
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



The Spectrum of Superconformal

Theories

A Dissertation Presented

by

Wenbin Yan

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Physics

Stony Brook University

August 2012



Stony Brook University

The Graduate School

Wenbin Yan

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Leonardo Rastelli – Dissertation Advisor
Professor, C.N. Yang Institute for Theoretical Physics

Peter van Nieuwenhuizen – Chairperson of Defense
Professor, C.N. Yang Institute for Theoretical Physics

Robert McCarthy
Professor, Department of Physics and Astronomy

Martin Roček
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Abstract of the Dissertation

The Spectrum of Superconformal Theories

by

Wenbin Yan

Doctor of Philosophy

in

Physics

Stony Brook University

2012

The spectrum is one of the basic information of any quantum field
theory. In general, it is difficult to obtain the full quantum spec-
trum of QFT. However, in the case of four dimensional supercon-
formal theories, certain information of the quantum spectrum can
be extracted exactly. In such theories one can compute exactly
certain observables containing spectral information with the help
of localization technique.

One such observable is the superconformal index, which is a par-
tition function of the 4d theory on S3 × S1, twisted by various
chemical potentials. This index counts the states of the 4d theory
belonging to short multiplets, up to equivalent relations that set
to to zero all sequences of short multiplets that may in principle
recombine into long ones. By construction, the index is invariant
under continuous deformations of the theory. The superconformal
index is studied for the class ofN = 2 4d superconformal field theo-
ries introduced by Gaiotto. These theories are defined by compact-
ifying the (2, 0) 6d theory on a Riemann surface with punctures.
The index of the 4d theory associated to an n-punctured Riemann
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surface can be interpreted as the n-point correlation function of
a 2d topological QFT living on the surface, which can also be i-
dentified as a certain deformation of two-dimensional Yang-Mills
theory. With the help of different symmetric polynomials, even ex-
plicit formulae are conjectured for all A-type quivers of such class
of theories, which in general do not have Lagrangian description.
Besides theN = 2 theories, the superconformal index of theN = 1
Y p,q quiver gauge theories is also evaluated using Römeslberger’s
prescription. For the conifold quiver Y 1,0 the result agrees exact-
ly at large N with a previous calculation in the dual AdS5 × T 1,1

supergravity.

The superconformal index of a 4d gauge theory is computed by
a matrix integral arising from localization of the supersymmetric
path integral on S3 × S1 to the saddle point. As the radius of the
circle goes to zero, it is natural to expect that the 4d path inte-
gral becomes the partition function of dimensionally reduced gauge
theory on S3. We show that this is indeed the case and recover the
matrix integral of Kapustin, Willett and Yaakov from the matrix
integral that computes the superconformal index. Remarkably, the
superconformal index of the “parent” 4d theory can be thought of
as the q-deformation of the 3d partition function.
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Chapter 1

Introduction

The spectrum is always the fundamental information one wants to understand
first when studying any quantum theory, of which the most classic example
might be Bohr’s computation of hydrogen levels. Nevertheless, it is always
difficult to obtain the exact spectrum of quantum theories beyond certain
simplest cases. For a long time, perturbation theory is the only way to tackle
this kind of problems. Although bosonic symmetries can simplify the study of
any dynamical system, they are still not constraining enough to prevent quan-
tum corrections from rapidly becoming intractable with increasing loop order.
However, supersymmetry is able to help keep the quantum corrections under
control, thus becomes a powerful tool for extracting exact information about
quantum field theories. In recent years, using methods based on localization,
several exact quantities in supersymmetric gauge theories have been comput-
ed. This thesis is devoted to one of such observables - the superconformal
index.

Superconformal algebras that have R-charges on the right hand side con-
tain special BPS multiplets, which occur only at certain values of energies
or conformal dimensions fixed by their charges and have few states than the
generic multiplets. An infinitesimal change in the energy (or conformal dimen-
sion) of a BPS multiplet turns it into a generic multiplet with finite increase
of the number of states. Thus the BPS states are guaranteed to be protected
excluding the ones which may combine into a generic representation. The su-
perconformal index [2] is constructed to receive contributions only from those
protected states of a superconformal field theory (SCFT). It is a weighted
sum over the states of the theory, which by construction evaluates to zero on
a generic (long) multiplet. It follows that the index is invariant under ex-
actly marginal deformations, since it is not affected by the recombinations of
short multiplets into long ones (or viceversa) that may occur as parameters
are varied. For SCFTs admitting a weakly-coupled limit, the index can then
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be evaluated exactly in free-field theory by a straightforward counting proce-
dure, and takes the form of a matrix integral. However, the superconformal
index does not limit itself into SCFTs admitting a weakly-coupled limit only.
Some strongly coupled SCFTs may be related to other weakly coupled ones
by dualities, thus the indices of the former can be computed by the indices
of the later. With the help of suitable dualities and mathematical identities,
we can even obtain the superconformal indices of theories without Lagrangian
description. The results definitely improve our knowledge on the (protected)
spectrum of such theories.

For example, there is a very general web of duality connections relating
N = 2 4d superconformal field theories, the vast majority of which do not
have a weakly-coupled regime nor a conventional Lagrangian description. This
fact, which may have been suspected since the early days of string dualities,
has taken center stage after the more explicit construction of the N = 2
superconformal theories of “class S” [3, 4], most of which are not Lagrangian.1

Class S theories arise by compactification of the six-dimensional (2, 0) theory
on a punctured Riemann surface C. There is a growing dictionary relating
four-dimensional quantities with quantities associated to the surface C. A
basic entry of the dictionary identifies the exactly marginal couplings of the
4d theory with the complex structure moduli of C.2 According to the celebrated
AGT conjecture [9–11], the 4d partition functions on the Ω-background [12]
and on S4 [13] are computed by Liouville/Toda theory on C. An analogous
relation exists between the 4d superconformal index [2, 14] (which can also
be viewed as a supersymmetric partition function on S3×S1) and topological
quantum field theory (TQFT) on C [15–18]. This last relation is a main topic
of this thesis.

The superconformal index is a simpler observable than the S4 partition
function, and it should be a good starting point for a microscopic derivation of
the 4d/2d dictionary from the 6d (2,0) theory. Being coupling-independent, the
index is computed by a topological correlator on C [15], as opposed to a CFT
correlator as in the AGT correspondence. For the subset of class S theories
that have a Lagrangian description, it can be easily evaluated in the free-field
limit, unlike the S4 partition function, which is sensitive to non-perturbative
physics and requires a sophisticated localization calculation [12, 13].

Despite these simplifying features, the index of class S theories is still a

1Though very large, class S does not cover the full space of N = 2 SCFTs. Counterex-
amples can be found e.g. in [3, 5]. See [5–7] for the beginning of a classification program
for N = 2 4d SCFTs.

2On the other hand, the conformal factor of the metric on C is irrelevant (in the RG
sense) and its memory lost in the IR SCFT. See [8] for a recent holographic check of this
fact.
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very non-trivial observable with remarkable mathematical structure. First of
all, there is no direct way to compute it for the non-Lagrangian SCFTs, which
by definition are not continuously connected to free-field theories.3 An indirect
route is to use the generalized S-dualities [3, 28] that relate non-Lagrangian
with Lagrangian theories. This is the strategy used in [16] to evaluate the index
of the strongly-coupled SCFT with E6 flavor symmetry [29]. In principle this
procedure could be carried out recursively to find the index of all the non-
Lagrangian theories, but it suffers from two drawbacks: conceptually, one
would rather use the index to test dualities, than assume dualities to compute
the index; and practically, this program gets quickly too complicated to be
useful.

What one should aim for is a direct algorithm that applies to all class S
theories – one would like to identify and solve the 2d TQFT that computes
the index. The first step in this direction has been recently taken in [17]: in a
limit where a single superconformal fugacity is kept (out of the original three)
the 2d topological theory is recognized as the zero-area limit of q-deformed
Yang-Mills theory. In [18] we generalize this result to a two-parameter slice
(q, t) of the three-dimensional fugacity space, which reduces to the limit con-
sidered in [17] for t = q. We give a fully explicit prescription to compute
this limit of the index for the most general4 A-type generalized quiver of class
S. The principle that selects this particular fugacity slice is supersymme-
try enhancement, which leads to simplifications. We study systematically the
limits where the index receives contributions only from states annihilated by
more than one supercharge. The (q, t) slice is the most general limit of this
kind sensitive to the flavor fugacities associated to the punctures. We also
study another interesting slice (Q, T ), where the index receives contribution
only from “Coulomb-branch” operators, which are flavor-neutral, so the flavor
dependence is lost.

On the other hand, some of the most important examples of interacting
4d SCFTs do not have a (known) weakly-coupled description in any duali-
ty frame. A large class are the N = 1 SCFTs that arise as IR fixed points
of renormalization group flows, whose UV starting points are weakly-coupled
theories. A prescription to evaluate the index of such SCFTs was formulated
by Römelsberger [14, 19]. This prescription has so far been checked indirectly,

3We should mention that for N = 1 SCFTs obtained as IR points of an RG flow, a
prescription to compute the index in terms of the UV field content and the charges of the
anomaly free R-symmetry was put forward by Romelsberger [14, 19] and recently revisited
with more rigor in [20]. Following the seminal work of Dolan and Osborn [21] there have
been many checks and implications of this conjecture, see e.g. [22–27].

4In particular in [17] certain overall normalization factors were determined only for the-
ories with special types of punctures. Here we fill this gap and work in complete generality.

3



by showing in several examples that it gives the same result for different RG
flows that end in the same IR fixed point (i.e. the UV theories are Seiberg
dual). This was originally observed by Römelsberger, who performed a few
perturbative checks in a chemical potential expansion [14, 19]. Invariance of
the N = 1 index under Seiberg duality was systematically demonstrated by
Dolan and Osborn [21], in a remarkable paper that first applied the elliptic hy-
pergeometric machinery to the evaluation of the superconformal index. These
results were extended and generalized in [22–24, 26].

In [25] we apply Römelsberger’s prescription to a class of N = 1 SCFTs
that admit AdS duals. The canonical example is the conifold theory of Kle-
banov and Witten [30]. There are infinitely many generalizations: the families
of toric quivers Y p,q [1] and Lp,q,r [31]. We focus on Y p,q. In all these examples
there is in principle an independent way to determine the index (at large N)
from the dual supergravity. We explicitly show agreement between the gravity
calculation of Nakayama [32] and our field theory calculation for the case of
the conifold quiver Y 1,0. According to taste, this can be viewed either as a
check of Römelsberger’s prescription, or as yet another check of AdS/CFT.
The upshot is a sharper bulk/boundary dictionary.

As the superconformal index is successfully applied to both N = ∈ and
N = ∞ theories, the partition function of supersymmetric gauge theories on S3

has been used to check a variety of 3d dualities including mirror symmetry [33]
and Seiberg-like dualities [34]. Remarkably, the exact partition function has
also allowed for a direct field theory computation of N3/2 degrees of freedom
of ABJM theory [35, 36]. The S3 partition function of N = 2 theories is
extremized by the exact superconformal R-symmetry [37–39] so just like the
a-maximization in 4d, the 3d partition function can be used to determine the
exact R-charges at interacting fixed points.

The superconformal index of a 4d gauge theory can be computed as a path
integral on S3 × S1 with supersymmetric boundary conditions along S1. All
the modes on the S1 contribute to this path integral. In a limit with the
radius of the circle shrinking to zero the higher modes become very heavy and
decouple. The index is then given by a path integral over just the constant
modes on the circle. In other words, the superconformal index of the 4d theory
reduces to a partition function of the dimensionally reduced 3d gauge theory
on S3. The 3d theory preserves all the supersymmetries of the “parent” 4d
theory on S3 × S1. More generally, for any d dimensional manifold Md, one
would expect the index of a supersymmetric theory on Md × S1 to reduce to
the exact partition function of dimensionally reduced theory onMd. This idea
was applied by Nekrasov to obtain the partition function of 4d gauge theory
on Ω-deformed background as a limit of the index of a 5d gauge theory [12].
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A crucial property of the four dimensional index that facilitates its compu-
tation is the fact that it can be computed exactly by a saddle point integral.
In the limit of vanishing circle radius, this matrix integral reduces to the one
that computes the partition function of 3d gauge theories on S3 [33, 40]. It
doesn’t come as a surprise as the path integral of the N = 2 supersymmetric
gauge theory on S3 was also shown to localize on saddle points of the action.

The rest of the thesis is organized as follows: in chapter 2 we review the
definition of the superconformal index, the computation of the index in weakly
coupled SCFTs and the re-expression of the index by the special function called
the elliptic gamma function. Chapter 3 and 4 deal with the application of the
index in N = ∈ class S theories and 2d topological field theory structure
behind. The reduction of the 4d index into a 3d partition function will be
discussed in chapter 5. Chapter 6 focuses mainly on the index of Y p,q quiver
gauge theories and a preliminary holographic check.
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Chapter 2

Review of The Superconformal
Index

The superconformal index [2] encodes the information about the protected
spectrum (which means its conformal dimension does not get quantum cor-
rections) of a superconformal field theory (SCFT) that can be obtained from
representation theory alone. The index of a 4d SCFT is defined as the Wit-
ten index of the theory in radial quantization. Let Q be one of the Poincaré
supercharges in the superconformal algebra of the theory, and Q† = S the
conjugate conformal supercharge. Schematically, the index with respect to Q
is defined as [2, 14, 19]

I(µi) = Tr (−1)F e−β δ e−µiMi , δ = 2
{
Q,Q†} , (2.1)

where the trace is over the Hilbert space of the theory on S3 (or Sd−1 in gen-
eral d dimensions) in the usual radial quantization, F is the Fermion number
operator, Mi are Q-closed conserved charges and µi the associated chemical
potentials. Since states with δ > 0 come in boson/fermion pairs, only the δ = 0
states contribute (the “harmonic representatives” of the cohomology classes of
Q), and the index is independent of β. There are infinitely many states with
δ = 0 – this is true even for a single short irreducible representation of the
superconformal algebra, because some of the non-compact generators (some
of the spacetime derivatives) have δ = 0. The introduction of the chemical
potentials µi serves both to regulate this divergence and to achieve a more
refined counting. From the index one can reconstruct the spectrum of short
multiplets, up to the equivalence relations that set to zero the combinations
of short multiplets that may a priori recombine into long ones [2].

6



Q SU(2)1 SU(2)2 SU(2)R U(1)r δ Commuting δs

Q1− −1
2

0 1
2

1
2

δ1− = E − 2j1 − 2R− r δ2+, δ̃1+̇, δ̃1−̇

Q1+
1
2

0 1
2

1
2

δ1+ = E + 2j1 − 2R− r δ2−, δ̃1+̇, δ̃1−̇

Q2− −1
2

0 −1
2

1
2

δ2− = E − 2j1 + 2R− r δ1+, δ̃2+̇, δ̃2−̇

Q2+
1
2

0 −1
2

1
2

δ2+ = E + 2j1 + 2R− r δ1−, δ̃2+̇, δ̃2−̇

Q̃1−̇ 0 −1
2

1
2

−1
2

δ̃1−̇ = E − 2j2 − 2R + r δ̃2+̇, δ1+, δ1−

Q̃1+̇ 0 1
2

1
2

−1
2

δ̃1+̇ = E + 2j2 − 2R + r δ̃2−̇, δ1+, δ1−

Q̃2−̇ 0 −1
2

−1
2

−1
2

δ̃2−̇ = E − 2j2 + 2R + r δ̃1+̇, δ2+, δ2−

Q̃2+̇ 0 1
2

−1
2

−1
2

δ̃2+̇ = E + 2j2 + 2R + r δ̃1−̇, δ2+, δ2−

Table 2.1: For each supercharge Q, we list its quantum numbers, the associated
δ ≡ 2

{
Q,Q†}, and the other δs commuting with it. Here I = 1, 2 are SU(2)R

indices and α = ±, α̇ = ± Lorentz indices. E is the conformal dimension, (j1, j2)
the Cartan generators of the SU(2)1 ⊗ SU(2)2 isometry group, and (R , r), the
Cartan generators of the SU(2)R ⊗ U(1)r R-symmetry group.

2.1 The N = 2 Superconformal Index

For four dimensionalN = 2 SCFT with the superconformal algebra SU(2, 2|2),
which are non-chiral, different choices of Q lead to physically equivalent in-
dices. The subalgebra of SU(2, 2|2) commuting with a single supercharge is
SU(1, 1|2), which has rank three, so the N = 2 index depends on three su-
perconformal fugacities. In addition, there will be fugacities associated with
the flavor symmetries. For definiteness we choose Q = Q̃1−̇. See table 2.1 for
a summary of our notations. There are three supercharges commuting with
Q̃1−̇ and (Q̃1−̇)

†:

Q1− , Q1+ , Q̃2+̇ . (2.2)

A useful choice is to take as a basis for the Cartan generators of the commutant
subalgebra SU(1, 1|2) the three δs of these supercharges. For each Q the
associated δ is defined as

δ ≡ 2
{
Q,Q†} , (2.3)

and it has a non-negative real spectrum. We then write the index as

I(ρ, σ, τ) = Tr(−1)F ρ
1
2
δ1− σ

1
2
δ1+ τ

1
2
δ̃2+̇ e−β δ̃1−̇ . (2.4)

In table 2.1 we give the expressions of the δ charges in terms of the more famil-
iar Cartan generators (E, j1, j2, R, r) of SU(2, 2|2). This parametrization of
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the fugacities makes it easy to consider special limits with enhanced supersym-
metry, which is the goal of chapter 4.1 Another very useful parametrization is
in terms of fugacities (t, y, v), related to (σ, ρ, τ) as

t = σ
1
6ρ

1
6 τ

1
3 , y = σ

1
2ρ−

1
2 , v = σ

2
3ρ

2
3 τ−

2
3 . (2.5)

This choice, used mainly in previous papers [15, 16, 25], chapter 3 and chap-
ter 5, corresponds to the (p = t3y, q = t3y−1) labels of the elliptic Gamma
function [41]. The index in terms of this parametrization reads

I(t, y, v) = Tr(−1)F t2(E+j2)y2 j1v−(r+R)e−β′ δ̃1−̇ . (2.6)

The third parametrization used in this thesis is in terms of fugacities (p, q, t),
related to (σ, ρ, τ) as

p = τσ , q = τρ , t = τ 2 . (2.7)

This choice corresponds both to the (p, q) labels of the elliptic Gamma func-
tion [41], and also, as we shall see in chapter 4, to the (t, q) labels of Macdonald
polynomials2. In terms of these fugacities, the definition of the index reads

I(p, q, t) = Tr(−1)F p
1
2
δ1+ q

1
2
δ1− tR+r e−β′′ δ̃1−̇ (2.8)

In appendix B.2 we review the shortening conditions of the N = 2 super-
conformal algebra and give the expression of the index for the various short
multiplets. Given the index of a SCFT, the formulae of appendix B.2 allow
to determine its spectrum of short multiplets, up to the usual recombination
ambiguities (spelled out in section 5.2 of [42]).

For a theory with a weakly-coupled description the index can be explicitly
computed as a matrix integral,

I(V, ρ, σ, τ) =
∫

[dU ] exp

(
∞∑
n=1

1

n

∑
j

fRj(ρn, σn, τn) · χRj
(Un, V n)

)
, (2.9)

1Although at first glance the trace formula (2.4) may seem to depend symmetrically on
four equivalent δs, this is not the case. The charge δ̃1−̇ is special: the associated supercharge

Q̃1−̇ commutes with all the four δs, but the supercharges associated to the other three δs

do not. This is then the index “computed with respect to Q̃1−̇”, and it is independent of
β, which we will usually omit.

2Note that while the fugacities (q, p) have exactly the same meaning in previous
parametrization, the fugacity t is different from the one introduced before. We made this
change of notations to make contact with the Macdonald literature, where t has a canonical
definition that one wishes to respect.
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Letters E j1 j2 R r I(σ, ρ, τ) I(t, y, v) I(p, q, t)

ϕ 1 0 0 0 −1 σρ t2v pq/t

λ1±
3
2

±1
2

0 1
2

−1
2

−στ, −ρτ −t3y, −t3y−1 −p, −q
λ̄1+̇

3
2

0 1
2

1
2

1
2

−τ 2 −t4/v −t
F̄+̇+̇ 2 0 1 0 0 σρτ 2 t6 pq

∂−+̇λ1+ + ∂++̇λ1− = 0 5
2

0 1
2

1
2

−1
2

σρτ 2 t6 pq

q 1 0 0 1
2

0 τ t2/
√
v

√
t

ψ̄+̇
3
2

0 1
2

0 −1
2

−σρτ −t4
√
v −pq/

√
t

∂±+̇ 1 ±1
2

1
2

0 0 στ, ρτ t3y, t3y−1 p, q

Table 2.2: Contributions to the index from “single letters”. We denote by
(ϕ, ϕ̄, λI,α, λ̄I α̇, Fαβ , F̄α̇β̇) the components of the adjoint N = 2 vector multiplet,

by (q, q̄, ψα, ψ̄α̇) the components of the N = 1 chiral multiplet, and by ∂αα̇ the
spacetime derivatives.

or in the other parametrization,

I(V, t, y, v) =
∫

[dU ] exp

(
∞∑
n=1

1

n

∑
j

fRj(tn, yn, vn) · χRj
(Un, V n)

)
.(2.10)

Here U denotes an element of the gauge group, with [dU ] the invariant Haar
measure, and V an element of the flavor group. We will discuss briefly the
derivation of this equation in section 2.5. The sum is over the different N = 2
supermultiplets appearing in the Lagrangian, withRj the representation of the
j-th multiplet under the flavor and gauge groups and χRj

the corresponding
character. The Haar measure has the following property∫

[dU ]
n∏

j=1

χRj
(U) = #of singlets in R1 ⊗ · · · ⊗ Rn . (2.11)

The functions f (j) are the “single-letter” partition functions, f (j) = fV or
f (j) = f

1
2
H according to whether the j-th multiplet is an N = 2 vector or

N = 2 1
2
-hypermultiplet. The “single letters” of an N = 2 gauge theory

contributing to the index obey δ̃1−̇ = E−2j2−2R+r = 0 and are enumerated
in table 2.2. The first block of table 2.2 shows the contributing letters from
the N = 2 vector multiplet, including the equations of motion constraint. The
second block shows the contributions from the half-hypermultiplet (or N = 1
chiral multiplet). The last line shows the spacetime derivatives contributing
to the index. Since each field can be hit by an arbitrary number of derivatives,
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the derivatives give a multiplicative contribution to the single-letter partition
functions of the form

∞∑
m=0

∞∑
n=0

(ρτ)m (στ)n =
1

(1− ρτ)(1− στ)
. (2.12)

The single-letter partition functions of the N = 2 vector and N = 1 chiral
multiplets are thus given by

fV = − στ

1− στ
− ρτ

1− ρτ
+

σρ− τ 2

(1− ρτ)(1− στ)
(2.13)

=
t2v − t4

v
− t3(y + y−1) + 2t6

(1− t3 y)(1− t3y−1)

= − p

1− p
− q

1− q
+

pq/t− t

(1− q)(1− p)
,

f
1
2
H =

τ

(1− ρτ)(1− στ)
(1− ρσ) (2.14)

=

t2√
v
− t4

√
v

(1− t3 y)(1− t3y−1)
=

√
t− pq/

√
t

(1− q)(1− p)
.

For general values of the three fugacities the explicit expression for the index
of a Lagrangian theory is most elegantly expressed [21] in terms of the elliptic
Gamma functions (see [41] for a nice review of these special functions). We
will postpone the discussion of this topic in section 2.4 and review the index
in N = 1 theories first.

2.2 The N = 1 Superconformal Index

For four dimensional N = 1 theories, the supercharges in SU(2, 2|1) algebra
are

{Qα ,Sα ≡ Q†α , Q̃α̇ , S̃ α̇ ≡ Q̃† α̇}, (2.15)

where α = ± and α̇ = ±̇ are respectively SU(2)1 and SU(2)2 indices, with
SU(2)1 × SU(2)2 = Spin(4) the isometry group of the S3. The relevant
anticommutators are

{Qα, Q†β} = E + 2Mβ
α +

3

2
r (2.16)

{Q̃α̇ , Q̃† β̇} = E + 2M̃ β̇
α̇ − 3

2
r , (2.17)
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where E is the conformal Hamiltonian, Mβ
α and M̃ β̇

α̇ the SU(2)1 and SU(2)2
generators, and r the generator of the U(1)r R-symmetry. In our conventions,

the Qs have r = −1 and Q̃s have r = +1, and of course the dagger operation
flips the sign of r.

One can define two inequivalent indices, a “left-handed” index IL(t, y)
and a “right-handed” index IR(t, y). For the left-handed index, we pick say3

Q ≡ Q−:

IL(t, y) ≡ Tr (−1)F t2(E+j1)y2j2 = Tr (−1)F t3(2j1−r)y2j2 ,

δ = E − 2j1 +
3

2
r ,

(2.18)

where j1 and j2 are the Cartan generators of SU(2)1 and SU(2)2. The two
ways of writing the exponent of t are equivalent since they differ by a Q-exact
term. For the right-handed index, we pick say Q ≡ Q̃−̇

IR(t, y) ≡ Tr (−1)F t2(E+j2)y2j1 = Tr (−1)F t3(2j2+r)y2j1 ,

δ = E − 2j2 −
3

2
r .

(2.19)

One may also introduce chemical potentials for additional global symmetries
of the theory.

2.2.1 Romelsberger’s prescription

The expression (2.1) makes sense for a general supersymmetric QFT on S3×R.
In particular we can consider a theory that flows between two conformal fixed
points in the UV and in the IR. At a fixed point (and only at a fixed point), the
theory on S3×R is equivalent to a superconformal theory on R4, and Q† can be
interpreted as a conformal supercharge on R4. By the usual formal arguments,
the index is invariant along the flow (it is independent of the dimensionless
coupling RM , where R is the S3 radius and M the renormalization group
scale). For this procedure to make sense, clearly the Q-closed charges Mi

must be well-defined (in particular non-anomalous) all along the RG flow. If
the UV fixed point is a free theory, we can compute its index by a matrix
integral that counts the gauge-invariant words with δUV = 0. We can then
re-intepret the result as the superconformal index of the IR fixed point, which
would be difficult to evaluate directly. This leads to the following prescription

3Picking Q ≡ Q+ would amount to the replacement j1 ↔ −j1, which is an equivalent
choice because of SU(2)1 symmetry. The same consideration applies to the right-handed

index, which can be defined either choosing Q̃−̇ or Q̃+̇.
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[14, 19]

1. Consider the UV starting point. Write down the “letters” contributing
to the index of the free theory, i.e. the letters with δUV = 0.

2. Assign to the letters the quantum numbers corresponding to the anomaly-
free symmetries of the interacting theory. In the presence of U(1) global
symmetries, follow the usual a-maximization procedure [43] to single-out
the anomaly-free R-symmetry that in the IR becomes the U(1)r of the
superconformal algebra.

3. Compute the index in terms of the matrix integral which enumerates
gauge-invariant words.

The considerations leading to this recipe are somewhat formal. One direction
in which they could be made more precise is to discuss ultraviolet regulariza-
tion and renormalization. It is not difficult to find a perturbative regulator
that preserves one complex Q, and in fact two of them, either the two left-
handed charges Qα, or the two right-handed charges Q̃α̇. To preserve say
the left-handed charges, we can Kaluza-Klein expand the fields on the S3,
and truncate the theory by keeping all the modes whose right-handed spin
J2 ≤ Jmax

2 . This truncation is a UV regulator since the left-handed modes will
also be cut-off4, and has the virtue of preserving the left-handed supersymme-
try, since the action of Qα commutes with the cut-off. A similar regulator (but
performed symmetrically on the left-handed and right-handed spins, which in
general breaks susy) has been discussed at length in [44–47]. This style of reg-
ularization is only perturbative because it breaks the gauge symmetry, which
can however be restored order by order in perturbation theory by adding coun-
terterms [44–47]. We see no obstacle in choosing the counterterms so that they
preserve one copy of the susy algebra.

We are not aware of a fully non-perturbative regulator that preserves su-
persymmetry on S3 × R – finding such a regulator would be very interesting
in its own right. In any case ultraviolet issues are not expected to affect the
play an important role for the index, much as they don’t for the usual Witten
index on the torus [48].

2.2.2 Computing the index

The “letters” of an N = 1 chiral multiplet are enumerated in table 2.3. We as-
sume that in the IR the U(1)r charge of the lowest component of the multiplet

4This is clear from the structure of harmonics on S3. Scalar harmonics have SU(2)1 ×
SU(2)2 quantum numbers (J, J), spinor harmonics (J − 1/2, J) and (J, J − 1/2) and so on.
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ϕ is some arbitrary rIR = r (determined in a concrete theory by anomaly can-
cellation and in subtle cases a-maximization). According to the prescription
we have just reviewed, the index receives contributions from the letters with
δUV = 0, and each letter contributes as (−1)F t3(2j1−rIR)y2j2 to the left-handed
index and as (−1)F t3(2j2+rIR)y2j1 to the right-handed index. To keep track of

Letters EUV j1 j2 rUV rIR δLUV IL δRUV IR

ϕ 1 0 0 2
3

r 2 − 0 t3r

ψ 3
2

±1
2

0 −1
3

r − 1 0+, 2− −t3(2−r) 2 −
∂ψ 5

2
0 ±1

2
−1

3
r − 1 2 − 4+, 2− −

�ϕ 3 0 0 2
3

r 4 − 2 −

ϕ̄ 1 0 0 −2
3

−r 0 t3r 2 −
ψ̄ 3

2
0 ±1

2
1
3

−r + 1 2 − 2+, 0− −t3(2−r)

∂ψ̄ 5
2

±1
2

0 1
3

−r + 1 2+, 4− − 2 −
�ϕ̄ 3 0 0 −2

3
−r 2 − 4 −

∂±± 1 ±1
2

±1
2

0 0 0±+, 2±− t3y±1 0+±, 2−± t3y±1

Table 2.3: The “letters” of an N = 1 chiral multiplet and their contributions to
the index. Here δL = E − 2j1 +

3
2rUV and δRUV = E − 2j2 − 3

2rUV . A priori we
have to take into account the free equations of motion ∂ψ = 0 and �ϕ = 0, which
imply constraints on the possible words, but we see that in this case equations of
motions have δUV ̸= 0 so they do not change the index. Finally there are two
spacetime derivatives contributing to the index, and their multiple action on the
fields is responsible for the denominator of the index, 1/(1−t3y±1) =

∑∞
n=0(t

3y±1)n.

the gauge and flavor quantum numbers, we introduce characters. We assume
that the chiral multiplet transforms in the representation R of the gauge ×
flavor group, and denote by χR(U, V ), χR̄(U, V ) the characters of R and and
of the conjugate representation R̄, with U and V gauge and flavor group ma-
trices respectively. All in all, the single-letter left- and right-handed indices
for a chiral multiplet are [21]

iLχ(r)(t, y, U, V ) =
t3r χR̄(U, V )− t3(2−r) χR(U, V )

(1− t3y)(1− t3y−1)
(2.20)

iRχ(r)(t, y, U, V ) =
t3r χR(U, V )− t3(2−r) χR̄(U, V )

(1− t3y)(1− t3y−1)
. (2.21)

The denominators encode the action of the two spacetime derivatives with
δ = 0. Note that the left-handed and right-handed indices differ by conjugation
of the gauge and flavor quantum numbers. As a basic consistency check [19],
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consider a single free massive chiral multiplet (no gauge or flavor indices). In
the UV, we neglect the mass deformation and as always rUV = 2

3
. In the IR,

the quadratic superpotential implies rIR = 1, and one finds iLr=1 = iRr=1 ≡ 0.
As expected, a massive superfield decouples and does not contribute to the IR
index.

Finding the contribution to the index of an N = 1 vector multiplet is even
easier, since the R-charge of a vector superfield Wα is fixed at the canonical
value +1 all along the flow. For both left- and the right-handed index, the
single-letter index of a vector multiplet is [2]

iV (t, y, U) =
2t6 − t3(y + 1

y
)

(1− t3y)(1− t3y−1)
χadj(U) . (2.22)

Armed with the single-letter indices, the full index is obtained by enumer-
ating all the words and then projecting onto gauge-singlets by integrating over
the Haar measure of the gauge group. Schematically,

I(t, y, V ) =

∫
[dU ]

∏
k

PE[ik(t, y, U, V )] , (2.23)

where k labels the different supermultiplets, and PE[ik] is the plethystic ex-
ponential of the single-letter index of the k-th multiplet. The pletyhstic expo-
nential,

PE[ik(t, y, U, V )] ≡ exp

{
∞∑

m=1

1

m
ik(t

m, ym, V m)χRk
(Um, V m)

}
, (2.24)

implements the combinatorics of symmetrization of the single letters, see e.g.
[49–51]. As usual, one can gauge fix the integral over the gauge group and
reduce it to an integral over the maximal torus, with the usual extra factor
arising of van der Monde determinant.

In chapter 6 we focus on quiver gauge theories. The gauge group will
be taken to be a product of SU(N) factors, with the chiral matter trans-
forming in bifundamental representations. The gauge characters factorize in-
to products of fundamental and anti-fundamental characters of the relevant

factors, χRab̄
(Um) → tr(uma )tr

(
u†mb

)
. For SU(N) the adjoint character is

χadj(U
m) ≡ tr(uma )tr(u

†m
a )− 1.
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2.3 A universal result about N = 2 → N = 1

flows

Consider an N = 2 gauge theory where all the gauge couplings are exactly
marginal. Upon turning on a mass term for the adjoint chiral multiplet inside
the N = 2 vector multiplet, supersymmetry is broken to N = 1 and the
theory flows in the IR to an N = 1 superconformal field theory with a quartic
superpotential. The simplest example is the flow between the N = 2 Z2

orbifold of N = 4 and the Klebanov-Witten theory. A large class of examples
have been discussed in [52]. For this general class of flows, there is a universal
linear relation between the a and c conformal anomaly coefficients of the UV
and IR theories [53].

