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Abstract of the Dissertation 
A Role for the Polarity Protein Par3 in ErbB2-induced Breast Cancer 

by 
Bin Xue 

Doctor of Philosophy 
in 

Molecular and Cellular Biology 
Stony Brook University 

2012 
 

Polarity protein Partitioning defective protein 3 (Par3) is an evolutional conserved 
scaffold protein in metazoans. Par3 together with Par6 and aPKC form Par complex and localize 
at the subapical domain of epithelial cells. Par3 plays important roles during establishment of 
apical membrane and tight junctions in epithelia. In my thesis, I identified Par3 as a novel 
metastasis suppressor in breast cancer.  

ErbB2, also known as HER2, is an important proto-oncogene in breast cancer. 
Approximately 25% of breast cancers have ErbB2 amplification or overexpression and correlate 
with poor prognosis. Downregulation of Par3 cooperated with ErbB2 to induce cell invasion in 
mammary epithelial cells in vitro and induced metastasis of ErbB2-induced primary mouse 
mammary tumors. Surprisingly, loss of Par3 induced invasive behavior in the epithelial cells was 
not associated with an overt epithelial mesenchymal transition. However, loss of Par3 prevented 
E-cadherin junction maturation and decreased cell-cell cohesion.  

I identified the molecular mechanisms by which Par3 regulates E-cadherin junction 
maturation. Downregulation of Par3 induced spatial and temporal dysregulation of Rac 
activation by activating Rac-GEF Tiam1. In addition I found Par3 interacted with a branched 
actin polymerizing protein complex, Arp2/3 and assembles an E-cadherin-Par3-Arp2/3 at cell-
cell junctions. Loss of Par3 resulted in mislocalization of Arp2/3 from cell-cell junctions. The 
aberrant Rac activation and disruption of Arp2/3 from cell-cell junctions induced aberrant actin 
cytoskeleton organization at cell-cell junctions that resulted in inhibition of maturation on E-
cadherin junctions.  

In human breast cancer, decrease in membrane Par3 was correlated with higher tumor 
grade and ErbB2 positive status. Dysregulation of Par3 was found in the metastases compared to 
the primary breast tumors. Together, our data suggest that loss of Par3 promotes metastatic 
behavior of ErbB2-induced tumor epithelial cells by decreasing cell-cell cohesion. 
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Chapter 1  

Introduction 
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1.1   Cell Polarity 

Cell polarity is the process by which a cell establishes and maintains an asymmetric 

organization of cellular components and structure. A cell polarizes at multiple levels: correct 

positioning and orientation of the Golgi apparatus is required for transport of post-

transcriptional modified proteins to their proper destinations; microtubules (MT) form a 

structural network to provide tracks for directional intracellular transport and form the 

mitotic spindle to determine chromosome segregation axes during cell division; the actin 

cytoskeleton provides a structural network that controls the unique shape of an individual cell, 

and also functions in directional intracellular transport and cell motility. At the molecular 

level, proteins and lipids asymmetrically organized along the plasma membrane and within 

the cytosol. All these elements need to be precisely integrated to form a proper polarized cell.  

The ability to develop and maintain spatial asymmetry is an evolutionarily conserved 

property observed from yeast to humans. Almost all cell types exhibit some form of polarity, 

which is essential for their specialized functions. Classical examples of polarized cells 

include neurons that use axon-dendrite polarity to receive and propagate signals, mobile 

lymphocytes that use front-rear polarity to respond to cytokines and pathogens and drive 

towards the inflammatory area, and epithelial cells that exhibit apical-basal polarity for their 

structural integrity and specialized function such as secretion. Apical-basal polarity will be 

extensively discussed in this thesis.  

During tissue morphogenesis, cells are not restricted to one type of polarity; instead, 

they engage in different types of cell polarity consecutively or concurrently, reflecting the 

complexity and plasticity of development. One example of temporal polarity transition is 

observed during the development of trachea in Drosophila. The trachea arises from dorsal 

trunk metameres of about 80 cells. At early stage (stage 10-12) all tracheal cells are found 

side-by-side and possess apical-basal polarity. During stages 13-14, cells in most branches 

undergo rearrangement, in which epithelial cells behave similar to mesenchymal cells with 

front-rear polarity to form lateral protrusions in-between individual cells and intercalate 

(Neumann and Affolter 2006). After these stages, intercalated cells form a dorsal branch in 
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Epithelial Architecture 

The epithelial tissue is one of the basic types of animal tissue, along with the 

connective tissue, muscle tissue and nervous tissue. Epithelial tissue lines the surface of the 

body and all of the internal body cavities that have a connection with the external 

environment at some stage. A major role for epithelial cells is to serve a protective function 

in maintaining physiological homeostasis of the body. However, some epithelia have evolved 

specialized functions including selective absorption (intestine), secretion (glands), 

transcellular transportation (ion-transporting epithelium) and sensory reception (taste buds). 

Regardless of their diverse functions, a common feature of epithelia is that they are 

composed of cells that are tightly bound to each other, facing two distinctive environments, 

and displaying a highly sophisticated type of membrane asymmetry and organelle alignment 

referred to as apical-basal polarity. The apical membrane, facing the outside surface of the 

body or in contact with the luminal space of the internal cavities, displays surface 

modifications such as microvilli and cilia. In contrast, the basolateral membrane scaffolds the 

epithelial tissue to the interior of the organism. Various cell-cell junctions, including tight 

junctions (TJs), adherens junctions (AJs), gap junctions, desmosomes and hemidesmosomes, 

regulate intercellular communication and localized to the basolateral membrane. TJs serve to 

limit the paracellular permeability of fluid and ions. Hemidesmosomes mediate communicate 

between the cells and  the extracellular matrix (ECM) (Handler 1989) (Figure 1.2). In 

epithelial cells, the Golgi apparatus is positioned between nucleus and the apical membrane 

(Lacy 1957; Barr and Egerer 2005). MTs in epithelial cells do not associate with centrosomes 

as in other cell types; instead, MT ends are released from the centrosome after nucleation 

(Keating, Peloquin et al. 1997), and form bundles along the apical-basal axis, with plus ends 

oriented towards the basal side and minus ends oriented toward the apical side of the cells. 

This reorganization of MTs facilitates MT-dependent protein sorting and polarized vesicle 

trafficking, which is a prerequisite for development of polarized surface domains and 

epithelial lumen formation (Müsch 2004). As normal physiological function and tissue 

integrity rely on proper cell polarity, it is important to study whether changes in cell polarity 

could disrupt normal cellular function and cause disease, including epithelial-derived 

carcinoma.  
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1.2   Organization of Mammary Gland In Vivo 

Anatomical Structure of the Mammary Gland 

The mammary gland is an exocrine glandular epithelial structure composed of ducts 

that are specialized to produce and secrete milk. In the human breast, the mammary gland is 

composed of 15-20 irregular lobes of branched tubuloalveolar glands also known as terminal 

ductal lobular units (TDLU), each of which is an intact functional unit. Milk secretion 

originates in the lobules. Each lobule ends in a lactiferous duct that opens through a 

constricted orifice into the nipple (Figure 1.3. A). Near their openings, the lactiferous ducts 

are lined with stratified squamous epithelium, a multilayered flattened epithelium. The 

epithelial lining of the duct shows a gradual transition from two layers of cuboidal cells in a 

dilated portion to a single layer of columnar or cuboidal cells (together called luminal 

epithelial) through the remainder of the duct system  (Figure 1.3. B). Myoepithelial cells of 

ectodermal origin are located within the epithelium between the surface epithelial cells and 

the basal lamina, and harbor progenitor/stem cells. These cells, arranged in a basketlike 

network, surround the secretory portion of the gland (Hennighausen and Robinson 2005; 

Bland and Copeland 2009; Van Keymeulen, Rocha et al. 2011) (Figure 1.3.C). The tissue 

between the ducts and glands, composed of adipose tissue and fibrous tissue in varying 

proportions, is called the “stroma”.  

Historically the mouse has been used as a model system to study the structure and 

function of breast. However, human and mouse mammary glands have some differences, 

mainly reflected in their TDLU structure and stromal compartment. The human TDLU 

comprises a small group of lobules emerging from a terminal duct, and thus resembles a 

cluster of grapes at the end of a stem. The mouse mammary gland consists of a single 

primary duct which branches into three to five secondary ducts. In adult virgin mice, the 

secondary ducts grow and branch off to fill the entire fat pad (Hennighausen and Robinson 

2005). The stroma of the mouse mammary gland comprises a large amount of fat with small 

amounts of interspersed fibrous connective tissue. In contrast, human mammary epithelium is 

directly associated with fibrous connective tissue (Topper and Freeman 1980). Despite these 

differences, the bilayered ductal structure and disease development in transgenic mice are 
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highly comparable morphologically to those in humans, and thus provides valuable model for 

mammary gland development and breast cancer research (Cardiff and Wellings 1999).  

 

Apical-Basal Polarity in Mammary Epithelial Cells 

The mammary epithelial cell (MEC) shares the typical features of a ductal glandular 

epithelium. They are organized as one layer surrounding a lumen with the apical side facing 

the lumen and the basal side in contact with the surrounding basement membrane (BM), a 

specialized ECM structure. The cells are joined together by AJs and TJs. An AJ is a 

molecular connection primarily mediated by transmembrane protein epithelial cadherin (E-

cadherin), the submembrane catenin complex and the associated actin cytoskeleton. E-

cadherin belongs to the classical cadherin receptor family whose extracellular domain 

consists of five EC1-EC5 subdomains, which bind in a homophilic manner to those in 

adjacent cells in the presence of Ca2+ ions to form rod-like structures (Gumbiner, Stevenson 

et al. 1988; Baum and Georgiou 2011). E-cadherin is expressed in both luminal and 

myoepithelial cells, while another classical cadherin member, placental cadherin (P-cadherin) 

is restricted to myoepithelial cells (Palacios, Benito et al. 1995). The cytoplasmic domain of 

E-cadherin binds to the β-catenin-α-catenin complex, which provides a link to actin filaments. 

Catenins are not only structural components, but they are also involved in different signal 

transduction pathways, including the canonical Wnt pathway (Rovensky and SpringerLink 

2011). In addition to AJs, epithelial cells adhere to each other and to stromal cells through 

desmosomes. Distinct from AJs that associate with the actin cytoskeleton, desmosomes 

confer their cell adhesive function by serving as binding sites for intermediate filaments (IFs) 

to the plasma membrane. The desmosome is composed of the transmembrane proteins 

Desmocollins (Dsc, three isoforms Dsc1-3) and Desmogleins (Dsg, three isoforms Dsg1-3), 

which belong to the classical cadherin family. In the mammary gland, desmosomal cadherins 

are not only expressed in the luminal epithelia, but also in myoepithelial cells in an isotype-

specific manner. Dsc2 and Dsg2 are expressed both in luminal and myoepithelial cells, while 

Dsc3 and Dsg3 expression is restricted to the myoepithelial cells (Runswick, O'Hare et al. 

2001). Functional analysis using desmosomal cadherin blocking peptides revealed that 
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desmosomes are not only required for cell adherence, but also are used for positioning 

myoepithelial cells outside of the luminal epithelial cell layer during alveolar morphogenesis 

(Runswick, O'Hare et al. 2001; Bissell and Bilder 2003).  

Tight junctions serve to form a tight seal between adjacent cells and also to demarcate 

the apical and basolateral membrane domains of an epithelial cell. A growing number of 

proteins has been identified to be involved in TJ assembly. The integral membrane proteins 

that constitute the TJ strands include Occludin, claudin family proteins, and junctional 

adhesion molecules (JAMs). The TJ membrane proteins recruit a group of cytoplasmic 

proteins, which initiates downstream signaling. These cytoplasmic proteins are mainly PDZ-

containing proteins, including Zonula Occludens (ZO, three isoforms ZO-1-3), and polarity 

proteins such as Partitioning defective 3 (Par3), Pals1 and Pals1-associated TJ protein (PATJ) 

(Gonzalez-Mariscal and SpringerLink 2006). In the mammary gland, the permeability of TJs 

is closely related to its lactogenesis function. The TJs in alveolar epithelial cells are leaky 

during pregnancy and become impermeable during lactation, allowing milk to be collected 

and stored in the lumen (Nguyen and Neville 1998; Itoh and Bissell 2003). While the 

functions of TJ proteins in the mammary gland are largely unknown, recent studies have 

shown that TJ molecules such as ZO-1 and JAM-A are directly or indirectly involved in 

breast cancer initiation and progression (McSherry, McGee et al. 2009; Du, Xu et al. 2010), 

suggesting that TJs may also be involved in diseases associated with the of mammary gland.  

Epithelial organs are embedded in an organized meshwork of ECM proteins. The 

ECM not only provides structural support for tissues, it also guides cell development and 

patterning, and regulates cell fate decisions (Muschler and Streuli 2010). The ECM proteins 

contained in the BM include collagen, elastin, laminins, nidogens, perlecan and agrin (Hynes 

2009). Collagens are the structural base of the ECM. The molecular structure of all collagens 

is a stiff heterotrimer containing three α-chains twisting together. This unique structure 

provides resistance to mechanical stretching, so called stiffness, of BMs. The common type 

IV collagen present in most breast BMs is a trimer of two α1 and one α2 subunits 

(Yurchenco 2011). Elastin, another structural component, consists of flexible polypeptide 

chains that are interconnected to form fibers and sheets (Rovensky and SpringerLink 2011). 

This stretchable property of elastin allows the tissue to maintain its shape while providing the 
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supporting structure. Laminins and nidogens are the proteins that mediate adhesion between 

the cells and the BM by directly binding cell surface proteins. Laminin is a heterotrimer 

containing one each of five α, four β and three γ chains, and is required for assembly of BMs. 

The carboxyl-terminal laminin globular (LG) domain mediates binding to cell surface 

receptors such as integrins and dystroglycans and is required for anchoring BM components 

to initiate nascent BM assembly. The amino-terminal laminin globular (LN) domain also 

interacts with cell surface integrins to align laminin into a triple helix parallel to the cell 

surface. The β and γ subunits of laminin interact with other BM proteins such as agrins and 

nidogens. Nidogens (entactins) bind to both laminin and collagen IV forming an additional 

link between laminin and BM stabilization. Agrins and perlecans provide collateral linkage 

between laminins and the cytoplasmic cytoskeleton.  

Mammary epithelial structures are surrounded by a collagen-enriched BM matrix 

secreted primarily by stromal cells (Keely, Wu et al. 1995; LeBleu, MacDonald et al. 2007). 

The interaction of luminal cells with the BM is sufficient to initiate cell polarization. Laminin 

111 (also known as laminin-1) secreted by surrounding myoepithelial cells is essential for the 

inner luminal cells to correctly attach to collagen and undergo polarization and lumen 

formation (Gudjonsson, Ronnov-Jessen et al. 2002; Bissell and Bilder 2003). Cell-matrix 

interactions also contribute to the functional specificity of the mammary epithelia. 

Specifically, single mammary epithelial cells express the milk protein β-casein when grown 

in laminin-rich BM, but not in a pure collagen I environment (Streuli, Bailey et al. 1991).  

The recognition and adhesion of cells to the ECM is mediated by the transmembrane 

glycoproteins receptors called eceintegrins. All integrins are heterodimers composed of non-

covalently associated α and β subunits, which both are type-I transmembrane proteins with 

little sequence similarity. Different integrins are required for interacting with different cell 

substratum: α2β1 and β4 are required for collagen, and β1-integrins (α1β1, α2β1, α3β1, α6β1, 

and α7β1) for laminins; therefore, they play different roles in establishing cell polarity. α2β1 

and β4 integrins induce cell polarization in a Rac-dependent manner. The α3β1 integrins are 

implicated in positioning of mitotic spindle in epithelial cells within a cyst, which is essential 

for lumen formation (Myllymaki, Teravainen et al. 2011). Changes in ECM components and 

their receptors play important roles during cell polarization and during development.  
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1.3   In Vitro Models for Studying Epithelial organization 

Several in vitro model systems have been established to study three-dimentional (3D) 

epithelial organization and development of cell polarity. The dog kidney epithelial cell line 

Madin-Darby canine kidney (MDCK) develops apical-basal polarity with functional tight 

junctions under specific culture conditions, and has been used in most early studies. MDCK 

cells can be polarized when grown at high density on a porous membrane, allowing access to 

the medium on both apical and basal surfaces of the epithelial cell monolayer. In this setup, 

the cells naturally polarize with their basal plasma membrane surface against the solid 

support and their apical surface facing the culture medium. (Cereijido, Robbins et al. 1978).  

With the recognition of the important role of the ECM in tissue organization, new 3D 

culture systems where epithelial cells grown on a reconstituted BM is widely adopted to 

study tissue organization. The most commonly used reconstituted basement membrane in 

culture is Matrigel, a biologically active gelatinous protein mixture secreted by Engelbreth-

Holm-Swarm (EHS) mouse sarcoma cells, and mainly composed of Laminin (56%), 

Collagen IV (31%) and entactin/nidogen (8%) (Kleinman and Martin 2005). Morphogenesis 

of human mammary epithelial cells is best modeled using MCF10A, an immortalized human 

breast epithelial cell line that is non-tumorigenic (Soule, Maloney et al. 1990). When grown 

in Matrigel, single MCF10A cells first proliferate into small clusters. After 2-3 days, the cells 

in direct contact with the matrix develop apical-basal polarity with the apical surface facing 

towards the center, and they remain polarized thereafter. Starting at day 6-8, the cells located 

in the center undergo apoptosis due to a lack of survival signaling from cell-ECM interaction. 

This cell death eventually results in the formation of a hollow lumen. This ordered sequence 

of events results in the formation of a polarized, growth-arrested acinar-like structure with a 

hollow lumen that recapitulates the glandular structure in vivo (Muthuswamy, Li et al. 2001). 

The mechanisms by which the cells achieve growth arrest and acinus limits its size are 

unclear. Nevertheless, several oncogenes including cyclin D1 and ErbB2 can induce escape 

from proliferation arrest (Debnath, Mills et al. 2002; Aranda, Haire et al. 2006). Importantly, 

cell death required for lumen formation is only observed in 3D, representing one distinction 

in the mechanisms for cell growth and death between the 2D and 3D culture conditions. 

Another advantage of using the 3D culture system is that each component in the ECM can be 
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modified to interrogate their contribution to epithelial organization. For example, collagen 

concentration can be increased to enhance ECM stiffness and mimic the tissue rigidity of a 

tumor. Epithelial cells respond to this change in ECM, and subsequently induce tension-

dependent behavior such as assembly of focal adhesions, disruption of adherens junctions, 

and perturbation of cell polarity (Paszek, Zahir et al. 2005).  

As previously described, epithelial cells switch between different types of polarity 

during tissue morphogenesis in vivo. This phenomenon can also be reconstructed in 3D 

culture. For instance, stimulation of MDCK cysts in collagen I-based 3D culture with 

hepatocyte growth factor (HGF) induces formation of branches, similar to renal 

tubulogenesis during embryonic development. The formation of the tubule extension is 

initiated by the apical-basal polarized cells switching to front-rear polarity and adopting a 

mesenchymal-like state. The cells re-acquire apical-basal polarity with the axis perpendicular 

to cells in the main duct to form branching tubule structure. (Montesano, Schaller et al. 1991; 

Maeshima, Zhang et al. 2000; Yu, O'Brien et al. 2003; Zegers, O'Brien et al. 2003; Zegers, 

Yu et al. 2003). Therefore, 3D culture can be used to study the dynamics of cell behavior 

during tissue morphogenesis. 
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1.4   Breast Cancer  

In the United States, breast cancer is a leading cause of cancer death in woman 

between the ages of 15 and 54. According to the Centers for Disease Control and Prevention 

(CDC), more than 210,000 women will be diagnosed with breast cancer annually 

countrywide, and more than 40,000 will die from the disease. Breast cancer can be stratified 

based upon molecular markers to provide information about the treatment plan and disease 

prognosis. So far, Estrogen receptor (ER), Progesterone receptor (PR) and human epidermal 

growth factor receptor 2 (HER2) are the only molecular prognostic and predictive biomarkers 

that have been validated for routine use according to the 2007 American Society of Clinical 

Oncology guidelines (Zandy, Playford et al. 2007). Based on the immunohistological profile, 

breast cancer can be classified into four groups: 1) ER/PR+, HER2+; 2) ER/PR+, HER2 ; 3) 

ER/PR , HER2+, 4) ER/PR , HER2  (Onitilo, Engel et al. 2009). 

Among these subtypes, approximately two thirds of breast cancers are ER/PR+. 

ER/PR+ cancers are highly susceptible to chemotherapy and endocrine therapy (tamoxifen), 

and correlate with better patient outcome (Onitilo, Engel et al. 2009). The triple negative 

subtype (ER/PR , HER2  has the worst overall and disease-free survival. Several studies 

have confirmed that triple negative breast cancers are characterized by an earlier age of onset, 

basal-like features according to gene expression profiling, and include breast cancer type 1 

susceptibility protein (BRCA1)-related breast cancer. They are also unlikely to benefit from 

currently available targeted therapies (Rakha, Reis-Filho et al. 2008; Onitilo, Engel et al. 

2009). Approximately 25% of all breast cancers have either HER2 amplification or 

overexpression. The ER/PR−, HER2+ subtype has poor patient survival, very similar to the 

triple negative subtype. The ER/PR+, HER2+ subtype has statistically equivalent survival to 

the ER/PR+, HER2− subtype, but it has higher recurrence rates after chemotherapy (Onitilo, 

Engel et al. 2009). Overall, HER2 positivity correlates with poor patient outcome.  

 



 

14 

HER2 

HER2, also known as v-erb-B2 erythroblastic leukemia viral oncogene homolog 2 

(ERBB2) or Neu, is a member of the epidermal growth factor receptor (EGFR) family. The 

EGFR family consists of four distinct receptors: EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 

and HER4/ErbB4. These receptors are transmembrane glycoproteins consisting of an 

extracellular ligand-binding domain, a single spanning transmembrane (TM) lipophilic 

domain, an intracellular juxtamembrane (JM) region and a cytoplasmic C-terminal region 

with tyrosine kinase (TK) activity. The classic view of EGFR activation is the ligand-induced 

dimerization model. In the resting state, EGFR is shown to be in its tethered conformation 

within the extracellular region and its kinase domain in the inactive form. Ligand binding to 

the extracellular domain induces receptor dimerization that brings the intracellular domains 

into close proximity, causes receptor to become into an “extended” conformation and 

promotes the association of the kinase domains into an asymmetric dimer (Ferguson, Berger 

et al. 2003). In the asymmetric EGFR-TK dimer, one molecule is activated through 

interaction of its N-lobe with the C-lobe of the cyclin-like activator on the other molecule. It 

is thought that the roles of the two molecules switch to activate each other (Ferguson 2008). 

However, tethering of the receptors is not directly related to auto-inhibition of the receptors. 

Mutation designed to disrupt domain II/IV tethering interaction in EGFR do not promote 

ligand-independent dimerization in vitro or activation at cell surface (Mattoon, Klein et al. 

