Calculational Method

Let us consider a section (slab) of the simple cubic lattice of dimensions
Lx×Ly×Lz vertices, which we denote sc[(Lx)BCx×(Ly)BCy×(Lz)BCz], where
the boundary conditions (BC) in each direction are indicated by the subscripts.
The chromatic polynomial of this lattice will be denoted P (sc[(Lx)BCx ×
(Ly)BCy × (Lz)BCy], q). We will calculate lower bounds for W (sc[(Lx)BCx ×
(Ly)BCy × (Lz)BCz], q) in the limit Lx → ∞ and Ly → ∞ with Lz fixed.
These are independent of the boundary conditions imposed in the directions
in which the slab is of infinite extent, and hence, for brevity of notation, we
will denote the limit limLx, Ly→∞ sc[(Lx)BCx × (Ly)BCy × (Lz)BCz] simply as
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S(Lz)BCz
, where S stands for “slab”. We will consider both free (F) and peri-

odic (P) boundary conditions in the z direction, and thus slabs such as S3F ,
S3P , etc. For technical reasons (to get an expression involving a trace of a
coloring matrix, as explained below) we will use periodic boundary condi-
tions in the x direction. Note that the proper q-coloring constraint implies
that FBCz and PBCz are equivalent if Lz = 2. The number of vertices for
G = sc[(Lx)BCx× (Ly)BCy× (Lz)BCz] is n = LxLyLz. The specific form of Eq.
(1.9) for our calculation is

W (S(Lz)BCz
, q) = lim

Ly→∞
lim

Lx→∞
[P (sc[(Lx)P × (Ly)BCy × (Lz)BCz], q)]

1/n . (3.1)

To derive a lower bound on W (S(Lz)BCz
, q), we generalize the method

of Refs. [53], [55] and [57] from two to three dimensions. We consider
two adjacent transverse slices of the slab orthogonal to the x direction, with
x values x0 and x0 + 1. These are thus sections of the square lattice of
dimension Ly × Lz, which we denote Gx0 = sq[(Ly)BCy × (Lz)BCz ]x0 and
Gx0+1 = sq[(Ly)BCy × (Lz)BCz ]x0+1. We label a particular color assignment
to the vertices of Gx0 that is a proper q-coloring of these vertices as C(Gx0)
and similarly for Gx0+1. The total number of proper q-colorings of Gx0 is

N = P (Gx0 , q) = P (Gx0+1, q) . (3.2)

Now let us add the edges in the x direction that join these two adjacent
transverse slices of the slab together. Among the N 2 color configurations that
yield proper q-colorings of these two separate yz transverse slices, some will
continue to be proper q-colorings after we add these edges that join them in
the x direction, while others will not.

We define an N ×N -dimensional coloring compatibility matrix T (see Refs.
[9] and [12]), with entries TC(Gx0 ),C(Gx0+1) equal to (i) 1 if the color assignments
C(Gx0) and C(Gx0+1) are proper q-colorings after the edges in the x direction
have been added joining Gx0 and Gx0+1, i.e., if the color assigned to each vertex
v(x0, y, z) in Gx0 is different from the color assigned to the vertex v(x0 +1, y, z)
in Gx0+1; and (ii) 0 if the color assignments C(Gx0) and C(Gx0+1) are not
proper q-colorings after the edges in the x direction have been added, i.e.,
there exists some color assigned to a vertex v(x0, y, z) in Gx0 that is equal to
a color assigned to the vertex v(x0 + 1, y, z) in Gx0+1. Clearly, Tij = Tji. The
chromatic polynomial for the slab is then given by the trace

P (sc[(Lx)P × (Ly)BCy × (Lz)BCz ], q) = Tr(TLx) . (3.3)
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Since T is a real symmetric matrix, there exists an orthogonal matrix A
that diagonalizes T : ATA−1 = Tdiag.. Let us denote the N eigenvalues of T
as λT,j, 1 ≤ j ≤ N . Since T is a real non-negative matrix, we can apply
the generalized Perron-Frobenius theorem [36, 39] to infer that T has a real
maximal eigenvalue, which we denote λT,max. It follows that

lim
Lx→∞

[P (sc[(Lx)P × (Ly)BCy × (Lz)BCz ], q)]
1/Lx = λT,max . (3.4)

Now for the transverse slicesGx0 andGx0+1, denoted generically as ts((Lz)BCz),
the chromatic polynomial has the form

P (Gx0 , q) = P (Gx0+1, q) =
∑
j

cj (λts((Lz)BCz ),j)
Ly (3.5)

where the cj are coefficients whose precise form is not needed here, given
the range of q ≥ 3 for which we apply our bounds. (This range is used
because bounds are unnecessary for q = 2, since W (sc, 2) = 1 is known ex-
actly.) The set of λts((Lz)BCz ),j’s is independent of the length Ly and although
this set depends on BCy, the maximal one (having the largest magnitude),
λts((Lz)BCz ),max, is independent of BCy. Hence,

lim
Ly→∞

[P (Gx0 , q)]
1/Ly ≡ lim

Ly→∞
(N )1/Ly

= λts((Lz)BCz ),max . (3.6)

The two adjacent slices together with the edges in the x direction that join
them constitute the graph sc[2F×(Ly)BCy×(Lz)BCz ]. We denote the chromatic
polynomial for this section (tube) of the sc lattice as P (sc[2F × (Ly)BCy ×
(Lz)BCz ], q) (which is equal to P (sc[2P × (Ly)BCy× (Lz)BCz ], q) because of the
proper q-coloring condition). This has the form

P (sc[2F × (Ly)BCy × (Lz)BCz ], q)

=
∑
j

c′j (λtube((Lz)BCz ),j)
Ly (3.7)

where c′j are coefficients analogous to those in (3.5). Therefore,

lim
Ly→∞

[P (sc[2F × (Ly)BCy × (Lz)BCz ], q)]
1/Ly =

= λtube((Lz)BCz ),max . (3.8)
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Now let us denote the column sum

Cj(T ) =
N∑
i=1

Tij , (3.9)

which is equal to the row sum
∑N

j=1 Tij, since T is symmetric. We also define
the sum of all entries (SE) of T as

SE(T ) =
N∑

i,j=1

Tij . (3.10)

Note that SE(T )/N is the average row (= column) sum. Next, we observe
that

SE(T ) = P (sc[2F × (Ly)BCy × (Lz)BCz ], q) . (3.11)

To obtain our lower bound, we then use the r = 1 special case of the
theorem that for a non-negative symmetric matrix T and r ∈ N+ [38]

λT,max ≥
[
SE(T r)

N

]1/r

. (3.12)

The lower bound is then

W (S(Lz)BCz
, q) ≥ W (S(Lz)BCz

, q)` (3.13)

where

W (S(Lz)BCz
, q)` = lim

Ly→∞

(
SE(T )

N

)1/(LyLz)

= lim
Ly→∞

[
P (sc[2F × (Ly)BCy × (Lz)BCz ], q)

P (sq[(Ly)BCy × (Lz)BCz ], q)

]1/(LyLz)

=

[
λtube((Lz)BCz ),max

λts((Lz)BCz ),max

]1/Lz

. (3.14)
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Figure 3.1: Equivalence between simple cubic slab graph sc[2F × 2F × (Ly)F ]
and square lattice strip graph sq[4P × (Ly)F ], using Ly = 3 as an illustration.

3.2 Results for Slab of Thickness Lz = 2 with

FBCz

We now evaluate our general lower bound in Eqs. (3.13) and (3.14) for a
slab of the simple cubic lattice with thickness Lz = 2 and FBCz, denoted S2F .
In this case the transverse slice is the graph sq[2F × (Ly)BCy]. For FBCy, an
elementary calculation yields

P (sq[2F × (Ly)F ], q) = q(q − 1)(q2 − 3q + 3)Ly−1 (3.15)

with a single λts(2F ) = λts(2P ) ≡ λts(2), and this is also the maximal λ for PBCy

[8, 52], so that
λts(2),max = q2 − 3q + 3 . (3.16)

We next use the calculation of

P (sc[2F × (Ly)F × 2F ], q) = P (sc[2F × 2F × (Ly)F ], q)

= P (sq[4P × (Ly)F ], q)

(3.17)

in Ref. [47] (where each of the 2F BC’s is equivalent to 2P , and for the
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equivalence between simple cubic slab graph sc[2F × 2F × (Ly)F ] and square
lattice strip graph sq[4P ×(Ly)F ], see Fig. (3.1) as an illustration), from which
we calculate the maximal λtube(2),max to be

λtube(2),max =
1

2

[
q4 − 8q3 + 29q2 − 55q + 46 +

√
R22

]
(3.18)

where

R22 = q8 − 16q7 + 118q6 − 526q5 + 1569q4

− 3250q3 + 4617q2 − 4136q + 1776 . (3.19)

We then substitute these results for λts(2),max and λtube(2),max into the Lz = 2
special case of (3.14) to obtain W (S2, q)`, and thus the resultant lower bound
on W (S2F , q) = W (S2P , q) ≡ W (S2, q): W (S2, q) ≥ W (S2, q)`.

3.3 Comparison with Large-q Series Expan-

sions

One way to elucidate how this lower bound W (S2, q)` compares with the
exact W (sq, q) and W (sc, q) is to compare the large-q series expansions for
these three functions. For this purpose, it is first appropriate to give some rel-
evant background on large-q series expansions for W ({G}, q) functions. Since
there are qn possible colorings of the vertices of an n-vertex graph G with q
colors if no conditions are imposed, an obvious upper bound on the number
of proper q-colorings of the vertices of G is P (G, q) ≤ qn. This yields the
corresponding upper bound W ({G}, q) < q. Hence, it is natural to define a
reduced function that has a finite limit as q →∞,

Wr({G}, q) = q−1W ({G}, q) . (3.20)

For a lattice or, more generally, a graph whose vertices have bounded degree,
Wr({G}, q) is analytic about 1/q = 0. (Wr({G}, q) is non-analytic at 1/q = 0
for certain families of graphs that contain one or more vertices with unbounded
degree as n→∞, although the presence of a vertex with unbounded degree in
this limit does not necessarily imply non-analyticity of Wr({G}, q) at 1/q = 0
[56].) It is conventional to express the large-q Taylor series for a function
that has some factors removed from Wr, since this function yields a simpler
expansion.
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A chromatic polynomial has the general form

P (G, q) =

n−k(G)∑
j=0

(−1)jan−jq
n−j , (3.21)

where the an−j > 0 and k(G) is the number of connected components of G
(taken here to be k(G) = 1 without loss of generality). One has an = 1,
an−1 = e(G), and, provided that the girth 1 g(G) > 3 , as is the case here,
an−2 =

(
e(G)

2

)
. A κ-regular graph is a graph such that each vertex has degree

(coordination number) κ. For a κ-regular graph, e(G) = κn/2. The coefficients
of the three terms of highest degree in q in P (G, q) for a κ-regular graph are
precisely the terms that would result from the expansion of [q(1 − q−1)κ/2]n.
Hence, for a κ-regular graph or lattice, one usually displays the large-q series
expansions for the reduced function

W (Λ, q) =
W (Λ, q)

q(1− q−1)κ/2
. (3.22)

The large-q Taylor series for this function can be written in the form

W (Λ, q) = 1 +
∞∑
j=1

wΛ,jy
j , (3.23)

where

y =
1

q − 1
. (3.24)

The two results that we shall need here are the large-q (i.e., small-y) Taylor
series for W (sq, q) and W (sc, q). The large-q series for W (sq, q) was calculated
to successively higher orders in [40], [3] and [2]. Here we only quote the terms
to O(y11):

W (sq, q) = 1 + y3 + y7 + 3y8 + 4y9 + 3y10

+ 3y11 +O(y12) . (3.25)

As noted above, lower bounds on W (Λ, q) obtained from the inequality
(3.12) for two-dimensional lattices Λ were found to be quite close to the actual
values of the respective W (Λ, q) for a large range of values of q. This can be
understood for large values of q from the fact that they coincide with the large-

1The girth of a graph G, g(G) is defined as the number of edges of a minimal-length
closed circuit on G.
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q expansions to many orders, and the agreement actually extends to values of
q only moderately above q = 2. For example, the lower bound on W (sq, q) in
[9] is equivalent to W (sq, q) ≥ (1 + y3). This agrees with the small-y series
up to order O(y6), as is evident from comparison with Eq. (3.25). This lower
bound also agrees quite closely with the value of W (sq, q) determined by Monte
Carlo simulations in [52, 53, 55] (see Table 1 of [52] and Table 1 of [53]). We
include this comparison here in Table (3.1). For our purposes, it is sufficient
to quote the results from Ref. [52] only to three significant figures. Since we
are using large-q series for this comparison, we list the results in Table (3.1)
for a set of values q ≥ 4. As another example, the lower bound obtained
for the honeycomb lattice in Ref. [55], W (hc, q) ≥ (1 + y5)1/2, agreed with
the small-y series for W (hc, q) to O(y10). Thus, it was found that for all of
the cases studied, W (Λ, q)` provides not only a lower bound on W (Λ, q), but
a rather good approximation to the latter function. It is thus reasonable to
expect that this will also be true for the lower bounds W (S(Lz)BCz

, q)` for the
slabs SLz of the simple cubic lattice considered here, of infinite extent in the
x and y directions and of thickness Lz in the z direction.

From ingredients given in Ref. [3], we have calculated a large-q expansion
of the W (sc, q) for the simple cubic (sc) lattice and obtain

W (sc, q) = 1 + 3y3 + 22y5 + 31y6 +O(y7) . (3.26)

In Table (3.1) we list the corresponding values of W (sc, q) obtained from this
large-q series, denotedW (sc, q)ser., for q ≥ 4. We also list estimates ofW (sc, q),
denoted W (sc, q)MC , for 4 ≤ q ≤ 6 from the Monte Carlo calculations in Ref.
[28]. One sees that the approximate values obtained from the large-q series
are close to the estimates from Monte Carlo simulations even for q values as
low as q = 4.

The coordination number for the S2F slab of the simple cubic lattice (of
infinite extent in the x and y directions) is κ(S2F ) = 5. We thus analyze the
reduced function W (S2, q)` = W (S2, q)`/[q(1 − q−1)5/2]. This has the large-q
(small-y) expansion

W (S2, q)` = 1 + 2y3 + 2y5 + 9y6 +O(y7) . (3.27)

As this shows, W (S2, q)` provides an interpolation betweenW (sq, q) andW (sc, q);
for example, the coefficient of the y3 term is 1 for Λ = sq, 2 for Λ = S2, and
3 for Λ = sc. Furthermore, the coefficient of the y5 term is 0 for Λ = sq,
2 for Λ = S2, and 22 for Λ = sc. This is in agreement with the fact that
the exact functions W (S(Lz)F , q) interpolate between W (sq, q) and W (sc, q) as
Lz increases from 1 to ∞ [58] and the expectation, as discussed above, that
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W (S(Lz)F , q)` should be close to W (S(Lz)F , q).

3.4 Results for Slabs of Thickness Lz = 3, 4

with FBCz

For the slab of the simple cubic lattice with thickness Lz = 3 and FBCz,
denoted S3F , the transverse slice is the graph sq[3F × (Ly)BCy]. The chro-
matic polynomials P (sq[3F × (Ly)F ], q), P (sq[3F × (Ly)P ], q), and P (sq[3F ×
(Ly)TP ], q) (where TP denotes twisted periodic, i.e., Möbius BC) were com-
puted for arbitrary Ly in Refs. [46], [63], [65] and [48], respectively, and the
maximal λ was shown to be the same for all of these boundary conditions.
The other input that is needed to obtain the lower bound in Eq. (3.14) is the
maximal λ for the chromatic polynomial of the sc[2F × 3F × Ly] tube graph,
i.e., λtube(3F ),max. The relevant transfer matrix that determines the chromatic
polynomial for this tube graph was given with Ref. [47]. Because it is 13× 13
dimensional, one cannot solve the corresponding characteristic polynomial an-
alytically to obtain λtube(3F ),max for general q. However, one can calculate
λtube(3F ),max numerically, and we have done this. Combining these results with
Eqs. (A2) and (A2) in the Appendix of [68], we then evaluate the lower bound
W (S3F , q)` by evaluating the Lz = 3 special case of (3.14).

For the slab of the simple cubic lattice with thickness Lz = 4 and FBCz,
S4F , the transverse slice is the graph sq[4F × (Ly)BCy]. Here the maximal
λts(4F ),max is the solution of the cubic equation Eq. (A5) given in the Ap-
pendix of [68]. One also needs the maximal λ for the chromatic polynomial
of the sc[2F × 4F × Ly] tube graph, i.e., λtube(4F ),max. The relevant (136× 136
dimensional) transfer matrix for this tube graph was calculated for Ref. [47],
and we have used this to compute λtube(4F ),max numerically. We then obtain
the lower bound W (S4F , q)` from the Lz = 4 special case of Eq. (3.14). The
results for W (S3F , q)` and W (S4F , q)` are listed in Table (3.1).

3.5 Result for Slab of Thickness Lz = 3 with

PBCz

It is also of interest to obtain a lower bound for W for a slab with periodic
boundary conditions in the z direction, since these minimize finite-volume
effects. For this purpose we consider the slab of the simple cubic lattice with
thickness Lz = 3 and PBCz, S3P . In this case the transverse slice is the graph
sq[3P × (Ly)BCy]. For FBCy the chromatic polynomial involves only one λ,
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and this is also the maximal λ for PBCy and TPBCy [11], viz.,

λts(3P ),max = q3 − 6q2 + 14q − 13 . (3.28)

One then needs λtube(3P ),max. The relevant (4× 4 dimensional) transfer matrix
for this tube graph was calculated for Ref. [47], and we have used this to
compute λtube(3P ),max numerically. The results for W (S3P , q) are given in Table
(3.1).

3.6 Discussion

Since the slabs of infinite extent in the x and y directions and of finite thick-
ness Lz geometrically interpolate between the square and simple cubic lattices,
it follows that the resultant W functions for these slabs interpolate between
W (sq, q) and W (sc, q) [58]. Given that it was shown previously that the lower
bounds W (Λ, q)` obtained by the coloring matrix method are quite close to
the actual values of the respective W (Λ, q) for a number of two-dimensional
lattices, this is also expected to be true for the W (S(Lz)BCz

, q)` bounds. We
have shown above how W (S2, q)` interpolates between W (sq, q) and W (sc, q)
via a comparison of the large-q series expansions for these three functions. Ta-
ble (3.1) provides a further numerical comparison for W (S3F , q)`, W (S4F , q)`,
and W (S3P , q)` with W (sq, q) and W (sc, q), the latter being determined to
reasonably good accuracy from large-q series expansions and, where available,
Monte Carlo measurements. As noted, the lower end of the range of q values
for the comparison is chosen as q = 4 in view of the use of large-q series.