It turns out that the superconformal indices of the UV and IR theories are
also related in a simple universal way, namely

IN=1
IR (t, y) = IN=2

UV (t, y, v = t) . (2.25)

Choosing for definiteness the right-handed index, the definition of the N = 2
superconformal index is

IN=2 ≡ Tr (−1)F t2(E+j2)y2j1v−(rN=2+R) , (2.26)

where R and rN=2 are the quantum numbers under the SU(2)R × U(1)r R-
symmetry.5 The N = 1 and N = 2 R-symmetry quantum numbers are related
as

rN=1 =
2

3
(2RN=2 − rN=2) . (2.27)

Our claim is easily proved by recalling the single-letter indices of the N = 2
vector multiplet (2.13) and of the chiral multiplet (half-hypermultiplet) (2.14)
computed in section 2.1

iN=2
V (t, y, v) = fV (t, y, v) =

t2v − t4

v
− t3(y + y−1) + 2t6

(1− t3y)(1− t3y−1)
(2.28)

iN=2
χ (t, y, v) = f

1
2
H(t, y, v) =

t2√
v
− t4

√
v

(1− t3y)(1− t3y−1)
. (2.29)

5In our conventions, the bottom component ϕ of the N = 2 vector multiplet has rN=2 =
−1 (and of course R = 0), while the scalar doublet in the hypermultiplet has rN=2 = 0 and
R = ±1/2.
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Comparing with (2.21) and (2.22), we see that

iN=2
V (t, y, v = t) = iN=1

V (t, y) (2.30)

iN=2
χ (t, y, v = t) = iN=1

χ(r= 1
2
)
(t, y) . (2.31)

So setting v = t has the effect of converting the N = 2 vector multiplet to
N = 1 vector multiplets, and of changing the R-charge of the chiral multiplets
from rN=1 = 2/3 to rN=1 = 1/2, which is the correct IR value since a quartic
superpotential is generated from the decoupling of the adjoint chiral multi-
plets. Since both the conformal anomaly coefficients and the index undergo a
universal transformation between the UV and IR of this class of RG flows, one
may wonder whether there is any simple connection between the index and
the anomaly coefficients.

2.4 Elliptic Hypergeometric Expressions for the

Index

As was observed by Dolan and Osborn [21] the expressions for the index can
be recast in an elegant way in terms of special functions. First, recall the
definition of the elliptic Gamma function,

Γ(z; p, q) ≡
∏
j,k≥0

1− z−1 pj+1qk+1

1− z pjqk
. (2.32)

For reviews of the elliptic Gamma function and of elliptic hypergeometric
mathematics the reader can consult [54–56]. Throughout this paper we will
use the standard condensed notations

Γ(z1, . . . , zk; p, q) ≡
k∏

j=1

Γ(zj ; p, q), Γ(z±1; p, q) ≡ Γ(z; p, q)Γ(1/z; p, q) . (2.33)

Basic identities satisfied by the elliptic Gamma function that will be of use
to us are

Γ (pq/z; p, q) Γ (z; p, q) = 1 , (2.34)

lim
z→a

(1− z/a) Γ(z/a; p, q) =
1

(p; p)(q; q)
, (2.35)
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with the bracket defined as

(a; b) ≡
∞∏
k=0

(
1− a bk

)
. (2.36)

From the definition (2.32), it is straightforward to show [21]

exp

(
∞∑
n=1

1

n

t2nzn − t4nz−n

(1− t3nyn)(1− t3ny−n)

)
= Γ(t2 z; p, q), (2.37)

exp

(
∞∑
n=1

1

n

2t6n − t3n(yn + y−n)

(1− t3nyn)(1− t3ny−n)
(zn + z−n)

)
= − z

(1− z)2
1

Γ(z±1; p, q)
,

where

p = t3y, q = t3y−1 . (2.38)

Using the above identities the basic building blocks of the superconformal
index computation can be written as follows.

For N = 2 index, the contribution to the integrand of (2.10) from hypers
in a fundamental representation of an SU(n) gauge group is

exp

(
∞∑
k=1

1

k
f

1
2
H
(
tk, vk, yk

) [
χf (U

k) + χf̄ (U
k)
])

=
n∏

i=1

Γ

(
t2√
v
a±1
i ; p, q

)
.

(2.39)

The contribution to the integrand of (2.10) from the vector multiplet of SU(n)
is

exp

(
∞∑
k=1

1

k
fV
(
tk, vk, yk

)
χadj(U

k)

)
(2.40)

=
[Γ(t2 v; p, q) (p; p)(q; q)]

n−1

∆(a)∆(a−1)

∏
i̸=j

Γ(t2 v ai/aj; p, q)

Γ(ai/aj; p, q)
.

We have defined the characters of the fundamental representation to be

χf =
n∑

i=1

ai, χf̄ =
n∑

i=1

1

a i
,

n∏
i=1

ai = 1 . (2.41)
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The character of the adjoint representation is

χadj = χf χf̄ − 1 =
∑
i ̸=j

ai/aj + n− 1 . (2.42)

We have also defined

∆(a) =
∏
i̸=j

(ai − aj) . (2.43)

The Haar measure is given by∮
SU(n)

dµ(a)f(a) =
1

n!

∮
Tn−1

n−1∏
i=1

dai
2πi ai

∆(a)∆(a−1)f(a)

∣∣∣∣∣∏n
i=1 ai=1

, (2.44)

where T is the unit circle. Whenever we gauge a symmetry we have a vector
multiplet associated to the integrated group and thus we will use the following
notation

Fa Ga ≡ [2 Γ(t2 v; p, q)κ]
n−1

n!

×
∮
Tn−1

n−1∏
i=1

dai
2πi ai

∏
i̸=j

Γ(t2 v ai/aj; p, q)

Γ(ai/aj; p, q)
F (a) G

(
a−1
)∣∣∣∣∣∏n

i=1 ai=1

,

(2.45)

where κ ≡ (p; p)(q; q)/2. In what follows for the sake of brevity we will omit
the parameters p and q from the elliptic Gamma function, i.e. Γ(x) should
always be understood as Γ(x; p, q).

Similarly in N = 1 theories, a chiral superfield in the bifundamental rep-
resentation �� of SU(N1)×SU(N2), and with IR R-charge equal to r can be
rewritten as

PE[ir(t, y, U)] ≡
N1∏
i=1

N2∏
j=1

Γ(t3r ziw
−1
j ; t3y, t3/y), (2.46)

Here {zk}, k = 1, . . . N1}, and {wk}, k = 1, . . . N2}, are complex numbers of
unit modulus, obeying

∏N1

k=1 zk =
∏N2

k=1wk = 1, which parametrize the Cartan
subalgebras of SU(N1) and SU(N2). The multi-letter contribution of a vector
multiplet in the adjoint of SU(N) combines with the SU(N) Haar measure to
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give the compact expression [15, 21]

κN−1

N !

∮
Tn−1

N−1∏
i=1

dzi
2πi zi

∏
k ̸=ℓ

1

Γ(zk/zℓ; p, q)
. . . . (2.47)

The dots indicate that this is to be understood as a building block of the full
matrix integral. This equation can also be obtained by setting v = t in (2.40).
The numerator factor

∏
i̸=j Γ(t

3 ai/aj; p, q) becomes 1 becuase of the property
of elliptic Gamma function (2.35).

2.5 4d Index as a path integral on S3 × S1

The superconformal index,

I(t, y, v) = Tr(−1)F t2(E+j2)y2 j1v−(r+R) , (2.48)

doesn’t depend on the couplings of the theory and hence it can be calculated
in the weak coupling limit. The entire contribution to the supersymmetric
partition function on S3×S1 thus comes from the saddle point approximation.
One loop partition function of a 4d gauge theory on S3 × S1 was computed
in [51] in the presence of fugacities associated with various conserved charges.
To compute the superconformal index, we only allow fugacities for charges
which commute with Q; i.e. t, y and v.

For the one loop computation in SU(N) gauge theory, it is convenient to
use the Coulomb gauge ∂iA

i = 0 where i, j, k are S3 coordinates and ∂i are
covariant derivatives. The residual gauge freedom is fixed by imposing ∂0α = 0
where α = 1

V

∫
S3 A0 and V is the volume of S3. The partition function is then

written as

Z =

∫
dα∆2

∫
DA∆1e

−S(A,α) , (2.49)

where ∆1 and ∆2 are Fadeev-Popov determinants associated with the first
and second gauge fixing conditions respectively. For a charge s that commutes
with Q, we can add a supersymmetric coupling with a constant background
gauge field as

S → S +

∫
d4x sµχµ, (2.50)

where sµ is associated conserved current. χµ is take to be a (χ, 0, 0, 0) and χ
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is identified with the chemical potential for charge s. The chemical potential
is related to the fugacity, say x, of the Hamiltonian formalism as x = e−βχ. In
our case, x can be any of the t, y and v.

After performing
∫
DA, one gets an SU(N) unitary matrix model

Z =

∫
[dU ]e−Seff [U ] , (2.51)

where U = eiβα and β is the circumference of the circle, [dU ] is the invariant
Haar measure on the group SU(N). The Seff is just the one appears in (2.10)

Seff [U ] =
∞∑

m=1

1

m

∑
j

fRj(tm, ym, vm)χRj
(Um, V m) . (2.52)

Here, V denotes the chemical potential that couples to the Cartan of the flavor
group; Rj labels the representation of the fields under gauge and flavor groups
and fRj is the single letter index of the fields in representation Rj.

The circumference β of the circle is related to the fugacity t as t = e−β/3.
To produce the partition function of dimensionally reduced gauge theory on
S3 [33, 40] we also scale v = e−β/3, y = 1, and take the limit β → 0. In
appendix C we restore the additional deformations by defining v = e−β(1/3+u)

and set y = e−βη where u and η are chemical potentials for fugacities v and y
respectively. The partition function of 3d gauge theories on squashed S3 was
computed in [57], the η deformation is related to the squashing parameter of
S3.
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Chapter 3

S-duality and Two Dimensional
Topological Field Theory

Electric-magnetic duality (S-duality) in four-dimensional gauge theory has a
deep connection with two-dimensional modular invariance. The canonical ex-
ample is the SL(2,Z) symmetry of N = 4 super-Yang-Mills, which can be
interpreted as the modular group of a torus. A physical picture for this corre-
spondence is provided by the existence of the six-dimensional (2, 0) supercon-
formal field theory, whose compactification on a torus of modular parameter
τ yields N = 4 SYM with holomorphic coupling τ (see [58] for a recent dis-
cussion).

Gaiotto [3] has discovered a beautiful generalization of this construction.
A large class of N = 2 SCFTs (class S SCFTs) in 4d is obtained by compact-
ifying a twisted version of the (2, 0) theory on a Riemann surface Σ, of genus
g and with n punctures. The complex structure moduli space Tg,n/Γg,n of Σ is
identified with the space of exactly marginal couplings of the 4d theory. The
mapping class group Γg,n acts as the group of generalized S-duality transfor-
mations of the 4d theory. A striking correspondence between the Nekrasov’s
instanton partition function [12] of the 4d theory and Liouville field theory
on Σ has been conjectured in [9] and further explored in [10, 59–69]. Accord-
ing to the celebrated AGT conjecture [9–11], the 4d partition functions on
the Ω-background [12] and on S4 [13] are computed by Liouville/Toda theory
on C. Relations to string/M theory have been discussed in [70–73]. See also
[52, 74, 75].

In this chapter we apply the superconformal index to this class of 4d SCFT-
s. The index is invariant under continuous deformations of the theory, and is
also expected to be invariant under the S-duality group Γg,n. Assuming S-
duality, this implies that the index must be computed by a topological QFT
living on Σ. The usual physical arguments involving the (2, 0) theory give a
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“proof” of this assertion, as follows. The path integral representation of the
index (2.49) uplifts to a (suitably twisted) path integral of the (2, 0) theory on
S3 × S1 × Σ. This path integral must be independent of the metric on Σ. In
the limit of small Σ we recover the 4d definition; in the opposite limit of large
Σ we expect a purely 2d description. Each puncture on Σ should be regarded
as an operator insertion. By this logic, the index must be equal to the n-point
correlation function of some TQFT on Σ. The question is whether one can
describe this TQFT more directly, and in the process check the S-duality of
the index.

It is likely that a “microscopic” Lagrangian formulation of the 2d TQFT
may be derived from the dimensional reduction of the twisted (2, 0) theory
that we have just described, but we will postpone the discussion in chapter 4.
We will first write the concrete expression of the index for class S A1 theories
in this chapter, which always have a 4d Lagrangian description. We show in
section 3.1 that the index does indeed take the form expected for a correlator in
a 2d TQFT1. We then evaluate explicitly the structure constants and metric
of the TQFT operator algebra, and check its associativity, which is the 2d
counterpart of S-duality (section 3.1.2). The metric and structure constants
have elegant expressions in terms of elliptic Gamma functions and the index
in terms of elliptic Beta integrals, a set of special functions which are a new
and active branch of mathematical research, see e.g. [54–56] and references
therein. For A1 theories associativity of the topological algebra (and thus S-
duality) hinges on the invariance of a special case of the E(5) elliptic Beta
integral under the Weyl group of F4. A proof of this symmetry can be found
on the math ArXiv [76]. In a related physical context, elliptic identities have
been used in [21] (following [19]) to prove equality of the superconformal index
for Seiberg-dual pairs of N = 1 gauge theories.

What distinguishes the A1 theories from their counterparts with An≥2 is
that in all duality frames they have a Lagrangian description. This makes
it easy to compute their superconformal index explicitly and to identify the
structure constants of the 2d TQFT. The situation for the generalized quiver
theories with higher rank gauge groups is qualitatively different: in some du-
ality frames the quivers contain intrinsically strongly-coupled blocks with no
Lagrangian description. The prototypical example of this phenomenon was
discussed by Argyres and Seiberg [28]2: the SYM theory with SU(3) gauge
group and Nf = 6 fundamental hypermultiplets has a dual description involv-
ing the strongly-coupled SCFT with E6 flavor symmetry [29]. In the absence

1We thank Abhijit Gadde, Elli Pomoni, Shlomo Razamat and Leonardo Rastelli for
letting us use material from their paper [15].

2See also [77] for more examples.
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of a Lagrangian description for the E6 SCFT, it seems difficult to compute
its superconformal index and to define the TQFT structure for generalized
quivers with SU(3) gauge groups.

We solve this problem in the second half of this chapter. By demanding
consistency with Argyres-Seiberg duality, we are able to write down an explicit
integral expression for the index of the E6 SCFT (equation (3.41)). Techni-
cally, this is possible thanks to a remarkable inversion formula for a class of
integral transforms [78]. By construction, the resulting expression for the in-
dex is guaranteed to be invariant under an SU(6) ⊗ SU(2) subgroup of the
E6 flavor symmetry. The index is seen a posteriori to be invariant under the
full E6 symmetry, providing an independent check of Argyres-Seiberg duality
itself.3 We proceed to define a TQFT structure for generalized quivers with
SU(3) gauge symmetries. We check associativity of the operator algebra in
section 3.2.3, which is equivalent to a check of S-duality for class S A2 the-
ories. Most of our checks are performed perturbatively, to several orders in
an expansion in the chemical potentials that enter the definition of the in-
dex. Conversely, S-duality implies that associativity must hold exactly, so as
a by-product of our analysis we conjecture new identities between integrals of
elliptic Gamma functions.

3.1 The Index in A1 Theories

We start this section by recalling the basics of Gaiotto’s analysis [3]. The main
achievement of [3] is a purely four-dimensional construction of the SCFT im-
plicitly defined by compactifying the AN−1 (2, 0) theory on Σ. In the A1 case
an explicit Lagrangian description is available, in terms of a generalized quiver
with gauge group SU(2)NG , see figure 3.1 for examples. The internal edges of
a diagram correspond to the SU(2) gauge groups, the external legs to SU(2)
flavor groups and the the cubic vertices to chiral fields in the trifundamental
representation (fundamental under each of the groups joining at the vertex).
The corresponding Riemann surface is immediately pictured by thickening the
lines of the graph into tubes – with the external tubes assumed to be infinitely
long, so that they can be viewed as punctures. The plumbing parameters τi
of the tubes are identified with the holomorphic gauge couplings; the degen-
eration limit when the surface develops a long tube corresponds to the weak
coupling limit τ → +i∞ of the corresponding gauge group (figure 3.2). The
different patterns of degenerations (pair-of-pants decompositions) of a surface
Σ of genus g and NF punctures give rise to the different connected diagrams

3For earlier checks of Argyres-Seiberg duality see [79] and [80].
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(a) (b)

Figure 3.1: (a) Generalized quiver diagrams representing N = 2 superconformal
theories with gauge group SU(2)6 and no flavor symmetries (NG = 6, NF = 0).
There are five different theories of this kind. The internal lines of a diagram represent
and SU(2) gauge group and the trivalent vertices the trifundamental chiral matter.
(b) Generalized quiver diagrams for NG = 3, NF = 3. Each external leg represents
an SU(2) flavor group. The upper left diagram corresponds the N = 2 Z3 orbifold
of N = 4 SYM with gauge group SU(2).

(a) (b)

Figure 3.2: An example of a degeneration of a graph and appearance of flavour
punctures. As one of the gauge coupling is taken to zero the corresponding edge
becomes very long. Cutting the edge, each of the two resulting semi-infinite open
legs will be associated to chiral matter in an SU(2) flavor representation. In this
picture setting the coupling of the middle legs in (a) to zero gives two copies of
the theory represented in (b), namely an SU(2) gauge theory with a chiral field in
the bifundamental representation of the gauge group and in the fundamental of a
flavour SU(2).
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with NF external legs (SU(2) flavor groups) and NG = NF +3(g− 1) internal
lines (SU(2) gauge groups). Since the mapping class group permutes the di-
agrams, the associated field theories must be related by generalized S-duality
transformations [3]. In the higher AN−1 cases the 4d theories are generically
described by more complicated quivers that involve new exotic isolated SCFTs
as elementary building blocks.

3.1.1 2d TQFT from the Superconformal Index

For the A1 generalized quivers the index can be explicitly computed as a matrix
integral (2.10),

I =
∫ ∏

ℓ∈G [dUℓ] exp
(∑∞

n=1
1
n

[∑
i∈G f

V
n χadj(U

n
i ) +

∑
(i,j,k)∈V f

1
2H
n χ3f (U

n
i , U

n
j , U

n
k )
])

.

(3.1)

Here fV
n = fV (tn, yn, vn) and f

1
2
H

n = f
1
2
H(tn, yn, vn), with fV (t, y, v) and

f
1
2
H(t, y, v) the “single-letter partition functions” for respectively the adjoint

and trifundamental degrees of freedom, multiplying the corresponding SU(2)

characters. The explicit expressions for fV and f
1
2
H hav already been given

by (2.13) and (2.14). The {Ui} are SU(2) matrices. Their index i run over
the NG + NF edges of the diagram, both internal (“Gauge”) and external
(“Flavor”). The set G is the set of NG internal edges while the set V is the set
of trivalent vertices, each vertex being labelled by the triple (i, j, k) of incident
edges. The integral over {Uℓ , ℓ ∈ P}, with [dU ] being the Haar measure,
enforces the gauge-singlet condition. All in all, the index I depends on the
chemical potentials t, y, v (through fV and f

1
2
H) and on (the eigenvalues of)

the NF unintegrated flavor matrices.
The characters depend on a single angular variable αi for each SU(2) group

Ui. Writing

Ui = V †
i

(
eiαi 0

0 e−iαi

)
Vi , (3.2)

we have

χadj(Ui) = TrUiTrUi − 1 = e2iαi + e−2iαi + 1 ≡ χadj(αi) , (3.3)

χ3f (Ui, Uj, Uk) = TrUiTrUj TrUk (3.4)

= (eiαi + e−iαi)(eiαj + e−iαj)(eiαk + e−iαk)

≡ χ3f (αi, αj, αk) ,
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where we have used the fact that 2 ∼ 2̄. Integrating over Vi, the Haar measure
simplifies to ∫

[dUi] =
1

π

∫ 2π

0

dαi sin2 αi ≡
∫
dαi∆(αi) . (3.5)

We now define

Cαiαjαk
≡ exp

(
∞∑
n=1

1

n
f

1
2
H

n · χ3f (nαi, nαj, nαk)

)
, (3.6)

ηαiαj ≡ exp

(
∞∑
n=1

1

n
fV
n · χadj(nαi)

)
δ̂(αi, αj) ≡ ηαi δ̂(αi, αj),

where δ̂(α, β) ≡ ∆−1(α)δ(α − β) (with the understanding that α and β are
defined modulo 2π) is the delta-function with respect to the measure (3.5).
Further define the “contraction” of an upper and a lower α labels as

A...α...B...α... ≡
∫ 2π

0

dα∆(α)A...α...B...α... . (3.7)

The superconformal index (3.1) can then be suggestively written as

I =
∏

{i,j,k}∈V

Cαiαjαk

∏
{m,n}∈G

ηαmαn . (3.8)

The internal labels {αi , i ∈ G} associate to the gauge groups are contracted,
while the NF external labels associated to the flavor groups are left open. The
expression (3.8) is naturally interpreted as an NF -point “correlation function”
⟨α1 . . . αNF

⟩g, evaluated by regarding the generalized quiver as a “Feynman
diagram”. The Feynman rules assign to each trivalent vertex the cubic cou-
pling Cαβγ , and to each internal propagator the inverse metric ηαβ. S-duality
implies that the superconformal indices calculated from two diagrams with
the same (NF , NG) must be equal. These properties can be summarized in
the statement that the superconformal index is evaluated by a 2d Topological
QFT (TQFT).

At the informal level sufficient for our discussion, a 2d TQFT [81, 82] can
be characterized in terms of the following data: a space of states H; a non-
degenerate, symmetric metric η: H ⊗ H → C; and a completely symmetric
triple product C: H⊗H⊗H → C. The states in H are understood physically
as wavefunctionals of field configurations on the “spatial” manifold S1. The
metric and triple product are evaluated by the path integral over field con-
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|α〉

|β〉

|γ〉

|α〉

|β〉

(a) (b)

Figure 3.3: (a) Topological interpretation of the structure constants Cαβγ ≡
⟨C| |α⟩|β⟩|γ⟩. The path integral over the sphere with three boundaries defines
⟨C| ∈ H∗ ⊗H∗ ⊗H∗. (b) Analogous interpretation of the metric ηαβ ≡ ⟨η||α⟩|β⟩,
with ⟨η| ∈ H∗ ⊗H∗, in terms of the sphere with two boundaries.

figurations on the sphere with respectively two and three boundaries (figure
3.3). The 2d surfaces where the TQFT is defined are assumed to be oriented,
so the S1 boundaries inherit a canonical orientation. To a boundary of inverse
orientation (with respect to the canonical one) is associated the dual space H∗.
Choosing a basis for H, we can specify the metric and triple product in terms
of ηαβ ≡ η(|α⟩, |β⟩) and Cαβγ ≡ C(|α⟩, |β⟩, |γ⟩), or

η =
∑
α,β

ηαβ⟨α|⟨β| , C =
∑
α,β,γ

Cαβγ⟨α|⟨β|⟨γ| . (3.9)

The inverse metric ηαβ is associated to the sphere with two boundaries of
inverse orientation, and as its name suggests it obeys ηαβηβγ = δαγ , see figure
3.4. Index contraction corresponds geometrically to gluing of S1 boundary of
compatible orientation.

The metric and triple product obey natural compatibility axioms which
can be simply summarized by the statement that the metric and its inverse
are used to lower and raise indices in the usual fashion. Finally the crucial
requirement: the structure constants Cαβ

γ ≡ Cαβϵη
ϵγ define an associative

algebra

Cαβ
δ Cδγ

ϵ = Cβγ
δ Cδα

ϵ , (3.10)

as illustrated in figure 3.5. From these data, arbitrary n-point correlators on a
genus g surface can be evaluated by factorization (= pair-of-pants decomposi-
tion of the surface). The result is guaranteed to be independent of the specific
decomposition.
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〈α|

〈β|

|α〉

〈γ|

〈γ| |α〉=

(a) (b)

Figure 3.4: Topological interpretation of (a) the inverse metric ηαβ , (b) the relation
ηαβη

βγ = δγα. By convention, we draw the boundaries associated with upper indices
facing left and the boundaries associated with the lower indices facing right.

|α〉

|β〉

|γ〉

〈ǫ| =

|α〉

|β〉

|γ〉

〈ǫ|

Figure 3.5: Pictorial rendering of the associativity of the algebra.

In our case the space H is spanned by the states {|α⟩ , α ∈ [0, 2π)}, where α
parametrizes the SU(2) eigenvalues, equ.(3.2). Alternatively we may “Fourier
transform” to the basis of irreducible SU(2) representations, {|RK⟩ , K ∈ Z+},
see appendix A.1. We have concrete expressions (3.6, 3.7) for the cubic cou-
plings Cαβγ and for the inverse metric ηαβ, which are manifestly symmetric
under permutations of the indices. Formal inversion of (3.7) gives the metric
ηαβ ≡ (ηα)−1δ̂(α, β). Finally with the help of (3.7) we can raise, lower and
contract indices at will. On physical grounds we expect these formal manip-
ulations to make sense, since the superconformal index is well-defined as a
series expansion in the chemical potential t, which should have a finite radius
of convergence [2]. The explicit analysis of sections 3.1.2 will confirm these
expectations. We will find expressions for the index as analytic functions of
the chemical potentials. Our definitions satisfy the axioms of a 2d TQFT by
construction, and independently of the specific form of the functions fV (t, y, v)

and f
1
2
H(t, y, v), except for the associativity axiom, which is completely non-

trivial. Associativity of the 2d topological algebra is equivalent to 4d S-duality,
and it can only hold for very special choices of field content, encoded in the
single-letter partition functions fV and f

1
2
H .
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3.1.2 Associativity of the Algebra

In this section we determine explicitly the structure constants and the metric
of the TQFT and write them in terms of elliptic Beta integrals. With the
help of a mathematical result [76] we prove analytically the associativity of
the topological algebra.

Explicit Evaluation of the Index

α

β

γ

δ

θ

α γ

θ

β δ

=

Figure 3.6: The basic S-duality channel-crossing. The two diagrams are two equiv-
alent (S-dual) ways to represent the N = 2 gauge theory with a single gauge group
SU(2) and four SU(2) flavour groups, which is the basic building block of the A1

generalized quiver theories. The indices on the edges label the eigenvalues of the
corresponding SU(2) groups.

As shown in (2.13) and (2.14), the single letter partition function in (t, y, v)
parametrization are given by

adjoint : fV (t, y, v) =
t2v − t4

v
− t3(y + y−1) + 2t6

(1− t3 y)(1− t3y−1)
, (3.11)

trifundamental : f
1
2
H(t, y, v) =

t2√
v
− t4

√
v

(1− t3 y)(1− t3y−1)
. (3.12)

We are now ready to check explicitly the basic S-duality move – S-duality with
respect to one of the SU(2) gauge groups, represented graphically as channel-
crossing with respect to one of the edges of the graph (figure 3.6). The full
S-duality group of a graph is generated by repeated applications of the basic
move to different edges. The contribution to the index from the left graph in
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figure 3.6 is

I =

∫
dθ∆(θ)e

∑∞
n=1

1
n

[
fV
n χadj(nθ)+f

1
2H
n χ3f (nα,nβ,nθ)+f

1
2H
n χ3f (nθ,nγ,nδ)

]
.

(3.13)

Substituting the expressions for the characters,

I =
e
∑∞

n=1

fV
n
n

π

∫ 2π

0

dθ sin2 θ e

∑∞
n=1

[
2fV

n
n cos 2nθ+

8f

1
2
H

n
n (cosnα cosnβ+cosnγ cosnδ) cosnθ

]
,

(3.14)

where fV
n ≡ fV (tn, yn, vn) and f

1
2
H

n ≡ f
1
2
H(tn, yn, vn). S-duality of the index

is the statement this integral is invariant under permutations of the external
labels α, β, γ, δ. Since symmetries under α ↔ β and (independently) under
γ ↔ δ are manifest, the non-trivial requirement is symmetry under β ↔ γ,
which gives the index associated to the crossed graph on the right of figure
3.6.

The integrand of (3.14) is not invariant under β ↔ γ, but the integral is, as
once can check order by order in a series expansion in the chemical potential t.
Here is how things work to the first non-trivial order. We expand the integrand
in t around t = 0, and set y = v = 1 for simplicity. The single-letter partition
functions behave as

fV (t, y = 1, v = 1) ∼ t2 − 2 t3 , f
1
2
H(t, y = 1, v = 1) ∼ t2 − t4 . (3.15)

The first non-trivial check is for the coefficient of I of order O(t4),

I ∼ t4
∫ 2π

0

dθ sin2 θ

(
cos 4θ + 2 cos2 2θ + 4A2 cos 2θ (3.16)

+32A2
1 cos

2 θ − 2 cos 2θ + 16A1 cos θ cos 2θ − 8A1 cos θ

)
,

where An ≡ cosnα cosnβ+cosnγ cosnδ. Performing the elementary integrals,

I ∼ t4 [6π + 2π (cos 2α+ cos 2β + cos 2γ + cos 2δ + 8 cosα cosβ cos γ cos δ)] ,

(3.17)

which is indeed symmetric under α ↔ β ↔ γ ↔ δ. We stress that crossing
symmetry depends crucially on the specific form of the single-letter partition
functions (2.13) and (2.14) and thus on the specific field content. We have
performed systematic checks by calculating the series expansion to several
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higher orders using Mathematica. Fortunately it is possible to give an analytic
proof of crossing symmetry of the index, as we now describe.

Elliptic Beta Integrals and S-duality

The fundamental integral (3.14) can be recast in an elegant way in terms
of special functions known as elliptic Beta integrals. We start by rewriting
the building blocks (3.6) for the index in the following compact form as in
section 2.4

Cαiαjαk
= exp

(
∞∑
n=1

1

n
f

1
2
H

n χ3f (nαi, nαj, nαk)

)
(3.18)

= Γ(
t2√
v
a±1
i a±1

j a±1
k ; p, q),

ηαi = exp

(
∞∑
n=1

1

n
fV
n χadj(nαi)

)

=
1

∆(αi)

(p; p)(q; q)

4π
Γ(t2 v; p, q)

Γ(t2 v a±2
i ; p, q)

Γ(a±2
i ; p, q)

.

Here we have defined ai = exp(iαi) and used

exp

(
∞∑
n=1

1

n
fn

)
= (p; p)(q; q)Γ(t2v; p, q), (a; b) ≡

∞∏
k=0

(1− abk) (3.19)

Again, One should keep in mind that the rhs of the first line in (3.18) is a
product of eight elliptic Gamma functions according to the condensed nota-
tion (2.33).

Collecting all these definitions the fundamental integral (3.14) becomes

κΓ
(
t2v; p, q

) ∮ dz

z

Γ(t2 v z±2; p, q)

Γ(z±2; p, q)
Γ(

t2√
v
a±1b±1z±1; p, q)Γ(

t2√
v
c±1d±1z±1; p, q),

pq = t6 ,

(3.20)

with κ ≡ (p; p)(q; q)/4πi. As it turns out, this integral fits into a class of integrals
which are an active subject of mathematical research, the elliptic Beta integrals

E(m)(t1, . . . , t2m+6) ∼
∮
dz

z

Γ(t1z, . . . t2m+6z; p, q)

Γ(z±2; p, q)
,

2m+6∏
k=1

tk = (pq)
m+1

. (3.21)

Our integral is a special case of E(5). Elliptic Beta integrals have very interesting
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Symbol Surface Value

Cαβγ

|α〉

|β〉

|γ〉

Γ( t2√
v
a±1b±1c±1)

C γ
αβ

|α〉

|β〉

〈γ| iκ
∆(γ)

Γ(t2 v) Γ(t2 v c±2)
Γ(c±2)

Γ( t2√
v
a±1b±1c±1)

ηαβ

〈α|

〈β|

i κ
∆(α)

Γ(t2 v) Γ(t2 v a±2)
Γ(a±2)

δ̂(α, β)

Table 3.1: The structure constants and the metric in terms of elliptic Gamma func-
tions. For brevity we have left implicit the parameters of the Gamma functions,
p = t3y and q = t3y−1. We have defined a ≡ exp(iα), b ≡ exp(iβ), and c ≡ exp(iγ).
Recall also κ ≡ (p; p)(q; q)/4πi and ∆(α) ≡ (sin2 α)/π.
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symmetry properties. For instance the symmetry of E(2) is related to the Weyl
group of E7. Very recently van de Bult proved [76] that special cases of the E(5)

integral, which are equivalent to (3.20), are invariant under the Weyl group of F4.
In particular (3.20) is invariant under b ↔ c. This is theorem 3.2 in [76], with
the parameters {t1,2,3,4, b} of [76] related to the parameters {a, b, c, d, t2v} in our
equation (3.20) by the substitution

t1 →
t2√
v
a b, t2 →

t2√
v
a/b, t3 →

t2√
v
c d, t4 →

t2√
v
c/d, b→ t2 v. (3.22)

This completes the proof of crossing symmetry of the fundamental integral (3.14).

|α〉

Figure 3.7: Handle-creating operator Jα

The expressions for the structure constants and metric of the topological algebra
in terms of the elliptic Gamma functions are summarized in table 3.1. We will give
a more general table 4.1 later. These expressions are analytic functions of their
arguments, except for for the metric ηαβ which contains a delta-function. One can
try and use the results of the theory of elliptic Beta integrals to represent the delta-
function in a more elegant way, indeed such a representation is sometimes available
in terms of a contour integral [78]. However, for generic choices of the parameters,
the definition of [78] involves contour integrals not around the unit circle and thus
using this representation one presumably should also change the prescription (3.7)
for contracting indices. In the limit v → t the relevant contours do approach the
unit circle and the formalism of [78] yields elegant expressions. This limit is however
slightly singular. We discuss it in appendix A.2.