2004). It has been shown that the tethered configuration of EGFR extracellular domain need 

to be stabilized by multiple interactions that include intramolecular interactions of 

extracellular domain II/IV, backbone  rigidity in the domain II/III linkage (C305/C309 

disulfide bond), and additional possible restrains imposed by protein glycosylation (Dawson, 

Bu et al. 2007). Cancer mutations in both the extracellular region and kinase region can 

activate EGFR most likely by destabilizing the inactive, auto-inhibitory state (Ferguson 

2008).  

More than a dozen ligands have been identified to bind to EGFRs. Some of these 

ligands bind exclusively to EGFR, such as epidermal growth factor (EGF), transforming 

growth factor α (TGF-α) and amphiregulin (AREG), or bind exclusively to HER4, such as 

neuregulin 3 and 4 (NRG3 and NRG4). Others have a dual specificity, such as betacellulin 
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(BTC), heparin-binding EGF-like growth factor (HB-EGF) and epiregulin (EREG), which 

bind to both EGFR and HER4, or NRG1 and NRG2, which bind to both HER3 and HER4. 

EGFR ligands are linked to cancer. BTC and EREG are overexpressed in most breast cancers. 

Overexpression of TGF-α, HB-EGF and NRG2 might correlate with breast cancer 

progression (Yarden 2001; Revillion, Lhotellier et al. 2007; Foley, Nickerson et al. 2010). In 

addition, EGFR processing mechanisms are implicated in cancer. EGFR ligands, including 

TGF-α and HB-EGF, are expressed as transmembrane precursors that are released from the 

cell surface by proteinase-dependent cleavage of the extracellular domain, a process called 

shedding. Tumor necrosis factor-alpha converting enzyme (TACE, also known as ADAM17), 

which is responsible for the shedding of proTGF-α, is highly overexpressed in mammary 

tumors (Borrell-Pages, Rojo et al. 2003).  

One of the most important gene in breast cancer is HER2, which was first identified 

in ethylnitrosourea-induced rat neuroglioblastomas (Coussens, Yang-Feng et al. 1985; 

Schechter, Hung et al. 1985), and subsequently found to encode a truncated version of EGFR 

tyrosine kinase. Overexpression of ErbB2 under the control of the long terminal repeat of 

moloney murine leukemia virus (MMLR) resulted in transformation of mouse NIH/3T3 

fibroblasts, and thus demonstrated the role of ErbB2 as a proto-oncogene (Difiore, Pierce et 

al. 1987). The HER2 gene was shown to be amplified and overexpressed in human breast 

cancer as early as 1987 and correlate with poor prognosis.  

In contrast to other EGFR family members, no ligand has been identified to directly 

bind to ErbB2. The extracellular domain or ErbB2 is structurally unique. It resembles the 

‘extended’ (ligand-binding) form of EGFR with the dimerization arm exposed and readily to 

binds to other EGFR (GrausPorta, Beerli et al. 1997; Garrett, McKern et al. 2003). ErbB2 

plays a role in EGFR signaling pathway by modulating other EGFRs activity. For example, 

by binding with EGFR, ErbB2 stabilizes EGFR in an activated conformation for tyrosine 

phosphorylation, even in the absence of ligand binding (Wada, Qian et al. 1990; Gulliford, 

Huang et al. 1997; Grassian, Schafer et al. 2011). ErbB3 itself has impaired tyrosine kinase 

activity and needs a dimerization partner to acquire signaling potential. It preferentially binds 

to ErbB2, and together they function as an oncogene unit to drive tumor cell proliferation 

(Holbro, Beerli et al. 2003). ErbB2 and ErbB4 can heterodimerize; however in this context, 
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ErbB2 but not ErbB4 tyrosine phosphorylation activity is required for the ErbB4 ligand 

NRG2 to induce cell proliferation (Mill, Zordan et al. 2011). Among the EGFRs, ErbB2-

containing heterodimers are preferred over other types of heterodimers, or ErbB2 

homodimers, suggesting that ErbB2 plays a central role in EGFR family-mediated signal 

transduction. ErbB2 used to be regarded as an ‘auto-activated’ receptor because of its 

‘extended’ conformation. However, recent work on its structure has revealed that ErbB2 is 

closely related to the single EGF receptor family member (dEGFR) in Drosophila 

melanogaster which is tightly regulated by growth factor ligands. The auto-inhibition of 

dEGFR is mediated by domain I/II interactions which is common to ErbB2. This argues 

against the speculation that ErbB2 lacks autoinhibition, suggesting that ErbB2 needs to be 

stringently regulated for its normal and pathogenic function (Alvarado, Klein et al. 2009).  

Dissecting the specific role of ErbB2 using an inducible ErbB2 system 

Although the importance of HER2 in breast cancer had been recognized for a long 

time, it was not clear whether ErbB2 plays its role by promoting signaling of other EGFRs or 

having its own biological activity. An inducible ErbB2 homodimerization system was 

developed by Muthuswamy et al. in 1999, and used in mammary epithelial cells to 

distinguish the specific role of ErbB2 in mammary carcinogenesis (Muthuswamy, Gilman et 

al. 1999). For this system, the extracellular and transmembrane domains of the ErbB2 are 

replaced with the corresponding domains from the p75 low-affinity nerve growth factor 

receptor (p75NGFR), which prevent receptor binding to other EGFR proteins. The 

cytoplasmic domain of ErbB2 is linked to a synthetic ligand-binding domain from the 

FK506-binding protein (FKBP), and therefore allowing the chimeric ErbB2 receptor to be 

dimerized with the bivalent FKBP ligand AP1510 (Figure 1.4). Therefore ErbB2 can be 

specifically activated by homodimerization, without interacting with other EGFRs 

(Muthuswamy, Gilman et al. 1999). Using this method, it is found that ErbB2 

homodimerization effectively induces cell transformation in Rat1 fibroblast cells and induced 

a five- to seven-fold higher focus-forming ability compared to ErbB1 homodimer 

(Muthuswamy, Gilman et al. 1999), suggesting the biological specificity of ErbB2 signaling. 

In addition, ErbB2, but not ErbB1 activation alters epithelial organization in mammary acini 

in the 3D culture (Muthuswamy, Li et al. 2001). Therefore, this ErbB2 inducible system 
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mechanism of trastuzumab is through the activation of antibody-dependent cellular 

cytotoxicity (Valabrega, Montemurro et al. 2007).  

Not all patients overexpressing HER2 show initial response to trastuzumab therapy. 

Moreover, even among those who respond, resistance may be seen within 12 months, and 

therefore resistance to trastuzumab remains an important issue. Multiple mechanisms 

including activation of alternative signaling pathways such as activating insulin-like growth 

factor -1 receptor (IGF-1R) pathway and inhibition of PTEN pathway, loss of the 

extracellular domain of HER2, and upregulation of EGFR family and their ligands may 

contribute to the development of drug resistance (Valabrega, Montemurro et al. 2007). 

Because HER2 and EGFR coexpressed in ~30% of breast cancer, blockage of both receptors 

were used to improve patient response rates to trastuzumab and tackle the trastuzumab-

resistance due to upregulation of EGFRs. Drugs including tyrosine kinase inhibitor lapatinib 

(GW572016) (Spector, Xia et al. 2005; Xia, Gerard et al. 2005) and Pertuzumab (2C4), a 

mAb directly against extracellular domain of HER2 that blocks the ability of HER2 to 

heterodimerize with other members of EGFR (Nahta, Hung et al. 2004) are synergetically 

used with trastuzumab to treat HER2+ breast cancer. Lapatinib is used both in combination 

of trastuzumab and as an alternative single-agent therapy for pre-surgery chemotherapy 

treatment. It has recently been shown that combination of trastuzumab and lapatinib 

significantly increase the rate of pathological complete response (Baselga, Bradbury et al. 

2012).  

Based on trastuzumab, a new drug, trastuzumab emtansine (T-DM1) was recently 

developed by Genentech. T-DM1 is composed of trastuzumab, a stable thioether linker, and 

the potent cytotoxic agent DM1 (derivative of maytansine). It is designed to specifically 

deliver the potent antimitotic drug DM1 to HER2-expressing tumor cells to induce cell death. 

Phase III trials of T-DM1 have shown promising prolonged progression-free survival and 

milder side effects compared to conventional trastuzumab. The long term effects of this 

formulation still need to be further evaluated (LoRusso, Weiss et al. 2011).  
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Changes in tissue structure during breast cancer progression  

It is believed that breast cancer starts from a lesion within a TDLU that has 

premalignant potential, followed by a cascade of sequential molecular and morphological 

events that result in malignancy. The evolution of breast cancer is accompanied by 

continuous cytological changes, which are the basis for the histological classification used by 

pathologists for disease diagnosis. The diagnostic categories include the following: 

 Normal TDLU: all ducts lining cells are uniform in size with normal straining 

characteristics. 

 Hyperplastic enlarged lobular unit (HELU): excessive number of ductal groups 

results in enlargement of the tissue, sometimes with multilayering and slight 

variations in size and shape, but without significant nuclear abnormality. 

 Atypical ductal hyperplasia (ADH): criteria similar to that used for HELU but 

with greater variation in nuclear size and shape, and irregular multilayering.  

 Ductal carcinoma in situ (DCIS): a heterogeneous group of noninvasive 

neoplastic proliferations with diverse morphologies, with larger and more 

pleomorphic nuclei and a tendency to form microacini, cribriform spaces, or 

papillary structures. The cells are confined within the lumens of the mammary 

ducts, without evidence of invasion beyond the basement membrane into the 

adjacent breast stroma. 

 Infiltrating breast carcinoma (IBC): previously termed carcinomas of no special 

type display ductal structure invading adjacent breast adipose tissue.  

Only patients with DCIS and IBC receive treatment, whereas screening for ADH and 

HELU provide information for prediction and prevention of the disease (Figure 1.5) (Lee, 

Mohsin et al. 2006; Bland and Copeland 2009). Disruption of mammary gland structure is a 

hallmark change associated with breast cancer. The mechanisms that induce these changes in 

cancerous tissue, and how disruption of tissue organization affects disease progression, 

remain critical areas of investigation.  
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The process of tumor metastasis 

The common sites for breast cancer metastasis at autopsy are lung, liver and bone (Lee 

1983). To establish metastases in distant organs, cancer cells must complete a sequence of 

steps (Fidler 2003; Bland and Copeland 2009; Talmadge and Fidler 2010). The process of 

cancer metastasis involves: 

 Proliferation: Proliferation of the primary tumor, which confers a growth advantage. 

 Angiogenesis: Neo-vasculature is induced by tumor cells to access the circulation by 

outgrowth of the pre-existing vasculature or recruitment of vascular precursor cells 

from the circulation. This is necessary for the continued growth of a tumor.  

 Detachment: Some tumor cells show reduced cohesion, and/or increased motility, and 

therefore have an increased chance of detachment from the primary tumor. 

 Invasion: Invasion from the primary tumor involves proteolytic degradation of 

basement membranes and connective tissue, changes in tumor cell adherence to 

neighboring cells and to the ECM, and enhanced cell mobility to physically propel 

tumor cells through tissue and enter the blood or lymphatic vessels. This aggressive 

behavior could be due to a microenvironmental selective pressure, such as hypoxia, 

reactive oxygen species, or intrinsic genomic instability from defects in DNA damage 

repair machinery. 

 Intravasation/circulation/Extravasation: Distant metastasis requires that the cancer 

cells enter the blood or lymphatic vessels (intravasation), get transported to the distant 

site through the circulation, and finally exit the vessels (extravasation). The 

mechanisms that control intravasation and extravasation of the vasculature are still 

not clear. Recent work in visualizing extravasation by tracking cells using real-time 

intravital imaging suggests it is a highly dynamic process involving both changes in 

tumor cell behavior and local vessel remodeling (Stoletov, Kato et al. 2010). In the 

bloodstream, the cells must adopt new survival strategies to cope with the harsh 

environment due to velocity-induced shear forces and constant attack from the 

immune system. The survived tumor cells can attach to endothelial cells where they 

are sheltered away from the blood flow in the capillary beds (Weiss, Grundmann et al. 

1986). 
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Metastasis-related gene alterations 

Considering that the metastatic process is a succession of individual events, it is not 

surprising that a large number of genes are related to metastasis. The functions of these genes 

are associated with different stages of cancer progression, including tumor initiation, 

metastasis initiation, metastasis progression, and metastasis virulence (Chiang and Massague 

2008).  

Functions associated with tumor initiation are provided by mutations in genes, such 

as those encoding KRAS, EGFR, HER2, and Phosphoinositide 3-kinase (PI3K), or 

inactivation of tumor suppressor genes, such as those encoding Adenomatous polyposis coli 

(APC),  tumor suppressor protein p53 (TP53), Phosphatase and tensin homolog (PTEN), and 

BRCA1. Mutations of these tumor initiation genes in primary tumors provide the cancer cells 

a growth advantage and genomic instability, and can be inherited by metastatic cancer cells. 

Metastatic tumors have been shown to have more genomic alterations compared to the 

corresponding primary tumors (Ding, Ellis et al. 2010). For example, loss of function of the 

TP53, which responds to DNA damage by inducing apoptosis or arresting cell growth, 

promotes tumor metastasis. TP53 is mutated or lost in 50% of cancers. C3(1)/TAG transgenic 

mice expressing the simian virus 40 large T-antigen (TAG) under the regulatory control of the 

prostatic steroid binding protein C3(1) gene develop mammary carcinomas several months 

after the appearance of dysplastic lesion. Expression levels of p53 were reduced or lost in the 

metastases. Inactivation of p53 in these mice by crossing C3(1)/TAG transgenics with mice 

carrying null mutations of the p53 gene (p53+/-) induces more aggressive mammary tumor 

with increased numbers and size of metastases (Maroulakou, Shibata et al. 1997). Mice 

carrying p53 gain of function mutation (p53+/515A) have increasing metastasis frequency in 

various tumors (Lang, Iwakuma et al. 2004). In pancreatic cancer mouse models, mice 

expressing physiological levels of oncogenic KRAS(G12D) in the pancreas only develop 

early ductal lesions similar to human pancreatic intraepithelial neoplasias (PanINs) 

(Hingorani, Petricoin et al. 2003). Additional expression of Trp53R172H, a p53 mutation 

commonly observed in human pancreatic ductal adenocarcinoma (PDA), induces a high 

degree of genomic instability and promotes the tumor’s progression into metastatic 

carcinoma (Hingorani, Wang et al. 2005).  
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Functions associated with the initiation of metastasis include induction of invasion 

and remodeling of the tumor microenvironment. Research done using intravital imaging has 

provided valuable insights into cell movement in tumors. Carcinoma cells are found to be 

highly dynamic within the tumors (Condeelis and Segall 2003). By comparing the motility of 

cells in tumors formed from the poorly metastatic MTC cell line with the highly metastatic 

MTLn3 cells line, it was found that tumor cells move at similar rates, but the character of the 

cell motility is very different (Condeelis and Segall 2003). Metastatic cancer cells show 

linear and fiber-associated locomotion, while non-metastatic tumor cells move randomly. 

Carcinoma cells in metastatic tumors are attracted towards blood vessels, where they form a 

layer of cells that polarize towards the vessel. This movement may correlate with 

intravasation and metastasis. Metastatic tumor cells can also cross the basement 

membrane/endothelium as intact cells, unlike non-metastatic cells, which are fragmented 

(Condeelis and Segall 2003). Gene expression profiling comparing metastases and primary 

tumors has been used extensively to search for genetic alterations required for tumor cells to 

metastasize. Many genes encompassing a diverse range of functions have been identified as 

metastasis-related genes, which might explain the changes in cancer cell behavior observed 

in vivo. Some metastasis signature genes encode key regulators of the cell motility machinery, 

including the actin cytoskeleton regulators cofilin, members of the Arp2/3 complex, capping 

protein, and cortactin (Condeelis, Singer et al. 2005; Wang, Mouneimne et al. 2006; Wang, 

Eddy et al. 2007; Oser, Mader et al. 2010). Other signature genes are related to ECM 

remodeling. Matrix metalloproteinases (MMPs), such as MMP-2 and MMP-9, which degrade 

collagen IV of the BM were found to be implicated in cancer invasion (Egeblad and Werb 

2002). MMP-9 can also act as an angiogenic switch to increase proteolytic release of 

vascular endothelial growth factor A (VEGF-A) sequestered in the ECM and stimulate 

angiogenesis (Belotti, Paganoni et al. 2003). Expression of proteins such as TrkB induces 

tumor cell resistance to anoikis or “death upon detachment” and allows metastatic tumor 

cells to survive in the bloodstream (Douma, Van Laar et al. 2004; Kim, Koo et al. 2012). 

During metastasis, tumor cells recruit macrophages and other leukocytes, which may be a 

source of chemotactic cytokines (Dong, Kumar et al. 1997; Condeelis and Segall 2003). 

Colony-stimulating factor-1 (CSF-1) (Goswami, Sahai et al. 2005) and chemokine CXCL12 

(Boimel, Smirnova et al. 2012) have been reported to be involved in tumor cell-macrophage 
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interactions by increasing microvessel density and recruiting macrophage cells to tumor sites. 

The genes and mechanisms used by cancer cells to metastasize vary among individuals, and 

even among metastases from the same individual. Therefore, further work needs to be carried 

out to pin down the key players and verify their functions carefully.  

The last step of metastasis is colonization by the metastatic tumor cells in distant 

organs (Nguyen, Bos et al. 2009). Interestingly, distinct gene sets are required for organ-

specific colonization. In order to understand the difference between the colonization 

tendencies, populations of a human breast cancer cell line with different metastatic abilities 

were generated and gene expression microarrays were used to determine the gene expression 

characteristics of cells metastasizing to lungs or bone (Minn, Gupta et al. 2005). More than 

80% of women with metastatic breast cancer develop bone metastases. The ability of breast 

cancers to form bone metastases requires the production of osteoclast-activating factors, such 

as Parathyroid hormone-related protein (PTHRP), interleukin-11 (IL-11), IL-6, TNF-α and 

granulocyte-macrophage colony stimulating factor (GM-CSF) (Kang, Siegel et al. 2003; 

Smid, Wang et al. 2006; Park, Zhang et al. 2007). The second most common site of breast 

cancer metastasis is the lung. One of the signature genes for lung metastasis is angiopoietin-

like 4 (ANGPTL4) which enhances the infiltration of tumor cells into the lungs by inducing 

the dissociation of endothelial cell-cell junctions (Padua, Zhang et al. 2008). In contrast, 

tumor cells that metastasize to the brain produce cyclooxygenase 2 (COX-2), HB-EGF and 

the alpha2,6-sialyltransferase ST6GALNAC5 to allow cellular passage through the blood-

brain barrier (Bos, Zhang et al. 2009). Striking disparities between metastatic capabilities 

raise the important questions of how metastases evolve from primary tumors and which 

genetic determinants drive this process.  

Heterogeneity of metastatic cancers 

Primary tumors consist of heterogeneous populations of cells (Navin, Kendall et al. 

2011). However, fully metastatic cells are rare clones. Recent genome sequencing 

experiments performed on matched primary and metastasis pairs have revealed that cancer 

cells in the metastatic site are distinct from the ones in the primary site. In pancreatic cancer, 

the clonal populations that give rise to distant metastases are represented within the primary 
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carcinoma; however, there is a genetic heterogeneity of metastases and an evolutionary 

relationship to the primary tumor, suggesting a requirement of additional driver mutations 

beyond those in the primary tumors for tumor metastasis (Campbell, Yachida et al. 2010; 

Yachida, Jones et al. 2010). In breast cancer, by comparing the entire genome of the primary 

tumor with a brain metastasis from the same patient, it was found that the overall copy 

number alteration was elevated in the metastasis (Ding, Ellis et al. 2010). The mutant allele 

range was narrowed but their frequency was enriched in the metastasis. The metastasis 

contained two de novo mutations and a large deletion not present in the primary tumor, and 

was significantly enriched for 20 shared mutations, indicating that the metastasis may be 

arisen from a minority of the cells within the primary tumor, and accumulated additional 

genetic alterations (Ding, Ellis et al. 2010). Both cases support the idea that the cells derived 

from primary tumors require additional steps to achieve a metastatic state.  

Distinctive metastases in the same or different organs exhibit heterogeneity in a 

variety of characteristics. There are two prevalent models to explain the origin of this 

heterogeneity and the evolution of metastasis: the linear clonal selection progression model 

and the parallel evolution progression model. In the linear progression model, tumor 

ontogeny proceeds to full malignancy within the primary tumor microenvironment, after 

which tumor cell dissemination establishes a metastasis. In the parallel progression model, 

tumor cells depart the primary lesion before the acquisition of fully malignant phenotypes, 

followed by progression and metastatic growth at a distant site (Klein 2009). In human breast 

cancer and in HER2 and polyoma virus Middle T-Antigen (PyMT) transgenic mice, tumor 

cells have been shown to systematically disseminate from an early stage tumors to form 

micrometastases in the bone marrow and lungs (Schmidt-Kittler, Ragg et al. 2003; Balic, Lin 

et al. 2006; Hüsemann, Geigl et al. 2008). In pancreatic cancer, metastatic clones arise from 

non-metastatic cells in primary tumors and undergo further genetic modifications (Campbell, 

Yachida et al. 2010; Yachida, Jones et al. 2010). The results from these studies favor the 

latter parallel progression model. Consideration of the parallel progression model could 

affect therapeutic strategy. As the metastasis precursor cells in the primary tumor might not 

be fully malignant, gene alterations required for early progression steps such as changing cell 

cohesion and inducing cell invasion might provide more prognostic value. Understanding the 
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molecular mechanisms used by cells to disseminate and looking for biomarkers to identify 

those with metastatic potential in the primary tumors may benefit the diagnosis and treatment 

of the disease.  

 

1.6   Disruption of Cell Polarity in Cancer 

Normal tissue homeostasis is maintained in dynamic equilibrium between processes 

such as cell proliferation, cell death, tissue morphogenesis and differentiation. Loss of this 

equilibrium will initiate disease states including cancer. In the past, research interests mainly 

focused on understanding the mechanisms controlling cell in cancer, while the disruption of 

tissue organization in cancer was not well studied. One reason that tissue organization was 

overlooked is that the causal relationship between uncontrolled proliferation and disruption 

of tissue structure is unclear. There is a dynamic relationship between tissue organization and 

cell proliferation, where one begets the other. For example, In confluent monolayer cell 

culture, cell adhesion signaling crosstalks with cell cycle pathways to inhibit cell proliferate, 

referred to as “contact inhibition of cell division” (Takahashi and Suzuki 1996; St Croix, 

Sheehan et al. 1998; Stockinger, Eger et al. 2001). The interaction of integrins with the ECM 

can also generate signals to regulate the cell cycle and apoptosis (Howe, Aplin et al. 1998; 

Schwartz and Assoian 2001). Some oncogenic changes interfere with both mechanisms to 

disrupt the tissue homeostasis and initiate cancer. For instance, oncogenic Ras promotes cell 

proliferation and cooperates with TGF-β to induce epithelial-mesenchymal transition (EMT) 

and disrupt normal epithelial morphology (Janda, Lehmann et al. 2002; Wang, Li et al. 2009). 

This intertwining of tissue structure and cell growth makes it challenging to distinguish the 

cause and effect relationship between them.  

