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Abstract of the Dissertation 

Pricing European and American Options in FronTier Framework and Other Applications 

by 

Fan Zhang 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2011 

 

This thesis is concerned with the numerical solution of the American option valuation problem 

formulated as a free boundary/initial value model. While other studies have focused on modified 

pricing model (Jamshidian, 1996), formulating the problem as a non-linear model (Kholodnyi, 

1997), using the front-fix method (Crank, 1984) to fix the moving boundary (Wu and Kwok, 

1996) (Pantazopoulos et al., 1998), or trying to find semi-/analytical solutions to the problem 

(Sevcovic, 2001), we introduce and analyze a front- tracking (FT) finite difference method 

(FDM) based on original Black- Scholes Model (Black and Scholes, 1973) (Merton, 1973). The 

basis of the B-S Model, FDM, FT and options theory will be introduced. The numerical 

experiments performed indicate that the front tracking method considered is an efficient 

alternative for approximating simultaneously the option value and optimal exercise boundary 

functions associated with the valuation problem. We also extend the study to pricing options 

with stochastic volatility (Heston, 1993), as well as valuation of multi-asset options. 
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1

Options

Options have been around for many years, but it was only on 26th April 1973 that they

were first traded on an exchange. It was then that The Chicago Board Options Exchange

(CBOE) first created standardized, listed options. Initially there were just calls on 16

stocks. Puts werent introduced until 1977. In the US, options are traded on CBOE, the

American Stock Exchange, the Pacific Exchange and the Philadelphia Stock Exchange.

Worldwide, there are over 50 exchanges on which options are traded.(Wilmott, 2006)

1.1 European Options

European Options give the holder the right to trade the underlying asset in the future

at a previously agreed price. This could for example be the right to buy or sell stocks at

a particular strike price. The option would of course only be exercised if it was in the

owner’s interest to do so.

A European option taken out at current time t gives the owner the right to do something

when the option expires at time T . For example a single asset European put option, with

strike price E and expiry time T , gives the holder the right at time T to sell a particular

asset for E. If the asset is worth ST at maturity then the value of the put option at

expiry time, known as the payoff, is thus max (E − ST , 0 ). By contrast a single asset

European call option, with strike price E and expiry time T , gives the owner the right at

time T to buy an asset for E; the payoff at expiry time for a call option is max (ST−E, 0).
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As an example, consider the following call option on Google stock. It gives the holder

the right to buy one share of Google stock for an amount $100 in one month’s time.

Today’s stock price is $90. The amount $100 which we can pay for the stock is called

the exercise price or strike price. The date on which we must exercise our option, if

we decide to, is called the expiry or expiration date. The stock on which the option

is based is known as the underlying asset.

Many European options take the form of a relatively easy definite integral from which

it is possible to compute a closed form solution. The valuation of multi-asset European

options, depending on a large number of underlying assets, is more complicated but can

conveniently be achieved by using Monte Carlo simulation to compute the required

multidimensional definite integral. The expected current value of a single asset European

option will depend on the current asset price at time t, S, the duration of the option, T ,

the strike price, E, the risk-less interest rate, r, and the probability density function of

the underlying asset price at expiry, P (ST ).

Figure 1.1: Pay-off for call option
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Before we go any further into the financial (and numerical) world, here are some of

the definitions that will be mentioned throughout the thesis.

• Premium: The amount paid for the contract initially.

• Underlying (asset): The financial instrument on which the option value depends.

Stocks, commodities, currencies and indices are going to be denoted by S. The op-

tion payoff is defined as some function of the underlying asset at expiry.

• Strike (price) or Exercise price: The amount for which the underlying can be

bought (call) or sold (put). This will be denoted by E. This definition only really

applies to the simple calls and puts. We will see more complicated contracts in

later chapters and the definition of strike or exercise price will be extended.

• Expiration (date) or Expiry: Date on which the option can be exercised or date

on which the option ceases to exist or give the holder any rights. This will be

denoted by T .

• Intrinsic value: The payoff that would be received if the underlying is at its cur-

rent level when the option expires.

• In the money: An option with positive intrinsic value. A call option when the

asset price is above the strike, a put option when the asset price is below the strike.

• Out of the money: An option with no intrinsic value, only time value. A call

option when the asset price is below the strike, a put option when the asset price

is above the strike.
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• Long position: A positive amount of a quantity, or a positive exposure to a quan-

tity.

