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Abstract of the Dissertation 

An Efficient Framework for High-Quality Low-Dose CT Reconstruction 

and Reference-based Image Restoration 

by 

Wei Xu 

Doctor of Philosophy 

in 

Computer Science 

 

Stony Brook University 

2012 

 

    CT imaging procedures have been shown to considerably increase the medical radiation dose 

to patients, giving rise to cancer. As a result, low dose imaging modalities have gained much 

attention recently. However, this renders traditional CT reconstruction processes no longer 

sufficient. Iterative reconstruction algorithms using numerical optimization paradigms are better 

suited, but they suffer from (1) expensive computation, (2) problems with the selection of 

optimal parameters to simultaneously optimize speed and (3) poor reconstruction quality. 

    To cope with these problems, we have made several contributions to low-dose CT. First, we 

have devised a GPU-accelerated ordered subset iterative CT reconstruction algorithm (OS-SIRT) 

with regularization and effective parameter learning. We generalized two algebraic algorithms 

(SIRT, SART) to an ordered subset scheme which balanced the speed of computation and the 

rate of convergence of these algorithms. Second, we mapped the computation to GPUs, 

achieving remarkable performance gains. Third, for high-quality reconstruction, we introduced 

four filters for denoising and streak artifact reduction, i.e., bilateral, trilateral, non-local means 

(NLM) and optimal adaptive NLM, all of which are popular in computer vision. We have used 

these filters within an interleaved CT reconstruction regularization pipeline and found that they 

compare favorably with the traditionally used TVM algorithm. Fourth, to overcome the 

difficulties with optimal parameter tuning within our algorithm and for any parameter-dependent 
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applications, we devised two parameter-learning approaches – exhaustive benchmark testing and 

multi-objective optimization – and allow user interaction via an interactive parameter space 

visualization tool. We then generalized our framework to Electron Tomography. Our fifth 

contribution is a scheme that broadens the low-dose image restoration capability of traditional 

NLM filtering to also include high-dose reference images. We developed two variants. The first 

variant uses a prior scan of the same patient when available. The second variant generalizes this 

concept to a database of images of other patients to learn the reference images. Our experiments 

show that this scheme has vast potential to restore the quality of low-dose CT imagery. 
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Chapter 1  
 

Introduction 
 
1.1    Challenges in Computed Tomography (CT) 

It has been forty whole years since the public announcement of the first 

commercial CT scanner in 1972 [3]. CT is a medical imaging process utilizes 

two-dimensional X-ray images taken around the object to reconstruct the 

volumetric representations of its structures in the form of cross-sectional images. 

CT has been used widely in various medical disciplines to diagnose diseases for 

instance in head, lung, heart and abdomen. In these past years, both the scanner 

and the reconstruction algorithms have been extremely developed, which 

substantially lessen the scanning time, improve the quality of the produced object 

volume and the efficiency of the reconstruction process. The revolutionary 

progress of the techniques makes CT a very convenient means in the hospital for 

the purpose of diagnosis and therapy. 

Recent studies in the US show that from 1993 to 2006 the number of CT 

imaging procedures has increased at an annual rate of over 10%, leading to a 

considerable increase in patient radiation dose [77]. Although CT only amounts to 

about 15% of the total number of radiological imaging procedures, it contributes 

to over 50% of the medical radiation dose to the US population [77]. This has 

 for example, one study suggests that 0.4% of all 

recent cancer deaths can be attributed to CT radiation dose incurred between 1991 

to 1996 [7]. It is due to this growing dose awareness that low-dose CT imaging 

has been gaining considerable momentum recently. Essentially, the strategies 

available to lower CT patient dose are three-fold: (1) reduce the number of CT 
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             (a) FBP 0°-360°                                  (b) FBP ±60°            

 (c) iterative ±60°                          (d) regularized iterative 

exams per procedure or health condition, (2) reduce the number of X-ray 

projections (views) taken per exam, and (3) reduce the amount of X-ray energy 

(kV, mA) expended per projection. More specifically, while a conventional CT 

scan typically has a dose of around 30 mGy, a 25-view low-energy flat panel 

cone-beam scan would reduce the dose by 95%, to around 1.5 mGy.  

    Figure 1.1: Reconstructions of the visible human neck area, coronal cuts. (a) FBP - 360 

projections, 0˚-360˚, (b) FBP - 60 projections, ±60˚, (c) iterative - 60 projections, ±60˚, (d) 

regularized iterative - 60 projections, ±60˚. 

For the wellbeing of the patients, using less dose in the imaging procedure is 

preferable. However, the frugal use of X-ray radiation has its drawbacks. It 

starves the well-established fast and high quality analytical reconstruction 

schemes (such as filtered backprojection (FBP)) from the massive X-ray 

projection data they require, reducing their effectiveness. The realities of low-

dose CT are noisy and sparse X-ray projections, which subsequently lead to 

significant noise and streak artifacts in the reconstructions, obliterating the 

structures of interest. As in Figure 1.1(b), the clear artifact is inevitable when 

reconstructed by FBP. Evidence exists that these adverse conditions are bound to 

usher in a new era in medical CT reconstruction, one in which iterative 
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reconstruction algorithms (such as simultaneous algebraic reconstruction 

technique (SART)) will likely greatly gain in popularity. Iterative schemes 

replace the closed form mathematics of analytical CT reconstruction by numerical 

optimization. Then, via numerical optimization one can effectively exploit the fact 

that medical images offer a great deal of prior knowledge about the objects to be 

reconstructed, lending great prospects to offset the lack of abundant raw data in 

low-dose CT. For example, a much better reconstruction by SART is shown in 

Figure 1.1(c). Despite this promise, it is a sobering fact that numerical 

optimization can be excruciatingly expensive to compute. A number of iterations 

have to be performed to approach the convergence of the optimization, while in 

each iteration a series of forward projections and backprojections are incorporated.  

Beside the speed issue, there are other associated difficulties which are left 

unsolved. With less data available we need to somehow substitute/complement 

the missing information. Although it is clear that CT reconstruction is always an 

ill-posed problem, no matter how much data is obtained [81][47], there is a great 

deal of anatomical knowledge available to guide the reconstruction to the most 

probable solution, yet not excluding the detection of unexpected pathologies. By 

devising a framework that does not reconstruct objects completely uninformed 

from scratch, but incorporates this knowledge as priors into the reconstruction 

procedure (referred as regularization or restoration as shown in Figure 1.1(d)) we 

are bound to gain a good amount of independence from (now) redundant data and 

the radiation that they cause.  

Another issue is to find optimal parameter settings for iterative reconstruction 

algorithms with regularization, so that given arbitrary input datasets we could 

simultaneously optimize speed and reconstruction quality. Due to the fact that 

very few literatures work on this arena, the parameter selection is rather difficult 

without prior knowledge about the dataset and usually ended as an educational 

guess. 

1.2    Contributions 

In order to cope with these problems, we have made several contributions to low-

dose CT: 

First, we have devised a GPU-accelerated ordered subset iterative CT 

reconstruction algorithm (OS-SIRT) with regularization and effective parameter 

learning. We generalized two algebraic algorithms Simultaneous Iterative 

Reconstruction Technique (SIRT) and simultaneous algebraic reconstruction 

technique (SART) by using ordered subsets to balance the speed of computation 

and the rate of convergence of these algorithms.  
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Second, we mapped the computation to the architecture of modern commodity 

graphics hardware (GPUs) so that our iterative algorithms became more efficient 

and in fact achieved remarkable performance gains. Besides, the parameter 

settings were studied in order to obtain smallest reconstruction time. 

Third, to achieve good quality reconstruction comparable to the one using total 

variation minimization as regularization operator, and meanwhile to overcome its 

time consuming iterative nature, we carefully proposed bilateral filter (BLF) to 

OS-SIRT for the purpose of performance-driven. It was shown to have similar (or 

even superior) reconstruction results in most cases while spending much less time.  

Fourth, to gauge the reconstruction quality, beside bilateral we introduced to 

CT three other nonlinear neighborhood filters for denoising and the reduction of 

streak artifacts, i.e. trilateral (TLF), non-local means (NLM) and adaptive non-

local means (ANLM), all of which are popular in computer vision. We have used 

these filters within an interleaved CT reconstruction regularization pipeline and 

found that the group of NLM filters compare favorably for both time and quality 

with the traditionally used total variation minimization (TVM) algorithm.  

Fifth, to overcome the difficulties associated with optimal parameter tuning 

within our regularized iterative algorithm and more generally for any parameter-

dependent applications, we devised two parameter-learning approaches – the 

exhaustive benchmark testing and multi-objective optimization. A parameter 

space visualization tool was also provided to enable interactive parameter learning 

for various datasets.   

Sixth, our framework is very general and we demonstrated it by ways of a 

GPU-accelerated OS-SIRT framework for Electron Tomography (ET) as a 

specific example of low-dose reconstruction under difficult data acquisition 

settings. To conquer the vignetting effect, we devised a limited detector/long 

object compensation scheme. 

Seventh, for more extreme low-dose conditions when too much information is 

missing, we devised a scheme that broadens the low-dose image restoration 

capability of traditional NLM filtering to also include high-dose reference images 

to recover the salient high-quality features back. We developed two variants. The 

first variant uses a prior scan of the same patient when available. A two-step 

restoration framework was proposed including the offline reference preparation 

step and the online denoising step. The second variant generalizes this concept to 

a database of images of other patients to learn the reference images as an extra 

step to the framework of the first variant. A complete image database retrieval 

framework was presented to match the target image. Our experiments show that 

this scheme has vast potential to mitigate the artifacts and restore the quality of 

low-dose CT imagery. 
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1.3    Thesis Outline 

To make it more clear, the overall framework is illustrated in Figure 1.2. In the 

center is the patient CT image which is being operated on by two separate 

corrective image update processes run in iterative alternation: (1) the data-driven 

iterative image reconstruction and (2) the knowledge driven iterative image 

regularization / restoration. Both are controlled by parameters configured by a 

computerized observer-driven parameter optimizer. All of these processes are 

implemented on high-performance commodity parallel computing hardware 

(GPU) to ensure real-time or near real-time image feedback to the clinician. Our 

work was focused on the data-driven correction, knowledge-driven correction and 

parameter optimizer. Then, to demonstrate its generalization, we applied our 

framework to Electron Tomography as a specific example of low-dose CT 

reconstruction. Finally, we extended the image restoration capability of NLM to 

also include the reference image either from prior scan of the same patient, or 

from the database of other patients.  

    The remainder of the dissertation is organized as follows. In chapter 2, we 

briefly review the background and previous work of CT reconstruction algorithms, 

GPU acceleration techniques and the low-dose related works. In chapter 3, we 

present the GPU-accelerated iterative ordered subset reconstruction algorithms as 

the data-driven correction part. For the knowledge-driven correction part, we 

present performance-driven regularization methods for iterative CT using bilateral 

filter in chapter 4 and a more comprehensive study of nonlinear neighborhood 

filters as regularization methods in chapter 5. For the part of parameter optimizer, 

we describe how to learn effective parameter settings for regularized iterative CT 

reconstruction using both exhaustive benchmark study and multi-objective 

optimization in chapter 6 as well as a parameter space visualizer. In chapter 7, the 

application to electron tomography with long object compensation is introduced. 

In chapter 8, the reference based CT image restoration framework using the prior 

scan of the same patient is presented. In chapter 9, we extend the framework to a 

more general database based one where the high-dose references are from other 

patients. Finally, we conclude the dissertation and outline the future research 

work in chapter 10. 



 

6 

 

 
Figure 1.2: The overall framework of the dissertation. 
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Chapter 2  
 

Background 
 
2.1    CT Reconstruction Algorithms 

The CT reconstruction methods could be broadly categorized to two classes: 

analytical algorithms and iterative algorithms. For the analytical algorithms, they 

are based on two solid mathematical principles - the Radon Transform and 

Central Slice Theorem [60]. The most popular methods are Filtered 

backprojection (FBP) [93] for 2D case and Feldkamp filtered backprojection 

(FDK) [40] for 3D case. When the number of the acquired X-ray images around 

the object (called projections) is sufficient, they can generate the exact or quasi-

exact reconstructed results. The simplicity of these methods guarantees efficient 

computation which makes them popular in many clinical applications. 

    For the other category, the iterative methods model the imaging process as a 

linear algebra problem therefore the reconstruction procedure becomes solving an 

equation system [60]. To seek the solution (reconstructed volume), a more 

favorable approach is to perform a numerical optimization process. Started from 

an initial guess, the estimated volume is updated iteratively until the convergence 

is reached when the difference between the acquired measurement (projections) 

and the simulated measurement (projections from the estimated volume) is 

minimized. The iterative methods can be further categorized into projection onto 

convex sets (POCS) algorithms such as SART [2], SIRT [45], and POCS [132] 

and statistical algorithms such as EM [103], OS-EM [50], and MAP [65]). Due to 

its iterative nature, the computation burden of these algorithms is relatively high. 

However, they perform much better when low-dose conditions are met. Besides, it 
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is more convenient to incorporate prior knowledge into the reconstruction 

procedure compared to analytical methods by adding another constraint to the 

optimization function. Considering these benefits, we chose iterative approach to 

code with low-dose CT problems. In chapter 3, a detailed algorithmic description 

of the devised framework has been shown. 

2.2    GPU Acceleration Technique 

The rapid growth in speed and capabilities of programmable commodity graphics 

hardware boards (GPUs) has propelled high performance computing to the 

desktop, spawning applications far beyond those used in interactive computer 

games. High-end graphics boards, such as the NVIDIA GeForce GTX 680, 

featuring 3,090 G Flops and more, are available for less than $500, and their 

performance is consistently growing at a triple of Moore’s law that governs the 

growth of CPUs. Speedups of 1-2 orders of magnitude have been reported by 

many researchers when mapping CPU-based algorithms onto the GPU, in a wide 

variety of domains [145], including medical imaging [1][95][117][114]. These 

impressive gains originate in the highly parallel SIMD (Same Instruction Multiple 

Data) architecture of the GPU and its high-bandwidth memory access. For 

example, the NIVIDIA 8800 GTX has 128 such SIMD pipelines while the most 

recent NVIDIA card, the GTX 680, has 1536 processors (cores). 

It is important to note, however, that the high speedup rates facilitated by GPUs 

do not come easy. They require one to carefully map the target algorithm from the 

single-threaded programming model of the CPU to the multi-threaded SIMD 

programming model of the GPU where each such thread is dedicated to 

computing one element of the (final or intermediate) result vector. Here, special 

attention must be paid to keep all of these pipelines busy. While there are 100s of 

SIMD processors on the GPU, many more threads need to be created to hide data 

fetch latencies. It is important to avoid both thread congestion (too many threads 

waiting for execution) and thread starvation (not enough threads available to hide 

latencies). These conditions are in addition to avoiding possible contingencies in 

local registers and caches that will limit the overall number of threads permitted 

to run simultaneously. For example, in [117], it was shown that a careful mapping 

of Feldkamp’s filtered backprojection algorithm to the GPU yielded a 20× 

speedup over an optimized CPU implementation, enabling cone-beam 

reconstructions of 512
3 

volumes from 360 projections at a rate of 52 projections/s, 

greatly exceeding the data production rates of modern flat-panel X-ray scanners 

that have become popular in fully-3D medical imaging.     
The great performance of GPUs comes from their highly parallel architecture, 

and the vast potential of these boards for general high performance computing has 

given rise to the recent trend of General Purpose Computing on GPUs (GPGPU) 
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[82]. In the past, GPU-programming was only possible via graphics APIs, such as 

CG, GLSL and HDSL, which required programmers to have some background in 

computer graphics. In order to make the hardware more accessible to non-

graphics programmers, a C-like parallel computing programming interface called 

CUDA (Compute Unified Device Architecture) has recently been introduced by 

GPU manufacturer NVIDIA. A similar but more general API called OpenCL has 

also become available. We have used CG, GLSL and CUDA for implementation 

in our works. In this dissertation, we describe our framework with the concept of 

parallel computing while ignoring the details of implementation with specific 

GPU programming languages. 

2.3    Low-dose CT 

Motivated by the need to minimize the radiation exposed to patients, a growing 

number of research efforts have been dedicated to the topic of low-dose CT. 

Lowering the radiation dose can be achieved either by reducing the number of X-

rays, their energy, or both. However, a direct effect of these dose reduction efforts 

are CT images with strong noise artifacts, streaks and reduced feature detail – all 

of which impede image readability in diagnostic tasks. To overcome these 

problems one can either apply iterative reconstruction schemes with the goal of 

optimizing the reconstruction given the limited data [52][101] or one can try to 

reduce the artifacts in the image domain via a suitable image restoration method 

[55].  

    For the latter option, neighborhood filters, in particular the Non-Local Means 

(NLM) filter [4], have shown great promise for the restoration of degraded low-

dose CT imagery [71][122]. Originally devised for general image de-noising tasks, 

NLM is essentially an extended Gaussian filter. It updates a given pixel by 

looking for pixels with statistically similar local neighborhoods in the image and 

then Gaussian-weighs their contributions by the degree of similarity. The extent 

of the search is specified by a search window, while the size of the neighborhood 

used for similarity matching is called a neighborhood patch. A more recent trend 

in CT reconstruction has been to extend the search window beyond the image 

subject to restoration. Schemes have been devised that utilize a prior scan of the 

same patient to search for high-quality updates [55][75][128][135]. While this 

produces excellent results, it does require a prior high-dose scan of the patient 

which may not be available. 

Therefore, using collections of images to reduce noise is explored. There are in 

fact two rather disjoint schools of thought, and both aim to cope with the 

extremely large space of possible image detail. The first approach first constructs 

a large-scale database of possible detail at some level and then uses a 

sophisticated matching strategy to retrieve the detail of interest from this database 
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[48]. The other approach is based on sparse coding. It first constructs a dictionary 

of representative base patterns which must then be optimally combined for 

reproducing the desired detail of interest [32]. While the first approach is a top-

down search, the second is bottom-up. Both strategies can be justified by theories 

on how humans perform visual search, which likely is a conjunction of both [51]. 
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Chapter 3    
 

GPU-Accelerated Ordered Subset 

Iterative CT Reconstruction 

Algorithms (OS-SIRT) 
 
Expectation Maximization (EM) and the Simultaneous Iterative Reconstruction 

Technique (SIRT) are two iterative computed tomography reconstruction 

algorithms often used when the data contain a high amount of statistical noise, 

have been acquired from a limited angular range, or have a limited number of 

views. A popular mechanism to increase the rate of convergence of these types of 

algorithms has been to perform the correctional updates within subsets of the 

projection data. This has given rise to the method of Ordered Subsets EM (OS-

EM) and the Simultaneous Algebraic Reconstruction Technique (SART). 

Commodity graphics hardware (GPUs) has shown great promise to combat the 

high computational demands incurred by iterative reconstruction algorithms. 

However, we find that the special architecture and programming model of GPUs 

add extra constraints on the real-time performance of ordered subsets algorithms, 

counteracting the speedup benefits of smaller subsets observed on CPUs. This 

gives rise to new relationships governing the optimal number of subsets as well as 

relaxation factor settings for obtaining the smallest wall-clock time for 

reconstruction – a factor that is likely application-dependent. Finally, while we 

restrict our study to the behavior of algebraic reconstruction algorithms, similar 

trends will be observed with EM as well. 
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3.1    Introduction  

The rapid growth in speed and capabilities of programmable commodity graphics 

hardware boards (GPUs) has announced the generation of General Purpose GPU 

(GPGPU) showing its wide application for general computation tasks. It is 

important to note, however, that the high speedup rates facilitated by GPUs do not 

come easy. They require one to carefully map the target algorithm from the 

single-threaded programming model of the CPU to the multi-threaded SIMD 

programming model of the GPU.  

The compute-intensive nature of iterative reconstruction algorithms motivated 

their acceleration via commodity graphics hardware early on, first using graphics 

workstations [80], and later GPU boards [115]. We now refine these works by 

analyzing the acceleration of iterative reconstruction algorithms more closely in 

terms of the underlying GPU programming model and architecture. Iterative 

algorithms are different from analytical algorithms in that they require frequent 

synchronization which interrupts the stream of data, requires context switches, 

and limits the number of threads available for thread management. Iterative 

algorithms, such as Expectation Maximization (EM) [103] or the Simultaneous 

Iterative Reconstruction Technique (SIRT) [45] consist of three phases, executed 

in an iterative fashion: (1) projection of the object estimate, (2) correction factor 

computation (the updates), and (3) backprojection of the object estimate updates. 

Each phase requires a separate pass. Flexibility comes from the concept of 

ordered subsets, which have been originally devised mostly because they 

accelerated convergence. The projection data is divided into groups, the subsets, 

and the data within each of these groups undergo each of the three phases 

simultaneously. Here, it was found that the larger the number of subsets (that is, 

the smaller the groups) the faster is typically the convergence, but adversely also 

the higher the noise since there is more potential for over-correction. In EM, the 

method of Ordered Subsets (OS-EM) has become widely popular. OS-EM 

conceptually allows for any number of subsets, but the limit with respect to noise 

has been noted already in the original work by Hudson and Larkin [50]. For the 

algebraic scheme, embodied by SIRT, the Simultaneous Algebraic Reconstruction 

Technique (SART) [2] is also an OS scheme, but with each set only consisting of 

a single projection. In SART, the over-correction noise is kept low by scaling the 

updates by a relaxation factor <1. Block-iterative schemes for algebraic 

techniques have been proposed as well [11]. In fact, the original ART [46] is the 

algorithm with the smallest subset size possible: a single data point (that is, ray or 

projection pixel).  

It is well known that SART converges much faster than SIRT, and a well-

chosen can overcome the problems with streak artifacts and reconstruction 
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noise, allowing it produce good reconstruction results [1]. On the CPU, faster rate 

of convergence is directly related to faster time performance. But, as we 

previously demonstrated [118], when it comes to acceleration on a streaming 

architecture such as the GPU, SART is not the fastest algorithm in terms of time 

performance. In fact, the time performance is inversely related to the number of 

subsets, making SIRT the faster scheme. This is due to the overhead incurred by 

the frequent context switching when repeatedly moving through the three iterative 

phases: projection, correction, and backprojection. In the same work, we also 

demonstrated that specific subset sizes can optimize both reconstruction quality 

and performance. However, the influence of the relaxation factor had not been 

considered in these experiments.  

In this chapter we first introduce the fundamental module of our framework – 

OS-SIRT algorithm and then complete the study of [118]. We also investigate the 

role of on GPU reconstruction speed performance, in relation to subset size. 

Here we find that an optimal choice of can have a great impact. Despite the fact 

that SART is slower than SIRT per iteration, an optimized setting can reduce 

the number of required iterations for convergence to a greater extent than the 

extra per-iteration cost incurred by GPU data streaming and context switching. 

This reinstates SART and the lower subset versions of SIRT as the fastest 

iterative CT reconstruction schemes also on GPUs.   

We shall note, however, that the optimal setting is likely application dependent, 

which is not unique to the GPU setting alone.  Here we make the reasonable 

assumption that a certain application will always incur similar types of data and 

thus an optimal parameter setting, once found, will likely be close to optimal for 

all data within that application setting. In that sense, our aim is not to provide 

optimal subset and relaxation factor settings for all types of data, but rather to 

raise awareness to this phenomenon and offer an explanation.  

This chapter is structured as follows. First, in Section 3.2, we discuss iterative 

algorithms in the context of ordered subsets, present a generalization of SIRT to 

OS-SIRT, and describe their acceleration on the GPU. Then, in Section 3.3, we 

study the impacts of both subset size and relaxation factor on GPU reconstruction 

performance and present the results of our studies. Finally, Section 3.4 ends with 

conclusions.  

3.2    Accelerating Iterative Reconstructions on 

GPUs 

In the following discussion, we have only considered algebraic reconstruction 

algorithms (SART, SIRT), but our arguments and conclusions readily extend to 
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expectation maximization (EM) algorithms as well since they are very similar 

with respect to their mapping to GPUs [115].  

3.2.1    Iterative Algebraic Reconstruction: 

Decomposition into Subsets  

Most iterative CT techniques use a projection operator to model the underlying 

image generation process at a certain viewing configuration (angle) φ. The result 

of this projection simulation is then compared to the acquired image obtained at 

the same viewing configuration. If scattering or diffraction effects are ignored, the 

modeling consists of tracing a straight ray ri from each image element (pixel) and 

summing the contributions of the (reconstruction) volume elements (voxels) vj. 

Here, the weight factor wij determines the contribution of a vj to ri and is given by 

the interpolation kernel used for sampling the volume. The projection operator is 

given as:  

 

where M and N are the number of rays (one per pixel) and voxels, respectively. 

Since GPUs are heavily optimized for computing and less for memory bandwidth, 
computing the wij on the fly, via bilinear interpolation, is by far more efficient 

than storing the weights in memory. The correction update for projection-based 

algebraic methods is computed with the following equation: 
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We have written this equation as a generalization of the original SART and SIRT 

equations to support any number of subsets. Here, the pi are the pixels in the M/S 

acquired images that form a specific (ordered) subset OSs where 1  s  S and S is 

the number of subsets. The factor  is the relaxation factor, as mentioned above, 

which will be subject to optimization. The factor k is the iteration count, where k 

is incremented each time all M projections have been processed. In essence, all 

voxels vj on the path of a ray ri are updated (corrected) by the difference of the 

projection ray ri and the acquired pixel pi, where this correction factor is first 

normalized by the sum of weights encountered by the (back-projection) ray ri. 

Since a number of back-projection rays will update a given vj, these corrections 
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need also be normalized by the sum of (correction) weights. For SIRT, these 

normalization weights are trivial.     

3.2.2    GPU-Accelerated Reconstruction: Threads and 

Passes   

The NVIDIA 8800 GTX board has 128 generalized SIMD processors. Up to very 

recently, the only way to interface with GPU hardware was via a suitable graphics 

API, such as OpenGL or DirectX, and using CG [FK03] (or GLSL or HLSL) for 

coding shader programs to be loaded and run on the SIMD fragment processors. 

With the introduction of a new API, CUDA (Compute Unified Device 

Architecture) [143], the GPU can now directly be perceived as a multi-processor. 

With CUDA, the CG fragments become the CUDA (SIMD) computing threads 

and the shader programs become the computing kernels. With the CUDA 

specifications, much more information about the overall GPU architecture is now 

available, which helps programmers to fine-tune thread and memory management 

to optimize performance, viewing GPUs as the multi-processor architecture it 

really is. Reflecting this GPGPU trend, new GPU platforms have now become 

available that do not even have graphics display capabilities, such as the NVIDIA 

Tesla board. Although we used GLSL shaders to obtain the results presented in 

this chapter, similar symptoms also occur in CUDA where synchronization 

operations have to be formally called to finish executions of all threads within a 

thread block to resume the pipeline. After all, the underlying hardware and its 

architecture remain the same, just the API is different.  