Reconstruction of tumor phenotype in 3D culture 

Studies using cultured epithelial cells grown in a three-dimensional matrix have 

provided surprising new insights into the relationship between cell proliferation and higher 

order tissue organization. Oncogenes have been shown to regulate distinct facets of cell 
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morphology to initiate tumorigenesis. While Cyclin D1, a known oncogene that is amplified 

or overexpressed in 40-50% of breast cancers (Arnold and Papanikolaou 2005), can promote 

cell proliferation, it is not sufficient to overcome contact inhibition of human mammary 

epithelial cells in monolayer cultures. However, the same cells when grown in 3D matrix fail 

to undergo proliferation arrest, but still retain an acinar morphology with a hollow lumen 

(Debnath, Walker et al. 2003). Furthermore, transgenic mouse models overexpressing Cyclin 

D1 in the mammary epithelium are poor at inducing tumorigenesis. These results suggest that 

signals that drive proliferation by deregulating proliferation control may be necessary for the 

cancer process but are certainly not sufficient to initiate cancer (Wang, Cardiff et al. 1994). 

In contrast, activation of ErbB2 led to disruption of 3D acini, reinitiation of cell proliferation 

in the growth-arrested 3D acini and inhibition of cell death in the lumen (Muthuswamy, 

Gilman et al. 1999; Muthuswamy, Li et al. 2001) (Figure 1.8). Although HER2-positive 

status is correlated with more aggressive forms of breast cancer (Roses, Paulson et al. 2009), 

the acini with ErbB2 activation specifically lack invasive properties (Muthuswamy, Li et al. 

2001). Consistent with this observation, ErbB2 is overexpressed in 56% of DCIS (Hoque, 

Sneige et al. 2002), a type of early stage, non-invasive premalignant mammary gland lesion. 

This suggests that amplification of ErbB2 is not sufficient to induce metastatic disease and 

that additional events are required for HER2-mediatedtumor progression. Overexpression of 

oncogenic ErbB2 or c-Myc in MCF10A cells initiates cell translocation from ECM-contacted 

basal layer to the lumen, and promotes ECM-independent cell proliferation and drives clonal 

selection to form neoplastic outgrowth (Leung and Brugge 2012). 
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coexpression of CSF-1 and its receptor (CSF-1R) correlates with poor prognosis in breast 

cancer. Co-expression of CSF-1 and CSF-1R in MCF10A induces a formation of discohesive 

structure in the 3D culture that is associated with the disruption of E-cadherin junctions 

(Wrobel, Debnath et al. 2004). Crosslinking collagen by adding ribose to the ECM can 

activate PI3K activity, promote focal adhesion assembly, and induce invasion in 3D culture 

of MCF10A cells expressing ErbB2 (Levental, Yu et al. 2009). Taken together, 3D culture 

systems are powerful tools for studying the mechanisms that regulate tissue organization in 

normal mammary gland morphogenesis and carcinoma progression.  

 

Regulators of cell polarity 

The general mechanisms of cell polarity, including its establishment and maintenance, 

are highly conserved through evolution from bacteria to humans. Over the past few decades, 

genes that are responsible for the regulation of cell polarity have been identified using 

genetic screens in C. elegans and D. melanogaster. The genes encoded proteins that regulate 

cell polarity can be grouped into three complexes according to their known localization: the 

subapically localized Par and Crumbs complexes, and the basolaterally localized Scribble 

complex. 

Par complex  

The Par complex consists of Par3, Par6 and atypical protein kinase C (aPKC). Par3 

and Par6 are products of the par (partitioning defective) genes.  Par genes were initially 

identified in the screenings for maternal effect lethal mutations in C.elegans. Mutagenesis 

was performed in mutant C.elegans strain (egl-23 or lin-2 heterozygote) and score for 

surviving F2 adults. Because egl-23 and lin-2 homozygot can fertilize but do not lay their 

eggs as they are consumed by their progeny, therefore the only expected F2 survivors are 

those that failed to produce F3 progeny. Using this method, six par genes (par1-par6) were 

discovered, mutations in which lead to defect in early egg cleavage (Kemphues, Priess et al. 

1988; Kemphues 2000). The products of par genes have diverse molecular properties: Par-1 

(MARK2) and STK11 (also known as LKB1, the homolog of par-4 in C.elegans) are 
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serine/threonine protein kinases. Par2 (human homolog unknown) is a RING (Really 

Interesting New Gene) finger domain-containing protein and may function as an E3 ubiquitin 

ligase to connect the E2 ubiquitin-conjugated enzyme to the target protein (Moore and Boyd 

2004; Hao, Boyd et al. 2006). Par5 is a 14-3-3 protein, a family of highly conserved 

regulatory proteins that are ubiquitously expressed in all eukaryotic cells (Morton, Shakes et 

al. 2002). Par3 and Par6 are scaffold proteins that contain scaffolding PDZ domains, which 

bind to either the C-terminus of a peptide ligand or a PDZ domain on another protein. In C. 

elegans, mutations in par6 and par3 display similar phenotypes including generation of 

equal-sized blastomeres, improper localization of P granules and SKN-1 proteins and 

abnormal second division cleavage patterns. In addition, Par3 protein shows abnormal 

symmetric localization in par6 mutant embryos (Watts, Etemad-Moghadam et al. 1996), 

suggesting a connection between Par3 and Par6 .  

In epithelial cells, Par3, Par6 and aPKC form a protein complex that localizes to the 

apical domain and regulates apical TJ formation (Hirose, Izumi et al. 2002). Par6 binds to 

aPKC by Phox and Bem1p (PB1)-PB1 domain interaction, and functions both as an inhibitor 

of aPKC kinase activity and as a targeting subunit to recruit aPKC substrates including Par3, 

Lgl and Pals1 (Hirano, Yoshinaga et al. 2005). Recruitment of Cell division control protein 

42 homolog (Cdc42), a small GTPase of the Rho family, to the Par6-aPKC complex activates 

aPKC kinase activity (Joberty, Petersen et al. 2000) toward its substrates (Izumi, Hirose et al. 

1998; Nagai-Tamai, Mizuno et al. 2002). Par3 binds to aPKC through its aPKC-binding 

domain. Although aPKC can directly bind to both Par6 and Par3 in an independent manner, it 

only phosphorylates Par3 but not Par6. Par3 associates with aPKC in turn reduces aPKC 

kinase activity measured by in vitro kinase assay (Lin, Edwards et al. 2000). In Drosophila, 

phosphorylation of Par3 by aPKC leads to Par3 dissociating from the apical Par6/aPKC 

complex. As a result, Par3 is excluded from the apical domain and localized below Par6 and 

aPKC at AJs. Expression of nonphosphorylatable Par3 mislocalizes to the AJs, which leads 

to a loss of the apical domain and an expansion of the lateral domain in epithelial cells 

(Morais-de-Sa, Mirouse et al. 2010), suggesting the role of Par3 in positioning the AJs in 

epithelia.  
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Crumbs complex 

Another apical module, the Crumbs complex, comprises a transmembrane protein 

Crumbs (isoforms Crb1-3 in mammalian), the membrane-associated protein Pals1 (Mpp5 in 

mammalian, stardust in Drosophila), and Pals1-associated TJ protein (PATJ, also known as 

INADL) (Figure 1.9.B). In Drosophila, embryos with crumbs mutation failed to assemble or 

stabilize AJs (also called zonula adherens in Drosophila. This lead to the breakdown of the 

epithelial structure and extensive cell death (Tepass, Theres et al. 1990). In mammalian cells, 

Crb3/Pals1/PATJ complex localizes at epithelial TJs and interacts with Par complex. 

MCF10A cells express little endogenous Crb3, and unable to form TJs. Expression of 

exogenous Crb3 induces the formation of functional TJs in MCF10A cells, demonstrating the 

role of Crb3 to promote TJ formation.  

 

Scribble complex 

The Scribble complex is composed of three proteins, Scribble (Scrib), Discs Large 

(Dlg, isoforms, Dlg1-5) and Lethal(2) giant larvae (Lgl, isoforms, LLGL1 and 2). Scrib 

indirectly associates with Dlg1 via a linker protein called GUK Holder, and directly binds to 

Lgl2 via Scrib’s Leucin-rich repeats (LRR) domain (Mathew, Gramates et al. 2002) (Figure 

1.9.C). In Drosophila, mutations in scrib cause broad defects in epithelial organization and 

leads to embryonic lethality (Bilder and Perrimon 2000). The Scribble complex is localized 

to the basolateral domain, which is critical for its function, and further required for the apical 

confinement of polarity determinants. Mutations in scrib induces mislocalization of adherens 

junctions around the cells, which leads to the apical polarity determinants including Crb and 

Discs Lost (Dlt) expression unrestricted to the apical localization. These cells display 

aberrant cell shape and loss of the monolayer honeycomb-like organization (Bilder, Li et al. 

2000). In mammalian cells, Scrib is recruited to E-cadherin at cell-cell junctions (Navarro, 

Nola et al. 2005) and is required for AJ formation. Knockdown of Scrib in MDCK cells 

results in a mesenchymal appearance at a low density with no junctions. Furthermore, Scrib 

knockdown cells migrate faster with no direction (Qin, Capaldo et al. 2005).  
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Cross talk between polarity complexes  

During the establishment and maintenance of cell polarity, the protein complexes 

extensively interact. In Drosophila, Scrib actively excludes Crumbs and other apical 

components from the basolateral domain, which is required for apical formation during 

embryogenesis. (Bilder and Perrimon 2000). During embryogenesis and photoreceptor 

apicobasal polarity remodeling, Crumbs recruits Par6 and aPKC to the membrane domain, 

and excludes Par3 from the subapical domain (Morais-de-Sa, Mirouse et al. 2010; Walther 

and Pichaud 2010; Wodarz, Krahn et al. 2010). In this process, binding of Cdc42 to Par6 is 

required for promoting Crb/aPKC-dependent apical exclusion of Par3, but not 

phosphorylation of Par3 by aPKC (Walther and Pichaud 2010). In mammalian epithelial cells, 

Lgl competes for Par3 in forming an independent complex with Par6/aPKC. During MDCK 

polarization, Lgl initially colocalizes with Par6/aPKC at the cell-cell contact region and is 

phosphorylated by aPKC, followed by segregation from apical Par6-aPKC after the cells are 

polarized. Overexpression of an aPKC kinase-deficient mutant causes mislocalization of Par6 

and Lgl to the entire cell periphery. The transient interaction between Lgl and Par6/aPKC 

contributes to the establishment of TJs, as overexpression of Lgl2 affects TJ formation when 

cells are subjected to calcium switch to form TJs de novo (Yamanaka, Horikoshi et al. 2003). 

In humans, the Crumbs isoform CRB3, containing a conserved cytoplasmic domain but 

lacking the extracellular EGF- and laminin A-like G repeats, is preferentially expressed in 

epithelial tissue. CRB3 binds directly to Par6 to regulate the formation and stability of TJs in 

vivo. Overexpression of CRB3 delays TJ formation without affecting apical-basal polarity, a 

phenotype very similar to what is observed for Par6 overexpression (Lemmers, Michel et al. 

2004). 

The above studies demonstrate the complex network of interactions that occur during 

cell polarization and highlight the need for understanding how polarity proteins regulate 

polarization during tissue morphogenesis and disease.   



 

36 

Polarity protein alterations in cancer 

Polarity proteins are frequently altered in cancer. In the Par complex, PARD6b is 

amplified and overexpressed in breast cancer (Nolan, Aranda et al. 2008). PARD3 was 

recently shown to be frequently deleted in esophageal cancer cells (Zen, Yasui et al. 2009). 

Overexpression of aPKC is observed in multiple cancers including hepatocellular carcinoma, 

pancreatic adenocarcinoma and breast cancer (Huang and Muthuswamy 2010), and correlates 

with poor clinical prognosis in ovarian cancer (Eder, Sui et al. 2005). Par6 associates with 

TGFβRI to regulate TGF-β-dependent EMT; and Par6 activation correlates with breast 

cancer metastasis (Ozdamar, Bose et al. 2005; Viloria-Petit, David et al. 2009). The 

Par6/Par3 complex interacts with discoidin domain receptor 1 (DDR1) at cell-cell junctions 

to regulate collective migration of cancer cells (Hidalgo-Carcedo, Hooper et al. 2011). 

Downregulation of Crb3 was required for transformation of immortal mouse kidney cells 

(Karp, Tan et al. 2008), suggesting that Crb3 may function as a tumor suppressor. In the 

Scribble complex, Scrib was the first among the polarity proteins where it was demonstrated 

that its dysregulation promotes tumorigenesis (Bilder, Li et al. 2000). In breast cancer, 

amplification and overexpression of oncogenic c-Myc is frequently observed in early 

neoplastic lesions (Spandidos, Pintzas et al. 1987). Similar to cyclin D1, c-Myc induces both 

proliferation and apoptosis, but lacks the ability to disrupt apical-basal polarity of mammary 

epithelial cells (Reichmann, Schwarz et al. 1992). The expression of c-Myc in the mammary 

gland results in development of mammary tumors with a very long latency in 50%-80% of 

the mice. Scrib is mislocalized, overexpressed or downregulated in multiple cancers. Loss of 

Scrib or mislocalization of Scrib from cell-cell junctions cooperates with c-myc to block the 

apoptosis pathway and promote cell transformation (Zhan, Rosenberg et al. 2008). Dlg and 

Lgl are also mislocalized or downregulated in multiple cancers including lung, prostate, 

breast and colon (Huang and Muthuswamy 2010). Aberrant splicing of LGL and expression 

of the truncated protein is associated with poor differentiation and large tumor size of 

hepatocellular carcinoma (Lu, Feng et al. 2009). Collectively, these data implicate polarity 

proteins in cancer (Huang and Muthuswamy 2010). 

Work from our lab for the first time uncoupled oncogene-induced cell proliferation 

and disruption of epithelial cell polarity. Activation of ErbB2 disrupted apical-basal polarity 
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Chapter 2  

Loss of Par3 Cooperates with ErbB2 to Induce Invasive 

Behavior in the Mammary Gland Epithelial Cells In Vitro 
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Introduction 

We have previously demonstrated that activation of ErbB2 in the human mammary 

epithelial cell line MCF10A, induces disruption of apical-basal polarity and formation of 

non-invasive abnormal structures referred to as multiaciniar structures (Muthuswamy, Li et al. 

2001; Aranda, Haire et al. 2006). Par6/aPKC interaction is required for ErbB2-induced 

disruption of the apical-basal polarity and inhibition of apoptosis. ErbB2 activation displaces 

Par3 from the Par6/aPKC complex (Aranda, Haire et al. 2006). However, the role Par3 plays 

during ErbB2-induced transformation is unknown.  

Par3 is an evolutionarily conserved protein that was first identified in C elegans eggs 

(Pellettieri and Seydoux 2002). Par3 together with Par6 and PKC3 (aPKC) localize to the 

anterior half of the zygote, and mutations in any of these genes disrupt the polarization and 

first division of the zygote (Watts, Etemad-Moghadam et al. 1996). Par3 is a signaling 

scaffold that contains three PDZ domains, an N-terminal dimerization domain and a C-

terminal aPKC interaction domain (Etemad-Moghadam, Guo et al. 1995; Suzuki and Ohno 

2006). Its PDZ domains interact with cell surface proteins such as JAM (Ebnet, Suzuki et al. 

2001), Nectin (Takekuni, Ikeda et al. 2003), Par6 (Joberty, Petersen et al. 2000; Lin, Edwards 

et al. 2000; Suzuki, Yamanaka et al. 2001), phospholipids phosphatidylinositol 4,5-

bisphosphate (PIP2), and PTEN (Nagai-Tamai, Mizuno et al. 2002; Wu, Feng et al. 2007; 

Feng, Wu et al. 2008). The C-terminal domain of Par3 interacts with aPKC to inhibit its 

kinase activity (Izumi, Hirose et al. 1998; Yamanaka, Horikoshi et al. 2001). The Par3-aPKC 

interaction plays important roles during both the establishment of the apical membrane and 

differentiation and morphogenesis of progenitor cells in the mouse mammary glands. Par3-

depleted mammary progenitor cells gave rise to disrupted mammary ductal structures, 

characterized by ductal hyperplasia, filled lumen and disrupted end bud structures, with an 

expansion of K8+ K14+ dual positive cells and K6+ progenitor cells. Re-expression of full 

length Par3 but not a mutant Par3 lacking the aPKC-binding domain could rescue the 

phenotype (Horikoshi, Suzuki et al. 2009; McCaffrey and Macara 2009). The C-terminal 

domain of Par3 can also interact with the Rac1 GTPase-specific GTP exchange factor (GEF) 

T Lymphoma invasion and metastasis (Tiam1) to inhibit its exchange activity (Mertens, 

Rygiel et al. 2005). This interaction was sufficient to promote TJ formation in MDCK cells 
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suggesting that Par3-mediated suppression of Tiam1 at the junction is required for formation 

of TJs (Chen and Macara 2005). A similar Par3-Tiam1-dependent, but aPKC-independent, 

interaction was also required for regulating dendritic spine morphogenesis. Expression of 

dominant negative Rac, or downregulation of Tiam1, rescued the Par3-loss phenotype, 

demonstrating that the ability of Par3 to inhibit Rac activation plays an important role during 

dendritic spine morphogenesis (Zhang and Macara 2008).  

In humans, the PAR3 gene is located on chromosome 10, at 10p11.21, and covers 

705.77 kb, from 35104253 to 34398485, on the reverse strand. The gene contains 44 distinct 

introns (42 gt-ag, 2 gc-ag) and produces multiple splice variants. Gao et al. have identified 

six isoforms using human kidney cDNA (Gao, Macara et al. 2002). The longest sequence 

was designated as Par3a. The Par3b product differs from Par3a by an internal deletion of nine 

nucleotides, which results a protein lacking three amino acids (ESG, position 741-743aa). 

Par3c contains the same deletion and in addition lacks exons 5 and 12, as well as the end of 

exon 17. Par3d lacks only exon 21. Par3e lacks the nine nucleotides at the end of exon 15 in 

addition to exons 5, 12, 18 and 21. The splicing of exon 18 results in an amino acid 

substitution of a glycine by a serine in position 861 (numbering refers to Par3a). The last 

product, Par3f, lacks the ends of exons 15 and 17 as well as the entire exon 12. As exon 17 

contains the putative aPKC phosphorylation sites, Par3c and Par3f lack the aPKC binding 

ability (Gao, Macara et al. 2002). Other than these isoforms, a 150 kDa short form of Par3, 

sPar-3, is predominantly expressed in Caco-2 cells, a colon carcinoma-derived cell line. sPar-

3 associates with aPKC, but does not concentrate at the cell-cell contact region. The function 

of sPar-3 is unclear, but might contribute to the aberrant cell polarity noted in some diseases 

(Yoshii, Mizuno et al. 2005).  

In this chapter, to investigate the role of Par3 in cultured mammary epithelial cells, I 

depleted the Par3 protein using lentiviral shRNA-mediated knockdown. I demonstrate that 

loss of Par3 cooperates with oncogenic ErbB2 activation to induce cell invasion without 

affecting cell proliferation. 
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Results:  

2.1   Knockdown of Par3 using shRNAs 

To understand if Par3 plays a role during ErbB2-induced transformation of mammary 

epithelial cells, I tested five independent short hairpin RNAs targeting Par3. The shRNAs 

were acquired from The RNAi Consortium (TRC) and constructed in the pLKO.1 vector, an 

HIV-based lentiviral vector containing a 21mer shRNA sequence driven by the U6 promoter 

allowing RNA polymerase III-dependent transcription. The shRNA lentivirus was generated 

and I infected MCF10A cells expressing an inducible form of the oncogenic receptor tyrosine 

kinase ErbB2 (10A.B2) (Muthuswamy, Gilman et al. 1999) (Figure 2.1.A). Stable cell lines 

were established using puromycin selection and tested for Par3 expression knockdown 

efficiency. The shRNA (TRCN00001118134) targeting base pair 3112-3132 was shown to be 

the most effective shRNA. Another shRNA targeting mouse Par3 (TRCN0000094399) was 

used in the experiments using primary and immortalized mouse mammary epithelial cells, 

and an shRNA targeting GFP was used as a non-specific RNAi control to rule-out off-target 

effects (Figure.2.1.B). Both shRNA and shmRNA knockdown both long (180kDa) and short 

(150kDa) forms of Par3 recognized by anti-Par3 antibody.  

2.2   Loss of Par3 Cooperates with ErbB2 activation to induce abnormal 3D acinar 

structure formation  

To test the effect of Par3-loss on acinar morphogenesis in vitro, we grew the 10A.B2 

cells expressing Par3 shRNA in Matrigel-based 3D culture using the overlay method (Jayanta 

Debnath 2003). ErbB2 dimerizer, AP1510 was added at day 12 when the acini formed 

polarized growth-arrested structures. In the absence of ErbB2 activation, the acini derived 

from shGFP and shPar3 cells appeared to be similar, both forming well-polarized single acini 

with hollow lumens at day 16. Activation of ErbB2 in both shGFP and shPar3 acini disrupted 

normal acinar morphogenesis and induced formation of multiacinar structures. Interestingly, 

with ErbB2 activation, the multiacinar structures derived from shPar3 cells had a unique 

structure that resembled a cluster of disorganized, loosely packed cells (Figure 2.2.A). 

Control shGFP acini had smooth outline at the interface between the basal cell surface and 
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the Matrigel matrix. Differential interference contrast microscopy was used to resolve fine 

surface texture, and showed that the multiacinar structures derived from shPar3 cells 

possessed uneven surface topology, suggesting an abnormal organization with loose cell-cell 

junctions, which was not observed in the multiacinar structures derived from shGFP cells 

(Figure 2.2.B).  

2.3   Loss of Par3 cooperates with ErbB2 activation to induce cell invasion 

Next, the day 16 acini were immunostained for Ki-67 to analyze their proliferation 

rate. Both shGFP and shPar3 cells displayed similar levels of ErbB2-induced proliferation 

(Figure 2.3.A). Acini derived from shPar3 cells, in the absence of ErbB2 activation, showed 

an increased proliferation compared to shGFP cells. This result is consistent with recent 

observations in mouse mammary epithelial cells (McCaffrey and Macara 2009) where loss of 

Par3 also induced an increase in cell proliferation(Figure 2.3.A). However, loss of Par3, in 

the absence of ErbB2 activation, was not sufficient to induce multiacinar structures. Whereas 

activation of ErbB2 induced comparable numbers of multiacinar structures in both shGFP 

and shPar3 cells, seventeen percent of the multiacinar structures in shPar3 cells had a rough 

surface (Figure 2.3.B). In addition to the differences in their surface topology, the multiacinar 

structures derived from shPar3 cells also showed evidence of invasive protrusions (Figure 

2.2.C), suggesting that loss of Par3 promoted invasive behavior in response to ErbB2 

activation. To further confirm this, the cells were subjected to transwell invasion assay. In 

this assay, cell invasiveness can be quantitated by counting the number of cells penetrating a 

Matrigel basement membrane matrix and migrating through a porous membrane when 

seeded on culture well inserts with chemoattractant in the bottom chamber (Repesh 1989). 