For sections of lattices, and, more generally, graphs that are not κ-regular,
one can define an effective vertex degree (coordination number) as [57]

κeff =
2e(G)

n(G)
. (3.29)

For 3 ≤ Lz <∞, the slab of the simple cubic lattice (of infinite extent in the x
and y directions) with FBCz is not κ-regular, but has the effective coordination
number

κeff (S(Lz)F ) = 2

(
3− 1

Lz

)
. (3.30)

We observe that for the q values considered in Table (3.1), W (sq, q) > W (S2, q)` >
W (S3F , q)` > W (S4F , q)` > W (sc, q).

The fact that for fixed q, the exact function W (S(Lz)F , q) is a non-increasing
function of Lz, and, for q > 2, a monotonically decreasing function of Lz,
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follows from a theorem proved in Ref. [58]. To the extent that the lower bounds
W (S(Lz)F , q)` lie close to the actual values of W (S(Lz)F , q), it is understandable
that they also exhibit the same strict monotonicity. As was noted in Ref. [58],
the reason for the monotonicity of the exact values is that the number of
proper q-colorings per vertex of a lattice graph is more highly constrained as
one increases the effective coordination number of the lattice section. (This is
also evident in Fig. 5 of [52].) In the present case, the monotonicity can be
seen as a result of the fact that the effective coordination number increases
monotonically as a function of Lz.

The use of periodic boundary conditions in the z direction minimizes finite-
size effects, so that for a given Lz, W (S(Lz)P , q) would be expected to be closer
to W (sc, q) than W (S(Lz)F , q) [58]. Again, to the extent that the lower bounds
are close to the actual W functions for these respective slabs, one would expect
W (S(Lz)P , q)` to be closer than W (S(Lz)F , q)` to W (sc, q). Our results agree
with this expectation. In contrast to W (S(Lz)F , q), W (S(Lz)P , q) is not, in
general, a non-increasing function of Lz, as was discussed in general in [58]
(see Fig. 1 therein). Thus, values of W (S(Lz)P , q), and hence, a fortiori,
W (S(Lz)P , q)`, may actually lie slightly below those for W (sc, q), as is evident
for the W (S3P , q)` entries in Table (3.1).
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Chapter 4

Ground State Entropy of the
Potts Antiferromagnet:
II. Exact Calculations of
Homeomorphic Expansions of
Kagomé Lattice Strips

4.1 Homeomorphic Expansions of Kagomé Lat-

tice Strips

For the ground state degeneracy per siteW , a particular question of interest
is how W changes when one inserts new vertices on certain bonds of the graph.
In mathematical graph theory, this insertion process is called a homeomorphic
expansion of the graph (and the opposite process, removing degree-2 vertices
from bonds of a graph, is called a homeomorphic reduction). It is useful to
answer this question in simple cases such as lattice strips, since one can get
exact explicit analytic results for these cases [59],[64].

Continuing the above line of study by Shrock and Tsai [59] and [64], in
this chapter we report exact calculations of the chromatic polynomial and
resultant ground state degeneracy per site of the q-state Potts antiferromag-
net on lattice strips that are homeomorphic expansions of a strip graph of
the kagomé lattice. These results were published in Ref. [69]. Our findings
and their comparison with analogous exact calculations for the kagomé strips
without homeomorphic expansion in [46], [63], [65], and with homeomorphic
expansions of square-lattice ladder graphs in [64] add to our understanding of
the effect of homeomorphic expansions on the per-site ground state degeneracy
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and entropy of the Potts antiferromagnet.
The family of homeomorphically expanded graphs of the kagomé lattice

strip that we consider are denoted [Hk(kag)]m,BC , whereH, kag, andBC stand
for homeomorphic expansion, kagomé, and longitudinal boundary conditions,
free (f) or cyclic (c). A member of this family is defined as follows. We start
with a minimal-width kagomé strip graph, a portion of which is shown in Fig.
(4.1), comprised of m subgraphs, each of which consists of a hexagon with its
two adjoining triangles. We then insert k vertices on each longitudinal edge of
a hexagon in this original kagomé strip graph. Thus, the graph [Hk(kag)]m,BC
is a strip of m subgraphs each of which consists of two triangles and a p-gon
with

p = 6 + 2k . (4.1)

The graph [H1(kag)]m,BC involves subgraphs with two triangles and an
octagon, and so forth for higher values of k. The kagomé strip itself is the case
k = 0. The chromatic number of the free and cyclic kagomé strips is χ = 3,
and this remains true for the homeomorphic expansions [Hk(kag)]m,BC :

χ([Hk(kag)]m,f ) = χ([Hk(kag)]m,c) = 3 . (4.2)

We shall sometimes use the abbreviations kagk,m,BC ≡ [Hk(kag)]m,BC with
BC = f or BC = c and, for the family as a whole, suppressing the m index,
kagk,BC ≡ [Hk(kag)]BC . For the (minimal-width) Kagomé lattice strip with
free and periodic boundary conditions, and its k = 1 homeomorphic expansion,
see Fig. (4.1) as illustrations.

For the relevant range, q ≥ 3, of interest here, the W ({G}, q) functions
computed via the infinite-length limits of the [Hk(kag)]m,BC strips with free
and cyclic (and Möbius) longitudinal boundary conditions (BC) are all the
same. Since the calculation is easiest if one uses strip graphs with free longi-
tudinal boundary conditions, we shall do this. It is also of interest to calcu-
late the chromatic polynomials for the corresponding strip graphs with cyclic
boundary conditions and we will do this. The m→∞ limits for these families
of homeomorphically expanded kagomé strips will be denoted {[Hk(kag)]BC}
and, for the W function, which is independent of the boundary conditions,
W ({Hk(kag)}, q).

As noted above, our exact results for the infinite-length homeomorphi-
cally expanded kagomé strip graphs complement other methods of studying
W functions on lattices, such as rigorous bounds, large-q series, and Monte
Carlo measurements [9], [55], [57], [68]. Other homeomorphicexpansions of
this kagomé strip graph are also of interest, e.g., expansions in which addi-
tional vertices are added to edges of the triangles, but here we shall restrict
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[H (kag)]
3,c0

[H (kag)]
3,BC1
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3,f0
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Figure 4.1: The minimal-width Kagomé lattice strip with free ([H0(kag)]3,f )
and periodic ([H0(kag)]3,f ) boundary conditions, and its k = 1 homeomorphic
expansion ([H1(kag)]3,BC). All strips illustrated here are comprised of m = 3
subgraphs.
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ourselves to studying the specific homeomorphic expansion defined above. In
passing, we mention that chromatic polynomials of homeomorphic expansions
of other types of graphs have been studied in, e.g., Refs. [59], [29].

4.2 Calculational Method

The chromatic polynomial P (G, q) can be calculated in several ways. One
is via the deletion-contraction relation (2.32). P (G, q) can also be determined
via the cluster formula by setting v = −1 in Eq. (1.5):

P (G, q) =
∑
G′⊆G

qk(G′) (−1)e(G
′) , (4.3)

where we recall from previous chapters that k(G′) denotes the number of con-
nected components in G′ (not to be confused with the homeomorphic expan-
sion parameter k; the meaning should be clear from context).

The numbers of vertices and edges on the [Hk(kag)]m,f and [Hk(kag)]m,c
graphs are

n([Hk(kag)]m,c) = n([Hk(kag)]m,f )− 3 = (5 + 2k)m (4.4)

and
e([Hk(kag)]m,c) = e([Hk(kag)]m,f )− 2 = (8 + 2k)m . (4.5)

(For the cyclic strip with m = 1 some of these are double edges; this does not
affect the chromatic polynomial.) The graph [Hk(kag)]m,c has vertices with
degrees 3, 4, and, for k ≥ 1, also 2. For reference, the infinite 2D kagomé
lattice has vertices of uniform degree 4. Defining, as in Ref. [57], an effective
vertex degree,

∆eff ≡ lim
n→∞

2e(G)

n(G)
, (4.6)

we have

∆eff =
4(4 + k)

5 + 2k
for {Hk(kag)} . (4.7)

Because χ([Hk(kag)]m,f ) = 3, it follows that P ([Hk(kag)]m,BC , q) = 0 for
q = 0, 1, 2 for free or cyclic BC. Since P ([Hk(kag)]m,BC , q) is a polynomial,
this implies that

P ([Hk(kag)]m,BC , q) contains the factor q(q − 1)(q − 2) . (4.8)
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4.3 Strips with Free Longitudinal Boundary

Conditions

For the family [Hk(kag)]f of strip graphs [Hk(kag)]m,f , it is convenient to
use a generating function formalism, as before [46], [59]. For arbitrary k, this
generating function is

Γ([Hk(kag)]f , q, x) =
∞∑
m=0

P ([Hk(kag)]m+1,f , q)x
m . (4.9)

The generating function is a rational function in x and q of the form

Γ([Hk(kag)]f , q, x) =
ak,0 + ak,1x

1 + bk,1x+ bk,2x2
. (4.10)

We write the denominator as

1 + bk,1x+ bk,2x
2 =

2∏
j=1

(1− λkagk,0,j x) . (4.11)

By means of an iterative use of the deletion-contraction relation and induction
on the homeomorphic expansion parameter k, we have calculated Γ([Hk(kag)]f , q, x)
and hence P ([Hk(kag)]m,f , q) for arbitrary k and q.

Recall that the chromatic polynomial of the circuit graph Cn is P (Cn, q) =
(q − 1)n + (q − 1)(−1)n. Since this has a factor q(q − 1), it is convenient to
define

Dn =
P (Cn, q)

q(q − 1)
=

n−2∑
s=0

(−1)s
(
n− 1

s

)
qn−2−s (4.12)

so that D2 = 1, D3 = q− 2, D4 = q2− 3q+ 3, etc. (Where it appears, we shall
write D3 simply as q − 2.) We find (with p = 6 + 2k as given in Eq. (4.1))

ak,0 = q(q − 1)(q − 2)2Dp , (4.13)

ak,1 = −q(q − 1)5+2k(q − 2)3 , (4.14)

bk,1 = −(q − 2)(Dp −Dp−1 + 1) , (4.15)

and
bk,2 = (q − 1)3+2k(q − 2)3 . (4.16)

It is readily checked that for the special case k = 0, these results reduce to the
generating function for the kagomé strip given in Ref. [46].
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Substituting the results for bk,1 and bk,2 in Eq. (4.11) and solving for
λkagk,0,j, we find

λkagk,0,j =
1

2
(q − 2)(Dp −Dp−1 + 1±

√
Rkkd0 ) , (4.17)

where p = 6 + 2k as given in Eq. (4.1), j = 1, 2 correspond to the ± signs,
and

Rkkd0 = (Dp −Dp−1 + 1)2 − 4(q − 1)3+2k(q − 2) . (4.18)

Using the general methods of [59] for expressing the chromatic polyno-
mial in terms of the coefficients in the generating function, we find that
P ([Hk(kag)]m,f , q) is given by

P ([Hk(kag)]m,f , q) =
(ak,0λkagk,0,1 + ak,1)

(λkagk,0,1 − λkagk,0,2)
(λkagk,0,1)m−1+

(ak,0λkagk,0,2 + ak,1)

(λkagk,0,2 − λkagk,0,1)
(λkagk,0,2)m−1 .

(4.19)
(Note that this is symmetric under the interchange λkagk,0,1 ↔ λkagk,0,2.) For
the relevant range of q, λkagk,0,1 > λkagk,0,2. Therefore, in the limit m → ∞,
the ground state degeneracy per vertex of this family of lattice strips is

W ({Hk(kag)}, q) = (λkagk,0,1)
1

5+2k , (4.20)

where the λkagk,0,j for j = 1, 2 were given in Eq. (4.17). This and Eq. (4.19)
are the main results of the present chapter.

From the analytic result (4.20), there follow two monotonicity properties:
(i) for a given k, W ({Hk(kag)}, q) is a monotonically increasing function of
q in the range q ≥ χ = 3; and (ii) for a given q ≥ 3, W ({Hk(kag)}, q) is a
monotonically increasing function of k for k ≥ 0. The fact that W ({G}, q) is an
increasing function of q for q ≥ χ(G) is quite general and is a consequence of the
greater freedom in performing proper q-colorings ofG for larger q. Property (ii)
can be understood as a result of the fact that a proper q-coloring of a graph G
involves a constraint on the coloring of adjacent vertices of G, and this, in turn,
gives rise to a constraint from circuits in G. Since the minimum length of a
circuit is the girth, increasing the girth tends to reduce the severity of this latter
constraint. (Here, the girth of a graph G is defined as the number of edges
that one traverses in a minimum-length circuit on G.) Although the girth of
[Hk(kag)]m,BC (ignoring the double edges that occur for m = 1 with cyclic BC)
is equal to 3, independent of k, the girth of the polygons with p = 6 + 2k sides
in the strip does increase with k. Hence, for a fixed q ≥ χ(G) = 3, this increase
in the girth of the p-gons increases the possibilities for proper q-colorings, and
this, in turn, increases the W function. These monotonicity properties are
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Table 4.1: Values of W ({kag}, q) ≡ W ({H0(kag)}, q), W ({H1(kag)}, q), and
W ({H2(kag)}, q) for 3 ≤ q ≤ 10. For comparison, we also show W ({sq}, q) ≡
W ({H0(sq)}, q), W ({H1(sq)}, q), and W ({H2(sq)}, q) for the square-lattice ladder strips.
To save space, we omit the argument q in these W functions below. See text for further
details

q W ({kag}) W ({H1(kag)}) W ({H2(kag)}) W ({sq}) W ({H1(sq)}) W ({H2(sq)})
3 1.409 1.550 1.639 1.732 1.821 1.872
4 2.410 2.564 2.655 2.646 2.795 2.860
5 3.410 3.569 3.660 3.606 3.784 3.854
6 4.410 4.571 4.663 4.583 4.778 4.850
7 5.409 5.571 5.664 5.568 5.773 5.848
8 6.408 6.572 6.665 6.557 6.770 6.846
9 7.407 7.572 7.665 7.550 7.768 7.844
10 8.407 8.572 8.665 8.544 8.766 8.843

reflected in the large-q Taylor series expansions of the W functions. As q →∞,
the leading terms of the large-q series expansions of q−1W ({Hk(kag)}, q) are of
the form q−1W ({Hk(kag)}, q) = 1−αk/q+..., where ... represents higher order
terms in 1/q, and the coefficients for k = 0, 1, 2 are α0 = 8/5, α1 = 10/7,
and α2 = 4/3, so that α0 > α1 > α2, and so forth for higher k.

In Table (4.1) we list values ofW ({kag}, q) ≡ W ({H0(kag)}, q), W ({H1(kag)}, q),
and W ({H2(kag)}, q) for 3 ≤ q ≤ 10. The two general monotonicity proper-
ties stated above are evident in the table. As is also evident, W ({Hk(kag)})
is an approximately linear function of q for values of q moderately above the
chromatic number, χ = 3.

It is of interest to compare these results for the ground state degener-
acy and entropy on infinite-length limits of homeomorphic expansions of the
kagomé strip with those obtained for homeomorphic expansions of the square
lattice ladder strip in Ref. [64]. The strip graphs considered in Ref. [64] were
constructed by starting with a free or cyclic (or Möbius) square-ladder strip
of m squares and adding k − 2 vertices to each longitudinal edge, with k ≥ 2.
Thus, the parameter k − 2 of Ref. [64] corresponds to the parameter k in
our present notation, and the resultant strip is (with our present notational
convention for k) [Hk(sq)]m,BC . This graph is thus a homopolygonal strip of
p′-gons, where p′ = 2k + 4. We denote the m → ∞ limit of this strip as
{[Hk(sq)]BC}. For {[Hk(sq)]c}, qc = 2 (independent of k) and, for q ≥ qc, W
is the same for the free and cyclic (and Möbius) longitudinal boundary condi-
tions; W ({[Hk(sq)]f}, q) = W ({[Hk(sq)]c}, q) ≡ W ({Hk(sq)}, q). Converting
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the result of Ref. [64] to our present notation by the replacement k − 2→ k,
one has

W ({Hk(sq)}, q) = (D2k+4)
1

2k+2 . (4.21)

In general, for even p′ = 2k+4, (i)Dp′ = 1 if q = 2 and henceW ({Hk(sq)}, 2) =
1; (ii)Dp′ is a monotonically increasing function of q, and hence so isW ({Hk(sq)}, q);
(iii) for a given q > 2, W ({Hk(sq)}, q) is a monotonically increasing function
of k. This monotonic increase as a function of the homeomorphic expansion
parameter k is understandable in a manner analogous to that explained above,
with the difference that whereas the girth of the [Hk(kag)]m,BC strip is 3, in-
dependent of k, the girth of [Hk(sq)]m,BC is p′.

The comparison of the exact analytic result (4.21) for W ({Hk(sq)}, q) from
Ref. [64] for homeomorphic expansions of the square-lattice ladder strip with
our result (4.20) for homeomorphic expansions of the kagomé strip yields an-
other inequality, namely that for q ≥ 3 (so that one can perform a proper
q-coloring of the [Hk(kag)]m,BC strip),

W ({Hk(kag)}, q) < W ({Hk(sq)}, q) . (4.22)

This inequality can be understood heuristically as follows. As before, it will
suffice to use free longitudinal boundary conditions and hence the graphs
[Hk(sq)]m,f and [Hk(kag)]m,f for the m → ∞ limits that define the respec-
tive W functions. Roughly speaking, for a given k, the larger q − χ(G) is for
a given graph G, the more freedom there is in performing proper q-colorings
of this graph. Now, for any k, the chromatic number χ is larger (namely, 3)
for [Hk(kag)]m,f than for [Hk(sq)]m,f (namely, 2). Hence, for q greater than
the larger of the two chromatic numbers on these strips, q−χ(G) is larger for
the homeomorphic expansion of the square strip than for the homeomorphic
expansion of the kagomé strip. The resultant greater freedom in performing
proper q-colorings of [Hk(sq)]m,f than of [Hk(kag)]m,f makes the inequality
(4.22) understandable.

