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Abstract of the Dissertation 

Partial Correlation Network Analysis for Mixed Data 
by 

Shirley Hui Yee Leong 

Doctor of Philosophy 
in 

Applied Mathematics and Statistics 
Stony Brook University 

2012 

 

The partial correlation is well defined for continuous data and popularly used in network 

analysis. Its strength is in its interpretation as the relationship between two variables after 

removing the effects of other variables. We follow up on a recent proposal of such a measure for 

categorical data, but the properties of which were not well studied. The new partial correlation is 

defined as the first canonical correlation of Pearson residuals from logistic regressions. This is 

analogous to the continuous case, where the partial correlation is obtained from correlating 

residuals from linear regressions. A simulation study is presented to examine the properties of 

the new partial correlation and compare it to other measures, such as the partial phi coefficient. 

In the limiting case, the new partial correlation and the partial phi coefficient converge in 

estimate and inference. However, the partial phi coefficient cannot be applied to multi-

categorical data. Furthermore, it is not an efficient measure to control for more than one variable. 

The new partial correlation is well defined for the multi-categorical case and can readily control 

for more than one variable. Being derived as the canonical correlation, the new partial correlation 

can also measure the relationship between continuous and categorical variables as the multiple 

correlation between the Pearson residuals from the logistic regression and the usual residual from 

the linear regression when the response variables are categorical and continuous respectively. 

Now that we are fully capable of obtaining partial correlation networks for any data 

types, continuous, categorical or mixed, our next goal is to compare the network structure 

between different groups and to examine the impact of continuous, in addition to categorical 

covariates, on the pathway connections. This is accomplished by extending the two-level 

regression approach for continuous data originally developed by our research group (Pradhan, 

2009) to categorical data and mixed data network analysis. By linearly regressing the first 

canonical variates and replacing the slope coefficient with an expression of the covariates, we 

can test for the effect of covariates (both categorical and continuous) on the partial correlation 

and the network structure. This new covariate partial correlation network analysis approach is 

illustrated through two studies on the links between human genotypes (single-nucleotide 

polymorphisms) and disease phenotypes.  
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1 Introduction 

 

 A basic question in scientific research is whether two variables are related and if so, how they are 

related. However, in the presence of another variable or covariate, the answer is not so clear. A significant 

association between two variables may be due to the influence of a third variable or covariate confounder 

on both variables of interest. The problem increases in complexity with a large set of variables: one may 

be interested in all pair-wise relationships independent of all other variables. Network analysis provides a 

means to visualize such associations in an organized structure. If additional covariates or confounders 

affect the network structure, it is important to be able to detect and measure such an effect. These 

concepts and theories have been well studied for continuous variables, but the literature for categorical 

and mixed data is sparse. We propose extensions of several existing methods to categorical variables and 

the general case of mixed variable types.  

 This work is organized into three parts. The first part discusses the impact of confounding 

variables on statistical models. Various modeling techniques that address this problem are presented. We 

discuss residual logistic regression (Baez-Revueltas 2009), a new method analogous residual linear 

regression. The second part discusses various correlation and association measures. The detection and 

measurement of pair-wise relationships, while controlling for other variables, is examined in the context 

of partial correlations and partial associations. In particular, we consider a new partial correlation 

coefficient for categorical data, obtained by correlating Pearson residuals from logistic regressions (Chen 

2011). This is analogous to the continuous case, where the partial correlation is obtained from correlating 

residuals from linear regressions. The third part deals with network analysis and covariate in network 

analysis. The use of the partial correlation and partial association measures from part two in network 

analysis is presented. A novel extension of two-level regression (Pradhan 2009) to categorical and mixed 

data is proposed to analyze the effect of covariates on categorical and mixed network structure. The 

performances of the new methods are studied under various simulation settings; the new methods are 

compared to existing ones based on bias, standard error, power, and specificity. 

 An overview of existing methods for controlling confounders in statistical models is provided, 

followed by a discussion on what development is needed this area. Another overview of correlation and 

association measures and their partial counterparts is given. Subsequently, we present various proposals 

and novel methods that are in development. For the problem of confounded regression models, we 

propose the residual logistic regression as an extension of residual linear regression for categorical data. A 

new partial correlation recently proposed for categorical and mixed variable types, but never adequate 
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examined, is studied using simulated data and compared to other suitable partial correlation and partial 

association measures for such data. Finally, two-level regression, originally proposed for continuous data 

to measure the effect of covariates in network structure, will be presented for categorical and mixed 

variables types based on the new partial correlation.  

 The new methods proposed will be compared to existing methods using simulated data; methods 

will be compared based on bias, standard error, power, and specificity.  The new methods were applied to 

three individual data sets. One data set is from a study conducted at the NYU Alzheimer’s Disease Core 

Center (ADCC). The other two datasets are genetic studies, one from the Collaborative Genetic Study of 

Nicotine Dependence (COGEND) and the other from Washington University Digestive Diseases 

Research Core Center Tissue Procurement Facility database. A discussion about the results and work that 

will be done in the future will conclude this paper. 

 

1.1 Overview: Regression methods to control confounding 

 

 Existing regression methods to control for confounding will be introduced within the context of 

two common statistical models. Consider a single response variable Y and p covariates. When the Y is 

continuous, the most basic statistical model is the linear model: 

( )2

0

1

, where ~ 0, .
p

i i

i

Y X Nβ β ε ε σ
=

= + +∑  

 When the Y is binary (dichotomous), a logistic model is generally applied: 

( )0

1

log , where 1
1

p

i i

i

X P Y
π

β β π
π =

 
= + = = − 

∑ . 

 Traditionally, all confounders and variables of interest are included as individual covariates in the 

regression model. This model is commonly referred to as the full regression model and is equivalent to 

the above models. This method, which for the remainder of this paper will be referred to as traditional 

multiple regression, does not differentiate between confounders and variables of interest. To reduce the 

complexity of the model, one may also implement a variable selection procedure on the set of variables of 

interest while forcing the confounders to remain in the model.  
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 Another common strategy, to be referred to in this paper as one-at-a-time regression, focuses on 

measuring the individual effects of each variable of interest while controlling for the confounders. 

Individual regression models are developed such that only a single variable of interest is considered at a 

time. If Xi, i = 1, …, k, k < p, are the confounders and the remaining p – k covariates are variables of 

interest, then for each variable of interest, our linear model and logistic model would be, respectively, 

0

1

k

i i j j

i

Y X Xβ β β ε
=

= + + +∑  

0

1

log , where 1,..., .
1

k

i i j j

i

X X j k p
π

β β β
π =

 
= + + = + − 

∑  

 When the main focus of the study is to compare the response between two different groups, we 

may still implement the above method for other variables of interest, but an indicator variable for group 

would also be included in each regression model. 

0

1

*
k

i i j j

i

Y Group X Xβ α β β ε
=

= + + + +∑  

0

1

log * , where 1,..., .
1

k

i i j j

i

Group X X j k p
π

β α β β
π =

 
= + + + = + − 

∑  

 On the other hand, propensity score methods can be applied to control for confounding when 

studying group effects. This strategy reduces the k confounders to a single score, ( )1
ˆ , ..., kX Xπ , that 

balances the distribution of the confounders between groups. The method of propensity score adjustment 

replaces the confounders in the regression model with ( )1
ˆ , ..., kX Xπ : 

( )0 1

1

ˆ* * ,...,
p

k i i

i k

Y Group X X Xβ α γ π β ε
= +

= + + + +∑  

( )0 1

1

ˆlog * * ,...,
1

p

k i i

i k

Group X X X
π

β α γ π β
π = +

 
= + + + − 

∑  

These strategies are also commonly applied to longitudinal models such as the Cox proportional hazards 

model, the accelerated failure time model, and the mixed effects logistic model. 
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• Cox PH model: ( ) ( )
1

log
p

i j j

j

h t t Xα β
=

= +∑ , where ( )ih t  is the hazard function and ( )tα  is 

the baseline log hazard 

• Accelerated failure time (AFT) model: 
0

1

log *
p

i i

i

T Xβ β σ ε
=

= + + ×∑ , where *ε  follows the 

extreme minimum value distribution 

• Mixed effects logistic model: 
1 1

log
1

p q
ij

k ijk ijl il

k lij

X U
π

β δ
π = =

 
= + 

−  
∑ ∑ , where Xijk are fixed effects, 

Uil  are random effects and ( )1 11 | ,..., , , ...,ij ij ij ijp i iqP Y X X U Uπ = =  

 A two stage residual linear regression procedure has been well studied in the case of a continuous 

outcome. In this case, a stage one linear regression of the outcome on the confounders only provides 

residuals. These residuals are then regressed on the remaining variables of interest in a stage two linear 

regression. 

 Pearson residual analysis is similar to the two stage residual linear regression, but is applied to 

dichotomous outcomes. The first stage consists of a logistic regression, from which the Pearson residual 

is calculated and linearly regressed on the variables of interest. A more analogous procedure for 

dichotomous outcomes, residual logistic regression, has been recently suggested in order to maintain the 

odds ratio interpretation. However, the method needs further theoretical development and extension to 

other research settings. 

 

1.2 Overview: Correlation and their partials 

 

 Correlation and association are the two most basic concepts that describe how two variables are 

related.  Correlations measure the amount of linear covariance between two variables, assuming the 

variables have an inherent ordering. Ideally, a good correlation measure should have the following 

properties: 

• A positive correlation would indicate that as one variable increases (decreases), the other variable 

also increase (decreases). 

• A negative correlation would indicate that as one variable increases (decreases), the other variable 

would trend towards the opposite direction or decrease (increase). 
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• A zero correlation indicates no relationship. 

• A correlation of magnitude 1 would indicate perfect correlation. 

Hence due to the requirement of a scale interpretation of the variables, correlation concepts have only 

been applied to continuous or ordinal categorical data, with binary data being the exception to this rule 

under certain assumptions about the underlying distributions. The relationship between two nominal 

categorical variables can be described by association measures, which are often interpreted as the distance 

from independence; if the association measure is equal to zero, then the two variables are independent.  

 Suppose we have N observations for continuous variables X and Y.  The Pearson product-moment 

correlation (Pearson 1895, 1920), also known as the Pearson correlation, between any two variables X and 

Y is 

( )( )

( ) ( ) ( ) ( )
2 2 2 22 2

xy

x x y y N xy x y
r

x x y y N x x N y y

− − −
= =

− − − −

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑ ∑ ∑

 

To measure the correlation between two continuous variables while controlling for a third variable Z, one 

would correlate the residuals obtained from linear regressions of each variable onto the third variable. The 

result is the partial correlation (Yule 1897). 

( )
( )( )

( ) ( )

0 1 0 1

0 1 0 1

1 1

.
1 1

ˆ ˆ

ˆ ˆ

,

x x

y y

x x y yN N

xy z x y

x x y yN N

X Z e Z

Y Z e Z

e e e e
r cor e e

e e e e

β β ε β β

γ γ ε γ γ

= + + → = +

= + + → = +

Σ − −
= =

− −

∑ ∑
∑ ∑ ∑ ∑

 

It can be shown that this partial correlation can be rewritten in terms of each bivariate Pearson correlation. 

( ) ( )
.

2 21 1

xy xz yz

xy z

xz yz

r r r
r

r r

−
=

− −
 

 Assuming the data come from a multivariate normal distribution, we can test the null hypothesis 

that the partial correlation is equal to zero against the alternative that it is non-zero via an approximate test 

using Fisher’s Z transformation or t or F test with k being the number of control variables (Fisher 1924). 
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( )

( )

( )

( )

( )

( )

( )

( )

2
2

2

1, 22

11
ln 2 ~ 0,1

2 1

2 ~ Student's 
1

2 ~
1

xy z

xy z

xy z

N k

xy z

xy z

N k

xy z

r
Z Z N k N

r

r
t N k t

r

r
F N k F

r

− −

− −

 +
 = → − −
 − 

= − −
−

= − −
−

 

 Suppose X and Y are categorical variables.  For a random sample taken from the joint distribution, 

let 
ijn be the number of observations where X=i and Y=j, 

i ijj
n n+ =∑ the number of observations where 

X=i, 
j iji

n n+ = ∑ the number of observations where Y=j, and 
iji j

N n=∑ ∑ the total number of 

observations. 

 To test whether or not X and Y are independent, the chi-square test (Agresti 2007) is commonly 

used.  

( )
2

2

i j

i j

n n

ij N

n ni j

N

n
χ

+ +

+ +

−
=∑ ∑  

Under the null hypothesis that X and Y are independent, 
2χ  has chi-square distribution with (I-1)(J-1) 

degrees of freedom. X and Y are completely independent if 
2χ  obtains the value of zero. The farther 

away from independency the observed sample of X and Y is, the larger the value of 
2χ . 

 Many association measures involve some normalized version of the 
2χ  statistic such that its 

values range from -1 to 1 and so that it can be interpreted analogously to the Pearson correlation 

coefficient. These 
2χ  based association measures can be interpreted as the distance to independence, 

with zero being complete independence. To obtain their partial counterparts, one usually obtains the 

measure within stratas of the control variable and then calculates the partial association as a weighted 

average Chen 2011(Ritschard, et al. 1996). Let S represent a set of stratas of the variable Z. For each s in 

S, let θxy|s be the association between X and Y within that strata and ωs be the corresponding weight. The 

weights are typically the proportion of observations in each stratum. The general partial association 

measure is 
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( ) |s xy sxy z

s S

θ ω θ
∈

=∑  

 Suppose X and Y are binary variables. The application of the Pearson correlation formula applied 

to such data will result in the phi coefficient (Pearson, et al. 1900).  

( )( )( ) ( )

2

11 22 12 21

12 22 11 21 21 22 11 21

xy

n n n n

Nn n n n n n n n

χ
φ

−
= =

+ + + +
 

The phi coefficient ranges from -1 to 1, attaining zero when there is perfect independence, -1 when there 

is perfect discordance (diagonal is empty), and 1 when there is perfect concordance (off diagonal is 

empty). Since it is also a direct application of the Pearson correlation, it can be used in the partial 

correlation formula, assuming that the control variable Z is also binary. The partial phi correlation is then 

( )
( ) ( )2 21 1

xy xz yz

phi xy z

xz yz

r
φ φ φ

φ φ
  

−
=

− −
 

 If Y is continuous and X is dichotomous then the direct application of the Pearson’s product-

moment correlation will results in the point-biserial correlation. 

( ) ( )1 0 1X X
pbis

y

y y
r x x

Ns

= =−
= −∑ ∑  

 If X is multi-categorical and ordinal, then the point-polyserial correlation is the result of direct 

application on Pearson’s product moment correlation. Because the phi coefficient, the point-biserial 

correlation, and point-polyserial correlation is a direct application of Pearson’s product-moment 

correlation, so statistical inferences on partial correlations constructed from such measures is carried out a 

similar way. If the data are from an underlying multivariate normal distribution whose true partial 

correlation is equal to zero, then an F-test can be applied. In other words, we assume that X and Y are 

manifest variables that are from a categorized multivariate normally distributed variables X* and Y*. 

( )

( )

( )
2

1, 22
2 ~

1

xy z

N k

xy z

r
F N k F

r
− −= − −

−
 

 While the phi coefficient, point-biserial correlation, and point-polyserial correlation measure the 

observed correlation between binary X and Y, the actual correlation of underlying continuous variables X* 

and Y* can be estimated via other correlations. The tetrachoric correlation (Pearson, et al. 1900, Ekstrom 



 

 

8 

 

2008) estimates the actual correlation between two variables from bivariate normal distributions which 

were both dichotomized. The tetrachoric correlation was originally derived as a mathematical formula 

involving the tetrachoric series. However, recent developments have led to maximum likelihood methods 

that are more commonly used to estimate this correlation (Olsson 1979). 

 If the X and Y are multi-categorical, the extension of the tetrachoric correlation is the polychoric 

correlation. Maximum likelihood procedures have also been developed to estimate the polychoric 

correlation (Martinson, et al. 1972, Olsson 1979, Drasgow 1986). These estimates can be used to estimate 

the partial correlation of the underlying continuous distribution. Suppose X, Y, and Z are categorical 

manifestations of multivariate normally distributed variables X*, Y*, Z*. 
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 If Y is actually observed as continuous, then the correlation between X* and Y can be estimated by 

the biserial correlation  (Pearson 1909, Kelley 1923). The extension of this to multi-categorical variables 

is called the polyserial correlation (Jaspen 1946). These correlations can also be calculated using 

maximum likelihood methods (Olsson, et al. 1982, Drasgow 1986, Poon, et al. 1987). Suppose that X and 

Z are trichotomous manifestations of normal variables X* and Z*, and Y is a continuous variable. Then the 

partial correlation between X* and Y while controlling for Z* can be estimated as 

( )
( ) ( ) ( )

2 2

( ) ( )
1 1

polyserial xy polychoric xz polyserial yz

mixed xy z

polychoric xz polyserial yz

r r r
r

r r
  

−
=

− −
 

 Despite all these numerous partial correlation options for categorical data, none of these measures 

can relate back to the idea of a correlation of residuals, since linear regression would not be suitable for 

these types of variables. In addition, since they rely on bivariate correlations to construct a partial 

correlation, they cannot control for more than one variable. These measures require that there is an 

underlying continuous distribution from which the data are observed, which is not suitable for truly 

categorical variables. In the case of the where tetrachoric, polychoric, biserial, and polyserial correlations 

are used in the construction of the partial correlation, statistical inference is not available. 
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1.3 Proposals 

 

1.3.1 Residual logistic regression 

 

 The first proposal is to extend residual analysis to categorical outcomes via residual logistic 

regression (Baez-Revueltas 2009). This new method will be compared with existing regression methods 

to control for confounding, such as Pearson residual analysis, traditional multiple logistic regression, one-

at-a-time logistic regression, and propensity score adjustment. The Pearson residual is the generalized 

linear model equivalent of a standardized residual from ordinary linear regression. The propensity score is 

the probability of being in a particular treatment group, given a particular covariate pattern. 

 In the case when the data is longitudinal in nature, the strategy really depends on whether or not 

there are (1) censoring, and (2) time-dependent covariates. The first data set to be used in conjunction 

with this paper is a longitudinal follow-up study examining the key prognostic factors of dementia 

conducted at NYU. It contains censoring information as well as time dependent variable (follow-up time). 

Hence, we will focus on the Cox proportional hazards model and the accelerated failure time model, and 

compare propensity score methods to the traditional multiple regression. 

 

1.3.2 Partial correlation for categorical data and mixed data 

 

 Alternatively, the relationship between two variables while controlling for a third variable can be 

measure using partial correlation. The partial correlation is the correlation between residuals calculated 

from regressions of each variable onto the third variable; it measures the amount of covariance between 

two variables after removing the variance due to a third variable. While the partial correlation and its 

properties are well defined for continuous variables, a corresponding measure for the categorical data and 

mixed variables are not. 

 Chen (2011) proposed a new partial correlation measure applicable to multi-categorical variables 

and mixed data. Its novelty is that it is obtained analogously to the continuous partial correlation; Pearson 

residuals from logistic regressions are correlated. However, the theoretical properties of this new partial 

correlation measure have not been studied adequately. The performance of the new partial correlation 

measure is examined under two contexts: using simulated data from a categorized multivariate normal 

distribution and simulated data from an exponential model called the Ising model. Although the Ising 
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model was developed by the physicist Ernst Ising to model ferromagneticism (Ising 1925), it has since 

been extended to graph theory and network analysis.  

 

1.3.3 Partial correlation network analysis (PCNA) 

 

 With a network of nodes, or variables, partial correlation can be applied to infer network edges, 

or pair-wise relationships while controlling for all other network variables. Partial correlation network 

analysis has been widely applied for fMRI studies where variables are continuous. Chen (2011) 

developed his new partial correlation to apply PCNA to SNP data, which are naturally categorical and 

may be coded to have an ordinal interpretation (number of minor alleles). We discuss the theoretical 

implication of such an application. 

 In addition to the network variables, there may be covariates which when included into the 

network may change the structure of the network by affecting individual edges. Pradhan (2009) 

developed a two-level regression method which measures the effect of covariates on the partial 

correlation for continuous variables. In this work, the two-level regression is extended to categorical and 

mixed data using Chen’s novel partial correlation measure.  

 

1.4 Case studies 

 

1.4.1 NYU Alzheimer’s Disease Core Center (ADCC) study 

 

 Regression methods of part one will be applied to a longitudinal study conducted at the NYU 

Alzheimer’s Disease Core Center (ADCC) (Reisberg, et al. 2010). The goal is to determine if the mental 

decline rate is the same for subjects with or without subjective complaints of cognitive impairment. 

Mental decline is defined as decline to mild cognitive impairment (MCI) or dementia. Time to decline 

was either time to progression to MCI or dementia or, if no progression, time to the last follow-up before 

2002. 

 Subjects were allocated to one of two groups based on the Global Deterioration Scale (GDS) for 

age-associated cognitive decline and dementia (Reisberg, et al. 1982). The No Cognitive Impairment 

(NCI) group was constructed from GDS stage 1 subjects:  subjects who are normatively functioning and 
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free of subjective complaints or objective evidence of cognitive impairment. The Subjective Cognitive 

Impairment (SCI) group was constructed from GDS stage 2 subjects: subjects who are normatively 

functioning and have subjective complaints in the absence of objectively manifest deficits. Decline was 

measured as movement to higher stages on the GDS scale. 

 A list of 69 covariates that were observed is provided below. These variables account for possible 

demographic differences between the two groups, as well as various psychological measurements that 

may be associated with initial grouping classification and follow up outcome. 

List of covariates observed in the ADCC Study 

Age* 

Gender* 

Years of education* 

Length of follow-up* 

Mental status assessment 

Mini-Mental State Examination (MMSE) score – 30 point scale 

Clinical cognitive and cognitively based functioning examination 

Brief Cognitive Rating Scale – 7 point scale for each axis; optimally concordant with other axes, GDS 

stages, MCI, and Alzheimer’s Disease 

5 axes (BCR01-BCR05) 

Total BCR (BCRTOT) score 

Affective status 

Hamilton Depression Scale 

21 axes (HDS01-HDS21) 

Total HSD (HDTTOT) score 

Comprehensive behavioral changes 

Behavioral Pathology in Alzheimer’s Disease – 4 point scale 

25 axes (BEH01-BEH25) 

Total BEH (BEHTOT) score 

Neuropsychometric evaluation variables 

Memory 

paragraph recall, initial and delayed (PARI, PARD) 

paired associate recall of pairs of initial words, initial and delayed (PRDI, PRDD) 

design recall of abstract shapes (DESN) 

Working memory 

digit span subtests of Wechsler Intelligence Scale Revised (WAIS-R), forward and backward 

(WASDIGF, WASDIGB) 

Perceptual motor skills 

WAIS-R digit symbol substitution subtest (DSST) 

Language function 

WAIS-R vocabulary subtest (WASV) 

Combined psychometric score 

Psychometric Deterioration Score (PDS); sum of the nine other scores in neuropychometric evaluation 

*confounders 
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1.4.2 The Collaborative Genetic Study of Nicotine Dependence (COGEND) 

 

 The COGEND data is a subset from a GWAS containing 2022 subjects and 215 SNPs located in 

eight different chromosomes. It was ensured all three possible genotypes exist in samples for every SNP. 

However, the 15 SNPs with rare minor allele frequencies < 5% (Figure 1) were not excluded since it has 

been found that less common SNPs could be also associated with nicotine dependence (Saccone, et al. 

2009). Nicotine dependence is an additional covariate. 

 

Figure 1 Minor allele frequency distribution of COGEND data. The left panel is the overall 

distribution of all 215 SNPs. The right histogram is for a subset of SNPs that are rare minor alleles 

(frequency <5%). 

 

 Given the large number of SNPs to work with, it is difficult to present an interpretable network 

for the sake of method performance. Hence we further combined clustering and network techniques to 

perform a sequential analysis: hierarchical clustering using linkage disequilibrium as a measure of 

similarity with all 215 SNPs was conducted first and then SNP representatives were selected within each 

cluster. The SNP that has overall highest similarities (linkage disequilibrium) to all the other SNPs within 

each cluster will be chosen. 11 SNPs from 11 clusters and 7 SNPs from an outlier cluster were included in 

analysis. 
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1.4.3 Crohn’s disease study 

 

 The last dataset is from the Washington University Digestive Diseases Research Core Center 

Tissue Procurement Facility database; the goal is to find pathways between SNPs in Crohn’s disease 

patients that would be of interest to do further research on. 