Activation of ErbB2 induced a significant increase in invasion of shPar3 cells when 

compared to shGFP cells (30-fold versus 5-fold increase respectively) (Figure 2.3.C) 
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To observe the cellular morphology at the leading edge of migrating cells, we used an 

in vitro wound-healing assay. In this assay, a “wound gap” in a confluent monolayer is 

created by a scratch, followed by monitoring the closure of the gap by cell migration or 

growth towards the center of the gap. There are two advantages of this method. First, it 

allows the observation of cellular morphology possible, which is not possible in the transwell 

invasion assay. Second, since the scratch is made in confluent cell monolayers, the cells need 

to be released from the preexisting intercellular cohesion, which is more similar to migration 

in vivo (Rodriguez, Wu et al. 2005). In our experiments, scratches of approximately 500-μm 

widths were made in confluent cells grown in assay medium with or without ErbB2 

activation, and gap closure was monitored by live-cell imaging for 60 hours. By the end of 

the time period, only shPar3 cells with ErbB2 activation had “healed” the gap (Figure 2.4). 

As ErbB2 activation increases cell proliferation similar in both shGFP and shPar3 cells, we 

can conclude that this gap closure is due to changes in cell behavior rather than cell growth. 

The shGFP cells were compact and migrated into the wound together forming a smooth 

leading edge. ErbB2 activation induced a stream of cells to migrate towards the middle. 

However in shPar3 cells, even without ErbB2 activation, the cells were more loosely 

connected despite no difference in wound healing speed compared to the control cells. ErbB2 

activation caused cell less compact with each cell occupying more area, and increased their 

movement towards the middle. Therefore, these results are consistent with the transwell 

invasion assays, indicating that the loss of Par3 cooperates with ErbB2 activation to induce 

cell invasion and migration.  

Cells can adopt different invasive strategies including individual or collective cell 

migration, amoeboid and mesenchymal migration (Friedl and Wolf 2003). To better 

understand the nature of the invasion process and further define the mechanism being used, 

we performed time-lapse imaging of the shPar3 cells in 3D culture with ErbB2 dimerizer for 

72 hours to visualize multiacinar formation (Figure 2.5.A) and the invasion process (Figure 

2.5.B). Formation of an invasive protrusion was initiated by one cell sprouting from the 

border of an acinus, followed by the development of a migrating structure composed of a 

cluster of cells without spindle-like mesenchymal transformation, suggesting that shPar3 

cells move in a collective manner into the ECM. 
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2.4   Loss of Par3 promotes invasive behavior in breast cancer cells 

To investigate if loss of Par3 can promote invasive behavior in non-invasive human 

breast cancer-derived cell lines, we knocked down Par3 in T47D and SKBR3 cells (Figure 

2.6.A), both of which are low-invasive breast cancer cell lines. SKBR3 cells overexpress 

HER2 (Price 1996). T47D and SKBR3 cells expressing shPar3 both showed a significant 

increase in invasion in transwell invasion assays (Figure 2.6.B). In addition, T47D cells 

lacking Par3, but not the parental cells, formed 3D structures with a rough topology, similar 

to the phenotype observed in 10A.B2 cells (Figure 2.6.C). Thus, loss of Par3 induced 

invasion in both ErbB2-transformed MCF10A cells and human breast tumor-derived cell 

lines. 
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2.5   Par3 is not required for establishing the apical-basal polarity 

Par3 has been shown to localize below the Par6/aPKC complex at the apical/lateral 

junction and is important for defining the apical/basal border during Drosophila 

cellularization. We next tested whether Par3 is required for establishing apical-basal polarity 

in mammalian epithelial cells. The apical-basal polarity can be visualized by immunostaining 

for the proteins which have polarized position in cells, including the cis-Golgi protein, 

GM130 and the basement membrane protein, laminin5. In the absence of ErbB2 activation, 

both shGFP and shPar3 cell-derived structures showed well-polarized structure, featuring 

apical GM130 facing the lumen and laminin5 surrounding the basal surface. ErbB2 

activation induced shGFP cells to form multiacinar structures with filled lumens and intact 

basal laminin5. However, the shPar3 cell-derived structures had severely disrupted 

organization without showing any acini-like structure. The laminin5 had breakdown around 

the structures. Notably, the F-actin lost its normal cell peripheral structure in shPar3 cells 

(Figure 2.7). Therefore, loss of Par3 alone does not affect the establishment of apical-basal 

polarity in 10A.B2 cells.  

I also investigated cell polarity using the MDCK culture system. MDCK cells can 

spontaneously undergo polarization when grown on a porous membrane, with the apical side 

facing the culture medium and basal side facing the supporting membrane. First, three 

microRNA30 based shRNAs against Canis lupus familiaris Par3 were designed and 

constructed in the retroviral pMSCV-LTR-hygromycin vector. Stable cell lines expressing 

the shRNAs were established after hygromycin selection. The expression level of Par3 was 

analyzed by immunoblotting. The shRNA targeting base pairs 1531-1551 (shcPar3C) was 

shown to be the most effective shRNA (Figure 2.8.A). The control and shcPar3 MDCK cells 

were seeded in the cell inserts at high density and grew for four days to allow them to be 

fully polarized (Figure 2.8.B). TJ protein ZO-1 was used as an apical marker and AJ protein 

E-cadherin was used a basolateral marker in immunostaining experiments. Z-stack images of 

0.25μm thickness were acquired across the entire specimens. The z-sections at 1.0μm, 2.5μm 

and 4.0μm from the bottom were defined as basal; middle and apical sections, respectively. 

In both shGFP and shcPar3 cells, E-cadherin was restricted to the basal sections and ZO-1 

was restricted to the apical sections, suggesting that cell lines were both well polarized with 
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Chapter 3  

Loss of Par3 Promotes Metastasis of ErbB2 Mouse 

Mammary Tumors In Vivo without Overt EMT 
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Introduction: 

In order to understand the causal role of ErbB2 in breast cancer progression, and 

moreover, for developing and testing therapies targeting the receptor, several ErbB2 mouse 

models have been developed over the past three decades. To achieve the expression of the 

transgene specifically in the mammary gland, the mouse mammary tumor virus-long terminal 

repeat (MMTV-LTR) promoter was used as it can efficiently drive high expression of oncogenes 

in mammary epithelium (Stewart, Pattengale et al. 1984; Sinn, Muller et al. 1987; Mink, Ponta et 

al. 1990). Different strategies have been adopted to induce ErbB2 receptor activation, including 

expressing an active form of rat NEU (NEU-NT) (Muller, Sinn et al. 1988), the wild-type Neu 

proto-oncogene (Guy, Webster et al. 1992), and the active NEU receptor, which harbors a 

distinct in-frame deletion (NDL) (Siegel, Ryan et al. 1999). As an alternation to the MMTV-LTR 

promoter, some mouse models were also designed using the endogenous erbB2 promoters to 

drive the oncogene (Knock-in NEU-NT) (Andrechek, Hardy et al. 2000), or a TetO conditional 

activation system (Moody, Sarkisian et al. 2002). These mouse models developed mammary 

tumors of different malignancy and pathological properties, reflecting the multifaceted 

contribution of the ErbB2 receptor activation to the signaling pathways and disease progression 

(Ursini-Siegel, Schade et al. 2007). Therefore, a model must be carefully selected to suit the 

research purpose.  

Acquisition of invasive behavior is a prerequisite for metastasis. As loss of Par3 

cooperates with ErbB2 activation to induce cell invasion in vitro, next we tested if 

downregulation of Par3 can induce metastasis of ErbB2-induced tumors in vivo. The ErbB2 

transgenic mouse model chosen was MMTV-NDL. These mice express a Neu/ErbB2 deletion 

mutant (NDL), an extracellular domain mutant that promotes constitutive receptor dimerization, 

under the control of the MMTV-LTR (Andrechek, Hardy et al. 2000). They develop focal 

mammary tumors with latency as long as five months. The tumors show typical solid 

morphology similar to the human “solid” DCIS without central necrosis (Ursini-Siegel, Schade 

et al. 2007). Spontaneous lung metastases develop in these mice after 60 days following the first 

tumor palpation (Siegel, Ryan et al. 1999). This gives a large window assess the role of Par3 in 

changing tumor progression.  
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Acquisition of invasive behavior is frequently associated with EMT, which is defined as a 

process wherein cells lose epithelial traits and acquire mesenchymal characteristics. It is a 

process first recognized in embryonic morphogenesis; during gastrulation, invaginated 

mesoderm precursor cells undergo EMT to form dissociated mesoderm cells accompanied with 

cell shape change, and occupy the space between the epiblast and the visceral endoderm. The 

formation of a definitive endoderm and morphogenesis of different organs requires these cells to 

re-epithelize, aggregate and re-establish cell-cell adhesions and apical-basal polarity, referred to 

as mesenchymal-epithelial transition (MET) (Ferrer-Vaquer, Viotti et al. 2010). EMT is thought 

to also play important roles during the development of metastasis by providing tumor cells with 

the ability to escape from the primary tumor, migrate to distant regions, and invade tissues. 

Polarity proteins have been found to be involved in the EMT process. Transcriptional repressors 

that induce EMT, such as ZEB1, SNAI1, and SNAI2, directly bind to the promoter elements of 

cell polarity genes CRB3 and LGL2 and repress their mRNA expression (Davalos, Moutinho et 

al. 2011). In addition to being directly regulated by EMT core signals, cell polarity proteins can 

regulate migration and invasion by modulating signaling pathways. For example, TGF-β binds 

and phosphorylates Par6 at AJs, enabling recruitment of the E3 ubiquitin ligase Smurf1 to 

degrade the small GTPase RhoA, promote loss of TJs and cause an protrusive phenotype (Wang, 

Zhang et al. 2003; Ozdamar, Bose et al. 2005). Importantly, in mammary gland tumors, blockade 

of Par6 phosphorylation can inhibit the TGF-β pathway and suppress tumor metastasis to the 

lungs (Viloria-Petit, David et al. 2009). It is now believed that EMT is not a single rigid state but 

a highly plastic and dynamic process that involves a broad spectrum of signaling regulators. 

Recent results from our lab show that disruption of multiple polarity proteins in oncogene-naïve 

epithelial cells induces phenotypic plasticity where the cells acquire invasive behavior in 

response to a tumor-like microenvironment such as rigid ECM (Matrigel/type I collagen mixture) 

and inflammatory cytokines (IL-6 or TNF-α), while they behave like epithelial cells under 

normal growth factor conditions or in a bed of soft ECM (Matrigel) (Chatterjee, Seifried et al. 

2012). This plastic state may be similar to previously described ‘partial-EMT’, or ‘metastable’ or 

‘hybrid’ state (Thiery, Acloque et al. 2009), that is thought to allow cells to transit between 

epithelial and mesenchymal states. 
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In this chapter, we tested whether loss of Par3 affects the progression of ErbB2-induced 

mammary tumors in vivo using Par3 shRNA lentiviral transduction of primary mammary tumor 

cells. I demonstrate that loss of Par3 promotes ErbB2 tumor metastasis. Surprisingly, I also 

found that the invasive behavior of the cells was not accompanied by an overt EMT.  
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Results: 

3.1   Lentivirus transduction of ErbB2-induced mammary tumor cells and orthotopic 

transplantation 

To introduce Par3 knockdown to ErbB2-induced mammary tumor cells, we isolated the 

primary tumor epithelial cells from a metastasis-free MMTV-NDL mouse, then infected the 

tumor cells with lentivirus expressing mPar3 shRNA or control shRNA, as described in Chapter 

2. The cells were infected at a multiplicity of infection (MOI) of 5 which resulted in 

approximately 20% of infection efficiency in the primary tumor cells at the second day (Figure 

3.1). As the donor MMTV-NDL tumor cells express a constitutively activated form of NEU, the 

rat homolog of ErbB2 (Andrechek, Hardy et al. 2000), immunodeficient NOD/SCID mice with 

impaired T and B cell lymphocyte development and reduced NK activity were chosen as 

recipients to avoid the cross species immune rejection (Ito, Hiramatsu et al. 2002). The infected 

cell aggregates were injected into the No. 4 pair of mammary fat pads of NOD/SCID mice which 

is highly vascularized, consist of adipocytes and exhibits a histological similarity to the original 

tumor microenvironment. As the developing mammary parenchyma in the No.4 glands did not 

extend beyond the lymph node in 3- to 4-week-old mice, the entire endogenous mammary 

epithelial cells can be surgically removed before transplantation. The tumor onset and lung 

metastasis were scored.  

3.2   Loss of Par3 promotes metastasis of ErbB2-induced mammary tumors 

In the initial experiment, lentivirus expressing shGFP and shmPar3 were generated using 

the pLKO.1 backbone. The virus was packaged in 293T cells. The titration of viral stock was 

determined by infecting 293T cell with serial dilutions of the viral stock and counting viable 

cells after puromycin selection for 4 days. The viral supernatant containing the same amount of 

virus transduction unit (TU) was further concentrated to 1x107 TU/ml by ultracentrifugation. The 

primary tumor cells were isolated from MMTV-NDL mouse that carried a tumor of 1cm2 

without any evidence of metastasis in the lungs, and confirmed by hematoxylin and eosin (H&E) 

histological staining. 2500 tumor cells infected with shGFP or shmPar3 were transplanted into 

NOD/SCID mice.  Mice injected with GFP shRNA- or mPar3 shRNA-infected cells both 
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These results prompted us to assess the development of distant metastasis. The NDL 

primary tumor cells from the same stock as describe above were infected with lentivirus 

expressing empty vector or mPar3 shRNA in the pLKO.3G backbone in which the puromycin 

resistance gene was replaced by a green fluorescent protein (GFP) driven by the 

phosphoglycerate kinase (PGK) promoter as a reporter for infected cells. Infected cells were 

transplanted into pre-cleared mammary fat pads of NOD/SCID mice as previously described. 

Both vector and mPar3 shRNA-infected cells developed GFP-positive tumors where GFP was 

heterogeneously expressed (Figure 3.3.A). One cohort of mice was sacrificed 12 weeks after 

transplantation when the tumor size reached 1.5 cm in diameter. To extend the life span of the 

mice and allow distant metastasis to form, in a second cohort of mice, the primary tumor nodes 

were removed at week six to relieve the tumor burden and the mice were sacrificed 20 to 24 

weeks after transplantation (Figure 3.3.A). The primary tumors generated by mPar3 shRNA-

infected cells or the vector-infected cells did not differ significantly in total mass (approximately 

1.5 grams). Fifty percent of the mice (5 out of 10) in the first cohort injected with mPar3 shRNA-

infected cells developed GFP-positive lung metastases and 75% of mice (3 out of 4) in the 

second cohort developed lung metastasis without tumor regrowth at the primary site. In contrast, 

only 1 out of 10 mice developed lung metastasis in the vector-infected group (Figure 3.3.A, B). 

The tumors were collected and analyzed by immunostaining for Par3 and E-cadherin. Primary 

tumors and metastases from both vector and shmPar3 had epithelial morphology and expressed 

E-cadherin at cell-cell junctions. ShmPar3-derived primary tumors had decreased levels of Par3 

in the selected GFP-positive region (Figure 3.3.C). This result is consistent with the previous 

reported observation in breast cancer that the metastases from invasive ductal carcinoma express 

E-cadherin with the same intensity or with an even stronger intensity than the corresponding 

primary tumors (Kowalski, Rubin et al. 2003). Although aberrant E-cadherin expression is 

commonly associated with metastasis, normal E-cadherin expression is required for a tumor to 

repopulate in the distant sites. So far, it is unclear whether these cells retained E-cadherin 

expression during dissemination or the cells lost E-cadherin initially and then regained 

expression of E-cadherin at the distant metastatic foci, commonly explained by EMT-MET 

theory. Together, these studies demonstrate that loss of Par3 was sufficient to initiate metastatic 

behavior in epithelial cells derived from ErbB2-induced primary mouse mammary tumors.  
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3.3   Acquisition of the invasive behavior by loss of Par3 without associated with an overt 

EMT 

Next, we tested if activation of in cells lacking Par3 promotes tumor metastasis by 

inducing EMT through observation of the cell morphology and evaluation of the mesenchymal 

marker expression. Treating 10A.B2 cells with TGF-β, a known inducer of EMT, led to a loss of 

epithelial morphology and acquisition of spindle-shaped mesenchymal morphology. In 

comparison, we did not observe any morphological changes associated with EMT in either 

shGFP or shPar3 cells in the presence or absence of ErbB2 dimerizer for four days (Figure 

3.4.A). Consistent with the lack of changes in cell morphology, the mRNA expression of 

mesenchymal markers such as snail, N-cadherin and fibronectin was not altered by loss of Par3 

or ErbB2 activation alone or in combination in 10A.B2 (Figure 3.4.B) and T47D cells (Figure 

3.4.C). 

EMT is also characterized by a loss of the epithelial marker E-cadherin. Loss of Par3 did 

not decrease expression of E-cadherin in 10A.B2, T47D or BT474 cells (Figure 3.5A). We also 

did not observe obvious differences in E-cadherin localization in confluent monolayers of 

epithelial cells (Figure 3.5.B) or in primary tumors derived from shPar3 cells (Figure 3.3.C). 

These observations suggest that loss of Par3 cooperates with ErbB2 to induce invasive behavior 

in epithelial cells without being associated with an overt EMT. 
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Chapter 4  

Loss of Par3 Promotes Invasion by Blocking E-cadherin 

junction Maturation 
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Introduction: 

Cancer cells can utilize various mechanisms to acquire invasive and migratory behavior. 

In primary tumors, cancer cells are packed together and they interact with neighboring cells, 

stromal cells and the ECM. E-cadherin mediated cell-cell interaction is the first barrier against 

cell mobility, and loss of cell-cell adhesion is a fundamental change that occurs during the 

progression of cancer to invasive disease. The suppression of E-cadherin expression and 

mutation of E-cadherin gene is frequently associated with metastasis in many cancers (Hirohashi 

1998), and re-expression of E-cadherin in highly invasive cancer cells can block the invasiveness 

(Vleminckx, Vakaet et al. 1991). However, uniform strong membrane expression of E-cadherin 

has been seen in most invasive ductal carcinomas (IDC) and DCIS. There appears to be no 

correlation between E-cadherin expression levels and ErbB2 expression or tumor grade in IDC 

(Acs, Lawton et al. 2001). Consistent with this observation, E-cadherin expression is found to 

not correlate with recurrence, distant metastases, lymph node stage, vascular invasion, or 

prognostic group or survival in IDC patients, and therefore provides minimal prognostic value 

(Parker, Rampaul et al. 2001). This contradictory finding suggests that in breast ductal 

carcinomas, cell-cell cohesion strength may be decreased by other mechanisms without 

suppressing E-cadherin expression.  

AJ assembly is mediated by E-cadherin, a glycoprotein with an extracellular domain and 

a cytoplasmic domain. The extracellular domain is composed five cadherin-motif subdomains 

that are used for establishing homophilic interactions between neighboring cells. The 

cytoplasmic domain interacts with an array of intracellular proteins including β-catenin and α-

catenin, which in turn interacts with the actin-myosin cytoskeleton. One of the key features of 

AJs is that they are dynamic and there is a constant turnover of AJ proteins even in a stable 

epithelium. This dynamics nature allows cells to undergo cell shape changes and rearrange cell 

position while still maintaining strong adhesive strength, which is essential for organism growth 

and development. The dynamics of AJs can be modulated by junction assembly and AJ protein 

trafficking. AJ formation initiates from cortical actin polymerization to produce membrane 

ruffles and generate new sites of contact between cells, followed by actomyosin tension at the 

contact edges to generate a pulling force to expand the contact. After the initial contact is 

established, dynamic protrusions further propel E-cadherin interactions and clustering of other 
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AJ elements including polarity proteins. In the nascent junctions, actin polymerization and 

actomyosin tension are further required for the stabilization and maturation of the adhesive 

interface (Baum and Georgiou 2011). It has been shown that two spatial F-actin populations at 

junctions are distinguishable: junctional actin to stabilize the clustered cadherin receptor at cell-

cell contacts, and peripheral thick bundles for lateral domain polarization (Zhang, Betson et al. 

2005). This leads to E-cadherin distribution at two levels: stable homophilic E-cadherin bona 

fide adhesive foci and diffusing ‘free’ E-cadherin (Cavey, Rauzi et al. 2008) (Figure 4.1). The 

turnover of AJ components is also achieved by endocytosis and recycling of cadherins to the cell 

surface (Yap, Crampton et al. 2007). E-cadherin turnover in cultured epithelial cells can be 

monitored using surface biotinylation and recycling assays. It has been shown that E-cadherin is 

actively internalized and recycled back to the plasma membrane via a process that is dependent 

on clathrin-mediated endocytosis (Le, Yap et al. 1999).  

Although the role of E-cadherin protein has been extensively studied in the cancer field, 

very little is known about the contribution of E-cadherin dynamics to AJ maintenance and cancer 

cell cohesion. E-cadherin dynamics are found to be significantly faster in vivo than in vitro as 

measured by photobleaching assays. Cancer drug dasatinib, a clinically approved Src inhibitor 

can reduce cell migratory behavior by stabilizing E-cadherin at cell-cell junctions in vivo (Serrels, 

Timpson et al. 2009). In this chapter, I demonstrate thatmaturation of E-cadherin requires Par3. 

Loss of Par3 promotes cell invasion by blocking E-cadherin maturation and weakening cell-cell 

adhesion strength.  
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Results: 

4.1   Loss of Par3 weakens cell-cell adhesions 

To understand the mechanism by which loss of Par3 induces invasion, we monitored 

ErbB2-induced changes in MCF10A cell behavior when grown in 2D culture. The cells were 

seeded at low density (1x104 cells per well in a 12-well plate) to allow enough time to track at 

least two cell cycles before reaching confluence. We tracked each cell and their progeny during 

colony expansion by time lapsing imaging. We found that both shGFP and shPar3 cells had the 

same dividing cycle time (8 hours) upon ErbB2 activation. However, the dividing shPar3 

daughter cells failed to stay cohesive within a colony, whereas shGFP daughters remained 

proximal to each other within an epithelial island (Figure 4.2.A), suggesting a decrease in cell-

cell cohesion. The migrating shPar3 cells also showed expanded lamellipodia formation at the 

leading edge of the cells (Figure 4.2.A).  

Cadherins and integrins such as α5β1 integrins are involved in the adhesive networks and 

maintenance of tissue architecture (Robinson, Zazzali et al. 2003; Weber, Bjerke et al. 2011). As 

cells can spread on ECM in an integrin-dependent manner, a simple cell spreading assay was 

used to test whether this decrease in cohesiveness was due to increased motility promoted by 

activation of integrin signaling. shGFP and shPar3 cells were plated on Matrigel-coated 

coverslips in the absence or presence of ErbB2 activation and the cell area was measured. The 

cells did not differ in their ability to adhere and spread on a Matrigel-coated surface 

demonstrating that loss of Par3 did not activate integrin function (Figure 4.2.B).  

To test if loss of Par3 affects cell-cell interactions, we performed a cell aggregation assay. 

This assay was designed to assess the strength of cell-cell adhesion without the influence of 

cellular adhesion to the plate (Redfield, Nieman et al. 1997).Cells were suspended in drops of 

media hanging from the lid of a culture dish, and the ability of cells to form aggregates was 

monitored. Activation of ErbB2 in shGFP cells induced a modest decrease in the size of cell 

clumps, indicating weakened cell cohesiveness, which is consistent with previous reports 

showing that activation of ErbB2 can induce a decrease in E-cadherin function (D'Souza and 

Taylor-Papadimitriou 1994; Kim, Yong et al. 2009). Interestingly, shPar3 cells, in the absence of 
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ErbB2 activation, formed aggregates that were smaller than shGFP cells and activation of ErbB2 

induced dispersal of all shPar3 cell clumps (Figure 4.2.C). 

