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Abstract of the Dissertation 

Two Essays on Monetary Policy under Parameter Uncertainty by 

Nam Nguyen 

Doctor of Philosophy 

in 

Economics 

Stony Brook University 

2012 

 

I present in this dissertation two topics of monetary policy making under model parameter 

uncertainty. The first topic is an assessment of the Brainard’s principle in monetary policy 

making in a new context. Brainard (1967) proposes that policy making under model 

uncertainty should be cautious in the sense that the policy maker would move his instrument 

less aggressively than in the absence of uncertainty. I assess this proposal in Chapter 2 by 

considering monetary policy in a New Keynesian economy with the cost channel developed 

by Ravenna and Walsh (2006). Uncertainty in the model comes from a coefficient that 

governs the direct effect of interest rate and output gap on inflation in the Phillips curve. The 

loss function is endogenous to the structural parameters. My results show that the interest rate 

response to a shock under model uncertainty is not necessarily stronger than that in the 

absence of model uncertainty. These results imply that the Brainard’s principle does not apply 

in this framework. 

The second topic is on the optimal delegation of monetary policy under parameter 

uncertainty. In Chapter 3, I model an economy in which there is policy planner who faces  

uncertainty about the slope of the Phillips curve and a central banker who believes he knows 

the economy with certainty. The policy planner makes use of a delegation method similar to 

the one initiated by Woodford (1999) to induce his central banker to implement his min-max 

commitment policy. The policy planner then solves for the parameters of the delegated loss 

criterion by matching his min-max optimal policy, in term of a targeting rule, with that of the 

discretionary policy conducted by his central banker. Delegation under parameter uncertainty 

requires choosing a central banker with a preference for an output gap stabilization weight of 

less than one. In this delegation framework, the robust policy can save up to an additional loss 

equivalent to a permanent increase in inflation of 0.06 percentage point from its target, 

compared to the non‐robust policy. In addition, the robust delegation is found to dominate 

standard discretionary policy.  
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CHAPTER 1                                                                                                     
INTRODUCTION AND SUMMARY 

 

 

 

In the last three decades, the New Keynesian framework has emerged as a standard 

paradigm for monetary policy analysis. Among its many research areas, monetary policy 

making under uncertainty has been under extensive investigation. The importance of 

uncertainty in policy making is emphasized by the former FED Chairman, Greenspan (2003): 

“Uncertainty is not just an important feature of the monetary policy landscape; it is the 

defining characteristic of that landscape”.  

A main theme in this research area that has received much discussion in recent articles is 

the assessment of the Brainard (1967)’s principle about the cautiousness of policy making 

under model uncertainty. The motivation for this research program, as stated in Tetlow and 

von zur Muehlen (2002), is the search for a theoretical explanation of the observed lack of 

aggressiveness of interest-rate reaction to output and inflation as recommended by theoretical 

models. Research in this area has been undertaken in several directions. Some continue with 

the approach laid down by Brainard (1967), assuming a well-defined prior distribution of 

uncertainty and tackling the problem using Bayesian optimal control methods. Other research, 

notably Hansen and Sargent (2007), explore the robust-control approach and define the 

problem as finding the best solution when the worst-case scenario is assumed for each 

possible policy. Although being fruitful, this research area presents mixed conclusions 

depending on the assumptions regarding the transmission mechanisms of the models being 

used and the nature of model uncertainty. However, despite these mixed conclusions, the 

important message to be taken from this more recent literature is that the Brainard’s principle 

does not always hold.    
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Another important area in the New Keynesian paradigm, for which there is some common 

agreement, is regarding the superiority of the commitment policy over discretionary policy 

and the infeasibility of a commitment policy, which is based on conditional expectation, due 

to its innate time-inconsistency. A development which results from these findings has been 

the consequent search for the implementation of a commitment policy outcome which uses 

discretionary policy by methods of delegation. Rather surprising, however, is that the 

connection between policy making under model uncertainty and delegation seems to have 

been almost ignored in the profession.  Studies in this area are rare and there are very few 

papers that can be searched and cited in this regard. Some examples though include Kilponen 

(2003) who studies base money growth targeting under model uncertainty; it is found that 

delegation of the Freidman’s k-percent rule for base money growth targeting can improve 

social welfare over inflation targeting. Gaspar and Vestin (2004) work on the inflation bias 

problem with an assumption of output gap uncertainty. They find that the degree of inflation 

conservatism of the central bank delegated with monetary policy increases with uncertainty. 

Somehow similar to Gaspar and Vestin (2004), Tillmann (2009a, 2009b) investigates how the 

degree of central bank inflation conservatism varies with model structure uncertainty. 

Although these studies integrate model uncertainty into the delegation problem, using 

different approaches ranging from comparing targeting regimes to assuming different sources 

of uncertainty, they all model the central bank, the agent in delegation problems, as facing 

uncertainty. Therefore, changing the focus of uncertainty could make a progress on this 

research area. 

This thesis aims to contribute to these areas of policy making and delegation under model 

uncertainty in the following two self-contained chapters. I first revisit the issue of monetary 

policy decision under parameter uncertainty in Chapter 2. Here I focus on a line of research 

which emphasizes uncertainty about the model parameters in a New Keynesian model, as 

explored by Giannoni (2002, 2007), Tillman (2009) amongst others. This line of research 

assumes policy makers face Knightian uncertainty (Knight, 1921) about the model 

parameters, uncertainty over which they have no prior distribution; they therefore follow a 

min-max strategy to formulate their optimal policy decision. The overall findings of these 

studies imply that uncertainty about different parameters may lead to either supporting or 
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rejecting Brainard’s principle. In this chapter, I make use of a New Keynesian model 

augmented with a cost channel as developed by Ravena & Walsh (2006). In this class of 

models, the nominal interest rate can directly influence inflation through the Phillips curve 

channel. As step further from Giannoni (2002, 2007) and Tillman (2009), however, I use a 

derived loss function whose coefficients depend on the model’s parameters including , the 

one that governs the direct effects of output gap and nominal interest rate on inflation. It is 

rather common in the literature to assume that the weights on inflation and output gap 

variation in the loss function are fixed by policy makers. However, Woodford (2003a) has 

developed the theoretical foundations for the integration of model structure and objectives. 

This integration has important implications for the study of models under parameter 

uncertainty. This is because it means that uncertainty about parameters implies uncertainty 

about the objective function.   

With an assumption of uncertainty about a coefficient that affects the influence of both 

output gap and interest rate in the Phillips curve, I examine the applicability of Brainard’s 

principle. I compare robust and non-robust monetary policy in terms of interest rate responses 

that result from the use of these two policies with respective shocks. The results show that 

Brainard’s principle does not apply in this model.  

The issue of monetary policy delegation under uncertainty is studied in Chapter 3. Since 

the work of Kydland and Presscott (1977) and subsequently Woodford (1999), it has been 

commonly accepted that discretionary monetary policy results in a suboptimal outcome 

compared to that produced by a full commitment policy. The supporting argument is that 

discretionary policy produces equilibrium where current and future actions are not optimally 

combined, thus not optimally manipulating private sector expectations in a way that supports 

current policy decisions. On the other hand, a full commitment policy results in an 

equilibrium that does implement optimal manipulation of expectations. However, a full 

commitment policy for some objective functions causes time inconsistency.   

Although the superiority of a full commitment policy is obvious and desirable, in reality 

central banks conduct discretionary policy due to the absence of a commitment technology. 

This raises the question as to whether we can replicate the welfare outcome of a full 

commitment policy with that of a discretionary policy. In his pioneering work, Woodford 



 

4 

 

(1999, 2003) suggests assigning the central bank a distorted loss function that is different 

from the true loss of the society. In this way the central bank may be induced to generate an 

appropriate inertial equilibrium with discretionary optimization.  

Technically, it is obviously feasible to replicate full commitment equilibrium with the 

above approach given the linear-quadratic framework used widely in the New Keynesian 

monetary policy literature, since the solution to linear-quadratic optimization is invariably a 

linear function of the state variables. If the delegation scheme can somehow be involved in 

the quadratic objective function or in structural constraints appropriate lagged endogenous 

variables, the desired equilibrium can be produced.  

Given this feasibility, delegation schemes have been designed, focusing on different 

aspects of the central banks daily practice to formulate loss functions to be assigned. For 

example, Woodford (2003) looks at the inertial behavior of short-term interest rate setting and 

suggests including in the assigned loss function an interest rate smoothing objective. Walsh 

(2003) suggests an output-gap-change objective in the loss function so as to replace the usual 

output gap objective. Vestin (2006) suggests that price-level targeting can act as an alternative 

to inflation targeting. Jensen (2002) considers a situation in which the central bank is required 

to care about nominal income growth stability, disregarding inflation variability, but not 

neglecting variations in the output gap. Bilbiie (2009), following Walsh (1995)’s linear 

contract approach, proposes signing with the central bank a contract that specifies the central 

bank’s reward or penalty which is contingent on the current state of the economy thus 

introducing lagged endogenous variables into the central bank’s loss function. 

As already mentioned, research on the optimal delegation of monetary policy has left 

unexhausted an area regarding model uncertainty; this is where Chapter 3 makes its 

contribution. In this chapter, I study a problem whereby a policy planner who is uncertain 

about his economy wants the commitment policy to be implemented. Due to the lack of a 

commitment policy, it is impossible for the policy planner to implement the commitment 

policy himself. The policy planner therefore needs to induce a central banker, who is assumed 

to believe that he knows the economy with certainty, to implement this policy. This 

delegation scheme presents the policy planner with two problems. He first needs to figure out 

which policy he wants implemented under model uncertainty, and then how to induce the 
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central banker to do it given the fact that the policy planner and the central banker view the 

economy differently.  

As in Chapter 2, I propose that the policy planner derives a min-max policy when faced 

with model uncertainty. On the delegation scheme, although studies in the current literature 

recommend delegation schemes that result in identical solutions of the policy maker and the 

central banker’s optimization problems, they skip over the process by which the central 

banker delivers the commitment outcome. In fact, there is no need to care about this process 

when the policy planner and his central banker are both certain about their economy. Things 

may be different however, if one is certain and the other is uncertain about the model of 

economy. Technically, both actors are assumed to face different structural constraints, hence 

the importance of the implementation process. Here, I propose that the monetary policy 

conducted by the central bank - understood as the central bank’s maintaining a certain 

relationship amongst observable variables - be identical to that for the min-max policy that the 

policy planner wants to implement.  
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CHAPTER 2                                                                                                                     
OPTIMAL MONETARY POLICY WITH PARAMETER UNCERTAINTY AND 

ENDOGENOUS LOSS FUNCTION IN A MODEL WITH COST CHANNEL 

 

 

Abstract 

Brainard (1967) proposes that policy making under model 

uncertainty should be cautious in the sense that the policy 

maker would move his instrument less aggressively than in the 

absence of uncertainty. I reassess this proposal by considering 

monetary policy in a New Keynesian economy model with a 

cost channel as developed by Ravenna and Walsh (2006). 

Uncertainty in the model comes from a coefficient that governs 

the direct effect of interest rate and output gap on inflation in 

the Phillips curve. The loss function is assumed to be 

endogenous to the structural parameters. Results show that the 

interest rate response to shock under model uncertainty is not 

necessarily stronger than that in the absence of model 

uncertainty. These results imply that Brainard’s principle does 

not apply in this framework.  
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1. Introduction 

In practice, monetary policy making is subject to considerable uncertainty about the true 

functioning of the economy. The policy maker does not know for sure how their target 

variables will be affected by their policy action. This reality calls for the development of 

methods that guide policy making under uncertainty. Brainard (1967) is considered to be one 

of the early important formal theoretical frameworks to consider policy making under model 

uncertainty. Brainard’s principle, as interpreted by Blinder (1998) under model uncertainty, is 

that the policy maker should be more cautious in the sense that he would move his instrument 

by less than what he computes about the economy without model uncertainty. 

This chapter intends to investigate Brainard’s principle in a New Keynesian model using a 

cost channel proposed by Ravena and Walsh (2006). In this model, the interest rate enters 

directly into the Phillips equation and influences inflation. Uncertainty comes from the 

coefficients in the Phillips curve through which the interest rate and output gap exert their 

influence on inflation. The difference between this study and others that follow  a similar 

approach line, for example Giannoni (2002, 2007) and Tillmann (2009), is that the setup in 

this framework allows the inflation stabilization weight in the loss function to be affected by 

the uncertain parameter. The re-assessment of the Brainard principle is thus undertaken by 

examining the optimal policy response to shock in the framework with and without parameter 

uncertainty.  

For policy formulation under uncertainty, the policy maker is assumed to follow a min-

max strategy, finding the best policy for the worst-case parameter when he does not have a 

prior on the uncertainty. To define the min-max strategy, Giannoni (2002) sees the system as 

a zero-sum simultaneous-move game between the policy maker and Nature. He then finds the 

min-max strategy. First, he solves for the max-min solution and numerically verifies that a 

Nash equilibrium exists at the max-min equilibrium. The structure of a zero-sum 

simultaneous-move game then implies that the solution to the max-min is the Nash 

equilibrium of the game and thus also solution to the min-max problem. Contrary to Giannoni 

(2002, 2007), I do not solve for the max-min equilibrium and resort to a numerical method to 

verify for the Nash equilibrium existence. Instead, I show analytically that there is always a 

Nash equilibrium for the zero-sum game between the policy maker and Nature within the 
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setup considered; therefore the min-max solution is simply the Nash equilibrium. The worst-

case value for the parameter in consideration is then shown to be always at its upper bound. 