4.4 Cyclic Strip [Hk(kag)]m,c

Using similar methods, we have calculated the chromatic polynomial for
the homeomorphically expanded cyclic kagomé strip, P ([Hk(kag)]m,c, q). We
find that (using the abbreviation kagk = [Hk(kag)]c here)

P ([Hk(kag)]m,c, q) =
2∑
d=0

c(d)

nP (kagk,d)∑
j=1

(λkagk,d,j)
m (4.23)
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where c(0) = 1, c(1) = q − 1, and c(2) = q2 − 3q + 1, and

nP (kagk, 0) = 2, nP (kagk, 1) = 3, nP (kagk, 2) = 1 , (4.24)

independent of k. Hence, the total number of λ terms that enter in Eq. (4.23)
is

NP,[Hk(kag)]c,λ = 6 , (4.25)

independent of k. Our structural result (4.23) showing the role that the coef-
ficients c(d) play for these homeomorphic expansions of a cyclic kagomé strip
graph generalizes what had been established earlier, namely that they occur
for the corresponding homeomorphic expansions of a square-lattice strip graph
[64] and for (non-homeomorphically expanded) cyclic strips of the square, tri-
angular [21], and honeycomb [22] strip graphs, with the maximal d correspond-
ing to the width, Ly. Although it is not needed here, we recall the general
formula

c(d) =
d∑
s=0

(−1)s
(

2d− s
s

)
qd−s . (4.26)

We give the λ terms that enter in Eq. (4.23) next. As is true in general
for these recursive strip graphs [24], the λ’s that occur for the strip with free
longitudinal boundary conditions, λkagk,0,j (given in Eq. (4.17)), are the same
as the λ’s with d = 0 in Eq. (4.23) for the cyclic strip. Note that

λkagk,0,1λkagk,0,2 = bk,2 = (q − 1)3+2k(q − 2)3 . (4.27)

At q = 0,
(λkagk,0,j)q=0 = −2(p− 1±

√
p2 − 2p− 1 ) . (4.28)

For the λ’s with d = 1, we find, first,

λkagk,1,1 = (−1)k(q − 1)1+k(q − 2)2 . (4.29)

Let us define

Sk,1 = q − 4 + (−1)k(q − 2)(Dk+4 − 2Dk+3 +Dk+2) (4.30)

and
Pk,1 = (−1)k(q − 1)1+k(q − 2)3 . (4.31)

Then

λkagk,1,j =
1

2
(Sk,1 ±

√
S2
k,1 − 4Pk,1 ) , (4.32)
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where j = 2, 3 corresponds to the ± sign. Thus,

λkagk,1,2λkagk,1,3 = Pk,1 (4.33)

so that
3∏
j=1

λkagk,1,j = (q − 1)2(1+k)(q − 2)5 . (4.34)

For the λ with d = 2, we calculate

λkagk,2 = q − 4 . (4.35)

independent of k. It is easily checked that the k = 0 special case of these
general results agrees with the calculation of the chromatic polynomial for the
cyclic kagomé strip in [63].

4.5 Locus B
Via relation Eq. (4.3), one can generalize q from positive integers to real

and complex numbers, thus it follows that P (G, q) can be written in terms
of its zeros (called chromatic zeros) qzj, j = 1, ..., n, as P (G, q) =

∏n
j=1(q −

qzj). These zeros are a natural topic for study in the context of chromatic
polynomials. For a strip graph such as the ones considered here, as m →
∞, chromatic zeros merge to form an asymptotic accumulation set (locus)
consisting of various curves. As in our earlier work, we denote this locus as
B. This locus is the solution to the equation of degeneracy in magnitude of
the dominant λ’s (i.e., the λ’s with the largest absolute value in the complex
q plane [6]).

4.5.1 Case of Free Longtudinal Boundary Conditions

For the m→∞ limit of the free strip [Hk(kag)]m,f , the locus B involves a
set of curves forming arcs. For the kagomé strip itself (i.e., the case k = 0),
these were shown in Fig. 7 of Ref. [46], and we find a similar arc-like structure
for k ≥ 1. The arc endpoints occur at the zeros of the polynomial Rkkd0

given in Eq. (4.18). For example, for the actual kagomé strip itself, this is a
polynomial of degree 8, with zeros at

q1, q
∗
1 = 0.41± 0.955i,

q2, q
∗
2 = 1.18± 1.14i,
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q3, q
∗
3 = 1.80± 1.19i,

q4, q
∗
4 = 2.62± 0.15i . (4.36)

In this case B consists of four arcs, forming two complex-conjugate pairs,
namely an arc connecting q1 and q2, an arc connecting q3 and q4, and the
complex-conjugate arcs. For general k, Rkkd0 is a polynomial in q of degree

deg(Rkkd0) = 8 + 4k . (4.37)

For this case of of m → ∞ limit of [Hk(kag)]m,f with general k, the locus
B consists of 4 + 2k arcs consisting of 2 + k complex-conjugate pairs, with
endpoints at the 8 + 4k zeros of Rkkd0.

4.5.2 Case of Cyclic Longtudinal Boundary Conditions

The analysis of the locus B is more complicated for the m → ∞ limit of
the cyclic [Hk(kag)]m,c strips because of the presence of more λ’s, namely six
in all. Again, the locus is determined by the equality in magnitude of two
dominant λ’s. For the infinite-length limit of a given family of graphs {G},
the maximal point at which B crosses the real axis is denoted qc({G}). As our
previous work showed, for families of graphs with free longitudinal boundary
conditions, B does not necessarily cross the real axis. However, for families of
graphs with cyclic boundary conditions, B always crosses the real axis, so a qc
is defined. For the m→∞ limit of the [Hk(kag)]m,c graphs, considered here,
denoted as {[Hk(kag)]c}, qc is determined by the equality of the dominant λ’s

|λkagk,0,1| = |λkagk,2| = |q − 4| . (4.38)

For the infinite-length limit of the cyclic kagomé strip, {kagc} [63],

qc({kagc}) ' 2.62 . (4.39)

In the thermodynamic limit of the 2D kagomé lattice, previous work suggests
that qc(kag, 2D) = 3 [85]. Hence, one sees that the qc value for this kagomé
strip is already within about 13 % of the value for the infinite 2D lattice. For
the [Hk(kag)]m,c graphs, as k increases, the effect of the p-gons with p = 6+2k
becomes greater, so one expects that qc will decrease as k increases, since qc = 2
for the m → ∞ limit of the circuit graph Cm. Our exact results confirm this
expectation. For example, for the infinite-length limits of the [Hk(kag)]m,c
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strips with k = 1, k = 2, and k = 3, we find

qc({[H1(kag)]c} ' 2.52 , (4.40)

qc({[H2(kag)]c}) ' 2.44 , (4.41)

and
qc({[H3(kag)]c}) ' 2.38 . (4.42)

The boundary B crosses the real q axis at q = 0, q = 2, and q = qc. The
degeneracy of λ magnitudes at qc was given above in Eq. (4.38). At q = 0
there is a degeneracy in magnitude between λkagk,0,1 and the dominant λkagk,1,j,
j = 2, 3. At q = 2, there is a degeneracy in magnitude between this dominant
λkagk,1,j and λkagk,2, with both having magnitude equal to 2. There are thus
three regions that include parts of the real axis. Region R1 includes the two
semi-infinite line segments q > qc and q < 0 and extends outward infinitely
far from the origin. In region R1, λkagk,0,1 is the dominant λ (i.e., the one
with the largest magnitude). Region R2 includes the interval 2 ≤ q ≤ qc. In
region R2, λkagk,2 = q − 4 is the dominant λ. Region R3 includes the real
interval 0 ≤ q ≤ 2, and in this region, the dominant term is the maximal-
magnitude λkagk,1,j for j = 2, 3. Other complex-conjugate bubble phases are
also present, as was found in Ref. [64] and [63]. Indeed, as is evident from Fig.
2 of Ref. [63], for the infinite-length strip of the cyclic kagomé lattice itself,
the boundary B encloses two very small complex conjugate phases centered at
approximately q ' 2.53± 0.50i.
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Chapter 5

Chromatic Polynomials of
Planar Triangulation Graphs:
I. The Tutte Upper Bound and
One-Parameter Families

5.1 Chromatic Polynomials of Planar Trian-

gulations and the Tutte Upper Bound

In this chapter and the next we present results on chromatic polynomials
of planar triangulations. The results in this chapter were published in Ref.
[70] and most of those in the next chapter are in press in Ref. [71]. Planar tri-
angulation graphs (abbreviated PT or pt), denoted Gpt, are defined as graphs
that can be drawn in a plane without any intersecting edges and have the
property that all of their faces are triangles. These are necessarily connected
graphs. Tutte proved an interesting upper bound on the absolute value of
the chromatic polynomial of a planar triangulation, P (Gpt, q) evaluated at a
certain value of q, viz., q = τ + 1 = (3 +

√
5 )/2 = 2.6180339887..., where

τ = (1 +
√

5 )/2 is the “golden ratio”, satisfying τ + 1 = τ 2, or equivalently,
τ−1 = τ − 1. Tutte’s upper bound is [76] (see also [44]),

0 < |P (Gpt, τ + 1)| ≤ U(n(Gpt)) (5.1)

where
U(n) = τ 5−n = (τ − 1)n−5 . (5.2)

Since τ − 1 < 1, the upper bound U(n) decreases exponentially rapidly as a
function of n.
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For a planar triangulation graph Gpt, we define the ratio of the evaluation
of its chromatic polynomial at q = τ + 1 to the Tutte upper bound as

r(Gpt) ≡
|P (Gpt, τ + 1)|
U(n(Gpt))

(5.3)

It is of interest to study this ratio for various planar triangulation graphs. For
this purpose, we shall construct infinite recursive families of planar triangula-
tions Gpt and show that if these only involve a single power of a polynomial
fG(q), then r(Gpt) approaches zero exponentially fast as n → ∞. We also
construct infinite recursive families for which P (Gpt, q) is a sum of powers and
show that for these r(Gpt) may approach a finite nonzero constant as n→∞.
The Tutte upper bound is sharp, since it is saturated by the simplest planar
triangulation, namely the triangle, K3

1. For this graph,

P (K3, τ + 1) = τ + 1 = U(3), ⇒ r(K3) = 1 . (5.4)

However, for planar triangulations with higher n, the upper bound is realized
as a strict inequality. For example, for K4,

P (K4, τ + 1) = −1, ⇒ r(K4) =
1

τ
= τ − 1 = 0.6180.. (5.5)

In connection with the upper bound (5.1), Tutte reported his empirical
observation that chromatic polynomials of plane triangulations typically have
a real zero quite close to q = τ + 1 and remarked that this property could be
related to the fact that they obey his bound [76]-[44]. Although several decades
have passed since Tutte’s work on this topic, the nature of this relation between
the zero of a chromatic polynomial P (Gpt, q) near to q = τ + 1 and the upper
bound (5.1) remains to be understood. We shall elucidate this connection and
generalize the investigation to the study of complex zeros of P (Gpt, q).

The chromatic polynomial of a graph G may be computed via the deletion-
contraction relation (2.32) or from the cluster formula (4.3), as we recall from
the discussion in Sect. (4.2). For a general graph G or family of graphs Gm,
the calculation of the chromatic polynomial takes an exponentially long time.
Since a triangulation graph Gt (whether planar or not) contains at least one
triangle, P (Gt, q) always contains the factor P (K3, q) = q(q − 1)(q − 2).

1For the definition and illustration of the complete graph Kn, refer to the discussion in
Sect. (2.5). Here we simply remind the reader that for the complete graph Kn, its chromatic

polynomial is P (Kn, q) =
∏n−1

s=0 (q − s), and its chromatic number is χ(Kn) = n.
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5.2 General Properties of One-Parameter Fam-

ilies of Planar Triangulations

5.2.1 General

We have constructed and studied various one-parameter families of planar
triangulations Gpt,m that can be built up in an iterative (recursive) manner
[70],[71]. In this section we derive general properties of the chromatic polyno-
mials of these families of planar triangulations. For our families, the number
of vertices is linearly related to m,

n(Gpt,m) = αm+ β , (5.6)

where α and β are constants that depend on the type of family. We recall the
Euler relation |V (G)|− |E(G)|+ |F (G)| = χE = 2 for a graph G embedded on
a surface of genus 0, such as the plane, where χE is the Euler characteristic.
In general, for a planar graph each of whose faces has p sides, n(G), e(G), and
f(G) satisfy the relations e(G) = p(n(G) − 2)/(p − 2) and f(G) = 2(n(G) −
2)/(p− 2). For the case of interest here, namely planar triangulation graphs,
where each face is a triangle, it follows that

e(Gpt) = 3(n(Gpt)− 2) (5.7)

and
f(Gpt) = 2(n(Gpt)− 2) , (5.8)

so that e(Gpt) = (3/2)f(Gpt).
In our present study we will make use of several results that we derived in

[70]. First, since U(n) → 0 as n → ∞ and since m is proportional to n, it
follows that for these families of planar triangulations,

lim
m→∞

P (Gpt,m, τ + 1) = 0 . (5.9)

Second, given the upper bound (5.1) and the fact that U(n) approaches zero
exponentially fast as n→∞, it follows that

P (Gpt,m, τ + 1) approaches zero exponentially fast as m→∞. (5.10)

We recall two definitions that apply to any graph: (i) the degree d(vi) of
a vertex vi ∈ V is the number of edges that connect to it, and (ii) a k-regular
graph is a graph for which all vertices have degree k. Since a triangulation
graph Gt is not, in general, k-regular, it is useful to define an effective vertex
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degree in the limit |V | → ∞. For this purpose, we introduce, as in our earlier
work, the notation {G} for the formal limit n → ∞ of a family of graphs G.
We define

deff ({G}) = lim
|V |→∞

2|E|
|V |

= lim
|V |→∞

∑
i nidi
|V |

, (5.11)

where for a given G, ni denotes the number of vertices with degree di and
n(G) ≡ |V |. Substituting (5.7) in (5.11), we obtain

deff ({Gpt}) = 6 . (5.12)

We will use this below, in Sect. (6.12).

5.2.2 Families with P (Gpt,m, q) Consisting of a Power of
a Single Polynomial

There are several ways of constructing one-parameter families of planar tri-
angulations. One method that we have used is the following, which produces
families for which the chromatic polynomial involves a single power of a poly-
nomial in q. Start with a basic graph Gpt,1, drawn in the usual explicitly planar
manner. The outer edges of this graph clearly form a triangle, K3. Next pick
an interior triangle in Gpt,1 and place a copy of Gpt,1 in this triangle so that the
intersection of the resultant graph with the original Gpt,1 is the triangle cho-
sen. Denote this as Gpt,2. Continuing in this manner, one constructs Gpt,m with
m ≥ 3. The chromatic polynomial P (Gpt,2, q) is calculated from P (Gpt,1, q)
by using the s = 3 special case of the complete-graph intersection theorem.
This theorem states that if for two graphs G and H (which are not necessar-
ily planar or triangulations), the intersection G ∩ H = Ks for some s, then
P (G∪H, q) = P (G, q)P (H, q)/P (Ks, q). (Note that P (Ks, q) =

∏s−1
j=0(q− j).)

It follows that for planar triangulations formed in this iterative manner,
the chromatic polynomial has the form

P (Gpt,m, q) = cGpt (λGpt)
m . (5.13)

where the coefficient cGpt and the term λGpt are polynomials in q that do not
depend on m. Here and below, it is implicitly understood that m ≥ mmin,
where mmin is the minimal value of m for which the family Gpt,m is well defined.
Since Gpt contains at least one triangle, K3, the coefficient cGpt contains (and
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may be equal to) P (K3, q) = q(q − 1)(q − 2). The chromatic number of Gpt

may be 3 or 4. In the case of a planar triangulation which is a strip of the
triangular lattice of length m vertices with cylindrical boundary conditions, to
be discussed below, an alternate and equivalent way to construct the (m+1)’th
member of the family is simply to add a layer of vertices to the strip at one
end.

5.2.3 Families with P (Gpt,m, q) Consisting of Powers of
Several Functions

We have also devised methods to obtain families of planar triangulations
Gpt,m with the property that the chromatic polynomial is a sum of more than
one power of a function of q. We begin with the simplest case, p = 1, i.e., one-
parameter families and then discuss families with p ≥ 2. For one-parameter
families, we find the general structure

P (Gpt,m, q) =

jmax∑
j=1

c
Gpt ,j

(λGpt,j)
m , (5.14)

where m ≥ mmin and the c
Gpt ,j

and λGpt,j are certain coefficients and functions
depending on q but not on m. Here we use the label Gpt to refer to the
general family of planar triangulations Gpt,m. We will describe these methods
below. Parenthetically, we recall that the form (5.14) is a general one for
one-parameter recursive families of graphs, whether or not they are planar
triangulations [8], [52]. For (5.14) evaluated at a given value q = q0, asm→∞,
and hence n→∞, the behavior of P (Gpt,m, q) is controlled by which λGpt,j is
dominant at q = q0, i.e., which of these has the largest magnitude |λGpt,j(q0)|.
For our purposes, a q0 of major interest is τ + 1, since the Tutte upper bound
(5.1) applies for this value. We denote the λGpt,j that is dominant at q = τ + 1
as λGpt,dom. Clearly, if P (Gpt,m, q) involves only a single power, as in (5.13),
then λGpt,dom = λGpt .

As in earlier works [52] [59], [49], it can be convenient to obtain the chro-
matic polynomials P (Gpt,m, q) via a Taylor series expansion, in an auxiliary
variable x, of a generating function Γ(Gpt, q, x). Below, we will have occa-
sion to use this method for the family Fm (5.95). Both the form (5.14) and
the expression via a generating function are equivalent to the property that
P (Gpt,m, q) satisfies a recursion relation, for m ≥ jmax +mmin:

P (Gpt,m, q) +

jmax∑
j=1

bGpt,j P (Gpt,m−j, q) = 0 , (5.15)
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where the bGpt,j, j = 1, ...jmax, are given by

1 +

jmax∑
j=1

bjx
j =

jmax∏
j=1

(1− λGpt,j x) . (5.16)

Thus,

bGpt,1 = −
jmax∑
j=1

λGpt,j , (5.17)

bGpt,2 =

jmax∑
j=1, k=1, j 6=k

λGpt,jλGpt,k , (5.18)

and so forth, up to

bGpt,jmax = (−1)jmax

jmax∏
j=1

λGpt,j . (5.19)

5.2.4 Asymptotic Behavior as m→∞
In [70] we discussed the asymptotic behavior of the chromatic polynomials

as m→∞. In both the cases of Eq. (5.13) and (5.14), a single power [λGpt,j]
m

dominates the sum as m → ∞. For a member of a one-parameter family of
planar triangulations, Gpt,m, we use the notation r(Gpt,m) for the ratio (5.3),
and we define

r(Gpt,∞) ≡ lim
m→∞

r(Gpt,m) . (5.20)

We define the (real, non-negative) constant aGpt as [70]

aGpt = lim
n→∞

[r(Gpt,m)]1/n =
|λGpt,dom(τ + 1)|1/α

τ − 1
. (5.21)

We showed in [70] that if jmax = 1, then aGpt < 1 and hence for the classes of
Gpt,m under consideration, (i) r(Gpt,∞) = 0 and (ii) r(Gpt,m) decreases toward
zero exponentially rapidly as a function of m and n as m → ∞. Note that
this does not imply that P (Gpt,m, q) has a zero that approaches q = τ + 1 as
m, n→∞.

