

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Data-Adaptive Hierarchical Protocols for Wireless

Sensor Networks and Health Monitoring Systems

A Dissertation Presented

by

Guofeng Hou

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

May 2012

ii

Stony Brook University

The Graduate School

Guofeng Hou

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

K. Wendy Tang - Dissertation Advisor

Associate Professor, Department of Electrical & Computer Engineering

Thomas G. Robertazzi

Professor, Department of Electrical & Computer Engineering

Dantong Yu

Adjunct Professor, Department of Electrical & Computer Engineering

Brookhaven National Laboratory

Yuefan Deng

Professor, Department of Applied Mathematics & Statistics

Eric Noel - Dissertation Co-Advisor

AT&T Labs

This dissertation is accepted by the Graduate School

Charles Taber

Interim Dean of the Graduate School

iii

Abstract of the Dissertation

Data-Adaptive Hierarchical Protocols for Wireless

Sensor Networks and Health Monitoring Systems

by

Guofeng Hou

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2012

Recent advances in micro-electro-mechanical systems (MEMS) technology, wireless

communications, and digital electronics have enabled the development of low-cost, low-power

wireless sensor nodes that are small in size and communicate untethered over short distances.

These wireless sensor nodes, which consist of sensing, data processing, and communicating

components, leverage the idea of sensor networks based on the collaborative effort of a large

number of nodes. Networking together hundreds or thousands of cheap wireless sensor nodes

allows users to accurately monitor a remote environment by intelligently combining data from

the individual nodes. Such networks require robust wireless communication protocols that are

energy efficient, data transmission efficient and support long network lifetime.

iv

In this Ph.D. dissertation, we analyzed and implemented the low-energy adaptive

clustering hierarchy (LEACH) protocol, a leading protocol architecture for wireless sensor

networks. LEACH combines the ideas of energy-efficient cluster-based routing and media

access together with application-specific data aggregation to achieve a desired performance. In

an effort to improve the power consumption and network lifetime, we proposed Dynamic

LEACH, or D-LEACH, a data-adaptive hierarchical protocol based on LEACH. The idea of D-

LEACH is to dynamically change the likelihood for each node to send data to the base station,

based on the similarity of the data within each node cluster. We implemented D-LEACH on the

TinyOS platform, ran experiments to analyze its performance, and compared against other major

protocols. The analysis shows that in many cases D-LEACH achieves a superior performance

when compared to LEACH and XMesh protocols’ power consumption, total data received, and

network lifetime.

In the second part of this dissertation, we proposed and implemented a vital sign

monitoring system based on wireless sensor network hardware. Our goal was to design a

wireless sensor system, the Health Tracker 2000, which can monitor users’ vital signs, notify

relatives and medical personnel of users’ status during life threatening situations. The Health

Tracker 2000 combines wireless sensor networks, existing vital sign monitoring technology to

inform medical personnel of users’ health status. The use of wireless technology makes it

possible to deploy our system in all types of homes and facilities. Since radio frequency waves

can travel through walls and fabric, our system can send vital signs information to a central

monitoring computer via a miniature transmitter network. Such information can then be easily

accessed from any location over the Internet.

v

Table of Contents

List of Figures . vii

List of Tables . ix

Chapter 1 Overview . 1

1.1 Usage of Sensor Networks . 1

1.2 Wireless Sensor Networks Model . 2

1.3 LEACH Protocol . 4

1.4 Research Challenges . 5

1.5 Simulation and Implementation of LEACH Protocol 6

1.6 D-LEACH Protocol . 7

1.7 A Wireless Health Monitoring System . 8

Chapter 2 Sensor Networks Background. 9

2.1 Sensor Networks Components 9

2.2 Technology Survey . 12

2.3 Routing Protocols . 15

2.3.1 Data-centric Protocols. 16

2.3.2 Hierarchical Protocols . 20

2.3.3 Location-based Protocols . 23

2.3.4 Network Flow and QoS-aware Protocols. 26

2.3.5 Discussion . 28

Chapter 3 Implementation of LEACH Protocol on the TinyOS Platform 30

3.1 LEACH Protocol Architecture . 30

vi

3.2 Analysis and Simulation Model . 36

3.3 ns2 Simulation of LEACH . 40

3.4 Implementation of LEACH on the TinyOS Platform 48

3.5 Results of the LEACH Implementation . 55

Chapter 4 D-LEACH Protocol . 59

4.1 Introduction . 59

4.2 D-LEACH Protocol Architecture . 60

4.3 XMesh Protocol Overview. 62

4.4 Experiment Results and Analysis . 63

Chapter 5 Application: A Wireless Health Monitoring System 71

5.1 Introduction . 71

5.2 System Design . 73

5.3 System Implementation and Results . 82

5.4 Discussions . 85

Chapter 6 Conclusions . 86

Bibliography . 89

Appendix A Energy Model Analysis . 95

Appendix B TinyOS LEACH Implementation Source Files 119

vii

List of Figures

2.1 Sensor Network Components . 9

2.2 Mica2 Sensor Node . 12

3.1 Flowchart of the Distributed Cluster Formation Algorithm for LEACH . . . 34

3.2 Schematic of Mobile Node under CMU Monarch’s Wireless Extensions to ns 38

3.3 LEACH Radio Energy Dissipation Model 39

3.4 Comparison of Total Amount of Data Received at the BS over Time 41

3.5 Comparison of Total Amount of Data Received at the BS per Amount of

Energy Consumed by the Network . 42

3.6 Comparison of Number of Nodes Alive over Time 43

3.7 Comparison of Number of Nodes Alive per Amount of Data Received at BS . 44

3.8 TinyOS LEACH Implementation System Flowchart 49

3.9 Snapshot of the TinyOS LEACH Implementation Running on PowerTOSSIM

GUI Displaying the Motes Layout . 52

3.10 Snapshot of the TinyOS LEACH Implementation Running on PowerTOSSIM

GUI Displaying the Output Debug Messages 53

3.11 Total Amount of Data Received at the Base Station over Time 56

3.12 Total Amount of Data Received at the BS per Total Energy Consumed . . . 57

3.13 Number of Nodes Alive Function of Time 57

3.14 Number of Nodes Alive Function of Amount of Data Received at the BS . . 58

4.1 Total Amount of Data Received at the Base Station over Time 64

4.2 Total Amount of Data Received at the BS per Amount of Energy Consumed

by the Network . 65

viii

4.3 Number of Nodes Alive Over Time . 66

4.4 Number of Nodes Alive per Amount of Data Sent to the BS 66

4.5 Network Lifetime over Amount of Data Similarity 68

4.6 Total Amount of Data Received at the BS over Amount of Data Similarity . 69

5.1 System Overview . 73

5.2 Schematic Diagram of our Wireless Health Monitoring System 74

5.3 Block Diagram of a MICA2 (left) and MICA2DOT (right) 74

5.4 Crossbow MICA2 Pin Out . 75

5.5 Crossbow MICA2 (left) and MICA2DOT (right) 76

5.6 Wireless Medical Sensor Module . 77

5.7 Schematic of LM92 . 79

5.8 Timing Diagram for the Temperature Sensor 79

5.9 Nonin ipod . 80

5.10 Serial Data Transfer Timing Waveform . 81

5.11 Temperature Data Recorded and Shown on the Monitoring Station 84

5.12 Blood Oxygen Level and Heart Rate Displayed on the Monitoring Station . . 84

ix

List of Tables

3.1 Distance Between Motes and the Minimal Transmitting Current Required . . 45

3.2 Definition for Figure 3.10 Output Debug Messages 54

3.3 LEACH Simulation and Implementation Parameters 56

5.1 Format of Nonin ipod Output . 81

x

Acknowledgments

I am extremely grateful to Professor Wendy Tang, my Ph.D. dissertation advisor and

mentor, for the numerous comments and suggestions that she made during my Ph.D. studies at

Stony Brook. Professor Tang taught me what a researcher need to know about research.

I would also like to thank Dr. Eric Noel, my Ph.D. dissertation co-advisor, for his many

very helpful comments and suggestions.

In addition, I appreciate the support from the Electrical and Computer Engineering

Department. I had the privilege of interacting with wonderful, bright, and talented people here.

It has been a wonderful experience studying at Stony Brook.

Finally I would like to thank my wife Lili and my parents, for their unlimited love and

support. They have stood by me in everything I have done, providing constant support,

encouragement and love.

1

Chapter 1

Overview

Wireless sensor networks consisting of a large number of small nodes have become very

popular over the past few years. The nodes sense environmental changes and report them to other

nodes over a flexible network architecture. Sensor nodes are best used for deployment in hostile

environments or over large geographical areas. Some basic concepts and architecture of sensor

networks are introduced below.

1.1 Usage of Sensor Networks

Sensor networks are useful in a variety of domains, such as:

Environmental Observation

Sensor networks can be used to monitor environmental changes. An example could be

water pollution detection in a lake located near a factory that uses chemical substances [1].

Sensor nodes could be randomly deployed in unknown and hostile areas to relay the exact origin

of a pollutant to a centralized authority so as to take appropriate measures and limit pollution

2

spreading. Other examples include forest fire detection, air pollution and rainfall observation for

agriculture [2,3].

Military Monitoring

The military uses sensor networks for battlefield surveillance. Sensors could monitor

vehicular traffic and track enemy positions [4].

Building Monitoring

Sensors can also be used in large buildings or factories to monitor environmental changes.

In this situation, thermostats and temperature sensor nodes are deployed throughout the

building’s area [5]. In addition, sensors could be used to monitor vibrations that could damage

the structure of a building [5].

Healthcare

Sensors can be used in biomedical applications to improve the quality of the provided

care. Sensors can be implanted in the human body to monitor medical problems such as cancer

and help patients maintain their health [6].

1.2 Wireless Sensor Networks Model

To monitor the environment, a wireless sensor network consists of hundreds or thousands

of low cost nodes which could either be placed at fixed locations or randomly deployed. Sensors

usually communicate with each other using a multi-hop approach, in which data from sensor

nodes traverse one or multiple nodes to reach a destination. That way, data can reach destinations

3

beyond sensors’ radio range. The flow of data converges to special nodes called base stations

(sometimes also referred to as sinks). A base station is typically located on the periphery of the

sensor network. It collects data from the sensor nodes and transmits it to a remote control station.

In other words, a base station links the sensor network to another network (like a gateway) to

disseminate the data sensed for further processing. Base stations have enhanced capabilities over

simple sensor nodes since they must do complex data processing; this justifies the fact that base

stations have workstation/laptop class processors, sufficient memory, energy, storage and

computational power to perform their tasks well. Usually, the communication between base

stations is initiated over high bandwidth links [7].

As it may be inconvenient or impossible to recharge sensor nodes batteries, one of the

biggest challenges of sensor networks is power consumption, which is greatly affected by the

communication distance between nodes. Therefore, all aspects of the node, from the hardware to

the protocols, must be designed in an energy efficient manner. To solve this issue, several

solutions for reducing energy consumption have been introduced, including aggregation points,

clustering, sleep mode, and randomized assignment of high energy-consumption tasks to nodes.

Aggregation points are introduced in the network to reduce the total number of messages

exchanged between nodes and reduce energy consumption. Usually, aggregation points are

regular nodes that receive data from neighboring nodes, perform some processing, and forward

the filtered data to the next hop [8].

Similar to aggregation points is clustering. Sensor nodes are organized into clusters, each

cluster having a “cluster head” as the leader. The communication within a cluster must travel

4

through the cluster head, which then is forwarded to a neighboring cluster head until it reaches

its destination, the base station [9].

Another method for saving energy is having nodes place themselves in sleep state when

idle and wake up as required by new tasks.

When tasks are not uniformly distributed across nodes (i.e. aggregation), randomized

rotation is used to balance energy-consumption across nodes [8].

1.3 LEACH Protocol

LEACH (Low Energy Adaptive Clustering Hierarchy) protocol [8,9] was designed for

wireless sensor networks. There, the data from individual nodes are sent to a central base station,

sometimes located far from the sensor network, through which the end-user can access the data.

There are several desirable properties for protocols on such networks: Use 100's - 1000's of

nodes; Maximize network lifetime; Maximize network coverage; Use identical battery-operated

nodes.

Conventional network protocols, such as direct transmission, minimum transmission

energy, multi-hop routing, and clustering all have drawbacks that prevent them from achieving

these desirable properties. LEACH includes distributed cluster formation, local processing to

reduce global communication, and randomized rotation of cluster-heads. Together, these features

allow LEACH to achieve the desired properties. Initial simulations show that LEACH is an

energy-efficient protocol that extends system lifetime beyond a general-purpose multihop

approaches [8,9]. A detail discussion of the LEACH protocol is in Section 3.1.

5

1.4 Research Challenges

Due to sensors’ limited communication bandwidth and energy, several design issues must

be addressed so as to achieve an effective and efficient operation of wireless sensor networks.

Energy Saving Algorithms

Since sensor nodes use batteries for power that are difficult to replace once consumed

(remember that often sensor nodes are deployed in remote and hostile environments), it is critical

to design algorithms and protocols that utilize minimal energy. To do so, researchers must reduce

communication between sensor nodes, simplify computations and apply lightweight security

solutions.

Location Discovery

Many tracking applications require knowledge of the physical location of a sensor node

in order to link sensed data with the object under investigation. Furthermore, many routing

protocols need the location of sensor nodes to forward data across the network. Location

discovery protocols must be designed in such a way that minimum information is exchanged

between nodes to discover their location. Cost is another factor that influences design;

manufacturers try to keep the cost at minimum levels. If the cost is high, the adoption and

deployment of sensor technology will be prohibited.

Security

6

Security solutions are constrained when applied to sensor networks. For example,

cryptography requires complex processing to encrypt transmitted data. Secure routing, secure

discovery and verification of location, key establishment and trust setup, attacks against sensor

nodes, secure group management and secure data aggregation are some of the many challenges

that need to be addressed within a security context.

1.5 Simulation and Implementation of LEACH Protocol

In this dissertation, we implemented the LEACH protocol on both TinyOS and ns2

platforms.

TinyOS

TinyOS is a free and open source component-based operating system and platform

targeting wireless sensor networks (WSNs). TinyOS is an embedded operating system written in

the nesC programming language as a set of cooperating tasks and processes [10]. It is intended to

be incorporated into Smartdust. Smartdust is a hypothetical system of many tiny

microelectromechanical systems (MEMS) such as sensors, robots, or other devices, that can

detect, for example, light, temperature, vibration, magnetism or chemicals. Smartdust MEMS are

usually networked wirelessly and are distributed over some area to perform tasks, usually

sensing [11]. TinyOS started as collaborative effort between the University of California

Berkeley, Intel Research and Crossbow Technology. It has since grown as an international

consortium, the TinyOS Alliance.

7

It is very challenging to implement LEACH protocol on TinyOS platform, as there are

many challenging technical issues we had to solve.

Our TinyOS implementation of LEACH can be run on both hardware motes and

TOSSIM, an emulation environment for TinyOS applications. Execution of TinyOS applications

on TOSSIM is identical as on hardware motes [67].

ns2

ns2 stands for network simulator (ver 2). It is a discrete event simulator targeted at

networking research. ns2 is an object-oriented simulator developed as part of the VINT project at

the University of California in Berkeley. ns2 is extensively used by the networking research

community right now. It provides substantial support for simulation of TCP, routing, multicast

protocols over wired and wireless (local and satellite) networks, etc. The simulator is event-

driven and runs in a non-realtime fashion. It consists of C++ core methods and uses Tcl and

Object Tcl shell as interface, allowing the simulation script to describe the model to simulate.

We ported the MIT’s LEACH simulation which is implemented on ns2 version 2.1b5

(released in year 2000) to the latest ns2 version available at the time of this research, ns 2.33.

There are many technical challenges we had to solve, due to the significant software architecture

and component changes in ns2 over the last 10 years [13].

1.6 D-LEACH Protocol

In an effort to improve the power consumption and network lifetime of LEACH, we

propose Dynamic LEACH, or D-LEACH. The idea behind D-LEACH is to dynamically change

8

the likelihood for each node to send data to the cluster head, based on the similarity of data

within each node cluster. We implemented D-LEACH on the TinyOS platform, ran experiments,

analyzed the performance of D-LEACH protocol, and compared its performance with other

major protocols. The results show that D-LEACH achieved a much superior performance than

LEACH protocol and XMesh protocol, in term of power consumption, total data received and

network lifetime.

1.7 A Wireless Health Monitoring System

We proposed and implemented a vital sign monitoring system based on wireless sensor

network hardware. In this research, our goal was to design a wireless sensor system, the Health

Tracker 2000, that can monitors users’ vital signs and notifies relatives and medical personnel of

their status during life threatening situations.

The Health Tracker 2000 combines wireless sensor networks, existing vital sign

monitoring technology to simultaneously monitor vital signs of the users. The use of wireless

technology makes it possible to install the system in all types of homes and facilities. Radio

frequency waves can travel through walls and fabric, sending the vital signs information to a

central monitoring computer via a miniature transmitter network. Such information can easily be

accessed from any location over the Internet.