 Crohn’s disease (CD) is a chronic relapsing inflammatory intestinal disorder that can affect any 

segment of the intestine often in a discontinuous manner (Goyette, et al. 2007, Abraham, et al. 2009). One 

great advantage of GWAS on CD is that it has been intensively explored and more than 30 susceptibility 

loci have now been identified through genome-wide association studies (Barrett, et al. 2008).  

 CD patients are phenotypically heterogeneous. Efforts have been made to subphenotype the 

patients in order to facilitate genoytpe-phenotype correlations. Both the Vienna and Montreal 

classifications have classified the patients on the basis of three major parameters: age of diagnosis, 

disease location and disease behavior (Louis, et al. 2001, Satsangi, et al. 2006). While disease behavior 

changes over time (Unkart, et al. 2008), disease location remains fairly stable. Based on both the Vienna 

and Montreal classifications, there are four major patterns of disease location: L1, ileal disease with or 

without cecal disease (ileal CD); L2, colonic disease only (Crohn’s colitis); L3, ileal disease with colonic 

disease beyond the cecum; L4, proximal intestinal disease. Most CD patients have ileal and/or colonic 

disease (L1, L2, and L3). Only a small number of patients have disease restricted to the proximal gut 

(L4). Two identified CD-related genes (NOD2 and ATG16L1) have been previously associated with the 

subset of CD patients with ileal disease location compared to control patients without inflammatory 

bowel diseases. These studies incorporated a relatively limited set of susceptibility loci (Cuthbert, et al. 

2002, Lesage, et al. 2002, Prescott, et al. 2007, Fowler, et al. 2008, Van Limbergen, et al. 2008, Márquez, 

et al. 2009). 

 The dataset contains 628 CD patients recruited between April 2005 - February 2010 that have 

complete genotype information on 31 established CD risk alleles (Barrett, et al. 2008) and complete 

clinical information on disease location (L1-L4), smoking, gender, race and age of diagnosis. From a 

case-control study point of view, we intend to carry out comparison between (L1 + L3) vs. L2, or ileal 

(case) vs. non-ileal (control). The only six L4 observations were excluded and the information for three 

SNPs on NOD2 was combined. The final dataset includes 622 samples and 29 SNPs in total. Covariate 

analysis is shown in Table 1. 
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Table 1 Crohn’s disease covariate analysis. Demographic information by disease location groups. 

Smoking is the only covariate that is significantly associated with disease location (p<0.01). 

 

Disease location 

Non-ileum Ileum 

Covariate % n % n Pvalue 

Gender Male 49.62 65 44.6 219 0.3059 

Female 50.38 66 55.4 272 

Race White 83.97 110 90.43 444 0.1072 

Black 13.74 18 8.35 41 

Other 2.29 3 1.22 6 

Montreal_Age <17 16.03 21 15.27 75 0.372 

17-40 60.31 79 66.19 325 

>40 23.66 31 18.53 91 

Smoking Never 61.83 81 55.6 273 0.0043 

Current 12.98 17 6.52 32 

Ex 25.19 33 37.88 186 
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2 Confounding and confounders 

 

 Confounding is an important issue to consider in experimental design and statistical analysis. 

When confounding is not taken into account, effect estimates can be severely biased. In order to identify 

when confounding occurs and which covariates are confounders, confounding and confounders must be 

clearly defined. Unfortunately, many statistical texts fail to pay proper homage to the concept. Perhaps 

this is so because in a purely statistical approach, there are no distinctions among covariates that will 

affect the outcome. However, in fields such as epidemiology, there are two “classifications” of covariates: 

specific variables of interest and variables that are not of interest but have an effect on the outcome, also 

known as confounders. In this context, confounding and confounders must be properly studied.  

 

2.1 Comparability versus collapsibility 

 

 According to Greenland and Robins (1986), there are two different but well known approaches to 

define confounding: comparability based and collapsibility based. The comparability based definition 

credits inherent differences in risk of outcome between different treatment groups as the source of 

confounding. The collapsibility based definition considers confounding as a result of the difference 

between certain stratified (conditional) statistical measures of association and the corresponding crude 

(unconditional or “collapsed”) measure. The problem with collapsibility based definitions is that 

collapsibility can occur when there is confounding and, conversely, there may be no confounding with 

noncollapsibility. Another problem with collapsibility-based definitions is that confounding would 

depend on the parameter chosen to measure the effect. 

 Miettinen and Cook (1981) defined confounders separately for follow-up studies and case-control 

studies. In follow-up studies, confounders must be a predictor of the outcome and have different 

distributions between treatment populations. In case-control studies, there are two possible ways 

confounding can occur. A priori confounders correlate with exposure in joint overall population of cases 

and controls; they are determinants of the outcome or have different selection implications between cases 

and control. Factors that affect the accuracy of exposure information are also confounders if distributed 

differently between cases and controls. Although confounding was defined separately for the two 

different types of studies, the criterions for both types ultimately deal with the covariates’ relationships 

with observing the outcome and observing the treatment given. 
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2.2 Counterfactual model for effects 

 

 The two criterions given by Miettinen and Cook for confounding in follow-up studies (must be a 

predictor of the outcome and must have different distributions between treatment populations) are not 

sufficient to define a confounder (Greenland, et al. 1986). The problem of confounding is rooted in failure 

to identify, or estimate, from the data alone the causal parameters that determine what is observed. By 

combining the data with an assumption about the exchangeability of the treatment populations, the 

parameters are partially identifiable (Greenland, et al. 1986). The exchangeability assumption assumes 

equality of incidence proportions of cohorts when exposure is absent. It is deduced that this 

exchangeability assumption is equivalent to comparability definitions of confounding. Hence, 

confounding is consistent with comparability based definitions and contradictory with collapsibility based 

definitions. 

 To formalize the definition of confounding, Greenland et al. (1999) suggest using the 

counterfactual model for effects. Suppose the goal is to measure the effect of applying a treatment x1 on a 

parameter µ of the distribution of the outcome y in target population A, relative to applying treatment x0. 

If x1 is applied to population A then µ = µA1; if x0 is applied to population A, then µ = µA0. Then the causal 

effect of x1 relative to x0, or the association between the treatment and the outcome, can be measured as a 

difference or a ratio:  

1 0A A
µ µ−  or 1

0

A

A

µ

µ
 if µ is strictly positive. 

 If A is observed under x1 then µ = µA1 is observable and µA0 is unobservable. Then, supposing a 

control population B under treatment x0 results in µ = µB0, we assume that µA0 = µB0. Confounding is 

present if µA0 does not equal µB0. If confounding is present, the crude association parameter obtained by 

substituting µB0 for µA0 in effect measure will not equal causal parameter and the association parameter is 

confounded. If µA0 ≠ µB0, then populations A and B must differ by factors that affect µ and these factors 

are confounders.  

 With regards to the inconsistency of the collapsibility definition of confounding, when the effect 

measure can be expressed as the average of the effect on population members, conditions for non-

collapsibility and confounding will be identical, provided the covariates in question form a sufficient set 

for control. 
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2.3 Occasional confounder and uniformly irrelevant factor 

 

 Geng et al. (2002) gave a formal definition of a confounder based on the criterions produced by 

Miettenin and Cook (1981), Kleinbaum et al. (1982), Greenland and Robins (1986) and Greenland et al. 

(1999). Their definitions do not require a set of sufficient confounder to control for confounding. They 

proposed two new concepts, occasional confounder and uniformly irrelevant factor, to unify Miettinen 

and Cook’s criterion with the criterion based on collapsibility of differences in risk or relative risks. 

 Let E be exposure with values e  (presence) and e (absence), and let 
e

D and 
e

D   be the 

corresponding responses that take on values 1 or 0 (presence or absence of disease, respectively). 

( )1|eP D E e= =  is the proportion of diseased individuals in exposed population. ( )1 |eP D E e= = is 

the proportion of diseased individuals in unexposed population, also known as the crude proportion. 

( )1|eP D E e= =  is the hypothetical proportion of individuals in exposed population who would have 

developed the disease even if they had not been exposed, also known as the counterfactual model. 

Confounding bias would then be the difference between the hypothetical proportion and the crude 

proportion.  

 Let C be a covariate with possible values 1, …, K that is not an intervening variable in a causal 

pathway from exposure to disease.  The crude proportion of diseased individuals in the unexposed 

subpopulation of C = k is ( )1 | ,eP D E e C k= = =  and the hypothetical proportion of diseased 

individuals in the exposed subpopulation C = k is ( )1| ,eP D E e C k= = = . Confounding bias in the 

subpopulation C = k is, correspondingly, the difference between the hypothetical proportion and the crude 

proportion. Then the standardized proportion ( )1 |eP D E e∆ = =  is obtained by adjusting the distribution 

of C in the unexposed population to that in the exposed population is 

( ) ( ) ( )
1

1 | 1 | , |
K

e e

k

P D E e P D E e C k P C k E e∆
=

= = = = = = = =∑ . 

 A covariate C is a confounder if the standardized proportion obtained by adjusting for C is closer 

to the hypothetical proportion than the crude proportion. This definition does not assume subpopulation 

comparability. If C is a confounder than C is dependent on E and 
e

D  is conditionally dependent on C 

given E e= . This roughly translates to Miettinen and Cook’s (1981) two criterions: C has different 

distributions in the exposed and unexposed populations and is predictive of risk in the unexposed 
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population.  A covariate C is an irrelevant factor if the hypothetical proportion is equal to the standardized 

proportion obtained by adjusting for C. These definitions are based on the categorization of the sample 

space of C, and could lead to contradictory conclusions about whether or not C is a confounder. These 

possible contradictions motivated Geng et al. (2002) to introduce the following concepts. 

 An occasional confounder C has a partition of its sample space such that confounding can be 

reduced or eliminated by controlling for C with respect to the partition p. If C is an occasional confounder 

then C is dependent on E and 
e

D  is conditionally dependent on C given E e= . A factor C is a uniformly 

irrelevant factor if, for any partition p of its sample space, the standardized proportion is equal to the 

hypothetical proportion. C is a uniformly irrelevant factor if and only if C is independent from E or 
e

D  is 

conditionally independent from C given E e= . So when there is confounding in subpopulations induced 

by a potential confounder, non-collapsibility of risk differences is neither equivalent to Miettinen and 

Cook’s criterion nor a necessary condition of a confounder, but Miettinen and Cook’s criterion is still 

necessary for an occasional confounder. 

 Extension to multiple potential confounders is derived by Geng et al. (2002) as follows: let ∆A be 

the set of all possible values of the covariate set A. The standardized proportion conditional on S = s by 

adjusting the distribution of A in the unexposed population to that in the exposed population is 

( ) ( ) ( )1| , 1| , , | ,
A

A e

a

P D E e S s P D E e A a S s P A a E e S s
∈∆

= = = = = = = = = = =∑ . 

Let C be a set of potential confounders, S be a subset of C and R be the remainder subset. R is a 

confounder set conditional on S = s if the difference between the hypothetical proportion, 

( )1 | ,eP D E e S s= = = , and the standardized proportion by adjusting for the distribution of R is smaller 

than the confounding bias in the subpopulation S = s. 

 R is an irrelevant set conditional on S = s if the standardized proportion by adjusting for the 

distribution of R is equal to the hypothetical proportion. R contains at least one occasional confounder 

conditional on S = s if there are both a subset { }1 , ..., mF F F= of R and a partition pk = { }1, ..., kk kIω ω , k = 

1, …, m of 
kF∆ for each covariate Fk in F such that 

( ) ( )

( )
1 1

1 1

1 1

1 | , ... 1 | , ,..., ,

,..., | ,

p

m m

F e e m m

p p

m m

P D E e S s P D E e F F S s

P F F E e S s

ω ω

ω ω

ω ω

∈ ∈

= = = = = = ∈ ∈ =

× ∈ ∈ = =

∑ ∑
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 R is a uniformly irrelevant set conditional on S = s if the standardized proportion by adjusting for 

the distribution of any subset F and any partition pk of each Fk in F is equal to the hypothetical proportion. 

So, a uniformly irrelevant set must be an irrelevant set and that a uniformly irrelevant set does not contain 

any occasional confounders. 

 If R can be decomposed into two disjoint subsets R1 and R2 such that either  

1) R1 is conditionally independent from E given S = s and R2 is conditionally independent from 
e

D  

given E e= , R1, and S = s, or  

2) R2 is conditionally independent from E given R1 and S = s, and R1 is conditionally independent 

from 
e

D  given E e=  and S = s  

then R is an irrelevant set conditional on S = s and R1 is a uniformly irrelevant set conditional on S = s. If 

R contains at least one occasional confounder conditional on S = s, then R is not conditionally 

independent from E given S = s and R is not conditionally independent from 
e

D  given E e= , S = s. If R 

is a confounder set conditional on S = s, then both  

1) R1 is not conditionally independent from E given S = s or R2 is not conditionally independent 

from 
e

D  given E e= , R1, and S = s and  

2) R2 is not conditionally independent on E given R1 and S = s or R1 is not conditionally independent 

from 
e

D  given E e=  and S = s for any possible decomposition R1 and R1 of R. 

 With the introduction of the occasional confounder and uniformly irrelevant factor, the seemingly 

different approaches to defining confounding, comparability and collapsibility, can coexist. Based on 

these developed concepts, Geng et al. (2002) conclude that Miettinen and Cook’s criterion, derived from 

comparability based definitions of confounding, identify uniformly irrelevant factors and the collapsibility 

based approach only identifies irrelevant factors, which may also be occasional confounders.  

 

2.4 Common methods to controlling for confounding 

 

 There are five general methods to control for confounding: randomization, restriction, matching, 

stratification, and regression analysis (covariance adjustment) (Greenland, et al. 2001). Each method has 

its own advantages and disadvantages. Randomization is considered the gold standard to control for 
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confounding, but often outside factors such as ethical considerations or rarity of events of interest making 

randomization impossible. Restriction removes confounding by reducing the sample to a specific 

covariate pattern, but this can make the subject pool too small and generalizability of the results difficult 

to justify. Matching subjects removes confounding by balancing the distribution of the confounding 

covariates between the groups, but matching on too many covariates makes finding a match difficult.  

Stratification on a confounder groups subjects such each stratum is homogenous with respect to the 

confounder, but stratifying on too many confounders can easily result in empty stratums, also known as 

the sparse-data problem. 

 Although still limited by sample size, covariate adjustment can work around the sparse-date 

problem. In addition, the simplicity in interpreting the results obtained from regression methods makes 

regression a popular method. For this reason, we will focus on the comparing the aforementioned 

regression techniques for controlling for confounding. 

 

2.5 Confounding in the ADCC study 

 

 We will identify confounders based on criterions derived above through the definition of 

uniformly irrelevant factors from Geng, et al. (2002). In particular, we will focus on comparability based 

definitions of confounding and the counterfactual model for effects. We will also identify covariates as 

confounders based on background knowledge, regardless of the outcome for significance in the data. 

 In the ADCC study, mental decline rate is to be compared between subjects with subjective 

complaints of cognitive impairment (SCI) and subjects without subjective complaints of cognitive 

impairment (NCI). Age, gender, education, and length of follow-up will be considered as confounders. 

Table 2 compares the distribution of the confounders between the two groups. Age is significantly 

different between NCI and SCI, while gender and education are marginally significantly different. 

Table 3 shows the within group distribution of the confounders between those who declined and those 

who were stage, where once again, within each group, age is significantly different between decliners and 

those who were stable. Length of follow-up is also significantly different between decliners and those 

who were stable. 

  



 

 

21 

 

Table 2 Confounder distribution for followed subjects. Age is significantly different between NCI (no 

subjective cognitive impairment) and SCI (subjective cognitive impairment) groups. 

NCI (n = 47) SCI (n=166) 

Baseline Variable Mean Std Dev Mean Std Dev P value 

Age 64.1 8.9   67.5 8.9   0.020 

Gender         

Female, no. (%) 26 55.3   108 65.1   0.226 

Male, no. (%) 21 44.7   58 34.9   

Education, yrs 16.1 2.4   15.6 2.6 (n=164) 0.295 

Length of follow-up 6.7 3.1   6.8 3.4   0.796 

 

 

Table 3 Confounder distribution for followed NCI and SCI subjects. Stratified confounder 

distribution within NCI (no subject cognitive impairment) and SCI (subjective cognitive impairment) 

subjects; comparison of those who had stable cognitive states against those who experience decline in 

cognitive state. The independent samples t-test was performed when the normality assumption was met 

(**) while the Wilcoxon Rank Sum Test (*) was used when the assumption was not attainable.   

NCI Subjects STABLE (n=40) DECLINE (n=7) 

Mean Std Dev Mean Std Dev P value* 

Age 62.540 8.4 73.0 5.9 0.004 

Gender 

Female, no. (%) 23 57.5 3 42.9 0.684 

Male, no. (%) 17 42.5 4 57.1 

Education, yrs 16 2.4 16.6 2.5 0.651 

Length of follow-up 6.0 2.4 10.7 3.6 0.002 

SCI Subjects STABLE (n=76) DECLINE (n=90) 

Mean Std Dev Mean Std Dev P value** 

Age 65.3 8.9 69.4 8.4 0.002 

Gender 

Female, no. (%) 51 67.1 57 63.3 0.612 

Male, no. (%) 25 32.9 33 36.7 

Education, yrs 16.2 2.0 15.148 3.0 (n=88) 0.009 

Length of follow-up 5.8 3.1 7.703 3.5 0.0003 

  



 

 

22 

 

3 The Pearson residual 

 

3.1 Dichotomous outcome 

 

 In linear regression, the true model for each subject i, i = 1, …, n, is of the form  

i i i
Y ε′= +X β , where { }11, , ,i i ipX X=X …  and { }0 1, , ..., pβ β β=β . 

It is assumed that the errors 
i

ε are independent, identically distributed normal with mean zero and 

constant variance σ. This error variance is also independent from the conditional mean [ ]|
i i

E Y X , which 

allows one to calculate the residuals, ei, directly from the regression equations. For linear regression, the 

residual is difference between the observed and predicted values of Y, e.g. ˆ
i i ie Y Y= − . 

 Residual calculations are not so straightforward in the case of logistic regression, because the 

error variance is a function of the conditional mean (Hosmer, et al. 2000). A residual for logistic 

regression that has common properties as the residual for linear regression is the Pearson residual.  

 Suppose there are J observed covariate patterns for covariate vector X , and the number of 

subjects with 
j=X x is mj, for j = 1, …, J. Let yj be the number of subjects with covariate pattern 

j=X x that had outcome Y = 1. The Pearson residual for a particular covariate pattern 
j=X x is defined 

to be 
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x , the estimated probability that Y = 1. 

  For subject i with covariate vector 
i

=X x and observed outcome Y = yi, the Pearson residual is 

( )
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i i
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The Pearson residual is asymptotically normal with mean zero and variance equal to one (Hosmer, et al. 

2000, Agresti 2007). 

 

3.2 Multinomial outcome 

 

 When the outcome Y is polychotomous with I > 2 possible outcomes, the Pearson residual can be 

extended as follows (Lesaffre, et al. 1989): 

For outcome i, the Pearson residual for an individual with covariate pattern covariate pattern 
j=X x  is 

( )
( )

ˆ

ˆ

ij i j

ij

i j

y
r

π

π

−
=

x

x
, 

where ( )ˆ
i jπ x  is the estimated probability of resulting in outcome i given covariate pattern 

j=X x . 

Thus, each individual will have I residuals. 

 

3.3 Pearson residual analysis 

 

 The Pearson residual will also be incorporated into a two stage logistic regression technique for 

comparison purposes to the proposed residual logistic regression. Pearson residual analysis will be carried 

out as follows: 

Let 1,..., k
X X  be a set of potential confounding variables, 

1,...,k pX X+ be a set of variables of interest 

(VOI’s), and let Y be a dichotomous outcome variable where [ ]E Y π= . 

Stage 1: Fit the logistic model for Y on the set of potential confounding variables 

0 1 1ln
1

k kX X
π

β β β
π

 
= + + + − 

�  to obtain ( )
ˆ

ˆ
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′
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+
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x β
x and calculate the Pearson residuals
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Stage 2: Fit the a linear regression model for ri on the set of VOI’s 

*

0 1 1i k k p pr X Xβ β β+ += + + +� . 

 

3.4 Application to the ADCC study 

 

 For the ADCC study, Pearson residuals, 
i
r, will be obtained from the following fitted model 

0 1 2 3 4log * * * * 2
1

AGE GENDER EDUC TIME END
π

β β β β β
π

 
= + + + + − 

, 

where [ ]DeclinePπ = . Effects of variables of interest will be estimated based on the following linear 

regression with stepwise variable selection: 

( )
69

2

0

5

* , where ~ 0,i i i

i

r Group X Nβ α β ε ε σ
=

= + + +∑ . 

Stepwise variable selection will then be implemented to reduce the model. 
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4 The propensity score 

 

 Consider the situation in which responses under treatment (E = 1) and control (E = 0) are to be 

compared. A balancing score, b(x), is a function of the observed vectors of covariates x such that the 

conditional distribution of x given b(x) is the same for treatment and control units. All functions of x are 

balancing scores and the coarsest function of x that is a balancing score is the propensity score of 

Rosenbaum and Rubin (1983). The propensity score is the probability of treatment given the observed 

covariates x; namely, the propensity score is 

( ) ( )1 |P Eπ = =x x  

The propensity score can be modeled through the logistic regression. 

 Treatment assignment is strongly ignorable given a vector of covariates v if the joint distribution 

of the responses under each treatment is conditionally independent from the treatment assignment given v. 

If treatment assignment is strongly ignorable given observed covariate vector x, then the difference 

between treatment and control means at each value of the propensity score is an unbiased estimate of the 

treatment effect at that value (Rosenbaum, et al. 1983). Thus pair matching, stratification and covariance 

adjustment on the propensity score can produce unbiased estimates of the average treatment effect 

(Rosenbaum, et al. 1983). Hence, adjusting for the propensity score would control for confounding. 

 

4.1 Matching, stratification and covariance adjustment 

 

 Rosenbaum and Rubin (1985) give three matching techniques based on the propensity score. It is 

suggested that matching be carried out through the logit of the estimated propensity score because it is 

approximately normally distributed. The first step for each of these techniques is to randomly order the 

treatment and control subjects. 

 Nearest available matching on the estimate propensity score selects the first treated subject and 

finds the control subject with the closest propensity score.  

 Mahalanobis metric basing including the propensity score selects the first treated subject and 

finds the closest control subject, where distance is defined by Mahalanobis distance:  



 

 

26 

 

( ) ( ) ( )1

0,
T

d
−= − −u v u v C u v , 

where u and v are observed values of the confounders and the estimated propensity score, and 0C is the 

sample covariance matrix of the observed values of confounders and the estimated propensity score in the 

control group.  

 Nearest available Mahalanobis metric matching within calipers defined by the propensity score is 

a mix method of the previous two. For each treated subject, a subset of potential controls that have 

propensity scores close to that of the treated subject is first formed. Then the control subject that is closest 

to the treated subject based on Mahalanobis metric matching is selected. The matched pairs are then 

removed from the set, and the process would repeat for the remaining unmatched subjects. 

 Based on the empirical findings of Rosenbaum and Rubin (1985), all three methods were able to 

reduce bias. The first method was less computational. The second method resulted in smaller standardized 

differences for individual variables, but had a substantial difference along the propensity score. The third 

method was best with respect to balancing covariates, their squares, and cross products. 

 Cochran (1968) showed that stratification on a covariate divided into five strata or subclasses can 

reduce bias by roughly 90%. However, increasing the number of covariates used for stratification will 

increase the number of subclasses exponentially (Cochran, et al. 1965), and result in increasing the risk of 

empty strata. Stratification based on the propensity score can help alleviate this problem by condensing 

the number of stratification variables to one. Dividing the estimated propensity score into five strata will 

remove more than 90% of bias due to each of the covariates most of the time (Rosenbaum, et al. 1984). 

 There are several approaches to covariance adjustment based on the propensity score. In regards 

to how the propensity score is considered as a covariate, it can be added directly or under some linear 

transformation or as a categorical variable where its categories are decided by its quintiles. The propensity 

score can replace all the confounding variables in the regression model. When the set of confounders is 

large, the propensity score can be included along with a subset of the confounding variables in the 

regression model.  