For one-parameter families of planar triangulation graphs Gpt,m where
P (Gpt,m, q) has the form (5.14) with jmax ≥ 2, a consequence of the Tutte up-
per bound (5.1) is that as m → ∞, any contribution c

Gpt ,j
(λGpt,j

)m in (5.14),
when evaluated at q = τ + 1, must be less than or equal in magnitude to
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(τ − 1)n−5. Therefore, for a given j in this case, either the coefficient c
Gpt ,j

vanishes for q = τ + 1 or, if this coefficient does not vanish at q = τ + 1, then,
taking into account the relation (5.6), it follows that

|λGpt,j|1/α

τ − 1
≤ 1 at q = τ + 1 ∀ j . (5.22)

If this inequality is realized as an equality, then r(Gpt,∞) is a nonzero constant,
which necessarily lies in the interval (0, 1), so that aGpt = 1. For the families
Gpt,m for which m and n are linearly related, as specified in (5.6), this type of
behavior occurs if and only if, when P (Gpt,m, q) is evaluated at q = τ + 1, the
(necessarily) dominant λGpt,j (with nonvanishing coefficient cGpt,j), is equal to
τ − 1 in magnitude, i.e., |λGpt,dom| = τ − 1 at q = τ + 1. This is true, in
particular, if this λGpt,j = q − 2. In the structural form (5.38) below, we shall
label this as the j = 1 term.

It is a general property that if a graph G contains a complete graph Kp as
a subgraph, then P (G, q) contains the factor P (Kp, q). In particular, a trian-
gulation graph, whether planar or not, has the factor P (K3, q) and a planar
triangulation may also contain a K4. (However, by Kuratowski’s Theorem, a
planar graph may not contain a Kp with p ≥ 5.) Thus, for a planar triangu-
lation Gpt, P (Gpt, q) = 0 for q = 0, 1, 2. If Gpt ⊇ K4, then P (Gpt, q) also
vanishes at q = 3. If P (Gpt, q) has the form of a single power, given as Eq.
(5.13), then these factors are explicit. If, however, P (Gpt, q) has the form of a
sum of jmax ≥ 2 powers [λ

Gpt ,j
]m, then the conditions that P (Gpt, q) vanish at

q = 0, 1, 2 imply relations between the various terms. Moreover, the condition
that P (Gpt,m, τ +1) obeys the Tutte upper bound (5.1) also implies conditions
on the structure of this chromatic polynomial. We derive these next.

5.3 Properties of a Class of Gpt,m with P (Gpt,m, q)

Having jmax = 3 and Certain λGpt,j

5.3.1 Structure of Coefficients c
Gpt ,j

in P (Gpt,m, q)

For a large class of one-parameter families of planar triangulations that we
have constructed and studied, for which P (Gpt,m, q) has the form (5.14), we
find that (i) jmax = 3 and (ii) the λ

Gpt ,j
≡ λj with j = 1, 2, 3 have the form

λ1 = q − 2, λ2 = q − 3, λ3 = −1 . (5.23)
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For this class of planar triangulations, we can derive some general results
concerning the functional form of the coefficients c

Gpt ,j
(where we will often

suppress the subscript pt on Gpt where the meaning is obvious). Using the
general form (5.14) with jmax = 3 and these λj’s, we can derive the following
identities. The fact that P (Gpt, 0) = 0 implies that

cG,1 (−2)m + cG,2 (−3)m + cG,3 (−1)m = 0 . (5.24)

where for ease of notation we suppress the subscript pt on Gpt here and in
related equations. Since this equation must hold for arbitrary m (understood
implicitly to be an integer in the range m ≥ mmin, where mmin is the minimal
value for which the family Gpt,m is well defined), it implies that cG,j = 0 for
all j. Hence, for these families,

cG,j contains the factor q for j = 1, 2, 3 . (5.25)

The evaluation P (Gpt, 1) = 0 reads

cG,1 (−1)m + cG,2 (−2)m + cG,3 (−1)m = 0 at q = 1 . (5.26)

Since this equation must hold for arbitrarym ≥ mmin, it implies two conditions
on the evaluation of the coefficients at q = 1, namely

cG,2 = 0 and cG,1 + cG,3 = 0 at q = 1 . (5.27)

In particular, (5.27) implies that

cG,2 contains the factor q − 1 . (5.28)

The evaluation P (Gpt, 2) = 0 reads

cG,1 0m + [cG,2 + cG,3](−1)m = 0 at q = 2 . (5.29)

Since this equation holds for arbitrary m ≥ mmin, it implies that

cG,2 + cG,3 = 0 at q = 2 . (5.30)

If a family Gpt,m which has mmin = 0, (5.29) and (5.30) together would also
imply that cG,1 = 0 at q = 2.

Continuing with P (Gpt,m, q) of the form (5.14) with (5.23), we next analyze
the evaluation of P (Gpt,m, q) at q = τ + 1, viz., P (Gpt,m, τ + 1). Since τ − 1 =
0.61803... and τ−2 = −0.381966 are smaller than unity in magnitude, the first
two terms in P (Gpt,m, τ + 1) vanish exponentially rapidly as m increases. As
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regards the ratio r(Gpt,m), as m increases, the contribution of the first term to
this upper bound approaches a constant, while the contribution of the second
term vanishes exponentially rapidly. Given the relation (5.6), the Tutte upper
bound also vanishes exponentially rapidly as a function of m. Therefore, in
order for P (Gpt,m, τ +1) to satisfy the Tutte upper bound (5.1), it is necessary
and sufficient that

cG,3 = 0 at q = τ + 1 . (5.31)

This means that

cG,3 contains the factor q −
(

3 +
√

5

2

)
. (5.32)

Given that a chromatic polynomial has rational (actually integer) coefficients
as a polynomial in q, this means that cG,3 must also contain a factor involving
the algebraically conjugate root, i.e.,

cG,3 contains the factor q −
(

3−
√

5

2

)
. (5.33)

Combining these, we derive the result that

cG,3 contains the factor q2 − 3q + 1 . (5.34)

Having proved these results, it is thus convenient to extract the factors
explicitly and define

κG,1 ≡
cG,1
q

, (5.35)

κG,2 ≡
cG,2

q(q − 1)
, (5.36)

and
κG,3 ≡

cG,3
q(q2 − 3q + 1)

. (5.37)

For this class of planar triangulation graphs Gpt,m, we thus have the general
structural formula

P (Gpt,m, q) = q

[
κG,1(q − 2)m + κG,2(q − 1)(q − 3)m

+ κG,3(q2 − 3q + 1)(−1)m
]
, (5.38)

where m and n are related by (5.6). We observe that the form (5.38) satisfies
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the general results that we derived above for the evaluation at q = τ+1. Thus,
if P (Gpt,m, q) has this form (5.38) with (5.6) and α = 1, then

r(Gpt,∞) = [q κG,1]

∣∣∣∣
q=τ+1

(5.39)

and hence
a(Gpt) = 1 . (5.40)

The conditions on the coefficients cG,j’s evaluated at q = 1 and q = 2
that we have derived, (5.27), together with the definitions (5.35)-(5.37), are
equivalent to the following relations:

κG,1 = κG,3 at q = 1 (5.41)

and
κG,2 = κG,3 at q = 2 . (5.42)

For certain families of planar triangulations Gpt,m ≡ Gm, the chromatic
number χ(Gm) is 3 for even m and 4 for odd m or vice versa. In these
cases, we can also derive another relation between the coefficients. Thus, if
χ(Gm) = 3 for even m and χ(Gm) = 4 for odd m, then κG,1 = κG,3 at q = 3.
On the other hand, if χ(Gm) = 3 for odd m and χ(Gm) = 4 for even m, then
κG,1 = −κG,3 at q = 3. In the case of families Gm for which χ(Gm) = 4 for all
m, we have

κG,1 + κG,3 (−1)m = 0 at q = 3 if χ(Gm) = 4 , (5.43)

which implies

κG,1 = κG,3 = 0 at q = 3 if χ(Gm) = 4 . (5.44)

5.3.2 Properties of Real Chromatic Zeros

Here we derive some properties of chromatic zeros of planar triangulation
graphs Gpt,m for which the chromatic polynomial has the form (5.14). It
is appropriate first to review some relevant properties of chromatic zeros of
general graphs and planar triangulation graphs. For a general graph G, it is
elementary that there are no negative chromatic zeros and that there are no
chromatic zeros in the intervals (0,1) [79]. The property that (0,1) is a zero-
free interval for the chromatic polynomial implies that q = τ + 1 cannot be a
chromatic zero for any graph G, as noted above (independent of whether it is
a planar triangulation or not). Another interval that has been proved to be
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free of chromatic zeros is (1, 32/27] [35] [73].
Specializing now to planar triangulation graphs, it has been proved that

Gpt has no chromatic zeros in the interval (2, qw) [80] [83], where qw is the
unique real zero of

λTC = q3 − 9q2 + 29q − 32 , (5.45)

i.e.,

qw = 3− [12(9 +
√

177 )]1/3

6
+ 4[12(9 +

√
177 )]−1/3 = 2.546602.. (5.46)

We remark that qw occurs as a chromatic zero of some planar triangula-
tion graphs, in particular, the family comprised of cylindrical sections of the
triangulation lattice with Ly = 3, or equivalently iterated octahedra. In
1992 Woodall conjectured that a planar triangulation has no chromatic ze-
ros in the interval (qm, 3), where qm = 2.6778146.. is the unique real zero of
q3 − 9q2 + 30q − 35, [80], but later he gave counterexamples to his conjecture
involving one-parameter families of planar triangulations each of which has a
real zero that approaches 3 from below as this parameter goes to infinity [81].

Here we present some further results on chromatic zeros of planar triangu-
lations. First, if P (Gpt,m, q) has the form (5.13) involving only a single power
of a λGpt , then its zeros are fixed, independent of m, and hence although it
typically has a zero close to τ + 1, this zero does not move as a function of
m. However, if P (Gpt,m, q) has the multi-term form (5.38) with jmax = 3 and
the λj’s in (5.23), then it necessarily has a zero in the interval [qw, 3) that
approaches τ + 1 as m → ∞. The proof of this is as follows. Let us assume
that q is a real number in this interval [qw, 3). In the limit as m → ∞, the
first two terms, which are proportional to (q− 2)m and (q− 3)m, respectively,
vanish (exponentially fast), so that

P (Gpt,m, q) ∼ εm + q(q2 − 3q + 1)κGpt,3(−1)m , (5.47)

where εm denotes the contribution of these first two terms. If κGpt,3 happens
to vanish at q = τ + 1, then the result follows, since εm → 0 as m → ∞. If
κGpt,3 6= 0 at q = τ + 1, then consider the limit as q → τ + 1, where we can
write

(−1)mP (Gpt,m, q)

(τ + 1)κGpt,3|q=τ+1

=
(−1)mεm

(τ + 1)κGpt,3|q=τ+1

+ q2 − 3q + 1

≡ δm + q2 − 3q + 1 . (5.48)

To show that P (Gpt, q) has a zero that approaches q = τ + 1 as m → ∞, we
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use the fact that P (Gpt,m, q) is a continuous function of q and solve (5.48) for
q, subject to the condition that q ∈ [qw, 3), obtaining a consistent result with

q =
1

2

[
3 +

√
5− 4δm

]
, (5.49)

which approaches q = τ + 1 as m → ∞. Note that the other zero at q =
(1/2)(3−

√
5− 4δm ), is irrelevant because we assumed at the outset that q is

in the interval [qw, 3) and this other zero is outside this interval; in the vicinity
of this other zero, the analysis does not apply because the terms proportional
to (q − 2)m and (q − 3)m do not vanish as m→∞.

In 5.1 we have exhibited two one-parameter families of planar triangulation
graphs with this property, namely Bm and Hm. We construct and analyze
several more families of this type here. Thus, for these families, we have
provided an understanding of why P (Gpt,m, q) has a chromatic zero near to
τ+1 and, furthermore, have proved that this zero approaches τ+1 as m→∞.
From the derivation above, it is evident that our result requires, for a given
family Gpt,m, that m be sufficiently large. As is illustrated from numerical
results presented below, for specific families of planar triangulations that we
have studied, P (Gpt,m, q) has a real zero reasonably close to τ + 1 even for
moderate values of m.

Our second result follows immediately from this analysis. With the same
assumptions, we have observed that in the limit m → ∞, P (Gpt,m, q) has a
real zero in the interval q ∈ [qw, 3) if and only if c

Gpt ,3
has a real zero in this

interval, q ∈ [qw, 3). We know that there is at least one such zero, namely
the one arising from the factor q2 − 3q + 1 in c

Gpt ,3
. Therefore, in the limit

m→∞, P (Gpt,m, q) has another real zero in the interval q ∈ [qw, 3) in addition
to the one approaching τ + 1 if and only if κG,3 has a real zero in this interval
q ∈ [qw, 3). We will present several applications of these results below.

We remark that, with the same assumptions as above,

lim
m→∞

|P (Gpt,m, q)| = cGpt,3 . (5.50)

Note that the limit limm→∞ P (Gpt,m, q) itself does not exist, because the term
λm3 = (−1)m factor has no limit as m→∞.

In [70], we investigated the question of whether for a planar triangulation
graph Gpt it is true that the chromatic zero of Gpt nearest to τ + 1 is always
real. We exhibited an example, with a graph we denoted GCM,1, which is, to
our knowledge, the first case for which the zero closest to τ + 1 is not real but
instead the zeros closest to τ + 1 form a complex-conjugate pair. Our result is
in agreement with a previous observation by Woodall that this graph has no
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real zero near to τ + 1 [82]. Since P (GCM,m, q) has the form of (5.13) with a
single λ, as m increases, its zeros are fixed and just increase in multiplicity, in
contrast to the motion of chromatic zeros for families Gpt,m whose chromatic
polynomials are of the form (5.14) with jmax > 1.

The value of q where the Tutte upper bound applies, namely q = τ + 1 =
(3 +

√
5 )/2 is also a member of a sequence of numbers related to roots of

unity, namely the Tutte-Beraha numbers, qr. Thus, for a root of unity of the
form zr = eπi/r, one defines qr = (zr + z∗r )

2 = 4 cos2(π/r). One has τ + 1 = q5.
Parenthetically, we note that chromatic zeros have been studied for sections
of triangular lattices with various boundary conditions that are not planar
triangulations, either because they have at least one face that is not a triangle
or because they are not planar (e.g., have toroidal or Klein-bottle boundary
conditions). We refer the reader to [70] for references to some of these papers;
here, in view of our focus on the Tutte upper bound (5.1) we restrict to planar
triangulations.

5.3.3 Properties of Complex Chromatic Zeros

As before, we consider a one-parameter of planar triangulation graphsGpt,m

such that P (Gpt,m, q) has the form (5.38). Here we give a general determination
of the continuous accumulation set B of chromatic zeros of P (Gpt,m, q) in the
complex q plane in the limit m → ∞ (and, hence, owing to (5.6), n → ∞).
If the zeros form a discrete set (some with multiplicities that go to infinity
as n → ∞), then this locus is null. As in earlier work, we denote the formal
limit of the family Gm as m → ∞ as {G}. In general, the locus B may
or may not intersect the real q axis. If it does, the maximal point where it
intersects the real axis is denoted qc({G}). For a P (G, q) of the form (5.14), the
curves comprising the locus B are determined as the solutions of the equality
in magnitude of the dominant λGpt,j, in accordance with general results for
recursive functions [6]. These curves extend infinitely far from the origin if
and only if such an equality can be satisfied as |q| → ∞, as was discussed in
[52],[56], [60], [62].

We now consider families of planar triangulations Gpt,m whose chromatic
polynomials have the form (5.38). For these families, first, because λ1 = q−2 is
dominant for large q and is equal in magnitude to λ3 = −1 at q = 3, it follows
that qc({Gpt}) = 3. Second, as a consequence of the fact that the equality
|q− 2| = |q− 3| holds for the infinite line Re(q) = 5/2, part of the boundary B
extends infinitely far away from the origin in the q plane, i.e., passes through
the origin of the 1/q plane. As is evident for specific families Gpt,m, as m and
hence n go to infinity, the degree of one or more vertices also goes to infinity,
so the fact that the magnitudes of zeros diverge is in accord with the upper
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bound |q| < b∆(G) obtained in [72] (with b ' 7.96) and strengthened slightly
in [30] (with b ' 6.91), where ∆(G) is the maximal degree of any vertex in
G. Note, however, that the property that the degree of a vertex diverges as
n→∞ does not, by itself, imply that B passes through the origin of the 1/q
plane. This is clear from the n → ∞ limit of wheel graphs, for which the
central vertex vcent. has degree d(vcent.) → ∞, but the locus B has bounded
support in the q plane [52]. Continuing with our analysis of families of planar
triangulations Gpt,m whose chromatic polynomials have the form (5.38), the B
separates the q plane into three regions, which we denote as Rj, j = 1, 2, 3.
These are defined as follows:

R1 : Re(q) >
5

2
and |q − 2| > 1 , (5.51)

R2 : Re(q) <
5

2
and |q − 3| > 1 , (5.52)

and
R3 : |q − 2| < 1 and |q − 3| < 1 . (5.53)

The boundaries between these regions are thus the two circular arcs

B(R1, R3) : q = 2 + eiθ ,−π
3
< θ <

π

3
(5.54)

and

B(R2, R3) : q = 3 + eiφ ,
2π

3
< φ <

4π

3
, (5.55)

together with the semi-infinite vertical line segments

B(R1, R2) = {q} : Re(q) =
5

2
and |Im(q)| >

√
3

2
. (5.56)

These meet at the triple points

qt, q
∗
t =

5± i
√

3

2
. (5.57)

A specific example of a locus B that extends infinitely far from the origin in
the q plane was studied in [52], for the family Bm. Here we have generalized
the result to all families of planar triangulations whose chromatic polynomials
have the form (5.38).

We have constructed and studied a two-parameter family of planar trian-
gulations Dm1,m2 (see the next chapter). By keeping one of the two indices
m1 or m2 fixed, we have obtained a number of one-parameter families and
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have analyzed the chromatic polynomials for these. We have also considered
the special cases where one allows both m1 and m2 to vary, such that one is
a linear function of the other. We have, in particular, analyzed the diagonal
case where m1 = m2, Dm,m, to be discussed below. For this family the chro-
matic polynomial P (Dm,m, q) has the form (5.14) with jmax = 6 and a set of
λ’s that are squares and cross products of those in (5.38). Since the equations
defining the equality of magnitude of dominant λ’s can again be satisfied as
1/q → 0, it again follows, by the criteria of [52], [55], [56] that the locus B
extends infinitely far from the origin of the complex q plane.

In a different direction, we have also studied a family Fm (see below) for
which the chromatic polynomial P (Fm, q) is of the form (5.38) with jmax = 3,
but with terms λF,j, j = 1, 2, 3, that are not simple polynomials, but instead
are roots of a cubic equation, (5.107). In the m → ∞ limit, the continuous
accumulation set B for this family has bounded magnitude (does not extend
infinitly far away from the origin in the q plane), as can be seen because the
condition that defines B, namely the equality in magnitude of two dominant
λF,j’s, cannot be satisfied for arbitrarily great |q|.