• Short position: A negative amount of a quantity, or a negative exposure to a

quantity. Many assets can be sold short, with some constraints on the length of

time before they must be bought back.

1.2 American Options

The options described above are examples of European options because exercise is only

permitted at expiry. Some contracts allow the holder to exercise at any time before expiry,

and these are called American options. American options give the holder more rights

than their European equivalent and can therefore be more valuable, and they can never

be less valuable. The main point of interest with American-style contracts is deciding

when to exercise. The details of American options will be discussed in chapter 5 when

we talk about the valuation of American options.

1.3 Put-Call Parity

Let’s say that someone buys one European call option with a strike of E and an expiry

of T , and that the same person writes a European put option with the same strike and

expiry. Today’s date is t. The payoff you receive at T for the call will look like the line

in figure 1.1. The payoff for the portfolio of the two options is the sum of the individual

payoffs. The payoff for this portfolio of options is

max (S (T )− E, 0)−max (E − S (T ) , 0) = S (T )− E

where S (T ) is the value of the underlying asset at time T .

To lock in a payment of E at time T involves a cash flow of Ee−r(T−t) at time t. The

conclusion is that the portfolio of a long call and a short put gives the holder exactly
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the same payoff as a long asset, short cash position. The equality of these cash flows is

independent of the future behavior of the stock and is model independent:

C − P = S − Ee−r(T−t)

where C and P are today’s values of the call and the put respectively. This relationship

holds at any time up to expiry and is known as put-call parity.

1.4 Other Types of Options

In finance, an exotic option is a derivative which has features making it more complex

than commonly traded products (i.e. European or American options). An exotic option

could have one or more of the following features:

• The payoff at expiry depends not only on the value of the underlying asset at

maturity, but also at its value at several times during the contract’s life.

• It could depend on more than one asset.

• There could be call ability and put ability rights.

• It could involve foreign exchange rates in various ways.

Here are a few examples of such options.

• Barrier option is a type of financial option where the option to exercise depends

on the underlying crossing or reaching a given barrier level.

• Asian option is a special type of option contract where its payoff is determined

by the average underlying asset price over some pre-set period of time.

• Compound option is option on an option. The exercise payoff of a compound

option involves the value of another option. A compound option then has two ex-

piration dates and two strike prices.
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• Lookback option is a type of exotic options with path dependency, among many

other kind of options. The payoff depends on the optimal (maximum or minimum)

underlying asset’s price occurring over the life of the option. The option allows the

holder to ”look back” over time to determine the payoff. There exist two kinds of

Lookback options: with floating strike and with fixed strike.

• Rainbow option is an option exposed to two or more sources of uncertainty, as

opposed to a simple option that is exposed to one source of uncertainty, such as the

price of underlying asset. Rainbow options are usually calls or puts on the best or

worst of n underlying assets, or options which pay the best or worst of n assets.
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2

Black-Scholes Model

This is an important chapter in the thesis. In it I describe and explain the basics of the

Black-Scholes theory (Black and Scholes, 1973) (Merton, 1973). These basics are delta

hedging and no arbitrage. They form a moderately sturdy foundation to the subject and

have performed well since 1973 when the ideas became public (Wilmott, 2006).

In this chapter I will skip the basics of stochastic calculus, and begin with the stochastic

differential equation model for equities and exploit the correlation between this asset and

an option on this asset to make a perfectly risk-free portfolio.

The arguments are trivially modified to incorporate dividends on the underlying and

also to price commodity and currency options and options on futures. Even though all

of the assumptions can be shown to be wrong to a greater or lesser extent, the Black

Scholes model is profoundly important both in theory and in practice.

2.1 Introduction

In Chapter 1 we discussed some of the characteristics of options and options markets. I

introduced the idea of call and put options, amongst others. The value of a call option

is clearly going to be a function of various parameters in the contract, such as the strike

price E and the time to expiry T − t, where T is the date of expiry and t is the current

time. The value will also depend on properties of the asset itself, such as its price, its

7



drift and its volatility, as well as the risk-free rate of interest. We can write the option

value as

V (S, t, σ, E, µ, T, r)

Now we use Π to denote the value of a portfolio of one long option position and a short

position in some quantity ∆ of the underlying:

Π = V (S, t)−∆S

The first term on the right is the option and the second term is the short asset position.