 D’Agostino (1998) and Newgard et al. (2004) provide rough overviews of using the propensity 

score with accompanying applications of these three general methods.  
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4.2 Longitudinal data: time-lagged responses and time-varying treatments 

 

 Some effort has been made to extend the use of propensity scores to longitudinal data. A 

propensity score estimator of the treatment effect with time-lagged responses and possible censoring was 

developed by Anstrom and Tsiatis (2001). They used the propensity score to obtain an inverse-

probability-weighted estimator based on that from Rosenbaum (1987). The estimator is 
1 0

ˆ ˆ ˆδ µ µ= − where 

1µ̂ and 0µ̂ are solutions to 

( )
( ) ( )

1

1 1

ˆ
0

ˆˆ,

n
i i i

i i i

A R

X K U

µ

π γ=

∆ −
=∑  and 

( ) ( )
( ){ } ( )

0

1 0

ˆ1
0

ˆˆ1 ,

n
i i i

i i i

A R

X K U

µ

π γ=

− ∆ −
=

−
∑ , 

respectively. Ai is the treatment indicator variable, ∆i is the complete-case indicator (not censored), Ri is 

the observed response, ( )ˆ,iXπ γ  is the estimated propensity score, Ui is the time to response 

ascertainment or censoring, and Kj(Ui) is the treatment-specific Kaplan-Meyer estimated probability of 

censoring occurring beyond time Ui given treatment group j. This estimator is asymptotically normal. A 

simulation study with sample sizes 500 and 1000 found that the estimator performs well. Caution should 

be taken, as inverse-probability-weighted estimators are unstable when weights are large. 

 Patients may receive treatment at different times. For this situation, Li et al. (2001) proposed a 

balanced risk set matching design which matches a patient receiving the treatment at time t to another 

patient with similar history of symptoms up to time t who has not received the treatment yet. This 

matching method would balance the marginal distribution, but not necessarily produce closest matches on 

covariate values and is not practical when the covariates are of high dimension. 

 The time dependent propensity score is the hazard of receiving the treatment at time t given that 

the treatment has not been given before time t. It can be model by a proportional hazards model with time 

varying covariates: 

( ) ( ) ( ){ }0 exp
T

m mh t h t X tβ=  

where hm(t) is the hazard for patient m at time t.  

 Time-dependent propensity scores balance the distribution of observed covariates in matched 

treated and control groups, and they do so at every time point (Lu 2005). Two matching algorithms based 

on the time-dependent propensity have been suggested (Lu 2005). Sequential matching is done within risk 
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sets, where a risk set for time t contain all patients at risk of treatment at time t. If there is only one treated 

patient in the risk set, then it is matched with the control with the closest time-dependent propensity score. 

If there is more than one treated patient in a risk set then they all compete for controls. Matches are made 

when the total distance within matched sets are minimized. Minimization is obtained through optimal 

bipartite matching (Bergstralh, et al. 1996, Rosenbaum 2002). Matched subjects are removed and the 

process continues with the next risk set. Simultaneous matching forces all patients to have only one 

match. Optimal simultaneous matching is achieved by comparing all possible combinations of matched 

pairs at once. The set of matched pairs is found by optimal non-bipartite matching (Derigs 1988).  

 At the time of this paper, properties of time-dependent propensity score through stratification and 

covariate adjustment approaches and the combination of the time-dependent propensity score in the time-

lagged response scenario do not appear to have been explored in the literature. 

 

4.3 Dealing with more than two treatment levels 

 

 Suppose treatment levels are ordinal. When there is a single variable, say b(X), that determines 

not just the expected dose given X but the entire distribution of doses given X, then a single balancing 

score is available with more than two treatment levels. If the entire distribution of treatments Z depends 

on covariates X only through b(x), so that P(Z|X) = P(Z|b(x)), then b(X) is a balancing score and persons 

with the same balancing score in different treatment groups  have the same distribution of the covariates X 

(Joffe, et al. 1999). Then adjusting for b(X) would balance X across the treatment levels. 

 The multiple propensity score of Wang, et al. (2001) is an extension of the propensity score such 

that it could be applied to situations in which there are more than two treatment levels, not necessarily 

ordinal. It is the conditional probability of a patient receiving a particular treatment given all observed 

covariates and can be estimated with multinomial logistic regression. Once the multiple propensity score 

has been estimated, it can be used to control for confounding through the same three general methods: 

matching, stratification, and covariate adjustment. Although the multiple propensity score has been shown 

to be viable and general results from the usual propensity score appear to extend to the multiple 

propensity score, few formal results have been developed (Spreeuwenberg, et al. 2010). 
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4.4 Previous findings concerning propensity scores 

 

 Although the true propensity score is unknown, it is argued that adjusting for the estimated 

propensity score removes bias better because it accounts for the chance imbalances in X (Joffe, et al. 

1999).  

 It should be stressed that adjusting for propensity scores removes bias from observed 

confounders, but does not account for unmeasured confounding. However, the amount of bias that may 

occur from omitting a confounder from the propensity score is positively correlated with the degree of 

association between the confounder and the treatment and between the confounder and the outcome 

(Weitzen, et al. 2005).  

 Cepeda, et al. (2003) compared logistic regression against propensity score covariate adjustment 

in the situation when the number of events is low and multiple confounders exist. The logistic regression 

model included all individual confounders and the exposure variable as independent variables and the 

clinical outcome as the dependent variable. The propensity score was estimated and divided into five 

strata based on its quintiles. Another logistic model was then built, with the clinical trial as the dependent 

variable, and the exposure variable and the five categories of the propensity score as the independent 

variables. Propensity score estimates were less biased, more robust, more precise, and had more power 

than logistic regression when there were seven or fewer events per confounder. It was concluded that 

propensity scores are a good alternative to control for imbalances when there are seven or fewer events 

per confounder.  

 Martens, et al. (2008) compared the three propensity score methods (matching, stratification, and 

covariate adjustment) with a multivariable Cox proportional hazards regression to estimate an adjusted 

effect of drug treatment for hypertension on the incidence of stroke. Stratification was based on quintiles. 

Matching on the propensity score was based on pair matching through a greedy algorithm. Covariate 

adjustment for the propensity score consisted for replacing all confounders in the Cox proportional 

hazards model with the propensity score. Matching and stratification on the propensity score gave larger 

treatment effect and more precision than the multivariable Cox proportional hazards regression and 

propensity score covariate adjustment. Propensity score covariate adjustment appeared to perform about 

the same as the multivariable Cox proportional hazards regression. 

 Austin (2007) compared the performance of the three propensity score methods in estimating 

marginal odds ratios through Monte Carlo simulations. They found that matching on the propensity score 
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resulted in the least biased estimates of the marginal odds ratios. Stratifying on the quintiles of the 

propensity score resulted in the greatest degree of bias. When there was true non-null treatment effect, 

then all methods resulted in confidence intervals with sub-optimal coverage. Propensity score matching 

tended to give estimated of marginal odds ratios with the lowest mean square error. 

 Senn, et al. (2007) compared treatment effects using stratification on the propensity score versus 

least squares regression. They show that, when both propensity score stratification and least squares 

regression produce conditionally unbiased estimators, the true variance of the propensity score estimator 

would be higher. When the estimators are compared marginally, then depending on the ability of a 

balanced covariate to predict the outcome, the propensity score estimator may outperform the least 

squares estimator with respect to marginal variance. It is conjectured that if a linear model holds, 

propensity score stratification based on estimated propensity scores produces an estimator with the same 

expectation but greater variance than the least squares estimator. 

 

4.5 Application to the ADCC study 

 

 Although the propensity score was originally developed for the analysis of treatment effects, 

propensity score methods can easily be extended to analysis of group effects (Reeve, et al. 2008). We will 

consider SCI as the group of interest and NCI has the control group. The conditional probability of SCI 

will be modeled on the confounding variables through logistic regression. 

( )

0 1 2 3 4log * * * * 2
1

where =P | , , , 2

AGE GENDER EDUC TIME END

SCI AGE GENDER EDUC TIME END

π
β β β β β

π

π

 
= + + + + −  ,. 

 Many research studies have applied propensity score adjustment by using the raw propensity 

score as a covariate in the model. However, there is another body of research studies that have used the 

logit of the estimated propensity score because Rosenbaum and Rubin (1985) found that it is more 

normally distributed than the raw propensity score. We will compare each method by considering two 

different models: 

1) logistic regression with raw propensity  
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i
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2) logistic regression with the logit propensity score 
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og * * log

ˆ1 1
i i
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π π

β α γ β
π π =

   
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∑  

where π = P[decline].  Stepwise variable selection will also be incorporated in the second regression. 

Similar implementation is carried out for Cox PH regression and AFT regression, with corresponding 

models in the second regression. 
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5 Residual logistic regression 

 

 For multiple linear regression analysis where the response variable is continuous, the two-stage 

residual linear regression analysis strategy has been well developed and adopted (Freund, et al. 1961a, 

Freund, et al. 1961b, Kabe 1963, Zyskind 1963, Alley 1987). Let 1,..., k
X X  be a set of potential 

confounding variables, 
1,...,k pX X+ be a set of variables of interest (VOI’s), and let Y be a continuous 

outcome variable where [ ]E Y µ= . 

Stage 1: Fit the linear regression model for y on the set of confounding variables 

0 1 1 k k
Y X Xβ β β ε= + + + +�  to obtain 

0 1 1
ˆ ˆ ˆˆ

k kY X Xβ β β= + + +�  

Stage 2: Fit the residual linear regression model for ˆY Y− on the set of VOI’s 

*

0 1 1
ˆ

k k p pY Y X Xβ β β ε+ +− = + + + +�  

 For dichotomous response variables, Baez-Revultas (2009) introduced the analogous residual 

logistic regression to control for confounding. Now, let Y be a dichotomous outcome variable where

[ ]E Y π= . 

Stage 1: Fit the logistic model for y on the set of potential confounding variables 

0 1 1ln
1

k kX X
π

β β β
π

 
= + + + − 

�

 

 to obtain 
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ˆ ˆ ˆ ˆln
ˆ1

k kT X X
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 
= = + + + − 
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Stage 2: Fit the residual logistic model for Y on the set of VOI’s 

*

0 1 1ln
1

k k p pT X X
π

β β β
π

+ +

 
− = + + + − 
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This is equivalent to fitting  



 

 

33 

 

*

0 1 1ln
1

k k p pT X X
π

β β β
π

+ +

 
= + + + + − 

� . 

The procedure maintains the interpretative odds ratio accounted by the VOI’s since both levels are 

logistic. Furthermore, variable selection from the set of VOI’s can easily be incorporated in the procedure 

within the second stage. 

 

5.1 Simple Proof 

 

 Ideally, we would like to show that 
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We consider a simple scenario of one confounder X and one variable of interest G and attempt to derive
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Let Y be a binary response variable, G be a discrete variable and X a discrete confounding variable. 

Consider the odds of Y=1 given G=g and X=x. 
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Now suppose X and G are conditionally independent variables. 
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Then, 
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Thus,  
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We will modify Baez-Revultas’s method by including the correctional crude estimate of the log odds. 

 

5.2 Simulations 

 

 To compare the new residual logistic regression to the other modeling techniques to control for 

confounding, 1000 datasets were simulated containing 500 observations each with three binary variables: 

outcome Y, group variable G, and confounder X.  The goal of the simulation is to study the performance 

of the methods to detect and estimate the effect of G on Y based on the interplay of the strength of the 

correlation between G and X and the strength of the true effect of G on Y. 

  We take advantage of the odds and odds ratio interpretation of the logistic model to determine 

reasonable values of the parameters. We also use the conditional probability interpretation to calculate the 

true correlation between predictor X and confounder G.  
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 The data were simulated as follows: 

• X ~ Bernoulli( ( )P X x= ) 

• Given X, generate G ~ Bernoulli( ( ) ( )
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 To determine appropriate values of the parameters needed in the simulation, we note the 

following interpretations. 
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 Each of pX, p0,…, p4 can be a number between 0 and 1. p0 controls the correlation between X and 

G. p3 controls the effect of G on Y. We can fix all other parameters and while varying these two. We also 

note that the true correlation between X and G can be calculated as 
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Then our simulation parameters were chosen as: 

{ }
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The respective correlations between G and X to the chosen values of p0 is  

{ }, 0.94, 0.9, 0.85, 0.67, 0.5, 0.33, 0.09, 0G Xρ =  

The respective effect of G on Y is to the chosen values of p3 is 

{ }2.94, 2.2, 0.85, 0, 0.85, 2.2, 2.9Gβ = − − −  

 We compared the methods based on power, type I error rate, bias, standard error, and mean 

square error in detecting and estimating βG.  Power was the proportion of simulations where βG was found 

to be significantly nonzero in the regression when it was truly nonzero. Type I error rate was the 

proportion of times βG was significantly nonzero when it was truly zero. Bias was difference between the 

estimated and the true value of βG. The standard error was the standard deviation in the estimates of βG. 

Mean square error is the sum of the squared bias and the squared standard error.  

 We denote the unadjusted logistic regression as crude, adjusted (multiple) logistic regression as 

mLR, Pearson residual analysis as prLR, propensity score adjusted logistic regression as propensity, and 

residual logistic regression as rLR. All possible combinations of the two parameters, ( ), ,
G X G

ρ β , were 

simulated, but each was observed in its own right by averaging the evaluation measures over the values of 

the other parameter, except in the case of power and Type I error rate. Power was measured when 

0
G

β ≠ , while Type I error rate was measure only when 0
G

β = . Full results tables are included in the 

Supplementary materials. 

 Multiple logistic regression and propensity score adjusted regression performed similarly with 

respect to power, while Pearson residual analysis and residual logistic regression performed similarly 

(Figure 2). Multiple logistic regression and propensity score adjusted regression had higher power. With 

regards to correlation, although initial interpretation of the power curve over correlation would lead one to 
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conclude that residual logistic regression and Pearson residual analysis does not perform well when X and 

G are highly correlated, one must remember that a high correlation between two variables would result in 

unstable results when both variables are used in a regression model due to multicollinearity (Farrar, et al. 

1967). In other words, the two-step based methods would explain all variability in Y due to the variable X 

in the first step and if X and G are high correlated, no variability due to G is left to be discovered in the 

second step. In this sense, Pearson residual analysis and residual logistic regression is actually the 

stronger methods of analysis to correctly detect this effect. 

 Type I error rate for crude logistic regression was removed because it performed much worse in 

this aspect compared to the other methods, making comparison difficult on a scaled graph. The Type I 

error rate for crude regression averaged over all correlation values was 0.56. With increasing correlation, 

Type I error rate decrease to nearly zero for Pearson residual analysis and residual logistic regression 

(Figure 3). For the other methods, Type I error rate was consistent around 0.05. 

 

 

Figure 2 Confounding simulation – Power. Power of each of the regression methods [crude = 

unadjusted logistic regression, mLR = multiple logistic regression, prLR = Pearson residual logistic 

regression, rLR  = residual logistic regression] to detect an effect of the main variable G after controlling 

for covariate X, observed over the effect size of G (left) and the correlation between G and X (right). 
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Figure 3 Confounding simulation - Type I Error. Type I error of each of the regression methods [mLR 

= multiple logistic regression, prLR = Pearson residual logistic regression, rLR  = residual logistic 

regression] to detect an effect of the main variable G after controlling for covariate X, observed over the 

correlation between G and X. 

 
 

 As expected, the higher the correlation between G and X the more biased the estimate of βG in the 

crude estimate (Figure 4). Pearson residual analysis has increasing bias as the magnitude of βG increases. 

However, recall that the estimate in the Pearson residual analysis is from a linear regression, which means 

that bias is not quite correctly defined in this case, since the estimator in the Pearson residual analysis is 

not an odds ratio.  Bias in the residual logistic regression is always in the opposite direct of the βG, while 

bias for the remaining methods remained constant. 

 When observing the bias with respect to correlation, one must use care due to the trend in bias 

over the βG for Pearson residual analysis and residual logistic regression, going from positive to negative. 

Recall that the bias with respect to the correlation is averaged over βG. Hence, the opposing signs in bias 

will be cancelled out when averaged over βG and it would appear that Pearson residual analysis and 

residual logistic regression have zero bias. To correct for this, we averaged the absolute bias instead.  
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Figure 4 Confounding simulation – Bias. Bias of each of the regression methods (crude = unadjusted 

logistic regression, mLR = multiple logistic regression, prLR = Pearson residual logistic regression, rLR  

= residual logistic regression) to estimate the coefficient the main variable G after controlling for 

covariate X, observed over the effect size of G (left) and the correlation between G and X (right). 

 

 

 We can see that when G and X are independent, Pearson residual analysis has high bias while all 

other methods have nearly zero bias. As correlation increases, bias for residual logistic regression and the 

crude regression also increases. However, if we interpret the “true” effect of G on Y as being the sum βG + 

βX when X and G are completely correlated, and having been removed when regressed Y was regressed on 

X first, then we speculate that the “true” bias is closer to zero for these three methods and all other 

estimators would have high bias. 

 The standard error for multiple regression and propensity score adjusted logistic regression 

increases as the magnitude of βG increases and correlation increases, indicating erratic behavior in the 

estimates of βG in these methods (Figure 5). The remaining methods are fairly consistent. The mean 

square error basically combines the information about bias and standard error into one evaluation 

measure. However the problems with interpretations in bias mentioned earlier would also plague these 

measures. 



 

 

40 

 

 

Figure 5 Confounding simulation - Standard Error and Mean Square Error. Standard error and 

mean square error of each of the regression methods (crude = unadjusted logistic regression, mLR = 

multiple logistic regression, prLR = Pearson residual logistic regression, rLR  = residual logistic 

regression) to estimate the coefficient for the variable G after controlling for covariate X, observed over 

the effect size of G (left) and the correlation between G and X (right). 

 

 

 Propensity score and multiple logistic regression performed ultimately the same way in all 

aspects, while residual logistic regression and Pearson residual logistic regression were similar. When 

correlation is high, residual logistic regression and Pearson residual analysis would be better suited to 

handle the problem of multicollinearity. In this case, if one truly wanted to estimate the effect of G then 

crude regression would suffice, but it should be noted that it is highly correlated with confounder X. 

 

5.3 Application to the ADCC study 

 

 The stage one regression model with confounders only will be 

0 1 2 3 4log * Age *Gender * Education * LengthofFollowup
1

π
β β β β β

π

 
= + + + + − 
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where π = P[Decline]. From this regression, we obtain the estimated log odds ratios T to be incorporated 

in the second stage. Then second stage regression model with variables of interest is 

69
*

0

5

log *
1

i i

i

T Group X
π

β α β
π =

 
= + + + − 

∑ . 

Stepwise variable selection will be implemented to reduce the model. 

 Table 4, Table 5, Table 6, Table 7, Table 8, and Table 9 display results from applying the 

methods discussed in section 1.1 to the ADCC study in a logistic model, where outcome is either decline 

to MCI or dementia or no decline (stable). Group was found to have a significant effect for all methods 

applied (P-values < 0.05), with estimated odds ratios ranging from 5 to 9.8, but confidence interval widths 

ranged from approximately 15 to 38 units. Pearson residual analysis estimated the effect to be a 0.47 

increase in the Pearson residual when in the SCI group and holding all other covariates fixed. HDS11 was 

found to be consistently significant across all methods applied (P-values < 0.05). All methods except for 

propensity score adjustment found BEH23 to be significant (P-values  < 0.05). All methods except for the 

Pearson residual analysis found PDS to be significant (P-value < 0.01).  

Table 4 Traditional multiple logistic regression with stepwise variable selection. Model coefficient 

estimates from applying multiple logistic regression to the data by regressing the binary outcome (decline 

vs. stable) the main group variable (subjective cognitive impairment vs. no subjective cognitive 

impairment) and covariates age, gender, education and length of follow-up, and all other variables of 

interest. 

 

Beta 

Standard 

Error OR 

95% Wald 

Confidence Limits P-value 

Intercept -8.76 2.78 0.002 

GROUP 1.14 0.36 9.75 2.38 40.00 0.002 

HDS07 0.61 0.30 1.84 1.03 3.29 0.041 

HDS11 0.84 0.37 2.32 1.12 4.82 0.024 

BEH19 -1.51 0.61 0.22 0.07 0.72 0.012 

BEH23 1.46 0.54 4.30 1.48 12.50 0.007 

PDS 0.79 0.29 2.19 1.24 3.87 0.007 
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Table 5 One-at-a-time logistic regression. Model coefficient estimates from applying one-at-a-time 

logistic regression to the data by regressing the binary outcome (decline vs. stable) on the main group 

variable (subjective cognitive impairment vs. no subjective cognitive impairment) and covariates age, 

gender, education and length of follow-up, and including each of the other variables of interest one at a 

time. *Only significant variables are displayed. 

 

Beta 

Standard 

Error OR 

95% Wald 

Confidence Limits P-value 

GROUP 1.91 0.488 6.78 2.60 17.65 0.0001 

MMS -0.39 0.163 0.68 0.49 0.93 0.017 

BCRTOT 0.32 0.115 1.38 1.10 1.73 0.005 

BCR01 0.66 0.229 1.93 1.23 3.03 0.004 

BCR05 0.88 0.379 2.42 1.15 5.08 0.020 

HDS08 0.56 0.271 1.75 1.03 2.98 0.038 

HDS11 0.79 0.312 2.20 1.20 4.06 0.011 

BEH23 0.81 0.405 2.25 1.02 4.97 0.045 

PDS 0.78 0.218 2.18 1.43 3.35 <0.0001 

PRDD -0.18 0.072 0.83 0.72 0.96 0.012 

PRDI -0.20 0.082 0.82 0.70 0.96 0.016 

DESN -0.19 0.084 0.83 0.70 0.98 0.026 

WASDIGB -0.33 0.129 0.72 0.56 0.93 0.011 

WASV -0.06 0.020 0.95 0.91 0.98 0.006 

 

 

Table 6 Pearson residual analysis with stepwise variable selection. Model coefficient estimates from 

applying Pearson residual analysis to the data by regressing the binary outcome (decline vs. stable) on the 

main group variable (subjective cognitive impairment vs. no subjective cognitive impairment) and 

covariates age, gender, education and length of follow-up, and then linearly regressing the Pearson 

residuals on the other variables of interest. 
  

Variable Beta 

Standard 

Error P-value 

Intercept -0.66 0.27 0.018 

GROUP 0.47 0.21 0.026 

BCR01 0.17 0.10 0.107 

HDS08 0.33 0.13 0.011 

HDS11 0.33 0.13 0.012 

HDS13 -0.26 0.13 0.051 

BEH19 -0.41 0.19 0.031 

BEH23 0.42 0.15 0.006 

PRDI -0.05 0.03 0.127 
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Table 7 Logistic regression with raw propensity score adjustment and stepwise variable selection. 
Model coefficient estimates from applying propensity score adjusted logistic regression to the data by 

regressing the binary outcome (decline vs. stable) on the main group variable (subjective cognitive 

impairment vs. no subjective cognitive impairment) and the raw propensity score for the group variable 

given covariates age, gender, education and length of follow-up, and on the other variables of interest. 
 

Beta 

Standard 

Error OR 

95% Wald 

Confidence Limits P-value 

Intercept -8.33 2.12 <0.0001 

Propensity 5.59 2.49 266.786 2.012 >999.999 0.025 

GROUP       0.80 0.36 4.993 1.223 20.372 0.025 

BCR05 0.92 0.43 2.501 1.083 5.776 0.032 

HDS11 0.73 0.35 2.069 1.044 4.103 0.037 

PDS 0.73 0.20 2.082 1.395 3.107 <0.0001 

 

 

Table 8 Logistic regression with logit propensity score adjustment and stepwise variable selection. 

Model coefficient estimates from applying propensity score adjusted logistic regression to the data by 

regressing the binary outcome (decline vs. stable) on the main group variable (subjective cognitive 

impairment vs. no subjective cognitive impairment) and the logit of the propensity score for the group 

variable given covariates age, gender, education and length of follow-up, and on the other variables of 

interest. 

 

Beta 

Standard 

Error OR 

95% Wald 

Confidence Limits P-value 

Intercept -5.16 1.00 <0.0001 

Logit Propensity 0.92 0.42 2.52 1.10 5.76 0.029 

GROUP       0.81 0.36 5.02 1.23 20.50 0.025 

BCR05 0.91 0.43 2.48 1.08 5.72 0.033 

HDS11 0.69 0.34 2.00 1.02 3.92 0.042 

PDS 0.72 0.20 2.06 1.38 3.08 0.0004 
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Table 9 Residual logistic regression with stepwise variable selection. Model coefficient estimates from 

applying residual logistic regression to the data. The binary outcome (decline vs. stable) is first 

logistically regressed on the main group variable (subjective cognitive impairment vs. no subjective 

cognitive impairment) and covariates age, gender, education and length of follow-up, obtaining the 

estimated conditional log odds.  Then a second logistic regression of the outcome on the other variables of 

interest is performed offset by the estimated conditional log odds. 