As a simple illustration of the use of the expressions in table 3.1 let us compute
the superconformal index of the theory associated to diagram (b) in figure 3.2. This
is essentially the “handle-creating” vertex Jα of the TQFT, figure 3.7. We have

Jα = Cαβγ η
βγ = κΓ

(
t2v
)
Γ

(
t2√
v
a±1

)2 ∮
dz

z

Γ(t2v z±2)

Γ(z±2)
Γ

(
t2√
v
z±2 a±1

)
. (3.23)

Multivariate extensions of elliptic Beta integrals have appeared in the calculation
of the superconformal index for pairs of N = 1 theories related by Seiberg duali-
ty [21]. Unlike our N = 2 superconformal cases, there is no continuous deformation
relating two Seiberg-dual theories, and it is not a priori obvious that their indices,
evaluated at the free UV fixed points, should coincide – but it turns out that they
do, thanks to identities satisfied by these multivariate integrals [83]. See also [22].
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Re τ

Im τ

0 1 10

Re τ

Im τ

(a) (b)

Figure 3.8: Moduli spaces for N = 2 SU(n) gauge theory with 2n flavors, (a) for
n = 2 and (b) for n = 3 (in fact, for any n > 2). The shaded region in (a) is
H/SL(2,Z) while in (b) it is H/Γ0(2), where H is the upper half plane.

3.2 Argyres-Seiberg duality and the index of

E6 SCFT

The S-duality group of the N = 2 SU(2) gauge theory with four flavors is SL(2,Z).
The action of this group on the gauge coupling is generated by τ → τ + 1 and
τ → −1/τ . In Gaiotto’s description [3] this theory is constructed by compactification
of the 6d (2, 0) theory on a sphere with four punctures of the same kind. Then, the
S-duality group could be understood as the mapping class group of this Riemann
surface. The moduli space of the gauge coupling is shown in figure 3.8 (a). We
can see that a fundamental domain can be chosen such that nowhere in the moduli
space does the coupling take an infinite value.

For the case of N = 2 SU(3) gauge theory with 6 flavors, however, the S-duality
group is Γ0(2). The action of the S-duality on the complex coupling is generated
by the transformations τ → τ + 2 and τ → −1/τ . In Gaiotto’s setup this theory
is obtained by compactifying the (2, 0) theory on the sphere with two punctures of
one type and two of another. The mapping class group of such a sphere is Γ0(2).
The fundamental domain of this group is shown in the figure 3.8 (b) and, unlike
the SU(2) case, this does unavoidably contain a point with infinite coupling. In
[28], it was shown that this infinitely coupled cusp could be described in terms
of an SU(2) gauge group weakly-coupled to a single hypermultiplet and a rank
1 interacting SCFT with E6 flavor symmetry. Figure 3.10 describes this duality
pictorially. The SU(2) subgroup of the flavor symmetry of the SCFT that is gauged
commutes with the SU(6) subgroup of E6. This SU(6) combined with SO(2) flavor
symmetry of the single hypermultiplet generates the full U(6) flavor symmetry of
the original SU(3) gauge theory. In other words, the SO(2) flavor symmetry of the
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SU(3)y

U(1)bU(1)a

SU(3) SU(3)

U(1)b U(1)a

SU(3)z SU(3)y SU(3)z

Figure 3.9: SU(3) SYM with Nf = 6. The U(6) flavor symmetry is decomposed as
SU(3)z ⊗ U(1)a ⊕ SU(3)y ⊗ U(1)b. S-duality τ → −1/τ interchanges the two U(1)
charges.

single hypermultiplet corresponds to the baryon number of the original SU(3) gauge
theory. The quarks of the SU(3) theory are charged ±1 under this U(1)B while the
quarks of the SU(2) theory are charged ±3 under the same.

The E6 SCFT has a Coulomb branch parametrized by the expectation value of
a dimension 3 operator u which is identified with Trϕ3 of the dual SU(3) theory,
while the Trϕ2 of the SU(3) theory corresponds to the Coulomb branch parameter
of the SU(2) gauge theory. The E6 CFT also has a Higgs branch parametrized by
the expectation value of dimension 2 operators X, which transform in the adjoint
representation of E6 (78). As shown in [80] the Higgs branch operators obey a
Joseph relation at quadratic order which leaves a 22 complex dimensional Higgs
branch. When coupled to the SU(2) gauge group, the resulting Higgs branch has
complex dimension 20. The dual SU(3) theory also has a Higgs branch of complex
dimension 20 and its Higgs operators can be easily constructed by combination of
squark fields. See appendix A.5 for more details.

The moduli space might contain also other infinitely coupled cusps which how-
ever are S-dual to the weakly-coupled cusp τ = i∞. This is the usual S-dualty
mapping the Nf = 6 SU(3) gauge theory to itself with some of the U(1) flavor
factors interchanged. This duality is represented in figure 3.9.

We proceed to compute the superconformal index of the SU(3) theory and, by
using the Argyres-Seiberg duality, of the interacting E6 SCFT.

3.2.1 Weakly-coupled frame

We take the chiral multiplets to be in the fundamental and antifundamental of the
color and flavor. U(1)B rotates them into each other. The vector multiplet is in the
adjoint of the color. The SU(3) characters of the relevant representations are:

χf = z1 + z2 + z3 χf̄ =
1

z1
+

1

z2
+

1

z3
and χadj = χfχf̄ − 1 (3.24)

while writing down these characters, we have to impose z1z2z3 = 1.
Let z’s stand for the eigenvalues of the flavor group and x’s be the eigenvalues

of the color group. The U(1)B charge is counted by the variable a. Let us write
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down the characters of the representation of the matter

χhyp =
3∑

i=1

3∑
j=1

a zi xj +
3∑

i=1

3∑
j=1

1

a zi xj
. (3.25)

Using (2.39) the index contributed by the matter can be written in a closed form
as

Ca,x,y =
3∏

i=1

3∏
j=1

Γ

(
t2√
v
(a xi yj)

±1

)
. (3.26)

The index for the SU(3) gauge theory with six hypermultiplets is then given by the
following contour integral.

Ia,z;b,y = Cb,y,x Ca,z
x =

2

3
κ2Γ(t2v)2

∮
T2

2∏
i=1

dxi
2πi xi

3∏
i=1

3∏
j=1

Γ

(
t2√
v

(
azi
xj

)±1
)
Γ

(
t2√
v
(b yi xj)

±1

)∏
i ̸=j

Γ

(
t2v

xi
xj

)
∏
i ̸=j

Γ

(
xi
xj

) .

(3.27)

By expanding this integral in t one can show that it is symmetric under interchang-
ing the two U(1) factors (see appendix A.3),

a ↔ b . (3.28)

Interchanging the two U(1)s is equivalent to performing a usual S-duality between a
weakly-coupled and infinitely-coupled points of the moduli space and thus we expect
the index to be invariant under this operation.4

One can analytically prove this statement in a special case. Notice that if t = v,
the integral (3.27) is given by

Ia,z;b,y|v=t = I
(2)
A2

(
1| t

3
2a−1z−1, t

3
2 by; t

3
2az, t

3
2 b−1y−1

)
, (3.29)

where [83]

I
(m)
An

(Z|t0, . . . , tn+m+1;u0, . . . , un+m+1; p, q) = (3.30)

2n

n!
κn
∮
Tn−1

n−1∏
i=1

dxi
2πi xi

∏n
i=1

∏m+n+1
j=0 Γ(tj xi, uj/xi; p, q)∏

i ̸=j Γ(xi/xj ; p, q)

∣∣∣∣∣∏n
i=1 xi=Z

.

4The integral (3.27) is an SU(3) generalization of the SU(2) integral in [15] for which
the analogous statement to (3.28) has an analytic proof [76]. It is easy to general-
ize [3.27,3.28] for SU(n) theories with arbitrary n, see appendix A.6.
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U(1)bU(1)a

SU(3) U(1)SU(3) ⊃ SU(2)E6

SU(3)z SU(3)y SU(3)z

SU(3)y

Figure 3.10: Argyres-Seiberg duality for SU(3) SYM with Nf = 6.

If the integral I
(m)
An

(Z| . . . ti . . . ; . . . ui . . .) satisfies the condition that
∏m+n+2

i=1 tiui =

(pq)m+1 then due to [83], the following theorem holds

I
(m)
An

(Z| . . . ti . . . ; . . . ui . . .) = I
(n)
Am

(
Z| . . . T

1
m+1

ti
. . . ; . . .

U
1

m+1

ui
. . .

)
m+n+2∏
r,s=1

Γ (trus) ,

(3.31)

where T ≡
∏m+n+2

r=1 tr and U ≡
∏m+n+2

r=1 ur.
5 Coincidently, our integral (3.27)

satisfies the above requirement and applying the theorem we can transform it into

I
(2)
A2

(
1|t 3

2 bz, t
3
2 a−1y−1; t

3
2 b−1z−1, t

3
2 ay

)
= I

(2)
A2

(
1|t 3

2 b−1z−1, t
3
2 ay; t

3
2 bz, t

3
2 a−1y−1

)
.

(3.32)

Note that the factor
∏m+n+2

r,s=1 Γ(trus) in (3.31) reduces to 1 after pairwise cance-

lations using the property (2.35). What we have effectively achieved through this
transformation is that we have exchanged the U(1) quantum numbers of the matter
charged under the SU(3)2 flavor. This in particular implies that both the SU(3)
flavor groups are on the same footing and are not associated with separate U(1)’s.

3.2.2 Strongly-coupled frame and the index of E6 SCFT

In the strongly-coupled S-duality frame, figure 3.10, we have a fundamental hyper-
multiplet coupled to an SU(2) gauge theory. This gauge group is identified with an
SU(2) subgroup of the E6 flavor symmetry of a strongly-coupled rank one SCFT.
We do not know the field content of the strongly-coupled rank 1 E6 SCFT. This
implies that we can not write down the “single letter” partition function for that
theory and, a-priori, can not directly compute its index. In what follows we will use
the index computed in the weakly-coupled frame (3.27) and the above statements
about Argyres-Seiberg duality to infer the index of the E6 SCFT.

Let C(E6) denote the index of rank 1 E6 SCFT [29]. The maximal subgroup of E6

is SU(3)3. Two among these three SU(3)’s are identified with the two SU(3) factors

5This identity was extensively used in [21] to show that certain theories related by
Seiberg duality have equal superconformal indices [19]. In this context the authors of [22, 23]
applied the elliptic hypergeometric techniques to a large class of Seiberg dualities.
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in the flavor group of the weakly-coupled theory, see figure 3.10. Let the additional
SU(3) be denoted byw. The fundamental representation of E6 is decomposed under
SU(3)w ⊗ SU(3)y ⊗ SU(3)z as,

27E6 = (3, 3̄,1)⊕ (3̄,1,3)⊕ (1,3, 3̄) . (3.33)

Thus, the character of the E6 fundamental fields is,

χ27 =

3∑
i,j=1

(
wi

yj
+
zi
wj

+
yi
zj

)
,

3∏
i=1

yi =

3∏
i=1

zi =

3∏
i=1

wi = 1 . (3.34)

The index C(E6) is thus a function of w, y, and z. The S-duality picture suggests
that we should decompose SU(3)w as SU(2)e ⊗U(1)r. This amounts to the change
of variables {w1, w2, w2} → {er, re ,

1
r2
}, for which the character of the fundamental

of E6 becomes

χ27 = (er +
r

e
+

1

r2
)(

1

y1
+

1

y2
+

1

y3
) + (

1

er
+
e

r
+ r2)(z1 + z2 + z3) +

3∑
i,j=1

yi
zj
.

(3.35)

Thus, the index of the E6 SCFT can be denoted as C(E6) ((e, r),y, z). In the above
notations the index of the additional hypermultiplet of the theory is

Cs, e = Γ

(
t2√
v
e±1 s±1

)
. (3.36)

Thus, one can write the superconformal index of the theory in the strongly-
coupled frame as

Î (s, r;y, z) = Cs
eC

(E6)
(e,r),y,z (3.37)

= κΓ(t2v)

∮
T

de

2πi e

Γ(t2ve±2)

Γ(e±2)
Γ(

t2√
v
e±1 s±1) C(E6) ((e, r),y, z) .

By Argyres-Seiberg duality we have to equate

Î (s, r;y, z) = Ia,z;b,y , (3.38)

where Ia,z;b,y is given in (3.27), and we appropriately identify the U(1) charges,

s = (a/b)3/2, r = (a b)−1/2 . (3.39)

It so happens that the integral of equation (3.37) has special properties which
allow us to invert it (see appendix A.4 and [78] for the details). One can write the
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following

κ

∮
Cw

ds

2πi s

Γ(
√
v

t2
w±1 s±1)

Γ( v
t4
, s±2)

Î (s, r;y, z) = Γ(t2v w±2) C(E6) ((w, r),y, z) ,

(3.40)

where the contour Cw is a deformation of the unit circle such that it encloses s =√
v

t2
w±1 and excludes s = t2√

v
w±1 (for precise definition and details see appendix A.4

and [78]). The above expression for the index C(E6) does satisfy (3.37), but a-priori
does not uniquely follow from it. However, as we will explicitly see below, (3.40) is
consistent with what is expected from E6 SCFT. We will comment on this issue in
the end of this section. We can thus use the Argyres-Seiberg duality (3.38) to write
a closed form expression for the E6 index

C(E6) ((w, r),y, z) =
2κ3Γ(t2v)2

3Γ(t2v w±2)

∮
Cw

ds

2πi s

Γ(
√
v

t2 w
±1 s±1)

Γ( v
t4 , s

±2)
×

×
∮
T2

2∏
i=1

dxi
2πi xi

3∏
i=1

3∏
j=1

Γ

 t2√
v

(
s

1
3 zi
xj r

)±1
Γ

 t2√
v

(
s−

1
3 yi xj
r

)±1
∏

i ̸=j

Γ

(
t2v

xi
xj

)
∏
i ̸=j

Γ

(
xi
xj

) .

(3.41)
One can rewrite the above expression without using the special integration contour.
The integration contour Cw can be split into five pieces: a contour around the unit

circle T, two contours encircling the simple poles of Γ(
√
v

t2
w±1 s±1) at s =

√
v

t2
w±1, and

two contours encircling in the opposite direction the simple poles of Γ(
√
v

t2
w±1 s±1)

at t2√
v
w±1. Using the fact that elliptic Gamma function satisfies (2.35) we have

C(E6) ((w, r),y, z) =
κ

Γ(t2vw±2)

∮
T

ds

s

Γ(
√
v

t2
w±1 s±1)

Γ( v
t4
, s±2)

Î (s, r;y, z)

+
1

2

Γ(w−2)

Γ(t2vw−2)

[
Î
(
s =

√
vw

t2
, r;y, z

)
+ Î

(
s =

t2√
vw

, r;y, z

)]
+

1

2

Γ(w2)

Γ(t2vw2)

[
Î
(
s =

√
v

t2w
, r;y, z

)
+ Î

(
s =

t2w√
v
, r;y, z

)]
.

(3.42)

The index (3.41) encodes some information about the matter content of the E6

theory. To extract this information it is useful to expand the index (3.41) in the
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chemical potentials. We define an expansion in t as

C(E6) ≡
∞∑
k=0

ak t
k . (3.43)

The first several orders in this expansion have the following form

a0 =1

a1t =a2t
2 = a3t

3 = 0

a4t
4 =

t4

v
χE6
78

a5t
5 =0

a6t
6 =− t6χE6

78 − t6 + t6v3

a7t
7 =

t7

v

(
y +

1

y

)
χE6
78 +

t7

v

(
y +

1

y

)
− t7v2

(
y +

1

y

)
a8t

8 =
t8

v2

(
χE6

sym2(78)
− χE6

650 − 1
)
+ t8v + t8v

a9t
9 =− t9

(
y +

1

y

)
χE6
78 − 2t9

(
y +

1

y

)
+ t9v3

(
y +

1

y

)
a10t

10 =− t10

v
(χE6

78 χ
E6
78 − χE6

650 − 1) +
t10

v

(
y2 + 1 +

1

y2

)
χE6
78+

+
t10

v

(
y +

1

y

)2

− t10v2
(
y +

1

y

)2

a11t
11 =

t11

v2

(
y +

1

y

)
(χE6

78 χ
E6
78 − χE6

650 − 1) + t11v

(
y +

1

y

)
+ t11v

(
y +

1

y

)
.

(3.44)

The adjoint representation of E6 , 78, decomposes in the following way in terms of
its maximal SU(3)3 subgroup

78 = (3,3,3) + (3̄, 3̄, 3̄) + (8,1,1) + (1,8,1) + (1,1,8) , (3.45)

and 650 of E6 is composed as

650 = 27× 27− 78− 1 . (3.46)

The Higgs branch operators X of E6 theory are in the adjoint (78) representation
of E6 flavor algebra. The terms of the index proportional to χE6

78 are forming the
following series, [

t4

v
− t6 +

t7

v

(
y +

1

y

)
− t9

(
y +

1

y

)
+ · · ·

]
χE6
78 , (3.47)
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which is the index of a multiplet with ∆ = 2, j = j̄ = 0 and r = 0 and of its
derivatives (see appendix C.2 of [42]). Taken as a “letter” this multiplet has the
following “single letter” partition function

t4/v − t6

(1− t3y)(1− t3/y)
, (3.48)

which matches the quantum numbers of the Higgs branch operators on the weakly-
coupled side of the Argyres-Seiberg duality if we follow the identifications listed in
[80].

The E6 singlet part of the index contains yet another series,

t6v3 − t7v2
(
y +

1

y

)
+ t8v + t9v3

(
y +

1

y

)
+ · · · . (3.49)

This series forms the index of a chiral multiplet with ∆ = 3, j = j̄ = 0 and r = 3
together with its derivatives (appendix C.1 of [42])

t6v3 − t7v2
(
y + 1

y

)
+ t8v

(1− t3y)(1− t3/y)
. (3.50)

Since the Coulomb branch operator, u, of E6 theory (which is identified as Trϕ3 of
the dual SU(3) theory) has exactly the same quantum numbers, this multiplet is
identified as the Coulomb branch operator.

The remaining singlet part of the index,

− t6 +
t7

v

(
y +

1

y

)
+ t8v − 2t9

(
y +

1

y

)
+ · · · , (3.51)

is just the index of the stress tensor multiplet and its derivatives (appendix C.3 of
[42])

−t6 + t7

v

(
y + 1

y

)
+ t8v − t9

(
y + 1

y

)
(1− t3y)(1− t3/y)

. (3.52)

Besides the matter content, the index also provides possible constraints among
operators. For example, it was argued [80] that the Higgs branch operators of the
E6 theory should obey the Joseph relations,

(X⊗ X)|I2 = 0 , (3.53)

where the representation I2 is defined as

sym2(V (adj)) = V (2adj)⊕ I2 . (3.54)

For E6, adj = 78, 2adj = 2430 and then sym2(78) = 2430 ⊕ 650 ⊕ 1. Thus, in
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our case
I2 = 650⊕ 1 . (3.55)

The Joseph relation in E6 theory reads,

(X⊗ X)|650⊕1 = 0 , (3.56)

which means that these operators should not appear in the index. The index of X
is t4/v, then the index of X⊗ X is t8/v2. (3.44) shows that our index is consistent
with the Joseph relation.

Further constraints can also be derived from the higher order terms in (3.44).
Let us consider the index at order t10. The meaning of each term is clear. The first
term corresponds to operators X⊗(QX) with the constraintQ(X⊗X)650+1 = 0 which
is a descendant of Joseph relation above (3.56). The last three terms are derivative

descendants of t4

v χ
E6
78 ,

t7

v

(
y + 1

y

)
and −t7v2

(
y + 1

y

)
respectively. However, terms

of the form
t10v2χE6

78 , (3.57)

which would be corresponding to the Higgs⊗Coulomb operators are absent. This
fact implies the constraint

X⊗ u = 0 . (3.58)

This is consistent with the fact that the E6 theory has rank 1. The absence of
− t10

v χ
E6
78 also implies the constraint

X⊗ T = 0 , (3.59)

where T is the stress tensor. The structure of the index at order t11 is consistent
with these two constraints.

Finally, let us comment on the uniqueness of our proposal. In principle, the
index (3.41) produced by the construction of this section might differ from the true

index of the E6 SCFT: C
(E6)
true ((e, r),y, z) = C(E6)((e, r),y, z)+δC((e, r),y, z), with

δC satisfying

∮
T

de

2πi e

Γ( t2√
v
e±1s±1)Γ(t2v e±2)

Γ(e±2)
δC((e, r),y, z) = 0 . (3.60)

At this stage we are not able to rigorously rule out such a possibility. However,
the E6 covariance of our proposal, its consistency with physical expectations about
protected operators and the further S-duality checks performed in the following
section, make us confident that we have identified the correct index of the E6 SCFT.

Note that the expression for the index (3.41) is not explicitly given in terms of
E6 characters. However, as one learns from the perturbative expansion (3.44), the
characters of SU(3)y⊗SU(3)z⊗SU(2)w⊗U(1)r always combine into E6 characters.
Essentially, since the weakly-coupled frame has really SU(6)⊗U(1) flavor symmetry
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we can write an expression for the E6 index which has a manifest SU(6) ⊗ SU(2)
symmetry,6 but not the full E6. The fact that just by assuming Argyres-Seiberg
duality we obtain an index for a theory with an E6 flavor symmetry and with a
consistent spectrum of operators is a non-trivial check of Argyres-Seiberg duality.

3.2.3 S-duality checks of the E6 index

In the previous section we have discussed the superconformal index of the Nf = 6
SU(3) theory and of its strongly-coupled dual. One can obtain this theory by
compactifying a (2, 0) 6d theory on a sphere with four punctures, two U(1) punctures
and two SU(3) punctures. The different S-duality frames are then given by the
different degeneration limits of this Riemann surface. The weakly-coupled frames
are obtained by bringing together one of the U(1) punctures and one of the SU(3)
punctures, and the strongly-coupled frame is obtained by colliding the two SU(3)
(U(1)) punctures. The coupling constant of the theory is related to the cross ratio
of the four punctured sphere.

In [3] Gaiotto suggested to generalize this picture by considering general Rie-
mann surfaces with an arbitrary numbers of punctures of different types (two types
in case of the SU(3) theories). The claim is that all theories with the same number
and type of punctures and same topology of the Riemann surface are related by
S-dualities. The immediate consequence of this claim for the superconformal index
is that all such theories have to have the same index as it is independent of the val-
ues of the coupling, i.e. the moduli of the Riemann surface. This implies that the
superconformal index is a topological invariant of the punctured Riemann surface.
It was claimed in [15] that the superconformal index can be actually interpreted as
a correlator in a two dimensional topological quantum field theory. The structure
constants of this TQFT are given by the index of the three punctured sphere and
the contraction of indices (i.e. metric) is gauging of the flavor symmetries. The
associativity of the algebra generated by the structure constants is equivalent to the
invariance of the index of four punctured spheres under pair-of-pants decomposition
into two three punctured spheres. The structure constants and the metric were
constructed and the associativity was explicitly verified for the SU(2) case.

In this section we will make the same analysis for the SU(3) case. We have
two types of punctures, associated to U(1) and SU(3) flavor symmetries. There are
thus different three point functions one can construct. The index of the theory on
a sphere with three SU(3) punctures, i.e. the index of the E6 theory, is a structure

constant which we will denote by C
(333)
x,y,z and it is just given by (3.41),

C
(333)
x,y,z = C(E6)

((√
x1
x2
,
√
x1x2

)
,y, z

)
. (3.61)

6The fact that this symmetry can be manifestly seen in the expression for the index is
very reminiscent of the construction of the E6 symmetry using multi-pronged strings in [84].
It is very interesting to understand whether these facts are related.
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This vertex corresponds to the E6 theory which has rank one, and thus we will refer

to it as a rank 1 vertex. We will denote by C
(133)
x,y,a the index of the sphere with

two SU(3) punctures and one U(1) puncture. This is a free theory consisting of
a hypermultiplet in fundamental of two SU(3) flavor groups and its value is given
by (3.26),

C
(133)
a,x,y =

3∏
i,j=1

Γ

(
t2√
v
(axiyj)

±
)
. (3.62)

This vertex corresponds to a free, rank 0, theory and we will refer to it as rank
zero structure constant. Later on we will define yet another three point function,
formally associated to a sphere with two U(1) punctures and one SU(3) puncture.
This vertex will have effective rank −1. The metric of the model, ηx,y, is defined as

ηx,y =
2

3
κ2 Γ2(t2v)

∏
16i<j63

Γ

(
t2v
(

xi
xj

)±)
Γ

((
xi
xj

)±) ∆̂(x−1,y) , (3.63)

where ∆̂(x−1,y) is a δ-function kernel defined by∮
T2

2∏
i=1

dxi
2πi xi

∆̂(x,w) f(x) = f(w) , w ∈ T2 . (3.64)

The indices are contracted as follows

A...u...B...u... ≡
∮
T2

2∏
i=1

dui
2πiui

A...u...B...u...

∣∣∣∣∣∏3
i=1 ui=1

. (3.65)

Following these definitions the superconformal indices of all the SU(3) generalized
quivers are obtained by contracting the structure constants in different ways.

For the S-duality to hold, and subsequently for the structure constants to have a
TQFT interpretation, the algebra generated by these objects has to be associative.
We proceed to verify this fact.

(333)− (333) associativity

Let us consider the generalized quiver with genus zero and four SU(3) punctures.
The index should be invariant under the permutation of the four SU(3) characters,

I3333(x,y;w, z) = C
(333)
x,y,uη

u,vC
(333)
v,z,w = C

(333)
x,z,uη

u,vC
(333)
v,y,w . (3.66)
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(133)
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(113)
a,b,x

Figure 3.11: The three structure constants of the TQFT. The dots represent U(1)
punctures and the circled dots SU(3) punctures.

At order O(t4) we find ,

I3333 ∼ t4
[
1

v
(χ8(x) + χ8(y) + χ8(z) + χ8(w)) + v2

]
, (3.67)

and at order O(t6),

I3333 ∼ t6
[
−(χ8(x) + χ8(y) + χ8(z) + χ8(w)) + 3v3

]
. (3.68)

These axpressions are symmetric under the exchange x ↔ y ↔ z ↔ w. The
associativity can be checked to hold to higher orders as well.

(333)− (331) associativity

Let us consider the generalized quiver with genus zero, three SU(3) punctures and
one U(1) puncture. The index should be invariant under permutations of the three
SU(3) characters

I3331(a,x;y, z) = C
(133)
a,x,uη

uvC
(333)
v,y,z = C

(133)
a,y,uη

uvC
(333)
v,x,z . (3.69)

We also expand the integrand in t around t = 0. The first non-trivial check is for
the coefficient of I3331 at order O(t4),

I3331 ∼ t4
[
1

v
(χ8(x) + χ8(y) + χ8(z) + 1) + v2

]
, (3.70)

which is indeed symmetric under x ↔ y ↔ z. At order O(t6),

I3331 ∼ t6

v3/2
(
a−3 + a−1χ3(x)χ3(y)χ3(z) + aχ3(x)χ3(y)χ3(z) + a3

)
(3.71)

−t6 (χ8(x) + χ8(y) + χ8(z) + 1) + 2t6v3 ,
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which is also symmetric under x ↔ y ↔ z. Again, we can perform systematic
checks to arbitrary high order in t.

The (311) three point function and (311)− (331) associativity

The index of the Nf = 6 SU(3) theory in the strongly-coupled frame is given in
terms of an integral over an SU(2) character. Thus, we can not write it using the
structure constants and the metric we defined in the beginning of this section. The
strongly-coupled frame is obtained when two U(1) punctures collide and thus in
what follows we will formally define a structure constant with two U(1) characters
and an SU(3) character such that when contracted with the E6 structure constant
using the metric above it will produce the index of the strongly-coupled frame.

Let us rewrite the index in the strongly-coupled frame,

Î (s, r;y, z) = κ Γ(t2v)

∮
T

de

2πi e

Γ( t2√
v
e± s±)

Γ(e±2)
Γ(t2v e±2) C ((e, r),y, z) ,

(3.72)

as rank one (E6) (333) and rank −1 (113) vertices contracted

Î (a, b;y, z) =C
(113)
a,b,x η

x,x′
C

(333)
x′,y,z

=
2

3
κ2 Γ(t2v)2

∮
T2

2∏
i=1

dxi
2πi xi

∏
i ̸=j

Γ(t2v xi/xj)

Γ(xi/xj)
C(113)

(
a, b,x−1

)
C(333) (x,y, z) .

(3.73)

For this we define

C(113)
(
a, b,x−1

)
=

3

2κΓ(t2v)

∮
T

de

2πi e

Γ( t2√
v
e±1 s±1) Γ(t2v e±2)

Γ(e±2)

∏
i ̸=j

Γ(xi/xj)

Γ(t2v xi/xj)
∆̂(x,w) .

(3.74)

Here, w = (e, r) with e an SU(2) character and r a U(1) character. The U(1)
charges are related as in (3.39), s = (a/b)3/2 and r = (a b)−1/2. ∆̂(x,w) is a δ-
function kernel defined in (3.64). The (113) vertex has effective rank −1. Using the
above definition the TQFT algebra is well defined with all the contractions being
SU(3) integrals.

The associativity of (311) vertex contracted with a (333) vertex is achieved by
construction: remember that we obtained the index of E6 SCFT by requiring this
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property. Let us check the associativity of (331) contracted with (113)

I(a, b; c,y) = C
(113)
a,b,x η

x,x′
C

(331)
x′,y,c =

2

3
κ2 Γ(t2v)2

∮ 2∏
i=1

dxi
2πi xi

∏
i ̸=j

Γ(t2v xi/xj)

Γ(xi/xj)
C(113)

(
a, b,x−1

) ∏
i,j

Γ

(
t2√
v
(c xi yj)

±1

)

=
3∏

i=1

Γ

(
t2√
v

(c yi
r2

)±1
)

× κΓ(t2v)

∮
de

2πi e

Γ(t2v e±2)

Γ(e±2)
Γ

(
t2√
v
s±1 e±1

)
Γ

(
t2√
v
(c r yi)

±1
e±1

)
.

(3.75)

This is exactly the index of SU(2) Nf = 4 (the fourth line in (3.75)) with a
decoupled hypermultiplet in the fundamental of an SU(3) flavor (the third line in
(3.75)). Remembering (3.39) and the results of [15, 76] it is easy to show that there
is a permutation symmetry between the three U(1) punctures a, b and c,

a ↔ b ↔ c . (3.76)

Using the definition (3.74) the index of a sphere with four U(1) punctures is
singular. However, we do not have a physical interpretation of this surface and it
does not appear in any decoupling limit of a physical theory. Thus, making sense
of this surface is not essential.

We have shown that the structure constants define an associative algebra and
thus define a TQFT. In particular the superconformal index of theories with equal
genus and equal number/type of punctures is the same in agreement with S-duality.
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Figure 3.12: The relevant four-punctured spheres for A2 theories. The three different
degeneration limits of a four-punctured sphere correspond to different S-duality
frames. For example, in (a) two of the degeneration limits (when a U(1) puncture
collides with an SU(3) puncture) correspond to the weakly-coupled Nf = 6 SU(3)
theory, the third limit (when two like punctures collide) corresponds to the Argyres-
Seiberg theory. In (d) the degeneration limits correspond to the different duality
frames of SU(2) SYM with Nf = 4 theory plus a decoupled hypermultiplet.
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Chapter 4

TQFT Structure of the Index
for An-Type Quivers

In the previous chapter we have showed that the superconformal index is a useful
observable of class S theories. With the concrete expression of the index for class
S A1 theories, we demonstrate in section 3.1 that the index does indeed take the
form of a correlator in a 2d TQFT and in the process check the S-duality of the
index. Then by demanding consistency with Argyres-Seiberg duality, we further
write down an explicit integral expression for the index of the E6 SCFT which has
no Lagrangian description. The spectral information predicted by the E6 index
coincides with other works. With the index of the E6 SCFT as one of the basic
components, we proceed to define a TQFT structure for generalized quivers with
SU(3) gauge symmetries and check the associativity and S-duality.

General Four-dimensional superconformal field theories of S [3, 4] arise from
partially-twisted compactification of the six-dimensional (2, 0) theory on a punctured
Riemann surface C. The complex-structure moduli of C are identified with the
exactly marginal couplings of the 4d SCFT, while the punctures are associated to
flavor symmetries.