Notice the minus sign in front of the second term. The quantity ∆ will for the moment

be some constant quantity of our choosing. We will assume that the underlying follows

a log-normal random walk (geometric Brownian motion):

dS = µSdt+ σSdW

Recall Itō’s lemma, given a process dXt = µtdt+ σtdBt,

df (t,Xt) =

(
∂f

∂t
+
∂f

∂x
µt +

σ2
t

2

∂2f

∂x2

)
dt+ σt

∂f

∂x
dBt

Applying Itō’s lemma to V (St, t) gives

dV =

(
∂V

∂t
+
∂V

∂S
µS +

1

2

∂2V

∂S2
σ2S2

)
dt+ σS

∂V

∂S
dW

Which is

dV =
∂V

∂t
dt+

∂V

∂S
dS +

1

2
σ2S2∂

2V

∂S2
dt

The change in the portfolio value is due partly to the change in the option value and

partly to the change in the underlying

dΠ = dV −∆dS

Notice that ∆ has not changed during the time step; we have not anticipated the change

in S.

dΠ =
∂V

∂t
dt+

∂V

∂S
dS +

1

2
σ2S2∂

2V

∂S2
dt−∆dS

Now applying no-arbitrage assumption, dΠ is risk-less. If we have a completely risk-

free change dΠ in the portfolio value Π, then it must be the same as the growth we
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would get if we put the equivalent amount of cash in a risk-free interest-bearing account

(Bt = ert → dBt = rBtdt).

dΠ = rΠdt

By delta-hedging, we choose ∆ =
∂V

∂S
to eliminate randomness. Now

dΠ =

(
∂V

∂t
dt+

1

2
σ2S2∂

2V

∂S2

)
dt

Plugging in everything we have, we get(
∂V

∂t
dt+

1

2
σ2S2∂

2V

∂S2

)
dt = r

(
V − S∂V

∂S

)
dt

Now we have the famous Black-Scholes equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

Notice that a few assumptions have been made in this section, such as the underlying

follows a log-normal random walk; interest rate and volatility are constant; delta hedging

is continuous; there is no arbitrage. These assumptions are important for B-S model to

be true. Some of them can be dropped (or loosened). We will discuss those in latter

chapters.

2.2 The Black-Scholes PDE

Now let’s consider a European option with dividend D.(Wilmott et al., 1997)

∂V

∂τ
− 1

2
σ2S2∂

2V

∂S2
− (r −D)S

∂V

∂S
+ rV = 0 (2.1)

Note τ is the time to expiry (expiry T − current time t). The domain is S ∈ [0,∞] and

τ ∈ [0, T ]. The initial conditions are

C (S, 0) = max (S − E, 0) for call options

P (S, 0) = max (E − S, 0) for put options

And the boundary conditions are

for call options C (0, τ) = 0 C (S, τ)→ S as S →∞

9



for put options P (0, τ) = Ee−rτ P (S, τ)→ 0 as S →∞

Note that the analytic solution for Black-Scholes formula for European options is well

known. We will not discuss it here. Please see chapter 4 for the result, and check (Wilmott

et al., 1997) for the detailed derivation.

2.3 Multi-Dimension Black-Scholes Model

2.3.1 General Black-Scholes PDE Model in d-dimension

The d-asset European option can be priced using the following d-dimension Black-Scholes

equation.

∂V

∂τ
− 1

2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2V

∂SiSj
−

d∑
i=1

(r − δi)Si
∂V

∂Si
+ rV = 0 (2.2)

Again we let τ = T − t. The solution V is the option price based on the underlying

assets Si with i = 1, . . . , d, σi is the volatility of asset i, ρij is the correlation coefficient

between the assets i and j with ρii = 1, r is the risk-free interest rate, and δi is a

continuous dividend yield. Equation 2.2 comes with a pay-off that determines the type

of the option. We will assume a put basket option for now, whose payoff function is

V (T, S1, . . . , Sd) = max

[
0, K −

d∑
i=1

wiSi

]

where wi is weight of asset i and
∑d

i=1wi = 1.

2.3.1.1 Initial Condition

Since τ = T − t, the final condition (i.e. the payoff function) is our initial condition.

