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Abstract of the Dissertation

Model-based Techniques for Dependable Decision Making in Groups of Agents

Operating Autonomously

by

Meng Wang

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2011

Massively distributed embedded systems are rapidly emerging as a key concept for many

modern applications. Autonomous agents with mobile sensors are breakthrough concept

in technology. However, providing efficient and scalable decision making capabilities to

such systems is currently a significant challenge, especially to have flexible strategies with

predictable performance in hard-to-predict conditions.

My thesis first proposes a goal-oriented model to allow automated synthesis of

distributed controllers, which implement and interact through models of different semantics.

Scalability of descriptions is realized through defining the nature of interactions that can

occur among decision modules while leaving to task of optimally implementing these
iii



interactions by the execution environment. Applications with data acquisition for CPS

system are offered.

The thesis also proposes an approach to performance predictive collaborative control of

autonomous agents operating in environments with fixed targets. A trajectory generation

algorithm which considers the physical characteristics of autonomous mobile agents, for

example, dimensions, weight, velocity constraints and many others. is used in modeling.

An Integer Linear Programming based model is used to optimize collaboration to achieve

maximum task accomplishment and flexibility. It also offers detailed experimental insight

on the quality, scalability and computational complexity of the proposed method.

Another important challenge for Cyber Physical Systems is data acquisition through

groups of mobile agents to optimize monitoring. Each agent optimizes locally dose not

necessarily result in overall optimization without global predictions. An asynchronous

interaction scheme using gaming theory between agents to maximize the utility of

the acquired data is purposed. Experiments study the effectiveness of the scheme in

comprehensive data acquisition while minimizing redundant data collection.
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Chapter 1

Introduction

This chapter introduces the motivations, goals and contributions of this thesis. It

also states the overall design flow of the proposed model-based techniques for dependable

decision making in groups of autonomously agents. More precisely, this chapter (i) explains

the advantages and the challenges of mobile distributed embedded systems; (ii) discusses

the advantages of parameterized decision making procedures; (iii) gives an overview of the

proposed model-based techniques for dependable decision making, including location-aware,

flexible task management for collaborative and dependable distributed data acquisition

strategies; and (iv) provides applications of data acquisition for CPS.

1.1 Motivation and methods overview

With sensing and electronic devices becoming extremely cheap and small in size,

massively distributed embedded systems are rapidly emerging as a key concept in

almost every field of modern technology. They are widely applied in infrastructure

management, environmental monitoring, energy conservation, health care, homeland

security, manufacturing, and many others. Research on distributed control and decision

making of such embedded systems are are still going on ([1] to [6]). Distributed embedded

systems enable significantly superior decision making qualities since related problems may

1



be tackled together instead of separately. This helps improving the robustness of the systems

as experience has shown that many disasters occur due to unaccounted correlations between

sub-systems.

Existing approaches focus on either centralized control or on local control [7], sometimes

using ideas inspired from social or biological systems. Centralized control is well understood

and easy to realize, however, drawback of centralized control is its lack of scaling for large

systems. In contrast, local control works well for large systems but, with the exception of

simple situations, its overall performance is hard to predict and usually not optimal.

Providing reliable and efficient decision making capabilities for massively distributed

embedded systems currently represents a main challenge [7]. We believe the main challenge

comes from the following aspects:

• Providing scalable descriptions for such applications.

• Hard to predict, unknown environmental conditions like wind, rain clouds, bird flocks,

and many more, can significantly influence the trajectories and speed of mobile agents

and thus render any pre-computed plans infeasible.

We believe that an important challenge arises due to the wide variety of interactions that

emerge among the composing sub-systems, some of which are hard to anticipate a-priori, or

might change their importance dynamically during execution.

An ideal distributed decision making mechanism should possess three main

characteristics: flexibility, scalability, and predictability. We argue that such systems need

to be built with parameterized control procedures and different decision making strategies

should be dynamically introduced or removed depending on the specific optimization goals

and operation conditions of the application. A key component of the approach is a suitable

model and specification notation for massively parallel applications.

This thesis presents a novel control model and the related specification constructions for

developing massively distributed embedded applications. It defines the operation goals of

2



each sub-system (e.g., the criteria to be maximized or minimized during execution) and the

physical capabilities of a module to achieve a certain goal (such as its maximum processing

speed, or highest bandwidth). Different interaction types are introduced depending on the

way the sub-systems influence each other’s goals and capabilities. These interactions are

optimally implemented by the execution environment.

Cyber-Physical Systems (CPS) are expected to continuously provide optimized decisions

based on accurate monitoring of environmental conditions [12]. Often, the execution platform

for CPS is a network of mobile data sensing and processing systems, such as robots or other

mobile agents.

Mobile agents, a modern CPS, perform a large set of activities, including computation

of trajectories and identification of the control parameters for traveling along a trajectory,

signal sampling and processing (including image processing, data integration), as well as

communication with other mobile agents. In many real world scenarios, activities such as

target detection and handling, and assessment of the results, are also performed online by

mobile agents [32, 33, 34, 35]. In many instances, a group of mobile agents must operate

collaboratively to tackle complex tasks [43, 44, 42, 45, 46]. The nature of collaboration is

often decided dynamically at run time, depending on the context-specific situations. For

example, a mobile agent might not be able to meet the deadlines set for its tasks due to

unforeseen overheads, such as the time required to avoid moving obstacles. In this case,

the agent might inquire collaborations from neighboring agents to jointly perform tasks.

Agents with more flexible deadlines might decide to satisfy the request, and participate in

collaboration.

Scalability is one of the main challenges in distributed control theory of mobile agents.

Present control techniques are restricted to single or small numbers of agents. Although

there are some very interesting ongoing work in swarm control [36, 37, 38, 39, 40, 41], the

theory of scalable and robust distributed control is still largely unstudied.

Another important challenge is to offer predictable and reliable operation in hard-to-

3



predict environments and situations. Traditionally, reactive control has been a commonly

accepted solution for situations that cannot be characterized off-line. Depending on

conditions identified online, the controller selects the most suitable response from a set

of predefined strategies. Each response strategy is characterized by specific outcomes

and performance, such as execution time, energy consumption, and so on. While

certain ”fixed-point” properties can be proven for reactive behavior (like stability and

reachability) [45, 51, 52], other properties, which depend on dynamic attributes (e.g., the

frequency of being in a state), are harder to prove unless restrictive functioning conditions are

assumed. Thus, important performance attributes, i.e. execution time and resource (energy)

consumption, are hard to correctly estimate and guarantee for reactive control procedures.

The alternative to reactive procedures are off-line static control methods [44, 53]. These

methods work very well if the operating conditions and the environment are fully known,

and hence the agent’s behavior is deterministic. The performance of the control methods

can be precisely estimated in this case. However, static methods have little or no flexibility

in adapting to unknown situations.

This thesis presents our modeling procedure expressing agent trajectory generation.

The modeling procedure is part of distributed control algorithms for large-scale groups

of mobile agents, as it captures the moving of agents through the physical space. The

modeling procedure considers the physical characteristics of agents, e.g., dimensions, weight,

and velocity constraints, etc. Multi-mode behavior of agents are adopted to adapt to the

unknown or changing environmental conditions and goals. In addition, the agent mobility

is modeled using the trajectory generation algorithm by Yakimenko [42].

This thesis proposes an approach to performance predictive collaborative control

strategies for efficient operation in dynamic conditions with fixed targets. The thesis also

offers detailed experimental insight on the quality, scalability and computational complexity

of the proposed method.

Data acquisition is an essential task of CPS. Guaranteeing dependable and predictable
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operation is challenging considering that the mobile agents operate in environments with

many unknown and changing attributes.

A main challenge is data acquisition through the mobile agents to construct precise

models while minimizing the cost of creating the models. Model-based CPS uses

dynamically-constructed models to make decisions during operation. For example, consider

a CPS for environmental monitoring and protection, which needs to detect the position of

zones polluted with toxic substances as well as the nature and level of the toxic substances.

The decisions on how to dispatch the mobile agents to maximize pollution detection and

the utility of the acquired data samples are performed based on a model that predicts the

position of spills and their dynamics over time.

The distributed data acquisition problem also originates a mixture of collaborative

and competing actions between the participating agents. Devising interaction schemes to

maximize data acquisition utility while agents can collaborate or compete is still a challenging

problem. Resource allocation, e.g., the frontend resources used for localizing the sound source

by a node and the selected data communication paths, determine main factors defining the

error of the models used in decision making. The quality of resource allocation schemes

depends to a high degree on the characteristics of the environment, e.g., ambient noise, and

monitored phenomena, like trajectory.

This thesis proposes a novel, asynchronous interaction scheme of data acquisition

between agents that operate decoupled for most of the time. The scheme is based on a

mathematical model of data acquisition utility, and how utility changes as more data is

acquired. The model captures aspects, like gaining new insight into the process, increasing

the confidence of the models used in decision making, and the collaborative-competitive

aspect of agent interactions. The model is then utilized to infer the selection ratios that

decide how alternative sampling steps are used by an agent to maximize the data acquisition

utility, while the agent operates decoupled from the other agents. Experiments study the

effectiveness of the proposed scheme in producing comprehensive data acquisition while
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minimizing the amount of redundant data collected by the decoupled autonomous mobile

agents.

One thing to clarify is that collision avoidance is not part of the work because the

modeling method considers only point agents (agents do not have dimensions). Collision

avoidance can be added to the decision making scheme by incorporating the probability of

having two agents sample points closer than a minimum distance and then devising schemes

that minimize this probability. Collision avoidance methods are discussed in the literature

by Tomlin et al. and Sastry et al. [84, 85, 86, 87], among others. The proposed decision

making scheme consider macro decisions, such as the likelihood to stay on deviate from the

predefined trajectory collision avoidance would be a micro level decision.

1.2 Goals and contributions

The goal of this thesis is to develop model-based techniques for dependable decision

making in groups of autonomously agents. The proposed model should have three main

characters (i) flexibility to adapt to partially unknown or changing environment, (ii)

scalability to large number of agents, and (ii) predictability of the resulting performance.

The novel contribution of this thesis include:

• One semantic model to allow automated synthesis of controllers of massively distributed

embedded systems. The model is implemented through models of different semantics.

Scalability of descriptions is realized through defining the nature of interactions that

can occur among decision modules while leaving the task of optimally implementing

these interactions to the execution environment. The notation defines the operation

goals of each sub-system (e.g., the criteria to be maximized or minimized during

operation) and the physical capabilities of a module to achieve a certain goal. Different

interaction types are introduced depending on the way sub-systems influence each

other’s goals and capabilities. Compared to similar work, the proposed model and
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specification notation differs in that they focus on optimal goal satisfaction in massively

distributed systems and not on algorithmic descriptions. Therefore, the constructs are

orthogonal to existing notations as they concentrate on the interactions between groups

of nodes, or nodes and environment and less on the behavior of the individual nodes.

This simplifies specification and helps scalable decision making.

• An approach is to perform predictive collaborative control of mobile agents operating

in hard-to-predict environments with fixed targets. An Integer Linear Programming

model is proposed to describe the dynamic collaboration.

• An adaptive interaction scheme is used for solving the optimization problem of

acquiring data distributed in time and space through a set of mobile decoupled agents.

The adaptive interaction scheme is based on game theory to maximize the utility of

the acquired data while minimizing redundant data collection.

• The proposed decision making scheme is a mixture of both static and dynamic decision

making. Static decision making aims at preplanned or known activities, such as travel

along predefined trajectories, and is computed off line using a centralized method.

Dynamic decision making performs aolaptations adapt to deviations from original plans

or each agent’s own interest. It is computed online using a decentralized method. The

two parts are discussed in Chapters 3 and 4 respectively.

1.3 Examples of Data Acquisition in CPS

Data acquisition plays an significant role in Cyber Physical Systems. It is not overstated

that most of the CPS applications require data acquisition to operate successfully from

environment, human users, or various databases. Autonomous mobile agents have a lot

of advantages over fixed data collection units. First of all, the mobility makes it possible

to do large-scale data acquisition with relatively few agents. They are more adaptive to
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uncertain environments, changeable topology and more robust as a whole system. There

are also many examples in the field of homeland security, climate research, contaminant and

pollution control, and health care, where data acquisition is one of the main tasks of the

systems composed of groups of autonomous mobile agents. The following are some examples

of data acquisition for such systems.

Radiation Level Detection

agent 1

agent 1

agent 3agent 2

shortcut

main cruise trajectory

target area

agent 2 agent 1 agent 2

(a) (b)

Figure 1.1: Main trajectories and exploration paths

One example is radiation level detection using groups of aerial or marine autonomous

agents. Using autonomous agents such as Unmanned Aerial Vehicle (UAVs) and Unmanned

Marine Vehicle (UMVs) is necessary in dangerous environments, such as recently areas

affected severely by Japan Nuclear Crisis. In this example, groups of UAVs and UMVs

cruised along their main trajectories (Figure 1.1) and performed data collection tasks. The

goal was to collect as much useful information as possible during a certain time range.

To fulfill this purpose, each individual autonomous agent may decide online to follow an
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exploration path that deviates from the main trajectory to collect data according to the

collection strategies.

agent 1

agent 1

agent 3agent 2

shortcut

main cruise trajectory

target area

agent 2 agent 1 agent 2

(a) (b)

Figure 1.2: Exploration paths and collaboration:(a) Each agent do decision making to
generate exploration paths to collect more data; (b) Collaboration between agent 1 and
agent 2: agent 2 took part of the tasks from agent 1

In general, each autonomous agent makes online decisions to generate exploration paths

(Figure 1.2(a)). Data integration is performed during collection. The result can be sent

to another agent for collaboration purposes, or to its own decision making. The decision

making points may be preset to certain time interval or distance intervals, and a temporary

decision making point may be inserted when abnormal data appears or the results of data

acquisition triggers such an event.

The main trajectories are preset off-line in the target areas, but may also be changed

online when the following changes occur:

1. Deadline: The main trajectories may need to be altered to make shortcuts or extensions

when the deadline of the whole task changes to achieve a goal.

2. Working Environment: Some conditions in the working environment may make the

data collected in certain areas invalid temporarily, or may even result in the inability
9



to perform the tasks. Such conditions include wind direction or water level change,

ocean streams, extreme weather (e.g. high wave, storm), and many more.

3. Pop-up targets: There are situations where pop-up targets appear to some agents and

they may need to generate additional exploration paths, or change main trajectories

temporarily within allowance of the deadline if the position of the pop-up targets is

far away. Such situations include the need more data in certain areas due to missing

agents.

Collaboration happens when some agents are not able to finish their task within deadline

and others have enough flexibility to help. Flexibility here can refer to spare time, or energy

source. Figure 1.2(b) illustrates such a case. Agent 1 was unable to finish its tasks within

the deadline so it sent out an inquiry to the other agents to ask for help. Agent 2 who is

nearby received the inquiry and performed decision making by calculating its cost function

(flexibility) according to its own data collecting strategies and decided to help. Agent 2 then

responds to agent 1’s inquiry and goes along the newly generated trajectory. Agent 1 skips

one exploration path and goes directly to the next task.

Decision making and data collection procedures are performed in a distributed manner

and only loosely coupled information that is necessary is exchanged occasionally. The

information exchange is for collaboration to maximize overall information gain within

permitted time range. Instead of exchanging all the collected data with other agents for

decision making, only high level interpreted data can be sent out. This saves bandwidth,

energy, and exchange time, thus improves the efficiency of the on-line decision making system.

The communication between agents contains the following two aspects:

• Data exchange: data exchange may occur in two situations: fixed time interval or event

trigger. The trigger event can be abnormal data detected as stated above, discovered

pop-up targets, reconstruction of sub-groups, change of topology, or addition/loss of

agents.
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• Status exchange: status exchange includes the following two aspects: emergency tasks

such as calling for help; or changing main trajectories. Agents should update their

status with their colleagues if the two situations occur.

The above schemes provide a complete way of acquiring maximum data from the

targeted area without violating the deadline. There are also some other applications in this

category, for example, toxic gas release detection, or liquid/solid contamination examination.

Factory/Plant Cleaning Robots

equipment

target  zone

equipment

target  zone

dirty spot

Figure 1.3: Example trajectories for factory cleaning robots

The following example is a team of cleaning robots who operate autonomously to

perform factory cleaning tasks. The goal is to finish a set of cleaning tasks in target zones

within certain time range, and as fast as possible. Each robot has a preset trajectory to

go along in its target zone, and is able to do four actions: watering, sweeping, brushing,

and drying. As shown in Figure 1.3, when a dirty spot is detected, the set of four actions

will be performed sequentially. Dirty data is collected while moving and data integration is

executed before information is sent out for collaboration purposes.

In this example, we assume that the original contamination level data contains four

categories at each data point, which include grease level, dust level, harmful level, and damp
11



level. The data point in data pool will be 3D to 5D depending on the dimension of the

position (2D or 3D) and whether it contains time information. If all the data are transferred

to the other agent for collaboration purposes, the data is abundant and some may not be

necessary for the other agent for decision making. Instead of sending the four contamination

level data at each point, sending the results of data integration would save communication

time and energy. One example of data integration method in this case is to calculate weighted

sum of the four contamination level data according to their importance, and sending one

data instead:

C(x, y) =
4∑

i=1

αi ∗Di (1.1)

αi is the weight of each factor, which may be affected by the harmfulness of the contamination

or time/energy to clean this kind of contamination. Di is the dirty level of the four kinds

of contaminations. The level usually is represented by the total amount or density of

contaminations.

The robot that received the collaboration requests containing C(x, y) will calculate its

own time and energy consumption to go to help, and will make decisions accordingly. All

the robots who received requests also send out their decision to avoid performing the same

task repeatedly.
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Collaboration may occur in many different forms, and the following are three typical

cases:
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Figure 1.4: Collaboration of a team of cleaning robots (W:wartering, S:sweeping, B:brushing,
D:drying)
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Figure 1.5: Collaboration of a team of cleaning robots (W:wartering, S:sweeping, B:brushing,
D:drying)

1. Big dirty areas detected: Four robots form a team to do cleaning tasks in target zones.

Each robot is assigned to one zone originally, as shown in Figure 1.4(a). During

contamination level data collection and cleaning tasks, robot 1 detected a large dirty

area. After collecting data from the dirty area, robot 1 decided that it cannot finish

the cleaning task before the deadline, so it sent out an inquiry to ask for help. Robots
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Figure 1.6: Data exchange of a team of cleaning robots

2, 3 and 4 received the inquiry, calculated their own time consumption and robot

1 responded by informing other robots. Figure 1.4(b) is one example of optimized

solutions.

2. One agent is broke or is out of power: Robot 1 retires from the tasks in this case.

In addition to sending out an inquiry for help, robot 1 needs to send out the data it

collected already. The results of data integration can be sent instead of the whole data

pool. Figure 1.5(b) shows an option that robots 2, 3 and 4 performed robot 1’s task

to clean zone A.

3. Sharing collected data: In some cases, robots may collect data useful for other robots.

As shown in Figure 1.6, robots 4 and 3 passed zones A and B respectively on their way

to their own target zones D and C. The data collected on the passage was useful to

robots 1 and 2. Integrated data was sent to robots 1 and 2 respectively after robots 3

and 4 entered zone D and C.
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1.4 Thesis outline

This thesis is organized as follows:

• Chapter 2 proposes a goal-oriented description for CPS and dynamically-constructed

models to make decisions during operation. It defines the operation goals of each sub-

system and allows automated synthesis of distributed controllers depending on the way

the sub-systems influence each other. These interactions are optimally implemented

instead of preset.

• Chapter 3 presents distributed control methods for large-scale groups of autonomous

vehicles. It introduces the ideas of performance predictive collaborative control

of autonomous mobile agents operating in environments with fixed targets, and

summarizes the trajectory generation algorithm that is used to model and simulate

the moving vehicles. Experimental results for the algorithm are also offered.

• Chapter 4 proposes a novel, asynchronous interaction scheme between agents to

maximize the utility of the acquired data. An adaptive interaction scheme is described

and an algorithm for dependable decision making strategy originating from game

theory is provided. Experiments study the effectiveness of the scheme in comprehensive

data acquisition while minimizing redundant data collection with comparison of data

acquisition strategies in literature.

• The final chapter presents the conclusion.
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Chapter 2

Model and Specification of Massively

Distributed Embedded Systems

2.1 Introduction

Massively distributed embedded systems are rapidly emerging as a key enabling concept

for many modern applications in infrastructure management, environmental monitoring,

energy conservation, health care, homeland security, manufacturing, and many other fields

[1, 2, 3, 4, 5, 6]. This is not only due to sensing and electronic devices becoming extremely

cheap and small in size (thus, deployable in large numbers) but also because of the potential of

having significantly superior decision making quality if related problems are tackled together

instead of separately. Moreover, this helps in improving the robustness of the systems as

experience has shown that many disasters occur due to unaccounted correlations between

the sub-systems. Providing reliable and efficient decision making capabilities to massively

distributed embedded systems currently represents a main challenge [7].

The envisioned decision making paradigm is different from existing approaches, which

either focus on centralized control or on local control [7], many times using ideas inspired from

social or biological systems. Centralized control is well understood and reliable but does not
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scale well for large systems. In contrast, local control works well for large systems but with

the exception of simple situations, its overall performance is hard to be captured. We argue

for a distributed decision making mechanism in which parameterized control procedures

implementing different strategies are dynamically introduced or removed depending on the

specific optimization goals and operation conditions of the application. The controllers

operate according to different models depending on the nature of their decision making.

For example, reactive controllers use physical inputs for local control but operate under

the constraints set by more abstract decision making procedures, which analyze broader

situations based on aggregated (abstracted) data and procedures. The proposed decision

making mechanism is envisioned to be flexible, scalable, and predictable. A key component of

the approach is a suitable model and specification notation for massively parallel applications.

This chapter presents a novel control model and the related specification for developing

massively distributed embedded applications. We believe that a main challenge in providing

scalable descriptions for such applications is due to the wide variety of interactions that

emerge among the composing subsystems, some of which are hard to anticipate a-priori, or

might change their importance dynamically during execution. The proposed solution is to

describe the nature of interactions that might occur among modules while leaving the task

of optimally implementing these interactions to the compiler and execution environment.

More specifically, the proposed model defines the operation goals of each sub-system

(e.g., the criteria to be maximized or minimized during execution) and the physical

capabilities of a module to achieve a certain goal (such as its maximum processing speed,

highest bandwidth, etc). Different interaction types are introduced depending on the way

the sub-systems influence each others goals and capabilities. The specification is compiled

into a network of Decision Modules (DMs), which use reactive models to control decisions at

the physical level, and more abstract formalisms, such as Task Graphs and Markov Decision

Processes, to perform broader, more strategic decisions. The multi-semantic DMs interact

through (i) constraints by which the strategic modules restrict the reactive DMs to guarantee
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satisfaction of the global goals and (ii) feedback offered by the reactive DMs about the

feasibility of the constraints. Note that the methods presented in Chapter 3 and 4 are

methods at the physical level as well as Task Graph level.

Section 2.2 summarizes the related work. Section 2.3 defines the distributed control

model and the main language concepts. Finally, conclusions are offered.

2.2 Related Work

Developing concurrent processing systems is known to be a difficult and error-prone

activity [8, 9, 10]. Existing programming models for concurrent processing differ depending

on the granularity of the supported parallelism and communication [11]. Traditionally,

concurrent threads synchronize and communicate through low level mechanisms, like

semaphores, critical regions, send-receive primitives, etc. Interrupts are the main hardware

support for communication [12]. More recent work suggests coordination models, in which

interfaces define the proper cooperation and communication between threads [11]-[13].

Coordination models describe a common tuple space for placing and retrieving data (e.g.,

Linda [14]), adaptive parallelism by need-based activation and deactivation of threads (like

Piranha [15]), manipulation of the tuple space including aggregation (i.e. Bonita [16]),

constrained based communication (i.e., Law-Governed Linda [17]), moving objects from

one space to another (e.g., Objective Linda [18]), and dynamic transformation of the tuple

space objects (like in Gamma [19]). Compositional models, a special class of coordination

models, include constructs for integrating components into bigger programs, such that the

properties of the components are preserved. The integration constructs include logic clauses,

like parallel AND operations in Strand [20], and higher-order functions [21, 22]. Interface-

based design [23]-[26] is based on black-box models defining the system properties of the

component interfaces, like arrival rate, latency, and capacity of shared resources.

The concept of Visual Programming (VP) was arguably proposed in the 80s [27],
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however, it is only recently that its advantages for embedded applications became apparent.