9

Chapter 2

Sensor Networks Background

2.1 Sensor Networks Components

The main components of sensor nodes include a sensing unit, a processing unit, a

transceiver, and a power unit as shown in Fig. 2.1. Each component is described in the next

sections.

Figure 2.1: Sensor Network Components

Sensing Unit

The main function of the sensing unit is to sense or measure physical data from the target

area. The sensor generates an analog voltage or signal that corresponds to the observed

10

phenomenon. The measured signal is digitized by an analog-to-digital converter (ADC) and

delivered to the processing unit for further analysis [14,15]. The sensing unit is the current

technology bottleneck because the sensing units have much lower transmission speed than the

semi-conductors [16]. Sensing technology has not progressed as fast as semi-conductors. Also,

sensors are being applied to the real physical world, while the processing unites and transceivers

operate in a somewhat controlled environment. Sensing units are front-end components within

sensor nodes used to transform one form of energy into another.

Processing Unit

The processing unit plays a major role in managing collaboration with other sensors to

achieve predefined tasks. There are currently several families of processing unit, including

microcontrollers, microprocessors, and field-programmable gate arrays (FPGAs) [17]. FPGAs

consume more energy and are not compatible with traditional programmable methodologies.

However, they can be reprogrammable and reconfigurable to eliminate deployment costs [18].

Non-volatile memory and interfaces such as ADCs can be integrated onto a single integrated

circuit [14,18]. The processing unit needs storage for tasking and to minimize the size of

transmitted messages by local processing and data aggregation [16]. Flash memory is widely

used due to its cost and storage capacity.

Transceiver

There are three deploying communication schemes in sensors including optical

communication (laser), infrared, and radiofrequency (RF). Lasers consume less energy than radio

and provide high security, but require a line of sight and are sensitive to atmospheric conditions.

Infrared, like lasers, needs no antenna but is limited in its broadcasting capacity. RF is the most

11

easy to use but requires an antenna. Various energy consumption reduction strategies have been

developed such as modulation, filtering, and demodulation. Amplitude and frequency

modulation are standard mechanisms. Amplitude modulation is simple but susceptible to noise

[14]. The RF Monolithics TR1000 and Chipcon 1000 are commercial radios widely used in

sensor applications [14,18]. Chipcon 1000 is easily programmed for operation at frequencies

between 300 MHz and 1000 MHz [18].

Power Unit

Power consumption is the main bottleneck of sensor networks. Any energy preservation

schemes can help to extend sensor networks’ lifetime. Batteries used in sensors can be

categorized into two groups; rechargeable and non-rechargeable. Often in harsh environments, it

is impossible to recharge or change a battery. New sensors are developed to be able to renew

their energy from solar or vibration energy [14,16]. Alkaline batteries have a wide voltage range

and large physical size whilst lithium provides a constant voltage supply but with very low

nominal discharge currents. Nickel Metal Hydride can be recharged but with a significant

decrease in energy density [14]. Two major power saving policies can be found in [18]: DPM

and DVS. Unused devices can be shut down and activated when required. This is called

“Dynamic Power Management (DPM)” which requires support from the operating system and

stochastic analysis to predict future events. In another approach, Dynamic Voltage Scheduling

(DVS), power can be varied to allow for a non-deterministic workload. DVS is used in the

TinyOS operating system.

Discussion

12

In order to develop an efficient application, high performance hardware components are

required. The current research aim is to build the smallest sensor node with the least energy

consumption. The Smartdust project [19] was established to develop a very small sensor node, a

few cubic millimeters in size, which can remain suspended in the air. To conclude, a sensor node

consists of various components, all of which must combine to achieve the predefined goal.

2.2 Technology Survey

Sensor nodes are small. Fig. 2.2 presents the Mica2 sensor node, which is the most

popular research platform at the moment. Founded in 1995, Crossbow Technology, Inc. is the

leading end-to-end solutions supplier in wireless sensor networks and the largest manufacturer of

wireless sensor networks [66].

Figure 2.2: Mica2 Sensor Node

13

The main components of a typical MICA2 sensor node include an antenna and a radio

frequency (RF) transceiver to allow communication with other nodes, a memory unit, a CPU, the

sensor unit (i.e. thermostat) and the power source which is usually provided by batteries. The

operating system running on Crossbow sensor nodes is called TinyOS and was initially

developed at the University of California, Berkeley. TinyOS is designed to run on platforms with

limited computational power and memory space. The programming language of TinyOS is

stylized C and uses a custom compiler called NesC. Though it may work on other platforms, the

supported platforms are Linux RedHat 9.0, Windows 2000, and Windows XP. We installed

TinyOS on one of the supported platforms, Windows XP, to develop TinyOS applications.

Further information can be obtained from the official TinyOS website

http://webs.cs.berkeley.edu/tos/.

Some of the capabilities of the recent sensor network platforms organized by device class

are listed in [51].

The recent research and development of first-generation wireless sensor network

platforms is now feeding back on itself to help system engineers define a new generation of

hardware better able to meet network demands.

Hardware Progression

The progression of sensor-network hardware is influenced by Moore’s Law on the

design. For all platform classes except special-purpose sensor nodes, Moore’s Law promises an

increase in performance for a given power budget. A Mica2 node has roughly eight times the

memory and communication bandwidth of its predecessor, the Rene node, despites involving the

same power and cost. Gateway and high-bandwidth devices have achieved similar performance

http://webs.cs.berkeley.edu/tos/

14

growths without significantly changing their power or cost requirements. In contrast, the special-

purpose sensor nodes (such as Spec) use advances derived from Moore’s Law to reduce their

power consumption and cost requirements while maintaining the same performance level.

Part of the performance increase in the generic-sensor-node class is due to new CMOS

radios specifically designed for low data rates and low power consumption. In addition, to

improve raw radio performance metrics, the communication interfaces provided by low-power

radio now include specialized hardware support to help reduce the peak load placed on the CPU.

Low-power controllers can burst data out over the RF channel at rates several times faster than

previous generation of radios. Moreover, early hardware designs used the microcontroller to duty

cycle the radio and check for channel activity [14]. Next-generation radios will have built-in

state machines that perform this operation automatically [51].

Software and Interface Standards

Engineers and researchers in the field of low-power wireless technology are pursuing a

protocol-standardization effort aimed at allowing future devices to interoperate with one another.

The 802.15.4 standard provides a specification of the RF channel and signaling protocol to be

used [56]. Built atop 802.15.4 is the Zigbee protocol, a specification of the application-level

communication protocol between devices. To put Zigbee and 802.15.4 in perspective relative to

the platforms we’ve discussed here, 802.15.4 determines which radio hardware to use and Zigbee

determines the content of messages transmitted by each networked node [56]. Following the

availability of the first 802.15.4 radios, researchers have sought to develop TinyOS drivers.

When these drivers are completed and released, existing sensor-network applications will be able

to take advantage of the new capabilities of the 802.15.4 chips [51].

15

Even as the standardization process advances, it is not clear whether a comprehensive set

of standard protocols will ever be available to meet all application requirements. Unlike

traditional Internet applications, sensor network applications demand protocols that are

optimized for their unique communication patterns. Additionally, the for-members-only nature of

Zigbee standards and other proprietary solutions impose additional hurdles on any widespread

sensor-network standard-setting process and adoption. In this environment, TinyOS’s ability to

allow application developers to assemble custom protocols from individual networking building

blocks will continue to be the preferred sensor-network development strategy. Developers will

likely start with generic TinyOS protocol implementations, then customize as needed to satisfy

application-specific requirements [51].

2.3 Routing Protocols

Routing in sensor networks is very challenging due to several characteristics that

distinguish them from contemporary communication and wireless ad-hoc networks. First of all, it

is not possible to build a global addressing scheme for the deployment of the sheer number of

sensor nodes because of the very large number of nodes and the associated overhead. In sensor

networks, globally unique addresses would need to be very large--at least as large as Ethernet's

48 bits address--compared to the typical few bits of data attached to them. Therefore, classical

IP-based protocols cannot be applied to sensor networks. Local addressing is needed. Second, in

contrary to typical communication networks, all applications of sensor networks require the flow

of sensed data from multiple regions (sources) to a particular sink. Third, generated data traffic

has significant redundancy in it since multiple sensors within the vicinity of a phenomenon may

16

generate same data. Such redundancy needs to be exploited by the routing protocols to improve

energy and bandwidth utilization. Fourth, sensor nodes are tightly constrained in terms of

transmission power, on-board energy, processing capacity and storage; and thus require careful

resource management.

To leverage these differences, many new algorithms have been proposed to solve the

problem of routing data in sensor networks. These routing mechanisms have considered the

characteristics of sensor nodes along with the application and architecture requirements. Almost

all of the routing protocols can be classified as data-centric, hierarchical or location-based. There

are few routing protocols based on network flow or quality of service (QoS) awareness, such as

Maximum lifetime energy routing, Maximum lifetime data gathering, Minimum cost forwarding,

Energy-Aware QoS Routing Protocol, and SPEED which are discussed later. Data-centric

protocols are query-based and depend on the naming of the desired data, which helps eliminate

many redundant transmissions. Hierarchical protocols aim at clustering the nodes so that cluster

heads can do some aggregation and reduction of data in order to save energy. Location-based

protocols utilize the position information to relay data to desired regions rather than the whole

network. The last category includes routing approaches that are based on general network-flow

modeling and protocols that strive to meet some QoS requirements along with the routing

function. In this section, we explore the routing mechanisms for sensor networks developed in

recent years. Each routing protocol is discussed under the proper category.

2.3.1 Data-centric Protocols

In many applications of sensor networks, it is not feasible to assign global identifiers to

each node due to the sheer number of nodes deployed. Such lack of global identification along

17

with random deployment of sensor nodes makes it hard to select a specific set of sensor nodes to

be queried. Therefore, data is usually transmitted from every sensor node within the deployment

region with significant redundancy. Since this is very inefficient in terms of energy consumption,

routing protocols that will be able to select a set of sensor nodes and utilize data aggregation

during the relaying of data have been considered [57]. When data are measured or arrive from a

neighbor, the sensor needs to decide whether or not they are important enough to forward them.

The data may also be combined with other received data, in order to minimize the number of bits

to forward. Such data aggregation (also referred to as data fusion) from multiple sensors is

important, because of severe energy and bandwidth limitations as well as for numerous other

reasons, including reliability [57]. This consideration has led to data-centric routing, which is

different from traditional address-based routing where routes are created between addressable

nodes managed in the network layer of the communication stack.

Data-centric routing protocols are quite energy efficient since the query is performed only

when it is needed and global topology needn't be maintained. While there are also disadvantages,

such as the naming depends on different applications and must be done firstly, and the process of

data querying and matching introduces extra communication load and may result in broadcast

storm [59].

In data-centric routing, the sink sends queries to certain regions and waits for data from

the sensors located in the selected regions. Since data is being requested through queries,

attribute based naming is necessary to specify the properties of data. SPIN [20] is the first data-

centric protocol, which considers data negotiation between nodes in order to eliminate redundant

data and save energy. Later, Directed Diffusion [21] has been developed and has become a

18

breakthrough in data-centric routing. Then, many other protocols have been proposed either

based on Directed Diffusion [22][23][24] or following a similar concept [25][26][27][28].

Flooding and gossiping [29] are two classical mechanisms to relay data in sensor

networks without the need for any routing algorithms and topology maintenance. In flooding,

each sensor receiving a data packet broadcasts it to all of its neighbors. This process continues

until the packet arrives at the destination or the maximum number of hops for the packet is

reached. On the other hand, gossiping is a slightly enhanced version of flooding where the

receiving node sends the packet to a randomly selected neighbor, which picks another random

neighbor to forward the packet to and so on.

Sensor Protocols for Information via Negotiation (SPIN) [20] is among the early work to

pursue a data-centric routing mechanism. The idea behind SPIN is to name the data using high

level descriptors or meta-data. Before transmission, meta-data are exchanged among sensors via

a data advertisement mechanism, which is the key feature of SPIN. Each node, upon receiving

new data, advertises it to its neighbors and interested neighbors (i.e. those who do not have the

data) and retrieves the data by sending a request message. SPIN's meta-data negotiation solves

the classic problems of flooding by using techniques such as redundant information passing,

overlapping of sensing areas and resource blindness thus, achieving a lot of energy efficiency.

Directed Diffusion [21,30] is an important milestone in the data-centric routing research

of sensor networks. The idea aims at diffusing data through sensor nodes by using a naming

scheme for the data. The main reason behind using such a scheme is to get rid of unnecessary

operations of network layer routing in order to save energy. Direct Diffusion suggests the use of

19

attribute-value pairs for the data and queries the sensors in an on demand basis by using those

pairs.

Energy-Aware Routing

Shah et al. [27] proposed to use a set of sub-optimal paths alternatively to increase the

lifetime of the network. These paths are chosen by means of a probability function, which

depends on the energy consumption of each path. Network survivability is the main metric that

the approach is concerned with. The approach argues that using the minimum energy path all the

time will deplete the energy of nodes on that path. Instead, one of the multiple paths is used with

a certain probability so that the whole network lifetime increases.

Rumor routing [22] is another variation of Directed Diffusion and is mainly intended for

contexts in which geographic routing criteria are not applicable. There, generally Directed

Diffusion floods the queries to the entire network when there are no geographic criteria to diffuse

tasks. However, in some cases there is only a little amount of data requested from the nodes and

thus the use of flooding is unnecessary. An alternative approach is to flood the network if the

number of events is small and the number of the queries is large. Rumor routing is between event

flooding and query flooding. The idea is to route the queries to the nodes that have observed a

particular event rather than flooding the entire network to retrieve information about the

occurring events.

Gradient-Based Routing

Schurgers et al. [23] have proposed a slightly changed version of Directed Diffusion,

called Gradient-Based Routing (GBR). The idea is to keep the number of hops when the interest

is diffused through the network. Hence, each node can discover the minimum number of hops to

20

the sink, which is called the height of the node. The difference between a node’s height and that

of its neighbor is the gradient for that link. A packet is forwarded on a link with the largest

gradient.

2.3.2 Hierarchical Protocols

Similar to other communication networks, scalability is one of the major design attributes

of sensor networks. A single-tier network can cause the gateway to overload with increase in

sensor density. Such overload might cause latency in communication, inadequate tracking of

events, queue overflow and message loss. In addition, the single-gateway architecture is not

scalable for a large set of sensors covering a wide area of interest since the sensors are typically

not capable of long-haul communication. To allow the system to cope with additional load and to

be able to cover a large area of interest without degrading the service, network clustering has

been pursued in some routing approaches [59].

Dynamic clustering in Hierarchical routing protocols can strengthen the connectivity and

prolong lifetime of the network, but its main disadvantage is using single hop communication,

not suitable in large area applications [59].

The main aim of hierarchical routing is to efficiently maintain the energy consumption of

sensor nodes by involving them in multi-hop communication within a particular cluster and by

performing data aggregation and fusion in order to decrease the number of transmitted messages

to the sink. Cluster formation is typically based on the energy reserve of sensors and sensor’s

proximity to the cluster head [31][32]. LEACH [8,9] is one of the first hierarchical routing

approaches for sensors networks. The idea proposed in LEACH has been an inspiration for many

21

hierarchical routing protocols [25][34][35][36], although some protocols have been

independently developed [37][38]. These protocols are discussed in this section.

LEACH

Low-Energy Adaptive Clustering Hierarchy (LEACH) [8,9] is one of the most popular

hierarchical routing algorithms for sensor networks. The idea is to form clusters of sensor nodes

based on the received signal strength and use local cluster heads as routers to the sink. This will

save energy since the transmissions will only be done by the cluster heads rather than all sensor

nodes. Optimal number of cluster heads is estimated to be 5% of the total number of nodes [8,9].

PEGASIS & Hierarchical-PEGASIS

Rather than forming multiple clusters, Power-Efficient GAthering in Sensor Information

Systems (PEGASIS) [34] forms chains from sensor nodes so that each node transmits and

receives from a neighbor and only one node is selected from that chain to transmit to the base

station (sink). Gathered data moves from node to node, is aggregated and eventually is sent to the

base station. The chain construction is performed in a greedy way. PEGASIS eliminates the

overhead caused by dynamic cluster formation in LEACH and decreases the number of

transmissions and reception by using data aggregation. However, PEGASIS introduces

excessive delay for distant nodes on the chain. In addition, the only one node that is selected

from the chain to transmit data to the base station can become a bottleneck.

TEEN and APTEEN

Threshold sensitive Energy Efficient sensor Network protocol (TEEN) [25] is a

hierarchical protocol designed to be responsive to sudden changes in the sensed attributes such as

22

temperature. Responsiveness is important for time-critical applications, in which the network

operates in a reactive mode. TEEN pursues a hierarchical approach along with the use of a data-

centric mechanism. The sensor network architecture is based on a hierarchical grouping where

closer nodes form clusters. This cluster forming process goes on the second level until the base

station (sink) is reached. The Adaptive Threshold sensitive Energy Efficient sensor Network

protocol (APTEEN) [36] is an extension to TEEN and aims at both capturing periodic data

collections and reacting to time-critical events.

