

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

32-bit Superconductor Integer and

Floating-Point Multipliers

A Dissertation Presented

by

Artur Krzysztof Kasperek

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Engineering

Stony Brook University

May 2012

Copyright

by

Artur K Kasperek

2012

Stony Brook University

The Graduate School

Artur Krzysztof Kasperek

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Mikhail Dorojevets – Dissertation Advisor
Associate Professor, Department of Electrical and Computer Engineering

Alex Doboli – Chairperson of Defense
Associate Professor, Department of Electrical and Computer Engineering

Sangjin Hong
Associate Professor, Department of Electrical and Computer Engineering

Jennifer L. Wong
Assistant Professor, Department of Computer Science

Stony Brook University

This dissertation is accepted by the Graduate School.

Charles Taber
Interim Dean of the Graduate School

ii

Abstract of the Dissertation

32-bit Superconductor Integer and

Floating-Point Multipliers

by

Artur Krzysztof Kasperek

Doctor of Philosophy

in

Computer Engineering

Stony Brook University

2012

The objective of this dissertation is to design and evaluate ultra-fast energy-

efficient 32-bit integer and single-precision floating-point multipliers implemented

with Rapid Single Flux Quantum (RSFQ) superconductor technology. Our goals

in both multiplier designs were to design a wide datapath multipliers operat-

ing in 10 GHz+ frequencies with lowest possible latency and complexity below

100k Josephson junctions when implemented with Hypres 1.5 µm 4.5 kA/cm2

fabrication process. To achieve this goal, various design techniques such as syn-

chronous pipelining, asynchronous co-flow, and wave-pipelining are analyzed and

applied throughout the design process. First, we will have a brief look at CMOS

computing with its power and clock frequency challenges. Then, superconductor

technology will be introduced, followed by a description of RSFQ logic. Next, tra-

ditional design and sequencing techniques for multiplier will be discussed. After

a brief review of existing superconductor multipliers, the cell-level design of our

32-bit integer and floating-point multipliers will be presented. The microarchitec-

iii

tures and implementations of the 32-bit multipliers are discussed in detail along

with the choice of sequencing techniques used. Our multipliers were designed

and evaluated using a SBU VHDL RSFQ cell-library tuned to the Hypres 1.5 µm

4.5 kA/cm2 fabrication process. The simulation results for the 32-bit integer and

floating-point multipliers will be presented along with statistical data about each

design. Finally, we will present the design and experimental test results of an

8-bit integer RSFQ multiplier implemented with the Japanese CONNECT cell

library and fabricated with ISTEC 1.0 µm 10 kA/cm2 technology.

iv

To my wife Joanna and our children

v

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Need for More Energy Efficient Technology 1

1.2 Superconductor Technology as an Alternative to CMOS 2

1.3 Superconductor Technology Overview 2

1.3.1 Josephson Junction . 3

1.3.2 Latching Logic . 4

1.3.3 RSFQ Logic . 5

1.3.4 ERSFQ Logic . 6

1.4 Overview of Previous Work in Superconductor Field 7

1.4.1 Analog and Digital RSFQ Circuits 7

1.4.2 Microprocessor Prototypes: FLUX-1 and CORE1 7

1.4.3 20 GHz 8-bit RSFQ Processor Datapath 10

2 General Approach to Multiplier Design 11

2.1 Objectives . 11

2.2 Binary Multiplication . 12

2.3 Shift-Add Multiplier . 14

2.4 Classical Array Multiplier . 15

2.5 Booth Algorithm . 15

2.5.1 Partial Product Encoding with Booth-2 16

2.5.2 Advanced Multiplier Architectures 17

2.6 Multiplier Topology . 18

2.6.1 Array Topologies . 21

2.6.2 Irregular and Regular Tree Topologies 22

2.7 Summation with a Carry Propagate Adder 25

2.8 Related RSFQ Work . 25

vi

3 Techniques and Tools for Superconductor Circuit Design 29

3.1 Sequencing Techniques . 29

3.1.1 Synchronous Clocking for Pipelined Designs 30

3.1.2 Asynchronous Co-flow Synchronization 31

3.1.3 Wave-pipelining . 32

3.1.4 Hybrid Wave-pipelining 33

3.1.5 Other Sequencing Techniques 34

3.2 RSFQ Cell-level Library and Design Tools 34

3.2.1 Stony Brook Tunable RSFQ VHDL Cell Library 34

3.2.2 CONNECT Cell Library 39

4 11.4 GHz 32-bit RSFQ Integer Multiplier Design and Evaluation 41

4.1 Goals and Challenges . 41

4.2 RSFQ Hybrid Wave-pipelined Asynchronous Multiplier Miroarchi-

tecture and Cell-Level Implementation 42

4.2.1 Partial Product Generation 42

4.2.2 Partial Product Compression 50

4.2.3 Final Summation . 56

4.3 Integer Multiplier Design Summary 58

5 11.1 GHz 32-bit Single-precision Floating-point Multiplier De-

sign and Evaluation 63

5.1 Goals and Challenges . 64

5.2 Floating-point Multiplication Basics 64

5.3 32-bit Floating-point Multiplier Structure 65

5.4 Sign Bit Calculation . 65

5.5 Exponent Calculation Unit . 67

5.5.1 Zero Value Detection . 67

5.5.2 Initial Exponent Calculation Unit 67

5.5.3 Exponent Data Buffer . 69

5.5.4 Exponent Adjustment Unit 69

5.6 Mantissa Calculation Unit . 70

5.6.1 Partial Product Generation 70

5.6.2 Compression . 76

5.6.3 Final Summation Unit . 78

vii

5.6.4 Sticky Bit Calculation . 78

5.6.5 Normalization and Rounding Units 78

5.7 Floating-point Multiplier Design Summary 79

6 Physical Chip Design and Demonstration of 20 GHz 8-bit Integer

Multiplier 85

6.1 Microarchitecture . 86

6.2 Complexity and Power . 86

6.3 Performance . 88

6.4 Logical and Physical Layout Design 89

6.5 Experimental Test Results . 92

7 Conclusions 95

Bibliography 96

viii

List of Figures

1.1 Josephson Junction . 4

1.2 DC electrical characteristics of voltage level stage latching junctions. 5

1.3 DC electrical characteristics of shunted junctions. 5

1.4 D Flip-Flop JJ-level implementation. 6

1.5 FLUX-1R block diagram. 8

1.6 FLUX-1R chip micro-photograph. 9

2.1 16×16-bit Multiplication with 32-bit product. 13

2.2 Numerical example of 16×16-bit multiplication. 13

2.3 Simplified add-shift multiplier block diagram for 16×16-bit multi-

plication. 14

2.4 Carry-save array multiplier. 15

2.5 First example of Booth encoding. 17

2.6 Second example of Booth encoding. 17

2.7 16×16-bit Booth-2 multiply. 18

2.8 Multiplication steps. 19

2.9 Multiplier topologies. 19

2.10 Examples of counters. 20

2.11 (3,2) counter. 21

2.12 [4:2] compressor built with (4,3) and (3,2) counters. 21

2.13 Double array for reduction of a single column of partial products. 22

2.14 8-bit Wallace tree. 23

2.15 8-bit binary tree. 24

2.16 16-bit binary tree. 24

2.17 24 GHz 4-bit RSFQ array multiplier. 27

2.18 Bit-serial RSFQ floating-point multiplier. 28

3.1 Synchronously pipelined circuit. 30

3.2 Fan-out of 8 implementation with a binary tree. 31

3.3 Asynchronous co-flow sequencing. 32

3.4 Wave-pipelining. 33

3.5 Propagation delay model for D flip-flop. 35

3.6 T1 cell symbol. 36

ix

3.7 T1 cell state diagram. 36

3.8 T1 cell simulation. 37

3.10 T1 cell schematic. 37

3.11 Example schematic and physical layout views of a circuit designed

with the CONNECT cell library. 40

4.1 32-bit multiplier structure. 43

4.2 32-bit multiplication. 44

4.3 Clock distribution for top four partial products. 46

4.4 Clock distribution and timing for the partial product generator. . 47

4.5 Step-by-step timing during partial product generation. 48

4.6 Routing four partial product bits to single PTL. 49

4.7 Time synchronization of partial product generator output. 49

4.8 Wave-pipelining of the partial product generator. 50

4.9 [4:2] compressor. 51

4.10 N-bit wide [4:2] compressor. 52

4.11 [4:2] compression example. 52

4.13 Wave-pipelining with co-flow sequencing of a [4:2] compressor. . . 55

4.14 Partial product grouping for compression tree. 56

4.15 Compressor tree structure for the 32-bit RSFQ integer multiplier. 57

4.16 Compression tree for the 32-bit wide column of partial products. . 58

4.17 JJ distribution per component for the 32-bit RSFQ integer multiplier. 59

4.18 Latency breakdown for the 32-bit RSFQ integer multiplier. 60

4.19 Complexity and current distribution per cell for the 32-bit RSFQ

integer multiplier. 62

4.20 Complexity breakdown by component for the 32-bit RSFQ integer

multiplier. 62

5.1 IEEE-745 single-precision floating-point number representation. . 65

5.2 Floating-point multiplier structure. 66

5.3 Exponent calculation with bias correction. 68

5.4 4-bit RCA used for exponent calculation. 68

5.5 Partial product generator for a 24-bit multiplier. 70

5.6 Rearranging partial product generator for symmetric data flow. . 71

5.7 Dataflow inside the partial product generator. 72

x

5.8 Clock distribution and timing for the partial product generator for

the floating-point multiplier. 73

5.9 Clock distribution for top four partial products. 74

5.10 Partial product synchronization. 75

5.11 Wave-pipelining of the partial product generator for the floating-

point multiplier. 75

5.12 Partial products grouping for compression tree. 76

5.13 Compressor tree for the 32-bit RSFQ floating-point multiplier. . . 77

5.14 11.1 GHz RSFQ 32-bit single-precision floating-point multiplier. . 80

5.15 Complexity breakdown per stage for the RSFQ floating-point mul-

tiplier. 82

5.16 JJ and current breakdown per cell for the RSFQ floating-point

multiplier. 83

5.17 Cell breakdown per stage for the RSFQ floating-point multiplier. . 84

6.2 Compressor tree structure for the 8-bit RSFQ integer multiplier. . 88

6.3 Operating margins of the 8-bit RSFQ integer multiplier. 89

6.4 8-bit multiplier layout. 90

6.5 Micro-photograph of the 8-bit RSFQ multiplier chip. 91

6.6 Oscilloscope waveforms. 93

6.7 8-bit RSFQ integer multiplier chip bonded to a chip holder. . . . 93

6.8 Pre-cooling of the 8-bit RSFQ multiplier chip in liquid nitrogen. . 94

6.9 Testing probe inside a cryostat during testing. 94

xi

List of Tables

1.1 Representative RSFQ circuits demonstrated in 2-3 µm Nb. 8

2.1 Booth-2 partial product selection. 16

2.2 11 GHz RSFQ 4-bit serial multiplier characteristics. 26

3.1 Key characteristics of the Hypres 1.5 µm 4.5 kA/cm2 process. . . 36

3.2 RSFQ cells widely used in our multipliers. 38

3.3 Key characteristics of the ISTEC 1.0 µm 10 kA/cm2 process. . . . 39

4.1 T1 cell used as (4,3) and/or (3,2) counter. 51

4.2 Number of [4:2] compressors needed for each group of four partial

products. 56

4.3 32-bit RSFQ integer multiplier characteristics at T = 4.2 K. . . . 59

4.4 JJ complexity breakdown and bias current distribution by compo-

nent in the 32-bit RSFQ integer multiplier. 59

4.5 JJ and bias current breakdown per logic and interconnect for the

32-bit RSFQ integer multiplier. 60

4.6 Latency breakdown for the 32-bit RSFQ integer multiplier. 60

4.7 Total cell breakdown for the 32-bit RSFQ integer multiplier. . . . 61

4.8 Cell bias current distribution for the 32-bit RSFQ integer multiplier. 61

5.1 Sign bit calculation. 67

5.2 Rules for implementing the IEEE rounding modes. 79

5.3 RSFQ floating-point multiplier characteristics at T = 4.2 K. . . . 81

5.4 Latency breakdown for the RSFQ floating-point multiplier. 81

5.5 JJ and bias current breakdown per logic and interconnect for the

RSFQ floating-point multiplier. 81

5.6 JJ distribution per stage for the RSFQ floating-point multiplier. . 82

5.7 Cell use breakdown for the RSFQ floating-point multiplier. 83

5.8 Bias current distribution for the RSFQ floating-point multiplier. . 84

6.1 Complexity, bias current, and area distribution for 8-bit multiplier. 88

6.2 8-bit RSFQ integer multiplier chip summary. 88

6.3 Testing equipment for low frequency testing. 92

xii

Acknowledgements

First of all, I would like to thank my advisor and friend Professor Mikhail Doro-

jevets for providing guidance and keeping me on track, but also allowing me the

freedom of working at unusual hours and days as I had to coordinate between

my full-time job, school, and family. Mikhail was always there when I needed

someone to talk to, or needed support or asked for guidance.

Thanks to all of the colleagues from Ultra-High Speed Computing Lab at

Stony Brook, especially to Christopher Ayala for helping me during my research

on multiple subjects and for his great friendship. To Sheryeas Rajagopal for being

a great friend during my graduate study.

I would like to thank the people from Yoshi Lab at Yokohama National Uni-

versity, especially to Professor Nobuyuki Yoshikawa for allowing me to visit his

laboratory and for a very warm reception. I am also grateful to Taichi Kato for

helping me with the testing during my visit. Thanks to all the people from Yoshi

Lab and to Yuki Yamanashi for being great company during my stay in Japan.

I was fortunate to have two excellent managers at my full time job, Jay

Greenrose and Robert Pang who provided their great support when I had to

take time to cover up my coursework and thesis related work. It would not be

possible for me to finish this study without their help. I would also like to thank

my running crew at Motorola for keeping me engaged at running, proving the

best stress relief. To all my coworkers, who were a great companion and had to

deal with my unusual working habits.

I would like to extend thanks to the members of my committee, Professors

Alex Doboli, Sangjin Hong, and Jennifer Wong for their time and patience, and

for providing helpful suggestions.

Most importantly, I wish to thank my parents. They bore me, raised me,

supported me, taught me, and loved me. Special thanks go to my sister and

brothers for their great support and for believing in me.

Finally, I would like to thank my wife Joanna for being a great companion

through all this years when my days were hard work and sometimes frustrating.

Thanks to all my kids for their love. To all of my family I dedicate this thesis.

xiii

Chapter 1

Introduction

Contents

1.1 Need for More Energy Efficient Technology 1

1.2 Superconductor Technology as an Alternative to CMOS 2

1.3 Superconductor Technology Overview 2

1.3.1 Josephson Junction . 3

1.3.2 Latching Logic . 4

1.3.3 RSFQ Logic . 5

1.3.4 ERSFQ Logic . 6

1.4 Overview of Previous Work in Superconductor Field . . 7

1.4.1 Analog and Digital RSFQ Circuits 7

1.4.2 Microprocessor Prototypes: FLUX-1 and CORE1 7

1.4.3 20 GHz 8-bit RSFQ Processor Datapath 10

1.1 Need for More Energy Efficient Technology

Engineering always involves trade-offs between performance, power, and price.

However, even as transistors become smaller, they also become faster, dissipate

less power, and become even cheaper to manufacture [1]. Meanwhile, everything

has its limits and CMOS technology is reaching the point where technology cannot

provide sufficient computational needs for critical governmental projects.

In 2005, the experts from the National Security Agency (NSA) have concluded

in Superconducting Technology Assessment (STA) that semiconductor technol-

ogy will not deliver the performance levels necessary for future government’s

1

applications [2]. CMOS integrated circuits have become less of a technology per-

formance horse with vendors such as Intel reluctant to seek 10 GHz clock speeds.

Although power dissipation of small CMOS semiconductor systems is rela-

tively low, large data processing centers still require significant amounts of power

to operate. For example, the Japanese K computer, the most advanced super-

computer requires a 4.3 Mega Watts of power on average [3], which corresponds

to $3.7 million per year at $0.10/kW.

Furthermore, even if energy per logic function decreases as transistors get

smaller, total power consumption does not decrease as rapidly as the total number

of devices on the chip increases.

Recently, leakage related power consumption has become more significant as

threshold voltage has scaled down. Furthermore, for sub-100nm technologies,

temperature has been shown to have significant impact on leakage power con-

sumption as the leakage power consumption increases exponentially with feature

scaling [4].

1.2 Superconductor Technology as an Alterna-

tive to CMOS

Among all CMOS alternative candidate technologies available in research labo-

ratories, the superconductor one is the most advanced. It offers the potential

to achieve circuit speeds well above 100 GHz with much lower power require-

ments than semiconductor circuits. This makes superconductor technology not

only very high speed, but also a more energy-efficient solution[2]. In fact, some

experts believe that the circuits built with this technology consume less than

1/10-th of the power consumed by CMOS circuits [5].