VP languages have been proposed for applications like managing smart oilfields [4, 28],

vehicle tracking [29, 30], contour finding [29], and environmental monitoring [2]. Region

Streams [29] is a functional macro programming language for sensor networks. Specification

is based on successive filtering and functional processing of data pools. The data model is

based on continuous data streams sampled from the environment and groups of nodes defined

by their specific interests in space and over time. Language constructs enable aggregation

of the data streams from a region and application of a function to the streams in a region.

Abstract Task Graphs [2] is also a functional specification in which tasks sample from and

place data into pools. There is no other interaction type between tasks. Channels are filters

for associating only specific data from a pool to a task. Tasks are executed periodically or

when input data is available. Semantic Streams [5] implements a query-based programming

paradigm that fits well applications in which sensor networks operate as large distributed

databases. Queries formulated as logic programs are converted by the compiler into a service

graph for the network. Data sensing is modeled as streams. Other constructs include filtering

by specifying properties of the streams, defining regions and sub-regions of the physical

space, and performance requirements (e.g., quality of service). Kairos [30] proposes a set of

language-independent extensions for describing global behavior of sensor networks controlled

centrally. The extensions assume shared memory to allow any node to iterate through its

neighbors and address arbitrary nodes.

Similar to [5, 29], the data model of the proposed specification description is based on

data pools and continuous data streams to the modules. However, it differs in that it focuses

on optimal decision making in massively distributed environment and not on algorithmic

descriptions. Therefore, we argue that the notation is orthogonal to the existing languages

as it concentrates on the interactions between groups of nodes, or nodes and environment,

and less on the behavior of the individual nodes.
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2.3 Goal-Oriented Model

Cyber-physical Systems (CPS) are defined by a large set of interacting sub-systems.

Each sub-system has well defined functionality and performance requirements, however, the

interactions are dynamic, and their nature and intensity changes during execution. Figure

2.1 illustrates a simplified CPS for intelligent traffic management. The goal of the system

is to optimize the traffic flow of a region by adjusting the traffic-light characteristics to

the specifics of the traffic flow. The example comprises of four sub-systems, the sub-system

represented by the moving cars, the two data collection sub-systems (based on video cameras

and sound-based tracking), and the sub-system formed by the traffic-lights of the region.

Each sub-system has a well defined functionality.
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acquired at certain time intervals, and they might offer only a partial field-of-view covering. The 
sub-system can also detect events, like accidents or certain “special” cars, like police cars. 

 
 

 
 

Fig. 1. Interactions in Cyber-Physical Systems. 
 
 
• The sound-based tracking system follows the moving of specific cars, such as police cars, fire 

trucks, and ambulances. Having a tracking alternative can be very useful if the field of view to a 
vehicle is lost, or if the video-based tracking is too slow to meet the necessary timing constraints of 
the application. The system computes the position of a tracked car with a given precision and at 
certain intervals of time. The system also computes traffic statistics, like average speed, and detects 
traffic events, such as stopped cars. 

• The moving cars form a group of mobile embedded nodes. The mobile nodes can interact with each 
other both directly through a wireless, ad-hoc network, and indirectly by sharing the same physical 
space at a certain time. The node dynamics is described by attributes like speed and distance to 
neighboring cars.  

• The traffic-lights subsystem includes all traffic-lights of a region. The traffic-lights controllers are 
connected in a network to better coordinate their parameters offset, cycle and split times. 

 
 
3.1. Sub-system Modeling: Functionality and Performance 
 
Each CPS sub-system is defined as shown in Fig. 2.  
 
The figure illustrates the main characteristics of the proposed distributed control concept and the 
related specification language. The wide geographical areas from which data is sampled define pools 
of heterogeneous data (e.g., images, temperature, humidity, number of moving vehicles, etc.). The 
association of data acquisition to the physical area is defined graphically, as shown in the left figure by 
the larger and smaller rectangles. For each defined area, the user specifies the goals that must be 
achieved by the distributed application, such as maximizing the traffic flow through the area, or 
keeping the pollution level below a preset limit.  
 
 

Figure 2.1: Interactions in Cyber-Physical Systems

• The image-based tracking system collects video images of traffic to get information like

car position and speed, distance between cars, average number of cars passing through

a region, size of car clusters, and so on. Video images have a certain precision in time

and coverage: they are acquired at certain time intervals, and they might offer only a

partial field-of-view covering. The sub-system can also detect events, like accidents or

certain special cars, like police cars.

• The sound-based tracking system follows the moving of specific cars, such as police
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cars, fire trucks, and ambulances. Having a tracking alternative can be very useful if

the field of view to a vehicle is lost, or if the video-based tracking is too slow to meet

the necessary timing constraints of the application. The system computes the position

of a tracked car with a given precision and at certain intervals of time. The system

also computes traffic statistics, like average speed, and detects traffic events, such as

stopped cars.

• The moving cars form a group of mobile embedded nodes. The mobile nodes

can interact with each other both directly through a wireless, ad-hoc network, and

indirectly by sharing the same physical space at a certain time. The node dynamics is

described by attributes like speed and distance to neighboring cars.

• The traffic-lights subsystem includes all traffic-lights of a region. The traffic-light

controllers are connected in a network to better coordinate their parameters offset,

cycle and split times.

2.3.1 Sub-system Modeling: Functionality and Performance

Each CPS sub-system is defined as shown in Figure 2.2.

The figure illustrates the main characteristics of the proposed distributed control concept

and the related specification language. The wide geographical areas from which data is

sampled define pools of heterogeneous data (e.g., images, temperature, humidity, number of

moving vehicles, etc.). The association of data acquisition to the physical area is defined

graphically, as shown in the left figure by the larger and smaller rectangles. For each defined

area, the user specifies the goals that must be achieved by the distributed application, such

as maximizing the traffic flow through the area, or keeping the pollution level below a preset

limit.

The execution platform is a massively distributed network of embedded controllers.

Each controller node comprises hardware for sensing and actuation as well as processing,
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Fig. 2. Sub-system description for distributed decision making and control. 
 
The execution platform is a massively distributed network of embedded controllers. Each controller 
node comprises hardware for sensing and actuation as well as processing, storage, and communication. 
In addition, hardware is reconfigurable, so that the available pool of resources at a node can be 
configured to meet different performance trade-offs, like variable processing speed, energy 
consumption, resolution, storage space, and so on. Hence, the model assumes that the functionality 
(algorithm) of each node is well defined and fixed but the node’s performance is parametric and 
dynamically changing at execution. 
 
The following three aspects are the core of the proposed model: 
• Separation of algorithmic aspects from goals: Algorithms describe the ontology of the application, 

and, over time, remain the same for all nodes in the network. In contrast, goals define optimization 
criteria, performance, safety, etc., depend on the specific execution platform and conditions, and 
change dynamically in time. While building algorithms is arguably more efficiently done by 
humans, finding the parameters for optimal execution is cumbersome but can be automated. 

• Description of interdependent, heterogeneous sub-systems: Global goals in large applications are 
likely to transcend different sub-system types. Also, the significance of the various related 
components can change over time. This invalidates static interaction schemes between sub-systems. 

• Avoiding explicit descriptions of synchronizations and data transfers: Explicit specification of inter-
node communication reduces scalability and reusability. It is hard and unreliable to attempt 
capturing all possible interactions between the components of massively large scale applications. 
Instead, the design environment ought to identify the best interaction schemes between components, 
so that the overall goals as well as the goals of the modules are met.   

 
The proposed goal-oriented model comprises of separate Decision Modules (DMs) that operate to 
optimize a well-defined set of goals while the overall goals of the application are also being optimized. 
Each module executes a set of parameterized behaviors (algorithms) for which the parameters are 
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storage, and communication. In addition, hardware is reconfigurable, so that the available

pool of resources at a node can be configured to meet different performance trade-offs, like

variable processing speed, energy consumption, resolution, storage space, and so on. Hence,

the model assumes that the functionality (algorithm) of each node is well defined and fixed

but the nodes performance is parametric and dynamically changing at execution.

The following three aspects are the core of the proposed model:

• Separation of algorithmic aspects from goals : Algorithms describe the ontology of the

application, and, over time, remain the same for all nodes in the network. In contrast,

goals define optimization criteria, performance, safety, etc. They depend on the specific

execution platform and conditions, and change dynamically in time. While building

algorithms is arguably more efficiently done by humans, finding the parameters for

optimal execution is cumbersome but can be automated.

• Description of interdependent, heterogeneous sub-systems : Global goals in large

applications are likely to transcend different sub-system types. Also, the significance of
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the various related components can change over time. This invalidates static interaction

schemes between sub-systems.

• Avoiding explicit descriptions of synchronization and data transfers : Explicit

specification of internode communication reduces scalability and reusability. It is hard

and unreliable to attempt capturing all possible interactions between the components

of massively large scale applications. Instead, the design environment ought to identify

the best interaction schemes between components, so that the overall goals as well as

the goals of the modules are met.

The proposed goal-oriented model comprises of separate Decision Modules (DMs) that

operate to optimize a well-defined set of goals while the overall goals of the application are

also being optimized. Each module executes a set of parameterized behaviors (algorithms)

for which the parameters are automatically computed based on the information provided

through the goal-oriented descriptions. DMs interact with each other only in small numbers

but can perform global decisions by using data aggregated from large regions and by strategic

decision methods (e.g., based on Markov Decision Processes). Figure 2.3 illustrates a

network, which comprises different decision making models (Finite State Machines, and

Markov Decision Processes).

Similar to other specification languages for sensor networks, the proposed data model

is based on data pools associated to regions and groups. Modules sample inputs from and

generate outputs to a data pool for region. Regions represent continuous collections of

tokens, such as a geographical area. Groups are discrete collections of tokens. Regions and

groups can be associated to a specific physical area of the environment, or can be described

by their defining properties.

Efficient and robust decision making must be guaranteed for hard-to-predict conditions.

The overall behavior should be capable of autonomously meeting performance requirements,

e.g., real-time constraints, bandwidth limitations, energy constraints, speed requirements,

and precision. The underlying decision making model (DMM) is based on a multi-semantic
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decision making networks that represents the overall application performance at different

levels of abstraction and using different evaluation formalisms. The low levels employ reactive

models, e.g., Finite State Machines, which are capable of tackling unexpected situations. The

upper levels use less flexible models but with more predictable performance, such as Data

Flow Graphs and Task Graphs. Thus, the semantic hierarchy offers a smooth transition

from the fully reactive behavior at the embedded node level and the deterministic operation

at the application level. The number of abstraction levels and the decision making models

for each level depend on the application.

2. RELATED WORK 
The concept of Visual Programming (VP) was arguably proposed 
in the 80s [5], however, it is only recently that its advantages for 
embedded applications became apparent. VP languages have been 
proposed for applications like managing smart oilfields [7, 12], 
vehicle tracking [4, 6], contour finding [6], environmental 
monitoring [2], etc. Some of the related work is presented next.   

Region Streams [6] is a functional macroprogramming language 
for sensor networks. Specification is based on successive filtering 
and functional processing of data pools. The data model is based 
on continuous data streams sampled from the environment and 
groups of nodes defined by their specific interests in space and 
over time. Language constructs enable aggregation of the data 
streams from a region and application of a function to the streams 
in a region. Abstract Task Graphs [2] is also a functional 
specification in which tasks sample from and place data into 
pools. There is no other interaction type between tasks. Channels 
are filters for associating only specific data from a pool to a task. 
Tasks are executed periodically or when input data is available.  

Semantic Streams [9] implements a query-based programming 
paradigm, which fits well applications in which sensor networks 
operate as large distributed databases. Queries formulated as logic 
programs are converted by the compiler into a service graph for 
the network. Data sensing is modeled as streams. Other constructs 
include filtering by specifying properties of the streams, defining 
regions and sub-regions of the physical space, and performance 
requirements (e.g., quality of service). Kairos [4] proposes a set of 
language-independent extensions for describing global behavior 
of sensor networks controlled centrally. The extensions assume 
shared memory to allow any node to iterate through its neighbors 
and address arbitrary nodes.  

Similar to [6, 9], the data model of the proposed specification 
language is based on data pools and continuous data streams to 
the modules. However, it differs in that it focuses on optimal 
decision making in massively distributed environment, and not on 
algorithmic descriptions. Therefore, we argue that the language is 
orthogonal to the existing notations as it concentrates on the 
interactions between groups of nodes, or nodes and environment, 
and less on the behavior of the individual nodes.    
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Figure 1: Specification and distributed control concept 

3. GOAL-ORIENTED MODEL 
Figure 1 illustrates the main characteristics of the proposed 
distributed control concept (right figure) and the related 
specification language (left figure). The wide geographical areas 
from which data is sampled define pools of heterogeneous data 
(e.g., temperature, humidity, number of vehicles moving, etc.). 
The association of data acquisition to the physical area is defined 

graphically, as shown in the left figure by the larger and smaller 
rectangles. Moreover, for each defined area, the user specifies the 
goals that ought to be achieved by the distributed application, 
such as maximizing the traffic flow through the area, or keeping 
the pollution level below a predefined limit.  
The execution platform is a massively distributed network of 
embedded controllers. Each controller node comprises hardware 
for sensing and actuation as well as processing, storage, and 
communication. In addition, hardware is reconfigurable, so that 
the available pool of resources at a node can be configured to 
meet different performance trade-offs, like variable processing 
speed, energy consumption, resolution, storage space, and so on. 
Hence, the model assumes that the functionality (algorithm) of 
each node is well defined and fixed but the node’s performance is 
parametric and dynamically changing at execution.            
The following three aspects are the core of the proposed model:  

• Separation of algorithmic aspects from goals. Algorithms 
describe the ontology of the application, and, over time, remain 
the same for all nodes in the network. In contrast, goals define 
optimization criteria, performance, safety, etc., depend on the 
specific execution platform and conditions, and change 
dynamically in time. While building algorithms is arguably 
more efficiently done by humans, finding the parameters for 
optimal execution is cumbersome but can be automated.        

• Description of interdependent, heterogeneous sub-systems. 
Global goals in large applications are likely to transcend 
different sub-system types. Moreover, the significance of the 
various related components can change over time, which can 
invalidate any static interaction scheme between sub-systems.    

• Avoiding explicit descriptions of synchronizations and data 
transfers. Explicit specification of inter-node communication 
reduces scalability and reusability. It is hard and unreliable to 
attempt capturing all possible interactions between the 
components of massively large scale applications. Instead, the 
design environment ought to identify the best interaction 
schemes between components, so that the overall goals as well 
as the goals of the modules are met.   

The proposed goal-oriented model comprises of separate decision 
modules (DMs) that operate to optimize a well-defined set of 
goals while the overall goals of the application are also being 
optimized. Each module executes a set of parameterized behaviors 
(algorithms) for which the parameters are automatically computed 
based on the information provided through the goal-oriented 
descriptions. DMs interact with each other only in small numbers 
but can perform global decisions by using data aggregated from 
large regions and by strategic decision methods (e.g., based on 
Markov Decision Processes). Figure 1 (right) illustrates a 
network, which comprises different decision making models 
(Finite State Machines, Markov Decision Processes, etc.).  

Similar to other specification languages for sensor networks, the 
proposed data model is based on data pools associated to regions 
and groups. Modules sample inputs from and generate outputs to a 
data pool for region. Regions represent continuous collections of 
tokens, such as a geographical area. Groups are discrete 
collections of tokens. Regions and groups can be associated to a 
specific physical area of the environment, or can be described by 
their defining properties (see Figure 1). 

Efficient and robust decision making must be guaranteed for hard-
to-predict conditions. The overall behavior should be capable of 

Figure 2.3: Specification and distributed control concept

The interaction between the different semantic models is achieved through top-down

and bottom-up constraint transformation along the entire multi-semantic network: the top-

down mechanism constrains the lower decision making levels by bounds introduced for their

goals. As long as the low level operation stays within the bound it can be guaranteed that

the overall performance is satisfied. The bottom-up mechanism signals when constraints
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(imposed by the upper levels) cannot be satisfied by the lower levels. Figure 2.3 shows a

semantic hierarchy with three models, the bottom layers represent reactive behavior, and

the top layers offer a performance predictive description of the system as Task Graphs (TGs)

with data dependencies and Markov Decision Processes (MDPs).

The scheduling results of TGs are used to compute timing constraints for the reactive

behavior of the bottom level DMs. As long as their reactive operation stays within these

constraints, the overall timing requirement can be guaranteed. Bottom-up constraints

express the amount of performance violation occurred at the physical level, and ought to be

considered when re-computing the decision at the upper levels. The propagation of top-down

and bottom-up constraints is performed continuously at runtime.

The networked decision making in Figure 2.3 operates as follows. The reactive DMs

employ input sampling and event driven decision making mechanisms, such as Finite State

Machines (FSMs). The reactive behavior switches from one task to another depending on

the occurrence of events. For example, the system switches from S1 to S2, if event e1

occurs. Each embedded unit executes its own controller. Hardware reconfiguration offers

the capability of selecting online task implementations with different parameters, like speed,

energy, memory, and communication bandwidth. Several individual controllers might decide

to collaborate by building collectively a shared description that defines how the individual

controllers use jointly any shared resources to achieve common objectives, such as the access

over time (schedule) of vehicles accessing intersections. For example, the shared description

can be a Conditional Task Graph (CTG) [31], which includes decisions specific to different

operation conditions, such as various traffic loads. Note that CTG decision making is at the

level of small local areas rather than individual controllers. Next, the CTG descriptions of

the correlated areas are used to build description covering broader areas, such as those at

the Markov Decision Process level. This step distributes the overall goals into goals for the

individual sub-systems using information from the Markov Decision Process level.

The execution environment determines the structure of the distributed multi-semantic
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decision network as well as the nodes performance parameters. The network expands and

shrinks depending on the nature of the application.

2.3.2 Emergent Interactions

The sub-systems interact in complex ways. Interactions include not only exchanging

data between the sub-systems, like in traditional concurrent tasks, but also modifying the

goals, constraints, and other parameters of the participating sub-systems. For example, the

travel speed of cars sets the timing constraint of the image-based tracking sub-system, so that

certain field of view coverage is guaranteed. The traffic characteristics (e.g., average speed

and average number of passing cars) determine the timing parameters of the traffic-lights,

like cycle time, offset and split time. The timing deadlines for “special” cars, like police cars

and fire trucks, act as hard timing constraints for both the image-based and sound-based

tracking sub-systems.

Many interactions emerge for specific conditions. For example a high traffic load triggers

the need to optimize the timing parameters of the traffic-lights, however, if the traffic load

is very low then the default, periodic timing is sufficient, and hence there is no need of

establishing interactions between the traffic-light and image-based tracking sub-systems.

Also, the sound-based tracking sub-system needs to interact with the other sub-systems

only in special conditions, such as if there is no direct sight of view or if the timing

requirements are tight. In general, two sub-systems interact with each other whenever

the activities of one have a significant impact on the behavior of the other sub-system.

The significance of the impact is dynamic as it changes in time and space. Moreover, the

identity of the interacting sub-systems is hard to predict a-priori due to the large number

of potential interactions and the likelihood of adding new sub-systems to an existing CPS

application. Incremental changes to the CPS functionality should be performed without

recompiling the entire application, and without stopping the execution of the existing sub-

systems. Adopting a conservative approach in implementing emergent interactions can lead
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to excessive communication overhead due to excessive synchronization and data exchange

between sub-systems.

We suggest the concept of interaction space as the main mechanism for defining and

implementing emergent interactions between sub-systems. Interaction spaces are inspired

from energy fields: interaction spaces define procedures for (i) adding and removing energy

from a field, (ii) propagating energy, and (iii) measuring the energy without changing the

status of the space. In addition, global energy sources define overall interaction needs

for the sub-systems. The routines of each CPS subsystem have defined a footprint in

terms of their impact on the interaction space. The footprint can change dynamically.

Emergent interactions between sub-systems are identified by following the footprint of the

sub-systems, such as a sub-system that generates significant amounts of energy interacts

with another sub-system that is sensitive to the energy. Once an interaction is identified,

dedicated communication channels are set-up between the sub-systems to provide the needed

synchronization and data exchange with a reduced communication overhead. Figure 2.1

illustrates the concepts. The space has multiple orthogonal directions, which may or may not

correspond to the Cartesian directions. The directionality of interactions results from the way

energy is added (input) and removed (output) from the space. The influence of each action

ripples through the space along each direction depending on a propagation resistance along

that direction. The influences propagate more if the resistance is lower. The propagation

resistance can change dynamically depending on the impact of the sub-system that adds or

removes energy. Also, the influence can be eliminated in case a sub-system must have only

a local influence.

A possible representation of an interaction space can be based on electrical fields. For

our example, the cars entering the region can be interpreted as being analogous to electrical

charge, thus adding energy to the electrical field corresponding to the interaction space.

The cars leaving the region represent removing of energy from the field. The two tracking

sub-systems measure the energy of the interaction space. Each route of the region defines
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a direction of the space. The traffic characteristics along a route, e.g., the average speed

of cars, define the propagation resistance along that direction. The propagation resistance

changes dynamically for each car or group of cars depending on the moving characteristics

of the cars. Each traffic-light behaves as a switch that controls the moving of the charge

particles along the existing routes, hence control the propagation resistance along directions.

This representation can be used to identify emergent interactions between separate sub-

systems and also between the components of the same sub-system. For example, if the traffic

flow increases significantly along a certain route then the related energy increase affects a

certain area of the region. The traffic-lights in that area must be coordinated with each

other as they control the propagation resistance. Another example refers to the emerging

interactions between video-based and sound-based tracking system. The coverage dropping

of the video-based sub-system is described as a steep increase in the propagation resistance

along the route. The resistance increase can be compensated through a similar decrease if the

sound-based tracking sub-system can provide the necessary tracking. Hence, an emerging

interaction is established between the two sub-systems. Note that the interaction space

representation defines only a qualitative view of a CPS application, hence it is not used for

quantitative reasoning, such as for detailed decision making and control at the level of the

individual sub-systems.

2.3.3 Main Specification Constructs

The main constructs of the proposed goal-oriented specification notation are illustrated

in Figure 2.4.

The basic specification entity is a Decision Module (DM), which corresponds to local

points, physical areas, zones, and larger regions. As explained above, each DM executes

certain application specific algorithms for sensing, processing, and actuation. This part is

internal to each DM and is specified using an existing programming language, like C++

or Java. The focus of the proposed specification notation is on describing the local and
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autonomously meeting performance requirements, e.g., real-time 
constraints, bandwidth limitations, energy constraints, speed 
requirements, precision, etc. The underlying decision making 
model (DMM) is based on a multi-semantic decision making 
networks that represents the overall application performance at 
different levels of abstraction and using different evaluation 
formalisms. The low levels employ reactive models, e.g., finite 
state machines, which are capable of tackling unexpected 
situations. The upper levels use less flexible models but with more 
predictable performance, such as data flow graphs and task 
graphs. This way, the semantic hierarchy offers a smooth 
transition from the fully reactive behavior at the embedded node 
level and the deterministic operation at the application level. The 
number of abstraction levels and the decision making models for 
each level depend on the application. 

The interaction between the different semantic models is achieved 
through top-down and bottom-up constraint transformation along 
the entire multi-semantic network: the top-down mechanism 
constrains the lower decision making levels by bounds introduced 
for their goals. As long as the low level operation stays within the 
bound it can be guaranteed that the overall performance is 
satisfied. The bottom-up mechanism signals when constraints 
(imposed by the upper levels) are unsatisfiable for the lower 
levels. Figure 1 (right) shows a semantic hierarchy with three 
models, the bottom layers represent reactive behavior, and the top 
layers offer a performance predictive description of the system as 
Task Graphs (TGs) with data dependencies and Markov Decision 
Processes (MDPs). The scheduling results of TGs are used to 
compute timing constraints for the reactive behavior of the bottom 
level DMs. As long as their reactive operation stays within these 
constraints, the overall timing requirement can be guaranteed. 
Bottom-up constraints express the amount of performance 
“violation” occurred at the physical level, and ought to be 
considered when recomputing the decision at the upper levels. 
The propagation of top-down and bottom-up constraints is 
performed continuously at runtime. 
The networked decision making in Figure 1 (right) operates as 
follows. The reactive DMs employ input sampling and event 
driven decision making mechanisms, such as Finite State 
Machines (FSMs). The reactive behavior switches from one task 
to another depending on the occurrence of events. For example, 
the system switches from S1 to S2, if event e1 occurs. Each 
embedded unit executes its own controller. Hardware 
reconfiguration offers the capability of selecting online task 
implementations with different parameters, like speed, energy, 
memory, communication bandwidth, etc. Several individual 
controllers might decide to collaborate by building collectively a 
shared description that defines how the individual controllers use 
jointly any shared resources to achieve common objectives, such 
as the access over time (schedule) of vehicles accessing 
intersections. For example, the shared description can be a 
Conditional Task Graph (CTG) [17], which includes decisions 
specific to different operation conditions, such as various traffic 
loads. Please note that CTG decision making is at the level of 
small local areas rather than individual controllers. Next, the CTG 
descriptions of the correlated areas are used to build description 
covering broader areas, such as those at the Markov Decision 
Process level. This step distributes the overall goals into goals for 
the individual sub-systems using information from the Markov 
Decision Process level.   