A number of papers [115][117] have described in great detail how projection 

and backprojection operations (phases 1 and 3) can be efficiently performed on 

the GPU. Since the subject is mainly the impact of the iterative update schedule 

on the management of computing threads, we shall express all operations in that 

context, neglecting the API used for implementation (CG or CUDA). In this work, 

the 3D object estimate is stored as a stack of slices (2D arrays). For projection a 

thread is spawned for each target pixel, interpolating the slices according to the 

projective viewing transform. For backprojection a thread is spawned for each 

target voxel and projection image, interpolating the projection images according 

to the (same) projective viewing transform. The computation of the correction 

factors and the normalizations are simple vector operations.   

The GPU memory model differentiates itself significantly from its CPU 

counterpart, posing greater restrictions on memory access operations in order to 

reduce latency and increase bandwidth. Here not only registers and local memory 

are reduced or even completely eliminated – the global memory also allows only 

read instructions during the computation. Further, the write operator can be 
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executed only at the end of a computation, when the thread (or fragment) is 

released from the pipeline, to be blended with the target. Therefore, in general-

purpose computing using GPUs, computations are triggered by initializing a 

“pass”. A pass includes setting up the computation region and attaching a kernel 

program to simultaneously apply specific operations on every thread generated. 

The data is then streamed into the pipeline, where the modification can be done 

only at the end of the pass. Cycles and loops within a program can be 

implemented either inside the kernel or by running multiple passes. The former is 

generally faster since evoking a rendering pass and storing intermediate results in 

memory are costly, but there exists a register count limit in the current hardware 

which prevents unconstrained use of loops in the kernel.   

3.2.3    Ordered Subsets: GPU-Accelerated 

Reconstruction from Projections 

Having described the relevant elements of the underlying GPU hardware we are 

now ready to describe their impact in the context of subsets. Equation 3.2 above 

described the generalization of algebraic reconstruction into an OS configuration. 

What is left to define is how the subsets OSs are composed and how  is chosen 

for given number of subsets S. As specified above, OSs is the set of projections 

contained in each subset, to be used in a pair of simultaneous forward projections 

and simultaneous backward projections. In our application, each subset has the 

same number of projections, that is |OSs|=|OS|, which is typical. Thus, the total 

number of projections is M = |OS|·S. The traditional way of filling a certain subset 

OSs is to select projections whose indices m (1  m  M) satisfy m mod S = s. 

This is what has been adopted in OS-EM. In contrast, we use a randomized 

approach to fill the subsets, which we find yields better results than the regular 

subset population approach. For this, we simply generate a projection index list in 

random order and sequentially divide this list into S subsets.  

    In [118] we proposed the following linear equation for the relaxation factor  to 

be used for an arbitrary S, setting  =1 for SIRT and  = SART = 0.1 for SART: 

1
( 1)( ) 1         1

1
SART

S
S N

N
 


    

  
(3.3) 

This scheme sought to balance the smoothing effect achieved by the application 

of a larger set of simultaneous projections (employed in SIRT) with that obtained 

by a lower relaxation factor (when a smaller set of projections is applied with 

SART or SIRT with smaller subsets). That is, the lesser projections in a subset, 

the lower the .  
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    In our current work, we collected results for all possible integer-subsets, each 

for a representative set of -levels, to produce a more accurate (S) function than 

the linear function in (3). In the following, we shall call the first scheme the linear 
-selection scheme, and the second method the optimal -selection scheme. 

    In general, the number of subsets has the following impact on GPU-

performance per iteration. In the projection phase, each (pixel) thread computes 

its entry point, exit point, and ray direction vector (or it looks these up from a 

texture) and interpolates the slices in SIMD lock step. So, when the size of the 

subset increases (the OSs projections), more threads are being spawned. In the 

backprojection, each voxel (thread) computes its mapping to all OSs projections 

and interpolates its updates. Having a greater number of projections in the set 

makes the kernel program longer and increases its efficiency. This is in addition 

to the reduction of the number of context switches as OSs increases. The above are 

the main reasons for the lower speed of single iterations with SART or large-OS 

SIRT, over single iterations with basic SIRT or low-OS SIRT. The results we 

obtained will show, however, that these extra costs incurred by SART and large-

OS SIRT are more than compensated by the faster convergence rates they can 

achieve, given proper settings. 

3.3    Experiments and Results 

All our experiments were conducted on an NVIDIA 8800GTX GPU, programmed 

with GLSL. For the first set of experiments we used the 2D Barbara test image to 

evaluate the performance of the different reconstruction schemes described above. 

We used this image, popular in the image processing literature, since it has 

several coherent regions with high-frequency detail, which present a well 

observable test for the fidelity of a given reconstruction scheme. The target 2D 

image is obtained by cropping the original image to an area of 256×256 pixels 

resolution. We obtained 180 projections at uniform angular spacing of [-90˚, +90˚] 

in a parallel projection viewing geometry. We also simulated a limited-angle 

scenario, where iterative algorithms are often employed. Here, we produced 140 

projections in the interval [-70˚, +70˚]. All reconstructions used linear 

interpolation. 

    We will use the cross-correlation coefficient (CC) as the metric to measure the 

degree of similarity between the original image and its reconstruction: 
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Original SIRT OS SIRT 10 

# iterations 87 47 

   
OS SIRT 20 OS SIRT 60 SART 

32 15 6 

 

where j counts the number of image pixels, rj and oj are pixels in the 

reconstruction and original image, respectively, and the  factors are their mean 

values.  

Figure 3.1: (upper) Time per iteration (in seconds) as a function of number of subsets; (lower) 

Reconstructions obtained with the linear selection schedule for various subset sizes for a fixed 

CC=0.95 and 180 projections in an angular range of 180˚. We observe that OS SIRT with 10 

subsets of 18 projections each reaches this fixed CC value 12% faster than SIRT and 50% faster 

than SART. 

We shall now explore if there is an optimum in terms of the number of subsets. 

Such an optimal subset size could then be used to generate the best reconstruction 

in the smallest amount of (wall-clock) time. First, we evaluated the time per 

iteration for each configuration. Figure 3.1(upper) plots the time per iteration for 

each subset configuration, for the full-angle case of 180 projections. We observe a 
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roughly linear relationship between the number of subsets and the time per 

iteration, with SIRT requiring the smallest and SART the longest time (about 5 

times more than SIRT which is significant). This was to be expected given the 

arguments provided above. 

However, in practice we are not interested in time per iteration but in time for 

convergence. Next, we test the two strategies presented (the linear and the optimal 

-selection schemes) to choose the relaxation factor  for each possible integer-

subset configuration.  

Figure 3.1(lower) shows the reconstruction results obtained with the linear -

selection schemes, for a fixed CC (comparing reconstruction with the original) 

which means that all reconstructed images are nearly identical to each other (in 

terms of statistical error). We observe that the smaller the number of subsets, the 

greater the number of iterations that are required to reach the set convergence 

threshold. We measured that with the linear -selection scheme SART on the 

GPU takes nearly twice as long as SIRT and using 10 subsets (5 for the limited 

angle case with fewer projections) achieves the best timing performance 

compared to the other subset configurations. For a CPU implementation, where 

the wall clock time is directly related to the number of iterations, SIRT would be 

roughly 87/6=14 times slower than SART. However, due to the mentioned 

overhead involved in the GPU-based framework, different wall-clock times are 

produced with a GPU implementation and the ratio is not that severe. 

We next evaluate the optimal -selection scheme. Figure 3.2(upper) shows the 

plot of the optimal found for each subset configuration for a CC=0.95. We 

observe that the relationship is far from linear, with  being relatively stable at 

around 0.95 until OS=45 and then falling off to around 0.6 for SART. Thus, the 

linear curve underestimates  most of the time, leading to unnecessarily small 

corrective updates. Figure 3.2(lower) shows the corresponding reconstruction 

results for the Barbara dataset. We see that SART now is the fastest algorithm, 

roughly 20 times faster than SIRT.  

Figures 3.3 (a) and (b) compare the reconstruction quality vs. wall clock time 

for both -schedules, respectively. We clearly observe that SIRT behaves very 

similarly, due to the similar -factor chosen, while the other subsets converge 

much more expediently for the optimal selection scheme, with SART reaching 

convergence after just one iteration, closely followed by OS-SIRT 60.  
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Original SIRT OS-SIRT 10 

# Iterations 95 10 

   
OS-SIRT 20 OS-SIRT 60 SART 

5 2 1 

 

    Figure 3.2: (upper) Optimal relaxation factor  as a function of number of subsets for the 

optimal selection scheme; (lower) Reconstructions with the optimized selection scheme 

obtained with various subset sizes for a fixed CC=0.95 and 180 projections in an angular range of 

180˚. We observe that now the number of subsets is directly related to wall clock computation 

time, with SART being the fastest.   
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    (a)                                                               (b) 
Figure 3.3: (a) CC vs. wall clock time for the linear -selection scheme. We observe that OS-

SIRT achieves the reconstruction in the smallest amount of time, within our GPU-accelerated 

framework; (b) CC vs. wall clock time for the optimized -selection scheme. We observe that now 

OS-SART achieves the reconstruction it in the smallest amount of time, with a clear ordering from 

small subsets to larger ones.  

 

Figure 3.4: Line profiles of the image background for SART, SIRT, and the original Barbara 

image. 
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    The tendency of SART to produce reconstructions noisier than the original and 

that of SIRT to produce reconstructions smoother than the original is also 

demonstrated in Figure 3.4, where we show the renditions of a line profile across 

another area of the Barbara image (only for the original image and reconstructions 

with SART and SIRT). 

    We also studied a medical dataset, a slice of a baby head of size 256
2
. To assess 

the error we used the R-factor: 
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where the SO and SC are the acquired and simulated sinograms, respectively. The 

R-factor is more practical for real reconstruction scenarios because it measures 

convergence based on the acquired data and not the (typically unavailable) object. 

All reconstructions were stopped once an R-factor of 0.007 was reached.  

Figure 3.5 shows the results obtained with the linear selection framework. 

We observe that OS-SIRT with 10 subsets of 18 projections each reaches the 

preset R-factor 26% faster than SIRT and 86% faster than SART.  

Figure 3.6 shows the reconstruction results of the baby head obtained with the 

optimized selection scheme (shown above the table) from 180 projections in an 

angular range of 180˚. We see that OS-SIRT with 20 subsets is fastest in this case. 

We also note that the time is about 7 times faster than with the linear selection 

scheme since the optimal -factor is higher. Finally, Figure 3.7 presents 

reconstructions of the baby head from a limited set of 64 projections in an angular 

range of 180˚ again using the optimized selection scheme  We observe that OS-

SIRT with 16 subsets is the fastest in this case. The reconstruction time is close to 

a mere 10
th

 of a second which demonstrates the capability of GPUs to also 

facilitate iterative reconstructions in interactive modes (10 frames/s). 
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Original SIRT OS-SIRT 3 

# Iterations 100 85 

   
OS-SIRT 10 OS-SIRT 60 SART 

54 16 6 

 Figure 3.5: Reconstructed baby head using high-quality simulated projection data of the volume 

labeled ‘Original’. Results were obtained with the linear selection scheme with various subset 

sizes for a fixed R-factor = 0.007 and 180 projections in an angular range of 180˚. OS-SIRT with 

10 subsets of 18 projections each reaches this set R-factor value 26% faster than SIRT and 86% 

faster than SART. 

 

 

    Figure 3.6: Reconstructed one slice of baby head using high-quality simulated projection data 

of the volume labeled ‘Original’. Results were obtained with the optimized selection scheme 

with various subset sizes for a fixed R-factor = 0.007 and 180 projections in an angular range of 

180˚. OS-SIRT with 20 subsets of 9 projections each is the fastest in this case. It reaches this set 

R-factor value 91% faster than SIRT and 72% faster than SART. 
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Figure 3.7: Reconstructed one slice of baby head using high-quality simulated projection data 

of the volume labeled ‘Original’. Results were obtained with the optimized selection scheme 

with various subset sizes for a fixed R-factor = 0.007 and 64 projections in an angular range of 

180˚. OS-SIRT with 16 subsets of 4 projections each is the fastest in this case. It reaches this set 

R-factor value 84% faster than SIRT and 56% faster than SART. 

3.4    Conclusions 

We have shown that iterative reconstruction methods used in medical imaging, 

such as EM or SIRT, have special properties when it comes to their acceleration 

on GPUs. While splitting the data used within each iterative update into a larger 

number of smaller subsets has long been known to offer greater convergence and 

computation speed on the CPU, it can be vastly slower on the GPU. This is a 

direct consequence of the thread fill rate in the projection and backprojection 

phase. Larger subsets spawn a greater number of threads, which keeps the 

pipelines busier and also reduces the latencies incurred by a greater number of 

passes and context switches. This is different from the behavior on CPUs where 

this decomposition is less relevant in terms of computation overhead per iteration.  

    We have also shown that these effects can be mitigated by optimizing the 

relaxation factor  restoring the theoretical advantage of data decompositions 

into smaller ordered subsets. In this chapter we were mainly concerned with 

demonstrating that the poor per-iteration GPU performance for iterative CT with 

small subsets (in the limit SART) can be compensated for by choosing an 

appropriate -factor for the reconstruction. This leads to fast convergence of the 

small subset methods and thus provides a good amortization of the high per-

iteration cost.  

    The question now remains how one chooses such an optimal -value in a 

practical setting. While this was not the topic of this chapter, preliminary results 

have shown that the optimal number of subsets seems to vary depending on the 

domain application, the general reconstruction scenario, and also the level of 
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noise present in the data. Thus, in order to identify the optimal subset number, as 

well as , for a new application setting and noise level, to be used later for 

repeated reconstructions within these scenarios, one may simply run a series of 

experiments with different numbers of subsets and -settings, and then use the 

setting combination with the shortest wall clock time required for the desired 

reconstruction quality. In fact, such strategies are typical for GPU-accelerated 

general-purpose computing applications (GPGPU). For example, the GPU bench 

was designed to run a vast benchmark suite [146] to determine the capabilities of 

the tested hardware. In chapter 6, we will present the study of parameter setting 

related to the noise level. 

    We also believe that our findings with SIRT readily extend to EM since the two 

methods have, as far as the computations are concerned, similar operations and 

overhead. Finally, although we have used GLSL shaders to obtain the results 

presented, similar symptoms also occur in CUDA where synchronization 

operations have to be formally called to finish executions of all threads within a 

thread block to resume the pipeline. In general, the underlying hardware, its 

architecture, and the overall thread management remain the same – just the API is 

different, enabling a tighter control over the threads and also memory. As future 

work, the reported effects to a more detailed extent in CUDA could be studied, to 

determine if a shift in the performance-optimal subset configuration occurs. But in 

fact, this is likely to happen for every new generation of the hardware. 
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Chapter 4  
 

Bilateral Regularized OS-SIRT 

 
Iterative reconstruction algorithms can produce better reconstructions from few 

views and in the presence of significant noise than analytical algorithms. In this 

chapter we move forward to seek for even improved quality by incorporating the 

regularization into the reconstruction. We focus on the particularities associated 

with the GPU acceleration of it. Specifically, we not only focus on reconstruction 

speed but also on reconstruction quality which reveals a number of important 

interaction effects and trade-offs. To obtain this insight, we use exhaustive 

benchmark tests to determine the optimal settings of the various parameters 

associated with the algorithm, here OS-SIRT. The same mindset we also apply in 

the selection of the most GPU-amenable regularization mechanism, where we 

compare the traditionally used TVM filter with the less frequently used bilateral 

filter, which we find to be a viable and cost-effective means for regularization. 

4.1    Introduction  

Iterative reconstruction methods have gathered significant interest in recent years 

since they can cope well with limited projection sets and noisy data. These 

scenarios occur most often in low-dose CT, where one seeks to either limit the 

dose per projection, or the number of projections overall, or both.  Low dose CT 

has been a response to growing concern about the high radiation dose delivered to 

a patient in multi-slice X-ray CT, but the noise associated with reduced radiation 

dose decreases SNR and the few-view scenario can lead to prominent streak 

artifacts in the reconstruction. Both can obliterate the features of interest and 

generally make the CT image hard to read. While exact or approximate exact CT 
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reconstruction methods do not work well under these conditions, iterative 

methods can produce acceptable results. These methods, however, suffer from 

high computational effort, which has prevented a deployment in routine clinical 

applications so far as these computational demands cannot be met by reasonable 

CPU-based platforms. 

    High-performance graphics chips (GPUs) are poised to provide a breakthrough 

in this problem as we introduced in last chapter. In this chapter we specifically 

address the acceleration of iterative optimization algorithms for the purpose of 

low-dose CT with reduced sets of noisy projections. Our framework alternates 

projection-space prediction-correction with object-space regularization. The 

former ensures adherence of the solution to the data, while the latter seeks to drive 

the former to a more plausible solution. Our prominent aim is to make this 

procedure amenable to GPU-acceleration.  

4.2    Related Work 

We chose the algebraic reconstruction method OS-SIRT as the predictor-corrector 

method. In this scheme SIRT and SART form two extremes, with SIRT having 

just one and SART having M subsets (M being the number of projections). We 

showed that while on the CPU there is little difference in the running time per 

iteration, on the GPU an iteration with SART is typically the slowest, due to the 

many projection-backprojection context switches which disturb parallelism and 

data flow. This has significant implications for the overall reconstruction wall 

clock time, where SART, in the noise-free case, is no longer the fastest method 

(which it is on the CPU). This effect has also been observed by other authors [57], 

but there the focus was solely on reconstruction speed. In contrast, we have found, 

in the present work, that once reconstruction quality is considered as well, these 

relationships are altered and SART becomes more competitive again. In addition 

to this insight, we also address the issue of noise, and revisit GPU OS-SIRT under 

these new circumstances.  

    For few-view, limited-angle, and noisy projection scenarios, the application of 

regularization operators between reconstruction iterations seeks to tune the final 

or intermediate results to some a-priori model. A simple regularization scheme is 

to enforce positivity. In [97], the method of total variation (TV) was proposed for 

additional regularization (in conjunction with POCS reconstruction). TV 

minimization (TVM) has the effect of flattening the density profile in local 

neighborhoods and thus is well suited for noise and streak artifact reduction. 

Based on the assumption of a relatively sparse gradient object, the method has 

been shown to work quite well under a variety imperfect imaging situations, yet 

this assumption may not be realistic in general. In computer vision, two prominent 

TV models are frequently used, that is, the ROF model and the TV-L
1
 model [86]. 
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A number of variational algorithms have been designed as a minimizer of the 

energy functional of the models. They are mainly based on solving the associated 

Euler Lagrange differential equation with optimization techniques. These methods 

are well suited for the removal of noise and other unwanted fine scale details 

while preserving edges. However, in the context of high performance computing, 

due to its iterative procedure TVM is quite time-consuming, even when 

accelerated on GPUs.  

4.3    Methodology 

4.3.1    Bilateral Filter 

We aim to devise a method that is not iterative but has the same goals as TVM, 

that is, the reduction of local variations (noise, streaks) while preserving coherent 

local features. The bilateral filter [107] is such a method. It combines a range 

filter with a domain filter, giving rise to a non-linear filter designed for edge-

preserving smoothing. When based on the Gaussian function, two parameters are 

required, σr and σd, to control the weight of each filter. We then compare this filter 

with a TVM method [10] to explore its performance under different scenarios. 

    The bilateral filter non-linearly averages similar and nearby pixels values. To 

achieve effective and efficient computation, the averaging only occurs inside a 

fixed window area. It consists of two filter components, the domain filter and the 

range filter:   
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Here, W is the window centered at x,  and x represent the spatial variables, f is 

the input image, and c and s are the measured closeness and pixel value similarity, 

respectively. The geometric closeness function acts as the domain filter 

controlling the contribution according to spatial distance, while the pixel value 

similarity function acts as a range filter generating very low weights for dissimilar 

pixel values. Normalization forces the sum of pixel weights to 1. In our work, we 

model the closeness and similarity functions as Gaussians: 
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where σr and σd control the amount of smoothing.  

    The implementation of GPU-accelerated bilateral filtering is as follows. The 

rendering target is a texture of the size of the reconstructed image, with image 

texture and other parameters (size of image, σr, σd, etc.) passed into the GPU. We 



 

29 

 

avoid the expensive evaluation of the exponential function by pre-computing both 

closeness and similarity functions and storing them into two 1-D lookup textures. 

We implemented bilateral filtering both in 2D and 3D. 

4.3.2    Total Variation Minimization (TVM) 

We also implemented a TVM algorithm [10] to compare it with our bilateral filter 

framework. The TVM solution is obtained by minimizing the following energy 

functional: 
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where Ω is the image domain, x is the spatial variable, f is the input image, u is the 

sought-after solution and  is a parameter controlling the level of smoothing. The 

TV of u is: 
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In this equation, x and y are the horizontal and vertical coordinates, respectively. 

The minimization is transformed to its dual formulation, and a semi-implicit 

gradient descent algorithm is used to compute the nonlinear projection off. The 

solution u is then obtained after convergence, with τ set to some value constraint: 
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Here, div is the divergence. In practice, when τ ≤ 1/4 the algorithm converges. 

4.3.3    Regularized OS-SIRT 

In our new regularized OS-SIRT, bilateral filtering is applied after each iteration 

(after backprojecting all subsets). This removes artifacts at the very beginning 

when the errors are just generated and thus steers the reconstruction towards more 

plausible and favorable solution regions. Since the target texture (to be filtered) is 

already in GPU memory, this operation does not require any expensive texture 

upload/download operations between the CPU and GPU.  

4.4    Results 

Our experiments were conducted on an NVIDIA GTX 280 GPU, programmed 

with GLSL and an Intel Core 2 Quad CPU @ 2.66GHz and 2.67GHz. We group 
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our results into two sections: (1) the OS-SIRT results showing the relationship 

between noise levels and parameters settings, and (2) the performance of our 

GPU-accelerated bilateral filter using both Cg and CUDA and the reconstruction 

results using bilateral filter and total variation minimization. 

4.4.1    OS-SIRT with Noisy Data 

We used the 2D Baby Head test image (size 256
2
) to evaluate the performance of 

the different reconstruction schemes. We obtained 180 projections at uniform 

angular spacing of [-90˚, +90˚] in a parallel projection viewing geometry. We then 

added different levels of Gaussian noise to the projection data to obtain SNRs of 

15, 10, 5, and 1. Figure 4.1 presents the best reconstruction results (using the 

correlation coefficient CC between original and reconstructed image), for each 

SNR, at the smallest wall-clock time. 

 
Figure 4.1: Reconstructions obtained with different SNR levels for the Baby head test image. 

    The optimal parameter settings we learned through exhaustive benchmark tests 

greatly depend on the particular imaging situation at hand, such as SNR, total 

number of projections and their angular range, the imaged object, scanner, etc. 

Figure 4.2 presents results on the influence of SNR. The plot gives quantifying 

hints on how to pick the best-performing number of subsets and the associated λ 

(to obtain the best possible quality within the smallest time), for each expected 

SNR level. For example, we observe that low SNR requires a low number of 

subsets to gain more smoothing in the reconstruction process. As for the 

relaxation factor λ, it is related to both subset number and noise level. For each 
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noise level, the curve of λ is approximately piece-wise linear with a turning point 

at some subset number. For example, the λ values for SNR 10 are 1 from subset 

number of 1 to 60, then decreasing until hitting the lowest value of 0.4 at subset 

number of 180. This is a strong departure from the linear model used on [118] – a 

higher λ will lead to faster convergence and confirmed by our exhaustive 

benchmark tests we know it also leads to more accurate results.  

 
Figure 4.2: Best performaing (both in terms of time and image quality) subset number and 

relaxation factor as a function of imaging condition, here SNR. 

 
Table 4.1: Wall clock time (in s) of GPU vs. CPU bilateral filter. 
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4.4.2    Bilateral Filter Regularized OS-SIRT 

We tested the speed of both 2D and 3D bilateral filters with different sizes of 

images and windows on both CPU and GPU (using Cg). Table 4.1 shows that 

speedups of more than two orders of magnitude can be obtained by using the GPU. 

For 2D images, we also implemented a CUDA version of our scheme. 

 

Figure 4.3: Comparison of bilateral filter for the noise-free, few-view case. 

 

 

Figure 4.4: Comparison of bilateral filter for the noise (SNR=10), few-view case. 
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    To gauge the performance of the regularized reconstruction for both the few-

view and the noise (SNR=10) scenario, we used the NIH Visible Human dataset 

at 512
3
 resolution. We ran SART with 8 iterations for the noise-free few-view 

case. The filter window size was fixed to 11. Figure 4.3 shows one slice of the 

reconstructed volume with and without filtering, respectively, for reconstructions 

from 90, 60, and 30 views. We notice that SART is already well suited for the 

few-view reconstruction. For the regularized reconstructions we tested a number 

of combinations of representative σr and σd and selected the best results. In 

particular the 30-view reconstruction shows prominent streaking artifacts, which 

can be avoided by intermediate bilateral filter regularization. 

    Figure 4.4 shows the results for the noisy few-view case, after 5 iterations. Like 

in the noise-less case we observe that the salient features are well preserved in 

both size and shape. Finally, Table 4.2 lists the GPU-accelerated reconstruction 

time required for one SART iteration, for the Visible Human dataset at 512
3
 

resolution for both 180 and 30 projections. The 1-ch time uses only the R-channel 

of the GPU hardware, while the 4-ch time uses all 4 (RGBA) channels in parallel. 

Using 4 channels yields a 2.5-fold speedup, while regularization with bilateral 

filtering (BF) adds only a moderate time overhead. Note here we choose SART 

which is the slowest algorithm to show the lower bound of the time performance 

of the OS-SIRT family. 

#proj 1-ch 1-ch w/ BF 4-ch 4-ch w/ BF 

180 91.81 94.96 34.79 34.94 
30 21.94 25.69 9.21 10.12 

Table 4.2: Time for one GPU-acceleration SART iteration (512
3
 volume). The 1-ch and 4-ch 

accelerate the reconstruction with 1 (R) or 4 (RGBA) color channels, respectively. A NVIDIA 

GTX 280 GPU was used. 

4.4.3    Bilateral Filter vs. Total Variation Minimization 

We tested the same slice with identical settings for both the few-view (30 

projections) and the noisy few-view (30 projections and SNR=10) case and show 

the results in Figure 4.5. 