The paper’s results show that, under parameter uncertainty, the policy maker will plan for 

weaker inflation suppression in response to a rise in output gap that is caused by a demand 

shock. However, actual policy action in terms of the interest rate response to a shock is 

inconclusive. This result denies the Brainard’s principle but is not on the same grounds as 

Giannoni (2002) who finds that the policy response is more aggressive under uncertainty.   

The rest of the paper is structured as follows. First, I review the related literature on 

monetary policy under uncertainty and monetary policy with a cost channel. Section 3 then 

introduces the New Keynesian model with a cost channel. Section 4 derives the min-max 

policy. Section 5 examines policy maker’s actual interest rate response to shock under 

uncertainty Section 6 then experiments with some policy analysis issues; finally in Section 7, 

I conclude. 

 

2. Literature review 

The importance of the cost channel in New Keynesian models has been admitted given the 

increasing number of studies on issues related to it. In the following section, I review some of 

the most cited and relevant literature to this study. 

Barth and Ramey (2001) present evidence that the cost channel may be an important part 

of the monetary transmission mechanism when working capital is an essential component of 

production and distribution; hence monetary contractions can affect output through a supply 

channel as well as the traditional demand-type channels. They find that following a monetary 

contraction, many industries exhibit periods of falling output and rising price-wage ratios, 

consistent with a supply shock in our model.  

Ravena and Walsh (2006) formally develop a model with a cost channel and show that 

when the cost channel is introduced, an endogenous cost-push shock arises and produces a 

trade-off between stabilizing output gap and inflation. Surico (2008) studies the conditions 

that guarantee equilibrium determinacy in a standard sticky price model augmented with a 
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cost channel. Llosa (2009) analyses how monetary policy may affect determinacy and 

expectational stability (E-stability) of the rational expectations equilibrium when the cost 

channel of monetary policy matters. Tillman (2008) empirically assesses the impact of the 

cost channel of monetary transmission on the dynamics of inflation within a New Keynesian 

Phillips curve framework. He shows that the cost channel significantly contributes to the 

explanation of inflation dynamics in forward-looking sticky-price models for the US, the UK, 

and the Euro area. Moreover, the cost channel can explain inflation episodes that cannot be 

accounted for by the standard New Keynesian model.  

On optimal policy under model uncertainty, the literature can be classified into data 

uncertainty, structure uncertainty and parameter uncertainty. This paper restricts our 

discussion to parameter uncertainty and the more relevant topic of structure uncertainty.  

These two types of uncertainty can be group into a topic called model uncertainty.  

Research on policy decision under model uncertainty has generally developed through 

three general approaches. The first approach is called model averaging. This approach is to 

find a policy that performs well across a wide range of model. Research using this approach 

include McCallum (1988, 1999), Taylor (1999), Levin et al. (1999, 2003), and Levin and 

Williams (2003). Brock et al (2003, 2004) formalizes the framework with the Bayesian model 

averaging method. The advantage of this approach is that it can study the effect of a special 

rule for a wide range of structurally different models. However, it can not specify an optimal 

rule in an uncertainty environment.     

The second approach focuses on a special class of models and studies different aspects of 

uncertainty. This approach makes use of a Bayesian method to identify the policy that 

minimizes the expected loss criteria given a prior distribution of the parameters. This 

approach was initiated by Brainard (1967), followed by Clarida et al. (1999), Wieland (1998), 

Soderstrom (2000, 2002), and Kurozumi (2003) amongst others.  

The third approach is to find a policy that minimizes the loss criteria in a worst case 

scenario that is drawn out of a set of possible scenarios. This approach is to solve a problem in 

which uncertainty cannot be characterized by any prior distribution – this is a form of 

uncertainty called Knightian uncertainty (Knight, 1921), and therefore the Bayesian method 
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cannot be used.  This approach was initiated by Gilboa and Schmeidler (1989) who show that 

if the policymaker has no priors on the set of alternative models, and his preferences satisfy 

uncertainty aversion in addition to the axioms of standard expected utility theory, then the 

policymaker's decision is to minimize his loss in the worst-case scenario. A thrust of this 

approach - which is advocated by Sargent (1999) and Hansen and Sargent (2006) - includes 

introducing an additive stochastic term into the structural equations of the economy so as to 

represent deviation from the true model, and applying robust control theory so as to find the 

robust policy. This approach therefore considers an unstructured form of uncertainty. The 

advantage of this approach is that it can specify the degree of uncertainty by imposing a limit 

on the statistical distance between the true model and the deviated model.  Another direction 

of this approach is to consider uncertainty in more structural form such as Giannoni (2002, 

2007) in which uncertainty is narrowed to parameter uncertainty. The advantage of this 

approach is its potential to study the effect on policy given uncertainty about the deep 

structural parameters of an economy.  

In his standard New Keynesian model, Giannoni (2002, 2007) concludes that the robust 

optimal policy rule is likely to involve a stronger response of the interest rate to fluctuations 

in inflation and the output gap than is the case in the absence of uncertainty.  Similarly, Kara 

(2002) finds that when doubts take the form of uncertainty about the slope of the Phillips 

curve, the robust policy rule prescribes a less aggressive response to deviations of inflation 

from the target. On the other hand, if the source of uncertainty is imperfect knowledge of the 

persistence of shocks, then robust monetary policy calls for a more aggressive response to 

inflation. Tillmann (2009) shows that Brainard’s principle holds when a range of uncertain 

parameters is being considered. 

Building on the works of Giannoni (2002) and Tillmann (2009), this paper incorporates 

endogeneity of the loss function to the uncertain parameter. This development is important 

because endogeneity may create conflicting effects on the loss value of the uncertain 

parameter. On one hand, the uncertain parameter leads to a perceived wider variation in 

output gap and inflation. On the other hand, the worst-case value of the uncertain parameter 

may lead policy makers to either increase or decrease the weights of the output gap or 

inflation in the loss function. That would attenuate the damaging effects that may result from 
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more severe output gaps and inflation instability. The consequence may be a policy stance 

that either supports or goes against what Brainard proposed.  

 

3. The model 

3.1. The economy 

The model I use is a standard New Keynesian model that is augmented with a cost 

channel which is used by Surico (2008), Llosa (2009) and Tillmann (2009). The micro-

founded version of the model can be found in Ravena and Walsh (2006). Here I begin with a 

log-linearized system of equations characterizing the equilibrium. 

 
1 1

1 n

t t t t t t t
x E x i E r       The IS curve   (3.1) 

       
1

( )
t t t t t

E x i        The Phillips curve      (3.2) 

 
1

n n

t t t
r r  (3.3) 

In this model, the IS curve is derived from log-linearizing the Euler equation of 

household’s utility maximization problem. It relates the output gap with the expected output 

gap and the real interest rate differential which is defined as the difference between the real 

interest rate 
1

( )
t t t
i E  and the natural interest rate n

t
r .  The Phillips curve relates current 

inflation to expected inflation, the output gap and the nominal interest rate. It is derived from 

the firm’s profit maximization problem. The interest rate enters to influence price and 

inflation because of interest cost incurred by firms financing their labor wage with short-term 

borrowing and this is considered as the cost channel. Here, the uncertain parameter   governs 

both the direct effect of output gap and that of nominal interest rate on inflation. In the micro-

founded version of the above log-linearized model,   is an increasing function of the fraction 

of firms able to adjust each period. The natural interest rate has a persistent coefficient of 

| | 1  and 
t
is i.i.d. Other parameters include the discount rate (0,1)  , the intertemporal 

elasticity of substitution 0   and the inverse of labor supply elasticity 0  .  
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3.2. Monetary policy 

There is a policy maker (the central bank) who controls nominal interest rates. Instead of 

explicitly stating the interest rate rule, I follow Giannoni and Woodford (2003) and assume 

that the policy maker commits to a specific targeting rule which describes monetary policy as 

maintaining a linear relation between target variables of the following form: 

                                                         
t t

x                                                  (3.4) 

Here, it is assumed that the policy maker simply commit to a rule that has the same form 

as the targeting rule that implements optimal discretionary equilibrium. The rule is maintained 

by the policy maker when adjusting his instrument, the short-term nominal interest rate. As 

advocated in Kara (2002) and Svensson (2002), in terms of communication to the public, the 

description of monetary policy with a specific targeting rule is an advantage over the general 

targeting regime which involves specifying a set of targets, target variables and a loss 

function. The specific targeting rule is also more robust to structural change of an economy 

compared to Taylor rules.  

 

In (3.4), the parameter   which characterizes the rule is chosen to minimize an infinite 

sum of period loss: 

                                   2 2

0
t t

t

L E x                                     (3.5) 

where (.)E  is the unconditional expectation operator. Woodford (2003a) has shown that in the 

micro-founded version of the model being used here, (3.5) can be derived as the second order 

approximation of the representative consumer’s utility function which represents the true 

social loss function. The unconditional expectation, as explained by Woodford (1999, 2003b), 

makes the choice of the optimal equilibrium independent of the state of the economy at the 

time the commitment is made.  
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4. Parameter uncertainty and the robust optimal policy 

When the policy maker is uncertain about   in the Phillips curve, he is uncertain about 

the effects of the output gap as well as the effect of nominal interest rate on inflation.  As 

mentioned the policy maker does not know the distribution of   , however he knows that   

lays somewhere in an interval [ , ] . I assume that in this circumstance the policy maker 

follows a min-max strategy, finding the policy that minimizes the consequences when   

realizes its worst-case value. 

This approach is similar to Giannoni (2002, 2007) who makes use of a simultaneous-

move, zero-sum game between the policy maker and an imaginary Nature in which the policy 

maker minimizes his loss knowing that Nature is going to maximize it. However, different 

from Giannoni (2002, 2007) which have to resort to a numerical verification of the existence 

of a Nash equilibrium, I show analytically that there exists a Nash equilibrium of the zero-

sum game. The Nash equilibrium is the solution to the min-max problem. 

I will model the zero-sum game and solve for the Nash equilibrium in three steps as 

follows: 

Step 1: Solve for the unique bounded equilibrium that results from implementing the 

targeting rule (3.4) in the economy (3.1), (3.2), (3.3). Since this step is equivalent to solving a 

system of expectation difference equations, the condition for the existence of a unique 

bounded solution must be derived. Since the system contains no other pre-determined 

variables except the natural interest rate n
t
r , the unique bounded solution should be linear 

functions of the form: 

 ( , ) n
t x t
x f r                ( , ) n

t t
f r


                ( , ) n
t i t
i f r   (4.1)   

in which the coefficients  
x
f , f


, 
i
f  are functions of the targeting rule parameter   and  . I 

denote   as the set of   that guarantees determinacy for each  [ , ]. 

Step 2: Make use of 
t
x  and 

t
  in (4.1), and transform the loss function (3.5) into a 

function of parameter   and  . 
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Step 3: Formulate the zero-sum simultaneous-move game and solve for the Nash 

equilibrium.  

4.1. Solving for the unique bounded equilibrium. 

The system (3.1) - (3.4) can be reduced to a single difference equation in inflation (4.2) by 

using the IS equation and the targeting rule to substitute out the nominal interest rate and 

output gap in the Phillips curve:  

 
1

( ) n
t t t t

E r
    

 
   

    
    

    
 (4.2) 

The condition for equation (4.2) to have a unique bounded solution is: 

 
( )

1 1
   

 

 
  


 (4.3) 

Here, the inequalities (4.3) define  , the set of   that guarantees the determinacy for 

each value of  [ , ] as mentioned in Step 1 above. When  is known with certainty, the 

policy maker is required to restrict his choice of the policy rule in  for the loss function 

defined in (3.5) to be well-defined. 

Construct the determinacy set  :  

In constructing  , I maintain a general assumption that 1    as is the approach  

adopted in most of the literature regarding parameterization.
1
 There are two cases for 

consideration,     and   .  

Case 1:  If    , then 
( )

1
   

 

 



 since ( ) 1   , so that (4.3) is not satisfied. 

Case 2:  If   , then (4.3) is manipulated to: 

                                           (1 ) ( )          (4.4) 

and                                     (1 ) ( )          (4.5) 

                                                 
1
 For example, see Woodford (1999, 2003a,b), Tillmann (2009a),  see also Llosa (2009), Table 2 for a brief 

survey of the literature.  
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with the assumption that 1   , the set   is defined as: 

 
( ) ( )

:
(1 ) (1 )

R
     

 
   

  
     

    
 for 1     (4.6) 

The determinacy set   for a given   is illustrated by the yellow segments in Figure 2.1 for 

two situations when   and when    . 

 

 

 

 

 

 

 

 

 

                     

 

 

 

 

 

 

 

 

Figure 2.1 The determinacy set Ф for a given   . 
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The unique bounded solution: 

Solving (4.2) forward for 
t

 : 

 
1

( ) n
t t t t

E r
    

 
   

    
    

    
 

 
( ) ( )

1 ...

n

n
t t t n t

E r
        

  
     

         
                    

 

 
[1 ( )] ( )

n
t t

r



      

 
   

    
 (4.7) 

From the targeting rule (3.4): 

 
[1 ( )] ( )

nt
t t
x r

 

       

 
   

    
 (4.8) 

From the Phillips curve: 

 
(1 ) ( ) (1 ) ( )

1 ( ) ( )
nx

t t

f f
i r  (4.9)   

Thus the unique bounded solution defined in (4.1) is characterized by:  

 
[1 ( )] ( )

f




      


   
 (4.10) 

  
[1 ( )] ( )x

f


      


   
 (4.11) 

 
 

(1 ) ( )

1 ( ) ( )i
f

    

      

  


   
 (4.12) 

 

4.2. Transforming the loss function 

Under the unconditional expectation, loss (3.5) can be reduced to: 
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2 2 2 2

0 1
t

t t t t
t

L E x E x  (4.13) 

 2 2 var( ) var( )
1 1t t t t

E x x  (4.14) 

The loss (4.14) can be transformed into a function of   and  by substituting (4.10) and 

(4.11) into (4.14): 

 

2 2

2 2

2

var( )
1

var( )
1 [1 ( )] ( )

n
x t

n
t

L f f r

r

 (4.15) 

Since var( )n
t
r  are exogenous constants, minimizing (4.14) is equivalent to minimizing: 

 

2 2

2
( , )

[1 ( )] ( )
L  (4.16) 

 

4.3.Finding the Nash equilibrium. 