Energy-aware Routing for Cluster-based Sensor Networks

Younis et al. [38] have proposed a different hierarchical routing algorithm based on a

three-tier architecture. Sensors are grouped into clusters prior to network operation. The

algorithm employs cluster heads, namely gateways, which are less energy constrained than

sensors. It is assumed the location of sensor nodes is known. Gateways maintain the state of the

sensors and sets up multi-hop routes for collecting sensors’ data. A TDMA based MAC is used

for nodes to send data to the gateway. The gateway informs each node about slots in which it

should listen to other nodes. It also informs each node when to transmit and which slot to use for

transmission. The command node (sink) communicates only with the gateways.

Self-organizing Protocol

Subramanian et al. [37] not only describe a self-organizing protocol but develop a

taxonomy of sensor applications as well. The taxonomy is based on the network configuration of

the sensor nodes. Network configuration, in this scenario, refers to the physical placement of the

various sensors and the connectivity of these nodes to nodes in the infrastructure. The network

23

configuration determines the amount of routing intelligence that needs to be put into sensor

nodes.

Based on such taxonomy, they have proposed architectural and infrastructural

components necessary for building sensor applications. The architecture supports heterogeneous

sensors that can be mobile or stationary. Some sensors probe the environment and forward the

data to a designated set of nodes that act as routers. Router nodes are stationary and form the

backbone for communication. Collected data are forwarded through the routers to more powerful

sink nodes. Each sensing node should be reachable to a router node in order to be part of the

network.

2.3.3 Location-based Protocols

Most of the routing protocols for sensor networks require location information of sensor

nodes. In most cases location information is needed in order to calculate the distance between

two particular nodes so that energy consumption can be estimated. Since, there is no addressing

scheme for sensor networks like IP-addresses and they are spatially deployed on a region,

location information is used to route data in an energy efficient way. For instance, if the region to

be sensed is known, using the location of sensors, the query can be diffused only to that

particular region which will eliminate a significant number of transmissions. Some of the

protocols discussed here are designed primarily for mobile ad hoc networks and consider the

mobility of nodes [39][40][41]. However, they are also applicable to sensor networks where

there is less or no mobility.

It is worth noting that there are other location-based protocols designed for wireless ad

hoc networks, such as Cartesian and trajectory-based routing [42][43]. However, many of these

24

protocols are not applicable to sensor networks since they are not energy aware. In order to stay

within the theme of our survey, we limit the scope of coverage to energy-aware location based

protocols.

Location based routing protocols are energy efficient when sensor nodes are deployed

densely. That is, when the density of sensor nodes is small, these protocols may not keep the

connectivity efficiently [59].

MECN and SMECN

Minimum Energy Communication Network (MECN) [40] sets up and maintains a

minimum energy network for wireless networks by utilizing low power GPS. The small

minimum energy communication network (SMECN) [41] is an extension to MECN. In MECN,

it is assumed that every node can transmit to every other node, which is not possible all the time.

In SMECN, possible obstacles between pair of nodes are considered. However, the network is

still assumed to be fully connected as in the case of MECN. The subnetwork constructed by

SMECN for minimum energy relaying is provably smaller than the one constructed in MECN if

broadcasts are able to reach all nodes in a circular region around the broadcaster. As a result, the

number of hops for transmission will decrease. Simulation results show that SMECN uses less

energy than MECN and maintenance cost of the links is reduced. However, constructing a sub-

network with smaller number of edges introduces more overhead in the algorithm.

GAF

Geographic Adaptive Fidelity (GAF) [39] is an energy-aware location-based routing

algorithm designed primarily for mobile ad hoc networks, but may be applicable to sensor

networks as well. GAF conserves energy by turning off unnecessary nodes in the network

25

without affecting the level of routing fidelity. It forms a virtual grid over the covered area. Each

node uses its GPS-indicated location to associate itself with a point in the virtual grid. Nodes

associated with the same point on the grid are considered equivalent in terms of the cost of

packet routing. Such equivalence is exploited in keeping some nodes located in a particular grid

area in sleeping state in order to save energy. (At most one node in a particular grid area is on).

A node in the sleeping state wakes up after an application-dependent sleep time. Thus, GAF can

substantially increase the network lifetime as the number of nodes increases.

GEAR

Yu et al. [44] have suggested the use of geographic information while disseminating

queries to appropriate regions, since data queries often include geographic attributes. The

protocol, namely Geographic and Energy Aware Routing (GEAR), uses an energy aware and

geographically informed neighbor selection heuristics to route packets towards the target region.

The idea behind Direct Diffusion is to restrict the number of interests, i.e. the specific datasets

that the applications are interested in by only considering a certain region, rather than sending the

interests to the whole network. GEAR compliments Directed Diffusion in this way and thus

conserves more energy.

In GEAR, each node keeps an estimated cost and a learning cost for reaching the

destination through its neighbors. The estimated cost is a combination of residual energy in the

node and distance to destination. The learned cost is a refinement of the estimated cost that

accounts for routing around holes in the network. A hole occurs when a node does not have any

closer neighbor to the target region than itself. If there are no holes, the estimated cost is equal to

the learned cost. The learned cost is propagated one hop back every time a packet reaches the

26

destination so that route setup for the next packet will be adjusted. There are two phases in the

algorithm:

1. Forwarding packets towards the target region: Upon receiving a packet, a node

checks its neighbors to see if there is one neighbor closer to the target region than itself. If there

is more than one, the nearest neighbor to the target region is selected as the next hop. There is a

hole if the neighbors are all further than the node itself. In this case, one of the neighbors is

picked to forward the packet based on the learning cost function. This choice can then be

updated based on the convergence of the learned cost during the delivery of packets.

2. Forwarding the packets within the region: If the packet has reached the region, it

can be diffused in that region by either recursive geographic forwarding or restricted flooding.

Restricted flooding is good when the sensors are not densely deployed. In high-density networks,

recursive geographic flooding is more energy efficient than restricted flooding [44]. In that case,

the region is divided into several sub regions and copies of the packet are created. Each copy is

sent to one sub regions. This splitting and forwarding process continues until the regions with

only one node are left.

2.3.4 Network Flow and QoS-aware Protocols

Some routing protocols pursue other approaches such as network flow and QoS. In some

approaches, route setup is modeled and solved as a network flow problem. QoS-aware protocols

consider end-to-end delay requirements while setting up the paths in the sensor network. Sample

of these protocols are discussed in this section.

Maximum Lifetime Energy Routing

27

Chang et al. [45] present an interesting solution to the problem of routing in sensor

networks based on a network flow approach. The main objective of the approach is to maximize

the network lifetime by carefully defining link cost as a function of the remaining node energy

and the required transmission energy using that link. The solution to this problem maximizes the

feasible time the network lasts. In order to find out the best link metric for the stated

maximization problem, two maximum residual energy path algorithms are presented and

simulated. The two algorithms differ in their definition of link costs and the incorporation of

nodes’ residual energy. Simulation results show that the proposed maximum residual energy path

approach has better average lifetime than the minimum transmitted energy approach for both link

cost models [45].

Minimum Cost Forwarding

The minimum cost forwarding protocol [24] aims at finding the minimum cost path in a

large sensor network, which will also be simple and scalable. The cost function for the protocol

captures the effect of delay, throughput and energy consumption from any node to the sink. The

protocol is not really flow-based. However, since data flows over the minimum cost path and the

resources on the nodes are updated after each flow, we have included it in this section. After

each data flow is done, a setup phase will be executed to set the cost value in all nodes.

SPEED

A QoS routing protocol for sensor networks that provides soft real-time end-to-end

guarantees is described in [48]. The protocol requires each node to maintain information about

its neighbors and uses geographic forwarding to find the paths. In addition, SPEED strive to

ensure a certain delivery speed for each packet in the network so that each application can

28

estimate the end-to-end delay for the packets by dividing the distance to the sink by the speed of

the packet before making the admission decision. Moreover, SPEED can provide congestion

avoidance when the network is congested.

2.3.5 Discussion

Protocols, which name the data and query the nodes based on some attributes of the data

are categorized as data-centric. Many of the researchers follow this paradigm in order to avoid

the overhead of forming clusters, the use of specialized nodes etc. However, the naming schemes

such as attribute-value pairs might not be sufficient for complex queries and they are usually

dependent on the application. Efficient standard naming schemes are one of the most interesting

future research direction related to this category.

On the other hand, cluster-based routing protocols group sensor nodes to efficiently relay

the sensed data to the sink. The cluster heads are sometimes chosen as specialized nodes that are

less energy-constrained. A cluster-head performs aggregation of data and sends it to the sink on

behalf of the nodes within its cluster. The most interesting research issue with cluster based

routing protocols is how to form the clusters so that the energy consumption and contemporary

communication metrics are optimized. The factors affecting cluster formation and cluster-head

communication are open issues for future research. Moreover, the process of data aggregation

and fusion among clusters is also an interesting problem to explore.

Protocols that utilize the location information and topological deployment of sensor

nodes are classified as location-based. The number of energy-aware location-based approaches

found in the literature is rather small. The problem of intelligent utilization of the location

information in order to aid energy efficient routing is the main research issue. Spatial queries and

29

databases using distributed sensor nodes and interacting with the location-based routing protocol

are open issues for further research.

Although the performance of these protocols is promising in terms of energy efficiency,

further research would be needed to address issues such as Quality of Service (QoS) posed by

video and imaging sensors and real-time applications. Currently, there is little research that looks

at handling QoS requirements in an energy constrained environment such as sensor networks.

30

Chapter 3

Implementation of LEACH Protocol on the

TinyOS Platform

3.1 LEACH Protocol Architecture

The LEACH (Low Energy Adaptive Clustering Hierarchy) protocol [8,9] developed by

Wendi Heinzelman is designed for sensor networks to support end-users remotely monitor the

environment. In such a situation, the data from the individual nodes must be sent to a central

base station, often located far from the sensor network, through which end-users can access the

data. There are several desirable properties for protocols on such networks: Use 100's - 1000's of

nodes; Maximize system lifetime; Maximize network coverage; Use identical, battery-operated

nodes.

Conventional network protocols, such as direct transmission, minimum transmission

energy, multi-hop routing, and clustering all have drawbacks that prevent them from achieving

the desirable properties as discussed in Section 2.3. LEACH includes distributed cluster

formation, local processing to reduce global communication, and randomized rotation of the

cluster-heads. Together, these features allow LEACH to achieve the desired properties. Initial

31

software simulations conducted by Wendi Heinzelman show that LEACH is an energy-efficient

protocol that extends system lifetime [8,9]. Much of the material in this section was taken from

Dr. Wendi Heinzelman’s papers [8,9].

LEACH protocol employs a clustering stage before transmitting data wherein a sensor

becomes a cluster head and will transmit data from any sensor belonging to the cluster head to

the base station. This differs from the standard method where each sensor transmits to the base

station [7], which is always further away than the cluster head and thus requires more

transmission power. Thus the LEACH protocol helps to maximize the lifetime of the system by

minimizing the energy used to transmit data to the base station.

LEACH is a cluster based approach with random periodic cluster head selection so as to

distribute load across all nodes. The nodes within the cluster communicate with the cluster head

via a TDMA MAC (a fixed schedule for communicating with non-cluster nodes). The cluster

membership is adaptive as the nodes select its cluster head in terms of the received signal

strength from all cluster nodes. After receiving data from the nodes within its cluster, the cluster

head aggregates the data. The cluster head sends the aggregated data directly to the sink or user.

Based on the network communication model described above, the following can be said

about LEACH protocol: The sources and users are stationary and events monitored are

continuous; the data dissemination mechanism is broadcasting.

LEACH protocol has several energy efficient features such as: Optimization of the

energy used by shutting down nodes’ radios, load balancing, and only two hops from any node to

the sink or the user. LEACH’s distributed hierarchical approach makes it scalable.

However, LEACH has also some shortcomings:

32

 Failure of the cluster head is a problem,

 Cluster head selection is a difficult problem to optimize,

 All nodes must be capable of long range communication to the base station,

 Time synchronization between nodes.

The operation of LEACH is divided into rounds. Each round begins with a set-up phase,

where the clusters are organized, followed by a steady-state phase, where data are transferred

from the nodes to the cluster head and on to the base station.

LEACH forms clusters by using a distributed algorithm where nodes make autonomous

decisions without any centralized control. Sensor nodes elect themselves to be a cluster head

with a certain probability (based on the amount of battery capacity they have left). So the cluster-

head position is randomly rotated among the sensors. Each sensor node chooses a random

number between 0 and 1. If this random number is less than the threshold T(n), the sensor node

is selected as a cluster-head [8,9]. T(n) is given by

 (3.1)

where P is the desired likelihood for a node to become a cluster head (P = k/N, k is the

expected number of cluster head nodes for this round, N is the total number of nodes alive in the

network); r is the current round; G is the set of nodes that have not been selected as a cluster-

head in the last 1/P rounds.

33

Therefore, only nodes that have not already been cluster heads recently, and which

presumably have more energy available than nodes that have recently performed this energy-

intensive function, may become cluster heads in the next round.

Each non-cluster-head node determines which cluster to join. It determines its cluster for

the current round by choosing the cluster head that requires the minimum transmit power, based

on the received signal strength of the advertisement from each cluster head.

After each node has decided to which cluster it belongs to, it informs the cluster head

node that it will be a member of the cluster. Each node transmits a join-request message (Join-

REQ) back to the selected cluster head using a non-persistent CSMA MAC protocol (when a

node has data to send it listens to the channel to try to determine if any other node is currently

transmitting). After sensing a busy channel, the node enters a back-off state by setting a

randomized timer. When the timer expires, the node again senses the channel. If it is busy, the

node resets the timer and repeats the back-off procedure. If the channel is free, the node transmits

the packet [8].

The cluster heads in LEACH act as local control centers to coordinate the data

transmissions within their cluster. The cluster head node sets up a TDMA schedule and

transmits this schedule to the nodes within its cluster. The TDMA schedule transmitted consists

of a list of member node ids and their allocated transmission time slot information. Every node

in the cluster is assigned a transmission slot of equal length. The whole operation is broken into

frames, where nodes send their data to the cluster head during their allocated transmission slot at

most once per frame, and go to sleep until it is time to transmit data. This ensures that there are

no collisions among data messages and also allows the radio components of each non-cluster

34

head node to be turned off at all times except during their transmit time, thus reducing the energy

consumed by the individual sensor nodes. Once the TDMA schedule is known by all nodes in the

cluster, the set-up phase is complete and the steady-state operation (data transmission) can begin.

A flowchart of this distributed cluster formation algorithm is shown in Fig. 3.1.

Figure 3.1: Flowchart of the Distributed Cluster Formation Algorithm for LEACH

The time line for one round of LEACH is illustrated in [8]. Data transmissions are

explicitly scheduled to avoid collisions and increase the amount of time each non-cluster head

node can remain in the sleep state.

35

To reduce energy dissipation, each non-cluster head node uses power control to set the

amount of transmission power based on the received strength of the cluster head advertisement.

Furthermore, the radio of each non-cluster head node is turned off until its allocated transmission

time. The cluster head must be awake to receive all the data from the nodes in the cluster. Once

the cluster head receives all the data, it performs data aggregation to enhance the common signal

and reduce the uncorrelated noise among the signals. Individual signals are combined into a

single representative signal. The resultant data are sent from the cluster head to the BS.

LEACH-C, MTE, Static-Clusters Protocol

LEACH-centralized (LEACH-C) is a protocol that uses a centralized clustering algorithm

and the steady-state portion of LEACH.

While there are advantages to using LEACH’s distributed cluster formation algorithm,

the LEACH protocol offers no guarantee about the placement and/or number of cluster head

nodes. Since the clusters are adaptive, obtaining a poor clustering set-up during a given round

will not greatly affect overall performance. However, using a central control algorithm to form

the clusters may produce better clusters by dispersing the cluster head nodes throughout the

network. This is the basis for LEACH-C [8,9].

During the set-up phase of LEACH-C, each node sends information about its current

location (possibly determined using a GPS receiver) and energy level to the base station (BS). In

addition to determining good clusters, the BS needs to ensure that the energy load is evenly

distributed across all the nodes. To do this, the BS computes the average node energy, and any

node with energy level below this average is excluded from the cluster head selection for the

current round. Using the remaining nodes as possible cluster heads, the BS identifies clusters

36

using the simulated annealing algorithm [49] to solve the NP-hard problem of finding optimal

clusters [52]. This algorithm attempts to minimize the amount of energy for the non-cluster head

nodes to transmit their data to the cluster head, by minimizing the total sum of squared distances

between all the non-cluster head nodes and the closest cluster head. The steady-state phase of

LEACH-C is identical to that of LEACH.