    We observe that for the noise-free case, bilateral filtering achieves similar 

results than TVM (maybe even slightly better). However, TVM works better for 

the noisy case. This is not surprising since for TVM the energy functional 

imposes a constraint over the image, while bilateral filtering just averages the 

neighboring values which cannot eliminate all noise for higher noise levels. 

Nevertheless, both successfully preserve salient features and remove noise and 

streaking artifacts. 
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Figure 4.5: Bilateral filtering vs. TVM: (first two rows): the noise-free few-view case; (last 

two rows): the noisy (SNR=10) few-view case. 

From the perspective of high performance computing, the bilateral filter is a 

better choice. Table 4.1 shows that the computation time is less than 1s. Althou-

gh a GPU-accelerated version of TVM exists [86], once the parameter  grows 

larger, which is needed for very noisy data, the computation time (usually >> 1s) 

is still far greater than with the bilateral filter.  

4.5    Conclusions 

We have demonstrated that careful parameter-tuning taking into account 

reconstruction quality results in better speed performance. This is particularly true 

for ordered subsets approaches in the presence of adverse data scenarios, such as 

noise and sparse views. We also demonstrated that bilateral filtering represents a 

viable option for regularization compared with Total Variation Minimization 

(TVM), with the added advantage that it accelerates very well on GPUs.  
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Chapter 5  
 

Nonlinear Neighborhood Filters for 

Use in Iterative CT 

 
As we introduced in last chapter, one way to cope with the associated streak and 

noise artifacts for low-dose CT is to interleave a regularization objective with the 

iterative reconstruction framework. This time we want to be more aggressive 

toward the bank of the reconstruction quality. In this chapter, we investigate a 

number of non-linear neighborhood filters popular in the image processing 

literature for their suitability in iterative CT application. We first introduce and 

review edge-preserving denoising with both iterative regularization methods and 

nonlinear neighborhood filtering methods including some relative features as well 

as their application to iterative CT reconstruction algorithms with regularization. 

Then we specify the compared filters with their usage in our specific GPU 

accelerated reconstruction algorithm. The comparison results of all filters for both 

quality and time are presented under different data configurations.  

5.1    Introduction 

5.1.1    Iterative Regularization Methods for Denoising 

For image denoising, most algorithms are based on this image model: 

),(),(),( yxnyxuyxf   (5.1) 

where u is the true but unknown image function, f is the observed image, n is the 

unknown additive noise function which is usually assumed to have zero-mean, 
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independent and random values and x and y are spatial coordinates. To recover u 

from the observation f, regularization methods are mostly used. These methods 

define a specially designed energy functional composed of a fidelity term F(u, f) 

evaluating the distance between u and f functions and a regularization term R(u) 

encoding the prior information or constraints into the solution: 

 )(),(minargˆ uRfuFu
u

  (5.2) 

By applying energy functional minimization which usually includes a gradient 

descent process, we can iteratively obtain the solution û .  

    Related partial differential equations (PDEs) based methods such as anisotropic 

diffusion [69], variational methods such as total variation minimization 

[10][92][88], weighted least squares [64], robust estimation technique [136] are 

well-known examples of this iterative regularization group. They were shown to 

emerge from a solid theory of statistical estimators and regularization theory [31] 

to demonstrate their validity and reliability to do the edge-preserving smoothing. 

5.1.2    Neighborhood Filtering Methods for Denoising 

To achieve better computational performance and local manipulation, the 

neighborhood filters are proposed in the domain of computer vision and image 

processing for a variety of applications including image denoising, visual 

appearance-preserving contrast reduction, tone mapping and multi-scale image 

decomposition [85]. These methods are non-iterative and based on a pixel-wise 

operation over a small neighborhood which eventually split the input image to a 

denoised piecewise smooth base layer with preserved strong edges as estimation 

of u and a detailed layer with noise or unwanted details as estimation of n. For 

instance, bilateral filter is a spatial-range domain joint filter falling into this 

category which appeals more attention recently due to its simplicity, effectivity 

and efficiency [104].  

    Though with the non-iterative nature, a brute force implementation of bilateral 

filter still takes a few minutes for megapixel images in CPU. Therefore, many 

papers have been dedicated to handle the speed issue by exploiting different levels 

of approximation. Pham and Vliet [89] proposed separable bilateral filter 

approximating 2D bilateral filter with two 1D bilateral filters which is 

significantly faster but introduces new axis-aligned streaks. Weiss [109] replaced 

the spatial weight with a square box and used local histogram to compute range 

weight due to the highly neighborhood overlapping of adjacent pixels. But three 

iterations are enforced to remove band artifacts close to edges. Paris and Durand 

[84] transform bilateral filter to a convolution operation by introducing 

homogeneous intensity in a higher dimensional space. A down sampling is 
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performed to speed up before convolution followed by up sampling. The running 

time was reduced to seconds for megapixel images.  

    Beside speed issue, improving the denoising quality of bilateral filter also has a 

potential. To meliorate the piecewise constant effect, trilateral filter [22] was 

introduced so that the filter window is tilted according to the local slope and the 

window size is self-adaptive. Extra data structure has to be created to pre-compute 

the filtering parameters. A linear regression correction [5] was devised to reduce 

the commonly appeared staircase effect in neighborhood filters. By using a pair of 

images, cross or joint bilateral filter [33] was introduced to smooth first image 

while preserving the edges of the second image. These algorithms improve the 

quality but inevitably increase the computation complexity.  

    To compare the similarity of two pixels purely by the difference of their pixel 

intensities is not stable when the image has a low signal-to-noise ratio. Another 

line of extensional work belongs to the patch based technique traditionally used 

widely for texture synthesis [34][59] and image inpainting [19]. It is based on the 

assumption that there is a high degree of redundancy of any natural image. So any 

small window (the patch) has many similar windows close by in the same image 

[4]. Non-local means (NLM) [4] was introduced with the idea of patch 

comparison incorporated with the neighborhood filter. The similarity of two 

pixels is determined by how much their patches (here 7×7) match. From the 

perspective of high dimensional space, the patch is actually a feature vector with 

49 dimensions. Stemming from the assumption that patch vectors exist on a 

lower-dimensional manifold rather than the full space, Tasdizen performed the 

patch comparison in a lower-dimensional subspace projected from the patch 

vector space by principal component analysis to bring more accuracy and 

computational performance [105]. 

5.1.3    Multi-scale, Adaptivity and GPU Acceleration 

For all the methods mentioned in last two subsections, there are several other 

aspects which are commonly used to improve the filtering performance on speed 

and quality: the multi-scale scheme, adaptivity and GPU acceleration.  

    Multi-scale decomposition is mostly for feature extraction and detail 

enhancement while very few for denoising. Filters could perform as a better 

decomposer [38][58] to enhance edges or work for denoising after decomposition 

through wavelet transform [23], creating Laplacian pyramid [73] or a sequence of 

dyadic scales by varying regularization parameters [17]. However, these methods 

are either sensitive to noise for the finest scale or have little improvement to catch 

up the time cost. 

    The level of smoothness is dependent on the regularization parameters for all 

these methods. A single scale for the whole image is seldom optimal. Therefore, 
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local adaptivity is helpful to boost the regularizing performance. There are many 

related papers with adaptivity for anisotropic diffusion [74][44] and total variation 

minimization [93], bilateral filter with local statistics [137] and with local phase 

characteristics [110] and non-local means with three window sizes [108] and with 

optimal weight and window size [54].  

    As for the speed issue, by mapping the computation to the modern GPU 

architecture is an effective approach to acceleration. Iterative regularization like 

total variation minimization was effectively accelerated [88] but still needed more 

than one second for megapixel smoothing with large number of iterations. Chen et 

al. [18] improved the performance of the bilateral grid by parallelizing the 

algorithm on modern GPUs. The running time for megapixel image is reduced to 

only a few milliseconds. Actually due to the pixel-wise operating nature i.e. the 

computation of every pixel could theoretically be processed in parallel, all 

neighborhood filters could be extremely matched for GPU acceleration. We will 

demonstrate this improvement in our work by implementing the employed filters 

in CUDA. 

5.1.4    Iterative Reconstruction Algorithms with 

Regularization 

For CT reconstruction, iterative methods are preferable when the recovery 

problem becomes ill-posed, for example, when the data are noisy, few-view or 

limited in angle. Under this circumstance, in order to further remove the noise or 

streak artifacts appeared in the reconstruction using incomplete or imperfect 

projections, additional regularization is usually incorporated between iterations. 

Traditionally the iterative regularization methods are widely applied. Sidky and 

Pan [97] developed a POCS algorithm in conjunction with minimizing the total 

variation of reconstructed image in each iteration for divergent-beam CT. Later, 

Chen et al [21] concluded this as a utilization of compressed sensing image 

reconstruction method. The sparsifying transform is the L1 norm of the discrete 

gradient image i.e. the total variation of the reconstructed image.   

    Inspired by the success of nonlinear neighborhood filters for noise reduction in 

image processing scenario, we apply these filters here instead as the regularization 

mechanisms in our iterative CT reconstruction. Compared to iterative 

regularization, neighborhood filters seem to lack a well-established theory behind. 

Fortunately, Elad proved that the bilateral filter also emerges from the Bayesian 

approach as a single iteration of some well-known iterative algorithm [31]. This 

proof theoretically connected the neighborhood filters to the classical approaches.  
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    The whole CT reconstruction is GPU-accelerated, which is a nice platform to 

accommodate any GPU-accelerated filtering. 

5.2    Methodology 

For nonlinear neighborhood filters, the updated pixel value at pixel x is 

determined by the weighted sum of the pixel values f(x+t) at pixel (x+t) inside its 

surrounding window area Wx with x as spatial variable and t as spatial offset: 
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where   is the weight coefficient which is usually a nonlinear composite function. 

The normalization forces the sum of pixel weights to 1. The window area called 

the neighborhood could be various sizes for pixels at different positions. We use a 

square shape in this work. But a circle is another option for rotation invariance. 

To compute the weights of the neighborhood, a distance metric is used to measure 

the similarity between the current pixel and the central pixel. 

    Focused on the quality aspect, we compared three nonlinear neighborhood 

filters bilateral filter (as introduced before), trilateral filter and non-local means 

together with a selected total variation minimization method in [122]. This first 

tryout revealed the superiority of non-local means on the reconstruction quality. 

As a complete study, non-local means with optimal spatial adaptation [53] is 

added as another method in this section. Both the reconstruction quality and speed 

are compared. Two incorporated schemes of these filters are implemented to the 

reconstruction process: interleaved- and end- regularization. In the following 

sections, we show each filter in the form of their different   functions. 

5.2.1    Bilateral Filter 

The bilateral filter (BLF) [104] as described in last chapter averages similar and 

nearby pixels values inside a fixed size neighborhood. Its weight coefficient is the 

multiplication of a spatial distance weight cd and a range distance weight sr: 

))(),(()(),,( txfxfstcftx rdBF   

(5.4) ))2/(||||exp()( 22 dttcd 
 

))2/())()((exp())(),(( 22 rtxfxftxfxfsr 
 

where d and r control the amount of smoothing. On the one hand, the function cd 

performs as a domain filter to ensure the averaging with the spatial closeness so 

that the far away pixels have no effects. On the other hand, the function sr 
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performs as a range filter to ensure averaging with the range similarity so that the 

sharp edges could be well preserved. 

5.2.2    Trilateral Filter  

In order to accommodate the preservation of gradients, which the BLF does not 

support, the trilateral filter (TLF) was introduced [22]. Essentially, the TLF is a 

tilted BLF according to the smoothed gradient which performs inside an 

automatically generated adaptive neighborhood. The introduction of the local 

gradients makes TLF a piecewise linear approximation while traditional BLF is 

only a piecewise constant approximation. Moreover, the adaptive neighborhood 

excluding the outliers enables a sharp bound. 

    The implementation of TLF includes three parts: generate the tilting vector (the 

smoothed local gradient), approximate the adaptive neighborhood and then apply 

the filter. Firstly, the discrete gradient vector for each pixel is computed by 

forward differencing. The tilting vector Gx) is acquired by applying the BLF to 

the gradient vector image with fixed neighborhood size: 

)),,(,,,()( ftxWfxNNFxG BF    (5.5) 

Then the tilted plane P(x,t) through f(x) and the new range differences fx,x+t) 

from the original value to the corresponding position on tilted plane are generated: 

txGxftxP  )()(),(   
(5.6) 

),()(),( txPtxftxxf   

Finally, another BLF to smooth the range differences is applied: 

)),,(,,,()()(  ftxffxNNFxfxTLF BF  (5.7) 

where f is the adaptive neighborhood inside which the gradient magnitudes are 

similar. The TLF itself includes 7 internal parameters which could mostly be 

generated by following an automatically running routine when given one 

parameter. We implemented all TLF stages including parameter computation on 

the GPU by applying several passes.  

5.2.3    Non-local Means 

In a word, NLM replaces the pixel with a mean of the pixels inside the fixed 

neighborhood W whose patch look similar to the patch of the central pixel: 

),,,()( NLMWfxNNFxNLM   (5.8) 

To measure the patch matching, the Gaussian weighted difference of pixel 

values at corresponding positions of two patches is accumulated. The Gaussian 
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kernel Ga is of zero-mean and standard deviation a. Therefore the weight 

coefficient is as below: 

)/))()()((exp(),,( 22
hptxfpxftGftx Pp aNLM     (5.9) 

where P is the fixed-size patch and h acts as a filtering parameter when increased, 

the weights to dissimilar pixels are increased to allow for more smoothing. In 

contrast to BLF, NLM removes the spatial smoothing form but increases the 

dimension of the range filter. The comparison of the similarity of two patches is 

actually to compute the distance of two vectors in high dimensional space with 

the Gaussian kernel Ga to average the contribution from each dimension. This 

modification brings more accuracy to the smoothing but also costs more time.  

5.2.4    Adaptive Non-local Means 

As an extension to NLM, we employ a novel approach with optimal spatial 

adaptation [53]. We call it adaptive NLM (ANLM) in the following parts. ANLM 

is an extension to NLM by introducing spatial adaptivity which includes two 

aspects: first, the size of the neighborhood is variable; second, the weight 

coefficient inside each neighborhood is adaptive. To implement the adaptivity, the 

method runs for a few iterations. In each iteration n, the mean un(x) and standard 

deviation vn(x) at position x of a neighborhood are calculated with current weight 

coefficients n: 
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where Wx,n is the current neighborhood size and is the robustly estimated initial 

standard deviation from input image. They control the growth of the 

neighborhood size and as input to compute the weights in the next iteration:  
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As in (5.11), the computation of the weights is similar to NLM except using a 

modified distance function normalized by the current variances. Although this 

method includes several iterations, as in (5.10) it performs only with the initial 

image in the averaging procedure as a local M-smoother [53]. The adaptivity is 

optimal since the method enables to approximately minimize the point-wise L2 

risk of the estimation.  
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    There are five parameters included in this method: the initial noise variance 
, 

the patch size P, two control parameters h and  and the iteration number N. 

Among them, 
 could be automatically generated through robust estimation; P 

was suggested an appropriate value for most cases after experiments; and the rests 

were shown to have nearly unchanged effects by varying in a suitable range. So 

the authors concluded their method as nearly parameter-free.  

5.2.5    Total-Variation Minimization 

We selected the same TVM implementation algorithm [10] as in last chapter (and 

rewrite here for clarity) to compare it with other filters. The solution u is the 

argument that minimizes the following energy functional: 
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x
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xuxfxu   (5.12) 

where Ω is the image domain, x is the spatial variable, f is the input image and  

is a smoothing parameter. The Total Variation (TV) of u is:
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where x and y are the horizontal and vertical coordinates, respectively. The 

minimization is transformed according to its dual formulation, and a semi-implicit 

gradient descent algorithm is used to compute the nonlinear projection of f. The 

solution u is then obtained until convergence:  
npfu div  

(5.14) 
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Here, div is the divergence. In practice, when 4/1  the algorithm converges.  

5.2.6    Parameters Setting and Adjustment 

All the neighborhood filters mentioned above are based on the exponential 

function which when with a bigger denominator parameter contributes a flatter 

and wider weighting function increasing the overall smoothness in the 

corresponding range or spatial domain. In Table 5.1, we list all the parameters of 

every filter. The regularization parameters directly control the level of smoothness 

while the size related parameters and others are internal parameters.  

    We fix the size related parameters W and P to 11×11 and 7×7 respectively for 

every filter which are well performed for the test data for a fair comparison. The 

choice of regularization parameter is usually data dependent and variable to the 
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noise level and type of the input image. Therefore, we employ the same 

exhaustive learning strategy as introduced in [119] for all filters. Although for 

ANLM, even the regularization parameters were shown in the paper to be able to 

estimate from data or pre-define, practically it is intensively sensitive to the noise 

level so that the estimated value is not suitable which still demands a learning 

process. The choice of other parameters follows the similar way that is mostly 

from the suggested setting or from the automatic estimation process in the 

corresponding papers but needs adjustment sometimes. 

Filter 
Regularization 

parameters 

Size related 

parameters 

Other 

parameters 

BLF d, r W N/A 

TLF c W s, c, s, , R, f   

NLM h W, P a 

ANLM h P N 

TVM   

Table 5.1: Parameter table for all filters: the regularization parameters directly determine the 

level of smoothness, size related ones are fixed after experiments and others are internal 

parameters. 

The reason for the adjustment is rooted from the inconsistency to the 

assumption that the noise n(x, y) as in (5.1) is independent, randomly distributed 

noise with zero-mean and an unknown variance. When applying the method to the 

data reconstructed from few views or noisy projections, this assumption mostly 

does not confirm. To illustrate, the first column in Figure 5.1 shows a uniform 

object with Gaussian noise added and below its frequency transform (we call it 

the reference case). The next two columns show reconstructions (spatial and 

frequency domain) of the same uniform object from (i) 30 noise-free projections 

and (ii) 180 noisy projections (the same Gaussian noise as in the reference case 

was used). As one would expect, for the few-view reconstruction both image and 

spectrum are quite different from the reference case. Further, while the 

differences with the reconstruction from noisy data are a bit more subtle, one can 

still clearly observe that the noise is grainier and has a higher amplitude range 

than the reference case. The frequency spectrum reflects this finding, showing a 

low-passing of the spectrum, in fact, even a boosting of the lower frequencies. 

Therefore, we uniformly scale up the estimated parameters such as  and h for 

ANLM and cands for TLF to allow more smoothness. This operation 

successfully improves the reconstruction quality. 
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Random noise Few projections Noisy projections 

Figure 5.1: Comparing true random noise (left) with the streak and noise artifacts resulting 

from reconstructing a uniform square object from limited or noisy projections (right). We observe 

significantly different appearances in the spatial domain and strong biases in the frequency domain.    

5.2.7    Regularized OS-SIRT in GPU 

Just like the CT reconstruction all regularization computations are also fully 

GPU-accelerated, and so do not require any expensive texture upload/download 

operations between the CPU and GPU. The technical details of the GPU-

accelerated OS-SIRT were introduced in [125]. Here we focus on the performance 

of the filters in GPU. 

5.2.7.1    Using Lookup Textures and Shared Memory 

We found that better results can be obtained when the filters are applied in 2D 

within volume slices only (as opposed to 3D operations). The regularized images 

appear sharper since the 3D operations tend to over-blur the results. While this 

could be prevented by choosing different settings for the various parameters, we 

still did not observe any benefits in our experiments. Therefore we chose to 

perform all filtering operations in 2D which also secured higher computational 

performance. For all filters, if the range of the input to the expensive exponential 

function is known beforehand, we can pre-compute the possible values and store 

them into a 1D lookup texture. In some specific application when the window size 

is small and fixed, it could be further accelerated by using loop unrolling to 

expand the loops for convolutions. With a CUDA implementation, to access the 

on-chip shared memory is 200 times faster than to access off-chip global memory 

which ends up as the bottle neck of GPU computing. For the neighborhood filters, 
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two adjacent pixels share most of their neighborhoods which makes the data re-

use occur very often. Therefore, by pre-fetching the data into the shared memory 

together with some manual cache control, no cache-miss optimization resulting in 

better performance can be guaranteed. We call this optimized implementation 

(OPT) while the one without using shared memory non-optimized implementation 

(NOPT). We will show the performance difference in Section 5.3. 

5.2.7.2    Interleaved OS-SIRT vs. End OS-SIRT 

There are two modes to perform regularization: interleaved mode and end mode. 

Interleaved mode is the same used in [97][120] whose filtering is applied for each 

iteration as a final step after backprojecting all subsets. The object will be filtered 

for the number of times as many as the number of iterations. On the contrary, end 

mode regularizes the object only once after last iteration. The former mode 

removes artifacts at their early onset when the errors are just generated and thus 

steers the reconstruction towards more plausible and favorable solution regions, 

while the end mode consumes less time. We compared the results of both modes.  

5.3    Results 

The NVIDIA GTX 480 GPU was interfaced with an Intel Core 2 Quad CPU @ 

2.66GHz host processor. For testing, we employed the NIH Visible Human’s 

torso (size 256
3
) which has a prominent spine structure with different bone sizes 

and small structures, a brain dataset (NIH Visible Human brain, size 256
3
) which 

also has some finer structures, and the Catphan phantom (size 512
2
) to enable a 

comparison of the detail resolution with a gold standard. We used a high-quality 

X-ray simulator to obtain various projection sets for the torso, the brain and the 

Catphan phantom. In section 5.3.1, we first test the power of various filters as a 

denoising operator and their sensitivity to the settings of the parameters. We 

compare the interleaved mode and the end mode for incorporating the 

regularization filter in section 5.3.2. Then from 5.3.3 to 5.3.5, the performance of 

filters as the regularization to the reconstructions is compared with interleaved 

mode for three different datasets.  Finally, the time performance of the filters is 

shown in section 5.3.6. 
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Figure 5.2: Regularization quality obtained with the 5 presented regularization filters (BLF, 

TVM, TLF, NLM, ANLM) assessed by a perceptual quality metric, E-CC and using the Lena 

image (Original) with added Gaussian noise SNR 10 (w/o filtering).  

   
Original w/o filtering TVM 

Parameters N/A =15 
E-CC 0.48 0.70 

   
BLF TLF (default) ANLM (default) 

d=5, r=41 d=d=2,r=r=R=25.4 =8.73, h=113.5, =3,N=4 

0.68 0.53 0.62 

   
NLM TLF (optimized) ANLM (optimized) 

h=33 
d=d=inf,d=2,r=57.5, 

R=20 
, h=113.5, =3,N=4 

0.73 0.69 0.75 
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5.3.1    Pure Filtering Effects 

Our first experiment employs the popular Lena image (size 256
2
) to explore the 

various regularization schemes we presented and also their sensitivity to the 

settings of their parameters. For this, we added to the original image severe noise 

and streak artifacts similar to those shown in the few and noisy projection 

columns of Figure 5.1. The regularization parameters were set according to the 

highest E-CC metric scores they achieved with our automated parameter learning 

framework. The results of our study are presented in Figure 5.2. A first 

observation we make is that both the TLF and ANLM filters can greatly benefit 

from parameter optimization, and we also observe that the (optimized) ANLM 

filter preserves salient edges and features better than the NLM filter, which is to 

be expected. Another interesting result is that both filters are also superior to 

TVM which generates a somehow blocky result, widening some of the structures. 

Further, TVM also exhibits more blurring (see, for example, the feathers on the 

hat). On the other hand, the TLF also reduces the noise but still contains a similar 

noise distribution. The BLF and NLM filters both show better noise suppression 

but they also remove small details. Hence, the ANLM appears to be the only filter 

able to successfully remove the severe artifacts along the lips while still keeping a 

smooth appearance and preserving small details as well. Finally, judging the 

filters by their E-CC scores, we get the following ranking: ANLM (optimized) > 
NLM > TVM > TLF (optimized) > BLF > ANLM (default) > TLF (default).  

    Due to the somewhat mediocre performance of the TLF filter in our application 

scenario, its many parameters requiring extensive (although automated) tuning, 

and its relatively high computational overhead, we did not consider it further in 

our more advanced studies with real medical and phantom datasets. On the other 

hand, although the BLF filter also did not perform overly well (at least when 

compared to the NLM and ANLM filters), we maintained it due to its great 

simplicity and low computational effort. In the following we will refer to the 

optimized ANLM filter simply as ANLM filter. 

5.3.2    Interleaved Mode vs. End Mode 

We used the NIH Visible Human’s Human Head test image (size 256
2
) to 

compare the performance of interleaved mode and end mode. We obtained 20 

projections at uniform angular spacing of [-90
o
, +90

o
] in a parallel projection 

viewing geometry. OS-SIRT with 10 subsets was used as the reconstruction 

algorithm. We chose NLM filter to do the regularization. In Figure 5.3(a) from 

top row to bottom listed the reconstruction results without regularization, with 

end-NLM and with interleaved-NLM respectively. We showed the results 

changing gradually from left to right with iteration increasing from 1 to 100. 
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Apparently, interleaved mode generates much better result than end mode. For the 

following sections, we always chose interleaved mode but tested different filters. 

5.3.3    Qualitative and Quantitative Filter Comparison: 

Torso Dataset 

We simulated 180 uniformly distributed projections over a half-circle trajectory. 

For the few-view case we selected every 9th projection from the set, yielding a 

total of 20 projections. Then, for each of the 4 regularization schemes (BLF, TVM, 

NLM and ANLM), we interleaved regularization with OS-SIRT (10 subsets) and 

ran this pipeline for a total of 200 iterations. For the second series of experiments, 

we added significant Gaussian noise (SNR=10) to all 180 projections and ran the 

same pipeline again, but this time for only 20 iterations since this yields about the 

same number of updates than the few-view case (the introduction of this much 

noise typically also causes the reconstruction procedure to diverge when the noisy 

projections are not pre-filtered).  

    The results of these two experiments are shown in Figure 5.4 along with the 

corresponding parameter settings and the best E-CC metric scores they could 

achieve. We provide zoomed results for two critical regions, spine and lung. The 

left-most full-body reconstructions were obtained without regularization. A first 

observation we make is that streaks seem to be easier to remove than heavy noise 

– the E-CC obtained with regularization is roughly 12-15% higher for the former 

for all regularization schemes. We also readily observe that all filters are able to 

reduce streaks and noise, recovering some structural parts which can be hardly 

seen in the non-filtered result. In the following we focus our detailed discussion 

on the spine – similar observations can also be made for the lung.   

The BLF and TVM perform quite similarly, but while the BLF keeps sharper 

edges and provides better streak removal than TVM, it also gives the image a 

more binary look signified by abrupt changes along adjacent varying-intensity 

areas. TVM, on the other hand, has smoother transitions here, and it also seems to 

perform better with noise. However, neither of the filters is able to recover more 

subtle features.  