1.3 Superconductor Technology Overview

Kamerlingh Onnes first discovered superconductivity in 1911 after he cooled solid

mercury (Hg) wire with liquid Helium (He) to 4.2 K. He noticed that the wire

resistance suddenly vanished. Immediately realizing the importance of his dis-

covery, he published an article naming his discovery superconductivity [6].

Almost half a century later, in 1950, the first magnetic flux quantum circuit

2

was predicted by Fritz London. In 1961 Bacom Deaver andWilliam Fairbank were

able to experimentally prove Fritz’s theory which was followed by David Brian

Josephson’s discovery of the Josephson Junction (JJ) in 1962 [7]. Josephson junc-

tion is the basic building block of today’s superconductor circuits. Eventually,

Brian Josephson received the Nobel Prize in Physics in 1973.

After Josephson’s discovery, large scale superconductor research work involv-

ing 150 researchers was run by IBM from 1969-1983. At the time, IBM used

Josephson latching logic which faced serious speed-limiting problems that be-

came clear during the project [2].

A revolutionary step forward in superconductor computing was marked by the

discovery of Single-Flux-Quantum (SFQ) logic in Moscow State University dur-

ing the 1980’s which was further described by Likharev and Semenov as Rapid

Single-Flux-Quantum (RSFQ) in 1991 [8]. After this discovery, a wide variety

of DSP blocks, logical functions, and microprocessors such as FLUX-1 [9] and

CORE [10] were produced.

The key characteristics of RSFQ technology are [2]:

- extremely fast switching (few picoseconds switching time)

- very low dynamic power consumption

- availability of logic gates

- ultra-high-speed and loss-less superconducting wires

- low static power consumption

- cryogenic operating temperatures

RSFQ logic became a standard in superconductor computing and is used

widely today.

1.3.1 Josephson Junction

Josephson Junction is built using two superconducting metals (usually Niobium)

separated by a very thin insulating layer. This insulting layer must be very

thin (30 angstroms to several microns) depending on the dielectric constant of

the material from which it is made. The separating material can either be an

insulator or another non-superconductor metal.

3

Once metal such as Niobium (Nb) is cooled down below its critical temper-

ature Tc, the electrons in the metal become paired and the overall interaction

between two electrons becomes slightly attractive.

This very slight attraction allows electrons to drop into lower energy states,

opening up the energy gap in superconducting metal. Because of the larger energy

gap and the lower energy state, electrons can move (generate current) without

being scattered. Furthermore, there is no electrical resistance in superconductors

and therefore no energy loss. There is however a maximum super-current that

can flow called the critical current Ic.

Until a critical current is reached, electron pairs called Cooper pairs can tunnel

across the barrier generating electric current without any resistance.

The AC or dynamic Josephson effect takes place when the current flowing

through the junction is higher than the critical current (I > Ic). In this case

voltage V exists across the junction giving continuous oscillations. This in turn

will cause a lowering of the junction’s critical current causing even more normal

current to flow and a larger AC voltage. This AC voltage is nearly 500 GHz per

mV (millivolt) across the junction [11].

(a) physical principle (b) symbol (c) junction model

Figure 1.1: Josephson Junction [12].

1.3.2 Latching Logic

The first logical circuits used JJs in voltage-stage latching mode with I-V char-

acteristics as shown in Figure 1.2. Here, the characteristics of the junction are

multi-value and hysteric. The junction switches from V = 0 to Vg (equivalent to

superconductor energy gap potential) at critical current Ic. Once the current is

reduced to I = 0, the junction resets back to its original state providing two-state

voltage levels similarly to CMOS logic.

4

The voltage-level logic was the basis of IBM and Japanese projects in the

1970’s and 1980’s which required an AC power system able to reset the junction

in state V = 0. This technology was dropped as the operating speed was limited

to 1 GHz [2].

Figure 1.2: DC electrical characteristics of voltage level stage latching junc-

tions [2].

1.3.3 RSFQ Logic

RSFQ circuits are not only faster than the circuits built with the lathing logic

but also dissipate less power. In the RSFQ logic, digital bits are coded in statics

by the single quanta of magnetic flux, while in dynamics the data are transferred

as picosecond SFQ pulses with quantized area [8]. Hence, the binary value of ’1’

is generally represented by a short pico-second wide RSFQ voltage pulse when

the signal travels between RSFQ cells.

Figure 1.3: DC electrical characteristics of shunted junctions[2].

To implement this logic, a small shunt resistor is placed across the junction

5

and the I-V curves become non-hysteric, (see Figure 1.3). Since the damping

is sufficiently high and the relaxation time is less than the period of plasma

oscillations, the switching of the junction into the resistive state gives a periodic

train of Single Flux Quantum voltage pulses with fixed area∫
V (t)dt ∼= Φ0 =

π}
e

= 2.07mV/ps (1.1)

where Φ0 is the magnetic flux quantum, } is Planck constant and e is the charge

of the electron [8].

In other words, if current through the junction is increased (presence of SFQ

pulse), a short SFQ pulse is created on the output of Josephson junction.

The RSFQ gates are built by combining multiple Josephson junctions, induc-

tors and bias resistors to form the circuit. A basic DFF SFQ circuit is shown in

Figure 1.4. The DFF consists of: the input junction (J1), an inductor to store

an SFQ pulse (’1’), and a comparator J2/J3 that determines whether or not an

SFQ pulse will be transmitted to the output for each clock pulse. An SFQ pulse

appearing at J1 will switch J1 and store one single flux quantum in the inductor

between J1 and J2/J3. The stored flux quantum adds current Φ0/L in J3. If

there is a flux quantum in the latch when the clock pulse arrives, J3 switches, the

SFQ pulse is transmitted, and the latch is reset to 0. If there is no flux quantum

in the latch when the clock arrives, the current in J3 is insufficient to switch J3

and no SFQ pulse is transmitted [2].

Figure 1.4: D Flip-Flop JJ-level implementation [2].

1.3.4 ERSFQ Logic

Energy-efficient RSFQ (ERSFQ) invented in 2010 by Hypres researchers [13, 5]

is a novel energy-efficient zero-static-power SFQ technology which retains all

6

advantages of the current RSFQ logic family. Here, bias resistors are replaced

with junction-based current distribution providing (excluding cryocooling factor)

ERSFQ advantage of 104 in power consumption over standard CMOS circuits [13,

5] making the superconducting circuits suitable for IC manufacturing more than

ever before.

1.4 Overview of Previous Work in Supercon-

ductor Field

Superconductor circuits have been studied in research laboratories over the past

decade and a wide variety of RSFQ circuits were demonstrated as up to date.

These include the fastest analog to digital converters (ADC), multipliers and

microprocessors.

1.4.1 Analog and Digital RSFQ Circuits

Extremely fast RSFQ ADC converters were produced commercially by Hypres [14]

and Northrop Grumman [15]. The RSFQ ADC converters are considered state

of the art in ADC converter technology. Superconductor based 4-bit converters

operate at 100 Giga-samples/second while the best operating speed achieved in

semiconductors at this resolution is only 1 Giga-sample/second.

Other analog and arithmetic blocks including multiplexers, DAC, adders and

multipliers were demonstrated with 2-3 µm line width niobium (Nb) and are

listed in Table 1.1.

1.4.2 Microprocessor Prototypes: FLUX-1 and CORE1

Among all RSFQ circuits, microprocessors are the most complex requiring a great

deal of knowledge as well as efficient CAD tools. Two RSFQ microprocessors

have been produced to date. The FLUX-1 in the USA [9] and the CORE1 in

Japan [10].

1.4.2.1 FLUX-1

FLUX-1 was the first RSFQ microprocessor to address the architectural and

design challenges of 20 GHz processors. The design was a collaboration between

7

Table 1.1: Representative RSFQ circuits demonstrated in 2-3 µm Nb tech-

nologies [14].

Circuit Type Circuit Metric(s) Circuit Type Circuit Metric(s)

Toggle flip-flop 144 GHz 2-bit counter 120 GHz

4-bit Shift register 66 GHz 1-kbit shift register 19 GHz

6-bit flash ADC 20 GHz 19-bit ADC functional

14-bit 2MHz ADC -100 dBc 1:2 demultiplexor 95 Gb/s

1:8 Demltiplexor 20 Gb/s 2-bit Full-adder 13 GHz

1-bit Half-adder 23 GHz 14-bit comb filter 20 GHz

Stony Brook University and Northrop Grumman Space Technology [9].

Figure 1.5: FLUX-1R block diagram [9].

New architecture was developed for FLUX-1 which included the following

features [9]:

- ultra-pipelining to achieve 20 GHz clock rate

- two operations per cycle

- short-distance interaction and reduced connectivity between ALUs and reg-

isters

- bit-streaming (bit-chaining)

8

Figure 1.6: FLUX-1R chip micro-photograph. There are 63,107 Josephson

junctions on 10.35 x 10.65 mm2 die [2]. Photo courtesy of Lynn Abelson and

George Kerber, TRW, Inc.

- wave pipelining in the instruction memory

- modular design

- 25 control, logical and integer operations

The final FLUX-1 was called FLUX-1R and was fabricated in 2002. It con-

sisted of 63,107 Josephson junctions on a 10.35 x 10.65 mm2 die (see Figure 1.6)

with a total power consumption of 95 mW at 4.2 K [16].

At present, the largest circuit block successfully tested in the FLUX-1R chip

was the ALU-register block (the most complex FLUX-1R component). No oper-

ational FLUX-1R chips were demonstrated by the end of the project in 2002 [17].

1.4.2.2 CORE1

The CORE1α, a bit-serial microprocessor prototype (2002-2005) was designed,

fabricated, and successfully tested at high speeds in the Japanese Superconductor

Network Device project [10].

This microprocessor has relatively simple architecture consisting of two 8-bit

wide registers and bit-serial ALU with a small shift register used as memory for

8-bit instructions.

9

The CORE1 processors used a relatively slow (1 GHz) system clock and fast

(21 GHz) local clocks where bit-serial operations were carried out. The CORE1α

chip had 9,498 JJs with an area of 3.4 x 3.2 mm2, and a total power consumption

of 3.0 mW.

1.4.3 20 GHz 8-bit RSFQ Processor Datapath

The work on an 8-bit RSFQ datapath was carried out through a collaboration

between Stony Brook University (SBU) and Hypres, Inc. in 2009-2012. This

datapath implements an 8-bit version of the 32-bit Frontier data-flow architecture

for RSFQ processors developed at Stony Brook [18].

The SBU team has done the complete cell-level design and verification of the

8-bit processor datapath using Hypres 1.5 µm 4.5 kA/cm2 technology, while a

team at Hypres did physical layout design, fabrication, and testing of several

chips. Two chips with the 8-bit datapath components such as Arithmetic-Logic

Unit [19] and Register file [20] were fabricated and demonstrated their operation

at the target 20 GHz frequency.

10

Chapter 2

General Approach to Multiplier

Design

Contents

2.1 Objectives . 11

2.2 Binary Multiplication . 12

2.3 Shift-Add Multiplier . 14

2.4 Classical Array Multiplier 15

2.5 Booth Algorithm . 15

2.5.1 Partial Product Encoding with Booth-2 16

2.5.2 Advanced Multiplier Architectures 17

2.6 Multiplier Topology . 18

2.6.1 Array Topologies . 21

2.6.2 Irregular and Regular Tree Topologies 22

2.7 Summation with a Carry Propagate Adder 25

2.8 Related RSFQ Work . 25

2.1 Objectives

Multiplication is a heavily used arithmetic operation that figures prominently in

signal processing, imaging, science, and network security where the main criteria

of interest are higher speed, low cost, and power consumption.

Since high efficiency is required, multiplier often represents one of the major

bottlenecks as its hardware complexity grows with the input data size. It also

11

requires a vast amount of wires and logic gates, has a very long latency operation,

and often very irregular layout structure.

Being one of the basic arithmetic operations, accounting for 8.72% of all

instructions [21] in typical scientific program it is worth while to choose the best

suited multiplier design for a particular application.

The major goal in multiplication is to speed up the multi-operand addition

of multiple operands called partial products (shifted multiplicands or zeros), as

shown in Figure 2.1.

Variety of multiplication algorithms and hardware designs starting with simple

add-shift multiplier, Booth multiplier, array multipliers and tree-style compres-

sion schemes will be presented here.

2.2 Binary Multiplication

In binary multiplication, partial products are shifted versions of multiplicand

or binary zeros depending on the value of the corresponding multiplier bit. If

the multiplier bit is zero, then the partial product for this row has value zero,

otherwise a shifted version of multiplicand is used which is often achieved using

AND gates.

Once the partial products are generated, the main and most complex task

in binary multiplication is to add these to make the final product. To achieve

this goal, all bits in single column of multiple partial products have to be added

together with any resulting carries propagating towards the most significant bit

column.

The partial product generation for simple multiplication is illustrated in Fig-

ure 2.1 where each dot represents a single bit that can be either zero or one.

The partial products are represented by horizontal dots, and the multiplier is

represented by the column of vertical dots on the right. In Figure 2.1, the arrows

to the left of multiplier are used for partial product value selection. The selec-

tion choice is shown in the selection table in the upper left corner, and the final

product is represented by the double width row on the bottom.

12

M
u
lt

ip
li
e
r

15

15

0

0

Final Product
LSBMSB

Pa
rt

ia
l P

ro
duct

s

Partial Product Selection
Multiplier Bit Selection

0 0

Multiplicand1

Multiplicand

L
S
B

M
S
B

Figure 2.1: 16×16-bit Multiplication with 32-bit product [22].

M
u
lt

ip
li
e
r

Final Product
LSBMSB

Pa
rt

ia
l P

ro
duct

s

Partial Product Selection
Multiplier Bit Selection

0 0000000000000000

10110011100011111

1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1

1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0

1

0

0

1

1

1

0

0

0

0

1

1

1

1

1

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0

1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1

1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1
1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1

1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1
1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1
1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1

1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1

Multiplicand

Figure 2.2: Numerical example of 16×16-bit multiplication.

13

2.3 Shift-Add Multiplier

The simplest multiplier design consists of two shift registers, an adder and a prod-

uct register as shown in Figure 2.3. It is a sequential shift-add multiplier driven

by control (write and shift) signals updated every step for a total of N stages,

where N is the multiplier width in bits. Here, the partial products are gener-

ated using a shift register and are added together one-by-one, with intermediate

results being saved in the product register.

32-bit Adder

Product
Write

L
SB

Shift left

Shift right

32

32

32

Multiplicand

Multiplier

Figure 2.3: Simplified add-shift multiplier block diagram for 16×16-bit

multiplication.

Since the partial product value is just a shifted version of multiplicand or 0,

the shifted multiplicand is added and written back to the product register only

when the least significant bit (LSB) of currently shifted version of multiplier is 1.

Although the sequential add-shift multipliers can be built with very simple

hardware taking a very small silicon area, if each step takes a clock cycle, then

a 32-bit multiplier will require 32 clock cycles which is usually unacceptable for

high-end multiplier designs.

The simplicity of this approach can provide a very low cost, and power effi-

cient design, and was used in the past in first RISC type MIPS processors. The

drawback of this design is that it can not be pipelined and is generally avoided

in high speed processors.

14

2.4 Classical Array Multiplier

A classical N-bit array multiplier can be built with approximately N2 adders con-

nected using carry-save path between each row of adders as shown in Figure 2.4.

The carry-save adder (CSA) is used very often in multiplier design. It is a fast

adder that does not propagate carry from the least to most significant bit avoid-

ing ripple-carry effect [23]. Carry-save adders will be discussed in greater detail

in Section 2.6.

HAc

s

FAc

s

FAc

s

x0y1

x1y0

x0y2

x1y1

x0y3

x1y2x1y3

x0y0

FAc

s

FAc

s

FAc

s

x2y0
x2y2x2y3

FAc

s

FAc

s

FAc

s

x3y0x3y1
x3y2x3y3

p7

HAc

s

FAc

s

FAc

s

p0p
1

p
2

p
3

p
4

p
5

p
6

x2y1

Figure 2.4: Carry-save array multiplier.

2.5 Booth Algorithm

An elegant approach to multiplying two numbers is called Booth’s algorithm.

Booth invented this approach in the quest for speed as the machines of his era

were fast at shifting and slow on addition and subtraction, and for some patterns

extra time was gained in computation when this algorithm was employed. The

main idea comes from the fact that a sequence of ones in any binary number can

be represented by a single subtraction of −1 in low bit position, and an addition

of 1 in the next to highest bit position of the sequence. That is

2j + 2j−1 + ...+ 2i = 2j+1 − 2i. (2.1)

15

For example:

001111002 = 25 + 24 + 23 + 22 ≡ 26 − 22 = 64− 4 = 60. (2.2)

Now, more advanced versions of Booth’s algorithm are used to reduce the

number of partial product rows.