5.4 The Family Rm = Pm + P2

In this section we illustrate the general results derived in the previous
section for recursive families of planar triangulations whose chromatic polyno-
mials have the form (5.13). For this purpose, we consider a family whose m’th
member, denoted Rm, is the join2 of the path graph Pm with P2 = K2,

Rm = Pm + P2 . (5.58)

Thus, R1 = K3, R2 = K4, etc. The graph R4 is shown in Fig. (5.1). We have
n(Rm) = m+2, so α = 1 and β = 2 for this family. An elementary calculation
yields P (Rm, q) = q(q− 1)(q− 2)[λR(q)]m−1, where λR(q) = q− 3. Evaluating
P (Rm, q) at q = τ + 1, we obtain

P (Rm, τ + 1) = (τ + 1)(τ − 2)m−1 =
(3 +

√
5

2

)(−3 +
√

5

2

)m−1

(5.59)

2The join G+H of two graphs G = (VG, EG) and H = (VH , EH) is defined as the graph
with vertex set VG+H = VG ∪ VH and edge set EG+H comprised of the union of EG ∪ EH

with the set of edges obtained by connecting each vertex of G with each vertex of H.
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R 3 R 4

Figure 5.1: Graphs R3 and R4.

The ratio of |P (Rm, τ + 1)| to the Tutte upper bound is

r(Rm) = (τ − 1)m−1 =
(−1 +

√
5

2

)m−1

(5.60)

so that

aR =
−1 +

√
5

2
= 0.61803.. (5.61)

for this family.

5.5 The Cylindrical Strip of the Triangular

Lattice with Ly = 3

Another illustration of recursive families of planar triangulations whose
chromatic polynomials have the form (5.13) is provided by the family of cylin-
drical strips of the triangular (tri) lattice. Consider a strip in this family of
variable length Lx = m vertices in the x (longitudinal) direction and Ly ver-
tices in the y (transverse) direction. Denote the boundary conditions in the x
and y directions as (BCx, BCy), where free and periodic boundary conditions
are abbreviated as FBC and PBC. We take the boundary conditions to be
(FBCx, PBCy), denoted as cylindrical. The cylindrical strip of the triangu-
lar lattice with Ly = 3, i.e., transverse cross sections consisting of triangles,
and arbitrary length Lx = m, denoted TCm, is a planar triangulation, with
n(TCm) = 3m vertices. In this family, TC1 is a degenerate case of a triangle,
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Figure 5.2: Octahedron as planar triangulation graph, TC2.

K3, while TC2 is the graph of the octahedron, as shown in Fig. (5.2). TCm
may also be constructed in the recursive manner described in Sect. (5.2) by
starting with TC2, choosing an interior triangle, and placing a copy of TC2

onto this triangle to get TC3, and so forth for m ≥ 4. Thus, TCm may also
be considered as a recursively iterated octahedron graph, see Fig. (5.2). An
elementary calculation yields P (TCm, q) = q(q − 1)(q − 2) [λTC(q)]m−1, where
λTC(q) = q3 − 9q2 + 29q − 32. Evaluating P (TCm, q) at q = τ + 1 gives

P (TCm, τ + 1) =
(3 +

√
5

2

)
(−11 + 5

√
5 )m−1 . (5.62)

Hence,

r(TCm) =
(3 +

√
5 )

4
(3−

√
5 )m , (5.63)

so that
aTC = (3−

√
5 )1/3 = 0.91415... (5.64)

P (TCm, q) has a real zero near to τ + 1, at q ' 2.546602.

5.6 Iterated Icosahedron Graphs

A more complicated family of planar triangulations yielding chromatic
polynomials of the form (5.13) is provided by recursive iterates of the icosa-
hedron graph I1, shown in Fig. (5.3). We construct these recursive iterates
Im with m ≥ 2 by the procedure given in Sect. (5.2). The graph Im has
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Figure 5.3: Icosahedron as planar triangulation graph, I1.

n(Im) = 3 + 9m vertices. The chromatic polynomial is

P (Im, q) = q(q − 1)(q − 2) [λI(q)]
m (5.65)

where

λI(q) = (q − 3)(q8 − 24q7 + 260q6 − 1670q5 + 6999q4 − 19698q3

+ 36408q2 − 40240q + 20170) . (5.66)

We calculate

P (Im, τ + 1) =
(3 +

√
5

2

)(−23955 + 10713
√

5

2

)m
. (5.67)

Hence,

r(Im) =
(3 +

√
5 )

4

(−315 + 141
√

5

2

)m
, (5.68)

so that

aI =
(−315 + 141

√
5

2

)1/9

= 0.80552... (5.69)

P (Im, q) has a real zero quite close to τ + 1, at q ' 2.6181973 and another real
zero near to q7, at q ' 3.222458.
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B5 B6

Figure 5.4: Graphs B5 and B6.

5.7 The Bipyramid Family Bm

In this section we consider a recursive family of planar triangulations whose
chromatic polynomials have the form (5.14) with jmax = 3. This is the bipyra-
mid family, which is the join

Bm = K̄2 + Cm. (5.70)

for m ≥ 3, where K̄p, the complement of Kp, is the graph of p disjoint vertices
with no edges. Clearly, n(Bm) = m + 2. B4 is the octahedron graph (Fig.
(5.2)). B5 and B6 are shown in Fig. (5.4).

In Fig. (5.4), the uppermost and the lower middle vertices of Bm have
degree m, so that the degrees of these two vertices go to infinity as m → ∞.
All of the other vertices have degree 4. The chromatic polynomial for this
family is of the form (5.14) with three λs:

P (Bm, q) =
3∑
j=1

cB,j(q)[λB,j(q)]
m , (5.71)

where

cB,1(q) = q, cB,2(q) = q(q − 1), cB,3(q) = q(q2 − 3q + 1) (5.72)

and
λB,1(q) = q − 2, λB,2(q) = q − 3, λB,3(q) = −1 . (5.73)
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P (Bm, q) contains the factor P (K3, q) if m is even and P (K4, q) if m is odd;
related to this, χ(Bm) = 3 if m is even and χ(Bm) = 4 if m is odd.

In view of the general factorizations for the coefficients c
Gpt,m ,j

that we
have proved here, it is useful to express the results in terms of the reduced
coefficients κG,j:

κB,1 = κB,2 = κB,3 = 1 . (5.74)

Evaluating P (Bm, q) at q = τ + 1, we find

P (Bm, τ + 1) = (τ + 1)
[
(τ − 1)m + τ(τ − 2)m

]
. (5.75)

In accordance with the general discussion in Sect. (5.3.1), cB,3(q) vanishes for
q = τ + 1 (see the related Eq. (2.8) of [21]), so that the j = 3 term does not
contribute for this value of q. Hence,

r(Bm) = (τ − 1)
[
1 + τ(1− τ)m

]
(5.76)

Since |1− τ | < 1, the second term, τ(1− τ)m, vanishes as m→∞, so

lim
m→∞

r(Bm) = τ − 1 =
−1 +

√
5

2
= 0.61803.. (5.77)

and
aB = 1 . (5.78)

Because 1 − τ is negative, the ratios r(Bm) form a sequence such that for
increasing even (odd) m, r(Bm) approaches the n→∞ limit τ −1 from above
(below). For m ≥ 4, P (Bm, q) has real zeros that are close to q = τ +1. These
form a sequence such that for even (odd) m the nearby zero is slightly less
than (greater than) q = τ + 1, respectively. These are listed in Table (5.1) for
m from 4 to 18.

The continuous accumulation set of zeros of P (Bm, q) in the complex q
plane as m→∞ was studied in [52], as the most simple example of the jmax =
3 one parameter family of planar triangulations, which was fully discussed in
Sect.(5.3.3) of this chapter.

5.8 The Family Hm

Here we remark on another family of planar triangulations Hm [70], which
is well-defined for m ≥ mmin = 3 and has n(Hm) = m + 5. In Fig. (5.5) we
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Table 5.1: Location of zeros qz of P (Bm, q) closest to τ + 1 = 2.6180339887..
for m from 4 to 18. Notation ae-n means a× 10−n.

m qz qz − (τ + 1)

4 2.546602 −0.07143
5 2.677815 0.05978
6 2.594829 −0.02321
7 2.636118 0.01808
8 2.609130 −0.8904e-2
9 2.624356 0.6322e-2
10 2.614541 −3.493e-3
11 2.620356 2.322e-3
12 2.616673 −1.361e-3
13 2.618905 0.8713e-3
14 2.617509 −0.5254e-3
15 2.618364 3.301e-4
16 2.617832 −2.017e-4
17 2.618160 1.256e-4
18 2.617957 −0.7725e-4
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H3 H4

Figure 5.5: Graphs H3 and H4.

show the lowest member of the family, H3. The next higher member, H4, is
constructed by adding a vertex and associated edges in the central diamond-
like subgraph, as shown in Fig. (5.5), and so forth for higher members.

We have given the chromatic polynomial for this family in Ref. [70] and
have analyzed its properties there. In our present notation, P (Hm, q) has the
form (5.38) with

κH,1 = (q − 3)3 , (5.79)

κH,2 = q3 − 9q2 + 30q − 35 , (5.80)

and
κH,3 = −(q − 3)(q − 5) . (5.81)

Evaluating P (Hm, q) at q = τ + 1, we find

P (Hm, τ + 1) =
(−7 + 3

√
5

2

)
(τ − 1)m +

(5− 3
√

5

2

)
(τ − 2)m . (5.82)

Consequently,

r(Hm) =
−7 + 3

√
5

2
+
(5− 3

√
5

2

)(1−
√

5

2

)m
. (5.83)

Since |(1−
√

5 )/2| < 1, the second term in Eq. (5.83) vanishes as m→∞, so
for this family

lim
m→∞

r(Hm) =
7− 3

√
5

2
= 0.145898.. (5.84)
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L3 L4

Figure 5.6: Graphs L3 and L4.

and
aH = 1 . (5.85)

5.9 The Family Lm

For comparative purposes, it is useful to study another family of planar
triangulations with chromatic polynomials of the multi-term form (5.14). Here
we denote this family as Lm. It is well-defined for m ≥ mmin = 3 and has
n(Lm) = m + 5. The lowest member of this family, L3, is the same as H3.
The next higher member, L4, is constructed by adding a vertex and associated
edges in the central “diamond”, as shown in Fig. (5.6), and so forth for higher
members.

For this family of planar triangulations we calculate the chromatic polyno-
mial P (Lm, q) to be of the form (5.38) with

κL,1 = (q − 2)(q − 3)2 , (5.86)

κL,2 = q3 − 9q2 + 29q − 32 , (5.87)

(equal to λTC) and
κL,3 = 2(q − 3) . (5.88)

P (Lm, q) contains the factor P (K4, q) and has χ(Lm) = 4.
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Evaluating P (Lm, q) at q = τ + 1, we find

P (Lm, τ + 1) = (−2 +
√

5 )

[
(τ − 1)m + 2(τ − 2)m

]
. (5.89)

Consequently,

r(Lm) = (−2 +
√

5 )

[
1 + 2

(
1−
√

5

2

)m]
. (5.90)

As before, since |(1 −
√

5 )/2| < 1, the second term in Eq. (5.90) vanishes
(exponentially fast) as m→∞, so

r(L∞) = −2 +
√

5 = 0.236068 (5.91)

(to the indicated accuracy) and, as a special case of Eq. (5.40), aL = 1.
We proved in general above that for any family of planar triangulations

Gpt,m with chromatic polynomials P (Gpt,m, q) of the form (5.38), P (Gpt,m, q)
has a zero that approaches τ + 1 as m → ∞. The families Bm, Hm, and Lm
(as well as others to be discussed below) illustrate this general result. In the
present case, for odd m and hence even n = m + 5, this zero of P (Lm, q) is
slightly less than q = τ +1, while for even m and hence odd n, the nearby zero
is slightly greater than τ + 1. If and only if m is odd, i.e., n is even, P (Lm, q)
has another real zero somewhat larger than 3, which decreases monotonically
toward 3 from above as m → ∞. As examples, for n = 8, 12, 16, 20, and
24, this zero occurs at approximately q = 3.61, 3.37, 3.25, 3.19, and 3.16,
respectively.

5.10 The Family Fm

In this section we construct and study a family of planar triangulations, de-
noted Fm, with the property that P (Fm, q) has the form (5.14) with jmax = 3,
but the λF,j are not given by (5.23), but instead are roots of a certain cubic
equation. The number of vertices is n(Fm) = m + 4. This family is useful as
a contrast to the other one-parameter families of planar triangulations with
chromatic polynomials of the form (5.14) that we have constructed. The con-
struction of members of this family is somewhat more complicated than that
of the other families analyzed in this chapter, and accordingly, for illustration
we include several graphs, namely Fm with m = 3, 4, 5, 6, are shown in Figs.
(5.7) and (5.8). As these show, starting from a given member Fm, one con-
structs the next higher member Fm+1 in an interleaved manner, first adding
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F3 F4

Figure 5.7: Graphs F3 and F4.

a new set of edges one of which emanates from the lower left-hand vertex of
the graph, and then a new set of edges one of which emanates from the up-
permost vertex, and so forth. We note that in contrast to the previous planar
triangulations with chromatic polynomials of the form (5.38), the degrees of
the vertices remain bounded as m→∞ for this family.

As in earlier works [52], [59], [49], it is most convenient to express the
P (Fm, q) via a generating function, Γ(F, q, x), which is a rational function in
q and an auxiliary expansion variable x, of the form

Γ(F, q, x) =
N (F, q, x)

D(F, q, x)
, (5.92)

where the numerator and denominator are

N (F, q, x) = aF,0 + aF,1 x+ aF,2 x
2 (5.93)

and
D(F, q, x) = 1 + bF,1 x+ bF,2 x

2 + bF,3 x
3 . (5.94)

with aF,j and bF,j being polynomials in q. The chromatic polynomial P (Fm, q)
is then given as the coefficient in the Taylor series expansion of this generating
function:

Γ(F, q, x) =
∞∑
m=0

P (Fm+1, q)x
m (5.95)

Using an iterative deletion-contraction method, we have determined this
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F5 F6

Figure 5.8: Graphs F5 and F6.

generating function. We find

aF,0 = q(q − 1)(q − 2)(q − 3)2 (5.96)

aF,1 = q(q − 1)(q − 2)(2q − 5) (5.97)

aF,2 = q(q − 1)(q − 2)2(q − 3)2 (5.98)

bF,1 = −(q − 3) (5.99)

bF,2 = q − 3 (5.100)

and
bF,3 = −(q − 2)(q − 3) . (5.101)

The chromatic polynomial may also be expressed in the form of Eq. (5.14),
with jmax = 3, namely

P (Fm, q) =
3∑
j=1

cF,j (λF,j)
m . (5.102)

Using Eq (2.13) (or (2.15)) of Ref. [59], one can calculate the coefficients cF,j
for j = 1, 2, 3 from the generating function. Specifically, we have

cF,1 =
(aF,0λ

2
F,1 + aF,1λF,1 + aF,2)

(λF,1 − λF,2)(λF,1 − λF,3)
(5.103)
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cF,2 =
(aF,0λ

2
F,2 + aF,1λF,2 + aF,2)

(λF,2 − λF,1)(λF,2 − λF,3)
(5.104)

and

cF,3 =
(aF,0λ

2
F,3 + aF,1λF,3 + aF,2)

(λF,3 − λF,1)(λF,3 − λF,2)
. (5.105)

As discussed before [52], [59], [49], the λF,js appear via the factorized form of
the denominator of the generating function,

D(F, q, x) =
3∏
j=1

(1− λF,jx) . (5.106)

Equivalently, the λF,js are determined from the equation ξ3 + bF,1ξ
2 + bF,2ξ +

bF,3 = 0, i.e.,

ξ3 + (3− q)ξ2 + (q − 3)ξ − (q − 2)(q − 3) = 0 . (5.107)

Let us define
RF = 3(4q3 − 24q2 + 76q − 93) (5.108)

and

SF =

[
4(q − 3)

(
2q2 + 6q − 9 + 3

√
RF

)]1/3

. (5.109)

With appropriate choices of branch cuts for the various fractional powers in
(5.109), we have

λF,1 =
SF
6

+
2(q − 3)(q − 6)

3SF
+
q − 3

3
. (5.110)

The other λF,j, j = 2, 3 can be written explicitly in a similar manner. Thus,
this family is valuable as an illustration of a family of planar triangulation
graphs with a chromatic polynomial of the form (5.14) and with λ terms that
are different from those in (5.23) and, indeed, are nonpolynomial, in contrast
to the families with chromatic polynomials of the form (5.13) or (5.38).

With regard to the evaluation of P (Fm, q) at q = τ+1 (with an appropriate
choice of branch cuts for the square and cube roots), λF,1 and one of the other
two roots of (5.107) comprise the complex-conjugate pair

1

4

[
− 1 +

√
5 ± (−38 + 18

√
5 )1/2 i

]
(5.111)

with magnitude 0.485867.., while the third root of (5.107) is equal to −1. Since
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0.485867.. is less than τ − 1 = 0.6180.., the corresponding two coefficients do
not have to, and do not, vanish at q = τ + 1. Since the third root has
magnitude greater than τ − 1, its coefficient must vanish at q = τ + 1 in order
for |P (Fm, τ + 1)| to obey the Tutte upper bound (5.1). With these values
of the λF,j’s at q = τ + 1, the ratio r(Fm) vanishes (exponentially rapidly) as
m→∞ and r(F∞) = 0. This illustrates the general property that if Gpt,m is a
family of planar triangulations with P (Gpt,m, q) of the form (5.14) and α = 1
in (5.6), and if none of the λGpt,j has magnitude equal to τ −1 when evaluated
at q = τ + 1, then, since (i) the λGpt,j with |λGpt,j| > τ − 1 have coefficients
that must vanish, and (ii) the λGpt,j with |λGpt,j| < τ−1 give zero contribution
in the limit m→∞, it follows that r(Gpt) = 0. We calculate

aF = 0.786151.. (5.112)

The term λF,1 is real and positive and is dominant for q > τ + 2 = 3.618....
In this interval, the other two roots, λF,j, j = 2, 3 are complex, with smaller
magnitudes. At q = τ + 2, λF,1 = −1 and |λF,2| = |λF,3| = 1, so all λF,j are
degenerate in magnitude. Hence, in the notation of [52], qc = τ + 2 for this
family. At q = 3, all λF,j = 0, j = 1, 2, 3, as is obvious from Eq. (5.107).