Any punctured surface can be obtained, usually in more than one way, by glu-
ing three-punctured spheres (pairs of pants) with cylinders. The three-punctured
spheres are then the elementary building blocks. They correspond to isolated 4d
SCFTs with flavor symmetry G1 ⊗G2 ⊗ G3, where each factor GI is associated to
one of the three punctures.1 The cylinders correspond to N = 2 vector multiplets,
and the gluing operation amounts to gauging a common SU(k) symmetry of two
punctures. The gluing parameter is interpreted as the complexified gauge coupling,
with zero coupling corresponding to an infinitely long cylinder – a degeneration
limit of the surface. Different pairs-of-pants decompositions of the same surface

1In this chapter we focus on class S theories that descend from the (2, 0) theory of type
Ak−1. Then the punctures are classified by the possible embeddings of SU(2) into SU(k)
and GI ⊂ SU(k) is the commutant of the chosen embedding.
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C correspond to different descriptions of the same SCFT, related by generalized
S-dualities.

As showen in previous chapters the index is naturally viewed as a correlator in
a 2d topological QFT living on C. Let us review how this works. We parametrize
the index of a three-punctured sphere as I(a1,a2,a3), where aI are fugacities dual
to the Cartan subgroup of GI : except in special cases these are a priori unknown
functions. On the other hand we can easily write down the “propagator” associated
to a cylinder,

η(a,b) = ∆(a)IV (a) δ(a,b−1) , (4.1)

where ∆(a) is the Haar measure and IV (a) the index of a vector multiplet, which
is known explicitly. The index of a generic theory of class S can be written in terms
of the index of these elementary constituents. As the simplest example, gluing two
three-punctured spheres with one cylinder one obtains the index of a four-punctured
sphere,

I(a1,a2,a3,a4) =

∮
[da]

∮
[db] I(a1,a2,a) η(a,b) I(b,a3,a4) (4.2)

=

∮
[da] ∆(a) I(a1,a2,a) IV (a) I(a−1,a3,a4) ,

where we have introduced the notation∮
[da] ≡

∮ k−1∏
i=1

dai
2πiai

. (4.3)

If we expand the index in a convenient basis of functions {fα(a)}, labeled by SU(k)
representations {α},2 we can associate to each three-punctured sphere “structure
constants” Cαβγ and to each propagator a metric ηαβ ,

I(a,b, c) =
∑
α,β,γ

Cαβγ f
α(a) fβ(b) fγ(c) (4.4)

ηαβ =

∮
[da]

∮
[db] η(a,b) fα(a) fβ(b) . (4.5)

Invariance of the index under the different ways to decompose the surface is tan-
tamount of saying that Cαβγ and ηαβ define a two-dimensional topological QFT.3

2For theories of type A, {fα(a)} are symmetric functions of their arguments, which are
fugacities dual to the Cartan generators of SU(k). More generally, for theories of type D
and E, {fα(a)} are invariant under the appropriate Weyl group.

3We are using this term somewhat loosely. As axiomatized by Atiyah, a TQFT is
understood to have a finite-dimensional state-space, while in our case the state-space will
be infinite-dimensional. The best-understood example of a 2d topological theory with an
infinite-dimensional state-space is the zero-area limit of 2d Yang-Mills theory [85, 86] (see
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The crucial property is associativity,

CαβγC
γ
δϵ = CαδγC

γ
βϵ , (4.6)

where indices are raised with the metric ηαβ and lowered with the inverse metric
ηαβ .

It is very natural to choose the complete set of functions {fα(a)} to be orthonor-
mal under the measure that appears in the propagator,∮

[da] ∆(a) IV (a) fα(a)fβ(a−1) = δαβ . (4.7)

Then the metric ηαβ is trivial,

ηαβ = δαβ . (4.8)

Condition (4.7) still leaves considerable freedom, as it is obeyed by infinitely many
bases of functions related by orthogonal transformations. The real simplification
arises if we can find an explicit basis {fα(a)}, such that the structure constants are
diagonal,

Cαβγ ̸= 0 → α = β = γ . (4.9)

Associativity (4.6) is then automatic. For structure constants satisfying (4.6) one
can always find a basis in which they are diagonal: we give a detailed example of
such a diagonalization procedure in appendix B.1 for the simplest limit of the index.
The challenge is to describe the basis in concrete form.

In general the measure appearing in the propagator is complicated and no ex-
plicit set of orthonormal functions is available. We find it very useful to consider an
ansatz

fα(a) = K(a)Pα(a) , (4.10)

for some function K(a). Clearly, from (4.7), the functions {Pα(a)} are orthornormal
under the new measure ∆̂(a),∮

[da] ∆̂(a)Pα(a)P β(a−1) = δαβ , ∆̂(a) ≡ IV (a)K(a)2∆(a) . (4.11)

(Recall that ∆(a) always denotes the Haar measure). The name of the game is to
find a clever choice of K(a), for which ∆̂(a) is a simple known measure and the
orthonormal basis {Pα(a)} an explicit set of functions such that (4.9) holds.

Once the diagonal basis {fα(a)} and the structure constant Cααα are known,

e.g. [87] for a comprehensive review). Happily, the 2d topological theory associated to the
index turns out to be closely related to 2d Yang-Mills.
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one can easily calculate the index of the SCFT associated to the genus g surface
with s punctures. Such a surface can be built by gluing 2g− 2 + s three-punctured
spheres, so we have4

Ig,s(a1,a2, . . . ,as) =
∑
α

(Cααα)
2g−2+s

s∏
I=1

fα(aI) . (4.12)

In the rest of this chapter we implement the following strategy. We start by
considering the generalized SU(2) quivers. Since they have a Lagrangian descrip-
tion, closed form expressions for the index (as matrix integrals) are readily available.
We then look for a basis of functions {fα(a)} that diagonalizes the structure con-
stants. Fortunately, for each special limit of the index that we consider, the diagonal
basis is of the form (4.10), with {Pα(a)} well-known symmetric polynomials: Hall-
Littlewood, Schur or Macdonald polynomials. (The first two are in fact special cases
of Macdonald polynomials). Since these polynomials are defined for arbitrary rank,
we can extrapolate from the SU(2) case and formulate compelling conjectures for
the index of all generalized quivers of type A. (This approach readily generalizes to
all ADE theories, but in this paper we focus on the A series). Finally we check our
conjectures against expected symmetry enhancements and S-dualities.

4.1 Limits of the index with additional super-

symmetry

We now consider several limits of the superconformal index, such that the states
contributing to it are annihilated by more than one supercharge. Recall that before
taking any limit the index receives contributions only from states with

δ̃1−̇ = E − 2j2 − 2R+ r = 0 , (4.13)

which are annihilated by Q̃1−̇. We tend to refer to the different limits of the index
by the type of symmetric polynomials relevant for their evaluation. In appendix B.2
we discuss which short multiplets of the superconformal algebra are counted by the
index in each of these limits.

4Here for simplicity we are considering the case where all external punctures are “max-
imal”, i.e. they have flavor symmetry SU(k). The prescription for punctures with reduced
symmetry is discussed in detail in sections 4.2, 4.3 and 4.4.
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Macdonald index

We first consider the limit5

σ → 0 , ρ , τ fixed , (4.14)

(which is the same as p→ 0 with q and t fixed). The limit is well-defined since the
power of σ in the trace formula (2.4) is given by 1

2δ1+ ≥ 0. The index is given by

IM = TrM (−1)F ρ
1
2
(E−2j1−2R−r) τ

1
2
(E+2R+2j2+r) (4.15)

= TrM (−1)F q
1
2
(E−2j1−2R−r) tR+r ,

where TrM denotes the trace restricted to states with δ1+ = E + 2j1 − 2R− r = 0.
Such states are annihilated by Q1+. All in all IM is a 1

4 -BPS object receiving
contributions only from states annihilated by two supercharges, one chiral (Q1+) and
one anti-chiral (Q̃1−̇). The single letter partition functions of the half-hypermultiplet
and the vector simplify to

f
1
2
H =

τ

1− ρτ
=

√
t

1− q
, fV =

−τ2 − ρτ

1− ρτ
=

−t− q

1− q
. (4.16)

Hall-Littlewood index

We further specialize the index by sending ρ→ 0, so we are taking the limit

σ → 0 , ρ→ 0 , τ fixed , (4.17)

(equivalently, q , p → 0 with t fixed), which is well-defined thanks to δ1± ≥ 0. The
index is given by

IHL = TrHL(−1)F τ
1
2
(E+2R+2j2+r) = TrHL(−1)F τ2(E−R) , (4.18)

where TrHL denotes the trace restricted to states with δ1± = E ± 2j1 − 2R− r = 0.
All in all, taking (4.13) into account, the states contributing to the index obey

j1 = 0 , j2 = r , E = 2R+ r , (4.19)

and are annihilated by three supercharges: Q1+, Q1− and Q̃1−̇.
Let us consider the Hall-Littlewood (HL) index for a theory with a Lagrangian

description. From table 2.2, we see that it gets contributions only from the scalar q
of the hypermultiplet and from the fermion λ̄1+̇ of the vector multiplet. The single

5An equivalent limit can be obtained by sending ρ to zero.
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letter partition function of the half-hypermultiplet and the vector multiplet is then

f
1
2
H = τ, fV = −τ2 . (4.20)

Remarkably, for generalized quivers with a sphere topology the computation of the
HL index is equivalent to the computation of the partition function over the Higgs
branch discussed in [88, 89] (the Hilbert series of the Higgs branch).6 This can be
shown as follows. To compute the partition function of [88, 89] for the Higgs branch
of an N = 2 gauge theory one counts all the possible gauge invariant operators built
from the scalar components of the hypermultiplets taking into account the F-term
superpotential constraints. In an N = 2 gauge theory with M SU(2) gauge factors
the superpotential takes the form

W =

M∑
i=1

∑
α∈{i}

Q(α)
aiakal

Φai
bi Q

(α) biakal , (4.21)

where the summation over i is over the gauged groups. The set {i} is the set of (at
most two) trifundamental hypermultiplets transforming non-trivially under gauge
group i. The F-term constraints then read

Q(α1)
aiakal

Q(α1)biakal +Q(α2)
aiaman Q

(α2)biaman = 0 . (4.22)

If the quiver diagram does not have loops, i.e. the corresponding Riemann surface
has a topology of a sphere, this is a set ofM independent constraints. It then follows
that the computation of this partition function is the same as the computation of
the index. Indeed, one associates a fugacity τ for each scalar component of Q. The
constraint (4.22) is quadratic in Q and is in the adjoint representation of the gauge
group. It is implemented by multiplying the unconstrained partition function with
the following factor [88, 89],

exp

[
−

∞∑
n=1

1

n
τ2n

(
a2ni + a−2n

i + 1
)]

= (1− τ2)(1− τ2 a2i )(1− τ2 a−2
i ) . (4.23)

This factor is the same as the index of the letter λ̄1+̇. Thus, one can think of the
letter λ̄1+̇ in the calculation of the index as playing the same role as the superpoten-
tial constraint in the calculation of the Higgs partition function! This logic can be
extended to higher-rank theories, where not all the building blocks have Lagrangian
description, but the Higgs branch can still be described in terms of operators obey-
ing certain constraints. This concludes the argument that the HL index is the same
as the Higgs partition function for theories with sphere topology. Our derivation

6A relation of a similar limit of the N = 1 index with the counting problems discussed
in [90, 91] was mentioned in [23]. We thank V. Spiridonov for bringing this reference to our
attention.
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also makes it clear that this correspondence fails for higher-genus theories.
In [88] non-trivial very explicit expressions for the Higgs branch partition func-

tion of the SCFTs with exceptional flavor symmetry groups [29, 92] were conjectured.
We will see that they are exactly reproduced by the HL index.

Schur index

The Schur index is defined by specializing the fugacities to ρ = τ with σ arbitrary
(equivalently q = t with p arbitrary). It reads

IS = Tr(−1)F σ
1
2
(E+2j1−2R−r) ρE−j1+j2 e−β(E−2j2−2R+r) . (4.24)

By construction, all charges in the trace formula commute with the supercharge Q̃1−̇
“with respect to which” the index is evaluated. From table 2.1, we observe that the
charges in (4.24) also commute with Q1+. Thus the index receives contributions
from states with δ1+ = δ̃1−̇ = 0 (the intersection of the cohomologies of Q1+ and of

Q̃1−̇) and it is independent of both σ and β. We can then write

IS = Tr(−1)F ρ2(E−R) = Tr(−1)F qE−R . (4.25)

The Schur index can also be obtained as a special case of the Macdonald index
by setting ρ = τ (equivalently q = t); we have just seen that for ρ = τ the index
becomes independent of σ so the limit σ → 0 that we take to obtain the Macdonald
index is immaterial.

The single letter partition functions of the half-hypermultiplets and the vector
multiplet are given by

f
1
2
H =

ρ

1− ρ2
=

√
q

1− q
, fV =

−2ρ2

1− ρ2
=

−2q

1− q
. (4.26)

The Schur index is the same as the index studied in [17], where we referred to
it as the reduced index.

Coulomb-branch index

Finally we consider the limit

τ → 0 , ρ , σ fixed , (4.27)

which is well-defined thanks to δ̃2+̇ ≥ 0. The trace formula becomes

IC = TrC(−1)F σ
1
2
(E+2j1−2R−r) ρ

1
2
(E−2j1−2R−r) e−β(E−2j2−2R+r) , (4.28)
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where TrC denotes the trace over the states with δ̃2+̇ = E + 2j2 + 2R + r = 0,

which are annihilated by Q̃2+̇. All in all, the index gets contributions from states

annihilated by two antichiral supercharges, Q̃1−̇ and Q̃2+̇.
In this limit the single-letter partition function of the half-hypermultiplet and

the vector multiplet are

f
1
2
H = 0, fV = σρ ≡ T . (4.29)

From the viewpoint of the the single-letter partition functions one can take an
interesting less restrictive limit,

τ , σ → 0 , ρ→ ∞ with Q ≡ τρ and T ≡ σρ fixed. (4.30)

In this limit we have

f
1
2
H = 0, fV =

T −Q

1−Q
. (4.31)

We recover (4.29) for Q → 0. In terms of the new fugacities Q and T the index
reads

ICM = TrCM (−1)F T
1
2
(E+2j1−2R−r)Q

1
2
(E+2j2+2R+r) , (4.32)

where TrCM denotes the trace restricted to states satisfying E + 2j1 + r = 0. This
index is well-defined for Lagrangian theories and for theories related to them by
dualities.

We now describe the explicit evaluation of these special limits of the index for
the SCFTs of class S.

4.2 Hall-Littlewood index

We begin with the Hall-Littlewood index,

IHL(τ) = TrHL(−1)F τ2E−2R , (4.33)

where TrHL denotes the trace restricted to states with j1 = 0 and E − 2R− r = 0.
This is the limit that leads to the greatest simplifications.

4.2.1 SU(2) quivers

Let us start from the SU(2) generalized quivers, for which the basic building blocks
are known explicitly. There is only one type of non-trivial puncture, the maxi-
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mal puncture with SU(2) flavor symmetry. The SCFT corresponding the three-
punctured sphere, denoted by T2 in [3], is the theory of free hypermultiplets in the
trifundamental representation of SU(2). Its index is immediately evaluated,

I(a, b, c) = PE [τχ1(a)χ1(b)χ1(c)]a,b,c,τ =
1∏

sa,sb,sc=±1(1− τ asa bsb csc)
, (4.34)

where the fugacities a, b, and c label the Cartans of the three SU(2) flavor groups.
The plethystic exponent PE is defined as

PE [f(xi)]xi
≡ exp

( ∞∑
n=1

1

n
f(xni )

)
. (4.35)

We will often omit the subscript xi in the expressions for PE[. . . ]. χ1(a) is the
character of fundamental representation of SU(2). More generally the SU(2) Schur
polynomials χλ are given by

χλ(a) =
a−1−λ − a1+λ

a−1 − a
. (4.36)

The propagator η(a, b) is also easily evaluated:

η(a, b) = ∆(a)IV (a)δ(a, b−1) , (4.37)

where IV (a) is the index of the vector multiplet,

IV (a) = PE[−τ2χ2(a)]a,τ = (1− τ2) (1− τ2 a2) (1− τ2 a−2) , (4.38)

and ∆(a) the SU(2) Haar measure,

∆(a) =
1

2
(1− a2)(1− 1

a2
) . (4.39)

Following the strategy outlined in the beginning of this chapter, we look for a com-
plete set of functions {fλ(a)} orthonormal under the propagator measure such that
the structure constants are diagonal,

I(a, b, c) =
∞∑
λ=0

Cλλλ f
λ(a)fλ(b)fλ(c) . (4.40)

We describe this calculation in appendix B.1. We find the remarkable result

fλ(a) = K(a) P λ
HL(a, a

−1|τ), (4.41)

Cλλλ =

√
1− τ2 (1 + τ2)

P λ
HL(τ, τ

−1|τ)
. (4.42)
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Here P λ
HL are the SU(2) Hall-Littlewood polynomials,

P λ
HL(a, a

−1|τ) = χλ(a)− τ2χλ−2(a) for λ ≥ 1 , P λ=0
HL (a, a−1|τ) =

√
1 + t2 ,

(4.43)

which are orthonormal under the measure

∆̂(a) = ∆HL(a) =
1

2

(1− a2)(1− a−2)

(1− τ2a2)(1− τ2a−2)
. (4.44)

The requirement that {fλ(a)} be orthonormal under the propagator measure ∆(a)IV (a)
fixes the prefactor K(a),

K(a) =

(
∆HL(a)

∆(a)IV (a)

) 1
2

=
1√

1− τ2
1

(1− τ2a2)(1− τ2a−2)
. (4.45)

We can now immediately write down an explicit formula for the index of any
generalized SU(2) quiver associated to a genus g Riemann surface with s punctures.
From (4.12),

Ig,s(a1, a2, . . . , as) =
(
1− τ2

)g−1 (
1 + τ2

)2g−2+s · (4.46)
∞∑
λ=0

1[
P λ
HL(τ, τ

−1| τ)
]2g−2+s

s∏
I=1

P λ
HL(aI , a

−1
I | τ)

(1− τ2a2I)(1− τ2a−2
I )

.

In particular for genus g with no punctures the sum over the SU(2) irreducible
representations in (4.46) can be explicitly performed and one gets

I(2)
g =

(
1− τ2

)g−1
(
τ2g−2 +

(
1 + τ2

)g−1 (
1− τ2g−2

))
1− τ2g−2

. (4.47)

We observe that setting a flavor fugacity a = τ we “close” the corresponding
puncture. For example we can go from the three-punctured sphere to the two-
punctured sphere (=cylinder),

I(a1, a2, τ) ∼
∑
λ

P λ
HL(a1, a

−1
1 |τ)P λ

HL(a2, a
−1
2 |τ) = η(a1, a2) . (4.48)

(There is an overall divergent proportionality factor). This procedure of (partially)
closing punctures by trading (some of) the flavor fugacities with τ plays an im-
portant role, as it will allow us to construct the index for theories with arbitrary
types of punctures. For SU(k) theories the punctures are classified by the different
embeddings of SU(2) inside SU(k) [3, 4], which are conveniently labelled by aux-
iliary Young diagrams with k boxes. For SU(2) we get only two possibilities: (i)
a row with two boxes corresponding to the “maximal” puncture with SU(2) flavor
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symmetry, (ii) a column with two boxes corresponding to the absence of a puncture.
For higher-rank theories the space of possibilities will be more interesting.

4.2.2 Higher rank: preliminaries

For higher-rank quivers the situation is more complicated since the basic building
blocks are given by strongly-interacting SCFTs for which direct computations are
not possible. However, the expressions that we obtained for the index of the SU(2)
quivers can be naturally extrapolated to higher rank. The basic conjecture is that
the set of functions {fα(a)} that diagonalize the structure constants are related to
Hall-Littlewood polynomials for higher-rank as well.

The Hall-Littlewood (HL) polynomials associated to U(k) are a set of orthogonal
polynomials labeled by Young diagrams with at most k rows, λ = (λ1, . . . , λk),
λj ≥ λj+1. They are given by [93]

P λ
HL(x1, . . . , xk| τ) = Nλ(τ)

∑
σ∈Sk

xλ1

σ(1) . . . x
λk

σ(k)

∏
i<j

xσ(i) − τ2xσ(j)

xσ(i) − xσ(j)
, (4.49)

and they are orthonormal under the measure

∆HL =
1

k!

∏
i̸=j

1− xi/xj
1− τ2xi/xj

. (4.50)

The normalization Nλ(t) is given by

N−2
λ1,...λk

(τ) =
∞∏
i=0

m(i)∏
j=1

(
1− τ2j

1− τ2

)
, (4.51)

where m(i) is the number of rows in the Young diagram λ = (λ1, . . . , λk) of length
i. For SU(k) groups we take Young diagrams with λk = 0 and the product of xk
in (4.49) is constrained as

∏k
i=1 xk = 1.

Let us also quote from the outset the expression for the SU(k) propagator,

η(a,b−1) = ∆(a)IV (a)δ(a,b−1) , (4.52)

where ∆(a) is the SU(k) Haar measure,

∆(a) =
1

k!

∏
i̸=j

(
1− ai

aj

)
,

k∏
i

ai = 1 , (4.53)
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and IV (a) the vector multiplet index,

IV =
1

1− τ2

k∏
j,i=1

(1− τ2aj/ai) . (4.54)

4.2.3 SU(3) quivers – the E6 SCFT

We now focus on the SU(3) theories. There are two kinds of non-trivial punc-
tures: the maximal puncture, associated to the Young diagram (3, 0, 0), which car-
ries the full SU(3) flavor symmetry; the puncture associated with the Young diagram
(2, 1, 0), which carries U(1) flavor symmetry. The elementary building blocks are
the 333 vertex and the 331 vertex, where 3 and 1 are shorthands for the SU(3) and
U(1) punctures, respectively.

The 333 vertex corresponds to the E6 SCFT of [29], denoted by T3 in [3]. A
maximal subgroup of the E6 flavor symmetry is given by SU(3)3 and we parametrize
the Cartans of the three SU(3)s by aI . Guided by the expression of the T2 index
obtained in the previous subsection, we conjecture that the index of T3 is given by

I(a1,a2,a3) =
∑
λ1,λ2

A(τ)

P λ1,λ2

HL (τ2, τ−2, 1| τ)

3∏
I=1

K(aI)P
λ1,λ2

HL (aI | τ) (4.55)

K(a) =
1

1− τ2

3∏
i,j=1, i ̸=j

1

(1− τ2ai/aj)
,

3∏
i=1

ai = 1 (4.56)

A(τ) = (1− τ4)(1 + τ2 + τ4) . (4.57)

The function K(a) is fixed as always by (4.11), with ∆̂ = ∆HL, while the overall
fugacity-independent normalization factor A(τ) was fixed by comparing with the
known result for this index (3.41). We expanded the above expression in power
series in τ and found a perfect match with (3.41).7 In [88] an explicit expression
was conjectured for the partition function over the Higgs branch of the E6 SCFT,
which we argued in section 4.1 to be equivalent to the Hall-Littlewood index. This
expression has a very simple form [88],

I(zE6) =
∞∑
k=0

[0, k, 0, 0, 0, 0]z τ
2k , (4.58)

where z is an E6 fugacity and [0, k, 0, 0, 0, 0]z are the characters of the irreducible
representation of E6 with Dynkin labels [0, k, 0, 0, 0, 0]. This expression is manifestly

7All the expressions for the HL index we obtain here are geometric progressions which in
principle can be explicitly summed. However, for the purposes of this paper we often found
it computationally more feasible and insightful to perform perturbative checks to high order
in expansion in τ .
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E6 covariant while (4.55) is not: however, order by order in the τ -expansion we
find that the fugacities of SU(3)3 combine to label representations of E6 and we
obtain perfect agreement. We emphasize that for this to happen the overall factors
K(ai) are absolutely crucial – without taking them into account the flavor-symmetry
enhancement to E6 does not occur.

We can define an unrefined index by setting all the flavor fugacities to one. In
this case the series can be easily summed up in closed form and we obtain that the
unrefined index is given by

I =

1 + τ20 + 55(τ2 + τ18) + 890(τ4 + τ16) + 5886(τ6 + τ14) + 17929(τ8 + τ12) + 26060τ10

(1 + τ2)
−1

(1− τ2)
22 ,

(4.59)

in complete agreement with [88].
The 331 vertex corresponds to the SCFT of a free hypermultiplet in the bifun-

damental of SU(3) and charged under U(1). Its index is given by

I(a1,a2, c) = PE [τχ1(a)χ1(b)c]a,b,c PE
[
τχ1(a

−1)χ1(b
−1)c−1

]
a,b,c

(4.60)

=

3∏
i,j=1

1

1− τaibjc

1

1− τ 1
aibjc

,

3∏
i=1

ai =

3∏
i=1

bi = 1 .

It can be rewritten by partially closing a puncture of the E6 vertex (4.55), as

I(a1,a2, c) =
1− τ6

1− τ2
K(a1)K(a2)

(1− τ3c3)(1− τ3c−3)

∑
λ1,λ2

Pλ1,λ2

HL (τc, τ−1c, c−2| τ)
Pλ1,λ2

HL (τ2, τ−2, 1| τ)

2∏
I=1

Pλ1,λ2

HL (aI | τ) .

(4.61)
The sum over representations here is a geometric progression and can be easily
performed establishing the equivalence of (4.60) and (4.61) (in the process we have
fixed the overall τ -dependent factor).

We can use the above expressions to write the index of any SU(3) quiver. Let
us give again the example of the genus g theory,

I(3)
g =

(
1− τ4

)g−1 (
1− τ6

)g−1
(4.62)

+

(
1 + 2

(
1 + τ−2

)g−1 (
τ2−2g − τ2g−2

))
τ4(g−1)

(
1− τ2

)2g−2

(τ2−2g − τ2g−2)2
.

We can subject (4.55) and (4.61) to a further non-trivial check. The channel-
crossing duality of the four-punctured sphere with two SU(3) and two U(1) punc-
tures corresponds to Argyres-Seiberg duality [28]. In one channel we glue together
two 331 vertices along two 3 punctures, while in the other channel the 333 vertex
(index of T3) is (formally) glued to a 311 vertex. Requiring equality of the two
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Figure 4.1: Association of flavor fugacities for the vertex corresponding to the 331
of the SU(3) quivers. Here a1a2a3 = 1 and b1b2b3 = 1.

channels we find the index of the 311 vertex,

I311(a, c, d) =
1− τ6

(1− τ2)(1− τ4)

K(a)

(1− τ3c3)(1− τ3c−3)(1− τ3d3)(1− τ3d−3)
(4.63)

∑
λ1,λ2

Pλ1,λ2

HL (τc, τ−1c, c−2| τ)Pλ1,λ2

HL (τd, τ−1d, d−2| τ)Pλ1,λ2

HL (a| τ)
Pλ1,λ2

HL (τ2, τ−2, 1| τ)
.

In the expression above the sum over representations diverges. The 311 should
be regarded as a formal construct that only makes sense as a part of the larger
theory. It can be interpreted as implementing a δ-function constraint on the flavor
indices. The non-singular way to view the gluing of 333 vertex with 311 vertex is
as gauging an SU(2) subgroup of E6, as opposed to an SU(3) subgroup [28]. With
this interpretation of the 311 vertex, equality of the two channels amounts to

(1− τ2)

∮
da

4πia
Pλ1,λ2

HL (ar, a−1r, r−2|τ)
∏

σ1,σ2,σ3,σ4,σ5=±1

1

1− τsσ1aσ2

1

1− τ2r3σ3aσ4
(1− a2σ5)

=
1− τ6

1− τ4

∏
σ=±1 P

λ1,λ2

HL (τ sσ/3

r , τ−1 sσ/3

r , s
−2σ/3

r−2 |τ)
Pλ1,λ2

HL (τ2, τ−2, 1|τ)
∏

σ1,σ2=±1(1− τ3sσ1/r3)(1− τ3sσ2r3)
.

(4.64)

In the first line we gauge an SU(2) subgroup of E6 and couple it to a single
hypermultiplet, and in the second line a 311 vertex is glued to 333 vertex by gauging
an SU(3) flavor group. This is a non-trivial identity involving HL polynomials which
we have checked to very high order in a perturbative expansion in τ .
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4.2.4 A conjecture for the structure constants with gener-
ic punctures

Extrapolating from the SU(2) and SU(3) cases, we are now formulate a complete
conjecture for the index of all building blocks of SU(k) quivers. The building blocks
are classified by a triple of Young diagrams (Λ1,Λ2,Λ3). We conjecture

IΛ1,Λ2,Λ3 =

∏k
j=2(1− τ2j)

(1− τ2)−k−2

3∏
I=1

K̂ΛI
(aI)

∑
λ

∏3
I=1 P

λ
HL(aI(ΛI)|τ)

P λ
HL(τ

k−1, τk−3, . . . , τ1−k|τ)
. (4.65)

Here the assignment of fugacities according to the Young diagram labelling the type
of the puncture, a(Λ), is as illustrated in figure 4.2. The summation over λ is over
the Young diagrams with k − 1 rows, λ = (λ1, . . . , λk−1), λj ≥ λj+1. The factors

Figure 4.2: Association of the flavor fugacities for a generic puncture. Punctures are
classified by embeddings of SU(2) in SU(k), so they are specified by the decompo-
sition of the fundamental representation of SU(k) into irreps of SU(2), that is, by
a partition of k. Graphically we represent the partition by an auxiliary Young dia-
gram Λ with k boxes, read from left to right. In the figure we have the fundamental
of SU(26) decomposed as 5+5+4+4+4+2+1+1. The commutant of the embed-
ding gives the residual flavor symmetry, in this case S(U(3)×U(2)×U(2)×U(1)),
where the S(. . . ) constraint amounts to removing the overall U(1). The τ variable
is viewed here as an SU(2) fugacity, while the Latin variables are fugacities of the
residual flavor symmetry. The S(. . . ) constraint implies that the flavor fugacities
satisfy (ab)5(cde)4f2gh = 1.

K̂Λ(a) are defined as

K̂Λ(a) =

row(Λ)∏
i=1

li∏
j,k=1

1

1− aij ā
i
k

. (4.66)
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Here row(Λ) is the number of rows in Λ and li is the length of ith row. The
coefficients aik are associated to the Young diagram as illustrated in figure 4.3. Our
conjecture is consistent with the SU(2) and SU(3) cases seen previously as well as
with all other examples discussed below.

For three maximal punctures (the Tk theory), (4.65) becomes

ITk
(a1,a2,a3) =

∑
λ1≥λ2≥...≥λk−1

A(τ)

P
λ1,..,λk−1

HL (τk−1, .., τ1−k| τ)

3∏
I=1

K(aI)P
λ1,..λk−1

HL (aI | τ) ,

K(a) =
1

(1− τ2)
k−1
2

k∏
i,j=1, i̸=j

1

(1− τ2ai/aj)
,

k∏
i=1

ai = 1 ,

A(τ) =

∏k
j=2(1− τ2j)

(1− τ2)
k−1
2

.

Let us illustrate the power of these TQFT expressions by computing the index of
the genus g SU(k) theory. It is given by

I(k)
g =

(∏k
j=2(1− τ2j)

)2g−2

(1− τ2)(k−1)(g−1)

∑
λ

1

P λ
HL(τ

k−1, τk−3, . . . , τ1−k|τ)2g−2
, (4.67)

where the summation is over all Young diagrams with k−1 rows, i.e. over the finite
irreducible representations of SU(k).

The sum over representations in (4.65) does not converge for arbitrary choices of
the three Young diagrams ΛI . We have already encountered an example in the last
subsection: the 311 vertex of SU(3) theories has a divergent expression. There is no
actual SCFT corresponding to the 311 vertex, but one can glue this vertex to a larger
quiver and obtain meaningful results. There are cases however where the divergent
vertex cannot appear as a piece of a larger quiver and thus the expression (4.65) for
its index does not have a clear physical interpretation. An example of such a vertex
is the index of an SU(6) theory with three SU(3) punctures. We have checked in
several cases that a divergence in (4.65) correlates with the fact that the graded
rank of the Coulomb branch (as defined in [94]) of the putative SCFT has negative
components. This is an indication that associating field theories to such punctured
surfaces may be delicate. Punctured surfaces of this type were recently considered
in [95] and subtleties associated with them addressed in [96].

4.2.5 SU(4) quivers – T4 and the E7 SCFT

Let us use the general expressions of the previous section to discuss some of the
features of SU(4) quivers. First, from (4.67) we can compute the unrefined index
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Figure 4.3: The factors aik associated to a generic Young diagram. The upper index
is the row index and the lower is the column index. In āik one takes the inverse of
flavor fugacities while τ is treated as real number. As before, the flavor fugacities
in this example satisfy (ab)5(cde)4f2gh = 1.

of T4,

IT4 = 1 + 45τ2 + 128τ3 + 1249τ4 + 5504τ5 + 30786τ6

+136832τ7 + 623991τ8 + . . . . (4.68)

We present a closed form expression for it in appendix B.4. Refining with the flavor
fugacities one gets

IT4 =1 + [(15, 1, 1) + (1,15, 1) + (1, 1,15)] τ2 + [(4,4,4) + (4̄, 4̄, 4̄)] τ3+

[1 + (15, 1, 1) + (1,15, 1) + (1, 1,15) + (20, 1, 1) + (1,20, 1) + (1, 1,20)+

+(15,15, 1) + (1,15,15) + (15, 1,15) + (84, 1, 1) + (1,84, 1) + (1, 1,84)+

+(6,6,6)] τ4 + . . . .