For MTE (minimum transmission energy) routing, each node runs a start-up routine to

determine its next-hop neighbor, defined to be the closest node that is in the direction of the BS.

Data packets are passed along via next-hop neighbors until they reach the BS. As there is no

central control in MTE routing, it is difficult to set up fixed MAC protocols (e.g., TDMA), so

each node uses CSMA to listen to the channel before transmitting data. If the channel is busy, the

node backs off; otherwise, the node transmits its data to the next-hop node. When a node runs

out of energy, the routes that contain that node are recomputed to ensure connectivity to the BS.

For static clustering, nodes are organized into clusters initially by the BS using the same

method as in LEACH-C to ensure that good clusters are formed. These clusters and cluster heads

remain fixed throughout the lifetime of the network. As in LEACH and LEACH-C, nodes

transmit their data to the cluster head node during each frame of data transfer, and the cluster

head aggregates the data and sends the resultant data to the BS. When the cluster head node’s

energy is depleted, the nodes in the cluster lose communication ability with the BS and are

essentially “dead.”

3.2 Analysis and Simulation Model

37

For even moderately-sized networks with tens of nodes, it is extremely difficult to

analytically model the interactions between all the nodes. Therefore, researchers used simulation

to evaluate LEACH and compare it to other protocols. MIT’s researchers compared LEACH to

LEACH-C, MTE routing, and static clustering in terms of system lifetime, energy dissipation,

and amount of data transfer. They used the network simulator ns2 [13] and developed the models

described below:

Mobile Node

The wireless model in the ns2 release was originally ported as CMU's Monarch group's

mobility extension to ns2. It includes the internals of a mobile node, routing mechanisms and

network components that are used to construct the network stack for a mobile node. The

components include Channel, Network interface, Radio propagation model, MAC protocols,

Interface Queue, Link layer and Address resolution protocol model (ARP). Figure 3.2 shows the

implementation of a mobile node under CMU Monarch’s Wireless Extensions [54].

38

Figure 3.2: Schematic of Mobile Node under CMU Monarch’s Wireless Extensions to ns

Resource-Adaptive Node

A new type of node, the Resource-Adaptive node, was added to ns2 in MIT’s

implementation. The new features of the Resource-Adaptive Node include the Resources and

the Resource Manager. The resource manager provides a common interface between the

39

application and individual resources. The resources can be anything that needs to be monitored,

such as energy and node neighbors. The application updates the status of the node’s resources

through the resource manager.

Radio Energy Dissipation Model

The LEACH radio energy dissipation model is shown in Figure 3.3. In this model, the

transmitter dissipates the energy to run the radio electronics and the power amplifier while the

receiver dissipates the energy to run the radio electronics.

Figure 3.3: LEACH Radio Energy Dissipation Model [8]

Terms in Fig. 3.3 Stands for

 Eelec the electronics energy, the energy dissipated for

the radio to transmit one bit of data

 εamp the transmit amplifier energy factor

 d the distance between the transmitter and receiver

 ETx the energy expensed for transmitting data

 Erx the energy expensed for receiving data

MAC protocol

The protocol in the implementation is a combination of carrier-sense multiple access

(CSMA), and time-division multiple access (TDMA). TDMA is implemented with the

40

application by only having the application send data to the agent during the specified TDMA

time-slot. CSMA is implemented in the MAC class.

Since LEACH is an application-specific protocol architecture, it is implemented as a

subclass of ns2’s application class. The LEACH protocol is implemented as described in the

paper which first presented LEACH protocol [8]. In addition, the base station is a special node

that has no energy constraints and is the node to which all data are eventually sent. A base

station application is implemented to perform the base station’s functions.

3.3 ns2 Simulation of LEACH

We implemented the LEACH protocol in ns 2.33 based on MIT’s ns2 extension. When

MIT’s researchers presented the LEACH protocol, they implemented LEACH in the ns 2.1b5

release dated year 2000. Since then, ns2 has evolved and several new versions were released.

During our simulation work, we referred to the ideas of the MIT’s sensor network extensions,

modified and merged the MIT’s LEACH protocol simulation codes in the ns 2.33 release, the

latest release available at the time of this research. After coding and debugging, we validated our

simulation model. It produced simulation results which agree with the original MIT’s simulation

results.

We ported all the MIT’s LEACH modules in the ns 2.33 version. All features of LEACH

are implemented in the ns 2.33 simulation. It was a challenging task as some of the ns 2.33

modules and objects were quite different from those in the ns2 version of MIT’s extension.

More than 30% of the code has been modified and added. Additional code was added to support

41

the new features of the Resource-Adaptive node, which are introduced by the LEACH protocol

and implemented in the MIT’s extension.

The simulation was executed on a Linux platform. The simulation results matched well

the MIT’s simulation results.

For equivalent inputs, we compared our simulation results to that of MIT’s simulation

result figures. The comparisons are shown in Figure 3.4-3.7.

Figure 3.4: Comparison of Total Amount of Data Received at the BS over Time

Fig. 3.4 shows the total number of data signals received at the BS over time for a given

amount of energy. It shows that LEACH and LEACH-C send much more data to the base station

(BS) in the simulation time than MTE routing and Static-Clustering. The reason MTE requires so

42

much time to send data from the nodes to the BS is that each message traverses several hops. In

the other protocols, each message is transmitted over a single hop, to the cluster head, where data

aggregation occurs. The aggregate signals are sent to the BS, greatly reducing the amount of data

transmitted [8]. Our simulation results of LEACH and LEACH-C agree well with MIT’s results.

Our results of MTE and Static-Clustering are identical to those of MIT.

Figure 3.5: Comparison of Total Amount of Data Received

at the BS per Amount of Energy Consumed by the Network

Fig. 3.5 shows the total data received at the BS for a given amount of energy. This graph

shows that LEACH and LEACH-C deliver the most data per unit energy, achieving both energy

and latency efficiency. A routing protocol such as MTE does not enable local computation to

reduce the amount of data that needs to be transmitted to the BS [8]. Our simulation results of

43

LEACH protocol agrees with that of MIT. Our results of LEACH-C, MTE and Static-Clustering

are almost identical to those of MIT.

Figure 3.6: Comparison of Number of Nodes Alive over Time

Fig. 3.6 shows the total number of nodes that remain alive over the simulation time.

Nodes remain alive for a long time in MTE because a much smaller amount of data has been

transmitted to the BS. If we plot the total number of nodes that remain alive per amount of data

received at the BS (Fig. 3.7), we see that nodes in LEACH can deliver about ten times more data

than MTE for the same number of nodes that ran out of battery. There are two reasons why MTE

requires more energy to send data to the BS (hence, causing more node deaths for the same

amount of data delivery): collisions and lack of data aggregation. Figures 3.6 and 3.7 show why

static clustering performs poorly: the cluster head nodes die quickly, ending the lifetime of all

44

nodes belonging to those clusters. Therefore, rotating the cluster head position enables LEACH

to achieve a longer lifetime than static clustering [8]. In Figures 3.6 and 3.7, our results of

LEACH and LEACH-C agree well with MIT’s. Moreover, our results for MTE and Static-

Clustering are almost identical to those of MIT.

Figure 3.7: Comparison of Number of Nodes Alive per Amount of Data Received at BS

As shown by Figures 3.4-3.7 our simulation results agree well with MIT’s results. This

validates our simulator and simulation results. As the time of these writings, MIT’s simulation

results were the only available LEACH simulation results available for comparison.

Note that some of our results of LEACH and LEACH-C in Figures 3.4-3.7 don’t match

MIT’s results exactly. This is because the LEACH protocol has inherent randomization, for

45

example, the cluster head selecting algorithm. And LEACH-C protocol uses the simulated

annealing algorithm, which also randomizes the cluster-head selection process. Therefore, we

cannot expect a perfect match with MIT’s simulation results. For MTE and Static-Clustering,

neither protocol involves randomization, so the simulation results agree perfectly with MIT’s.

ns 2 Simulation of LEACH Incorporating Crossbow Hardware

Since Crossbow is one of the leading manufacturers of sensor network hardware, we

modify our ns2 simulation model to account for Crossbow motes. To do so, we derived the

Crossbow motes radio energy model and simulated LEACH with Crossbow sensor network

hardware.

The data we used in the analysis were extracted from the Chipcon hardware manual, the

manufacture of motes’ transceiver. The data are listed in Table 3.1. The “Distance” column

represents the distance between the motes, and the “Current” column represents the minimal

transmitting current required for the motes to communicate with each other successfully.

Distance (ft) Current (ma) Distance (ft) Current (ma)

2 8.6 260.96 10.8

21.92 8.8 280.88 11.1

41.84 9 300.8 13.8

61.76 9 320.72 14.5

81.68 9.1 340.64 14.5

101.6 9.3 360.56 15.1

121.52 9.3 380.48 15.8

141.44 9.5 400.4 16.8

161.36 9.7 420.32 17.2

181.28 9.9 440.24 18.5

201.20 10.1 460.16 19.2

221.12 10.4 480.08 21.3

241.04 10.6 500 25.4

Table 3.1: Distance Between Motes and the Minimal Transmitting Current Required

46

According to the electronic communication theory, in a wireless channel, the

electromagnetic wave propagation can be modeled as falling off with distance by a power law

function [8].

Based on the hardware data in Table 3.1 and the expected power law behavior, we

derived the relationship between the distance and the transmitter energy consumption, and

constructed a function that maps any distances into Crossbow motes data. In this way, we can get

the current consumption required for any given distance. To do so, we used Eviews, a statistics

software package, to analyze the data. Details about this data analysis and regression can be

found in Appendix A.

As a summary of the analysis in Appendix A, the Crossbow motes radio energy model

could be summarized as below:

When transmitting data,

when distance < dcrossover, Current = 8.874057 + 2.94E-05 * Distance
2

mA

(3.2)

when distance > dcrossover, Current = 11.61814 + 1.94E-10 * Distance
4

mA

(3.3)

where dcrossover = 295 ft.

When receiving data, Current = 9 mA.

The results shown above in Equation 3.2 and Equation 3.3 agree well with the electronic

communication theories [8]. The first part relates to Distance
2
; that corresponds to the Friss free

47

space model. The second part relates to Distance
4
; that corresponds to the two-ray ground

propagation model. The communication theory indicates that if the distance between the

transmitter and receiver is less than a certain cross-over distance (dcrossover), the Friss free space

model should work, and if the distance is greater than dcrossover, the two-ray ground propagation

model should work. As we can see from the results above, our analysis result agrees with the

theory.

In our following simulation, we used a 100-node network where nodes are randomly

distributed in a 100*100 meters grid of 100*100 points. The base station was located at grid

point (50, 175). The bandwidth of the channel was set to 38,400 bps. Thus, to transmit an L-bit

message for a distance d, the amount of energy that the radio consumes is:

When transmitting data, Energy

= L* 8.874057 * 2.7 * 0.001 /38400+ L * 2.94E-05 * 2.7 * 0.001 /38400 *

Distance
2
*0.305

2
, when distance < 90 meters.

= L * 11.61814 * 2.7 * 0.001 /38400 +L * 1.94E-10 * 2.7 * 0.001 /38400 *

Distance
4
*0.305

4
, when distance > 90 meters.

When receiving data, Energy = L * 9 * 2.7 * 0.001 /38400

We incorporate this Crossbow motes radio energy model as well as other Crossbow

sensor hardware data parameters into the ns2 simulation. The simulation details and results are

presented in Section 3.5.

48

3.4 Implementation of LEACH on the TinyOS Platform

TinyOS is an open source component-based operating system and platform targeting

wireless sensor networks (WSNs). TinyOS is an embedded operating system written in the nesC

programming language (nesC is also used in Crossbow motes) as a set of cooperating tasks and

processes [10]. It is intended to be incorporated into Smartdust. TinyOS started as collaboration

between the University of California, Berkeley in co-operation with Intel Research and

Crossbow Technology, and has since grown to be an international consortium, the TinyOS

Alliance.

We successfully implemented the LEACH protocol in nesC on the TinyOS platform. Our

implementation exactly implemented the LEACH protocol architecture. The implementation

works properly on both Crossbow MICA2 hardware and TOSSIM, the standard network

emulator on the TinyOS platform. It was very challenging to implement LEACH protocol on

TinyOS platform, as there were many difficult technical problems we had to solve, in both

software and hardware aspects. To the best of our knowledge, no one has ever implemented

LEACH on a real sensor network.

Figure 3.8 shows the System Flowchart of our LEACH Implementation on the TinyOS

platform. The Data Transportation Module implements data traffic generation, data sending and

receiving, and data aggregation which ran when the node is a cluster head. The Time

Synchronization Module takes care of the synchronization of the nodes. All the nodes are

synchronized. The cluster head sends a TDMA schedule to all its member nodes. The member

nodes can only send data in the time slot allocated for this node.

49

Figure 3.8: TinyOS LEACH Implementation System Flowchart

We ran multiple series of our LEACH TinyOS implementation to do experiments and

analyze the LEACH protocol performance. The experiments below were executed on

PowerTOSSIM with a network size of 100 sensor nodes, which is a typical network size for

sensor networks research.

TOSSIM and PowerTOSSIM

TOSSIM is a scalable event-driven emulation environment for TinyOS applications.

TOSSIM emulates entire TinyOS applications. It works by replacing components with emulation

implementations. TOSSIM is a discrete event emulator. When it runs, it pulls events of the event

50

queue (sorted by time) and executes them. Depending on the level of emulation, emulation

events can represent hardware interrupts or high-level system events (such as packet reception).

Additionally, tasks are emulation events [67].

TOSSIM is a Mote emulator that implements the lowest layer of components in the

TinyOS API, and can run many emulated Motes in parallel. TOSSIM emulates Mote

applications, and requires that an identical code base run on every node.

PowerTOSSIM is an extension of TOSSIM. PowerTOSSIM provides low-level and

accurate per-node power consumption information. It captures the detailed, low-level energy

requirements of the CPU, radio, sensors, LEDs and other peripherals. In PowerTOSSIM, TinyOS

components corresponding to specific hardware peripherals are instrumented to obtain a trace of

each device’s activity during the emulation run. PowerTOSSIM employs a novel code-

transformation technique to estimate the number of CPU cycles executed by each node,

eliminating the need for expensive instruction-level emulation of sensor nodes.

PowerTOSSIM’s approach to estimate the number of CPU cycles is to: (1) instrument the

PowerTOSSIM binary to obtain an execution count for each basic block (run of instructions with

no branches) executed by the emulated CPU; (2) map each basic block to its corresponding

assembly instructions; (3) determine the number of CPU cycles for each basic block using simple

instruction analysis; and (4) combine the emulation basic block execution counts with their

corresponding cycle counts to obtain the total CPU cycle count for each emulated mote [12].

PowerTOSSIM provides accurate estimation of power consumption for a range of

applications (including Beacon, CntToLeds, CntToLedsAndRfm, CntToRfm, Oscilloscope,

OscilloscopeRF, Sense, SenseLightToLog, SenseTask, SenseToLeds, SenseToRfm, TinyDB and

51

Surge, etc.), and scales to support very large emulations [12]. PowerTOSSIM achieves an

accuracy of within 0.45-13% of the true power consumption of nodes running an identical

program [12].

PowerTOSSIM tracks the power state of each hardware component of the emulated

motes by generating specific power state transition messages that are logged during the

emulation run. This is accomplished by instrumenting the TOSSIM emulated hardware

components with calls to a new component which tracks hardware power states for each mote

and logs them to a file during the run [12].

PowerTOSSIM provides run-time configurable debugging output, allowing a user to

examine the execution of an application from different perspectives without needing to

recompile. TinyViz is a Java-based GUI that allows you to visualize and control the emulation as

it runs, inspecting debug messages, packets, and so forth [67]. The emulation provides several

mechanisms for interacting with the network; packet traffic can be monitored. In the TinyViz

GUI, there is “Power Profiling” tab which displays the power consumption data of the nodes in

the network in real time.

We executed our LEACH TinyOS implementation multiple times to analyze the

performance of LEACH. Figure 3.9 and Figure 3.10 show a snapshot of the TinyViz GUI when

running our TinyOS LEACH implementation on PowerTOSSIM.

52

Figure 3.9: Snapshot of the TinyOS LEACH Implementation

Running on PowerTOSSIM GUI Displaying the Motes Layout

53

Figure 3.10: Snapshot of the TinyOS LEACH Implementation

Running on PowerTOSSIM GUI Displaying the Output Debug Messages

54

In the following table we provide a definition for Figure 3.10 output debug messages:

 Debug Window Message Explanation

[yy] USR2:In total: Consume xx packets in

this turn.

Means node yy sent xx packets in this round.

[yy] USR2:Till now: Consume xx packets. Means node yy has sent a total of xx packets

from time 0 till now to the base station.

[yy] USR2:Got xx data packets in this frame. Means node yy received xx packets in this

frame, where xx equals to the number of

member nodes in the cluster. Node yy is a

cluster head in this frame, with xx member

nodes in its cluster.