The execution environment determines the structure of the 
distributed multi-semantic decision network as well as the node’s 
performance parameters. Also, the network expands and shrinks 
depending on the nature of the application. A case study for 
different decision making procedures is presented in Section 5. 

4. SPECIFICATION CONSTRUCTS 
The main constructs of the proposed goal-oriented specification 
notation are illustrated in Figure 2. The basic specification entity 
is a Decision Module (DM), which can correspond to local points, 
physical areas, zones, or larger regions. As explained in Section 3, 
each DM executes specific application-specific algorithms related 
to sensing, processing, and actuation. This part is internal to each 
DM and is specified using an existing programming language, like 
C++ or Java. The focus of the proposed specification notation is 
on describing the local and global goals as well as the nature of 
interactions between modules. The actual interaction mechanism, 
such communication mechanism and parameters, is produced 
automatically by the compiler. For simplicity, the section offers a 
descriptive presentation instead a formal one. 

Interaction (IM)

Inputs:
Outputs:
Internal DM:

Goals:

Capabilities:

Local DM

Inputs:
Outputs:
Internal DM:

Goals:

Capabilities:

Local DM

Inputs:
Outputs:
Internal DM:

Goals:

Capabilities:

Local DM

Zone

Area

Region Inputs:
Outputs:
Internal DM:

Goals:

Capabilities:

Region DM

Inputs:
Outputs:
Internal DM:

Goals:

Capabilities:

Region DM

Inputs:
Outputs:
Internal DM:

Goals:

Capabilities:

Inputs:
Outputs:
Internal DM:

Goals:

Capabilities:

Area DM

Area DM

 
Figure 2: Specification for scalable decision making 

Figure 2 illustrates that a DM has four main parts: inputs, outputs, 
capabilities, and goals. The four parts are detailed next.        
Inputs. DM inputs either sample the pool of data associated to a 
physical region or are interaction data coming from other DMs. 
The acquisition semantics of an input can be continuous time, 
discrete time, or event driven. Moreover, inputs can refer only to 
certain facets of physical signals, e.g., voltage, current, phase, and 
frequency of a signal. The user can also specify aggregation of 
signals over time and space (integrals for continuous inputs and 
sums for discrete signals) and rate of change (sensitivities) with 
respect to time, space, or other signals (derivates for continuous 
inputs and differences for discrete inputs). 
Outputs. DM outputs relate to the outputs produced by the 
algorithm of a module. Outputs include physical actuation and 
control signals. 
Capabilities. Each module has a limited set of physical 
capabilities, such as the highest amount of service requests it can 
service, local memory, processing speed, energy resources, 
communication distance and bandwidth, and so on. These 
capabilities affect a nodes ability to maximize its local goals, and 
also percolate in influencing the quality of the optimal value that 
is reached for the overall application. For example, a node’s low 
processing speed or lack of memory might restrict the amount of 
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global goals and the nature of interactions between modules. The compiler automatically

produces the actual interaction mechanism, communication mechanism and parameters. For

simplicity, the presentation is descriptive instead of a formal one. Figure 2.4 illustrates that

a DM has four main parts: inputs, outputs, capabilities, and goals:

• Inputs : DM inputs either sample the pool of data associated to a physical region or are

interaction data coming from other DMs. The acquisition semantics of an input can

be continuous time, discrete time, or event driven. Moreover, inputs can refer only to

certain facets of physical signals, e.g., voltage, current, phase, and frequency of a signal.

The user can also specify aggregation of signals over time and space (integrals for

continuous inputs and sums for discrete signals) and rate of change (sensitivities) with

respect to time, space, or other signals (derivates for continuous inputs and differences

for discrete inputs).

• Outputs : DM outputs relate to the outputs produced by the algorithm of a module.

Outputs include physical actuation and control signals.
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• Capabilities : Each module has a limited set of physical capabilities, such as the highest

amount of service requests it can service, local memory, processing speed, energy

resources, communication distance and bandwidth, and so on. These capabilities affect

the ability of a node to maximize its local goals, and also percolate in influencing the

quality of the optimal value that is reached for the overall application. For example,

the low processing speed of a node or lack of memory might restrict the amount of

alternatives that are locally analyzed, and affect the quality of the optimization process

conducted by the node. The user can define attributes, like the upper and lower bounds

and average value in time and space of a capability.

• Goals : The part indicates the goals to be optimized by each DM. Goals can be

expressed either as maximizing or minimizing a cost function, or as a constraint

satisfaction requirement, in which the goal expression must either exceed or fall below

a threshold value. The cost function is defined over outputs and capabilities.

Components interact through interactions. The interactions are identified dynamically

based on the interaction space concept discussed in Subsection 2.3.2. The following kinds of

interactions can be established between DMs in the proposed notation:

• Collaborative interactions : Collaborative interactions are set up between DMs, which

have nonconflicting (non-competing) goals. Modules interact with each other through

inputs and outputs, e.g., one module produces outputs to the pools that serve as inputs

to another module. The goals and capabilities of the modules are not affected by these

kinds of interactions.

• Competing interactions : Such interactions are between DMs with competing goals,

like optimizing the goal of one DM affects adversely the optimization of the other

DM. Similar to collaborative interactions, modules interact through their inputs and

outputs but cannot change their goals or capabilities.
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• Guiding interactions : Guided interactions are between DMs at consecutively higher

levels in the semantic hierarchy. DMs at upper levels generate outputs that are used

to set the goals of the modules at lower levels. This way the first modules are steering

the goals and hence the behavior of the latter modules.

• Enabling interactions : Enabling interactions are information transfers from lower

(reactive) semantic levels to the upper levels. A lower DM transmits information

about its capabilities to an upper DM, so that the latter can use this knowledge during

a decision making that might affect the goals set for the lower DM through guided

interactions. Enabling interactions are the information links through which upper

DMs acquire knowledge about the actions that are ongoing in the real world.

In the proposed specification notation, the nature of interactions is dynamic and does

not explicitly state the DMs participating to it. Instead, the user describes the conditions

(thresholds) under which DMs start to interact with each other, like the change of an

input, exceeding a threshold value, exceeding certain capabilities, etc. Interactions are

described using Interaction Modules (IMs). IMs define any data transformation (such as

data aggregation, and filtering) that is needed if DMs of different formalisms are interacting.

Similar to DMs, IMs have goals and capabilities. Moreover, the user must specify for each

of the four interaction types, the formal mechanism (TGs, MDPs, etc.) used to resolve the

interaction.

2.4 Conclusions

Massively distributed embedded systems are rapidly emerging as a breakthrough concept

for many modern applications. However, providing efficient and scalable decision making

capabilities to such systems is currently a significant challenge. The thesis proposes a model

and specification language to allow automated synthesis of distributed controllers, which

implement and interact through models of different semantics. Scalability of descriptions
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is realized through defining the nature of interactions that can occur among decision

modules while leaving the task of optimally implementing these interactions to the execution

environment. The notation defines the operation goals of each sub-system (e.g., the criteria

to be maximized or minimized during operation) and the physical capabilities of a module

to achieve a certain goal. Different interaction types are introduced depending on the way

subsystems influence each others goals and capabilities.

Compared to similar work, the proposed model and specification notation differs in

that they focus on optimal goal satisfaction in massively distributed systems and not

on algorithmic descriptions. Therefore, the language concepts are orthogonal to existing

notations as it concentrates on the interactions between groups of nodes, or nodes and

environment and less on the behavior of the individual nodes. This is expected to simplify

specification and help scalable decision making.
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Chapter 3

Trajectory Computation and

Planning for Distributed

Collaborating Mobile Agents

3.1 Introduction

Autonomous mobile agents perform a large set of activities, including the computation

of trajectories and identification of the control parameters for traveling along a trajectory,

signal sampling and processing (including image processing, data integration), as well as

communication with other autonomous mobile agents. In many practical scenarios activities

such as target detection and handling, and assessment of the results are also performed

online by autonomous mobile agents. [32, 33, 34, 35]

Scalability is one of the main challenges in distributed control theory of autonomous

mobile agents, which will be addressed future in this chapter. Present control techniques are

restricted to single or small numbers of autonomous mobile agents. All through there are

some very interesting ongoing work in swarm control [36, 37, 38, 39, 40, 41], the theory of

scalable and robust distributed control is still largely unstudied.
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This chapter presents our modeling procedure expressing mobile agent trajectory

generation. The modeling procedure is part of developing distributed control algorithms for

large-scale groups of autonomous mobile agents, as it captures the moving of autonomous

mobile agents through the physical space. The modeling procedure considers the physical

characteristics of mobile agents, e.g., dimensions, weight, and velocity constraints. Multi-

mode behaviors of autonomous mobile agents are adopted to adapt to the unknown or

changing environmental conditions and goals. In addition, the mobile agent mobility is

modeled using the trajectory generation algorithm by Yakimenko [42].

Another main challenge related to mobile agent control is devising flexible strategies

with predictable performance in hard-to-predict conditions. This thesis proposes an approach

to performance predictive collaborative control of autonomous mobile agents operating in

environments with fixed targets. The chapter also offers detailed experimental insight on

the quality, scalability and computational complexity of the proposed method.

In many instances, a group of autonomous mobile agents must operate collaboratively

to tackle complex tasks [43, 44, 42, 45, 46]. The nature of collaboration is often decided

dynamically at run time, depending on the context-specific situations. For example, a

mobile agent might not be unable to meet the deadlines set for its tasks due to unforeseen

overheads, such as the time required to avoid moving obstacles. In this case, the mobile

agent might inquire collaboration from neighboring mobile agents to perform jointly the

tasks. Autonomous mobile agents with more flexible deadlines might decide to satisfy the

request, and participate to collaboration.

An important challenge is to offer predictable and reliable operation in hard-to-predict

environments and situations. Traditionally, reactive control has been the commonly accepted

solution for situations that cannot be characterized off-line. Depending on conditions

identified online, the controller selects the most suitable response from a set of predefined

strategies. Each response strategy is characterized by specific outcomes and performance,

such as execution time, and energy consumption. While certain ”fixed-point” properties
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can be proven for reactive behavior (like stability and reachability) [45, 51, 52], other

properties, which depend on dynamic attributes (e.g., the frequency of being in a state),

are harder to prove unless restrictive functioning conditions are assumed. Thus, important

performance attributes, i.e. execution time and resource (energy) consumption, are hard to

correctly estimate and guarantee for reactive control procedures. The alternative to reactive

procedures are off-line static control methods [44, 53]. These methods work very well if the

operation conditions and the environment are fully known, and hence the autonomous mobile

agent behavior is deterministic. The performance of the control methods can be precisely

estimated in this case. However, static methods have little or no flexibility in adapting

to unknown situations. In conclusion, it is challenging to devise general, performance-

predictable control strategies for efficient operation in dynamic conditions.

The chapter presents the distributed control model and an approach to devising

performance predictive methods for collaborative control of autonomous mobile agents

operating in environments with fixed targets. Section two summarizes the related work.

Section 3.3.1 discusses the trajectory generation algorithm and experimental results.

Section 3.4.1 defines the addressed collaborative problem, presents the modeling solution,

ILP modeling of the problem and experimental results. Finally, conclusions are put forth.

3.2 Related Work

This section summarizes existing work on swarm control, collaborative decision making

and control for astomous systems.

Reynolds [40] proposes an approach based on bird-flock simulation. The model called

‘boid model’, controls the behavior of individuals in a group that is part of three-dimensional

(3D) animation. The flock is modeled as particle systems [65] with a large number of

particles having their own behaviors and geometrical states(e.g. orientation). The particles

perform low complexity behaviors to move towards a non-collision aggregation. Distributed
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control is applied to control over each actor’s speed and orientation to avoid collision

avoidance, match velocity and center a flock. Distance and direction offset the vectors used

in obstacle avoidance strategies, such as force field and steer-to-avoid. Force field model

assuming repulsion force are emitted from obstacles and magnitudes of the repulsion force is

inverse proportional to the distance between obstacles and individuals. Steer-to-avoid model

observes obstacles only in front of the flying agent and computes a radial vector to direct the

agent flying beyond the edge to avoid collision. Local center (center of neighboring boids) is

used in flock aggregation action instead of some traditional approaches that use global center

(center of the whole flock). Dynamic velocity matching is based on relative speeds between

neighboring flockmates and not the absolute positions. In addition, group behavior, such

as direct control the flock over time, is conducted using a central technique called scripting.

Simulation results of this model shows ‘flock-like’ motion, but it is still hard to measure the

validity of the motions.

Brogan and Hodgins [36] describe a method to control group behaviors for systems

with significant dynamics. Significant dynamics means the motion of individual member is

affected by the dynamic properties which can not be described by mass-point. Restrictions on

gradients of velocity, acceleration and direction are applied since individuals are not treated

as mass-point, as in other methods. Individuals in moving groups must preserve their relative

positions and speed, and cluster into groups. Global information (such as obstacle positions,

group velocity) is adopted in collaboration while local communication with nearby neighbors

decides the reactive behaviors. This method has the limitation in collision avoidance caused

by members moving towards averaging destination locations.

Gazi and Passino [63, 64] give a mathematical proof of cohesion stability of swarm

aggregation with artificial potentials. Members of swarms are treated as points regardless

of their dimensions. The author develop continuous time models for swarm formation and

use the models to find the resulting swarm sizes. The artificial social potential function

sums all the attractions and repulsions from all the other members to perform long-range-
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attraction and short-range-repulsion. The results apply to problems in 1D as well as in

high-dimensions. Distributed aspect of swarms is also shown in the proving procedure as

each member in the swarm is performing distributed optimization (computing its part of the

gradient of the global function at its position). The experimental results show an increasing

density of the swarm along with a growing number of members since the space occupation

of the swarm is independent to the number of members, which is inconsistent with biology

studied examples. Other limitations include: the position of all members in the crew needs

to be known to every units, which causes a high volume of communication compared to

strategies using nearest neighbor rules. Also, collision avoidance and sense range are not

discussed yet in the work.

Brock and Khatib [37] suggest a similar two phase, two-dimensional planning method

for real-time obstacle avoidance and motion control of multiple robots. The planning phase

generates the basic trajectories, which are modeled as elastic strips. The execution phase

incrementally adjusts velocity and tunes trajectory to react to the changing environment

and unexpected obstacles. The novel elastic strips framework is contrived to describe the

trajectories of robots, which is similar to elastic bands [56] but with more multi-dimensional

freedom. Collision avoidance is implemented by means of changing the time parameters

associated with the elastic strips. Elastic strips are modified continuously as assuming

obstacles have a repulsive force to the strips. The elastic strips deform when the robot

is trying to avoid obstacles, and regain after that to continue with their predefined tasks.

The proposed method assumes that only a small number of collaborating robots operate

in the shared workspace, and hence adopt centralized computation. So, the method is not

applicable when the number of group members grows largely.

Yamaguchi [46] presents a distributed motion coordination strategy (called distributed

smooth time-varying feedback control) for multiple mobile robots. The inter-robots strategy

includes attractions and repulsions between robots and target to urge troop formation in

hunting operation. Repulsions between robots, obstacles and invaders provide a collision
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avoidance mechanism. 2D control inputs to robots are vectors, namely ‘formation vector’,

which pull the robots to the direction of the vector with a strength proportional to the

norm of the vectors. Formation vectors are built heuristically by mapping surrounding

environment of the robot during collaboration. Relative position of other robots and target

has linear effect on input control vector for a certain robot. The advantage of this method

is a predictable stability and formation controllability. Although theoretically this method

can be applied to groups with large number of robots, the computation effort still limits the

application of the method.

Leonard and Fiorelli [38] propose a distributed control approach to support cooperation

of multiple autonomous vehicles. This method is based on artificial potentials and virtual

leaders. The artificial potential implements logarithmic laws. The vehicles are point-mass.

Biological models show that self-ordered animals in nature tempt to (i) get closer to the

far-away neighbors in a limited range, (ii) be apart from too-closed neighbors, and (iii) keep

up with neighbors in the course of aggregation. The proposed control laws simulate this

process by setting the control force as minus the gradient of the sum of all relative distances

(artificial potentials), hence affecting an individual vehicle and then minimizing the potential

of the vehicle. Virtual leaders are virtual moving points, which make the neighboring vehicles

have a larger potential. The movement of virtual leaders bring the nearby groups along the

desired directions. Since there is no real leader, the behavior of each individual are affected

by all neighboring vehicles. This makes a group more robust. An asymptotic dissipation

term is added to the control law to achieve better stability by matching the velocities of

vehicles with the desired velocity. A Lyapunov function is defined to prove the improved

stabling. There is no geometrical information of autonomous mobile agents considered in

the model. This model only considers singles mode formation.

Walter, Sannier and others [41] perform Virtual Battlespace simulation for an mobile

agent swarm using a Graphics Processing Unite (GPU) platform called ADAPTIV. The

methodology is based on how humans are involved in swarm operation, and adopt centralized
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control. Only simple behavior is performed by each unit in the swarm. An insect-inspired

digital pheromone field, called markers, produces autonomous mobile agent attraction to

targets, and repulsion from obstacle and other dangerous areas. The control operator is

a hex grid data structure with numbers representing magnitudes of different effects. For

example, the pheromone flavor of a certain grid can be threats or targets. The magnitude

shows the strength. Target-flavor pheromone is attractive to the autonomous mobile agent

at that location while threat-flavor pheromone makes a repulsion. A clear view of the

entire battlefield is necessary for the control center to gather and update information of

the digital pheromone field. The units in swarms operate after receiving updated digital

pheromone data. The performance of GPU exceeds that of CPU in vector based simulation.

However, centralized control causes a high computational complexity and having human-in-

loop strategy limits the flexibility of the method.

Another potential-field-based coordination methods for mobile agents is proposed by

Mamei, Zambonelli and Leonardi [39]. The method is named ”Co-Field”, which is a

coordination field similar to force field but expresses context-related information. This field is

generated by agents themselves, and conveys through wireless communication infrastructure.

Mobile agents take movements following the gradient downhill, uphill, or equipotential lines

of the computational field without centralized control. Similar to Van Dyke Parunak [61]’s

pheromone field, ”co-field” is updated by agents to keep the dynamic environment similar

to reality. The method was used to simulate urban Traffic Management scenario with

street/corner fields, traffic fields to coordinate agents, and conduct traffic load balancing

control. The communication infrastructure implemented by middleware may be centralized

(through an external server) or decentralized (embedded in mobile agents). A methodology

for coordinated operation is still under research and it is a common challenge in most field

orientation control strategies. In addition, updating ”Co-field” requires a full awareness of

all the information in the whole field, which limits the scalability of this method.

Schouwenaars, Valenti and Feron [53] propose a real-time, mixed-integer linear
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programming (MILP) optimizer to control manned and unmanned aerial vehicles for team

missions. A team of human-operated vehicles and autonomous mobile agents operate in a

partially known environment. A task scheduler generates way points as the input for the

MILP module. The continuous-time states of an autonomous mobile agent are expressed

as linear differential equations with position and velocity. A cost function with both stage

cost and terminal cost (e.g. time consumption, travel distance) is optimized under bounded

velocity and acceleration constraints. Obstacle avoidance and loiter state flying mode are

also introduced by constraints of the linear program problem. The whole decision loop is

composed of preprocessing, optimization, and postprocessing. The first step selects a proper

cost function, detects the neighboring obstacles, and determines intermediate way points.

The MILP optimizes the routing result by solving the problem formulated by preprocessing

step. Because of disturbances spaces (e.g. wind), the initial velocity might be out of the safety

range. Thus the postprocessing checks the feasibility of the optimized results and updates the

current trajectories. This mechanism also uses back-up trajectories to enhance the robustness

of the trajectory planning method when postprocessing finds infeasible trajectories. A

natural language interface allows the manned and unmanned vehicle to communicate with

each other. Real-time simulation-in-the-loop space (SIL) test in loiter pattern, avoiding

pop-up targets, and conducting two consecutive mission are performed successfully. This

method is capable of executing multiple mode mission and has human control interface. The

limitation is that it is only applied to one autonomous mobile agent and one manned air

craft cooperation, hence is not scalable to large teams.

Subramanian and Cruz [62] use an adaptive Markov chain to target randomly pop-up

threats, and express collaboration to reach the targets. Pop-up threads are up at random

locations with random observable durations. The model uses Markov chain to predict

possible locations for pop-up target in the future, and is only interested in the probability

of appearance of next targets. The Markov chain is expressed using event index with each

node in the chain represent an event. Event index needs to be converted into time to achieve
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autonomous mobile agent control. A collaborating movement strategy assigns a target to

the autonomous mobile agent, so that it minimizes the number of the steps for reaching

the target thus reducing the time cost dramatically. Integer Programming (IP) is utilized

to optimize the assignment. In this Markov chain prediction method, tables are updated

either when an autonomous mobile agent reaches the target, or the target disappears. So,

it is not limited in the assumption that autonomous mobile agents always reach the target

location before it disappears as assumed in [50]. Only locations of a pre-generated set are

possible pop-up locations. In reality, the locations are hard to predict, and are not likely

to be covered by a discrete set. The Markov table dose not have enough information for

prediction before the first several pop-up threads appear/disappear.

Rathbun and Capozzi [58, 57] suggest an evolutionary approach to path planning in

uncertain environments. The cost function in this method is defined as the probability

of autonomous mobile agents colliding with an obstacle. The Evolutionary Algorithm (EA)

has the ability to perform nonlinear optimization with complex constrains, which is desirable

since autonomous mobile agent states and environmental conditions are not necessarily linear

functions. EA also has the feature of minimizing the changes from the original trajectories

when an autonomous mobile agent is replanned dynamically. The uncertainty of the expected

obstacle motions gives this problem stochastic properties. The mutation step of the EA

strategy is as follows: (i) mutate and propagate, (ii) crossover, (iii) go to goal, and (iv) mutate

and match. The selection process uses round-robin tournament to avoid local minima. The

cost function minimizes collision possibilities with both mobile and stationary obstacles, and

minimizes fuel consumption. The practicability of a certain segment of the planned path is

inverse proportioned with the distance between the starting point and that path. Re-planned

paths must not be dramatically different from the current trajectory, especially in nearby

segments, due to the limited response time of autonomous mobile agents. The accuracy of

the predicted probabilities is increasing as more information is gathered during operation

because of the property of EA. There is no collaborating behavior discussed in this approach.
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Stentz [59] presents a graph-search-based algorithm to calculate the optimal path in

unknown environments. The technique is called ‘D*’ method. The robot is operating with

an on-board sensor, which can detect obstacles, and map the data on to a global map of the

work area. The map is not necessarily accurate and comprehensive, and is updated by robots

during traveling. D* adopts states and directional arcs with associated cost to represent the

work space. It uses backpointers (point form one state to the next state) to express the

planned paths. The method utilizes two functions: PROCESS-STATE (generate path), and

MODIFY-COST (update cost of arcs and list of states). Two functions are iteratively called

until robots reach the destination. Although more efficient than the traditional brute-force

optimal re-planning method [60] and overcoming some limitation by assuming fully known

environments, the method is too computational intensive for large work spaces and multi-

autonomous-mobile-agent teams. On the other hand, dramatic changes of trajectory after

path replanning is hard to be carried out for high speed mobile devices.

Next table summarizes the taxonomy of related work in terms of properties of targets,

environments, number of autonomous mobile agents and the goal of the purposed models.

The following is a table summarizes the above method as well as some other work in

four different aspects: decision model, state information, time invariance and inspiration.

Decision model shows the proposed method is decentralized or centralized, reactive,

hierarchical or not, and so on. State information is the location of physical storage of

the states of autonomous mobile agents, and data representation. Time invariance examines

the variability of method over time and number of models contains in the method. At last,

inspiration is the origination of the method.
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3.3 Proposed Distributed Control Model and

Trajectory Generation

for Autonomous Mobile Agents

This section introduces the distributed control model that we intend to pursue. But,

before defining the model, we systematized the main characteristics that must be tackled

by any distributed control approach. This is important not only for placing our model in

context, but also shows the differences compared to other work.