We exhibit the first few P (Fm, q). For m = 1, P (F1, q) = aF,0, as given
above in (5.96). For m = 2 to m = 6,

P (F2, q) = q(q − 1)(q − 2)(q3 − 9q2 + 29q − 32) (5.113)

P (F3, q) = q(q − 1)(q − 2)(q − 3)(q3 − 9q2 + 30q − 35) (5.114)

P (F4, q) = q(q − 1)(q − 2)(q − 3)(q4 − 12q3 + 58q2 − 133q + 119) (5.115)

P (F5, q) = q(q − 1)(q − 2)(q − 3)(q5 − 15q4 + 95q3 − 317q2 + 553q − 398)

(5.116)

P (F6, q) = q(q − 1)(q − 2)(q − 3)2(q5 − 15q4 + 96q3 − 327q2 + 591q − 447)

(5.117)

As m increases further, P (Fm, q) has increasingly high powers of the factor
(q − 3).

As with the other planar triangulation families, the Fm family has chro-
matic zeros near to τ + 1. We find that these approach τ + 1 as m gets large.
Depending on the value of m, P (Fm, q) also may have real zeros in the interval
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[qw, 3). The complex zeros of P (Fm, q) form a complex-conjugate arc, with arc
endpoints at the complex zeros of RF , namely q, q∗ ' 1.9111± 2.6502i.
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Chapter 6

Chromatic Polynomials of
Planar Triangulation Graphs:
II. Multi-Parameter Families
and Implications for Statistical
Physics

6.1 Two-Parameter Families of Planar Trian-

gulations, Gpt,m1,m2

In this section we introduce a substantial generalization [71], to a two-
parameter family Gpt,m1,m2 of planar triangulations involving the three λj’s in
(5.23) [71], with a chromatic polynomial of the form

P (Gpt,m1,m2 , q) =
3∑

i1=1

3∑
i2=1

cG,i1i2 λ
m1
i1
λm2
i2

. (6.1)

Explicitly,

P (Gpt,m1,m2 , q) = cG,11(q − 2)m1+m2 + cG,22(q − 3)m1+m2 + cG,33(−1)m1+m2

+ cG,12(q − 2)m1(q − 3)m2 + cG,21(q − 3)m1(q − 2)m2

+ cG,13(q − 2)m1(−1)m2 + cG,31(−1)m1(q − 2)m2

+ cG,23(q − 3)m1(−1)m2 + cG,32(−1)m1(q − 3)m2 . (6.2)
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(Below we shall often take i1 = i, i2 = j to simplify the notation.) Clearly, if
one keeps one of the indices m1 or m2 fixed and varies the other, this defines
an infinite set of one-parameter families of planar triangulations. For specific
families Gpt,m1,m2 we will show how the general structure (6.1) reduces, in such
cases, to the form (5.38) considered above for a class of one-parameter planar
triangulations, with m being equal to the variable index, up to an appropriate
integer shift.

As before for the one-parameter families, an equivalent way to obtain the
P (Gpt,m1,m2 , q) is via a Taylor series expansion, in the auxiliary variables x1

and x2, of a generating function Γ(Gpt, q, x1, x2). Equivalent to both of these is
the property that P (Gpt,m1,m2 , q) satisfies a two-dimensional recursion relation,
for m1 ≥ (m1)min + 3 and m2 ≥ (m2)min + 3,

P (Gpt,m1,m2 , q) +
3∑

i1=1

3∑
i2=1

bGpt,i1i2 P (Gpt,m1−i1,m2−i2 , q) = 0 . (6.3)

The coefficients in this recursion relation are given by

1 +
3∑

i1=1

3∑
i2=1

bGpt,i1i2 x
i1
1 x

i2
2 =

[ 3∏
i1=1

(1− λi1 x1)

][ 3∏
i2=1

(1− λi2 x2)

]
. (6.4)

Note that they satisfy the symmetry property

bGpt,i1i2 = bGpt,i2i1 . (6.5)

We first derive a number of restrictions on the coefficients cG,i1i2 . As is
true of any triangulation, P (Gpt,m1,m2 , q) = 0 for q = 0, q = 1, and q = 2. The
evaluation P (Gpt,m1,m2 , 0) = 0 reads

cG,11(−2)m1+m2 + cG,22(−3)m1+m2 + cG,33(−1)m1+m2

+ cG,12(−2)m1(−3)m2 + cG,21(−3)m1(−2)m2

+ cG,13(−2)m1(−1)m2 + cG,31(−1)m1(−2)m2

+ cG,23(−3)m1(−1)m2 + cG,32(−1)m1(−3)m2 = 0 at q = 0 . (6.6)

Since this equation applies for arbitrary m1 and m2 in their respective ranges,
it implies that cG,i1i2 = 0 for all i1, i2 at q = 0 and hence that

cG,i1i2 contains the factor q ∀ i1, i2 . (6.7)
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It will often be convenient to extract this common factor, via the definition

c̄G,i1i2 =
cG,i1i2
q

. (6.8)

The evaluation P (Gpt,m1,m2 , 1) = 0 reads

[cG,11 + cG,33 + cG,13 + cG,31](−1)m1+m2 + cG,22(−2)m1+m2

+ [cG,12 + cG,32](−1)m1(−2)m2

+ [cG,21 + cG,23](−2)m1(−1)m2 = 0 at q = 1 . (6.9)

Since this equation applies for arbitrary m1 and m2, it implies the conditions

cG,11 + cG,33 + cG,13 + cG,31 = 0, cG,22 = 0,

cG,12 + cG,32 = 0, cG,21 + cG,23 = 0 at q = 1 . (6.10)

In particular, this implies that

cG,22 contains the factor q − 1 . (6.11)

The evaluation P (Gpt,m1,m2 , 2) = 0 reads

cG,110m1+m2 + [cG,22 + cG,33 + cG,23 + cG,32](−1)m1+m2

+ [cG,12 + cG,13]0m1(−1)m2 + [cG,21 + cG,31](−1)m10m2 = 0 at q = 2 .(6.12)

Since this equation applies for arbitrary m1 and m2, including m1 = m2 = 0,
it implies the conditions

cG,11 = 0, cG,22 + cG,33 + cG,23 + cG,32 = 0,

cG,12 + cG,13 = 0, cG,21 + cG,31 = 0 at q = 2 . (6.13)

In particular, this implies that

cG,11 contains the factor q − 2 . (6.14)

For families Gpt,m1,m2 with χ(Gpt,m1,m2) = 4 for certain values of m1 and m2,
further conditions hold, as we shall discuss below.

We next derive some further restrictions on the coefficients cG,i1i2 from
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the condition that P (Gpt,m1,m2 , q) must obey the Tutte upper bound when
evaluated at q = τ + 1. We consider families such that

n(Gpt,m1,m2) = m1 +m2 + β (6.15)

Carrying out this evaluation and calculating the ratio r(Gpt,m1,m2), we have

r(Gpt,m1,m2) = (τ − 1)5−β
∣∣∣∣cG,11 + cG,22

(
τ − 2

τ − 1

)m1+m2

+ cG,33

(
−1

τ − 1

)m1+m2

+ cG,12

(
τ − 2

τ − 1

)m2

+ cG,21

(
τ − 2

τ − 1

)m1

+ cG,13

(
−1

τ − 1

)m2

+ cG,31

(
−1

τ − 1

)m1

+ cG,23
(τ − 2)m1(−1)m2

(τ − 1)m1+m2
+ cG,32

(−1)m1(τ − 2)m2

(τ − 1)m1+m2

∣∣∣∣ . (6.16)

The condition that r(Gpt,m1,m2) ≤ 1 for arbitrary m1 and m2 implies that

cG,33 = cG,13 = cG,31 = cG,23 = cG,32 = 0 at q = τ + 1 . (6.17)

By the same argument that we used above for the analysis of the coefficients
of chromatic polynomials of one-parameter planar triangulation graphs, (6.17)
implies that

cG,i1i2 contains the factor q2 − 3q + 1 if i1 = 3 or i2 = 3 . (6.18)

By taking either m1 →∞ or m2 →∞, and requiring that the resultant ratio
r(Gpt,∞,m2) or r(Gpt,m1,∞) must obey the Tutte upper bound, one deduces the
inequality

(τ − 1)5−β|cG,11| < 1 at q = τ + 1 . (6.19)

We next generalize our result on a real chromatic zero that approaches
q = τ + 1 for one-parameter planar triangulations to these two-parameter
planar triangulations with P (Gpt,m1,m2 , q) of the form (6.1). As in the p = 1
case, we assume that q is a real number in the interval [qw, 3). We will actually
obtain two results, corresponding to m1 → ∞ for fixed m2 and m2 → ∞ for
fixed m1. For the first of these limits, the six terms proportional to cG,11, cG,22,
cG,12, cG,21, cG,13, and cG,23 all vanish (exponentially rapidly), so that

P (Gpt,m1,m2 , q) ∼ cG,33(−1)m1+m2+cG,31(−1)m1(q−2)m2+cG,32(−1)m1(q−3)m2 for m1 →∞
(6.20)

But we have shown above in (6.18) that cG,i1i2 contains the factor q2 − 3q + 1
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if i1 = 3 or i2 = 3. Since this factor vanishes at q = τ + 1 in this interval
[qw, 3), it follows that for sufficiently large m1, P (Gpt,m1,m2 , q) has a real zero
that approaches τ+1. With obvious changes, a corresponding argument shows
that for sufficiently large m2 and fixed m1, P (Gpt,m1,m2 , q) has a real zero that
approaches τ + 1. Clearly, the result also holds if both m1 and m2 get large.

6.2 General Form of P (Gpt,m, q)

The generalization of our structural results for two-parameter families of
planar triangulations, Gpt,m1,m2 to p-parameter families is as follows. Let Gpt,m

be a family of planar triangulation graphs involving the three λj’s in (5.23)
and depending on the p parameters m = (m1, ...,mp) taking on integer values
in the ranges mi ≥ (mi)min, i = 1, ..., p. Then

P (Gpt,m1,...mp , q) =
3∑

i1=1

· · ·
3∑

ip=1

cGpt,i1...ip

[ p∏
`=1

λm`
i`

]
. (6.21)

In general, there are 3p terms involving products of the λ’s (multipled by
respective coefficients) in this sum.

This general form is of considerable interest. It shows that one can carry
out a p-fold sequence of edge proliferations, each of which involves arbitrarily
many additional edges, as indexed by the parameters m1, ...,mp, with the chro-
matic polynomial P (Gpt,m, q) still retaining the rather simple form (6.21) with
the same set of three λi’s given in (5.23). This is a much simpler situation than
that in previous calculations of chromatic polynomials for multiparameter fam-
ilies of graphs. For example, in [61], Shrock and Tsai calculated the chromatic
polynomial P (Ge1,e2,eg ,m, q) for a certain four-parameter family of cyclic chain
graphs in which each subgraph on the chain has e1 edges above, and e2 edges
below, the main line, with eg edges between the subgraphs, and m subgraphs
in all. Although the number Nλ of λG,j’s for this family has the fixed value of 2,
the λG,j’s have functional forms that depend on the parameters e1, e2, and eg
(as is the case for the full Potts model partition function [51]). This property
was also found to be true for (i) the chromatic polynomials P ((Ch)k,m,cyc., q)
and P ((Ch)k,m,Mb., q) of cyclic (cyc.) and Möbius (Mb.) strips depending on a
homeomorphic expansion parameter k and the strip length, m, where Nλ = 4
and three of the λCh,j’s depended on k [64]; and (ii) P (Hk,r, q) for a family of
“hammock” graphs Hk,r with r “ropes” (linear sets of edges) joining two end
vertices, with each rope having k “knots” (vertices), where again the Nλ = 2
terms λH,j depended on k and r [60] [62]. The remarkable simplicity of the
form (6.21) is a result of the restrictive property that Gpt,m is a planar tri-
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angulation. We know that this simple behavior does not obtain even for the
lowest case of one-parameter families for planar near-triangulations, from the
explicit calculation the chromatic polynomials for free strips of the triangular
lattice of length m and width Ly = 2, 3 [46] (which are near-triangulations),
where it was found that the λ’s changed with increasing width [46]. (Here a
near-triangulation is defined as a graph such that all faces except one are tri-
angles.) We also know that it does not hold for nonplanar triangulations, from
explicit calculations of chromatic polynomials for the Ly = 2 [17], Ly = 3 [18],
and Ly = 4 [20] strips of the triangular lattice with doubly periodic (toroidal)
boundary conditions. Thus, chromatic polynomials of multiparameter families
of planar triangulation are especially amenable to exact analytic treatment.

The P (Gpt,m1,...mp , q) satisfy a p-dimensional recursion relation, for m` ≥
(m`)min + 3, ` = 1, ..., p, namely

P (Gpt,m1,...mp , q) +
3∑

i1=1

· · ·
3∑

ip=1

bGpt,i1...ip P (Gpt,m1−i1,...,mp−ip , q) = 0

(6.22)

where the bGpt,i1...ip are given by

1 +
3∑

i1=1

· · ·
3∑

ip=1

bGpt,i1...ip (

p∏
s=1

xiss ) =

p∏
`=1

[
3∏
i=1

(1− λi x`)

]
. (6.23)

Using the same methods as for p = 2, it is straightforward to generalize our
results to this case, including (i) the conditions on the coefficients cGpt,i (where
i ≡ (i1...ip)) derived from the evaluations P (Gpt,m, q) = 0 for q = 0, 1, 2 and
the Tutte upper bound at q = τ + 1, and (ii) the results for r(Gpt,m) and its
limits as one or more of the mi →∞. Clearly, our result on a real zero in the
interval [qw, 3) that approaches τ + 1 also generalizes to this case of families
Gpt,m with p ≥ 3.

As in the p = 2 case, if one holds all but one of the m1, ...,mp fixed and
allows one to vary, then the general form (6.21) reduces to (5.38) with m being
equal to the variable parameter, up to an appropriate integer shift.

6.3 The Two-Parameter Family Dm1,m2

We proceed to analyze our first explicit two-parameter family of planar tri-
angulations, denoted Dm1,m2 (where D stands for the proliferation of a double
set of edges). To explain the general method of construction of this family, we
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D0,0 D1,2

Figure 6.1: Graphs D0,0 and D1,2.

show in Fig. (6.1) the lowest member of the series, namely the graph D0,0. We
now add m1 inner edges joining the uppermost vertex to the upper horizontal
edge (thereby producing several such upper horizontal edges) and, separately,
add m2 inner edges joining the central vertex to the lower horizontal edge
(thereby producing several such lower horizontal edges), with corresponding
edges connecting to the lower central vertex. Thus, in the Dm1,m2 graph, the
uppermost vertex has degree 6+m1, the central vertex has degree m1 +m2 +4,
and the lower central vertex has degree 4 +m2. To illustrate this, we show the
graphs D1,2, D2,2 in Figs.(6.1) and (6.2).

From inspection of these graphs, it is evident how to construct Dm1,m2

graphs with higher values of m1 and m2. The number of vertices in the graph
Dm1,m2 is

n(Dm1,m2) = m1 +m2 + 9 . (6.24)

For the chromatic number, we find that (i) if m2 is odd, then χ(Dm1,m2) = 4,
and (ii) if m2 is even, then χ(Dm1,m2) = 3 if m1 is even and χ(Dm1,m2) = 4
if m1 is odd. That is, denoting even as e and odd as o, χ(Dm1,m2) = 3
for (m1,m2) = (e, e) and χ(Dm1,m2) = 4 for (m1,m2) = (e, o), (o, o), and
(o, e). The chromatic polynomials for the Dm1,m2 with χ = 4 contain a factor
P (K4, q) = q(q − 1)(q − 2)(q − 3) (and some contain an additional factor of
(q−3)). Of course, all chromatic polynomials of triangulations have the factor
P (K3, q) = q(q − 1)(q − 2).

By means of an iterative use of the deletion-contraction relation, we have
calculated the chromatic polynomial P (Dm1,m2 , q) for an arbitrary graph in
this general two-parameter Dm1,m2 family. We find that P (Dm1,m2 , q) has the
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D2,2 D2,3

Figure 6.2: Graphs D2,2 and D2,3.

form (6.1) with coefficients cD,ij that are rational functions of q. With the
definition (6.8), we calculate

c̄D,11 =
(q − 2)7

q − 1
, (6.25)

c̄D,22 =
(q − 1)(q − 3)5(q3 − 9q2 + 30q − 35)

q − 2
, (6.26)

c̄D,33 =
(q5 − 11q4 + 46q3 − 88q2 + 74q − 23)(q2 − 3q + 1)

(q − 1)(q − 2)
, (6.27)

c̄D,12 = (q − 2)3(q − 3)4 , (6.28)

c̄D,21 = (q − 2)(q − 3)6 , (6.29)

c̄D,13 =
(q − 2)3(q2 − 3q + 1)

q − 1
, (6.30)

c̄D,31 =
(q − 2)(q2 − 3q + 1)

q − 1
, (6.31)

c̄D,23 = −(q − 3)4(q − 5)(q2 − 3q + 1)

q − 2
, (6.32)

and

c̄D,32 = −(q − 3)2(q − 5)(q2 − 3q + 1)

q − 2
. (6.33)

It should be noted that the poles at q = 1 and q = 2 in certain of these cD,ij
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coefficients are cancelled in the actual evaluation of P (Dm1,m2 , q), which is, as
it must be, a polynomial in q. Furthermore, not only are these poles cancelled,
but also the resultant P (Dm1,m2 , q) vanishes at q = 0, q = 1, and q = 2. It is
easily verified that the coefficients cD,ij satisfy the requisite conditions (6.10)
and (6.13) for these zeros to occur.

Furthermore, since cD,11 = cD,33 = cD,13 = cD,31 = 3/2 with the other
cD,ij = 0 at q = 3, it follows that

P (Dm1,m2 , 3) =
3

2

[
1 + (−1)m1+m2 + (−1)m2 + (−1)m1

]
. (6.34)

This vanishes for (m1,m2) = (e, o), (o, o), and (o, e), and is nonvanishing for
(m1,m2) = (e, e) in our notation above, in agreement with our result on the
chromatic number χ(Dm1,m2).