4.2   Loss of Par3 compromises E-cadherin junctions 

Induction of cell scattering, the dispersion of compact colonies of epithelial cells, requires 

the dissolution of E-cadherin-mediated cell-cell adhesions and cell mobility (Nakagawa, Fukata 

et al. 2001). We observed that activation of ErbB2 induced scattering of shPar3, but not the 

control shGFP cells (Figure 4.3.A, B). Neither shGFP nor shPar3 cells scattered in the absence of 

ErbB2 activation. Interestingly, when we disrupted intercellular adhesion in shGFP cells by 

inhibition of homophilic binding between E-cadherin extracellular domains using an E-cadherin 

neutralizing antibody (HECD-1) (Shimoyama, Hirohashi et al. 1989), these cells displayed a cell 

scattering phenotype upon ErbB2 activation, reminiscent of our observation in the shPar3 cells 

(Figure 4.4.A). Both shGFP cells treated with HECD-1 and shPar3 cells did not scatter in the 

absence of ErbB2 dimerizer, suggesting that the cell mobility also requires ErbB2 activity. 

Consistent with these results, overexpression of mouse E-cadherin in shPar3 10A.B2 cells 

blocked ErbB2-induced cell scattering (Figure 4.4.B, C). This demonstrates that cell scattering in 

the Par3-deficient cells was a consequence of weakened E-cadherin-mediated cell adhesion. 

Although in Par3-depleted cells, the E-cadherin protein level and subcellular localization was 

unaltered, we reasoned that the functional properties of E-cadherin junctions could be 

compromised in the absence Par3. 
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Figure 4.4.  Cell scattering in Par3-deficient cells was the result of compromised E-cadherin 
junctions 

(A) 10A.B2 shGFP or shPar3 cells were grown on plastic dishes in the presence of a function-
neutralizing antibody against E-cadherin (HECD-1) or control mIgG for 24 hours and monitored 
using light microscopy. The graph below represents quantification (mean±SEM) of scattered cells 
from three independent experiments where 400-600 cells/field were counted for each experiment. 

(B) mRNA was extracted from shPar3 10A.B2 cells expressing mouse E-cadherin and analyzed for 
exogenous E-cadherin by RT-PCR using primers specifically against mouse Cdh1, but not 
recognizing human CDH1.  

(C) Phase contrast images of shPar3 cells expressing control or mE-cadherin growing on plastic 
dishes at low density, without (-) or with (+) ErbB2 stimulation for 24 hours. (Scale bar=100μm) 

 

4.3   Par3 is required for E-cadherin junction maturation 

During the formation of E-cadherin junctions, nascent junctions are highly mobile or 

constantly recycle E-cadherin molecules. In contrast, mature junctions have a high fraction of 

immobile E-cadherin in MDCK cell monolayers (Cavey, Rauzi et al. 2008; Baum and Georgiou 

2011). We tested the E-cadherin dynamics at cell-cell junctions by fluorescence recovery after 

photobleaching (FRAP) experiments. In these experiments, GFP conjugated E-cadherin was 

stably expressed in 10A.B2 cells. A small boxed region (10μm×10μm) of GFP fluorescence at 

the cell junction was photobleached and the recovery of E-cadherin-GFP was monitored. The 

kinetics of the recovery of E-cadherin can reflect the underlying dynamics. Briefly, in the FRAP 

fitting curve, the plateau level (a) is often lower than the pre-bleach fluorescence intensity as 

some of the FRAP-bleached molecules are immobile within the FRAP region. Fraction of 

proteins (a) that contribute to the recovery are called the ‘mobile fraction’ and those do not (1-a) 

are called the ‘immobile fraction’. The index for the speed of recovery is the time it takes for the 

curve to reach 50% of the plateau fluorescence intensity level. Depending on the shape and area 

of bleaching region used in the experiment, the recovery is a combination of both E-cadherin 

lateral diffusion and membrane-cytoplasmic exchange (Goehring, Chowdhury et al. 2010). E-

cadherin homophilic binding requires Ca2+, therefore the maturation of E-cadherin junctions can 

be manipulated by switching cells from low calcium (immature junctions) to high calcium 

medium (mature junctions). We performed FRAP in the calcium-switched cells to see whether 

junction maturation can be monitored by FRAP. At time zero, when the junction was immature 

in low calcium condition, 100% of E-cadherin was recovered within five minutes after 



 

photoble

molecule

60 min a

that the 

decreased

maturatio

Figu

(A) F
bl

(B) C
m

 

aching, dem

es. Interestin

nd 120 min 

percentage 

d along with

on can be qu

ure 4.5.  Chan

RAP analysis
lack lines ind

Confluent mon
medium for fo

monstrating th

ngly, the reco

after the cel

of the imm

h cell-cell ju

uantitated usi

nges in E-cad

s was perform
dicate the best
nolayer of 10A
ur hours and 

 

hat new cell

overy of E-c

lls switched 

mobile fract

unction matu

ing the FRA

dherin dynam

med at t=0, 6
t fitting curve
A.B2 cells ex
then switched

76 

l-cell junctio

adherin grad

to high calci

tion of E-ca

uration (Figu

AP assay.  

mics during j

0 min and 12
s by nonlinea

xpressing E-c
d to high calc

ons were com

dually decrea

ium medium

adherin incr

gure 4.5). Th

junction mat

20 min after t
ar regression a
cadherin-GFP
cium medium

mposed of m

ased to only

m respectivel

reased, and 

herefore, E-c

turation by F

the calcium s
analysis.  

P were incuba
m. 

mobile E-cad

y 87% and 64

ly, demonstr

mobile fra

cadherin jun

FRAP assay 

switch (n>10)

ated in low ca

dherin 

4% at 

rating 

action 

nction 

 

). The 

alcium 



 

T

both con

Photoble

in a conf

is immob

of the GF

junctions

Par3 is 

mammar

Figu

(A) F
pr
no
be
ye

(B) Q

 

To test if loss

ntrol and sh

aching analy

fluent monol

bile and 50%

FP signal at 

s are immob

required for

ry epithelial 

ure 4.6. Loss o

RAP was co
resence or ab
onlinear regr
efore and aft
ellow-boxed 

Quantification 

s of Par3 affe

hPar3 10A.B

ysis revealed

layer of con

% is mobile.

cell-cell junc

bile in cells 

r cell-cell j

cells lacking

of Par3 inhib

onducted in c
bsence of ErbB
ession analys
ter various tim
area represen
of immobile 

fects E-cadhe

B2 cells exp

d that 50% o

ntrol cells su

 However, i

ctions was re

lacking Par3

unction ma

g Par3. 

bits E-cadher

control and s
B2 dimerizer 
sis. Confocal 
me points af

nts the bleache
and mobile f

77 

erin junction

pressing E-c

of the GFP si

ggesting tha

in a confluen

ecovered sug

3 (Figure 4.

turation. E-

rin junction 

shPar3 10A.B
(n>10). The 
sections of t

fter photoblea
ed areas.  
fractions of E

n maturation 

cadherin-GFP

ignal at cell-

at 50% of E-

nt monolaye

ggesting tha

.6). These ob

-cadherin ju

maturation

B2 cells expr
thick lines in

the cells in th
aching are sh

-cadherin from

 in mammar

P were subj

-cell junctio

-cadherin wi

er of cells la

at only 15% o

bservations 

unctions fail

ressing E-cad
ndicate the be
he absence o
hown in the b

m (A). 

ry epithelial 

bjected to FR

ns was recov

ithin the jun

acking Par3, 

of the E-cad

demonstrate

led to matu

dherin-GFP i
est fitting curv
of ErbB2 dim
bottom panel

cells, 

RAP. 

vered 

nction 

85% 

dherin 

e that 

ure in 

 

in the 
ves of 

merizer 
l. The 



 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

D
K
F

Par3 Los

Disclosure of
Kannan Kris

igure 5.13D

ss-induc

Altera

f contribution
hnamurthy 
 

Ch

ced Inva

ation of A

n: 
performed t

78 

hapter 5

asion Re

Actin C

the experim

 

equires R

ytoskele

ments presen

Rac-Me

eton 

nted in for F

ediated 

Figure5.5 CC and 



 

79 

Introduction: 

Actin microfilaments are critical components of the cytoskeletal network. Actin 

microfilaments (F-actin) are polarized polymers composed of globular actin (G-actin). The 

balance between elongation at the ATP-bound barbed end and depolymerization at the ADP-

bound pointed end is called “treadmilling”, which generates the pushing force. Different from 

microtubules, actin filaments can be nucleated and assembled into different secondary structures 

by a different set of actin binding proteins: the nucleator Arp2/3 complex promotes G-actin 

polymerization into branched F-actin; formins assemble linear F-actin, actin cross-linking 

proteins such as fascin and myosin combines linear filaments into thick bundles (Yang, Huang et 

al. 2000; Goley and Welch 2006; Kovar 2006). Both actin turnover and the secondary structure 

are critical for cell morphology and behavior, particularly for cell adhesion and membrane 

protrusion (Nurnberg, Kitzing et al. 2011). 

In epithelial cells, both AJs and TJs associate with the actin cytoskeleton, which 

determines the maturation and strength of the junctions (Angres, Barth et al. 1996; Chu, Thomas 

et al. 2004). The actin-binding proteins that regulate actin assembly in turn contribute to the 

formation and maintenance of the junctions (Tao, Nandadasa et al. 2007). The Arp2/3 complex is 

an actin nucleator essential for the formation of lamellipodia and invadopodia in cancer cells 

(Otsubo, Iwaya et al. 2004; Lai, Szczodrak et al. 2008; Nurnberg, Kitzing et al. 2011). It has 

recently been shown to play an important role in both maturation and maintenance of junctions 

by providing the membrane stiffness and regulating junctional protein trafficking during 

intestinal morphogenesis in C. elegans (Bernadskaya, Patel et al. 2011). α-Actinin-4/focal 

segmental glomerulosclerosis 1 FSGS1 is required for incorporation of Arp2/3-dependent 

nucleation at the cell-cell juntional site and assembly of the E-cadherin-catenin complex (Tang 

and Brieher 2012). 

The Rho-family of small GTPases, including RhoA, Rac and Cdc42 are master regulators 

of the actin cytoskeleton. Rho GTPases function as molecular switches to propagate the signal 

transduction by interacting with downstream effector molecules in their GTP-loaded “on” state. 

The intrinsic hydrolase activity hydrolyzes the GTP to GDP, turning the protein “off”. This 

process is accelerated by the interaction with GAPs (GTPase activating proteins). The interaction 
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with guanine-nucleotide exchange factors (GEFs) facilitates the exchange of GDP to GTP (Hall 

1998). Guanine-nucleotide dissociation inhibitors (GDIs) are another class of molecules that 

interact with Rho GTPases in the regulatory cycle. GDI binding to a Rho GTPase inhibits the 

dissociation ofthe guanine nucleotide and prevents activation of Rho GTPases (Spiering and 

Hodgson 2011) (Figure 5.1). The small GTPases each have distinct effects on the cytoskeleton 

and cell mobility based on in vitro experimental observations. Microinjection of the activated 

Rac1 into cells results in lamellipodial protrusions or membrane ruffles; RhoA results in the 

formation of stress fibers, adhesion plagues and cell contractility, and Cdc42 regulates filapodia 

(microspike) formation at the cell periphery (Ridley and Hall 1992; Nobes and Hall 1995). 

Activation of Rho GTPases needs to be tightly regulated temporally and spatially in order to 

generate specific and localized effects (Van Aelst and D'Souza-Schorey 1997; Kaibuchi, Kuroda 

et al. 1999; Gulli and Peter 2001; Jaffe and Hall 2005). To study the subcellular localization of 

the activity of a particular Rho GTPase, a series of biosensors based on the principle of Förster 

Resonance Energy Transfer (FRET) have been developed and utilized in live cells (Aoki and 

Matsuda 2009; Hodgson, Shen et al. 2010). Several GEFs and GAPs localize at epithelial 

junctions and bind to specific junctional proteins. Thus junctional proteins and small GTPases 

can regulate each other at junctions. For example, Rac activity is essential for E-cadherin 

junction formation (Braga, Machesky et al. 1997; Akhtar and Hotchin 2001). Injection of a 

dominant negative form of Rac (N17Rac) prevented E-cadherin stabilization at cell-cell contacts 

(Braga, Machesky et al. 1997). Conversely, constitutive activation of Rac induces disruption of 

E-cadherin junctions by promoting aberrant actin remodeling, suggesting that tight regulation of 

Rac activity is necessary (Chu, Thomas et al. 2004; Kraemer, Goodwin et al. 2007).  
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Cdc42, Par6 and aPKC are required for junction stability via regulating WASP and Arp2/3-

mediated endocytosis (Georgiou, Marinari et al. 2008). In migrating cells, the segregation of 

Cdc42 and Rac at the leading edge from RhoA in the back leads to different cytoskeleton 

structures. Cdc42 and Rac1 primarily promote branched actin nucleation, to induce protrusion 

formation, whereas RhoA activates ROCK to induce actomyosin contraction and tail formation 

(Heasman and Ridley 2008; Iden and Collard 2008). When cells attach to the ECM, focal 

adhesions provide the main sites for cell adhesion to the ECM, and associate with actin stress 

fibers to control cell movement. Assembly of stress fibers and focal adhesions are under the 

influence of RhoA-mediated downstream effectors such as mDia1/2 and ROCK. Par3 also is 

found to interact with focal adhesion kinase (FAK) in proteomic analysis and depletion of Par3 

inhibits adhesion-induced activation of FAK in HeLa cells, suggesting Par3 functions to link 

focal adhesions, actin reorganization and cell migration (Itoh, Nakayama et al. 2010). 

In this chapter, I explore the molecular mechanism utilized by Par3 to regulate the cell-

cell junction maturation, and demonstrate that forced downregulation of Par3 activates a 

Tiam1/Rac/IRSp53/WAVE2 pathway that promotes aberrant actin remodeling at cell-cell 

junctions, blocks E-cadherin junction maturation and inhibits cell-cell cohesion. 
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Results: 

5.1   Loss of Par3 induces aberrant activation of Rac 

To investigate the molecular mechanism by which Par3 regulates E-cadherin junction 

maturation and epithelial cell behavior, first we tested if loss of Par3 changes Rac-GEF activity. 

Tiam1 is the only GEF identified that specifically activates Rac in vitro as well as in vivo 

(Michiels, Habets et al. 1995). Activation of Tiam1 requires its translocation from the cytoplasm 

to the plasma membrane. Its activity is regulated by different mechanisms including relief of 

intra-molecular inhibition, phosphorylation, and interaction with other proteins such as Par3. An 

active Rac-GEF assay kit, obtained from Cell Biolabs, Inc., was used to evaluate Rac activity. 

GEFs function by binding to a nucleotide-bound GTPase, which causes the bound nucleotide to 

be released, thus resulting in a nucleotide-free GEF-GTPase. This nucleotide free complex will 

then take up a new nucleotide after which the GEF is released from the GTPase. Because GEFs 

typically have a higher affinity for GDP-bound GTPases than for the corresponding GTP-bound 

GTPases and the ratio of GTP to GDP in cytoplasm is about 10:1, GEFs will drive the exchange 

from GDP-bound to GTP-bound GTPases. Based on this, the active Rac-GEF assay was 

designed to utilize Rac1 G15A, a nucleotide-free Rac1 mutant with high affinity for active 

Tiam1 (Arthur, Ellerbroek et al. 2002; Garcia-Mata, Wennerberg et al. 2006), and is conjugated 

to agarose beads to selectively isolate and pull-down the active form of Rac-GEF from cell 

lysates, namely lysates of 10A.B2 cells expressing shGFP or shPar3 grown in low growth factor 

media herein. Subsequently, the precipitated active Tiam1 was detected by western blot analysis. 

We was found that cells lacking Par3 had a dramatic increase in the basal levels of active Tiam1 

in the absence of ErbB2 dimerizer (Figure 5.2.A).  

We further tested whether the downstream substrate Tiam1 was affected by loss of Par3. 

Pulldown assays using Cdc42/Rac interactive binding (CRIB) region of p21-activated kinase 

(PAK) binding domain (PAK-PBD), a Rac effector protein that binds specifically to the GFP-

bound form of Rac, was performed to analyze the level of active Rac (Knaus, Bamberg et al. 

2007). In shPar3 cells, the Rac-GTP levels were high under unstimulated conditions compared to 

the levels present in shGFP cells (Figure 5.2.B). Activation of ErbB2 induced a four-fold 

increase in Rac-GTP levels in shGFP cells within 30 minutes, but not in shPar3 cells (Figure 
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To determine if loss of Par3 changes the spatial and temporal regulation of Rac activation 

in shPar3 cells, we monitored Rac activation by FRET assay using the biosensor Raichu-Rac. 

Raichu-Rac consists of Rac fused to CFP and the CRIB domain of PAK fused to YFP. GTP 

binding to Rac results in an interaction between the CRIB domain of PAK and Rac-GTP, which 

induces FRET emission from CFP to YFP (Itoh, Kurokawa et al. 2002) (Figure 5.3.A). The 

localization of Raichu-Rac fusion as monitored by CFP channel images is different from 

endogenous Rac and is related to local GEF activity (Itoh, Kurokawa et al. 2002). The FRET 

assays were conducted in confluent cell monolayers enabling the study of Rac activity at the cell 

junctions. In shGFP cells, Raichu-Rac was mainly localized to cell-cell junctions, whereas in 

shPar3 cells it showed an increase in diffuse distribution in the cytosol (Figure 5.3.B, leftmost 

panel). The time-lapse FRET/CFP ratio images show that ErbB2 activation induced Rac-GTP 

loading at cell-cell junctions in shGFP cells, which returned to basal levels by 15 minutes, 

whereas Rac-GTP levels were elevated diffusely throughout the cytosol in shPar3 cells and 

remained high at 15 minutes (Figure 5.3.B, right). These observations demonstrate that Par3 

plays an important role in spatial and temporal regulation of Rac activation in mammary 

epithelial cells. 
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5.2   Tiam1-mediated Rac activation is required for the Par3-loss induced phenotype 

Next we investigated the importance of increased Tiam1/Rac signaling during invasion of 

shPar3 cells. A dominant-negative Tiam1 (Stam, Sander et al. 1997) or NSC23766, a 

pharmalogical Rac inhibitor were used to interfere with Tiam1-mediated activation of Rac. 

Tiam1 protein consists of 1591 amino acids and contains a Dbl homology (DH) domain followed 

by a pleckstrin homology (PHc) catalytic domain unit for guanine nucleotide exchanging. 

Tiam1-PHn-CC-Ex (393-853), a mutant of Tiam1 was used as a dominant negative Tiam1, 

contains an N-terminal pleckstrin homology (PHn) domain, the proximal coiled coil (CC) region, 

and adjacent Ex domain which is required for translocation of Tiam1 to the plasma membrane, 

but lacks of catalytic domains (Michiels, Stam et al. 1997; Stam, Sander et al. 1997) (Figure 

5.4.A). Despite its correct localization at the plasma membrane, Tiam1-PHn-CC-Ex can interfere 

with endogenous Tiam1 function and inhibit Tiam1-induced cell membrane ruffling (Stam, 

Sander et al. 1997). We stably expressed Tiam1-PHn-CC-Ex in 10A.B2 cells. The ability of 

ErbB2-activated shPar3 cells to invade through Matrigel in transwell invasion assays was 

significantly decreased (Figure 5.4.B), and the percentage of abnormal rough acini was 

diminished (Figure 5.4.C).  

To apply the Rac inhibitor in 10A.B2 cells, we first titrated NSC23766, a Rac inhibitor 

identified by a structure-based virtual screen which effectively inhibits activated Rac1 by GEF 

Trio or Tiam1, to the concentration (25μM) which is sufficient to decrease the high basal level of 

Rac-GTP observed in shPar3 cells without affecting ErbB2-induced Rac1 activation by other 

Rac-GEFs (Figure 5.5.A). At this concentration, NSC23766 inhibited ErbB2-induced cell 

invasion and cell scattering in shPar3 cells (Figure 5.5.B, C). These results demonstrate that 

activation of Tiam1 and the aberrant increase in Rac-GTP levels are required for the invasive 

behavior of shPar3 epithelial cells. To determine if the increase in basal Rac-GTP levels in 

shPar3 cells contributes to the incapability of E-cadherin junction maturation in shPar3 cells, 

FRAP analysis was performed in shPar3/E-cadherin-GFP cells treated with NSC23766. While 

treatment of the parental 10A.B2 cells with NSC23766 did not change the percentage of 

immobile fraction of E-cadherin, treatment of shPar3 cells induced a more than two fold increase 

in the immobile E-cadherin fraction (Figure 5.5.D), demonstrating that shPar3-induced blockade 

of E-cadherin junction maturation was mediated by the aberrant activation of Rac.  
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 Figure 5.5. Par3-loss phenotype is mediated by aberrant Rac activity 

(A) Cell lysates from cells stimulated with ErbB2 dimerizer for 15 minutes in the absence (-) or 
presence (+) of different concentrations of NSC23766 (25μM and 50μM) were subjected to Rac 
activity assay. Quantification of relative levels of active Rac is shown below. 

(B) 10A.B2 shPar3 or shGFP cells were plated in plastic dishes at low density under the indicated 
conditions. The cell morphology was monitored using light microscopy. 

(C) 10A.B2 cells (shGFP and shPar3) were seeded for transwell invasion assays, with or without 
activation of ErbB2 and incubated for 48 hours. The Rac inhibitor, NSC23766, was added at the 
indicated concentrations at the same time as ErbB2 activation. Invaded cells were quantified 
from five independent experiments and results are presented as fold change in invasion 
compared to shGFP cells in without ErbB2 stimulation. (n=5; * represents p<0.05; ** represents 
p<0.01)  

(D) FRAP analysis was conducted on the E-cadherin-GFP control or shPar3 10A.B2 cells in the 
absence or presence of 50µM NSC23766 compound (n>10). The E-cadherin immobile and 
mobile fractions were calculated and plotted. 

 

5.3   ErbB2 regulates the Par3-Tiam1 complex 

To understand whether the association of Par3 with Tiam1 is regulated by ErbB2, we 

investigated if activation of ErbB2 affects the Par3-Tiam1 interaction. As there are no good 

antibodies against endogenous Tiam1 suitable for immunoprecipitation, we used myc-tagged 

Tiam1-C1199, an N-terminal PEST sequence-truncated Tiam1 that does not produce the growth 

inhibitory effects observed upon expression of full length Tiam1 and allows for selection of 

stably expressing cells (Minard, Kim et al. 2004). Tiam1-C1199 associated with endogenous 

Par3 in 10A.B2 cells in the absence of ErbB2 dimerizer (Figure 5.6, the second lane from left). 