The zero-sum simultaneous-move game 

Given the transformed loss function (4.16), the policy maker’s situation can now be 

modeled as a game between the policy maker and imaginary Nature in which the policy 

maker chooses a policy to minimize his loss while Nature chooses a value [ , ] to 

maximize his loss.  

Here, the set of the policy maker’s strategies needs some discussion. Since the set   

specifies the allowable   that results in determinacy for a given   but the policy maker does 

not know  , he needs to choose his policy from a set    that guarantees him determinacy for 

all  [ , ] values that may be realized.  
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The zero-sum game can be defined as ( , ),( , ), ( , ), ( , )P N L L  in which P 

stands for the policy maker, N stands for Nature, and [ , ]K  are the separate strategy 

sets of the policy maker and Nature. As shown in Giannoni (2002, Proposition 1), if the game 

 has a Nash equilibrium, the profile * *,  is a Nash equilibrium of , if and only if the 

choice of each player is a max-minimizer: 

 * argmax min[ ( , ) argmin max[ ( , )L L
 

 
* argmax min[ ( , )L  

The above proposition guarantees that the solution to the min-max problem is the Nash 

equilibrium, if there is one that exists.  

Nash equilibrium 

The policy maker’s problem:  The policy maker chooses a policy rule   from a set 

 min max
:R        to minimize the loss defined in (4.16) for a given value 

[ , ]:  

 
 

 

2 2

2
min

[1 ( )] ( )


   

      


 
 

 
 

     

                       (4.17) 

Here, some discussion on the construction of the set   is needed before any possible 

solution is to be found, since it is not always possible for the policy maker to find the set  if 

the interval of  that he should consider from empirical estimates has too high an upper 

bound. To show this situation, suppose for the moment that the policy maker was solving an 

unconstrained problem.  

The first order derivative is as follows:  

       
 

 

2

3

2 ( ) ( )[1 ( )]

1 ( ) ( )

dL

d

        

       

     


    
 

                       (4.18) 
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and the interior solution:              
 *

( ) 1 ( )
( )

( )

    
 

  

   



                                  (4.19) 

The interior solution line is illustrated in Figure 2.2 for the case   .  

 

 
 

  

 

 

 

 

 

                                                                                                                                                                                    

 

Figure 2.2 Spurious solution 

 

Suppose now for a given  interval [ , ], the policy maker defines the set   by choosing 

a 
max
  and a 

min
  that are distant from the upper and lower determinacy bounds, defined by 

(4.6), at    by a sufficiently small  . The set   is illustrated by the yellow segment in 

Figure 2.2. 

 
( ) ( )

:
(1 ) (1 )

R     (4.20) 

Denote 
C
 and ̂  the values of   at which the interior solution line intersects with the 

upper determinacy bound and with the 
max
  line. 

Consider the first order derivative (4.18). It can be seen that in the region containing 

combinations of ( , )   in which 1    and    for a given   (the shaded area in 

 

 

 

 

 

    

 

 

 

Set   NE 
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Figure 2.1), the denominator of (4.18) is negative. Indeed, the determinacy condition (4.3) 

implies that in this region: 

 

( )
1

[1 ( )] ( ) 0

   


 

      

  
 

 
          (4.21)

 

Also, in this region, the area below the interior solution line (4.19) is associated with 

combinations ( , )  that make the nominator of (4.18) positive. 

The above analysis implies that if 
C

   and with the set   so defined, the policy 

maker’s solution is always: 

                       
*( )   for  ˆ      and   

max
   for ̂                           (4.22)  

The best response (4.22) may lead the policy maker to commit to a spurious solution in 

the sense that the solution he chooses may turn out to result in infinite loss. Indeed, suppose 

there exists a Nash equilibrium where Nature chooses  as her best response. The Nash 

equilibrium is denoted NE in Figure 4.2, a point very close to the upper determinacy bound. 

Although other model parameters ( the , , , ,     ) are assumed to be known, the policy 

maker never knows their true values. There might be a possibility that these parameters 

realize values that are different from those values the policy maker uses to compute his upper 

determinacy bound in a way in which the true bound becomes low enough to send the Nash 

equilibrium point into the true indeterminacy region. In this situation, there exist an infinite 

number of equilibriums, some of which have a very large variance. What this means is that 

the policy maker is in fact facing an infinite loss. 

If   is sufficiently lower than 
C
 , then the policy maker can avoid the above situation as 

he will be guaranteed with an interior solution for all values of [ , ]. The set  is also 

easily defined as:  

Case   :           
( ) ( )

:
(1 ) (1 )

R                      
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Case   :          
( ) ( )

:
(1 ) (1 )

R              

The set   for the case 
C

  is illustrated in Figure 2.3 and Figure 2.4. 

 
 

 

 

 

 

 

 

 

 

 

Figure 2.3 The set  ,  the case    

 
 

 

 

 

 

 

 

 

Figure 2.4 The set  ,  the case    
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The above analysis presents the policy maker with another difficulty which includes in 

practice whether or not the empirical estimates of  support the case 
C

  .  To examine all 

of the relative positions of  and 
C
 , I consider a wide range of parameterization for those 

parameters that determine 
C
  and then compare the minimum value of 

C
 with the maximum 

value of    which prevails empirically.   

For the interval of  , I consider two estimates by Woodford (1999) for a model without a 

cost channel and that of  Tillman (2008) for a model with a cost channel. The two estimates 

are presented in Table 2.1. The interval of  can be chosen with a lower bound that is two-

sigma below Woodford’s mean estimate and a maximum value two-sigma above Tillman’s 

mean estimate of  . The  interval is then computed as [0.017, 0.037] . 

 

 Mean Standard deviation 

Woodford (1999) 0.024 0.0035 

Tillman (2008) 0.035 0.001 

 

Table 2-1. Estimates of  

 

          

[0.157,2] [1.01,7.61] [0.35,0.8] 0.99 1 

 

Table 2-2.Parameterization of , , , ,      

 

Since 
C
 is determined at the intersection of the upper determinacy bound and the interior 

solution line by the equation: 

 
( ) 1 ( ) ( )

( ) (1 )
 

Denote: ( , , , , )
C
f      . 
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The parameterization to compute the minimum value of 
C
  is presented in Table 2.2. In 

this parameterization, I choose 0.99  , 1   as is standard practice in the literature. The 

above ranges are supported by those parameterizations presented in Rabanal (2006), 

Woodford (1999), Giannoni (2002, 2007), Lubik (2004), Surico (2010). With this 

parameterization, the minimum value of 
C


 
is found at min( ) 0.0516

C
  . It can be seen 

that the value of   that is supported by empirical evidence is significantly less than the 

computed
C
 . The policy maker is guaranteed with interior solutions and his best response is 

defined by (4.19). 

I consider how sensitive this conclusion is to some changes in the parameters   and   by 

doing the following experiments. I will first consider lower values for   while keep other 

parameters unchanged and then repeat the same experiment with  , however considering 

values of   that are both lower and higher than unity. The results in Table 2-3 and 2-4 show 

that min( )
C
  tends to increase with lower   and higher  . In particular, when   is smaller 

than 0.5 then min( )
C
  goes below  . If we maintain the assumption that 0.5  , the 

parameterization in Table 2-2 can guarantee the above relative positions of   and min( )
C
  . 

 

  0.9 0.95 0.99 

min( )
C
  0.0674 0.0588 0.0516 

 

Table 2-3. Sensitivity of min( )
C
  to    

 
  0.5 1 1.5 

min( )
C
  0.0376 0.0516 0.0858 

 

Table 2-4. Sensitivity of min( )
C
  to    
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Nature’s best response: 

 

On the side of Nature, it is not necessary to find her best response to the whole set   but 

only to those 's  which are the policy maker’s best response for some  . The reason is that 

there is no justification for the policy maker to use any strategy which is not a best response to 

any [ , ]. In other words, Nature only cares about those policy rules that might be in a 

Nash equilibrium. Denote such a set of   the 

 ( ) 1 ( )
:ˆ ( )

[ , ]

R
    

 
  

  

    
  

   
 
 

  

Nature’s problem can then be stated as follows: 

 
 

 

2 2

2[ , ]
max

[1 ( )] ( )
  

   

      


 
 

 
 

     

 for a given ˆ  . 

The first order derivative: 

 

 

2

3

1 ( ) 2 ( ) 1( , )

[1 ( )] ( )

L
 (4.23) 

As shown in (4.21) for    and 1   , the denominator of (4.23): 

 
3

[1 ( )] ( ) 0  (4.24) 

The sign of the first order derivative (4.23) is determined by the sign of its nominator. 

Since the set ̂  contains only those choices defined by  the policy maker as his best response 

*( )   as represented by (4.19), the sign of the nominator can be found by substituting *( )   

into the nominator of (4.23): 

The nominator of (4.23) = 

2
* *

( ) 1 ( )
( ) ( ) 1 ( ) 2 ( ) 1

( )
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2
* *

0 0

( ) ( ) 1 ( ) ( ) 1 0                       (4.25) 

From (3.24) and (3.25), the first order derivative 
( , )

0
L

 . The best response of 

Nature to the policy maker’s best response is always  . The Nash equilibrium 

( ) 1 ( )
,

( )
 is illustrated in Figure 2.5.  

 

 
 

 

 

 

 

 

 

 

Figure 2.5 Nash Equilibrium 

 

 

5. Model Implications regarding Brainard’s principle   

 

Under parameter uncertainty with  being considered the worst-case value for , the 

robust targeting rule:             

                                          *( )
t t

x                                                                             (5.1) 

with                              
 *

( ) 1 ( )
( )

( )
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It can be seen that * *( ) ( )     for all values of [ , ]. Under uncertainty about , 

the policy maker is willing to take less variation in inflation relative to variation in output 

compared to the “certainty” case. The intuition for this is that when the economy is hit by a 

positive demand shock, the policy maker needs to raise nominal interest rates to suppress 

output. Since the interest rate exists in the Phillips curve, this creates two conflicting effects 

on inflation. On one hand, reducing the output gap helps to decrease inflation. On the other 

hand, raising interest rate increases inflation. When  is considered the worst-case value, the 

net effect on inflation is amplified. To be safe, therefore the policy maker would engineer a 

smaller change in inflation in response to a given change in output gap.  

However, this may not be understood as an attenuated monetary policy. In the sense of the 

Brainard’s principle, when faced with model uncertainty, a cautious policy maker would 

move his interest rate by less than what he computes if he knew the economy with certainty. 

To reassess the Brainard’s principle, I compare the interest rate response to a shock that 

results from the implementation of the robust targeting rule and the non-robust targeting rule.  

To be more precise, consider the economy for a given true value for  . Equation (4.9) 

gives the interest rate response to n

t
r  given  and  :  

 
(1 ) ( )

( , )
1 ( ) ( )

n n

t i t t
i f r r  

If the policy maker is uncertain he uses a value of *( )    and the interest rate response 

is given by: 

                         
 

*

*

(1 ) ( ) ( )

( ) 1 ( ) ( )
R R n n
t i t t
i f r r

     

       

  
 

   
                         (5.2) 

If the policy maker knows the true value for certain, he uses a value of *( )   and the 

interest rate response is given by: 

                       
 

*

*

(1 ) ( ) ( )

( ) 1 ( ) ( )
NR NR n n
t i t t
i f r r

     

       

  
 

   
                            (5.3)   
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where R
i
f  and 

NR
i
f  are the coefficients in the case of robust and non-robust rules respectively.  

Consider the difference R NR
i i
f f :

   

   

* *

* *

( ) ( ) ( )(1 ) (1 )( )

( )(1 ) ( ) ( )(1 ) ( )

R NR
i i
f f

           

             

      
 

       
         (5.4) 

(5.4) shows that R
i
f  can be lower than or greater than NR

i
f .  

Indeed, the denominator is positive because  *( )(1 ) ( ) 0            for all 

values of [ , ] as shown in (4.21). Given that  * *( ) ( ) 0     , there is a threshold 

value of   to determine the sign of  R NR
i i
f f  that can be computed as follows: 

 
(1 )(1 )

( )

  


  

 



 (5.5) 

With the first order derivatives of   with respect to    and   , it can be verified that   

is increasing in   and decreasing in  . For   being constant, when   tends to zero,   

approaches infinity while   equals zero when   equals to one. This means, for a given  , if 

the cost shock becomes very persistent, R
i
f  can be greater than NR

i
f . Similarly, R

i
f  can be 

smaller than NR
i
f  if the cost shock is very transitory. The same analysis is applied to the 

influence of   and it is found that if   keeps increasing or decreasing, there will be a 

possibilities for which  R NR
i i
f f  or R NR

i i
f f .  

When   and  vary in the ranges chosen in Table 4.1, the minimum value of  is 

reached at min( ) 0.0179  , smaller than the   considered by the policy maker. This implies 

that there are possibilities that   is less than   for some parameterizations of  and  . In 

this situation, R NR
i i
f f  for      and R NR

i i
f f  for      . This means the 

Brainard’s principle does not apply.  Figure 2.6 illustrates a situation in which 1   and 

0.8  . The threshold value in this case is  0.026.  
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Figure 2.6. Interest rate response: Robust rule vs. Non-robust rule 

 

 

6. Some welfare analysis. 

 

6.1. How large should the  interval be? 

It is obvious that in the min-max equilibrium, the policy maker always considers  to be 

the worst-case value so long as 
C

  . This gives rise to the question as to how high the 

value of   should be since it would be natural for  policy maker to want  to guard  against 

larger uncertainty. This presents the policy maker with a choice of decisions and a cost/benefit 

analysis.  