2.5.1 Partial Product Encoding with Booth-2

Modified Booth-2 algorithm which introduces parallel encoding of partial prod-

ucts was introduced in [24] and can be used to reduce the number of partial

products by almost half by recoding the multiplicand. This reduction is done

by making use of the run of 1s and 0s property which states that less partial

products need to be produced for every run in multiplicand.

In Booth-2 encoding, the two consecutive rows of partial products are com-

bined together into a single partial product row. where the multiplies of multi-

plicand are selected from ±0, ±Multiplicand and ±2Multiplicand according to

Table 2.1.

Table 2.1: Booth-2 partial product selection.

Multiplier bits Partial product value Sign value (S)

000 +0

0
001

+Multiplicand
010

011 +2Multiplicand

100 −2Multiplicand

1
101

−Multiplicand
110

111 −0

The partial products are shifted by two between each overlapping group and

the different weights for partial products correctly produce the right result. Be-

sides the two bits of multiplier being examined for each product, a third bit from

the higher order bit is used to ensure that the end or middle of run of ones is

detected correctly as shown in Figure 2.5.

16

-2M

+M

4(+M) + (-2M) = 2M

00100

+M

-2M

Figure 2.5: Booth encoding example when multiplier = 00102 = 2. 1

+M

-2M

4(-2M) + (+M) = -7M

10010

-2M

+M

Figure 2.6: Booth encoding example when multiplier = 10012 = −7. 1

The negative multiple of multiplicand given in the Table 2.1 are represented

in 2’s complement notation. The conversion of a number to 2’s component can

be performed by inverting the multiplicand and adding 1 to the least significant

bit which can be inserted into the partial product below the current one without

affecting the partial product generation speed. The sign extension and 2’s com-

plement can be replaced by what is shown in Figure 2.7 and a sufficient proof for

the replacement is given in [25].

The amount of partial products generated using Booth-2 reduces the total

number of N partial product rows into dN+1
2
e. The extra 1 in the expression

comes from the need to ensure that a last partial product is a positive multiple

of the multiplicand [26].

Booth-2 and higher order booth algorithms like Booth-3 and Booth-4 are

used very frequently in CMOS design, but are not used in this study due to the

limitations described in Section 4.2.1.1.

2.5.2 Advanced Multiplier Architectures

Another approach to multiply two numbers is to partition multiplication into

three operations which are:

1Use Table 2.1 for partial product encoding selection.

17

M
u
lt

ip
li
e
r

15

0

Final Product
LSBMSB

S S S

SS

SS

SS

SS

SS

SS

SS

S

0

0
0

1

1

1

1

1

1

Note:

Use Booth-2 Partial Product Selection Table to encode the patial products and to determine the value of S.

Booth Encoded

Partial Produts

LSBMSB
Multiplicand

LSB

MSB

Figure 2.7: 16×16-bit Booth-2 multiply [22].

1) Partial Product Generation where partial products are generated in parallel

using AND gates.

2) Partial Product Compression in which partial products are added together

using carry-save adder to produce carry-sum operand pairs (one pair per

column).

3) Final Summation is the last step, in which the carry and sum operands are

added together using a standard arithmetic adder (usually CPA) to produce

the final result.

2.6 Multiplier Topology

Most of the multiplier hardware is used for the summation of multiple rows of

partial products called compression. It is a process in which the partial product

bits with the same arithmetic weight are added together with intermediate carries

propagating to higher order columns. This addition is carried out using either

an array or compression tree which reduces each column to carry-sum operands.

Tree topologies can be very fast and are usually preferred over array ones. Specific

way in which these topologies process partial products are shown in Figure 2.9.

After compression is finished, a carry-propagate adder is used to add final

carry-sum operands to produce a final product as shown in Figure 2.8.

18

M
u
lt

ip
li
e
r

15

0

Final Product
LSBMSB

Partial

Product

Generation

Partial

Product

Compresssion

Partial

Products

compressedFinal

Summation

Pa
rt

ia
l P

ro
duct

sPartial Product Selection
Multiplier Bit Selection

0 0

Multiplicand1

Partial product bits with the same arithmetic weight

Partial products bit slice after compression to sum-carry

Sum-carry pair after reduction with final adder

LSBMSB
Multiplicand

LSB

MSB

Figure 2.8: Main three steps of multiplication: partial product generation,

compression and final summation.

Adder

PP

PP

Adder

Adder

PP

PP

PP

Adder

(a) Array

Counter Counter

Counter

Counter Counter

Counter

Counter

PP PP PP PP PP PP PP PP

(b) Tree

Figure 2.9: Multiplier topologies.

19

A basic building block used in reducing partial products is a carry-save adder

(CSA) which is nothing more than an N-bit wide array of full adders connected

in a way in which the carry does not propagate from the least to most significant

bit avoiding ripple-carry effect. It also differs from other digital adders in that

it has three or two input, and two output operands. One output operand is a

sequence of partial sum bits and another a sequence of carry bits (i.e. carry-sum

output operands) [23].

A full adder which is a building block of compressors discussed in this section

is also referred to as a (3,2) counter (three-to-two counter) using Dadda’s [27]

and Stenzel’s [28] terminology.

In general, any (M,N) counter is an adder which has M inputs and N outputs.

An (M,N) counter counts M inputs from a single partial product column and

produces an N-bit wide result where log2(M) ≤ N. The output result is a binary

representation of the number of inputs. For example, a (3,2) counter can reduce

three inputs with the same arithmetic weight into a 2-bit wide result. Higher

level counters such as (7,3) can also be designed. They are usually implemented

using multiple (3,2) counters.

Figure 2.10: Examples of counters.

Compressors are a special form of counters which have multiple inputs, two

outputs and any number of intermediate carries. The most common compressor

is a [4:2] compressor shown in Figure 2.12. From now on, we will use [x:y] to

indicate compressors and (x,y) to indicate counters.

The real distinction between counters and compressors is in the way these

are used in compression trees and arrays. While counters always propagate the

output down the tree, compressors have additional intermediate input/output

carries which are propagated at the same level from the least significant bit col-

20

Cin A B

Cout Sum

Figure 2.11: (3,2) counter, also known as full adder.

umn towards the most significant bit column.

The potential advantage of compressors is in their regularity and wirability

which is described in Sections 2.6.1 and 2.6.2.

C_int
in

C_intout

Cin

A

B

Cin

A

B

Cout

Sum

Cout

Sum

Sum

Carry

in0

in1

in2

in3

(3,2) counter (3,2) counter

Figure 2.12: [4:2] compressor built with (4,3) and (3,2) counters connected

using carry-save path.

2.6.1 Array Topologies

In a simple array, different partial products are processed at different stages

(array rows) as was shown in Figure 2.9(a). Therefore, the total compression

time delay is proportional to number of counters in each column, which is in

order of O(N), where N is the number of partial products. This delay can be

halved using a double array shown in Figure 2.13, and higher order arrays are

21

also possible. The delay required to reduce partial products using higher order

arrays is proportional to 2
√
N, and is actually equal to b

√
N− 9c, where N is the

number of inputs [26].

Although, array multipliers are much faster than ripple-carry designs, the

compression tree multipliers introduced in the next section are faster than array

ones.

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

[4:2] Compressor

A B C D

Carry Sum

- carry-in from lower order bit column array

- carry-out to higher order bit column array

- partial product bits with the same arithmetic weight

Figure 2.13: Double array for reduction of a single column of partial prod-

ucts.

2.6.2 Irregular and Regular Tree Topologies

Trees are extremely fast structures used for compression of partial products in

which counters and compressors are used. Separate trees are built in parallel

22

for each column of partial products, and then are connected with intermediate

carries propagating from one bit tree to the other with carry-save structure.

Irregular tree topologies are built with counters and compressors connected

in a way to minimize the total delay without having any regular pattern.

The first trees were irregular Wallance trees [29] in which Wallance introduced

the concept of adding partial products using (3,2) counters by connecting mul-

tiple (3,2) counters in parallel. An example of an 8-bit Wallace tree is shown in

Figure 2.14.

The total number of counter stages in a Wallace tree is log3/2(N), and the

latency of the corresponding design is O(log3/2(N)), an impressive speed for mul-

tipliers. One of the drawbacks to using irregular trees is a very irregular layout

in which the number of tracks per bit slice is greater than log(N) [26].

carry-in from lower

order column bit tree

carry-out to higher

order column bit tree

partial product bit

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

(3,2) Counter

A B C

Carry Sum

(a) Tree structure. (b) Compression steps.

Figure 2.14: 8-bit Wallace tree which can used to reduce a single column

of partial products.

Regular tree structures have a 2:1 reduction ratio between each step provid-

ing for very regular and symmetric design structure. [4:2] compressors are very

often the basic building blocks of regular trees. A binary tree reduces the partial

products using dlog2(N2)e [4:2] compression stages and the latency of the corre-

sponding design is in order of O(log2(N)) with 2× (dlog2(N)e − 2) + 4 tracks per

slice [26].

23

These type of trees suit RSFQ architecture much better than the irregular

tree structures as all data are processed at the same time without any additional

delay being added between each bit slice. Furthermore, regular trees are not

only easy to be build, providing a very symmetric and regular structure, but also

well suited for pipelining. Two examples of regular binary tress are shown in

Figure 2.15 and Figure 2.16.

[4:2] Compressor

A B C D

Carry Sum carry-in from lower

order column bit tree

carry-out to higher

order column bit tree

[4:2] Compressor

A B C D

Carry Sum

[4:2] Compressor

A B C D

Carry Sum

partial product bit value

(a) Tree structure. (b) Compression steps.

Figure 2.15: 8-bit binary tree which can be used to reduce a single column

of partial products.

[4:2] Compressor

A B C D

Carry Sum

carry-in from lower

order bit column tree

carry-out to higher

order bit column tree

[4:2] Compressor

A B C D

Carry Sum

[4:2] Compressor

A B C D

Carry Sum

[4:2] Compressor

A B C D

Carry Sum

[4:2] Compressor

A B C D

Carry Sum

[4:2] Compressor

A B C D

Carry Sum

[4:2] Compressor

A B C D

Carry Sum

partial product bit value

Figure 2.16: 16-bit binary tree.

24

2.7 Summation with a Carry Propagate Adder

Once all the partial products are reduced to two operands called sum and carry,

these are then added together to produce a final product using a carry-propagate

adder (CPA).

The CPA latency can be anywhere between O(N) and O(log2(N)) depending

on the adders selection with a ripple-carry adder being the slowest, and a parallel

prefix tree adder the fastest.

Because of their lower latency, parallel-prefix adders are usually the best choice

for the final adder in large multipliers. The CPA design is beyond the scope of this

dissertation. A parallel-prefix tree adders were designed with RSFQ technology

in SBU UHSC Lab [30]. These are the fastest types of parallel prefix tree adders

and are used in both multipliers to reduce the final two rows into a single final

product.

2.8 Related RSFQ Work

Since the introduction of superconductor RSFQ logic there have been several at-

tempts to design and build different kinds of RSFQ multipliers. The immaturity

of superconductor technology and design tools has limited the functional com-

plexity, and width of the fabricated multiplier designs to 2-4 bits. Most of the

proposed RSFQ multipliers were in fact design studies done without any actual

fabrication [31, 32, 33].

The first conceptual RSFQ multiplier design proposed in 1989 was a bit-

serial multiplier with a very basic carry-save path, and variable word length with

possible expansion into parallel design [31]. An 11 GHz 4-bit RSFQ multiplier-

accumulator was designed, fabricated and tested successfully in 1997 [34]. This

design was built using a total of 1097 Josephson junctions (JJs). The multiplier

characteristics are shown in Table 2.2.

A 10 GHz 32-bit parallel multiplier with Wallace-tree used for compression

and carry look-ahead adder for final summation was proposed in 2001 [35].

Shortly after, an 8-bit enhanced version of this multiplier was proposed as well.

The addition was that the Booth encoder was used to speed up partial prod-

uct generation. Design simulations showed that the maximum rate of such a

multiplier was limited to 10 GHz by its slowest final summation block, although

25

Table 2.2: 11 GHz RSFQ 4-bit serial multiplier characteristics.

Parameter Value

Number of JJs 1,097

Power required 181 µW

Area 2.6 x 0.8 mm2

Maximum simulated clock frequency 11 GHz

Maximum simulated output rate 172 MHz

Measured global bias margins ± 5%

other components were designed to run at a faster rate. A 2-bit version of this

multiplier was fabricated and tested successfully [36].

A 3-bit serial-parallel multiplier design with an AND-gate array used for prod-

uct generation and sequential carry-save compression was designed (but not fab-

ricated) by Akahori et al. in 2003 [32]. In the simulation, a 14 GHz processing

rate was achieved and some suggestions were given on how this rate could be

increased to 20 GHz.

In other design studies, a 24 GHz 4-bit RSFQ parallel multiplier-accumulator

with a carry-save array type compressor [37] and a similar systolic array mul-

tiplier [33] were proposed. Only the first one was fabricated and demonstrated

and is shown in Figure 2.17.

A 20 GHz 4-bit multiplier with the Booth-2 encoder was designed and fab-

ricated using the ISTEC 10 kA/cm2 process. The simulated frequency of this

multiplier was 45 GHz [38].

Recently, using the same ISTEC process, a 25 GHz 16-bit bit-serial floating-

point (FP) multiplier was designed and implemented using the CONNECT RSFQ

cell library [39]. By re-using the same hardware during bit-serial computation,

this FP multiplier needs 23 clock cycles (920 ps) to calculate a 16-bit FP result,

thus processing 16-bit FP operands at 1 GHz rate [40]. The block diagram of

this multiplier is shown in Figure 2.18.

A traditional array-based compression which is used in most RSFQ multi-

pliers proposed or demonstrated to date is suitable for multiplication of small

numbers, but once the multiplier operand size is increased, the latency grows

accordingly. Another drawback of the array multipliers is the relatively large size

of their partial product compression logic where complexity grows quadratically

26

Parameter Value

Number of JJs 704

Area 1.40 x 1.97 mm2

Maximum simulated output rate 24 MHz

Measured global bias margins ±2%

Figure 2.17: 24 GHz 4-bit RSFQ array multiplier [37].

with respect to operand width. Finally, the delay fluctuations in the chains of

adders used for compression could become problematic for large-size arrays built

this way.

27

Parameter Value

Number of JJs 11,044

Area 6.22 x 3.78 mm2

Maximum simulated clock frequency 25 GHz

Measured global bias margins ± 3%

Figure 2.18: Bit-serial RSFQ floating-point multiplier [40].

28

Chapter 3

Techniques and Tools for

Superconductor Circuit Design

Contents

3.1 Sequencing Techniques . 29

3.1.1 Synchronous Clocking for Pipelined Designs 30

3.1.2 Asynchronous Co-flow Synchronization 31

3.1.3 Wave-pipelining . 32

3.1.4 Hybrid Wave-pipelining 33

3.1.5 Other Sequencing Techniques 34

3.2 RSFQ Cell-level Library and Design Tools 34

3.2.1 Stony Brook Tunable RSFQ VHDL Cell Library 34

3.2.2 CONNECT Cell Library 39

3.1 Sequencing Techniques

In RSFQ circuits, sequencing techniques play a very important role in overall

system performance as they govern hardware usage and data flow affecting pro-

cessing rate, latency as well as power consumption. The most popular design

technique is classical pipelining which allows executions of multiple operations to

be overlapped. Besides classical synchronous pipelining there are other sequenc-

ing methodologies such as wave-pipelining and co-flow. These two will be used in

our work on multipliers to provide high-performance and energy-efficient designs.

29

3.1.1 Synchronous Clocking for Pipelined Designs

In conventional synchronous design multiple pipeline registers are inserted in-

side combinational circuits to synchronize the data between consecutive pipeline

stages as shown in Figure 3.1.
P

ip
el

in
e

re
g

is
te

r

P
ip

el
in

e
re

g
is

te
r

P
ip

el
in

e
re

g
is

te
r

P
ip

el
in

e
re

g
is

te
r

P
ip

el
in

e
re

g
is

te
r

Stage 3

Combinational logic

clk

Tclk = Tregc to q
+ Tstage + Tregsetup

+ Tclk skew

Synchronous
pipelining

Global clock

Stage 4Stage 2Stage 1

Figure 3.1: Synchronously pipelined circuit.

In order to achieve the best performance using synchronous pipelining, the

combinational logic is divided into multiple stages separated by pipeline latches

where the longest stage time delay must be minimized as much as possible without

violating the setup/hold timing of the register buffer and clock skew.

Hence, the pipeline processing rate is limited by the stage with the longest

critical path delay. For example, if the execution time of the stage 3 shown in

Figure 3.1 takes much more time than execution of the stage 2, and the minimum

clock frequency is limited by stage 4 in this example.