3.3.1 Proposed Distributed Control Model

Distributed control algorithms address the following main aspects:

• Global goals: This refers to the overall goals of distributed control. Goals can be defined

globally, such as finding extreme values, cumulative attributes, global moving pattern,

maximizing information acquisition, maximizing safety, etc, or locally, such as meeting

an imposed distance constraint between neighbors.

• Environment: The environment defines the context in which vehicles operate.

Environments might include static and/or moving obstacles.

• Controlled variables: This relates to the number and type of the controlled variables.

For example, variables can include those for vehicle movement, like velocity magnitude

and direction, and gradients of change, the characteristics of the data acquisition

process, e.g., the rate of data sampling, and the nature of actuation. Approaches

also differ from those that control single variables to those that decide a large number

of variables.

• Constraints: Constraints constrict the state and controlled variables to express the

goals of distributed control, obstacles, other moving vehicles that should not collide
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with each other, communication ranges, processing capabilities of the vehicles, and

inertias.

• Local control laws: The laws define the local behavior of the vehicles. The control

laws capture the state of the neighbors, obstacles, and goals. The laws can follow two

philosophies, based on local interactions and based on an artificial potential fields.

With respect to the variability over time, systems can be static (no variation over time)

and dynamic (gradient over time):

• Global goals: Majority of the existing methods assume static objectives and goals, such

as the formation of a certain pattern, collision avoidance, and navigation to a given

target. Dynamic goals are useful not only for defining changing missions for the system,

but also for increasing its security and better adjustment to changing environments.

For example, if there are no external threats then the main goal would be that of

maximizing data acquisition, which changes to maximizing safety in the presence of

hazards.

• Environment: Most of the existing techniques consider environments with dynamic

characteristics, such as variable temperature, air conditions but also moving obstacles.

• Controlled variables: The sets of state and control variables are fixed in arguably all

existing approaches. This is explained by the fact that the mobile individuals have

a simple behavior, which does not adapt significantly to the environment. However,

in a multi-mode situation, the sets of state and control variables ought to be changed

depending on the actual operation mode. For example, in data acquisition mode, the

state and control variables relate to maximizing the collected information amount. In

contrast, a different variable set is used in hunting mode.

State and control variables might also change if individuals are differentiated depending

on their priorities, like virtual leaders, and communication-oriented entities.

50



virtual leaders

Actuation

Parameter
decision

Trajectory generation Data acquisition

Goals

Constraint
predictions

Environment 
attributes
prediction

control variablescontrol variablescontrol variables

state variables
predicted

actual state 
variables

Data from

Figure 3.1: Vehicle actions

• Local control laws: Existing methods assume a fixed functionality for their individuals.

Some approaches achieve a limited degree of adaptation to dynamic situations

by adjusting functional parameters through negotiations between neighbors and

interactions with the environment.

Our goal is to study distributed control methods for large-scale groups of autonomous

mobile agents. The goals set for the autonomous mobile agent groups refer to both

global and local attributes, and might change over time. The environmental properties

might also modify in time, including the position of mobile obstacles. This determines

that the constraints that ought to be satisfied by the obtained control laws have to

contemplate variable constraints. Finally, each autonomous mobile agent has multi-

mode behavior, including multiple data acquisition scenarios, communication procedures,

actuation mechanisms, and so on. During operation, the distributed control methods must

decide not only the coordinated moving of the vehicles (e.g., to avoid collision) but also the

synchronization between the moving characteristics and the global goals (e.g., the amount

of acquired information). As a consequence, the local control laws, and the sets of state and

control variables must have a dynamic character too.

3.3.2 Trajectory Generation Algorithm

The trajectory generation algorithm and its implementation is a part of mission

planning. However, with the development of embedded computing system, it’s not necessary
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anymore to build the trajectory generating system in the ground control station. The

system can be implemented now as an on-board system, as real-time trajectory generation

is more advantageous has than remote control, and also aids multi-autonomous-mobile-

agent cooperation. This section summarizes the trajectory generation algorithm proposed

by Yakimenko [42]. The trajectory generation problem is that of producing an optimized

trajectory of points T ∈ {T1, T2, T3, . . . }, such that each point satisfies all constraints on

dynamics and control, and the predefined initial and final states (position and velocity) of

the trajectory are met. Possible optimization criteria include flying time, flying distance, fuel

consumption, autonomous mobile agent security, and maximizing information acquisition.

The autonomous mobile agent movements are obviously described in a 3-D coordinate

system, and are controlled by rotation around its center of gravity, as shown in Figure 3.2.

The autonomous mobile agent trajectory generation problem involves not only the air

vehicles, but also one or more mission planning and control stations, payloads, necessary

data links, and other ground support equipment, like launch and recovery equipment.

The aircraft model is as follows. Let (x1, x2, x3) denote the local level coordinates over a

flat region with x1 axis pointing EAST, x2 axis pointing NORTH, and x3 pointing DOWN.
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A autonomous mobile agent’s center of mass defines its position. The variables V (airspeed),

γ (flight path angle), and χ (azimuth angle) are needed to fully define the autonomous mobile

agent’s dynamics [42].

As explained in [42], in the above coordinates system, the aircraft is modeled as a set

of three-dimensional point-mass differential equations:

ẋ1 = V · cos γ · cosχ ẋ2 = V · cos γ · sinχ

ẋ3 = −V · sin γ V̇ = g(nx − sin γ) (3.1)

γ̇ =
g(nz · cosφ− cos γ)

V
χ̇ =

g · nz · sinφ
V · cos γ

ṁ = −Cs

where

nx =
[T (δT , n) · Tmax(M,x3, c) · cos(α + εT )−D(α,M, x3, c)]

m · g

nz =
[T (δT , n) · Tmax(M,x3, c) · sin(α + εT ) + L(α,M, x3, c)]

m · g

ṅ =
kT · δT − n

tδ

The state vector of the autonomous mobile agent is z = {x1, x2, x3, V, γ, χ}T , and

the three-variable control vector is u = {δT , nz(α), φ}T 1. The states and controls of the

autonomous mobile agent are fully defined by the above two vectors in its state and control

space.

The trajectory generation algorithm by Yakimenko [42] uses polynomials for

approximating an autonomous mobile agent’s trajectory. Consider polynomials of degree n

as the reference functions for the aircraft trajectory xi, (i = 1, 2, 3) in the 3-D coordinate

1Nomenclature: δT is the throttle position, nz is the normal projection of load factor, and φ is the bank
angle
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system:

xi(τ) =
n∑

k=0

aik
(max(1, k − 2))! · τ k

k!
(3.2)

x′i(τ) =
n∑

k=1

aik
(max(1, k − 2))! · τ k−1)

(k − 1)!
(3.3)

x′′i (τ) =
n∑

k=2

aik · τ k−2 (3.4)

where τ (virtual arc) is an argument. The degree n of the polynomial is decided by the

maximum time derivative of the aircraft coordinates, and the constrains at the initial and

final points of the trajectory. The degree n is greater than the maximum orders of the time

derivatives at the terminal points [42]. The values of the polynomial coefficients aik are

determined by the boundary conditions of the trajectory. For example, the coefficients of

polynomials of degree 3 are as follows [42]:

ai0 = xi0 ai1 = x′i0

ai2 = −
2x′if + 4x′i0

τf
+

6(xif − xi0)

τ 2
f

(3.5)

ai3 =
6(x′if + x′i0)

τ 2
f

− 12(xif − xi0)

τ 3
f

τf (length of the virtual arc) is the main optimization parameter. More optimization goals

can be added to the problem description, such as the minimum flight time and the minimum

gas consumption. This trajectory formulation has the advantage that the velocity history

is independent of the trajectory. Thus, different speed histories can be achieved along a

trajectory, so that the predefined final airspeed can be met.

By using virtual arc τ as an optimization parameter, the trajectory and the velocity

history are made independent to each other. Thrust history is defined as the points where

the thrust value changes. The thrust values belong to a known set. For example, the thrust
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history might include the points at which the autonomous mobile agent starts to accelerate

and decelerate, respectively. τT1 and τT2 (0 ≤ τT1 < τT2 ≤ τf ), such that the thrust switches

from δTmax to δTmin at τT1 to let the autonomous mobile agent accelerate as fast as possible,

and then switches from δTmin to δTmax at τT2 to let the autonomous mobile agent decelerate.

The algorithm for finding the thrust history positions the switching points using a

binary search algorithm. The resulting thrust history is verified with respect to goals like

minimum-length trajectory, minimum flying time, and fuel consumption, and meets the

imposed constraints (e.g., velocity gradients, and obstacles). As shown in Eqs. (3.6), the

derivative of the speed in terms of τ (virtual arc) is not affected by the value of the trajectory

coordinates (x1, x2, x3) [42]:

V ′(τ) = g(nx − sin γ)
dt

dτ
=
g(nx − sin γ)

λ(τ)
(3.6)

where

λ(τ) =
dτ

dt
2 (3.7)

As a result, τ can be optimized based on a preset thrust history, or the thrust history

can be the second optimization parameter. For example, if trajectory generation is a time-

optimization problem, the optimum control law is the rule for thrust on/off switchings [42].

So, after solving the shortest time optimization problem, we can set two switch points τT1

and τT2 (0 ≤ τT1 < τT2 ≤ τf ), such that the thrust switches from δTmax to δTmin at τT1 to

let the mobile agent accelerate as fast as possible, and then switches from δTmin to δTmax at

τT2 to let the autonomous mobile agent decelerate. It is obvious that to achieve the shortest

time, τT1 = 0 and 0 < τT2 ≤ τf . If we are looking for the minimum fuel consumption

solution, the second optimization parameter will be a constant δ∗T .

The boundary constraints on the trajectory are imposed as follows. The derivative of

the initial and terminal state vectors and controls are given in terms of time. However, in

2λ in Eqs. (3.7) is the virtual speed.
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order to calculate the coefficients aik of Eqs. (3.2), it is necessary to know the initial and

final coordinates (xi0, xif ) (i = 1, 2, 3) of the aircraft, and their derivatives x′i0, x′if , x
′′
i0, x′′if

with respect to the argument τ . Hence, we have to relate the state vector derivatives to the

expressions for ẋi and ẍi.

The time derivatives of the mobile agent coordinates are expressed as the following

equations with respect to the definition of λ:

ẋi(τ) =
dxi
dτ
· dτ
dt

= x′i · λ(τ)

ẍi(τ) =
d(x′i(τ) · λ(τ))

dτ
· dτ
dt

= x′′i · λ2 + ẋi · λ′

i = 1, 2, 3

Then, for x′ and x′′ one can get:

x′i =
ẋi
λ

x′′i =
ẍi − ẋi · λ′

λ2
i = 1, 2, 3

The corresponding value of λi and λ′i are as follows:

λ0 = V0 λ′0 =
V̇0

V0

λf = Vf λ′f =
V̇f
Vf

The predicted state and control variables are computed based on the thrust history and

imposed boundary constraints as follows. The numerical solutions of the predicted state and

control variables along the trajectory are calculated iteratively over N consecutive points

that are equally placed along the virtual arc (N is selected by the user):

∆τ =
τf

N − 1

The airspeed at the jth point is determined by the airspeed at (j−1)-th point (Vj−1) together
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with nx j−1, γj−1, and λj−1 [42]:

Vj = Vj−1 +
g(nx j−1 − sin γj−1)∆τ

λj−1

(3.8)

∆τ results from this equation.

The corresponding time interval can be approximated using average airspeed [42]:

∆tj =
2
√∑3

i=1(xi j − xi j−1)2

Vj + Vj−1

(3.9)

Thus, λj = ∆τ
∆tj

can be calculated in order to get other dynamic (state) and control

parameters at each step (j = 1, 2, · · · , N).

Other parameters can be computed at each point [42]:

γ = − arcsin
( x′3√∑3

i=1 x
2
i

)

χ =





arctan
(x′2
x′1

)
if x′1 ≥ 0

−x′2
(
π− | arctan

(x′2
x′1

)
|
)

if x′1 < 0

χ (bank angle) and nz are calculated iteratively along with the coordinates and states

variables at each point [42]:

φ =





arctan
(

V ·λ·χ′·cos γ
V ·λ·γ′+g·cos γ

)
if V · λ · γ′ ≥ −g · cos γ

−(χ′ · cos γ)
(
π− | arctan

(
V ·λ·χ′·cos γ
V ·λ·γ′+g·cos γ

)
|
)

if V · λ · γ′ < −g · cos γ

nz =
1

g

√
(V · λ · χ′ · cos γ)2 + (V · λ · γ′ + g · cos γ)2
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Figure 3.3: Flowchart of the optimum trajectory generation algorithm
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where γ′ and χ′ can be computed from the equations [42]:

γ′ = −x
′′
3(x

′2
1 + x

′2
2 )− x′3(x′1x

′′
1 + x′2x

′′
2)

(
∑3

i=1 x
′2
i )3

2
cos γ

χ′ =
(x
′′
2x
′
1 − x′2x

′′
1) · cos2 χ

x
′2
1

The trajectory generation problem can be defined as an constrained optimization

problem as follows: minimize the cost function while meeting the constraints of the air

dynamic characteristics of the autonomous mobile agent, and satisfying the preset initial

and final states:

min Fcf (zi) zi ∈ {z} under constraintsE(Fcf ) ≤ ε

where z is the set of admissible state vectors, and E(Fcf ) is a penalty function.

There is no special restriction on the optimization method, and any zero order algorithm

can be adopted. However, using proper search strategy during optimization can make the

trajectory generation much more efficient. To choose a proper optimization method is very

critical to improve the response time of the real time onboard trajectory generation system.

The flowchart of the trajectory generation algorithm was given in Figure 3.3.

3.3.3 Experiments

The set of experiments was defined to study the following aspects of the trajectory

generation algorithm: the characteristics of the algorithm, the accuracy of the solution, and

the execution time of the algorithm. The algorithm was coded in Matlab, and run on a

Pentium laptop. A set of several hundreds experiments were run. The distance between the

initial and final points covered ranges from 500 m to 100,000 m, and the speed changed in

the range 20 m/s to 200 m/s.

Figures 3.4 and 3.5 show an example of a trajectory that was computed using the
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Figure 3.4: Optimum trajectory in 3-D coordinates system

algorithm with the goal of finding the shortest trajectory between initial and terminal points.

The trajectory also satisfies the next constrains: initial point: x0 = [600 2 − 3] and V0 = 20,

and final point: xf = [5000 1500 − 2000] and Vf = 80, respectively.

Preset initial and final points

Since the parameters aik of the reference polynomials are determined by the boundary

states of the aircraft (Eqs. (3.5)), they guarantee that the initial and final points of the

trajectory are exact as we imposed. In the example, the first time derivative of the

autonomous mobile agent coordinates at the initial and terminal points are set as follows:

dx0
dt

= [1 20 1], and
dxf
dt

= [1 56.56 −56.56]. The plot in Figure 3.7 shows the result projected

on the horizontal plane. The first time derivative at the final point is -56.56, and a notch

appears in the plot dγ
dt

to achieve the value.

Airspeed

The thrust history generated during trajectory optimization had the goal of getting

the final point as soon as possible. It is obvious that the autonomous mobile agent should
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Figure 3.5: Dynamic states
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Table 3.7: Properties of the trajectory (N = 500)

x0
dx0
dt

xf
dxf

dt
V0 Vf V ∗f Trajectory length

(m) (m) (m) (m) (m/s) (m/s) (m/s) (m)

(600 2 -3)* (1 20 1) (5000 1500 -2000) (1 56.56 -56.56) 20 80 80.13 5235.80

(600 2 -3)** (14.14 10 -10) (5000 1500 -2000) (-30 -47.95 -56.56) 20 80 80.11 5187.10

(600 2 -3)*** (3.5 68 3.5) (5000 1500 -2000) (2 113.12 -113.12) 70 160 159.89 5261.87

accelerate at its maximum accelerate rate, then go with it maximum air speed, and decelerate

at a certain to achieve desired final speed, as shown in the first plot of Figure 3.5. However,

if the goal is to save the fuel consumption, or to keep the autonomous mobile agent flying

at a certain speed in order to let data acquisition work properly, then the thrust history is

generated in a different way.

Flight path and azimuth angles

In the above example, the time derivative of the flight path angle and azimuth angle

were set as constrains. For example, the time derivative of the azimuth angle reached the

upper bound at the end of the trajectory to achieve the desired final speed, but because

of the constraint, the plot of azimuth angle doesn’t show a sharp rise at the end, while it

satisfies the direction of airspeed (
dxf
dt

= [1 56.56 − 56.56]) at the final point in the x1 − x2

plane.

Length of the trajectory

If the flight path and azimuth angles at the two terminal points are coherent with the

direction pointing from the initial to final point, then the length of the optimum trajectories

are very close to the straight distance between the two points. The dashed-dot plot in

Figure 3.6 shows this case. Otherwise, if the initial airspeed is heading towards a very

different direction from that of the destination, the desired final flight path and the azimuth

angles cannot be achieved by flying straightly from the starting point, hence the trajectory

goes extra distance to reach the desired states, as shown in the dashed-line plot in Figure 3.6.

62



500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

200

400

600

800

1000

1200

1400

1600

x1

x2
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Shape of the trajectory

The change of the azimuth angle during flight can be reflected by the the projection of

the trajectory on the horizontal plane (as shown in the 4-th, and 5-th plots from the top in

Figure 3.5). The change of the flight path angle is reflected by the projection in the vertical

plane.

Impact of the initial and final airspeed direction

Figures 3.7 and 3.8 illustrate an example of the impact of the airspeed direction on

trajectories and thrust histories. All the conditions to compute the trajectories in the

example are the same excepting the direction of the initial and final airspeed direction.

The solid curve is convex and then concave because the directions of the speed at the initial

and final points are very close to the x2 coordinate. Hence, the autonomous mobile agent

has to go back slightly along the x2 direction to satisfy this condition. The dash-dot curve

is close to a straight line since the final condition is easy to be satisfied with a single convex

curve.

Regarding the thrust histories, since the initial speed direction of the dash-dot line is
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very different from the trajectory heading direction at the initial point, it takes longer time

to the autonomous mobile agent that flies following the dash-dot trajectory to accelerate to

the maximum speed. As a result, it arrived at the terminal earlier than if it had flown along

the solid trajectory. This example shows that it is not necessary that the shorter trajectory

also leads to a shorter flying duration.
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Figure 3.7: Impact of initial and final airspeed directions on the trajectory
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Figure 3.8: Impact of the initial and final airspeed directions on the thrust history: solid line
is for dx0

dt
= [1 20 1],

dxf
dt

= [1 56.56 − 56.56]; and dash-dot line is for dx0
dt

= [14.14 10 − 10],
dxf
dt

= [−30 − 47.95 − 56.56]

Accuracy of the final airspeed

For N ≥ 1000, in 94% of the cases, the relative error of the final speed was below 1.50%.

Obviously, the longer the trajectory, the larger interval there is between two adjacent points,

which decreases the accuracy of simulation results for long distances. However, the error

can be reduced by increasing N , as shown in Figure 3.9. The number of final points with

accuracy above 2.5% increases almost twice when N increases from 500 to 5,000.

There is an exception to this rule when the total distance between terminal points

is not long enough for the aircraft to accelerate or decelerate to the desired final air
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speed. For example, if the initial and final state are z0 = [−33 799 − 3012 20 0◦ 15◦],

zf = [−467 888 − −2987 120 − 20◦ − 160◦] and V0 = 20, Vf = 120, N = 1000 then

the maximum air speed (accelerate with δTmin) can be achieved over the generated shortest

trajectory with time optimum thrust history is 97.99m/s, and the relative error is 18.342%,

which is much above the average accuracy.

Execution time

As shown in Figure 3.10, the execution time of the algorithm increases almost linearly

with N .

3.4 Flexible Collaborative Task Management for

Autonomous Mobile Agents

This section discusses static decision making of the proposed scheme. Static decision

making aims at pre-planned or known activities, such as traveling along predefined

trajectories, and is computed off-line using centralized method.
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3.4.1 Problem Description and Modeling

The proposed method uses ILP(Integer Linear Programming) to find the task scheduling

for autonomous mobile agents. It considers a group of autonomous mobile agents which

can cooperate to meet the requirements of the application. The described algorithm finds

the optimal path for handling the geographically distributed tasks in addition to resource

allocation and task scheduling. Producing flexible solutions is also a novelty of the proposed

method as compared to similar work.

z
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y

Agent 1

Agent 2Fixed Target

Fixed Target

Fixed Target

Fixed Target

Fixed Target

Trajectory

Trajectory

Figure 3.11: Cooperative operation of multiple autonomous mobile agents

This section defines the studied problem and presents the proposed modeling method.

66



Figure 3.11 summarizes the autonomous mobile agent behavior scenario. Multiple

autonomous mobile agents must cooperatively tackle targets located in a 3D environment.

Each autonomous mobile agent moves along a non-linear trajectory at a variable speed

using a trajectory computing algorithm similar to [42, 54]. Autonomous mobile agents

are heterogeneous, and they might have different dynamic characteristics (e.g., speed and

acceleration). The speed magnitude and speed gradients are bounded.

Fixed targets are positioned at known locations, and must be tackled before a predefined

time limit. Otherwise, the entire mission is considered to be compromised. The group of

autonomous mobile agents must tackle all fixed targets before their time limit expires. The

flexibility requirement states that the solution should maximize the chances of completing

the mission in case autonomous mobile agents experience unexpected conditions that delay

their activities. Fixed obstacles are present in the 3D environment, and must be avoided by

the moving autonomous mobile agents. The tackling of targets comprises of the following

sequence of activities: (i) flying to the target, (ii) detecting the target (e.g., through different

sensors), (iii) handling the target (such as taking the picture of the target), and (iv) assessing

the results of the activity [44, 53]. The three latter activities have known execution

times, but the first step might take variable durations, depending on the position and flight

characteristics of the autonomous mobile agent. Each autonomous mobile agent can handle

multiple targets.

Autonomous mobile agents can collaboratively handle the same fixed target. For

example, one autonomous mobile agent might detect and handle the target, and then

transmit all the information to another autonomous mobile agent, which will do the

assessment of the results. This scenario is useful considering that autonomous mobile agents

have different capabilities (e.g., achievable speed), and resources (such as amounts of fuel).

A slower autonomous mobile agent positioned nearby can do the assessment, while the more

powerful autonomous mobile agent moves towards tackling the next target. As a trade-off,

the collaborative scenario involves communication overhead for information transmission
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between the autonomous mobile agents, and also additional distances to be traveled (thus,

higher fuel consumption) by the autonomous mobile agents involved in collaboration.

In summary, the addressed problem is as follows. An algorithm must be developed

for tackling N fixed targets by M autonomous mobile agents with known but different

characteristics. Each fixed target must be tackled before its predefined time limit expires.

In addition, the flexibility of tackling new targets (known only at execution time) must be

maximized.

Collaborative Approach

Allocation and scheduling of fixed 
targets to individual mobile agents

Compute intervals for collaborative 
behavior

Centralized step

Reactive behavior of individual 
mobile agent

using the allocation, scheduling,
and constraint behavior 

information

Decentralized step

Target allocation and timing 
constraints for each mobile agent

Group of mobile 
agents  and mobile 

agent characteristics

Fixed targets and 
their deadlines

Figure 3.12: Decision making in collaborative autonomous mobile agent operation

Figure 3.12 presents the decision making approach that we are proposing in this paper

for controlling the behavior of autonomous mobile agent groups. The approach represents
68



a trade-off between centralized decision making, which is efficient and offers predictable

performance (e.g., satisfaction of the predefined deadlines), and decentralized control, which

is more scalable and flexible in tackling new situations. Centralized decision making is at the

level of the entire autonomous mobile agent group, and decentralized control is at the level of

each individual autonomous mobile agent. The approach uses an off-line, centralized decision

making step to compute the allocation of fixed targets to each autonomous mobile agent, and

the scheduling in time of the activities related to the handling of a target. In addition, the

centralized step also calculates the constraints that encompass the collaborative behavior of

each autonomous mobile agent. During operation, each agent decides dynamically (after a

collaboration request has been formulated) whether it will participate to the collaboration,

or not. The decision is made depending on its current status and geographical position

so that the deadlines of its allocated targets are not violated. As collaboration requests are

formulated dynamically and cannot be predicted off-line, the optimization goal is to maximize

the chances of an autonomous mobile agent to participate to collaborations by computing the

allocation and scheduling solution that maximizes the flexibility of an autonomous mobile

agent to participate to collaborations.