(4.69)

In terms of Young diagrams 84 = (4, 2, 2), 6 = (1, 1, 0), 20 = (2, 2, 0). The
symmetric product of the τ2 term reproduces all the terms at the τ4 order except
for the (6,6,6) term, and for the fact that two singlets are missing (the symmetric
product contains three singlets while only one is present at order τ4). We deduce
that the (6,6,6) state is an additional generator of the Higgs branch, and that
there is a constraint allowing only for one singlet in the symmetric product of the
τ2 states to appear at τ4 order. Unlike the situation for the E6 SCFT where the
Higgs branch is generated by a single scalar transforming as 78 of E6 [80] here one
has new generators appearing at higher orders in the τ expansion and thus having
different E −R quantum numbers.
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Figure 4.4: Association of the flavor fugacities for the E7 vertex. Here
∏4

i=1 bi =∏4
i=1 ai = 1.

Next, we can partially close a puncture to obtain the index of the 441 vertex.
On one hand, the 441 vertex correspond to the free hypermultiplet SCFT in the
bifundamental of two SU(4)s and charged under the U(1), so its index can be
evaluated by direct counting,

I(a1,a2, c) =
4∏
i,j

1

1− τaibjc

1

1− τ 1
aibjc

,

4∏
i=1

ai =

4∏
i=1

bi = 1 . (4.70)

On the other hand, from (4.65),

I(a1,a2, c) =
1− τ8

(1− τ2)

K(a1)K(a2)

(1− τ4c4)(1− τ4c−4)
(4.71)

∑
λ1,λ2,λ3

P λ1,λ2,λ3

HL (τ2c, c, τ−2c, c−3| τ)
P λ1,λ2,λ3

HL (τ3, τ, τ−1, τ−3| τ)

2∏
i=1

P λ1,λ2,λ3

HL (ai| τ) .

We have checked the equivalence of these two expressions perturbatively to very
high order in τ . Finally, let us look at the vertex with two maximal punctures and
one puncture corresponding to a square Young diagram, which carries an SU(2)
flavor symmetry, see figure 4.4. The flavor symmetry of this theory is known to
enhance to E7 [28]. From (4.65), the Hall-Littlewood index of this SCFT is given
by

IE7(a1,a2, c) =
(1 + τ2 + τ4)(1 + τ4)

(1− τ2)

K(a1)K(a2)

(1− τ2c±2)(1− τ4c±2)

×
∑

λ1,λ2,λ3

P λ1,λ2,λ3

HL (τc, cτ ,
τ
c ,

1
τc | τ)

P λ1,λ2,λ3

HL (τ3, τ, τ−1, τ−3| τ)

2∏
i=1

P λ1,λ2,λ3

HL (ai| τ) .

(4.72)
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In [88] an explicit expression for the Higgs partition function was conjectured,

I(zE7) =

∞∑
k=0

[k, 0, 0, 0, 0, 0, 0]z τ
2k , (4.73)

where z is an E7 fugacity and [k, 0, 0, 0, 0, 0, 0]z are the characters of the irreducible
representation of E7 with Dynkin labels [k, 0, 0, 0, 0, 0, 0]. We have checked also
here (4.72) is in complete agreement with [88], and thus in particular is secret-
ly E7 covariant: the check can be done analytically for the unrefined index and
perturbatively in τ to high order for the refined one.

The expression (4.72) can be also checked by the Argyres-Seiberg duality be-
tween USp(4) theory coupled to six fundamental hypermultiplets and E7 theory
with an SU(2) subgroup gauged [28]. The former has a weakly-coupled description
and its index can be computed directly,

IUSp(4) = 1 + χ66
SO(12)(u, v, w, x, y, z)τ

2 + · · · . (4.74)

Since there are six fundamental hypermultiplets the flavor group is SO(12). On the
other hand, gauging an SU(2) inside one SU(4) subgroup of the E7 index (4.72)
gives

I =

∮
de

4πie
(1− e2) (1− e−2)PE

[
−τ2χ2(e)

]
t,e

IE7(a, {es, s/e, b/s, 1/bs}, c) .

(4.75)
We have checked perturbatively in τ that (4.74) and (4.75) coincide under the fol-
lowing identification of the fugacities:

u→ a1
s
, v → a2

s
, w → a3

s
, x→ 1

a1a2a3s
, y → bc, z → b

c
. (4.76)

4.2.6 SU(6) quivers – the E8 SCFT

As our last example, we consider the index of the E8 SCFT [92]. This theory
corresponds to a sphere with a maximal SU(6) puncture and two non-maximal
punctures with SU(3) and SU(2) flavor symmetries, see figure 4.5. The group
SU(6) × SU(3) × SU(2) is a maximal subgroup of E8. Following the general pre-

67



Figure 4.5: Association of the flavor fugacities for the E8 vertex. Here
∏3

i=1 bi =∏6
i=1 ai = 1.

scription (4.65) the index of E8 SCFT is given by

IE8(a, b1, b2, c) =
(1− τ8)(1− τ10)(1− τ12)

(1− τ2)1/2(1− τ4)4(1− τ6)
× (4.77)

K(a)

(1− τ2c±2)(1− τ4c±2)(1− τ6c±2)
∏

i̸=j(1− τ2bi/bj)(1− τ4bi/bj)
×

∑
λ1,...,λ5≡λ

P λ
HL(τb1, τb2, τb3,

b1
t ,

b2
τ ,

b3
τ | τ)P

λ
HL(τ

2c, c, c
τ2
, τ

2

c ,
1
c ,

1
τ2c
, | τ)P λ

HL(ai| τ)
P λ
HL(τ

5, τ3, τ, τ−1, τ−3, τ−5| τ)
.

In [88] it was conjectured that the Higgs partition function has the following E8

covariant expansion,

I(zE8) =

∞∑
k=0

[k, 0, 0, 0, 0, 0, 0, 0]z τ
2k , (4.78)

where z is an E8 fugacity and [k, 0, 0, 0, 0, 0, 0, 0]z are the characters of the irreducible
representation of E8 with Dynkin labels [k, 0, 0, 0, 0, 0, 0, 0]. We have again checked
equivalence of (4.77) and (4.78) in the τ -expansion, though in this case due to
computational complexity we could perform the expansion only up to order τ8. The
size of representations of E8 contributing to the index grows very fast with the order
of τ , e.g. the unrefined index is given by

IE8 = 1 + 245τ2 + 26255τ4 + 1681887τ6 + 73829103τ8 + . . . . (4.79)
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4.2.7 Large k limit

It is not difficult to evaluate the large k limit of the HL index of SU(k) generalized
quivers.8 For instance, for the index of the theory corresponding to a genus g surface
without punctures (4.67),

I(k→∞)
g =

∞∏
j=2

(1− τ2j)g−1 = PE

[
−(g− 1)

τ4

1− τ2

]
. (4.80)

In appendix B.3 we give a short derivation of this expression. In the large k limit only
the singlet in the sum over the representations of (4.67) contributes. Since (4.80)
is of order one for large k it is expected to be matched by counting the appropriate
supergravity modes in the dual AdS background [70]. We can also compute the
index of the Tk theories in the large k limit,

ITk→∞(a1,a2,a3) =

∞∏
j=2

1

1− τ2j

3∏
I=1

∞∏
j ̸=i

1

1− τ2aIi /a
I
j

(4.81)

= PE

[
τ4

1− τ2

] 3∏
I=1

PE

τ2∑
i̸=j

aIi /a
I
j

 .
From here the large k index of any generalized quiver is trivial to compute; in
particular (4.80) can be obtained by gluing together the index of (4.81). Unrefining
the index of Tk by setting all the flavor fugacities aIj = 1 we see that it has a non-

trivial k dependence for large k limit. Taking the plethystic log of (4.81) (that is,
considering the index of single-particle states) we find

Is.p.
Tk→∞

= 3 τ2 (k2 − k) +
τ4

1− τ2
+O

(
1

k

)
. (4.82)

The term of order k2 on the right-hand-side comes from states in the adjoint repre-
sentation of the flavor group, while the term of order k comes from neutral states.
At least some of O(k2) states in the adjoint representation must correspond to
modes of the AdS gauge fields that couple to the flavor currents of the boundary
theory. It would be interesting to check whether all the O(k2) and O(k) states
can be accounted for by supergravity states. If not, the extra states could arise as
non-perturbative states in the bulk geometry (e.g. wrapped branes or black holes).
In all cases studied so far the index is of order one in the large k limit and thus
cannot capture the non-perturbative states of the bulk theory [2, 25, 32, 97]. This
is not a contradiction, since the index only counts protected states with signs. The
index vanishes on combinations of short multiplets that can in principle recombine

8We thank Davide Gaiotto and Juan Maldacena for discussions on issues related to this
section.
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into long ones, even when such kinematically-allowed recombination do not actually
happen [2]. However, for linear quivers (in particular for the Tk theories) the HL
index has the meaning of a Hilbert series over the Higgs branch, so it is expect-
ed to capture all the relevant 3

8 -BPS states of the dual theory. We leave the very
interesting comparison with the bulk theory for future research.

4.3 Schur index

We turn to the Schur index,

IS = Tr(−1)F qE−R , (4.83)

which is the same as the reduced index considered in [17]. Let us first recall the
expression for the SU(k) propagator. It is of the usual form

η(a,b−1) = ∆(a)IV (a)δ(a,b−1) , (4.84)

where ∆(a) is the Haar measure (4.53), and IV (a) the index of the vector multiplet,
given by

IV
q (a) = PE

[
−2q

1− q
χadj(a)

]
q,a

. (4.85)

The set of functions {fλq (a)} that diagonalize the structure constants are propor-
tional to the Schur polynomials [17],

fλq (a) = Kq(a) χ
λ(a) . (4.86)

The Schur polynomials are orthonormal under the Haar measure, so in this case
∆̂(a) = ∆(a) (recall (4.10)) and the factor Kq(a) is given by

Kq(a) =
1

[IV
q (a)]

1
2

. (4.87)

Generalizing our results in [17], we conjecture the following expression for the Schur
index of a three-punctured sphere with generic punctures,

IΛ1,Λ2,Λ3 =
(q; q)k+2∏k−1

j=1(1− qj)k−j

3∏
I=1

K̂ΛI
(aI)

∑
λ

∏3
I=1 χ

λ(aI(ΛI))

χλ(q
k−1
2 , q

k−3
2 , . . . , q

1−k
2 )

. (4.88)

Here the sum is over the finite-dimensional irreducible representations of SU(k).
The assignment of fugacities according to the Young diagram, a(Λ), is again as in
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figure 4.2, with τ → q1/2. The Pochhammer symbol (a; b) is defined by

(a; b) =

∞∏
i=0

(1− a bi) . (4.89)

The character of the representation corresponding to Young diagram λ = (λ1, . . . , λk−1, 0)
is given by a Schur polynomial,

χλ(a) =
det(a

λj+k−j
i )

det(ak−j
i )

. (4.90)

The K̂Λ prefactors are given by

K̂Λ(a) =

row(Λ)∏
i=1

li∏
j,k=1

PE

[
aij ā

i
k

1− q

]
ai,q

, (4.91)

where row(Λ) is the number of rows in Λ and li is the length of ith row. The
coefficients aik are associated to the Young diagram again as in figure 4.3, with
τ → q1/2. Note that the quantity appearing in the denominator of (4.88) is the
quantum dimension of the representation λ of SU(k),

dimqλ = χλ(q
k−1
2 , q

k−3
2 , . . . , q

1−k
2 ) . (4.92)

For SU(2) the quantum dimension is also known as the q-number [λ]q.
We have subjected (4.88) to similar checks as the one described for the Hall-

Littlewood index, finding complete agreement with expectations; a few such checks
were reported in [17]. Let us only mention here the basic identity following from
compatibility of (4.88) with the index of the SU(2) trifundamental hypermultiplet,

PE

[
q1/2

1− q

(
a1 +

1

a1

)(
a2 +

1

a2

)(
a3 +

1

a3

)]
ai,τ

= (4.93)

(q; q)3(q2; q)

3∏
i=1

PE

[
q

1− q

(
a2i + a−2

i + 2
)]

ai,τ

∞∑
λ=0

∏3
i=1 χ

λ(ai, a
−1
i )

χλ(q
1
2 , q−

1
2 )

.

A proof of this identity is outlined in appendix B.5.
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4.4 Macdonald index

We are now ready to combine and generalize the results of the two previous section-
s. The Hall-Littlewood and Schur polynomials are special cases of a two-parameter
family of polynomials discovered by Macdonald [93]. One naturally expects Macdon-
ald polynomials to be relevant for the calculation of the index in a two-dimensional
slice of the full three-dimensional fugacity space. The precise confirmation of this
idea is our main result. Identifying the correct slice is by no means obvious, but at
this point it will come as no great surprise that it is given by the limit that we have
called the Macdonald index in section 4.1,

IM = TrM (−1)F qE−2R−r tR+r = TrM (−1)F q−2j1 tR+r , (4.94)

where TrM denotes the trace restricted to states with δ1+ = E + 2j1 − 2R− r = 0.
For q = t Macdonald polynomials reduce to Schur polynomials, while for q = 0 they
reduce to Hall-Littlewood polynomials. By design, the Macdonald trace formula
(4.94) reproduces respectively the Schur and Hall-Littlewood trace formulae in the
same limits.

Our basic ansatz is that the complete set of functions {fλq,t(a)} that diagonalize
the structure constants are proportional to Macdonald polynomials with parameters
q and t,

fλq,t(a) = Kq,t(a)P
λ(a|q, t) . (4.95)

The Macdonald polynomials [93]9 {P λ(a)} are defined as the set of polynomials
labeled by Young diagrams λ, orthonormal under the measure

∆q,t(a) =
1

k!
PE

[
− 1− t

1− q
(χadj(a)− k + 1)

]
q,t,a

=
1

k!

∞∏
n=0

∏
i̸=j

1− qnai/aj
1− t qnai/aj

,(4.96)

and having the expansion

P λ = Nλ(q, t)

mλ +
∑
µ<λ

hλµ(q, t)mµ

 . (4.97)

Here we define

mλ=(λ1,..,λk)(a) =
∑
σ∈S′

k

k∏
i=1

a
σ(λi)
i , (4.98)

9Macdonald polynomials appear in physics in many different contexts. Some recent
papers on subjects related to N = 2 gauge theories that discuss Macdonald polynomials
are [98–100].
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where S′
k denotes the set of distinct permutations of (λ1, ..., λk).

The factor Kq,t(a) is again fixed by requiring orthonormality of {fλq,t(a)} under
the propagator measure. The propagator takes the standard form

η(a,b−1) = ∆(a)IV (a)δ(a,b−1) , (4.99)

where as always ∆(a) is the Haar measure (4.53), while the index of the vector
multiplet is in this case given by

IV
q,t(a) = PE

[
−q − t

1− q
χadj(a)

]
q,a

. (4.100)

We then have

Kq,t(a) =

(
∆q,t(a)

∆(a) IV
q,t(a)

) 1
2

. (4.101)

We can finally state our main conjecture. The Macdonald index of the SU(k)
quiver theory associated to a sphere with three punctures of generic type is

IΛ1,Λ2,Λ3 = (t; q)k+2
k∏

j=2

(tj ; q)

(q; q)

3∏
I=1

K̂ΛI
(aI)

∑
λ

∏3
I=1 P

λ(aI(ΛI)|q, t)
P λ(t

k−1
2 , t

k−3
2 , . . . , t

1−k
2 |q, t)

.

(4.102)
The assignment of fugacities according to the Young diagram ai(Λi) is again as

in figure 4.2, with τ → t1/2. The K̂ prefactors are

K̂Λ(a) =

row(Λ)∏
i=1

li∏
j,k=1

PE

[
aij ā

i
k

1− q

]
ai,q

, (4.103)

with the coefficients aik associated to the Young diagram again as in figure 4.3,

with τ → t1/2. It is immediate to check that (4.102) reduces to the HL and Schur
expressions in the respective limits. For three maximal punctures (4.102) becomes,

ITk
(a1,a2,a3) =

∑
λ1≥λ2≥...≥λk−1

A(q, t)

Pλ1,..,λk−1(t
k−1
2 , .., t

1−k
2 | q, t)

3∏
I=1

Kq,t(aI)P
λ1,..λk−1(aI | q, t) ,

A(q, t) =PE

[
1

2
(k − 1)

t− q

1− q

] k∏
j=2

(tj ; q) .

(4.104)

For k = 2, this expression must agree with the index of the hypermultiplet in the

73



trifundamental representation of SU(2),

PE

[
t1/2

1− q

(
a1 +

1

a1

)(
a2 +

1

a2

)(
a3 +

1

a3

)]
ai,q,t

(4.105)

=
(t; q)4(t2; q)

(q; q)

3∏
i=1

PE

[
t

1− q

(
a2i + a−2

i + 2
)]

ai,q,t

∞∑
λ=0

∏3
i=1 P

λ(ai, a
−1
i |q, t)

P λ(t
1
2 , t−

1
2 |q, t)

.

We have verified this identity in the t and q expansions. It helps that for SU(2) one
can write an explicit form for the Macdonald polynomials,

P λ(a, a−1|q, t) = Nλ(q, t)

λ∑
i=0

i−1∏
j=0

1− t qj

1− qj+1

λ−i−1∏
j=0

1− t qj

1− qj+1
a2i−λ , (4.106)

where Nλ(q, t) is a normalization constant rendering the Macdonald polynomials
orthonormal under the measure (4.96). More generally, equating the index for the
(nn1) vertex from (4.102) with the index of a hypermultiplet in the bifundamental
representation of SU(k) and charged under U(1), we obtain the identity

PE

 t1/2

1− q

c k∑
i,j=1

aibj +
1

c

k∑
i,j=1

a−1
i b−1

j


a,b,c,q,t

=
(t; q)k

(q; q)k−1
(tk; q)

× PE

 t

1− q

k∑
i,j=1

ai a
−1
j


a,q,t

PE

 t

1− q

k∑
i,j=1

bi b
−1
j


b,q,t

PE

[
t
k
2

1− q
(ck + c−k)

]
c,q,t

×
∑
λ

Pλ(c t
k−2
2 , c t

k−4
2 , . . . , c t

2−k
2 , c1−k|q, t)Pλ(ai|q, t)Pλ(bi|q, t)

Pλ(t
k−1
2 , t

k−3
2 , . . . , t

1−k
2 |q, t)

.

(4.107)

It would be interesting to have an analytic proof of these identities.
From (4.12) we can readily calculate the index of the genus g theory with s

punctures,

Ig,s(aI ; q, t) =
k∏

j=2

(tj ; q)2g−2+s (t; q)
(k−1)(1−g)+s

(q; q)(k−1)(1−g)

∑
λ

∏s
i=1 K̂Λi

(ai) P
λ(ai(Λi)|q, t)[

Pλ(t
k−1
2 , t

k−3
2 , . . . , t

1−k
2 |q, t)

]2g−2+s .

(4.108)
Let us dwell upon this result. Let us first consider the genus g partition function
(no punctures) in the Schur limit, q = t. We can write it as

Ig(q) =
[
(q; q)2g−2

]k−1
S00(q)

2−2g
∑
λ

1

[dimq(λ)]
2g−2 . (4.109)

Here S00 is the partition function of SU(k) level ℓ Chern-Simons theory on S3 if we
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Symbol Surface Value

Cαβγ

|α〉

|β〉

|γ〉

A(q,t)
dimq,t(α)

δαβ δαγ

V α 〈α| dimq,t(α)

A(q,t)

ηαβ

〈α|

〈β|

δαβ

Table 4.1: The structure constants, the cap, and the metric for the TQFT of the
Macdonald index.

formally identify q = e
2πi
ℓ+k ,

S00(q) =

k∏
j=2

(q; q)

(qj ; q)
. (4.110)

The expression (4.109), up to the simple factor
[
(q; q)2g−2

]k−1
, is the genus g parti-

tion function of q-deformed 2d Yang-Mills theory in the zero area limit [101], which
is in fact the same as the partition function of SU(k) level ℓ Chern-Simons theory

on Cg × S1 with q = e
2πi
ℓ+k [101].10 If we reintroduce punctures, the index is related

to a correlator the q-deformed 2d Yang-Mills theory; the relation involving both a
flavor independent factor and flavor-dependent factors K̂Λ associated to the punc-
tures. We have recovered in more generality the relation found in [17] between the
Schur index and 2d q-deformed Yang-Mills theory.11

In the more general case of q ̸= t the genus g partition function can be written

10More precisely, q-deformed Yang-Mills theory in the zero area limit can be viewed as
an analytical continuation of Chern-Simons theory, or equivalently of the G/G WZW model
(see [102] for a review of the latter), to non-integer rank ℓ.

11Ordinary 2d Yang-Mills theory [85, 86] is obtained by sending q → 1. From the index
perspective, because of the additional overall factors, this is a singular limit. However, with
proper regularization this limit can be understood as reducing the 4d index to a 3d partition
function [103–105]. See also [106] for yet another 3d/4d connection.
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as

Ig(q, t) =
[
(t; q)g−1 (q; q)g−1

]k−1
Ŝ00(q, t)

2−2g
∑
λ

1

[dimq,t(λ)]
2g−2 , (4.111)

where the generalized quantum dimension is given by

dimq,t(λ) = P λ(t
k−1
2 , t

k−3
2 , . . . , t

1−k
2 |q, t) (4.112)

and we have defined

Ŝ00(q, t) =
k∏

j=2

(t; q)

(tj ; q)
. (4.113)

This result appears to be closely related to the refinement of Chern-Simons the-
ory recently discussed by Aganagic and Shakirov [107]. Up to the overall factor[
(t; q)g−1 (q; q)g−1

]k−1
, Ig(q, t) is equal to the partition function of refined Chern-

Simons on Cg × S1, and Ŝ00(q, t) to the partition function on S3. In terms of the
Chern-Simons matrix model the refinement of [107] amounts to changing the ma-
trix integral measure from Haar to Macdonald. We can thus identify the 2d theory
whose correlators give the Macdonald index as the theory obtained from q-Yang-
Mills theory by deforming in the same way the path integral measure. It would be
interesting to find a more conventional Lagrangian description of this 2d theory, for
example the deformed measure could arise by integrating out some matter fields.
It would also be desirable to have a better understanding of the flavor-independent
factors needed to relate 2d Yang-Mills (q-deformed or (q, t)-deformed) to the index.
They can be formally associated to a decoupled TQFT with a single operator (the
identity). Perhaps this decoupled TQFT plays a similar role as the decoupled U(1)
factor in the AGT correspondence [9].

4.5 Coulomb-branch index

Finally we consider the index

ICM (T,Q) = TrCM (−1)F T
1
2
(E+2j1−2R−r)Q

1
2
(E+2j2+2R+r) , (4.114)

where TrCM stands for the trace over states with E + 2j1 + r = 0. This limit
of the full index makes sense for theories with a Lagrangian description, since the
single-letter partition functions have well-defined expressions,

f
1
2
H = 0, fV =

T −Q

1−Q
. (4.115)
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Theories connected to Lagrangian theories by dualities also have a well-defined
ICM (T,Q). As discussed in section 4.1, the further limit Q→ 0 leads to the IC(T )
index, which is guaranteed to be well-defined for any N = 2 SCFT.

We refer to (4.114) as the “Coulomb-branch” index, or Coulomb index for short,
because in a Lagrangian theory it receives contributions only from the Ē-type short-
multiplets (see appendix B.2), whose bottom components are the gauge-invariant
operators that parametrize the Coulomb branch, for example

Trϕ2, Trϕ3, . . . , Trϕk (4.116)

for a theory with SU(k) gauge group. Since the hypermultiplets do not contribute,
the Coulomb index is independent of the flavor fugacities and the TQFT structure is
very simple. The structure constants associated to a three-punctured sphere depend
only on T and Q, and so does the propagator, since the gauge-group matrix integral
can be carried out independently of what the propagator connects to. The index of
a quiver is then just a product over the indices of its constituents (propagators and
vertices).

The index of a vector multiplet in the adjoint representation of a simple gauge
group G is

IV
(G)(Q,T ) =

∮
TrG

rG∏
i=1

dai
2πi

∆G(a) exp

[
−

∞∑
n=1

1

n

Qn − Tn

1−Qn
χ
(G)
adj(a

n)

]
, (4.117)

where rG is the rank of G and ∆G(a) the Haar measure,

∆G(a) =
1

|WG |
exp

[
−

∞∑
n=1

1

n
(χadj(a

n)− rG)

]
, (4.118)

with |WG | the order of the Weyl group. We recognize the integrand in (4.117) as
the Macdonald measure (4.96) with parameters Q and T . The integral can be
evaluated explicitly thanks to Macdonald’s celebrated constant-term identities (see
e.g. [93, 108] for pedagogic expositions and [109] for a brief review),

IV
G = PE

 rank(G)Ĩ1 +
∑
α∈R+

Ĩ1+Cα − ĨCα

 , Cα ≡
∑
β∈R+

(α, β)

(β, β)
,(4.119)

where R+ is the collection of positive roots of G and

Ĩℓ = T ℓ−1T −Q

1−Q
. (4.120)

We recognize Ĩℓ as the index of the Ē−ℓ(0,0) superconformal multiplet, which satisfies
the shortening condition E = ℓ (see appendix B.2). By a Lie-algebraic identity,

77



(4.119) can be rewritten more succinctly as [109]

IV
G = PE

 ∑
j∈exp(G)

Ĩj+1

 , (4.121)

where exp(G) stands for the set of exponents of the Lie group G. This result has
an immediate physical interpretation. The Coulomb index is saturated by the Ē-
multiplets, whose bottom components are the gauge-invariant operators made of
ϕs. The single-particle index (the argument of the plethystic exponential in (4.121))
then counts the independent gauge-invariant operators made of ϕs, which are in 1-1
correspondence with the Casimirs of the group, that is with exp(G). For example,
for G = SU(k), exp(G) = {1, 2, . . . , k − 1}, and we see that the Coulomb index
counts the independent single-trace operators (4.116) that parametrize the Coulomb
branch. Turning the logic around, we can view this as a “physical” (or perhaps,
combinatorial) proof of Macdonald’s constant term identities. The integral over the
Macdonald measure (4.117) counts gauge-invariant words built from certain letters
of the vector multiplet; from superconformal representation theory we can identify
which short multiplets are relevant for this counting problem, and deduce (4.121).

Figure 4.6: The bottom left box is assigned 0. The assigned integer increases from
left to right. As we move up, the first box of each row is assigned the same number
as the last box in the row below.

Though the TQFT structure for the Coulomb index is very simple, it is not
entirely trivial. We can deduce the Coulomb index of strongly-coupled theories by
using dualities, and check that different routes to obtain the index give the same
result. For example, using Argyres-Seiberg duality [28]

IE6 =
IV
SU(3)

IV
SU(2)

= PE[Ĩ3] , (4.122)

which is the expected result since the Coulomb branch of the E6 SCFT is generated
by an operator with E = |r| = 3. Strongly coupled SCFTs are sometimes obtained
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using S-dualities in more than one way [77] but all the dualities yield the same index,
for example

IE6 =
IV
SU(3)

IV
SU(2)

=
IV
SU(4)

IV
USp(4)

= PE[Ĩ3] ,

IE7 =
IV
SU(4)

IV
SU(3)

=
IV
USp(4)

IV
SU(2)

=
IV
SO(7)

IV
G2

=
IV
SO(8)

IV
SO(7)

= PE[Ĩ4] , (4.123)

IE8 =
IV
SU(6)

IV
SU(5)

=
IV
USp(6)

IV
SO(5)

= PE[Ĩ6] .

The index of the Tk theory is also obtained easily from the generalized Argyres-
Seiberg duality,

ITk
=

(IV
SU(k))

k−2∏k−1
j=2 IV

SU(j)

= PE

 k∑
j=3

(j − 2)Ĩj

 . (4.124)

This is again as expected, since the Coulomb branch of the Tk theory is spanned by
(j − 2) operators with E = |r| = j, for j = 3, . . . , k (see e.g. [73]).

Extrapolating from these examples let us conjecture the Coulomb index of the
theory corresponding to a sphere with three generic punctures. For a general punc-

ture I in the Ak−1 theory, we associate the set of k numbers {p(I)j : j = 1, . . . k}
from the corresponding auxiliary Young diagram. The assignment is illustrated in
figure 4.6. The Coulomb branch index of the theory corresponding to a sphere with
three punctures p(1), p(2), p(3) is then

Ip(1),p(2),p(3) = PE
[
dj Ĩj

]
, dj ≡

k∑
j=2

(1− 2j + p
(1)
j + p

(2)
j + p

(3)
j ) . (4.125)

The dimension dj of the Coulomb branch spanned by operators with E = |r| = j a-
grees with the dimension of the space of meromorphic j-differentials on the Riemann

surface having poles of order at most p
(I)
j at puncture I [3, 94].

Let us finally observe that the Coulomb index (4.117) discussed in this section
can also be interpreted as the index of N = 4 SYM in a certain limit of the N = 4
superconformal fugacities, such that the index of the N = 4 vector multiplet reduces
to the index of N = 2 vector multiplet. The authors of [110] noticed the appearance
of the Macdonald measure in this context.
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Chapter 5

Reducing the 4d Index to the S3

Partition Function

String/M theory has led to a rich web of non-perturbative dualities between su-
persymmetric field theories. Checking/exploiting/extending these dualities requires
exact computations in field theories. In recent years, using methods based on local-
ization, several exact quantities in supersymmetric gauge theories have been com-
puted. The connection between two of such quantities, the superconformal index of
4d gauge theories [2, 14] and the partition function of supersymmetric gauge theories
on S3 [33, 40], is the main focus of this chapter.

The superconformal index of N = 1 IR fixed points was first computed in [21–
23], there it served as a check of Seiberg duality. The indices ofN = 4 SYM and type
IIB supergravity in AdS5 were computed and matched in [2]. The superconformal
index of N = 2 supersymmetric gauge theories was used to check N = 2 S-dualities
conjectured by Gaiotto and to define a 2d topological field theory in the process
as discussed in chapter 3 and 4. Recently the partition function of supersymmetric
gauge theories on S3 has been used to check a variety of 3d dualities including
mirror symmetry [33] and Seiberg-like dualities [34]. Remarkably, the exact partition
function has also allowed for a direct field theory computation of N3/2 degrees of
freedom of ABJM theory [35, 36]. The S3 partition function of N = 2 theories
is extremized by the exact superconformal R-symmetry [37–39] so just like the a-
maximization in 4d, the 3d partition function can be used to determine the exact
R-charges at interacting fixed points. The purpose of this chapter is to relate these
two interesting and useful exactly calculable quantities in 3 and 4 dimensions.

As mentioned in section 2.5 the superconformal index of a 4d gauge theory can
be computed as a path integral on S3×S1 with supersymmetric boundary conditions
along S1 (2.49). All the modes on the S1 contribute to this path integral. In a limit
with the radius of the circle shrinking to zero the higher modes become very heavy
and decouple. The index is then given by a path integral over just the constant
modes on the circle. In other words, the superconformal index of the 4d theory
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reduces to a partition function of the dimensionally reduced 3d gauge theory on
S3. The 3d theory preserves all the supersymmetries of the “parent” 4d theory on
S3 × S1.

More generally, for any d dimensional manifold Md, one would expect the index
of a supersymmetric theory on Md×S1 to reduce to the exact partition function of
dimensionally reduced theory on Md. This idea was applied by Nekrasov to obtain
the partition function of 4d gauge theory on Ω-deformed background as a limit of
the index of a 5d gauge theory [12].

A crucial property of the four dimensional index that facilitates its computation
is the fact that it can be computed exactly by a saddle point integral. We show
that in the limit of vanishing circle radius, this matrix integral reduces to the one
that computes the partition function of 3d gauge theories on S3 [33, 40]. It doesn’t
come as a surprise as the path integral of the N = 2 supersymmetric gauge theory
on S3 was also shown to localize on saddle points of the action.

The chapter is organized a follows. We have already written the superconformal
index of 4d theory as a saddle point integral and describe the limit in which this
integral reduces to the S3 partition function in section 2.5. The limit is performed
in section 5.1. In particular, we show that the building blocks of the matrix mod-
el that computes the superconformal index in 4d map separately to the building
blocks of the 3d partition function matrix model. In section 5.2, we comment on
the connections between 4d and 3d dualities. We conclude with an appendix that
generalizes the Kapustin et. al. matrix model for N = 4 gauge theories with two
supersymmetric deformations. One such deformation involving squashed S3 was
studied in [57]. Discussion of the similar material can also be found in [103, 105].

5.1 4d Index to 3d Partition function on S3

A matrix model for computing the partition function of 3d gauge theories on S3 (S3

matrix model) was obtained in [33, 40]. In this section, we will derive this matrix
model as a β → 0 limit of the matrix model that computes the superconformal
index (2.52) (index matrix model) of the 4d gauge theories. Both matrix models
involve integrals over gauge group parameters and their integrand contains one-loop
contributions from vector- and hyper-multiplets. We will show that the gauge group
integral together with the contribution from the vector multiplet map nicely from
the index model to the S3 model. The contributions of the hypermultiplets match
up separately. We also show that the superconformal index is the q-deformation of
the S3 partition function of the daughter theory.