In conventional synchronous RSFQ pipelines, synchronization overhead can

easily exceed logic latency due to the small amount of work per stage, and sig-

nificant clock skew. Making the situation even more difficult is the unavoidable

(temperature-induced) timing uncertainty in RSFQ cell delays [18].

Because of the peculiar way the RSFQ signal distribution works, we can not

30

connect a single signal wire to multiple gates as it is done in CMOS. On the

contrary, clock distribution networks need to be build with active elements such as

transmitters, receivers, splitters and JTLs as shown in Figure 3.2. As most of the

RSFQ gates are synchronous, the global clock distribution network will have to be

very big, and will consume vast amount of energy as each cell in clock distribution

network will have to work every time clock switches. Additionally, such clock

network would require enormous amount of wires, but the number of metal layers

are very limited with current RSFQ fabrication technology. Furthermore, the

clock skew resulting from such clock distribution would be unacceptable in our

ultra-high speed RSFQ design. Therefore, we can not use a global synchronous

pipelining for complex RSFQ designs, and only local clock distribution trees are

possible.

Figure 3.2: Fan-out of 8 implementation with a binary tree.

3.1.2 Asynchronous Co-flow Synchronization

In an asynchronous co-flow technique, there is no global clock generator and

global clock distribution network. Instead, the clock follows the data inside each

pipeline stage as shown in Figure 3.3.

31

The clock has to be slightly delayed with respect to the data in order not to

violate the register setup time.

delay4

P
ip

el
in

e
re

g
is

te
r

P
ip

el
in

e
re

g
is

te
r

P
ip

el
in

e
re

g
is

te
r

P
ip

el
in

e
re

g
is

te
r

P
ip

el
in

e
re

g
is

te
r

Stage 3

Combinational logic

Stage 1 Stage 2 Stage 4

clk

Tstage3

Aynchronous co-flow

sequencing

Tstage4Tstage2Tstage1

delay1 delay2 delay3

Figure 3.3: Asynchronous co-flow sequencing (clock follows data).

Here, clock fluctuations are smaller, because the data and clock are traveling

through very similar paths and are subject to the same temperature and bias

current distribution.

Another advantage of asynchronous co-flow sequencing is that the data buffers

are clocked only when used (when data are processed), so that dynamic power

consumption is cut to the minimum as the Josephson junctions are not switched

continuously when unused in data buffers.

3.1.3 Wave-pipelining

Wave-pipelining is an approach aimed to achieve high performance in pipelined

systems by removing intermediate latches [41]. This technique increases clock

frequency by allowing multiple data waves to exist in any stage. By removing

intermediate registers, the area and power associated with the clock are reduced.

Wave-pipelining is used in modern CMOS design to improve processor cycle time

by pipelining functional units and caches [42].

32

Combinational logic

Wave distrubution in combinational logic

W
av

e
sep

aratio
n

W
a
v
e
k

W
av

e
sep

aratio
n

W
a
v
e
N

W
av

e
sep

aratio
n

W
a
v
e
1

bbbbbb

Wave direction

W
a
v
e
k
+
1

Figure 3.4: Wave-pipelining.

There are two major design challenges for wave-pipelined systems, namely

1) preventing collision of unrelated data waves, and

2) balancing (equalizing) delay paths in order to reduce differences between

the longest and shortest delays through the combinational logic.

The differences can accumulate as the waves propagate through a pipeline,

creating the potential for data overrun of unrelated data waves. Ultra-high-rate

long RSFQ pipelines are especially prone to this problem.

These problems can be avoided by using the hybrid wave-pipelining approach,

where signals are held so the next stage does not start operating until all the sig-

nals from the previous stage are available. Wave-pipelining is shown in Figure 3.4.

3.1.4 Hybrid Wave-pipelining

Many RSFQ designs used some form of hybrid wave-pipelining called co-flow

synchronization [43, 30, 44, 18, 19, 45], with clock traveling with data across

the pipeline, thus eliminating the need for complex central clock distribution.

33

The challenge for this co-flow synchronization is the necessity to insert carefully-

calculated delays into the clock propagation path to honor set-up and hold time

requirements for clocked RSFQ cells. The problem becomes more and more

severe as the width, length, and complexity of the datapath grows, and timing

uncertainty increases [43].

Our RSFQ multiplier designs use both wave-pipelining and co-flow synchro-

nization.

3.1.5 Other Sequencing Techniques

Delay-insensitive dual-rail logic is yet another alternative sequencing technique

introduced by Priyadarsan and Polonsky in 1997 [46]. In dual-rail delay insen-

sitive design, the data are represented by two complementary values. Hence,

CMOS-like combinational gates can be used in the design. The drawback of this

technique is the vast amount of logic used. For example, a dual-rail XOR gate

requires 30 junctions [47] while a regular RSFQ AND gate can be built with 8

gates [8]. This technique requires more space, more power, and time to switch

each gate.

3.2 RSFQ Cell-level Library and Design Tools

3.2.1 Stony Brook Tunable RSFQ VHDL Cell Library

The purpose of the tunable VHDL RSFQ cell library developed in UHSCL (Ultra-

High Speed Computing Lab) at Stony Brook University is to support the design,

verification, and testing of wide datapath 10-50 GHz RSFQ processors. Each

cell is described using a behavioral model based on finite state machines and/or

logical truth tables when applicable. Parameters such as timing constraints, delay

jitter, bias current, switching energy and complexity are provided by circuit-level

designers. For the current study, the cell parameters have been tuned to the

Hypres 1.5 µm 4.5 kA/cm2 process.

All propagation delays for each cell are modeled using a normal distribution of

the delays for a given value of delay variance. The resulting probability density

function for D flip-flop cell is shown in Figure 3.5. We use Monte Carlo style

simulation to calculate cell delays each time when the output pulse is generated

34

for any cell.

Figure 3.5: Propagation delay model for D flip-flop.

The cells are also checked for any timing violations during simulation and

report these violations as a failure. A failure report consists of important infor-

mation such as what kind of timing constraint has been violated (e.g. setup or

hold time), where the failure occurred and which inputs caused it. Furthermore,

all possible ways a cell can consume dynamic energy are stored in a switching ta-

ble so that for a given switching event there is a corresponding amount of energy

consumption which is locally accumulated within each instance of a cell. When

the simulation is over, all cells in the design report their accumulated energy

consumption and are summed up together to produce the final total amount of

dynamic energy consumption for the entire design simulation. Finally, the cell

library provides a set of procedures/functions for the logic designer to easily ob-

tain complexities for a design and measure the different margins of clock rate

that a design can support [18].

3.2.1.1 Key Cells Used in Multiplier Design

A T1 flip-flop (T1) serves as a basic building block in the compression tree of

both multipliers. The state diagram of a T flip-flop is shown in Figure 3.8. It

35

Table 3.1: Key characteristics of the Hypres 1.5 µm 4.5 kA/cm2 process.

Feature Hypres [48]

Critical current (kA/cm2) 4.5

Feature size (µm) 1.5

Number of Nb metal layers 4

works as a 2-to-1 frequency divider for input signal t, producing SFQ pulse at

q0 output every other input pulse. Additionally, if clock c is applied after an

odd number of input pulses was detected since the last clock, the SFQ pulse is

produced at q1 output.

Since the T1 cell can detect an odd number of inputs, it can also be used as

a full adder with an asynchronous carry and synchronous sum outputs as shown

in Figure 3.9.

In 1997 a RSFQ T flip-flop fabricated at Stony Brook University was shown to

operate at 770 GHz, and it is the fastest RSFQ gate demonstrated up to date [49].

q0 q1

T1 c

t

Figure 3.6: T1 cell symbol.

S0 S1

reset

c / q1

t / q0

t
c

Figure 3.7: T1 cell state diagram.

Other cells used frequently in our multiplier designs are listed in the Table 3.2.

36

Figure 3.8: T1 cell simulation.

q0 (carry)

q1 (sum)

clk

in

q0 q1

T1 c

t

(a)

q0 (carry)

q1 (sum)

clk

in

q0 q1

T1 c

t

(b)

q0 (carry)

q1 (sum)

clk

in

q0 q1

T1 c

t

(c)

q0 (carry)

q1 (sum)

clk

in

q0 q1

T1 c

t

(d)

Figure 3.9: T1 cell wave diagram. Each dot represents a SFQ pulse.

Figure 3.10: T1 cell schematic [49].

37

Table 3.2: RSFQ cells widely used in our multipliers.

Cell

name

Symbol with

SFQ diagram
Cell Description

JTL(x)

Josephson junction can be used to either introduce

additional delay in the circuit or to amplify weak SFQ

pulses. The x in JTL(x) signifies number of JTLs

represented by the JTL symbol.

AAND

Asynchronous AND gate performs logical AND func-

tion. To get a SFQ pulse at the output, both inputs

must arrive within TAAND MINGAP time. Otherwise

the output pulse is not generated.

MRG s

Merger cell can be used to combine multiple SFQ

signals onto single wire track. The input SFQ pulses

must be separated by TMRG MINGAP for correct oper-

ation.

SPL s

Splitter cell is used to provide a fan-out of 2. Multiple

SPL cells can be employed when larger fan-outs are

needed.

DFF
q

c

t D

D flip-flop is used to store a SFQ pulse. The input

pulse is transferred to the output when clock signal

is applied.

D2FF q0

q1

D2

t0

d

t1

D flip-flop with two clocks and two outputs. It is used

to store the SFQ pulse, with an option to route the

output to one of the two different outputs q1 or q0

depending whether t1 or t0 is asserted first.

T1
q0

q1

T1

c

t

T1 flip-flop can be used as a half-adder, or as a fre-

quency divider. The T1 cell generates SFQ output on

q0 for every two consecutive input SFQ pulses since

last clock t was applied. The q1 output pulse is gen-

erated only when the clock is applied and an odd

number of SFQ pulses arrived on d since last clock

was applied.

38

3.2.2 CONNECT Cell Library

Besides using our Stony Brook VHDL cell library we also use the CONNECT cell

library developed in Nagoya University and Yokohama National University [39].

This library and associated CAD tools are used for logical and physical layout

chip design of our 8-bit integer multiplier, and to generate a Verilog model used

for circuit simulation. All cells in this library were fabricated using ISTEC process

and characterized to get physical parameters (e.g. delay) necessary to model each

cell. This library was demonstrated experimentally and was proven reliable for

multiple designs [39].

Table 3.3: Key characteristics of the ISTEC 1.0 µm 10 kA/cm2 process.

Feature ISTEC [50]

Critical current density (kA/cm2) 10

Minimum JJ feature size (µm) 1.0

Number of Nb metal layers 9

The CONNECT cell library has more than 300 cells at present, with multiple

layout versions available for each cell. Every cell in the CONNECT library con-

sists of a Verilog digital behavioral model, JJ circuit information, and a physical

layout.

At the layout level, each cell is designed around a 30µm×30µm grid, and

every cell size is an integer multiple of this size, so that cells can be placed next

to each other. This way, it is simple to match the blocks together to provide

more complex structures.

Using this semi-custom design flow, complex circuits can be designed in much

faster way than when using full custom design approach with its non-custom

shaped cells.

All cells have their schematic views that closely match their layout. The

passive transmission lines and vias are also provided at this level and can be

placed over JTL level blocks. A sample schematic built using this technique is

shown in Figure 3.11(a). Once the schematic is built and verified, the layout

and Verilog model are generated. The Verilog model can be used for circuit

verification, as well as for bias margin and circuit rate calculations.

39

(a) schematic (b) layout

Figure 3.11: Example schematic and physical layout views of a circuit

designed with the CONNECT cell library.

40

Chapter 4

11.4 GHz 32-bit RSFQ Integer

Multiplier Design and Evaluation

Contents

4.1 Goals and Challenges . 41

4.2 RSFQ Hybrid Wave-pipelined Asynchronous Multiplier

Miroarchitecture and Cell-Level Implementation 42

4.2.1 Partial Product Generation 42

4.2.2 Partial Product Compression 50

4.2.3 Final Summation . 56

4.3 Integer Multiplier Design Summary 58

4.1 Goals and Challenges

Our goal in a 32-bit integer multiplier design was to design a wide-datapath

multiplier operating at 10 GHz+ frequencies with the lowest possible latency

when implemented with the Hypres 1.5 µm 4.5 kA/cm2 fabrication process. Due

to existing fabrication technology limitations, the design had to have a reasonable

complexity below 100,000 JJs.

To achieve this, an efficient 32-bit multiplier microarchitecture with appropri-

ate clocking mechanism had to be developed.

Hence, our multiplier microarchitecture features wave-pipelining and co-flow

sequencing without global synchronous clocking.

A novel T1 based design technique is used for building compressor trees. This

allowed us to achieve 10 GHz+ processing rates with modest amount of hardware.

41

To achieve logarithmic execution time, we have connected individual compres-

sors in a way that allows us to decompose partial product columns into multiple

smaller groups which are processed in parallel.

4.2 RSFQ Hybrid Wave-pipelined Asynchronous

Multiplier Miroarchitecture and Cell-Level

Implementation

A 32-bit parallel integer multiplier presented in this dissertation utilizes a high

performance parallel carry-save reduction tree with short logarithmic delay. To

further achieve the best timing characteristics, an existing parallel prefix adder

described in [30] was used for final summation. The nine least significant bits of

the multiplication product are calculated in the compression tree and buffered

using a partial sum buffer, while the other 23-bits are calculated by the parallel

prefix tree adder. The block diagram of resulting 32-bit RSFQ integer multiplier

is shown in Figure 4.1.

Hence, the multiplier is composed of four asynchronously clocked blocks:

(1) A product generator with wave-pipelining,

(2) Compression tree with wave-pipelining,

(3) Data buffer,

(4) A 23-bit asynchronous wave-pipelined sparse tree adder (STA).

4.2.1 Partial Product Generation

When two 32-bit integers are multiplied, a 64-bit result can be produced as shown

in Figure 4.2. In such multiplier there are a total of 322 = 1024 partial product

bits which are used to produce a full 64-bit result.

The RSFQ multiplier designed here calculates low 32 bits of the product. In

that approach only the right half of the product generator is used, thus reducing

the number of partial products that need to be added from 1024 to
∑32

k=1 k = 528.

42

32-bit wide, 4-level Compression Tree

32x32-bit Partial Product Generator

23-bit STA Adder Product

Buffer

9-bit

23 23 9

23 9

32

Multiplicand

32

Product

∑32

k=1
k = 528

Multiplier

32

Figure 4.1: 32-bit multiplier structure. The 23-bit Adder is not a part of

this dissertation and was reused from [30].

4.2.1.1 Encoding

As mentioned earlier in Section 2.5.1 Booth-2 encoding could be employed to

reduce the number of partial products. However, Booth encoding requires a vast

amount of logic which would slow down the partial product generation process

as selection signals would have to be applied to relatively slow and complex

multiplexers. This would introduce not only long latency in the partial product

generator, but also increase the overall power consumption.

Because of the these shortcomings associated with Booth’s encoding, straight-

forward reduction is utilized. In other words, all partial products are sent to the

compressor without any encoding.

43

64-bit Product

MSB LSB

Pa
rt
ia
l P

ro
du

ct
s

Partial Products required

to build multiplier that

calculates 32-bit product

32-bit Product

Figure 4.2: 32-bit multiplication. Here, each dot represents a single bit of

either partial or final product.

4.2.1.2 Timing

The best way to achieve high performance would be to generate all bits in indi-

vidual partial products simultaneously. However, this requires multiple parallel

clock distribution trees capable of generating SFQ pulses for each bit, which

would take most of the chip area. The large number of wire tracks would be

needed to route clock signals from the main splitter tree to each partial product

bit. This will be challenging due to a small number of metal layers available for

the interconnect.

On the other hand, in series clocking of each partial product bit involves large

delays between the most significant and the least significant bits. As mentioned

in Section 3.2.1, whenever a fan-out of two or more is required, a splitter cell

must be inserted. Inserting splitter cells in series, slows down the overall signal

propagation as well. Also, due to the fact that the size of each partial product

generator bit is relatively large, a passive transmission lines with their transmit-

ters and receivers need to be placed between each partial product bit adding to

44

the delay which accumulates as the signal propagates. Therefore, a serial clock

distribution scheme could not be used alone for the ultra-high speed processing,

and a compromise which uses both schemes is employed. First, clock signals are

distributed using a binary tree, and then a serial clock distribution inside each of

the 4x4 groups of a partial product matrix is carried out as shown in Figure 4.3

and Figure 4.4(a).

As a result, the individual bits from the partial product matrix are generated

over the relatively large period of time which spans over two clock cycles. The

product generation time for each bit is shown in Figure 4.5.

A similar approach is also used for multiplicand and multiplier distribution

where the operands are distributed by binary trees to each of the 4x4 groups,

and then in series inside each group.

Another optimization which allows us to reduce the amount of wire tracks is

to combine multiple partial product bits into a single wire track. Every column of

the partial product generator is divided into groups of four partial products per

group. Next, the four partial product bits from the same column are combined

together using merger cells (MRG) and sent over a single wire track as shown in

Figure 4.6.