Target allocation and timing

UAVs

fixed targets to individual UAVs
(1) Allocation and scheduling of

deadlines
and their

Fixed targets

collaborative behavior
(2) Compute intervals for

Reactive behavior of individual UAV
using the allocation, scheduling,

and constraint behavior information

Decentralized step:

and UAV characteristics

Centralized step:

constraints for each UAV

Group of 

Figure 2. Decision making in collaborative UAV
operation

UAV groups. The approach represents a trade-off between
centralized decision making, which is efficient and offers
predictable performance (e.g., satisfaction of the predefined
deadlines), and decentralized control, which is more scal-
able and flexible in tackling new situations. Centralized de-
cision making is at the level of the entire UAV group, and
decentralized control is at the level of each individual UAV.

The approach uses an off-line, centralized decision mak-
ing step to compute the allocation of fixed targets to each
UAV, and the scheduling in time of the activities related to
the handling of a target. In addition, the centralized step also
calculates the constraints that encompass the collaborative
behavior of each UAV. During operation, each UAV decides
dynamically (after a collaboration request has been formu-
lated) whether it will participate to the collaboration, or not.
The decision is made depending on its current status and
geographical position so that the deadlines of its allocated
targets are not violated. As collaboration requests are for-
mulated dynamically and cannot be predicted off-line, the
optimization goal is to maximize the chances of an UAV
to participate to collaborations by computing the allocation
and scheduling solution that maximizes the flexibility of an
UAV to participate to collaborations.

Each UAV executes its own decentralized controller,
which implements a reactive behavior expressed through
a Finite State Machine (FSM). The controller decides the
specific actions of an UAV, e.g., pursuing a fixed targets, or
satisfying a request for collaboration. Figure 3 shows the
structure of a simplified reactive controller. In normal oper-
ation mode, the UAV is tackling a fixed target following the
allocation and scheduling decisions of the centralized step.

finished

Request
collaboration

Participate to
collaborative

activities

Tackle fixed
targets

Deadlines not
met

collaboration
Request for

finished

Figure 3. Decentralized controller for UAV oper-
ation

If the controller detects that the deadlines fixed for the target
currently being handled cannot be met, it formulates a re-
quest for collaboration. If the request is granted by another
UAV then the UAV moves on to handling the next assigned
target. If the request is not granted then the UAV might de-
cide to continue with the current activity even though this
results in violating the target’s deadline, or leaving the task
unfinished in order to move on to the next assigned target.

The focus of the paper is on the centralized decision
making algorithm, including target allocation and schedul-
ing, and computing of constraints related to the collabora-
tive actions of the decentralized controller. The next subsec-
tion presents UAV behavior modeling for centralized deci-
sion making.

3.2 Problem Modeling

Figure 4 illustrates the task graph for tackling N fixed
targets. Each target tackling activity is an independent
thread of tasks consisting of separate tasks for flying, de-
tection, handling, and assignment. Task dependencies ex-
press the required order of performing the tasks. As the N
targets are known, the times for detection, handling, and as-
signment are fixed for a given UAV type. Please note that
these times are different for UAVs with different character-
istics. In contrast, the flight time is not known in advance
because the time required for reaching a target depends on
the computed UAV trajectory. Moreover, the UAV trajec-
tory depends on the position of the fixed target previously
tackled by the UAV, and therefore on the previous decisions
on target allocation and scheduling.

Fixed targets. The task graph includes tasks that can rep-
resent a collaborative behavior between multiple UAVs in
tackling the same fixed target. For example, after the tar-
get was detected by an UAV, the method allows that other
UAVs handle and/or assess the target. These actions are rep-
resented by conditional blocks (the blocks labeled as “same
UAV?” in the figure), which continue with the tasks for
communication and flight, if a different UAV is involved.
The communication time is fixed (as the amount of data to
be transferred is given), but the flight time is variable as it
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Figure 3.13: Decentralized controller for autonomous mobile agent operation

Each autonomous mobile agent executes its own decentralized controller, which

implements a reactive behavior expressed through a Finite State Machine (FSM). The

controller decides the specific actions of an autonomous mobile agent, e.g., pursuing a fixed

targets, or satisfying a request for collaboration. Figure 3.13 shows the structure of a
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simplified reactive controller. In normal operation mode, the autonomous mobile agent is

tackling a fixed target following the allocation and scheduling decisions of the centralized

step. If the controller detects that the deadlines fixed for the target currently being handled

cannot be met, it formulates a request for collaboration. If the request is granted by another

agent then the autonomous mobile agent moves on to handling the next assigned target. If

the request is not granted then the autonomous mobile agent might decide to continue with

the current activity even though this results in violating the targets deadline, or leaving the

task unfinished in order to move on to the next assigned target. The focus of the section is on

the centralized decision making algorithm, including target allocation and scheduling, and

computing of constraints related to the collaborative actions of the decentralized controller.

The next subsection presents autonomous mobile agent behavior modeling for centralized

decision making.

Problem Modeling

Figure 3.14 illustrates the task graph for tackling N fixed targets. Each target tackling

activity is an independent thread of tasks consisting of separate tasks for flying, detection,

handling, and assignment. Task dependencies express the required order of performing the

tasks. As the N targets are known, the times for detection, handling, and assignment are

fixed for a given autonomous mobile agent type. Please note that these times are different for

autonomous mobile agents with different characteristics. In contrast, the flight time is not

known in advance because the time required for reaching a target depends on the computed

autonomous mobile agent trajectory. Moreover, the autonomous mobile agent trajectory

depends on the position of the fixed target previously tackled by the autonomous mobile

agent, and therefore on the previous decisions on target allocation and scheduling.

Fixed targets. The task graph includes tasks that can represent a collaborative behavior

between multiple autonomous mobile agents in tackling the same fixed target. For example,

after the target was detected by an autonomous mobile agent, the method allows that other
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autonomous mobile agents handle and/or assess the target. These actions are represented by

conditional blocks (the blocks labeled as ‘same agent?’ in the figure), which continue with the

tasks for communication and flight, if a different autonomous mobile agent is involved. The

communication time is fixed (as the amount of data to be transferred is given), but the flight

time is variable as it varies with the position of the mobile agent entering the collaboration.

The flight time includes the total time spent by an autonomous mobile agent for moving for

a new activity as well as the time for accomplishing that activity. Since the nature of the

collaborative activity is decided on-line, the actual flight time is not known during the step

of off-line centralized decision making, and instead the methodology should maximize the

overall capability of an autonomous mobile agent group for collaborative activity.

3.4.2 Proposed Algorithm

This section describes the centralized task assignment and scheduling problem as an

Integer Linear Programming (ILP) problem. The model can then be solved using an existing

ILP solver or an heuristic algorithm to obtain the centralized controller of an autonomous

mobile agent group. Figure 4 is used to explain the ILP expressions. The following equations

are used to build the ILP model: The following set of equations are used to build the ILP

model:

1. Task start time

The start time of a task i is larger than the end time of its preceding task j:

ti,start ≥ tj,end (3.10)

2. Task end time

ti,end = ti,start + x1,i T1 + x2,i T2 + ...+ xM,i TM (3.11)
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The end time for executing a task (e.g., detection, handling, and assessment) is equal to

the start time of the task plus the time Ti required for Agenti (i = 1, ...,M) to perform

the task. Values Ti are constants for a set of autonomous mobile agents. Variable xi

is one, if the task is performed by Agenti, otherwise it is zero.

3. Task allocation to autonomous mobile agents

Each task pertaining to a fixed target must be allocated to exactly one autonomous

mobile agent, which performs the task. For task k, this requirement is expressed as

follows:
∑

i∈Agents

xi,k = 1 (3.12)

4. Task scheduling to autonomous mobile agents

Each autonomous mobile agent can handle multiple fixed targets, one target at a time.

The set of ILP equations must include relationships that constraint the mobile agent

to execute a single task at a time. For the tasks pertaining to the same fixed target,

these constraints are implicitly introduced by the equations 3.10, which represent the

sequencing constraints of the tasks.

For the tasks related to different fixed targets allocated to the same autonomous mobile

agent, the constraint is that the agent tackles a new target only after it finished tackling

the current target. Allowing the autonomous mobile agent to intertwine the tackling

of the two targets would result in unnecessary time overhead due to the extra distance

the autonomous mobile agent must travel between the two fixed target. The overhead

obviously affects the optimality of the scheduling result.

A 0/1 variable zi,j is defined for each pair of fixed targets i and j. If both targets are

tackled by the same autonomous mobile agent, then the variable being one indicates

that task i is tackled before task j, and after task j, if the variable is zero. This

constraint is captured as follows:
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Ti,end ≤ Tj,startzi,j
∑

k∈Agents

xk,ixk,j + T∞(2− zi,j −
∑

k∈Agents

xk,ixk,j) (3.13)

Tj,end ≤ Ti,start(1− zi,j)
∑

k∈Agents

xk,ixk,j + T∞(1 + zi,j −
∑

k∈Agents

xk,ixk,j) (3.14)

T∞ is a very large value.

5. Autonomous mobile agent flight time to fixed targets

The flight time Tfly to a fixed target depends on the previous position of an autonomous

mobile agent, which results from the fixed target allocation and scheduling. Target

allocation and scheduling is computed through ILP equation solving, and is obviously

unknown at the time of setting up the ILP equations. The proposed solution is to

introduce a 0/1 variable wi,j for each pair i and j of fixed targets to describe that the

same autonomous mobile agent successively tackles the two target (one immediately

after the other). If the variable is one then target i is handled right before j. Otherwise,

the variable is zero. In addition, the same autonomous mobile agent must tackle both

tasks.

The flight time Tfly to a fixed target j is defined as follows:

Tj,fly ∝
∑

∀targeti

wi,jDist(targeti, targetj)× (
∑

k∈Agents

xi,kxj,k) (3.15)

The next constraint expresses that each task is tackled by one autonomous mobile

agent after the agent handles exactly one task (with the exception of the ”dummy”

start node), so for each task i:
∑

∀targetj

wi,j = 1 (3.16)

6. Collaboration of autonomous mobile agents

In collaboration, the identity of the collaborating autonomous mobile agents and

the nature of the activities involved in collaboration is not known for centralized
74



decision making, but instead is decided during autonomous mobile agent operation.

The centralized decision making assigns and schedules tasks so that the flexibility of

collaboration (if needed) is maximized.

As shown in Figure 3.14, an autonomous mobile agent might decide to collaborate after

each of the activities related to a task, such as the fly, detect, and handle activities.

The flexibility for collaboration depends on the time slack between the end of the

current activity and the beginning of the next activity, and the deadline of the target

handling for which the collaborative action is requested. The more overlapping exists

between the slack time and the deadline the more flexibility exists in collaborating to

meet the deadline. If there is no slack time or no overlapping with the deadline(e.g.,

the deadline is before the starting of the slack time, or after the end of the slack time)

then there is no possibility of the autonomous mobile agent to participate in handling

the target.

yes

Start

Fixed target k

Fly

Detect

Stop

Handle

Assessment

Activity i

Collaboration?

activity
Collaborative

Activity j

no

Figure 3.15: Modeling for dynamic collaboration

Figure 3.15 is used to explain the ILP equations for collaboration. For each target k,

we define SetCk as the set of targets for which the assigned autonomous mobile agents
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are candidates for collaboration. SetCk can be set statically based on the geographical

proximity of the targets (this information is known), or can be decided dynamically

at run time depending on the current slack time of an autonomous mobile agent, and

hence its flexibility to fly to more distant targets without violating the deadlines of its

assigned targets. In this discussion, we assumed that SetCk is static.

The flexibility in participating to a collaborative handling of target k between activities

i and j (scheduled in this order) is proportional to the following value:

Fli,j,k ∝ [Activityi,end, Activityj,start] ∩ [(Deadlinek −
∑

Tk), deadlinek] (3.17)

Variables Activityi,end and Activityi,start are the end time of Activity i and the start

time of Activity j. [Activityi,end, Activityj,start] represents the time interval defined by

the two moments. Deadlinek is the deadline set for target k, and
∑
Tk is the time

required to perform all activities related to target k, e.g., detect, handle, and assess.

j,start

Deadline kDeadline k Tk−

T i,start T

Figure 3.16: Flexibility in collaboration

Figure 3.16 illustrates the definition of the flexibility constraint for autonomous mobile

agents collaborating on the handling of target k. Targets i and j are allocated to the

autonomous mobile agent. The condition for collaboration is defined by the following

equations:

Ti,end ≤ Deadlinek −
∑

Tk (3.18)
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Deadlinek ≤ Tj,start (3.19)

The equation for the flexibility for autonomous mobile agent m is shown in equation

3.20. Where xm,i and xm,j are both equal to one, it means the same autonomous

mobile agent m are handling Activityi and Activityj. xm,k is required to equal to zero,

which means autonomous mobile agent m is not initially assigned to Activityk, but

autonomous mobile agent m plans to handle Activityk on account of flexibility Fli,j,k’s

calculation.

Fli,j,k ∝ xm,ixm,j(1− xm,k)(Deadlinek − Ti,end)(Tj,start −Deadlinek) (3.20)

The total flexibility of an autonomous mobile agent to participate to collaborative

activities is:

Fli,j =
∑

k∈SetCk

Fli,j,k (3.21)

The overall cost function includes a term to maximize the flexibility of autonomous

mobile agents participating to collaborative activities.

7. Cost function

The cost function is a weighted sum that express the goals of (i) minimizing the

cumulated penalties for exceeding the predefined deadlines for the static targets, and

(ii) maximizing the probability for tackling pop-up targets:

Cost = α×
∑

∀targetsi

(Ti,end − Ti,deadline)2 + β ×
∑

pPPi + γ ×
∑

∀targetsi,j

Fli,j (3.22)
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3.4.3 Experimental Results

This section presents the experimental results for the proposed algorithms. An heuristic

algorithm was developed for solving the ILP model presented in Section IV. The algorithm

is based on Simulated Annealing. It minimizes the cost function while satisfying all the

constraints of the ILP model. Using an heuristic algorithm instead of an ILP solver offers

two important advantages: it scales better than solvers for large ILP problems, and it does

not have convergence problems, which is important for the reliability of the method. The

algorithm was implemented in C language and run on a SUN Sparc workstation.

The experimental set-up varied the number of the targets to be tackled, the number

and characteristics of the autonomous mobile agents, and the geographical position of the

targets. Three different cost functions were optimized: (i) minimize the total execution time

needed for tackling all targets, (ii) minimize the total distance traveled by the autonomous

mobile agents, and (iii) maximize the flexibility of the solution for collaboration between the

autonomous mobile agents. In addition to the quality of the solutions, experiments observed

the computational characteristics of the heuristic algorithms, such as the execution time, the

iteration at which the best solution was found, and the total number of iterations performed

by Simulated Annealing. The scalability of the algorithm with the number of targets was

also observed.

Table 3.8: Optimization for minimum total time
Ex. # nodes total time best at (#) total # exec. time (sec.)

SN 1 11 64 23,244 43,244 49
SN 1 11 64 23,244 43,244 49
SN 2 14 89 13,664 33,664 37
SN 3 20 164 26,874 46,874 84
SN 4 38 337 9,954 29,954 205
SN 5 50 6 49 100 20,100 151

Table 3.8 presents the characteristics of the different experiments as well as the results

obtained for minimizing the total time required for tackling all targets. This experiment

was used as a reference for comparing the optimization results for minimizing the total
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distance traveled by autonomous mobile agents and maximizing the flexibility, respectively.

The second column indicates the number of nodes in the task graphs for target tackling

(similar to Figure 3.14). The third column presents the minimum execution time for

tackling all targets as found by the algorithm. Column four shows the iteration number

at which the best solution was found. Column five indicates the total number of iterations

performed by Simulated Annealing, and Column six presents the execution time of Simulated

Annealing. As expected for an heuristic algorithm, the convergence does not increase with

the problem size as the total number of iterations depends mainly on the stochastic dynamics

of Simulated Annealing. The execution time increases with the problem size, however it

remains reasonably large even for the larger examples. This indicates that the algorithm

scales fairly well with the size of the problem. For the two smaller examples, we manually

verified that the found results are optimal.

Table 3.9: Optimization for minimum total distance
Ex. Min.dist. Min.time Improv.(%)

total total total total total total time
distance time distance time distance time

SN 1 56 81 64 70 12.5 13.5
SN 2 89 104 73 91 19.2 12.5
SN 3 200 256 280 164 28.5 35.9
SN 4 586 395 619 337 5.3 14.6
SN 5 601 356 650 349 7.5 1.9

Table 3.9 presents the optimization results for minimizing the total length traveled by

autonomous mobile agents. Columns two and three indicate the total distance and the total

time resulting for this cost function. For comparison purposes, Columns four and five show

the total distance and total time found for the cost function minimizing the total time (also

shown in Table 3.8). Finally, Columns six and seven indicate the relative improvements in

terms of total distance and total time between the two optimization requirements. Column

six shows that the optimized paths can be 5.3% to 28.5% shorter than the total paths for

solutions optimized for time. However, the paid penalty is in longer total time, which can
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be larger by values between 1.9% to 35.9%.

Table 3.10: Optimization for maximum flexibility
Ex. Max. flex. Init. flex. Improv.(%) Total time Total dist.

SN 1 78 66 15 71 101
SN 2 112 16 85 99 155
SN 3 148 30 79 197 368
SN 4 272 76 72 408 873
SN 5 436 274 37 540 943

Table 3.10 offers results for resource allocation and scheduling optimized for flexibility.

Column two presents the maximum flexibility. Column three gives the flexibility produced

by a simple list scheduling algorithm. Column four shows the relative improvement. For

comparison purposes, Columns five and six indicate the total time and total distance of

the solutions optimized for flexibility. The experiments show significant improvement in the

flexibility, between 15% and 85%. However, increased flexibility results at the penalty of

longer times and traveled distances as compared to the previous two cost functions.

(c) Optimized for flexibility

Target 1

Target 2

Target 3

(a) Optimized for time

Target 1

Target 2

Target 3

(b) Optimized for distance

Target 2

Target 3Target 1

Figure 7. Results for different optimization crite-
ria

tion times of the tasks as well as the distance traveled by the
UAVs. Distance optimizations tends to assign clusters of
neighboring targets to UAVs even though this might result
in unequal loading of the UAVs. Finally, flexibility opti-
mization encourages a scheduling such that the two UAVs
perform as much as possible their assigned task in parallel.

6 Conclusions

Unmanned Autonomous Vehicles (UAVs) are emerging
as a breakthrough concept in technology. A main challenge
related to UAV control is devising flexible strategies with
predictable performance in hard-to-predict conditions. This
paper proposes an approach to performance predictive col-
laborative control of UAVs operating in environments with
fixed targets.

Experimental results show that the proposed algorithm
scales fairly well for large problems, has a reasonably long
execution time, and can significantly improve the quality of
the produced solutions, such as up to 28.5% reductions of
the total path traveled by UAVs and up to 85% improvement
in the flexibility of the solution.
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Figure 3.17: Flexibility in collaboration

Figure 3.17 illustrates the nature of the solutions found for example SN 1 and two

autonomous mobile agents. Similar results were obtained also for the larger examples. Time

minimizations always distribute targets to autonomous mobile agents such that there is

an equal loading of the two autonomous mobile agents. The loading includes the execution

times of the tasks as well as the distance traveled by the autonomous mobile agents. Distance

optimizations tends to assign clusters of neighboring targets to autonomous mobile agents
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even though this might result in unequal loading of the autonomous mobile agents. Finally,

flexibility optimization encourages a scheduling such that the two autonomous mobile agents

perform as much as possible their assigned task in parallel.

3.5 Conclusions

This chapter presents the work on developing distributed control methods for large-scale

groups of vehicles as well as an approach to performance predictive collaborative control of

autonomous mobile agents tackling fixed targets. We introduced the goals, and summarized

the trajectory generation algorithm used to model autonomous mobile agents. Experimental

results of the algorithms are also offered.

We proposed different forms of expression, both linear and non-linear for trajectory

generation model. Experimental results show that the proposed collaborative algorithm

scales fairly well for large problems, has a reasonably long execution time, and can

significantly improve the quality of the produced solutions, such as up to 28.5% reductions

of the total path traveled by autonomous mobile agents and up to 85% improvement in the

flexibility of the solution.

The related literature discusses several optimization algorithms used to build the model

from experimental data, such as Simulated Annealing, and Neural Networks. So far, Neural

Networks seem to give the best convergency. However, since this kind of model is hard to

study, any impacts of physical conditions on the optimization are difficult to understand.

As the relationship between flying conditions and characteristics of trajectory is not easy

to express, one of the possible future directions is to classify the simulated results of flights

which share certain common characteristics into groups, and then study inner-group and

inter-group accordingly.
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Chapter 4

Dependable Distributed Data

Acquisition Through Groups of

Autonomous Agents

This chapter discusses dynamic decision making at the physical level using game-theory-

inspired ideas. The purpose of dynamic decision making is to decide an agent’s deviations

from the original (off-line) plans depending on the agent’s goals. Any adaptation decisions

are computed online using decentralized, game-theoretic method.

4.1 Introduction

Guaranteeing dependable and predictable operation of autonomous agents is challenging

considering that the mobile agents operate in environments with many unknown and

changing attributes. For example, conditions like wind, rain clouds, bird flocks, etc. can

significantly influence the trajectories and speed of the agents and thus make any pre-

computed plans infeasible.

Model-based CPS decision making uses dynamically-constructed models to make

decisions during operation. For example, a CPS for environmental monitoring and
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protection, needs to detect the position of zones polluted with toxic substances as well as the

nature and level of the toxic substances. The decisions on how to dispatch the mobile agents

to maximize pollution detection and the utility of the acquired data samples are performed

based on a model that predicts the position of spills and their dynamics over time. A main

challenge is data acquisition through the mobile agents to construct precise models while

minimizing the cost of creating the models.

Figure 4.1 illustrates the main characteristics of the problem of a group of mobile agents

that optimize their data acquisition. The figure presents two agents (robots) that each have a

scheduled path: agent 1 travels through points A, B and C, and agent 2 goes through points

D and B. Along their paths, an agent identifies previously unknown regions of interest, e.g.,

the presence of a certain toxic substance. The unknown regions of interest are shaded in the

figure, and the zones sampled by the agents are darkened. Note that multiple agents might

sample the same zone. The goal is to maximize the utility (for decision making) of the data

sampled by the agents. Depending on the nature of the application, utility can have different

formulation, such as maximizing the physical size (e.g., surface, volume) of the found regions

of interest, or maximizing the total quantity of identified substance.

Dependable Distributed Data Acquisition Through
Groups of Agents Operating Autonomously

Meng Wang and Alex Doboli
Department of Electrical and Computer Engineering
State University of New York at Stony Brook

Stony Brook, NY 11794-2350
adoboli@ece.sunysb.edu

Abstract

Cyber Physical Systems must provide continuous and
accurate monitoring of physical environments. An impor-
tant challenge is data acquisition through groups of mobile
agents to optimize monitoring. This paper proposes a novel,
asynchronous interaction scheme between agents to maxi-
mize the utility of the acquired data. Experiments study the
effectiveness of the scheme in comprehensive data acquisi-
tion while minimizing redundant data collection.