Table 3.2: Definition for Figure 3.10 Output Debug Messages

Each 10 emulated seconds, we pause the PowerTOSSIM emulation, record and calculate

the metrics, then resume the emulation.

 By summing up the numbers of the data packets that were send to the base station by

each node at every sample point, we get the number of data items received at the base station by

that time. Time is the emulated time shown on the PowerTOSSIM GUI. When switching to the

“Power Profiling” window while an emulation is running, PowerTOSSIM displays power

consumption results on its GUI, showing the total amount of energy consumed so far by each

component of each node.

By summing up the energy consumed by the 100 emulated nodes, we get the total energy

consumed by the whole network so far. During the process of the emulations, we monitor the

total consumed energy by every node. When a node consumed a total energy that is equal to or

greater than the maximum energy limit for each node (which is set to 8J for this emulation), we

55

turned off that node. We calculate the number of nodes that are still alive in the network. Once

all the nodes reach its energy limit, the network life ends.

After the emulation is done and metrics are collected, we plot the following metrics: Data

Received, Time, Energy Consumed, and Nodes Alive; and analyzed the data. The emulation

results are summarized in Section 3.5.

3.5 Results of the LEACH Implementation

In this section, we compared our ns2 LEACH simulation results to our TinyOS LEACH

implementation experimental results.

All the parameters that are used in our LEACH ns2 simulations and TinyOS

implementations are listed in Table 3.3 below.

Description Parameter Value

Cross-over distance for Friss and two-

ray ground attenuation models

dcrossover 90 m

Minimum receiver power needed for

successful reception

Pr-thresh 0.473 nW

Radio electronic energy Eelec 817 - 1316 nJ/bit

Compute energy for beamforming EBF 10 nJ/bit

Bitrate Rb 38400 bps

Signal wavelength λ 0.328 m

Radio amplifier energy Efriss-amp

Etwo-ray_amp

22.2 pJ/bit/m2

0.0016 pJ/bit/m4

56

Number of nodes 100

Network size 100m * 100m

Base station location (50, 175)

Radio propagation speed 3*108 m/s

Processing delay 300 µs

Total energy of each single node 8 J

Table 3.3: LEACH Simulation and Implementation Parameters

 The comparison of our ns2 LEACH simulation results to our TinyOS LEACH

implementation experiment results are shown in Figure 3.11 to 3.14. In these figures, “LEACH”

represents the result of our ns2 simulation of LEACH protocol. “TinyOS” represents the result

of our TinyOS LEACH implementation experiments.

Figure 3.11: Total Amount of Data Received at the Base Station over Time

57

Figure 3.12: Total Amount of Data Received at the BS per Total Energy Consumed

Figure 3.11 shows the total number of data signals received at the base station over time

for a given amount of energy. Figure 3.12 shows the total data received at the base station over

the total amount of energy consumed by all nodes in the network.

Figure 3.13: Number of Nodes Alive Function of Time

58

Figure 3.14: Number of Nodes Alive Function of Amount of Data Received at the BS

Figure 3.13 shows the total number of nodes that remain alive over time. Figure 3.14

shows the total number of nodes that remain alive per amount of data received at the base station.

As shown by the figures above (Figure 3.11 - 3.14), our TinyOS LEACH implementation

experiment results agree well with the ns2 LEACH simulation results. This verified our TinyOS

LEACH implementation and simulation results. It also confirmed the conclusions of MIT’s

analysis. In addition, it proved the feasibility of hardware implementation of the LEACH

protocol using Crossbow’s sensor network hardware. To the best of our knowledge, our TinyOS

LEACH implementation is the first implementation of the LEACH protocol on any hardware

platform. It is good contribution to both the research and industrial community of wireless

sensor networks.

59

Chapter 4

D-LEACH Protocol

4.1 Introduction

A wireless sensor network consists of sensor nodes deployed over a geographical area for

monitoring physical phenomena like temperature, humidity, vibrations, seismic events, and so on.

Typically, a sensor node is a tiny device that includes three basic components: a sensing

subsystem for data acquisition from the physical surrounding environment, a processing

subsystem for local data processing and storage, and a wireless communication subsystem for

data transmission. In addition, a power source supplies the energy needed by the device to

perform the programmed task. This power source often consists of a battery with a limited

energy budget. In addition, it could be impossible or inconvenient to recharge the battery,

because nodes may be deployed in a hostile or unpractical environment. On the other hand, the

sensor network should have a lifetime long enough to fulfill the application requirements. In

many cases a lifetime in the order of several months, or even years, may be required. Therefore,

the crucial question is: How to prolong the network lifetime?

In any case in wireless sensor networks, energy is a critical resource and must be used

sparingly. Therefore, energy conservation is a key issue in the design of systems based on

wireless sensor networks.

60

4.2 D-LEACH Protocol Architecture

In order to improve the LEACH protocol performance, reduce energy consumption and

prolong the network lifetime of the wireless sensor network system, we present a data-adaptive

hierarchical protocol based on LEACH. We name it Dynamic LEACH, or D-LEACH.

In the original LEACH protocol, during each frame of the Steady-State Phase, each

cluster member node sends its data to the cluster head at its assigned allocated TDMA time slot.

However, in a real world environment, sensor nodes do not always need to send data in each

frame. The D-LEACH’s data sending mechanism takes advantage of this observation and

consists of the following steps during the Steady-State Phase, within each cluster:

Step 1: Initially, all the cluster member nodes send data to the cluster head.

Step 2: The cluster head calculates the amount of similarity in the data that it received

from the cluster member nodes in the first frame.

Step 3: Based on the amount of data similarity, the cluster head dynamically changes the

number of cluster member nodes that send data to the cluster head in the next frames. Only some

of the cluster member nodes need to send data to the cluster head, as opposed to LEACH where

all the member nodes send data to the cluster head each frame. The more data similarity, the

fewer nodes would send data to the cluster head next frame. We can reasonably get

the aggregated data from the reduced number of cluster member nodes to represent the data of all

the cluster member nodes in this cluster. Based on the amount of data similarity in the data

received from its cluster member nodes, the cluster head dynamically gives each cluster member

61

node a probability to send data to the base station in next frames. This probability is derived

from the similarity of data using the method presented later.

Step 4: After a period of time (for instance, when the current round is completed), repeat

steps 1 to 3.

Next we explain how the cluster head calculates data similarity and the probability for the

cluster member nodes to send data to the cluster head in the next frames.

The cluster head uses Standard Deviation of the data received from its cluster member

nodes to measure the amount of data similarity. Then the cluster head conducts a Bootstrapping

Simulation to calculate the probability that each cluster member node shall use to send data.

In the Bootstrapping Simulation, the cluster head randomly selects data from half of the

total number of cluster member nodes in its cluster, and then calculates the Standard Deviation of

the data selected. The cluster head runs this process 20 times to get 20 different standard

deviations. After this, the cluster head calculates the distribution of these standard deviations.

Then the cluster head compares the Standard Deviation of all the data received in its cluster

against the derived distribution. Finally the cluster head maps this total distribution to a

probability number between 0.5 and 1.0. Then the cluster head sends this probability to its

cluster member nodes. The cluster member nodes use this probability to send data to the cluster

head over the next frames. The cluster member node runs a random number generation function

to get a random number between 0 and 1. If the random number it gets is less than the given

probability, then the node sends data to the cluster head, otherwise the node does not send data.

If there is no data similarity, the cluster member nodes always send data to the cluster head.

62

The rest of D-LEACH protocol is identical to LEACH. We implemented D-LEACH on

the TinyOS platform, ran emulations on PowerTOSSIM to analyze its performance, and

compared it against other major protocols including LEACH protocol and XMesh protocol, the

default routing protocol of Crossbow MICA2 hardware platform.

Computing data similarity and the probability in D-LEACH introduces some additional

energy consumption. However, in most of the cases D-LEACH reduces the amount of data

packet transmission, which consumes much more energy than local computing does. Our

experiment results show that the additional energy consumption that D-LEACH spends on

computing data similarity and the probability is less than 2% of the energy that D-LEACH

spends on sending and receiving data packets. Therefore, D-LEACH reduces the overall energy

consumption much in the network.

The results of performance analysis are illustrated in Section 4.4. It shows that in many

cases D-LEACH achieves much superior performance than both the LEACH protocol and the

XMesh protocol, in terms of power consumption, total data received and network lifetime.

4.3 XMesh Protocol Overview

XMesh is a full featured multi-hop, ad-hoc, mesh networking protocol developed by

MEMSIC for wireless networks. XMesh is the default protocol of Crossbow MICA2 hardware

platform. An XMesh network consists of nodes (Motes) that wirelessly communicate to each

other and are capable of hopping radio messages to a base station where they are passed to a PC

or other clients. By hopping data in this way, XMesh can provide two benefits: improved radio

coverage and improved reliability. Two nodes do not need to be within direct radio range of each

63

other to communicate. A message can traverse multiple nodes before reaching its destination.

Likewise, if there is a bad radio link between two nodes, that obstacle can be overcome by

rerouting around the area of bad service [55].

XMesh is a software library, written for the TinyOS operating system and runs on

embedded devices such as motes. XMesh’s distributed routing processes have three local

processes: link quality estimation, neighborhood management, and connectivity-based route

selections [55]. Each node has a link estimator which characterizes the link quality of its

neighboring nodes. The neighborhood management process decides how each node chooses

neighbors from its potential neighbors while under memory constraint. Together, link estimation

and neighborhood management build a probabilistic connectivity graph of the network. The

routing process then builds topologies on this graph based on a minimum transmission cost

function. The resultant topology is a subgraph of the logical connectivity graph. These three

processes together form a routing process with a goal to minimize total cost and provide reliable

communications [55].

4.4 Experiment Results and Analysis

We implemented D-LEACH on the TinyOS platform, ran experiments to analyze its

performance, and compared it against other major protocols including LEACH and XMesh

protocols. The results of the performance analysis are summarized in this section.

The setup of the experiments is the same as the setup of experiments described in Section

3.4, where we conduct experiments for the LEACH protocol. In the experiments, the actual data

64

that are measured by the sensor nodes and transmitted in the network are temperature data,

within a range between 20 oC to 50 oC.

The results are shown in Figure 4.1 to 4.4. In these figures, “LEACH” represents the

result of our TinyOS implementation of the original LEACH protocol. “D-LEACH” represents

the result of our TinyOS implementation of D-LEACH protocol presented in Section 4.2.

“Xmesh” represents the result of the TinyOS implementation of XMesh protocol.

Figure 4.1: Total Amount of Data Received at the Base Station over Time

Figure 4.1 shows the total number of data signals received at the base station over

emulation time, given the amount of total energy in all the nodes in the network are the same

across the three different protocols. It shows that in total D-LEACH sends 26% more data

packets to the base station than LEACH does (total number of packets sent: 22,705 vs 18,072),

65

while D-LEACH and LEACH both send much more data than XMesh protocol does in the

experiment time. Moreover, D-LEACH achieves 37% longer network lifetime than LEACH

does (network lifetime: 517 vs 378). Both LEACH and D-LEACH have much longer network

lifetime than XMesh protocol.

Figure 4.2: Total Amount of Data Received at the BS

per Amount of Energy Consumed by the Network

Figure 4.2 shows the total data received at the base station function of the amount of

energy consumed by the network, for a given amount of total energy of the entire network. This

figure shows that D-LEACH delivers the most data per unit energy, among the three protocols.

66

Figure 4.3: Number of Nodes Alive Over Time

Figure 4.4: Number of Nodes Alive per Amount of Data Sent to the BS

67

Figure 4.3 shows the total number of nodes that remain alive over the experiment time.

D-LEACH achieves better results than the LEACH and XMesh protocols. Because D-LEACH

reduces the energy consumption of the nodes, nodes in D-LEACH have much longer lifetime.

Therefore there are more nodes alive in the network at a given time point. D-LEACH achieves

37% longer network lifetime than LEACH does (network lifetime: 517 vs 378), and 231% longer

network lifetime than XMesh does (network lifetime: 517 vs 156).

From Figure 4.4, the total number of nodes that remain alive per amount of data received

at the base station, we see that nodes in D-LEACH have longer node lifetime, and can deliver

more data than LEACH and XMesh protocols for the same number of nodes alive. The reason is

that D-LEACH saved power consumption in the nodes thus is more energy effective in data

transmission. We see that nodes in D-LEACH can deliver about 25% and ten times more

effective data than LEACH and XMesh respectively, for the same number of node death.

There are two reasons why XMesh requires more energy to send data to the base station

than D-LEACH and LEACH (hence, causing more node deaths for the same amount of data

delivery, and a shorter network lifetime): Multi-hopping and lack of data aggregation. In the

XMesh protocol, each message traverses several hops until it reaches the base station. Each hop

requires additional energy consumption for sending and receiving data packets. In D-LEACH

and LEACH, each message is transmitted over a single hop to the cluster head where data

aggregation occurs. The aggregated signals are sent to the BS, greatly reducing the amount of

data that needs to be transmitted to the base station.

As discussed above, Figures 4.1 - 4.4 show that the performance of D-LEACH protocol

is superior to LEACH and XMesh protocol in all the four comparisons. As shown, D-LEACH

68

protocol improved the total number of data items received by 26% over LEACH protocol, and

improved the network lifetime by 37% over LEACH protocol. Meanwhile it shows much better

performance than XMesh protocol, in terms of total number of data items received, network

lifetime, and energy consumption.

D-LEACH protocol’s performance is related to the amount of similarity in the data that it

receives from the nodes in the network. By changing the range of the actual data that are

transmitted in the network, which are temperature data in our experiments, we are able to change

the data similarity. We analyzed the impact of the data similarity on the D-LEACH’s

performance. The results are shown in Figure 4.5 and 4.6.

Figure 4.5: Network Lifetime over Amount of Data Similarity

69

Figure 4.6: Total Amount of Data Received at the BS over Amount of Data Similarity

As shown in Figure 4.5 and 4.6, D-LEACH protocol achieves superior overall

performance when compared with LEACH protocol, in terms of network lifetime and total

amount of data items received. When the amount of data similarity is close to 0, D-LEACH

protocol has similar performance as LEACH. As the amount of data similarity increases, D-

LEACH protocol achieves better performance than LEACH. When the amount of data similarity

reaches maximum, D-LEACH protocol achieves about two times of network lifetime and total

amount of data items received when compared with LEACH protocol (network lifetime: 719 vs

378; total data received: 34,069 vs 18,072).

Moreover, our implementation of D-LEACH protocol on TinyOS platform worked

flawlessly on Crossbow’s sensor network hardware platform. It proves that D-LEACH has much

perspective for real world applications of wireless sensor networks. Particularly, for wireless

sensor network applications that are deployed at small to medium size fields, D-LEACH is an

70

excellent protocol to use. It achieves superior network performance in terms of network lifetime,

power consumption, and number of data packets received in these applications.

71

Chapter 5

Application: A Wireless Health Monitoring

System

In this research, our goal was to design a wireless sensor system, the Health Tracker

2000, that can monitors users’ vital signs and notifies relatives and medical personnel of their

status during life threatening situations.

The Health Tracker 2000 combines wireless sensor networks, existing vital sign

monitoring technology to simultaneously monitor vital signs of the users. The use of wireless

technology makes it possible to install the system in all types of homes and facilities. Radio

frequency waves can travel through walls and fabric, sending the vital signs information to a

central monitoring computer via a miniature transmitter network. Such information can easily be

accessed from any location over the Internet. I was a member of the research and development

team for this system and contributed to all the phases of system design and software/hardware

development [63].

5.1 Introduction

72

The speed of change in the medical field has been overwhelming. Groundbreaking

achievements have led people in the medical profession to have a greater understanding of the

human body [60]. The average life expectancy in the United States has increased from 47.3

years in 1900 to 68.2 years in 1950 to 78.1 years in 2009 [61]. With such a high and continued

increasing average life expectancy, medical care for senior citizens, age 65 and over, is

becoming progressively more important.

The evolution of wireless technology is also extremely fast-paced. Wireless

communications technology has become readily available for and widely used by the general

public, with many million households in the U.S. using some form of a wireless network - the

current wave of useful technology for home networking. The benefits of wireless technology are

already apparent: portability, convenience, ease of installation, and decreasing cost.

What if wireless and medical sensor technology were combined? In this chapter, we

discuss the design of a wearable device that can remotely monitor vital signs of users. This

device is implemented using existing technologies. Our contributions are the idea of integrating

the multiple technologies, and the actual implementation which did not exist before as of the

time of this research [63].

The information from our device is sent to a base station which is connected to a

computer. The information will be received by medical personnel and/or family members.

Several patients may be monitored from a single base station. The system is designed so that it

is easy to use and set up in medical facilities (such as hospitals) and residences. Fig. 5.1 is an

overview of the Wireless Health Monitoring system.

73

Monitoring

Station

Vital signs

sent wirelessly

To base station.