5.1.1 Building blocks of the matrix models

For concreteness, let us consider 4d N = 2 SU(N) gauge theory. It is constructed
using two basic building blocks: hyper-multiplets and vector multiplets.
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Hyper-multiplet

As was first observed in [21], the index of the hypermultiplet can be written elegantly
in terms of a special function [15]

Ihyp =
∏
i

Γ

(
t2√
v
ai; t

3y, t3y−1

)
, (5.1)

where Γ is the elliptic gamma function [111] defined to be

Γ(z; r, s) =
∏
j,k≥0

1− z−1rj+1sk+1

1− zrjsk
, (5.2)

and ai are eigenvalues of the maximal torus of the gauge/flavor group satisfying∏N
i=1 ai = 1. In this section, for the sake of simplicity, we set v = t and y = 1 and

will discuss the general assignment of chemical potentials in appendix C. We choose
a convenient variable q ≡ e−β to parametrize the chemical potentials of the Cartan
of the flavor group as ai = q−iαi , and the chemical potential t as t = q

1
3 . The index

of the hyper-multiplet then becomes

Ihyp =
∏
i

∏
j,k≥0

1− q−
1
2
+iαiqj+1qk+1

1− q
1
2
−iαiqjqk

=
∏
i

∏
n≥1

(
[n+ 1

2 + iαi]q

[n− 1
2 − iαi]q

)n

, (5.3)

where [n]q ≡ 1−qn

1−q is the q-number. It has the property [n]q
q→1−→ n. So far we have

fixed the chemical potentials v and y that couple to −(R + r) and j1 respectively.
To recover 3d partition function on S3 we should take the radius of S1 to be very
small, which corresponds to the limit q → 1.

Ihyp =
∏
i

∏
n≥1

(
n+ 1

2 + iαi

n− 1
2 − iαi

)n

=
∏
i

(coshπαi)
− 1

2 . (5.4)

One can find a proof of the second equality in [40]. From the limiting procedure, it
is clear that the superconformal index of the hypermultiplet is the q-deformation of
the 3d hypermultiplet partition function.

Vector multiplet

The index of an N = 2 vector multiplet is given by

Ivector =
∏
i<j

1

(1− ai/aj)(1− aj/ai)

Γ(t2v(ai/aj)
±; t3y, t3y−1)

Γ((ai/aj)±; t3y, t3y−1)
, (5.5)

Here we have dropped an overall ai-independent factor. We use the condensed
notation, Γ(z±1; r, s) = Γ(z−1; r, s)Γ(z; r, s). With the same variable change as

82



above we get

Ivector =
∏
i<j

1

1− qi(αi−αj)

1

1− q−i(αi−αj)

1

Γ(q±i(αi−αj); q, q)

=
∏
i<j

1

1− qi(αi−αj)

1

1− q−i(αi−αj)

∏
n≥1

(
1− qn+i(αi−αj)+1

1− qn−i(αi−αj)−1

1− qn−i(αi−αj)+1

1− qn+i(αi−αj)−1

)−n

reg
=

∏
i<j

∏
n≥1

(
[n− i(αi − αj)]q

[n]q

[n+ i(αi − αj)]q
[n]q

)2

.

(5.6)

The last line involves regulating the infinite product in a way that doesn’t depend
on α. In the limit q → 1, i.e. the radius of the circle goes to zero, we get

Ivector =
∏
i<j

∏
n≥1

(
1 +

(αi − αj)
2

n2

)2

=
∏
i<j

(
sinhπ(αi − αj)

π(αi − αj)

)2

. (5.7)

The last equality again is explained in [40]. Again, the we see that the index of
the vector multiplet is the q-deformation of the 3d vector partition function. Most
general expression for the one-loop contribution of the vector multiplet with u and
η turned on is obtained in appendix C.

Gauge group integral

The gauge group integral in the 4d index matrix model is done with the invariant
Haar measure

[dU ] =
∏
i

dαi

∏
i<j

sin2
(
β(αi − αj)

2

)
β→0−→

∏
i

dαi

∏
i<j

(
β(αi − αj)

2

)2

. (5.8)

After appropriate regularization, the measure factor precisely cancels the weight
factor in the denominator of the vector multiplet one-loop determinant. The unitary
gauge group integral in the index matrix model can be done as a contour integral
over a variables parametrizing the Cartan sub-group, i.e. a ∈ T. After the change
variables a = q−iα the contour integral becomes a line integral as follows. We write
a = q−iα = eiβα. The contour integral around the unit circle is then∮

T

da

a
· · · =

∫ π/β

−π/β
dα . . . : β → 0,

∮
T

da

a
· · · =

∫ ∞

−∞
dα . . . . (5.9)
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5.2 4d↔ 3d dualities

S duality

Let us illustrate the reduction of a four dimensional index to three dimensional
partition function with a simple example. Consider N = 2 SU(2) gauge theory
with four hypermultiplets in four dimensions. The index of this theory is given by
the following expression (up to overall normalization constants)∮

dz

z

Γ(t3/2a±1b±1z±1; t3, t3) Γ(t3/2c±1d±1z±1; t3, t3)

Γ(z±2; t3, t3)
. (5.10)

Here, a, b, c and d label the Cartans of SU(2)4 ⊂ SO(8) flavor group. The Gam-
ma functions in the numerator come from the four hyper-multiplets; the Gamma
functions in the denominator come from the N = 2 vector multiplet.

From the results of the previous section this expression for the index gives rise
to the partition function of N = 2 SU(2) gauge theory in three dimensions. We
scale t→ 1 and rewrite this as

Z(α, β, γ, δ) =

∫
dσ

sinh2 2πσ

coshπ(σ ± α± β) coshπ(σ ± γ ± δ)
, (5.11)

where, each cosh is product of four factors with all sign combinations. The flavor
(now mass) parameters α, β, γ and δ are related to the flavor parameters in 4d as
before.

The superconformal index of the N = 2 SU(2) gauge theory with four hypermul-
tiplets in four dimensions is expected to be invariant under the action of an S-duality
group which permutes the four hypermultiplets. The expression above can be ex-
plicitly shown to exhibit this property [15]. The four dimensional S-duality implies
that the three dimensional partition function is invariant under permuting α, β, γ,
and δ. One can show (e.g. numerically or order by order expansion in α) that this
is indeed true. Note that this implies a new kind of Seiberg-like duality in three
dimensions. This computation can be generalized to any of the theories recently
discussed by Gaiotto [3] in four dimensions. In particular the index of these the-
ories was claimed to posses a TQFT structure [15]; and this structure is inherited
by the three dimensional partition functions after doing the dimensional reduction.
The reasoning in four dimensions and three dimensions is however different. In four
dimensions one can associate a punctured Riemann surface to each of the super-
confomal theories with the modular parameters of the surface related to the gauge
coupling constants. The index does not depend on the coupling constants and thus
is independent of the moduli giving rise to a topological quantity associated to the
Riemann surface. After dimensionally reducing to three dimensions the theories
cease to be conformal invariant and flow to a fixed point in the IR. The statement is
then that at the IR fixed point the information about the original coupling constant
is “washed away” and theories originally associated to punctured Riemann surfaces
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of the same topology flow to an equivalent fixed point in the IR.

Mirror symmetry

In principle one can try to use relations special to field theories in three dimensions
to gain information about the four dimensional theories. Let us comment how this
can come about. In three dimensions certain classes of theories are related by mirror
symmetry. for example, in [112] it is claimed that mirror duals of TN [3] theories have
Lagrangian description and are certain star shaped quiver gauge theories. Let us
see if the partition function of T2 (free hyper-multiplet in trifundamental of SU(2)3)
matches with the partition function of its mirror dual:

ZT2 =
1

coshπ(α± β ± γ)
, (5.12)

ZT̃2
=

∫
dσdµdνdρ

sinh2 2πσ e2πi(µα+νβ+ργ)

coshπ(σ ± µ) coshπ(σ ± ν) coshπ(σ ± ρ)
.

In ZT , the parameters α, β, γ appear as masses while in ZT̃ they appear as FI terms.
Let us compute ZT̃2

. One can perform the ZT̃2
integrations. First we work out∫

dµ
e2πiαµ

coshπ(µ± σ)
=

2 sin 2πασ

sinhπα sinh 2πσ
.

Then we find that

ZT̃2
=

∫
dσ

8 sin 2πασ sin 2πβσ sin 2πγσ

sinhπα sinhπβ sinhπγ sinh 2πσ
=

1

coshπ(α/2± β/2± γ/2)
. (5.13)

ZT̃2
is actually ZT2 if we rescale α, β and γ in ZT̃2

by a factor of 2. This fact
can be in principle use to investigate the index of the strongly coupled SCFTs in
four dimensions which do not have Lagrangian description. One can dimensionally
reduce these theories to three dimensions, consider their mirror dual and compute
its 3d partition function; finally, one can try to uplift this result to 4d and obtain
thus the superconformal index of the original four dimensional theory. The further
analytical proof can be found in [113, 114]

85



Chapter 6

The Superconformal Index of
N = 1 IR Fixed Points

In section 2.2 we review the Römelsberger prescription [14, 19] to evaluate the index
of such SCFTs the N = 1 SCFTs that arise as IR fixed points of renormalization
group flows, whose UV starting points are weakly-coupled theories. This prescrip-
tion has so far been checked indirectly, by showing in several examples that it gives
the same result for different RG flows that end in the same IR fixed point (i.e.
the UV theories are Seiberg dual). This was originally observed by Römelsberger,
who performed a few perturbative checks in a chemical potential expansion [14, 19].
Invariance of the N = 1 index under Seiberg duality was systematically demonstrat-
ed by Dolan and Osborn [21], in a remarkable paper that first applied the elliptic
hypergeometric machinery to the evaluation of the superconformal index. These
results were extended and generalized in [22–24, 26].

In this chapter we apply Römelsberger’s prescription to a class of N = 1 SCFTs
that admit AdS duals. The canonical example is the conifold theory of Klebanov and
Witten [30]. There are infinitely many generalizations: the families of toric quivers
Y p,q [1] and Lp,q,r [31]. We focus on Y p,q. In all these examples there is in principle
an independent way to determine the index (at large N) from the dual supergravity.
We will explicitly show agreement between the gravity calculation of Nakayama [32]
and our field theory calculation for the case of the conifold quiver Y 1,0. According
to taste, this can be viewed either as a check of Römelsberger’s prescription, or as
yet another check of AdS/CFT. The upshot is a sharper bulk/boundary dictionary.

In section 6.1 we review basic facts about the Y p,q family of toric quivers (the
conifold being a special case Y 1,0). From the quiver diagrams, it is immediate to
write integral expressions for the superconformal index, at finite N . We show that
the indices of toric-dual theories are equal, as expected. In section 6.2 we consid-
er the large N limit. We conjecture a simple closed form expression for the large
N index of the Y p,q quivers. In section 6.3 we review the gravity computation of
the index for the conifold [32] and find exact agreement with the large N limit of
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our field theory result. appendix D collects useful material about N = 1 super-
conformal representation theory and the index of the different short and semishort
supermultiplets.

6.1 The Y p,q quiver gauge theories

Let us begin by recalling the basic facts about the Y p,q quiver gauge theories [1].
The fields are of four types: Uα=1,2, Vα=1,2, Y and Z. There are 2p gauge groups,
and 4p+ 2q bifundamental fields: p fields of type U , q fields of type V , p− q fields
of type Z, and p + q fields of type Y . The Y p,q quiver diagram is obtained by a
recursive procedure starting with Y p,p, which is a familiar Z2p orbifold of N = 4
SYM. The superpotential takes the form

W =
∑

ϵαβTr
(
Uk
α V

k
β Y

2k+2 + V k
α U

k+1
β Y 2k+3

)
+ ϵαβ

∑
Tr
(
Zk Uk+1

α Y 2k+3 Uk
β

)
,

where the cubic and quartic gauge-invariant terms are read off from the quiver
diagram. There are 2q terms in the first sum and p − q terms in the second sum.
For the Klebanov-Witten theory, T 1,1 = Y 1,0 has only quartic terms.

The R-charges are determined as follows [1, 115]. Requiring the vanishing of the
NSVZ beta functions and that each term of the superpotential has R-charge 2, the
R-charges of all the fields are fixed in terms of two independent parameters x and
y,

rZk = x, rY k = y, rUk
α
= 1− 1

2
(x+ y), rV k

α
= 1 +

1

2
(x− y) . (6.1)

This twofold ambiguity is related to the existence of two U(1) global symmetries,
and is resolved by a-maximization. One finds [1]

yp,q =
1

3q2

{
−4p2 + 2pq + 3q2 + (2p− q)

√
4p2 − 3q2

}
, (6.2)

xp,q =
1

3q2

{
−4p2 − 2pq + 3q2 + (2p+ q)

√
4p2 − 3q2

}
.

For any p, there are simple special cases. The Y p,p quiver corresponds to the Z2p

orbifold of C3. In this case all the superpotential terms are cubic, the theory is
exactly conformal and all R-charges are equal to 2

3 . This theory has N = 1 super-
symmetry for general p while for p = 1 the supersymmetry is enhanced to N = 2.
At the other extreme, the Y p,0 quiver corresponds to a Zp orbifold of the conifold.
All the R-charges are equal to 1

2 and the superpotential is quartic. The associated
quiver diagrams for p = 4 are shown in figure 6.1.

The charges of the fields under the global symmetries U(1)B, U(1)s and SU(2)l
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Figure 6.1: Left: quiver diagram for Y 4,4. Right: quiver diagram for Y 4,0.

and the color-coding of the arrows are indicated below.

U(1)B U(1)s SU(2)l Arrows

U −p 0 ±1
2

V q 1
2 ±1

2

Z p+ q 1
2 0

Y p− q −1
2 0

(6.3)

We can refine the index by chemical potentials for the global symmetries,

IL(t, y, a, b, h) = Tr(−1)F t3(2j1−r) y2j2 a2s b2l hQB (6.4)

IR(t, y, a, b, h) = Tr(−1)F t3(2j2+r) y2j1 a2s b2l hQB . (6.5)

In practice we can focus on say the left-handed index. The right-handed index
of a given theory is obtained from the left-handed index of the same theory by
conjugation of the flavor quantum numbers, a→ 1/a, h→ 1/h.

Given a Y p,q quiver diagram, it is immediate to combine the chiral and vector
building blocks (2.46), (2.47) and construct the matrix integral that calculates the
corresponding index. We illustrate the procedure in the two simplest examples.

• Y 1,0 (T 1,1)

The quiver of T 1,1 is shown in figure 6.2. The index can be simply read from the
quiver diagram,

I1,0 =
2∏

k=1

[
κN−1

N !

∮
T

N−1∏
i=1

dz
(k)
i

2πiz
(k)
i

1∏
i̸=j Γ(z

(k)
i /z

(k)
j )

]

×
N∏

i,j=1

Γ(t3rU b±z
(2)
i /z

(1)
j )

N∏
i,j=1

Γ(t3rY a−1z
(1)
i /z

(2)
j )

N∏
i,j=1

Γ(t3rZa z
(1)
i /z

(2)
j )

(6.6)
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Figure 6.2: Quiver diagram for Y 1,0 (the conifold theory T 1,1). The solid (cyan)
arrow represents the U field, the dash-dot (blue) arrow represents the Y field and
the dashed (green) arrow represents the Z field.

Figure 6.3: Quiver of Y 1,1 theory. Solid (cyan) arrow represents U field, dash-dot-
dot arrow (red) represents V field and dash-dot arrow (blue) represents Y field.

where the R-charges are

rU = rY = rZ =
1

2
. (6.7)

The fact that Y and Z share the same R-charge leads to the symmetry enhancement
U(1)s → SU(2)s.

• Y 1,1 (C2/Z2 × C)
The quiver corresponding to Y 1,1 is shown in figure 6.3. This theory is the familiar
Z2 orbifold of N = 4 SYM which in fact preserves N = 2 supersymmetry, but we
write its N = 1 index for a uniform analysis,1

I1,1 =
2∏

k=1

[
κN−1

N !

∮
T

N−1∏
i=1

dz
(k)
i

2πiz
(k)
i

1∏
i̸=j Γ(z

(k)
i /z

(k)
j )

]

×

 N∏
i,j=1

Γ(t3rU b±z
(2)
i /z

(1)
j )

N∏
i,j=1

Γ(t3rV b±a z
(1)
i /z

(2)
j )


×

 N∏
i̸=j

Γ(t3rY a−1z
(1)
i /z

(1)
j )Γ(t3rY )N−1

N∏
i ̸=j

Γ(t3rY a−1z
(2)
i /z

(2)
j )Γ(t3rY )N−1

 .
(6.8)

1The index for this theory has been already calculated at large N [42, 97].
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Figure 6.4: Quiver diagram for Y 4,2, obtained from Y 4,4 by using the procedure in
[1].

Figure 6.5: A different quiver diagram for Y 4,2, related to the diagram above by
toric duality.

6.1.1 Toric Duality

A toric Calabi-Yau singularity may have several equivalent quiver representations,
related by what has been called “toric duality” [116]. In terms of the gauge theories
on D3 branes probing the singularity, two toric-dual quiver diagrams define two UV
theories that flow to the same IR superconformal fixed point. Toric duality can in
fact be understood in terms of the usual Seiberg duality of super QCD [117–123].
In particular, the prescription [1] for finding the quiver theory associated Y p,q does
not lead to unique answer, rather to a family of quivers related by toric duality. The
simplest example occurs for Y 4,2: the pair of toric-dual quivers associated to Y 4,2

is shown in figures 6.4 and 6.5.
We are now going to check the equality of the indices of two dual theories using

an identity between elliptic hypergeometric integrals.
Consider the k-th node of a Y p,q quiver with one incoming Y , one incoming Z

and an outgoing U doublet (see the first diagram in figure 6.6). Its contribution to
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the index (suppressing global symmetry charges) is

Ik
p,q =

κN−1

N !

∮
T

N−1∏
i=1

dz
(k)
i

2πiz
(k)
i

1∏
i̸=j Γ(z

(k)
i /z

(k)
j )

×
∏
i,j

Γ(t3rZ
zki
zZj

)
∏
i,j

Γ(t3rY
zki
zYj

)
∏
i,j

Γ(t3rU
zUj

zki
)2
∏
i,j

Γ(t3rV
zZi
zUj

)2.

(6.9)

where zU , zY and zZ represents the ”flavor” group of U , Y and Z. This is precisely
the An-type integral defined in [83],

Ik
p,q = I

(N−1)
AN−1

(Z|t3rZ/zZj , t3rY /zYj ; t3rU zUj , t3rU zUj ; p, q)
∏
i,j

Γ(t3rV
zZi
zUj

)2 . (6.10)

This integral obeys the balancing condition

N∏
j=1

t3rZ

zZj

t3rY

zYj
t3rU zUj t

3rU zUj = (pq)N , (6.11)

thanks to the relation

rY + rZ + 2rU = yp,q + xp,q + 2[1− 1

2
(xp,q + yp,q)] = 2 . (6.12)

Then the following identity holds [83]:

I
(m)
An

(Z|ti . . . , ui . . .) =
m+n+2∏
r,s=1

Γ(trus)I
(n)
Am

(Z|T
1

m+1

ti
. . . ,

U
1

m+1

ui
. . .). (6.13)

So we have

Ik
p,q =I

(N−1)
AN−1

(Z|t3rZ/zZj , t3rY /zYj ; t3rU zUj , t3rU zUj ; p, q)
∏
i,j

Γ(t3rV
zZi
zUj

)2

=
N∏

i,j=1

Γ(t3(rZ+rU ) z
U
i

zZj
)2

N∏
i,j=1

Γ(t3(rY +rU ) z
U
i

zYj
)2

× I
(N−1)
AN−1

(Z|t3rY zZj , t3rZzYj ; t3rU /zUj , t3rU /zUj ; p, q)
N∏

i,j=1

Γ(t3rV
zZj

zUi
)2

=
N∏

i,j=1

Γ(t3rV
zUi
zYj

)2I
(N−1)
AN−1

(Z|t3rY zZj , t3rZzYj ; t3rU /zUj , t3rU /zUj ; p, q),

(6.14)
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Figure 6.6: Left: initial quiver. The node represents a SU(N) gauge group. The
effective number of flavors is Nf = 2N . Middle: quiver after Seiberg duality. The
node represents the Seiberg dual gauge group SU(2N − N) = SU(N). All arrows
are reversed and mesons (with appropriate R-charges) are added. Right: the dash-
dot-dot (red) and dot (orange) mesons cancel each other out by equ.(4.15). This
can be understood physically in terms of integrating out massive degrees of freedom
[31].

Figure 6.7: Left: Y 4,2 quiver in figure 6.4. Middle: Seiberg dual on node 1. Right:
the quiver in figure 6.5 is obtained by swap node 1 and 2 in the middle figure.

where we have used rV = rZ + rU and

Γ(t3rV
zZi
zUj

)Γ(t3(rY +rU )
zUj

zZi
) = 1 . (6.15)

For example, one can perform this duality on one of the Y ZŪ nodes of the Y 4,2

quiver in figure 6.4 and obtain the quiver in figure 6.5. The procedure is illustrated
in figure 6.7.

This transformation can be represented on a quiver as a local graph transfor-
mation of figure 6.6. It has the interpretation of Seiberg duality on the node. (In
fact the same elliptic hypergeometric identity was used in [21] to demonstrate the
equality of the index under Seiberg duality.) Iterating this step, we can reach all
the toric phases of any Y p,q gauge theory.
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6.2 Large N evaluation of the index

In the large N limit the leading contribution to the index is evaluated using matrix
models techniques (see e.g. [2, 51]). Let {eαai}Na

i=1 denote the Na eigenvalues of ua.
Then the matrix model integral (2.23) is,

I(x) =
∫ ∏

a,i

[dαai] exp

−
∑
ai̸=bj

V a
b (αai − αbj)

 . (6.16)

Here, the potential V is the following function

V a
b (θ) = δab (ln 2) +

∞∑
n=1

1

n
[δab − iab (x

n)] cosnθ , (6.17)

where, iab (x) is the total single letter index in the representation ra ⊗ rb. Writing
the density of the eigenvalues {eαai} at the point θ on the circle as ρa(θ), we reduce
it to the functional integral problem,

I(x) =
∫ ∏

a

[dρa] exp{−
∫
dθ1dθ2

∑
a,b

nanbρa(θ1)V
a
b (θ1 − θ2)ρ

†
b(θ2)} . (6.18)

For large N , we can evaluate this expression with the saddle point approximation,

I(x) =
∏
k

1

det(1− i(xk))
.

For SU(N) gauge groups instead of U(N), the result is modified as follows,

I(x) =
∏
k

e−
1
k
tr i(xk)

det(1− i(xk))
. (6.19)

Here i(x) is the matrix with entries iab (x). We will see examples of such matrices
below.

The single-trace partition function can be obtained from the full partition func-
tion,

Is.t. =
∞∑
n=1

µ(n)

n
log I(xn)

= −
∞∑
k=1

φ(k)

k
log[det(1− i(xk))]−

∞∑
n=1

µ(n)

n

∞∑
k=1

tr i(xnk)

k
(6.20)

= −
∞∑
k=1

φ(k)

k
log[det(1− i(xk))]− tr i(x) .
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The second term in the summation would be absent for the U(N) gauge theories.
Here µ(n) is the Möbius function (µ(1) ≡ 1, µ(n) ≡ 0 if n has repeated prime factors
and µ(n) ≡ (−1)k if n is the product of k distinct primes) and φ(n) is the Euler Phi
function, defined as the number of positive integers less than n that are coprime to
n. We have used the properties∑

d|n

dµ(
n

d
) = φ(n),

∑
d|n

µ(d) = δn,1. (6.21)

After deriving the general expression for the superconformal index of a quiver
gauge theory let us study some concrete examples. Recall the single-letter indices

iV (t, y) =
2t6 − t3(y + 1

y )

(1− t3y)(1− t3y−1)
,

iχ̄(r)(t, y) =
t3r

(1− t3y)(1− t3y−1)
iχ(r)(t, y) = − t3(2−r)

(1− t3y)(1− t3y−1)
,

(6.22)

where for future convenience we have split the index of the matter multiplet into a
chiral and an antichiral contribution. Let us write down explicit expressions for the
index in some examples

• Y 1,0 (T 1,1)

For the conifold gauge theory, U(1)s is enhanced to SU(2)s so the global symmetry
is SU(2)s × SU(2)l. Assigning the chemical potentials a and b, for the two SU(2)s,
the single letter index matrix i1,0(t, y) is

i1,0 =

 iV (a+ 1
a)(iχ( 12 )

+ iχ̄( 1
2
))

(b+ 1
b )(iχ( 12 )

+ iχ̄( 1
2
)) iV

 , (6.23)

and the single-trace index evaluates to

Is.t. = −
∞∑
k=1

φ(k)

k
log[(1− iV (x

k))2 − (a+
1

a
)(b+

1

b
)(iχ( 1

2 )
(xk) + iχ̄( 1

2 )
(xk))2]− 2iV (x)

=
t3ab

1− t3ab
+

t3 a
b

1− t3 a
b

+
t3 b

a

1− t3 b
a

+
t3 1

ab

1− t3 1
ab

. (6.24)

This is the index for the theory where both the overall and the relative U(1) degrees
of freedom have been removed. The overall U(1) is completely decoupled, while the
relative U(1) has positive beta function and decouples in the IR. The removal of the
relative U(1) introduces certain double-trace terms in the superpotential which are
important to achieve exact conformality [124]. We have used the following property
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of Euler Phi function.
∞∑
k=1

φ(k)

k
log(1− xk) =

−x
1− x

. (6.25)

We will match the expression (6.24) to the gravity computation.

• Y 1,1 (C2/Z2 × C)
The index for this theory was already obtained in [42, 97]. The single letter index
matrix i1,1(t, y) is given by

i1,1 =

 iV + a−1iχ( 2
3
) + aiχ̄( 2

3
) (b+ 1

b )(aiχ( 23 )
+ iχ̄( 2

3
))

(b+ 1
b )(iχ( 23 )

+ a−1iχ̄( 2
3
)) iV + a−1iχ( 2

3
) + a iχ̄( 2

3
)

 , (6.26)

and the index evaluates to

Is.t. =−
∞∑

k=1

φ(k)

k
log[(1− iV (xk)− a−1iχ( 2

3
)(x

k)− a iχ̄( 2
3
)(x

k))2 − (b+
1

b
)2

1

a
(a iχ( 2

3
)(x

k) + iχ̄( 2
3
)(x

k))2]

− 2(iV (x) + a−1 iχ( 2
3
)(x) + a iχ̄( 2

3
)(x))

=2
t2a

1− t2a
+

t4b2a−1

1− t4b2a−1
+

t4b−2a−1

1− t4b−2a−1
− 2

a t2 − a−1 t4

(1− t3y)(1− t3y−1)
.

(6.27)

Again, we have subtracted both the overall and relative U(1) degrees of freedom
(in this case it is appropriate to subtract N = 2 vector multiplets).

• General Y p,q

A simple generalization gives the index for Y p,0 (T 1,1/Zp) and for Y p,p (C3/Z2p),

Y p,p : det (1− i(t)) =
(1− t4p)2(1− t2p)2

(1− t3y)2p(1− t3y−1)2p
, (6.28)

Y p,0 : det (1− i(t)) =
(1− t3p)4

(1− t3y)2p(1− t3y−1)2p
.

In fact the determinant of the adjacency matrix appears to factorize for general
Y p,q, to give2

det (1− i(t)) =

[
1− t3p(1+

1
2
(xp,q−yp,q))

]2 [
1− t3p+

3q
2 (1−

1
2
(xp,q+yp,q))

]2
(1− t3y)2p(1− t3y−1)2p

. (6.29)

2We have checked this result in several cases but have not attempted an analytic proof.
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Thus the single-trace partition function is3

Is.p.
p,q = 2

 t
p(3q+2p−

√
4p2−3q2)

q

1− t
p(2p+3q−

√
4p2−3q2)

q

+
t
p(3q−2p+

√
4p2−3q2)

q

1− t
p(2p+3q−

√
4p2−3q2)

q


Again, this is the result with all U(1) factors subtracted. If one introduces a chemical
potential b2l for the global SU(2)l and a chemical potential a2s for the global U(1)s
of table 6.3 the index becomes

Is.p.
p,q =

a−pbp+qt
p(3q+2p−

√
4p2−3q2)

q

1− a−pbp+qt
p(2p+3q−

√
4p2−3q2)

q

+
a−pb−p−qt

p(3q+2p−
√

4p2−3q2)
q

1− a−pb−p−qt
p(2p+3q−

√
4p2−3q2)

q

+
apbp−qt

p(3q−2p+
√

4p2−3q2)
q

1− apbp−qt
p(3q−2p+

√
4p2−3q2)

q

+
apbq−pt

p(3q−2p+
√

4p2−3q2)
q

1− apbq−pt
p(3q−2p+

√
4p2−3q2)

q

.

(6.30)

This is the left-handed index. The right-handed index is obtained by letting a →
1/a.

6.3 T 1,1 Index from Supergravity

On the dual supergravity side, the index of the conifold theory was computed by
Nakayama [32], using the results of [128–130] for the KK reduction of IIB super-
gravity on AdS5 × T 1,1.

Let us briefly review the structure of the calculation. For a general AdS5 ×Y p,q

background, the KK spectrum organizes itself in three types of multiplets [129, 130]:
graviton ((12 ,

1
2)), LH-gravitino ((12 , 0)), RH-gravitino ((0, 12)), and vector ((0, 0)).

The details of the specific background manifest themselves in the possible spectrum
of the R-charges and their multiplicities. This information can be obtained by
solving the spectrum of relevant differential operators, e.g. scalar Laplacian and
Dirac operators. For the Y p,q geometries the scalar Laplacian is given by Heun’s
differential equation spectrum of which is hard to obtain in closed form, see e.g. [126].
For the T 1,1 background these data were carefully computed in [128–130]. A generic
multiplet of the KK spectrum does not obey shortening conditions and thus does not
contribute to the index. Table 6.1 summarizes the multiplets which do contribute
of the index. The eigenvalue of the scalar laplacian is denoted by H0(s, l, r),

H0(s, l, r) = 6(s(s+ 1) + l(l + 1)− r2

8
). (6.31)

3Curiously, this is exactly twice the index of the chiral mesons denoted L+ (first term)
and L− (second term) in [125]. We don’t have a deeper understanding of this observation.
On the gravity sides, the chiral mesons of L+/− were identified in [126] (see also [127] with
the zero modes of the scalar Laplacian on the Y p,q manifold.).
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Fields Shortening Cond. s l Mult. IL(t, y)
∑

r̃(IL
[r̃,j2]L+

× . . .)

Graviton E = 1 +
√
H0 + 4 r

2
r
2

Cr( 1
2
, 1
2
) IL

[r+1, 1
2
]L−

−χ r̃−1
2
(a)χ r̃−1

2
(b)

GravitinoI E = −1
2
+
√
H−

0 + 4 r−1
2

r−1
2

Br(0, 1
2
) IL

[r−2, 1
2
]L−

−χ r̃+1
2
(a)χ r̃+1

2
(b)

r−1
2

r+1
2

Cr(0, 1
2
) IL

[r, 1
2
]L+

+χ r̃−1
2
(a)χ r̃+1

2
(b)

r+1
2

r−1
2

Cr(0, 1
2
) IL

[r, 1
2
]L+

+χ r̃+1
2
(a)χ r̃−1

2
(b)

GravitinoIII E = −1
2
+
√
H+

0 + 4 r+1
2

r+1
2

Cr( 1
2
,0) IL

[r+1,0]L−
−χ r̃

2
(a)χ r̃

2
(b)

GravitinoIV E = 5
2
+
√
H−

0 + 4 r−1
2

r−1
2

Cr( 1
2
,0) IL

[r+1,0]L−
−χ r̃

2
−1(a)χ r̃

2
−1(b)

VectorI E = −2 +
√
H0 + 4 r

2
r
2

Br(0,0) IL
[r−2,0]L−

−χ r̃
2
+1(a)χ r̃

2
+1(b)

r
2

r+2
2

Cr(0,0) IL
[r,0]L+

+χ r̃
2
(a)χ r̃

2
+1(b)

r+2
2

r
2

Cr(0,0) IL
[r,0]L+

+χ r̃
2
+1(a)χ r̃

2
(b)

VectorIV E = 1 +
√
H−−

0 + 4 r−2
2

r−2
2

Br(0,0) IL
[r−2,0]L−

−χ r̃
2
(a)χ r̃

2
(b)

r−2
2

r
2

Cr(0,0) IL
[r,0]L+

+χ r̃
2
−1(a)χ r̃

2
(b)

r
2

r−2
2

Cr(0,0) IL
[r,0]L+

+χ r̃
2
(a)χ r̃

2
−1(b)

Table 6.1: Short multiplets appearing in the KK reduction of Type IIB supergravity
on AdS5 × T 1,1. In the last column, we summarize the full index contributions of
multiplets by listing the SU(2)s×SU(2)l characters multiplying IL

[r̃, 1
2
]L+

for first four

rows and IL
[r̃,0]L+

for remaining rows. The range of r̃ is specified by the two conditions

that r̃ ≥ −1 and that the SU(2)s×SU(2)l representation makes sense. The chemical
potentials a and b couple to SU(2)s×SU(2)l flavor charges respectively. Exception:
The first row of GravitinoI starts from r̃ = 0. The r̃ = −1 state of GravitinoI gives
rise to the Dirac multiplet D(0, 1

2
) due to additional shortening. It corresponds in

the dual field theory to a decoupled U(1) vector multiplet.

H±
0 andH±±

0 are shorthands forH0(s, l, r±1) andH0(s, l, r±2) respectively. Besides
the KK modes of table 6.1, there are additional Betti multiplets, arising from the
non-trivial homology of T 1,1. Their contribution to the index is found to vanish [32].