We proceed to discuss the evaluation of the chromatic polynomial P (Dm1,m2 , q)
at q = τ + 1 and the comparison with the Tutte upper bound. We have

P (Dm1,m2 , τ + 1) = (9− 4
√

5 )(τ − 1)m1+m2 +

(
445− 199

√
5

2

)
(τ − 2)m1+m2

+

(
−38 + 17

√
5

2

)
(τ − 1)m1(τ − 2)m2

+

(
−199 + 89

√
5

2

)
(τ − 2)m1(τ − 1)m2 (6.35)

Comparing this with the Tutte upper bound (τ − 1)m1+m2+4, we have

r(Dm1,m2) =
3−
√

5

2
+

(
65− 29

√
5

2

)(
1−
√

5

2

)m1+m2

+

(
−11 + 5

√
5

2

)(
1−
√

5

2

)m2

+

(
−29 + 13

√
5

2

)(
1−
√

5

2

)m1

. (6.36)

We list a number of values of r(Dm1,m2) in Table (6.1). One may investigate
the behavior of r(Dm1,m2) as m1 →∞ for fixed m2 and as m2 →∞ for fixed
m1. Because the quantity (1−

√
5 )/2 that is raised to the powers indicated in

(6.36) is negative, it follows that, if one keeps m2 fixed and increases m1, then
r(Dm1,m2) does not approach r(D∞,m2) monotonically, although the members
of the subsequences r(Dm1,m2) with even (odd) m1 approach r(D∞,m2) mono-
tonically from above (below), respectively. Similarly, if one keeps m1 fixed

98



and increases m2, then r(Dm1,m2) does not approach r(Dm1,∞) monotonically,
although the members of the subsequences r(Dm1,m2) with even (odd) m2 ap-
proach r(Dm1,∞) monotonically from above (below), respectively. The results
are

r(D∞,m2) ≡ lim
m1→∞

r(Dm1,m2) =
3−
√

5

2
+

(
−11 + 5

√
5

2

)(
1−
√

5

2

)m2

(6.37)

r(Dm1,∞) ≡ lim
m2→∞

r(Dm1,m2) =
3−
√

5

2
+

(
−29 + 13

√
5

2

)(
1−
√

5

2

)m1

(6.38)
In the limit where one takes both m1 and m2 to ∞, one has

r(D∞,∞) = lim
m1→∞

lim
m2→∞

r(Dm1,m2) = lim
m2→∞

lim
m1→∞

r(Dm1,m2)

=
3−
√

5

2
= 2− τ = 0.381966... (6.39)

As m2 increases from 0 to ∞, r(D∞,m2) decreases (non-monotonically) from
the value

r(D∞,0) = −4 + 2
√

5 = 0.4721359... (6.40)

to the value in (6.39), and as m1 increases from 0 to ∞, r(Dm1,∞) decreases
(non-monotonically) from the value

r(D0,∞) = −13 + 6
√

5 = 0.4164078... (6.41)

to the value in (6.39). As a consequence of the relation (6.57) (see below), it
follows that

r(D∞,k+2) = r(Dk,∞) (6.42)

In general, the maximal value of r(Dm1,m2) occurs for the member of theDm1,m2

family with the minimal values of m1 and m2, namely for D0,0. This property
is similar to the property that the maximum value of r(Gpt) for all planar
triangulations Gpt occurs for the Gpt with the minimum number of vertices,
namely the single triangle, K3.

We next show that our general form for P (Dm1,m2 , q) reduces to (5.38)
when either m2 is held fixed and m1 varies, or vice versa. If we keep m2 fixed
and vary m1, then we can write P (Dm1,m2 , q) as

P (Dm1,m2 , q) =
3∑
i=1

[ 3∑
j=1

cD,ij λ
m2
j

]
λm1
i . (6.43)
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Table 6.1: Values of the ratio r(Dm1,m2). The rows and columns list m1 and m2, respec-
tively, so that, for example, r(D1,2) is the entry 0.3769.

m1,m2 0 1 2 3 4 5 6 ∞
0 0.5836 0.3131 0.4803 0.3769 0.4408 0.4013 0.4257 0.4164
1 0.4033 0.3344 0.3769 0.3506 0.3669 0.3568 0.3631 0.3607
2 0.5147 0.3212 0.4408 0.3669 0.4126 0.3843 0.4018 0.3951
3 0.4458 0.3293 0.4013 0.3568 0.3843 0.3673 0.3778 0.3738
4 0.4884 0.3243 0.4257 0.36305 0.4018 0.3778 0.3926 0.3870
5 0.4621 0.3274 0.4106 0.3592 0.3910 0.3714 0.3835 0.3789
6 0.4783 0.3255 0.4200 0.3616 0.3977 0.3754 0.38915 0.3839
∞ 0.4721 0.3262 0.4164 0.3607 0.3951 0.3738 0.3870 0.3820

The sum
∑3

j=1 cD,ij λ
m2
j contains a factor λ4

i , which we combine with the λm1
i ,

to make λmi , where
m = m1 + 4 . (6.44)

This shows that P (Dm1,m2 , q) has the form (5.38) with m given by (6.44);
explicitly,

P (Dm−4,m2 , q) =
3∑
i=1

cDm2(`)
,i λ

m
i , (6.45)

where

cDm2(`)
,i = λ−4

i

3∑
j=1

cD,ij λ
m2
j . (6.46)

Here, since these coefficients depend only on m2, and not on m1, we have
introduced the notation Dm2(`) to refer to the entire family Dm1,m2 with fixed
m2 and variable m1, where ` indicates that m2 describes the edge proliferation
in the lower part of the graph. Expressing (5.35)-(5.37) in our notation (and
suppressing the q arguments), we have

cDm2(`)
,1 = q κDm2(`)

,1 , (6.47)

cDm2(`)
,2 = q(q − 1)κDm2(`)

,2 , (6.48)

and
cDm2(`)

,3 = q(q2 − 3q + 1)κDm2(`)
,3 . (6.49)

Similarly, if we keep m1 fixed and vary m2, then we can write P (Dm1,m2 , q)
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as

P (Dm1,m2 , q) =
3∑
j=1

[ 3∑
i=1

cD,ij λ
m1
i

]
λm2
j . (6.50)

The sum
∑3

i=1 cD,ij λ
m1
i contains a factor λ2

j , which we combine with the λm2
j ,

to make λmj , where, for this one-parameter reduction,

m = m2 + 2 . (6.51)

This shows that P (Dm1,m2 , q) has the form (5.38) with m given by (6.51);
explicitly,

P (Dm1,m−2, q) =
3∑
j=1

cDm1(u)
,j λ

m
j , (6.52)

where

cDm1(u)
,j = λ−2

j

3∑
i=1

cD,ij λ
m1
i . (6.53)

Here again, since these coefficients depend only on m1, and not on m2, we have
introduced the notation Dm1(u) to refer to the entire family Dm1,m2 with fixed
m1 and variable m2, where u indicates that m1 describes the edge proliferation
in the upper part of the graph. As before, we write

cDm1(u)
,1 = q κDm1(u)

,1 , (6.54)

cDm1(u)
,2 = q(q − 1)κDm1(u)

,2 , (6.55)

and
cDm1(u)

,3 = q(q2 − 3q + 1)κDm1(u)
,3 . (6.56)

We find that
cDk+2 (`),i = cDk (u),i for i = 1, 2, 3 (6.57)

and thus
κDk+2 (`),i = κDk (u),i for i = 1, 2, 3 . (6.58)

However, we note that for arbitrary q,

P (Dm1,m2 , q) 6= P (Dm2,m1 , q) unless m1 = m2 . (6.59)
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Table 6.2: Values of the ratios r(Dm1,∞) and r(D∞,m2). Note that r(Dk,∞) = r(D∞,k−2)
for k ≥ 2.

r(D∞,m2), r(Dm1,∞) analytic numerical

r(D∞,0) −4 + 2
√

5 0.472136

r(D∞,1) (−15 + 7
√

5 )/2 0.326238

r(D∞,2) = r(D0,∞) −13 + 6
√

5 0.416408

r(D∞,3) = r(D1,∞) −22 + 10
√

5 0.360680

r(D∞,4) = r(D2,∞) (−73 + 33
√

5 )/2 0.395122

r(D∞,5) = r(D3,∞) −60 + 27
√

5 0.373835

r(D∞,6) = r(D4,∞) −98 + 44
√

5 0.386991

r(D∞,7) = r(D5,∞) (−319 + 143
√

5 )/2 0.378860

r(D∞,8) = r(D6,∞) −259 + 116
√

5 0.383885

r(D∞,9) = r(D7,∞) −420 + 188
√

5 0.380780

r(D∞,10) = r(D8,∞) (−1361 + 609
√

5 )/2 0.382700

r(D∞,∞) (3−
√

5 )/2 0.381966

6.4 The Family Dm−4,0

We proceed to examine a number of different Dm1,m2 families of planar
triangulations, with m2 held fixed. Then, we will analyze analogous families
with m1 held fixed, and finally, we will investigate families in which both
m1 and m2 vary together, and are related in a linear manner. For a given
graph Dm1,m2 , one can use either our general result for P (Dm1,m2 , q) above or
either of the one-parameter reductions, (6.45) or (6.52). However, we shall be
interested in the limits m1 → ∞ with m2 fixed, and m2 → ∞ with m1 fixed,
and, to study these, it is convenient to use the one-parameter reductions of
our general formula.

We begin with a study of the family Dm1,0 ≡ Dm−4,0 with m1 ≥ 0, i.e.,
m ≥ 4. From (6.24), we have n(Dm−4,0) = m + 5. For the coefficients that
enter into the equation (5.38), our general formulas (6.46)-(6.49) yield

κD0(`),1 = κD0(`),2 = κD0(`),3 = q3 − 9q2 + 29q − 32 (6.60)

(equal to λTC). Because these coefficients κD0(`),j are all the same, λTC is a
common factor, so for all m, the three zeros of λTC are zeros of P (Dm−4,0, q).
Of these, one is real, namely qw, given in (5.46). In accordance with our general
analysis above, P (Dm−4,0, q) also has a zero, denoted qz, that approaches τ +1
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as m increases.
For the evaluation at q = τ + 1, we have

P (Dm−4,0, τ + 1) = (−4 + 2
√

5 )(τ − 1)m + (3−
√

5 )(τ − 2)m , (6.61)

so that

r(Dm−4,0) = −4 + 2
√

5 + (3−
√

5 )

(
1−
√

5

2

)m
. (6.62)

Hence,
r(D∞,0) = −4 + 2

√
5 = 0.4721359... (6.63)

with aD0(`) = 1.

6.5 The Family Dm−4,1

We continue with a study of the family Dm1,1 ≡ Dm−4,1. From (6.24),
we have n(Dm−4,1) = m + 6. Our general formulas (6.46)-(6.49) give the
coefficients κD1(`),j as

κD1(`),1 = (q − 3)(q3 − 9q2 + 30q − 35) , (6.64)

κD1(`),2 = q4 − 12q3 + 58q2 − 133q + 119 , (6.65)

and
κD1(`),3 = −(q − 3)(2q2 − 14q + 25) . (6.66)

If m is even, then P (Dm−4,1, q) has not only the factor q(q − 1)(q − 2)(q − 3),
but also an additional factor of (q − 3). According to our general analysis
above, P (Dm−4,1, q) has a real zero that approaches τ + 1 as m → ∞. We
also derived the result that for sufficiently large m, a chromatic polynomial
of the form (5.38) has another real zero in the interval [qw, 3) if and only if
κGpt,3 has a zero in this interval. For the present family, κD1(`),3 has zeros at
q = 3 and the complex-conjugate pair q = (7± i)/2, but does not have a zero
in the interval [qw, 3), in accordance with the fact that P (Dm−4,1, q) also does
not have a zero in this interval.

For the evaluation at τ + 1, we compute

P (Dm−4,1, τ + 1) =

(
25 + 11

√
5

2

)
(τ − 1)m + (−9 + 4

√
5 )(τ − 2)m , (6.67)
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so that

r(Dm−4,1) =
−15 + 7

√
5

2
+

(
11− 5

√
5

2

)(
1−
√

5

2

)m
. (6.68)

and

r(D∞,1) =
−15 + 7

√
5

2
= 0.3226238 (6.69)

with aD1(`)
= 1.

6.6 The Family Dm−4,2

We next study the family Dm1,2 ≡ Dm−4,2 with m1 ≥ 0, i.e., m ≥ 4. Note
that D1,2 is the same as the graph denoted Gce12 in Fig. 8 of [70]. From (6.24),
we have n(Dm−4,2) = m+ 7. For this family our general results give

κD2(`),1 = q5 − 15q4 + 94q3 − 303q2 + 498q − 332 , (6.70)

κD2(`),2 = q5 − 15q4 + 95q3 − 317q2 + 553q − 398 , (6.71)

and
κD2(`),3 = −(q4 − 16q3 + 91q2 − 225q + 206) . (6.72)

In Table (6.3) we list (real) zeros of P (Dm−4,2, q) in the interval q ∈ [qw, 3) as a
function of n. As proved above, one zero approaches τ + 1 as m→∞. In the
same limit, our general analysis above shows that P (Dm−4,2, q) has real zero(s)
in the interval [qw, 3) correponding to the zeros of κD2(`),3 in this interval. This
quartic polynomial has a zero at

q = 2.7227000945... (6.73)

together with one more real zero at q = 6.955106.., outside the interval [qw, 3),
and a complex-conjugate pair. Hence, P (Dm−4,2, q) has another zero in the
interval [qw, 3), which is present for m ≥ 5, and this approaches the zero of
κD2(`),3 given in (6.73) as m→∞. For even m ≥ 6, i.e., odd n ≥ 13, the real
zero near to this asymptotic value (6.73) increases toward it, while for odd
m ≥ 5, i.e., even n ≥ 12, the nearby real decreases toward the asymptotic
value. As noted above, the graph D0,2 coincides with the graph GCM,1 of
[70], for which there is no real zero close to τ + 1; instead, the zeros closest
to τ + 1 comprise a complex-conjugate pair at q = 2.641998 ± 0.014795i.
Correspondingly, for D0,2 there is no zero q′z in the interval [qw, 3). For all of
the Dm−4,2 with m ≥ 5 in Table (6.3), the first real zero qz in the interval
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[qw, 3) is, in fact, the closest to τ + 1.
The evaluation at q = τ + 1 yields

P (Dm−4,2, τ + 1) =

(
−69 + 31

√
5

2

)
(τ − 1)m + (27− 12

√
5 )(τ − 2)m , (6.74)

so that

r(Dm−4,2) = −13 + 6
√

5 +

(
21− 9

√
5

2

)(
1−
√

5

2

)m
. (6.75)

Hence,
r(D∞,2) = −13 + 6

√
5 = 0.41640786... (6.76)

with aD2(`)
= 1.

Table 6.3: Location of real zeros of P (Dm−4,2, q) in the interval q ∈ [qw, 3), as a function
of the number of vertices, n = m + 7. Here the notation nz means that there is no second
real zero in the interval [qw, 3).

n qz q′z
11 c.c. pair nz
12 2.614614 2.818897
13 2.621801 2.689610
14 2.616506 2.762806
15 2.619226 2.705035
16 2.6174035 2.741044
17 2.618462 2.713055
18 2.617785 2.731543
19 2.618194 2.717464
20 2.617938 2.727100
21 2.618094 2.719886
22 2.617997 2.724931
23 2.618057 2.721202
24 2.618020 2.723845
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6.7 The Family Dm−4,3

The final family that we study in this series isDm1,3 ≡ Dm−4,3, withm1 ≥ 0,
i.e., m ≥ 4. From (6.24), it follows that the graph Dm−4,3 has n(Dm−4,3) =
m+ 8. A representative graph of this family is D2,3 shown in Fig. (6.2).

For the coefficients κD3(`),j we have

κD3(`),1 = (q − 3)(q2 − 5q + 7)(q3 − 10q2 + 38q − 49) , (6.77)

κD3(`),2 = q6 − 18q5 + 141q4 − 613q3 + 1551q2 − 2152q + 1271 , (6.78)

and
κD3(`),3 = −(q − 3)2(q3 − 12q2 + 48q − 67) . (6.79)

In Table (6.4) we list real zeros of P (Dm−4,3, q) in the interval q ∈ [qw, 3).
As is evident in this table, in addition to the zero that approaches τ + 1, there
is a second real zero in this interval if and only if m (and hence n) is even.
We can prove that, for the subset of Dm−4,3 with even m where this second
zero is present, it approaches q = 3 from below as m → ∞. The proof is as
follows. According to our little theorem above on real chromatic zeros besides
the one (or complex pair) that approach τ + 1 as m → ∞, there is a second
zero in the interval q ∈ [qw, 3) if and only if κ

Gpt ,3
has a real zero in this

interval. Now for the Dm−4,3 family, κD3(`),3 has no real zero in the interval
[qw, 3). (Its zeros are at q = 3, with multiplicity 2, at q = 5.44224957... and at
q ' 3.278875± 1.249025.) Hence, according to our little theorem, as m→∞
on even integers, in addition to the real zero that is near to τ + 1, the other
zero must approach 3, so that in this limit, there is no other zero in the interval
[qw, 3). This family may thus be added to the two known families given (in his
Theorem 4) by Woodall in Ref. [81] as examples of one-parameter families of
graphs, each of which has a chromatic zero that approaches 3 from below as
the parameter (m here) goes to infinity.

The evaluation at q = τ + 1 yields

P (Dm−4,3, τ + 1) = (94− 42
√

5 )(τ − 1)m + (−76 + 34
√

5 )(τ − 2)m , (6.80)

so that

r(Dm−4,3) = −22 + 10
√

5 + (18− 8
√

5 )

(
1−
√

5

2

)m
. (6.81)

Hence,
r(D∞,3) = −22 + 10

√
5 = 0.36067977... (6.82)
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Table 6.4: Location of real zeros of P (Dm−4,3, q) in the interval q ∈ [qw, 3), as a function
of the number of vertices, n = m + 8. Notation nz means that there is no second zero in
this interval.

n qz q′z
12 2.614614 2.818897
13 2.619530 nz
14 2.616973 2.847527
15 2.618625 nz
16 2.617649 2.866268
17 2.618264 nz
18 2.617889 2.880165
19 2.618122 nz
20 2.617979 2.890985
21 2.618068 nz
22 2.618013 2.899700
23 2.618057 nz
24 2.618020 2.906905
25 2.618039 nz
26 2.618031 2.912980
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with aD3(`)
= 1.

6.8 The Family D0,m−2

As an example of families with m1 fixed and variable m2 we discuss the
family D0,m2 ≡ D0,m−2. A graph in this family has n(D0,m−2) = m + 7. In
accord with our result (6.58),

κD0(u),i = κD2(u),i for i = 1, 2, 3 . (6.83)

P (D0,m−2, q) has a real zero near to τ + 1, which approaches this point as
m → ∞. Furthermore, since the coefficient κD0(u),3 has a real zero in the
interval [qw, 3), at the value in (6.73), it follows from our general analysis above
that for sufficiently large m, P (D0,m−2, q) has a real zero that approaches this
value. These zeros approach their respective values in a manner similar to
that discussed for the family Dm−4,2.

6.9 A Symmetric Two-Parameter Family Sm1,m2

In this section we study a two-parameter family of planar triangulations
Sm1,m2 which are symmetric under interchange of the parameters:

Sm1,m2 = Sm2,m1 . (6.84)

We show the lowest member of this family, S0,0 and another member, S1,2 =
S2,1 in Fig. (6.3). From these it is clear how to construct the general graph
Sm1,m2 in this family. We have n(Sm1,m2) = m1 + m2 + 7. The chromatic
number is χ(Sm1,m2) = 4, and P (Sm1,m2 , q) contains the factor P (K4, q) =
q(q − 1)(q − 2)(q − 3).