Suppose the policy maker wants to guard against an initial worst-case value of  ,denoted 

the  . However, it is considered that the true value of  lies somewhere at the further right of 

this current  . Therefore he should consider a larger  interval with higher upper bound, the 

  , where   is the increment in the upper bound.  By following the min-max strategy, 

he should move to protect himself against the new worst-case  , which is   . Doing so,  

he may reduce the loss if the true   value turns out to be the  new worst-case of    ;this 

is the benefit of considering the higher upper bound value for  . However, this also entails 

the risk that the true  value is not at that new upper bound. As a result, by using this new 

policy rule, his actual loss might increase - this is the cost of considering a higher upper 
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bound. Since the policy maker does not know the true value of  , he needs to  benchmark the 

value of   for the estimation of this possible increase in loss. Formally, the analysis can be 

undertaken as follows. 

Denote: 

-  *( ),L       : The loss that results from the new robust policy if the true value 

of  turns out to be at the new upper bound   . 

-  *( ),L     :  The loss that results from the initial robust policy when the true value 

of  turns out to be at the new upper bound   . 

- The loss saved by using the new rule *( )    instead of the initial rule *( )   when 

the true  value turns out to be at the new upper bound   :  

    * *( ), ( ),B L L              

-  *( ),
E

L      and   *( ),
E

L    : The estimated losses that  result from the new 

robust and the initial robust rule, and are based on the benchmark 
E

 . 

- The loss that is increased by using the new rule *( )    instead of the initial rule 

*( )   when the loss estimation is based on the benchmark 
E

 is as follows: 

    * *( ), ( ),
E E

C L L          

Figure 2.7 shows the cost/benefit ratio C/B when the policy maker considers the value of 

0.024
E

  , the mean value of the estimates undertaken by Woodford (1999). The initial 

maximum value is 0.037
initial

  , which is the two-sigma upper bound of Tillman’s (2008) 

estimate. The policy maker then expands the maximum value to 0.037
final

  which is the 

two-sigma upper bound of the estimate undertaken by Tillman (2008).  In the graph, values 

for ( )   run from 
initial

  to 
final

  when   assumes an increasing value from zero to 

( )
final initial

  . The cost/benefit analysis shows that his consideration of a higher upper 

bound value for is not supported up to some   value near 0.05 when the cost/benefit ratio 

goes beyond one.  
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Figure 2.7. Protecting against larger uncertainty: A cost/benefit analysis 

 

6.2. Robust rule vs. non-robust rule: A welfare comparison. 

 

It is obvious that the robust rule results in the lowest loss value if the worst case scenario 

value of  is realized. However, the robust rule may perform poorly for the rest of the 

values. In this section, I compare the welfare outcomes of the robust rule used by a policy 

maker who cares about the uncertainty about  and the welfare outcome of the non-robust 

rule used by a policy maker who is not concerned with parameter uncertainty. His policy is 

based on an assumed value of 
b

 , which is assumed to be at the middle of the  interval. 

Denote: 

-   *( ), RL L    : Loss resulted from using the robust rule 

-  *( ), b
b

L L    : Loss resulted from using the non-robust rule 

Figure 2.8 shows the welfare comparison of RL  and bL  . As argued by Tillmann (2009b,c) 

and Jensen (2002), comparing the loss values directly may not have any economic meaning. 

The extra losses that result from the worse policy, for example  b RL L , should be 

interpreted as being equivalent to a loss that results from a permanent increase of inflation 
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from its target due to the use of the worse policy. Jensen (2002) terms this measure “inflation 

equivalent” and suggests a procedure for its computation. The application of this measure is 

performed in Tillman (2009b,c). The formulation of this measure is as follows: 

The loss with a permanent increase in inflation of eqv above its target can be computed 

as: 

 

 

 

2 2

0

2 2 2

2 2 2

( )

1
( ) 2 cov( ) ( )

1
1 1

( ) ( )
1 1

eqv t eqv
t t

t

eqv eqv
t t t

eqv
t t

L E x

E x

E x

   

    


  
 





 
   

 

   


  
 



 

With the original loss function defined in (4.16), the inflation equivalent is computed as: 

 
     

22
2

* * *1
( ), ( ),

1 1 1


      

  

 

   
  

  

eqv b b Rur

eqv b R

r

L L L L

L L

 

where 
2 r  is the demand shock variance.  

It can be confirmed from the graph that except for the worst case scenario, the robust rule 

performs worse than the non-robust rule for a large range of .  However, in the worst case, in 

comparison to the robust policy, the non-robust policy results in a loss equivalent to that 

resulted from a permanent increase in inflation of 0.013 percentage point.  
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Figure 2.8. Robust vs. Non-robust rule: Welfare comparison 

 

The loss difference in term of inflation equivalent measure is not significant in this model 

with its parameterization. This is due to the fact that the   interval in consideration is not 

very large to allow for a significant distance between the worst-case   and the benchmark b  

which is assumed to be at the middle of the   interval. In this case, the values of *( )b   and

*( )   are -0.0923 and -0.0913 respectively. This analysis points out an important implication 

that parameter uncertainty and the need of a robust policy is not very quantitatively important 

given this parameterization. 

 

7. Conclusion. 

Since the seminal paper by Brainard (1967) which proposes that policy response is 

cautious in an uncertain economic environment, a vast research program has been conducted 

to re-investigate the proposal using  different approaches and settings. The results from this 

analysis are inconclusive but the prevailing evidence seems to support Brainard's principle. 

This chapter contributes to the literature by re-assessing the principle in a New Keynesian 

framework with a cost channel.  
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I find that the Brainard’s principle does not apply in a  model where the  coefficient in 

the Phillips curve is assumed to be uncertain. The interest rate response that results from a 

concern about uncertainty and the use of robust policy is therefore not necessary stronger than 

that which results from using a non-robust policy which disregards uncertainty. In addition,  

robust policy underperforms non-robust policy for the majority of    values in the interval 

considered. It is also found that, the policy maker has a tendency to consider a higher upper 

bound for his  interval because the estimated cost of moving to guard him against larger 

uncertainty is less than the loss that might be saved if the true  is actually in the interval with 

higher upper bound. 
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CHAPTER 3                                                                                                                  
OPTIMAL MONETARY POLICY DELEGATION                                            

UNDER PARAMETER UNCERTAINTY 

 

 

Abstract 

 

I model an economy in which there is policy planner who 

faces uncertainty about the slope of the Phillips curve and a 

central bank who knows the economy with certainty. The 

policy planner makes use of a delegation method similar to the 

one initiated by Woodford (1999) to induce his central banker 

to implement his min-max commitment policy. The policy 

planner solves for parameters of the delegated loss criterion by 

matching his min-max optimal policy with the discretionary 

policy conducted by his central banker. Delegation under 

parameter uncertainty specifies choosing a central bank with an 

output gap stabilization weight of less than one. In comparison 

to delegation without parameter uncertainty, this robust 

delegation can save a loss equivalent to that which results from 

a permanent increase in inflation of 0.06 percentage point from 

target. In addition, the robust delegation is found to dominate 

standard discretionary policy. 
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1. Introduction. 

 

Woodford (1999) starts a vast research program on using delegation to correct for the 

problem of stabilization bias that results from lack of inertia in discretionary policy. However, 

the current literature leaves unexhausted an area of delegation under model uncertainty. This 

chapter  therefore contributes to the literature in this regard.  

I assume in this chapter a New Keynesian economy with three agents: a policy planner, a 

central banker and a private sector. The policy maker is assumed to know the structure of his 

economy but is ambiguous about its parameters. He has a set of econometric estimates of the 

economy's parameters. In contrast, the central banker believes there is no uncertainty and has 

her own beliefs about the parameters. The policy planner would like to control the economy 

using the best policy, which is invariably a commitment one. However, he has to deal with 

two problems. First, facing model uncertainty, he would need to figure out what is the best 

commitment policy he wants under model uncertainty. Second, how should he deliver his 

commitment policy outcome given the fact that his central banker always conducts 

discretionary policy? 

To solve the first problem, I follow a similar approach to  Giannoni (2002, 2007) and  

assume that when faced with parameter uncertainty, the policy planner would like to derive a 

min-max policy that results in the lowest social loss value when the worst-case parameters are 

realized.  With regards to the second problem, the standard approach for the policy planner is 

to design a delegation scheme which induces the central banker to implement the commitment 

equilibrium. The way to solve for the delegation function parameters, for instance in Bilbiie 

(1999), might be to require that the first order conditions of the central’s discretionary 

optimization be the same as the first order condition of the policy planner’s commitment 

optimization. Things become more complicated with parameter uncertainty. This is because  

requiring that first order conditions be identical might be not sufficient for the commitment 

equilibrium to be replicated given the fact that the policy planner and his central banker are 

now being subject to different structural constraints.   

I propose in this paper that to replicate the commitment equilibrium under uncertainty, the 

policy rule that the policy planner would like to conduct in his own economy is required to be 
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the same as the policy rule that the central banker uses to implement her optimal discretionary 

equilibrium. By this requirement, when the central banker conducts her policy, she indeed 

implements the commitment equilibrium. 

There are assumptions that need to be made with the above approach. First, because the 

discretionary equilibrium can be implemented using various policy rules, which means an 

additional requirement for the policy planner’s delegation scheme must be that the  central 

banker chooses only one of them and excludes all other alternatives. Although such a 

requirement can be satisfied with more complexity of the issues to be considered, my 

approach to solve for the problem is to narrow the set of policy rules that the central banker 

can use to a single one by making assumptions on the central bank’s operation. As I make  it 

clear in the later sections of this chapter, by assuming that the central banker stick to a policy 

rule that requires the least operational information, a single policy rule can be identified. 

Second, this delegation scheme however needs a justification for how it can be accepted by 

the central bank. For this reason, I assume that the policy planner may get his central banker 

to use the delegated loss function by signing an appropriate contract with the central banker in 

the sense of Walsh (1995). 

The finding in this chapter is that, with a standard parameterization, delegation under 

parameter uncertainty requires choosing a central bank with output gap stabilization weight of 

less than one in order for the central bank to come up with a single policy rule. In the worst-

case scenario, compared to delegation without parameter uncertainty, this robust delegation 

can save a loss equivalent to that which results from a permanent increase in inflation of 0.06 

percent from the target of zero. Although, robust delegation is found to be worse than non-

robust delegation for almost all of the uncertain parameter values, it is found to dominate the 

standard discretionary policy.  

This chapter is organized as follows. Section 2 briefly surveys the existing literature and 

highlights the main differences with this study. In Section 3 I introduce the concept of 

commitment policies which will be applied in this study. In Section 4 I introduce delegation 

when there is no model uncertainty. This is compared to Section 5 when I introduce a model 

with uncertainty. Here I discuss in detail the min-max policy and the delegation scheme under 
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parameter uncertainty. Finally, in Section 6 I conclude the analysis and summarize the main 

results. 

 

2. Literature review 

This study is related to a large literature on optimal delegation, which includes Woodford 

(1999, 2003), Jensen (2002), Walsh (2003), Vestin (2006), and Bilbiie (2009); robust optimal 

policy by Giannoni (2002), optimal delegation under model uncertainty by Tillmann (2009b, 

2009c); and linear contract by Walsh (1995). It is helpful to split the aforementioned 

delegation literature into two main topics, namely delegation with and without uncertainty. 

For example, Woodford (1999, 2003), Jensen (2002), Walsh (2003), Vestin (2006), Bilbiie 

(2009) analyze delegation problems in economies without parameter uncertainty. In fact, 

these papers are variant mutations of Woodford’s (1999) idea about the superiority of inertial 

commitment policy such as the timeless perspective policy. These papers make use of 

delegation to introduce lagged endogenous variables into the loss function to obtain inertial 

equilibriums, which are as close as possible in term of social welfare, to that produced by the 

timeless perspective policy. Bilbiie (2009) is the first attempt to replicate exactly the timeless 

perspective equilibrium with delegation.  

The study in this chapter is different from the above cited literature in the following ways. 

In relation to the first topic of delegation without uncertainty, I do the same job of introducing 

inertia into discretionary policy by replicating an optimal commitment policy. However, the 

commitment policy to be replicated is the one that minimizes the unconditional loss, and is 

termed by Damjanovic (2008) the unconditionally optimal policy. In the above-mentioned 

papers, inertial policies are all in forms of the well-known “timeless perspective policy" 

initiated by Woodford (1999). With respect to the second topic of delegation with uncertainty, 

studies are rare but include Kilponen (2003), Dennis (2007) and more recently two studies 

undertaken in the New Keynesian framework by  Tillmann (2009a, 2009b).  

Tillmann (2009a) integrates uncertainty into the classical problem of inflation bias in 

discretionary monetary policy. Essentially, he investigates the degree of a central bank's 

inflation conservativeness when facing parameter uncertainty. Tillmann (2009b) studies a 
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similar problem in a setup with additive model uncertainty and follows a robust-control 

method as used in Hansen and Sargent (2003). In  both papers, the central banker is the one  

concerned with  model uncertainty; the best the policy planner can do is to find an appropriate 

banker that can produce an equilibrium that is as close as possible to the commitment one. 