As a result of uneven clock distribution, the bits in a single partial product are

delayed with respect to each other. Therefore, they either need to be processed

at different times or they must be synchronized before reaching the compression

tree.

First, we have designed the compressor to be able to work with the resulting

data skew. The related design worked at acceptable high clock rates, however

required a large amount of delay elements inside each compressor and resulted

in significant amount of glue logic which had to be inserted between every 4 and

16-bit groups.

To avoid this problem in the final design, the partial product generation timing

was synchronized and all the bits in every single partial product are aligned before

they reach the compression tree as shown in Figure 4.7. The resulting simplified

compressor circuit is less complicated, uses less power, has better latency, and

improved processing rate compared to the first design which had to deal with the

skewed input data.

45

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

ss
T
X

R
X

s
s

s
s

s
ss

T
X

R
X

s
s

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
s

s

s

T
X

R
X

-
JT

L
 c

e
ll
s
 (

o
n
e
 o

r
m

o
re

)

-
s
p
li
tt

e
r

c
e
ll

-
w

ir
e
 w

it
h
 t

ra
n
s
m

it
te

r
a
n
d
 r

e
c
e
iv

e
r

c
e
ll
s

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

ss
T
X

R
X

s
s

s
s

s
ss

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

ss
T
X

R
X

s
s

s
s

s
ss

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

ss
T
X

R
X

s
s

s
s

s
s

s T
X

R
X s T
X

R
X s T
X

R
X

s T
X

R
X

T
X

R
X

s
s

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
s

s

T
X

R
X

s
s

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
s

T
X

R
X

s
s

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s

s

F
ig
u
re

4
.3
:
C
lo
ck

d
is
tr
ib
u
ti
on

fo
r
to
p
fo
u
r
p
ar
ti
al

p
ro
d
u
ct
s.

46

(a) Clock distribution for partial product generator.

0 ps

154 ps

22 ps

44 ps

66 ps

88 ps

110 ps

132 ps

198 ps

176 ps

220 ps

242 ps

(b) Partial product generation timing profile.

Figure 4.4: Clock distribution and timing for the partial product generator.

47

(a) T = 0 ps (b) T = 22 ps (c) T = 44 ps

(d) T = 66 ps (e) T = 88 ps (f) T = 110 ps

(g) T = 132 ps (h) T = 154 ps (i) T = 176 ps

(j) T = 198 ps (k) T = 220 ps (l) T = 242 ps

Figure 4.5: Step-by-step timing during partial product generation.

48

PPi+1,j

PPi,j

PPi+2,j

PPi+3,j

single wire track to

1-bit wide [4:2] compressor

Four partial product bits

from the same column
Note: i mod 4 = 0 and i, j < 32

Figure 4.6: Routing four partial product bits with the same arithmetic

weight onto a single transmission line.

32-bit wide [4:2] Compressor

Data skew in a single

partial product (PP) due to

uneven clock distribuiton

in the Partial Product Generator

Figure 4.7: Time synchronization of partial product generator output.

49

4.2.1.3 Pipelining

Due to the relatively large latency of this unit, the partial product generator is

pipelined with two pipeline stages to provide the fastest possible processing rate.

wave 1

wave 2

wave 2

wave 2

Figure 4.8: Wave-pipelining of the partial product generator.

Pipelining is done with wave-pipelining. Two pipeline stages are shown in

Figure 4.8, where two consecutive operand waves can be processed at the same

time. All partial products are generated after both stages are completed.

4.2.2 Partial Product Compression

4.2.2.1 [4:2] Compressor

Once partial products are generated, these need to be added together (com-

pressed). The compression is done by adding the partial products column by

column, with carries from each column propagating toward the most significant

column. The addition is done with a use of [4:2] compressors. In RSFQ, we

build the [4:2] compressor by connecting (4,3) and (3,2) counters together with

carry-save path as shown in Figure 4.9.

We use the T1 cell to build both counters. This cell was described in Sec-

tion 3.2.1.1, but the functionality is also shown in Table 4.1. Whether the T1

cell serves as (4,3) or (3,2) counter depends on its position in a [4:2] compressor

50

(4,3) Counter

carry sum

in

c_intinc_intout

carry sum

in

(3,2) Counter

carry sum

in

(a) Block diagram

q0 q1

T1 c

t

q0 q1

T1 c

t

q
DFF c

t

(b) RSFQ implementation

Figure 4.9: [4:2] compressor.

as shown in Figure 4.9. When placed on the top, it counts up to 4 inputs serving

as a (4,3) counter. On the other hand, the bottom T1 cell handles up to 3 input

SFQ pulses implementing a (3,2) counter.

Like any clocked RSFQ cell, the T1 cell has a built in buffer for the sum

output. This buffer is used for co-flow synchronization.

Table 4.1: T1 cell used as (4,3) and/or (3,2) counter.

Output

Input Sequence Carry(q0) Sum(q1)

0 0 0

1 0 1

1 1 1 0

1 1 1 1 1

1 1 1 1 1 1 1

It is also possible to build larger compressors like a [7:3] compressor this way,

but the processing rates of T1 cell will drop significantly if each T1 cell will have

to process more than four partial product bits per cycle. This comes from the

fact that each input signal must be separated by the time required for a correct

T1 cell operation. In fact, the operating frequencies of 10 GHz or above are

attainable only if four or less data input bits are processed in one period.

To build an N-bit wide [4:2] compressor, multiple [4:2] compressors are placed

51

(4,3) Counter

carry sum

in

cout

sumi

colN−1

(3,2) Counter

carry sum

in

(4,3) Counter

carry sum

in

(3,2) Counter

carry sum

in

coli

carryi+1sumN−1carryN

bb b

col0

(4,3) Counter

carry sum

in

(3,2) Counter

carry sum

in

sum0carry0

bb b

Figure 4.10: N-bit wide [4:2] compressor, i < N : i, N ∈ N.

(4,3) Counter

carry sum

in

c_outN+1

sumN−1

colN

(3,2) Counter

carry sum

in

(4,3) Counter

carry sum

in

(3,2) Counter

carry sum

in

colN−1

carryNsumN
carryN+1

b
b
b
b

c_inN−2

b
b
b

b b bbbb

bbb

Figure 4.11: [4:2] compression example.

next to each other and connected with intermediate carries as shown in Fig-

ure 4.10. The N-bit wide [4:2] compressor can compress up to four operands (i.e.

partial products) into two operands.

The 4-to-3 and 3-to-2 compression steps are illustrated in an example shown

in Figure 4.11.

Our [4:2] compression is a six step process in which up to four partial products

are processed asynchronously followed by two clock signals which are used to

complete and synchronize the compression process as shown in Figure 4.12.

Here, after four inputs arrive, these are reduced from 4 to 3 using the top

(4,3) counter. Next, the asynchronous co-flow clock is sent for an additional (3,2)

52

reduction in the second stage. Finally, the resulting carry-sum pair is generated

after the second co-flow clock is applied to bottom (3,2) counter and the D flip-

flop buffer.

It is also worth to mention that the carry does not have to be buffered in

first stage but only in the second stage. This comes from the fact that only one

asynchronous carry-out is possible after the compression.

4.2.2.2 Compressor Pipelining

The multiplication operations can be sent to our compressor at 11.4 GHz rate,

and each operation takes 1.5 cycles to execute. The execution is ultra-pipelined

with four 45.6 GHz micro-stages per 11.4 GHz stage as shown in Figure 4.13.

The first four micro-stages are ultra-pipelined using wave-pipelining without

any clocking. The last two stages are pipelined using internal sum buffers which

are available as a part of T1 cell. An additional D flip-flop cell is used to synchro-

nize the carry output as mentioned. These last two micro-stages are synchronized

with the co-flow clocking.

Another feature of our pipelining is that the execution of two multiplication

instructions is partially overlapped within each compressor.

4.2.2.3 Tree Structure

Due to the fact that each [4:2] compressor (bit slice) in an N-bit wide [4:2] com-

pressor can compress only up to four bits, the partial product generator was

divided into eight groups of four partial products per group. Next, each group

of four partial products is handled by a separate N-bit wide [4:2] compressor as

shown in Figure 4.14.

Since each N-bit wide [4:2] compressor produces two bits per column, the

outputs from the top-level N-bit wide [4:2] compressors are combined together

in the second stage and processed by another compressor. The compression

process continues until the final 32-bit carry-sum pairs are generated as shown in

Figure 4.15.

A single bit-slice cross-section view of the compression tree for the most sig-

nificant bit column is shown in Figure 4.16. Here, all the partial products in a

single column of 32 products are reduced into 16, then into 8 at the second level,

4 at the third level, and finally into a single carry sum pair. The carry-sum pair

53

...
1... 10100

0... 00110

1... 01101

1... 00101

(a) Inputs to compressor.

clk
q0 q1

T1 c

t

q0 q1

T1 c

t

q
DFFc

t

(b) Compressing 1· · ·10100.

clk

sum

carry

(c) Compressing 0· · ·00110.

clk

sum

carry

(d) Compressing 1· · ·01101.

clk

sum

carry

(e) Compressing = 1· · ·00101.

clk

sum

carry

(f) Top sum read-out/compression.

clk

sum

carry

(g) Final carry-sum read-out.

Figure 4.12: Step-by-step compression process inside an N-bit wide [4:2]

compressor.

54

cl
k

1
cl

k
2

1
st

P
P

4
5

.6
 G

H
z

u
lt

ra
-p

ip
el

in
ed

2
n
d
 P

P
3

rd
 P

P
4

th
 P

P

cy
cl

e
2

ti
m

e

cy
cl

e
1

o
p
er

at
io

n
s

p
ar

ti
al

ly
 o

v
er

la
p
p
ed

F
ig
u
re

4
.1
3
:
H
y
b
ri
d
w
av
e-
p
ip
el
in
in
g
an

d
as
y
n
ch
ro
n
ou

s
co
-fl
ow

se
q
u
en
ci
n
g
of

an
N
-b
it
w
id
e
[4
:2
]
co
m
p
re
ss
or
.

55

Figure 4.14: Partial product grouping for compression tree.

Table 4.2: Number of [4:2] compressors needed to compress each group of

four partial products.

Group from Number of [4:2]

Figure 4.14 compressors needed

0 32

1 28

2 24

3 20

4 16

5 12

6 8

7 4

is completely reduced into a single bit output with the final adder.

4.2.3 Final Summation

As mentioned in Section 2.7 the adder design is beyond the scope of this disserta-

tion. Therefore, in the final summation to calculate the product from carry-sum

56

F
ig
u
re

4
.1
5
:
C
om

p
re
ss
or

tr
ee

st
ru
ct
u
re

fo
r
th
e
32
-b
it
R
S
F
Q

in
te
ge
r
m
u
lt
ip
li
er
.

57

− PP
16

PP
19

− PP
12

PP
15

−PP
11

− PP
4

− PP
0

− PP
20

PP
23

− PPPP
27 24 3

PP
7

PPPP
8

−
28

PP
31

PP

[4:2] Compr. [4:2] Compr. [4:2] Compr. [4:2] Compr. [4:2] Compr. [4:2] Compr. [4:2] Compr. [4:2] Compr.

[4:2] Compr.[4:2] Compr.[4:2] Compr.[4:2] Compr.[4:2] Compr.

[4:2] Compr.

[4:2] Compr.

[4:2] Compr.

carry−sum

Figure 4.16: Compression tree for the leftmost vertical bit column of the

partial product generator. The intermediate carries which are sent to higher-

order bits (the next vertical column to the left of the current column) are not

shown. Single carry-sum pairs are represented by two dots. Here, PPi is the

multiplicand bit (31-i) ANDed with ith bit of a multiplier (i.e. PP31-PP0 is a

single column of partial product generator) where i < 32 and i ∈ N.

operands a high performance RSFQ 23-bit sparse tree adder developed by M.

Dorojevets and C. Ayala [30] is used in this design.

4.3 Integer Multiplier Design Summary

The cell-level design of a RSFQ 32-bit integer multiplier was verified using VHDL

simulation with over 100,000 random operands at the processing rate of 11.4 GHz

with the total latency of 1.4 ns.

The current distribution for each part of the multiplier is given in Table 4.4,

and the complexity of the 32-bit integer multiplier can be found in Table 4.5.

Taking into account that the final design has around 76K JJs, we consider

our design goals achieved for this 32-bit RSFQ integer multiplier.

58

Table 4.3: 32-bit RSFQ integer multiplier characteristics at T = 4.2 K.

Maximum frequency (GHz) 11.4

Total latency (ps) 1,409

Total complexity (JJs) 75,811

Total bias current (A) 11.065

Table 4.4: JJ complexity breakdown and bias current distribution by com-

ponent in the 32-bit RSFQ integer multiplier.

Stage Complexity (JJs) Ibias (A) % Total bias

Partial Product Gen. 23,265 3.60 32.49

Compressor 42,841 6.16 55.67

Final Adder 9,220 1.24 11.24

Other1 275 0.06 0.60

Total 75,811 11.07 100.00

14,609 9,220

29,907

Partial Product Gen. Compressor 23-Bit Adder

Figure 4.17: JJ distribution per component for the 32-bit RSFQ integer

multiplier.

1Includes JJs used for cell separation, delay lines and clocking.

59

Table 4.5: JJ and bias current breakdown per logic and interconnect for the

32-bit RSFQ integer multiplier.

Category JJ Count % JJs Total Ibias % Ibias

Logic 25,767 33.99 2,221.63 20.10

Splitters 4,674 6.17 1,238.61 11.20

TX/RX 8,653 11.41 1,169.12 10.58

Other2 36,717 48.43 6,425.48 58.12

Total 75,811 100.00 11,054.83 100.00

Table 4.6: Latency breakdown for the 32-bit RSFQ integer multiplier.

Stage % Latency Latency (ps)

Partial Product Generator 22.00 310

Compressor 62.10 875

Final Adder (STA) 27.89 393

Overlapped3 11.99 -169

Total critical path latency: 1,409

Compressor

Partial Product Gen. 23-bit Adder

Overlapped between Partial

Product Gen. and Compressor

393

310

169

875

Figure 4.18: Latency breakdown for the 32-bit RSFQ integer multiplier.

2Includes JJs used for cell separation, delay lines and clocking.
3Partial product generation and compression are partially overlapped.

60

Table 4.7: Total cell breakdown for each cell in the 32-bit RSFQ integer

multiplier.

Cell
Cell

JJs/Cell
Total

% Cell % JJs
Count JJs/Cell

AAND 528 6 3,168 1.05 4.18

CFF 119 16 1,904 0.24 2.51

T1 771 9 6,939 1.53 9.15

DFF 1,607 4 6,428 3.20 8.48

JL 36,717 1 36,717 73.09 48.43

MRG 1,354 5 6,770 2.70 8.93

RX 2,124 3 6,372 4.23 8.41

CXOR 62 9 558 0.12 0.74

SPL 4,674 1 4,674 9.30 6.17

TX 2,281 1 2,281 4.54 3.01

Total 50,237 N/A 75,811 100.00 100.00

Table 4.8: Cell bias current distribution for the 32-bit RSFQ integer multi-

plier.

Cell
Current/Cell Total Current/Cell Total Current

(mA) (mA) (%)

AAND 0.85 448.80 4.06

CFF 1.14 136.10 1.23

T1 0.50 385.50 3.48

DFF 0.35 562.45 5.08

JL 0.18 6,425.48 58.07

MRG 0.51 688.78 6.22

RX 0.31 655.89 5.93

CXOR 0.18 10.85 0.10

SPL 0.27 1,238.61 11.19

TX 0.23 513.23 4.64

Total N/A 11,065.68 100.00

61

AAND

CFF

T1

DFF

J L

MRG

RX

CXOR

SPL

TX

(a) Complexity breakdown.

AAND

CFF

T1

DFF

J L

MRG

RX

CXOR

SPL

TX

(b) Bias current breakdown.

Figure 4.19: Complexity and current distribution per cell for the 32-bit

RSFQ integer multiplier.

0

10

20

30

40

50

60

Partial Product Gen. Compressor 23-bit Adder

%
J
J

AAND

JL

DFF

CFF

MRG

CXOR

SPL

T1

TX

RX

Figure 4.20: Complexity breakdown by component for the 32-bit RSFQ

integer multiplier.