 

Beta 

Standard 

Error OR 

95% Wald 

Confidence Limits P-value 

Intercept -2.82 0.65 <0.0001 

GROUP      1.10 0.34 9.01 2.34 34.68 0.001 

HDS11 0.81 0.36 2.25 1.12 4.51 0.022 

BEH19 -1.14 0.50 0.32 0.12 0.86 0.023 

BEH23 1.28 0.44 3.60 1.51 8.62 0.004 

PDS 0.72 0.23 2.05 1.32 3.20 0.002 

 

 

 Since the ADCC study is longitudinal with censoring occurring in the data, we also apply the 

more appropriate Cox PH models and AFT models to the data, with time to decline as the event of 

interest. 

 Table 10, Table 11, Table 12, and Table 13 respectively display results from traditional multiple 

regression, one-at-a-time regression, raw propensity score, and logit propensity score regression for the 

Cox PH model. Estimated hazard rates ranged from 4.7 to 6.1, with confidence interval widths ranging 

from approximately 9 to 20 units. Group was also significant for each method applied to the regression 

(P-values < 0.005). Other variables of interest found to be consistently significant among the different 

methods were HDS11, and PDS (P-values < 0.05). 

 

Table 10 Traditional multiple Cox PH regression with stepwise variable selection. Model coefficient 

estimates from applying multiple Cox PH regression to the data by regressing the binary outcome (decline 

vs. stable) the main group variable (subjective cognitive impairment vs. no subjective cognitive 

impairment) and covariates age, gender, education and length of follow-up, and all other variables of 

interest. 

 

Beta 

Standard 

Error HR 

95% Confidence 

Limits P-value 

GROUP 1.86 0.60 6.40 1.97 20.79 0.002 

HDS11 0.49 0.17 1.63 1.16 2.28 0.005 

PDS 0.51 0.14 1.67 1.25 2.21 0.0004 
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Table 11 One-at-a-time Cox PH regression*. Model coefficient estimates from applying one-at-a-time 

Cox PH regression to the data by regressing the binary outcome (decline vs. stable) on the main group 

variable (subjective cognitive impairment vs. no subjective cognitive impairment) and covariates age, 

gender, education and length of follow-up, and including each of the other variables of interest one at a 

time. *Only significant variables are displayed. 

 

Beta 

Standard 

Error HR 

95% Confidence 

 Limits P-value 

GROUP 1.56 0.43 4.77 2.07 11.00 0.0002 

BCRTOT 0.16 0.07 1.18 1.04 1.34 0.012 

BCR01 0.40 0.14 1.50 1.14 1.97 0.004 

HDS08 0.33 0.17 1.40 1.00 1.95 0.050 

HDS11 0.46 0.16 1.59 1.16 2.18 0.004 

PDS 0.52 0.12 1.69 1.34 2.14 <0.0001 

PARD -0.08 0.04 0.93 0.86 0.99 0.029 

PRDI -0.14 0.05 0.87 0.79 0.97 0.008 

DESN -0.17 0.05 0.84 0.76 0.94 0.002 

WASDIGB -0.17 0.08 0.85 0.73 0.99 0.032 

WASV -0.03 0.01 0.97 0.96 0.99 0.0004 

 

 

Table 12 Cox PH regression with raw propensity score adjustment and stepwise variable selection. 

Model coefficient estimates from applying propensity score adjusted Cox PH regression to the data by 

regressing the binary outcome (decline vs. stable) on the main group variable (subjective cognitive 

impairment vs. no subjective cognitive impairment) and the raw propensity score for the group variable 

given covariates age, gender, education and length of follow-up, and on the other variables of interest. 

 

Beta 

Standard 

Error HR 

95% Confidence 

Limits P-value 

propensity 3.50 1.53 33.06 1.66 659.55 0.022 

GROUP 1.77 0.60 5.88 1.80 19.19 0.003 

HDS08 0.38 0.18 1.46 1.03 2.07 0.033 

HDS11 0.44 0.18 1.56 1.10 2.21 0.012 

PDS 0.59 0.12 1.81 1.43 2.31 <.0001 
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Table 13 Cox PH regression with logit propensity score adjustment and stepwise variable selection. 
Model coefficient estimates from applying propensity score adjusted Cox PH regression to the data by 

regressing the binary outcome (decline vs. stable) on the main group variable (subjective cognitive 

impairment vs. no subjective cognitive impairment) and the logit of the propensity score for the group 

variable given covariates age, gender, education and length of follow-up, and on the other variables of 

interest. 

 

Beta 

Standard 

Error HR 

95% Confidence 

Limits P-value 

logit_propensity 0.55 0.25 1.73 1.06 2.82 0.027 

GROUP 1.78 0.60 5.91 1.81 19.32 0.003 

HDS08 0.39 0.18 1.48 1.04 2.09 0.029 

HDS11 0.43 0.18 1.54 1.09 2.18 0.015 

PDS 0.59 0.12 1.80 1.42 2.29 <0.0001 

 

 Table 14, Table 15, Table 16, and Table 17 display results from traditional multiple regression, 

one-at-a-time regression, raw propensity score, and logit propensity score regression for the AFT model. 

Although group was found to be significant for the first two methods (P-values < 0.01), propensity score 

adjustment failed to find group to be significant (P-values = 0.07). Percent change in expected survival 

time for SCI over NCI ranged between -5.9 to -5.1. Common variables of interest that were found to 

significant were PARD and PRDI (P-values < 0.05).  

 

Table 14 Traditional multiple AFT regression (no variable selection)*. Model coefficient estimates 

from applying multiple AFT regression to the data by regressing the binary outcome (decline vs. stable) 

the main group variable (subjective cognitive impairment vs. no subjective cognitive impairment) and 

covariates age, gender, education and length of follow-up, and all other variables of interest. *Only 

significant variables are displayed. 

 

Beta 

Standard 

Error 

95% Confidence 

Limits P-value 

GROUP -0.59 0.21 -1.01 -0.17 0.006 

BCR03 0.34 0.12 0.11 0.57 0.003 

HDS11 -0.46 0.20 -0.85 -0.06 0.023 

BEH20 -0.58 0.19 -0.95 -0.21 0.002 

BEH23 -0.58 0.18 -0.93 -0.22 0.001 

PDS 0.48 0.23 0.03 0.94 0.036 

PARD 0.08 0.03 0.03 0.13 0.002 

PRDI 0.14 0.04 0.06 0.22 0.0005 

DESN 0.09 0.04 0.01 0.16 0.020 

WASDIGB 0.12 0.04 0.03 0.20 0.008 
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Table 15 One-at-a-time AFT regression*. Model coefficient estimates from applying one-at-a-time 

AFT regression to the data by regressing the binary outcome (decline vs. stable) on the main group 

variable (subjective cognitive impairment vs. no subjective cognitive impairment) and covariates age, 

gender, education and length of follow-up, and including each of the other variables of interest one at a 

time. *Only significant variables are displayed. 

 

Beta 

Standard 

Error 

95% Confidence 

Limits P-value 

GROUP -0.51 0.15 -0.80 -0.22 0.0005 

MMS 0.05 0.03 0.00 0.10 0.054 

BCRTOT -0.06 0.02 -0.11 -0.02 0.006 

BCR01 -0.14 0.05 -0.24 -0.05 0.004 

BCR05 -0.19 0.09 -0.35 -0.02 0.029 

HDS08 -0.13 0.06 -0.25 -0.01 0.031 

HDS11 -0.16 0.06 -0.27 -0.04 0.007 

PDS -0.19 0.04 -0.27 -0.11 <0.0001 

PARD 0.03 0.01 0.00 0.05 0.035 

PRDI 0.05 0.02 0.01 0.08 0.005 

PRDD 0.05 0.02 0.01 0.08 0.004 

DESN 0.06 0.02 0.03 0.10 0.001 

WASDIGB 0.07 0.03 0.02 0.12 0.012 

DSST 0.01 0.00 0.00 0.01 0.047 

WASV 0.01 0.00 0.00 0.01 0.001 

 

 

Table 16 AFT regression with raw propensity score (no variable selection)*. Model coefficient 

estimates from applying propensity score adjusted Cox PH regression to the data by regressing the binary 

outcome (decline vs. stable) on the main group variable (subjective cognitive impairment vs. no 

subjective cognitive impairment) and the raw propensity score for the group variable given covariates 

age, gender, education and length of follow-up, and on the other variables of interest. *Only significant 

variables are displayed. 
 

Beta 

Standard 

Error 

95% Confidence 

Limits P-value 

Intercept -0.23 3.08 -6.27 5.80 0.940 

propensity -3.10 0.80 -4.66 -1.53 0.0001 

GROUP -0.51 0.29 -1.07 0.05 0.073 

BCR03 0.36 0.15 0.08 0.65 0.013 

BEH20 -0.63 0.27 -1.16 -0.11 0.018 

BEH23 -0.59 0.26 -1.11 -0.07 0.025 

PARD 0.08 0.03 0.01 0.15 0.017 

PRDI 0.13 0.06 0.02 0.24 0.022 
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Table 17 AFT regression with logit propensity score (no variable selection)*. Model coefficient 

estimates from applying propensity score adjusted Cox PH regression to the data by regressing the binary 

outcome (decline vs. stable) on the main group variable (subjective cognitive impairment vs. no 

subjective cognitive impairment) and the logit of the propensity score for the group variable given 

covariates age, gender, education and length of follow-up, and on the other variables of interest. *Only 

significant variables are displayed. 

 

Beta 

Standard 

Error 

95% Confidence 

Limits P-value 

Intercept -1.71 3.14 -7.86 4.45 0.587 

logit_propensity -0.42 0.13 -0.68 -0.16 0.001 

GROUP -0.54 0.30 -1.12 0.04 0.069 

BCR03 0.32 0.15 0.03 0.61 0.032 

BEH20 -0.62 0.28 -1.16 -0.07 0.026 

BEH23 -0.53 0.27 -1.06 0.00 0.051 

PARD 0.08 0.04 0.01 0.15 0.020 

PRDI 0.13 0.06 0.01 0.24 0.028 

  

 It should be noted that no variable selection procedure was implemented in the AFT regressions 

for the tables above due to software limitations. Without variable selection, all variables of interests 

remained in the regression model, resulting in a model with 51 to 55 covariates (some variables had no 

data) fitted to 154 observations for the traditional multiple regression and the propensity score adjusted 

models. Hence the results for those methods are unreliable. Correlation analysis was run in an attempt to 

reduce the model by removing repetitive variables based on significant Pearson correlations with 

magnitude 0.50 or higher (P-values < 0.0005). Selected correlations are shown in Table 18. 
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Table 18 Selected Pearson correlations. Correlation analysis was run in an attempt to reduce the model 

by removing repetitive variables based on significant Pearson correlations with magnitude 0.50 or higher 

(P-values < 0.0005). Bold correlations indicate significance and magnitude 0.58 or higher. 

 

GROUP BCRTOT BCR01 BCR02 BCR03 BCR04 

BCRTOT 0.67 

BCR01 0.47 0.76 

BCR02 0.66 0.70 0.39 

BCR03 0.34 0.70 0.38 0.36 

BCR04 0.24 0.46 0.16 0.13 0.24 

BCR05 0.52 0.68 0.32 0.48 0.30 0.30 

 

BEHTOT BEH06 BEH15 BEH16 BEH18 BEH19 

BEH06 0.30      

BEH15 0.19 0.81     

BEH16 0.66 0.05 0.05    

BEH18 0.32 -0.02 -0.01 0.59   

BEH19 0.53 0.10 -0.04 0.06 -0.04  

BEH20 0.64 0.03 -0.04 0.24 -0.05 0.35 

BEH21 0.58 0.10 -0.02 0.22 -0.02 0.44 

BEH23 0.61 0.11 0.01 0.19 0.15 0.27 

HDS05 0.31 0.15 0.04 -0.01 -0.07 0.61 

HDS20 0.36 0.82 0.72 0.06 -0.03 0.31 

 

PDS PARI PARD PRDI 

PARI -0.58 

PARD -0.63 0.77 

PRDI -0.72 0.33 0.46 

PRDD -0.74 0.29 0.44 0.80 

DESN -0.69 0.30 0.30 0.42 

DSST -0.65 0.26 0.30 0.31 

WASV -0.59 0.34 0.31 0.18 

 

 Table 19, Table 20, and Table 21 are the results of traditional multiple regression and propensity 

score adjustment on the AFT model with the reduced set of covariates. Although it is still questionable 

whether there was sufficient reduction in the set of covariates, we can see that the consistency in the 

estimated effect of group in the previous models is beginning to appear here, with significance appearing 

for the propensity adjusted models (P-values < 0.05). Aside from group, no other common variables are 

significant for all the methods. Perhaps with further model reduction, PDS would be significant for all 

possible methods.  
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Table 19 Traditional multiple AFT regression (reduced set of VOIs). Model coefficient estimates 

from applying multiple AFT regression to the data by regressing the binary outcome (decline vs. stable) 

the main group variable (subjective cognitive impairment vs. no subjective cognitive impairment) and 

covariates age, gender, education and length of follow-up, and on a subset of the variables of interest. 

*Only significant variables and PDS are displayed. 

 

Beta 

Standard 

Error 95% Confidence Limits P-value 

Intercept 2.73 1.37 0.05 5.41 0.046 

GROUP -0.55 0.19 -0.91 -0.18 0.003 

BCR03 0.22 0.09 0.05 0.39 0.010 

BEH18 0.87 0.42 0.05 1.69 0.038 

BEH23 -0.25 0.10 -0.45 -0.06 0.010 

PDS -0.12 0.06 -0.25 0.01 0.061 

 

 

Table 20 AFT regression with raw propensity score (reduced set of VOIs)*. Model coefficient 

estimates from applying propensity score adjusted AFT regression to the data by regressing the binary 

outcome (decline vs. stable) on the main group variable (subjective cognitive impairment vs. no 

subjective cognitive impairment) and the raw propensity score for the group variable given covariates 

age, gender, education and length of follow-up, and on a subset of the variables of interest. *Only 

significant variables and PDS are displayed. 

 

Beta 

Standard 

Error 95% Confidence Limits P-value 

Intercept 5.26 1.70 1.92 8.59 0.002 

propensity -2.61 0.81 -4.20 -1.01 0.001 

GROUP -0.58 0.23 -1.04 -0.13 0.012 

BCR04 -0.30 0.14 -0.58 -0.02 0.036 

PDS -0.20 0.08 -0.35 -0.05 0.011 
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Table 21 AFT regression with logit propensity score (reduced set of VOIs)*. Model coefficient 

estimates from applying propensity score adjusted AFT regression to the data by regressing the binary 

outcome (decline vs. stable) on the main group variable (subjective cognitive impairment vs. no 

subjective cognitive impairment) and the logit of the propensity score for the group variable given 

covariates age, gender, education and length of follow-up, and on a subset of the variables of interest. 

*Only significant variables and PDS are displayed. 

 

Beta 

Standard 

Error 95% Confidence Limits P-value 

Intercept 3.91 1.73 0.52 7.29 0.024 

logit_propensity -0.38 0.13 -0.63 -0.12 0.004 

GROUP -0.58 0.24 -1.05 -0.11 0.015 

BCR04 -0.29 0.15 -0.58 -0.01 0.043 

PDS -0.19 0.08 -0.35 -0.03 0.017 
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6 Partial correlation analysis 

 

 The goal is to discern the relationship between variable after removing the common variability 

between the two variables due to a third variable. 

 Consider a multivariate normal distribution ( , , ) ~ ( , )X Y Z N µ Σ  with 

,

XX XY XX YY XZ XX ZZX XX XY XZ

Y XY XX YZ XY XX YY YY YZ YY ZZ

Z XZ YZ XX XZ XX ZZ YZ YY ZZ ZZ

σ ρ σ σ ρ σ σµ σ σ σ

µ µ σ σ σ ρ σ σ σ ρ σ σ

µ σ σ σ ρ σ σ ρ σ σ σ

        = Σ = =               

 

For convenience, we partition the variance-covariance matrix. 

.

. .

.
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Z XY ZZ YZ YY ZZ

ρ σ σ

ρ σ σ

 Σ Σ 
 ′Σ = Σ = Σ =   Σ Σ   

 

One way to measure the relationship between the two population variables X and Y after accounting for Z 

is to consider the conditional joint distribution of X and Y given Z. It can be shown that such a distribution 

can be derived from the multivariate distribution and expressed as ( , | ) ~ ( , )X Y Z z N µ= Σ  (Draper, et 

al. 1998, Kutner, et al. 2004) with 

( )
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( )
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   + −+ −       = + Σ Σ − = =      + − + −  
      
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Hence, the population conditional correlation is  

( )

( ) ( )
|

2 22 2 1 11 1

XY XZ YZ XX YY XY XZ YZ
XY Z

XZ YZXX XZ YY YZ
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To say that the conditional correlation between X and Y is zero is to say that there is no linear relationship 

between X and Y after controlling for Z. Our goal is to be able to estimate and test such a measure. 

 

6.1 Partial correlation 

 

 The partial correlation was formulated during the early nineteen century by (Yule 1897, 1907) 

and its distribution was derived by (Fisher 1924). Suppose there are a random sample of n observations 

for two variables X and Y and a vector of control variables Z. The partial correlation between X and Y 

controlling for Z is obtained by correlating the residual from regressing X and Y on Z. First, regress X on Z 

and Y on Z via least squares regression, and then calculate the correlation between the two residuals. 
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Recall that via least squares regression 
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This expression is similar to the population conditional correlation. Note that the Pearson correlation is an 

estimate of the population correlation. Hence this partial correlation estimates the conditional correlation. 

We can test the null hypothesis that the partial correlation is zero via an F-test, with k being the number of 

variables being controlled. 
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For the remaining partial correlations discussed below, Z is a single variable, not a vector of variables. 

 

6.2 Partial phi coefficient, point-biserial and point-polyserial correlation 

 

 Suppose X, Y and Z are binary variables. The most common extension of Pearson correlation 

formula applied to such data is the phi coefficient. It is only applicable when these variables are assumed 

to categorize an underlying continuous normal distribution. Consider the following contingency table 

  X  

  0 1 

Y 0 11n  12n  

 1 21n  22n  

 

Direct calculation of the components used in the Pearson correlation coefficient results in 
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Plugging those expressions into the Pearson correlation formula and we obtain the phi coefficient. 
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 If Y is continuous and X is dichotomous, coded 0, 1, then the data can be summarized by 

stratifying the Y variables by the X variables. Direct calculation of the components used in the Pearson 

correlation coefficient results in 
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 The direct application of the Pearson’s product-moment correlation will results in the point-biserial 

correlation. 
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The direct application of the Pearson’s product-moment correlation to the scenario when X is multi-

categorical will result in the point-polyserial correlation. 

 Because these correlations are direct applications of Pearson’s product-moment correlation, 

statistical inferences on partial correlations constructed from such measures is carried out a similar way. If 

the data are from a multivariate normal distribution whose true partial correlation is equal to zero, then an 

F-test can be applied. 

 If X, Y, and Z are binary, then the partial correlation between X and Y controlling for Z can be 

defined as the partial phi coefficient. 
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 If X and Z are binary, but Y is continuous, then the partial correlation between X and Y controlling 

for Z can be defined as the partial mixed correlation. 
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And we could test the null hypothesis that the population partial correlation is zero using the F test for the 

regular partial correlation. 
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6.3 Partial tetrachoric, polychoric correlation 

 

 Suppose that in addition to X and Y being categorical variables, they each have underlying 

continuous distributions. The actual correlation between the underlying continuous distributions can be 

estimated using the tetrachoric correlation (Pearson, et al. 1900, Ekstrom 2008). The tetrachoric 

correlation was originally derived as a mathematical formula involving the tetrachoric series. However, 

recent developments have led to maximum likelihood methods that are more commonly used to estimate 

this correlation (Olsson 1979). Suppose X and Y are the observed binary variables on bivariate normal 

distribution of (X*, Y*) with thresholds: 
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The likelihood function to be maximized would be 
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 Suppose X and Y are multi-categorical with r and s categories, respectively. Continuing with the 

assumption that there is an underlying continuous distribution, the extension of the tetrachoric correlation 

is the polychoric correlation. Maximum likelihood procedures have also been developed to estimate the 

polychoric correlation (Martinson, et al. 1972, Olsson 1979, Drasgow 1986). With categorization 

thresholds denoted as 
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the likelihood function to be maximized is 
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 There are two general procedures to maximize such likelihoods to obtain the correlation 

estimates. The full maximum likelihood method solves for thresholds and correlation simultaneous 

(Olsson 1979, Poon, et al. 1987). The two-step method (Martinson, et al. 1972) assumes thresholds are 

fixed and hence only need to solve for the correlation; thresholds are estimated by the cumulative 

marginal proportions of the variables. While the full maximum likelihood method is more accurate, the 

two-step method is computationally more efficient, since it removes the threshold parameters from the 

optimization problem. 

 These estimates can be used to estimate the partial correlation of the underlying continuous 

distribution by using them in the partial correlation expression. 
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 However, statistical inference on these measures have not been derived. If we construct an 

analogous F statistic as 
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 We can use simulations to see how these test statistics would performing assuming they are 

approximately F distributed with degrees of freedom 1 and N-1-2. 

 

6.4 Biserial, polyserial correlation 

 

 Suppose X is a binary variable representing an underlying continuous distribution, but Y is a 

continuous variable. In this case, the proper correlation between Y and the underlying distribution of X is 

the biserial correlation. If X is multi-categorical then the extension of the biserial correlation is the 

polyserial correlation. The estimation of the polyserial correlation via maximum likelihood is shown here 

(Olsson, et al. 1982, Drasgow 1986); application to biserial correlation is the same since the biserial 

correlation is only a special case of the polyserial correlation. 

 Let X have r categories, defined by thresholds on a normally distributed variable X*. 
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Then the likelihood function to be maximized is 
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 As in the case of the polychoric correlation, the polyserial correlation can be estimated either by 

using the full maximum likelihood, estimating all parameters simultaneously, or by a two-step procedure 

in which the thresholds are estimated by observed cumulative marginal proportions of X. 

 In the case of mixed data, the proper marginal bivariate correlations can be used in the partial 

correlation expression. For example, let X and Z are multi-categorical manifestations of continuous 

variables X* and Z* respectively. Furthermore Y is continuous. The partial correlation of X* and Y, 

controlling Z* would be 
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6.5 Controlling for more than one variable 

 

 For the above definitions of the partial correlation derived from the basic expression 
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Only one variable can be controlled; Z cannot be a vector of variables. In order to control for more 

variables, higher order definitions of the partial correlation must be used (Blalock 1972, Wherry 1984). 

For example, the partial correlation of X and Y controlling for the two variables Z1 and Z2 is 
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The process of controlling for more variables is iterative; as the number of variables that need to be 

controlled for increases, the computational labor also increases. 

 For continuous variables, the partial correlation is defined as the correlation of residuals. Hence, 

all variables that need to be controlled for can be included in the regression step. 

 

6.6 Partial phi coefficient for multi-categorical data 

 

 We use higher order definitions of partial correlation to extend the partial phi coefficient to multi-

categorical data. Suppose X, Y, Z are trichotomous data coded with dummy variables
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, , , , ,X X Y Y Z Z . Then we propose that that partial phi coefficient be the maximum partial 

phi coefficient out of all pairwise partial phi coefficients for the dummy variables of X and Y, controlling 

for the dummy variable of Z. 
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6.7 Equivalence of Partial and Conditional Correlation 

 

 Unfortunately, the partial correlation is not always equivalent to the conditional correlation 

(Baba, et al. 2004).  In probability theory, we know that although when two variables are independent the 

correlation must equal zero, the converse is not true except in the case of normally distributed variables. 

Similarly, rarely is the partial correlation equal to the conditional correlation except for the known case of 

the normal distribution. 

 Baba, et al. (2005) give a sufficient condition which when satisfied implies that the partial 

correlation and the conditional correlation is equivalent. They also derived two classes of distributions 

that satisfy the condition and hence have equal partial and conditional correlation. We present their 

findings here and give the expression of the conditional correlation for binary data based on their 

theorems. 

 

6.7.1 Condition C 

 

  Let M be a subset of the index set { }1, 2,..., m  of a set of random variables ( )1 , ..., mY Y Y= , 

where 3m ≥ and 2M ≥ , and let M
c
 be its non-empty complement. Partition the variance-covariance 

matrix of Y into a 2x2 block matrix 

( )var
c

C C

M MM

M M M

Y
Σ Σ 

=  
Σ Σ 

. 