Technically, given a parameter describing inflation conservatism, the central banker finds an 

optimal policy, which is robust against the worst-case scenario. The worst-case equilibrium is 

then solved as a function of the inflation conservatism parameter. This equilibrium is then put 

back into a true social loss function and the inflation conservatism parameter is then varied to 

find the one associated with the lowest true social loss value. The delegation scheme 

conducted this way is named "robust delegation" since it is robust to the parameter worst-case 

scenario. In the sense of Rogoff (1985), these studies are  limited to choosing a central banker 

who has an appropriate level of inflation conservatism to produce the best robust policy 

against model uncertainty.  

This paper is different from Tillmann (2009b, 2009c) in several aspects. I assume that the 

policy planner faces model uncertainty and corrects for the problem of inertia in the  central 

banker’s discretionary policy by designing a delegation scheme to replicate exactly the full 

commitment equilibrium. Technically, to solve for the delegation parameters, I follow a 

process that is actually reverse to that undertaken by Tillman (2009b, 200c). First, the policy 

planer finds a robust commitment policy and then designs a delegation scheme for his central 

bank in a way that induces the central bank to implement the discretionary equilibrium with 

this robust commitment policy. Given the worst-case parameters identified when the policy 

planner solves for the robust commitment policy, the parameters of the delegation loss 

function can be solved for. This approach therefore makes it possible to find the delegation 

parameters analytically, hence it is an advancement compared to Tillmann (2009b, 2009c).  

 

3. The model and optimal commitment equilibriums  

3.1. The model 

In this section, I make use of a simple New Keynesian model which consists of an IS 

equation and a Phillips equation as follows:  
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        1 1

1
[( ) )]


     n

t t t t t t tx E x i E r                 the IS curve                 (3.1) 

       1t t t t tE x u                                    the Phillip curve               (3.2) 

        1t t tu u             
2(0, )t iid           0 1                           (3.3) 

        1  n n

t t tr r           
2(0, ) t iid         0 1                           (3.4) 

 

In the system above, the IS equation (3.1) represents a demand side. The equation is 

derived from log-linearizing the Euler equation of household’s utility maximization problem. 

It relates the output gap with the expected output gap and the real interest rate differential 

which is defined as the difference between the real interest rate 
1

( )
t t t
i E  and the natural 

interest rate 
n

t
r . The Phillips curve, representing a supply side, relates current inflation to 

expected inflation and the output gap. It is derived from the firm’s profit maximization 

problem.  

In (3.1) and (3.2), tx  is the gap between the log-deviation of actual output around its 

steady state and the log-deviation of efficient output around its steady state. Similarly, t  and 

ti  are log-deviations of inflation and short-term interest rate around their steady states. In the 

micro-founded model of the above system,   is positive and is an increasing function of the 

fraction of firms that can change their prices in every period. In the IS curve,   is the 

intertemporal substitution elasticity in the consumer’s utility function. Finally,   is the 

discount rate which is positive and less than one.   

There are two kinds of shock to the economy, the demand shock 
n
t
r  and supply shock 

t
u  

which are assumed to be AR(1) with persistence coefficients of   and   respectively,  t  and 

t are iid processes with zero mean and variance  ,  . In this model, the demand shock can 

be fully offset by interest rate adjustment that matches one-to-one to the shock; however, it is 

the supply shock that brings about fluctuation in output gap and inflation. Here, the demand 

shock is only relevant to setting nominal interest rate when the central bank is assumed to use 

an instrument rule specifying interest rate response that is consistent with the IS equation.  
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To maximize  societal utility the policy planner stabilizes output around its efficient level 

(which in this simplified model is the flexible price level) and around zero inflation. The 

period loss function is defined as: 

                                         
2 2

t t tL x                                                                (3.5) 

in which the output gap weight  is positive and assumed to be chosen by the policy planner. 

In relation to model uncertainty, I assume that   is the only parameter that is uncertain. 

The policy planner has no prior knowledge of the distribution of , however, he has an 

interval of   that is derived from empirical evidence. Although the main focus of the paper is 

on delegation with   being uncertain, for the ease of illustration, I first use the case of 

certainty in Section 4 and then proceed to introduce uncertainty about   in Section 5.  

3.2. Commitment policies. 

This paper’s objective is to analyze how a policy planner can design a delegation scheme 

that will induce the central bank to follow the ‘best’ policy. In this section, I discuss three 

different concepts of ‘best’ policy: the full commitment optimal policy; the timeless 

perspective policy; and the unconditionally optimal policy. All of these concepts assume the 

availability of a commitment technology, which in general implies superior outcomes to 

discretionary policy. I argue that for the purposes of this paper, the last concept is the most 

natural. Therefore I focus on this concept for the remainder of the paper.  

The full commitment optimal policy: 

The policy planner can commit to a policy at initial time t to stabilize the economy. He 

can choose the entire future evolution of the economy once and for all at time t. Formally, he 

commits to an optimal policy to minimize a present discounted loss: 

      
0

t j

t t t j

j

W E L








                                                

subjected to structural constraints (3.1) - (3.4).  

(.)tE  is an expectation operator conditional on information at time t. 

Since the interest rate is not an argument in the loss function, there is no cost involved in 

varying the nominal interest rate. In other words, the IS relation imposes no real constraint on 
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the policy maker and therefore, the multiplier attached to the IS equation must be zero. Also,  

supply shock is exogenous and not a choice variable. The Phillips curve is the only relevant 

constraints.  

The Lagrangian: 

2 2

1

0

1
( ) [ ]

2
     



       



 
     

 
 j

t t j t j t j t j t j t j t j

j

E x x u          

where 
t j  is  the Lagrangian multiplier. The first order conditions are: 

      At time t : 

                            0t t                                                                                 (3.6) 

                          0t tx                                                                                  (3.7)                 

       At time t j  for 1j  : 

           1 0t j t j t j                                                                                 (3.8) 

                     0    t j t jx                                                                           (3.9) 

 

The full commitment optimal policy is time-inconsistent since it implements (3.6) - (3.7) 

at time t and promises to implement (3.8) - (3.9) at time (t + 1) onward. But when (t + 1) 

comes, if the policy maker re-optimizes, he has an absolute motivation to renege on his words 

and implement (3.6) - (3.7) instead. Given this inconsistency, the full optimal policy is not a 

desirable equilibrium concept.  

 

The timeless perspective policy: 

Woodford (1999) recommends a policy, which is optimal from the timeless perspective, 

as a remedy for the problem of time-inconsistency innate in the full optimal commitment 

policy. Its working mechanism is to ignore the first-order conditions in the starting period and 

to therefore act as though the full optimal policy plan has been initiated and activated 

infinitely far in the past. In that way, the timeless optimal policy is formed by first eliminating 

the Lagrangian multipliers in (3.8)- (3.9). The resulting policy: 

                            1t j t j t jx x





          for 1j                                         (3.10) 

is then applied in every period including period t and can be re-written as: 
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                                   1t t tx x





                                                       (3.11) 

By implementing the timeless perspective policy, the policy maker can avoid the problem 

of time-inconsistency imposed by the difference in first order conditions of the starting period 

and in periods after that.  However, by working in this way the timeless perspective policy 

fails to implement the full set of first order conditions making it a sub-optimal policy. The 

sub-optimality of the timeless perspective policy is evidenced, for example, in Blake (2001), 

Jensen and McCallum (2002) and Dennis (2010).  

The unconditionally optimal policy: 

Recently, in the literature of optimal monetary policy, there has been call for a policy that 

is globally optimal and timeless in the sense that it guarantees that the full set of first order 

conditions is implemented and that the policy is optimal "on average", unconditional on the 

time when the policy is evaluated. This type of policy is first mentioned in Taylor (1979), 

Whiteman (1986), and recently by in Blake (2001), McCallum and Nelson (2001), Jensen and 

McCallum (2002). Damjanovic (2008) term this type of policy as unconditionally optimal 

policy and propose that the policy is derived by minimizing the unconditionally expected loss 

criterion.  

Following Damjanovic (2008), I reformulate the Lagrangian  as:  

  

2 2

1, 1

0

1
( ) [ ]

2
      



       



  
       

  
 j

t t j t j t j t j t t j t j t j

j

L E E x E x u              (3.12) 

where (.)E  denotes unconditional expectation operator. 

Here, the loss is evaluated with asymptotic properties of the equilibrium. This requires the 

considering of stationary processes tx   and  t . 

Since unconditional expectation is applied, we have: 

                                    1 1t j t t j t tE E E                                                           (3.13) 

The Lagrangian is reduced to: 
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t t t t t t t tE x x u                                    (3.14)  

The first order condition is therefore: 

               
2, 2, 1 0 





    


t t t

t

L
                                                                         (3.15) 

              
2, 0 


   


t t

t

L
x

x
                                                                                      (3.16) 

After eliminating the Lagrangian multiplier I derive a relation among endogenous 

variables which is termed by Giannoni and Woodford (2003) the optimal targeting rule:  

                                       1t t tx x
 


 

                                                         (3.17) 

The resulting commitment equilibrium can be solved as a solution of a system that 

consists of the rule (3.17), the Phillips curve (3.2) and the shock process (3.3). It can be 

shown that this system results in a unique bounded solution. Indeed, this system can be 

reduced to: 

                     

2

1 1 0
   


   

 

 
       

 
t t t t tE x x x u                   

of which the characteristic equation is: 

   

2
2( )

   
   

   

 
      

 
g                       

Since (1) 0g and ( 1) 0 g , ( )g  has one root inside and one root outside the unit 

circle. 

The equilibrium has the following functional form which specifies tx  and 
t

 as linear 

functions of lagged output gap and the cost shock. 

 

                                               1t x t u tx u                                                  (3.18) 

                                               1t x t u tx X x X u                                                  (3.19) 
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From now on, I consider the unconditionally optimal policy as the desired policy of the 

planner. That is, the policy planner will design a delegated loss function to induce the central 

bank to follow the unconditionally optimal policy. 

 

4. Delegation without parameter uncertainty 

 

In this section, I assume that both the policy planner and the  central banker are certain 

about their economy. However, they each have own belief of    which may or may not be 

identical. To keep  this section consistent with  the next, I denote the central banker and the 

policy planner’s beliefs respectively as CB  and   . 

I now turn to the problem of how to implement the equilibrium (3.18)-(3.19) with 

discretionary policy. The approach here is to have the policy planner delegate to his central 

banker a distorted loss function designed in a way that induces the central banker to replicate 

the commitment policy. This delegation approach is initiated in Woodford (1999, 2003) 

where he shows that by appointing a central banker that cares about the variability of short 

term interest rate and includes in his loss criteria an "interest rate smoothing" objective, the 

policy planner can restore his commitment equilibrium if the weights on the stabilization 

objectives of the delegated loss function are appropriately chosen. When the policy planner 

and the central bank are both certain about their economy, these weights can be solved for by 

requiring that the commitment equilibrium and the central bank’s discretionary equilibrium be 

the same without any concern about by which means these equilibriums are brought about. It 

is understood in this approach that their identical equilibriums must be brought about by 

identical policies. When the policy planner and the central bank have different, potentially 

incorrect, beliefs about , it is easier to simply require directly that their policies are identical. 

This requires that the policy planner and the central bank conduct the same policy and that the 

central bank maintains a certain relation among endogenous variables, and possibly 

exogenous variables, as its policy rule to induce its own discretionary equilibrium. If such a 

mechanism for the central bank is in place, to replicate the commitment equilibrium, the 

policy planner just needs to match this discretionary relation with the optimal policy rule that 

he uses to implement his commitment equilibrium. This approach, however, requires the 
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policy planner to establish the relation and level the central bank is inclined to maintain since 

the discretionary equilibrium can be possibly delivered by various policy relations. I will 

argue later  that if some concern about the transparency and accountability of the central bank 

policy is required, then it is reasonable for the central bank to decide on only one relation 

among the possible ones.  

I now begin with a discussion on some important aspects of the delegation approach. 

Technically, given a linear-quadratic framework, this approach simply requires that the same 

set of state variables in the commitment equilibrium be included in the delegated loss 

function. I propose that the policy planner delegate the following loss function:  

                           2 2

1 1

1
( )

2

B

t x t t xx t t x t tL x x x x                                    (4.1) 

In (4.1), x  is generally different from  in the true loss function. 

One way to think about this delegated loss function is as if the planner offered a contract 

to the banker that specified payment according to (4.1). The contract design requires the 

policy planner to identify the delegation parameters [ , , ]x xx x    as functions of the 

structural parameters. 

Given the fact that the central bank minimizes the loss value, the lambda coefficients need 

to be chosen so as to satisfy the second order condition for a minimum. In addition, the 

lambda coefficients needs to assure the central banker’s unique bounded discretionary 

equilibrium. 

Finally, although a robust commitment policy is derived from optimization on an 

unconditional loss criterion, the delegation plan does not require the central bank to undertake 

discretionary optimization from the unconditional perspective.  The central bank is instead 

hired to replicate the policy planner’s optimal policy rule. 

In this section, I describe the problem of a central bank that has no commitment 

technology. I show that the discretionary (no commitment) equilibrium can be induced if the 

central bank follows a policy rule that maintains a given relationship of some endogenous 

variables. I organize the discussion into four main parts. The first part describes the central 
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banker’s problem and her policy action. This can be considered as describing a planning 

process when the central banker plans on what should be the optimal equilibrium given her 

delegated loss criterion and any constraint that might be imposed by the structure of the 

economy. In the second part, I discuss an implementation process when the central banker 

conducts a policy rule to realize what he has optimally planned.  For ease of illustration, this 

section can be thought of as describing an alternative economy where the central bank’s 

monetary policy is to maintain a policy rule, a given linear relationship of some selected 

endogenous variables. I then argue for some desired aspects and a particular form of the rule 

that should be maintained. This boils down to a parameterization of a linear relation with two 

coefficients. The equilibrium in this economy is derived given any pair of these coefficients. 