1 Introduction
Cyber-Physical Systems (CPS) are expected to continu-

ously provide optimized decisions based on accurate moni-
toring of environmental conditions [5]. Often, the execution
platform for CPS is a network of mobile data sensing and
processing systems, such as robots or other unmanned au-
tonomous vehicles (UAVs). Guaranteeing dependable and
predictable operation is challenging considering that the
mobile agents operate in environments with many unknown
and changing attributes. For example, conditions like wind,
rain clouds, bird flocks, etc. can significantly influence the
trajectories and speed of the agents and thus render infeasi-
ble any pre-computed plans.
Model-based CPS use dynamically-constructed models

to make decisions during operation. For example, con-
sider a CPS for environmental monitoring and protection,
which needs to detect the position of zones polluted with
toxic substances as well as the nature and level of the toxic
substances. The decisions on how to dispatch the mobile
agents to maximize pollution detection and the utility of
the acquired data samples are performed based on a model
that predicts the position of spills and their dynamics over
time. A main challenge is data acquisition through the mo-
bile agents to construct precise models while minimizing
the cost of creating the models.
Figure 1 illustrates the main characteristics of the dis-
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Figure 1. Problem description

cussed data acquisition problem. The figure presents two
agents (robots) that each have a scheduled path: agent 1
travels through pointsA,B andC and agent 2 goes through
points D and B. Along their paths, an agent identifies pre-
viously unknown regions of interest, e.g., the presence of
a certain substance. The unknown regions of interest are
shaded in the figure, and the zones sampled by the agents
are darkened. Note that multiple agents might sample the
same zone. The goal is to maximize the utility (for decision
making) of the data sampled by the agents. Depending on
the nature of the application, utility can have different for-
mulation, such as maximizing the physical size (e.g., sur-
face, volume) of the found regions of interest, maximizing
the total quantity of identified substance, etc.
The distributed data acquisition problem originates a

mixture of collaborative and competing actions between the
participating agents. For example, in Figure 1(b), the two
agents sample different regions and thus increase the util-
ity of each individual sampling as a more comprehensive,
more accurate model is produced. This represents collabo-
ration between the two agents. In contrast, in Figure 1(c),
the two agents sample overlapping regions and hence gen-
erate redundant data of little use. As each agent operates to
maximize its individual utility, the two agents compete on
sampling the common areas. Moreover, the nature of the
interactions between agents (e.g., collaborative or compet-
ing) changes dynamically depending on the evolution of the
process and the utility of the actions. Devising interaction
schemes to maximize data acquisition utility while agents

978-1-4244-7148-5/10/$26.00 ©2010 IEEE

Figure 4.1: Problem description for distributed data acquisition

The distributed data acquisition problem originates a mixture of collaborative and

competing actions between the participating agents. However, it is needed to clarify

that the proposed decision making scheme is not based on voting, therefore the agents

do not do any bidding and there is no auctioning mechanism. The scheme is inspired by

interactive prisoners’ dilemma problem [83]. For example, in Figure 4.1(b), the two agents
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sample different regions and thus increase the utility of each individual sampling as a more

comprehensive, more accurate model is produced. This represents collaboration between

the two agents. In contrast, in Figure 4.1(c), the two agents sample overlapping regions and

hence generate redundant data of little use. As each agent operates to maximize its individual

utility, the two agents compete on sampling the common areas. Moreover, the nature

of the interactions between agents (e.g., collaborative or competing) changes dynamically

depending on the evolution of the process and the utility of the actions. Devising interaction

schemes to maximize data acquisition utility while agents can collaborate or compete is still

a challenging problem.

The discussed problem can be formulated as follows:

maxObjectiveoverall, s.t. (4.1)

max
k
Utilityk,∀k ∈ S (4.2)

Usedresourcesk ≤ Resourcesk,∀k ∈ S (4.3)

Objectiveoverall is the overall criterion (cost function) to be optimized for the data collection

problem. For example, the objective could be to maximize the overall quantity of identified

substance of interest, e.g., Objectiveoverall =
∫
V
Q(v)dv, with Q(v) being the substance

density at any point v in volume V . Another case is if Objectiveoverall =
∫
V
δ(v)dv, where

function δ(v) is one if the substance was detected at point v, and zero, otherwise. This

objective function expresses the intention to maximize the complete clean-up of zones.

Equation (4.2) states that every agent of set S optimizes its own utility. The utility

represents the agent’s unique contribution to maximizing the application’s objective. The

equation also defines that the agents operate decoupled from each other. For example, if an

agent is the only one that covers a certain physical zone then its utility coincides with the

corresponding improvement of the objective function. If several agents cover the same zone

84



then their utility is less as the improvement offered by an agent is achievable by another

agent too.

Equation (4.3) states that the resources used by agent k to maximize its utility must

be less than its available resources. The modeled resources include the available hardware,

energy, and time budgets (time flexibility) in meeting the deadlines of the application [66].

The distributed data acquisition problem defined by equations (4.1)-(4.3) is solved by

a procedure in which each agent implements asynchronous decision making based on a

local model that predicts the characteristics of the tackled problem (e.g., the attributes

of the monitored space) and the expected decisions of the other agents. This implicitly

coordinates the agents to collaborate on maximizing the overall objective in equation (4.1)

and minimizing the competition between agents as defined by formula (4.2).

Experimental Analysis of the 3 algorithms
Meng Wang, Varun Subramanian and Alex Doboli

I. I NTRODUCTION

II. M OTIVATION

The problem of acquiring data distributed in time and space
through a setSof mobile, decoupled agents can be formulated
as follows:

maxOb jectiveoverall,s.t. (1)

max
k

Utilityk,∀k∈ S (2)

Used resourcesk ≤ Resourcesk,∀k∈ S (3)

Ob jectiveoverall is the overall criterion (cost function) to be
optimized for the data collection problem. For example, the
objective could be to maximize the overall quantity of identi-
fied substance of interest, e.g.,Ob jectiveoverall =

∫
V Q(v)d v,

with Q(v) being the substance density at any pointv in
volume V. Another case is ifOb jectiveoverall =

∫
V δ (v)dv,

where functionδ (v) is one if the substance was detected
at point v, and zero, otherwise. This objective expresses the
intention to maximize the complete clean-up of zones.

Equation (2) states that every agent of setS optimizes its
own utility. The utility represents the agent’s unique contribu-
tion to maximizing the application’s objective. The equation
also defines that the agents operate decoupled from each other.
For example, if an agent is the only one that covers a certain
physical zone then its utility coincides with the corresponding
improvement of the objective function. If several agents cover
the same zone then their utility is less as the improvement
offered by an agent is achievable by another agent too.

Equation (3) states that the resources used by agentk to
maximize its utility must be less than its available resources.
The modeled resources include the available hardware, energy,
and time budgets (time flexibility) in meeting the deadlinesof
the application [8].

The distributed data acquisition problem defined by equa-
tions (1)-(3) is solved by a procedure in which each agent
implements asynchronous decision making based on a local
model that predicts the characteristics of the tackled problem
(e.g., the attributes of the monitored space) and the expected
decisions of the other agents. This implicitly coordinatesthe
agents to collaborate on maximizing the overall objective in
equation (1) and minimizing the competition between agents
as defined by formula (2).

The proposed approach to solve the distributed data acqui-
sition porblem based on mobile, decoupled agents includes
two layers. As presented in Figure 1, themobile agent layer
includes several mobile agents, which travel along their own
trajectory to acquire signals and data distributed in spaceand
time. Then, the collected data is transmitted through a wireless
connection from the agents to the collection points of thedata
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Fig. 1. Operation of decoupled agents

communication layer. This layer includes embedded collection
points which are linked through wireless links in a grid of
cells. Data is sent along several data paths from the collection
points to the target points, where the data acquired by the
mobile agents is used in decision making.

The challenges of the two layers are discussed next.
At the mobile agent layer, every agent makes individual

decisions based on a local model that is constructed using
(i) data samples collected by the agent and (ii) data received
rarely from the collection points based on a loosely-coupled
interaction scheme. The interaction scheme defines that agents
interact with the data communication layer only after long time
intervals while they operate totally decoupled between interac-
tions. The effectiveness of the decisions is evaluated through a
utility estimation module that uses the difference betweenthe
estimated and real utility to request synchronization to adjust
the local models.

The utility of the model changes as newly acquired data is
integrated into the model to update the expression ofFunction.
The utility change∆Utility includes three components:

• New insight: New insight is added to the prediction
capability of Function, if the data is sampled from new
regions and/or conditions. For example, in Figure 2(a),
the second agent samples a different zone than the zone
from which agent 1 acquires its data. The two areas are
shown as dark zones.

• Increased confidence: The new data improves the predic-
tion capability ofFunction, while the variable set and the
variable domains stay unchanged.

• Enabling future insight: The acquired data can have po-

Figure 4.2: Operation principle of decoupled agents

4.1.1 Problem Description

The proposed approach to solve the distributed data acquisition problem based on

mobile, decoupled agents includes two layers. As presented in Figure 4.2, the mobile agent

layer includes several mobile agents, which travel along their own trajectory to acquire signals

and data distributed in space and time. Then, the collected data is transmitted through a
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wireless connection from the agents to the collection points of the data communication layer.

This layer includes embedded collection points which are linked through wireless links in a

grid of cells. Data is sent along several data paths from the collection points to the target

points, where the data acquired by the mobile agents is used in decision making.

At the mobile agent layer, every agent makes individual decisions based on a local

model that is constructed using (i) data samples collected by the agent and (ii) data received

occasionally from the collection points based on a loosely-coupled interaction scheme. The

interaction scheme defines that agents interact with the data communication layer only

after long time intervals while they operate totally decoupled between interactions. The

effectiveness of the decisions is evaluated through a utility estimation module that uses the

difference between the estimated and real utility to request synchronization to adjust the

local models.
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Fig. 2. Utility function

tentially a high usefulness in providing insight for future
needs or can be utilized by other agents. For example, in
Figure 2(c), an agent can decide to acquire data from the
left or right zone. The gained insight is similar as both
zones are not visited by other agents too. However, the
utility of sampling the left zone is higher because there
is one more agent analyzing a different part of the same
zone. This creates the potential that the overall utility
of the model is higher due to the more comprehensive
insight about the zone.

The three components are discussed next.
At the level of the data transportation layer, the correlations

between the trajectory of the mobile agents and the selected
data communication paths influences both the experienced data
loss and delays while forwarding data to the target point. The
two issues are essential in deciding the quality of the data
used in decision making. In general, data loss occurs when
data stored in buffers is overwritten before it is forwarded
either because of an ongoing data sampling or data reception.
This situation also increases the delay of transmitting data to
the target node. For example, Figure 3(a) shows two different
path configurations and the same trajectory (highlighted in
bold) runs through the network for those configurations. The
target point is the black bubble. The first path configuration
does not experience any data loss for the considered trajectory.
Considering embedded collection points based on PSoC pro-
cessor [3], the average delay for the nodes is 1434.62 msec
and the maximum and minimum delays are 2040 msec and
1010 msec, respectively. Six nodes in the second path config-
uration experience data loss for the same trajectory and the
average delay for the nodes that did not experience any data
loss is 1962.86 msec and the maximum and minimum delays
are 5660 msec and 1010 msec, respectively. Hence, nodes have
an average delay of 36.82% more than path configuration one.

Figure 3(b) shows two different trajectories running through
the network which uses the same path configurations, tra-
jectory one is shown with black line and trajectory two
with grey line. Trajectory one has data loss at seven nodes
compared to trajectory two which has no data loss. The nodes
in trajectory one experience an average delay of 73.43% higher
than trajectory two. Hence, the same path configuration can
yield different levels of performance for different trajectories.

In conclusion, resource allocation, e.g., the frontend re-
sources used for localizing the sound source by a node and
the selected data communication paths, determine the three
main factors defining the error of the models used in decision
making. The quality of resource allocation schemes depends

Fig. 3. Data path configurations used in tracking trajectories

to a high degree on the characteristics of the environment, e.g.,
ambient noise, and monitored phenomena, i.e. trajectory.

III. A LGORITHMS FORMOBILE AGENTSLAYER

This section presents the modeling of the mobile agenst
layer and then the decision making algorithms of the decou-
pled agents so that the application objective is optimized.

A. Mobile Agents Layer Modeling

The model used for the mobile agents layer is defined as
the following quadruple:

Model=< Function,Error,Utility,Cost> (4)

Function is the mathematical expression of the model used
in decision making to optimize the application objective (1).
Error is the prediction error of the model.Utility is the utility
of usingFunction in decision making by an individual agent,
e.g., improving the effectiveness of the selected decisions. The
local utility of an agent is also considered in equation (2).Cost
is the cost of building the model, including time, hardware
resources, and energy.

The four components of the model are correlated with
each other. For example, the error of the model function is
correlated to utility, such as a smaller error implies a higher
utility of the model. Similarly, producing a model of smaller
error requires a higher cost. The specific nature of the two
correlations depends on the application. The utility of the
models in achieving the application goals must be optimized
while the cost stays within the available resource limits.

Function expressions are continuous and differentiable
functions over their domain. This represents situations in
which the models are built for homogeneous media, such as
if the same kind of sampled substance fills the considered
space. For example, the amountns of solvent flowing into
the air from a tank can be estimated using the formula [2]:
ns=

V
R((a+

ab
pT−b) ln pT−b−aT1

pT−b−aT2

T2
T1
+b( 1

T2
− 1

T1
)), whereV is the

volume of the head space,pT the total pressure,R the gas
constant,T1 and T2 the start and end temperature, anda and
b are constants. Figure 4(b) describes homogeneous media
but with discontinuous behavior, such as having three clusters
in which different functions express the sampled data. For
example, this situation can occur if the same solvent is flowing
out through three different openings, so that the local pressure,

Figure 4.3: Utility function

The utility of the model changes as newly acquired data is integrated into the model to

update the expression of Function. The utility change ∆Utility includes three components:

• New insight : New insight is added to the prediction capability of Function, if the data

is sampled from new regions and/or conditions. For example, in Figure 4.3(a), the

second agent samples a different zone than the zone from which agent 1 acquires its

data. The two areas are shown as dark zones.

• Increased confidence: The new data improves the prediction capability of Function,

while the variable set and the variable domains stay unchanged.

86



• Enabling future insight : The acquired data can have potentially a high usefulness in

providing insight for future needs or can be utilized by other agents. For example, in

Figure 4.3(c), an agent can decide to acquire data from the left or right zone. The

gained insight is similar as both zones are not visited by other agents too. However,

the utility of sampling the left zone is higher because there is one more agent analyzing

a different part of the same zone. This creates the potential that the overall utility of

the model is higher due to the more comprehensive insight about the zone.

At the level of the data transportation layer, the correlations between the trajectory of

the mobile agents and the selected data communication paths influences both the experienced

data loss and delays while forwarding data to the target point. The two issues are essential

in deciding the quality of the data used in decision making. In general, data loss occurs

when data stored in buffers is overwritten before it is forwarded either because of an ongoing

data sampling or data reception. This situation also increases the delay of transmitting data

to the target node. This chapter focuses only on the data acquisition through the mobile

agents.

In conclusion, resource allocation, e.g., the frontend resources used for localizing the

sound source by a node and the selected data communication paths, determine the three

main factors defining the error of the models used in decision making. The quality of resource

allocation schemes depends to a high degree on the characteristics of the environment, e.g.,

ambient noise, and monitored phenomena, i.e. trajectory.

This chapter proposes a novel, asynchronous interaction scheme between agents that

operate decoupled for most of the time. The scheme is based on a mathematical model of

data acquisition utility, and how utility changes as more data is acquired. The model captures

aspects, like gaining new insight into the process, increasing the confidence of the models

used in decision making, and the collaborative-competitive aspect of agent interactions. The

model is then utilized to infer the selection ratios that decide how alternative sampling

steps are used by an agent to maximize the data acquisition utility, while the agent operates
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decoupled from the other agents. Experiments study the effectiveness of the proposed scheme

in producing comprehensive data acquisition while minimizing the amount of redundant

(unnecessary) data collected by the decoupled agents.

The chapter has the following structure. Section 4.2 describes related work and Section

4.3 discusses proposed solution and Section 4.4 offers experimental results. Finally, our

conclusions are put forth.

4.2 Related Work

Data acquisition strategies for autonomous robots are basically classified into three

main types: predefined trajectories, NBV(Next Beat View) problem, and hybrid systems.

In predefined trajectory systems, auto robots move along fixed trajectories and complete

a series of tasks [71, 72]. Predefined trajectories work in static environment which do

not have dynamic attributes, and require information about the environment to compute

trajectories. These two features make strategies which computing trajectories in advance,

hard to implement in reality. Predefined trajectories also have poor adaptability when facing

different environments and potential environmental changes.

NBV problem [68, 73, 74, 76, 81], mainly calculates the next observation point at each

step with information from neighboring points. NBV is an online path planning strategy

and is more adaptive to environments but the primary drawback is that it is computationally

intensive. In literature, simple NBV strategies include greedy strategies which are always

seeking the highest benefit or lowest cost regardless of any other factors such as random points

sweep, and wall to wall sweep [73]. These strategies require relatively less neighborhood

information but do not work well in complicated scenarios. A Utility function (UF) is

typically used to select next best exploration point among a set of candidates. Utility

function is a measure of the benefit attained, when deciding among multiple states. In an

unknown environment, which is usually the case in reality for autonomous robots, utility is
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expressed as expected value for probability distributed states [70]. The simplest form of UF

contains only one factor which is usually the cost to travel to the new data collection point,

and this cost could be time consumption, travel distance or information gain. In [77], relative

entropy is used as information metric for the direction control. The exploration strategy in

[78] navigates robots to the nearest accessible, unvisited frontier. [79] proposed three forms

of criteria: closest unvisited, unscanned, or informative location without taking sensor range

into account. There is another strategy category which employs linear combination of two or

more terms such as distance traveled and the information gain. As proposed in [73], entropy

gain from gathered information is an indicator of the benefit in UF and Euclidean distance

to travel between points is cost. It is also applied to dynamic environment with moving

obstacles. [74] builds a theoretically well defined UF ; the cost term in selection criterion

is formulated as the logarithm of the traveled distance to reach the candidate position and

scan range, while the expected entropy increase is affected by scanned point, new point seen

from the candidate position as well as robot position error and sensor accuracy. Another

form of linear UF is proposed in [76] which uses the separation of the robots and the time

needed for the robots to reach their destinations. The above linear form can be formulated

into the following format [74]:

f(x) = g(x)− β · c(x) (4.4)

g(x) is expected gain to select x as new observation position, c(x) is the cost to reach x, and

β is a coefficient indicating the weight of gain over cost.

Exponential function was proposed in [81] with sufficient experimental data to justify

its effectiveness:

f(x) = A(x) exp(−λ · L(x)) (4.5)

A(x) measures unvisited area visible from x, L(x) is the length of path to x, and λ is the

weight. The best candidate is selected as it maximizes f(x).

Another innovative non-linear form in [75] used a UF with both grid and topology
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information to consider not only travel costs scaled by time consumption, and information

gain, but also the hot points on the map with different levels of attraction to mobile robots:

f(x) =
g(x)

Tr(x) + Tob(x)
· Topology(x) (4.6)

g(x) is information gain at point x, Tr(x) and Tob(x) are time used to travel to point x and

to observe at point x respectively, Topology(x) is topology features extracted from a grid

map.

Although utility functions are the dominative criterion in NBV problem, Amigoni and

others proposed a multi-objective strategy [68], which looks for Pareto-optimal position

candidates who are not dominated by other position candidates, and then pick the one

that is nearest to the ideal solution, instead of using traditional utility functions which are

defined in ad-hoc manner. This strategy overcomes the false ‘best candidate’ brought by

weight factors in UF when trading off between benefit and cost, and has a relatively good

adaptability from simple to complicated environments. However, it takes more steps in

selecting best candidate. Table 4.1 summarizes some common UF forms in literature.

4.3 Algorithms for Mobile Agents Layer

This section presents the modeling of the mobile agents layer and then the decision

making algorithms of the decoupled agents, so that the application objective is optimized.

4.3.1 Mobile Agents Layer Modeling

The model used for the mobile agents layer is defined as the following quadruple:

Model =< Function,Error, Utility, Cost > (4.7)

Function is the mathematical expression of the model used in decision making to
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optimize the application objective 4.1. Error is the prediction error of the model. Utility

is the utility of using Function in decision making by an individual agent, e.g., improving

the effectiveness of the selected decisions. The local utility of an agent is also considered in

equation (4.2). Cost is the cost of building the model, including time, hardware resources,

and energy.

The four components of the model are correlated with each other. For example, the

error of the model function is correlated to utility, such as a smaller error implies a higher

utility of the model. Similarly, producing a model of smaller error requires a higher cost.

The specific nature of the two correlations depends on the application. The utility of the

models in achieving the application goals must be optimized while the cost stays within the

available resource limits.

(a) (b) (c) (d)

Fig. 4. Model function types

temperatures and model parameters of the above equation
are different for each cluster. The description in Figure 4(c)
extends the previous case to situations in which the order of
visiting the clusters also impacts the selected clusters. This
is important if the model also predicts the causality of a
phenomena, in which case the order is also important. The
last figure represents a heterogeneous medium, in which three
kind of substances fill the modeled physical area (shown with
different patterns in the figure).

The new insight added through the acquired data includes
two situations:

1) The data covers new situations, which is reflected
through new variables being added to the expres-
sions Function of the model. The change in utility,
∆(1,a)Utility , is described by the following expression:

∆(1,a)Utility = ∑
c∈new conds

(Utility(c)−Utility0) probability(c)

(5)
The change is equal to the sum of the difference of

the utility value for each newly added conditionc and
the original utility Utility0 times the probability of the
condition being used in decision making.new condsis
the set of all new conditions covered by the added data.

2) The data corresponds to previously uncovered physical
zones. This extends the domains of the variables already
present in the domain. Figure 2(a) illustrates this case.
The data acquired by agent 2 extends the domains of
the variables used in expressingFunctionbased on the
data sampled by agent 1. The change in utility is equal
to:

∆(1,b)Utility = ∑
s∈∆ Space

(Utility(s)−Utility0) probability(s)

(6)
∆Spacerepresents the zone (e.g., volume or surface)

from which the new data was acquired.Utility0 is the
original utility value, before the new data was acquired.
probability(c) is the probability of decision making
utilizing information for∆Space.

The second component of∆(2)Utility refers to improving
the utility value by increasing the confidence level of pre-
dictions throughFunction. More accurate predictions lead
to superior decision making. Lets assume that the utility
of Function in decision making depends on its mathemati-
cal form and error according to the relationship:Utility =
ψ(Function,Error). Hence, the initial utility isUtility0 =
ψ(Function0,Error0). After considering the newly acquired
data too, the function and its error change toFunction and
Error, respectively, thusUtility = ψ(Function,Error). The
change in the utility value is as follows:

predicted utility of the other agents (1, 2, ...k)

> Thresh

−

Request update

. . .

Decision Predicted utility
utility
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Update information used in prediction

Select decisions by maximizing the

Prediction
1

Prediction
2
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kagent agent agent

Utility of the current agent and the 

Fig. 5. Local decision scheme

∆(2)Utility = ψ(Function,Error) − ψ(Function0,Error0) ≈∫
Dom probability(v) ∂ ψ

∂Function(Function0(v))

(Function(v)−Function0(v))dv (7)

where the change is computed over the entire domainDom
of Function.

The third component∆(3)Utility characterizes the impor-
tance of the data acquired by an agent in the context of the
data sampled by other agents for the same zone. The third
component includes the following value computed for every
pair of agents:

∆(3)Utility =

∫
Dom∆Utility1,2(v)(Unique(v)−Overlap(v))dv

Dom
(8)

∆Utility1,2 = ∆Utility (1)+∆Utility (2) is the sum of the first
two components.Unique and Overlap defines if the agent
does not or does overlap with the other agent in sampling
data fromDom.

B. Adaptive Interaction Scheme

The considered distributed decision making scheme for
solving the optimization problem defined by equations (1)-(3)
is a mixture of planned and reactive actions. The planned ac-
tivities define coarse-level objectives and set flexibilityranges
that the low-level, reactive actions must meet. For example, the
flexibility range of an agent indicates the extra time interval
available to the agent to complete its scheduled activities
without violating the constraint [8]. The reactive actions
tackle any unknown or unpredicted aspects that occur during
operation, such as uncertainties in the problem description and
environment.

Every agent maximizes the following cost function in an
attempt to implement equations (1) and (2):

maxUtilityk+∑
i 6=k

E[Utility i ] (9)

whereUtility k is the utility of agentk (the utility is computed
using the local model of the agent) andE[Utility i] is the
expected utility of the other agents. The first term reflects the
requirement of equation (2) and the second term expresses the
overall optimization objective in equation (1).

The information needed to set up the formula for the
expected utilities is collected through an asynchronous com-
munication scheme between agents. The agents exchange data
about their state (e.g., utilities) at intervals established based on
need. The synchronization points re-adjust the local models to

Figure 4.4: Model function types

Function expressions are continuous and differentiable functions over their domain. This

represents situations in which the models are built for homogeneous media, such as if the

same kind of sampled substance fills the considered space. For example, the amount ns of

solvent flowing into the air from a tank can be estimated using the formula [82]:

ns =
V

R
[(a+

ab

pT − b
) ln

pT − b− aT1

pT − b− aT2

T2

T1

+ b(
1

T2

− 1

T1

)] (4.8)

where V is the volume of the head space, pT the total pressure, R the gas constant, T1

and T2 the start and end temperature, and a and b are constants. Figure 4.4(b) describes

homogeneous media but with discontinuous behavior, such as having three clusters in which
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different functions express the sampled data. For example, this situation can occur if the

same solvent is flowing out through three different openings, so that the local pressure,

temperatures and model parameters of the above equation are different for each cluster.