 The partial covariance of a set of components 
M

Y  given cM
Y  is 

( ) 1
var ; c C c cM MM MM M M M

Y Y
−= Σ − Σ Σ Σ . 

This is the variance-covariance matrix of ˆ
M MY Y− where ˆ

MY  is the least squares linear estimate of 
M

Y  by 

cM
Y . The correlation matrix derived from the partial covariance of 

M
Y  given cM

Y is the partial correlation 

matrix of 
M

Y  given cM
Y . The following condition, called Condition C, if satisfied is sufficient for the 

partial correlation to be equal to the conditional correlation. 
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Condition C  

| c cM M M
E Y Y a BY  = +  for constant vector a and a constant matrix B. 

The conditional correlation matrix ( )| cM M
cor Y Y  is independent of cM

Y . 

 Baba provided further details on how the natural exponential family satisfies Condition C by 

introducing “partial sums Y of X”. Let ( )1, ..., nX X X=  be a random variable with 3n ≥  fixed. Partition 

the index set { }1,..., n  into m parts 1,..., m
L L where ( )1

| | 0 
m

j j jj
L v v n

=
= > =∑  and define 

1

n

j j ii
Y I i L X

=
 = ∈ ∑ . 

Lemma 

Assume that X has the following conditional moments given 
1

n

ij
T X t

=
= =∑  

( )
( )

2

|

var |

cov , |

( 1,..., )

t
j n

j t

i j t

E X T t

X T t

X X T t

i j n

σ

κ

 = = 

= =

= =

≠ =

 

The conditional expectation, variance-covariance matrix and correlations of partial sums Y of X 

given T=t are 

[ ]

( ) ( )( )

( )
( )( )

( )

( )

2

1

|

var |

, |
1 1

,...,

 1,...,j

t

i j

i j

i j

m

v

j n

E Y T t t

Y T t n diag

cor Y Y T t

j m

ξ

κ ξ ξξ

ξ ξ

ξ ξ

ξ ξ ξ

ξ

= =

′= = − −

= = −
− −

′=

= =
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Theorem 

Let ( ), cM M
Y Y Y=  be a partition of partial sums Y of X. Suppose 

1

m

jj
T Y

=
=∑ and cM

Y are given 

and the first and second order conditional moments of { };i jj M
X i L

∈
∈∪ , the original 

components of 
M

Y , are all the same for i. Let 
* c ii M

y y
∈

= ∑  and 
* c ii M

v v
∈

= ∑ .  Then the 

conditional expectation, variance-covariance matrix and correlations of partial sums 
M

Y of X 

given T=t and c cM M
Y y= are 

( )

( ) ( ) ( )( )

( )

( )

*

2

* ,

*

,

| ,

var | ,

,  ;

cov , | ,

c c

c c
cM

c c
cM

M MM M

M t y M M MM M

M
M M j

t y i j M M

E Y T t Y y t y

Y T t Y y n v diag

v
v v j M

n v

Y Y T t Y y

ξ

κ ξ ξ ξ

ξ

κ

 = = = − 

′= = = − − −

= = ∈
−

= = =

�

� � �

�
 

Thus ( ), |cM M
Y Y T  satisfies Condition C. 

The above can be applied to the natural exponential family by taking a random sample from the 

distribution under the condition that the sum of the observations is given. 

 Let ( )1, ..., nX X X=  be a random sample from  

( ) ( ) ( )( ), exp ,  p x a x xθ θ ψ θ θ= − ∈ Θ ⊂ ℜ . 

This is the probability density function of the univariate natural exponential family with cumulant 

function ( )ψ θ . Since it can be specified by the mean ( ) ( )µ θ ψ θ′= , it is denoted as ( )( )NEF µ θ .  

1

n

jj
T X

=
=∑  is a sufficient statistic and is ( )( )NEF nµ θ  with density 

( ) ( ) ( )( ); ; expp t b t n t nθ θ ψ θ= −  
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where b(t; n) is the n-convolution of a(t). Let ( )1, ..., mY Y Y=  be independent and ( )( )~j jY NEF v µ θ . 

1

m

jj
T Y

=
=∑  is a sufficient statistic, and ( )( )

1
~ ,  

m

jj
T NEF v v vµ θ

=
=∑ . The conditional density of Y 

given T=t is 

( )
( )

1
;

;

m

j jj
b y v

b t v

=∏
 

By the Lemma above, |
j

j

tv
E Y t

v
  =   and the correlations of ( )1, ..., |mY Y t is given by  

( )
( )( )

, |
1 1

i j

i j

i j

cor Y Y T t
ξ ξ

ξ ξ
= = −

− −
 

with ( )1 ,..., mvv

v v
ξ = . 

Let 
c

M M∪ be a partition of { }1,..., m . The conditional density of ( ),M jY Y j M= ∈  given T=t and 

c cM M
Y y= is 

( )
( )* *

*

*

;

;

c

c

j jj M

jj M

jj M

b y v

b t y v v

y y

v v

∈

∈

∈

− −

=

=

∏

∑
∑

 

 When the variance function, ( ) ( )V µ ψ θ′′= , is quadratic, then we have the special class of 

natural exponential family with quadratic variance function ( )( )NEF QVF µ θ− . In this case, the 

variance –covariance matrix can be obtained explicitly. 

Proposition 

Assume that the variance function of ( )( )NEF µ θ  is ( ) 2

0 1 2V v v vµ µ µ= + + . The variance-

covariance matrix of ( )1, ..., mY Y Y= , ( )( )~j jY NEF QVF v µ θ− , given 
1

m

jj
Y t

=
=∑  is 



 

 

66 

 

( ) ( ) ( )( )

( )

( ) ( )
2

2

1

1

var | ,

,...,

,  1,...,

,

j

m

jj

m

v

j v

v t
v v v

Y t c t v diag

v v

j m

c t v V

ξ ξξ

ξ ξ ξ

ξ

=

+

′= −

=

=

= =

=

∑

 

 

6.7.2 Derivations for Binary Data 

 

 Using the theory from 6.3.1 and distributions stated explicitly in the Baba paper, we present a 

suitable distribution where the conditional correlation is equal to the partial correlation. Suppose that 

( )1, ..., nX X X=  is a random sample from a Bernoulli distribution with mean µ π=  and variance 

( ) ( ) ( )var 1 1X µ µ π π= − = − . Note that the probability mass function of X can be written as 

( ) ( )

( ) ( )

( ) ( )

( ) ( )( )

1

1

1

exp ln 1 ln 1

exp ln ln 1 ln 1

exp ln ln 1

xxp x

x x

x x

x π
π

π π

π π

π π π

π

−

−

= −

= + − −  

= − − + −  

 = − − − 

 

Hence X belongs to the natural exponential family with quadratic variance function 

( )

( ) ( ) ( )( )

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )

( )

( )

( )
( )

( )

1

1

2 2

2

1

exp

1 exp 1

1 exp exp exp 2 exp 2 21

11 exp 1 exp

1

ln

ln 1 ln 1 exp

1V

π
π
π
π

π
π

θ

θ

π
θ θ θ θ π

θ θ
π

θ

ψ θ π θ

µ θ ψ θ π

θ π π π π µ µ

−

−

−

+ +

+ − −

+ +      
−

=

= − − = +

′= = = =

= = = = − = − = −
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 Suppose that n m=  such that 
1

, 1,
m

j j j jj
Y X v v v m

=
= = = =∑ . Then 

( )( )~jY NEF QVF µ θ−  and 
1

m

jj
T Y

=
=∑ is a sufficient statistic with ( )( )~T NEF QVF mµ θ− . 

Then distribution of Y given 
1

m

jj
T Y t

=
= =∑ is multivariate hypergeometric with density distribution 

( )
( )

1 1
1

1

; 1

;

m j m
m

j j
j j j jj

v

b y v y y

v n nb t v

t t t

= =
=

   
    
   = = =

     
     
     

∏ ∏∏
 

With mean and variance-covariance matrix 

( )
( )

( )( )

( )( )

( )( )

( )
( )( )

2

2 2

2

2

|

var |
1

1

1

1

j

j

tv t
E Y t

v m

v t
Y t V diag

v v

m t t
diag

m m m

tm t
diag

m

t m t
diag

m

ξ ξξ

ξ ξξ

ξ ξξ

ξ ξξ

  = = 

 
′= − 

+ −  

 
′= − − 

−  

−
′= −

−

−
′= −

−

 

Where ( ) ( )1 1 1,..., ,...,mvv

v v m m
ξ = = . Hence 

( )
( )

2 2 2

2 2 2

2 2 2

1 1 1 1

1 1 1 1

1 1 1 1

var |
1

m m m m

mm m m

mm m m

t m t
Y t

m

− − − 
 

− − −−  
=  −

 
 − − − 

�

�

� � � �

�

 

And the correlation for ( )1 , ..., |mY Y T  is 1
1m−− . 

 Now consider a partition of { }1,..., m ,
c

M M∪ . The conditional density of ( ),M jY Y j M= ∈  

given T=t and c cM M
Y y= is still hypergeometric 
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( )
( ) * ** *

* *

*

*

; 1

;

c

c

j

j M
j j jj M

jj M

jj M

v

b y v y

v v m vb t y v v

t y t y

y y

v v

∈
∈

∈

∈

 
  
 = =

− −− −    
   

− −   

=

=

∏∏

∑
∑

 

with mean and variance covariance matrix 

( )
( ) ( ) ( )( )

( )( )

*
*

* * *

* * *

*

1
; | ,

var | ,
1

c c

c c

j M M

M M M MM M

t y t
E Y j M T t Y y y

m v m v m v

t y m v t y
Y T t Y y diag

m v
ξ ξ ξ

−
 ∈ = = = = −  − − −

− − − −
′= = = −

− −
� � �

 

( )
*

1
; ,M j jj M

m v
ξ ξ ξ= ∈ =

−
� . Hence 

( )
( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2
*

* * *

2 2 2
*

* * *

2 2 2
*

* * *

1 1 1 1

1 1 1 1

* * *

*

1 1 1 1

var | ,
1

c c

m v m v m v m v

m vm v m v m v

M M M

m vm v m v m v

t y m v t y
Y T t Y y

m v

− − − −

−− − −

−− − −

− − − 
 

− − − − − − −
= = =  

− −  
 

− − −  

�

�

� � � �

�

 

And the conditional correlation for ( )| , cM M
Y T Y is 

*

1
1m v− −− . Thus, ( ), |cM M

Y Y T  satisfies Condition C 

and the partial correlation and the conditional correlation is equivalent. 

 

6.7.3 Comments 

 

 Baba and Sibuya gave a sufficient condition which when satisfied implies that the partial 

correlation and the conditional correlation is equivalent. They also proved that the class of NEF, when 

conditioned on the sufficient statistic, satisfies the condition and thus their partial and conditional 

correlations are equivalent and the exact expression for the partial correlation is known.  
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 However it requires fixing the value of the sufficient statistic, which is likely to be unreasonable 

for most real world data. Regardless, since the expression for the partial correlation is unknown to us in 

the situation when the sufficient statistic is not fixed, we suggest a simulation should be done based on 

Baba and Sibuya’s assumption so as to explore the statistical properties of our sample partial correlation. 

 We believe that applying a partial correlation measure to other distributions could still be 

informative about the relationship between two variables after controlling for an outside variable due to 

its intuitive interpretation, even if the data are not normal and partial correlation is not equal to 

conditional correlation. The residuals from any regression represent the variance in the data that cannot be 

explained by the variables in the model. To take the residuals of two different variables regressed on the 

same set of covariates and then correlate them would provide the information how the two variables co-

vary, independent of the predictor variables. 
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7 New partial correlation for categorical and mixed data 

 

 The problem with the partial phi coefficient is that it can only be applied to binary variables. The 

partial tetrachoric correlation, and its general form, the polychoric correlation, are good alternatives for 

non-dichotomous variables, but would require further assumptions about the underlying multivariate 

distribution. Furthermore, these measures are unable to control for more than one variable. We introduce 

a recently proposed partial correlation measure for categorical data which can be applied to multi-

categorical data and easily control for more than one variable. In addition, it can also measure the partial 

correlation between categorical and continuous variables. Chen (2011) proposed obtaining a “partial 

correlation” for categorical data in the spirit of the mechanical way in which partial correlation is obtained 

for continuous variables using the residuals from the regressions. 

 

7.1 Binary Case 

 

 Suppose we have binary variables X, Y, and Z. We can perform logistic regression with X and Y 

as outcomes and Z as a dependent variable to obtain the Pearson residuals. 

( )
( ) ( )

( )
( ) ( )

0 1

0 1

0 1

0 1

ˆ ˆexp ˆ

0 11 ˆ ˆ ˆ ˆ11 exp

ˆ ˆexp ˆ

0 11 ˆ ˆ1 exp ˆ ˆ1

ˆ ˆlog

ˆ ˆlog

x x

x x x

y y

y y y

z x

x xz

z y

y yz

Z r

Z r

β βπ π

π π πβ β

β βπ π

π γ γ π π

β β π

γ γ π

+ −

− −+ +

+ −

− + + −

  = + → = → = 

  = + → = → =
 

 

 For large sample sizes, the Pearson residual is normally distribution with mean zero and variance 

equal to one. Chen took advantage of the asymptotic nature of the Pearson residual to develop a new 

novel partial correlation measure. 

( )

( )( )
( ) ( )

ˆ ˆ

2 2
ˆ ˆ

ˆ ˆ

ˆ ˆ

x y

x y

r r

x yN N

xy z
r r

x yN N

r r
r

r r

∑ ∑− −
=

∑ ∑− −

∑

∑ ∑
 

The regular Pearson correlation test is applied to test the null hypothesis that the partial correlation is 

equal to zero against the alternative that it is nonzero. 



 

 

71 

 

( )

( )

( )
2

1, 22
2 ~

1

xy z

N

xy z

r
N F

r
−−

−
 

Whether or not this is the true null distribution will be explored by simulation study. 

 

7.2 Extension to multi-categorical and mixed data via canonical correlations 

 

 Chen also proposed a direct extension of this new novel method to categorical data with more 

than two categories. We will demonstrate the method with trichotomous variables, but the application to 

more categories is similar. Suppose that X, Y and Z are trichotomous variables, with Z coded as  

( )

( )

1

2

1 if Z is of category 1

0 otherwise

1 if Z is of category 2

0 otherwise

Z

Z


= 



= 


 

Then one could perform multinomial logistic regression with X and Y as the dependent variables and Z as 

the predictor. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2

0 0

1 2

0 0

1 2 1 2

10 11 12 20 21 22

1 2 1 2

10 11 12 20 21 12

3

0 1 2

0

3

0 1 2

0

log , log

log , log

0 , 1 , 2 , 1

0 , 1 , 2 , 1

x x

x x

y y

y y

x x x xi

j

y y y yi

j

Z Z Z Z

Z Z Z Z

P X P X P X

P Y P Y P Y

π π

π π

π π

π π

β β β β β β

γ γ γ γ γ γ

π π π π

π π π π

=

=

   = + + = + +   

   = + + = + +
   

= = = = = = =

= = = = = = =

∑

∑

 

( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )
( ) ( )( )

1 2 1 2
10 11 12 20 21 22

1 2 1 2 1 2 1 2
10 11 12 20 21 22 10 11 12 20 21 22

1 2
10 11 12

1 2
10 11 12 20 2

ˆ ˆ ˆ ˆ ˆ ˆexp exp

1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 exp exp 1 exp exp

ˆ ˆ ˆexp

1 ˆ ˆ ˆ ˆ ˆ1 exp exp

ˆ ˆ,

ˆ

Z Z Z Z

x x
Z Z Z Z Z Z Z Z

Z Z

y
Z Z

β β β β β β

β β β β β β β β β β β β

γ γ γ

γ γ γ γ γ

π π

π

+ + + +

+ + + + + + + + + + + +

+ +

+ + + + +

= =

= ( ) ( )( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2
20 21 22

1 2 1 2 1 2
1 12 10 11 12 20 21 12

ˆ ˆ ˆexp

2ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 exp exp
ˆ,

Z Z

y
Z Z Z Z Z Z

γ γ γ

γ γ γ γ γ γ γ
π

+ +

+ + + + + + +
=

 

( ) ( )

( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

ˆ ˆ

1 2ˆ ˆ ˆ ˆ1 1

ˆ ˆ

1 2ˆ ˆ ˆ ˆ1 1

ˆ ˆ,  

ˆ ˆ,  

x x

x x x x

y y

y y y y

x x

x x

y y

y y

r r

r r

π π

π π π π

π π

π π π π

− −

− −

− −

− −

= =

= =
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 Now we have two sets of two residuals for each of X and Y. Furthermore, each set has a bivariate 

normal distribution (Seber, et al. 2000). We can extend the concept of partial correlation via regression 

residuals using canonical correlations.  

 Consider all possible linear combinations of each residual set: 

1 1 2 2

1 1 2 2

ˆ ˆ

ˆ ˆ

x x

y y

U a r a r

V b r b r

= +

= +
 

The weights a1, a2, and b1, b2, are chosen such that the correlation between U and V is maximized and the 

variances of U and V are equal to one. U and V are then known as canonical variates. The maximum 

correlation possible from such weights is the first canonical correlation. 

 The partial correlation of multi-categorical variables X and Y controlling for Z will be defined to 

be the first canonical correlation between the corresponding Pearson residuals obtained from multinomial 

regressions. It is important to note that the correlation between two individual variables is a special case 

of the canonical correlation. When using canonical correlation to correlate two sets of variables, the first 

canonical correlation is always greater than or equal to the absolute value of the correlation between any 

two variables taken from each set (Johnson, et al. 2002). In the case that each set has only one variable, 

or, in the context of partial correlation, each regression results in only one residual, the canonical 

correlation between the two residuals is equal to the absolute value of the correlation between the two 

residuals. Hence the partial correlation via regression residuals proposed for binary variables is a special 

case of the extension presented here. 

 We can test the partial correlation using the Bartlett test (Bartlett 1941). Let p be the number of 

categories in the first variables and q be the number of categories in the second variable. Letting 
*

i
ρ  be 

the i-th canonical correlation, for null hypothesis
( )

( )* * *

0 12 1 2: 0p
p q

H ρ ρ ρ
×

= = = = =Σ 0 �  against 

alternative hypothesis
( )

( )*

1 12: 0 for some 1,...,i
p q

H i pρ
×

≠ ≠ =Σ 0 , we use a test statistic that has Chi-

square distribution with pq degrees of freedom when n is large and the null hypothesis is true. 

( ) ( )*2 2

1

1
ˆ2 ln 1 1 ln 1

2

p

i pq

i

n p q ρ χ
=

 
− Λ = − − − + + − ≈ 

 
∏  

 This method can easily be extended to mixed data. If Y were continuous instead, we can perform 

a linear regression and obtain the regular residuals. 
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0 1 0 1
ˆ ˆ

Y YY Z e Y Zβ β ε β β= + + → = − −  

Then we can take the first canonical correlation between the residual of Y from linear regression and the 

set of residuals of X from multinomial logistic regression, which is essential the multiple correlation from 

regression the residuals of Y onto the residuals of X. 

( ) ( )
1 2

1 1 1 2 2 1 1

ˆ ˆ1 1 1 1 2 2 .

ˆ ˆ ,

ˆ ˆcorr ,
y x x

x x Y

y x x e r rxy z

U a r a r V b e

r U V e a r a r Rε

= + =

= ↔ = + + →
 

However, if X is only binary, then the regular correlation maybe applied to the two residuals. 

( )
( ) ( )

( ) ( )

0 1
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ˆ ˆexp ˆ

0 11 ˆ ˆ ˆ ˆ11 exp

0 1 0 1

ˆ ˆlog

ˆ ˆ
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x x

x x x

z x

x xz

Y Y

x Yxy z

Z r

Y Z e Y Z

r r e

β βπ π

π π πβ β
β β π

β β ε β β

+ −

− −+ +
  = + → = → = 

= + + → = − −

=
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8 Simulations to compare partial correlation measures 

 

 An attempt to analytically derive the statistical properties of the new partial correlation led to a 

dead end expression. Suppose we have binary variables X, Y, and Z. We can perform logistic regression 

with X and Y as outcomes and Z as a dependent variable to obtain the Pearson residuals and our new 

partial correlation. 

( )
( ) ( )

( )
( ) ( )

0 1

0 1

0 1

0 1

0 1

0 1

ˆ ˆexp ˆ
ˆ ˆlog

ˆ ˆ ˆ ˆ1 11 exp

ˆˆ ˆexp
ˆ ˆlog

ˆ ˆ1 1 exp ˆ ˆ1

x x
x x

x x x

y y

y y

y y y

z x
Z r

z

yz
Z r

z

β βπ π
β β π

π π πβ β

π πγ γ
γ γ π

π γ γ π π

+  −
= + → = → = 

− −+ + 

  −+
= + → = → = 

− + + −  
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( ) ( ) ( ) ( )
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ˆ ˆ ˆ ˆ1 1 ˆ ˆ ˆ ˆ1 1

ˆ ˆ

ˆ ˆ
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r
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 Due to π̂  being an exponential form of the estimated coefficients, we have not been able to 

reduce this expression nor take expectation of the expression. Furthermore, although the coefficients are 

estimated via maximum likelihood, the normal equations do not have a general closed form solution; they 

are obtained numerically through iterative methods (Agresti 2007). Alternatively, we commence 

exploration of the new partial correlation’s properties by simulations using two possible underlying 

models. 

 

8.1 Categorized multivariate normal model 

 

 The first model is a multivariate normal distribution that is categorized based on percentile 

cutoffs of the distribution. The advantage in categorizing a multivariate normal distribution is the 

available explicit form of the bivariate correlations, and hence the partial correlation. In addition, we can 
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compare the results of the new partial correlation to the partial phi coefficient and the partial tetrachoric 

(polychoric) correlations. However, the weakness in using the multivariate normal distribution is that the 

resulting variables are not truly nominal, so the results are not applicable for all categorical variables. 

Even if the variables were ordered, they may not be from a latent multivariate normal distribution.  

 1000 datasets of { }100, 200,500n =  observations and 50 additional datasets of 5000 

observations were generated for three variables X*, Y*, Z* from a standardized trivariate normal 

distribution with varying covariance matrices using the mvrnorm function from the MASS package in R. 

Since the distribution is standardized, the covariance matrix is equivalent to the correlation matrix and 

off-diagonal entries will determine the value of the true partial correlation. 

( ) ( )

[ ]

* * *

* * * *

* * * *

*, *, * ~ ,

0 0 0

1

1

1

X Y XZ

X Y Y Z

X Z Y Z

X Y Z MVN

ρ ρ

ρ ρ

ρ ρ

′=

 
 =  
  

µ Σ

µ

Σ

 

 A combination of values for the correlations was set such that the covariance matrix is positive 

definite and a range of partial correlations could be observed. The population partial correlation between 

X* and Y* controlling for Z* is calculated as 

( )
( ) ( )

* * * * * *

* * *
2 2

* * * *1 1

X Y X Z Y Z

X Y Z

X Z Y Z

ρ ρ ρ
ρ

ρ ρ

−
=

− −
 

 The sample partial correlation based on the sampled continuous data was calculated for baseline 

comparisons. Then the data was categorized into categorical variables X, Y, and Z based on percentile 

cutoffs in the normal distribution (Table 23). Scenarios A and C represent the best possible break-up of 

the distribution: categorizations equally divide the normal distribution, thus balancing the data. Scenarios 

B and D are based on less favorable skewed cutoffs. The cutoffs for D at 0.5625 and 0.9375 are loosely 

based on SNP theory. If 25% of the population has the risk allele a, then the genotype distribution would 

be 
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Genotype Code Probability Cumulative Probability 

AA 0 ( )
2

1 0.25 0.5625− =  0.5625 

Aa 1 ( ) ( )2 0.25 1 0.25 0.375− =  0.9375 

aa 2 20.25 0.0625=  1.000 

 

 It should be noted that the new partial correlation and the partial phi coefficient estimate the 

partial correlation after categorization (manifest partial correlation), while the partial tetrachoric 

(polychoric) correlation estimates the partial correlation before categorization (latent partial correlation, 

as defined above). The true manifest partial correlation in the case where all three variables are 

dichotomized based on median splits has an explicit formula (Vargha, et al. 1996). 