The NLM-based methods (NLM and ANLM) successfully master the problems 

encountered with BLF and TVM. Both NLM and ANLM recover the gaps 

separating the individual vertebrae. The shape and structure of the vertebrae is 

also better described, delineating the bony shell around the vertebrae body well. 

However, for the noisy projections case, the ANLM filter is the only one to do so. 
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(a) 

 
(b) 

Figure 5.3: (a) Regularization scheduling (20 projections, OS-SIRT 10 subsets, NLM filter 

with h=25.0). The number below each image indicates the iteration step. Row 1: No regularization 

at all; Row 2: Regularization only post-reconstruction, after the indicated iteration step; Row 3: 

Regularization interleaved with every iteration step. (b) Reconstruction quality of the three 

regularization schedules (Figure 5.3(a)), measured by a perceptual quality metric, E-CC. 
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Figure 5.4: Torso dataset, reconstructed with the interleaved regularization pipeline both for 

the few-view (top, 20 projections) and noisy (bottom, 180 projections, SNR 10) scenarios. 

Zoomed results for two critical regions are shown, indicated by the orange (spine) and blue (lung) 

boxes in the left-most reconstructions obtained without regularization. The reconstructions appear 

ordered according to their E-CC scores. 

5.3.4    Qualitative Filter Comparison: Brain Dataset  

We used the same conditions than for the torso dataset (20 projections for the 

few-view case, 180 projections with SNR 10 Gaussian noise added for the noisy 

case) and the same regularized construction strategy (200 iterations with 

interleaved OS-SIRT 10 for the view-few case, 20 iterations of OS-SIRT 10 for 

the noisy projection case).  

Figure 5.5 shows the results obtained for the few-view case. We observe that in 

terms of sharpness and detail preservation ANLM and NLM have similar 

outcomes, but that the ANLM better preserves the small structures pointed by the 

arrow in the Original image. We further observe that the BLF produces slightly 

sharper and detailed images than TVM, but not quite as good as the NLM filter. 

Figure 5.6 shows the results for the noise case. Here the differences of NLM 

and ANLM are not as profound as for the streak case. However, similar 

qualitative differences can be observed for the BLF and TVM. 

Top: Streak; Bottom: Noise Original ANLM NLM TVM BLF W/O 

 

      

      
E-CC 0.92 0.91 0.88 0.85 0.69 

 

      

      
E-CC 0.79 0.78 0.77 0.75 0.59 
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Figure 5.5: Brain dataset, reconstructed with the interleaved regularization pipeline for the 

few-view scenario (20 uniformly distributed projections, 200 iterations with OS-SIRT 10). 
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Original BLF NLM 

   
w/o filtering TVM ANLM 

Figure 5.6: Brain dataset, reconstructed with the interleaved regularization pipeline from noisy 

data (SNR 10, 180 equi-angular projections, 10 iterations with OS-SIRT 10). 

5.3.5    Qualitative and Quantitative Filter Comparison: 

Catphan Dataset  

The Catphan dataset is a 2D image with 512
2
 resolution. We used 45 projections 

for the few-view case and 180 projections with added SNR 25 Gaussian noise for 

the noise case. For the regularized construction strategy, we used 200 iterations 

with interleaved OS-SIRT 5 for the view-few case and 20 iterations of OS-SIRT 5 

for the noisy projection case.  

Figure 5.7 presents results we obtained for the few-view case, and Figure 5.8 

presents enlargements of two specific areas: the upper contrast features and some 

of the phantom periphery (indicated by the orange and blue boxes, respectively). 

We observe that only the NLM and ANLM filters can resolve the 5th contrast 

feature from the right. The BLF filter and TVM are only able to distinctively 

resolve the 4th feature from the right. These qualitative differences are also 

quantified by the higher E-CC scores of the (A)NLM filters. Further, on the 

periphery, both BLF and TVM still exhibit some of the streak artifacts, while the 
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NLM shows some banding. Only the ANLM can fully restore the original 

appearance. 

Figure 5.9 presents results we obtained for the noise case, and Figure 5.10 

presents enlargements of two specific areas. We again observe that the noise case 

is more difficult to mitigate than the streak case with each result suppressing 

different levels of noise while somehow blurring the details. Just like before, 

ANLM performs best. 

5.3.6    Regularized Reconstruction Time Performance 

5.3.6.1    Time Performance of Filters 

Table 5.2 lists the run times to filter images of 3 different sizes (256
2
, 512

2
, and 

1024
2
) on the GPU. We have noted before that performing filtering in 3D did not 

yield any improvements so restricting our experiments to 2D is well justified. In 

the table we list both the timings for the non-optimized (NOPT) and the optimized 

(OPT) GPU implementation (see Section 5.2.7.1). Our optimizations achieve a 

speedup of about 1.2 for the BLF, about 4 for the NLM filter, and about 3.2 for 

the ANLM filter. We already reported in [120] speedups of 2 orders of magnitude 

over a corresponding CPU implementation.  

    While we did not implement TVM on the GPU (all our results were generated 

with a CPU version), reference GPU implementations for TVM exist, such as the 

one by Pock et al. [86]. They used a NVIDIA 8800 GTX for their experiments 

and we report their timings in Table 5.2 as well. Further, in order to make these 

timings comparable to the ones reported here we also extrapolated them to the 

GTX 480 using commonly reported speedup numbers. Here we may add, 

however, that once the parameter λ grows larger, which is needed for the rather 

noisy data we have used here, the computation time tends to increase significantly 

over those listed here. 
Overall we find that there is about an order of magnitude difference in the run 

times for each of the filters: BLF, NLM, and ANLM, with BLF being the fastest. 

TLF requires about twice the time of BLF [22] (not including the parameter 

estimation procedure), but since our results indicated that it was not practical for 

regularized CT reconstruction, we did not include its performance into Table 5.2. 

The TVM requires about the same time as NLM.   
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Figure 5.7: Catphan dataset, reconstructed with the interleaved regularization pipeline for the 

few-view scenario (45 uniformly distributed projections, 200 iterations with OS-SIRT 5). 
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Figure 5.8: Zoomed detail views for Figure 5.7. Top rows: enlarged area of the upper contrast 

features (orange box); Bottom rows: enlarged periphery (blue box).   
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Figure 5.9: Catphan dataset, reconstructed with the interleaved regularization pipeline from 

noisy data (SNR 25, 180 equi-angular projections, 20 iterations with OS-SIRT 5). 
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Figure 5.10: Zoomed detail views for Figure 5.9. Top rows: enlarged area of the upper 

contrast features (orange box); Bottom rows: enlarged periphery (blue box).   
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5.3.6.2    Time Performance of Regularized Reconstruction 

Finally, we attempt to put these timings into the context of an entire iterative 

reconstruction pipeline. One iteration step with OS-SIRT 10 for 60 projections 

and a 512
3
 volume takes about 10s on a 480 GTX. Performing BLF filtering for 

such a volume takes 1.76ms·512=0.9s. This would add about 10% overhead to the 

CT reconstruction time which is tolerable. Less attractive from this point of view 

is TVM which produces about the same quality as BLF but is roughly 10 times 

slower (or more, see our comments above), making its overhead 100%. Further, 

the time required for NLM filtering is roughly the same as for TVM, but 

according to our experiments it produces substantially better results, so it appears 

that NLM is preferable. The ANLM filter, on the other hand, takes 

117ms·512=59s which is about 6 times the reconstruction time. It takes longer 

than the NLM since it is really a 4-step NLM plus some parameter estimation 

operations. For each ANLM iteration step, the window size doubles from 3×3 to 

17×17 while the patch size is fixed to 7×7. However, given its excellent results 

this overhead may be well justifiable in some cases. Nevertheless, the NLM filter 

appears to provide the best cost-benefit ratio.      

Test 

Size
 

BLF NLM ANLM 
TVM (from 

[86]) 

NOPT OPT Ratio NOPT OPT Ratio NOPT OPT Ratio 
8800 

GTX 

GTX 

480 

256
2 

0.65 0.53 1.23 51.09 12.70 4.02 142.32 43.57 3.27 17.50 6.74 

512
2 

2.15 1.76 1.22 182.49 42.06 4.34 374.8 117.24 3.20 59.60 22.95 

1024
2
 8.08 6.54 1.24 699.23 161.25 4.34 2072.67 597.91 3.47 504.10 194.15 

Table 5.2: Wall clock time (in ms) of the GPU-accelerated BLF, NLM, and ANLM filters, 

both optimized (OPT) and non-optimized (NOPT) for different image sizes. Ratio indicates the 

speedup NOPT/OPT. The GPU was an NVIDIA GTX 480 and the neighborhood size was 17×17. 

We also provide reference timings for the TVM filter, where we extrapolated the timings given by 

[86] for the older NVIDIA 8800 GTX GPU to the state-of-the-art GTX 480, using commonly 

reported speedup numbers. However, once the parameter λ grows larger, which is needed for the 

rather noisy data we have used here, the TVM computation times tend to increase significantly 

over those listed here. 

5.4    Conclusions 

We have explored the use of local nonlinear neighborhood filtering as a non-

iterative alternative to the popular TVM method for regularized CT reconstruction. 

Our results indicate that these types of filters are indeed advantageous to TVM, 

meeting and exceeding its capabilities, in particular in terms of computational 
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overhead. The latter could originate from the fact that the noise and streak 

artifacts in low-dose CT reconstruction are inherently local processes and so the 

global optimization of TVM is unnecessarily complex and consequently 

computationally wasteful. 

As a possible future research direction one may try – as an alternative to 

adapting the ANLM filter’s search window – to rather adapt the smoothing factor 

h, as a function of the local variance (see Coupe at al. [24]). Further, the search 

for suitable patch candidates can be accelerated as well (see Mahmoudi and 

Sapiro [76]) by only involving patches with similar means, variances, and 

gradients which can be effectively identified by pre-computed maps. Lastly, one 

could also make the patch matching process itself more efficient, using dimension 

reduction or hashing for better patch indexing. 

As observed in the results, all of the regularization schemes we tested, 

including TVM, seemed to yield better results for the few-view case than for the 

noise-case. While we believe that these artifacts were of similar severity in our 

experiments, further research is advocated to substantiate this observation. Also, 

we did not explore if more expensive filters, such as the ANLM, would allow 

reconstructions to be completed with fewer iteration steps and so become more 

competitive overall (we ran all reconstructions for the same fixed number of 

iteration steps). Our parameter learning framework can be used here to optimize 

the number of iterations used for a given filter and data scenario.  

  

 

 
 

 

 

 

 

 

 



 

60 

 

 

 

 

 

Chapter 6  
 

Learning Parameter Settings 

 
Iterative reconstruction methods typically offer a set of parameters that allow 

some control over the convergence process, both in terms of quality and speed as 

we presented in previous chapters. Examples include relaxation factor, number of 

subsets, regularization coefficients, and the like. The interactions among these 

parameters and within the various data conditions can be complex, and thus 

effective combinations can be difficult to identify, leaving their choice often to 

educated guesses. As a contribution to this rarely researched area, we devise a 

data-driven learning approach and a multi-objective optimization approach to 

match given data configurations with their most effective reconstruction 

parameter configurations. We overcome the computational challenges associated 

with such a data-intensive approach by using commodity high-performance 

computing hardware (GPUs), which themselves have interacting parameters as 

well. A new perceptual image quality metric is presented. Finally a small toolbox 

called parameter space visualizer is included to interactively assist parameter 

selection for any parameter-related applications. 
6.1    Introduction 

An effective way to limit the overall radiation dose a patient is subjected to in a 

CT scan is to reduce the number of projections and also the radiation per 

projection. Both, however, increase noise in the CT reconstructions, 

compromising contrast as well as resolution. Iterative algorithms have been 

shown to excel in these adverse settings, but due to the absence of an exact 

solution, careful parameter tuning is typically required to converge to a solution 
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close to the exact. Examples for such parameters include relaxation factor, 

number of subsets, and regularization coefficients. Their choice is often made ad-

hoc based on some prior experience, yet typically not endorsed by a certified level 

of confidence. An added difficulty is that parameters often interact in their effects 

on reconstruction speed and outcome. Thus it can be a non-trivial task to derive 

the most suitable combination for a given data scenario. There are two main 

strategies by which one may arrive at effective parameter settings: optimization 

and data-driven learning. Optimization is similar to the reconstruction process 

itself, seeking to find the optimal solution (here the parameter configuration) 

constrained by some objective function. However, optimization can be vulnerable 

to local minima and it also lacks in some sense the capability to adapt to new data 

scenarios. Learning, on the other hand, aims to determine a process model 

(described by parameters) from a set of collected observations. In our application, 

these observations are reconstructions obtained with parameterizations of a given 

iterative reconstruction algorithm, where the quality of the reconstructions then 

drives the parameterization.  
    Clearly, the more observations we can provide and the greater their diversity, 

the more accurate our model is set to be. An important factor in this context is the 

quality metric. Since we aim to provide reconstructions to be examined by human 

observers, we require a quality metric that is perceptually based. Further, since we 

strive for a large number of observations, this perceptual metric needs to be 

computer-based and efficient to compute. In the following, we first describe our 

reconstruction parameter-learning framework and then present a metric fitting 

these requirements.  

6.2    Methodology 

In this work, we explain two approaches to learn the parameter settings for the 

GPU-accelerated OS-SIRT with bilateral filter regularization as presented in 

chapter 3. OS-SIRT has three parameters, the relaxation factor , the number of 

subsets S and the number of iterations. The bilateral filter has two more 

parameters σr and σd controlling the amount of smoothing (the search window size 

is fixed here). Our approaches are in fact very general to be able to work for any 

parameter learning process. In order to facilitate the computation of a ground 

truth-based figure of merit, we only used projection data acquired via simulation 

from known objects. We then added Gaussian noise at different SNR levels.  

6.2.1    Approach 1: Exhaustive Benchmark Test 

Using the simulated projection data, we compute a representative set of 

reconstructions, sampling the parameter space in a comprehensive manner. We 
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then evaluate these reconstructions with a perceptual quality metric, as discussed 

below. Adaptive sampling can be used to drive the data collection into more 

“interesting” parameter regions (those that produce more diverse reconstruction 

results in terms of the quality metrics). Having acquired these observations, we 

label them according to certain criteria, such as “quality, given a certain wall-

clock time limit” or “reconstruction speed, given a certain quality threshold”. The 

observations with the higher marks, according to some grouping, subsequently 

receive higher weights in determining the reconstruction algorithm parameters. 

Currently, we either use the max-function or a fast-decaying Gaussian function to 

produce this weighting.   

6.2.2    Approach 2: Multi-Objective Optimization 

For OS-SIRT, the best quality and minimum time are the two objectives which 

are conflicting in nature with one another. Essentially, there is no single solution 

to satisfy every objective. Finding the optimal solutions is to make good 

compromises or trade-offs of the objectives. Therefore this parameter learning 

problem is actually a multi-objective optimization (MOO) [12][56]. Generally 

speaking, there are two classes of approaches to this problem: combining 

objective functions to a single composite function or determine a non-dominated 

optimal solution set (a so-called Pareto optimal set). The kernel of the approach 1 

described above belongs to the former class of multi-objective optimization 

problems. The two objectives are weighted together to form a single objective 

function by selecting different labeling criteria. However, when the user does not 

have a specific quality or time demand but is curious about the level of potential 

progress toward each objective when the reconstruction continues, a non-

dominated Pareto optimal set is more helpful and reasonable. 

    To solve the MOO problems, genetic algorithms (GA) are well suited. Genetic 

algorithms inspired by the evolutionary theory about the origin of species have 

been developed for decades. They mimic the species evolutionary process in 

nature that strong species have higher opportunity to pass down their genes to the 

next generations and at the same time random changes may occur to bring 

additional advantages. By natural selection, the weak genes will be eliminated 

eventually. GA operates in a similar way by evolving from a population with 

individuals representing initial solutions with operators such as selection, 

crossover and mutation to create descending generations. The fitness function is 

used to evaluate an individual which determines its probability of survival for the 

next generation. For MOO several fitness functions are used. Numerous GA 

methods have been described, such as Weighted-Based Genetic Algorithm 

(WBGA), Vector Evaluated Genetic Algorithm (VEGA), Multi-Objective Genetic 
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Algorithm (MOGA) and Non-dominated Sorting Genetic Algorithm (NSGA) [12]. 

Approach 1 is a customized application of the combination of fitness functions of 

WBGA to accommodate our special requirements. VEGA is limited due to the 

“middling” problem while MOGA is highly dependent on an appropriate selection 

of the sharing factor. NSGA progresses more slowly than MOGA and is shown to 

be computationally inefficient.  

    In our work, we have selected NSGA-II [26], which is the improved version of 

NSGA as the method to find the Pareto optimal set. This method uses elitism and 

a crowded comparison operator to keep both the inheritance from well-performing 

chromosomes and the diversity of the found optimal solutions while keeping the 

computational efficiency. We execute the learning process in this way: after 

generating the initial population, the reconstruction algorithm OS-SIRT and the 

parameter searching algorithm NSGA-II are run alternatively until the stopping 

criterion has been satisfied (for instance after a sufficient number of generations). 

This scheme falls into the category of a master-slave model of parallel genetic 

algorithms [106]. Within each generation, OS-SIRT is executed as a parallel 

fitness values evaluator while NSGA-II combines these values to find the current 

solution set with a user defined set size. Time is recorded as one objective and 

reconstruction quality is evaluated by a perceptual metric E-CC introduced below. 

To cast the optimization into a minimization problem, the quality metric is 

modified to its distance to unity. The process stops until the solutions in the 

current set are non-dominated to each other. For the selection, crossover and 

mutation operators, we use binary tournament selection, real coded blend 

crossover and a non-uniform mutation. While the parameters we found may not 

be substantially better for a specific user demand, they provide a pool of 

candidates that are trade-offs of time and quality. More importantly, they are 

obtained considerably faster since fewer reconstructions need to be computed. 

With Approach 1 we need to perform every combination of the representative 

parameters while with Approach 2, the computational complexity is the number 

of generations multiplying twice the size (user defined) of Pareto optimal 

solutions which is usually much smaller.  

6.2.3    Image Quality Metrics 

In CT reconstruction, the commonly used metrics for gauging reconstruction 

quality are mostly statistical, such as the cross-correlation coefficient (CC), mean 

absolute error (MAE), root mean square (RMS) error, and R-factor. However, the 

assessment of image quality should include both objective and subjective metrics 

[8]. Objective metrics, such as blurriness and contrast, measure the physical and 

geometric properties of the image and their effect on human perception. 

Subjective methods, rooted in psychophysics, more formally introduce observer 
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perceptual metrics to gauge overall image quality. For example, Zhou et al. 

presented a comprehensive study of image comparison metrics [139], some 

described in the spatial and the frequency domain and some formulated in terms 

of the human visual system – the perception-based metrics – such as the visual 

differences predictor (VDP). While this (and many other) studies strongly suggest 

that perception-motivated metrics are superior to statistical ones due to the fact 

that human vision is highly sensitive to structural information [131], most of these 

involve heavy computation and thus are not desirable for the large data quantities 

we anticipate to process in our learning framework.  

    We first design a new group of metrics. Since the structural information could 

be well captured in the gradient domain, by ways of an edge-filtered image 

calculated via a Sobel Filter operator as we used in this study, every traditional 

metric can be easily transformed to an “edge sensitive” metric. We have labeled 

this group of metrics by prefix “E-” as in Figure 6.2. For example, the E-CC 

metric stands for the CC of two edge images. Further, shifting effects caused by 

the CT reconstruction backprojection step can be alleviated by Gaussian-blurring 

the reconstruction image before edge-filtering. We have labeled this group of 

metrics with prefix “BE-”.  

    Another method to gauge structural information is Structural Similarity (SSIM) 

which combines luminance, contrast and structure [WB04]. Given two signal 

images x and y, the definition of SSIM index is defined as: 

     
),(),(),(),( yxsyxcyxlyxSSIM   (6.1) 

where , and are parameters adjusting relative importance. The terms l(x,y), 

c(x,y) and s(s,y) are the luminance, contrast and structure comparison functions, 

respectively. These functions are computed from local image statistics [131]. 

6.3    Results 

All computations used an NVIDIA GTX 280 GPU / Intel 2 Quad CPU 2.66GHz. 

We group our results into five sections: (1) the metrics comparison showing 

which metrics give consistent scores, (2) the OS-SIRT results showing the 

relationship between noise levels and parameters settings, (3) the OS-SIRT 

results for few-projection parameters settings, and (4) the parameter settings with 

our GPU-accelerated bilateral filter, (5) the tryout results of MOO for noise 

levels parameter settings. 
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6.3.1    Comparing the Metrics 

Our first (somewhat informal) study examined various image quality metrics and 

their suitability to replace a human judge/observer. We note that our emphasis in 

the onset was to select metrics that are fairly easy to evaluate, in order to keep the 

assessment of the expected large data volume manageable. We use a baby head 

scan (size 256
2
) to demonstrate our results (see Figure 6.1). All metrics are in the 

range [0, 1] and thus allow direct numerical comparison. We compared the 

metrics at two levels: 0.99 (row 1 of Figure 6.1) and 0.82 (row 2). We observe 

that the scores of E-CC and SSIM are quite faithful to the scores a human 

observer might give (0.99 for a near-perfect image and 0.82 for a “B+ similarity”). 

On the other hand, CC is clearly bound to over-score the images. It assigned the 

left bottom image a score of 0.82 even though the object structure is barely 

discernable, and it assigned the top left image a near-ideal score even though the 

structures are still quite blurry. 

    For a more comprehensive study of all metrics discussed in Section II, we 

reconstructed the popular “Barbara” test image (size 256
2
), varying the number of 

projections and the level of noise (quantified by SNR). This image contains very 

high frequency detail and is thus quite sensitive to small errors. For all 

reconstructions we stopped iterations when the CC reached a value of 0.89. We 

chose this relatively low CC value so all SNR levels could reach it – better 

reconstructions are possible. Figure 6.2 presents the images reconstructed from 

180 and 140 noise-free projections (NF 180 and NF 140), respectively, and from 

180 projections with Gaussian noise added (SNR 10 and SNR 5). We clearly see 

that these images do not look the same from a perceptual point of view, although 

the CC metric has the same outcome. Informally, an observer would likely rank 

these images in the order NF140, NF180, SNR10, SNR 5, with NF140 being the 

best (small detail is better visible there, although there are some slight yet 

tolerable artifacts). From the table in Figure 6.2 we observe that only the edge-

based metrics (E-MAE, E-NRMS, and E-CC) as well as SSIM can reproduce this 

ranking (note that the ordering for CC is the opposite than for RMS and MAE 

since they have reverse maxima, and also note that we scaled some metrics by the 

given multiplicative factor to better visualize the contrast of the bars). The other 

metrics have either a wrong ranking or could not distinguish some images at all. 

In the remainder of the work, we use E-CC since it better tolerates global density 

shifts and is faster to compute (than SSIM).  
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CC E-CC SSIM 

   

   

 

   
Original Noise Free 180 Noise Free 140 

 

  
SNR 10 SNR 5 

 

Figure 6.1: Image metric comparison I: the value for each metric is fixed to 0.99 in the first 

row and to 0.82 in the second row. 

Figure 6.2: Image metric comparison II: four reconstructed images that have the same CC 

(0.89) but score differently with other metrics (see plot). 

6.3.2    Learning Parameters with Exhaustive Benchmark 

Testing 

With a suitable quality metric in place we are now ready to learn the most 

effective parameters for the iterative OS-SIRT reconstruction algorithm we used 

to evaluate our approach. We first simulated, from the baby head CT scan, 180 

projections at uniform angular spacing of [-90˚, +90˚] in a parallel projection 

viewing geometry. We then added different levels of Gaussian noise to the 

projection data to obtain SNRs of 15, 10, 5, and 1. The first column of Figure 6.3 
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presents the best reconstruction results (using the E-CC between original and 

reconstructed image), for each SNR, in terms of the “reconstruction speed, given 

a certain quality threshold” criterion. In other words, the images shown are the 

reconstructions that could be obtained at the shortest wall clock time given a 

certain minimal E-CC constraint. This constraint varies for each projection dataset 

(low SNR cannot reach high E-CC levels), and this is also part of the process 

model.  

Figure 6.3: Results for all SNR levels of three datasets using the same parameter settings, 

those found most effective for the baby head dataset: columns from left to right - baby head, 

visible human head, and visible human lung, rows from top to bottom - noise-free, SNR 15, 10, 5 

and 1. 

 Figure 6.4 summarizes the various parameters obtained for the various data 

scenarios mentioned above. The “Best Subset” and “Best Lambda” values denote 

the parameter settings that promise to give the best results, in terms of the given 

quality metric and label criterion. The “Lowest Lambda” and “Turning Point” 

values describe the shape of the curve as a function of the number of subsets. 

The -factor is always close to 1 for small subsets and then linearly (as an 
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approximation) falls off at the “Turning Point” to value “Lowest Lambda” when 

each subset only consists of one projection (which is SART) [118].    

 

 

 

 

 

 

 

Figure 6.4: Optimal parameter settings using E-CC for the baby head dataset: subset number 

and relaxation factor as a function of imaging condition (SNR) and the turning point and lowest 

lambda for each SNR level. 

 The summary plot of Figure 6.4 helps practitioners to pick the best-performing 

number of subsets and the associated λ (to obtain the best possible quality within a 

given time) for a given expected SNR level. For example, we observe that low 

SNR requires a low number of subsets, while less noisy data can use a higher 

number of subsets. This trend is well confirmed by prior studies and field 

experience and thus validates the correctness of our general approach.  

 We then explored if the knowledge we learned translates to other similar data 

and reconstruction scenarios. Column 2 and 3 of Figure 6.5 show the results 

obtained when applying the optimal settings learned from the baby head to 

reconstructions of the Visible Human head (size 256
2
) and Visible Human lung 

(512
2
), from similar projection data. We observe that the results are quite 

consistent with those obtained with the baby head, which is promising. As future 

work, we plan to compare the settings with those learned directly from these two 

candidate datasets.   

 Next, we investigated the few-view reconstruction scenario. Here, we 

“learned” that SART consistently gave the best results. Figure 6.5 shows the best 

reconstructions of the baby head with S=180 to 20 in the top two rows. The third 

row shows the results of lung dataset using the same parameters than used in the 

second row. They are quite similar which confirms the generalization of the 

learned parameters.  

 Finally, we sought to learn the parameters for the bilateral filter used for 

regularization. Figure 6.6 presents results. We found that the bilateral filter helped 

to reduce the number of iterations especially for the smaller number of subsets. 