The description in Figure 4.4(c) extends the previous case to situations in which the order

of visiting the clusters also impacts the selected clusters. This is important if the model also

predicts the causality of a phenomena, in which case the order is also important. The last

figure represents a heterogeneous medium, in which three kind of substances fill the modeled

physical area (shown with different patterns in the figure).

The new insight added through the acquired data includes two situations:

1. The data covers new situations, which is reflected through new variables being added to

the expressions Function of the model. The change in utility,4(1,a)Utility, is described

by the following expression:

4(1,a)Utility =
∑

c∈newconds

(Utility(c)− Utility0) · probability(c) (4.9)

The change is equal to the sum of the difference of the utility value for each newly

added condition c and the original utility Utility0 times the probability of the condition

being used in decision making. newconds is the set of all new conditions covered by

the added data.

2. The data corresponds to previously uncovered physical zones. This extends the

domains of the variables already present in the domain. Figure 4.3(a) illustrates this

case. The data acquired by agent 2 extends the domains of the variables used in

expressing Function based on the data sampled by agent 1. The change in utility is

equal to:

4(1,b)Utility =
∑

s∈4Space

(Utility(s)− Utility0) · probability(s) (4.10)
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4Space represents the zone (e.g., volume or surface) from which the new data was

acquired. Utility0 is the original utility value, before the new data was acquired.

probability(c) is the probability of decision making utilizing information for 4Space.

The second component of 4(2)Utility refers to improving the utility value by increasing

the confidence level of predictions through Function. More accurate predictions lead to

superior decision making. Lets assume that the utility of Function in decision making

depends on its mathematical form and error according to the relationship: Utility =

Ψ(Function,Error). Hence, the initial utility is Utility0 = Ψ(Function0, Error0). After

considering the newly acquired data too, the function and its error change to Function and

Error, respectively, thus Utility = Ψ(Function,Error). The change in the utility value is

as follows:

4(2)Utility = Ψ(Function,Error)−Ψ(Function0, Error0)

≈
∫

Dom

probability(v)
∂Ψ

∂Function
(Function0(v))

(Function(v)− Function0(v))dx (4.11)

where the change is computed over the entire domainDom of Function. The third component

4(3)Utility characterizes the importance of the data acquired by an agent in the context of

the data sampled by other agents for the same zone. The third component includes the

following value computed for every pair of agents:

4(2)Utility =

∫
Dom
41,2Utility(v)(Unique(v)−Overlap(v))dv

Dom
(4.12)

41,2Utility = 4(1)Utility+4(2)Utility is the sum of the first two components. Unique and

Overlap defines if the agent does not or does overlap with the other agent in sampling data

from Dom.
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4.3.2 Adaptive Interaction Scheme

The considered distributed decision making scheme for solving the optimization problem

defined by equations (4.1)-(4.3) is a mixture of planned and reactive actions. The planned

activities define coarse-level objectives and set flexibility ranges that the low-level, reactive

actions must meet. For example, the flexibility range of an agent indicates the extra time

interval available to the agent to complete its scheduled activities without violating the

constraint [66]. The reactive actions tackle any unknown or unpredicted aspects that occur

during operation, such as uncertainties in the problem description and environment.

Every agent maximizes the following cost function in an attempt to implement equations

(4.1) and (4.2):

maxUtilityk +
∑

i 6=k

E[Utilityi] (4.13)

where Utilityk is the utility of agent k (the utility is computed using the local model of the

agent) and E[Utilityi] is the expected utility of the other agents. The first term reflects

the requirement of equation (4.2) and the second term expresses the overall optimization

objective in equation (4.1).

(a) (b) (c) (d)

Fig. 4. Model function types

temperatures and model parameters of the above equation
are different for each cluster. The description in Figure 4(c)
extends the previous case to situations in which the order of
visiting the clusters also impacts the selected clusters. This
is important if the model also predicts the causality of a
phenomena, in which case the order is also important. The
last figure represents a heterogeneous medium, in which three
kind of substances fill the modeled physical area (shown with
different patterns in the figure).

The new insight added through the acquired data includes
two situations:

1) The data covers new situations, which is reflected
through new variables being added to the expres-
sions Function of the model. The change in utility,
∆(1,a)Utility , is described by the following expression:

∆(1,a)Utility = ∑
c∈new conds

(Utility(c)−Utility0) probability(c)

(5)
The change is equal to the sum of the difference of

the utility value for each newly added conditionc and
the original utility Utility0 times the probability of the
condition being used in decision making.new condsis
the set of all new conditions covered by the added data.

2) The data corresponds to previously uncovered physical
zones. This extends the domains of the variables already
present in the domain. Figure 2(a) illustrates this case.
The data acquired by agent 2 extends the domains of
the variables used in expressingFunctionbased on the
data sampled by agent 1. The change in utility is equal
to:

∆(1,b)Utility = ∑
s∈∆ Space

(Utility(s)−Utility0) probability(s)

(6)
∆Spacerepresents the zone (e.g., volume or surface)

from which the new data was acquired.Utility0 is the
original utility value, before the new data was acquired.
probability(c) is the probability of decision making
utilizing information for∆Space.

The second component of∆(2)Utility refers to improving
the utility value by increasing the confidence level of pre-
dictions throughFunction. More accurate predictions lead
to superior decision making. Lets assume that the utility
of Function in decision making depends on its mathemati-
cal form and error according to the relationship:Utility =
ψ(Function,Error). Hence, the initial utility isUtility0 =
ψ(Function0,Error0). After considering the newly acquired
data too, the function and its error change toFunction and
Error, respectively, thusUtility = ψ(Function,Error). The
change in the utility value is as follows:

predicted utility of the other agents (1, 2, ...k)
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∆(2)Utility = ψ(Function,Error) − ψ(Function0,Error0) ≈∫
Dom probability(v) ∂ ψ

∂Function(Function0(v))

(Function(v)−Function0(v))dv (7)

where the change is computed over the entire domainDom
of Function.

The third component∆(3)Utility characterizes the impor-
tance of the data acquired by an agent in the context of the
data sampled by other agents for the same zone. The third
component includes the following value computed for every
pair of agents:

∆(3)Utility =

∫
Dom∆Utility1,2(v)(Unique(v)−Overlap(v))dv

Dom
(8)

∆Utility1,2 = ∆Utility (1)+∆Utility (2) is the sum of the first
two components.Unique and Overlap defines if the agent
does not or does overlap with the other agent in sampling
data fromDom.

B. Adaptive Interaction Scheme

The considered distributed decision making scheme for
solving the optimization problem defined by equations (1)-(3)
is a mixture of planned and reactive actions. The planned ac-
tivities define coarse-level objectives and set flexibilityranges
that the low-level, reactive actions must meet. For example, the
flexibility range of an agent indicates the extra time interval
available to the agent to complete its scheduled activities
without violating the constraint [8]. The reactive actions
tackle any unknown or unpredicted aspects that occur during
operation, such as uncertainties in the problem description and
environment.

Every agent maximizes the following cost function in an
attempt to implement equations (1) and (2):

maxUtilityk+∑
i 6=k

E[Utility i ] (9)

whereUtility k is the utility of agentk (the utility is computed
using the local model of the agent) andE[Utility i] is the
expected utility of the other agents. The first term reflects the
requirement of equation (2) and the second term expresses the
overall optimization objective in equation (1).

The information needed to set up the formula for the
expected utilities is collected through an asynchronous com-
munication scheme between agents. The agents exchange data
about their state (e.g., utilities) at intervals established based on
need. The synchronization points re-adjust the local models to

Figure 4.5: Local decision scheme

The information needed to set up the formula for the expected utilities is collected

through an asynchronous communication scheme between agents. The agents exchange data

about their state (e.g., utilities) at intervals established based on need. The synchronization
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points re-adjust the local models to eliminate prediction errors about the other agents’s

utility, as the utility changes during asynchronous operation. Between two synchronization,

the agents operate totally decoupled making predictions based on the state information

received from the other agents. The goal of this communication scheme is to avoid excessive

resource overhead, e.g., communication bandwidth. The scheme can also improve robustness

of decision making as noise, errors, or outlier data is prevented from impacting the model

representation and thus perturbing the functioning of the entire group of agents.

(b)
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Fig. 2. Local (agent-level) decision making scheme

the head space, pT the total pressure, R the gas constant, T1
and T2 the start and end temperature, and a and b are constants.

(2) Utility. The literature on utility-based, decentralized
decision making, including game-theoretic methods, proposes
different expressions to define general-purpose (application
independent) utilities. Most schemes select candidates that
maximize utility:

1) Method 1 [15]: The utility function is U = g(x), where
g(x) is information gain expressed as a linear function.

2) Method 2 [3]: The utility function is U = g(x)−β×c(x),
where g(x) is the data gain at point x, c(x) is the cost to
travel to point c(x), and β is the weight of gain compared
to cost. The difference from Method 1 is that the cost
is part of the utility function.

3) Method 3 [10]: The utility function is U = h(x)−β ×
c(x). h(x) is the entropy at point x as a measurement of
information gain.

4) Method 4 [9]: The utility function is U = A(x) ×
exp(−λ×L(x)). A(x) measures the unvisited area visible
from point x, L(x) is the length of the path to point x,
and λ is a weight.

5) Method 5 [4]: The method executes a multi-objective
exploration strategy: Step 1 selects from all can-
didates the Pareto-optimal point with maximum in-
formation gain, minimum travel cost, and mini-
mum overlapping. Step 2 chooses the nearest candi-
date to the position predicted by expression D(p) =
2
√

(c(p)− cM)2 +(i(p)− iM)2 +(o(p)−oM)2.
Figure 2(a) summarizes the decentralized decision scheme

executed locally by each agent. Agents use inputs and pre-
dictions of the data model Function to make decisions that
maximize their utility. The decision is selected from a fixed
set of alternatives based on threshold values T hreshi. The
data model Function is updated based on sampled inputs to
incorporate new situations, e.g., data samples from different
physical areas, or to improve the data model accuracy of
already considered regions by adding more samples. If the
expected utility of the selected decisions deviates significantly
from the real utility then the threshold values are adjusted.

The expected overall utility E[Utility] of decision making
by one agent is expressed by the following expression:

E[Utility] = ∑
i

prob(F > T hreshi)Value(Decisioni) (5)

prob(F > T hreshi) is the probability of executing deci-
sion Decisioni. The probability depends on a function F cap-
turing the elements intervening in the threshold comparison,
i.e. inputs, state, and data model Function. Function Value
defines the utility of the individual action Decisioni.

For a given set of decisions and a known function Value,
finding an optimized decision making scheme requires finding
the threshold values T hreshi that maximize utility E[Utility]:

max∑
i

prob(F > T hreshi)Value(Decisioni) (6)

Note that in expression (6), the data model Function and
Utility are related through three components: (i) the additional
insight offered by newly sampled data from previously un-
covered physical zones, (ii) the improved utility of an updated
model (due to newly sampled data), and (iii) the importance of
new data samples (i.e. uniqueness). The additional insight ex-
tends the domains of the variables already present in Function,
and can also change the expression of F . Second, improving
the accuracy level of the data model Function increases the
confidence level of predictions through Function (because of
smaller error), and leads to superior decision making. The third
component refers to the importance of the newly sampled data
with respect to the goal of the application.

In summary, we define the devising of a model-based,
decentralized decision making scheme as the problem of
optimizing expression (6) by selecting customized threshold
values T hreshi for an application described by a mathematical
data model Function and a known function Value used to
characterize the utility of individual decisions.

IV. DECENTRALIZED DECISION MAKING SCHEME

Every agent maximizes the following cost function in an
attempt to implement equations (1) and (2):

maxUtilityk +∑
i 6=k

E[Utilityi] (7)

where Utilityk is the utility of agent k (the utility is computed
using the local model of the agent) and E[Utilityi] is the
expected utility of the other agents.

The information needed to set up the formula for the
expected utilities of other agents is collected through an
asynchronous communication scheme between agents and data
collection points. Agents receive data at intervals established
based on the need to re-adjust the local models to eliminate
large prediction errors. Other than that, agents operate totally
decoupled making predictions based only on the local informa-
tion about other agents. The goal of this asynchronous commu-
nication scheme is to avoid excessive resource overhead, e.g.,
communication bandwidth. The scheme can also improve the
robustness of decision making as noise, errors, or outliers are
prevented from impacting the model representation and thus
perturbing the operation of the agents.

The decision making scheme used by each agent to im-
plement equation (7) is motivated as follows. Figure 2(b)
illustrates the data acquisition scheme of an agent moving
along its trajectory. In every point of the trajectory, such as
point A, the agent can select among p alternatives to acquire
samples in addition to those along its trajectory. The figure

Figure 4.6: Sampling scheme

Figure 4.5 summarizes the local decision scheme of every agent. Each agent makes

decisions that maximize the utility of the agent and the predicted utilities of the other

agents (e.g., agents 1, 2, ... k). The total, predicted utility of a decision is compared to the

real utility, acquired by analyzing the effects of the decision. If the difference is larger than

a threshold value Thresh then the agent signals to the other agents its request to update the

information used in predicting the utility of the other agents. The expected utility of the

other agents is calculated by the prediction modules.

Figure 4.6 illustrates the data acquisition scheme of an agent moving along its trajectory.

In every point of the trajectory, such as point A, the agent can select among p alternatives

to acquire samples in addition to those along the trajectory. The figure shows six different
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alternatives (Di), each having a different angle (with respect to the trajectory) and distance.

The alternatives are selected such that two do not produce overlapping samples.

The selection ratio pi,k of alternative Di,k of agent k is formulated by the following set

of equations:

max
∑

i

pi,kUtilityi,k (4.14)

∑

i

pi,k = 1 (4.15)

min
∑

k

∑

i

∑

l 6=k

∑

j

pi,kpj,lOverlapi,j (4.16)

Utilityi,k is the utility of using decision Di,k of agent k and Overlapi,j is the overlapped

data acquisition of agents k and l performing decisions Di,k and Dj,l, respectively. Equation

(4.16) defines that the total overlapped sampling of all agents should be minimized, hence

the total amount of unnecessary (redundant) samples should be kept to a minimum. Note

that equation is nonlinear. The unknown selection ratios pi,k define the scheme used by

agent k to sample the zone.

A simple alternative to solving equations (4.14)-(4.16) is that in which the selection

ratio pi,k is computed using the following set of alternative heuristic rules:

1. Heuristic 1 : The selection ratio pi,k ∼ Ltrajectory, where Ltrajectory is the length of the

trajectory of agent k. According to formula (4.9) and (4.10), this rule is expected to

add more insight to the models as sampling along longer trajectories is likely to cover

new areas.

2. Heuristic 2 : The selection ratio pi,k ∼ 1
Over

, where Over =
∑

b∈Breaks l
over
b

Ltrajectory
. Term Over

estimates the amount of repeated samplings along the same trajectory. The amount

increases with the length of the segments lover which are broken through angles less

than ninety degrees. Figure 4.6 illustrates a point b of the set Breaks of such angles.

This rule reflects the uniqueness requirement of

formula 4.10.
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3. Heuristic 3 : The selection ratio pi,k ∼ 1
Overk,l

, Overk,l =
∑

k,l

loverk,l

mink,l Ltrajectory
. The rule

states that the selection ratio is inversely proportional to the total overlapping of the

trajectory of agent k with the trajectory of agents l, which depends on the length loverk,l

of the trajectories’ overlapping and the total lengths of two trajectories.

The three heuristic methods are simple and are computed only based on static

information, e.g., the pre-assigned points that are visited by each agent. The trade-off

between the gained utility (e.g., newly sampled points), the cost of reaching the sampled

points, and the multiple sampling of the same point through decoupled agents is expressed

only in a simple form. The second procedure to solve equations (4.14)-(4.16) expressing

distributed data acquisition through decoupled agents is to consider a game theoretic

approach [83]. This approach finds the probabilities pi,k of agent i performing task k knowing

that each agent intends to maximize its own utility while minimizing their overlapping. The

utility expression can be selected based on three forms described in the literature:

• Linear form [74]: The utility function is defined as Utility(< x, y >) = Gain(< x, y >

) − βcost(< x, y >), where Gain is the gain obtained by sampling the physical point

< x, y > and cost is the cost of reaching the point from the current position, e.g., the

length of the trajectory to the point. β is a weight.

• Exponential form [81]: The utility function is expressed as Utility(< x, y >) = Gain(<

x, y >) exp (−λcost(< x, y >)). λ is a weight and all other variables have the same

meaning as in the previous utility expression.

• Non-linear composition [75]: Utility is computed as Utility(< x, y >) =

Gain(<x,y>)
cost(<x,y>)Sem(<x,y>)

, where Sem(< x, y >) defines the higher level information

(semantics) extracted from point < x, y >.

The proposed procedure to solve equations (4.14)-(4.16) is based on insight from game

theory. According to equation (4.14), each agent intends to maximize its own utility, which
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is the area of the zone from where data is collected. Without losing generality, we assume

that the utility of sampling a previously un-sampled point is one, and that of re-sampling

the same point is zero. Maximizing the covered area includes maximizing sampling from

uncovered zones, and minimizing sampling from already covered zones (such zones cannot

be avoided due to the autonomous operation of agents and the asynchronous communication

scheme). Hence, sampling from overlapping zones by multiple agents implies solving for

every agent k the following game theoretic equation [70]:

min max
∑

i

pi,kUtilityi,k (4.17)

knowing that every agent optimizes a similar equation, hence plays the same game. In

addition, the overlapping minimization condition defined in equation (4.16) can be restated

as follows:

min
∑

∀<x,y>

∑

k<x,y>

∑

i

∑

l<x,y>

∑

j

(pi,k)
nk(<x,y>)(pj,l)

nl(<x,y>) (4.18)

∀ < x, y > indicates all physical points that are sampled multiple times. k<x,y> and l<x,y>

are two agent that sample point < x, y >. nk(< x, y >) is the number of decisions that

agent k has to make to reach one point < x, y >, and nl(< x, y >) is the same number but

for agent l. Assuming that dk(< x, y >) is the physical distance of agent k to point < x, y >

then value nk(< x, y >) can be estimated as dk(<x,y>)
rk

, i and j indicate the available decisions

(action), where rk is the constant distance after which the agent k decides its next action.

Similarly, dk(< x; y >) = dk(<x;y>)
rl

. The equation assumes that re-sampling the same point

has utility zero, and otherwise the utility is one. Figure 4.7(a) illustrates the overlapped

sampling of point < x, y > by three agents.

Probabilities pi,k in equation (4.18) acts as correlators between the local decision making

procedures of each decoupled agent. This is similar to correlated equilibria in game theoretic

decisions [70]. The probabilities can be estimated in the following way. Using the method

in [66], the minimum time tmin and maximum time tmax can be computed for the points
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Fig. 7. Game-theoretic decision making

they sample the same point as agenti) are modeled as follows:

maxp j ∑
l

p j,lUtility j,l (15)

∑
l

p j,l = 1 (16)

Probabilityp j is the probability of agentj having overlapped
data sampling with agenti. Probability p j ,l is the probability
of agent j performing decisionl , andUtility( j, l) is the utility
of the decisionl .

The overlapping minimization defined in equation (12) can
be restated as follows:

min ∑
∀<x,y>

∑
j
∑
l

(pi,k)
ni(<x,y>)(p j,l )

nj (<x,y>) (17)

where < x,y > are the physical points that are sampled
multiple times,ni(< x,y>) is the number of decision making
instances that agenti has to make until reaching point< x,y>,
andn j(< x,y>) is the similar number for agentj. Assuming
that di(< x,y >) is the physical distance of agenti to point
< x,y> thenni(< x,y>) = di(<x,y>)

r i
, wherer i is the constant

distance after which the agenti decides its next action.
Similarly, n j(< x,y >) =

d j (<x,y>)
r j

. Figure 7(a) illustrates the
overlapped sampling of point< x,y> by three agents.

Probabilitiesp j in equation (15) act as correlators between
the local decision making procedures of each decoupled agent.
This is similar to correlated equilibria in game theoretic deci-
sions [7]. The probabilities can be estimated in the following
way. Using the method in [8], the minimum timetmin and
maximum timetmax can be computed for the points defining
a trajectory, as shown in Figure 7(b). Then, the probabilityfor
a given segment, such as segmentA-B in the figure, can be

computed asp j ,A−B =
tmin
B −tmax

A
tmax
B −tmin

A
. The probability characterizes

the flexibility available to the agent to perform other actions
in addition to moving to the next point of the trajectory. The
value of p j is adjusted depending on the current segment of
the trajectory.

Figure 8 presents the game-theoretic heuristic that approxi-
mates the solving of the equations (13)-(17). The probabilities
p j are computed as explained in the previous paragraph. At
every decision making point, an agent estimates the probabil-
ities probj ,l that agentj will use its actionl . This probability
is estimated as being the number of useful points (e.g., points
for which the utility gain is positive) along actionl over the
total number of useful points, which result along all actions.
Then, the algorithm considers all actionsk of the current

k

for every action l do
compute prob  = (# of useful points)/

(total # of unexplored points);j,l

for every action k do

for every point <x,y> tackled through action k do

for every agent j do
if point <x,y> can be tackled by agent j then

j,lj

S = 0;

S = S + p  x  p    ;

k
execute action k with probability prob  ;

k

kNpoints  = 0;

Npoints ++;

k

kcompute prob   = (Npoints − S)/Npoints  ;

for every agent j do

Fig. 8. Game-theoretic heuristic

agent. For each point< x,y > that can be tackled through
action k, it computes the valueS that indicates the overall
probability that another agentj will tackle the same point too.
The number of useful points that are uniquely tackled by action
k is approximated as the difference between the total number
of useful points for the action,Npointsk, minus those covered
by other agents too, predicted by sumS. The probabilityprobk

of executing actionk is equal to the ratio of the unique points
over the number of useful points for the action.

IV. A LGORITHMS FORDATA COMMUNICATION LAYER

Three algorithms were devised for predicting the trajec-
tory of the monitored phenomenon. The first algorithm uses
bayesian inference to make trajectory predictions by mapping
to quasi-static trajectories. This prediction method is analogous
to the sensor selection techniques in [9]. The second algorithm
uses bounded trajectories where a Trajectory Approximating
Region (TAR) is computed by computing Inflexion Points
based on convex-concave fragments. The third algorithm
uses Stochastically Bounded trajectories where the TAR is
computed using stochastic techniques instead of computing
convex-concave fragments. An adaptive fourth algorithm was
also devised that switched between the first three algorithms
depending on the current state of the trajectory.

Before we move on to the algorithms, we first characterize
the behavior of the trajectory and also define how the elements
in the network compute the state of the system based on the
information collected.

A trajectory is characterized by its velocityv and angle
θ with respect to the X-axis in the network. The state of
the target is defined by it’s x-position, y-position and timeof
triggering an event at a node. The minimum distance between
nodes is adjusted according to the range of the sensors such
that no 2 nodes can sense a target at the same timet.

A sensing node that triggers an event always knows the
target’s previous state< xprev,yprev,tprev> and computes the
current state< xcurr,ycurr,tcurr >. Using that, it computes
velocity v and angleθ .

Since the nodes in the network are not time synchronized, a
protocol is used that helps determine the target’s previousstate.
The node that triggers an event generates a GPIO interrupt
instantly so that the neighbors would have a time stamp

Figure 4.7: Game-theoretic decision making

defining a trajectory, as shown in Figure 4.7(b). Then, the probability for a given segment,

such as segment A-B in the figure, can be computed as pi,k =
tmin
B −tmax

A

tmax
B −tmin

A
. The probability

characterizes the flexibility available to the agent to perform other actions in addition to

moving to the next point of the trajectory. The value of pj is adjusted depending on the

current segment of the trajectory.
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Fig. 3. Game-theoretic decision making

shows six different alternatives (Di), each having a different
angle (with respect to the trajectory) and distance. Alternatives
are selected such that two agents are likely not do to have
overlapping samples. The selection ratio pi,k of alternative Di,k
of agent k is defined by the following set of equations:

max∑
i

pi,kUtilityi,k (8)

∑
i

pi,k = 1 (9)

min∑
k

∑
i

∑
l 6=k

∑
j

pi,k p j,l Overlapi, j (10)

Utilityi,k is the utility of using decision Di,k by agent k.
Overlapi, j is the overlapped data acquisition of agents k and l
performing decisions Di,k and D j,l , respectively. Equation (10)
defines that the total overlapped sampling of all agents should
be minimized, hence the total amount of unnecessary (redun-
dant) samples should be kept to a minimum. Note that equation
is nonlinear.