The T 1,1 manifold has SU(2)s×SU(2)l isometry. We refine the index by adding
chemical potentials a and b that couple respectively to SU(2)s and SU(2)l. Simply
reading off the R-charges and the multiplicities of the different modes, we can write
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down the index as [32]4

IL =−
∑
r̃≥0

IL
[r̃, 12 ]

L
+
[(ab)r̃+1 + (

a

b
)r̃+1 + (

b

a
)r̃+1 + (

1

ab
)r̃+1]

−
∑
r̃≥−1

IL
[r̃,0]L+

[(ab)r̃ + (
a

b
)r̃ + (

b

a
)r̃ + (

1

ab
)r̃ + (ab)r̃+2 + (

a

b
)r̃+2 + (

b

a
)r̃+2 + (

1

ab
)r̃+2]

+ IL
[−1,0]L+

χ− 3
2
(a)χ− 3

2
(b)− IL

[0,0]L+
[−χ−1(a)χ−1(b) + χ−1(a)χ0(b) + χ0(a)χ−1(b)]

(6.32)

The definition of the index building blocks IL
[r̃,j2]L±

is given in appendix D, while

the symbol χj(x) stands for the standard character of the spin-j representation of
SU(2),

χj(x) ≡
x2j+1 − x−(2j+1)

x− x−1
. (6.33)

After simplification,

IL =
t3ab

1− t3ab
+

t3 ab
1− t3 ab

+
t3 b

a

1− t3 b
a

+
t3 1

ab

1− t3 1
ab

, (6.34)

which precisely agrees with the large N index (6.24) computed from gauge theory
using Römelsberger’s prescription.

4On the field theory side, we subtracted both U(1) factors. Correspondingly, on the
gravity side we should subtract all singleton degrees of freedom, and thus omit the r̃ = −1
mode of the GravitinoI tower, which corresponds to a D(0,1/2) multiplet.
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Chapter 7

Discussion

In this thesis we have discussed an important observable related to the spectrum
of superconformal field theories - the superconformal index. Computed exactly by
localization technique, the superconformal index captures of the information about
the protected spectrum of the theory.

We have defined and studied several limits of the N = 2 superconformal index.
They are characterized by enhanced supersymmetry and depend at most on two
superconformal fugacities, out of the possible three. We have given a prescription
to calculate these limits for all A-series superconformal quivers of class S, even when
they lack a Lagrangian description. Thanks to the topological QFT structure of the
index, it suffices to find a formula for the elementary three-valent building blocks.
For the SU(2) quivers, which do have a Lagrangian description, the building block-
s can be written in terms of algebraic objects that admit a natural extrapolation
to higher rank, leading to a compelling general conjecture that passes many tests.
These objects are the Macdonald polynomials, tailor-made for our purposes as they
depend on two fugacities, and for which a beautiful general theory is already avail-
able. We expect the generalization of our results to the D-series quivers of class S
(and possibly to the E-series as well) to be straightforward.

The TQFT that calculates the index of the Ak−1 quivers is closely related to
two-dimensional Yang-Mills theory with gauge group SU(k). An immediate qual-
itative hint, of course, is that the state-space of the index TQFT is the space of
irreducible SU(k) representations. As first discussed in [17], and confirmed here
in more generality, there is in fact a precise quantitative correspondence between
the limit of the index that we have dubbed the “Schur index”, which depends on
a single fugacity q, and correlators of q-deformed 2d Yang-Mills theory [101] in the
zero-area limit. In turn, the zero-area limit of q-deformed 2d Yang-Mills on the Rie-
mann surface C can be viewed as an analytic continuation of Chern-Simons theory
on C × S1 [101].

Recently, a “refinement” of Chern-Simons theory on three-manifolds admitting a
circle action was defined in [107], via the relation with topological string theory and
its embedding into M-theory. Taking the three-manifold to be of the form C × S1,
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and reducing on the S1, one obtains an indirect definition of “refined q-deformed
Yang-Mills theory” on C, which depends on two parameters q and t. (The defini-
tion is indirect because unlike the purely q-deformed case no Lagrangian description
is available for the refined theory.) The refinement essentially amounts to trad-
ing Schur polynomials with Macdonald polynomials, and we have found a precise
relation between our (q, t) “Macdonald index” and correlators of this (q, t)-Yang-
Mills theory. It is natural to ask whether this is pointing to a direct connection
between topological string theory and the superconformal index. At first sight the
geometries involved appear to be quite different, since to obtain the superconformal
index we must consider the (2, 0) theory on S3 × S1 × C, with appropriate twists
induced by the fugacities, while in the setup of [6, 107] the relevant geometry is
(C × S1 ×M3)q,t, where one may take M3 = S1 × C (we refer to the cited papers
for a proper explanation). Moreover while the index admits a further refinement for
a total of three fugacities, it seems difficult to introduce a third parameter in the
framework of [6, 107] while preserving supersymmetry. Nevertheless, at least for the
special case of the Macdonald index, there should be a deeper way to understand
the striking similarity of the two results.

An obvious direction for future work is the generalization of our results to the
full three-parameter index. The Haar measure together with the index of the N = 2
vector multiplet combine to [16, 21]

1

k!

k∏
i,j=1,i ̸=j

1

Γ (xi/xj ; q, p) Γ (t xi/xj ; q, p)
, (7.1)

where Γ(z; p, q) is the elliptic Gamma function

Γ(z; p, q) =

∞∏
i,j=0

1− pi+1qj+1/z

1− piqjz
. (7.2)

A natural speculation is that the functions fλp,q,t(a) that diagonalize the structure
constants of the full index should be proportional to elliptic extensions of the Mac-
donald polynomials, to which they should reduce in the limit p → 0 (or q → 0).
Various proposals for elliptic Macdonald functions have appeared in the mathe-
matical literature, see e.g. [83, 131, 132]. We can in fact formulate a more precise
conjecture, motivated by the relation between two-dimensional gauge theories and
integrable quantum mechanical models of Calogero-Moser (CM) type, see e.g. [133–
138]. The reduction of ordinary 2d Yang-Mills theory to one dimension yields the
rational (non-relativistic) CM model [133]. One can consider the trigonometric
and elliptic generalizations of the non-relativistic model, as well as their relativis-
tic cousins (the relativistic versions are also known as Ruijsenaars-Schneider (RS)
models). The relativistic trigonometric model (trigonometric RS) depends on two
parameters (q, t), has Macdonald polynomials as its eigenfunctions, and is closely
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related to the two-dimensional G/G WZW model1 or equivalently to Chern-Simons
theory on C × S1. At the summit of this hierarchy is the elliptic relativistic model
(elliptic RS), which depends on three parameters, analogous to (p, q, t) of the full
index. Our conjecture is then that the symmetric functions relevant for the com-
putation of the full index are the eigenfunctions of the elliptic RS model. Not too
much is known about them, see [140] for a review.2

Perhaps the most interesting open problem is to give a “microscopic” derivation
of the two-dimensional TQFT of the index from the six-dimensional (2, 0) theory.
A promising shortcut, which exploits the mentioned connection between 2d gauge
theories and 1d Calogero-Moser models, is along the following lines. Consider the
(2, 0) theory on S3 × S1

(1) × Cg,s. The Riemann surface Cg,s can be viewed as a

circle, S1
(2), times a graph Ig,s By first reducing the (2, 0) theory on S1

(2) (note that

there is no twist around this circle) one obtains 5d super Yang-Mills on S3 × S1
(1) ×

Ig,s. We propose that the further reduction of 5d SYM on S1
(1) × S3 (with the

fugacity twists) yields the elliptic RS model on the graph Ig,s, with appropriate
boundary conditions at the s external punctures and at the internal junctures. In a
suitable limit, which corresponds to taking S1

(1) to be small, the 4d index becomes

the 3d partition function [103–105], and our proposal reduces to the one of [114]
(see also [113]). These authors show how to interpret such 3d partition functions as
overlaps of quantum mechanical wave functions. We are suggesting that a similar
idea may apply to the 4d index, and that the relevant quantum mechanical model
is the elliptic RS model. More work is going to be done along these lines.

1See [137] for a review and [139] for recent relevant work.
2Quantum mechanical integrable models have been recently related to the problem of

counting vacua of N = 2 supersymmetric theories in the Ω-background [141, 142]. See
also [143, 144] for connections of elliptic Gamma functions to integrable systems.
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Appendix A

Duality

A.1 The Representation Basis

The labels of the topological algebra as we have defined in (3.6) are (com-
pact) continuous parameters αi ∈ [0, 2π). We can “Fourier” transform to the
discrete basis of irreducible SU(2) representations. We denote by RK the
irreducible representation of SU(2) of dimension K + 1. The integrals over
characters translate into sums over representations. The structure constants
in the discrete basis are given by

Cαβγ =
∞∑

K,L,M=0

sin(K + 1)α

sinα

sin(L+ 1)β

sin β

sin(M + 1)γ

sin γ
ĈKLM (A.1)

=
∞∑

K,L,M=0

χK(α)χL(β)χM(γ) ĈKLM ,

where χK(α) is the character of RK ,

χK(α) =
sin(K + 1)α

sinα
. (A.2)

Similarly the metric in the discrete basis is given by

ηαβ =
∞∑

K,L=0

χK(α)χL(β) η̂
KL . (A.3)
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Further, we define the scalar product of characters1

⟨χK χM ⟩ = 1

2πi

∮
dz

z
(1− z2)χK(z)χM (z)

= − 1

4πi

∮
dz

z
(z − 1

z
)2 χK(z)χM (z) =

∫ 2π

0
dθ∆(θ)χK(θ)χM (θ) = δK,M

(A.4)

In the second equality we have introduced the measure (3.5) and used the
fact that χ(z) = χ(z−1). Thus we have

∞∑
K=0

χK(α)χK(β) = δ̂(α, β),

∫ 2π

0

dθ∆(θ) δ̂(θ, α) f(θ) = f(α), (A.5)

for any f obeying f(θ) = f(−θ). Using (3.6) we can write

η̂KL = ηI⟨χIχKχL⟩, ηI =

∫
dα∆(α) ηα χI(α). (A.6)

Finally with the help of these definitions, we can rewrite (3.8) as

I =
∏

{i,j,k}∈V

ĈLiLjLk

∏
{m,n}∈G

η̂LmLn , (A.7)

where index contractions now indicate sums over the non-negative integers.

A.2 TQFT Algebra for v = t

For v = t we can rewrite the algebra of the topological quantum field theo-
ry (3.6) in a more elegant way, removing the delta-functions by making use
of identities obeyed by elliptic Beta integrals. This does not appear to be a
preferred limit physically, except for the fact that the contribution to the index
of the chiral superfield in the N = 2 vector multiplet vanishes, see (2.13). Our
manipulations will be slightly formal since the limit v = t of the formulae we
will use is somewhat singular. We start by quoting the important identity

E(m=0)(t1, . . . , t6) =κ

∮
dz

z

∏6
k=1 Γ

(
tk z

±1; p, q
)

Γ (z±2; p, q)
=

∏
1≤j<k≤6

Γ (tj tk; p, q) ,

6∏
k=1

tk = pq

(A.8)

1We have a slightly different convention for the characters and thus the expression of
the scalar product differs from the one in [145].
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This is a vast generalization to elliptic Gamma functions of that seminal
object in string theory, the classic Beta integral of Euler,

B(α, β) =

∫ 1

0

dt tα−1(1− t)β−1 =
Γ(α)Γ(β)

Γ(α + β)
, (A.9)

which is recovered as a special limit, see e.g. [54]. Applying (A.8) we have

κ

∮
dz

z

Γ (τ
√
ν a±1b±1z±1) Γ

(
τ
ν
z±1y±1

)
Γ (z±2)

= (A.10)

Γ

(
τ 2√
ν
a±1b±1y±1

)
Γ
(
τ 2ν a±2

)
Γ
(
τ 2ν b±2

)
Γ

(
τ 2

ν2

)
Γ
(
τ 2 ν

)2
.

For brevity we have omitted the p and q parameters in the Gamma functions.
We assume pq = τ 6. For these values of p and q, Γ(τ 3z±1) = 1. Now if we
take ν = τ ,

κ

∮
dz

z

Γ
(
τ 3/2 a±1b±1z±1

)
Γ (z±1y±1)

Γ (z±2)
= Γ

(
τ 3/2 a±1b±1y±1

)
Γ (1) . (A.11)

Strictly speaking the elliptic Beta integral formula (A.8) holds when |tk| < 1
for all k = 1 . . . 6. For ν = τ some of the tks in (A.10) saturate this bound. The
elliptic Beta integral (A.10) is proportional to Γ( τ

2

ν2
; p, q) → Γ(1; p, q). Since

the elliptic Gamma function has a simple pole when its argument approaches
z = 1 (see (2.32)), (A.10) diverges in the limit. We will proceed by keeping
formal factors of Γ(1) in all the expressions. Thanks to (A.11), the expression

Γ(z±1y±1)

Γ(z±2)Γ(1)
≡ δzy (A.12)

acts as a formal identity operator. All factors of Γ(1) will cancel in the final
expression for the index.

For t = v we can write the building blocks of the topological algebra in the
form summarized in table A.1. Contraction of indices is defined as

A..a..B..a.. → κ

∮
d a

a
A..a..B..a... (A.13)

We now proceed to perform a few sample calculations and consistency checks.
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Symbol Surface Value Symbol Surface Value

Cabc

|a〉

|b〉

|c〉

Γ(t
3
2a±1b±1c±1) V a 〈a| 1

Γ(1)2
Γ(t±

3
2 a±1)

Γ(a±2)

ηab

〈a|

〈b|

1
Γ(1)

Γ(a±1b±1)
Γ(a±2,b±2) ηab

|a〉

|b〉

1
Γ(1)

Γ (a±1b±1)

Table A.1: The basic building blocks of the topological algebra in the v = t case.

We can raise an index of the structure constants to obtain

Cabe η
ec =

κ

Γ(1)

∮
d e

e
Γ(t

3
2a±1b±1e±1)

Γ(e±1c±1)

Γ(e±2, c±2)
=

Γ(t
3
2a±1b±1c±1)

Γ(c±2)
= Cab

c .

(A.14)

In particular we see that the index (3.20) is finite and is simply given by
Cab

cCcde. The “vacuum state” |V ⟩ ≡ V a|a⟩ satisfies by definition (see e.g.
[82]) Cabc V

c = ηab, as illustrated in figure A.1. This determines V a to be the
expression in table A.1,

Cabc V
c =

κ

Γ(1)2

∮
dz

z
Γ(t

3
2a±1b±1z±1)

Γ(t±
3
2 z±1)

Γ(z±2)
=

1

Γ(1)
Γ(a±1b±1) = ηab .

(A.15)

|a〉

|b〉

|a〉

|b〉

=

Figure A.1: Constructing the metric by capping off the trivalent vertex.
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Further, we can check that ηab and η
ab in table A.1 are one the inverse of the

other,

ηae ηec =
κ

Γ(1)2

∮
d e

e

Γ(a±1e±1)

Γ(a±2, e±2)
Γ
(
e±1c±1

)
=

1

Γ(1)

Γ(a±1c±1)

Γ(a±2)
= δac . (A.16)

|a〉

〈c|

〈c| |a〉=

Figure A.2: Topological interpretation of the property ηce ηea = δca.

As a consistency check one can verify in examples that δab is indeed an identity.
For instance

δza Czbc =
κ

Γ(1)

∮
dz

z

Γ(a±1z±1)

Γ(z±2)
Γ(t

3
2 z±1b±1c±1) = Γ(t

3
2a±1b±1c±1) = Cabc ,

(A.17)

as illustrated in figure A.3. For completeness we can also compute the sphere

|a〉

|b〉 =

|c〉

|a〉

|b〉

|c〉

Figure A.3: The consistency requirement δzc Cabz = Cabc.

and the torus partition functions. (These partition functions do not appear
in any index computation of a 4d superconformal theory so their physical
interpretation is unclear.)
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(a) (b)

Figure A.4: The sphere (a) and the torus (b) partition functions.

The sphere partition function is given by

V c V e ηce =
κ2

Γ(1)5

∮
de

e

∮
dc

c

Γ (c±1e±1) Γ
(
t±3/2 c±1

)
Γ
(
t±3/2 e±1

)
Γ (c±2) Γ (e±2)

=
κ

Γ(1)4

∮
de

e

Γ
(
t±3/2 e±1

)2
Γ (e±2)

= Γ(t−3)
1

Γ(1)
. (A.18)

The torus partition function is given by

ηabη
ab =

κ

Γ(1)

∮
d a

a

Γ(a±1a±1)

Γ(a±2)
= κΓ(1)

∮
d a

a
= 2 π i κΓ(1). (A.19)

Since Γ(1) = ∞ the sphere partition function vanishes and the torus partition
function diverges.

A.3 t expansion in the weakly-coupled frame

We expand the index (3.27) in t as

Ia,z;b,y =
∞∑
k=0

bk t
k. (A.20)
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The first few orders are

b0 = 1,

b1 = b2 = b3 = 0,

b4 =
1

v
χ
SU(6)
35,adj +

1

v
+ v2,

b5 = −v
(
y +

1

y

)
, (A.21)

b6 =
1

v3/2
χ
SU(6)
20

((a
b

)3/2
+

(
b

a

)3/2
)

− χ
SU(6)
35,adj + v3 − 1,

b7 =
1

v

(
y +

1

y

)
χ
SU(6)
35,adj +

2

v

(
y +

1

y

)
,

b8 =
1

v2
χ
SU(6)
sym235 + vχ

SU(6)
35,adj −

1√
v
χ
SU(6)
20

((a
b

)3/2
+

(
b

a

)3/2
)

+ v4 − v

(
y +

1

y

)2

+ 2v,

b9 = −2

(
y +

1

y

)
χ
SU(6)
35,adj +

1

v3/2

(
y +

1

y

)
χ
SU(6)
20

((a
b

)3/2
+

(
b

a

)3/2
)

− 2

(
y +

1

y

)
.

In the above equation we decomposed SU(6) ⊃ SU(3)z ⊗ SU(3)y−1 ⊗ U(1).
The branching of 35 and 20 of SU(6) is given by (see [146]),

35 = (1,1)0 + (8,1)0 + (1,8)0 + (3̄,3)2 + (3, 3̄)−2 , (A.22)

20 = (1,1)3 + (1,1)−3 + (3̄,3)−1 + (3, 3̄)1 .

For example, the character of the adjoint is

χ
SU(6)
35,adj =

[
(a b)1/2 (z1 + z2 + z3) + (a b)−1/2 (

1

y1
+

1

y2
+

1

y3
)

]
(A.23)

×
[
(a b)−1/2

(
1

z1
+

1

z2
+

1

z3

)
+ (a b)1/2 (y1 + y2 + y3)

]
− 1 .

We conclude that the U(1) charge in SU(6) can be identified as (a b)−1/2.

A.4 Inversion theorem

In this appendix we quote the inversion theorem [78], which we use in sec-
tion 3.2.2 to obtain the index of the E6 theory. Define

δ(z, w;T ) ≡ Γ(T z±1w±1; p, q)

Γ(T 2, z±2; p, q)
. (A.24)
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If T , p and q are such that

|max(p, q)| < |T | < 1 , (A.25)

then the following theorem holds true. For fixed w on the unit circle we define
a contour Cw (see figure A.5) in the annulus A = {|T | − ϵ < |z| < |T |−1 + ϵ}
with small but finite ϵ ∈ R+, such that the points T−1w±1 are in its interior
and Cw = C−1

w (i.e. an inverse of the point in the interior of Cw is in the
exterior of Cw). Let f(z) = f(z−1) be a holomorphic function in A. Then for
|T | < |x| < |T |−1,

f̂(w) = κ

∮
Cw

dz

2πi z
δ(z, w; , T−1) f(z) −→ f(x) = κ

∮
T

dw

2πiw
δ(w, x; , T ) f̂(w) .

(A.26)

t
2
w√
v

√
v

t2w

t
2

w
√

v

w
√

v

t2

Figure A.5: The integration contour Cw (green). The dashed (black) circle is the

unit circle T. Black dots are poles of Γ
(√

v
t2
w±1 z±1

)
. There are four sequences of

poles: two sequences starting at
√
v

t2
w±1 and converging to z = 0, and two sequences

starting at t2√
v
w±1 and converging to z = ∞. The contour encloses the two former

sequences.

Our expression for the index in the strongly-coupled frame (3.37) is of the
form of the right hand side of (A.26). Thus, to use the inversion theorem to
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obtain the index of E6 theory we assume that this index can be written as

Γ(t2v w±2) C(E6) ((w, r),y, z) = κ

∮
Cw

ds

2πi s

Γ(
√
v

t2
w±1 s±1)

Γ( v
t4
, s±2)

F (s, r;y, z) ,

(A.27)

for some function F . The theorem (A.26) then implies that F (s, r;y, z) =
Î (s, r;y, z) with I (s, r;y, z) given in (3.37).

A.5 The Coulomb and Higgs branch operators

of E6 SCFT

We collect here a few facts about the Coulomb and the Higgs branches of E6

SCFT, following the analysis of [80]. Argyres-Seiberg duality can be used to
determine the quantum numbers of protected operators of E6 theory if their
dual operators in the dual SU(3) theory are known. The Coulomb branch op-
erator u of the E6 theory (the operator whose vev parametrized the Coulom-
b branch) is identified as Trϕ3 in the SU(3) theory. Since ϕ has quantum
numbers (E, j1, j2, R, r) = (1, 0, 0, 0,−1), u should have quantum numbers
(3, 0, 0, 0,−3) and contribute to the superconformal index as t6v3.

The operator X whose vev parametrized the Higgs branch transforms in
the adjoint representation of E6. Under the SU(2)⊗ SU(6) subgroup of E6 it
decomposes as

X i
j, Y [ijk]

α , Zαβ , (A.28)

where i, j, k = 1, . . . , 6 are the SU(6) indices, and α, β = 1, 2 are the SU(2)
indices. At the same time, the SU(2) gauge theory provides the quarks qα, q̃α
and the F -term constraint

Zαβ + q(αq̃β) = 0 . (A.29)

Thus the gauge-invariant operators are

(qq̃), X i
j, (Y ijkq), (Yijkq̃) . (A.30)

On the SU(3) side, the Higgs branch is parameterized by gauge invariant
operators

M i
j = Qi

aQ̃
a
j , Bijk = ϵabcQi

aQ
j
bQ

k
c , B̃ijk = ϵabcQ̃

a
i Q̃

b
jQ̃

c
k , (A.31)

where Qi
a and Q̃a

i are the squark fields, i = 1, . . . , 6 are flavor indices, and

122



a = 1, 2, 3 the color indices.
The duality of the two sides suggests the following identification

TrM ↔ (qq̃), M̂ i
j ↔ X i

j, (A.32)

Bijk ↔ (Y ijkq), B̃ijk ↔ (Yijkq̃) (A.33)

where M̂ i
j is the traceless part of M i

j . Since the quantum numbers of Q are
(1, 0, 0, 1/2, 0), the quantum numbers of X should be (2, 0, 0, 1, 0), and con-
tribute to the index as t4/v.

A.6 Identities from S-duality

In this appendix we summarize identities of integrals of elliptic Gamma func-
tions implied by S-duality of the SU(3) quiver theories.

Generalization of [76]

We define

I(n)
(
a , zSU(n); b ,ySU(n)

)
≡ 2n−1

n!
κn−1Γ(t2v)n−1×

∮
Tn−1

n−1∏
i=1

dxi
2πi xi

∏n
i=1

∏n
j=1 Γ

(
t2√
v

(
azi
xj

)±1
)
Γ
(

t2√
v
(b yi xj)

±1
)∏

i ̸=j Γ
(
t2v xi

xj

)
∏

i ̸=j Γ
(

xi

xj

)
∣∣∣∣∣∣∣∣∏n

j=1 xj=1

.

(A.34)

The claim is that

I(n)
(
a , zSU(n); b ,ySU(n)

)
= I(n)

(
b , zSU(n); a ,ySU(n)

)
. (A.35)

For SU(2) this identity was proven in [76], and for SU(3) we have performed
perturbative checks. The usual S-duality of Nf = 2n SU(n) theories implies
that this identity should be true for any n. Note that for t = v this is a special
case of identities discussed in [83].
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E6 Integral

We define

C(E6) ((w, r),y, z) ≡ 2κ3Γ(t2v)2

3Γ(t2v w±2)

∮
Cw

ds

2πi s

Γ(
√
v

t2 w
±1 s±1)

Γ( v
t4 , s

±2)
×

×
∮
T2

2∏
i=1

dxi
2πi xi

3∏
i=1

3∏
j=1

Γ

 t2√
v

(
s

1
3 zi
xj r

)±1
Γ

 t2√
v

(
s−

1
3 yi xj
r

)±1
∏

i ̸=j

Γ

(
t2v

xi
xj

)
∏
i ̸=j

Γ

(
xi
xj

) .

(A.36)
This integral has manifest symmetry under SU(2)w⊗SU(6), where the SU(6)
has been decomposed as SU(3)z ⊗ SU(3)y−1 ⊗ U(1)r. The identification with
the index of the E6 SCFT implies that there must be a symmetry enhancement
SU(2)w ⊗ SU(6) → E6. Two properties that are sufficient to guarantee E6

covariance are: first,

C(E6) ((w, r),y, z) = C(E6)

((
w1/2

r3/2
,

1

w1/2 r1/2

)
,y, z

)
, (A.37)

which is the statement that (w, r) combine into a character of SU(3) (which
we shall denote by w); second,

C(E6)(w,y, z) = C(E6)(y,w, z) . (A.38)

We presented perturbative evidence for the full E6 symmetry in the text.

S-dualities of SU(3) quivers

Define

I3333 (y, z,u, s) ≡
∮
T2

2∏
i=1

dxi
2πixi

∏
i ̸=j

Γ
(
t2vxi/xj

)
Γ (xi/xj)

C(E6) (y, z,x)C(E6)
(
u, s,x−1

)
,

I3331 (y, z,u, a) ≡
∮
T2

2∏
i=1

dxi
2πixi

∏
i ̸=j

Γ
(
t2vxi/xj

)
Γ (xi/xj)

C(E6) (y, z,x)
3∏

i,j=1

Γ

(
t2√
v

(
a x−1

i uj
)±)

.

(A.39)

The S-dualities of the SU(3) quivers imply

I3333 (y, z,u, s) = I3333 (y,u, z, s) , (A.40)

I3331 (y, z,u, a) = I3331 (y,u, z, a) .
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Appendix B

MacDonald

B.1 Construction of the diagonal expression

for the SU(2) HL index

In this appendix we diagonalize the structure constants of the SU(2) quivers
in the ρ → 0, σ → 0 limit. With hindsight, we have dubbed this limit the
Hall-Littlewood (HL) index, since the diagonal functions turn out to be closely
related to the Hall-Littlewood polynomials. This is precisely what we show in
this appendix.

For SU(2), the SCFT associated to three-punctured sphere is the the free
hypermultiplet in the trifundamental representation. In the limit of interest,
its index reads

I(a, b, c) = PE [τχ1(a)χ1(b)χ1(c)]a,b,c,τ =
1∏

sa,sb,sc=±1(1− τ asa bsb csc)
,(B.1)

where the fugacities a, b, and c label the Cartans of the three SU(2) flavor
groups. The index of the vector multiplet and the SU(2) Haar measure com-
bine to

∆(a)IV (a, τ) = (1− τ 2)∆τ2,τ4(a) , (B.2)

where ∆τ2,τ4(a) is the Macdonald measure (4.96) with q = τ 2 and t = τ 4,

∆τ2,τ4(a) =
1

2
(1− a2)(1− 1

a2
)(1− τ 2a2)(1− τ 2

a2
) . (B.3)

The corresponding Macdonald polynomials P λ(a, a−1; q, t), normalized to be
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orthonormal under (B.2), are1

Pλ(a; τ2, τ4) =
τ√

1− τ2
(
1− 1

a2 τ2
)
(1− a2τ2)

√
χλ(τ)χλ+2(τ)

{
χλ(a)

χλ(τ)
− χλ+2(a)

χλ+2(τ)

}
.

(B.4)

By choosing {P λ(a, a−1; q, t)} as a basis, the metric of the TQFT is then
trivial, ηλµ = δλµ. On the other hand, the projection of I(a, b, c) into the basis
functions gives the structure constants Cµνλ,

I(a, b, c) =
∞∑

µ,ν,λ=0

CµνλP
µ(a; τ 2, τ 4)P ν(b; τ 2, τ 4)P λ(c; τ 2, τ 4) . (B.5)

We find that while the structure constants are not diagonal, they take a rel-
atively simple “upper triangular” form. The only non-vanishing coefficients
are

Cλλλ ≡ Ψλ , Cλµµ = Cµλµ = Cµµλ ≡ Ωλ for µ < λ , (−1)λ+µ = 1 , (B.6)

where

Ψλ(τ) =

√
1− τ 2√
χλ+2(τ)

(
τ−1 + τ√
χλ(τ)

− τλ+3
√
χλ(τ)

)
, (B.7)

Ωλ(τ) =
√
1− τ 2(τ−1 + τ)

1√
χλ(τ)χλ+2(τ)

.

Associativity is easy to check. It is trivial for most choices of external states,
the one interesting case being the four-point function µµνν with µ < ν and
having the same parity (both even or both odd). Equality of the two channels
reads ∑

λ≥ν,(−1)λ+µ=1

CµµλCλνν = [Cµµν ]
2 , (B.8)

which amounts to (no sum on ν)∑
λ>ν,(−1)λ+µ=1

Ωλ(τ)
2 +Ων(τ)Ψν(τ) = Ων(τ)

2 . (B.9)

One can verify that this property is satisfied for the particular values of the

1This normalization is only used in this appendix. In the rest of the paper Macdonald
polynomials are taken to have unit norm with respect to the Macdonald measure.
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coefficients given in (B.7).2

Let us now perform an orthogonal transformation that diagonalizes the
structure constants. From (B.6) we see even and odd Macdonald polynomials
do not mix with each other and thus can carry our the diagonalization sepa-
rately for each parity; the discussion below is restricted to the even parity case
for definiteness. The Latin letter indices below, j, . . . , run over the integers
and correspond to half the value of the Greek indices used above.

We define real symmetric matrices Ni as
3

(Ni)jk ≡ Cijk . (B.10)

Associativity implies that they commute, [Ni, Nj] = 0, so they can be simul-
taneously diagonalized. Recall that the structure of each matrix Nj is

(Nj)ik =



i < j, i = k Ωj

i = k = j Ψj

i > j, k = j Ωi

k > j, i = j Ωk

other 0

(B.11)

The non-zero eigenvalues of this matrix are Ωj with multiplicity j, and Ψj−Ωj

with multiplicity one. The unique eigenvector with eigenvalue Ψj − Ωj is

ej+1 = (0, . . . , 0, Ψj − Ωj, Ωj+1, Ωj+2, . . . ) , (B.12)

where there are j zeros in the beginning of the vector. Note that the ejs are
orthogonal to each other,

ej+1 · ek+1 = (Ψj − Ωj)Ωj +
∑
i>j

[Ωi]
2 = 0 , (B.13)

where we took j > k without loss of generality and used the associativity
constraint (B.9). Moreover, the vectors ei turn out to be eigenvectors of all

2One needs the identity
∑∞

k=0
1

sinhα(2k+3) sinhα(2k+1) = e−α

2 sinh2 α coshα
and induction on

ν.
3Note that since the metric is trivial, ηij = δij , the upper or lower position of the indices

is immaterial.
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the matrices Nj,

i < j : Nj · ei+1 = Ωj ei+1 , (B.14)

i = j : Nj · ei+1 = (Ψj − Ωj) ei+1 ,

i > j : Nj · ei+1 = 0 .

This can be shown from the definitions with the help of the associativity
constraint (B.9). To complete this set of vectors to a basis we have to add one
more vector, orthogonal to all ej,

e0 = (Ω1, Ω2, . . . ) . (B.15)

This is an eigenvector of all the matrices Nj with eigenvalue Ωj. We have
thus managed to diagonalize the matrices Ni. In the diagonal basis {ej} the
matrices are given by (we use hatted indices to represent components in the
new basis)

(Nj)îk̂ =


j > î , Ωj δîĵ
î = j , (Ψj − Ωj) δîĵ
j < î, 0

(B.16)

Finally we perform the orthogonal transformation to the new basis also for
the matrix label j of Nj, and find constants in the new basis read

Cĵîk̂ =
1

nĵ

∑
l

(eĵ)l · (Nl)îk̂ , (B.17)

where nĵ is the normalization of eĵ,

nĵ =
√
eĵ · eĵ = τ 2ĵ

√
1− τ 2 for ĵ > 0 , (B.18)

n0̂ =
√
e0̂ · e0̂ =

√
(1− τ 2)(1 + τ 2) .

A little calculation gives

Cî̂îi = nî , (B.19)

and zero for the other choices of the indices. So far we have restricted attention
to even parity (in terms of the original Greek labels). The case of odd parity
works along completely parallel lines.

We can now explicitly compute the functions that diagonalize the structure
constants, by contacting the normalized vectors eµ/nµ with the Macdonald
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polynomials (B.4). A useful identity is (λ > 0)

∞∑
µ=λ, (−1)λ+µ=1

P µΩµ =
1 + τ 2

(1− τ 2a2) (1− τ 2/a2)

χλ(a)

χλ(τ)
. (B.20)

One finds that the diagonal basis is given by

fλ(a, τ) =
1√

1− τ2
1

(1− τ2a2) (1− τ2/a2)

{
χλ(a)− τ2χλ−2(a)

}
for λ > 0 ,

f0(a, τ) =
1√

1− τ2
1

(1− τ2a2) (1− τ2/a2)

√
1 + τ2 .