Since the bilateral filter is less expensive than an iteration it pays off to use it.  
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Figure 6.5: Results for Figure 6.6. (Top) The best results (using the time criterion) for the lung 

dataset with SNR 10 and 30 projections (E-CC=0.6). (left to right): original image, reconstruction 

without and with bilateral filter. (Bottom) Comparing the number of iterations required with / 

without bilateral-filter regularization. 

Figure 6.6: (Top) The best results (using the time criterion) for the lung dataset with SNR 10 

and 30 projections (E-CC=0.6). (Left to right): original image, reconstruction without and with 

bilateral filter. (Bottom) Comparing the number of iterations required with / without bilateral-filter 

regularization.    
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6.3.3    Learning Parameters Using Multi-Objective 

Optimization 

To test the performance of the second approach, the Visible Human head (size 

256
2
) with different noise levels (ideal, SNR 10 and SNR 5) is used. We set the 

size of any Pareto optimal set to 20 and obtained the corresponding sets for 

parameters (number of iterations, number of subsets and relaxation factor  after 

adequate generations (here until any solution is non-dominated by others in the 

same set). The results for different noise levels are shown in Figure 6.7. For each 

noise level, the gradual evolutions of the fitness values after selected number of 

generations are plotted. We observed that when the generation develops, the 

fitness values are closer to the axes which means closer to its optimal value. The 

solutions pool is listed in Table 6.1. It demonstrates that when the noise level 

increases the reconstruction is more difficult while at the same time the needed 

numbers of iterations and subsets are getting smaller, which is confirmed by 

Approach 1 as well.  

 Ideal SNR 10 SNR 5 

Index #Iter #Subset  #Iter #Subset  #Iter #Subset  

1 55 180 0.84 2 30 0.755 2 90 0.162 

2 76 90 0.997 2 30 0.82 2 90 0.167 

3 68 90 0.92 2 20 0.982 2 15 0.884 

4 56 90 0.87 2 20 0.892 2 15 0.909 

5 53 90 0.87 2 18 0.938 2 12 0.961 

6 43 90 0.952 2 15 0.991 2 15 0.975 

7 48 60 0.787 2 15 0.862 2 12 0.99 

8 50 45 0.902 2 12 0.978 2 12 0.966 

9 47 45 0.974 2 10 0.966 2 10 0.995 

10 38 60 0.811 2 10 0.896 2 10 0.993 

11 16 90 0.965 2 9 0.732 2 10 0.883 

12 19 60 0.923 2 6 0.998 2 6 0.998 

13 20 45 0.969 2 6 0.943 2 6 0.995 

14 19 30 0.964 2 6 0.894 2 6 0.998 

15 8 60 0.83 2 6 0.877 2 5 0.984 

16 17 15 0.997 2 3 0.913 2 4 0.923 

17 2 60 0.875 2 2 0.973 2 3 0.998 

18 3 10 0.459 2 2 0.764 2 3 0.993 

19 2 30 0.033 2 2 0.739 2 2 0.999 

20 2 4 0.175 2 2 0.288 2 2 0.972 

Table 6.1: Pareto optimal set learned by Approach 2. 
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Figure 6.7: Fitness values of solutions set evolutions for different SNR. 

6.4    Parameter Space Visualizer 

We also devise an effective parameter space navigation interface as a toolbox 

allowing users to interactively assist parameter selection for iterative CT 

reconstruction algorithms (here for OS-SIRT). This toolbox is especially useful 

when users have no prior knowledge about the suitable parameter settings for the 

given dataset. After performing offline computation, our toolbox gathers the 

performance of all combinations of parameter settings and could interactively 

display the results based on users’ online demands. In general, it is based on a 2D 

scatter plot with six display modes to show different features of the reconstruction 

results based on the user preferences. It also enables a dynamic visualization by 

gradual parameter alteration for illustrating the rate of impact of a given 

parameter constellation. Finally, we note the generality of our approach, which 

could be applied to assist any parameter selection related systems.  

    There are seven parameters to represent one reconstruction: SNR-level, 

relaxation factor  number of subsets S, number of iterations, time, CC and RMS. 

With the given projections, we selected a representative set of integer-subsets,  

and SNR-levels respectively. For each combination of <S,  SNR-level> (called 

grid points), <time, CC, RMS> (called tuples) were recorded every five iterations. 



 

72 

 

With this pool of tuples, we use our parameter space visualizer to visualize the 

parameters with user control. 

 
Figure 6.8: Parameter Space Visualizer in Computation Speed Mode. 

    The interface of the parameter space visualizer is composed of a main window 

and a control panel as shown in Figure 6.8. The main window is a 2D scatter plot 

of number of subsets (x-coordinate) and relaxation factor (y-coordinate) with 

different sizes and colors of circles to show the features of tuples. The size and 

color of the circle represents the number of tuples satisfying current parameter 

settings controlled by users in the control panel. In the control panel, users could 

change the values of the time, CC and RMS bars to set boundary values to sift 

tuples. SNR bar is used to switch visualizations among different SNR-levels. 

There are six “display modes” showing various features of the tuples: 

Computation Speed Mode, Percentage Mode, Absolute Number Mode, Minimum 

Time Mode, Maximum CC Mode and Starting CC Mode. Users could choose to 

better plot the results by modifying the status/values of “equal spacing”, “back 

plate” and “radius of circles” at the bottom of the control panel. “Pairwise 

comparison” is another control for Absolute Number Mode. The interface assists 

users to quickly find the preferred parameter settings under the input constraints. 

It provides a dynamic view of subtle parameter changes by moving the control 

bars so that users could be aware of the impact of some specific parameter. For 

details and other features, please go to [123]. 
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6.5    Conclusions 

We demonstrated an intelligent framework that has the potential to automate the 

parameter selection for CT reconstruction tasks. Iterative algorithms likely benefit 

the most from this scheme, since they tend to have a variety of parameters to 

adapt the optimizer to the present data conditions and reconstruction goals. Such a 

system can be helpful to practitioners that do not have the expertise to tune these 

parameters by hand. Finally a parameter space visualizer is provided to assist 

users select parameters interactively.  

    As future directions, for approach 1 the framework could be refined such that it 

can recognize “signatures” directly from the projection data, combining them with 

other information about scanner and object, and use this information to index the 

parameter knowledge base. For approach 2, the limitation is that the genetic 

algorithm itself includes a few parameters to control selection, crossover and 

mutation operators. A more careful study exploring suitable settings as well as the 

various choices of operators would better tune the solutions. 
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Chapter 7  
 

High-Performance Iterative 

Electron Tomography 

Reconstruction 

 
Iterative reconstruction algorithms pose tremendous computational challenges for 

3D Electron Tomography (ET). Similar to X-ray Computed Tomography (CT), 

graphics processing units (GPUs) offer an affordable platform to meet these 

demands. In this chapter, we outline a CT reconstruction approach for ET that is 

optimized for the special demands and application setting of ET. It exploits the 

fact that ET is typically cast as a parallel-beam configuration, which allows the 

design of an efficient data management scheme, using a holistic sinogram-based 

representation. Our method produces speedups of about an order of magnitude 

over a previously proposed GPU-based ET implementation, on similar hardware, 

and completes an iterative 3D reconstruction of practical problem size within 

minutes. We also describe a novel GPU-amenable approach that effectively 

compensates for reconstruction errors resulting from the TEM data acquisition on 

(long) samples which extend the width of the parallel TEM beam. We show that 

the vignetting artifacts typically arising at the periphery of non-compensated ET 

reconstructions are completely eliminated when our method is employed. 
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7.1    Introduction 

Electron Tomography (ET) (see for example [37] or [66]) uniquely enables the 

3D study of complex cellular structures, such as the cytoskeleton, organelles, 

viruses and chromosomes. It recovers the specimen’s 3D structure via 

computerized tomographic (CT) reconstruction from a set of 2D projections 

obtained with Transmission Electron Microscopy (TEM) at different tilt angles. 

ET can be accomplished using exact analytical methods (weighted back-

projection WBP [91] and more recently electron lambda-tomography [90]) or via 

iterative schemes, such as the Simultaneous Algebraic Reconstruction Technique 

(SART) [2], the Simultaneous Iterative Reconstruction Technique (SIRT) [45], 

and others. The dominant use of the analytical methods is most likely due to their 

computational simplicity and consequently fast reconstruction speed. Iterative 

methods, however, have the advantage that additional constraints can be easily 

and intuitively incorporated into the reconstruction procedure. This, for example, 

can be exploited to better compensate for noise [100] and to perform alignment 

corrections [30][43][61] during the iterative updates. Additional challenges are 

imposed by the fact that the projection sinogram is vastly undersampled, both in 

terms of angular resolution (due to dose constraints) and in terms of angular range 

(due to limited sample access). These types of scenarios can be handled quite well 

using iterative reconstruction approaches [1].  

Thus, iterative approaches have great potential for ET. However, as data 

collection strategies [138] and electron detectors improve, the push has been to 

reconstruct larger and larger volumes (2048
2
 × 512 pixels and beyond). Although 

the benefits are significant, the major obstacle preventing the widespread use of 

iterative methods in ET so far has been the immense computational overhead 

associated with these, leading to reconstruction times on the order of hours to 

days for practical data scenarios. As in many other scientific disciplines, the 

typical solution to meet these high computational demands has been the use of 

supercomputers and large computer clusters [36][39][141], but such hardware is 

expensive and can also be difficult to use and gain access to. Fortunately, the 

recently emerging graphics processing units (GPUs) offer an attractive alternative 

platform, both in terms of price and performance. GPUs are available at a price of 

less than $500 at any computer outlet and, driven by the ever-growing needs and 

tremendous market capital of computer entertainment, their performance has been 

increasing at triple the rate of Moore’s law, which governs the growth of CPU 

processors. For example, the recent NVIDIA GPU board GTX 280 has a peak 

performance of nearly one Trillion floating point operations per second (1 TFlop), 

which is 1-2 orders of magnitude greater than that of a state-of-the-art CPU.  
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The great performance of GPUs comes from their highly parallel architecture, 

and the vast potential of these boards for general high performance computing has 

given rise to the recent trend of General Purpose Computing on GPUs (GPGPU) 

[82]. In the past, GPU-programming was only possible via graphics APIs, such as 

CG, GLSL and HDSL, which required programmers to have some background in 

computer graphics. In order to make the hardware more accessible to non-

graphics programmers, a C-like parallel computing programming interface called 

CUDA (Compute Unified Device Architecture) has recently been introduced by 

GPU manufacturer NVIDIA. A similar but more general API called OpenCL has 

also become available. We have used GLSL for our implementation.  

The high potential of GPUs for accelerating Computed Tomography (CT) has 

been recognized for quite some time in the field of X-ray CT 

[14][15][54][116][95][112][117][125][114], and more recently also for ET 

[28][27][63][102][98]. The majority of GPU algorithms developed for X-ray CT 

have focused on 3D reconstruction from data acquired in perspective (cone- and 

fan-beam) viewing geometries, using flat-panel X-ray detectors in conjunction 

with X-ray point sources. This poses certain constraints on how computations can 

be managed (pipelined) given the highly parallel SIMD (Single Instruction 

Multiple Data) architecture of GPUs. However, data acquisition in ET is typically 

posed within a parallel-beam configuration, and this allows for additional degrees 

of freedom in the implementation, which are not available in the cone- and fan-

beam configurations. Our approach exploits these opportunities to derive a novel 

high-performance GPU-accelerated iterative ET reconstruction framework.  

The GPU method proposed by Castano-Diez et al. can be viewed as a first step 

towards achieving high-performance ET. Our framework is a substantial advance 

of their method, speeding up their calculations by an order of magnitude. Such 

speedups are especially significant when it comes to 3D reconstructions, which 

are the ultimate goal of ET. The method of Castano-Diez at al. enables only 2D 

iterative reconstructions to be accomplished at reasonable speeds (where 

reasonable is defined here as being on the order of minutes). However, 

reconstructions at the same resolution, but in 3D, still take hours to compute. Our 

framework, on the other hand, obtains these 3D reconstructions in an order of 

minutes, on comparable hardware. Finally, the latest generation of GPU hardware 

enables further considerable speed increases, which may be valued as another 

demonstration of the immense potential GPUs have for iterative ET.  

As a mechanism to express a compromise between SART and SIRT, we 

presented OS-SIRT algorithm in previous chapters. A similar compromise has 

been introduced as OS-SART by [113].  The rational was similar to that of [50] 

who devised OS-EM, an ordered subsets algorithm for the Expectation 

Maximization (EM) algorithm [103]. In OS-EM, the best subset size is one that 
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most optimally balances the noise compensation offered by larger subsets (many 

projections in one subset) and the smaller number of iterations required for 

convergence offered by smaller subsets (many corrective updates within one 

iteration). However, for our OS-SIRT the focus was to provide a mechanism by 

which one can balance GPU runtime performance (which is convergence as 

measured in wall-clock time) with noise cancelation (for better reconstruction 

quality). For the work here we have applied this framework to CT reconstruction 

from TEM data and show that OS-SIRT also provides a favorable algorithm here. 

We note that the study of OS-SIRT and its optimization for TEM data is not the 

focus of this work – this is subject of future work. Rather, in the current work we 

have aimed to provide more insight into GPU-accelerated computing for ET 

reconstruction.      

Finally, an important issue in CT is the “long object” reconstruction problem. 

It arises in spiral CT when the goal is to reconstruct a region-of-interest (ROI) 

bounded by two trans-axial slices, using a set of axially truncated cone-beam 

projections corresponding to a spiral segment long enough to cover the ROI, but 

not long enough to cover the whole axial extent of the object [29]. Essentially, in 

this situation some rays used for ROI reconstruction also traverse object regions 

not within the ROI, and these rays are sometimes called “contaminated” rays. 

This problem is similar to the “local tomography” problem in ET. While for ET 

the data acquisition trajectory is orthogonal to the one in spiral CT, ray 

contamination occurs whenever the object contains material not covered by every 

projection (that is, only a sub-region of the object is exposed to electrons in a 

local view). These areas are then incompletely reconstructed in the iterative 

procedure, which is evidenced by vignetting - a brightness fall-off in the 

peripheral regions of the reconstructed object. We derive a method, within our 

iterative framework, which effectively compensates for this effect, correcting the 

contaminated rays for the missing information. 

Our work is structured as follows. Section 7.2 presents relevant background 

both on reconstruction algorithms and on GPU hardware. Section 7.3 describes 

our various contributions, that is, the advanced GPU acceleration framework, the 

extension to the OS-SIRT mechanism, and the long-object compensation method. 

Section 7.4 presents results and Section 7.5 ends with conclusions.    

7.2    Background 

Before detailing the contributions of this work, we first give a brief overview over 

the implemented – and then accelerated and extended – reconstruction algorithms 

and the relevant intricacies of GPU hardware. We have only considered algebraic 

reconstruction algorithms, but the hardware acceleration generalizes readily to 

expectation maximization (EM) type procedures (for more information, see [115]).  
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7.2.1    Iterative Algebraic Reconstruction: Theory and 

Practice 

As we have shown in section 3.2.1, most iterative CT techniques use a projection 

operator to model the underlying image generation process at a certain viewing 

configuration (angle) φ. The result of this projection simulation is then compared 

to the acquired image obtained at the same viewing configuration. If scattering or 

diffraction effects are ignored, the modeling consists of tracing a straight ray ri 

from each image element (pixel) and summing the contributions of the volume 

elements (voxels) vj. Here, the basis function wij determines the contribution of a 

vj to ri. One can cast the choice of the weighting factors wij as an interpolation 

problem, where the rays traverse a field of basis functions (kernels) wij, each 

centered at a voxel vj [79]. The most efficient basis functions for GPUs are the 

nearest-neighbor and linear interpolation functions, in conjunction with point 

sampling. We have shown in earlier work [116] that for 3D iterative 

reconstruction (with SART) this type of sampling is sufficient. There we showed 

that the error function was similar to the one obtained with Siddon’s line and 

area/volume integration schemes which assume lower-quality nearest-neighbor 

kernels (but integrate them). A similar observation was also made for SIRT [6]. 

Once the number of rays (pixels) and voxels are sufficiently large, it becomes 

infeasible to store the wij as a pre-computed array. In fact, since GPUs are heavily 

optimized for computing and less for memory bandwidth (which is consequence 

of general semi-conductor technology), computing these wij on the fly is by far 

more efficient. This is even more so, since linear interpolation up to three 

dimensions and up to 32-bit floating-point precision is implemented on GPUs in 

special extra-fast ASIC circuitry. As it turns out, on the latest GPU cards there is 

almost no difference in performance for nearest-neighbor and bi-linear 

interpolation. This is fortunate, since iterative algorithms are very sensitive to the 

accuracy of the projector and thus bi-linear interpolation is a requirement for 

high-quality reconstructions (see Section 7.4). This sensitivity comes from the 

need for accurate correction factors to be used for the iterative updates. Here, 

linear interpolation strikes a good balance between aliasing and smoothing. The 

correction update for projection-based algebraic methods is computed in equation 

(3.2). 

7.2.2    Graphics Hardware: Architecture and 

Programming Model 
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GPUs have their origin as dedicated graphics processors. In graphics, high visual 

detail (when geometric detail is not needed) can be generated by simply mapping 

an image of sufficient resolution onto a large polygon. This requires two units. 

First, one needs a high-performance parallel polygon rasterizer, since each such 

polygon potentially affects many screen pixels onto which the image must be 

mapped. Second, with each rasterized pixel giving rise to a fragment one also 

requires a high-performance parallel fragment processor, able to process the 

oncoming front of fragments efficiently. Traditionally, each such fragment 

computation was just an interpolation of the mapped image at the coordinates 

attached to the fragment by the rasterizer. But now these computations can be 

much more involved, such as generating sophisticated lighting effects, driving 

complex physical simulations, or, in a GPGPU application, the execution of an 

arbitrary program (called shader). The key to a successful GPGPU 

implementation is that these computations can be cast as parallel operations, 

executed in lock-step (SIMD = Single Instruction Multiple Data) on the parallel 

fragment processors. This puts certain constraints on both data flow and 

programming model, which often requires a creative re-organization of the 

existing CPU program to enable optimal utilization of all parallel GPU resources.  

The NVIDIA G70 chip (which forms the GPU in the 7800 GTX and in the 

Quadro FX 4500) has 24 SIMD fragment processors (and 8 vertex processors), 

512MB of DDR memory, and 165 GFlops performance. On the other hand, the 

recent GTX 280 has 240 generalized processors, 1GB of DDR memory, and 

nearly 1TFlops performance (for further detail on these chips and boards the 

reader is referred to the corresponding Wikipedia pages). As mentioned, up to 

recently, the only way to interface with GPU hardware was via a graphics API, 

such as OpenGL or DirectX, and using CG, GLSL, or HDSL for coding the 

shader programs to be loaded and run on the fragment processors. With CUDA, 

the GPU can now directly be perceived as a multi-processor, and a suitable 

programming interface is available for this model where fragments become the 

CUDA (SIMD) computing threads and the shader programs become the 

computing kernels, which can be launched by a single instruction. 

Textures are the data structures utilized most frequently in GPU graphics 

programming (and they can also be used with CUDA). Textures are essentially 

1D-3D arrays supporting data types of various precisions ranging from 8-bit fixed 

point to 32-bit floating point. Among those, 2D floating point textures are most 

suitable for general purpose computing due to their complete support of all data 

formats and interpolation schemes. Conceived within a graphics context, textures 

are designed to contain up to four channels (RGBA) of data, where RGB is (red, 

green, blue) color and the A (alpha) channel carries the opacity (1-transparency) 

value. This feature provides additional data parallelism, in addition to the intrinsic 
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(1) For all VS volume slices 

(2) For all S ordered sets OSs 

(3) For all projections Psp in OSs 

          (4) For all pixel rays rsti in Psp 

  Initialize ray sum rssti 

  Set up space traversal for rsti 

       (5) For all slice positions pl along rsti 

            Advance rsti by step size r  

            Sum the weighted contributions from the (bilinear) neighborhood of voxels vj 

            Add the interpolated value to rssti using the trapezoidal integration rule    

  Normalize rssti by the sum of weights 

 

pipeline parallelism described above. However, in order to achieve this 

parallelism one needs to fulfill even stronger requirements than just SIMD.  

Understanding the GPU memory hierarchy is the key to maximizing 

computational performance. On the GPU, memory is organized in register, shared, 

texture, and global memory. Registers and shared memory are fastest and on-chip, 

while texture and global memory is maintained as slower DDR memory and on-

board. Shared memory stores recently accessed data blocks for use by parallel 

threads, and each memory miss causes 100 or more wait clock cycles. Fortunately, 

GPUs hide these latencies by replacing any waiting thread by another thread that 

(already) has the data it needs to compute the current SIMD instruction. It is 

therefore desirable to (a) maintain data locality among neighboring threads in 

order to prevent costly cache misses overall, (b) launch a sufficient number of 

threads (many more than the number of available microprocessors) so the 

latencies incurred by cache misses can be hidden by overlapping the memory 

waits with computation, and (c) keep the kernel program sufficiently long to 

amortize setup cost, minimize synchronization overhead, and promote efficient 

instruction and data flow.  

7.3    Methods 

Most relevant in a GPU-accelerated CT reconstruction framework is to have an 

efficient projection and back-projection operator. The remaining operations, such 

as the correction computations, are simple vector operations of low complexity 

and can be implemented on the GPU by subtracting two 2D textures, the texture 

holding the acquired projections and the texture computed during projection. In 

the following we (a) describe an efficient parallel framework that accelerates 

these operations, and (b) present a new method that efficiently deals with the 

effects of the limited specimen coverage of the detector.   

     Figure 7.1: Forward projection loop of a straightforward CPU implementation. 
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(1) For all VS/4 volume slices (using the RGBA channels to process 4 slices simultaneously) 

        (2) For all S ordered subsets OSs  

                (3) For all pixel rays in OSs  (loop parallelized into fragments)    

        Fetch ray starting location rayS(rx, ry) and direction rayV(rz, rw) from ray texture TXray 

        Calculate the entry and exit points on the volume bounding box: s1, s2 

        Set parametric variable t=0 and raySum=0; 

          For all ray positions along rayV 

      Calculate the sampling location s along the ray and interpolate: s = rayS + t*rayV 

      Interpolate sample value and add to ray sum: raySum += Interpolate (volSlice, s) 

      Increment t by parametric step size t: t+=t // typically t=0.5 

        Store rendering result in rendering texture TXsim 

 

7.3.1    Acceleration of Forward and Backward Projection 

We begin our discussion by writing the projection procedure in form of a typical 

CPU implementation. Assuming S exclusive subsets and P projections in total, the 

pseudo-code for projection is shown in Figure 7.1 (the backprojection is 

interleaved for each subset, but not shown here). A ray steps across a slice, 

interpolates the slice at the sample positions (which results in the weights), sums 

these contributions (and the weights) and finally divides the ray sum by the sum 

of weights for normalization. We pre-compute this sum of weights in a pre-

processing step and store into a texture.  

Figure 7.2: Pseudo code for sinogram-based forward projection. The first two grey lines are 

executed on the CPU, while the remainder is GPU-resident fragment code. Note that a fragment in 

this code is the equivalent of a CUDA thread. 

From the code in Figure 7.1 we observe that (i) the projection procedure has 5 

nested loops (indicated in blue), and (ii) the body of the final level is the longest 

in terms of operations. The implementation of Castano-Diez et al. maps this loop 

structure directly to the GPU. The body of loop (4) as well as loop (5) and its 

body are executed in the fragment shader, while the head of loop (4) itself is 

parallelized by generating a raster of fragments, one for each loop instantiation. A 

polygon of size T×1 is created (where T is the number of pixels within a 

projection) and this polygon is rasterized to the screen. Since each volume slice is 

processed separately, the projection data is just a set of 1D lines drawn from the 

set of 2D projections. This process generates one fragment per pixel and for each 

pixel the fragment program is executed. Given this decomposition, executing all 

instantiations of loop (4) then encompasses a single parallel operation (called pass 

in GLSL), and therefore one gets VS∙P such passes. Furthermore, due to then-

existing limits on the number of instructions that could be executed in one kernel, 

Castano-Diez et al. were forced to break each volume slice into TL tiles and 

computed the rays sum for each tile in a separate pass, adding the results in the 

end. Thus the final number of passes became even higher, that is, VS∙P∙TL. 
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Assuming SIRT and P=85, VS=1024 slices, and TL=4 tiles, this would then result 

in 348k passes, causing significant overhead.  

This early implementation does not promote the rules set forward at the end of 

Section 7.2.2 which hampers performance and also scalability. There is only little 

parallelism, there are only few threads per pass, and the threads themselves are 

short. We have improved on this as follows, referring to the pseudo code given in 

Figure 7.2: 

 Minimize synchronization overhead: We do not subdivide the domain into 

tiles, but trace all rays from entry to exit. Optionally, we pre-compute for each 

ray its starting locations (rx, ry,) at the slice boundary as well as its direction 

vector (rdx, rdy) and store these four values into a ray texture TXray. 

 Encourage latency hiding: We launch all rays in a subset at the same time. 

Thus the number of threads can be controlled by the subset configuration. It is 

this flexibility that makes our OS-SIRT scheme so attractive and powerful for 

high-performance GPU computing. For this, we group all |OS| 1D projections 

in a subset (corresponding to a certain volume slice) into a single 2D sinogram 

texture TXproj. Then, during projection, we create a polygon of size T×|OS|, 

and use TXsim as a rendering target. This generates rays/fragments for all 

angles and pixels in the currently processed subset, and eliminates loop (3). 

 Exploit RGBA channel parallelism: For this to work, all fragments in these 

parallel channels must exhibit the exact same mapping function – all that can 

be different are the data and the rendering target, with each such simultaneous 

pair being stored in the RBGA channels. Such a strong parallelism is readily 

exposed in parallel projection, and we can achieve it by storing and processing 

a consecutive 4-tuple of volume slices and associated projection data in the 

RGBA channels of their corresponding textures. This reduces the number of 

required passes theoretically by a factor of 4, but in practice this factor is 

about 3. GLSL provides a better interface than CUDA for accessing these 

functionalities since RGBA color is typically used for graphics rendering.  

All put together, we can reduce the number of passes required for one iteration 

to VS/4∙S. For example, assuming classic SIRT with S=1 and VS=1024 slices as 

before, we would have 256 passes (if less passes are desired we could also 

combine equivalent rays in multiple slices). This is less than 0.1% of the 

implementation of Castano-Diez et al., which has a significant impact on 

reconstruction performance.  