62

Chapter 5

11.1 GHz 32-bit Single-precision

Floating-point Multiplier Design

and Evaluation

Contents

5.1 Goals and Challenges . 64

5.2 Floating-point Multiplication Basics 64

5.3 32-bit Floating-point Multiplier Structure 65

5.4 Sign Bit Calculation . 65

5.5 Exponent Calculation Unit 67

5.5.1 Zero Value Detection . 67

5.5.2 Initial Exponent Calculation Unit 67

5.5.3 Exponent Data Buffer . 69

5.5.4 Exponent Adjustment Unit 69

5.6 Mantissa Calculation Unit 70

5.6.1 Partial Product Generation 70

5.6.2 Compression . 76

5.6.3 Final Summation Unit . 78

5.6.4 Sticky Bit Calculation . 78

5.6.5 Normalization and Rounding Units 78

5.7 Floating-point Multiplier Design Summary 79

63

5.1 Goals and Challenges

Our goals in 32-bit floating-point multiplier design were similar to those of 32-

bit integer multiplier. We aimed at a wide-datapath multiplier operating at the

10 GHz+ frequencies with the lowest possible latency when implemented with

Hypres 1.5 µm 4.5 kA/cm2 fabrication process. The design required a complexity

below 100,000 JJs.

Our multiplier microarchitecture features wave-pipelining and co-flow sequenc-

ing without global synchronous clocking, parallel execution, and synchronization

between exponent and mantissa calculation blocks.

To achieve logarithmic execution time, we used binary compression tree and

carry-propagate adder. Furthermore, we connected all individual blocks in a way

that enabled us to deliver calculated results with the best timing possible.

5.2 Floating-point Multiplication Basics

The 32-bit floating point (FP) multiplier designed in this chapter implements the

single-precision IEEE-745 floating-point arithmetic standard supporting the most

complex rounding mode (rounding to the nearest) and excluding denormalized

numbers.

In IEEE-745 notation, floating-point numbers are represented using a sign

bit, an 8-bit wide exponent, and a 23-bit wide fraction as shown in Figure 5.1.

The sign bit determines the sign of the number, which is the sign of the signifi-

cand. The exponent is an 8 bit signed integer from −128 to 127 (2’s complement).

In this case an exponent value of 127 represents the actual zero.

The true significand also referred to as mantissa includes 23 fraction bits to

the right of the binary point and an implicit leading bit (to the left of the binary

point) with value 1 unless the exponent is stored with all zeros in which case

the denormalized number is represented (denormalized numbers are unsupported

in this design). Thus only 23 fraction bits of the significand appear in memory

format but the total precision of floating-point number is 24 bits.

64

sign exponent fraction

02431

Figure 5.1: IEEE-745 single-precision floating-point number representation.

5.3 32-bit Floating-point Multiplier Structure

The floating-point multiplier is composed of the sign bit selection hardware, ex-

ponent calculation, adjustment, and the integer multiplier for the mantissa as

shown in Figure 5.2.

If a binary floating-point number x is represented as a significand s, and

exponent e as in x = s× 2e the formula

(s1 × 2e1) · (s2 × 2e2) = (s1 · s2)× 2e1+e2 (5.1)

shows that the floating point multiplication has several parts.

The first part multiplies siginificands using an ordinary integer multiplier. Be-

cause the floating-point numbers are stored in sign magnitude form, the multiplier

has to deal only with unsigned numbers.

The second part rounds the result. If the significands are unsigned 24-bit

numbers (for 32-bit floating-point multiplier), then the product can have as many

as 48 bits and must be rounded to a 24-bit number.

The third part computes the new exponent. Because exponents are stored

with bias, this involves subtracting the bias from the sum of the biased expo-

nents [51].

The top level 32-bit RSFQ floating-point multiplier structure with all three

parts is shown in Figure 5.2.

5.4 Sign Bit Calculation

The sign bit is either positive when the sign value is ’0’ or negative otherwise,

and therefore a XOR gate can be used to provide the correct sign bit for the

result (see Table 5.1).

65

Figure 5.2: Floating-point multiplier structure. The 39-bit adder, blocks

inside Normalization, Rounding, and Exponent Adjustment units are part of

32-bit floating-point adder described in [44] and are not a subject of this dis-

sertation. These blocks were adopted and reused in either exact or modified

form.

66

Table 5.1: Sign bit calculation.

Sign1 Sign2 New sign

+ + +

+ − −
+ + +

+ − −

5.5 Exponent Calculation Unit

The Exponent Calculation Unit as its name suggests deals with the calculation

of exponents and also detects whether any input exponent value is zero. It is

composed of multiple smaller blocks which have to be synchronized with the

Mantissa Calculation Unit to provide the best processing rate and latency.

5.5.1 Zero Value Detection

When either of the exponents has a value of zero, this is detected and the appro-

priate signal is propagated through the Exponent Calculation Unit. In this case,

the floating-point output is flushed to 0 and the zero flag is asserted.

5.5.2 Initial Exponent Calculation Unit

Because exponents are biased, the bias has to be subtracted from the sum of two

biased exponents to get the new biased value. That is, for two numbers A and B

the new exponent e can be calculated using following formula

e = eA + eB − bias. (5.2)

This equation can modified to use two adders as in

e = eA + eB + (−bias) (5.3)

where bias = 127 = 0b100000012s.

The first adder is used to add biased exponents. The second one adds negative

bias to the result from the first addition to form a new biased exponent.

Since the exponent calculation is not on the critical path, a low complexity

ripple-carry adder is used for this purpose. As ripple-carry addition takes more

67

than one cycle, the addition had to be pipelined with the four least significant

bits calculated in the first stage, and the other four bits in the second stage.

Furthermore, the second part of the first addition is overlapped with the first

part of the second addition as shown in Figure 5.3.

4-bit RCA

a
3:0 b

3:0

0 0 0 1

cin
cout

Overflow

&

Underflow

Detection

e7:4flags

a
7:4 b

7:4

stage 1

RCA used to add

biased exponent

RCA used for

bias correction

Note:

-BIAS = 1000_0001

e3:0

4-bit RCA cin
cout

4-bit RCA

00 01

cin
cout

4-bit RCA cin
cout

stage 2

stage 3Buffer

Buffer

Figure 5.3: Exponent calculation with bias correction. Exponents a7:0, b7:0

and final exponent e7:0 are in biased form.

A 4-bit ripple-carry adder (RCA) used for initial exponent calculation is shown

in Figure 5.4.

q0 q1

T1 c

t

s0

q0 q1

T1 c

t

q0 q1

T1 c

t

q0 q1

T1 c

t

s1s2s3

cout

cin

b0b1b2b3 a0a1a2a3

Figure 5.4: 4-bit RCA used for exponent calculation.

Overflow occurs when the resulting exponent is too large to be represented,

that is when the new unbiased exponent value is 128 or larger. On the other hand,

the underflow is detected when the result becomes negative. The case where the

result is 0 (internal denormalized number) can be corrected if the exponent is

68

incremented after the normalization and rounding stage and is handled correctly

in our implementation.

5.5.3 Exponent Data Buffer

Once calculated, the exponent is not used for the next 600 ps until the normaliza-

tion and rounding stage. Sending the exponent to the rounding block without any

buffering would corrupt the exponent value for previous multiplication. Hence,

the exponent is buffered using a ten-stage data buffer.

5.5.4 Exponent Adjustment Unit

This block consist of two 8-bit adders with multiplexers. The adders are used to

increment the exponent.

The first increment operation is done in parallel with normalization inside the

Mantissa Calculation Unit which provides a control signal for the multiplexer.

That is, it selects between the original and incremented value of the exponent

based on normalization outcome.

Similarly, the second increment operation is done in parallel with the rounding

step inside the Mantissa Calculation Unit to provide the lowest possible latency

of this stage. The overflow in mantissa calculation causes the incremented value

to be propagated to the output buffer, otherwise the non-incremented value is

used.

A carry-out from each adder is used for overflow detection and is propagated

to the flag register.

If the initial exponent value of 0 is incremented due to either normalization

or rounding, the zero flag from initial exponent calculation block is cleared and

a correct normalized/rounded result is given.

The adders and multiplexers used in this block are not a subject of this

dissertation. These were designed as a part of the 32-bit floating-point adder

described in [44] and were only reused here.

69

5.6 Mantissa Calculation Unit

The most complex floating-point multiplier blocks such as the partial product

generator (33.2% JJs) and compressor (32.8% JJs) are the main focus in this

section. On the other hand, the summation, normalization, and rounding stages

were adopted from floating-point multiplier designed at Stony Brook at USCL [44]

with slight modifications required due to rounding and normalization specific to

the multiplier.

5.6.1 Partial Product Generation

Multiplying two 24-bit integers results in a 48-bit product as shown in Figure 5.5

with a total of 242 = 576 partial product bits.

Par
tia

l P
ro

du
ct

s

LSBMSB Multiplicand

48-bit Product LSBMSB

M
u

lt
ip

li
er

L
S

B
M

S
B

Figure 5.5: Partial product generator for a 24-bit multiplier used for man-

tissa calculation.

The straightforward implementation of the resulting partial product parallel-

ogram leads to the asymmetric design for which it is difficult to provide adequate

timing. Therefore, to provide a more uniform symmetric clock and data distri-

bution we have rearranged the partial product parallelogram by moving up the

bit columns on the left side toward the input as shown in Figure 5.6.

70

Partial product bit slice can be moved up

without affecting multiplication result

Rearanging left

hand side for

symetric data flow

Figure 5.6: Rearranging partial product generator for symmetric data flow.

Since the arithmetic weight of each bit in every single column is preserved in

this rearrangement, such modification does not impact the final product calcula-

tion result. Rearranging partial products this way provides for symmetric clock

distribution. As a consequence, the physical data does not travel in straight

lines, but rather makes a turn in the middle as shown in Figure 5.7. This way,

the timing for multiplicand and multiplier is balanced as well.

Another advantage of this arrangement is that the number of bits per row

decreases as data move down. With the number of bits in each row decreasing,

the time difference between most and least significant bit in each row decreases

as well. This is important because the signal fluctuations are growing as the data

travel inside the product generator. These fluctuations can be better accommo-

dated when the worst case delay between the least and most significant bit is

shorter.

Once the data reaches the middle column of the partial product generator,

they are distributed the same way as the clock is distributed, providing an addi-

71

LSBMSB Multiplier

(a) Multiplier dataflow.

LSBMSB Multiplicand

(b) Multiplicand dataflow.

Figure 5.7: Dataflow inside the partial product generator.

tional clock and data synchronization. Furthermore, once the layout for the right

side of the circuit is completed, it can be reused for the left side.

5.6.1.1 Timing

The large number of wires needed and area limitations similar to those that

were described in Section 4.2.1.2 for the integer multiplier apply here as well.

Therefore, the operand and clock distribution is similar to that used for the the

32-bit integer multiplier.

As a result, the operands are distributed using binary trees to each of the 4x4

72

group of the partial product and then in series inside each group. The partial

product clock distribution and timing profile are shown in Figure 5.8.

(a) Clock distribution for partial product generator.

0 ps

154 ps

22 ps

44 ps

66 ps

88 ps

110 ps

132 ps

198 ps

176 ps

(b) Readout timing for each bit.

Figure 5.8: Clock distribution and timing for the partial product generator

for the floating-point multiplier.

The partial product synchronization mechanism for the partial product gen-

erator is also similar to the one used in 32-bit integer multiplier. The partial

product generation and synchronization for the floating-point multiplier is shown

in Figure 5.10.

73

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

s
s

s
ss

T
X

R
X

s
s

ss
T
X

R
X

s
s

s
s

s
ss

T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

s
s

s
ss

T
X

R
X

s
s

ss
T
X

R
X

s
s

s
s

s

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

s
s

s
ss

T
X

R
X

s
s

ss
T
X

R
X

s
s

s
s

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

s
s

s
ss

T
X

R
X

s
s

ss
T
X

R
X

s
s

s

s T
X

R
X ss T
X

R
X

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

s
s

s
ss

T
X

R
X

s
s

ss
T
X

R
X

s
s

s
ss

T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

s
s

s
ss

T
X

R
X

s
s

ss
T
X

R
X

s
s

s

s

ss
T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

s
s

s
ss

T
X

R
X

s
s

ss
T
X

R
X

s
s

s
ss

T
X

R
X

s
s

ss
T
X

R
X

s
s

s
T
X

R
X

s
s

s
ss

T
X

R
X

s
s

ss

s
s

s T
X

R
X ss T
X

R
X

s

T
X

R
X

-
JT

L
 c

e
ll
s
 (

o
n
e
 o

r
m

o
re

)

-
s
p
li
tt

e
r

c
e
ll

-
w

ir
e
 w

it
h
 t

ra
n
s
m

it
te

r
a
n
d
 r

e
c
e
iv

e
r

c
e
ll
s

s

s

s

F
ig
u
re

5
.9
:
C
lo
ck

d
is
tr
ib
u
ti
on

fo
r
to
p
fo
u
r
p
ar
ti
al

p
ro
d
u
ct
s.

74

47-bit wide [4:2] Compressor

Data skew in a single

partial product (PP) due to

uneven clock distribuiton

in the Partial Product Generator

Figure 5.10: Partial product synchronization.

5.6.1.2 Pipelining

In order to provide the best possible processing rate, two pipeline stages were

utilized. The pipeline stages are shown in Figure 5.11. It is similar to that of the

32-bit integer multiplier described in Chapter 4.

wave 1

wave 2

wave 1

wave 2

wave 2

wave 2

Figure 5.11: Wave-pipelining of the partial product generator for the

floating-point multiplier.

75

5.6.2 Compression

5.6.2.1 Compressor Pipelining

Operation of each compressor is synchronized using a hybrid of wave-pipelining

and asynchronous co-flow sequencing as in the 32-bit multiplier described in Sec-

tion 4.2.2.2 and is only briefly described here to highlight the differences between

the two multipliers.

5.6.2.2 Tree Structure

As in the 32-bit integer multiplier, each column in the N-bit wide [4:2] compres-

sor is used to reduce up to 4-bits belonging to the same bit slice. Therefore,

the product generator output can be divided into six rows, each handled by a

separate N-bit wide [4:2] compressor. The resulting compression tree is shown in

Figure 5.13.

bb bbbbbbbbbbbbbbbbbbbbbb

bb bbbbbbbbbbbbbbbbbbbbb

b

bb

bbb

bbbb

bbbbb

bbbbbb

bbbbbbb

bbbbbbbb

bbbbbbbbb

bbbbbbbbbb

bbbbbbbbbbb

bbbbbbbbbbbb

bbbbbbbbbbbbb

bbbbbbbbbbbbbb

bbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbb

b

b bbbbbbbbbbbbbbbbbbbb b

b bbbbbbbbbbbbbbbbbbb

bb bbbbbbbbbbbbbbbbbb

bb bbbbbbbbbbbbbbbbb

bb bbbbbbbbbbbbbbbb

bb bbbbbbbbbbbbbbb

bb bbbbbbbbbbbbbb

bb bbbbbbbbbbbbb

bb bbbbbbbbbbbb

bb bbbbbbbbbbb

bb bbbbbbbbbb

bb bbbbbbbbb

bb bbbbbbbb

bb bbbbbbb

bb bbbbbb

bb bbbbb

bb bbbb

bb bbb

bb bb

bb b

bb

b

Group 0

Group 1

Group 2

Group 3

Group 4

Group 5

Figure 5.12: Partial products grouping for compression tree.

Since there are 47 columns and all are to be reduced, a 47-bit wide [4:2]

compressor is used for group 0 of partial products, a 39-bit wide [4:2] compressor

for group 1 and so on until a 7-bit wide [4:2] compressor for group 5.

The outputs from these N-bit wide [4:2] compressors are then grouped together

and sent to another level of an N-bit wide [4:2] compressor as shown in Figure 5.13.

The compression process continues until the final carry-sum pair is generated.

This carry-sum pair is then completely reduced into a single product using a

39-bit adder.

76

F
ig
u
re

5
.1
3
:
C
om

p
re
ss
or

tr
ee

fo
r
th
e
32
-b
it
R
S
F
Q

fl
oa
ti
n
g-
p
oi
n
t
m
u
lt
ip
li
er
.

77

5.6.3 Final Summation Unit

As mentioned in Section 2.7 the CPA adder design is beyond the scope of this

dissertation. Therefore, a high performance RSFQ 39-bit sparse tree adder de-

veloped by M. Dorojevets and C. Ayala [44] is used in this design.

5.6.4 Sticky Bit Calculation

The initial sticky bit is calculated during the compression and summation. It

is then appropriately used in the rounding stage if necessary according to the

rounding algorithm as described in Section 5.6.5.

5.6.5 Normalization and Rounding Units

Although, the Normalization and Rounding units were not designed specifically

for this study, and these are taken from 32-bit floating-point adder described

in [44], a slight modification had to be made to these blocks before they could be

used in floating-point multiplier design. Hence, a short description of normaliza-

tion and rounding steps is given below.

There is straightforward method of handling normalization and rounding in

32-bit floating-point multipliers. After both significands A and B are multiplied,

a 48-bit product is obtained and stored in registers (P,A) forming a 48-bit register

with most significant bits in register P. Let s represent the sticky bit, g (for guard)

the most-significant bit of A, and r (for round) the second most-significant bit of

A. There are two cases:

case 1: The high-order bit of P is 0. Shift P left by 1 bit, shifting in the g

bit from A. Shifting the rest of A is not necessary.

case 2: The high-order bit of P is 1. Set s := s ∧ r and r := g, and add 1 to

the exponent.