( )

( ) ( )

( )( ) ( )( )
* * * * * *

2 2

* * * *

0.637 arcsin 0.405 arcsin arcsin

1 0.405 arcsin 1 0.405 arcsin

X Y X Z Y Z

XY Z

X Z X Z

ρ ρ ρ
ρ

ρ ρ

−
=

− −

 

 We also use the multivariate normal distribution to create mixed variable scenarios. Only X and Z 

are categorized from X* and Z*; Y is allowed to be the continuous Y* (Table 24). Pcor.pch was modified 

in the following way: the biserial (polyserial) correlation estimated the correlation between Y and the 

categorical variables instead of the tetrachoric (polychoric) correlation. These correlations are used to 

estimate the pcor.pch.  

( ) ( ) ( )

2 2

( ) ( )

( ) ( ) ( )

2 2

( ) ( )

 (binary data)
1

.

 (trichotomous data)
1

biserial XY tetrachoric XZ biserial YZ

tetrachoric XZ biserial YZ

polyserial XY polychoric XZ polyserial YZ

polychoric XZ polyserial YZ

r r r

r r
pcor pch

r r r

r r

−

−
=

−

−








 

Then this measure, to be referred to as the partial mixed correlation, is compared to the new partial 

correlation. 

 The true manifest partial correlation in this case where only X* and Z* are dichotomized based on 

median splits (Vargha, et al. 1996). 

( )

( )

( )( ) ( )
* * * * * *

*
2 2

* * * *

0.798 0.508 arcsin

1 0.405 arcsin 1 0.637

X Y X Z Y Z

XY Z

X Z Y Z

ρ ρ ρ
ρ

ρ ρ

−
=

− −

 

Unfortunately, we do not have calculations of the manifest partial correlation for other situations 
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 Table 22 shows the correlation combinations and their corresponding partial correlations. 

Table 22 Multivariate Normal Model correlations and corresponding partial correlations. Each row 

represents one model setting for the generated multivariate normal data X*, Y*, Z* which are transformed 

into categorical variables X, Y, Z. The first three columns determine the correlation matrix and hence the 

variance-covariance matrix. The fourth column is the (latent) partial correlation between X* and Y* 

controlling for Z*. The third column is the (manifest) partial correlation between X and Y controlling for Z 

when X*, Y*, Z* are dichotomized by median splits of their marginal normal distributions. The last 

column is the (manifest) partial correlation between X and Y* controlling for Z, when only X* and Z* are 

dichotomized by median splits of their marginal normal distributions. 
 

* *X Y
ρ  * *X Z

ρ  * *Y Z
ρ  ( )* * *X Y Z

ρ  
( ) ( )median splits

XY Z
ρ

 ( ) ( )*
median splits

XY Z
ρ

 
-0.8 -0.5 0.0 -0.92 -0.63 -0.68 

-0.5 -0.5 -0.2 -0.71 -0.40 -0.49 

-0.5 0.0 0.0 -0.50 -0.33 -0.40 

-0.2 -0.2 -0.2 -0.25 -0.15 -0.18 

0.0 0.0 0.0 0.00 0 0 

0.2 0.2 -0.2 0.25 0.15 0.18 

0.5 0.0 0.0 0.50 0.33 0.40 

0.5 0.5 -0.2 0.71 0.40 0.49 

0.8 0.5 0.0 0.92 0.63 0.68 
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Table 23 Multivariate Normal Model based simulation settings. Details of how the continuous data 

X*, Y*, Z* are transformed into dichotomous and trichotomous variables X, Y, Z. Each scenario will be 

denoted by their corresponding column letter heading in the remainder of section 8.1. A and B are 

dichotomous scenarios; C and D are trichotomous settings. A and C are when the thresholds divide the 

distribution equally; B and D are when the thresholds skew the distribution of the categorical data. 

 

Dichotomous Trichotomous 

 A B  C D 

x
p  0.5 0.9 

1 2
,

x x
p p  0.33, 0.67 0.5625, 0.9375 

y
p  0.5 0.9 

1 2
,

y y
p p  0.33, 0.67 0.5625, 0.9375 

z
p  0.5 0.9 

1 2
,

z z
p p  0.33, 0.67 0.5625, 0.9375 

( )

( )

( )

1 if * , *

0 otherwise

1 if * , *

0 otherwise

1 if * , *

0 otherwise

x

y

z

X x P X x p
X

Y y P Y y p
Y

Z z P Z z p
Z

> ≤ =
= 


> ≤ =
= 


> ≤ =
= 


 

( )

( )

( )

( )

( )

( )

2

1 2

2

1 2

2

1 2

2, 2

1 2 1

2 2

1 2 1

2 2

1 2 1

2 if * *

1 if * , *

0 otherwise

2 if * , *

1 if * , *

0 otherwise

2 if * , *

1 if * , *

0 otherwise

x

x x

y

y y

z

z z

X x P X x p

X x X x P X x p p

Y y P Y y p

Y y Y y P Y y p p

Z z P Z z p

Z z Z z P Z z p p

> ≤ =


= < ≤ ≤ = <



> ≤ =


= < ≤ ≤ = <



> ≤ =

= < ≤ ≤ = <






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Table 24 Multivariate Normal Model based simulation settings for mixed data. Details of how the 

continuous data X*, Y*, Z* are transformed into mixed data containing two categorical variables X and Z 

and one continuous variable Y. Each scenario will be denoted by their corresponding column letter 

heading in the remainder of section 8.1. E and F are dichotomous scenarios; G and H are trichotomous 

settings. E and G are when the thresholds divide the distribution equally; F and H are when the thresholds 

skew the distribution of the categorical data. 

 

Dichotomous Trichotomous 

 E F  G H 

x
p  0.5 0.9 

1 2
,

x x
p p  0.33, 0.67 0.5625, 0.9375 

y
p  NA NA 

1 2
,

y y
p p  NA NA 

z
p  0.5 0.9 

1 2
,

z z
p p  0.33, 0.67 0.5625, 0.9375 

( )

( )

1 if * , *

0 otherwise

*

1 if * , *

0 otherwise

x

z

X x P X x p
X

Y Y

Z z P Z z p
Z

> ≤ =
= 


=

> ≤ =
= 


 

( )

( )

( )

( )

2

1 2

2

1 2

2, 2

1 2 1

2 2

1 2 1

2 if * *

1 if * , *

0 otherwise

*

2 if * , *

1 if * , *

0 otherwise

x

x x

z

z z

X x P X x p

X x X x P X x p p

Y Y

Z z P Z z p

Z z Z z P Z z p p

> ≤ =


= < ≤ ≤ = <



=

> ≤ =


= < ≤ ≤ = <



 

 

 100 observations turned out to be too small for scenarios C and D, resulting in sparse tables with 

a cutoff at 0.9375, so we have discarded that sample size for trichotomous variables.  

 The following partial correlation measures for X and Y controlling for Z were calculated: 

• Pcor.est - partial correlation based on the continuous data before categorization; this serves as a 

baseline for the categorical data analysis 

• Pcor.new - new partial correlation for categorical data  

• Pcor.phi - partial phi coefficient (dichotomous data) 

• Pcor.p – partial correlation for continuous data applied after categorization (trichotomous data)  

• Pcor.tet - partial tetrachoric correlation (dichotomous data) 

• Pcor.pch - partial polychoric correlation (trichotomous data) or partial mixed correlation (mixed 

data) 
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8.1.1 The null distribution of the test statistics 

 

 Although the Pearson residuals from individual logistic regression are normally distributed, it is 

unknown whether the bivariate distribution of the combined Pearson residuals from two logistic 

regressions is normal. The F-test applied for the new partial correlation is a natural starting place for 

statistical inference, given the use of correlation, but the appropriateness of applying the test needs to be 

examined. The same could be said for the application of the F-tests for partial correlations made up of the 

tetrachoric, polychoric, and polyserial correlations. Since the phi coefficient is the direct application of 

Pearson’s product-moment correlation, we expect to be able to apply the usual F-test without problems. 

 Out of the simulation settings mentioned earlier, we consider the case when the true partial 

correlation is equal to zero. The goal here is to examine, from 1000 simulations, the empirical null 

distribution of the test statistic for each partial correlation and compare it against what has been assumed 

to be the null distribution. The null distribution is the distribution of the test statistic when the null 

hypothesis, that the partial correlation is zero, is true. 

 For scenarios A and B, the following tests were applied: 

( )

( )

( )

( )

( )

( )

( )

( )

( )

2

1, 22

2

1, 32

2

1, 32

new partial correlation 2 ~
1

partial phi coefficient 3 ~
1

partial tetrachoric correlation 3 ~
1

xy z

N

xy z

xy z

N

xy z

tet xy z

N

tet xy z

r
N F

r

N F

r
N F

r

φ

φ

−

−

  
−

  

→ −
−

→ −
−

→ −
−

 

 Table 25 and Table 26 show the density curves of the test statistics in binary scenarios A and B, 

respectively. The distribution of the test statistic for each partial correlation is graphed against their 

assumed null distribution. In general, there are anomalies in the distribution of the test statistic for the 

new partial correlation; the density tends to verge on two modes, indicating that the F-test may not be 

appropriate. Not surprisingly, the partial phi coefficient does match its corresponding null distribution 

well. Again, the phi coefficient is the direct application of Pearson’s product-moment correlation to 

dichotomous variables. The partial phi coefficient could have been obtained by correlating the residuals 

of linear regression of the data; hence the F-test is perfectly reasonable here. The partial tetrachoric 

correlation does not resemble its assumed null distribution at all when the data are categorized with 
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balanced distribution over the categorical variables. When the data are skewed with cutoff threshold at 0.9 

as in scenario B, the distribution begins to resemble a familiar unimodal distribution, but still not the 

presumed F distribution. 

Table 25 Density curves of test statistics for Scenario A (dichotomous data, split at 0.5). Comparison 

of the empirical distribution of the test statistic for each of the partial correlation measures against their 

presumed null distribution. 

 

N New partial correlation Partial phi coefficient Partial tetrachoric correlation 

100 

   

200 

   

500 
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Table 26 Density curves of test statistics for scenario B (dichotomous data split at 0.9). Comparison 

of the empirical distribution of the test statistic for each of the partial correlation measures against their 

presumed null distribution. 
 

N New partial correlation Partial phi coefficient Partial tetrachoric correlation 

100 

   

200 

   

500 
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For scenarios C and D, we used the following tests 

( ) ( ) ( )

( )

( )

2
*2 2

2 2

1

2

( )

1, 1 22

( )

1
ˆnew partial correlation 2 ln 1 2 2 1 ln 1

2

partial correlation continuous version applied to 0,1,2 coded data  

 1 2 ~
1

partial polychoric correlation

i

i

XY Z

N

XY Z

n

r
F N F

r

F

ρ χ
=

− −

 
→ − Λ = − − − + + − ≈ 

 

→ = − −
−

→

∏

[ ]

[ ]

( )
2

( )

1, 1 22

( )

1 2 ~
1

pch XY Z

N

pch XY Z

r
N F

r
− −= − −

−

 

For scenarios E and F, we used the following tests 

( ) ( ) ( )

( )

( )

2
*2 2

2 1

1

2

( )

1, 1 22

( )

1
ˆnew partial correlation 2 ln 1 2 1 1 ln 1

2

partial correlation continuous version applied to 0,1,2 coded data  

 1 2 ~
1

partial mixed correlation

i

i

XY Z

N

XY Z

mix

n

r
F N F

r

r
F

ρ χ
=

− −

 
→ − Λ = − − − + + − ≈ 

 

→ = − −
−

→ =

∏

[ ]

[ ]

( )
2

( )

1, 1 22

( )

1 2 ~
1

ed XY Z

N

mixed XY Z

N F
r

− −− −
−

 

 Table 27 shows the density curves of the test statistics in trichotomous scenarios C and D; Table 

28 and Table 29 show density curves of test statics in the mixed scenarios of E and F, G and H 

respectively. In general, the distribution of the test statistic for the new partial correlation matches the chi-

square distribution very well for multi-categorical data. The partial correlation matches its corresponding 

null distribution, as expected. The partial polychoric correlation maintains the familiar unimodal shape, 

but has a lower peak and longer tail to the right than its presumed null distribution. The partial mixed 

correlation has strange distribution for n=200 in the binary case (E), but otherwise matches its null 

distribution well when the data are categorized with thresholds at 0.33, 0.67 (G). It is slightly shifted the 

left. With skewed thresholds (H), the peak drops below what is expected. 
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Table 27 Density curves of test statistics for scenarios C (trichotomous data, split at 0.33, 0.67) and 
D (trichotomous data split at 0.5625, 0.9375). Comparison of the empirical distribution of the test 

statistic for each of the partial correlation measures against their presumed null distribution. Partial 

correlation is just the applying the continuous method to the data. 
 

C 

N New partial correlation Partial correlation Partial polychoric correlation 

200 

   

500 

   
D 

N New partial correlation Partial correlation Partial polychoric correlation 

200 

   

500 
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Table 28 Density curves of test statistics for mixed data scenarios E (X, Z dichotomous, split at 0.5) 
and F (X, Z dichotomous split at 0.9). Comparison of the empirical distribution of the test statistic for 

each of the partial correlation measures against their presumed null distribution.  Partial correlation is just 

the applying the continuous method to the data. 

 

E 

N New partial correlation Partial correlation Partial mixed correlation 

200 

   

500 

   
F 

N New partial correlation Partial correlation Partial mixed correlation 

200 

   

500 
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Table 29 Density curves of test statistics for mixed data scenarios G (X, Z trichotomous, splits at 
0.33, 0.67) and H (X, Z trichotomous, splits at 0.5625, 0.9375). Comparison of the empirical 

distribution of the test statistic for each of the partial correlation measures against their presumed null 

distribution. Partial correlation is just the applying the continuous method to the data. 

 

G 

N New partial correlation Partial correlation Partial mixed correlation 

200 

   

500 

   
H 

N New partial correlation Partial correlation Partial mixed correlation 

200 

   

500 
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8.1.2 The performance of the partial correlations 

 

 From the earlier discussion of what each partial correlation measure is estimating (manifest, latent 

partial correlation), bias and standard error for the new partial correlation and partial phi coefficient can 

only be interpretable in the case when the data are binary and threshold splits are at 0.5 (A, E). Bias and 

standard error for partial tetrachoric (polychoric) correlation can be calculated based on the always 

available latent partial correlation (A-H). Bias and standard error for partial mixed correlation can be 

analyzed for scenario E only. 

 From the simulation study of the distribution of the test statistics, we can analyze power and type 

I meaningfully for the new partial correlation when dealing with multi-categorical or mixed data (C, D, G, 

H) and the partial phi coefficient in general. The power and type I error rates of partial tetrachoric and 

polychoric correlations cannot be analyzed because they do not have the null F distribution. The power 

and type I error rates for the partial mixed correlation can be analyzed for scenarios F and G. 

Results shown are for n=500 and partial correlations are for X and Y controlling for Z. Full results are 

available in supplementary materials. 

We reiterate the use of notation: 

• Pcor.est - partial correlation based on the continuous data before categorization; this serves as a 

baseline for the categorical data analysis 

• Pcor.new - new partial correlation for categorical data  

• Pcor.phi - partial phi coefficient (dichotomous data) 

• Pcor.p – partial correlation for continuous data applied after categorization (trichotomous data)  

• Pcor.tet - partial tetrachoric correlation (dichotomous data) 

• Pcor.pch - partial polychoric correlation (trichotomous data) or partial mixed correlation (mixed 

data) 

  



 

 

88 

 

Table 30 Multivariate Normal Model based simulation – Bias and Standard Error for scenarios A 
(dichotomous, split at 0.5) and E (mixed. X, Z dichotomous, split at 0.5). Here pcor.true (latent) is the 

partial correlation for the continuous data that was originally generated; pcor.true (manifest) is the partial 

correlation for the data after categorization. Pcor.est is the partial correlation applied to the original 

continuous data. Pcor.new is the new partial correlation. Pcor.phi is the partial phi coefficient (applied to 

A only). pcor.p is the partial correlation applied to the categorized data (applied to E only). Pcor.tet is the 

partial tetrachoric correlation (applied to A only). Pcor.pch is the partial mixed correlation (applied to E 

only). Scenarios A and E are the only scenarios for which the true partial correlation for the categorical 

data is known. 
 

      pcor.est pcor.new 
pcor.phi 

(pcor.p) 

pcor.tet 

(pcor.pch) 

  
pcor.true 

(latent) 

pcor.true 

(manifest) 
Bias SE Bias SE Bias SE Bias SE 

A -0.92 -0.63 0.00 0.01 0.03 0.03 0.00 0.03 0.00 0.02 

  -0.71 -0.40 0.00 0.02 0.01 0.04 0.00 0.04 0.00 0.06 

  -0.50 -0.33 0.00 0.03 0.00 0.04 0.00 0.04 0.00 0.06 

  -0.25 -0.15 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.07 

  0.00 0.00 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.07 

  0.25 0.15 0.00 0.04 -0.01 0.04 0.00 0.04 0.00 0.07 

  0.50 0.33 0.00 0.03 0.00 0.04 0.00 0.04 0.00 0.06 

  0.71 0.40 0.00 0.02 -0.04 0.04 0.00 0.04 0.00 0.05 

  0.92 0.63 0.00 0.01 -0.03 0.03 0.00 0.03 0.00 0.02 

E -0.92 -0.68 0.00 0.01 0.00 0.02 0.00 0.02 0.14 0.02 

  -0.71 -0.49 0.00 0.02 0.00 0.03 0.00 0.03 0.11 0.04 

  -0.50 -0.40 0.00 0.03 0.00 0.04 0.00 0.04 0.09 0.04 

  -0.25 -0.18 0.00 0.04 0.00 0.04 0.00 0.04 0.04 0.05 

  0.00 0.00 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.05 

  0.25 0.18 0.00 0.04 0.00 0.04 0.00 0.04 -0.04 0.04 

  0.50 0.40 0.00 0.03 0.00 0.04 0.00 0.04 -0.09 0.04 

  0.71 0.49 0.00 0.02 0.00 0.03 0.00 0.03 -0.11 0.04 

  0.92 0.68 0.00 0.01 0.00 0.02 0.00 0.02 -0.14 0.02 

 

 Bias and standard error for scenarios A and E is shown in Table 30. Almost all partial correlation 

measures have little to no bias, with the exceptions of the tetrachoric correlation. Upon closer 

examination of the analysis, we found that whenever the partial tetrachoric correlation obtained 

magnitude greater than 1, the marginal tetrachoric correlation was between -5 and -1 for all pairs of 

variables; if all correlations used in a variance-covariance matrix was in this range, the resulting matrix 

would not be positive-definite. 

 Bias and standard error for the remaining scenarios are shown in Table 31. The partial tetrachoric 

correlation has high biases for binary scenarios (B, F) with little consistency in the estimates, but has little 

to no bias and good consistency for trichotomous scenarios. 
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Table 31 Multivariate Normal Model based simulation – Bias and Standard Error (Scenarios B-D, 
F-H). Here pcor.true (latent) is the partial correlation for the continuous data that was originally 

generated. Pcor.est is the partial correlation applied to the original continuous data. Pcor.tet is the partial 

tetrachoric correlation (applied to B, C only). Pcor.pch is the partial polychoric correlation (applied to D) 

or the partial mixed correlation (applied to F, G, H). Because the true partial correlation for the data after 

categorization is unknown for these scenarios, the new partial correlation and partial phi coefficient is not 

presented here. 

 

    pcor.est pcor.tet (pcor.pch) 
 

  
 

pcor.est pcor.pch 

  
pcor.true 

(latent) 
Bias SE Bias SE 

 
  

pcor.true 

(latent) 
Bias SE Bias SE 

B -0.92 0.00 0.01 -1.78 1.57 
 

F -0.92 0.00 0.01 -0.27 0.56 

  -0.71 0.00 0.02 -2.89 4.82 
 

  -0.71 0.00 0.02 -0.51 0.66 

  -0.50 0.00 0.03 -0.30 0.39 
 

  -0.50 0.00 0.03 0.21 0.05 

  -0.25 0.00 0.04 -0.35 1.13 
 

  -0.25 0.00 0.04 0.02 0.24 

  0.00 0.00 0.04 -0.03 0.20 
 

  0.00 0.00 0.04 0.00 0.05 

  0.25 0.00 0.04 0.07 0.31 
 

  0.25 0.00 0.04 -0.09 0.05 

  0.50 0.00 0.03 0.00 0.15 
 

  0.50 0.00 0.03 -0.21 0.06 

  0.71 0.00 0.02 0.25 0.94 
 

  0.71 0.00 0.02 -0.26 0.06 

  0.92 0.00 0.01 0.03 0.28 
 

  0.92 0.00 0.01 -0.42 0.04 

C -0.92 0.00 0.01 0.00 0.02 
 

G -0.92 0.00 0.01 0.00 0.02 

  -0.71 0.00 0.02 0.00 0.04 
 

  -0.71 0.00 0.02 0.00 0.03 

  -0.50 0.00 0.03 0.00 0.05 
 

  -0.50 0.00 0.03 0.00 0.04 

  -0.25 0.00 0.04 0.00 0.06 
 

  -0.25 0.00 0.04 0.00 0.05 

  0.00 0.00 0.04 0.00 0.06 
 

  0.00 0.00 0.04 0.00 0.05 

  0.25 0.00 0.04 0.00 0.06 
 

  0.25 0.00 0.04 0.00 0.05 

  0.50 0.00 0.03 0.00 0.05 
 

  0.50 0.00 0.03 0.00 0.04 

  0.71 0.00 0.02 0.00 0.04 
 

  0.71 0.00 0.02 0.00 0.03 

  0.92 0.00 0.01 0.00 0.02 
 

  0.92 0.00 0.01 0.00 0.02 

D -0.92 0.00 0.01 0.00 0.04 
 

H -0.92 0.00 0.01 0.00 0.03 

  -0.71 0.00 0.02 0.00 0.06 
 

  -0.71 0.00 0.02 0.00 0.04 

  -0.50 0.00 0.03 0.00 0.05 
 

  -0.50 0.00 0.03 0.00 0.04 

  -0.25 0.00 0.04 0.00 0.06 
 

  -0.25 0.00 0.04 0.00 0.05 

  0.00 0.00 0.04 0.00 0.06 
 

  0.00 0.00 0.04 0.00 0.05 

  0.25 0.00 0.04 0.00 0.06 
 

  0.25 0.00 0.04 0.00 0.05 

  0.50 0.00 0.03 0.00 0.05 
 

  0.50 0.00 0.03 0.00 0.04 

  0.71 0.00 0.02 0.00 0.05 
 

  0.71 0.00 0.02 0.00 0.04 

  0.92 0.00 0.01 0.00 0.02 
 

  0.92 0.00 0.01 0.00 0.02 

 

 Power for all scenarios are shown in Table 32. The test based on the new partial correlations has 

very high power close to 1.0 for scenarios C, D, G, H. The test based on the partial phi coefficient is able 

to detect a nonzero partial correlations with power in the range of 0.8-1.0 for almost all scenarios. Power 

for the test using the partial phi coefficient drops in scenario B when the magnitude of the partial 

correlation is less than 0.25. The test based on the partial mixed correlation mostly good power, except in 

scenario E, when the partial correlation is strongly negative. 
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 Type I error rates for all scenarios are shown in Table 33. Almost all methods hovered around an 

error rate of 0.05, except for the test based on the partial mixed correlation; type I error rates were inflated 

to 0.08. 

Table 32 Multivariate Normal Model based simulation – Power. Here pcor.true (latent) is the partial 

correlation for the continuous data that was originally generated; pcor.true (manifest) is the partial 

correlation for the data after categorization. Pcor.est is the partial correlation applied to the original 

continuous data. Pcor.new is the new partial correlation. Pcor.phi is the partial phi coefficient. pcor.p is 

the partial correlation applied to the categorized data. Pcor.tet is the partial tetrachoric correlation. 

Pcor.pch is either the partial polychoric correlation or the partial mixed correlation depending on the 

scenario. Some power results were removed based on the findings of section 8.1.1. 