Activation of ErbB2 induced a 50% decrease in Par3-Tiam1 interaction at 45 minutes, 

demonstrating that regulation of Par3-Tiam1 interaction is a downstream target of ErbB2 

activation (Figure 5.6). This Par3-Tiam1 transient dissociation is probably involved in cell 

junction remodeling upon ErbB2 stimulation.  
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5.4   Loss of Par3 disrupts cortical actin in epithelial cells.  

Since Rac activity is known to regulate actin dynamics (Braga 2000; Yamada and Nelson 

2007; Yamazaki, Oikawa et al. 2007), we investigated whether the actin cytoskeleton is affected 

by Par3 loss. To image the actin cytoskeleton structure, fixed cells were labeled with Alexa Fluor 

488-conjugated phalloidin, a toxin from the Amanita phallloides mushroom that specifically 

binds to F-actin. F-actin was organized at cell-cell junctions to form a compact cortical actin belt 

in a confluent layer of shGFP epithelial cells, whereas it was loosely organized around the 

cellular periphery of shPar3 cells (Figure 5.7.A, left). ErbB2 activation induced a modest 

loosening of the cortical actin in shGFP cells and a severe disruption of cortical actin in shPar3 

cells (Figure 5.7.A, right). Loss of Par3 in a normal mouse mammary cell line, Eph4, and a 

human cancer-derived cell line, T47D, induced detectable changes in cortical actin (Figure 

5.7.B,C) demonstrating that the shPar3-induced changes in cortical actin are not specific for 

MCF10A cells. To determine if the relationship between Par3 loss and changes in cortical actin 

organization can be observed in vivo, we analyzed actin organization in mouse mammary tumors 

from the transplantation experiment described in Chapter 3. As phalloidin labeling did not give 

clear signals in IHC, an antibody against β-actin was used in IHC staining. Tumors generated 

from control vector-infected NDL tumor cells had well-organized cortical actin, whereas tumors 

generated from mouse shPar3-expressing cells showed loose cortical actin (Figure 5.7.D). In 

addition, the tumor epithelia in the spontaneous lung metastasis of MMTV-NDL mice had a 

dramatic disruption of cortical actin organization compared to that observed in cells within 

primary tumors from the same mice (Figure 5.7.E). These observations demonstrate that loss of 

Par3 relates to disruption of cortical actin in epithelial cells in culture and in vivo, which might 

contribute to the weakening of E-cadherin junctions. 

In addition, the disruption of cortical actin organization in shPar3 cells can be partially 

restored by inhibition of Rac activation using NSC23766, suggesting that the aberrant Rac 

activation contributes to the observed Par3 loss-induced actin organization defects (Figure 5.8). 
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actin organization was complex with a cortical belt and additional thin actin filaments adjacent to 

the cortical belt, similar to the structures reported in immature cell-cell contacts (Zhang, Betson 

et al. 2005). During the 10 minutes of time-lapse imaging, E-cadherin moved concomitantly with 

F-actin at cell-cell junctions of shPar3 cells in a highly dynamic pattern with oscillating 

protrusions and retractions (Figure 5.9.A, lower box) . Kymograph analysis of Lifeact-TagRFP 

from representative regions in control and shPar3 cells revealed that the average speed of actin 

protrusions at cell-cell junctions in shPar3 cells was 4-5 fold higher compared to that observed in 

control cells  (Figure 5.9.B, C). These observations provide direct evidence that loss of Par3 

promotes dynamic remodeling of F-actin and E-cadherin at cell-cell junctions. Loss of Par3 

mislocalizes the actin nucleator Arp2/3 complex 

In mammalian cells, the Arp2/3 complex attaches the sides and pointed ends of existing 

actin filaments at a fixed angle of 70º and organizes actin filaments into a branched network 

(Mullins, Heuser et al. 1998; Volkmann, Amann et al. 2001). Actin nucleation by the Arp2/3 

complex is essential for formation of lamellipodia and invadopodia in cancer cells (Otsubo, 

Iwaya et al. 2004; Lai, Szczodrak et al. 2008; Nurnberg, Kitzing et al. 2011). The Arp2/3 

complex consists of seven protein subunits, including Arp2, Arp3, ARPC1B/p41-ARC, 

ARPC2/p34-ARC, ARPC3/p21-ARC, ARPC4/p20-ARC and ARPC5/p16-ARC. We 

immunostained for the ARPC2 subunit to represent the subcellular localization of the Arp2/3 

complex as the ARPC2 antibody gave the best staining signal (Welch, DePace et al. 1997). In the 

mouse mammary epithelial Eph4 cells, Par3 loss induces a breakage of ARPC2 staining at cell-

cell junctions (Figure 5.10). Immunohistochemistry (IHC) analysis of mouse tissues yielded 

reproducible signals. In normal mammary glands from FVB mice, ARPC2 was localized at cell-

cell junctions and along the apical actin ring (Figure 5.11.A). Interestingly, tumors (n=2) derived 

from control vector-infected MMTV-NDL tumor cells had ARPC2 at cell-cell junctions, whereas 

tumors (n=2) derived from shPar3 cells displayed diffuse cytosolic ARPC2 distribution in all 

cells analyzed (Figure 5.11.B). We also investigated if changes in ARPC2 were selected for 

during spontaneous lung metastasis observed in the MMTV-NDL mammary tumors. ARPC2 

was localized to cell-cell junctions in the primary tumors of MMTV-NDL mice, while the 

spontaneous lung metastasis (n=2) had mislocalization of ARPC2 from cell-cell junctions in all 

cells analyzed (Figure 5.11.B). Interestingly, endogenous ARPC2 and Par3 co-
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immunoprecipitated with each other. ARPC2 co-immunoprecipitated E-cadherin and Par3 in 

10A.B2 cells (Figure 5.12). Thus, our results demonstrate that Par3 is required for localizing the 

Arp2/3 actin nucleator complex to cell-cell junctions. 
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5.6   Loss of Par3 engages IRSp53-WAVE2 pathway to regulate cell invasion 

Next we investigated if Rac mediated its effect by regulating Arp2/3 complex activity. 

The nucleation activity of Arp2/3 is activated by members of Wiskott-Aldrich syndrome family 

protein including WASp, N-WASp, WAVE and WASH proteins. All the WASP proteins contain 

a VCA domain named for its three sub-elements, the verprolin (V) homology, central (C) 

hydrophobic and acidic (A) regions, by which they strongly stimulate Arp2/3-mediated actin 

nucleation. Among the WASps, WAVE proteins are the only protein family functioning 

downstream of Rac GTPase (Padrick and Rosen 2010). The bridge connecting Rac-GTP to the 

Arp2/3 complex is the insulin receptor tyrosine kinase substrate p53 (IRSp53) (Miki, Yamaguchi 

et al. 2000). The N-terminus of IRSp53 binds to Rac-GTP while the C-terminal SH3 domain 

binds to the SH3-binding site in the large proline-rich domain (PRD) of WAVE2 to form a 

trimolecular complex that promotes Arp2/3-mediated branched actin polymerization in response 

to an increase in Rac-GTP level (Nakagawa, Miki et al. 2003; Yamagishi, Masuda et al. 2004; 

Millard, Bompard et al. 2005) (Figure 5.13.A). IRSp53 and WAVE2 have been shown to bind to 

each other. We found that Par3 associated with IRSp53 and WAVE2 complex (Figure 5.13.B), 

as determined by co-immunoprecipitation analysis. To determine if the IRSp53-WAVE2 

interaction is involved in Par3-mediated regulation of actin dynamics, we stably expressed myc-

tagged IRSp53 full length or a dominant-negative construct lacking the SH3 domain (ΔSH3) that 

cannot couple Rac-GTP to the WAVE2/Arp2/3 complex in 10A.B2 shPar3 cells (Figure 5.13.C). 

Expression of ΔSH3 IRSp53 in shPar3 cells suppressed the ErbB2-induced cell invasion. In 

addition, expression of full length IRSp53 also inhibited invasion (Figure 5.13.D). We did not 

anticipate full length IRSp53 to function as a dominant negative in this context; however it is 

likely due the ability of full length to function as competitive inhibitor for Rac-GTP. We have 

also tested another WASp member, WASp using the dominant negative WASp (WASp-CA), in 

which the peptide of the CA region by itself binds the Arp2/3 complex but lacks the binding sites 

for G-actin, and therefore acts as inhibitor of WASp and N-WASp (Zhang, Wu et al. 2005). 

Expression of WASp-CA did not change cell invasion in shPar3 cells (data not shown), 

suggesting that N-WASp and WASp are not involved in Par3-loss induced cell invasion. Taken 

together, these results identify IRSp53-WAVE2 as an important mediator of Par3 loss-induced 

changes in cytoskeleton and cell invasion. 
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Introduction 

The results from cell lines and MMTV-NDL mice strongly suggest an association between 

loss of Par3 and human breast cancer progression. In this chapter, we investigate the status of 

Par3 in human breast cancers, and whether there is a correlation between dysregulation of Par3 

and breast cancer progression. To address these questions, we have performed four experiments 

to measure Par3 mRNA or protein levels in human breast cancer cells: 

1) Analyze Par3 protein levels in different cell lines derived from human breast cancer. 

2) Compare PARD3 mRNA levels between normal breast tissue and human breast cancer 

using the Oncomine web-based meta-analysis. 

3) Analyze Par3 protein expression by immunohistochemistry in human invasive breast 

cancers.  

4) Compare Par3 protein expression levels between paired primary breast tumors and distant 

metastases.  

 

Results 

6.1   Par3 expression levels in breast cancer cell lines 

We selected a collection of well-studied breast cancer cell lines, including BT474, MDA-

MB-453, T47D, SKBR3 and SUM159PT. The origin, properties and characteristics of each cell 

line are listed in Table 6-1. The Par3 and E-cadherin expression in the non-tumorigenic 

MCF10A and the cancer cell lines was evaluated by immunoblotting. First, we noticed that 

control MCF10A cells and BT474 and T47D cell lines derived from ductal carcinomas retained 

E-cadherin expression. However, E-cadherin levels were decreased in BT474 cells, and 

completely depleted in MDAMB453, SKBR3 and SUM159PT (Figure 6.1, middle panel). It has 

been reported that the E-cadherin gene is deleted in SKBR3 cells (Hajra, Ji et al. 1999) and 

silenced in SKBR3 cells (Hiraguri, Godfrey et al. 1998). Consistent with the E-cadherin levels, 

only BT474 and T47D form compact epithelial islets, but E-cadherin negative cells do not form 

islets. Par3 is expressed in all the cell lines, and does not show obvious correlation with the level 
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of E-cadherin (Figure 6-1). Except in SKBR3 cells, Par3 expression is lower in the cancer cell 

lines compared to non-tumorigenic MCF10A cells (Figure 6.1, top panel). This result suggests 

that Par3 protein levels are altered in breast cancer cells.  

 

 

Table 6-1 Characteristics of the breast cancer cell lines. 

Cell Line 
Gene 

Cluster 
ER PR HER2 TP53 Source 

Tumor 

Type 

Age 

(yrs) 
Ethnicity 

BT474 Lu + [+] + + P.Br IDC 60 W 

MDAMB453 Lu - [-]  -WT PE AC 48 W 

T47D Lu + [+]  ++M PE IDC 54  

SKBR3 Lu - [-] + + PE AC 43 W 

SUM159PT BaB [-] [-]  [-] P.Br AnCa   

Abbreviations: AC, Adenocarcinoma; AnCa, Anaplastic Carcinoma; BaB, Basal B; IDC, Invasive 
Ductal Carcinoma; Lu, Luminal; MC, metaplastic carcinoma; P.Br, primary breast; PE, Pleural 
Effusion; W=Caucasian. 
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grade of the IBCs was determined using the method of Scarff-Bloom-Richardson as modified by 

Elston-Ellis (Elston and Ellis 2002; Elston and Ellis 2002). The grade is obtained through a 

composition sum by assigning score based on the nuclear pleomorphism, a mitotic index, and a 

tubular assessment. The overall grades from 1 to 3 are described as “highly differentiated, 

moderately differentiated, and poorly differentiated”. This histologic grade is strongly associated 

with both breast cancer-specific survival and disease-free survival, and provides a strong 

prognostic value for patients with invasive breast cancer (Rakha, El-Sayed et al. 2008). In this 

system, grade 1, 2 and 3 tumors reoccurred with a median time of 88, 42 and 23 months, 

respectively. It was often found that low and intermediate grade carcinomas often recur as higher 

grade tumors. Thus, this system also reflects individual tumor aggressiveness and predicts tumor 

progression (Cserni 2002). ER and HER2 oncogene expression were evaluated by IHC using 

comprehensively standardized and validated assays (Harvey, Clark et al. 1999; Wolff, Hammond 

et al. 2007; Hammond, Hayes et al. 2010). ER (nuclear) was quantified using the Allred Score 

(range 0-8; positive >2; Figure 6.3A) (Harvey, Clark et al. 1999). HER2 was quantified using the 

Dako HercepTest Score (0-3+; negative = 0/1+; indeterminate = 2+; positive = 3+) (Wolff, 

Hammond et al. 2007). Par3 expression was evaluated by indirect immunofluorescence using 

anti-Par3 antibody. To understand the relationship between Par3 and tumor characteristics, we 

quantified changes in membrane-localized Par3 using the Allred Score [Total Score (TS) range 

0-8]. An Allred score of 3 corresponds to as few as 10% cells with weak membrane signal and an 

Allred score of 7 indicates strong membrane Par3 in more than 66% of cells (Figure 6.3B). The 

statistical significance of the association between mean Par3 expression levels in samples within 

each subgroup (Grade, ER +/- and HER2) was determined utilizing the Student's t test. As shown 

in Table 6-2, Par3 membrane localization was significantly decreased in IBCs associated with 

clinically aggressive prognostic factors, including higher histological grade, negative ER status, 

and positive HER2 status. Thus, decreases in membrane-localized Par3 correlated with higher 

tumor grade and ErbB2-positive status, which are strong indicators of poor clinical prognosis.  
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Table 6-2 Characteristics of human invasive breast cancer samples for Par3 membrane 
expression levels 

 
Characteristics of Human Invasive Breast Cancer Samples For Par3 

Membrane Expression Levels 

Characteristic 
Total 

(N=98) 
Mean membrane Par3 TS§ P value¶ 

Tumor Histological Grade 

Grade 1 36 6.08 ± 1.40  

Grade 2 42 5.83 ± 1.58  

Grade 3 20 4.94 ± 2.14  

Grade 1 vs. Grade 3.  0.0202* 

ER status 

ER-pos 70 5.96 ±1.52  

ER-neg 28 5.21 ± 1.97  

ER-pos vs. ER-neg 0.0478* 

HER2 status 

HER2-neg (0/1+) 86 5.86 ± 1.6  

HER2-pos (2+/3+) 12 4.92 ± 2.11  

HER2-pos (3+) 9 4.33 ± 2.12  

HER2-neg vs. HER2-pos (2+/3+) 0.0734 

HER2-neg vs. HER2-pos (3+) 0.0096** 

 

§ Plus-minus values are mean±SD. 
¶ Two-tailed t test 
Significance level *<0.05, **<0.01 
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6.4   Downregulation of Par3 in human breast cancer metastasis 

As metastatic tumor cells originate from primary tumors and accumulate additional 

genetic alterations, the genetic alterations related to metastasis are enriched in the metastases. To 

address if changes in Par3 expression is related to breast cancer metastasis, we compared the 

Par3 expression level between the primary tumor and metastasis from the same patient. We 

obtained 14 primary breast tumor and metastasis pairs from the St. Louis Breast Tissue Registry 

in collaboration with Dr. Craig Allred. The metastases were derived from various organs 

including lung, liver, brain, skin, lymph node and pleura (Table 6-3). Expression of Par3 was 

analyzed by IHC using indirect immunofluorescence. Expression of membrane-localized Par3 in 

the primary tumor and metastasis from the same patient were analyzed using the Allred score. 

The results demonstrate that eight out of 14 metastases have a decrease in the level of membrane 

Par3 expression (BST>MET) compared to matched primary tumors (Figure 6.4.A). Two out of 

14 metastases show no change in levels of Par3 (BST=MET) (Figure 6.4.B), and four out 14 

metastases show an increase in the levels of Par3 (BST<MET) (Figure 6.4.C) when compared to 

the Par3 levels in matched primary tumors (Table 6-3). Using the binomial test with a null 

assumption that Par3 has the random distribution to increase, decrease or remain unchange in the 

metastasis compared to the primary tumor, the calculation produced a probability of 0.0174 of 

statistical significance only for the BST>MET group, but not for the BST=MET or BST<MET 

groups, suggesting a tendency of downregulation of Par3 in the metastases. These observations 

provide direct evidence to suggest a correlation between a decrease in membrane Par3 

expression and metastasis.   
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Plasmids 

shRNAs 

The shRNA constructs against human and mouse Par3 were obtained from TRC lentiviral 

shRNA library (Open Biosystems, Thermo Scientific). TRC ID numbers of individual clones of 

efficient knockdown effect are listed as below:  

shPar3-TRCN0000118134, from TRC-Hs1.0 (Human), targeting human PAR3 (locus: NM 
019619.3) 3112-3132bp  
sequence:  
5’- CCGGGCCATCGACAAATCTTATGATCTCGAGATCATAAGATTTGTCGATGGCTTT 
TTG-3’  

 
shmPar3-TRCN0000094399, from TRC-Mm1.0 (Mouse), targeting mouse Par3 (locus: 
NM_001013580.3) 3404-3424bp. 
sequence: 
5’- CCGGCCAGTTTATCTCTATCACTTTCTCGAGAAAGTGATAGAGATAAACTGGTTT 
TTG-3’,  

Lentiviral pLKO.3G vector which contains an eGFP marker instead of puromycin 

selectable marker was obtained from Christophe Benoist and Diane Mathis through Addgene 

(Addgene plasmid 14748, http://www.addgene.org/14748/). mshPar3 were amplified using 

oligos containing EcoRI and PacI sites from TRC vector and subcloned into pLKO.3G vector.  

Retroviral microRNA30 based RNA interference vectors targeting expression of Canis 

lupus familiaris Par3 in MDCK cells were designed as follows: 97-nucleotide oligonucleotide 

was synthesized containing a 5' miR30 flanking sequence - a sense strand cPar3 target sequence 

- a common miR30 loop sequence- an antisense strand cPar3 and a common 3' miR30 flanking 

sequence. The oligo sequence for shRNA template strands used was as follows: 

cPar3-C, targeting canis Par3 (locus: XM_535141)1531-1551bp: 

5’- TGCTGTTGACAGTGAGCGACCAAGGGAACTGAATGCAGAGTAGTGAAGCCACAG 
ATGTACTCTGCATTCAGTTCCCTTGGGTGCCTACTGCCTCGGA-3’.  

The sequence was amplified using polymerase chain reaction (PCR) with primers that recognize 
the miR30 flanking sequence containing XhoI and EcoRI restriction enzyme sites.  

5'miR30PCRXhoIF 

5’- CAGAAGGCTCGAGAAGGTATATTGCTGTTGACAGTGAGCG -3’ 
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3'miR30PCREcoRIF 

5’- CTAAAGTAGCCCCTTGAATTCCGAGGCAGTAGGCA -3’ 

The PCR product was cloned into the pMSCV–LTR-hygromycin vector. Preparation of 

virus, infection and selection were performed as previously described (Debnath, Muthuswamy et 

al. 2003). 

Expression vectors 

pCMVLifeAct-TagRFP was purchased from ibidi GmbH and subcloned into XhoI/HpaI 

sites of pMSCV-LTR-blasticidin vector (kindly provided by Yuri Lazebnik, Cold Spring Harbor 

Laboratory, Cold Spring Harbor, NY)..  

Tiam1-PHn-Ex-CC was generated by PCR amplification of pK-Tiam1-PHn-CC-Ex 

(Kindly provided by Ian G. Macara, University of Virginia School of Medicine, Charlottesville, 

VA) using the following primers as an EcoRV/MfeI fragment: 

Forward: CTA GTA GCG ATA TCC ATG GGA AAC GCA 

Reverse: GCA TAC TAC AAT TGC TAT CAC GCG TCT GA 

The PCR fragments were cloned into HpaI/EcoRI sites of pMSCV-PIG-Myc vector (kindly 
provided by Scott Lowe, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).  

 

IRSp53 full length and ΔSH3 mutant was amplified from cDNA clone (Open Biosystems, 

Clone Id: 4125501) with following primers as BamHI/EcoRI fragments 

IRSp53 full length: 

Forward: 5’- ATT CGG ATC CGA TGT CTC TGT CT -3’ 

Reverse: 5’ - TCG AGA ATT CTC ACA CTG TGG ACA -3’ 

IRSp53 ΔSH3: 

Forward: 5’- ATT CGG ATC CGA TGT CTC TGT CT -3’ 

Reverse: 5’- TCG AGA ATT CTC ACG AGC GAG GCA GAG T-3’ 

The PCR fragments were cloned into pMSCV-PIG-Myc vector.  

Preparation of retrovirus infection and selection were performed as previously described 
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(Debnath, Muthuswamy et al. 2003) and can also refer to the Nolan Laboratory website in 

Stanford http://www.stanford.edu/group/nolan/retroviral_systems/retsys.html for the detailed 

protocol.  

pLKO.1-shRNAs and pLKO.3G-shRNA lentivirus production and infection were 

performed using the protocol provided by The RNAi Consortium (Moffat, Grueneberg et al. 

2006) http://www.broadinstitute.org/rnai/public/resources/protocols.  

 

Antibodies and Reagents 

Antibodies were purchased from commercial sources and listed in Supplemental Data. 

Growth factor reduced Matrigel (BD Transduction Laboratories) was used for 3D culture and 

transplantation experiments. Small molecule ligand AP1510 (ARIAD Pharmaceuticals) was used 

to activate the chimeric ErbB2 receptor in 10A.B2 cells as previously described (Muthuswamy, 

Gilman et al. 1999). Recombinant human TGF-β (Abcam) and Rac inhibitor NSC23766 

(Calbiochem) were used as described.  

Antibodies used in this study were Par3 (Upstate Biotechnology), -tubulin (Sigma), E-

cadherin (BD Transduction Labs), GM130 (BD Transduction Labs), Rac1 (BD Transduction 

Labs), phospho-Erk 1/2 (Cell Signaling Technologies), Erk2 (BD Transduction Labs), Laminin 5 

(Millipore Corporation), Myc-tag (Cell Signaling Technologies), Ki67 (Zymed), Her2 clone 3B5 

(Calbiochem), HECD-1 (Calbiochem), p34/ARPC2 (Millipore Corporation) and fluorophore-

conjugated secondary antibodies (Molecular Probes). Alexa 488 labeled Phalloidin (Invitrogen) 

was used to detect F-actin.  

 

Cell Culture 

10A.B2 cells were generated and cultured as previously described (Muthuswamy, Li et al. 

2001). T47D, BT474, SKBR3 and Eph4 cells were cultured according to the protocol provided 

by ATCC. Populations of cells expressing either shGFP or shPar3 were generated by 
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lentiviral/retroviral infection and selected with antibiotics. Three-dimensional (3D) culture of 

10A.B2 cells, inducible ErbB2 activation and indirect immunofluorescence of 3D acini were 

performed as described earlier (Muthuswamy, Gilman et al. 1999; Debnath, Muthuswamy et al. 