Now if r = 0, P is correctly rounded product. If r = 1 and s = 1 then P+1

is the product. If r = 1, we are halfway and need to round up according to the

least significant bit of P [51]. The precise rounding modes are listed in Table 5.2.

78

Table 5.2: Rules for implementation the IEEE rounding modes.

Rounding Mode Sign ≥ 0 Sign < 0

−∞ if r ∨ s ⇒ +1 to P

+∞ if r ∨ s ⇒ +1 to P

0

Nearest if r ∧ (p0 ∨ s) ⇒ +1 to P if r ∧ (p0 ∨ s) ⇒ +1 to P

5.7 Floating-point Multiplier Design Summary

The cell-level design of the RSFQ 32-bit floating-point multiplier was verified

using VHDL simulation with over 100,000 random operands at the processing

rate of 11.1 GHz with a total latency of 1.772 ns.

The bias current distribution and complexity for each stage of the multiplier

is given in Table 5.6.

Taking into account that the final design has around 89K JJs, we consider

our design goals achieved for this 32-bit RSFQ single-precision floating-point

multiplier.

79

Figure 5.14: 11.1 GHz RSFQ 32-bit single-precision floating-point multi-

plier.

80

Table 5.3: RSFQ floating-point multiplier characteristics at T = 4.2 K.

Maximum frequency (GHz) 11.1

Total latency (ps) 1,772

Total complexity (JJs) 89,040

Total bias current (A) 12.646

Table 5.4: Latency breakdown for the RSFQ floating-point multiplier.

Stage % Latency Latency (ps)

Partial Product Generation 13.88 246

Partial Product Compression 29.63 525

Final Summation (STA) 30.59 542

Initial Exponent Calculation N/A 641

Normalization 6.32 112

Rounding 21.16 375

Reset to Zero & Readout 3.67 65

Overlapped1 (5.25) (93)

Total critical path latency: 1,772

Table 5.5: JJ and bias current breakdown per logic and interconnect for the

RSFQ floating-point multiplier.

Category JJ Count % JJs Total Ibias % Ibias

Logic 31,369 35.23 2,612.73 20.72

Splitters 6,081 6.83 1,611.47 12.78

PTL 15,612 17.53 2,086.35 16.55

Other2 35,978 40.41 6,296.15 49.94

Total 89,040 100.00 12,606.70 100.00

1Partial product generation and compression steps are partially overlapped.
2Includes JJs used for cell separation, delay lines and clocking.

81

Table 5.6: JJ distribution per stage for the RSFQ floating-point multiplier.

Stage
Complexity Ibias Ibias

(JJs) (A) (%)

Partial Product Generation 29,592 4.5705 2.35

Partial Product Compression 29,230 3.8771 36.14

Final Summation (STA) 19,804 2.7843 30.66

Initial Exponent Calculation 2,137 0.2972 22.02

Normalization 2,378 0.3229 2.55

Rounding 4,708 0.6394 5.06

Reset to Zero & Readout 540 0.0634 0.50

Other3 651 0.0916 0.72

Total 89,040 12.6465 100.00

2137

29592

29230

19804

2378
4708540

Partial Product Compression

Final Summation (STA38)

Normalization

Reset to Zero & Readout

Partial Product Generation

Initial Exponent Calculation

Rounding

Figure 5.15: Complexity breakdown per stage for the RSFQ floating-point

multiplier.

3Intermediate buffers and interconnects.

82

AAND CFF

T1 D2FF

DFF JL HA

DFFC

DFFEJ

(a) Complexity breakdown.

MRG RX

CXOR

SPL

TX

(b) Bias current distribution.

Figure 5.16: JJ and current breakdown per cell for the RSFQ floating-point

multiplier.

Table 5.7: Cell use breakdown for the RSFQ floating-point multiplier.

Cell
Cell

JJs/Cell
Total

% Cell % JJs
Count JJs/Cell

AAND 604 6 3,624 1.09 4.07

CFF 214 16 3,424 0.39 3.85

T1 665 9 5,985 1.20 6.72

D2FF 104 7 728 0.19 0.82

DFF 2091 4 8,364 3.79 9.39

JL 35,978 1 35,978 65.19 40.41

MRG 1,423 5 7,115 2.58 7.99

RX 3,895 3 11,685 7.06 13.12

CXOR 158 9 1,422 0.29 1.60

SPL 6,081 1 6,081 11.02 6.83

HA 24 23 552 0.04 0.62

TX 3,927 1 3,927 7.12 4.41

DFFC 6 10 60 0.01 0.07

DFFEJ 19 5 95 0.03 0.11

Total 55,189 N/A 89,040 100.00 100.00

83

Table 5.8: Bias current distribution for the RSFQ floating-point multiplier.

Cell
Current/Cell Total Current/Cell Current

(mA) (mA) (%)

AAND 0.85 513.40 4.06

CFF 1.14 244.75 1.94

T1 0.50 332.50 2.63

D2FF 0.21 22.10 0.17

DFF 0.35 731.85 5.79

JL 0.18 6,296.15 49.79

MRG 0.51 723.88 5.72

RX 0.31 1,202.78 9.51

CXOR 0.18 27.65 0.22

SPL 0.27 1,611.47 12.74

HA 1.84 44.25 0.35

TX 0.23 883.58 6.99

DFFC 0.91 5.48 0.04

DFFEJ 0.35 6.65 0.05

Total N/A 12,646 100.00

0

5000

10000

15000

20000

25000

30000

Initial Exponent Calc.

Partial Product Gen.

Compression

Final Summation

Normalization

Rounding

Reset to Zero/Readout

%
JJ

AAND
CFF

D2FF
DFF

DFFEJ
JL

MRG
T1

CXOR
SPL

DFFC
HA
TX
RX

Figure 5.17: Cell breakdown per stage for the floating-point multiplier.

84

Chapter 6

Physical Chip Design and

Demonstration of 20 GHz 8-bit

Integer Multiplier

Contents

6.1 Microarchitecture . 86

6.2 Complexity and Power . 86

6.3 Performance . 88

6.4 Logical and Physical Layout Design 89

6.5 Experimental Test Results 92

In this chapter we will discuss the microarchitecture, design, and testing of the

20 GHz 8-bit (by modulo 256) parallel superconductor RSFQ multiplier which

was implemented and fabricated using the ISTEC 1.0 µm 10 kA/cm2 fabrication

technology [52].

The goal of implementing this multiplier was to test and validate our compres-

sion tree based on [4:2] compressor cells. In fact, the 8-bit multiplier is similar

to the 32-bit integer multiplier, but with a sparse tree adder used for the final

summation replaced with a ripple-carry adder.

The complete logical and physical multiplier chip design has been done in this

study using the CONNECT cell library and SFQ CAD tools developed at Nagoya

University and Yokohama National University.

The multiplier core (without SFQ-to-DC and DC-to-SFQ converters) has

5,901 Josephson junctions occupying an area of 3.0 mm2.

This multiplier was designed with the maximum operation frequency of 20

GHz, and the latency of 447 ps attainable with the bias voltage of 2.5 mV. Despite

85

some challenges related to process parameter variations and flux trapping, the

multiplier chip was fabricated and successfully tested at low frequency for the

vast majority of test vectors. The testing was carried out by the SBU team with

the assistance of colleagues from National Yokohama University in Japan during

February 2012.

6.1 Microarchitecture

Our 8-bit parallel integer multiplier with 8-bit output utilizes a high performance

carry-save reduction tree similar to the one mentioned for both 32-bit multipliers,

and a 3-bit ripple-carry adder is used for final summation. The block diagram

for this multiplier is shown in Figure 6.1.

The partial product generation circuit is first divided into two main groups

with four partial products per group. The first group is made of four top par-

tial products rows and the second group of the four bottom partial products.

Each group is processed in parallel to speed up the partial product generation

process. The modules used to build the partial product generator are shown in

Figures 6.1(b)-6.1(e).

In each group, the partial products are generated sequentially where the top-

most partial product corresponding to the least significant bit in the multiplier

is generated first, then second, third, and finally the fourth one.

The compression tree is built with [4:2] compressors in a similar way the

compression trees for 32-bit multipliers were built. The compression tree is shown

in Figure 6.2.

Using the two level [4:2] compression tree, the five least significant bits are

reduced completely to one bit per column and need not to be reduced any further,

so the final adder size is significantly reduced. The data in the remaining three

columns are reduced to form a final product using a 3-bit ripple carry adder

shown in Figure 6.1(g).

6.2 Complexity and Power

The 8-bit multiplier complexity, power dissipation, and area are summarized in

Table 6.1.

86

(a) Top level block diagram

(b) MG4 (c) MG3 (d) MG2

(e) MG1 (f) [4:2] (g) 3-bit Adder

Figure 6.1: 8-bit RSFQ integer multiplier block diagram.

87

- carry-in from lower order bit column tree

- carry-out to higher order bit column tree

[4:2]

A B C D

Carry Sum

- single bit of partial product

[4:2]

A B C D

Carry Sum

[4:2]

A B C D

Carry Sum

(a) Partial product grouping for

compression.

(b) Compressor tree struc-

ture.

Figure 6.2: Compressor tree structure for the 8-bit RSFQ integer multiplier.

Table 6.1: Complexity, bias current, and area distribution for the 8-bit

RSFQ integer multiplier.

Component JJ Count Ibias Area (mm2)

DC-to-SFQ converters 85 6.906 0.0816

Main circuit 5,901 675.717 3.0048

SFQ-to-DC converters 72 11.849 0.0384

Total 6,058 694.472 3.1248

6.3 Performance

The simulation for 8-bit multiplier showed correct operation at 20 GHz rate with

±10% bias margins. The bias simulation results are shown in Figure 6.3.

Table 6.2: 8-bit RSFQ integer multiplier chip summary.

Maximum frequency (GHz) 21.5

Total latency (ps) 447

Total complexity (JJs) 6,058

Total bias current (mA) 694.5

Total area (mm2) 3.1

88

15 16 17 18 19 20 21 22

-20

-10

0

10

20

D
C

 B
ia

s
M

ar
gi

ns
 (%

)

Clock Rate (GHz)

Figure 6.3: Operating margins of the 8-bit RSFQ integer multiplier.

6.4 Logical and Physical Layout Design

The layout for the 8-bit multiplier was done with Cadene using the latest CON-

NECT cell library. The multiplier layout with the main parts highlighted is shown

in Figure 6.4. The multiplier was fabricated with the ISTEC 1.0 µm 10 kA/cm2

process and the micro-photograph of a real chip is shown in Figure 6.5.

89

Partial Product

Generator

4-bit [4:2]

Compressor

(1st level)

8-bit [4:2]

Compressor

(1st level)

8-bit [4:2]

Compressor

(2nd level)

3-bit RCA

Figure 6.4: The 8-bit RSFQ integer multiplier layout implemented with the

CONNECT cell library.

90

Figure 6.5: Micro-photograph of the 8-bit RSFQ integer multiplier chip

fabricated with the ISTEC 1.0 µm 10 kA/cm2 fabrication process.

91

6.5 Experimental Test Results

The 8-bit multiplier was tested at Yokohama National University in Japan in

Yoshi Lab with a very high success rate in February 2012. The equipment used

during the low frequency testing is listed in Table 6.3.

Table 6.3: Testing equipment for low frequency testing.

Equipment name Model number Purpose

Power Supply PMR18-2.5DU To supply bias current to the

chip.

Step Attenuator Tamagave Electronics

VBA-641A

To convert the input signals from

data generator to appropriate lev-

els for superconductor circuit.

Data generator Tektronix DG2020A To generate input test pattern.

Variable Output Pod Tektronix P3420 Input signal conditioning.

Differential Amplifier Stanford Research Sys-

tems SR560

To amplify output data signals.

Bias filters custom made To provide filtered bias current.

Cryostat Cryofab Inc. CMSH 88 To cool down the RSFQ chip to

T=4.2 K.

Probe custom made To provide power and communi-

cation link between test equip-

ment and the chip.

During testing, the chip is mounted inside a chip-holder designed to withstand

cryogenic temperatures and covered with a magnetic shield. Then, the chip

is pre-cooled to T = 77 K using liquid Nitrogen to avoid rapid temperature

fluctuations inside the cryostat where lower temperatures are present. Next, wire

connections to the chip are checked for continuity to make sure that all probe

pads are connected to the pad frame. After this step, the probe is immersed

in liquid helium to provide a low cryogenic temperature of T = 4.2 K sufficient

for Niobium [53] to reach its superconductive stage. Once the chip temperature

stabilizes, the required amount of bias current is applied and adjusted to reach

stable operating point when needed.

At this point, the logical testing starts by applying the walking ’1’s pattern for

multiplier while keeping each bit in other operand at logical ’1’ level. After this

92

0

1

2

3

4

5

6

7

P
ro

d
u
c
t

b
it

 n
u
m

b
e
r

1

0

1

1

0

0

1

0

P
ro

d
u
c
t

v
a
lu

e

(a) Result of multiplying (0x0B

× 0x07) modulo 8 = 0x4D.

0

1

2

3

4

5

6

7

P
ro

d
u
c
t

b
it

 n
u
m

b
e
r

0

1

0

0

0

0

1

1

P
ro

d
u
c
t

v
a
lu

e

(b) Result of multiplying (0x0F

× 0x1E) modulo 8 = 0xC2.

Figure 6.6: Oscilloscope waveforms for two test patterns1.

test pattern is successfully tested for all vectors, a more complex testing process

is performed. First, the operations that require T1 cell to work at 40 GHz are

analyzed. This is followed by testing the T1 cell based compression at 80 GHz. A

significant test pattern exercising all the output data bits is shown in Figure 6.6.

The multiplier chip worked with voltage bias margins of ±5%. We had incorrect

results for some test vectors most likely due to flux trapping or/and significant

variations of fabrication process parameters. Although not all test cases were

successful, the vast majority of test vectors produced correct results.

Figure 6.7: 8-bit RSFQ integer multiplier chip bonded to a chip holder.

1Presence of a rising or falling edge represents a SFQ pulse and logical 1.

93

Figure 6.8: Pre-cooling of the 8-bit RSFQ multiplier chip in liquid nitrogen.

Figure 6.9: Testing probe inside a cryostat during testing.

94

Chapter 7

Conclusions

The main focus of this research was to push current superconductor technology

to the limits of what can be reached in terms of design complexity and processing

rates.

Our objective of designing and evaluating an ultra-fast and energy-efficient

32-bit integer and single precision floating-point multipliers using superconductor

technology has been achieved with the resulting designs operating at ultra-high

performance with very low power consumption.

Various sequencing techniques such as synchronous pipelining, asynchronous

co-flow, and wave-pipelining suitable for ultra-high speed superconductor RSFQ

circuits were used to design both multipliers. Short execution time and low

complexity was achieved using our novel logarithmic compression tree.

A 32-bit integer multiplier was designed, modeled in VHDL, elaborated, and

successfully tested to work with the processing rate of 11.4 GHz with a total

latency of 1.41 ns.

The single-precision floating-point multiplier was designed, modeled in VHDL,

elaborated, and successfully tested to work with the processing rate of 11.1 GHz

with a total latency of 1.78 ns.

Finally, an 8-bit (by modulo 256) parallel carry-save RSFQ multiplier was

implemented using the ISTEC 1.0 µm 10 kA/cm2 fabrication technology and

tested with a very high success rate.

The fabricated 8-bit design multiplier worked with voltage bias margins of

±5% and the vast majority of test vectors produced correct results.

It will be worth-while to analyze the use of Booth encoding to reduce the

number of partial products generated, especially for a single-precision floating-

point multiplier as it will produce a more balanced compression tree structure.

In the future, zero-static-power superconductor logics should be looked upon

as they can provide even better energy efficiency.

95

Bibliography

[1] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and

Systems Perspective. Addison Wesley, 2009. (Cited on page 1.)

[2] Superconducting Technology Assessment (STA). National Security Agency

- Office of Corporate Assessments, Aug. 2005. [Online]. Available:

http://www.nitrd.gov/pubs/nsa/sta.pdf (Cited on pages 2, 3, 5, 6 and 9.)

[3] E. Strohmaier, “Japan reclaims top ranking on latest top500 list of

worlds supercomputers,” Press Release, June 2011. [Online]. Available:

http://top500.org/lists/2011/06/press-release (Cited on page 2.)

[4] M. White and Y. Chen, “Scaled cmos technology reliability users guide,”

NASA, Tech. Rep. WBS: 939904.01.11.10, November 2010. (Cited on

page 2.)

[5] O. A. Mukhanov, “Energy-Efficient Single Flux Quantum Technology,” Ap-

plied Superconductivity, IEEE Transactions on, vol. PP, no. 99, p. 1, 2011.