 

  
pcor.true 

(latent) 

pcor.true 

(manifest) 
pcor.est pcor.new 

pcor.phi 

(pcor.p) 
  

pcor.true 

(latent) 

pcor.true 

(manifest) 
pcor.est pcor.new 

pcor.phi 

(pcor.p) 

pcor.tet 

(pcor.pch) 

A -0.92 -0.63 1.00 
 

1.00 E -0.92 -0.68 1.00 
 

1.00   

  -0.71 -0.40 1.00 
 

1.00   -0.71 -0.49 1.00 
 

1.00   

  -0.50 -0.33 1.00 
 

1.00   -0.50 -0.40 1.00 
 

1.00   

  -0.25 -0.15 1.00 
 

0.91   -0.25 -0.18 1.00 
 

0.98   

  0.25 0.15 1.00 
 

0.91   0.25 0.18 1.00 
 

0.98   

  0.50 0.33 1.00 
 

1.00   0.50 0.40 1.00 
 

1.00   

  0.71 0.40 1.00 
 

1.00   0.71 0.49 1.00 
 

1.00   

  0.92 0.63 1.00   1.00   0.92 0.68 1.00   1.00   

B -0.92   1.00 
 

0.98 F -0.92   1.00 
 

1.00 0.31 

  -0.71   1.00 
 

0.89   -0.71   1.00 
 

1.00 0.33 

  -0.50   1.00 
 

0.82   -0.50   1.00 
 

1.00 1.00 

  -0.25   1.00 
 

0.22   -0.25   1.00 
 

0.79 0.89 

  0.25   1.00 
 

0.49   0.25   1.00 
 

0.83 0.93 

  0.50   1.00 
 

0.99   0.50   1.00 
 

1.00 1.00 

  0.71   1.00 
 

1.00   0.71   1.00 
 

1.00 1.00 

  0.92   1.00 
 

1.00   0.92   1.00 
 

1.00 1.00 

C -0.92   1.00 1.00 1.00 G -0.92   1.00 1.00 1.00 1.00 

  -0.71   1.00 1.00 1.00   -0.71   1.00 1.00 1.00 1.00 

  -0.50   1.00 1.00 1.00   -0.50   1.00 1.00 1.00 1.00 

  -0.25   1.00 1.00 0.94   -0.25   1.00 0.99 1.00 1.00 

  0.25   1.00 1.00 0.94   0.25   1.00 0.99 0.99 1.00 

  0.50   1.00 1.00 1.00   0.50   1.00 1.00 1.00 1.00 

  0.71   1.00 1.00 1.00   0.71   1.00 1.00 1.00 1.00 

  0.92   1.00 1.00 1.00   0.92   1.00 1.00 1.00 1.00 

D -0.92   1.00 1.00 1.00 H -0.92   1.00 1.00 1.00   

  -0.71   1.00 1.00 1.00   -0.71   1.00 1.00 1.00   

  -0.50   1.00 1.00 1.00   -0.50   1.00 1.00 1.00   

  -0.25   1.00 1.00 0.83   -0.25   1.00 0.98 0.99   

  0.25   1.00 1.00 0.88   0.25   1.00 0.98 0.99   

  0.50   1.00 1.00 1.00   0.50   1.00 1.00 1.00   

  0.71   1.00 1.00 1.00   0.71   1.00 1.00 1.00   

  0.92   1.00 1.00 1.00   0.92   1.00 1.00 1.00   
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Table 33 Multivariate Normal Model based simulation – Type I Error. Here pcor.true (latent) is the 

partial correlation for the continuous data that was originally generated; pcor.true (manifest) is the partial 

correlation for the data after categorization. Pcor.est is the partial correlation applied to the original 

continuous data. Pcor.new is the new partial correlation. Pcor.phi is the partial phi coefficient. pcor.p is 

the partial correlation applied to the categorized data. Pcor.tet is the partial tetrachoric correlation. 

Pcor.pch is either the partial polychoric correlation or the partial mixed correlation depending on the 

scenario. Some power results were removed based on the findings of section 8.1.1. 

 

  
pcor.true 

(latent) 

pcor.true 

(manifest) 
pcor.est pcor.new 

pcor.phi 

(pcor.p) 

pcor.tet 

(pcor.pch) 

A 0.00 0.00 0.05   0.05   

B 0.00   0.05 
 

0.05   

C 0.00   0.05 0.05 0.04   

D 0.00   0.05 0.05 0.04   

E 0.00 0.00 0.05 
 

0.05   

F 0.00   0.05 
 

0.05 0.07 

G 0.00   0.05 0.04 0.05 0.08 

H 0.00   0.05 0.04 0.05   

 

 

8.1.3 New partial correlation versus partial phi coefficient 

 

 Because the new partial correlation and the partial phi coefficient are meant to measure the partial 

correlation of the manifest variables, we also ran comparison tests to determine how similar these two 

estimates are asymptotically (n=5000, 50 simulations) (Table 34). When the data are balanced, as in the 

threshold determining the categorization is at 0.5 (A), the mean of the new partial correlation and the phi 

coefficient are quite similar, When the data are categorized in a skewed manner, the mean of the new 

partial correlation and partial phi coefficient are slightly different by a marginal amount (0.04-0.3) when 

the true latent partial correlation is less than -0.5. Tests of the measures found that they are still 

significantly different measures with the exception of when the partial correlation is close to zero. This 

indicates that the two estimators may have different distributions. 
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Table 34 Comparing the new partial correlation to the partial phi coefficient. Here pcor.true (latent) 

is the partial correlation for the continuous data that was originally generated; pcor.true (manifest) is the 

partial correlation for the data after categorization. Pcor.new is the new partial correlation. Pcor.phi is the 

partial phi coefficient. Scenario A is when data are dichotomized at 0.5; scenario B is when data are 

dichotomized at 0.9. 

 

   
pcor.new pcor.phi difference p-value 

 

pcor.true 

(latent) 

pcor.true 

(manifest) 
mean SE mean SE mean SD Paired t 

Signed 

Rank 

A -0.92 -0.63 -0.59 0.01 -0.63 0.01 0.03 0.00 0.000 0.000 

 
-0.71 -0.40 -0.39 0.01 -0.40 0.01 0.01 0.00 0.000 0.000 

 
-0.50 -0.33 -0.34 0.01 -0.34 0.01 0.00 0.00 0.000 0.000 

 
-0.25 -0.15 -0.15 0.01 -0.15 0.01 0.00 0.00 0.032 0.039 

 
0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.175 0.359 

 
0.25 0.15 0.14 0.01 0.15 0.01 0.00 0.00 0.000 0.000 

 
0.50 0.33 0.34 0.01 0.34 0.01 0.00 0.00 0.000 0.000 

 
0.71 0.40 0.37 0.01 0.40 0.01 -0.04 0.00 0.000 0.000 

 
0.92 0.63 0.59 0.01 0.63 0.01 -0.03 0.00 0.000 0.000 

B -0.92 
 

-0.07 0.02 -0.11 0.00 0.05 0.02 0.000 0.000 

 
-0.71 

 
-0.08 0.03 -0.11 0.01 0.03 0.03 0.000 0.000 

 
-0.50 

 
-0.10 0.00 -0.10 0.00 0.00 0.00 0.008 0.001 

 
-0.25 

 
-0.06 0.01 -0.06 0.01 0.00 0.00 0.000 0.000 

 
0.00 

 
0.00 0.01 0.00 0.01 0.00 0.00 0.623 0.962 

 
0.25 

 
0.09 0.02 0.09 0.02 0.00 0.00 0.943 0.817 

 
0.50 

 
0.24 0.02 0.24 0.02 0.00 0.00 0.111 0.334 

 
0.71 

 
0.27 0.02 0.27 0.02 0.00 0.00 0.000 0.000 

 
0.92 

 
0.54 0.02 0.53 0.02 0.01 0.00 0.000 0.000 

 

 

8.2 The Ising model 

 

 The second model to be considered in evaluating the new partial correlation is the Ising model, an 

exponential model for multivariate binary variables (Holland, et al. 1981). In general, the Ising model for 

( )1 2, ,...,
p

X X X  is 

( ) ( )
1

1 2

1

, ,..., exp
p

p ii i ij i jZ
i i j

f X X X X X Xθ θ
Θ

= <

 
= + 

 
∑ ∑
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where ( )Z Θ  is a normalizing constant such that the distribution sums to one. Only pairwise interaction 

effects can be considered, since higher order interactions can be converted to pairwise ones through the 

introduction of additional variables (Ravikumar, et al. 2010). The Ising model can be reduced to a logistic 

model (Wasserman, et al. 1996). For example, consider two binary variables X and Y. Their bivariate 

distribution can be expressed as an Ising model. 

( ) ( ) ( )1, exp
XX YY XYZ

f X Y X Y XYθ θ θ
Θ

= + +
 

If we derive the conditional distributions of X given Y, we can obtain the logistic model for each one. 

( ) ( )

( )

( ) ( )

( ) ( ) ( ) ( )

( )
( )

,

,

1

1 1

|

exp

exp exp

exp

1 exp

x

f X x Y y

f X x Y y

XX YY XYZ

YY XX YY XYZ Z

XX XY

XX XY

P X x Y y

x y xy

y y y

x xy

y

θ θ θ

θ θ θ θ

θ θ

θ θ

= =

= =

Θ

Θ Θ

= = =
∑

+ +
=

+ + +

+
=

+ +

 

( )
( )

( )
( )

( )

( )

exp

1 exp1|

0| 1
1 exp

ln ln

ln exp

XX XY

XX XY

XX XY

y

yP X Y y

P X Y y

y

XX XY

XX XY

y

y

θ θ

θ θ

θ θ

θ θ

θ θ

+

+ += =

= =

+ +

 
   =
   

 

= +  

= +

 

And symmetrically, we obtain analogous results for the conditional distribution of Y given X. 

( )
( )

( )
( )

( )

( )

exp

1 exp1|

0| 1
1 exp

ln ln

ln exp

YY XY

YY XY

YY XY

x

xP Y X x

P Y X x

x

YY XY

YY XY

x

x

θ θ

θ θ

θ θ

θ θ

θ θ

+

+ += =

= =

+ +

 
   =
   

 

= +  

= +

 

 We note that the intercept in each model is the corresponding parameter in the main effect of the 

bivariate model. In particular, the slope coefficient, or the effect of the predictor on the outcome, is the 

interaction term in the bivariate model. Hence, the advantage of using the Ising model is the symmetric 

property of the interaction term. In other words, regardless of which variable is the conditioned variable, 

its effect will always be the same. 
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 Consider three binary variables X, Y, Z. Their multivariate distribution as an Ising model is 

( ) ( ) ( )1, , exp
XX YY ZZ XY XZ YZZ

f X Y Z X Y Z XY XZ YZθ θ θ θ θ θ
Θ

= + + + + +
 

From this model, a conditional correlation measure can be derived. The marginal distribution of Z is 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 1 1

1

1

exp

exp exp exp

exp

exp 1 exp exp exp

XX YY ZZ XY XZ YZZ
x y

ZZ XX ZZ XZ YY ZZ YZZ Z Z

XX YY ZZ XY XZ YZZ

ZZ XX XZ YY YZ XX YY XY XZ YZZ

f Z x y Z xy xZ yZ

Z Z Z Z Z

Z Z Z

Z Z Z Z Z

θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

Θ

Θ Θ Θ

Θ

Θ

= + + + + +

= + + + + + +

+ + + + + +

= + + + + + + + + +  

∑∑

 

The conditional bivariate distribution of X, Y given Z is 

( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

, ,

1

1

, |

exp

exp 1 exp exp exp

exp

1 exp exp exp

f X Y Z

f Z

XX YY ZZ XY XZ YZZ

ZZ XX XZ YY YZ XX YY XY XZ YZZ

XX YY XY YZ YZ

XX XZ YY YZ XX YY XY XZ YZ

f X Y Z

X Y Z XY XZ YZ

Z Z Z Z Z

X Y XY XZ YZ

Z Z Z Z

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

Θ

Θ

=

+ + + + +
=

+ + + + + + + + +  

+ + + +
=

+ + + + + + + + +

 

The marginal bivariate distribution of X, Z 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

, , ,

exp exp

exp 1 exp

y

XX ZZ XZ XX YY ZZ XY XZ YZZ

XX ZZ XZ YY XY YZZ

f X Z f X Y y Z

X Z XZ X Z X XZ Z

X Z XZ X Z

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

Θ

Θ

= =

= + + + + + + + +  

= + + + + +  

∑

 

The conditional distribution of X given Z 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1

1

( , )

exp 1 exp

exp 1 exp exp exp

|

exp 1 exp

1 exp exp exp

XX ZZ XZ YY XY YZZ

ZZ XX XZ YY YZ XX YY XY XZ YZZ

f X Z

f Z

X Z XZ X Z

Z Z Z Z Z

XX XZ YY XY YZ

XX XZ YY YZ XX YY XY X

f X Z

X XZ X Z

Z Z

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ θ θ θ

Θ

Θ

+ + + + +  

+ + + + + + + + +  

=

=

+ + + +  =
+ + + + + + + +( )Z YZ

Z Zθ+
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( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

|

2

|

1|

exp 1 exp

1 exp exp exp

1| 1 1| 1| 0 |

exp 1 exp 1 exp

1 exp exp

X Z

XX XZ YY XY YZ

XX XZ YY YZ XX YY XY XZ YZ

X Z

XX XZ YY XY YZ YY YZ

XX XZ Y

f X Z

Z Z

Z Z Z Z

f X Z f X Z f X Z f X Z

Z Z Z

Z

µ

θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

σ

θ θ θ θ θ θ θ

θ θ θ

= =

+ + + +  =
+ + + + + + + + +

= = − = = = =  

+ + + + + +      =
+ + + ( ) ( )

2

exp
Y YZ XX YY XY XZ YZ

Z Z Zθ θ θ θ θ θ+ + + + + +  

 

By symmetry 

( ) ( ) ( ) ( )1, exp 1 expYY ZZ YZ XX XY XZZ
f Y Z Y Z YZ Y Zθ θ θ θ θ θ

Θ
= + + + + +  
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XX XZ YY YZ XX YY XY XZ YZ

Y YZ Y Z
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Y Z
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µ
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σ
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+ + + + + + + + +    

The conditional covariance of X and Y given Z 

[ ]
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|

( 1, 1| )
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XY Z X Z Y Z
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Hence, the conditional correlation between X and Y given Z 
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 If 0
XY

θ = then 
| 0XY Zρ =  and X and Y are independent given Z. On the other hand, if 0

XY
θ <  

then | 0
XY Z

ρ <  and X and Y are negatively correlated when conditioned on Z. If 0
XY

θ >  then | 0
XY Z

ρ <  

and X and Y are positively correlated when conditioned on Z. This property is true no matter the number 

of variables in the distribution. In other words, each interaction parameter represents the relationship 

between two variables conditioned all other variables in the model; when it is equal to zero, the two 

variables involved are conditionally independent given all other variables. Note however, that actual 

value of the conditional correlation is dependent on the controlled variable Z, so the conditional 

correlation cannot be equal to the partial correlation. Regardless, we still know when the conditional 

correlation is equal to zero, so we can examine the performance of the methods under such conditions. 

 A modified form of the Ising model to more than two categories uses dummy variables to code 

the multi-categorical data (Guo, et al. 2010). Let 1, 2 ,..,
p

X X X be p categorical variables with 

,1
j

X j p≤ ≤  belonging to one of 
j

D categories denoted by the set { }1,2,...,
j

D . Denote 

( )1(1) , ..., jD

j j
X X

−
 as the dummy variables associated with 

j
X , i.e. 

( ) ( ) ,1 1
d

j j j
X I X d d D= = ≤ ≤ − . 

Then the joint distribution of 1, 2 ,..,
p

X X X  as an Ising model is 

( )
( )

( ) ( ) ( ) ( ) ( )
1 1

' '

1

1 1 ' 1

1
,..., exp

j jD Dp
d d dd d d

p jj j jk j k

j d k j d

f X X X X X
Z

θ θ
− −

= = ≠ =

  
= +    Θ   

∑∑ ∑∑  

Similar to the dichotomous case, if the interaction effect 
( )'

0
dd

jk
θ =  for all d and d’, then 

j
X  and 

k
X  are 

conditionally independent given all other variables, and hence their nodes in a network diagram would not 

be connected.  

 The simulation study based on the Ising model for three variables, X, Y, and Z, was designed 

similar to that of Guo, et al. (2010). 1000 datasets with { }100, 200,500n =  observations plus an 

additional 50 datasets of 5000 observations were simulated for three scenarios (Table 35): (A&D) X and Y 

are conditional dependent, all other relationships are conditionally independent, (B&E) X and Y, X and Z 

are conditionally dependent, Y and Z are conditionally independent, and (C&F) all pairs are conditionally 

dependent. 
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Table 35 Ising Model based simulation settings. Parameter values for the Ising model and their 

corresponding network structure. Scenarios A-C are when X, Y, Z are dichotomous variables. Scenarios 

D-F are when X, Y, Z are trichotomous variables. 

 

Dichotomous 

A B C 

   
Trichotomous (for all d, d’) 

D E F 

   
 

 All main effects were also nonzero. To start, all nonzero parameters were fixed to one (scenarios 

A1-F1). Due to the additive nature of the distribution function and all nonzero thetas are fixed to be equal 

to one, the bulk of the distribution is concentrated where all variables are equal to one. The fixed theta 

was then adjusted to 0.5 to try to mitigate this effect and create a more balanced distribution (A2-F2). To 

be able to further generalized our results, we followed previous simulation study designs (Guo, et al. 

2010) and allowed all nonzero parameters to be randomly selected from a uniform distribution in the 

domain ( ) ( )1, 0.5 0.5,1− − ∪  (A3-F3). In this way, the analysis of the performance the new partial 

correlation will not be affected by any special cases of the joint distribution. 

 From the joint distribution specified in the Ising model, conditional distributions were derived 

and used in a Gibbs sampling procedure (Casella, et al. 1992, Hogg, et al.). 
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Gibbs Sampling Algorithm:  

Step 0: Generate initial values for X, Y and Z from marginal distributions derived from Ising 

model. 

Step 1: Generate first observation of X given zero-th observations of Y and Z from its conditional 

distribution. Generate first observation of Y given zero-th observations of X and Z from its 

conditional distribution. Generate first observation of Z given zero-th observations of X and Z 

from its conditional distribution. 

… 

Step k: Generate k-th observation of X given (k-1)-th observations of Y and Z from its conditional 

distribution. Generate k-th observation of Y given (k-1)-th observations of X and Z from its 

conditional distribution. Generate k-th observation of Z given (k-1)-th observations of X and Z 

from its conditional distribution. 

The Gibbs sampler allows the distributions of the variables to converge to their marginal distributions as k 

increases. Hence, the first 10
6
 observations were discarded (burn-in point). To produce independent 

observations, only every hundred-th observation was kept. 

 The following partial correlations were calculated: 

• Pcor.new - new partial correlation for categorical data  

• Pcor.phi - partial phi coefficient (dichotomous data) 

• Pcor.p - partial correlation for continuous data (trichotomous data)  

• Pcor.tet - partial tetrachoric correlation (dichotomous data) 

• Pcor.pch - partial polychoric correlation (trichotomous data) 

 All results are provided in the Supplementary materials. Results for n=500 are shown here.  

Again, the goal is to be able to detect and measure the partial correlation between X and Y after 

controlling for Z. The major disadvantage of the Ising model is that the conditional partial correlation is 

dependent on the value of the Z, as shown above, so the true partial correlation is unknown. Hence 

evaluating the estimated partial correlation based on bias and mean square error is impossible. However, 

the consistency of the estimates can still be checked across different sample sizes and between different 

methods. Furthermore, the power and specificity (true negative) of the three methods can be measured 

using the tests as in the case of the multivariate normal distribution, for lack of an alternative test in all 
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scenarios. However, a simulation on the distribution of the test statistics used here will be studied in the 

future. 

 With regards to the estimates, in the fixed theta scenarios with binary data (A1-C1, A2-C2), the 

new partial correlation and the partial phi coefficient are identical (Table 36). The partial tetrachoric 

correlation is double those estimates. The joint distribution of these settings place much more density on 

the 1 category than the 0 categories; in other words, the distribution is skewed for A1-C1, A2-C2. Based 

on our findings from the multivariate normal model, the partial tetrachoric is likely to be the bias estimate 

in this case. 

 In the trichotomous scenarios, it is the new partial correlation that is able to estimate a value that 

is far from nonzero. Note that the estimate decreases together with the decrease in the theta value. On the 

other hand, the partial correlation (pcor.p) and partial polychoric correlation increase, which is 

counterintuitive to what we would expect. 

Table 36 Ising Model based simulation - Means and Standard Errors. Scenarios A1-F1: nonzero 

parameters fixed to one; A2-F2: nonzero parameters fixed to 0.5; A3-F3: nonzero parameters randomly 

generated from uniform distribution in the domain ( ) ( )1, 0.5 0.5,1− − ∪ . Refer to Table 35. 

  

pcor.new 

pcor.phi 

(pcor.p) 

pcor.tet 

(pcor.pch) 

Scenario Mean SE Mean SE Mean SE 

A1 0.15 0.05 0.15 0.05 0.30 0.10 

B1 0.11 0.06 0.11 0.06 0.27 0.13 

C1 0.08 0.05 0.08 0.06 0.20 0.34 

D1 0.15 0.06 0.04 0.07 0.05 0.10 

E1 0.17 0.08 0.02 0.08 0.03 0.12 

F1 0.30 0.15 0.00 0.12 0.00 0.17 

A2 0.11 0.05 0.11 0.05 0.18 0.08 

B2 0.10 0.05 0.10 0.05 0.18 0.09 

C2 0.08 0.04 0.08 0.05 0.14 0.10 

D2 0.11 0.04 0.04 0.05 0.05 0.06 

E2 0.11 0.04 0.04 0.05 0.04 0.07 

F2 0.12 0.05 0.03 0.06 0.04 0.07 

A3 0.16 0.06 0.01 0.17 0.01 0.28 

B3 0.15 0.05 0.00 0.16 0.00 0.28 

C3 0.15 0.06 0.00 0.16 0.00 0.28 

D3 0.26 0.09 0.02 0.12 0.03 0.17 

E3 0.28 0.10 0.02 0.12 0.03 0.17 

F3 0.32 0.13 0.01 0.12 0.01 0.17 
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 Power for the partial correlation measures is low in the fixed theta scenarios (Table 37), but this 

may be due to the specific distribution resulting from fixing all the thetas to the same positive value (1 or 

0.5). The randomized thetas of A3-F3 would be more informative to observe the power of the partial 

correlation measures, with regards to the question of detection, regardless of effect size. In this situation, 

the partial phi coefficient and partial tetrachoric correlation outperforms the new partial correlation when 

the data are binary. When the data are multi-categorical, the new partial correlation outperforms the 

others. This can be explained by the nature of the data and the nature of the partial correlation measures. 

The data are truly nominal, but aside from the new partial correlation, the other measures were designed 

for ordered data. Hence, it has less power to detect the relationships between the nominal variables. 

 Since all edges are present in scenarios C and F, they are not included in Table 38. Type I error 

rates for the partial tetrachoric correlation is inflated throughout all scenarios.  

Table 37 Ising Model based simulation – Power for each corresponding test of each partial 
correlation measure. Scenarios A1-F1: nonzero parameters fixed to one; A2-F2: nonzero parameters 

fixed to 0.5; A3-F3: nonzero parameters randomly generated from uniform distribution in the domain 

( ) ( )1, 0.5 0.5,1− − ∪ .  XY edge exists in all scenarios. XZ edge exists in scenarios B, C, E, F. YZ edge exists 

in scenarios C, F. Refer to Table 35. 

 

  XY edge XZ edge YZ edge 
Scen

ario pcor.new 

pcor.phi 

(pcor.p) 

pcor.tet 

(pcor.pch) pcor.new 

pcor.phi 

(pcor.p) 

pcor.tet 

(pcor.pch) pcor.new 

pcor.phi 

(pcor.p) 

pcor.tet 

(pcor.pch) 

A1 0.85 0.85 0.98       

B1 0.65 0.66 0.93 0.68 0.68 0.93   

C1 0.38 0.42 0.80 0.41 0.43 0.79 0.41 0.43 0.80 

D1 0.57 0.28 0.43       

E1 0.67 0.32 0.46 0.66 0.30 0.45   

F1 0.92 0.48 0.63 0.92 0.49 0.64 0.91 0.47 0.64 

A2 0.66 0.66 0.90             

B2 0.60 0.60 0.82 0.60 0.58 0.84   

C2 0.40 0.42 0.72 0.56 0.54 0.80 0.52 0.54 0.74 

D2 0.30 0.19 0.31       

E2 0.33 0.17 0.28 0.33 0.18 0.30   

F2 0.41 0.18 0.29 0.40 0.17 0.27 0.41 0.17 0.29 

A3 0.88 0.89 0.97             

B3 0.88 0.88 0.97 0.87 0.87 0.97   

C3 0.86 0.87 0.96 0.86 0.86 0.96 0.85 0.85 0.94 

D3 0.94 0.56 0.68       

E3 0.96 0.56 0.69 0.95 0.56 0.67   

F3 0.96 0.56 0.68 0.96 0.56 0.68 0.97 0.55 0.68 
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Table 38 Ising Model based simulation - Type I Error for each corresponding test for each partial 
correlation measure. Scenarios A1-F1: nonzero parameters fixed to one; A2-F2: nonzero parameters 

fixed to 0.5; A3-F3: nonzero parameters randomly generated from uniform distribution in the domain 

( ) ( )1, 0.5 0.5,1− − ∪ .  XZ edge nonexistent in scenarios A, D. YZ edge nonexistent in scenarios A, B, D, E. 