Patient wearing

Patient Tracker

Data sent through Ethernet cable

(in a hospital)

Or

Data sent through Internet

(in a household)

Figure 5.1: System Overview

The proposed Wireless Health Monitoring system will make it possible to wirelessly

monitor vital signs of users in real-time and notify medical personnel and family members

immediately in case of emergencies. With the aging of the US and the World population, the

proposed system, the Health Tracker 2000, is expected to benefit the health care system. The

research is sponsored by the Sensor Consortium whose goal is to introduce to and increase

awareness of entrepreneurial skills for engineering students [53].

5.2 System Design

Figure 5.2 is the schematic diagram that shows the components of our Wireless Health

Monitoring System.

74

 vital signs sent wirelessly

 vital signs sent wirelessly

Figure 5.2: Schematic Diagram of our Wireless Health Monitoring System

The hardware design of our system is discussed in the following.

Crossbow Hardware

Figure 5.3: Block Diagram of a MICA2 (left) and MICA2DOT (right)

Oximeter

Sensor

Monitoring

Station

Temperature

Sensor
Crossbow

Mote

Oximeter

Sensor

Temperature

Sensor

Base Station

Crossbow

Mote

75

The MICA2 has a 51-pin connector and the MICA2DOT has an 18-pin connector. The

MICA kit includes sensors that could interface each type of mote through these connectors. The

MTS-510 sensor board is compatible with the MICA2DOT and includes a magnetometer, an

accelerometer, and a microphone. The MTS-300 sensor board is compatible with the MICA2

and includes a magnetometer, an accelerometer, a microphone, a beeper, and a thermal sensor.

These sensor boards are typically used for environmental monitoring. Crossbow also provides

sensor acquisition boards that allow the designer to connect other sensors with the motes. The

MDA510 is the sensor acquisition board compatible with the MICA2DOT. With this board, we

have the ability to connect up to five sensors through the Analog-to-Digital Converter (ADC)

inputs. The MDA310 sensor acquisition board is compatible with the MICA2 and has seven

ADC inputs for up to seven sensors. The MICA2 and MICA2DOT motes are capable of

transmitting information at frequency bands of 433.05MHz to 434.79MHz, and 902MHz to

928MHz with a data rate of 38,400 bps. The frequency band used is directly proportional to the

effective transmission range.

Figure 5.4: Crossbow MICA2 Pin Out

76

The sensor network transceivers selected for this research project, the Crossbow MICA2

and MICA2DOT motes, have embedded within a wireless transmitter/receiver, a microcontroller

with analog and digital inputs, and a flash memory to store the sensor readings. These motes

transmit data using RF communication, with the ability to transmit from 433MHz to 928MHz.

The MICA2 and MICA2DOT motes are compatible with each other and can work together in a

mesh network. Each of these motes can function as a router in a mesh network or a base station

when plugged into an interface board which connected to a computer via a serial cable.

Figure 5.5: Crossbow MICA2 (left) and MICA2DOT (right)

Crossbow provides some sensor network programs for their network hardware, such as

CntToLedsAndRfm, which demonstrates the motes ability to transmit data from one to another.

Other programs provided by Crossbow such as Surge, allows viewing the actual network

topology of the motes in use; while GoldenImage allows the motes to be updated without having

to plug them into the base station.

Wireless Medical Sensor

Figure 5.6 shows the general layout of a wireless medical sensor [62]. The vital signs

monitored shown in the diagram are heart rate/pulse, blood pressure, respiration rate, and body

temperature. The sensors for heart rate/pulse, blood pressure, and respiration rate could be

77

implemented using pressure sensors. To ensure a proper reading of these sensor outputs, the

signals must be amplified using op amps. The outputs from the temperature sensor and the three

op amps are converted to a digital signal using an ADC (analog to digital converter). These

signals are processed by a microcontroller or microprocessor and the resulting data is transmitted

through a wireless module.

Figure 5.6: Wireless Medical Sensor Module

The wireless transceivers and receivers selected for this research project are the

Crossbow MICA2 and MICA2DOT motes. These motes are connected to various vital sign

sensors via the sensor acquisition boards, MDA310 and MDA510, also provided by Crossbow

Technologies Inc.

78

The wireless medical sensor we are designing measures several vital signs of the user.

Specifically, these vital signs are: temperature, pulse rate, and blood oxygen level.

Thermal

When selecting a thermal sensor, we first considered the National Semiconductor LM34

Precision Fahrenheit Temperature Sensor. However, there are several problems in using the

LM34. First is the supply voltage. The LM34 requires at least 5V at the input. This requires us

to add extra batteries and a voltage regulator which means extra components and larger size for

the final product. The second problem is that the LM34 has a resolution of +/-1oF. This is too

high for medical applications because body temperature of a healthy human is 98.6oF, the LM34

will accurately read this as either 98oF or 99oF.

We then considered the LM92 by National Semiconductors. The major difference is that

the LM92 has a serial digital output (Fig. 5.7). Since the MDA510 does not have any digital

inputs or outputs, we must use the LM92 with the MDA310 which is compatible with the

MICA2. The LM92 has a minimum supply voltage of 2.7V and a resolution of 0.3oF, which is

the best resolution among the commercially available National thermal sensors [50]. This

component is clearly the ideal choice for our system. The maximum transmission frequency of

LM92 is 2 readings per second. Temperature data is represented by 2 bytes.

An additional advantage in choosing the LM92 is that since it has a 2.7V minimum

voltage supply, we are able to use the INT outputs on the MICA2. The INT outputs supply

power to the sensors only when the mote is polling for data. Since the LM34 was connected to

the 5V voltage regulator which is connected directly to the battery, it is always draining the

battery. The INT outputs generate a 3V square wave (Fig. 5.8) that is asserted when obtaining

79

sensor data and unasserted when the mote is in sleep mode. This will considerably extend the

battery life when used in comparison with the LM34.

Figure 5.7: Schematic of LM92

3V

Valid Data Sleep Mode

0V

INT

ADC2

Figure 5.8: Timing Diagram for the Temperature Sensor

80

Oximeter

The Nonin ipod (Fig. 5.9) is a digital oximeter and sensor that goes over the user’s finger

[65]. The unit itself is simply a module that can be readily integrated into a host device. The

module measures the blood oxygen level and pulse rate. The oximeter and sensor is contained in

a single unit to save space in the final product. The ipod will be integrated in the system via a 3-

wire interface with serial communications, similar to that of the LM92 temperature sensor. Since

it is a digital output the unit will interface the MICA2 via its digital inputs. The ipod has a

minimum operating voltage of 2V with a maximum of 6V, thus matching the specifications of

our supply voltage of 3V.

Figure 5.9: Nonin ipod

The ipod has a serial digital output. Table 5.1 shows the format of the output. The data

from the device is sent at a rate of 3 bytes per second. The first byte is the status byte, the second

is the heart rate, and the third is the blood oximetry. Some experimentation is needed to

81

correctly interpret the data sent to the mote. With serial data transmissions, timing is always an

issue. Normally a serial device transmits data by latching each bit by means of a clock signal

and a data signal.

 Status Byte Heart Rate Byte SpO2 Byte

Bit 0 Heart rate bit 7 Heart rate bit 0 SpO2 bit 0

Bit 1 Heart rate bit 8 Heart rate bit 1 SpO2 bit 1

Bit 2 Bad pulse, set if true Heart rate bit 2 SpO2 bit 2

Bit 3 Marginal perfusion, set if true Heart rate bit 3 SpO2 bit 3

Bit 4 Low perfusion, set if true Heart rate bit 4 SpO2 bit 4

Bit 5 Out of track, set if true Heart rate bit 5 SpO2 bit 5

Bit 6 Sensor disconnected, set if true Heart rate bit 6 SpO2 bit 6

Bit 7 Always set to “1” Always set to “0” SpO2 bit 7

Table 5.1: Format of Nonin ipod Output

Figure 5.10: Serial Data Transfer Timing Waveform

Fig. 5.10 shows a timing waveform for a typical serial data device. The RST bit is

unasserted to allow data to transfer. The DQ (data pin) displays the first bit and the bit is sent

82

when CLK goes high. The timing waveform for the device above is an active high latch, since

the data is being sent when the CLK bit is high and not during the positive or negative edge. In

other words, bit DQ is sent only when the CLK bit is in the tCH region shown in Fig. 5.10. When

CLK goes low, DQ changes to the next data bit and CLK goes high again to store the next bit.

So in each data transmission, CLK goes high and low 24 times for 3 bytes of data. The Nonin

ipod has two output wires: one for TTL and the other for RS-232. The TTL wire is equivalent

to the CLK bit shown in the timing diagram and the RS-232 data bit is equivalent to the DQ bit.

For future extension, we researched the possibility of adding respiration rate sensors, and

radio frequency identification tags (RFID) into our system, so that our system can monitor users’

respiration rates, and track their location in real time. This work is not implemented in our

current system, but can be added in future versions, as our system architecture is very scalable.

As mentioned, the maximum transmission frequency of LM92 temperature sensor is 2

readings per second, where temperature data is represented by 2 bytes. The data from the Nonin

ipod oximeter is sent at a rate of 3 bytes per second. So the maximum data rate of total data

collected by our system from one single user is 56 bps. The MICA2 and MICA2DOT motes are

capable of transmitting information with a data rate of 38,400 bps. Therefore, our system has

enough bandwidth to support hundreds of simultaneous users sending data at the maximum

frequency.

5.3 System Implementation and Results

83

Once all the sensors are connected to the mote, a software system is developed to read the

information and redirect the output to a database. From there, another software system that we

developed reads the data from the database, interprets the data and determines whether the users

of Health Tracker 2000 are in critical condition. If so, an alert will show and a message will be

sent through the Internet.

A graphical user interface (GUI) was also developed to be used in the base station.

We have integrated the following parts in our system: the Crossbow MICA2 mote

(MPR400CB), the Crossbow MDA310 Interface Board, the National Semiconductors LM92

Precision Centigrade Thermal Sensor, and the Nonin Integrated Pulse Oximetry Device (Ipod).

The LM92 thermal sensor was integrated in the MICA2 mote through the mote’s I2C

interface. The data read from the LM92 sensor was successfully sent to the base station

wirelessly. The data was confirmed and displayed at the host computer. The temperature data

from the LM92 sensor was tested for correctness by connecting the LM92 serial data (SDA)

channel to an oscilloscope. The room temperature was verified by comparing the LM92's

reading with another thermometer. Once the data generated by the thermal sensor was verified,

the temperature data received at the monitoring station through wireless communication and our

software interface was then verified. Some programming bugs, regarding the timing issue in

Crossbow Technology’s system program library were fixed in the process. The wave form in

Figure 5.11 shows the temperature data recorded on the monitoring station in real time.

84

Figure 5.11: Temperature Data Recorded and Shown on the Monitoring Station

The Ipod oximeter was also integrated in the MICA2 mote through the mote’s I2C

interface. Figure 5.12 shows the blood oxygen concentration and heart rate of a user recorded

and displayed on the monitoring station when the device clips onto a finger of the user.

Figure 5.12: Blood Oxygen Level and Heart Rate Displayed on the Monitoring Station

85

5.4 Discussions

The goal of this research is to integrate various vital sign sensors with the motes provided

by Crossbow Technology Inc. to provide a wireless health monitoring system. We identified the

temperature sensor, the oximetry sensor, the respiration rate sensor and the RFID sensor as the

key sensors in the system. We have integrated the temperature sensor and the oximetry sensor in

our system. At a first glance, the project seems trivial as only system integration is involved.

However, as we proceed with the project, we found that different sensors have different data

formats. System integration has to accommodate these different formats and different hardware

ports, and deal with many hardware and software technical challenges.

86

Chapter 6

Conclusions

Advances in micro-electro-mechanical systems technology, wireless communications,

and digital electronics have enabled the development of low-cost, low-power wireless sensor

nodes that are small in size and can communicate untethered in short distances. These wireless

sensor nodes, which consist of sensing, data processing, and communicating components,

leverage the idea of sensor networks based on the collaborative effort of a large number of

nodes. Networking together hundreds or thousands of wireless sensor nodes allows users to

accurately monitor a remote environment by intelligently combining the data from individual

nodes. These networks require robust wireless communication protocols that are energy and data

transmission efficient with long network lifetime.

The work described in this dissertation has demonstrated the advantages of data adaptive

hierarchical protocols for wireless sensor networks by designing and evaluating a new protocol -

D-LEACH. In addition, a novel prototype application of wireless sensor network technology in

real world health monitoring was implemented.

In the first part of this dissertation, we analyzed and implemented the LEACH protocol,

an existing protocol architecture for wireless sensor networks that combines the ideas of energy-

efficient cluster-based routing together with data aggregation to achieve desired performance. In

87

an effort to improve the LEACH protocol performance, the underlying motes power

consumption and network lifetime, we proposed a data-adaptive hierarchical protocol based on

LEACH, named Dynamic LEACH, or D-LEACH. In the D-LEACH protocol, the cluster head

calculates the amount of similarity in the data it received from the cluster member nodes in each

frame. Based on the data similarity, the cluster head dynamically assigns each cluster member

node a probability to send data to the base station in the next frames. This probability is derived

from the similarity of data using a Bootstrapping Simulation method. The amount of data

similarity has direct impact on D-LEACH performance when compared with LEACH. In real

world, particularly for wireless sensor network applications that are deployed at small to medium

size fields, D-LEACH is an excellent protocol to use, as the data similarity is most likely

significant in most of these cases.

We implemented LEACH and D-LEACH protocols on the TinyOS platform, ran

experiments, analyzed the performance of D-LEACH protocol, and compared D-LEACH

performance with other major protocols including LEACH and XMesh protocol. Our

implementation is the first time that LEACH has ever been implemented on hardware motes.

The results show that D-LEACH achieves much superior performance than LEACH and XMesh

protocol, in term of power consumption, total data received and network lifetime. It proves that

D-LEACH protocol has much perspective for real world applications of wireless sensor networks.

The second study proposed and developed a prototype for a novel vital sign monitoring

system based on wireless sensor network technologies. In this research, our goal was to design a

wireless sensor system that can monitor users’ vital signs and notifies relatives and medical

personnel of users’ status during life threatening situations. The application combines wireless

sensor networks, existing vital sign monitoring technologies to simultaneously monitor vital

88

signs. The use of wireless technologies makes it possible to install the system in all types of

homes and facilities. Radio frequency waves can travel through walls and fabric, sending the

vital signs information to a central monitoring computer via a miniature transmitter network.

Such information can easily be accessed from any location over the Internet, thus greatly

improving the health monitoring for the users.

For future work, we would like to further investigate the performance of the D-LEACH

protocol under different traffic patterns, network sizes, and application types. We would like to

provide a set of design guidelines for engineers to choose and set up the D-LEACH protocol

based on the specifications of the applications such as expected traffic patterns, network sizes,

and application types.

Another part of the future work is to add more features to our Wireless Health

Monitoring System to support monitoring more vital signs and the user's physical location.

Therefore, our system can monitor more vital signs and notify medical personnel of users’

location and status during life threatening situations. In addition to adding these features, a

research issue is the establishment of an efficient sensor network that can support large number

of simultaneous users in a hospital or assisted living environment.

89

Bibliography

[1] Kenneth S. Johnson, Joseph A. Needoba, Stephen C. Riser, and William J. Showers,

“Chemical Sensor Networks for the Aquatic Environment”, Chem. Rev., 2007, 107, pp.

623-640.

[2] S.N. Simić and S. Sastry, “Distributed Environmental Monitoring Using Random Sensor

Networks”, Proc. 2
nd

 Int. Workshop on Information Processing in Sensor Networks, Palo

Alto, CA, April 2003, pp. 582-592.

[3] J. Polastre, R. Szewczyk, A. Mainwaring, D. Culler and J. Anderson, “Analysis of

Wireless Sensor Networks for Habitat Monitoring”, Wireless Sensor Networks, 2004, VI,

pp. 399-423.

[4] G. Kantor, S. Singh, R. Peterson, D. Rus, A. Das, V. Kumar, G. Pereira and J. Spletzer,

“Distributed Search and Rescue With Robot and Sensor Teams”, Proc. 4th Int. Conf. on

Field and Service Robotics, Lake Yamanaka, Japan, July 2003.

[5] T. Schmid, H. Dubois-Ferrière, and M. Vetterli, “SensorScope: Experiences with a

Wireless Building Monitoring Sensor Network”, Proc. of First Workshop on Real-World

Wireless Sensor Networks, Stockholm, Sweden, June 2005.

[6] “The Ultimate Diagnostic Solution”, http://www.cancerdetector.com/, 2012

[7] K. Sharma and M. K. Ghose, “Wireless Sensor Networks: An Overview on its Security

Threats”, IJCA Special Issue on MANETs, Vol. 1, pp. 42-45, 2010.

[8] W. Heinzelman, "Application-Specific Protocol Architectures for Wireless Networks",

PhD Dissertation, Massachusetts Institute of Technology, June 2000.