(Cited on pages 2, 6 and 7.)

[6] J. Evetts, Concise Encyclopedia of Magnetic & Superconducting Materials,

ser. Advances in Materials Science and Engineering. Pergamon Press, 1992.

[Online]. Available: http://books.google.com/books?id=YGlhQgAACAAJ

(Cited on page 2.)

[7] B. Josephson, “Possible new effects in superconductor tunneling,” Physics

Letters, pp. 251–253, 1962. (Cited on page 3.)

[8] K. Likharev and V. Semenov, “RSFQ logic/memory family: a new

Josephson-junction technology for sub-terahertz-clock-frequency digital sys-

tems,” Applied Superconductivity, IEEE Transactions on, vol. 1, no. 1, pp.

3 –28, Mar. 1991. (Cited on pages 3, 5, 6 and 34.)

[9] M. Dorojevets, “An 8-bit flux-1 rsfq microprocessor built in 1.75-[mu]m

technology,” Physica C: Superconductivity, vol. 378-381, no. Part 2, pp. 1446

– 1453, 2002. [Online]. Available: http://www.sciencedirect.com/science/

96

http://www.nitrd.gov/pubs/nsa/sta.pdf
http://top500.org/lists/2011/06/press-release
http://books.google.com/books?id=YGlhQgAACAAJ
http://www.sciencedirect.com/science/article/B6TVJ-46RKYPM-2D/2/d3138f9a5126a86fa95f1ef97dfc3faf
http://www.sciencedirect.com/science/article/B6TVJ-46RKYPM-2D/2/d3138f9a5126a86fa95f1ef97dfc3faf

article/B6TVJ-46RKYPM-2D/2/d3138f9a5126a86fa95f1ef97dfc3faf (Cited

on pages 3, 7 and 8.)

[10] A. Fujimaki, M. Tanaka, T. Yamada, Y. Yamanashi, H. Park, and

N. Yoshikawa, “Bit-Serial Single Flux Quantum Microprocessor CORE,”

IEICE Transactions on Electronics, vol. 91, pp. 342–349, 2010. (Cited on

pages 3, 7 and 9.)

[11] Scientific American, 1997. [Online]. Available: http://www.

scientificamerican.com/article.cfm?id=what-are-josephson-juncti (Cited on

page 4.)

[12] J.-C. V. Emanuele Baggetta, Michel Maignan, “Development of fast

nbn rsfq logic gates in sigmadelta converters for space telecommunica-

tions,” CEA-Grenoble, Laboratoire de Cryo-Physique and Alcatel SPACE,

CEA-Grenoble, Laboratoire de Cryo-Physique, 17 rue des Martyrs, 38054

GRENOBLE Cedex-9, LCP, Tech. Rep., 2005. (Cited on page 4.)

[13] D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko, “Zero static power

dissipation biasing of rsfq circuits,” IEEE Trans. Appl. Supercond., no. 99,

2011, early Access. (Cited on pages 6 and 7.)

[14] D. K. Brock, “Rsfq technology: Circuits and systems.” HYPRES INC., 175

Clearbrook Road, Elmsford, NY 10523, Tech. Rep. (Cited on pages 7 and 8.)

[15] M. J. W. Rodwell, High-speed integrated circuit technology: towards 100 GHz

logic., M. J. W. Rodwell, Ed. World Scientific Publishing Co. Pte. Ltd.,

2001. (Cited on page 7.)

[16] P. Bunyk, M. Leung, J. Spargo, and M. Dorojevets, “Flux-1 RSFQ micropro-

cessor: physical design and test results,” Applied Superconductivity, IEEE

Transactions on, vol. 13, no. 2, pp. 433 – 436, Jun. 2003. (Cited on page 9.)

[17] M. Dorojevets, D. Strukov, A. Silver, A. Kleinsasser, F. Bedard, P. Bunyk,

Q. Herr, G. Kerber, and L. Abelson, in Future Trends in Microelectronics:

The Nano, the Giga, the Ultra, and the Bio, S. Luryi, J. M. Xu, and A. Za-

slavsky, Eds., ch. On the Road Towards Superconductor Computers: Twenty

Years Later. (Cited on page 9.)

97

http://www.sciencedirect.com/science/article/B6TVJ-46RKYPM-2D/2/d3138f9a5126a86fa95f1ef97dfc3faf
http://www.scientificamerican.com/article.cfm?id=what-are-josephson-juncti
http://www.scientificamerican.com/article.cfm?id=what-are-josephson-juncti

[18] M. Dorojevets, C. L. Ayala, and A. K. Kasperek, “Data-Flow Microarchi-

tecture for Wide Datapath RSFQ Processors: Design Study,” Applied Su-

perconductivity, IEEE Transactions on, vol. PP, no. 99, p. 1, 2010. (Cited

on pages 10, 30, 33 and 35.)

[19] T. Filippov, M. Dorojevets, A. Sahu, A. Kirichenko, C. Ayala, and

O. Mukhanov, “8-bit asynchronous wave-pipelined rsfq arithmetic-logic

unit,” IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 847–851, 2011.

(Cited on pages 10 and 33.)

[20] T. Kirichenko, A.and Filippov, A. Sahu, . Mukhanov, M. Dorojevets, and

A. Kasperek, “Demonstration of rsfq 8-bit multi-port register file,” 2012,

submitted. (Cited on page 10.)

[21] S. F. Oberman and M. J. Flynn, “Design issues in division and other floating-

point operations,” IEEE Trans. Comput., vol. 46, no. 2, pp. 154–161, 1997.

(Cited on page 12.)

[22] M. J. Flynn and S. F. Oberman, Advanced Computer Arithmetic Design.

Wiley-Interscience, 2001. (Cited on pages 13 and 18.)

[23] J. G. Earle, “Latched carry-save adder,” vol. 7, no. 10, pp. 909–910, Mar.

1965. (Cited on pages 15 and 20.)

[24] O. Macsorley, “High-speed arithmetic in binary computers,” Proceedings of

the IRE, vol. 49, no. 1, pp. 67 –91, jan. 1961. (Cited on page 16.)

[25] S. Vassiliadis, E. Schwarz, and B. Sung, “Hard-wired multipliers with en-

coded partial products,” Computers, IEEE Transactions on, vol. 40, no. 11,

pp. 1181 –1197, nov 1991. (Cited on page 17.)

[26] H. A. Al-Twaijry, “Area and performance optimized cmos multipliers.”

Ph.D. dissertation, Stanford University, 1997. (Cited on pages 17, 22 and 23.)

[27] L. Dadda, “Multiple addition of binary serial numbers,” in Proc. IEEE

4th Symp. Computer Arithmetic (ARITH), 1978, pp. 140–148. (Cited on

page 20.)

98

[28] W. J. Stenzel, W. J. Kubitz, and G. H. Garcia, “A compact high-speed

parallel multiplication scheme,” IEEE Trans. Comput., no. 10, pp. 948–957,

1977. (Cited on page 20.)

[29] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electron.

Comput., no. 1, pp. 14–17, 1964. (Cited on page 23.)

[30] M. Dorojevets and C. Ayala, “Logical design and analysis of a 32/64-bit

wave-pipelined RSFQ adder,” in Proceedings of 2nd Superconducting SFQ

VLSI Workshop, ser. O6, Fukuoka, Japan, Aug. 2009, pp. 15–16. (Cited on

pages 25, 33, 42, 43 and 58.)

[31] O. A. Mukhanov, S. V. Rylov, V. K. Semonov, and S. V. Vyshenskii, “Rsfq

logic arithmetic,” IEEE Trans. Magn., vol. 25, no. 2, pp. 857–860, 1989.

(Cited on page 25.)

[32] A. Akahori, M. Tanaka, A. Sekiya, A. Fujimaki, and H. Hayakawa, “Design

and demonstration of sfq pipelined multiplier,” IEEE Trans. Appl. Super-

cond., vol. 13, no. 2, pp. 559–562, 2003. (Cited on pages 25 and 26.)

[33] M. Obata, M. Tanaka, Y. Tashiro, Y. Kamiya, N. Irie, K. Takagi, N. Takagi,

A. Fujimaki, N. Yoshikawa, H. Terai, and S. Yorozu, “Single-flux-quantum

integr multiplier with systolic array structure.” Physica C: Superconductivity,

vol. C, pp. 445–448, 2006. (Cited on pages 25 and 26.)

[34] Q. Herr, N. Vukovic, C. A. Mancini, K. Gaj, Q. Ke, E. G. Friedman, A. Kras-

niewski, M. F. Bocko, and M. J. Feldman, “Design and low speed testing of a

four-bit rsfq multiplier-accumulator,” MultiplierAccumulator, IEEE Trans.

Appl. Supercond, vol. 7, 1997. (Cited on page 25.)

[35] T. Onomi, K. Yanagisawa, M. Seki, and K. Nakajima, “Phase-mode

pipelined parallel multiplier,” IEEE Trans. Appl. Supercond., vol. 11, no. 1,

pp. 541–544, 2001. (Cited on page 25.)

[36] Y. Horima, T. Onomi, M. Kobori, I. Shimizu, and K. Nakajima, “Improved

design for parallel multiplier based on phase-mode logic,” IEEE Trans. Appl.

Supercond., vol. 13, no. 2, pp. 527–530, 2003. (Cited on page 26.)

99

[37] I. Kataeva, H. Engseth, and A. Kidiyarova-Shevchenko, “New design of an

RSFQ parallel multiply accumulate unit,” Superconductor Science Technol-

ogy, vol. 19, pp. 381–+, May 2006. (Cited on pages 26 and 27.)

[38] R. Nakamoto, S. Sakuraba, T. Onomi, S. Sato, and K. Nakajima, “4-bit sfq

multiplier based on booth encoder,” IEEE Trans. Appl. Supercond., vol. 21,

no. 3, pp. 852–855, 2011. (Cited on page 26.)

[39] S. Yorozu, Y. Kameda, H. Terai, A. Fujimaki, T. Yamada, and S. Tahara,

“A single flux quantum standard logic cell llibrary,” Physica C: Supercon-

ductivity, vol. C, pp. 378–381, 2001. (Cited on pages 26 and 39.)

[40] H., K. Hara, H. Obata, Y. Park, K. Yamanashi, N. Taketomi, M. Yoshikawa,

A. Tanaka, N. Fujimaki, K. Takagi, S. Takagi, and Nagasawa, “Design, im-

plementation and on-chip high-speed test of sfq half-precision floating-point

multiplier.” 2008. (Cited on pages 26 and 28.)

[41] A. Fujimaki, M. Tanaka, T. Yamada, Y. Yamanashi, H. Park, and

N. Yoshikawa, “Bit-serial single flux quantum microprocessor core,” in IE-

ICE Transactions on Electronics, vol. E91-C, no. 3, 2008, pp. 342–349.

(Cited on page 32.)

[42] L. Cotton, “Maximum rate pipcliiicd systems,” ser. AFIPS Spring Joint

Computer Conference, 1969, pp. 581–586. (Cited on page 32.)

[43] M. Dorojevets, C. Ayala, and A. Kasperek, “Development and evaluation of

design techniques for high-performance wave-pipelined wide datapath RSFQ

processors,” in Proceedings of 12th International Superconductive Electronics

Conference, Fukuoka, Japan, Aug. 2009, pp. SP–P46. (Cited on pages 33

and 34.)

[44] M. Dorojevets, C. Ayala, S. Shah, and S. Venkatachalam, “Design study

of a 13.9 ghz 32-bit ersfq single-precision floating-point adder.” Ultra High

Speed Computing Laboratory, Department of Electrical and Computer En-

gineering, Stony Brook University, New York, Tech. Rep., 2011. (Cited on

pages 33, 66, 69, 70 and 78.)

[45] M. Dorojevets, P. Bunyk, and D. Zinoviev, “FLUX chip: design of a 20-

GHz 16-bit ultrapipelined RSFQ processor prototype based on 1.75- mu;m

100

LTS technology,” Applied Superconductivity, IEEE Transactions on, vol. 11,

no. 1, pp. 326 –332, Mar. 2001. (Cited on page 33.)

[46] P. Patra, S. Polonsky, and F. D. S., “Delay insensitive logic for

rsfq superconductor technology,” in Proceedings of the 3rd International

Symposium on Advanced Research in Asynchronous Circuits and Systems,

ser. ASYNC ’97. Washington, DC, USA: IEEE Computer Society, 1997, pp.

42–. [Online]. Available: http://dl.acm.org/citation.cfm?id=523661.785251

(Cited on page 34.)

[47] M. Maezawa, I. Kurosawa, M. Aoyagi, H. Nakagawa, Y. Kameda, and

T. Nanya, “Rapid single-flux-quantum dual-rail logic for asynchronous cir-

cuits,” IEEE Trans. Appl. Supercond., vol. 7, no. 2, pp. 2705–2708, 1997.

(Cited on page 34.)

[48] M. Radparvar, “Niobium integrated circuit fabrication

process 03-10-45,” http://hypres.accountsupport.com/wp-

content/uploads/2010/11/DesignRules.pdf, January 2008. (Cited on

page 36.)

[49] W. Chen, A. V. Rylyakov, V. Patel, J. E. Lukens, and K. K. Likharev,

“Rapid single flux quantum t-flip flop operating up to 770 ghz,” IEEE Trans.

Appl. Supercond., vol. 9, no. 2, pp. 3212–3215, 1999. (Cited on pages 36

and 37.)

[50] T. Satoh, K. Hinode, S. Nagasawa, Y. Kitagawa, M. Hidaka, N. Yoshikawa,

H. Akaike, A. Fujimaki, K. Takagi, and N. Takagi, “Planarization process for

fabricating multi-layer nb integrated circuits incorporating top active layer,”

IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 167–170, 2009. (Cited on

page 39.)

[51] D. A. Patterson and J. L. Hennessy, Computer Organization and Design:

The Hardware/Software Interface, 4th ed. Morgan Kaufmann, 2008. (Cited

on pages 65 and 78.)

[52] M. Dorojevets, A. Kasperek, A. F. N. Yoshikawa, and M. Hidaka, “8x8-bit

parallel carry-save RSFQ multiplier,” 2012, submitted. (Cited on page 85.)

101

http://dl.acm.org/citation.cfm?id=523661.785251

[53] M. Peiniger and H. Piel, “A superconducting nb3sn coated multicell accel-

erating cavity,” Nuclear Science, IEEE Transactions on, vol. 32, no. 5, pp.

3610 –3612, oct. 1985. (Cited on page 92.)

102

	List of Figures
	List of Tables
	Introduction
	Need for More Energy Efficient Technology
	Superconductor Technology as an Alternative to CMOS
	Superconductor Technology Overview
	Josephson Junction
	Latching Logic
	RSFQ Logic
	ERSFQ Logic

	Overview of Previous Work in Superconductor Field
	Analog and Digital RSFQ Circuits
	Microprocessor Prototypes: FLUX-1 and CORE1
	20 GHz 8-bit RSFQ Processor Datapath

	General Approach to Multiplier Design
	Objectives
	Binary Multiplication
	Shift-Add Multiplier
	Classical Array Multiplier
	Booth Algorithm
	Partial Product Encoding with Booth-2
	Advanced Multiplier Architectures

	Multiplier Topology
	Array Topologies
	Irregular and Regular Tree Topologies

	Summation with a Carry Propagate Adder
	Related RSFQ Work

	Techniques and Tools for Superconductor Circuit Design
	Sequencing Techniques
	Synchronous Clocking for Pipelined Designs
	Asynchronous Co-flow Synchronization
	Wave-pipelining
	Hybrid Wave-pipelining
	Other Sequencing Techniques

	RSFQ Cell-level Library and Design Tools
	Stony Brook Tunable RSFQ VHDL Cell Library
	CONNECT Cell Library

	11.4 GHz 32-bit RSFQ Integer Multiplier Design and Evaluation
	Goals and Challenges
	RSFQ Hybrid Wave-pipelined Asynchronous Multiplier Miroarchitecture and Cell-Level Implementation
	Partial Product Generation
	Partial Product Compression
	Final Summation

	Integer Multiplier Design Summary

	11.1 GHz 32-bit Single-precision Floating-point Multiplier Design and Evaluation
	Goals and Challenges
	Floating-point Multiplication Basics
	32-bit Floating-point Multiplier Structure
	Sign Bit Calculation
	Exponent Calculation Unit
	Zero Value Detection
	Initial Exponent Calculation Unit
	Exponent Data Buffer
	Exponent Adjustment Unit

	Mantissa Calculation Unit
	Partial Product Generation
	Compression
	Final Summation Unit
	Sticky Bit Calculation
	Normalization and Rounding Units

	Floating-point Multiplier Design Summary

	Physical Chip Design and Demonstration of 20 GHz 8-bit Integer Multiplier
	Microarchitecture
	Complexity and Power
	Performance
	Logical and Physical Layout Design
	Experimental Test Results

	Conclusions
	Bibliography