We have calculated P (Sm1,m2 , q) and find that it involves the same three λ’s
as in (5.23), but with an interestingly different form than P (Dm1,m2 , q). Given
the symmetry (6.84), it follows that the coefficients in P (Sm1,m2 , q) satisfy

cS,ij = cS,ji . (6.85)

Consequently, although there are nine terms of the form λm1
i λm2

j in P (Sm1,m2 , q),
there are only six independent coefficients cS,ij to begin with, and we find that
two of these vanish, so that there are only four independent, nonvanishing
coefficients cS,ij. Explicitly, we calculate

cS,ij = qc̄S,ij , (6.86)
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S0,0 S2,1

Figure 6.3: Graphs S0,0 and S2,1.

with
cS,11 = cS,13 = cS,31 = 0 , (6.87)

c̄S,22 =
(q − 1)(q − 3)6

q − 2
, (6.88)

c̄S,12 = c̄S,21 = (q − 2)3(q − 3)2 , (6.89)

c̄S,23 = c̄S,32 =
(q − 3)2(q2 − 3q + 1)

q − 2
, (6.90)

and

c̄S,33 =
(q − 1)(q − 3)(q2 − 3q + 1)

q − 2
. (6.91)

so that

P (Sm1,m2 , q) = cS,22λ
m1+m2
2 + cS,33λ

m1+m2
3

+ cS,12(λm1
1 λm2

2 + λm1
2 λm2

1 ) + cS,23(λm1
2 λm2

3 + λm1
3 λm2

2 ) (6.92)

As before, the poles cancel in the calculation of P (Sm1,m2 , q) and, furthermore,
these coefficients satisfy the requisite identities so that P (Sm1,m2 , q) = 0 for
q = 1, 2, 3. These are special cases of (6.10) and (6.13) that incorporate the
properties that cS,ij = cS,ji and cS,11 = cS,13 = cS,31 = 0, namely,

cS,22 = 0, cS,33 = 0, cS,12 + cS,23 = 0 at q = 1 (6.93)
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and
cS,22 + 2cS,12 + cS,33 = 0, cS,12 = 0 at q = 2 . (6.94)

As a special case of (6.17) we also have

cS,23 = cS,32 = cS,33 = 0 at q = τ + 1 . (6.95)

Finally, the condition P (Sm1,m2 , 3) = 0 is equivalent to

cS,33 = 0 at q = 3 (6.96)

For the comparison of P (Sm1,m2 , q) at q = τ + 1 with the Tutte upper
bound (τ − 1)m1+m2+2, we have

r(Sm1,m2) =

∣∣∣∣(9− 4
√

5 )

(
1−
√

5

2

)m1+m2

+ (−2 +
√

5 )

[(
1−
√

5

2

)m1

+

(
1−
√

5

2

)m2
]∣∣∣∣ (6.97)

This decreases (non-monotically) in magnitude as m1 increases for fixed m2

and as m2 increases for fixed m1, approaching zero exponentially rapidly as
either of these parameters goes to infinity. Thus,

lim
m1→∞

r(Sm1,m2) = lim
m2→∞

r(Sm1,m2) = 0 . (6.98)

It is also of interest to analyze the one-parameter reductions of P (Sm1,m2 , q)
for variable m1 and fixed m2 and vice versa. These yield identical results,
because of the symmetry (6.84). Hence, without loss of generality we consider
variable m1 and fixed m2 and find that in this case P (Sm1,m2 , q) reduces to
(5.38) with m = m1+2, which we write as P (Sm−2,m2 , q). Since the coefficients
only depend on m2 and not m, we denote them by cSm2 ,i

. They are given by

cSm2 ,i
= λ−2

i

3∑
j=1

cS,ij λ
m2
j (6.99)

Thus, in terms of the corresponding κSm2 ,i
,

κS0,1 = (q − 2)(q − 3)2 , (6.100)

κS0,2 = λTC = q3 − 9q2 + 29q − 32 , (6.101)

κS0,3 = 2(q − 3) . (6.102)
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and so forth for higher values of m2.
This family exhibits a number of interesting properties. Among these is the

fact that out of the possible 32 terms in (6.21) for p = 2, some may be absent
because of vanishing coefficients cG,ij. In particular, the term cG,11λ

m1+m2
1 that

would be dominant in the limit where the parameters m1 →∞ and m2 →∞,
may be absent, so that in this limit, r(G∞,∞) may be zero.

6.10 Families of the form Gpt,m1,m2 with m1 = m2

In previous sections we have analyzed the chromatic polynomials of special
cases of two-parameter families of planar triangulations Gpt,m1,m2 as a function
of m1 with m2 held fixed, and vice versa and shown how they reduce to (5.14)
with jmax = 3. A different type of special case in which Gpt,m1,m2 reduces to
a one-parameter family is obtained by requiring that m1 and m2 be linearly
related to each other. The simplest such example of this type of reduction is
the diagonal case obtained by requiring that m1 = m2. For general families
Gpt,m1,m2 that satisfy (6.15) and for which P (Gpt,m1,m2 , q) is of the form (6.1),
it follows that n(Gpt,k,k) = 2k+β and that P (Gpt,m1,m1 , q) reduces, to the form
(5.14) with jmax = 6. We use the shorthand Gd to denote a generic Gpt,m1,m1 .
We have

P (Gd,m1,m1 , q) =
6∑
j=1

cGd,j(λGd,j)
m (6.103)

where m = m1 + δm, with δm depending on the family, and

λGd,1 = λ2
1 = (q − 2)2 , (6.104)

λGd,2 = λ2
2 = (q − 3)2 , (6.105)

λGd,3 = λ2
3 = 1 , (6.106)

λGd,4 = λ1λ2 = (q − 2)(q − 3) , (6.107)

λGd,5 = λ1λ3 = −(q − 2) , (6.108)

and
λGd,6 = λ2λ3 = −(q − 3) . (6.109)

The corresponding coefficients are

cGd,j = qc̄Gd,j for j = 1, .., 6, (6.110)

with
cGd,1 = cG,11 , (6.111)
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cGd,2 = cG,22 , (6.112)

cGd,3 = cG,33 , (6.113)

cGd,4 = cG,12 + cG,21 , (6.114)

cGd,5 = cG,13 + cG,31 , (6.115)

and
cGd,6 = cG,23 + cG,32 . (6.116)

The coefficients cGd,i, i = 1, ..., 6 satisfy various conditions that follow from
those that we have derived for the coefficients cG,ij in (6.7), (6.10), (6.13), and
(6.17). These are

cGd,1 + cGd,3 + cGd,5 = 0, cGd,2 = 0,

cGd,4 + cGd,6 = 0 at q = 1 , (6.117)

cGd,1 = 0, cGd,2 + cGd,3 + cGd,6 = 0,

cGd,4 + cGd,6 = 0 at q = 2 , (6.118)

and
cGd,3 = cGd,5 = cGd,6 = 0 at q = τ + 1 . (6.119)

Hence,
cGd,2 contains the factor q − 1 , (6.120)

cGd,1 contains the factor q − 2 , (6.121)

and

cGd,i contains the factor q2 − 3q + 1 if i = 3, 5, 6 . (6.122)

6.11 The Families Dm1,m2 and Sm1,m2 with m1 =

m2

We now discuss two explicit examples of the diagonal special case of a
two-parameter planar triangulation family, namely Dm1,m2 and Sm1,m2 with
m1 = m2. We shall use the shorthand notation Dd and Sd to refer to these
entire respective families. From (6.24), we have n(Dm1,m1) = 2m1 + 9 and
n(Sm1,m1) = 2m1 + 7.

The chromatic polynomial P (Dm1,m1 , q) has the form (6.103) with jmax = 6
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and δm = 0, i.e., m = m1. The lowest member of this family, the graph D0,0,
and D2,2 were shown in Fig. (6.2). The chromatic number χ(Dm,m) is 3 if m
is even and 4 if m is odd. The coefficients are

c̄Dd,i = c̄D,ii for i = 1, 2, 3, (6.123)

c̄Dd,4 = c̄12 + c̄21 = (q − 2)(q − 3)4(2q2 − 10q + 13) , (6.124)

c̄Dd,5 = c̄13 + c̄31 =
(q − 2)(q2 − 4q + 5)(q2 − 3q + 1)

q − 1
, (6.125)

and

c̄Dd,6 = c̄23 + c̄32 = −(q − 3)2(q − 5)(q2 − 6q + 10)(q2 − 3q + 1)

q − 2
, (6.126)

Since χ(Dm,m) = 4 for odd m, it follows that

cDd,1 − cDd,3 + cDd,5 = 0 for q = 3 . (6.127)

We calculate

P (Dm,m, τ + 1) = (τ + 1)

[(
47− 21

√
5

2

)
(τ − 1)2m

+

(
1165− 521

√
5

2

)
(τ − 2)2m + (−360 + 161

√
5 )[(τ − 1)(τ − 2)]m

]
(6.128)

The ratio r(Dm,m) is

r(Dm,m) =
3−
√

5

2
+

(
65− 29

√
5

2

)(
1−
√

5

2

)2m

+ (−20 + 9
√

5 )

(
1−
√

5

2

)m
.

(6.129)

Hence, defining r(Dd,∞) = limm→∞ r(Dm,m), we have

r(Dd,∞) =
3−
√

5

2
= 0.381966... (6.130)

and aDd
= 1.

In contrast, the chromatic polynomial P (Sm1,m1 , q) has the form (5.14) with
jmax = 4. The lowest member of this family, the graph S0,0, was shown in Fig.
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(6.3). The chromatic number χ(Sm,m) = 4. The expression for P (Sm,m, q)
follows immediately from (6.92) and has jmax = 4,

P (Sm,m, q) = cS,22(λ2)2m + cS,33 + 2cS,12(λ1λ2)m + 2cS,23(λ2λ3)m , (6.131)

where we used the fact that (λ3)2m = 1. The ratio r(Sm,m) follows from (6.97),
with the result that r(S∞,∞) = 0.

6.12 Some Implications for Statistical Physics

One of the interesting aspects of the present work is its implications for
nonzero ground state entropy of the Potts antiferromagnet. (For background
on the Potts model, see Refs. [85], [5], [52].) This stems from the iden-
tity noted above, P (G, q) = Z(G, q, T = 0)PAF = Wtot(G, q). As above, we
denote the formal limit of a family of graphs G as n(G) → ∞ by the sym-
bol {G}. We recall that the entropy per vertex is given by S0 = kB lnW ,
where W is the degeneracy per vertex, related to the total degeneracy of
spin configurations of the zero-temperature Potts antiferromagnet (or equiva-
lently the number of proper q-colorings of the graph) by Wtot by W ({G}, q) =
limn→∞[Wtot(G, q)]

1/n. We refer the reader to Ref. [52] for a discussion of
a subtlety in this definition resulting from a certain noncommutativity that
occurs for a special set of values of q, denoted as {qs}, namely

lim
q→qs

lim
n→∞

[P (G, q)]1/n 6= lim
n→∞

lim
q→qs

[P (G, q)]1/n . (6.132)

For the one-parameter families of planar triangulations considered here, this
set of special values {qs} includes q = 0, 1, 2, τ + 1 and, for cases where the
chromatic number is 4, also q = 3. Because of this noncommutativity, it is
necessary to specify the order of limits taken in defining W . For a particular
value q = qs, we thus define

Wqn({G}, qs) = lim
q→qs

lim
n→∞

[P (G, q)]1/n (6.133)

and
Wnq({G}, qs) = lim

n→∞
lim
q→qs

[P (G, q)]1/n . (6.134)

For real q ≥ χ(Gpt,m), both of these definitions are equivalent, and in this case
we shall write Wqn({G}, qs) = Wnq({G}, qs) ≡ W ({G}, qs).

We generalize our calculations in [70] as follows. First, for a family of planar
triangulations Gpt,m with P (Gpt,m, q) having the form (5.14) with jmax = 1,
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W = [λGpt ]
1/α. As an example, consider the family Rm with n(Rm) = m + 2

considered in Chapter 5 of this dissertation [70].
The W function for the m→∞ limit of this family is W ({R}, q) = q − 3,

and S0 > 0 for q > 4. For the family TCm

W ({TC}, q) = (λTC)1/3 . (6.135)

where λTC was given in (5.45). The function λTC is a monotonically increasing
function of q, which passes through zero at q = 2.54660... and increases through
unity at q = 3 so that (for the m→∞ limit of this family) S0 > 0 for q > 3.
For the family Im of iterated icosahedra,

W ({I}, q) = (λI)
1/9 , (6.136)

where λI was obtained in Eq. (5.66). The function λI vanishes at three real
values of q, namely q = 2.618197.. (i.e., slightly above τ + 1), at q = 3, and at
q = 3.222458... This function is positive for q > 3.222458.. (as well as in an
interval 2.618.. < q < 3) and increases through unity as q increases through
the value 3.5133658.., so that in this latter interval, S0 > 0.

A second general result is that for a family of planar triangulations Gpt,m

with P (Gpt,m, q) having the form (5.38), it follows that (i)Wqn({Gpt}, q) = q−2
for q > 3; (ii) even in the presence of noncommutativity, W ({Gpt}, q) = q − 2
for q ≥ 4, so that S0 > 0 in this interval (and also in the interval q > 3 if
one uses Wqn({Gpt}, q)). This result applies, in particular, to the families Bm,
Hm, Lm, Dm−4,2, and Dm−4,3. Although the family P (Dm,m, q) is of the form
(5.14) with jmax = 6, the dominant term for q > χ(Dm,m) is again q − 2,
so that in this interval W ({Dd}, q) = q − 2 for this family also. In contrast,
P (Sm1,m2 , q) has cS,11 = 0 and hence lacks the term that would normally be
dominant as m1 or m2 goes to infinity. In this case, for q ≥ 4 where there is
no noncommutativity in limits, we find W ({S}, q) =

√
(q − 2)(q − 3) .

For the family Fm, we find that λ1 in Eq. (5.110) is dominant for q > qc =
τ + 2 = 3.618..., so that in this region,

W ({F}, q) = λF,1 (6.137)

Furthermore, since λF,1 > 1 for real q > τ + 2, it follows that S0 > 0 for (the
m→∞ limit of this family of graphs) for this range q > τ + 2.

For a regular lattice graph G it is of interest to investigate the depen-
dence of W ({G}, q) on the vertex degree (coordination number) d. This study
was carried out in [52] [55] [57], and it was shown that W ({G}, q) is a non-
increasing function of d. This is understood as being a consequence of the
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fact that (except for tree graphs, which are not relevant here), roughly speak-
ing, increasing the vertex degree tends to increase the constraints on a proper
q-coloring of the vertices and therefore tends to decrease W ({G}, q). One is
also motivated to investigate the same question with the families of planar
triangulations under study here. However, since deff = 6 for a family of pla-
nar triangulation graphs one is limited to a fixed deff = 6 and hence cannot
carry out the type of comparative study involving a variation in deff that was
performed in [52] [55] [57]. In [70] and the present work, we have found that
families of planar triangulations can have different W ({G}, q) functions. This
is consistent with the results in [52] [57]. Indeed, one has already encountered
examples of this. For example, the square and kagomé (3 ·6 ·3 ·6) lattices both
have the same vertex degree, namely 4, but they have different W functions,
and similarly, the honeycomb, (3 · 122), and (4 · 82) lattices have the same
vertex degree, namely 3, but they have different W functions [52] [55] [57].

6.13 Comparative Discussion

In this section we give a comparative discussion of some limiting quantities
for the various families of planar triangulations that we have studied so far. For
one-parameter families of planar triangulations Gpt,m for which P (Gpt,m, q) is
of the form (5.13) we have proved that r(Gpt,∞) = 0 and have investigated the
various values of aGpt defined in (5.40). This constant is strictly less than unity,
and it is of interest to see which families yield larger and smaller values of aGpt .
We display the values that we have obtained in Table (6.5). As is evident, in
the set of jmax = 1 families of planar triangulations, the family of cylindrical
strips of the triangular lattice, TCm (equivalently, iterated octahedra) yields
the largest value of aGpt , which is within 9 % of its upper bound of 1. In the
jmax = 3 families, the one that yields the largest value of the limiting ratio
r(Gpt,∞) is the family, Bm, with r(B∞) = 0.6180.. A second type of asymptotic
limiting function is W ({G}, q). We have given a comparative analysis of this
in the previous section.

We have also investigated the values of P (Gpt,m, q) at q = χ(Gpt,m) for the
families of planar triangulations that we have studied. Recall the definition
that a graph G is k-critical iff χ(G) = k and P (G, k) = k!. We find a variety of
behavior. For example, (i) χ(Rm) = 4 and P (Rm, 4) = 4!, so Rm is 4-critical;
(ii) χ(TCm) = 3 and P (TCm, 3) = 3!, so TCm is 3-critical; but (iii) χ = 4 for
Im, Hm, Lm, Dm−4,3, and Fm≥3 but none of these families is 4-critical. For
other families Gpt,m, the chromatic number depends on whether m is even or
odd. For example, for even m, χ = 3 for Bm and Dm−4,2, and these graphs
are 3-critical, while for odd m, χ = 4 for Bm and Dm−4,2, but neither of these
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graphs is 4-critical.

6.14 Summary of Chapter

In this chapter, generalizing the results in Chapter 5, we have presented an
analysis of the structure and properties of chromatic polynomials P (Gpt,m, q)
of families of planar triangulation graphs Gpt,m, where m = (m1, ...,mp) is a
vector of integer parameters. We have discussed a number of specific families
with p = 1 and p = 2. These planar triangulation graphs form a particularly
attractive class of graphs for the analysis of chromatic polynomials because
of their special properties. One of these is the fact that when evaluated at
q = τ + 1, the chromatic polynomial of a planar triangulation graph satisfies
the Tutte upper bound (5.1). We have studied the ratio of |P (Gpt,m, τ + 1)| to
the Tutte upper bound (τ − 1)n−5 and have calculated limiting values of this
ratio as n → ∞ for various families of planar triangulations. We also have
used our calculations to study zeros of these chromatic polynomials. Among
our results, we have shown that if Gpt,m is a planar triangulation graph with a
chromatic polynomial P (Gpt,m, q) of the form (6.21), then (i) the coefficients
c
Gpt ,i

must satisfy a number of properties, which we have derived; and (ii)

P (Gpt,m, q) has a real chromatic zero that approaches (1/2)(3+
√

5 ) as one or
more mi → ∞. We have constructed a p = 1 family of planar triangulations
with real zeros that approach 3 from below as m → ∞. A one-parameter
family Fm with jmax = 3 and nonpolynomial λF,j has been studied. We have
also presented results for a number of results for chromatic polynomials of
various two-parameter families of planar triangulations. Implications for the
ground-state entropy of the Potts antiferromagnet are discussed. Our results
are of interest both from the point of view of mathematical graph theory
and statistical physics and further show the fruitful connections between these
fields.
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