In the third part, I address the question of how to implement the optimal discretionary 

equilibrium. Here, I define what is meant to be implementable; then I show that the optimal 

discretionary equilibrium can be implemented through the appropriate choice of policy rule 

coefficients. In the last part, I show how to solve for the lambda coefficients though  the 

simple requirement that the policy rule maintained by the central banker be equal to the 

planner’s optimal targeting rule. I also construct a region for the lambda coefficients that 

guarantees the discretionary optimum  be a minimum and unique.  

 

4.1.Discretionary optimal equilibrium. 

The central bank’s optimization problem: 

As already discussed at the beginning of this section, the central bank is delegated with a 

period loss function of the form (4.1). Here the discretionary optimization is fitted in a 

standard dynamic programming problem. The central bank’s value function needs to satisfy 

the following Bellman equation:  

2 2

1 1 1 1
{ , }

1
( , ) min ( ) ( , )

2



        

 
     

 t t
t t x t t xx t t x t t t t t

x
V x u x x x x EV x u            (4.2) 

 

subject to the  Phillips curve and the supply shock process:            

                                              1( , )     CB

t t t t t tE x u x u                                     (4.3) 

                                                1  t t tu u   
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In this setup, to find the optimal decision today, the central banker needs to surmise the 

possible optimal policy decision function that might result from her successor’s optimization 

and make optimal decisions consistent with her guess. Then the discretionary equilibrium 

requires that each central banker arrives at the same policy function as the successor one. 

Since the state variables in the optimization problem include the lagged output gap and 

cost shock, one could assume that the future optimal inflation and output gap are some 

functions of these variables. In addition, since the optimization problem is linear-quadratic, 

one could further assume that these functions be linear. Working within these assumptions, it 

is reasonable for the central bank to guess that its successor will follow policy functions of the 

following form: 

                                                 1 1( , )t t x t u tx x u X x X u                                       (4.4) 

                                                       1 1( , )t t x t u tx u x u                                       (4.5) 

 

Given (4.4)-(4.5) the central bank restricts its optimal decision that results from current  

optimization to a policy which explicitly responds  linearly to 1tx   and tu . 

Using the guess in (4.5), the central bank can transform (4.2) into a one-variable 

optimization problem by first substituting (4.5) into (4.3), and then making t  a function of 

tx  and tu :                

                                               ( ) ( 1)        CB

t x t u tx u                              (4.6) 

and then substituting (4.6) into the bracketed expression in (4.2).  

 

Taking the first order derivative with respect to tx , the central bankers can derive the 

F.O.C: 
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1
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( ) ( ) ( 1)

( , )
( ) 0
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x t x x t u t xx t

CB t t
x x t t

t

x x u x

V x u
x E

x

                   (4.7) 

To deal with the expectation derivative,  the  Envelop theorem can be applied as follows:  

                                      1

1

( , )t t
xx t x t

t

V x u
x

x
  




 


                                         (4.8) 
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 Then moved (4.8) up one period as follows: 

                                   1
1 1

( , )t t
t xx t t x t t

t

V x u
E E x E

x
  

 


 


                                (4.9)                            

Again, making use of the guess (4.4) and (4.5): 

                 1( , )t t
t xx x t u t x x t u t

t

V x u
E X x X u x u

x
   

     


                        (4.10) 

Substituting (4.10) into (4.7) and rearranging, the F.O.C  at equilibrium becomes: 
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              (4.11) 

 

The central bank policy function for tx  can then be solved from (4.11) as follows: 

                                            1

CB CB

t x t u tx X x X u                                                (4.12) 

In which: 
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X
         (4.12.2) 

Substituting (4.12) into (4.6), the policy function for t  can be solved as: 

                                         1

CB CB

t x t u tx u                                                   (4.13) 

In which:                     

                                      
( )CB CB CB

x x xX                                              (4.13.1)                                                                                                           

( ) ( 1)        CB CB CB

u x u uX                            (4.13.2) 

For the central bank’s policy functions to be consistent with those that are conjectured to 

be derived by the successor, 
CB

xX  , 
CB

uX , 
CB

x , 
CB

u  in (4.12) and (4.13) are required to be 
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the same as xX  , uX , x , u . This results in a system of four equations to solve for xX  , 

uX , x , u : 

   
2

( )

( )





   

    

   
  

      

CB

xx x x
x CB

x x xx x x x

X
X

                             (4.14) 

           
2

( )( 1)

( )





    

    

       
  

      

CB

x u xx u x u
u CB

x x xx x x x

X
X

X
                    (4.15) 

             ( )CB

x x xX                                                                                    (4.16)                                                                       

             ( ) ( 1)        CB

u x u uX                                                         (4.17)        

                                                 

We first solve for xX  by deriving x  as a function of xX : 

                                                      
1




 



CB

x
x

x

X

X
                                                      (4.18) 

Substituting (4.18) back into (4.14):  

                        
2

1

1 1






   



 
    

 

  
   

    
                

CB
CBx

xx x

x

x
CB CB

CBx x
x xx x x

x x

X

X
X

X X
X

X X

      (4.19) 

Rearranging (4.19), a quartic equation in xX is derived: 

              
4 3 2 0x x x xAX BX CX DX E                                                   

in which:                                
3

xxA                        

                                               
2 2 2( 2 2 )         CB

x xx xB  

      
2( 2 )        CB

xx x xx xC  

             
2

( )          CB CB

xx x xx xD  

                                              ( )     CB

xx xE  

Since
CB

x xX X , the above equation can be rewritten as: 

       
4 3 2

0CB CB CB CB

x x x xA X B X C X D X E                    (4.20) 
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Uniqueness of the discretionary equilibrium:  

 

The determinacy condition requires that the lambda coefficients need to be chosen so that 

(4.20) has only one root in (-1,1). I will tackle this problem in two steps. First, I will show that 

through the use of 
CB

xX  , 
CB

uX , 
CB

x , 
CB

u , one can always construct a set of the lambda 

coefficients so that (4.20) has a root between (-1, 1). In the second step, I search (numerically) 

within that set for those lambda coefficients that make the root between (-1, 1) unique. 

Indeed, suppose for the moment that a set of
CB

xX  , 
CB

uX , 
CB

x , 
CB

u  in which 1CB

xX   

is given,  one can plug them back into (4.14) and (4.15) to solve for the appropriate lambda 

coefficients. Since (4.14)-(4.15) is linear in the lambda coefficients, there is always a system 

of two equations with three unknown coefficients, which generically results in a solution for 

the lambda coefficients.  

Now we come to the problem of whether the set of lambda coefficients just solved for 

guarantees that the set of 
CB

xX  , 
CB

uX , 
CB

x , 
CB

u  are unique. This boils down to the 

requirement that the equation (4.20) has only one root in (-1, 1). This can possibly be 

undertaken given the fact that we are solving for three lambda coefficients using two 

equations. We can try to use the free coefficient in order for this requirement to be met. 

Because the set of lambda coefficients also needs to satisfy the second condition for a 

minimum, we then need to choose the free lambda coefficient so that it satisfies both of these 

restrictions. I will postpone the detailed derivation of the range for the free lambda and thus 

the set of the lambda coefficients until I finish with showing what is the desired set of 
CB

xX  , 

CB

uX , 
CB

x , 
CB

u   in the following sections. 

Now suppose that the lambda coefficients were appropriately chosen so that (4.20) always 

has only one root in (-1, 1). This guarantees a unique equilibrium for the discretionary 

optimization. Substituting 
CB

xX  into (4.18), we can solve for
CB

x . Substituting the solved 

CB

xX  and 
CB

x  into (4.15) and (4.17) we can solve for 
CB

uX  and 
CB

u . 

At this point, we have solved for the central bank policy functions as follows: 
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1

CB CB

t x t u tx X x X u                                                               (4.21) 

1

CB CB

t x t u tx u                                                                 (4.22) 

 

 

4.2. Implementing the discretionary equilibrium through a policy rule. 

 

Now I turn to the implementation of the discretionary equilibrium. Consider an economy, 

characterized by the structural Phillips curve. To stabilize the economy, the central banker 

maintains a given linear relationship among endogenous variables. Here, I restrict  the policy 

rule that the central bank aims to maintain based on  some desired features. To support the 

transparency and accountability of the central bank to the public, the first restriction is for the 

policy to require the least information for its implementation. Second, the policy rule, when 

being announced, must uniquely determine the optimal discretionary policy function as the 

equilibrium outcome. 

The first restriction rules out those rules that involve expectations of endogenous variables 

as well as exogenous shocks that are practically unobservable. Since the discretionary policy 

functions involve only the lagged output gap and cost shock, it is reasonable for the central 

bank to maintain a rule that specifies a relationship of endogenous variables in the following 

form:  

                                    1 1 0t t tx x                                                     (4.23) 

in which   CB

0 1,   , the set that guarantees a unique bounded equilibrium. 

tx , t   are determined by solving the system:    

                                             1 1 0t t tx x                                                      (4.24) 

                       1     CB

t t t t tE x u                                       (4.25) 

with the shock tu   defined by (3.3). Since the predetermined variables are now 1tx   and tu , 

we are looking for a solution in which tx  and t are linear functions of 1tx   and tu . 

Substituting (4.24) into (4.25), and rearranging, this results in an expectation first order 

difference equation for tx as follows: 

                      0 1 1 0 1 1 0          CB

t t t t tE x x x u                       (4.26) 

of which the characteristic equation is: 



 

52 

 

                         2

0 1 0 1( )           CBf                                      (4.27) 

 

Since the relation (4.24) is required to result in a determinate solution, the equation (4.27) 

needs to have one real root inside the unit circle and the other one outside the unit circle given 

the fact that (4.26) has only one predetermined variable. Since   CB

0 1,   , (4.27) has two 

real roots: 

                                                     1 1   and 2 1  .                                                 (4.28) 

To solve (4.26), I decompose (4.27) as follows: 

 

          2

0 1 0 1 0 1 2( )( )                 CB
 

                                        
2

0 0 1 2 0 1 2( )                                          (4.29) 

 

With (4.29), equation (4.26) can be rewritten as: 

 

        0 1 0 1 2 0 0 1 1t t t t t tE x x x x u             

Or                               0 1 0 1 2 0 0 1 1t t t t t tE x x x x u                    

 

Rearranged: 

          0 0 1 1 0 1 0 1

2 2

1 1
t t t t t tx x E x x u     

 
                        (4.30) 

 

Denote  0 0 1 1t t tz x x      and solve (4.30) forward with tu being an AR(1) process: 

 

                 
1

12 2 2

1 1 1
j k

j
k

t t t j t t

k

z E z u u
   







      
        

       
                

                                                                                                                                           

or                                   
 0 0 1 1

2

1
t t tx x u  

 
 


                                

 

The stationary solution for tx  is derived as: 

                  
 1 1

0 2

1
t t tx x u

  
 


                                            (4.31)                                                  

 

The solution for t is derived by substituting tx  into (4.24): 
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 1 1 0 1 1

0 2

1
t t t tx x u   

  
 

 
     

 

                                    
 1 0 1 1

2

1
  

  
  


t tx u                             (4.32)                

Note that the equilibrium is stationary since  1 1  . 

 

Denote:    

1

D

xX  ;                   
 0 2

1D

uX
  




  

                                        1 0 1

D

x      ;        
 2

1

  
 



D

u  

 

The solution for system (4.24)-(4.25) can be rewritten as: 

               1

D D

t x t u tx X x X u                                                                           (4.33) 

                   1

D D

t x t u tx u                                                                             (4.34)                                                            

I consider the discretionary equilibrium to be implementable with the central bank 

maintaining the policy rule (4.24) if the unique equilibrium stochastic processes (4.33)-(4.34) 

that are consistent with (4.24)-(4.25) are the same as the stochastic processes that might be 

generated by policy functions (4.21)-(4.22).  Since (4.33) and (4.34) have the same functional 

form as (4.21)-(4.22), if the coefficients in (4.21)-(4.22) are the same as those in (4.33)-(4.34), 

the stochastic processes of tx  and t that can be generated from both systems are the same if 

both systems start with the same initial value tx  and are hit by the same sequence of 

stochastic shock tu . We therefore consider the discretionary equilibrium implementable  

(4.24) if: 

                         

D D CB CB

x u x u

D D CB CB

x u x u

X X X X   
   

      
                                          (4.35) 

 

I now propose that if the relation (4.24) is derived following a procedure of eliminating tu

in (4.21)-(4.22) then (4.35) must hold. Indeed, by eliminating tu from (4.21)-(4.22), the 

relation (4.24) is determined in a particular form as: 
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1 0

1

 

 

    
      
   

CB CB

CB CB
CB CBu u

t x x t tCB CB

u u

X x x
X X

                                      (4.36) 

 

If the policy relation (4.36) is maintained, tx  and t  are determined by solving the system 

(4.36) and (4.25).  

 

Suppose that the lambda coefficients are chosen so that the policy function coefficients 

results in  0 1, CB CB
 that belongs to the set 

CB . It is obvious that the policy functions 

(4.21), (4.22) satisfy (4.36) by definition. In addition, the policy functions (4.21), (4.22) have 

to satisfy the central banker’s Phillips curve. This implies that the policy functions are a 

solution of the system consisting of the Phillips curve (4.25) and the policy relation (4.36). 

This is also the unique solution since    CB

0 1,  CB CB
  the set that guarantees a unique 

bounded solution. 