2003; Xiang and Muthuswamy 2006). 3D culture of T47D cells, cells were seeded in Matrigel 

using the same embedding technique except replacing the medium with T47D growth medium 

(RPMI1640, 8μg/ml, 10% FBS) in 2500 cells/well.  

 

Quantitative PCR 

Total RNA was isolated under indicated conditions using TRIzol reagent following the 

manufacturer’s protocol (Invitrogen). 1.0 μg of RNA was reverse transcribed with the TaqMan 

kit (Applied Biosystems) to generate cDNA. The resulting cDNA was used for quantitative real-

time PCR using SYBR Green PCR Mix (Applied Biosystems) in triplicate. The data were 

gathered on the Applied Biosystems 7900HT Fast Real-Time PCR system. Fluorescence 

measurements during the extension step of PCR cycles were used to calculate threshold cycle 

values. Fold changes in mRNA abundance were calculated by a comparative threshold cycle 

method (Schmittgen and Livak 2008) using -actin mRNA as an internal control for each sample. 

Results are expressed as fold change in expression compared to shGFP cells. Primer sequences 

used are as follows: 

fibronectin forward:  5’- GAG GGG ACC TGC AGC CAC AA -3’ 
fibronection reverse:  5’- TTC GCA ACC TGC GGG AAA AA-3’ 

human β-actin forward: 5’-TTC AAC ACC CCA GCC ATG-3’ 
human β-actin reverse: 5’-GCC AGT GGT ACG GCC AGA-3’ 

snail forward: 5’-TGC AGG ACT CTA ATC CAA GTT TAC C-3’ 
snail reverse:  5’-GTG GGA TGG CTG CCA GC-3’ 

N-cadherin forward:  5’-GAC GGT TCG CCA TCC AGA C-3’ 
N-cadherin reverse:  5’-TCG ATT GGT TTG ACC ACG G-3’ 

mouse E-cadherin forward:  5’-GCC GGA GAG GCA CCT GGA GA-3’ 
mouse E-cadherin reverse:  5’-GCC GGC CAG TGC ATC CTT CA-3’ 
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Immunoblotting  

Immunoblot analysis was performed as previously outlined (Muthuswamy, Li et al. 2001; 

Debnath, Muthuswamy et al. 2003; Xiang and Muthuswamy 2006). 

 

Immunoprecipitation 

10A.B2 cells were lysed in in TNE buffer (25 mM Hepes, 150 mM NaCl, 0.5 mM EDTA, 

5 mM MgCl2, 1% Triton X-100, 1 mM Na3VO4, 100 μg/mL aprotinin, 2.5 μg/mL leupeptin, and 

1 μg/mL pepstatin). Lysates were collected by scraping the plates and were centrifuged at 

15,000×g for 15 minutes at 4ºC. Protein concentration was measured using the Biorad protein 

assay. 1mg total protein were incubate with indicated antibodies for 4 hours at 4ºC and the 

immune complex was then captured by Protein G Sepharose beads (GE Healthcare Life Science). 

The immunoprecipitated proteins were further analyzed by SDS-PAGE and immunoblotting to 

determine protein interactions (Muthuswamy, Li et al. 2001). 

 

Transwell Invasion Assay 

Invasion assays were performed in transwell filters using 8m pore size, growth factor 

reduced Matrigel invasion chambers (BD Biosciences, Cat# 354483). ShGFP and shPar3 10A.B2 

cells were starved overnight in assay medium (MCF10A medium with 2.0 % horse serum and no 

EGF) before splitting. 1×105 cells in assay medium were added on top of the chamber. AP1510 

was added to both top and bottom chambers to activate ErbB2. For experiments with the Rac 

inhibitor NSC23766, the inhibitor of indicated concentration was added at the indicated 

concentrations to both the top and bottom chamber. For invasion assays using T47D cells, a 

similar protocol was followed except that the cells were starved overnight in the serum-free 

RPMI 1640 medium before seeding. RPMI 1640 + 10.0 % FBS was added to the lower chamber 

during invasion assay. After 24 hours (for T47D cells) or 48 hours (for 10A.B2 cells) the 

chambers were washed once with PBS and fixed with 4.0% PFA. Non-invading cells on the top 

of the filter were removed with a cotton swab and invaded cells on the bottom of the filter were 
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stained with 5.0 mg/ml 4,6-diamidino-2-phenylindole (DAPI) to visualize nuclei. The number of 

invaded cells in five different fields was counted under 20× magnification, and the mean for each 

condition determined. Results are expressed as fold change in invasion compared to shGFP 

without activation of ErbB2. Experiments were repeated a minimum of three times. 

 

Hanging Drop Assay 

Aggregation assays were done as previously described (Redfield, Nieman et al. 1997) 

with minor modifications. Briefly, 10A.B2 cells were trypsinized and resuspended at a density of 

2.5×105 cells/ml in the assay medium, and then passed through a 40m nylon cell strainer. 

ErbB2 dimerizer is added to this single cell suspension as needed. 20l drops of medium, 

containing 5,000 cells/drop, were pipetted onto the inner surface of the lid of a 12 well culture 

plate. The lid was then quickly flipped over and placed on the plate so that the drops were 

hanging from the lid with the cells suspended within them. To prevent evaporation, 2.0 ml 

serum-free culture medium was placed in the well. After 20 hours at 37°C, the lid of the plate 

was inverted and photographed using a ZEISS inverted tissue culture microscope at 20× 

magnification.  

 

Cell Spreading Assay 

The cells were trypsinized, washed twice with chilled PBS to remove all traces of trypsin, 

and resuspended in chilled assay medium.  The cell suspensions were incubated for 40 min at 

37°C in the tissue culture incubator with the cap loose to maintain the pH of the medium. The 

cells (5×104/well in case of 12-well plates) were then directly transferred onto Matrigel-coated 

coverslips in 12-well tissue plates and allowed to adhere at 37°C for 2.0 hours. After incubation, 

unattached cells were removed by washing with PBS. Adherent cells were fixed with 4% PFA. 

Membrane protrusion and spreading were recorded using ZEISS inverted tissue culture 

microscope at 20× magnification. The average surface area per cell was measured using ImageJ 

software. 
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Rac-GTP Pulldown Assay 

Confluent layer of cells were starved with assay medium overnight before ErbB2 

activation stimulation. Assays were performed using the Rac1 activation assay kit (Cell Biolabs) 

according to the manufacturer’s instructions. Briefly, cells were washed with ice-cold PBS and 

lysed with buffer containing 25mM HEPES (pH 7.4), 150mM NaCl, 10% glycerol, 1.0mM 

EDTA, 1.0% NP40, 10mM MgCl2, 1.0mg/ml aprotinin and 1.0mM PMSF for 20 minutes on ice. 

Lysates were centrifuged at 15,000 × g. for 10 minutes. 0.5mg of protein was incubated with 

10μg of PAK-PBD agarose bead slurry for 1.0 hour with gentle agitation. The beads were 

washed three times with lysis buffer. All the procedure was performed at 4.0°C. The resulting 

beads were resuspended in and the pull-down supernatant was analyzed by immunoblotting with 

anti-Rac1 antibody. 

 

Tiam1 Activity Assay 

Assays were performed using the active Rac-GEF assay kit (Cell Biolabs) according to 

the manufacturer’s instructions. Briefly, cells were washed with ice-cold PBS and lysed with 

buffer containing 20mM HEPES (pH 7.5), 150mM NaCl, 1.0% Trition X-100, 5mM MgCl2, 

1.0mg/ml aprotinin and 1.0 mM PMSF for 20 minutes on ice. Lysates were centrifuged at 14,000 

x g at 4 ºC for 10 minutes. 0.5 mg of protein was incubated with 40μg of Rac1 G15A agarose 

bead slurry for 1.0 hour with gentle agitation at 4 ºC. The beads were washed three times with 

ice-cold lysis buffer and boiled with 40μl 2 × SDS-PAGE sample buffer. The resulting pull-

down supernatant was analyzed by immunoblotting with anti-Tiam1 antibody. 

 

Fluorescence recovery after photobleaching (FRAP) analysis 

10A.B2 cells expressing E-cadherin-GFP were seeded in the glass bottom 6-well plate 

(MetTek Corporation) at 5×105 per well density and grown for 72 hours into a confluent 

monolayer and starved with no-phenol red assay medium for 18 hours. FRAP experiments were 



 

124 

performed using spinning disk microscopy (Perkin Elmer spinning disk microscope, Perkin 

Elmer Inc; operated by the Velocity 5.4.1) with an APON 60×, 1.49NA oil immersion lens 

(Olympus) and the cells were maintained at 37ºC in 5.0% CO2 during imaging. Excitation of 

GFP was carried out at a 488nm laser line of an argon laser. Before photobleaching, three images 

were acquired at 5 seconds interval. A selected region (10.0 µm x 10.0 µm) was bleached by a 

5.0 milliseconds single laser pulse (UltraVIEW PK Device) at 80% laser transmission power. 

Recovery images were collected using 20% laser transmission power for 10 minutes at a 

scanning rate of 12 time points per minute. In ErbB2 activation condition, ErbB2 dimerizer was 

added 5 minutes before the first pre-bleaching image acquired. The average intensity was 

determined in the photobleaching region and normalized to the initial intensity before bleaching 

using ImageJ with Stacks-T functions- FRAP profiler plugin.  

 

Raichu-Rac Förster Resonance Energy Transfer (FRET) Assay 

1×106 cells were transiently transfected with 2μg pRaichu-Rac plasmid using Amaxa® 

Cell Line Nucleofector® Kit L (Lonza) with Program X-001. The electroporated cells were 

transferred into a 24-well glass bottom plate (In Vitro Scientific) at 1×105 cell/well density in 

growth medium. 20 hours after transfection, cells were starved in assay medium overnight. Cells 

were imaged on a Zeiss Axiovert 200M wide-field microscope at 63× magnification maintained 

at 37ºC in 5.0% CO2 supplied with no-phenol red assay medium. For dual-emission ratio, we 

used an ET436/20× excitation filter, a T515LP diachronic mirror, an ET520LP emission filter for 

FRET channel, and an ET636/20× excitation filter, a T455LP dichroic mirror and an ET480/40m 

emission filter for CFP channel (Chroma Technology Crop). FRET, CFP and phase contrast 

channels were sequentially collected before add the ErbB2 stimulation and every 5 minutes after 

ErbB2 activated. The FRET channel and CFP channel exposure time was 80 milliseconds when 

the digital gain was set to 24. After background extraction, the ratio image was created with 

ImageJ PixFRET plugin (Feige, Sage et al. 2005).  
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Immunofluorescence Microscopy 

Cells were plated on glass coverslips at (1×105/well in case of 12-well plates) and 

cultured for designated incubation times and cell treatments. Cells were fixed in 4% PFA, 

permeabilized using 0.1% Triton X-100, and blocked with 1% bovine serum albumin in IF wash 

buffer. Cells were incubated with primary antibody overnight at 4°C and then treated with 

fluorophore-conjugated secondary antibody for 1 hour at room temperature and then stained with 

DAPI. The slides were mounted and examined by fluorescence microscopy (Axiovert 200M and 

Apotome imaging, Carl Zeiss). 

 

Tumor Immunohistochemistry (IHC) and Image Analysis 

Paraffin-embedded mouse samples or human tissue slides were deparaffinized in xylene 

twice for five minutes each. Antigen retrieval was performed using a pressure cooker to boil the 

sample in TrilogyTM buffer (Cell Marque) for 15 min. Samples were blocked with 10% goat 

serum in 0.1% Triton X-100:PBS for 1.0 hr. Staining with Par3, E-cadherin, ErbB2, ARPC2 

antibodies in blocking buffer was performed in a humidified chamber for 4 hours at room 

temperature followed by 3x10 minutes wash with IF buffer. Samples were incubated with 

fluorophore-conjugated secondary antibody for 1.0 hours at room temperature in blocking buffer 

and followed by 3×10 minutes wash, and then stained with DAPI. Microscopy was performed on 

Zeiss LSM710 microscope or Aperio Scanscope. Identical microscope parameters were applied 

to paired primary tumors and metastasis. The nonspecific fluorescence of the background, using 

sample only labeled with same fluorophore conjugated secondary antibody, was determined as 

the threshold value.  

In human tumor samples, ER (nuclear) was quantified using the Allred Score (range 0-8; 

positive >2) (Harvey, Clark et al. 1999). HER2 was quantified using the Dako HercepTest Score 

(0-3+; negative = 0/1+; indeterminate = 2+; positive = 3+) (Wolff, Hammond et al. 2007). 

Membrane Par 3 was also quantified using the Allred Score (range 0-8) for each sample. Total 

Score (TS) = Proportion score (range 0-5) + Intensity Score (range 0-3) (Allred, Harvey et al. 

1998). 
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Primary Mammary Tumor Cell Transplantation 

Tumors of 1.5 cm in diameter were excised from metastasis-free MMTV-NDL mice. 

Single primary mammary tumor cells were prepared as described previously (Zhang, Behbod et 

al. 2008). Isolated cells were maintained in DMEM/F12 medium containing 2.0 % BSA, MEGM 

Singlequot (Lonza), 20 ng/ml basic fibroblast growth factor (bFGF) (Sigma-Aldrich), 4.0 g/ml 

heparin (Sigma-Aldrich). The lentivirus used to infect the primary cells were first concentrated 

by ultracentrifuging the lentivirus supernatant collected as previously described at 100,000 × g 

for 1h45min and resuspending the virus pellet to 200μl. The detailed protocol was previously 

described (Welm, Dijkgraaf et al. 2008) and refer to Zena Werb website 

(http://werblab.ucsf.edu/sites/werblab.ucsf.edu/files/protocol%20pdfs/Lentiviral%20Production.

pdf). Isolated cells were infected with concentrated shRNA lentivirus (MOI=5) in the ultra-low 

attachment plates (Corning, Corning, NY). Infected cells were maintained in 37°C in the tissue 

culture incubator for two days. At the day of the transplantation, the cells were dissociated into 

single cells using Dispase II (Roche Applied Science) and resuspended at 2,500 cell/10µl in 

RPMI and 1:1 mixed with Matrigel. Three week old female NOD/SCID mice were anesthetized 

and the number 4 and 9 inguinal mammary fat pads were cleared of endogenous epithelium by 

removing the tissue between the nipple and the lymph node following established procedures 

(Ehmann, Guzman et al. 1987). Then, 2,500 cells in 20µl RPMI:Matrigel were injected into the 

pre-cleared fat pads and the incision was closed with sutures. Mice were palpated weekly for 

tumor onset, starting two weeks after the operation. Mice were dissected 12 weeks after surgery 

when all tumors reached 1.5-2.0 cm in diameter. Or the primary tumors were surgical removed 

six weeks after transplantation to prolong the survival and dissected 20-24 weeks after the initial 

transplantation. All tumors were imaged using stereo fluorescence microscope (Leica) and 

collected for IHC. 
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An association of metastatic cell with decreased cell cohesion was recognized as early as 

1944 by Coman (Coman 1944). However, cell adhesion molecule E-cadherin has been shown to 

have moderate to strong membrane expression in invasive ductal carcinomas, and fail to provide 

prognostic value (Acs, Lawton et al. 2001; Parker, Rampaul et al. 2001). My results from Par3 

unveil an alternative mechanism by which cancer cells decrease cell cohesion without 

suppressing membrane E-cadherin protein levels. In cohesive cells, Par3 was localized to the 

adherens junction and was required to maintain the junction strength. Downregulation of Par3 

decreased cell cohesion by activation of Tiam1 and an increase in levels of Rac-GTP in the 

cytosol, which led to aberrant actin remodeling and inhibition of E-cadherin adherens junction 

maturation. Inhibition of aberrant Rac activation restored E-cadherin junction maturation and 

blockade cell invasion. Par3 was present in a complex with E-cadherin and the Arp2/3. 

Downregulation of Par3 led to mislocalization of the Arp2/3 complex to the cytoplasm both in 

culture and in vivo, demonstrating a role for Par3 as a regulator of actin remodeling (Figure 8.1). 

In conclusion, my results identify the Par3 polarity protein as a metastasis suppressor that 

controls cell-cell cohesion by modulating Rac-GTP and actin dynamics at cell-cell junctions. 

Loss of Par3 allows tumor cells to detach from neighboring cells and further acquire 

invasiveness, which is required for the initiation of metastasis (Figure 1.7). From breast cancer 

therapy point of view, the proteins involved in regulating actin for tuning E-cadherin junction 

dynamics might be metastatic prognostic marker candidates and potential drug targets.  
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Clark et al. 1992). Consistent with this possibility, transgenic mouse models overexpressing 

ErbB2 develop DCIS-like mammary tumors that metastasize infrequently (Ursini-Siegel, Schade 

et al. 2007). On the other hand, ErbB2 overexpression/amplification in breast cancer correlates 

with poor patient outcome (Reis-Filho et al. 2008), suggesting that although ErbB2 by itself is 

not sufficient to drive metastatic disease, it may cooperate with other events to promote 

progression. The nature and the identity of the events that cooperate with ErbB2 to promote 

metastasis are poorly understood.  

Several members of the 14-3-3 protein family have been shown to be involved in ErbB2 

tumor progression. The 14-3-3 protein family comprises a large number of highly conserved, 

small, acidic polypeptides of 28~33 kDa that are found in all eukaryotic species (Hurd, Fan et al. 

2003; Nance 2005). In humans, seven 14-3-3 isoforms have been identified, which are β, γ, ε, η, 

σ, τ (sometimes referred to as θ) and ζ. Most of them are expressed in all tissues except 14-3-3σ, 

whose expression is restricted to epithelial cells. Among them, the 14-3-3σ gene is frequently` 

lost in ErbB2-amplified breast cancer. Loss of 14-3-3σ resulted in a loss of epithelial polarity and 

ΕrbB2 tumor progression (Ling, Zuo et al. 2010) (See Appendix). In contrast, another 14-3-3 

protein, 14-3-3ζ, is co-overexpressed with ErbB2 in DCIS. Overexpression of 14-3-3ζ reduced 

cell adhesion and increased migration by activating the TGF-β/Smad pathway that leads to EMT. 

Breast tumors overexpressing both ErbB2 and 14-3-3ζ showed higher rates of metastatic 

recurrence (Lu, Guo et al. 2009). Par3 has been shown to bind to 14-3-3σ and 14-3-3ζ, which is 

essential for the maintenance of cell polarity and cell junctions (Hurd, Fan et al. 2003; Benzinger, 

Muster et al. 2005; Ling, Zuo et al. 2010). These observations taken together with our results 

described in this thesis suggest that the Par3/14-3-3 signaling module is an important regulator of 

metastasis in ErbB2-overexpressing breast cancers. 

Accumulating evidence has suggested that the EMT process, typically associated with 

normal development, may be a critical process in tumor progression (Thiery, Acloque et al. 

2009). During normal development, epithelial cells lose adhesion and polarity, delaminate, and 

acquire an invasive, mesenchymal phenotype, thus facilitating migration to a site appropriate for 

organ formation (Thiery, Acloque et al. 2009). During neoplasia, a similar process is thought to 

occur at the tumor margins, allowing for cell invasion and eventual metastatic dissemination of 

cancer cells (Thiery 2002; Brabletz, Jung et al. 2005; Guarino, Rubino et al. 2007; Thiery, 
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Acloque et al. 2009). Recent studies using lineage-tracing reporters in the KrasG12D model for 

pancreatic ductal adenocarcinoma (PDAC) demonstrate a role for EMT during the development 

of metastasis. Even the pancreatic intraepithelial neoplasms (PanINs), the most common 

premalignant precursors for PDAC, harbor the cells that are predetermined to metastasize and 

migrate away from the pre-neoplasm into the surrounding tissue, as well as present EMT features 

such as loss of E-cadherin, upregulation of ZEB1, and elongated cell shape (Rhim, Mirek et al. 

2012). However, our results from this study demonstrate that acquisition of metastatic behavior 

in Par3-loss cells was not accompanied by a gain of overt mesenchymal characteristics. The 

difference between KRasG12D-induced tumors in pancreas and ErbB2-induced tumors in breast 

suggests a tissue and oncogene-context specific role for EMT during metastasis. It also raises the 

possibility that tumors are unique from each other in the way they metastasize and the underlying 

mechanisms.  

During normal development and cancer progression, many processes involve only 

transient loss of epithelial polarity without full acquisition of mesenchymal characteristics, 

referred to as partial-EMT. Among 18 human or mouse cell lines tested in culture, TGF-β, a 

strong EMT inducer, can only induce two cell lines (NMuMG and MCT cells) to undergo a 

complete EMT, accomplishing both morphological change and loss of E-cadherin (Brown, 

Aakre et al. 2004) . Some cells including Colo357, Panc-1 and HaCaT did not change 

morphology in response to TGF-β. Some cells lines such as HEK an HMEC-1012 displayed 

spindle-shape morphology but still retained junctional E-cadherin (Brown, Aakre et al. 2004), 

suggesting that EMT is a multistep process and requires complex regulation. The EMT 

transcription factors TWIST1 and TWIST2 are both important regulators of embryogenesis. Both 

TWIST1 and TWIST2 mRNA were overexpressed in MMTV-ErbB2-derived primary mammary 

tumors in mouse and a variety of human cancer-derived cell lines. Cells expressing TWIST1 or 

TWIST2 alone only induced partial-EMT with an incomplete decrease of E-cadherin and a 

modest increase of the mesenchymal intermediate filament vimentin. In contrast, expression of 

both TWIST1 (or TWIST2) and oncogenic H-RasV12 (or ErbB2) triggered a complete loss of E-

cadherin and an increase of vimentin, resulting in an acquisition of invasive properties and 

increasing the risk of metastatic dissemination (Ansieau, Bastid et al. 2008). In our study, it is 

also possible that shPar3 cells underwent a partial-EMT. As there are no specific markers to 
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define partial-EMT, we cannot rule out the possibility for partial-EMT during metastasis of 

shPar3 cells in culture and in vivo. Nevertheless, our study suggests that tumor epithelial cells 

can acquire metastatic potential in the absence of an overt mesenchymal phenotype, which adds 

an additional perspective to our understanding of cancer metastasis.  

Tumor cell dyscohesion is known to correlate with metastatic disease in breast cancers 

and melanoma (Yu, Cajulis et al. 1998; Roxanis and Chow 2010). Our data suggest that loss of 

Par3 induces a constitutively high Rac-GTP level that promotes aberrant actin remodeling at 

cell-cell junctions and compromises cell-cell cohesion. We speculate that unregulated activation 

of the Arp2/3 complex as a result of deregulation of Par3 or other actin modulators may promote 

aberrant actin remodeling and compromise cell-cell cohesion to induce metastatic behavior of 

epithelial cells. Consistent with this possibility, dysregulation of proteins that modulate actin 

nucleation such as Arp2/3 and its upstream activators is frequently observed in multiple cancers 

and strongly correlates with cell invasion (Condeelis, Singer et al. 2005; Nurnberg, Kitzing et al. 