Equivalent to the projection code, Figure 7.3 lists the pseudo fragment code for 

back-projection. Similar to Castano-Diez.et al., the final two loops of the above 

pseudo codes are explicitly controlled and executed on the GPU and are rendered 
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(1) For all VS/4 volume slices VSs 

  (2) For all S ordered subsets OSs  

  (3) For all voxels v in VSs  

   (4) For all projections Pst in OSs 

     Transform voxel position (vx, vy) to sinogram position (px, py);

   Sample the sinogram texture using coordinates (px, py); 

  Add the sample value to current voxel value; 

in a single pass. However, in addition, we also exploit the RGBA 4-way 

parallelism, reducing the total number of required passes to VS/4·S.  

    Figure 7.3: Pseudo code for sinogram-based back-projection. The first two grey lines are 

executed on CPU, while the remainder is GPU-resident fragment code. 

Note that the major difference of backprojection and forward projection is that 

in the former the pixel rays are processed in parallel (forming a pixel-driven 

operator), while in the latter the voxels form the threads (yielding a voxel-driven 

operator). This makes both projectors gathering operations which are more 

efficient than scattering operations in which every interaction would be a 

spreading instead of an interpolation. More concretely, a voxel-driven forward 

projector would have to splat (scatter, distribute) a kernel function onto the 

detector plane, while a pixel-driven backprojector would have to splat the 

corrective updates into the reconstruction grid. These already expensive 

operations would have to be written as kernel code, while interpolation is 

accelerated in special super-fast hardware circuits. Although this forms an 

unmatched projector-backprojector pair it has been shown by [140] to work very 

well in practice.  

Finally, since our backprojector uses linear interpolation where the weights 

always sum to 1.0 for each projected voxel the post-weighting normalization in 

equation (2) simplifies to a division by |OSs|, which is the number of projections 

in subset s. Equation (3.2) is then written as:  
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(7.1) 

 

This reduces the need for keeping track of the sum weights in the backprojection 

and saves on memory and calculations. 
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Wsumsim / Wsumacq 

Wsumacq Wsumsim 

7.3.2    Limited Detector Problem Compensation 

Figure 7.4: Limited detector/long-object problem: (a) the shadowed area indicated regions not 

reconstructed, but participating in the image formation, (b) area for acquired sum of weights term.  

    During the data collection stage only a small portion of the sample is imaged to 

obtain the tilt projections. This results in the “limited detector” or “long-object” 

problem as discussed in Section 7.1, and an illustration is shown in Figure 7.4a. 

Here an off-center acquired projection image contains ray integrals across the 

whole sample, but the simulated projection at the same angle does not have the 

complete integral since the reconstruction volume must be limited (typically by a 

box). In other words, voxels residing in the shadow area of the original complete 

sample (shown shaded in grey) participate in the projection formation during 

imaging, but due to the restricted reconstruction area (shown in solid red), they do 

not contribute in the value formation of any pixels during the reconstruction, 

resulting in severe vignetting effects if we do not compensate for this.  

This vignetting effect is shown for three datasets in Figure 7.5a. The top row 

shows the reconstruction of a long slab of uniform density, while the others show 

two TEM datasets – a tobacco mosaic virus and the HPcere2 dataset (see below) – 

all after one iteration with SART. Note that these raw CT slices are vertical cross-

sections of the stack of slices typically displayed for visualizing the salient 

biological structures – we present these more familiar cross-sectional images in 

Section 7.4. We observe that while the vignetting effects are most prominent for 

the slices at the top and bottom ends of the stack, all slices are principally affected 

(see the bow-tie like structures which will cause density fall-off within all cross-

sectional slices).      

We propose a weight correction scheme that effectively resolves this problem 

for iterative ET –  other compensations exist for analytical algorithms [99] based 

on Filtered backprojection, where an extended area of around double the length of 
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the region of interest (ROI) is used as the reconstruction target to prevent 

sampling artifacts. While the over-sampling approach resolves the edge problem, 

it introduces an extra amount of computation. Our approach does not require these 

extra computations, as we compensate for the missing target regions on the fly.  

In a typical iterative algebraic framework, at a particular tilt angle (see Figure 

7.4), the corrective update is derived as: 

acq sim acq sim

sim sim sim

P P P P
Correction

Wsum Wsum Wsum


    (7.2) 

Here the acquired projection is denoted as Pacq and the simulated projection as 

Psim. The problem with using this equation to derive a correction is that the 

computed sum of weights Wsumsim is calculated based on the bounding box which 

does not exist (in this closed form) in the acquired data. Therefore, this sum 

should not be applied towards the acquired projection Pacq. Instead, the acquired 

sum of weights Wsumacq (shown in Figure 7.4b) is the correct value that should be 

used. Using these arguments, we derive an updated correction equation as follows:  

sim
acq sim

acq acq sim sim acq acqsim

acq sim acq sim sim

Wsum
P P

P P Wsum P Wsum WsumP
Correction

Wsum Wsum Wsum Wsum Wsum

 
  

   


 

(7.3) 

Consequently, an additional correction factor determined by dividing Wsumsim 

over Wsumacq should be computed to pre-weight the acquired projection Pacq 

before it participates in the regular correction stage. In practice, we assume that 

the true extent of the specimen falls within a box extending the box bounding the 

reconstruction region. The ratio Wsumsim/Wsumacq could then be obtained as the 

ratio of the length of the parallel rays clipped to the reconstruction region’s 

bounding box and the length of these rays fully intersecting the extended box at 

the given tilt angle. The latter can be computed by L=d/cos() where d is the 

thickness of the specimen (typically the number of voxels in that dimension 

assuming unit cell size) and  is the tilt angle. While using a metric ray length L 

to normalize Pacq has been already described in [60][45], these authors only used 

this formulation as a measure more accurate than a sum of discrete weights W. 

They did not differentiate the sum of weights to be used for weighting Pacq and 

Psim within a limited detector scenario.     

To reduce computational overhead we pre-compute L for each tilt angle and 

store its reciprocal into a constant texture. The ratio for a given ray is then 

computed by multiplying this constant by the ray’s actual sum of weights Wsumsim 

obtained from the weight sum texture (see Section 7.3.1). Alternatively we may 

also pre-compute and store the ratios themselves as a (constant) texture.  
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   (a)                                                                                                (b) 

The reconstruction results (again after one iteration with SART) presented in 

Figure 7.5b show that this approximation is reasonably accurate, and we find that 

by applying the new correction the strong vignetting artifacts present in Figure 

7.6a are effectively removed. 

Figure 7.5: Limited detector effect: (a) without compensation, and (b) with compensation 

during iterative reconstruction. Top to bottom row: a uniform slab, the HPFcere2 dataset, and the 

tobacco mosaic virus. 
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7.4    Results 

We have experimented with two TEM datasets: (1) a cryo dataset of a frozen 

hydrated tobacco mosaic virus, comprised of 61 projections of size 680×800 each 

and obtained at uniform spacing over a tilt angle of around 120˚ and (2) a brain 

synapse (the HPFcere2 dataset from the Cell Centered Database 

http://www.ccdb.ucsd.edu), comprised of 61 projections of size 2,242×3,340 each 

and obtained at uniform spacing over a tilt angle of 120˚ (these are double tilt data, 

but we only used a single tilt). In order to align all projections, we cropped them 

to size 1,424×2,024. Next we show results we have obtained with our GPU-

accelerated SIRT, SART, and OS-SIRT algorithm. We first show reconstructions 

we obtained, then present the timing results, and end with further results on our 

limited-detector artifact compensation scheme.   

Figure 7.6: (Top row) Reconstruction results for a tobacco mosaic virus dataset using the 

extreme OS configurations (SIRT and SART) and OS-SIRT 5, all taking about 30s to reconstruct 

(intensity windowing was applied in each to boost contrast). (Bottom row) Zoom into a specific 

detail (again with intensity windowing). The number of projections was 61, the tilt angle 120˚, the 

volume size 680 ×800 ×100, and  was set to 1.0 for SIRT, 0.5 for OS-SIRT 5, and 0.03 for SART. 
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7.4.1    Reconstruction Quality, in the Context of 

Computational Performance 

For OS-SIRT we experimentally determined that OS-SIRT 5 gave the best 

reconstruction quality in the shortest wall clock time for the TEM datasets we 

tested. We used 1 for SIRT in all cases. For SART we used a fixed 0.3 for 

the brain synapse dataset and 0.05 for the noisier tobacco mosaic virus. Figure 

7.6 displays reconstruction results for the tobacco mosaic virus, with all 800 slices 

(resolution 680×100) reconstructed via the two extreme OS configurations (SIRT 

and  SART) and OS-SIRT 5. Here we found, similar to Dietz et al. that a single 

iteration was sufficient for SART to converge and that SIRT will eventually reach 

convergence as well with similar results, but requires many more iterations (50 or 

more). The top row shows the full slice view of (a linear intensity window was 

applied to maximize contrast) of the reconstructed volume, and the bottom row 

shows a detail view of the same slice (with intensity windowing). All 

reconstructions were obtained at the same wall-clock time of 30s, matching the 

time required for one iteration with SART (using the more versatile single-

channel implementation, see below). It appears that OS-SIRT 5 provides 

somewhat better detail and feature contrast than both SART and SIRT – the tube 

channels seem better preserved for OS-SIRT 5. Figure 7.7 shows a similar series 

for the HPFcere2 dataset (with 506 slices at 356×148 resolution) obtained at a 

wall clock time of about 22s, with similar observations. SIRT produces 

significantly less converged (blurrier) images at this wall clock time. They 

improve (sharpen) if further iterations are allowed, which we study in Figure 7.8. 

There we see that 20 iterations appear to be sufficient to match the reconstruction 

result obtained with OS-SIRT 5 (but at more than triple the time).  

Figure 7.9 compares the three different algorithms (SIRT, OS-SIRT 5, and 

SIRT) quantitatively using the R-factor. Although the R-factor still improves 

beyond the images we have shown here, we found that these improvements are 

not well perceived visually and so we have not shown these images here. To 

visualize the aspect of computational performance in the context of a quantitative 

reconstruction quality measure (here, the R-factor) we have inserted into Figure 

7.9 a metric which we call the "computation time iso-contour". Here we used 22s 

for this contour – the approximate time required for 1 SART, 6 OS-SIRT, and 8 

SIRT iterations (see Figure 7.7) which yielded reconstructions of good quality for 

OS-SIRT 5. We observe that OS-SIRT 5 offers a better time-quality performance 

than SART, and this is also true for other such time iso-contours (although not 

shown here) since the time per iteration for OS-SIRT is roughly 1/6 of that for 

SART. SIRT, on the other hand converges at a much higher R-factor.       
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Finally, Figure 7.10 presents detail results obtained from higher resolution 

reconstructions with OS-SIRT 5 (of the HPFcere2 dataset). We confirm that 

crisper detail can be obtained with higher resolution, and we will present the time 

overhead required in the following section. 

 

 

 

 

 

 

 

 

 

Figure 7.7: Reconstruction results for the HPFcere2 dataset using the extreme OS 

configurations (SIRT and SART) and OS-SIRT 5, all taking about 22s to reconstruct (intensity 

windowing was applied in each to boost contrast). The number of projections was 61, the tilt angle 

120˚, volume size 356 ×506 ×148, and  was set to 1.0 for SIRT, 1.0 for OS-SIRT 5, and 0.3 for 

SART.  
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Figure 7.8: Reconstruction results for the HPFcere2 dataset comparing the results obtained 

with extended iterations with SIRT and OS-SIRT 5 (intensity windowing was applied in each to 

boost contrast). The number of projections was 61, the tilt angle 120˚ and the volume size 356 

×506×148. We observe by visual inspection that 20 iterations with SIRT yield similar results than 

6 iterations with OS-SIRT, but at double the wall-clock time. The relaxation factor  was set to 1.0 

for both SIRT and OS-SIRT 5.  
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22s iso-contour 

Figure 7.9: Comparison of SART, OS-SIRT 5, and SIRT in terms of quality (R-factor) and 

performance (22s iso-contour) for the HPFcere2 dataset. 

Figure 7.10: Reconstruction results for the HPFcere2 dataset using 8 iterations with OS-SIRT 

5 and for increasing resolution. The number of projections was 61, the tilt angle 120˚, but the data 

used was at matching resolution. The relaxation factor  was set to 1.0 for all reconstructions. 
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7.4.2    Absolute Computational Performance 

Number of 

iterations 

Slice 

resolution 

(Diez et al.) 

Quadro 4500 
7800GTX Speedup GTX 280 Speedup 

10 256×256 N/A 0.41s N/A 0.13s N/A 

50 256×256 N/A 2.05s N/A 0.66s N/A 

10 512×512 9s 1.23s 7.3 0.34s 26.0 

50 512×512 39s 5.32s 7.3 1.75s 22.2 

10 1024×1024 32s 4.30s 7.5 1.23s 25.8 

50 1024×1024 146s 21.89s 6.7 6.44s 22.7 

10 2048×2048 123s 17.39s 7.1 5.06s 24.3 

50 2048×2048 567s 85.30s 6.7 26.94s 21.0 

Table 7.1: Timings for the reconstruction of a single volume slice at different resolutions using 

SIRT and parallel projections acquired at 180 tilt angles, comparing different implementations and 

platforms. 

We now discuss the general performance of our optimized GPU-accelerated ET-

framework. First, to illustrate the benefits of our new projection/backprojection 

scheme in general, we provide Table 7.1 which compares the running times 

obtained via our framework with those reported in [28]. The timings presented 

here refer to a 2D slice reconstruction with SIRT, using projection data from 180 

tilt angles, including the time to transfer the data to the GPU. We have run our 

framework on GPU hardware comparable to the one employed by Castano-Diez 

et al., that is, the NVIDIA G70 chip (this chip forms the core of both the Quadro 

4500 and the GeForce 7800 GTX boards, with only minor performance 

differences). Since then, newer generations of NVIDIA chips have emerged, with 

the latest being the G200 chip (available as the GTX 280 board) for which we 

also report timings. More detail on these two architectures was already presented 

in Section 7.2.2. We observe that the significant decrease in passes of our GPU-

algorithm leads to consistent speedups of nearly an order of magnitude across all 

resolutions and iteration numbers (7800 GTX columns). The newer platforms 

yield further speedups mainly founded in hardware improvements (GTX 280 

columns).   

Table 7.2 studies the performance per iteration for SART, SIRT, and OS-SIRT 

5 for different volume sizes/resolutions (assuming the same number of 

projections). In this table we also compare the timings obtained for the more 

versatile single-channel implementation with the RGBA (4) channel solution 

implemented with GLSL. We make two observations. First, we see that the 4-

channel scheme pays off more as the number of subsets increases, with SART 

being the extreme case where it can achieve speedups between 2 and 3. Second, 

we observe that the performance gap of SIRT, OS-SIRT, and SART narrows (but 
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more so for the 4-channel implementation) with increasing volume size, with 

eventually SIRT being only 1.5 times as fast than SART (for one iteration) in the 

4-channel configuration. Since in ET practice the volume slice resolution tends to 

be at the order of 2k to 4k and larger, this means that the choice of subsets will be 

mainly determined by the traditional tradeoff between speed of convergence and 

noise cancelation. Figure 7.11 shows similar trends with a more standardized 

metric, the number of voxels (multiplied by the number of projections in the 

subset) processed per second. This yields a metric for the overall task complexity 

measured in gigavoxels/s. 

Volume resolution 
SIRT OS-SIRT 5 SART 

1-ch 4-ch 1-ch 4-ch 1-ch 4-ch 

356×506×148 2.642 2.103 3.672 2.278 15.867 5.712 

712×1012×296 12.822 10.665 14.625 11.053 47.993 19.341 

1424×2024×591 75.708 58.471 82.055 62.135 192.337 87.042 

Table 7.2: Running time for 1 iteration for the reconstruction of volumes of different sizes 

(resolutions) using SIRT, OS-SIRT 5 and SART, with the 1-channel and 4-channels schemes, and 

parallel projections acquired at 61 tilt angles. 

Figure 7.11: Reconstruction performance expressed in Gigavoxels/s for different volume sizes, 

algorithms and the 1-channel and 4-channel scheme. 
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Figure 7.12: Comparing reconstruction results obtained for the HPFcere2 dataset without and 

with limited detector compensation for 1 iteration with SART (at the same settings than for Fig. 

7.7). 
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7.4.3    Limited Detector Problem Compensation 

Our final results present the impact of our compensation scheme on 

reconstruction quality. Section 7.3.2 has already shown that artifacts are 

effectively removed in the reconstructed thick specimen slab (which is a portion 

of a much wider and longer sheet). We have also mentioned that in most cases 

this slab is re-sliced orthogonally and then the grey level densities reversed and 

windowed, which yields the images typically visualized and also shown in our 

Figures 7.8-7.10. In Figure 7.12 we present the center slices of the re-sliced slabs 

of Figure 7.5 (center row, the HPFcere2 dataset) before and after grey-level 

reversal (top and bottom row, respectively) and without and with compensation 

(left and right column, respectively) after one iteration with SART. We observe, 

in the uncompensated images, the peripheral density fall-offs at the left and right 

edge and we also observe a slight vertical stripe artifact due to the bow-tie border. 

Both artifacts are effectively removed with our compensation scheme.  

    We have described new contributions and presented confirming results for 

these within three major areas of 3D Electron Tomography (ET): (i) the iterative 

reconstruction framework using algebraic methods in different subset 

configuration schemes, (ii) the compensation for the limited angle at which 

projections can be obtained, and (ii) the acceleration of ET via commodity 

graphics hardware (GPUs). For the latter, we have presented a novel data 

decomposition scheme that minimizes the number of GPU passes required, 

yielding speedups of nearly an order of magnitude with respect to present GPU-

acceleration efforts. We also compared acceleration with a versatile single-

channel scheme that is available with any GPU API with a 4-channel scheme 

(currently) only available with graphics APIs, such as GLSL, which offers 

additional speedups of up to 2 for large practical datasets (more for smaller 

datasets). Our GPU-accelerated framework allows full-size 3D ET reconstructions 

to be performed on the order of minutes, using hardware widely available for less 

than $500.  

7.5    Conclusions 

Our GPU-accelerated ET platform allows ET researchers to achieve a major task 

which has so far been infeasible without expensive and extensive hardware: the 

iterative reconstruction of full-size 3D volumes. We have shown that it is now 

possible to reconstruct a 2048
2
×100 volume within a few minutes, while Castano-

Diez et al. report nearly an hour or more for this task. A CPU-based 

reconstruction would take on the order of days. We emphasize that all of our 

results were obtained with a single GPU solution (of a cost of less than $500) – a 

multi-GPU configuration would provide even higher performance. We believe 



 

96 

 

that the impact of gaining such capabilities is great, as it enables demanding 

iterative schemes crucial for the improvement of image resolution and contrast, 

such as iterative projection alignment and registration, further efforts could be 

planned in this direction.  

    Current work is directed towards determining a framework that can 

automatically optimize the number of subsets and determine the best relaxation 

factor  for a given imaging scenario, as expressed in SNR, imaged specimen, and 

imaging platform. We have already obtained encouraging initial results in this 

direction, as recently reported in [119]. 
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Chapter 8  
 

Low-Dose CT Artifact Mitigation 

Using a Prior Scan 

 
Low-dose CT has attracted increasing attention due to growing concerns about 

radiation exposure in medical scans. Although we have shown in previous 

chapters that iterative CT reconstruction algorithms with regularization abate the 

difficulty of reducing the artifacts such as noise and streaks, the frugal use of X-

ray radiation in some extreme situation still makes the reconstructed images 

difficult to read in clinical routine. For follow-up CT exams a prior scan is often 

available. It typically contains the same anatomical structures, just somewhat 

deformed and not aligned. This work describes a two-step technique that utilizes 

this prior scan to achieve high-quality low-dose CT imaging, overcoming 

difficulties arising from noise artifacts and misalignment. We specifically focus 

on reducing the dose by lowering the number of projections. This gives rise to 

severe streak artifacts which possibly lower the readability of CT images to a 

larger extent than the fine-grained noise that results from lowering the mA or kV 

settings. 

8.1    Introduction 

Computed X-ray Tomography has revolutionized modern medicine and thanks to 

the rapid growth in scanner technology the gamut of its applications has risen at 

an enormous rate. In this process, buoyed by the excitement of possibilities little 

attention was paid to the radiation dose administered to the patient. Scans with 

ever-improving spatial and temporal resolutions were conducted on a routine 
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basis and the associated CT reconstruction algorithms had the luxury of an 

abundance of data collected at each exam. It was only recently that the sobering 

results of long-term studies on the adverse radiation effects of CT imaging have 

dampened these developments [7][77]. Due to these studies, the harmful effects of 

X-ray radiation in CT scans have become publicly heard, threatening the future of 

this modality. To counter these concerns, campaigns such as ImageGently 

(http://www.imagegently.org) and ImageWisely (http://www.imagewisely.org) 

have been initiated that promote the optimization of the radiation dose used in 

both pediatric and adult medical imaging.  

To reduce the radiation dose subjected to the patient one can: (1) lower the 

number of scans, (2) lower the number of X-ray projections per scan, and (3) 

lower the energy settings of the X-ray tube (kV, mA) per projection image. The 

first measure, i.e., reducing the number of scans, is often left at the discretion of 

the treating physician. The latter two options are highly detrimental to image 

quality, resulting in images with significant noise artifacts. They greatly challenge 

the conventional CT reconstruction algorithms based on analytical formulations 

rooted in the Inverse Radon Transform [81], and these shortcomings have recently 

invigorated research efforts towards methods that seek alternatives to these 

conventional schemes.  

A popular approach to this end has been to enforce data fidelity and image 

quality as a joint optimization problem and solve these two parts in an iterative 

round-robin fashion as we stated before as the interleaved scheme. Data fidelity 

can be assured by ways of any CT reconstruction algorithm, iterative or analytical, 

but most use the former. The reduction of noise artifacts, on the other hand, can 

be posed as an image denoising problem. Many approaches use the method of 

Total Variation Minimization (TVM) [92] for this task since it is often part of 

general compressive sensing formulations [20] that were originally prescribed to 

deal with sparse data. For CT reconstruction, a number of sophisticated schemes 

have been developed that adapt the various parameters used in the process, such 

as ASD-POCS [101] and soft-threshold filtering [134].  

In this work, we have attempted to devise a framework that executes the data 

fidelity step and the image quality step each exactly once. It is hence of lower 

computational complexity than the present schemes which perform these steps 

iteratively. We achieve this by making creative use of an artifact-free prior – 

constituted by an existing regular-dose scan of the patient. Such a clean prior scan 

is frequently available. For example, it may be a regular-dose first scan acquired 

before a low-dose follow-up scan or it may be a regular-dose diagnostic scan 

preceding a low-dose setup scan for a surgical intervention such as orthopedic 

spine fixation, among other scenarios.   
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In the present work, we focus on the second form of low-dose CT, i.e., reducing 

the number of X-ray projections per scan. The first step of our framework uses 

filtered backprojection (FBP) to reconstruct an image with significant streak 

artifacts which result from this low number of projections. The use of FBP to 

provide a quick first estimate is a common strategy. Unlike the first step of an 

iterative scheme, such as ART [46] and its derivatives [2][45], FBP typically 

reconstructs all image features at good fidelity but the high image noise makes 

them difficult to read. Common approaches then follow FBP by an iterative 

pipeline for denoising. Our second step, on the other hand, uses a single prior-

based image restoration that eliminates the noise and so provides the desired 

viewing experience. In this step, we first register/align our prior with the FBP-

estimate using an established multi-scale feature registration algorithm, i.e., SIFT 

flow [72]. Following, we simulate the low-dose streak artifacts of the FBP-

estimate in this registered clean prior. Finally, for each pixel in the target image 

we use a neighborhood similarity metric to determine the best matches in the 

contaminated prior and then replace it using the corresponding pixels in the clean 

prior. 

Using existing scans to support regularization is not new. Kelm et al.  [55] 

describe an approach that reconstructs volumes at two different thicknesses, using 

the same acquired projection data. They reconstruct the thicker slices from bin-

averaged projections which increases SNR, while the thinner (and noisier) slices 

are reconstructed from the original projection data. Since registration is implicit, it 

is relatively straightforward to use the thicker slices for neighborhood-based 

denoising of the thinner slices. In contrast, our method applies to settings in which 

the reference images are not necessarily acquired simultaneously. Yu et al. [135] 

present the method Previous Scan–Regularized Reconstruction (PSRR). It 

replaces regions that are unchanged in a low-dose CT reconstruction with their 

direct embodiments in a normal-dose CT reconstruction, and uses a nonlinear 

diffusion approach for denoising in the remaining regions. This approach requires 

an effective strategy for feature recognition, which the authors accomplish via 

registration.  

The approach most similar to ours is that of Ma et al. [75]. They also use a 

registration algorithm – a combination of rigid PCA (Principal Component 

Analysis) and non-rigid mutual information optimization [67] – for rough 

alignment. They then use a neighborhood-mechanism to locate suitable 

replacement candidates in a prior scan of the patient. Our work differs from theirs 

in the following important ways. First, while Ma et al. restore images 

reconstructed from projections generated at reduced mA settings, we treat 

artifacts caused by the reduction of projections. The resulting streak artifacts are 

much more severe and irregular than the random noise-artifacts caused by low-
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mA imaging. Second, instead of using a clean prior for matching we use a prior 

with simulated artifacts. We find that this affords much better accuracy, as we 

will proof and demonstrate. A preliminary version of the framework we describe 

here has been presented in [124], which predates the work by Ma et al. slightly.   

Our work is organized as follows. Section 8.2 presents the algorithms we have 

studied, Section 8.3 presents results, and Section 8.3 ends with conclusions and 

points to future work.  

8.2    Methods and Materials 

To locate good pixel matches in the prior we use the similarity measures also 

employed by Non-Local Means (NLM) filtering [4]. NLM filtering can be seen as 

a generalization of Gaussian smoothing. It looks for structurally similar pixel 

neighborhoods in the smoothing site’s proximity and includes them into the 

Gaussian filter statistics. This leads to a more robust estimate of the true pixel 

value and consequently to improved image restoration/denoising results. We have 

recently informally compared NLM filtering with TVM for low-dose imaging 

tasks and our results have been quite encouraging [122]. In this current work, we 

do not employ NLM-filtering in a conventional way as a non-local extension of 

Gaussian filtering. Rather, we only retain NLM’s mechanism for similarity-based 

pixel neighborhood matching in the artifact-matched prior. 