(B.21)

It is straightforward to verify that this basis is orthonormal under the mea-
sure (B.2). Remarkably, the functions fλ(a, τ) are proportional to the SU(2)
Hall-Littlewood polynomials P λ

HL(a, a
−1|τ), see (4.43), with a λ-independent

proportionality factor K(a, τ).
Finally we can write the diagonalized form for the index,

I(a1, a2, a3) =

1

1− τ2

3∏
i=1

1

(1− τ2a2i ) (1− τ2/a2i )

{
(1 + τ2)2 +

∞∑
λ=1

τλ
3∏

i=1

(
χλ(ai)− τ2χλ−2(ai)

)}
.

(B.22)

The equality of this expression with (B.1) can be proven directly by elementary
means since the sum above is a geometric sum. By noting that

χλ(τ)− τ 2χλ−2(τ) = τ−λ(1 + τ 2) , (B.23)

and recalling the definition (4.43) of the HL polynomials we can also write

I(a1, a2, a3) =
1 + τ2

1− τ2

3∏
i=1

1

(1− τ2a2i ) (1− τ2/a2i )

∞∑
λ=0

1

PHL
λ (τ, τ−1| τ)

3∏
i=1

PHL
λ (ai, a

−1
i | τ)

(B.24)

B.2 Index of short multiplets of N = 2 super-

conformal algebra

A generic long multiplet AE
R,r(j1,j2)

of the N = 2 superconformal algebra is

generated by the action of the eight Poincaré supercharges Q and Q̃ on a
superconformal primary, which by definition is annihilated by all conformal
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Shortening Conditions Multiplet

B1 Q1α|R, r⟩h.w. = 0 j1 = 0 E = 2R + r BR,r(0,j2)

B̄2 Q̃2α̇|R, r⟩h.w. = 0 j2 = 0 E = 2R− r B̄R,r(j1,0)

E B1 ∩ B2 R = 0 E = r Er(0,j2)
Ē B̄1 ∩ B̄2 R = 0 E = −r Ēr(j1,0)
B̂ B1 ∩ B̄2 r = 0, j1, j2 = 0 E = 2R B̂R

C1 ϵαβQ1β|R, r⟩h.w.
α = 0 E = 2 + 2j1 + 2R + r CR,r(j1,j2)

(Q1)
2|R, r⟩h.w. = 0 for j1 = 0 E = 2 + 2R + r CR,r(0,j2)

C̄2 ϵα̇β̇Q̃2β̇|R, r⟩h.w.
α̇ = 0 E = 2 + 2j2 + 2R− r C̄R,r(j1,j2)

(Q̃2)
2|R, r⟩h.w. = 0 for j2 = 0 E = 2 + 2R− r C̄R,r(j1,0)

C1 ∩ C2 R = 0 E = 2 + 2j1 + r C0,r(j1,j2)
C̄1 ∩ C̄2 R = 0 E = 2 + 2j2 − r C̄0,r(j1,j2)

Ĉ C1 ∩ C̄2 r = j2 − j1 E = 2 + 2R + j1 + j2 ĈR(j1,j2)

C1 ∩ C2 ∩ C̄1 ∩ C̄2 R = 0, r = j2 − j1 E = 2 + j1 + j2 Ĉ0(j1,j2)
D B1 ∩ C̄2 r = j2 + 1 E = 1 + 2R + j2 DR(0,j2)

D̄ B̄2 ∩ C1 −r = j1 + 1 E = 1 + 2R + j1 D̄R(j1,0)

E ∩ C̄2 r = j2 + 1, R = 0 E = r = 1 + j2 D0(0,j2)

Ē ∩ C1 −r = j1 + 1, R = 0 E = −r = 1 + j1 D̄0(j1,0)

Table B.1: Shortening conditions and short multiplets for the N = 2 superconformal
algebra.

supercharges S. If some combination of the Qs also annihilates the primary,
the corresponding multiplet is shorter and the conformal dimensions of all its
members are protected against quantum corrections. The shortening condi-
tions for the N = 2 superconformal algebra were studied in [147–149]. We
follow the nomenclature of [149], whose classification scheme is summarized in
table B.1. Let us take a moment to explain the notation. The state |R, r⟩h.w.

(j1,j2)

is the highest weight state with SU(2)R spin R > 0, U(1)r charge r, which
can have either sign, and Lorentz quantum numbers (j1, j2). The multiplet
built on this state is denoted as XR,r(j1,j2), where the letter X characterizes
the shortening condition. The left column of table B.1 labels the condition. A
superscript on the label corresponds to the index I = 1, 2 of the supercharge
that kills the primary: for example B1 refers to Q1α. Similarly a “bar” on
the label refers to the conjugate condition: for example B̄2 corresponds to
Q̃2 α̇ annihilating the state; this would result in the short anti-chiral multiplet
B̄R,r(j1,0), obeying E = 2R − r. Note that conjugation reverses the signs of r,
j1 and j2 in the expression of the conformal dimension.

The superconformal index counts with signs the protected states of the the-
ory, up to equivalence relations that set to zero all sequences of short multiplets
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that may in principle recombine into long multiplets. The recombination rules
for N = 2 superconformal algebra are [149]

A2R+r+2j1+2
R,r(j1,j2)

≃ CR,r(j1,j2) ⊕ CR+ 1
2 ,r+

1
2 (j1−

1
2 ,j2)

, (B.25)

A2R−r+2j2+2
R,r(j1,j2)

≃ C̄R,r(j1,j2) ⊕ C̄R+ 1
2 ,r−

1
2 (j1,j2−

1
2 )
, (B.26)

A2R+j1+j2+2
R,j1−j2(j1,j2)

≃ ĈR(j1,j2) ⊕ ĈR+ 1
2 (j1−

1
2 ,j2)

⊕ ĈR+ 1
2 (j1,j2−

1
2 )

⊕ ĈR+1(j1− 1
2 ,j2−

1
2 )
.

(B.27)

The C, C̄ and Ĉ multiplets obey certain “semi-shortening” conditions, while
A multiplets are generic long multiplets. A long multiplet whose conformal
dimension is exactly at the unitarity threshold can be decomposed into short-
er multiplets according to (B.25, B.26, B.27). We can formally regard any
multiplet obeying some shortening condition (with the exception of the E (Ē)
types, and D̄0(j1,0) (D0(0,j2)) types) as a multiplet of type C, C̄ or Ĉ by allowing
the spins j1 and j2, whose natural range is over the non-negative half-integers,
to take the value −1/2 as well. The translation is as follows:

CR,r(− 1
2
,j2)

≃ BR+ 1
2
,r+ 1

2
(0,j2)

, C̄R,r(j1,− 1
2
) ≃ B̄R+ 1

2
,r− 1

2
(j1,0)

, (B.28)

ĈR(− 1
2
,j2)

≃ DR+ 1
2
(0,j2)

, ĈR(j1,− 1
2
) ≃ D̄R+ 1

2
(j1,0)

, (B.29)

ĈR(− 1
2
,− 1

2
) ≃ DR+ 1

2
(0,− 1

2
) ≃ D̄R+ 1

2
(− 1

2
,0) ≃ B̂R+1 . (B.30)

Note how these rules flip statistics: a multiplet with bosonic primary (j1 + j2
integer) is turned into a multiplet with fermionic primary (j1 + j2 half-odd),
and vice versa. With these conventions, the rules (B.25, B.26, B.27) are the
most general recombination rules. The E and Ē multiplets never recombine.

The index of the C and E type multiplets vanishes identically (the choice

of supercharge with respect to which the index is computed, Q = Q̃1−̇, breaks
the symmetry between C (E) and C̄ (Ē) multiplets). The index of all remaining
short multiplets can be specified by listing the index of C̄, Ĉ , Ē , D0(0,j2), and
D̄0(j1,0) multiplets,
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IC̄R,r(j1,j2)
= −(−1)2(j1+j2)τ2+2R+2j2σj2−rρj2−r

× (1− σρ)(τ − σ)(τ − ρ)

(1− στ)(1− ρτ)
χ2j1

(√
σ

ρ

)
,

IĈR(j1,j2)
= (−1)2(j1+j2)

τ3+2R+2j2σj1+
1
2 ρj1+

1
2 (1− σρ)

(1− στ)(1− ρτ)

×
(
χ2j1+1

(√
σ

ρ

)
−

√
σρ

τ
χ2j1

(√
σ

ρ

))
,

IĒr(j1,0)
= (−1)2j1σ−r−1ρ−r−1 (τ − σ)(τ − ρ)

(1− στ)(1− ρτ)
χ2j1

(√
σ

ρ

)
,

ID̄0(j1,0)
=

(−1)2j1(σρ)j1+1

(1− στ)(1− ρτ)

×
(
(1 + τ2)χ2j1

(√
σ

ρ

)
− τ

√
σρ
χ2j1+1

(√
σ

ρ

)
− τ

√
σρχ2j1−1

(√
σ

ρ

))
,

ID0(0,j2)
=

(−1)2j2+1τ2j2+2

(1− στ)(1− ρτ)
(1− σρ) . (B.31)

where the Schur polynomial χ2j

(√
σ
ρ

)
gives the character of the spin j

representation of SU(2).
Let us evaluate the interesting limits of the index studied in this paper on

individual multiplets.

Macdonald index

This index is obtained from the general index in the limit σ → 0. The index
of the short multiplets in this limit is given by

IC̄R,r(j1,j2)
= 0 ,

IĈR(j1,j2)
= (−1)2(j1+j2)

τ 3+2R+2j2ρ2j1+1

(1− ρτ)
, (B.32)

IĒr(j1,0)
= 0 ,

ID̄0(j1,0)
= (−1)2j1+1 τρ

2j1+1

(1− ρτ)
, ID0(0,j2)

= (−1)2j2+1 τ 2j2+2

(1− ρτ)
.

While taking the limit of the C̄ and Ē multiplet index we have used j2− j1 > r
and −r > j1 + 1 respectively. The first inequality follows from the bound
δ1− ≥ 0 along with δ̃1−̇ = 0 and the second one can be obtained by evaluating
δ1− ≥ 0 on the first descendant of the primary of the Ē multiplet.
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Hall-Littlewood index

This index is obtained from the Macdonald index by further taking the limit
ρ→ 0. The index of the short multiplets is

IC̄R,r(j1,j2)
= 0 ,

IĈR(j1,j2)
= −(−1)2j2τ 3+2R+2j2δj1,− 1

2
, (B.33)

IĒr(j1,0)
= 0 ,

ID̄0(j1,0)
= 0 , ID0(0,j2)

= (−1)2j2+1τ 2j2+2 .

Schur Index

We take the limit τ → ρ. In this limit, the index becomes independent of σ
and the short multiplets give

IC̄R,r(j1,j2)
= 0 ,

IĈR(j1,j2)
= (−1)2(j1+j2)

τ 4+2(R+j1+j2)

(1− τ 2)
, (B.34)

IĒr(j1,0)
= 0 ,

ID̄0(j1,0)
= (−1)2j1+1 τ 2j1+2

(1− τ 2)
, ID0(0,j2)

= (−1)2j2+1 τ 2j2+2

(1− τ 2)
.

Coulomb Index

Finally we take τ → 0. In this limit only the Ē multiplet have a non-vanishing
index

IC̄R,r(j1,j2)
= 0 ,

IĈR(j1,j2)
= 0 , (B.35)

IĒr(j1,0)
= (−1)2j1(σ ρ)−rχ2j1

(√
σ

ρ

)
,

ID̄0(j1,0)
= (−1)2j1(σρ)j1+1χ2j1

(√
σ

ρ

)
, ID0(0,j2)

= 0 .

The N = 2 vector multiplet is the direct sum of D0(0,0) and D̄0(0,0), indeed
(4.29) is simply D̄0(0,0).

4 In a Lagrangian theory, the only possible D̄ multiplets
have j1 = 0, and are obtained from the D̄0(0,0) half of the N = 2 vector

4Note that in this limit IĒ−1(0,0)
= ID̄0(0,0)

. This is also true in the less restrictive

Coulomb limit (4.30).
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multiplet. In the less restrictive limit of σ, τ → 0 and ρ→ ∞ the index of some
of the short multiplets could potentially diverge. However, for Lagrangian
theories the only contributing multiplets are Ēr(0,0) multiplets arising from
tensor products of the D̄0(0,0) from the vector multiplet, whose index is finite.

B.3 Large k limit of the genus g HL index

In this appendix we give some details about the large k limit of the HL index
for SU(k) quivers corresponding to genus g surface with no punctures. For
finite k, the index is given by (4.67),

I(k)
g =

(∏k
j=2(1− τ 2j)

)2g−2

(1− τ 2)(k−1)(g−1)

∑
λ

1

PHL
λ (τ k−1, τ k−3, . . . , τ 1−k|τ)2g−2

, (B.36)

The denominator in the sum above is explicitly given by [93],

PHL
λ (τ k−1, τ k−3, . . . , τ 1−k|τ) = Nλ(τ) τ

∑k−1
i=1 (2i−k−1)λi

k∏
i=1

1− τ 2i

1− τ 2
, (B.37)

where Nλ(τ) is given in (4.51),

N−2
λ1,...λk

(τ) =
∞∏
i=0

m(i)∏
j=1

(
1− τ 2j

1− τ 2

)
. (B.38)

Here m(i) is the number of rows in the Young diagram λ = (λ1, . . . , λk) of
length i. We need to evaluate

I(k)
g = (1− τ 2)(k−1)(g−1)

∑
λ1≥λ2≥···≥λk−1

N 2−2g
λ1,...,λk−1,0

τ−(2g−2)
∑k−1

i=1 (2i−k−1)λi =(B.39)

= (1− τ 2)(k−1)(g−1)

∞∑
η1,η2,...,ηk−1=0

N 2−2g
η1,...,ηk−1

τ (2g−2)
∑k−1

i=1 (k−i) i ηi ,

where λi =
∑k−i

j=1 ηk−j. In the large k limit terms with non-zero ηi vanish since
we always assume |τ | ≪ 1. Thus, the only contribution to the sum at leading
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order for large k is from the term with all ηi = 0,

I(k→∞)
g = lim

k→∞
(1− τ 2)(k−1)(g−1)N 2−2g

λ1=0,...,λk−1=0,0 = (B.40)

=
∞∏
j=2

(1− τ 2j)g−1 = PE

[
−(g− 1)

τ 4

1− τ 2

]
.

The same logic applies also to the large k limit of the Tk theories: the singlet
is the only term contributing to the index at leading order.

B.4 The unrefined HL index of T4

Using the conjecture of section 4.2.4 we can write an explicit expression for
the unrefined index of the T4 theory. We find

IT4 =
(1− τ 4)(1− τ 6)(1− τ 8)

(1− τ 2)42

∑
λ1≥λ2≥λ3≥0

(
PHL
λ1,λ2,λ3

(1, 1, 1, 1|β)
)3

PHL
λ1,λ2,λ3

(τ 3, τ, τ−1, τ−3|β)
.(B.41)

The sum over the representation can be explicitly evaluated to give

IT4 =
1− τ

(1− τ 2)13(1− τ 3)17(1− τ 4)13
P86(τ) , (B.42)

where P86(τ) is a polyndromic polynomial of degree 86 in τ with coefficients
given in table B.2. The degree of the singularity when τ → 1 has a physical
meaning: since the Hall-Littlewood index computes the Hilbert series of the
Higgs branch this is the complex dimension of the Higgs branch. For T4 the
HL index predicts the dimension to be 42, in agreement with [70, 73].

B.5 Proof of the SU(2) Schur index identity

In this appendix we prove the basic SU(2) Schur index identity (4.93),

PE
[
q1/2

1−q (a1 +
1
a1
)(a2 +

1
a2
)(a3 +

1
a3
)
]
ai,q

(q; q)3(q2; q)
∏3

i=1 PE
[

q
1−q (a

2
i + a−2

i + 2)
]
ai,q

=
∞∑
λ=0

∏3
i=1 χλ(ai, a

−1
i )

χλ(q
1
2 , q−

1
2 )

.(B.43)

The strategy is to study the analytic properties of this expression and show
that the left- and right-handed sides have the same poles and residues. Let us
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1 τ 33τ 2 144τ 3

873τ 4 4169τ 5 19486τ 6 80693τ 7

319237τ 8 1165632τ 9 4024927τ 10 13054735τ 11

40137244τ 12 116876141τ 13 323853313τ 14 854555364τ 15

2153519932τ 16 5188980328τ 17 11978372385τ 18 26521974729τ 19

56409853881τ 20 115373040784τ 21 227178289971τ 22 431064583235τ 23

788945072797τ 24 1393870863434τ 25 2379094134408τ 26 3925581861006τ 27

6265884973841τ 28 9680331918067τ 29 14483072164070τ 30 20994033528147τ 31

29497595795349τ 32 40188148151858τ 33 53110900086737τ 34 68104402838959τ 35

84760383950971τ 36 102408879854636τ 37 120143187852325τ 38 136883008184825τ 39

151478220483799τ 40 162834262989902τ 41 170047651342244τ 42 172521386089030τ 43

Table B.2: The coefficients of P86(τ). The coefficient of τ86−k is equal to the
coefficient of τk .

first define

x =
a1
a2a3

, y =
a2
a1a3

, z =
a3
a2a1

, u = a1a2a3, xyzu = 1 , (B.44)

where ai are SU(2) fugacities. We also define

(a) ≡ (a; q)∞ ≡
∞∏
i=0

(1− aqi) . (B.45)

We will use square brackets [ ] to denote ordinary brackets (that delimit ex-
pressions). Then, using

∞∑
n=1

xn

n
= − log(1− x) , (B.46)

the LHS of (B.43) is given by

LHS =
[1− q](q)2(qxy)(qxz)(qxu)(qyz)(qyu)(qzu)

(q1/2x)(q1/2/x)(q1/2y)(q1/2/y)(q1/2z)(q1/2/z)(q1/2u)(q1/2/u)
. (B.47)

Let us study the analytic properties of this expression as a function of x (the
expression is symmetric in x, y, z, u). We have poles whenever x = q1/2−l with
integer l (positive, zero or negative). At x → 0, ∞ we have accumulation of
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poles. Let us for concreteness compute the residue with positive l

ResLHS =
[1− q](q)2(q3/2−ly)(q3/2−lz)(q/(yz))(qyz)(q1/2+l/z)(q1/2+l/y)

(q1−l)′(ql)(q1/2y)(q1/2/y)(q1/2z)(q1/2/z)(ql/(yz))(q1−lyz)
.(B.48)

Here (q1−l)′ is (q1/2x) evaluated at x = q1/2−l with the vanishing factor re-
moved. Now we have

(q1/2−l+1y)(q1/2+l/y)

(q1/2y)(q1/2/y)
=

[−y]l

ql2/2
1

1− q1/2−ly
. (B.49)

From here we get

ResLHS =
[1− q](q)2[yz]l

∏l−2
i=0(1− q1+i/(yz))

(q1−l)′(ql)ql2 [1− q1/2−ly][1− q1/2−lz]
∏l−1

i=0(1− q−iyz)
=
q−1/2 − q1/2

A
,

(B.50)

where

A = x− 1

x
+ y − 1

y
+ z − 1

z
+ u− 1

u
. (B.51)

Let us now look on the RHS of (B.43), which can be written as

RHS =
q−1/2 − q1/2

A

∞∑
n=1

qn/2

1− qn
(xn − 1

xn
+ yn − 1

yn
+ zn − 1

zn
+ un − 1

un
) .

(B.52)

We again want to compute residues in x. To see the poles we write

∞∑
i=1

qn/2

1− qn
xn =

∞∑
i=0

∞∑
n=1

qn(1/2+i) xn =
∞∑
i=0

q1/2+i x

1− q1/2+i x
. (B.53)

Thus again the poles are at x = q1/2−l for any integer l (we have also same
expression as (B.53) with x → 1/x). The residue here is easily computed to
give

ResRHS =
q−1/2 − q1/2

A
. (B.54)

All in all, the LHS and RHS have the same poles and residues.
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Appendix C

Refinement of 3d partition
function

The superconformal index defined in section 2.1 is a function of fugacities t, y
and v. In order to recover the matrix model of Kapustin et al. [33, 40] in
section 5.1 we simply fixed the v → t and y → 1. In this appendix we refine
the 3d partition function by keeping track of all the fugacities in the index. It
is convenient to define the chemical potentials

v = e−β(1/3+u), y = e−βη. (C.1)

The index, in terms of β, u and η becomes

I = Tr(−1)F e−β[ 2
3
(E+j2)− 1

3
(r+R)−(r+R)u+2j1η]. (C.2)

Let us compute the partition function of the hypermultiplet after turning on
only u.

Ihyp =
∏
i

Γ

(
t2√
v
ai; t

3y, t3y−1

)
=
∏
i

∏
n>1

(
[n+ 1

2
+ u

2
+ iαi]q

[n− 1
2
− u

2
− iαi]q

)n

q→1−→
∏
i

[
cosh π

(
αi − i

u

2

)]− 1
2

Ivector =
∏
i<j

1

1− q−i(αi−αj)

1

1− qi(αi−αj)

Γ(q1+u±i(αi−αj); q, q)

Γ(q±i(αi−αj); q, q)

q→1−→
∏
i<j

(
sinh π(αi − αj)

π(αi − αj)

)2(
cosh π(∓(αi − αj) + i/2)

cosh π(∓(αi − αj) + i(u+ 1/2))

)1/2

.

(C.3)
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Both partition functions reduce to the ones in section 5.1 as we set u to zero.
Now we restore y = q−βη to produce the more refined 3d partition function.

The chemical potential η has a nice physical interpretation as the U(1)×U(1)
isometry preserving squashing deformation of the S3. The partition function
of 3d gauge theories on this squashed background was computed in [57].

The contribution due to the hypermultiplet with η deformation turned on
is

Ihyp =
∏
i

Γ(
t2√
v
ai; t

3y, t3/y)

y→q−βη

−→
∏
i

Γ(q1/2−u/2−iαi ; q1+η, q1−η)

=
∏
i

∏
j,k>0

1− q3/2+u/2+iαiq(1+η)jq(1−η)k

1− q1/2−u/2−iαiq(1+η)jq(1−η)k
.

(C.4)

Using the regularized infinite product representation of Barnes’ double-Gamma
function

Γ2(x|ϵ1, ϵ2) ∝
∏

m,n>0

(x+mϵ1 + nϵ2)
−1, (C.5)

the partition function of hyper-multiplet can be written in a compact way

Ihyper →
∏
i

Γ2(1/2− u/2− iαi|1 + η, 1− η)

Γ2(3/2 + u/2 + iαi|1 + η, 1− η)

=
∏
i

Γ2(
Q
2
(1/2− u/2)− iα̂i|b, b−1)

Γ2(
Q
2
(3/2 + u/2) + iα̂i|b, b−1)

,

(C.6)

where we have defined1

α̂i =
αi√
1− η2

, b =

√
1− η

1 + η
, Q = b+ b−1. (C.7)

With this change of variables it is easy to see that for u = 0, our result is in
agreement with [57]. The partition function of the vector multiplet:

Ivector →
∏
i<j

1

1− q−i(αi−αj)

1

1− qi(αi−αj)

Γ(q1+u±i(αi−αj); q1+η, q1−η)

Γ(q±i(αi−αj); q1+η, q1−η)
. (C.8)

1We thank Davide Gaiotto for pointing out this change of variables.

139



reduces to

Ivector =
∏
i<j

(1− η2) sinh
π(αi−αj)

1+η
sinh

π(αi−αj)

1−η

π2(αi − αj)2
Γ2(1 + u± i(αi − αj)|1 + η, 1− η)

Γ2(1− u± i(αi − αj)|1 + η, 1− η)

=
∏
i<j

sinhπb(α̂i − α̂j) sinh πb
−1(α̂i − α̂j)

π2(α̂i − α̂j)2
Γ2(

Q
2
(1 + u)± i(α̂i − α̂j)|b, b−1)

Γ2(
Q
2
(1− u)± i(α̂i − α̂j)|b, b−1)

.

(C.9)

Again, we find a precise agreement with the partition function of the vector
multiplet on squashed S3.
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Appendix D

N = 1 superconformal
shortening conditions and the
index

In this appendix we summarize some basic facts about N = 1 superconformal
representation theory. A generic long multiplet ρA∆

r(j1,j2)
is generated by the

action of 4 Poincaré superchargesQα and Q̃α̇ on superconformal primary which
is by definition is annihilated by all conformal supercharges S. In table D.1
we have summarized possible shortening and semishortening conditions.

Shortening Conditions Multiplet

B Qα|r⟩h.w. = 0 j1 = 0 ∆ = −3
2r Br(0,j2)

B̄ Q̄α̇|r⟩h.w. = 0 j2 = 0 ∆ = 3
2r B̄r(j1,0)

B̂ B ∩ B̄ j1, j2, r = 0 ∆ = 0 B̂

C ϵαβQβ|r⟩h.w.
α = 0 ∆ = 2 + 2j1 − 3

2r Cr(j1,j2)
(Q)2|r⟩h.w. = 0 for j1 = 0 ∆ = 2− 3

2r Cr(0,j2)
C̄ ϵα̇β̇Q̄β̇|r⟩

h.w.
α̇ = 0 ∆ = 2 + 2j2 +

3
2r C̄r(j1,j2)

(Q̄)2|r⟩h.w. = 0 for j2 = 0 ∆ = 2 + 3
2r C̄r(j1,0)

Ĉ C ∩ C̄ 3
2r = (j1 − j2) ∆ = 2 + j1 + j2 Ĉ(j1,j2)

D B ∩ C̄ j1 = 0,−3
2r = j2 + 1 ∆ = −3

2r = 1 + j2 D(0,j2)

D̄ B̄ ∩ C j2 = 0, 32r = j1 + 1 ∆ = 3
2r = 1 + j1 D̄(j1,0)

Table D.1: Possible shortening conditions for the N = 1 superconformal algebra.

141



A generic long multiplet of the N = 1 superconformal algebra SU(2, 2|1)
is 16(2j1+1, 2j2+1) dimensional. Tables D.2, D.3, D.4 and D.5 illustrate how
the B, C, Ĉ and D-type multiplets fit within a generic long multiplet.
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∆ (j1, j2)

∆ + 1
2

(j1 + 1
2
, j2) (j1, j2 +

1

2
)

(j1 − 1
2
, j2) (j1, j2 −

1

2
)

(j1 + 1
2
, j2 + 1

2
)

∆ + 1 (j1, j2) (j1 − 1
2
, j2 + 1

2
), (j1 + 1

2
, j2 − 1

2
) (j1, j2)

(j1 − 1
2
, j2 − 1

2
)

∆ + 3
2

(j1, j2 + 1
2
) (j1 + 1

2
, j2)

(j1, j2 − 1
2
) (j1 − 1

2
, j2)

∆ + 2 (j1, j2)

r − 2 r − 1 r r + 1 r + 2

Table D.2: A long multiplet of N = 1 superconformal algebra. The SU(2, 2) multi-
plets that are boxed form a short Br(0,j2) multiplet for j1 = 0,∆ = −3

2r. The left-
handed B̄ can be obtained by reflecting the table (that is, sending r → −r and j1 ↔
j2). In general, when j1(j2) = 0, the SU(2, 2) multiplets (j1− 1

2 , any)((any, j2−
1
2))

are set to zero, resulting in further shortening.

∆ (j1, j2)

∆ + 1
2

(j1 +
1

2
, j2) (j1, j2 +

1

2
)

(j1 − 1
2
, j2) (j1, j2 −

1

2
)

(j1 +
1

2
, j2 +

1

2
)

∆ + 1 (j1, j2) (j1 − 1
2
, j2 + 1

2
) (j1 +

1

2
, j2 −

1

2
) (j1, j2)

(j1 − 1
2
, j2 − 1

2
)

∆ + 3
2

(j1, j2 + 1
2
) (j1 +

1

2
, j2)

(j1, j2 − 1
2
) (j1 − 1

2
, j2)

∆ + 2 (j1, j2)

r − 2 r − 1 r r + 1 r + 2

Table D.3: A long multiplet of N = 1 superconformal algebra. The SU(2, 2)
multiplets that are boxed form a semi-short Cr(j1,j2) multiplet for ∆ = 2+ 2j1 − 3

2r.
The left-handed C̄ can be obtained by reflecting the table (that is, sending r →
−r and j1 ↔ j2). In general, when j1(j2) = 0, the SU(2, 2) multiplets (j1 −
1
2 , any)((any, j2 −

1
2)) are set to zero, resulting in further shortening.
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∆ (j1, j2)

∆ + 1
2

(j1 +
1

2
, j2) (j1, j2 +

1

2
)

(j1 − 1
2
, j2) (j1, j2 − 1

2
)

(j1 +
1

2
, j2 +

1

2
)

∆ + 1 (j1, j2) (j1 − 1
2
, j2 + 1

2
) (j1 + 1

2
, j2 − 1

2
) (j1, j2)

−(j1 −
1

2
, j2 −

1

2
)

∆ + 3
2

(j1, j2 + 1
2
) (j1 + 1

2
, j2)

−(j1, j2 −
1

2
) −(j1 −

1

2
, j2)

∆ + 2 −(j1, j2)

r − 2 r − 1 r r + 1 r + 2

Table D.4: Multiplet structure of Ĉ(j1,j2). The shortening conditions are ∆ = 2 +

j1 + j2 and 3
2r = (j1 − j2).

∆ (j1, j2)

∆ + 1
2

(j1 + 1
2
, j2) (j1, j2 +

1

2
)

(j1 − 1
2
, j2) (j1, j2 − 1

2
)

(j1 + 1
2
, j2 + 1

2
)

∆ + 1 (j1, j2) (j1 − 1
2
, j2 + 1

2
), −(j1 +

1

2
, j2 −

1

2
) (j1, j2)

(j1 − 1
2
, j2 − 1

2
)

∆ + 3
2

(j1, j2 + 1
2
) −(j1 +

1

2
, j2)

(j1, j2 − 1
2
) (j1 − 1

2
, j2)

∆ + 2 (j1, j2), +(j1, j2 − 1)

∆ + 5
2

+(j1, j2 −
1

2
)

r − 2 r − 1 r r + 1 r + 2

Table D.5: Multiplet structure of D(0,j2). The shortening conditions are ∆ = 1+j2 =

−3
2r and j1 = 0. The multiplet D̄(j1,0) could be obtained by j1 ↔ j2, r ↔ −r or by

simply reflecting the table. The shortening conditions in that case are ∆ = 1+ j1 =
3
2r and j2 = 0.

At the unitarity threshold, a long multiplet can decompose into (semi)short
multiplets. The splitting rules are:

ρA
2+2j1− 3

2
r

r(j1,j2)
≃ Cr(j1,j2) ⊕ Cr−1(j1− 1

2
,j2)

ρA
2+2j2+

3
2
r

r(j1,j2)
≃ C̄r(j1,j2) ⊕ C̄r+1(j1,j2− 1

2
)

ρA2+j1+j2
2
3
(j1−j2)(j1,j2)

≃ Ĉ(j1,j2) ⊕ C 2
3
(j1−j2)−1,(j1− 1

2
,j2)

⊕ C̄ 2
3
(j1−j2)+1,(j1,j2− 1

2
)
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We are using a notation where the B and B̄ type multiplets are formally
identified with special cases of C and C̄ multiplets, as follows

Cr(− 1
2
,j2)

≃ Br−1(0,j2) C̄r(j1,− 1
2
) ≃ B̄r+1(j1,0) . (D.1)

We define the Left (Right) equivalence class of the multiplet Cr(j1,j2)(C̄r(j1,j2))
as the class of multiplets with the same Left (Right) index. From the s-
plitting rules, we see that the classes can be labeled as [−r + 2j1, j2]

L
(−)2j1

([r + 2j2, j1]
R
(−)2j2

). Moreover, IL
[−r+2j1,j2]L−

= −IL
[−r+2j1,j2]L+

and IR
[r+2j2,j1]R−

=

−IR
[r+2j2,j1]R+

. The expressions for the indices of the equivalent classes are

IL
[r̃,j2]L±

= ±(−)2j2+1 t3(r̃+2)χj2(y)

(1− t3y)(1− t3y−1)

IR
[¯̃r,j1]R±

= ±(−)2j1+1 t3(
¯̃r+2)χj1(y)

(1− t3y)(1− t3y−1)

IR[r̃, j2]
L
± = 0

IL[¯̃r, j1]
R
± = 0 .

The situation is slightly more involved for the Ĉ and D type multiplets.
Unlike the B, C type multiplets, they contribute both to IL as well as IR. The
indices [21] for the different types of multiplets are collected in table D.6.
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Multiplet IL IR

ρA∆
r(j1,j2)

0 0

Cr(j1,j2) IL
[−r+2j1,j2]L

(−)2j1

0

C̄r(j1,j2) 0 IR
[r+2j2,j1]R

(−)2j2

Ĉ(j1,j2) IL
[ 2
3
j2+

4
3
j1,j2]L

(−)2j1

IR
[ 2
3
j1+

4
3
j2,j1]R

(−)2j2

D(0,j2) IL
[ 2
3
j2− 4

3
,j2]L−

+ IL
[ 2
3
j2− 1

3
,j2− 1

2
]L−

IR
[ 4
3
j2− 2

3
,0]R+

D̄(j1,0) IL
[ 4
3
j1− 2

3
,0]L+

IR
[ 2
3
j1− 4

3
,j1]R−

+ IR
[ 2
3
j1− 1

3
,j1− 1

2
]R−

Table D.6: Indices IL and IR of the various short and semi-short multiplets.
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