2011). For example, coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast 

cancers (Iwaya, Norio et al. 2007). Elevated expression of both Cdc42 and Arp2/3 have been 

observed in invasive cells, and enhances N-WASp-dependent Arp2/3 activity, thereby leading to 

increased invadopodia dynamics and cell invasion (Mizutani, Miki et al. 2002; Yamaguchi, 

Lorenz et al. 2005). Loss of Arp2/3 inhibitors may also promote aggressive cancers. Consistent 

with this possibility, the genomic region containing α-catenin, an inhibitor of Arp2/3 (Drees, 

Pokutta et al. 2005), was deleted in three out of three metastases but retained in matched primary 

basal breast cancers (Ding, Ellis et al. 2010). It is possible that loss of α-catenin in cancer cells 

can lead to sustained Arp2/3 activity, which can inhibit cell cohesion and promote metastatic 

behavior (Benjamin and Nelson 2008). Therefore, Arp2/3 and its regulators are implicated in 

cancer metastasis. Understanding the mechanisms of actin regulation during tumor progression 

will provide us new insights into tumor cell behavior in vivo, which may result in new strategies 

for treatment of metastatic diseases. 

Metastatic carcinomas are known to have significant loss of polarity, disordered 

differentiation and loss of lineage-specific markers. Although these changes can be highly 

pleomorphic, cells within the primary tumor as well as cells that migrate away from the primary 

tumor tend to retain significant epithelial characteristics such as expression of epithelial keratins, 
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mucins and E-cadherin (Thompson, Newgreen et al. 2005). Furthermore, the tumors growing at 

the sites of metastasis tend to retain epithelial characteristics (Thompson, Newgreen et al. 2005). 

It is thought that the tumor epithelium undergoes EMT during invasion and regains its epithelial 

state at the metastatic site by undergoing a MET (Thiery, Acloque et al. 2009). Our observations 

identify regulation of E-cadherin junction maturation, changes in cortical actin organization and 

cell-cell cohesion as an alternative avenue for tumor epithelial cells to metastasize. Deeper and 

broader understanding of the mechanisms by which epithelia deregulate cell-cell cohesion and 

acquire metastatic-epithelial properties will help to search for novel predictive biomarkers of 

tumors with metastatic potential and to delineate novel strategies to prevent metastasis.  

 

Future Directions 

Our study of the role of Par3 polarity protein in tumor progression opens more exciting 

questions. The obvious questions include: Does loss of Par3 occur in the primary breast tumor 

prior to metastasis or during tumor metastasis? How can cells with low Par3 levels be identified? 

How are Par3 levels regulated and what drives cells to dysregulate Par3? How does Par3 regulate 

the actin cytoskeleton? Moreover, is Par3 involved in regulating metastasis of other tumor types 

in addition to HER2-positive ductal breast carcinomas?  

 

8.1   Intratumor heterogeneity 

Breast cancer is a heterogeneous disease. Between tumors, there are numerous 

morphological and molecular variations, which provide the base for tumor classification, disease 

prognosis and design of individualized therapies. With the latest development of the techniques 

to widely study small populations of cells or even single cell genome, evidence is emerging that 

cancer cells within human tumors frequently display heterogeneity of various traits related to 

tumorigenesis, drug resistance, angiogenic and metastatic potential (Polyak, Shipitsin et al. 2009). 

The recent work in renal carcinomas shows the primary tumor has extensive spatial tumor 

heterogeneity of branching evolutional relationship. The tumor cells in the metastasis site 
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resemble some subclones in the primary tumor but accumulating additional genetic alterations 

(Gerlinger, Rowan et al. 2012). As we have observed the differences of Par3 levels between 

primary and metastasis sites, the question arises as to whether loss of Par3 occurs in the primary 

site or during the metastasis dissemination? To address this question, we can collect circulating 

tumor cells from human patients or mice, and examine Par3 expression in them. As we have only 

compared the protein levels of Par3 in human breast cancer samples in our study, it is still 

unclear whether Par3 is dysregulated at the genomic level or the post-transcriptional level and 

how the dysregulation occurs. In Gerlinger’s work, a histone H3K36 methyltransferase SETD2 

was found to be commonly lost in the metastases and in the precursor region of the primary 

tumor, but not in the other parts of primary tumor (Gerlinger, Rowan et al. 2012), suggesting that 

the chromatin remodeling is also changed during tumor progression. Therefore, it could also be 

important to take the epigenetic mechanism of gene silencing into consideration. Dysregulation 

of other polarity proteins like Scribble, or Dlg1 cooperates with oncogenes to induce invasive 

behavior (Chatterjee, Seifried et al. 2012). Further investigations into other polarity proteins will 

help to understand the bigger picture of dysregulation of cell polarity mechanisms during tumor 

progression.  

 

8.2   Phosphorylation as a biochemical mechanism for regulating Par3 function 

There is emerging evidence for protein phosphorylation as a key mechanism by which 

polarity proteins are regulated. It has been shown that phosphorylation of Par3 by aPKC at 

serines 827 and 114 regulates the interaction of Par3-aPKC and 14-3-3ζ (Hirose, Izumi et al. 

2002; Hurd, Fan et al. 2003). EGF-induced tyrosine phosphorylation of Par3 (Tyr 1127) via c-

Src and c-Yes reduces the association of Par3 with LIM kinase 2 and regulates tight junction 

assembly (Wang, Du et al. 2006). Drosophila Aurora A kinase binds and phosphorylates Par3 at 

Ser 962, which is required for Par3 to establish neuron polarity (Khazaei and Püschel 2009). 

Rho-kinase/ROCK/ROK, an effector of RhoA, phosphorylates Par3 at Thr833 and disrupts its 

interaction with aPKC and Par6 at the leading edge of migrating cells (Nakayama, Goto et al. 

2008). In 10A.B2 cells, I found that Par3 was phosphorylated at both tyrosine and serine upon 

ErbB2 activation (Figure 8.2). It is not clear whether this Par3 phosphorylation is involved in 
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actin cytoskeleton regulation and maintaining the junction strength during ErbB2 activation. 

Future work can be carried out to identify the phosphorylation sites and investigate the role of 

Par3 phosphorylation in cell-cell junction regulation and tumor progression. A finer 

understanding of the biochemical regulation of Par3 might provide a potential therapeutic 

approach.  

 

8.3   Par3 mislocalization 

While examining Par3 protein levels in human breast cancer samples, we also observed 

that Par3 was mislocalized to the cytoplasm in a small portion of samples (Figure 8.3). In these 

tumor cells, although the total Par3 expression level was high, the E-cadherin junction was 

severely disrupted. Correct localization of polarity proteins has been shown as an important 

requirement for their functions. For instance, junctional localization of Scrib is crucial for its 

protein function. A point mutation in the LRR domain of Scrib can mislocalize it from cell-cell 

junctions, leading to defects in cell polarization. In breast cancer, more than half of DCIS has 

mislocalization of Scribble protein, suggesting the importance of correct localization of Scrib for 

normal tissue organization (Zhan, Rosenberg et al. 2008). Likewise, it is possible that 

mislocalization of Par3 impairs its function and is implicated in the disease. It will be important 

to use available cancer genome data and look for mutations in Par3 and other polarity proteins 

that can potentially cause protein mislocalization and further characterize the effects of these 

mutations. As described in Chapter 2, sPar3, a splicing variant of Par3, shows cytoplasmic 

localization in mature epithelial cells, differing from full length Par3. Studies also need to be 

focused on gaining knowledge of the splicing machinery in regulating Par3 and cell polarity. 

 

8.4   Cooperation with other oncogenic alterations 

In this study, we mainly focused on the role of Par3 in ErbB2-induced breast cancer. 

Although the induction of invasive behavior in shPar3 cells requires ErbB2 activation, loss of 

Par3 alone is already sufficient to alter the actin dynamics and weaken the cell-cell junctions. In 
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addition, pioneer work done in Drosophila shows a synergetic induction of metastatic behavior 

between oncogenic RasV12 and inactivation of Par3 (Bazooka) (Pagliarini and Xu 2003). Taken 

together, this evidence suggests that Par3 may play a role in tumor progression mediated by other 

oncogenes, and is not limited to breast tissue. Additional work will be required to define the role 

of Par3 polarity protein in tumors of different tissue type and oncogenic background.   

 

8.5   Biomarkers for tumor cell cohesion 

Here our results uncovered a new mechanism employed by tumor cells to break cell-cell 

cohesion and initiate metastasis. More significantly, we found ARPC2 as a marker to identify 

those “epithelial-like” cells with weakened cell-cell cohesion and metastable potential. This 

raises the possibility that a new class of molecules including the actin modulators can be 

employed as biomarkers for pre-metastatic tumor cells with decreased cohesion. Clinically, this 

will pose challenges on the current diagnostic procedure including the biopsy sampling issue, 

choosing the biomarkers that can represent the metastatic capability, application of new 

techniques to measure cell cohesion mechanically, and development of new IHC scoring system 

to include protein sublocalization as a parameter. As technology evolves, more analyses will give 

way to methods aimed at acquiring cell morphological information at the individual cell level, 

which will shed light into the capture of early metastatic cells. 
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Antibiotic-inducible ErbB2 system 

While chimeric ErbB2 inducible system (Muthuswamy, Li et al. 2001) resolve the 

question of the specificity of ErbB2-mediated signaling during tumor transformation and 

disruption of cell polarity in breast cancer, this system has two limitations. First, the ErbB2 

dimerizer AP1510 has not been tested in animal, therefore this inducible system cannot be 

further used to generate ErbB2-inducible transgenic mouse. Second, this receptor has its HER2 

extracellular domain replaced by p75NGFR extracellular domain, and therefore cannot be 

recognized by trastuzumab, the HER2 targeting drug which known to disrupt HER2 mediated 

signaling by binding to the extracellular domain of HER2. Thus this chimeric receptor system 

cannot be used in studying the drug resistance and cancer recurrence. To solve these two 

problems, I developed a new inducible ErbB2 construct which contains a wild type HER2 

containing its original extracellular domain and can be activated by an antibiotic drug.  

To achieve the dimerizer controlled activation of ErbB2, I adopted the coumermycin-

GyrB dimerization strategy. Antibiotic coumermycin A1 (Figure 9.1)  produced from 

Streptomyces binds to bacterial DNA gyrase B subunit (GyrB) with a stoichiometry of 1:2, thus 

act as a natural dimerizer. By fusing ErbB2 with GyrB, the receptor can be homo-dimerized and 

activated by coumermycin in a nanomolar concentration. Coumermycin has several advantages. 

First, this antibiotic drug targets prokaryotic enzyme, but no high-affinity endogenous binding 

targets exist in normal eukaryotic cells (Miller, Liu et al. 1981). Extensive pharmacological tests 

of coumermycin have been done both in rodents and dogs. At concentrations that exhibit 

significant antibacterial activity, coumermycin has no overt toxicity (Godfrey and Price 1972). 

Therefore it can be safely applied in mouse experiment. Second, coumermycin exhibits good 

pharmacokinetic properties, with a reported serum half-life in mice of 5.5 hours (Farrar, Olson et 

al. 2000). Last but not least, coumermycin is commercially available from Sigma-Aldrich Co. 

LLC. This strategy was previously used to dimerize Raf and study its activation of MAPK 

signaling (Farrar, Alberol et al. 1996).  

First, I constructed the HER2-2×GyrB expression vector containing a full length HER2 

followed by two copies of GyrB (1-220aa) and hemagglutinin (HA) tag following the procedure 

as shown in the flow chart (Figure 9.2).  
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The first GyrB (2-220aa) was amplified from GyrB cDNA using the following primers: 

GyrB XhoI forward:  5’- ATCGCTCGAGTCTAGATCGAATTCTTATGA -3’ 

GyrB SpeI reverse: 5’- ATTAACTAGTGGATCCGCCTTCATAGTGGAAGT -3’ 

The PCR fragment was cloned into SpeI sites of pBluescript KS+ vector (pKS-GyrB1). 

The second GyrB (2-220aa) was amplified using the following primers: 

GyrB forward:   

5’-AAGCGTCGACGAATTCTCTAGAAGCAATTCTTATGACTCCTCCA-3’ 

GyrB-HA reverse:  

5’-AACGCTCGAGTACGTATCATTAAGCGTAATCTGGAACATCGTATGGGTAGCCTT 

CAAGTGGAAGT -3’ 

The PCR fragment containing HA-tag and stop codon was cloned into XbaI/SnaBI site of 

pcDNA3.1 vector (pcDNA-GyrB2-HA). 

The GyrB2-HA in pcDNA3 vector was released using XbaI/XhoI and cloned into SpeI/XhoI 

sites of pKS-GyrB1 to generate pKS-2×GyrB vector. 

A SalI site was created at the 3’ flanking region of HER2 in a pBabe vector using the primers 

(pBabe-HER2-SalI): 

HER2 SalI forward;  5’-GGTCTGGACGTGCCAGTGGTCGACCAGAAACTCATCTCTG -3’ 

HER2 SalI reverse:  5’- CAGAGATGAGTTTCTGGTCGACCACTGGCACGTCCAGACC -3’ 

  

2×GyrB-HA was released from pKS-2×GyrB using XhoI and cloned into SalI site of pBabe-

HER2-SalI vector. The construct containing a insert of correct direction was selected and 

verified by sequencing. 

In order to select infected cells and get high expression level, the gene were constructed into 

pMSCV-PIG, a retrovirual expression vector containing puromycin resistant gene for antibiotic 

selection and a GFP marker. HER2-2×GyrB was amplified by PCR using the following primers 

and cloned into XhoI site of pMSCV-PIG: 

HER2-2G forward:  5’- ACATCTCGAGATGGAGCTGGCGGCCTTG -3’ 
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HER2-2G reverse:  5’- ATTCCTCGAGTACGTATCATTAAGCGTAATC -3’ 

The final expression clone was selected and verified by sequencing the entire gene.  

Retrovirus expressing HER2-2×GyrB was produced using the final construct. A 

MCF10A cell line stably expressing HER2-2×GyrB, named as 10A.G2, was generated by 

infecting parental MCF10A cells with the virus and followed by puromycin selection. To test the 

expression of HER2-2×GyrB and the activity of the receptor in response to coumermycin, 

10A.G2 cells were stimulated with two different doses of coumermycin for half hour and 

analyzed for tyrosine phosphorylation level of exogenous HER2-GyrB (Figure 9.3). The fusion 

protein pulled down by anti-HA antibody was recognized by ErbB2 antibody, demonstrating the 

expression of the correct fusion protein. The receptor showed most phosphorylation level upon 

10nM of coumermycin stimulation, suggesting that HER2-GyrB can be dimerized and activated 

by coumermycin. 

To determine whether this fusion protein would have the same activity as the ErbB2-

FKBP chimeric protein which was previously used, 10A.G2 cells were tested in 3D culture 

system to see whether the cells could form multi-acinar structure upon coumermycin stimulation. 

Using immunofluorescence staining, it showed that the GFP positive cells expressed exogenous 

HA-tagged ErbB2 (Figure 9.4.A). The acini composed by the GFP and HA positive cells 

demonstrated multi-acini structures after treated with coumermycin at the optimized 

concentration, whereas formed normal single acini without stimulation. The GFP negative cells 

did not respond to the coumermycin as expected (Figure 9.4.B). This inducible ErbB2 construct 

requires more validation in vivo and in vitro and can be further used for generating inducible-

ErbB2 transgenic mouse.  
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In HER2+ breast cancer, the elevated levels of ErbB2 are due to genomic amplification 

of the ErbB2 proto-oncogene. To mimic the events involved in ErbB2-induced mammary tumor 

progression, the ErbB2 knock-in (ErbB2KI) transgenic mouse model was established by 

expressing a Cre-inducible activated erbB2 under the transcriptional control of the endogenous 

erbB2 promoter (Andrechek, Hardy et al. 2000). Strikingly, the mammary tumor generated from 

these mice all bear amplified copies of the activated erbB2 (Andrechek, Hardy et al. 2000) and 

further correlated with selective genomic amplification of the activated erbB2 allele (Montagna, 

Andrechek et al. 2002; Hodgson, Malek et al. 2005). In addition to erbB2 amplification, deletion 

of chromosome 4 was frequently observed in ErbB2KI tumors (Hodgson, Malek et al. 2005). 14-

3-3σ, a 14-3-3 protein family member, was among the deleted genes. As a putative tumor 

suppressor which can be upregulated by p53 in response to DNA damage, the 14-3-3σ gene 

product is involved in cell-cycle checkpoint control and blocks DNA synthesis by inhibiting Akt 

pathway (Yang, Zhao et al. 2006). These evidences suggest that ErbB2 induced tumors may 

further cooperate with 14-3-3σ ablation to promote tumor progression.  

In the initial experiment, overexpressing 14-3-3σ in TM15 cells, an established breast 

cancer cell line derived from mammary tumors of ErbB2 KI, decreased cell motility in Boyden 

chamber and wound healing assay, suggesting restoration of 14-3-3σ significantly impairs 

ErbB2-induced breast cancer metastasis. Knockdown 14-3-3σ in MCF-10A and MDCK cells by 

siRNA resulted in cells forming solid structure that lacked a discernible lumen, suggesting that 

down-regulation of 14-3-3σ results in the loss of epithelial polarity (Lu, Guo et al. 2009).  

In order to verify the effect of 14-3-3σ in the regulation of epithelial polarity in vivo, a 

mouse model have 14-3-3σ deleted in the luminal epithelial compartment (MMTV-Cre/14-3-

3σF/F) was established. Histological examination of virgin mammary glands revealed that the 

mammary ducts derived from 14-3-3σ deficient mice had multiple layers of CK8+ luminal 

epithelial cells, in contrast to a single layer of luminal cells in the wild type mice. To investigate 

whether the multilayer epithelial phenotype in the 14-3-3σ-deficient gland is related to a loss of 

epithelial polarity, the primary mammary gland epithelial cells from control and 14-3-3σ-

deficient mice were isolated and grown on 0.4μm porous membrane transwell for four days till 

they fully reached confluence. The cells were stained for ZO-1 and E-cadherin to analyze the 

apical-basal polarity in the cells. In contrast to the control cells, 14-3-3σ-deficient epithelial cells 
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displayed disrupted cell junctions at apical and basal layers (Figure 9.5.A). Quantification of 

cells with placement of ZO-1 at apical layer and E-cadherin at basal layer as polarized cell 

revealed that the percentage of polarized cell were dramatically reduced in 14-3-3σ-deficient 

cells compared with the wild-type controls (Figure 9.5.B), indicating that 14-3-3-σ is required for 

correct cell polarity. Furthermore, Par3 could be detected to readily in physical complex with 14-

3-3σ protein. 14-3-3σ MDCK cells showed lower Par3 at the cytoplasm membrane (Lu, Guo et 

al. 2009). Together, these data suggest that Par3 is involved in 14-3-3σ regulation of epithelial 

polarity. These observations taken together with the results of Par3 described in this thesis 

suggest the implication of Par3/14-3-3σ in metastasis of ErbB2-overexpressing breast cancer. 
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Grb2-associated binding protein 1 (GAB1) is a pleckstrin homology (PH) domain-

containing docking protein that is believed to function downstream of receptors for growth 

factors and cytokines. The Gab1 belongs to the Gab family proteins which lack enzymatic 

activity, but become phosphorylated on tyrosine residue upon activation by external stimuli, 

providing binding sites for multiple proteins and involving in signal transduction (Holgado-

Madruga, Emlet et al. 1996). For example, Gab1 is the major downstream of the Met receptor in 

epithelial cells (Weidner, Di Cesare et al. 1996). Gab1 is localized to cell-cell junctions via PH 

domain in MDCK cells. Gab1 is recruited to Met by HGF stimulation, coupled with the p85 

subunit of PI3-kinase and responsible for Met-dependent PI3K activity, which leads to cell 

scattering (Maroun, Holgado-Madruga et al. 1999; Lock, Maroun et al. 2002). The Gab1-

dependent recruitment of SHP-2 is required for sustained MAPK activity and HGF-induced 

epithelial morphogenesis (Maroun, Naujokas et al. 2000). Gab1 function is also co-opted in 

cancers. ErbB2-induced cell transformation requires Gab1mediated ERK activation (Yamasaki, 

Nishida et al. 2003). Gab1 is required for stimulating tumor growth in Met overexpressing DLD-

1 colon carcinomas cells (Seiden-Long, Navab et al. 2008).  

In MDCK cells, Gab1 was found to associate with Par1b through a region between amino 

acid 152-250. Deletion of this region (Gab1Δ152-250) markedly reduced Gab1-Par1b interaction. 

In addition to Par1b, Gab1 also bond to Par3, in turn interacted with aPKC. The region for Par3 

binding lies between amino acid 301-400. However, when cells co-expressed Par1b and Par3, 

less Par3 co-immunoprecipitate with Gab1, suggesting Par1b interfere with the interaction of 

Gab1 and Par3. Par1 has been reported to phosphorylate Par3 and restrict Par3 to tight junction 

(Benton and Johnston 2003). To test whether Par1b affects the Gab1 interacting with Par3 

depended on Par3 phosphorylation, a phosphorylation-resistant mutant Par3 were tested and 

found its interaction with Gab1 was unaffected by Par1b, indicating that Par1b disrupts 

Gab1/Par3 interaction by phosphorylating Par3. In addition, Par1b kinase activity was enhanced 

through Gab1 binding.  

The involvement of Par proteins prompted us to test whether Gab1 is involved in 

regulation of epithelial polarity. Previous studies showed that Par1 depletion results in shortening 

of the lateral membrane. Because Gab1 and Par1 form a complex and Gab1 positively regulates 

Par1 kinase activity, I assessed the effect of Gab1 on apical-basal polarity. Control and GAB1-
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KD MDCK cells were polarized on the porous filters, then immunostained for ZO-1, E-cadherin 

and gp135, an apical surface glycoprotein. We found that the lateral membrane (as revealed by 

E-cadherin) was shortened in GAB1-KD cells compared to the control cells (Figure 9.6). Gab1-

depletion also increased the thickness of TJs without affecting the overall cell polarity, as 

determined by even staining of gp135 on the apical surface.  

The Gab1-depleted cells then were reconstituted with wild type Gab1 or its Par1b- or 

Par3-binding deficient mutants and analyzed for the polarity. As Gab1 proteins were 

substantially overexpressed in the reconstituted cells, overexpression of WT Gab1 resulted in a 

severe loss of polarity, where ZO-1 diffused to the basolateral domain, disrupted apical surface 

shown by gp135 staining and abolished epithelial cobblestone morphology (Figure 9.7.A). 

Quantification of cell polarity by counting the cells with correct placement of ZO-1 at apical 

layer and E-cadherin at basal layer as polarized cell revealed that 80% of the Gab1-

overexpressing cells were non-polarized (Figure 9.7.B). By contrast, ZO-1 and E-cadherin 

remained well-segregated in the cells expressing Gab1 mutants lacking Par1b- or Par3-binding 

domains (Figure 9.7.A). Cell polarity were only partially lost in these cells. Thus, Gab1 

overexpression disrupts apical-basal polarity in a Par1b- and Par3-dependent manner. Further 

experiments to analyzed TJ formation by measuring trans-epithelial electrical resistance (TER) 

in calcium switch experiments shows that Gab1-KD cells attained a higher TER than control 

cells, whereas Gab1-overexpressing cells decrease TER, suggesting TJ formation is regulated by 

Gab1.In conclusion, these results identify Gab1 as a negative polarity that function as a scaffold 

for modulating Par protein complex on the lateral membrane in epithelial cells. 
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