8.2.1    Standard NLM Filtering 

The NLM algorithm was proposed by Buades et al. [4] for image Denoising as 

mentioned in chapter 4. It takes advantage of the high degree of redundancy that 

typically exists in an image. Given a target pixel subject to denoising, it defines a 

small Gaussian-weighted region around it, called a patch. It then searches the 

entire image for similar patches and accumulated them weighted by their degree 

of similarity. In practice, only a local neighborhood around the target pixel is 

searched, called search window. This helps performance but it also better tolerates 

non-stationary noise processes. Further, since we first register the prior to the 

target image, we do not require large search windows in any case. More formally, 

the updated value  of a target pixel is computed as: 
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 (8.1) 

Here, x is the location of the target pixel and the y are the locations of the  
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(a) NLM-filtered (b) TVM-filtered 

Figure 8.1: Illustration of conventional NLM for denoising. 

Figure 8.2: Filtering results obtained with (a) NLM and (b) TVM. 

 

candidate pixels, with values py. Wx is the search window around x, and P is the 

patch size of each pixel. The patch similarity is measured by the Gaussian 

weighted L2 distance between two patch vectors with t representing the index 

within a patch and Ga being a Gaussian kernel with standard deviation a. The 

exponential function converts these distances to weights, determined by a 

parameter h which controls the overall smoothness of the filtering. Larger values 

of h will result in more smoothing.  

    Figure 8.1 shows an illustration of this process when NLM is used in a 
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conventional way to denoise a reconstruction with severe streak artifacts. In this 

particular case we used FBP to reconstruct a GE head phantom from 45 fan-beam 

projections acquired over 360º. The illustration shows the search window, the 

target pixel in the center and two candidate pixels with similar neighborhoods as 

the target pixel. Figure 8.2a shows the NLM-filtered result, while Figure 8.2b 

shows the results obtained with TVM. We can observe that both of these filters 

provide some amount of improvement over the original image shown in Figure 

8.5a. It is likely (see for example, [9]) that repeating the fidelity and denoising 

steps several times would do substantially better, but since we have aimed for a 

non-repeating approach – one in which a prior is available to aid in the denoising 

– we focus on a single step scheme. 

8.2.2    Registration Using the SIFT-Flow Algorithm 

A crucial element in our prior-assisted framework is proper registration since 

without it the possibility for mismatches can be high. Nevertheless, our use of the 

NLM-based matching mechanism relaxes the need for tight and laborious 

registration of the prior image as it performs the fine registration on the fly via its 

search mechanism. As such it is less sensitive to spatial distortions than the PSRR 

approach. For registration we have made use of the SIFT-flow algorithm, recently 

published by Liu et al. [72]. This algorithm originates from the optical-flow 

algorithm which produces dense, pixel-to-pixel correspondences between two 

images. It extends the matching from raw pixels to SIFT feature descriptors [62]. 

A SIFT (Scale-Invariant Feature Transform) feature descriptor captures the 

histogram of gradient orientations in a local neighborhood at a given scale. It is 

well suited to characterize salient local and transform-invariant image structures 

and at the same time encode contextual information. SIFT-flow has been 

specifically designed for scene matching, where objects share similar scene 

characteristics but may have different appearances and locate at different places. 

This is the case in the registration of the prior to the current scan. They are 

certainly from the same person, i.e., they share the scene characteristics, but they 

will likely have different SNR and undergone distortions of the features. 
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Figure 8.3: Illustration of SIFT descriptor summarizing edge orientations over 16×16 pixel 

area. 

    The implementation of SIFT-flow has two parts: (i) generate dense SIFT 

features where each pixel has a 128-dimensional SIFT vector, and (ii) find the 

correspondence of these SIFT features via discrete optimization on the image 

lattice to obtain the displacement field for alignment. For the first part, Figure 8.3 

shows a typical SIFT feature descriptor summarizing the gradient orientations in a 

16
2
 pixel area (as plotted inside the red square). The gradients (shown as blue 

arrows) are Gaussian-smoothed according to their distance to the area center. This 

area is partitioned into 4
2
 blocks, each of size 4

2
 pixels (shown as green squares). 

The gradient orientations are then accumulated in each block to 8 orientation bins 

and are weighted by their gradient magnitudes. There are a total of 16 8-bin 

orientation histograms (with each red arrow representing one bin). Thus the 

dimension of a SIFT vector is 4×4×8=128 over a 16×16=256 area. For the second 

part, to estimate flow, the energy function for SIFT flow is defined as below: 
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(8.2) 

where (x,y) and (x’,y’) are pixel locations, s1 and s2 are SIFT descriptors, f is the 

displacement function with fx in x-direction and fy in y-direction, W is the pixel 

neighborhood and a, b, c, d are four thresholds (with default settings). This 

function is designed according to three constraints: (1) the matched pixel should 

have similar SIFT descriptors; (2) the displacement should be as small as possible; 

and (3) adjacent pixels should have similar displacements to maintain flow 

smoothness. This discrete displacement function can be estimated by optimizing 

the energy function with a belief propagation algorithm [72]. Its time complexity 

is O(h
2
logh) where h is the width (height) of the image. Before registration we 

smooth the images with a 7×7 Gaussian filter (standard deviation=3). This yields 

more stable results. Using the Matlab implementation obtained from the author’s 

website [147] it took less than one minute for one registration operation of two 

256
2
 CT scans on a quad-core Dell XPS 2.66GHz PC with 8GB of memory. In 

their paper, Liu et al. [72] also point out that a GPU implementation of their belief 

propagation algorithm could yield a further (up to) 50-time speedup which would 

bring the time required for the registration down to seconds.  

Figure 8.4: Illustration of R-NLM with the registered clean prior used for both matching and 

retrieval. 
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8.2.3    Reference-based NLM (R-NLM) Filtering 

With the NLM-mechanism still being employed for the matching, we call our 

approach Reference-based NLM (R-NLM) filtering since it uses the prior image as 

a reference to guide the filtering. Figure 8.4 provides an illustration of this process, 

now using a noticeable smaller search window than in the regular NLM-case. The 

larger the search window the more distortion-tolerant the algorithm becomes, but 

the potential for lost detail and over-smoothing also rises. In experiments we 

found a size of 7×7 pixels for both search window and patches to represent a good 

compromise. 

    Our R-NLM algorithm first uses SIFT-flow to align the prior with the current 

scan, call it target scan. Following, it visits every pixel in the target scan, places 

the search window in the same location in the prior scan, and uses the NLM-

algorithm to determine the update. Figure 8.5 presents some results we have 

obtained with our R-NLM algorithm, to motivate a further extension discussed in 

the next section. Figure 8.5f shows a regular-dose reconstruction obtained with 

360 projections, while Figure 8.5a shows a low-dose FBP reconstruction obtained 

from the same data but only 45 projections – about 1/8 of the dose. Figure 8.5b 

shows the prior. Since this was a head phantom that could not be warped 

mechanically, we performed a digital warp – in this case a twirl distortion around 

the center of the image. This deformation field is shown in Figure 8.5h. Figure 

8.5c shows the registered prior and Figure 8.5d shows the result obtained with R-

NLM filtering. It is clearly better than the NLM and TVM filtered results (see 

Figure 8.2). This of course is a comparison that is only partially fair because R-

NLM had access to a clean prior while the others did not. This procedure changes 

equation (1) into the following:  
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 (8.3) 

Here the superscript crp indicates that the pixels originate from the clean 

registered prior and not from the target. However, when comparing this result 

with that obtained at regular dose (Figure 8.5f), we still observe some amount of 

blurring in the image. Edges in general appear less defined, and small features are 

also weakened or completely suppressed. For the latter, compare for example the 

intricate detail in the center of the image, to the left of the pincushion-shaped dark 

structure, which is barely visible in the R-NLM result. In the next section we 

describe an advanced scheme that overcomes these problems.    
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(f) regular-dose reconstruction 

for comparison 

(b) prior 

(g) registered prior (c) with 

simulated artifacts of (a)  

(h) deformation field, acting 

on (f), to determine prior (b) 

(a) low-dose FBP 

reconstruction 
(c) prior registered to (a) 

(d) R-NLM filtering of (a)  

 

(e) MR-NLM filtering of (a) 

Figure 8.5: Results-supported illustration of reference-based NLM (R-NLM) 

and matched reference-based NLM (MR-NLM). 
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    Finally, in the event that no reliable update can be found in the prior for a given 

target pixel, we fall back to conventional NLM-filtering using the target image. 

We identify this situation by a low sum of weights in equation (3). In our 

experiments, we have used a threshold of 0.001. We use this criterion both for R-

NLM and for the advanced scheme described next.  

8.2.4    Matched Reference-based NLM (MR-NLM) 

Filtering 

Since the features are generally weakened at a scale less than the size of the NLM 

search window, we cannot blame the registration algorithm for these 

shortcomings. Rather, it is the quality of the NLM-matching that is at the heart of 

the problem. Consider the NLM-distance function of equations (1) and (3) used to 

determine the quality of a match for a specific candidate neighborhood (or patch) 

P: 

2

( )a x t y t

t P

G t p p 



  (8.4) 

Here, |px+t – py+t| is the Euclidian distance of a corresponding pair of pixels 

parameterized by patch index t. The sum of these distances determines the weight 

that the patch P plays in determining the value of the target pixel, and thus it is the 

patch’s structural similarity that is decisive for the scaling of its contribution. 

While equations (1) and (3) also have a parameter h for scaling, it is a global 

parameter that scales all patches at the same weight. The difficulties we encounter 

with R-NLM cannot be solved just by adjusting the factor h, as we will 

demonstrate in Section II.E. Just as the best registration is achieved when the two 

scenes are similar in appearance, the best NLM-match is obtained when target and 

prior have a similar appearance. This is not the case when pairing a clean prior 

and a low-dose reconstruction with severe streak artifacts. Hence, we require a 

method that transforms the clean registered prior image into an image that bears 

similar artifacts as the target image. We can achieve this by first simulating 

projections from the registered prior and then reconstructing it under the same 

conditions as the target image, i.e., with a lower number of projections and at the 

same viewing geometry as the target. This gives rise to Figure 8.5g – which as we 

observe looks fairly close to the target image subject to denoising (see Figure 

8.5a).   

    The MR-NLM reconstruction procedure is illustrated in form of pseudo-code in 

Figure 8.6. After registering the prior with the low-dose target, a degraded 

registered prior is created by simulating the low dose artifact also present in the 

target. The procedure then uses this degraded registered prior for NLM-matching, 
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Input:  

        Low-dose scan L, normal-dose prior scan N, low-dose degradation D; 

Preprocessing: 

1. Register N to L using SIFT-flow and obtain N
R
: 

N
R
  SIFT_Flow_Registration (N, L); 

2. Generate projections P of N
R
 with the same low-dose degradation D as 

the input: 

P  Forward_Projection(N
R
, D); 

3. Generate the degraded version of N
R
 – N

DR
 – using FBP: 

N
DR

  FBP(P, D); 

Filtering: 

        Apply MR-NLM filtering to L with <N
R
, N

DR
> and return the denoised filtered 

result L
F
: 

        L
F
  MR-NLM (N

R
, N

DR
, L); 

but copies the corresponding candidate pixels in the clean registered prior to the 

weighted sum. The resulting equation is, modifying equation (3): 
2
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 (8.5) 

Here the subscript crp denotes the clean registered prior, as before, while the 

subscript drp denotes the degraded registered prior.  

Figure 8.5e shows the result we obtained for our test example. We observe that 

the edges are now overall significantly sharper, small features are better visible, 

and we also see that the intricate detail in the center of the image, to the left of the 

pincushion-shaped dark structure is also clearly restored.  

Figure 8.6: Pseudo-code of the matched reference-based NLM (MR-NLM). 

 

 
 
 



 

109 

 

8.2.5    Comparing NLM, R-NLM, and MR-NLM 

Figure 8.7: Comparing the NLM, R-NLM, and MR-NLM filtering schemes in terms of their 

effect on a 7×7 image region equivalent to the size of a search window. (a) Registered clean prior 

with black box in lower right image region indicating the region studied. (b) The three pipelines 

illustrated by example. (c) The map of pixel contributions for this search window. Each pixel is 

associated with a 7×7 patch centered on it.  

    Figure 8.7 compares the three different schemes, using a case study at 

“microscopic” detail. In Figure 8.7a we show a clean registered prior – the 

reference. For the matter of this discussion, we shall focus on the 7×7 image 

cutout – equivalent to a NLM search window – within the black box in the lower 

right half of this image. This cutout shows a portion of a bony structure. In Figure 

8.7b we illustrate the data flow and operations of all three schemes using the 

cutout as an example. In this schematic, the cutout labeled ‘clean reference’ is a 

copy of the black-boxed region, while the ‘target’ is the corresponding cutout in 

the low-dose scan which is much degraded. As discussed, the MR-NLM 

procedure first simulates the low-dose artifacts in the clean reference producing 

the ‘degraded reference’. It then uses this image for NLM-matching, but retains 

the corresponding pixels in the clean reference to update the target, yielding the 
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cutout labeled ‘MR-NLM’. On the other hand, the R-NLM procedure (dotted 

lines) uses the clean reference for matching and updates the target directly, giving 

rise to the cutout labeled ‘R-NLM’. Finally, the conventional NLM procedure 

uses the target for both match and update, producing the cutout labeled ‘NLM’. 

The row of result cutouts demonstrates an increasing growth in quality from left 

to right. While the NLM cutout is quite similar to the low-dose target subject to 

denoising, the R-NLM cutout has somewhat sharper detail, in particular in the 

center. Finally, the MR-NLM cutout has the most pronounced sharpness – not 

quite as strong as the clean reference but fairly close. 

Further insight can be obtained from visualizing the distance map for the NLM 

search window coinciding with the studied image cutout. Note that this search 

window will only resolve the value for the pixel in the center of the cutout. This 

distance map is used for the matching – see equation (4). Plotted in Figure 8.7c 

are the corresponding maps for the clean reference used in R-NLM and for the 

degraded reference used in MR-NLM, respectively. We can easily see that the 

distances in the latter map are much closer than those in the former which 

confirms the better correspondence. The third map, labeled ‘degraded/clean’ 

shows the ratio of the two maps. We clearly see that this ratio is not constant 

across the patch and thus a simple boosting of the h-parameter in the NLM 

equations would not be able to rectify this situation. 

As for the efficiency of the three algorithms, the computational complexity is 

O(NWP) where N, W and P represent image size, search window size and patch 

size, respectively. However, in a GPU implementation, due to the high pixel 

independence and therefore potential parallelism, the speed could be greatly 

increased. As determined in [142] for the 2D case, it only takes 18ms to denoise a 

512
2
 image with a 11

2
 search window and a 7

2
 patch size. MR-NLM (R-NLM) 

incurs a small additional overhead for reading from two (one) other image(s) and 

for checking if falling back to conventional NLM-filtering is more appropriate. 

Overall, the entire algorithm, including FBP reconstruction (see [117]), SIFT-flow 

registration (see Section 8.2.2), and MR-NLM or R-NLM filtering, would most 

likely take on the order of seconds when accelerated on a high-performance GPU.  

8.2.6    Assessing Image Quality 

To evaluate the quality performance of the various reconstruction schemes we 

have employed two groups of metrics. The first group encompasses the traditional 

RMS (root mean square) and CC (correlation coefficient) measures defined as 

follows: 
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 (8.6) 

In these metrics, the pl,i are the pixels in the low-dose reconstruction and the pr,i 

are the pixels in the corresponding regular-dose reconstruction, in our case 

constituted by the originally obtained scan image. (We note that in our 

experiments the prior is created by non-linearly distorting the original scan, the 

low-dose image is created in alignment with the original scan, and the registration 

brings the prior back into approximate alignment with the original scan. Thus, the 

most appropriate gold standard is the originally obtained scan). The l and r are 

the averages of the low and regular dose images l and r, respectively, and N is the 

total number of pixels.  

The advantage of these metrics is that they are easy to compute and have clear 

physical meanings. However, they reveal only little about the perceptual impact 

certain image differences may have. The RMS metric computes the point-wise 

errors and pools them across the entire image – this ignores any spatial coherence 

and so cannot gauge the differences in structure and contrast that may exist in 

local pixel neighborhoods. On the other hand, while CC does provide a statistical 

measure of image differences, it computes it at a global scale and it also considers 

only pixel intensities which are far less perceptually salient than local contrasts 

and edges.  

As an attempt to better account for human perception when determining image 

quality, we have employed metrics that specifically gauge the preservation of 

perceptually salient information, which we define as image content to which the 

human visual system is most sensitive to.  

The first such metric is E-CC, as defined in our earlier work [119]. It is 

identical to CC but operates on the edge-filtered images which we obtain using a 

Sobel mask. E-CC is still a global operator but it considers more perceptually 

salient low-level image features, i.e., edges that define the boundaries of the 

reconstructed objects.    

Another metric we employ is the Structural Similarity Index (SSIM) devised by 

Wang et al. [111]. SSIM is an enhancement of the Universal Image Quality Index 

(UQI) [111] also recently used by Bian et al. [9]. Both UQI and SSIM combine 

the differences in mean intensity, contrast and structure into a single quality figure. 

The SSIM is computed for each image pixel at position xj over a sliding small 

image window – we use an 11×11 mask – and then combined into a pooled index 

SSIMpooled by averaging the individual SSIM measurements: 
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(8.7) 

Here, the subscripts l and r denote the low-dose and regular-dose images, 

respectively, and the l and r are the means of the pixels within these 

corresponding windows, while the l and r are their standard deviations and the 

lr is their covariance. The constants c1, c2, c3 are typically small (see [111]) and 

prevent numerical instabilities when a denominator is close to zero – the UQI 

does not have these constants which can lead to wrong estimates when these 

adverse conditions are met. Finally, to avoid blocking artifacts Wang et al. 

recommend a Gaussian-weighting of the samples under a SSIM window. Since 

SSIM is the generally accepted name of the metric, we will use it throughout the 

work but it is understood that we use its pooled version.   

    The first term in equation (8.7) is quite consistent with the Just-Noticeable 

Intensity Difference (JND) metric often used in perceptual quality studies. The 

second term compares the local contrasts that exist in the sliding window. Finally, 

the third terms evaluates the structural similarity after the differences in means 

and contrasts have been accounted for. The SSIM is quite powerful – studies that 

ask human observers to rank images with identical scenes, but corrupted with 

different artifacts, in terms of quality show that these ranking correlate 

exceedingly well with the SSIM outcome. Furthermore, it is also interesting that 

in these studies all images had the same RMS error. Finally, large experiments 

[68] have shown that SSIM is particularly well suited to detect distortions caused 

by noise. It also detects spatially correlated noise, which in CT images could 

mimic false features. 

8.3    Results 

We have run the algorithms described above on two datasets: a head phantom and 

a human lung. The head phantom is part of a body phantom scanned with a GE 

LightSpeed scanner. The human lung scan was obtained from the “Give a Scan” 

dataset collection (http://www.giveascan.org). Specifically we used the first 

dataset series 2 of patient p0015 obtained with a GE LightSpeed16 scanner. For 

all examples we used the original floating-point reconstructions for three purposes. 

First, they served as the basis for a high-quality projection simulation in fan-beam 

geometry (fan angle = 20). We then picked a subset of these projections and 

reconstructed the reduced-projections low-dose imagery studied in this work. 

Second, we also used them to generate the priors. For this, we applied various 

non-linear distortions on them and subsequently registered them to the low-dose 
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W/O TVM NLM R-NLM MR-NLM 

N/A λ=30 % h=220 % h=200 % h=120 % 

RMS 165 123 25.4 126 2.4 57 54.8 45 21.0 

CC 0.96 0.98 2.1 0.98 0 0.99 1.0 0.99 0 

E-CC 0.62 0.73 17.7 0.74 1.4 0.94 27.0 0.96 2.1 

SSIM 0.43 0.53 23.2 0.53 0 0.95 79.2 0.97 2.1 

 

reconstructions. Third, they represented the gold standard for all numerical quality 

assessment via the various metrics described in Section 8.2.6.    

Table 8.1: Numerical comparison of the results obtained for the head phantom via various 

metrics. The percentage figure for a metric measures the improvement with respect to the method 

to its immediate left. To the left of the % cell, above the scores, we list the optimal parameter 

setting for each algorithm which we obtained by manual tuning. 

 We begin with the head phantom already examined in Section 8.2 to illustrate 

the outcomes of the various algorithms. Table 8.1 and Figure 8.8 compare the 

results obtained for MR-NLM, R-NLM, NLM, TVM, and no filtering, as gauged 

by the RMS, CC, E-CC, and SSIM error metrics. Table 1 also gives the settings 

for the various algorithm parameters which we manually tuned for optimal 

performance. The first observation we make is that all metrics show similar trends 

(but we also observe that CC is much less sensitive to the changes in image 

quality). In general, for the CC, E-CC, and SSIM the maximum possible value is 

1.0, while for the RMS error the optimal value is 0. In this particular experiment, 

all metrics reach their best values for the MR-NLM algorithm – around 0.97 for 

the perceptual metrics – and their worst values when no filtering is applied. It also 

appears that NLM and TVM reach quite similar scores for each metric, with a 

slight advantage for NLM. This can be verified by comparing the images (see 

Figure 8.2) which look fairly similar. The improvement of R-NLM over NLM is 

significant for both RMS (54%) and the perceptual metrics (27% for E-CC and 

79% for SSIM). The improvement for MR-NLM over R-NLM is another 21% for 

RMS and 2% for the two perceptual metrics.      

 The absolute difference images presented in Figure 8.9 show similar trends. 

Marked improvements can be observed for R-NLM over the prior-less schemes, 

and more moderately for MR-NLM over R-NLM. The improvement achieved by 

R-NLM is mainly in streak removal. MR-NLM, on the other hand, adds sharpness 

and detail definition which can be appreciated by the overall much smaller errors, 

in particular at edges and sharp corners.   

 In order to better explore the performance of the various algorithms at the local 

detail level we have conducted an ROI-based analysis (see Figure 8.10). Figure 

8.10a depicts the locations of 4 ROI regions and Figure 8.10b plots the 
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W/O TVM NLM R-NLM MR-NLM 

N/A λ=20 % h=260 % h=180 % h=120 % 

RMS 222 154 30.6 153 0.6 128 16.3 120 6.2 

CC 0.92 0.96 4.3 0.96 0 0.97 1.0 0.98 1.0 

E-CC 0.6 0.69 15.0 0.71 2.9 0.81 14.1 0.85 4.9 

SSIM 0.49 0.61 24.5 0.61 0 0.66 8.2 0.69 4.6 

 

corresponding SSIM scores. We observe a 7-8% improvement for R-NLM over 

NLM in all 4 ROIs and another 7-8% in ROI 2, 3, and 4 for MR-NLM over R-

NLM. ROI 1 contains a fairly structured and high-contrast feature which is less in 

need of the added fidelity of the MR-NLM scheme. Lastly, Figure 8.11 presents 

the ROI study visually in form of cutout details, which best demonstrate the 

considerable benefits the MR-NLM restoration method provides. We observe that 

all ROIs show significantly more detail for MR-NLM, as opposed to R-NLM. In 

fact, the reconstructions are quite close to the ideal image. On the other hand, the 

differences of R-NLM vs. the prior-less methods are also significant, but not as 

marked as for MR-NLM vs. R-NLM.  

Table 8.2: Numerical comparison of the results obtained for the human lung via various 

metrics.  

 Next, Figure 8.12 show the same sequence of results obtained with the human 

lung, reconstructed from 90 projections over 360. The distortion applied was a 

fisheye warp. Figure 8.13 presents difference images, and Table 8.2 lists and 

Figure 8.14 plots overall evaluations with the various metrics. We make similar 

observations as for the head phantoms but note that in this test case the 

quantitative improvements for R-NLM and MR-NLM are more balanced and the 

MR-NLM/R-NLM gain is about double than that for the head phantom. Finally, 

Figure 8.15 depicts ROI-definitions and the SSIM-scores for the studied 

restoration schemes. Figure 8.16 shows the cutout details. Again, we see that MR-

NLM significantly improves the fidelity of small detail and in fact it is even able 

to restore some of the original CT image noise texture that was part of the prior.    

 Finally, Figure 8.17 explores the effect of different search window sizes, for 

the human lung. The size needed mainly depends on how well the registration 

performs and how much the overall structure changes between low-dose and 

normal-dose scan. A larger size results in more smoothness and a reduction of 

detail, but it also increases robustness when the registration is not perfect. As 

mentioned, we have used a 7×7 window for all experiments and as this figure 

demonstrates this window size provides a good trade-off on smoothness and detail 

preservation.  
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8.4    Conclusions 

We have presented an efficient non-iterative framework for low-dose CT image 

reconstruction that utilizes an available prior regular-dose scan to assist in the 

NLM-based regularization of a filtered backprojection reconstruction plagued 

with significant low-dose artifacts. We have specifically addressed the case when 

dose reduction is achieved with a lesser number of projections which typically 

results in severe streak artifacts. Therefore the reduction of the dose is directly 

related to the reduction of projections. We find that a crucial element in this effort 

is to simulate the same low-dose artifacts also in the registered prior to facilitate a 

more accurate structure matching for subsequent regularization with samples in 

the registered clean prior. The overall purpose of this work is to make the low-

dose image faster readable by reducing the streak artifacts and increase the 

visibility of the features. While all of these image features can also be seen in the 

low-dose image, recognizing them requires a time-intensive visual inspection 

which reduces diagnostic throughput and also makes clinical reasoning much 

more difficult. 

The main limitation in using our method for reducing the number of views is 

the registration of the prior with the degraded reconstruction image. We have 

chosen the SIFT-flow method which we found to perform better than the Demon 

algorithm [104] in the presence of noisy data. We suspect that this might be 

because SIFT-flow uses a structure-sensitive feature descriptor at multiple scales 

and might ignore noise artifacts better. One item of future work is to test other 

registration methods and see if they perform even better and so allow a further 

reduction of projections. It would also be interesting to use the SIFT-flow 

registration technique for noisy reconstructions obtained with low mA or kV 

settings and compare the outcome with those obtained using the EMP-MI 

approach of Ma et al. [75].  

Another topic of study is to see how sensitive the method is with regards to 

newly appearing or vastly changing features in the follow-up low-dose scan. Our 

NLM-based matching scheme is designed to fall back to conventional NLM if no 

reliable match can be found in the registered neighborhood. Future work will 

study this fail-safe design using a wide set of structures in a rigorous fashion. 

Further, we also aim to perform a detailed study with regular-dose and subsequent 

low-dose projection data directly obtained from a scanner, which we did not have 

access to for this present work. But nevertheless, we believe that our results 

clearly demonstrate the conceptual merit of our method.  

Further, we find that the perceptual image quality metrics track quite well what 

can also be visually observed from the reconstructed images. Specifically, we find 

that our efficiently computed E-CC metric shows similar trends as the more 
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computationally involved SSIM metric. It therefore represents a good alternative 

when image evaluation must be fast. For future work we plan to involve clinicians 

in the image assessment to further validate the suitability of E-CC and SSIM for 

our purposes. 