Refer to Table 35. 

 

  Type I Error (XZ edge) Type I Error (YZ edge) 

scenario pcor.new 
pcor.phi 
(pcor.p) 

pcor.tet 
(pcor.pch) pcor.new 

pcor.phi 
(pcor.p) 

pcor.tet 
(pcor.pch) 

A1 0.06 0.05 0.39 0.05 0.06 0.39 

B1     0.04 0.05 0.51 

D1 0.21 0.08 0.19 0.23 0.10 0.20 

E1     0.48 0.19 0.34 

A2 0.06 0.04 0.24 0.08 0.06 0.32 

B2     0.00 0.04 0.24 

D2 0.11 0.05 0.13 0.11 0.04 0.13 

E2     0.13 0.07 0.15 

A3 0.05 0.05 0.27 0.05 0.05 0.26 

B3     0.05 0.05 0.32 

D3 0.18 0.05 0.17 0.17 0.04 0.13 

E3     0.73 0.08 0.22 
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9 Partial correlation network analysis 

 

 Given a large set of variables one could be interested in the relationship between all possible pairs 

of variables while controlling for all other variables. With the proper statistic, one can a) measure the 

strength of the relationship between any two variables while controlling for all other network variables 

and b) test whether the relationship is significant given some assumptions about the distribution of the 

data. From such information, an overall structural network can be constructed. Common hypothesis-

driven data modeling tools for such analysis include Structural Equation Modeling (SEM) and Dynamic 

Causal Modeling (DCM). However without any prior knowledge about the structure of the network, such 

methods would be inappropriate. Partial Correlation Network Analysis (PCNA) is a purely data-driven 

analysis approach that does not require a priori information (Fransson, et al. 2008). 

 Partial correlation network analysis (PCNA) generates an undirected graph, { },G V E= ; V 

represents a set of nodes, or variables, and E represents a set of edges that convey the conditional 

relationships between pairs of nodes. If an edge does not exist between two nodes, then the two nodes are 

conditionally independent given all other nodes in the network. As mentioned in Chapter 6, the 

conditional correlation is equal to the partial correlation for multivariate normal distributions; hence, the 

existence of an edge can be determined by the significance of the partial correlation; if the partial 

correlation is significantly nonzero, then the edge will appear between the two nodes. Correspondingly, 

the strength of that relationship can be measure by the magnitude of the partial correlation. 

 Partial correlation analysis in its continuous form has been used in brain imagining analysis and 

genetic studies (De La Fuente, et al. 2004, Marrelec, et al. 2006, Marrelec, et al. 2009). However, such 

application in genetic studies is unsuitable due to the categorical nature of the data. Hence, the new partial 

correlation measure developed in Chapter 7 provides a suitable alternative. 

 In this chapter, we consider covariate in network analysis and propose an extension of the two-

level regression that was previously developed in the continuous case of PCNA to the categorical PCNA 

based on the new partial correlation. 
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9.1 Covariate partial correlation network analysis: Two-level regression 

 

 Suppose are interested on the effect of a covariate { }0,1G =  on the partial correlation between X 

and Y after controlling for Z. Pradhan (2009) proposed a method to analyze such a situation that draws on 

the fact that testing the correlation between two variables being equal to zero is equivalent to testing the 

slope coefficient in a regression between the two variables being equal to zero. Consider the continuous 

partial correlation. First residuals are obtained from linear regression. The test of the correlation between 

the two residuals equal to zero would be equivalent to a test on the coefficient b1 equal to zero. 

0 1 0 1

0 1 0 1

0 1

ˆ ˆˆ ˆ

ˆ ˆˆ ˆ

Y Y

X X

Y X

Y Z Y Z e Y Y

X Z X Z e X X

e b b e

β β ε β β

γ γ ε γ γ

ε

= + + → = + → = −

= + + → = + → = −

= + +  

 We integrate G into the coefficient b1 and rewrite the regression model. 

( )
1 0 1

0 0 1 0 0 1Y X X X

b a a G

e b a a G e b a e a e Gε ε

= +

= + + + = + + +
 

Thus the significance of 1a  tells whether or not G has an effect on the partial correlation between X and Y. 

If 1a  is nonsignificant, then the partial correlation between X and Y for groups G=1 and G=0 are the 

same. If 1a  is significant, the partial correlation between X and Y for groups G=1 and G=0 are different. 

 

9.2 Extension to categorical and mixed variables 

 

 Consider the first canonical variates U1 and V1 found by canonical correlation analysis on the 

residuals of X and Y, regardless of whether they are both categorical or if one is continuous. The canonical 

correlation analysis can be expressed as a linear regression 

1 0 1 1U b bV ε= + +  
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The test of the correlation between the two canonical variates equal to zero would be equivalent to a test 

on the coefficient b1 equal to zero. We propose a two-level regression at this step incorporating G into the 

coefficient of V. 

1 0 1b a a G= +  

So we have 

( )1 0 0 1 1 0 0 1 1 1U b a a G V b a V a V Gε ε= + + + = + + +  

 Analogously, we can test a1 to measure the effect of G on the partial correlation between X and Y. 

As noted by Pradhan, reversing the independent and dependent variables in the second regression will 

produce different results, so we applied the regression in both directions and average the P-value. 

* * * *

1 0 0 1 1 1V b a U a U G ε= + + +  

Thus we have effectively extended two-level regression to the case of categorical variables. 

 

9.3 Application to COGEND 

 

 We apply the new partial correlation measure to the COGEND data to construct an overall SNP 

network and then use two-level regression to compare SNP networks between subjects with nicotine 

addiction (cases) and subjects who did not have nicotine addiction by testing each edge. Results are 

illustrated using network plotting software Cytoscape 2.8.2 (Smoot, et al. 2011) and the heatmap.2 

function in the gplots package in Rv2.14.1 (Team 2011) (Warnes 2011). 

 Figure 6 shows the overall SNP network structure, with edges appearing when FDR adjusted p-

values were less than 0.05. The opacity of the edge indicates magnitude of the significance of the partial 

correlation; the more opaque the edge, the more significant the partial correlation.  
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Figure 6 COGEND SNP network using the new partial correlation for categorical data (FDR=0.05). 
Opacity of edges is determined by significance of the partial correlation controlling for all other SNPs (p 

< 0.05). The more opaque an edge is, the more significantly nonzero the partial correlation between the 

two connected SNPs. 

 

rs4950, rs8027814, and rs647041 came out with the most number of edges; rs4950 topped the three with 

eight significant partial correlations with other SNPs. Figure 7 shows a heat map of the partial 

correlations. 

 

 

Figure 7 COGEND heat map of new partial correlations between SNPs. Measures the strength of the 

relationship between pairs of SNPs after controlling for all other SNPs. 
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 Despite having many significant partial correlations, the effect size of the partial correlations 

involving rs4950 is quite low at less than 0.25. On the other hand, rs6578411 and rs2231529 are very 

highly correlated at more than 0.75. rs647041, rs938682 and rs951266 are all highly correlated with each 

other with partial correlations between 0.5 and 0.75. Partial correlations between pairs rs2231532, 

rs16925377 and rs8027814, rs904951 are at low to moderate levels between 0.25 and 0.4. 

 Figure 8 shows SNP network and partial correlation heat map for nicotine addicts. rs4950 

maintains its status as the SNP with most number of significant partial correlations at seven. Compared to 

the heat map of Figure 7 above, roughly the same partial correlations stand out, with rs8027814, 

rs904951disappearing. Using guidelines for the effect size of correlation, rs2231529 and rs6578411 are 

highly correlated with a partial correlation value of 0.75 or more. rs647041 is highly correlated with 

rs938682 and rs951266 with partial correlation between 0.5 and 0.75. rs938682 is moderately correlation 

with rs951266. 

 For the non-nicotine addicts, Figure 9 shows the corresponding SNP network and partial 

correlation heat map. While a large number of pathways are not significant for the non-nicotine addicts, 

the heat map shows the high correlations between the same SNPs as in the nicotine addicts 
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(A) 

 

(B) 

Figure 8 COGEND SNP new partial correlation (A) network and (B) heat map for nicotine addicts 
(FDR=0.05). Opacity of edges is determined by significance of the partial correlation controlling for all 

other SNPs (p < 0.05). The more opaque an edge is, the more significantly nonzero the partial correlation 

between the two connected SNPs. The heat map of new partial correlations measures the strength of the 

relationship between pairs of SNPs after controlling for all other SNPs. 
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(A) 

 

(B) 

Figure 9 COGEND SNP network and new partial correlation heat map for non-nicotine addicts 

(FDR=0.05). Opacity of edges is determined by significance of the partial correlation controlling for all 

other SNPs (p < 0.05). The more opaque an edge is, the more significantly nonzero the partial correlation 

between the two connected SNPs. The heat map of new partial correlations measures the strength of the 

relationship between pairs of SNPs after controlling for all other SNPs. 
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 We apply the two-level regression to test which pathways are significantly different between the 

two groups by including an interaction term of one canonical variate with the nicotine addiction indicator 

variable in the regression model. Again, we permute the canonical variates for two regression and take the 

average of the two p-values. 

( ) ( )

( ) ( )

1 0 0 1 1 0 0 1 1 1

* * * * * * * *

1 0 0 1 1 0 0 1 1 1

NicotineAddict NicotineAddict +

NicotineAddict NicotineAddict +

U b a a V b a V a V

V b a a U b a U a U

ε ε

ε ε

= + + + = + +

= + + + = + +
 

 

 

Figure 10 Results of two-level regression - pathways that are significantly different between 
nicotine addicts and non-nicotine addicts. Opacity of edges is determined by significance of nicotine 

addiction on the partial correlation between the two SNPs controlling for all other SNPs (p < 0.05). The 

more opaque an edge is, the more significantly the effect of nicotine addiction on the partial correlation 

between the two connected SNPs.  

 

 

 The pathways between rs951266, rs647041, and rs938682 were found to be significantly 

different between nicotine addicts and non-nicotine addicts, even though within each group, the pathways 

were significant with similar magnitudes (>0.75) (Figure 10). There are two possibilities for this finding; 

either the differences were truly detectable between the two groups, even though the difference is not of 

practical value, or the direction of the correlations are different between the two groups, but the new 

partial correlation is not able to output negative correlations. Either way, the two-level regression is able 

to detect pathways that could be further studied to provide information on the connection between the 

SNPs and nicotine addiction. 
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 rs951266 and rs647041 are both located in the region of gene CHRNA5 (cholinergic receptor, 

nicotinic, alpha 5). rs938682 is in gene CHRNA3 (cholinergic receptor, nicotinic, alpha 3). All three SNPs 

are found in chromosome 15. The CHRNA5- CHRNA3- CHRNB4 region has been shown to be a risk 

factor for age-dependent nicotine addiction (Weiss, et al. 2008) as well as a susceptibility locus for lung 

cancer  (Hung, et al. 2008). 

 

9.4 Application to Crohn’s disease 

 

 We also applied the method to the Crohn’s disease data. If the data are FDR adjusted, no 

pathways were significant in most of the analysis. With the exception of the control group (non-ileum 

afflicted), the results were not adjusted for multiple testing.  

 The overall SNP network and corresponding heat map of partial correlations is displayed in 

Figure 11. Again, the opacity of an edge indicates its significance: more opaque means more significant. 

CDKAL1 has the most number of pathways with connections to six other SNPs: rs17582416, 

LOC651731, ATG16L1, rs1456893, ORMDL3, and X21q21.  Despite the complexity of the network, the 

actual partial correlations have small effect sizes (<0.2). 

 The SNP network and heat map of partial correlations for cases are displayed in Figure 12. 

rs17582416 takes over the title of most number of connections, five, with X21q21, LOC651731, 

PTGER4, CCR6, STAT3, and rs9286879. But once again, the actual partial correlations have small effect 

sizes (<0.2). 
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(A) 

 

(B) 

Figure 11 Crohn's disease SNP network and new partial correlation heat map. Opacity of edges is 

determined by significance of the partial correlation controlling for all other SNPs (p < 0.05). The more 

opaque an edge is, the more significantly nonzero the partial correlation between the two connected 

SNPs. The heat map of new partial correlations measures the strength of the relationship between pairs of 

SNPs after controlling for all other SNPs. 
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(A) 

 

(B) 

Figure 12 Crohn's disease SNP network and new partial correlation heat map for ileum afflicted 
subjects. Opacity of edges is determined by significance of the partial correlation controlling for all other 

SNPs (p < 0.05). The more opaque an edge is, the more significantly nonzero the partial correlation 

between the two connected SNPs. The heat map of new partial correlations measures the strength of the 

relationship between pairs of SNPs after controlling for all other SNPs. 

 

 For the non-ileum afflicted patients, we found that the unadjusted p-values detection too many 

pathways to be interpretable, so adjustment for multiple testing was applied with FDR=0.05. Figure 13 

shows the SNP network and corresponding heat map of partial correlations. Interestingly, NOD2R stands 
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out with significant connections to ZNF365, rs9286879, MST1, ORMDL3, and ITLN1 and moderately 

sized partial correlations with each one of them (>0.5). 

 

(A) 

 

(B) 

Figure 13 Crohn's disease SNP network and new partial correlation heat map for non-ileum 

afflicted patients (FDR=0.05). Opacity of edges is determined by significance of the partial 

correlation controlling for all other SNPs (p < 0.05). The more opaque an edge is, the more 

significantly nonzero the partial correlation between the two connected SNPs. The heat map of new 

partial correlations measures the strength of the relationship between pairs of SNPs after controlling 

for all other SNPs. 
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 To compare the networks between ileum disease patients and non-ileum disease patient, we 

applied two-level regression.  

( ) ( )

( ) ( )

1 0 0 1 1 0 0 1 1 1

* * * * * * * *

1 0 0 1 1 0 0 1 1 1

DiseaseLocation DiseaseLocation +

DiseaseLocation DiseaseLocation +

U b a a V b a V a V

V b a a U b a U a U

ε ε

ε ε

= + + + = + +

= + + + = + +
 

Results are shown in Figure 14. The connection between NOD2R and rs9286879 are significantly 

different between the two disease locations; in the networks, the ileum afflicted group did not have this 

relationship. 

 

Figure 14 Results of two-level regression - pathways that are significantly different between ileum 
and non-ileum afflicted. Opacity of edges is determined by significance of disease location on the partial 

correlation between the two SNPs controlling for all other SNPs (p < 0.05). The more opaque an edge is, 

the more significantly the effect disease location on the partial correlation between the two connected 

SNPs.  

 

 Smoking status (never versus current/ex) was also significantly associated with disease location 

(p=0.004), so we stratified on smoking status and disease location to construct four partial correlation 

networks and their corresponding partial correlation heat maps (Figure 15, Figure 16, Figure 17, Figure 

18). Within smokers, ORMDL3 was correlated the most number of SNPs for ileum afflicted patients, 

while NOD2 was correlated with the most number of SNPs for non-ileum afflicted patients. Within 

nonsmokers, rs17582416 was correlated with three SNPs for ileum afflicted patients, while PTGER4 was 

correlated with four SNPs for non-ileum afflicted patients. The magnitude of the partial correlations for 

non-ileum afflicted patients was generally higher than ileum afflicted patients. 
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(A) 

 
(B) 

 

Figure 15 Crohn's disease SNP network and new partial correlation heat map for ileum afflicted 

patients who are smokers. Opacity of edges is determined by significance of the partial correlation 

controlling for all other SNPs (p < 0.05). The more opaque an edge is, the more significantly nonzero the 

partial correlation between the two connected SNPs. The heat map of new partial correlations measures 

the strength of the relationship between pairs of SNPs after controlling for all other SNPs. 
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(A) 

 
(B) 

Figure 16 Crohn's disease SNP network and new partial correlation heat map for non-ileum 
afflicted patients who are smokers (FDR=0.05). Opacity of edges is determined by significance of the 

partial correlation controlling for all other SNPs (p < 0.05). The more opaque an edge is, the more 

significantly nonzero the partial correlation between the two connected SNPs. The heat map of new 

partial correlations measures the strength of the relationship between pairs of SNPs after controlling for 

all other SNPs. 
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(A) 

 

(B) 

Figure 17 Crohn's disease SNP network and new partial correlation heat map for ileum afflicted 
patients who are nonsmokers. Opacity of edges is determined by significance of the partial correlation 

controlling for all other SNPs (p < 0.05). The more opaque an edge is, the more significantly nonzero the 

partial correlation between the two connected SNPs. The heat map of new partial correlations measures 

the strength of the relationship between pairs of SNPs after controlling for all other SNPs. 
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(A) 

 

(B) 

Figure 18 Crohn's disease SNP network and partial correlation heat map for non-ileum afflicted 
patients who are nonsmokers (FDR=0.05). Opacity of edges is determined by significance of the partial 

correlation controlling for all other SNPs (p < 0.05). The more opaque an edge is, the more significantly 

nonzero the partial correlation between the two connected SNPs. The heat map of new partial correlations 

measures the strength of the relationship between pairs of SNPs after controlling for all other SNPs. 

  



 

 

119 

 

 To test for whether or not the effect of disease location on the network edges while controlling for 

smoking status, another two-level regression was applied. The p-values for 
*

1 1,a a were averaged. 
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After controlling for smoking (Figure 19), we get roughly the same pathways that are significantly 

different between ileum afflicted and non-ileum afflict patients, even after controlling for smoking status. 

Only PTPN22-STAT3 was no longer significantly different between the two groups. 

 

 

Figure 19 Results of two-level regression - pathways that significantly different between ileum and 

non-ileum afflicted, controlling for smoking status. Opacity of edges is determined by significance of 

disease location controlling for smoking status on the partial correlation between the two SNPs 

controlling for all other SNPs (p < 0.05). The more opaque an edge is, the more significantly the effect 

disease location on the partial correlation between the two connected SNPs, even after controlling for 

smoking status. 
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 MST1 locus is encoded for protein macrophage stimulating-1. The association between MST1 and 

Crohn’s disease was identified in Marquez, et al. (2009). That study pointed out that this locus seems to 

mainly affect the ileal CD subphenotype, although this point awaits further corroboration in independent 

cohorts. Here our study showed the MST1 locus has many shared connections with other SNPs that are 

associated with the ileum and non-ileum afflicted status.  

 STAT3 (signal transducer and activator of transcription 3), PTPN22 (protein tyrosine phosphatase 

non-recptor type 22) and CCR6 (chemokine C-C motif receptor 6) are found to be significantly associated 

with Crohn’s disease by GWAS studies via biological pathways of T-cell differentiation, Immnune-cell 

activation and Chemokine signaling, respectively (Zhernakova, et al. 2009). Our results confirmed that 

the association between these locus with Crohn’s disease. We also found the relations among these three 

loci also associated with disease location even after controlling for smoking status, as smoking is seen as 

an influential factor for Crohn’s disease on location and severity (Picco, et al. 2003, Mahid, et al. 2007).  
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10 Discussion and future work 

 

10.1 Models and confounders 

 

 A few simple observations can be made about the methods to control for confounding 

implemented here based on the simulation study and empirical findings. 

 Propensity score adjusted regression is the same as multiple regression. However, propensity 

scores were developed to deal with a large number of confounders. In the simulation, there was only one 

confounder in the model, so this may have been the reason by propensity score was unable to stand out. 

 When the variable of interest and the confounder are highly correlated, multiple regression and 

propensity score adjusted regression do not truly control for the confounding and multicollinearity will 

cause problems in the analysis. Residual logistic regression and Pearson residual analysis is able to 

attribute all effects to the confounder in the first regression and detect that no variance is left to be 

explained by the variable of interest during the second regression. 

 Empirically, one-at-a-time regression consistently finds the highest number of significant 

variables of interest and group effect estimates were most different from that of traditional multiple 

regression compared to the other methods. Both of these discrepancies may be due to the small number of 

covariates used in the model in comparison to the traditional multiple regression method. Propensity score 

adjustment based on the raw propensity score and the logit of the propensity score give almost identical 

results for variables of interest, but estimated parameters for the logit of the propensity score covariate 

were more reasonable.  

 For the logistic model, the estimated odds ratio for group of the residual logistic regression was 

closest to that estimated by traditional multiple logistic regression and had a smaller standard error. 

Pearson residual analysis had the smallest standard error for the group parameter estimate, but as the 

second stage of this method is a linear regression, odds ratio interpretation is lost.  

 Only two variables, group and HDS11 were consistently significant across the various strategies 

implemented on the logistic model. Only three variables, group, HDS11, and PDS, were consistently 

significant across the various strategies implemented on the Cox PH model. When considering a reduced 

set of covariates, only group was significant across the various methods implements on the AFT model. 
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These findings signify the importance to compare these methods and to establish a guideline as to which 

methods are more appropriate under what circumstances. 

 Theoretical verification of what residual logistic regression does to control for confounding has 

yet to be derived. Once that has been completed, extensions of residual logistic regression to multinomial 

outcomes and longitudinal type models can follow. Another set of comparisons in the multinomial 

outcomes case needs to be executed. Methods controlling for confounders when there are time-dependent 

confounders have not been thoroughly studied here, but will also need to be considered more in depth. 

 

10.2 Partial correlation and network analysis 

 

 The new partial correlation was designed to measure the relationship between two categorical 

variables, or two mixed variables, after controlling for a third variable, in a way that is analogous to the 

continuous partial correlation. First logistic regressions are applied then the residuals obtained are 

correlated; the Pearson residuals were used for their asymptotic properties. Compared to other partial 

correlation procedures, the new partial correlation is computationally less laborious because additional 

control variables can be included in the regression step. The other partial correlation procedures are 

defined on the alternative partial correlation expression 

( ) 2 21 1

xy xz yz

xy z

xz yz

r r r
r

r r

−
=

− −
 

Hence, they require higher order definitions of partial correlation in order to control for variables and 

computing time would increase as the number of control variables increases. 

 A statistical test for the new partial correlation in the case when either variable is binary needs to 

be developed. The test based on canonical correlations is adequate for multi-categorical cases, but the 

actual partial correlation estimate is always positive. Hence, for the multi-categorical case, the nature of 

the correlation (positive or negative) is unknown. 

 On average the new partial correlation was similar to the partial phi coefficient, but on a pair wise 

basis, the two will give different estimates for the same dataset.  Since both the new partial correlation 

and the partial phi coefficient estimate the partial correlation between two binary variables, this property 

should be further studied to draw comparisons between the new method and the established phi 
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coefficient. We found that in the binary case, when data are categorized at 0.5 thresholds, the new partial 

correlation estimates the manifest partial correlation very well with very little bias and standard error. 

Unfortunately, we do not have formulas of the partial correlation for other situations, such when the 

threshold is at 0.9 or when the data are categorized into more than two categories.  

 Although we only explored the use of the new partial correlation using logistic regression, 

applications of the new partial correlation to other generalized linear regression models, such as Poisson 

regression and negative binomial regression, could be studied use the Pearson residual. 

 We used the new partial correlation in network analysis and extended the existing continuous 

method, two-level regression, to be able to consider covariates in network analysis with categorical or 

mixed data. We applied this new method to two genetic studies; one studying the relationship between 

SNP pathways and nicotine addiction and other studying the relationship between SNP pathways and 

Crohn’s disease location. We were able to identify pathways which are different between the groups of 

interest involving SNPs that have been previously associated with the disease phenotype. 

 It should be noted that the original SNPs in the COGEND study were selected to be included 

because of their predisposition to be associated with nicotine dependence. However, we found only three 

SNPs to have significantly different partial correlations between nicotine addicts and non-addicts. This 

means that after controlling for all other SNPs, they are still able to exhibit an association with nicotine 

addiction. These SNP relationships should be studied further to determine the nature of the differences. 

 Partial correlation network analysis is a data-driven procedure which may help narrow down the 

focus of a genetic study to a select few SNPs. No assumptions about the SNP network is needed to initiate 

the analysis, enabling maximum flexibility. With covariate in network analysis, our new procedure can 

identify SNP pathways that are different between phenotypes for further study. 

 In the future, we should compare our method to existing methods to analysis covariate in network 

analysis. However, the use of network analysis on categorical data is still a developing field. Also, 

evaluation indices measuring the overall network structure should be applied for enhancing the 

interpretability of the results. 
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