The unknown selection ratios pi,k define the scheme used
by agent k to sample the zone. They are analogous to the
probabilities in equation (6), and act as implicit thresholds in
selecting decisions.

The proposed procedure to solve equations (8)-(10) is based
on insight from game theory [15]. According to equation (8),
each agent intends to maximize its own utility, which is
the area of the zone from where data is collected. Without
losing generality, we assume that the utility of sampling a
previously un-sampled point is one, and that of re-sampling
the same point is zero. Maximizing the covered area includes
maximizing sampling from uncovered zones, and minimizing
sampling from already covered zones (such zones cannot be
avoided due to the autonomous operation of agents and the
asynchronous communication scheme). Hence, sampling from
overlapping zones by multiple agents implies solving for every
agent k the following game theoretic equation [15]:

minmax∑
i

pi,kUtilityi,k (11)

knowing that every agent optimizes a similar equation, hence
plays the same game.

In addition, the overlapping minimization condition defined
in equation (10) can be restated as follows:

min ∑
∀<x,y>

∑
k<x,y>

∑
i

∑
l<x,y>

∑
j
(pi,k)

nk(<x,y>)(p j,l)
nl(<x,y>) (12)

∀< x,y> indicates all physical points that are sampled multi-
ple times. k<x,y> and l<x,y> are two agent that sample point <
x,y >. nk(< x,y >) is the number of decisions that agent k
has to make to reach one point < x,y >, and nl(< x,y >) is
the same number but for agent l. Assuming that dk(< x,y>)

compute prob   = (Npoints − S)/Npoints  ;

for every action i do

Npoints  = 0;i

for every point <x,y> sampled through action i do
Npoints ++;i

end for;
end for;

compute prob  = (# of useful points)/

(total # of unexplored points);
j,l

for every action j do

for every agent l != k do

for every agent l != k do

for every action j do

end for;

procedure decision_scheme (agent k)

end for;
end for;

i ii,k

end procedure

execute action i with highest prob    ;i,k

end for;

if point <x,y> can be sampled by agent l then

i,kS = S + prob    x  prob    ;

S = 0;

j,l

Fig. 4. Heuristic algorithm for decision scheme computation

is the physical distance of agent k to point < x,y > then
value nk(< x,y >) can be estimated as dk(<x,y>)

rk
, where rk

is the constant distance after which the agent k decides its
next action. Similarly, nl(< x,y >) = dl(<x,y>)

rl
. The equation

assumes that re-sampling the same point has utility zero,
and otherwise the utility is one. Figure 3(a) illustrates the
overlapped sampling of point < x,y> by three agents.

To summarize, the proposed approach to design decentral-
ized decision making schemes finds the probabilities pi,k of
agent k performing decision i knowing that each other agent
intends to maximize its own utility too while minimizing their
overlapping with other agents. The probabilities of re-sampling
physical points also sampled by other agents act as correlators
between the local decision making procedures of each decou-
pled agent. This is similar to correlated equilibriums in game
theory [15]. However, finding correlated equilibriums is not
easy in the general case [15].

Instead, inspired by equations (8)-(12), we suggest a deci-
sion making heuristic for any agent k. Figure 4 presents the
heuristic. At every decision making point, agent k calculates
probabilities prob j,l that another agent l uses its action j.
The probability is estimated as the number of useful points
for action j (e.g., points for which the utility gain is positive
because they were not sampled yet) over the total number of
useful points for all available actions. Then, for all actions i of
agent k, the method considers every physical point < x,y> that
can be sampled through the action, and computes the value S
that indicates the overall probability that another agent l re-
samples point S (equation 12). The likelihood that an agent l
re-samples the same point < x,y > depends not only on the
probability p j,l that it reaches the point through action j but
also on the probability that the agent has sufficient flexibility
to do so without violating its timing constraints. The smaller
is flexibility f (t)l , the lesser is the likelihood of selecting any
actions that would deviate from the minimum path to the
agent’s destination. Flexibility f (t)l is estimated as in [2]: it is

∑A,B∈minPath
tmin
B −tmax

A
tmax
B −tmin

A
N−1 , where tmin is the minimum time and tmax

is the maximum time of reaching a point without exceeding

Figure 4.8: Game-theoretic heuristic

To summarize, the proposed approach to design decentralized decision making schemes
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finds the probabilities pi,k of agent k performing decision i knowing that each other agent

intends to maximize its own utility too while minimizing their overlapping with other

agents. The probabilities of re-sampling physical points also sampled by other agents act as

correlators between the local decision making procedures of each decoupled agent. This is

similar to correlated equilibriums in game theory. However, finding correlated equilibriums

is not easy in the general case.

Instead, inspired by equations (4.14)-(4.16), we suggest a decision making heuristic for

any agent k. Figure 4.8 presents the heuristic. At every decision making point, agent k

calculates probabilities probj,l that another agent l uses its action j. The probability is

estimated as the number of useful points for action j (e.g., points for which the utility gain

is positive because they were not sampled yet) over the total number of useful points for

all available actions. Then, for all actions i of agent k, the method considers every physical

point < x, y > that can be sampled through the action, and computes the value S that

indicates the overall probability that another agent l re-samples point S (equation (4.18)).

The likelihood that an agent l re-samples the same point < x, y > depends not only on

the probability probi,k that it reaches the point through action i but also on the probability

that the agent has sufficient flexibility to do so without violating its timing constraints.

The smaller is flexibility f
(t)
l , the lesser is the likelihood of selecting any actions that would

deviate from the minimum path to the agent’s destination. Flexibility f
(t)
l is estimated as∑

A,B∈minPath

tmin
B −tmax

A
tmax
B

−tmin
A

N−1
. N is the number of points on the minimum path minPath. Points A

and B are successive points on the minimum path. Finally, the number of useful points that

are uniquely sampled by action i of agent k is approximated as the difference between the

total number of useful points for the action, Npointsk, minus those also re-sampled by other

agents, as predicted by sum S. The highest probability action is executed (equation (4.14)).
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4.4 Experimental Analysis

The experiments compared distributed data acquisition using the proposed decision

making scheme in Section 4.3 and the methods using the reference utilities in Section 4.2.

The goal was to maximize the area coverage of the sampled data while visiting a number of

required points placed over the area of interest. All newly sampled points have utility one,

and all re-sampled points have utility zero.

The experimental set-up run considered examples in which the following parameters

were changed: (i) the number of mobile agents was 5, 10, 20, 50 and 100 autonomous agents,

(ii) the number and position of required points, some of which are shown in Figure 4.9, and

(iii) the length of the sampling path between consecutive decision making point, which was

set as a random number of Gaussian distribution.

The resulting sampling results show that the proposed decentralized method produces a

repulsion effect so that different agents avoid overlapping of their sampled points. This lowers

the redundancy of sampled data. In certain instances, the overall sampling coverage of the

area is improved as compared to the five traditional methods. Tables 4.2-4.10 present more

detailed experimental results to compare the five methods based on utility maximization

to the proposed model-based, game-theoretic approach. For each case, the experiments

recorded 10 different runs of the acquisition scheme. This is required given the stochastic

nature of the method. The five methods were presented in Section 4.2 and are summarized

as following:

Method 1 Utility function is expressed as U = g(x).

g(x) is information gain, which is expressed as coverage gain in the experiments. The

best candidate is selected as it maximizes U .

Method 2 Utility function is U = g(x)− β × c(x).

g(x) is the data gain at point x, c(x) is the cost to travel and β is the coefficient

indicating the weight of gain over cost. The difference from method 1 is that cost is
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put into utility function calculation. β can be adjusted to change weight of cost. The

best candidate is selected as it maximizes U .

Method 3 Utility function is U = h(x)− β × c(x).

It is proposed in [73], which also uses a linear form utility function but adopts entropy

h(x) at point x as measurement of information gain. The best candidate is selected as

it maximizes U .

Method 4 Utility function is expressed as U = A(x)× exp(−λ× L(x)).

A(x) measures unvisited area visible from point x, L(x) is the length of path to point

x, and λ is the weight. The best candidate is selected as it maximizes U .

Method 5 is multi-objective exploration strategy proposed in [68].

Step 1: Select the following Pareto-optimal from all the candidates: maximum

information gain, minimum travel cost, and minimum overlapping. Step 2: Select the

one from Pareto-optimal as the best candidate which is nearest to the ideal position

according to the distance calculation:

D(p) = 2
√

(c(p)− cM)2 + (i(p)− iM)2 + (o(p)− oM)2

Method 6 is the game-theoretic heuristic approach proposed in Section 4.3.

Experiments with 5, 10, 20, 50 and 100 autonomous agents were studied. Each agent

does its own decision making and does not rely on synchronized information. Figure 4.9

shows the examples of the pre-calculated trajectories we used in our experiments. Note that

the nature of the preset trajectories affects the data acquisition results since the exploration

paths are based on them. If the trajectories of agents are too far apart, no overlapping

will happen no matter what exploration strategies are used. On the other hand, if too many

agents are sampling a certain area, overlapping is unavoidable. The proposed game-theoretic

approach is efficient in the situations that overlapping happens and can be avoided in some

cases which require the preset trajectories of agents neither too close nor too far away from

each other.
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Figure 4.9: Example of the experimented trajectories
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Figure 4.10: Example trajectories produced using method 1, 2, 4 and 5. The shorter lines
surrounding the main trajectories indicate exploration conducted through decision making
methods.
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Figure 4.11: Example trajectories produced using method 6. The shorter lines surrounding
the main trajectories indicate exploration conducted through the proposed game-theoretic
decision making methods.
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Four different sets of trajectories were used in the experiments with 5 agents. Since

the results of the experiments focused on data coverage and redundancy, the 4 sets of main

trajectories for the 5 agents considered different distribution in space, while still deviating to

sample around the trajectories. These trajectories are the main trajectories that each agent

follows during their tasks. The agents do optimal exploration at each decision making point

and return to their own main trajectories and continue the tasks. Figures 4.10 and 4.11

show the results of decision making from related work and proposed method respectively.

Figure 4.10 shows some examples of the exploration paths computed with method 1, 2, 4, 5

of related work. The figure for method 3 is not show since the nature of method 3 is similar

to method 2 but it uses a different expression of information gain in calculation. Although

each agent optimizes its own coverage at each decision making point using different utility

functions, overlapping among different agents is obviously high in the final result. Figure

4.11 shows the same set of examples as Figure 4.10, but the exploration paths are computed

using game-theoretic heuristic method discussed in Section 4.3. Comparing each set of final

trajectories with those in Figure 4.10, a repulsion effect can be seen between the trajectories

of different agents so that the overlapping among agents is reduced, and so is the data

redundancy. At the same time, the coverage of the whole area is improved compared to the

plots in Figure 4.10.

Tables 4.2 to 4.10 represent the statistical results of the experiments. The rows of Tables

4.2-4.5 show the following experimental results: (1) The first row gives the average number of

multiple samples of a physical point due to an agent’s own decisions, not the required points.

(2) The second row shows the average number of samples only for multiple-sampled points,

and due to both decisions and required points. (3) Row three gives the average number of

samples for all points, including those sampled only once. It is the ratio of the total number

of samples and the total number of distinct physical points that were sampled. (4) Row

four presents the percentage of the sampled area defined as the ratio of the total number

of visited points and the total number of points of target area. (5) Row five shows the
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number of physical points which were sampled multiple times but due to repeated rounds

of exploration. This metric considers only the points that were re-sampled during a new

round of exploration through the same agents. (6) Row six gives the total travel time of

all agents. (7) Row seven describes the percentage of points sampled multiple times. (8)

Row eight offers the percentage of unsampled points. (9) Row nine indicates the number of

multiple-sampled points of a region. (10) Row ten shows the maximum number of sampling

times of a point (maximum amount of redundancy).

Exp. Mlt. Vst.: Average number of multiple samples of a physical point situated on the

exploration branches (only the visits on the branch count) due to agents decisions,

Total multiple visited times on the branches
No. of points been multiple visited onthe branches

, in which multiple visited means visited more

than once by different agents.

Mlt. Vst.: Average number of samples counted only for multiple-sampled points (the visits

on the branch and main trajectories count), Total multiple visited times
No. of points been multiple visited

.

Average Vst.: Average number of samples for all points, including those sampled only

once, Total visited times
No. of points been visited

.

Cover: The percentage of the sampled area defined as the ratio of the total number of

visited points and the total number of points of target area, Total No. of visited ponits
No. of points intarget area

.

Exp. Mlt. No.: Number of physical points which were sampled multiple times due to

exploration by different agents.

Flight Time: Total travel time of all agents.

Mlt. Vst.: Percentage of points sampled multiple times.

Uncover: percentage of unsampled points, (1− cover).

Mlt. Vst. No.: Indicates the number of multiple-sampled points of a region.
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Max Sample: Maximum number of sampling times of a point (maximum amount of

redundancy).

Table 4.2 represents the data acquisition results of trajectory set 1 as in the top-left small

figure in Figure 4.9. Attribute ‘Exp. Mlt. Vst.’, multiple visited times per point, is greater

than 2. Since metric ‘Max Sample’ is 3, ‘Exp. Mlt. Vst.’ must be between 2 and 3. Method

6 samples on the average by about 10% less redundant data. On the overall, considering also

the points that are sampled only one time, Method 6 samples on the average by 20% less

times points (row three). The overall multiple-visited times, attribute ‘Mlt. Vst.’, is affected

by the distribution pattern of the main trajectories more than the exploration strategy itself.

Metric ‘Average Vst.’ shows the repeated visit times. This is between 1 and ‘Max Sample’,

which is 3. Attribute ‘Average Vst. No.’ of methods 1 to 5 is between 1.41 and 1.45, and is

less than 1.11 for method 6, which is more than 20% less. The coverage result of Method 6 is

also good compared to the other methods (about 15% more coverage). The absolute number

of coverage percentile is not very high because the main trajectories are not very dispersed in

this set of tests and the exploration length is limited. Attribute ‘Exp. Mlt. No.’ counts the

repeated visited times on the branches as generated by methods 1 to 6. It also represents the

data redundancy due to different decision making methods. This indicates that the proposed

method (method 6) decreases by 54% to 62% the number of multiply-visited points on the

decision branches. This indicates again that less redundant information is acquired from the

points. If the points on the main trajectories are also considered in the redundancy-related

metrics (rows 7 and 9) then the improvement is between 66% to 70%. Attribute ‘Uncover’

is the opposite to attribute ‘Cover’. Metric ‘Max Sample’ is the maximum visited times on

the whole map.

Tables 4.3 to 4.5 show the same characteristics as the previous case (Table 4.2) except

that the results are for trajectory sets 2 to 4. Trajectory set 2 is the top-right small figure

in Figures 4.9 to 4.11. Compared to trajectory set 1, the distribution pattern of main

trajectories is very dispersed. Attribute ‘Max Sample’ is 2 in all the six methods. Attribute
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‘Exp. Mlt. Vst.’ and ‘Mlt. Vst.’ are also 2. In this set of trajectories, the overlapping is less

likely compared to trajectory set 1 since agents are relatively far away from each other and

the limited length of exploration path eliminated some of the multiple visits. As a result, in

this set of tests, redundancy among different agent is not a issue. Metric ‘Cover’ for method

6 does not show much improvement. The slight difference among ‘Cover’ is caused by the

difference due to random exploration length generation. On the other hand, attribute ‘Exp.

Mlt. No.’, ‘Mlt. Vst.’ and ‘Mlt. Vst. No.’ for method 6 are small in this case, which

indicates that repeated visits are almost eliminated for very dispersed trajectories sets.

Trajectory set 3 and 4 show the advantages of method 6 in reducing redundancy.

Improvement is between 76% and 93%. For example, as shown in Table 4.5, method 6

reduces redundant sampling by about 90%. If the preset trajectories are more dispersed, like

for trajectory two (top-right sub-figure in Figure 4.11), the amount of potential sampling

overlapping is less since the mobile agents are well separated from each other. The coverage

percentages are similar to the values for trajectory one. The travel time (row six) is shorter

in most cases by up to about 10%.

Figure 4.12 presents a graphical representation of the following performance attributes

of the six methods: cover (top-left) (row 4), number of redundant samplings (bottom-left)

(row 5), percentage of points visited multiple times (row 7), and maximum number of samples

per point (bottom-right) (row 10). The second and third plots show that method 6 produces

significant savings in redundant sampling.

Tables 4.7-4.10 indicate that the above conclusions are valid for groups of 10, 20, 50

and 100 agents. The target areas (the region in which agents move) in the experiments

are expanded in proportion to the number of agents. The purpose is to show the results of

increased number of agents and eliminate the effect of other factors. Table 4.6 describes the

number of agents and corresponding size of target area used in the experiments.

Figures 4.13-4.16 present a graphical representation of the following performance

attributes for the six methods for 5, 10, 20, 50 and 100 agents: cover (row 4), number
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Figure 4.12: Comparison of methods 1 to 6 for 5 agents

Table 4.6: Size of target area for different number of agents
No. of agents Size of target area

5 1000x1000
10 1400x1400
20 2000x2000
50 3000x3000
100 4480x4480
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Figure 4.13: Coverage comparison for methods 1 to 6 for 5, 10, 20, 50 and 100 agents
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Figure 4.14: Attribute ’Exp. Mlt. No.’ comparison for methods 1 to 6 and 5, 10, 20, 50 and
100 agents
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Figure 4.15: Multiple sample comparison for methods 1 to 6 and 5, 10, 20, 50 and 100 agents
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Figure 4.16: Attribute ‘Max Sample’ comparison of methods 1 to 6 and 5, 10, 20, 50 and
100 agents
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of redundant samplings (row 5), percentage of points visited multiple times (row 7), and

maximum number of samples per point(row 10). The proposed method shows competitive

coverage in each case and dramatically reduced sample redundancy (Figures 4.14 and 4.15).

Figure 4.16 indicates that the proposed method has less maximum sample time than the

rest.
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Figure 4.17: Data coverage and redundancy after each iteration for method 6 with 20 agents
(carrying information of previous iterations). Blue areas are sampled less. Red areas are
sampled more often.

Figures 4.17-4.28 present the data coverage and redundancy of another group of

experiments. In this group of experiments, the proposed algorithm (method 6) and methods

1 to 5 run five iterations. Results of data coverage and redundancy are collected after each

iteration. Two different conditions are analyzed in the experiments: data from previous
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Figure 4.18: Data coverage and redundancy after 5th iteration for method 5 with 20 agents
(carrying information of previous iterations). Blue areas are sampled less. Red areas are
sampled more often.

iterations are carried over, or data from previous iterations are not carried over from one

iteration to the next. In the first situation, the agents try to avoid previously sampled points

when they do decision making. This group of experiments used 20, 50 and 100 agents.

Figure 4.17 represents the data coverage and redundancy results after each iteration with

up to 5 iterations for method 6 with 20 agents, who carried over information from previous

iterations. Different color shows different times of data sampled after each iteration. The

color changes from blue to red with the number of data sampled increasing from 0 to 12 and

numbers larger than 12 is also displayed as red. Figure 4.17 shows the coverage change after

repeatedly running the algorithm.

Figure 4.18 shows the results of similar experiments using method 5 mentioned

previously, which is the best one among methods 1-5 according to Table 4.8. Both Figures

4.17 and 4.18 represent accumulated effect of repeatedly running respective strategies. The

figures with results after 5th iteration show that method 6 generated less data redundancy

than method 5. For example, the number of points sampled 12 times (maximum sampled

time in this case) after 5 iteration using method 6 is 8 ,and the number of points sampled
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Figure 4.19: Data coverage and redundancy after 5th iteration for method 6 with 20 agents
(without information of previous iterations). Blue areas are sampled less. Red areas are
sampled more often.
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Figure 4.20: Data coverage and redundancy after 5th iteration for method 5 with 20 agents
(without information of previous iterations). Blue areas are sampled less. Red areas are
sampled more often.
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more than 12 (including 12) times is 35 using method 5, which is a 77% improvement. The

coverage after 5 iteration using method 6 is 76% versus 71% using method 5. The experiment

did not go beyond 5 iterations because the number of choices at each decision making point

is 4, and more than 5 iterations will generate data redundancy no matter which strategy is

used.
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Figure 4.21: Data coverage and redundancy after 5th iteration for method 6 with 50 agents
(carrying information of previous iterations). Blue areas are sampled less. Red areas are
sampled more often.

Figures 4.19 and 4.20 shows the results of similar experiments with different conditions:

data from previous iterations are not carried over. This is the repeated running of strategies

in methods 5 and 6. The tone of Figure 4.20 is warmer than that in Figure 4.19, which

indicates that data redundancy accrued less often when using method 6. Also, the coverage

after 5 iterations using method 6 is 78% versus 76% using method 5.
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Figure 4.22: Data coverage and redundancy after 5th iteration for method 5 with 50 agents
(carrying information of previous iterations). Blue areas are sampled less. Red areas are
sampled more often.
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Figure 4.23: Data coverage and redundancy after 5th iteration for method 6 with 50 agents
(without information of previous iterations)
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Figure 4.24: Data coverage and redundancy after 5th iteration for method 5 with 50
agents(without information of previous iterations). Blue areas are sampled less. Red areas
are sampled more often.
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Figure 4.25: Data coverage and redundancy after 5th iteration for method 6 with 100 agents
(carrying information of previous iterations). Blue areas are sampled less. Red areas are
sampled more often.
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Figure 4.26: Data coverage and redundancy after 5th iteration for method 5 with 100 agents
(carrying information of previous iterations). Blue areas are sampled less. Red areas are
sampled more often.
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Figure 4.27: Data coverage and redundancy after 5th iteration for method 6 with 100 agents
(without information of previous iterations). Blue areas are sampled less. Red areas are
sampled more often.
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Figure 4.28: Data coverage and redundancy after 5th iteration for method 5 with 100 agents
(without information of previous iterations). Blue areas are sampled less. Red areas are
sampled more often.

Figures 4.21 - 4.24 show the results of experiments done in the above way, but with

50 agents. Figures 4.25 - 4.28 are with 100 agents. They all indicate similar conclusion as

the cases with 20 agents. For example, comparing Figure 4.21 and Figure 4.22, the first one

(method 6) has less samples on a single point and the average samples is 3.9 versus 4.9 using

method 5. The coverage after 5 iterations using method 6 is 74% versus 68% using

method 5.

4.5 Conclusion

CPS are expected to continuously provide optimized decisions based on accurate

monitoring of environmental conditions. An important challenge is data acquisition through

mobile agents to construct accurate models for decision making. This chapter presents a novel

decentralized method for allocating mobile agents to sample physical areas while sporadically

communicating with each other. It adopts a novel, asynchronous interaction scheme between

agents to optimize the utility of the acquired data. The proposed game-theoretic heuristic

suggests a method that decides the best candidate in each sampling step, while agents operate
129



decoupled from each other. Experiments show that the proposed scheme can acquire data

from interested areas and is able to get competitive data coverage but dramatically less data

sampling redundancy by more than 50% as compared to other techniques.
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Chapter 5

Conclusions

This thesis presents model-based techniques for dependable decision making in groups of

autonomous mobile agents. The goal is to provide flexible, scalable, and predictable decision

making for massively distributed mobile embedded systems.

The thesis first proposes a goal-oriented description for CPS and dynamically-

constructed models to make decisions during operation. Scalability of descriptions is realized

by defining the nature of interactions that can occur among decision modules while leaving

to the execution environment the task of optimally implementing these interactions. The

notation defines the operation goals of each sub-system (e.g., the criteria to be maximized or

minimized during operation) and the physical capabilities of a module to achieve a certain

goal. Different interaction types are introduced depending on the way the subsystems

influence each other’s goals and capabilities. It also refers to two applications to illustrate

the model and the related decision making steps.

The thesis also presents distributed control methods for large-scale groups of

autonomous agents. It introduces the ideas of performance predictive collaborative control

of mobile agents operating in environments with fixed targets,and summarizes the trajectory

generation algorithm that is used to model and simulate the moving vehicles. An Integer

Linear Programming based model is used to optimize collaboration to achieve maximum task
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accomplishment and flexibility. It also offers detailed experimental insight on the quality,

scalability and computational complexity of the proposed method.

A novel asynchronous interaction scheme between agents is described to maximize

the utility of the acquired data. An adaptive interaction scheme is presented and the

algorithm for dependable decision making strategy, originating from game theory, is provided.

Experiments study the effectiveness of the scheme in comprehensive data acquisition while

minimizing redundant data collection. The experimental results show that the proposed

scheme reduced data redundancy significantly and achieved competitive or better data

coverage than five other methods from the literature.
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