Current work also focuses on accelerating the R-NLM and MR-NLM 

frameworks entirely on the GPU in order to increase appeal to clinical 

applications, also in conjunction with our clinician-based validation and fine 

tuning.     

 
 
 
 
 

 

Figure 8.8: Graphical comparison of the results obtained for the head phantom via various 

error metrics. 
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(a)                                         (b)                                          (c) 

(d)                                          (e) 

Figure 8.9: Difference images for the head phantom reconstructions. (a) MR-NLM; (b) R-

NLM; (c) NLM; (d) TVM; (e) without filtering. 
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Figure 8.10: ROI-based analysis for one slice of the head phantom. (a) ROI locations; (b) 

SSIM evaluation. 

 
 
 
 
 

(a) 

(b) 

ROI4 ROI1 

ROI2 
ROI3 



 

119 

 

     W/O                   TVM                 NLM                 R-NLM              MR-NLM               

Ideal 

 R
O

I 
  
4
  
  

  
  
  
  
  
 R

O
I 

  
3
  

  
  
  

  
  

R
O

I 
 2

  
  
  
  
  
  
  
R

O
I 

  
1

 

 

Figure 8.11: Comparing the four ROIs defined in Figure 8.9 visually. 
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(a) prior (b) registered prior (c) degraded registered prior 

(e) TVM-filtered (d) low-dose 

reconstruction 

(g) R-NLM-filtered (h) MR-NLM-filtered (i) ideal phantom 

(f) NLM-filtered 

Figure 8.12: Results obtained for the human lung. 

 
 
 
 



 

121 

 

(a) (b) 
 

(c) 

(d) (e) 

Figure 8.13: Difference images for the human lung. (a) MR-NLM; (b) R-NLM; (c) NLM; (d) 

TVM; (e) without filtering. 
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Figure 8.14: Graphical comparison of the results obtained for the human lung via various 

metrics. 
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(b) 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 8.15: ROI-based analysis for one slice of the human lung. (a) ROI locations; (b) SSIM 

evaluation. 
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Figure 8.16: Comparing the two ROIs defined in Figure 8.14 visually. 

 

Figure 8.17: Comparing the results obtained with three search window sizes. 

 

 

 



 

125 

 

 

 

 

 

Chapter 9  
 

Database-Assisted CT Image 

Restoration 

 
With the success of exploiting prior CT scan of the same patient to do image 

restoration for low-dose CT, we move forward in this chapter to a more general 

situation – when the prior of the same patient is not available. The process to seek 

for appropriate reference images could be treated as a pre-step of the two-step 

framework presented in last chapter. Thus the framework presented here focuses 

on method to implement this extra module and meanwhile includes some 

improvements to the rest modules. 

9.1    Introduction 

Motivated by the need to minimize the radiation exposed to patients, a growing 

number of research efforts have been dedicated to the topic of low-dose CT. 

Lowering the radiation dose can be achieved either by reducing the number of X-

rays, their energy, or both. However, a direct effect of these dose reduction efforts 

are CT images with strong noise artifacts, streaks and reduced feature detail – all 

of which impede image readability in diagnostic tasks. To overcome these 

problems one can either apply iterative reconstruction schemes with the goal of 

optimizing the reconstruction given the limited data [21][52][101] or one can try 

to reduce the artifacts in the image domain via a suitable image restoration 

method [71]. 

    For the latter option, neighborhood filters, in particular the Non-Local Means 

(NLM) filter [4], have shown great promise for the restoration of degraded low-
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dose CT imagery [71][122]. Originally devised for general image de-noising tasks, 

NLM is essentially an extended Gaussian filter. It updates a given pixel by 

looking for pixels with statistically similar local neighborhoods in the image and 

then Gaussian-weighs their contributions by the degree of similarity. The extent 

of the search is specified by a search window, while the size of the neighborhood 

used for similarity matching is called a neighborhood patch. A more recent trend 

in CT reconstruction has been to extend the search window beyond the image 

subject to restoration. Schemes have been devised that utilize a prior scan 

[75][129][135][125] of the same patient to search for high-quality updates. Other 

work has successfully constrained a reconstruction by images of the same 

dynamic scan [21]. While all this produces excellent results, such a prior scan or 

dynamic scan of the same patient may not always be available.  

  To meet this inherent shortcoming we propose the idea of extending the search 

window even further, namely, to a collection of images of different patients. This 

approach, in fact, is quite alike the psycho-physical processes that occur in 

medical professionals when viewing degraded imagery. They also borrow from 

their extensive medical training and experiences to see the “true patterns behind 

the noise”. These recognition tasks, however, take valuable time and can also lead 

to frustration, and it is for this and other reasons that artifact reduction by image 

processing and algorithmic means is an important mission.  

  Using collections of clean images to reduce noise or blur in degraded images 

is not a new idea, at least not in general. There are in fact two rather disjoint 

schools of thought, and both aim to cope with the extremely large space of 

possible image detail. The first approach first constructs a large-scale database of 

possible detail at some level and then uses a sophisticated matching strategy to 

retrieve the detail of interest from this database [48]. The other approach is based 

on sparse coding. It first constructs a dictionary of representative base patterns 

which must then be optimally combined for reproducing the desired detail of 

interest [32]. While the first approach is a top-down search, the second is bottom-

up. Both strategies can be justified by theories on how humans perform visual 

search, which likely is a conjunction of both [51].   

   Our work expands on two workshop papers [124][128] where we have 

presented preliminary thoughts as well as encouraging experimental results using 

the first – the database – approach for low-dose artifact mitigation. Parallel to our 

work, another team of researchers [129][132] has pursued with similar success the 

alternative – the sparse coding – approach for the same purpose. Since the vote is 

still out, on an even grander scale, about which of the two strategies is better or 

more likely, we refrain from making such claims here. Our sole purpose is rather 

to formalize the framework we conceived, expose results on what is currently 

possible when using it for low-dose CT, and point out current shortcomings that 

warrant future work.    
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Figure 9.1: Illustration of our framework by ways of a (small) lung database example. 

 

  Figure 9.1 illustrates our framework by ways of an example: the restoration of 

a low-dose lung (target) scan using a database of regular-dose lung images. First, 

we match the target scan with the images in the database and select a set of 

images (marked with stars) containing similar anatomical content as the target. 

We then register these images to the target to form the set of artifact-free priors. 

Finally, using these priors we apply the extended NLM-filter scheme to de-noise 

the target via a block-wise update strategy.    

  This chapter is organized as follows. Section 9.2 describes both methodology 

and technical detail, Section 9.3 presents results, and Section 9.4 ends with 

conclusions and future work.   

9.2    Methods and Materials 

The workflow of our method consists of three major stages: offline database 

construction, online prior-search and online de-noising as shown in Figure 9.2. In 

the offline database construction stage, we create a global image feature 

descriptor G to represent each image in the given image database. This forms the 

global feature database. A visual vocabulary V summarizing the local image 

features is also learned in this stage. Then in the online prior-search, we generate 

G(I) with V for the target image I. Following, we use G(I) to query the global 

feature database to find the M nearest neighbors as regular-dose priors. These 

priors have (artifact-free) anatomical content that is most similar to the (degraded) 

anatomical content of the target. Next, in the online de-noising, we first align the 
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regular-dose priors to the target in a block-wise manner. These images form the 

set of clean registered prior (CRP) blocks. Using these blocks, we run what we 

call R-NLM (Reference-based NLM) [125], where we use the prior blocks for 

NLM matching and look up the pixel values in the corresponding CRP block. We 

now describe each of these components in closer detail.  

Online Prior Search Online De-noisingOffline Database Construction

R-NLM

Output

M-NN 

Images CRP
Registration

Target 

Image

Image 

Database

Global Image Feature Descriptor G

Global Feature 

Database
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Visual 

Words

Vector 

Quantization
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Generator

Visual Word 
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Local 

Feature

Labeled 

Feature

Vector 

Quantization

Global 

Feature

Histogram 

Intersection

 
Figure 9.2: Overall workflow of our framework. 

9.2.1    Local Image Feature Descriptor 

Image matching is a fundamental operation in computer vision and image 

processing and it is often used for scene and object recognition. Typically, the 

image is expressed as a high-dimensional feature vector and the matching occurs 

in this high-D feature space. Since we wish to match image features in the 

presence of significant noise and streaks artifacts we require a feature descriptor 

that is insensitive to these degradations. The scale-invariant feature transform 

(SIFT) [62] is such a feature descriptor. It captures the histogram of edges in a 

local neighborhood at multiple levels of scale, characterizes salient local and 

transform-invariant image structures and encodes contextual information. A SIFT 

feature descriptor is usually a 128-D vector encoding 8-orientation histograms of 

edges over 4×4 blocks with each block of size 4×4, serving as a local descriptor 

of the image. In its original definition, only keypoint locations are selected. 

However, it was shown that dense SIFT vectors (dSIFT) on a regular spaced grid 

could provide more correspondence and reveal more details also in flat texture 

areas and are thus more robust [70][72].  
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  We found that a grid spacing of 8 pixels works well for dense SIFT in our 

application. Thus, for an image of size 256
2
 we get 32×32 SIFT vectors, while for 

size 512
2
 we get 64×64 SIFT vectors. We use these local image features to 

compute the visual vocabulary, as shown next. 

9.2.2    Global Image Feature Formation 

To form a global image feature descriptor from local ones, traditional dense SIFT 

algorithms follow the bag-of-feature method [13]. We use the following algorithm 

to accomplish this. 

First, extract the local feature descriptors: generate a set of SIFT local feature 

descriptors {S0, S1, .., SN-1} to represent each image. As explained in last 

subsection, the local feature vector is extracted for each grid point. Therefore each 

image will have a fixed number of local feature vectors, with each vector 

summarizing the local features inside a 1616 neighborhood. 

Second, build the visual vocabulary: randomly select the local feature 

descriptors of all images in the database and perform k-means clustering to learn 

K cluster centers as visual words {V0, V1, …, VK-1}. This forms the visual 

vocabulary V of the database. The number of cluster centers K is dependent on the 

complexity of the features. As the CT images are more simplified than natural 

images, a smaller K is usually enough. 

Third, label the local features to the visual words: for each image, assign the 

index of the closest visual word to each local feature vector. This step extremely 

reduces the dimension of the description of the local features. Now only a fixed 

number of indices as labels is stored to represent each image.  

Last, perform vector quantization to generate a global feature descriptor: 

compute the histogram of visual words in each image {H0, H1, …, HK-1} and 

concatenate the weighted histogram series into a long vector to form the global 

feature descriptor.   

 One drawback of this algorithm is that the feature’s location information in the 

original 2D image space is discarded. To make use of this spatial information and 

keep track of it in multi-resolution, we exploit a spatial pyramid scheme [70] to 

implement a “stronger” feature description. The multi-resolution layers are 

formed by recursively subdividing the image into b×b blocks. In a layer L, for 

each block, only the feature vector extracted from that block is aggregated into the 

histogram of its specific visual word. In this way, the clustering is still performed 

in feature space while the histogram pyramid is built in 2D image space. The 

weight for each histogram is inversely proportional to its block width. We call the 

resulting histogram sets the spatial pyramid-based histograms. Finally these 

histograms are concatenated layer-wisely, block-wisely and visual word-wisely to 

form the complete global feature vector. 
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 There are four parameters associated with this part: the number of visual words 

K, the number of layers L and the block size b. In our experiments, we used 60 

visual words of the local feature descriptors, and each image was represented with 

a spatial pyramid-based histogram composed of a single layer with 5×5 blocks. 

These settings showed the best query precision in the online prior search stage. 

The next section provides further detail. 

9.2.3    Online Prior Search 

In this stage, the global feature vector of the target scan is generated online 

following the same steps as outlined for the off-line stage: extract local features, 

label them with indices of visual words, and concatenate the set of histograms. 

This long feature vector is then used to search for similar priors in the database. 

These priors anatomically characterize the same content as the target scan but 

may contain small variations in scale, rotation, and deformation. We found that 

histogram intersection performs better than the Euclidean distance for gauging the 

similarity for matching. The histogram intersection operates within a spatial 

pyramid, i.e., the intersection is counted both block-wise and visual word-wise 

and is then summed up to form a single value [70].  

    To ensure that the priors contain a wide variety of diverse anatomical features, 

we perform the searching process patient by patient. We then construct a ranked-

list by selecting and sorting only the top ranked priors in each patient. Finally, 

additional search within the top-ranked priors in the list further expands and 

refines the list [24].     

9.2.4    Registration 

Once the regular-dose prior (or reference) scans are found, the online de-noising 

process can be executed. The first step is to register the priors with the target scan. 

Different from our initial work [124] we perform both the registration and the de-

noising in a block-wise fashion. This provides better local control which is needed 

since the database priors have less correspondence to the target than priors 

coming from the same patient. More specifically, we create a small block of size 

129×129 and shift that block with a step size of 64 in raster-scan order. Figure 9.3 

illustrates this process. For each block, we perform the registration by aligning 

that block with the corresponding blocks in the prior scans (red boxes in Figure 

9.3). This local registration relaxes the strict requirements of a global image 

registration and allows for priors to only partially match the target, which is likely 

since they come from different patients.    

    We used the SIFT-flow registration algorithm [72] for the registration. SIFT-

flow is a state-of-the-art registration method that originates from the optical-flow 

algorithm and produces dense, pixel-to-pixel correspondences between two 
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images. It extends optical-flow matching from raw pixels to SIFT features, which 

significantly improves robustness when registering artifact-rich with artifact-free 

images. In order to further improve the quality of the registration we pre de-noise 

the target scan via Gaussian filtering.  

9.2.5    R-NLM De-noising 

R-NLM [125] follows the standard NLM filtering scheme but uses the artifact-

free registered prior images, CRP, instead of the target itself. Thus, the pixel 

weights are computed by comparing patches in the target with patches in the prior 

images. More formally: 

 

 

 



 









x

x

Wy Pt

crp
tytx

Wy

crp
y

Pt

crp
tytx

x

hpp

phpp

p

)/exp(

)/exp(

2
2

2
2

'  (9.1) 

Here x is the location of the target pixel and y are the locations of the candidate 

pixels with values py. Wx is the search window around x, and P is the patch size of 

each pixel. The patch similarity is measured by the L2 distance between two patch 

vectors with t representing the index within a patch. The factor h controls the 

overall smoothness of the filtering. In our case h is larger than typically used for 

standard NLM to accommodate higher noise level. The superscript crp indicates 

that the pixels originate from the artifact-free registered priors CRP.  

  Equation (9.1) differs from the one used in [125] in that we removed the 

Gaussian weighting in the patch similarity measurement. We found in 

experiments that this leads to better matches since a greater patch neighborhood 

influences it. The direct consequence of better matches is an increased sharpness 

at edges, as demonstrated in [125] for the matched artifact MR-NLM scheme. We 

could not use MR-NLM in the work presented here since it proofed difficult to 

simulate realistic streak artifacts in a block. Noise would have been easier but we 

strived for a scheme that applies to both types of artifacts unilaterally. Eliminating 

the Gaussian kernel and replacing it by a wide box filter seems to better “see 

through” the noise and capture the true pattern underneath more faithfully. 

  For pixels for which no similar patch can be found within the search window 

we perform standard NLM with a smaller h. The pixels are detected by comparing 

their denominators in (9.1), which represents the summation of contributions from 

pixels in the search window, with a pre-set threshold – we used 0.3. For these 

pixels the de-noising falls back to standard NLM. This conservative approach 

ensures that no false ill-fitting features are introduced.   

We perform the R-NLM in a block-wise, raster-scan fashion, as shown in 

Figure 9.3. For each block, when the R-NLM has finished, the pixels in the 
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overlapping regions are feathered in the raster-scan order. Feathering retains the 

edges but adjusts the grey levels such that newly added regions blend well with 

existing ones [86]. It allows one to not only retain local contrast among neighbor 

but also to remove remaining noise at some loss of sharpness. 

 

Figure 9.3: Block-wise registration and R-NLM de-noising workflow. 

9.3    Experimental Results 

We constructed a human lung database of 30 patients (41,138 512
2
 images) from 

an online human lung database (http://www.giveascan.org). The images were not 

pre-aligned. To match the quality of the CT scans, all scans were re-generated 

from 720 projections over 360
o
 with a fan-beam geometry (fan angle = 20

o
). The 

720 projections were the point at which there was no more quality improvement, 

as gauged by RMSE with the original scan. We used these scans as the gold 

standard in all experiments. We then picked subsets of these projections to 

generate the low-dose scans with streak artifacts. To simulate the noise artifacts, 

we added various levels of noise (dB, signal-to-noise ratio (SNR)) to the sinogram 

of the gold standard images. To create a new scan different from any scan in the 

database (even if they were already from different patients), the selected scan was 

first deformed or rotated (to mimic a real clinical situation), forward projected, 

and then reconstructed with the low-dose condition under study. 

     In the following sections, we report on two experiments to evaluate and 

validate the proposed algorithm. In all experiments, we used a patch size of 7×7 

with a 13×13 search window for the NLM filter. Then, both the overall 

smoothness parameter, h, and the threshold parameter which decides between 
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standard NLM and R-NLM, were experimentally chosen by inspecting the quality 

of the restored image for each streak and noise reduction task.       

9.3.1    Priors Quality and Diversity 

We performed experiments at which the database-assisted restoration occurred at 

three levels of difficulty, gauged as a function of closeness of the available priors 

to the target anatomy. In these experiments the database contained, among other 

scans: (1) one almost identical CT scan of the same patient; (2) two somewhat 

similar CT scans of the same patient; and (3) only CT scans of other patients. 

Target images were generated at the following two low dose conditions: (1) 

reduced data (only 86 projection – this is about 11% of the gold standard data and 

represents a dose reduction of 88%), and (2) low mA imaging (30 dB SNR 

Gaussian noise was added to the sinogram). Figure 9.4 shows the restoration 

results for these two conditions using the different types of priors described above, 

and compares them with results obtained with the standard NLM method. We 

observe that the prior-based scheme significantly improves image quality even 

with “foreign” priors from different patients. The edges are sharper and detail is 

better preserved. 

    Figure 9.5 shows that having a more diverse set of priors can improve the 

outcome tremendously. In the example given, we needed at least three priors to 

successfully restore the structure pointed to by the arrow. This is not unlike the 

case in which a more experienced radiologist “reads” a noisy image. And indeed, 

the need for a massive database has been confirmed in research that aimed to 

remove unwanted structures in photographs [48]. Constructing such a large 

database is our current goal, with a need for “big data” management.    
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 Gold standard Target NLM R-NLM1 R-NLM2 R-NLM3 

(a) 

      

      

      

(b) 

      

      

      

(c) 

      
Figure 9.4: Restoration results for (a) streaks (86 projections) and (b) noise (30 SNR dB) 

using (c) different sets of priors. R-NLM
1
 is a prior image from the same patient – this image prior 

is from scan of the same slice and thus very similar to the target. R-NLM
2
 are two different image 

priors also from the same patient but from different slices and so less similar to the target. R-

NLM
3 

are three priors from three different patients located automatically in our data base. The 

corresponding restorations are shown in rows (a) and (b) along with results obtained with the 

standard NLM approach. 
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  (a)                          (b)                                    (c)                                         (d) 

Figure 9.5: Multiple priors: effect and benefits. By increasing the number of priors used for 

scan restoration (here, streak reduction), we gain a much wider range of anatomical features. This 

prevents the borrowing of pixel values from wrong structures, or the failure of finding structures at 

all, during the restoration process. (a) Target block subject to denoising.  (b-d) Restoration using: 

(b) only prior P1, (c) prior P1 and P2, and (d) priors P1, P2, and P3. In each sub-figure, the prior is 

shown with the matched block marked by a red-dotted outline. The two inserted (zoomed) images 

are: (bottom left) the original block and (top right) the block aligned to (a). The two stacked 

images to the immediate right are (top) the restoration result and (bottom) the same block with the 

pixels colored by the prior from which they originate. The (blue, green, yellow) pixels come from 

prior (P1, P2, P3). We observe that only when using all three priors the structure pointed to by the 

arrow gets restored in the most plausible way, according to its noisy counterpart in (a).    

9.3.2    Data Quality  

To test robustness, we lowered the quality of the data by approximately 20% and 

observed the restoration outcome obtained with a database that only contained 

scans from other patients (case 3 above). In one experiment we reduced the 

number of projections from 86 to 70, which is a further dose reduction of about 

20%. In the other experiment we increased the level of sinogram noise further, 

from 30dB to 25dB SNR. To calculate the decrease in dose we can use the 

relationship SNR=N/=N/ N= N, where  is the level of quantum noise and N is 

the number of X-ray photons. Since the dose is directly and linearly related to N 

we achieve a further reduction in dose by 30%. Our experimental results are 

shown in Figure 9.6. We observe that the outcome is still acceptable – all major 

features are still well preserved. This is especially true for the noise case, while 

the streak case would probably benefit from an alternate iterative CT 

reconstruction scheme such as SART (as opposed to the current FDK). 
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(a) (b) 

Figure 9.6: Robustness of (a) streak, and (b) noise reduction: The restorations use the 

three priors introduced in Figure 9.4 (denoted R-NLM
3
). The target images are generated 

with 20% less projections (70) (a, left) or 20% more noise (25 SNR dB) (b, left) than in 

the study of Figure 9.4. The restored images for each (a) and (b) are shown on the target’s 

right. 

9.4    Conclusions 

We proposed a general framework for high quality restoration of low-dose CT 

scans with the help of a general CT image database. We believe our approach is 

attractive because once the database has been established the online restoration 

process is quite fast. The restoration process itself, once the priors have been 

selected from the database, is just a minor extension to standard NLM filtering 

which is easy to implement and efficient to run.  

Our results point out that a sufficiently elaborate database is crucial to the 

success of our method. Since modern PACS systems now have massive CT data 

on cheap disks we do not see this as a major obstacle. Future work will focus on 

enriching our database with more data, also of pathologies, and so create a system 

that requires our conservative fallback NLM scheme only in rare cases. In 

addition, in order to still maintain a manageable set of priors we are currently 

working on transforming our present image-based prior set to a patch-based set. 

This will eliminate redundancies and provide for a more diverse feature set to 

base the matching on. Also, we intentionally did not embed our method into an 

iterative reconstruction pipeline such as SART or ASD-POCS [101]. We wanted 

to test how far a single restoration step can take us. Next, we will iterate the 

databases-assisted restoration with a data-driven reconstruction which will likely 

improve the results further and also serve for verification. 

We close by stating that the foremost purpose of a CT scan is to gain insight 

into a patient’s state of health. Low-dose imaging is also important, but it should 

not be at the expense of increasing the likelihood of false positives or negatives. 

Our approach uses techniques from machine learning to improve the quality of 

low-dose CT scans. It grows by the quality of the examples it is taught with and 

the sophistication of its algorithms. Without sounding too futuristic, this is not too 
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dissimilar from the educational process of a radiologist. We have clearly a long 

way to go, and we will likely never be able to match the tremendous capabilities 

of the human brain, but we may achieve a reliable digital doctor’s assistant. 
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Chapter 10  
 

Conclusions 

 
In this dissertation, we have presented a new GPU-accelerated framework 

targeting many unsolved issues with low-dose CT reconstruction and restoration 

problems in consideration of both efficiency and quality. A set of iterative 

reconstruction methods generalizing two popular algebraic methods was devised 

and mapped to the architecture of GPUs. We find that the special architecture and 

programming model of GPUs add extra constraints on the real-time performance 

of ordered subsets algorithms, counteracting the speedup benefits of smaller 

subsets observed on CPUs. This gives rise to new relationships governing the 

optimal number of subsets as well as relaxation factor settings for obtaining the 

smallest wall-clock time for reconstruction – a factor that is likely application-

dependent. A high performance 3D reconstruction framework for electron 

tomography (ET) was shown as a specific low-dose CT application. We specially 

designed a framework to gain more benefit in performance and we also proposed 

limited detector/long object compensation method to address the vignetting issue 

appeared in ET reconstruction.  

    To handle issues arisen from low-dose CT such as noise and streak artifacts, 

starting from a successful introduction of bilateral filter to the regularization of 

the iterative reconstruction process, we explored and employed several nonlinear 

neighborhood filters as regularization step and compared their performance for 

both time and quality to the traditional method total variation minimization. 

Among the filters, patch-based technique such as non-local means with optimal 

adaptive setting is a powerful approach not just for denoising but also for other 

applications such as metal artifact reduction.  
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    Then we focused on the effective approaches on this framework to search the 

optimal parameter settings for the reconstruction process balancing multiple 

performance objectives. We provided two variants to learn parameters associated 

with the regularized iterative algorithms – GPU acceleration-assisted exhaustive 

benchmark testing and multi-objective optimization providing a set of tradeoff 

options. A parameter space visualizer was introduced as an interactive parameter 

selection tool to enable user interaction. We believe that our parameter learning 

approach has much more general applications than shown here. Parameters are 

commonplace in many applications and finding optimal settings for these can be a 

laborious task. By using GPUs to test all possible parameter settings in parallel 

optimal settings can be found fast and accurately.  

    While summarizing the research on the performance of the neighborhood filters, 

we found that the non-local means filter provided a nice platform to incorporate 

prior information into the filtering process. Eventually, this prior information was 

installed as the extended search window providing both the weight and high-

quality content references. This led to a new platform for reference-based image 

restoration. Based on this platform, when the prior scan of the same patient is 

available, a simple two-step image restoration method was developed. To 

consider the case more generally, the use of the database of other patients was 

also experimentally developed which shows its potential to improve the quality 

even when the scan of the same patient is unavailable. 

    As future work, a CUDA based implementation will bring further acceleration 

to the performance of the framework especially for the image restoration part. In 

fact, to keep the-state-of-the-art technology updated steers the leading role of the 

framework more easily. While following the new GPGPU programming 

techniques on the latest GPU boards, new features of the algorithms might be 

discovered. Another interesting direction is to research on the database reference-

based method. The registration algorithm SIFT-flow could work well only when 

two images are not deformed or different too much from each other. This 

demands the database to be complete enough while in practice this is not always 

feasible. It becomes the bottleneck to the development of the restored quality. 

Although our block-wise approach loosens the restriction of the registration, it 

still has space of development. In the future, considering removing the 

registration operation while not affecting the matching of the features from two 

images would probably direct the research to a brand new way. As pointed in last 

chapter, the image database could be replaced with the patch database. Finally, we 

hope to show the framework to doctors to demonstrate its application value in 

clinical practice. 
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