 

4.3. Solving for the lambdas  

In Section 3, we showed that the optimal targeting rule that the planner wants to use is 

given by (3.17). In Section 4.2, we showed that the central bank operating under discretion 

and with the delegated loss function (4.1) will choose the targeting rule (4.36). This targeting 

rule has coefficients which depend on the weights in the delegated loss function. In this 

section, we analyze how the planner could choose these weights so as to make (4.36) the same 

as (3.17).  I follow three steps to solve for the weights. First, I solve for the discretionary 

equilibrium coefficients
CB

xX , 
CB

x ,
CB

uX ,
CB

u  by requiring the rule (4.36) be the same as the 

optimal targeting rule (3.17) if the commitment equilibrium is to be replicated by the central 

bank; I then solve for the coefficients using  systems (4.36) ,(4.25). In solving this system, I 

first show that if the central bank policy rule is chosen in this way, then   CB

0 1,  CB CB
. 

The solved coefficients
CB

xX , 
CB

x ,
CB

uX ,
CB

u can then be substituted back into equations 

(4.14)-(4.15) so as to derive a linear system of two equations with three unknowns, the 

lambda coefficients. To solve for the system, one lambda coefficient needs to be exogenously 
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imposed. I choose x  as the lambda to use. In the last step, I find a range of x  so that the 

second order condition for a minimum is satisfied. I then search within that range for those 

values of x that guarantee a unique root of (4.20) in (-1, 1).  

Step 1:  The rule (4.36) is the same as the optimal targeting rule (3.17) if their coefficients 

are identical: 

                                              1 0, ,
 

 
 

 
  
 

CB CB                                                   (4.37) 

For the solution of system (4.36),(4.25) to be determinate, ,
 

 

 
 
 

 must be in the set 
CBΦ . 

Technically, the characteristic equation (4.27) with 1 0,  being replaced by ,
 

 

 
 
 

 

should have one root inside and one root outside the unit circle. Replacing  1 0( , )   with 

,
 

 

 
 
 

 in (4.27) we obtain:  

2
2( )

   
   

   

 
      

 

CBf  

It can be seen that (1) 0f   and ( 1) 0f    so that ( )f   always has one root inside and one 

root outside the unit circle. This means that ,
 

 

 
 
 

 is always in 
CBΦ . 

Step 2: Now I suppose that x  is chosen exogenously. As a result, the two equations 

(4.14)-(4.15) become a linear system with two unknowns, the xx  and  x . Coefficients of 

the system are ( x ;
CB

xX , 
CB

x ,
CB

uX ,
CB

u ).  I solve for these two unknowns as linear 

functions of ( x ;
CB

xX , 
CB

x ,
CB

uX ,
CB

u ). Denoting these two functions: 

 ; , , ,    CB CB CB CB

xx xx x x u x uX X                                         (4.38) 
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 ; , , ,     CB CB CB CB

x x x x u x uX X                                      (4.39) 

Step 3: I now going to find the range of x that satisfies the second order condition for 

minimization. Taking the derivative of the F.O.C (4.11) with respect to tx , and replacing xX

,  x , uX ,u in the expression with 
CB

xX , 
CB

x ,
CB

uX ,
CB

u , we have: 

                      
2( ) 0CB CB CB

x x x x xx xX                                                 (4.40) 

Since  xx  and  x   are linear in x , it is easy to solve (4.40) for an inequality that specifies 

a range for x . Compactly denoting the range as:      

                                 ( ; , , , , , )     CB CB CB CB

x x x u x uR X X                                  (4.41) 

 

where (.)R is a function of ( ; , , , , , )    CB CB CB CB

x x u x uX X . 

 

The system (4.41) and (4.38)-(4.39) defines the set of the lambda coefficients that 

guarantee the discretionary optimum is the minimum. I now look in this set for those values of 

the lambda coefficients that guarantee (4.20) is the unique root in (-1, 1). Again, using (4.38)-

(4.39) to substitute out xx  and x  in the coefficients  , , , ,A B C D E  of (4.20), the function 

in (4.20) can be rewritten as: 

                 
4 3 2( ) ( ) ( ) ( ) ( )CB CB CB CB CB

x x x x xF X a X b X c X d X e                            (4.55) 

in which a, b, c, d, e are functions of x only. 

At this point, I can numerically vary x  in the range defined by (4.41) to see if we can 

find those values of x  for which ( )CB

xF X  has only one root in (-1, 1). For an illustration of 

the computed threshold of x that is determined by (4.54), I choose the following 

parameterization with 0.99   which is standard in the literature: 0.35  closed to the 

baseline value in Tillmann (2009a), and 0.075  CB
 which is consistent with the 

value in Robert (1995) 
2
 . The threshold is calculated to be equal -0.2721. 

                                                 
2
 In most of parameterizations in the literature, authors report  values larger than the estimate in Woodford 

(1999) that I use in Chapter 1. For example, 0.05   in Walsh (2003), 0.1  in Jensen (2002), 0.2   in 
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I show in Figure 3.1 and Figure 3.2 the graphs of (.)F  with different values of x  that 

have been used by Roberts (1995), Jensen (2002), Walsh (2003), McCallum and Nelson 

(2004), among others. These values range from the use of a central banker who places very 

little weight on stabilizing output to one for whom output stabilization is the main priority. All 

of the values of x are positive and thus the second condition is satisfied. The resulting values 

of xx  and x  are presented in Table 3.1. In Figure 3.1, the equation   ( ) 0CBF X   has only 

one root in (-1,1) when 0.01
x
   and 0.25

x
  . Figure 3.2 shows that   ( ) 0CBF X   has 

more than one root in (-1,1) when 1
x
   and 10

x
  .  

 

x  0.01 0.25 1 10 

xx  0.5622 0.4062 -0.0815 -5.9333 

x  -1.3750 -1.3018 -1.0732 1.6702 

 

Table 3-1. Calculated values for xx  and x
 

 

 

 

 

 

 

                                                                                                                                                         
Christiano, Eichenbaum & Evans (2005),  0.15   in Surico (2008). The value provided in Robert (1995), 

0.075   , is somewhere in the middle of the reported range.  



 

58 

 

 
 

 

Figure 3.1. ( ) 0CB
x

F X   has only one root in (-1,1). 
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Figure 3.2. ( ) 0CB
x

F X   has more than one root in (-1,1). 
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5. Delegation under parameter uncertainty 

 

In this Section, I assume that the policy planner knows the structure of his economy but is 

ambiguous about one parameter of the economy, the   of the Phillips curve. He does not 

even know the distribution of this parameter, he just has an estimated interval [ , ]. 

However, the central banker still believes in CB . 

I first discuss what should be the policy action of the policy planner under parameter 

uncertainty. The discussion entails a new definition of the policy planner’s problem when 

parameter uncertainty exists; the resulting definition of an optimal policy however,  turns out 

to have the same functional form as the optimal targeting rule under no parameter uncertainty. 

I then derive the optimal policy explicitly following a method proposed by Giannoni (2002). 

In the rest of the section, I show that delegation under parameter uncertainty is no different 

than delegation without uncertainty except that the optimal targeting rule is replaced by its 

robust version.   

5.1. The policy planner’s problem under uncertainty. 

When   can assume any value in [ , ], the policy planner no longer knows for sure his 

policy transmission mechanism, the Phillips curve. He will not know which tx  and t  might 

be realized. As a result, the planner’s problem can no longer be defined as a minimization 

problem in which the planner is able to choose tx  and t  directly. Another way to view it is 

that it is now impossible for him to specify a domain of stochastic processes tx  and t  over 

which he optimizes, simply because there is no such tx  and t  processes that are able to be 

consistent with more than one Phillips curve. In such a circumstance, what the planner can do 

at most is to choose, in some best way, a policy rule that produces tx  and t . If such a policy 

is in place, the policy planner's problem can be re-defined by shifting the domain of his 

minimization from a space of stochastic process to a space of the parameters that characterize 

the policy and by re-defining the objective function accordingly.  

The question now is what should be the functional form of the policy for which the 

planner would like to derive a best version. As argued in the previous section, in order to 
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induce the central bank to replicate the commitment equilibrium, the planner must match his 

policy rule with the policy relation maintained by the central bank. Since the central bank is  

not faced with parameter uncertainty, he must always maintain the same policy relation as 

specified by (4.23). Consequently, under parameter uncertainty, the functional form of the 

policy that the planner is seeking should be the same as (4.23) which is the same functional 

form as the optimal targeting rule. With things so set up, the whole idea now is that if the 

optimal targeting rule replicates the unconditionally optimal plan then the desired optimal 

equilibrium under parameter uncertainty is the one brought about by conducting a best policy 

rule for some criterion, which has the same functional form as the optimal targeting rule. If 

things can be conceptually thought of in this way then the planner’s problem under parameter 

uncertainty can simply be defined as finding such a best targeting policy rule. His optimal 

plan is then defined as the outcome of conducting this policy rule. 

Now I turn to specify the criterion for the best policy under uncertainty. Following 

Giannoni (2002) which is based on the result of Giboa and Smeidler (1989), I assume that 

when the policy planner has no prior on uncertainty, he chooses a min-max strategy, finding a 

robust policy that attains the lowest loss value if    realizes its worst value. 

Given the above argument, in what follows I construct the planner’s problem. First, I 

restrict the planner’s policy to a class of policy rules that have the same functional form as the 

optimal targeting rule when parameter uncertainty does not exist. In this step, the domain of 

choice over which the policy planner optimizes is the set of those parameters that characterize 

the policy. With the policy rule is in place, I re-define the objective function. I do this through 

transforming it from a function of the stochastic process tx  and t  into a function of the 

policy rule parameters and  . In the last step, I define what should be the robust targeting rule 

and the resulting equilibrium under uncertainty. 

The proposed targeting policy rule now is generalized into the following form: 

                        1 1 0t t tx x                                                      (5.1) 

in which 
P

0 1( , ) Φ    a set of policy parameters that guarantees the planner a unique 

bounded  equilibrium for all  [ , ].    
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Consider the system consisting of the rule (5.1) and the Phillips curve (5.2): 

                                0 1 1t t tx x                                                                          (5.1)  

                                1t t t t tE x u                                                                (5.2) 

Substituting (5.1) into  (5.2) and rearranging: 

                       0 1 1 0 1 1 0t t t t tE x x x u                                                (5.3) 

(5.3) has its characteristic equation as: 

                           2

0 1 0 1( )f                                                          (5.4) 

Since (5.3) has one predetermined endogenous variable, it has a determinate solution only 

when (5.4) has one root inside and one root outside the unit circle for all [ , ]. Denoting 

1 1   and 2 1  , then by the same process that (4.31) and (4.32) are solved for  in 

previous section, the unique bounded solution of (5.3) is solved for as follows: 

                         
 1 1

0 2

1
t t tx x u

  
 


                                                      (5.5) 

                          

 
 1 0 1 1

0 2

1
t t tx u   

  
  


                                         (5.6) 

I now transform the loss function into a function of the policy parameter 
0 1

( , )  and  . 

Recall that the policy loss function has the form:  

         2 2 2 2

0

1
( ) [ ] [ ]

1
    





 



 
    

 
 j

t t j t j t t

j

L E E x E E x                   (5.7)               

Since 1  and 2  are function of 0 1( , )    and  , the unconditional variances of  tx  and t  

are derived as functions of   and  .
3
  

Denote:                                             

                                                          
2 2[ ] X( , )  t uE x                                                   (5.8) 

                                              
2 2[ ] ( , )   t uE                                                   (5.9) 

                                                 
3
 See Appendix for the detailed derivation of (5.10) 
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2

u  is the unconditional variance of the shock tu  

The loss function can be rewritten as:  

                                
2

21
( , ) X( , ) ( , )

1 1


       

 
   

 

u
uL L                    (5.10) 

Minimizing (5.7) is now equivalent to minimizing ( , ) L . With (5.10), the policy planner’s 

problem can be re-defined using  the following definitions: 

(i) The robust optimal targeting rule is characterized by a vector 
P   that solves:  

                             
P [ , ]

,maxmin
  

 


 
 L                                                    (5.11) 

 (ii) The optimal equilibrium under parameter uncertainty is the unique bounded solution of 

the system:  

                              
* * * *

0 1 1( ) ( )      t t tx x                                               (5.12)     

                             1t t t t tE x u                                                         (5.13)                                                                                                

 

in which  * * * *

0 1( ), ( )    solves the policy planner’s problem in (5.11) 

 

5.2. Optimal policy under parameter uncertainty 

The policy planner now faces a problem of how to choose 
P

0 1( , ) Φ    to minimize 

(5.11). We may solve the min-max problem (5.11) directly analytically or we can numerically 

search over   and   for an optimal pair of  * *,  . In both of these approaches, 

complication may arise given the complexity of the loss function  , L . There is an easier 

approach however, in which we see the policy planner’s problem as a two-player zero-sum 

game between the policy planner and Nature. In this case the policy planner chooses a policy 

to minimize his social loss while Nature chooses the parameter   to maximize his loss. If a 

Nash equilibrium exists, then the max-min equilibrium and min-max equilibrium are 

identical. We can solve indirectly for the min-max equilibrium by first solving for the max-
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min equilibrium and then verifying that at the max-min solution, a Nash equilibrium exists. 

This idea can be structured using the following steps. 

Step 1: Solve the policy maker constrained minimization problem to find a rule 
*( )   

that minimizes the loss (5.10) for a given parameter [ , ]. We then have a policy 

planner's  best response function 
*( )  .  

Step 2: Nature’s best response is found by discretizing the [ , ] interval and finding the 

result for 
*  that maximizes  ( ),L    . If the optimal    is 

* , the policy maker’s best 

response is fixed at  * *  . I now have a candidate Nash equilibrium 
* * *( ),     .  