[9] W. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan, "An Application-Specific

Protocol Architecture for Wireless Microsensor Networks", IEEE Transactions on

Wireless Communications, Vol. 1, No. 4, Oct. 2002, pp.660-670.

[10] “TinyOS Documentation”, http://www.tinyos.net/tinyos-2.x/doc/, 2012

[11] B. Warneke, M. Last, B. Liebowitz, and K. S.J. Pister, “Smart Dust: Communicating with

a Cubic-Millimeter”, Computer, Vol. 34, pp. 44-51, 2001.

http://www.cancerdetector.com/
http://www.tinyos.net/tinyos-2.x/doc/

90

[12] Victor Shnayder, Mark Hempstead, Bor-rong Chen, and Matt Welsh, “Simulating the

Power Consumption of Large-Scale Sensor Network Applications”, Proceedings of ACM

SenSys04, Baltimore, MD, November 2004.

[13] “The Network Simulator - ns2”, http://www.isi.edu/nsnam/ns/, 2012

[14] Jason Lester Hill, “System Architecture for Wireless Sensor Networks”, PhD

Dissertation, University of California, Berkeley, 2003.

[15] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sensor

Networks: A Survey”, Computer Networks, Vol. 38, Issue 4, pp. 393-422, March 2002.

[16] J. Feng, F. Koushanfar, and M. Potkonjak, “System-Architectures for Sensor Networks

Issues, Alternatives, and Directions”, Proceedings of the 20th International Conference

on Computer Design, 2002.

[17] “WPSM: Warfighter Physiological Status Monitoring”,

http://www.momrp.org/publications/WPSM_supp.pdf, 2012

[18] M.A.M. Vieira, C.N. Coelho. Jr., D.C. da Silva Jr., and J.M. da Mata, “Survey on

Wireless Sensor Network Devices”, IEEE Conference on Emerging Technologies and

Factory Automation, 2003.

[19] J.M. Kahn, R.H.Katz, and K.S.J. Pister, “Next Century Challenges: Mobile Networking

for Smart Dust”, Proceedings of the Fifth Annual ACM/IEEE International Conference

on Mobile Computing and Networking, pp. 271-278, Seattle, Washington, 1999.

[20] W. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive Protocols for Information

Dissemination in Wireless Sensor Networks”, Proceedings of the 5th Annual ACM/IEEE

International Conference on Mobile Computing and Networking (MobiCom’99), Seattle,

WA, August 1999.

[21] C. Intanagonwiwat, R. Govindan and D. Estrin, "Directed Diffusion: A Scalable and

Robust Communication Paradigm for Sensor Networks", Proceedings of the 6th Annual

ACM/IEEE International Conference on Mobile Computing and Networking

(MobiCom'00), Boston, MA, August 2000.

[22] D. Braginsky and D. Estrin, "Rumor Routing Algorithm for Sensor Networks",

Proceedings of the First Workshop on Sensor Networks and Applications (WSNA),

Atlanta, GA, October 2002.

[23] C. Schurgers and M.B. Srivastava, “Energy Efficient Routing in Wireless Sensor

Networks”, MILCOM Proceedings on Communications for Network-Centric Operations:

Creating the Information Force, McLean, VA, 2001.

http://www.isi.edu/nsnam/ns/
http://www.momrp.org/publications/WPSM_supp.pdf

91

[24] M. Chu, H. Haussecker, and F. Zhao, "Scalable Information-Driven Sensor Querying and

Routing for Ad Hoc Heterogeneous Sensor Networks", The International Journal of High

Performance Computing Applications, Vol. 16, No. 3, August 2002.

[25] A. Manjeshwar and D. P. Agrawal, “TEEN: A Protocol for Enhanced Efficiency in

Wireless Sensor Networks", Proceedings of the 1st International Workshop on Parallel

and Distributed Computing Issues in Wireless Networks and Mobile Computing, San

Francisco, CA, April 2001.

[26] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network Query Processing in Sensor

Networks”, SIGMOD Record, September 2002.

[27] R. Shah and J. Rabaey, "Energy Aware Routing for Low Energy Ad Hoc Sensor

Networks", Proceedings of the IEEE Wireless Communications and Networking

Conference (WCNC), Orlando, FL, March 2002.

[28] N. Sadagopan, B. Krishnamachari, and A. Helmy, “The ACQUIRE Mechanism for

Efficient Querying in Sensor Networks”, Proceedings of the First International

Workshop on Sensor Network Protocol and Applications, Anchorage, Alaska, May 2003.

[29] S. Hedetniemi and A. Liestman, “A Survey of Gossiping and Broadcasting in

Communication Networks”, Networks, Vol. 18, No. 4, pp. 319-349, 1988.

[30] D. Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar, “Next Century

Challenges: Scalable Coordination in Sensor Networks”, Proceedings of the 5th Annual

ACM/IEEE International Conference on Mobile Computing and Networking

(MobiCom’99), Seattle, WA, August 1999.

[31] A. Buczak and V. Jamalabad, "Self-Organization of a Heterogeneous Sensor Network by

Genetic Algorithms", Intelligent Engineering Systems Through Artificial Neural

Networks, C.H. Dagli, et.(eds.), Vol. 8, pp. 259-264, ASME Press, New York, 1998.

[32] C.R. Lin and M. Gerla, "Adaptive Clustering for Mobile Wireless Networks", IEEE

Journal on Selected areas in Communications, Vol. 15, No. 7, September 1997.

[33] V. Chandrasekaran, “A Review on Hierarchical Cluster Based Routing in Wireless

Sensor Networks”, Journal of Global Research in Computer Science, 2012.

[34] S. Lindsey and C. S. Raghavendra, "PEGASIS: Power Efficient GAthering in Sensor

Information Systems", Proceedings of the IEEE Aerospace Conference, Big Sky,

Montana, March 2002.

[35] S. Lindsey, C. S. Raghavendra and K. Sivalingam, "Data Gathering in Sensor Networks

using the Energy Delay Metric", Proceedings of the IPDPS Workshop on Issues in

Wireless Networks and Mobile Computing, San Francisco, CA, April 2001.

92

[36] A. Manjeshwar and D. P. Agrawal, "APTEEN: A Hybrid Protocol for Efficient Routing

and Comprehensive Information Retrieval in Wireless Sensor Networks", Proceedings of

the 2nd International Workshop on Parallel and Distributed Computing Issues in

Wireless Networks and Mobile computing, Ft. Lauderdale, FL, April 2002.

[37] L. Subramanian and R. H. Katz, “An Architecture for Building Self Configurable

Systems”, Proceedings of IEEE/ACM Workshop on Mobile Ad Hoc Networking and

Computing, Boston, MA, August 2000.

[38] M. Younis, M. Youssef and K. Arisha, “Energy-Aware Routing in Cluster-Based Sensor

Networks”, Proceedings of the 10th IEEE/ACM International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS2002),

Fort Worth, TX, October 2002.

[39] Y. Xu, J. Heidemann, and D. Estrin, "Geography-Informed Energy Conservation for Ad

Hoc Routing", Proceedings of the 7th Annual ACM/IEEE International Conference on

Mobile Computing and Networking (MobiCom’01), Rome, Italy, July 2001.

[40] V. Rodoplu and T.H. Ming, "Minimum Energy Mobile Wireless Networks", IEEE

Journal of Selected Areas in Communications, Vol. 17, No. 8, pp. 1333-1344, 1999.

[41] L. Li and J. Y Halpern, “Minimum Energy Mobile Wireless Networks Revisited”,

Proceedings of IEEE International Conference on Communications (ICC’01), Helsinki,

Finland, June 2001.

[42] G. Finn, “Routing and Addressing Problems in Large Metropolitan-Scale Internetworks”,

University of Southern California, Tech. Rep. ISI Research Report ISI/RR-87-180, 1987.

[43] B. Nath and D. Niculescu, “Routing on a Curve”, ACM SIGCOMM Computer

Communication Review, Vol. 33, Issue 1, January 2003.

[44] Y. Yu, D. Estrin, and R. Govindan, “Geographical and Energy-Aware Routing: A

Recursive Data Dissemination Protocol for Wireless Sensor Networks”, UCLA Computer

Science Department Technical Report UCLA-CSD TR-01-0023, May 2001.

[45] J.-H. Chang and L. Tassiulas, “Maximum Lifetime Routing in Wireless Sensor

Networks”, Proceedings of the Advanced Telecommunications and Information

Distribution Research Program (ATIRP'2000), College Park, MD, March 2000.

[46] K. Kalpakis, K. Dasgupta and P. Namjoshi, “Maximum Lifetime Data Gathering and

Aggregation in Wireless Sensor Networks”, Proceedings of IEEE International

Conference on Networking (NETWORKS '02), Atlanta, GA, August 2002.

[47] K. Akkaya and M. Younis, “An Energy-Aware QoS Routing Protocol for Wireless

Sensor Networks”, Proceedings of the IEEE Workshop on Mobile and Wireless Networks

(MWN 2003), Providence, Rhode Island, May 2003.

93

[48] J.A. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: A Stateless Protocol for Real-time

Communication in Sensor Networks”, Proceedings of International Conference on

Distributed Computing Systems, Providence, RI, May 2003.

[49] T. Murata and H. Ishibuchi, “Performance Evaluation of Genetic Algorithms for

Flowshop Scheduling Problems”, Proc. 1st IEEE Conf. Evolutionary Computation, Vol.

2, pp. 812-817, June 1994.

[50] “National Semiconductor”, http://www.national.com, 2012

[51] Jason Hill, Mike Horton, Ralph Kling and Lakshman Krishnamurthy, “The Platforms

Enabling Wireless Sensor Networks”, Communications of the ACM, Vol. 47, Issue 6.

[52] P. Agarwal and C. Procopiuc, “Exact and Approximation Algorithms for Clustering”,

Proc. 9th Annu. ACM-SIAM Symp. Discrete Algorithms, Baltimore, MD, Jan. 1999, pp.

658-667.

[53] “Sensor Consortium”, http://www.ee.sunysb.edu/~sensorconsortium/, 2012

[54] “ns2 Documentation”, http://www.isi.edu/nsnam/ns/doc/node171.html, 2012

[55] “XMesh User Manual”, http://www.memsic.com/support/documentation/wireless-

sensor-networks, 2012

[56] “IEEE Standard 802.15.4d-2009”, IEEE Computer Society, April 2009.

[57] K. Akkaya and M. Younis, “A Survey on Routing Protocols for Wireless Sensor

Networks”, Ad Hoc Networks, March 2008.

[58] P. Kansal, and D. Kansal, “Compression of Various Routing Protocol in Wireless Sensor

Network”, International Journal of Computer Applications, 2010.

[59] L. Liu, F. Xia, Z. Wang, J. Chen, and Y. Sun, "Deployment Issues in Wireless Sensor

Networks", Proc. of First MSN International Conference, Wuhan, China, December 2005.

[60] “History of Anatomy”, http://www.intuitivebodywork.net/history-of-anatomy, 2012

[61] “The World Bank Report”, http://www.worldbank.org/, 2012

[62] M. Welsh, D. Malan, and B. Duncan, “Wireless Sensor Networks for Emergency Medical

Care”, GE Global Research Conference, Harvard University, 2004.

[63] Edwards Teaw, Guofeng Hou, M. Gouzman, K.W. Tang, A. Kesluk, M. Kane and J.

Farrell, “A Wireless Health Monitoring System”, Proc. of the International Conference

on Information Acquisition, pp. 247-252, June 2005.

http://www.national.com/
http://www.memsic.com/support/documentation/wireless-sensor-networks
http://www.memsic.com/support/documentation/wireless-sensor-networks
http://www.intuitivebodywork.net/history-of-anatomy
http://www.worldbank.org/

94

[64] Guofeng Hou and K.Wendy Tang, “Evaluation of LEACH Protocol Subject to Different

Traffic Models”, Proc. of the Joint International Conference on Optical Internet and

Next Generation Network, pp. 281-283, July 2006.

[65] “Nonin Medical”, http://www.nonin.com, 2012

[66] “Crossbow Technologies”, http://www.xbow.com, 2012

[67] Philip Levis, Nelson Lee, Matt Welsh, and David Culler, "TOSSIM: Accurate and

Scalable Simulation of Entire TinyOS Applications", Proceedings of the First ACM

Conference on Embedded Networked Sensor Systems, 2003.

http://www.nonin.com/
http://www.xbow.com/

95

Appendix A

Energy Model Analysis

Data analysis

We used all the 26 points in Table 3.1 from current interval between 8.6 (mA) and 25.4

(mA), in accord with which we got distance level range from 2 (ft) to 500 (ft). Totally, we have

26 observations. First, we plot the graph of Current and Distance separately to see the trend. As

can be seen from the figures below, both current and distance have an ascending trend.

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26 28

CURRENT

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16 18 20 22 24 26 28

DISTANCE

Second, we plot the scatter graph of the current versus distance and found that they have

a positive relation. Particularly, there is a break point at observation 16 which coincides with the

96

theoretical reference mentioned in chapter 3.3. After the break point, the line suddenly becomes

steeper.

5

10

15

20

25

30

0 200 400 600

DISTANCE

C
U

R
R

E
N

T

 Scatter Graph

Further, we draw the relation in line.

5

10

15

20

25

30

100 200 300 400 500

DISTANCE

C
U

R
R

E
N

T

Regression and results

We use Eview 4.3 to analysis the relation between current and distance. Specifically, we

apply the Least Square method. In order to get the most accurate results, we separate the samples

at the break point and use over 30 models to test the relation within each part. The most

satisfying 15 regression results are attached. We select from these 15 models via three criteria:

One is the goodness-of-fit which test how well the regression values fit the actual values; the

97

second one is significant level, which tests whether the coefficient is significant; the last one is

robustness.

First, we test the relation before the break point (observation 1 to observation 15) and

found current is positively related to Distance
2

as shown in equation (1). Table A.1 shows that

coefficient and constant are significantly over 1% level. Goodness-of-fit is 98%.

Current = 8.874057 + 2.94E-05 * Distance
2
 (1)

Figure A.1 shows the actual, fitted and residual graph for equation (1), where the actual

line and fitted line co-integrated well.

Next, we run the regression on the observations after break point. After comparing and

analysis, we get equation (15).

Current = 11.61814 + 1.94E-10 * Distance
4
 (15)

Table A.15 shows that coefficient and constant are significantly over 1% level.

Goodness-of-fit is 95%. Figure A.15 shows the actual, fitted and residual graph for equation

(15), where the actual line and fitted line co-integrated well.

The results shown in equation (1) and equation (15) agree well with the electronic

communication theories. The first part relates to Distance
2
, that corresponds to the Friss free

space model. The second part relates to Distance
4
, that corresponds to the two-ray ground

propagation model. The communication theory indicates that if the distance between the

transmitter and receiver is less than a certain cross-over distance (dcrossover), the Friss free space

model should work, and if the distance is greater than dcrossover, the two-ray ground propagation

model should work. As we can see from the results above, our analysis results agree with the

theory.

The only difference is that the constant levels in equation (1) and equation (15) are not

the same. Fortunately, these two values are close. The error may arise from experiments like

measurement error, or it may come from experiment environment like temperature, humid and

obstacles.

Furthermore, we tried to test the whole sample by one model. After comparing the

criteria we select model shown in Table A.6.

Current = 8.178905 + 5.62E-05 * Distance
2
 (4’’)

The coefficient and constant are significantly over 1% level. Goodness-of-fit is 96%.

Figure A.5 shows the actual, fitted and residual graph for equation (4’’), where the actual line

and fitted line co-integrated well. Even though the result sounds well, it against the theoretical

reference which states that there should be a break point. And the Goodness-of-fit value is not as

good as that of the way where there is a break point, as shown above. Also, the regression result

on the second part of the samples using equation (4’’) shows that this result (equation 4’’)

doesn’t work well on second part of the samples.

As a summary of the analysis above, the Crossbow motes radio energy model could be

summarized as below:

98

When transmitting data,

when distance < dcrossover, Current = 8.874057 + 2.94E-05 * Distance
2

when distance > dcrossover, Current = 11.61814 + 1.94E-10 * Distance
4

where dcrossover = 295 ft.

When receiving data, Current = 9 mA.

Energy model analysis detail results are following:

 Table A.1: Regression result for sample 1 - 15

Dependent Variable: CURRENT

Method: Least Squares

Date: 07/27/09 Time: 18:25

Sample: 1 15

Included observations: 15

Variable Coefficien

t

Std. Error t-Statistic Prob.

C 8.874057 0.039187 226.4529 0.0000

D2 2.94E-05 1.05E-06 27.94630 0.0000

R-squared 0.983627 Mean dependent var 9.680000

Adjusted R-squared 0.982368 S.D. dependent var 0.773859

S.E. of regression 0.102758 Akaike info criterion -

1.589310

Sum squared resid 0.137270 Schwarz criterion -

1.494904

Log likelihood 13.91983 F-statistic 780.9960

Durbin-Watson stat 0.806869 Prob(F-statistic) 0.000000

99

Current= 8.874057+2.94E-05* Distance
2

 (1)

Figure A.1: Actual, fitted and residual graph for equation (1), observations 1 - 15

-0.3

-0.2

-0.1

0.0

0.1

0.2

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Residual Actual Fitted

 Table A.2: Regression results for sample 16 - 26 (1)

Dependent Variable: CURRENT

Method: Least Squares

Date: 07/27/09 Time: 02:05

Sample: 16 26

Included observations: 11

Variable Coefficien

t

Std. Error t-Statistic Prob.

DISTANCE -6.969501 2.606651 -2.673737 0.0368

100

D2 0.027826 0.009946 2.797657 0.0313

D3 -4.90E-05 1.67E-05 -2.930968 0.0263

D4 3.22E-08 1.04E-08 3.088487 0.0214

C 661.7978 253.6843 2.608745 0.0402

R-squared 0.994526 Mean dependent var 17.46364

Adjusted R-squared 0.990877 S.D. dependent var 3.487771

S.E. of regression 0.333135 Akaike info criterion 0.942418

Sum squared resid 0.665874 Schwarz criterion 1.123280

Log likelihood -0.183299 F-statistic 272.5280

Durbin-Watson stat 2.529155 Prob(F-statistic) 0.000001

Current= -6.969501 * Distance +0.027826 * Distance
2

+ -4.90E-05* Distance
3
 + 3.22E-08

* Distance
4
 + 661.7978 (2)

As shown in equation (2), the coefficient of Distance
3

and Distance
4
 is extremely small.

So we delete Distance
3
and Distance

4
 from equation (2) and run regression again.

Table A.3: Regression results for sample 16 - 26 (2)

Dependent Variable: CURRENT

Method: Least Squares

Date: 07/27/09 Time: 02:12

Sample: 16 26

Included observations: 11

Variable Coefficien

t

Std. Error t-Statistic Prob.

101

DISTANCE -0.192032 0.050889 -3.773516 0.0054

D2 0.000301 6.34E-05 4.748985 0.0014

C 44.89195 10.01455 4.482675 0.0020

R-squared 0.964293 Mean dependent var 17.46364

Adjusted R-squared 0.955366 S.D. dependent var 3.487771

S.E. of regression 0.736851 Akaike info criterion 2.454137

Sum squared resid 4.343590 Schwarz criterion 2.562654

Log likelihood -10.49776 F-statistic 108.0230

Durbin-Watson stat 1.440726 Prob(F-statistic) 0.000002

Current= -0.192032* Distance +0.000301* Distance
3
+ 44.89195 (3)

Figure A.2: Actual, fitted and residual graph for observations 16 - 26

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

10

15

20

25

30

16 17 18 19 20 21 22 23 24 25 26

Residual Actual Fitted

102

Table A.4: Regression results for sample 16 - 26 (3)

Dependent Variable: CURRENT

Method: Least Squares

Date: 07/27/09 Time: 13:35

Sample: 16 26

Included observations: 11

Variable Coefficien

t

Std. Error t-Statistic Prob.

D2 6.24E-05 6.91E-06 9.037059 0.0000

C 7.209522 1.187204 6.072690 0.0002

R-squared 0.900737 Mean dependent var 17.46364

Adjusted R-squared 0.889708 S.D. dependent var 3.487771

S.E. of regression 1.158297 Akaike info criterion 3.294744

Sum squared resid 12.07487 Schwarz criterion 3.367089

Log likelihood -16.12109 F-statistic 81.66843

Durbin-Watson stat 0.876901 Prob(F-statistic) 0.000008

Current= 7.209522 + 6.24E-05* Distance
2

 (4)

Constance value in equation (4) is close to that in equation (1).

103

Figure A.3: Actual, fitted and residual graph for observations 16 - 26

-2

-1

0

1

2

3

10

15

20

25

30

16 17 18 19 20 21 22 23 24 25 26

Residual Actual Fitted

Table A.5: Regression results for sample 1 - 26 (1)

Dependent Variable: CURRENT

Method: Least Squares

Date: 07/27/09 Time: 14:17

Sample(adjusted): 1 26

Included observations: 26 after adjusting endpoints

Variable Coefficien

t

Std. Error t-Statistic Prob.

DISTANCE -0.012715 0.003993 -3.184707 0.0041

D2 7.98E-05 7.69E-06 10.38772 0.0000

C 9.351729 0.432910 21.60199 0.0000

104

R-squared 0.972750 Mean dependent var 12.97308

Adjusted R-squared 0.970380 S.D. dependent var 4.536568

S.E. of regression 0.780764 Akaike info criterion 2.451080

Sum squared resid 14.02064 Schwarz criterion 2.596245

Log likelihood -28.86404 F-statistic 410.5121

Durbin-Watson stat 1.055814 Prob(F-statistic) 0.000000

Current= -0.012715* Distance +7.98E-05* Distance
2
+9.351729 (4’)

 Figure A.4: Actual, fitted and residual graph for equation (4’)

-2

-1

0

1

2

3

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26

Residual Actual Fitted

105

Table A.6: Regression results for sample 1 - 26 (2)

Dependent Variable: CURRENT

Method: Least Squares

Date: 07/27/09 Time: 14:21

Sample(adjusted): 1 26

Included observations: 26 after adjusting endpoints

Variable Coefficien

t

Std. Error t-Statistic Prob.

D2 5.62E-05 2.32E-06 24.23219 0.0000

C 8.178905 0.267430 30.58330 0.0000

R-squared 0.960733 Mean dependent var 12.97308

Adjusted R-squared 0.959097 S.D. dependent var 4.536568

S.E. of regression 0.917500 Akaike info criterion 2.739475

Sum squared resid 20.20335 Schwarz criterion 2.836252

Log likelihood -33.61317 F-statistic 587.1991

Durbin-Watson stat 0.791991 Prob(F-statistic) 0.000000

Current= 8.178905+5.62E-05* Distance
2

 (4’’)

106

Figure A.5: Actual, fitted and residual graph for equation (4’’) (observations 1 - 26)

-2

-1

0

1

2

3

4

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20 22 24 26

Residual Actual Fitted

Since different current supports different distance, observation 17 and observation 18

have different Distance value but same Current value, one of them must be inaccurate. We then

run regression with only one of them.

Table A.7: Regression results for sample 18 - 26 (1)

Dependent Variable: CURRENT

Method: Least Squares

Date: 07/28/09 Time: 13:45

Sample: 18 26

Included observations: 9

Variable Coefficien

t

Std. Error t-Statistic Prob.

107

D2 7.13E-05 8.59E-06 8.299323 0.0001

C 5.410572 1.585311 3.412940 0.0112

R-squared 0.907748 Mean dependent var 18.20000

Adjusted R-squared 0.894569 S.D. dependent var 3.438023

S.E. of regression 1.116333 Akaike info criterion 3.251105

Sum squared resid 8.723390 Schwarz criterion 3.294933

Log likelihood -12.62997 F-statistic 68.87876

Durbin-Watson stat 1.047353 Prob(F-statistic) 0.000072

Current= 5.410572+7.13E-05* Distance
2

 (7)

Table A.8: Regression results for sample 18 - 26 (2)

Dependent Variable: CURRENT

Method: Least Squares

Date: 07/28/09 Time: 14:37

Sample: 18 26

Included observations: 9

Variable Coefficien

t

Std. Error t-Statistic Prob.

D3 1.13E-07 1.17E-08 9.663168 0.0000

C 9.428680 0.963641 9.784436 0.0000

R-squared 0.930263 Mean dependent var 18.20000

Adjusted R-squared 0.920300 S.D. dependent var 3.438023

108

S.E. of regression 0.970593 Akaike info criterion 2.971310

Sum squared resid 6.594352 Schwarz criterion 3.015138

Log likelihood -11.37090 F-statistic 93.37681

Durbin-Watson stat 1.153578 Prob(F-statistic) 0.000027

Current= 9.428680+1.13E-07* Distance
3

 (8)

-2

-1

0

1

2

10

15

20

25

30

18 19 20 21 22 23 24 25 26

Residual Actual Fitted

 Table A.9: Regression results for sample 16 18 19 - 26

Dependent Variable: CC1

Method: Least Squares

Date: 07/28/09 Time: 14:44

Sample: 16 25

109

Included observations: 10

Variable Coefficien

t

Std. Error t-Statistic Prob.

DD2 6.49E-05 7.61E-06 8.528095 0.0000

C 6.704441 1.348810 4.970633 0.0011

R-squared 0.900902 Mean dependent var 17.76000

Adjusted R-squared 0.888515 S.D. dependent var 3.527416

S.E. of regression 1.177782 Akaike info criterion 3.341999

Sum squared resid 11.09736 Schwarz criterion 3.402516

Log likelihood -14.70999 F-statistic 72.72841

Durbin-Watson stat 0.953031 Prob(F-statistic) 0.000027

Current= 6.704441+6.49E-05* Distance
2

 (9)

-2

-1

0

1

2

3

10

15

20

25

30

16 17 18 19 20 21 22 23 24 25

Residual Actual Fitted

110

Table A.10: Regression results for sample 16 17 19 - 26

Dependent Variable: CC1

Method: Least Squares

Date: 07/28/09 Time: 16:39

Sample: 16 25

Included observations: 10

Variable Coefficien

t

Std. Error t-Statistic Prob.

DD2 6.25E-05 7.68E-06 8.136972 0.0000

C 7.187837 1.356103 5.300361 0.0007

R-squared 0.892198 Mean dependent var 17.76000

Adjusted R-squared 0.878723 S.D. dependent var 3.527416

S.E. of regression 1.228417 Akaike info criterion 3.426186

Sum squared resid 12.07207 Schwarz criterion 3.486703

Log likelihood -15.13093 F-statistic 66.21031

Durbin-Watson stat 0.913696 Prob(F-statistic) 0.000039

Current= 7.187837+6.25E-05* Distance
2

 (10)

111

-2

-1

0

1

2

3

10

15

20

25

30

16 17 18 19 20 21 22 23 24 25

Residual Actual Fitted

Table A.11: Regression results for sample 17 19 - 26

Dependent Variable: CC1

Method: Least Squares

Date: 07/28/09 Time: 16:42

Sample: 17 25

Included observations: 9

Variable Coefficien

t

Std. Error t-Statistic Prob.

DD2 6.70E-05 9.04E-06 7.413064 0.0001

C 6.287246 1.658922 3.789960 0.0068

R-squared 0.887012 Mean dependent var 18.20000

Adjusted R-squared 0.870871 S.D. dependent var 3.438023

S.E. of regression 1.235437 Akaike info criterion 3.453857

112

Sum squared resid 10.68414 Schwarz criterion 3.497685

Log likelihood -13.54236 F-statistic 54.95352

Durbin-Watson stat 1.014403 Prob(F-statistic) 0.000148

Current= 6.287246+6.70E-05* Distance
2

 (11)

-2

-1

0

1

2

3

10

15

20

25

30

17 18 19 20 21 22 23 24 25

Residual Actual Fitted

Table A.12, A.13 and A.14 show the regression results for a sample without observation

16, 17 and 18. After comparing the goodness-of-fit, we find that Distance
4
 has more power in

fitting the data than Distance
2
 and Distance

3
.

 Table A.12: Regression results for sample 19 - 26 (1)

Dependent Variable: CC1

Method: Least Squares

Date: 07/28/09 Time: 16:44

113

Sample: 18 25

Included observations: 8

Variable Coefficien

t

Std. Error t-Statistic Prob.

DD2 7.60E-05 1.02E-05 7.457624 0.0003

C 4.432517 1.949739 2.273390 0.0634

R-squared 0.902623 Mean dependent var 18.66250

Adjusted R-squared 0.886393 S.D. dependent var 3.362795

S.E. of regression 1.133450 Akaike info criterion 3.300726

Sum squared resid 7.708247 Schwarz criterion 3.320587

Log likelihood -11.20291 F-statistic 55.61615

Durbin-Watson stat 1.123844 Prob(F-statistic) 0.000300

Current= 4.432517+7.60E-05* Distance
2
 (12)

-2

-1

0

1

2

10

15

20

25

30

18 19 20 21 22 23 24 25

Residual Actual Fitted

114

 Table A.13: Regression results for sample 19 - 26 (2)

Dependent Variable: CC1

Method: Least Squares

Date: 07/28/09 Time: 16:46

Sample: 18 25

Included observations: 8

Variable Coefficien

t

Std. Error t-Statistic Prob.

DD3 1.18E-07 1.39E-08 8.508820 0.0001

C 8.948384 1.195651 7.484113 0.0003

R-squared 0.923469 Mean dependent var 18.66250

Adjusted R-squared 0.910714 S.D. dependent var 3.362795

S.E. of regression 1.004827 Akaike info criterion 3.059826

Sum squared resid 6.058067 Schwarz criterion 3.079687

Log likelihood -10.23931 F-statistic 72.40001

Durbin-Watson stat 1.207599 Prob(F-statistic) 0.000144

Current= 8.948384+1.18E-07* Distance
3
 (13)

115

-2

-1

0

1

2

10

15

20

25

30

18 19 20 21 22 23 24 25

Residual Actual Fitted

 Table A.14: Regression results for sample 19 - 26 (3)

Dependent Variable: CC1

Method: Least Squares

Date: 07/28/09 Time: 16:48

Sample: 18 25

Included observations: 8

Variable Coefficien

t

Std. Error t-Statistic Prob.

DD4 2.04E-10 2.08E-11 9.790270 0.0001

C 11.20248 0.823268 13.60732 0.0000

R-squared 0.941089 Mean dependent var 18.66250

Adjusted R-squared 0.931271 S.D. dependent var 3.362795

116

S.E. of regression 0.881597 Akaike info criterion 2.798155

Sum squared resid 4.663283 Schwarz criterion 2.818016

Log likelihood -9.192621 F-statistic 95.84938

Durbin-Watson stat 1.310062 Prob(F-statistic) 0.000065

Current= 11.20248+2.04E-10* Distance
4
 (14)

-2

-1

0

1

2

14

16

18

20

22

24

26

18 19 20 21 22 23 24 25

Residual Actual Fitted

If we delete observation 17 and 18 from sample, as shown in table A.15 and A.16,

Distance
4
has more power in fitting the data than Distance

2
 and Distance

3
.

 Table A.15: Regression results for sample 16 19 - 26 (1)

Dependent Variable: CC1

Method: Least Squares

Date: 07/28/09 Time: 16:51

117

Sample: 16 16 18 25

Included observations: 9

Variable Coefficien

t

Std. Error t-Statistic Prob.

DD4 1.94E-10 1.72E-11 11.29463 0.0000

C 11.61814 0.643680 18.04955 0.0000

R-squared 0.947982 Mean dependent var 18.12222

Adjusted R-squared 0.940551 S.D. dependent var 3.538636

S.E. of regression 0.862798 Akaike info criterion 2.735857

Sum squared resid 5.210941 Schwarz criterion 2.779685

Log likelihood -10.31136 F-statistic 127.5686

Durbin-Watson stat 1.381153 Prob(F-statistic) 0.000010

Current= 11.61814+1.94E-10* Distance
4
 (15)

 Figure A.15: Actual, fitted and residual graph for equation (15)

-2

-1

0

1

2

10

15

20

25

30

16 19 20 21 22 23 24 25

Residual Actual Fitted

118

 Table A.16: Regression results for sample 16 19 - 26 (2)

Dependent Variable: CC1

Method: Least Squares

Date: 07/28/09 Time: 16:54

Sample: 16 16 18 25

Included observations: 9

Variable Coefficien

t

Std. Error t-Statistic Prob.

DD3 1.08E-07 1.17E-08 9.208419 0.0000

C 9.901373 0.958261 10.33265 0.0000

R-squared 0.923743 Mean dependent var 18.12222

Adjusted R-squared 0.912849 S.D. dependent var 3.538636

S.E. of regression 1.044651 Akaike info criterion 3.118374

Sum squared resid 7.639077 Schwarz criterion 3.162201

Log likelihood -12.03268 F-statistic 84.79498

Durbin-Watson stat 1.156482 Prob(F-statistic) 0.000037

Current= 9.901373+1.08E-07*Distance
3

 (16)

-2

-1

0

1

2

3

10

15

20

25

30

16 19 20 21 22 23 24 25

Residual Actual Fitted

119

Appendix B

TinyOS LEACH Implementation Source Files

Some of the source code files of our LEACH implementation on the TinyOS platform are

listed below:

Main Module:

Test_GroupBuilderM.nc

Cluster Head Selection Module:

ToBeSinkM.nc

Broadcast Module:

IDBroadcastM.nc

Cluster Setup Module:

GroupBuilder_memberM.nc (as a cluster member)

GroupBuilder_sinkM.nc (as a cluster head)

Time Synchronization Module:

Timesyn_memberM.nc (as a cluster member)

Timesyn_sinkM.nc (as a cluster head)

120

Data Transportation Module:

TransData_memberM.nc (as a cluster member)

TransData_sinkM.nc (as a cluster head)