Step 3: Check that the candidate NE is actually a NE equilibrium by verifying that there is 

no [ , ] such that:   

                              * * * * *( ), ( ),      L L                                      (5.14) 

Application in this model: 

Step 1: In this step the policy planner’s best response function is shown to be exactly the 

same as the optimal targeting rule. For the ease of illustration, I consider separately two 

problems. In the first problem the policy planner chooses stationary processes  t jx 
 and 

 t j 
to minimize the unconditional loss (5.7) subject to a Phillips curve that is characterized 

by any [ , ]   . In the second problem, the policy planner conducts a policy rule of the 

form (5.1), and finds the optimal coefficients   that minimize the loss (5.10). I then show that 

the two problems are equivalent in the sense that the optimal equilibrium derived in the first 

problem is the same as that of the second problem. Consequently, the policy rule that solves 

the second problem must be the same as the optimal targeting rule.   

Original problem 1: The policy planner solves his original problem: 

 

                     
 

2 2

,
0

1
min ( )

2t j t j

j

t j t j
x

j

E x


  
 



 



                                                  

                        s.t: 1t t t t tE x u                                                            
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As shown in Section 3, the above problem results in the optimal targeting rule (4.18) which I 

rewrite as:     

                                                    1t t tx x
 


 

                                                  

The equilibrium is the unique bounded stationary solution of the system (3.1) and (3.17): 

 

                                                     1t t t t tE x u                                                      

                                                     1t t tx x
 


 

                                                                    

 

which has the form of (3.18)-(3.19): 

                                                           1t x t u tx u    

                                                        1 t x t u tx X x X u                                              

 

Alternative problem 2:  

An alternative approach for the policy planner is to find an optimal policy rule of the form 

(5.1) to minimize the loss (5.11): 

 min ( , )L


 


 

in which    is the set of  that guarantees determinacy for a given  . 

Suppose the rule is characterized by 
* *
0 1

( ( ), ( ))    . The equilibrium is solved from the 

system that consists of the optimal rule and the Phillips curve: 

                                                        
* *

0 1 1( ) ( )      t t tx x                                             (5.15)  

                                          1     t t t t tE x u                                               (5.16) 

 and has the form: 

 1  R R

t x t u tx u                                                      (5.17) 

  1 R R

t x t u tx X x X u                                                      (5.18)             

 

Problem 1 and 2 are considered equivalent if : 

 

                
      

   
   

R R

x u x u

R R

x u x uX X X X
                                             (5.19) 
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It can be shown that (5.19) always holds. As demonstrated in the end of section 3, the 

system [(3.2) - (3.17)] has unique bounded stationary solutions of the form (3.18)-(3.19). This 

means that ,
 

 

 
 

 
. Since (3.18)-(3.19) is the unique solution to (3.2)-(3.17), (5.17)-

(5.18) is the unique solution to (5.15)-(5.16), and each targeting rule of the given functional 

form is uniquely determined by its system solution, then (5.19) holds only if 

 * *

0 1, ( ), ( )
 

   
 

 
 

 
.  

Step 2:  Find Nature’s best response. In this step, Nature’s best response can be found 

numerically by discretizing the [ , ] interval and finding the value for 
*  that maximizes

 *( ),L     . The numerical exercise, as presented in Fig 3.3, indicates 
*  . 

Step 3:  Verify the Nash equilibrium. If Nature’s best response is fixed at 
*  , then the 

policy maker’s best response is fixed at 
*( )  . We now have a candidate Nash equilibrium 

*( ),     . We then need to verify that this candidate is actually a Nash equilibrium by 

verifying that  is actually Nature’s best response.  Figure 3.4 graphically represents (5.14) 

and confirms that a Nash equilibrium exists at
*( ),      . 

The above steps derive the robust targeting rule as represented by:   

 

                                 1

 


 
 t t tx x                                                         (5.20)  
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Figure 3.3. Finding Nature’s best response 

 

Figure 3.4. Nash equilibrium verification 

 

 

It can be noted that the worst-case value for   here is at the lower bound of the   

interval, which is opposite to what we derive in Chapter 2. A possible explanation is that, 

given the output gap being his policy instrument in the model, the policy maker will see his 

policy become more ineffective if   become smaller because now a given reduction in 

inflation requires the policy maker to sacrifice more output. In Chapter 2, nominal interest 

rate is the policy maker’s instrument. It is optimal for nominal interest rate to response more 

than one-to-one to demand shock, output gap is contracted to become negative. In the Phillips 
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curve, since the positive effect of nominal interest rate dominates the negative effect of output 

gap, higher values for   imply more variation in inflation and maximum   is considered the 

worst-case value. 

 

5.3. Robust policy vs. non-robust policy 

This section is concerned with the question of how good the robust policy is, in 

comparison with the non-robust policy. We consider here the first situation whereby the 

policy planner takes his central banker’s belief about the value of  as the true value. In other 

words, he is ignorant of the fact that the true   value can be anywhere in the   interval. In 

such a situation, there is no need for a robust policy. I denote the policy rule in this situation 

as the benchmark one 
b with a corresponding loss function

bL  . I then compare the loss value 

when the policy planner sticks to his robust policy against the case when he just uses the 

benchmark policy rule. The comparison exercise is presented in Fig. 3.5 whereby  the ratio of 

robust loss to benchmark loss is denoted by  *

b
L

L
. As shown in the figure, if the worst-case 

occurs, the loss value brought about by the robust policy is just 95 percent of the loss that 

results from the non-robust policy. Similar to what is done for Chapter 2, I show in the lower 

panel of Fig 3.5 the inflation equivalent measure. With reference to its formulation already 

presented in Chapter 2, the inflation equivalence is computed as: 

 
*  eqv b

u L L  

where 
2 u  is the supply shock variance.  
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Figure 3.5. Commitment robust policy vs. commitment non-robust policy                            

 

It can be seen that in the worst-case situation, if the non-robust policy is used instead of 

the robust one, the extra loss  *bL L is equivalent to a loss that results from a permanent 

increase in inflation of 0.06 percentage point. However, for the majority of  values from 

minimum to maximum  , the robust policy fails to dominate the benchmark one. 

There may arise the question of whether or not the robust commitment policy is better 

than the standard discretionary policy when the central banker minimizes the true social loss 

function with her own belief about the   value. It is obvious that in the situation of no 

uncertainty, the standard non-inertial discretionary policy is always dominated by inertial 

commitment policy. However, this might no longer hold true when the commitment policy is 

based on a belief about a worst-case   value, which is not necessarily the true   value.  

Figure 3.6. shows on the upper panel the ratio  *

dL
L

, the robust loss when the robust 

commitment policy is implemented compared to the discretionary loss when the standard 

discretionary policy is implemented with a benchmark CB  belief.  The inflation equivalent 
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measure is shown on the lower panel. This exercise shows how  the robust commitment 

policy always dominates non-robust non-inertial discretionary policy making. In the worst-

case scenario, the non-robust discretionary policy results in an extra loss equivalent to that 

caused by a permanent increase of inflation by around 0.135 percentage point. 

 

 

Figure 3.6. Commitment robust policy vs. discretionary non-robust policy 

 

5.4. Delegation under parameter uncertainty 

 

To solve for the lambda coefficients, I follow the same process that I perform in the case  

of delegation with no parameter uncertainty. I first match the robust targeting rule (5.20) with 

the policy relation (4.23) that is maintained by the central bank.  

                                              * *

1 0, ,
 

 
 

 
  
 

                                    (5.21) 
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The central bank's policy functions coefficients are then derived from a system of 

equations that has the same form as the system  (4.24)-(4.25). I then  verify that ,
 

 

 
 
 

 

belongs to 
CBΦ , the set that guarantees the central bank a unique bounded equilibrium when 

the central bank Phillips curve is characterized by its own belief of . However, as long as 

P, Φ
 

 

 
 

 
 then , Φ

 

 

 
 

 

CB
  since 

PΦ  is the set that guarantees unique bounded 

equilibrium for any [ , ]   .  

I choose [ , ] [0.05,0.15]    from a survey of parameterizations in Walsh (2003) with 

0.05  , Jensen (2002) with 0.07  , Robert (1995) and Clarida et al (2000) with 

0.075  , Surico (2008), with 0.15  .
4
 In the Appendix, I verify that 

P, Φ
 

 

 
 

 
. 

The policy functions' coefficients are then used to solve for the lambda coefficients from 

systems (4.14)-(4.15).  

 

x  0.01 0.25 1 10 

xx  0.5129 0.3701 -0.0761 -5.4304 

x  -1.3260 -1.2780 -1.1279 0.6729 

 

Table 3-2. Computed values for xx  and x
 

 

 

 

 

 

                                                 
4
 As mentioned, in the literature, there is a wide range of the calibrated   . These values are usually higher than 

the estimate in Woodford (1999) that I use in Chapter 2.  
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Figure 3.7. ( ) 0CB
x

F X   has only one root in (-1,1). 
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Figure 3.8. ( ) 0CB
x

F X   has more than one root in (-1,1). 
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I choose the same values for x as in case of no parameter uncertainty and keep the same 

parameterization with 0.99  , 0.35 
 
except that the central bank now has its own   

value which I assume takes the middle value of the   interval, 0.075CB  . The worst-case 

kappa is now at its minimum value 0.05  . The threshold value of x which satisfies the 

second order condition for a minimum is now calculated as -0.2407. Table 3.2 shows the 

computed results for xx and x respectively.  

Figure 3.7 and Figure 3.8 presents a graphical verification of the optimal discretionary 

equilibrium uniqueness. It can be seen that for those values of x  that are greater than one, 

this does not necessarily yield a unique discretionary equilibrium.   

 

6. Conclusions 

 

In this paper, I study a problem of optimal monetary policy delegation given parameter 

uncertainty. I analyze a scenario whereby a policy planner would like to implement the 

commitment monetary policy equilibrium when he is uncertain about the parameters of his 

economy. The policy planner faces two problems in this set up. First, he needs to define a 

commitment policy that can be judged "optimal" under the assumption of parameter 

uncertainty. Second, without a commitment technology, the planner needs to devise a 

delegation scheme to induce his central banker to implement the commitment equilibrium 

with discretionary monetary policy. The delegation scheme here is considered as choosing, 

among central banker candidates, the one with a particular preference for output stabilization 

and then signing a contract specifying the banker's reward or penalty with respect to the 

contingent state of the economy. The delegation function parameters then characterize the 

type of the central banker chosen  and the contract terms. 

I deal with the first problem by using a method whereby the policy planner is assumed to 

follow a min-max strategy and has no prior on the uncertainty he faces. The "optimal" 

commitment policy in this case is then defined as the one that attains the lowest loss value 

when the parameter of interest assumes its worst-case value. Although, this min-max policy 

protects the policy planner in the worst case situation, it is shown to be dominated by a policy 
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derived by assuming no parameter uncertainty for a majority of the parameter values 

considered in the paper.  

The second problem is dealt with by using a method that requires the policy planner to match 

his min-max commitment policy with the discretionary policy conducted by his central 

banker. The delegation function parameters are then chosen so as to satisfy this requirement. 

Within standard parameterization, the results of this paper show that among central bankers 

with an output stabilization preference as currently assumed in the literature, the policy 

planner should choose a central banker that has an output stabilization preference of less than 

one. 
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Appendix 

 

A. Determinacy regions  
P .  

The commitment equilibrium is the solution to a system consisting of  the Phillips curve and 

the policy rule: 

                                             1t t t t tE x u                                                       (A.1) 

                                             0 1 1t t tx x                                                                 (A.2) 

Since the policy planner is uncertain about  , he would like to construct a set 
P  so that 

(A.2) would result in a determinate equilibrium for all   .  

Substitute (A.2) into  (A.1) : 

 0 1 1 0 1 1t t t t t t tx x E x x x u            

Rearrange we have an expectation first order difference equation in tx : 

                       0 1 1 0 1 1 0t t t t tE x x x u                                       (A.3) 

(A.4) has its characteristic equation as: 

                           2

0 1 0 1( )f                                            (A.4) 

Since (A.3) has one predetermined endogenous variable, it has determinate solution  only 

when (A.4) has one root inside and one root outside the unit circle for all   . 

If 1 1   and 2 1   then the policy planner has the following situations to consider: 

(a)         1 21 1       and 0 0                    

(b)         2 11 1       and 0 0             

(c)         1 21 1       and 0 0              

(d)         2 11 1       and 0 0               

The policy planner considers each situation above with   .  

(a)         1 21 1       and 0 0                       
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It is sufficient to show that (a) occur when: 
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(b)        2 11 1        and 0 0                
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(c)         1 21 1       and 0 0   
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(d)         2 11 1       and 0 0   
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                       (A.8) 

 

Since (A.8) defines a null set, 
P  is constructed by three regions specified by (A.5), (A.6), 

(A.7).  Figure 1 below represents the set that graphically consists of regions (a), (b), (c). 

 

Figure 2. Determinacy region 
P  

If kappa interval is chosen to be  0.05,0.15  , other parameters 0.25   and 0.99  , 

it can be verified in Fig 1 that 
P

min min
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B. Constructing the transformed loss function  

                                           2 2( ) ( )t t tE L E E x                                            (B.1) 

Compute 
2( )tE x  and 

2( )tE  : 

2 2 2 2 2( ) ( ) ( ) 2 ( , )t x t u t x u t tE x X E x X E u X X E x u                                           (B.2)       

  1 1( , )t t x t u t t tE x u E X x X u u  
      

    1 1 2 1 1x t t t u t t t tE X x u X u u         
        

  2 2
1 1

2

1 1 1 2 1 1

t t u

x t t u t t u t t

E x u

X E x u X E u u X E u
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