When τ = 0 (t = T ), we have

V (0, S1, . . . , Sd) = max

[
0, K −

d∑
i=1

wiSi

]
(2.3)
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2.3.1.2 Boundary Conditions

The boundary conditions require a little bit more analysis. For most financial problems,

the domain is semi-infinite or infinite. However, for most of the financial models, the dif-

fusion term is normally the dominate one. So the disturbance from the hyperbolic terms

due to imperfect boundary conditions will be minimized. If we place the boundaries “far

enough”, the artificial boundary conditions won’t affect the solution.

In one dimension, three equations are needed in addition to the payoff function (interior

function and two boundary functions). In two dimensions, eight equations are needed. In

general d-dimension cases, 3d are needed. We will discuss it later in 2-D and 3-D cases.

2.3.2 2-D Case

Let’s consider a 2-asset basket put option. Let’s assume correlations and risk-free rate

are constant. Let’s also assume zero dividend (δ = 0) and ρ12 = ρ21 = 1. The 2-D

Black-Scholes equation is

∂V

∂τ
− 1

2
σ2
1S

2
1

∂2V

∂S2
1

− 1

2
σ2
2S

2
2

∂2V

∂S2
2

+ σ1σ2S1S2
∂2V

∂S1S2

− rS1
∂V

∂S1

− rS2
∂V

∂S2

+ rV = 0

2.3.2.1 Initial Condition

The payoff function is (when τ = 0)

V (0, S1, S2) = max [0, K − (w1S1 + w2S2)]

2.3.2.2 Boundary Conditions

If S1 = S2 = 0, then V (τ, 0, 0) = 0.

If S1 (or S2) = 0, the 2-D equation reduces to a standard 1-D Black-Scholes equa-

tion. Hence the boundary conditions are V (τ, 0, S2) = P1D (τ, S2) and V (τ, S1, 0) =

P1D (τ, S1).

Now we put the artificial upper boundaries “far enough” at 50 (normally 2 or 3 times of

11



the strike price is considered “far enough”). A commonly used Dirichlet boundary condi-

tion is to set option price to zero at far field (Duffy, 2006). So we have V (τ, 50, S2) = 0

and V (τ, S1, 50) = 0.

Now we have boundary conditions on all four boundary edges and four boundary vertices.

That is 32 − 1 = 8 boundary conditions.

Note that sometime a more economical solution is to apply the pricing equation itself as

the B.C., but with the second derivative term set to zero (Tavella and Randall, 2000).

For example, the 1-D BSEQ has this “linear” B.C.

∂V

∂τ
+ (r − δ) ∂V

∂S
− rV = 0 (2.4)

where S is understood to be the boundary Smax. A discretization of the equation 2.4 will

give us an approximation on the boundary.

In any case, the sensitivity of the boundary conditions should be small due to the strong

diffusion.

2.3.3 3-D Case

Now consider the 3-D case. Again, the black-scholes equation is

∂V

∂τ
− 1

2

3∑
i=1

3∑
j=1

ρijσiσjSiSj
∂2V

∂SiSj
−

3∑
i=1

rSi
∂V

∂Si
+ rV = 0

All coefficients are constant and dividend is zero.

2.3.3.1 Initial Condition

The payoff function is (when τ = 0)

V (0, S1, S2, S3) = max [0, K − (w1S1 + w2S2 + w3S3)]
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2.3.3.2 Boundary Conditions

The boundary conditions for the 2-D case can be extended into 3-D.

If Si = 0, i = 1, 2, 3, the 3-D equation reduces to 2-D equation. If any two of the three

assets are zero, then it becomes a 1-D equation.

Now consider the value in the far field. We can set the value to zero at a “far enough”

point. Or we can apply the ”linear” boundary conditions, eliminate all second order

derivative terms from the equation on the boundaries and discretize the drift terms using

one-sided difference operators.

Again, we will have equations on all six boundary surfaces, all twelve boundary edges

and eight boundary vertices. So we have a total of 33 − 1 B.C. equations.
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3

Finite Difference Method

3.1 Introduction

This chapter introduces the finite difference methods (FDM). The sections in this chapter

focus on producing accurate and robust schemes for second-order parabolic and first-order

hyperbolic partial differential equations in two independent variables, usually called x

and t. The first variable x plays the role of a space coordinate and the second variable

t plays the role of time. We will introduce the concept of divided differences and how

use them to approximate the first- and second-order derivatives of real-valued functions

of one variable. We then model the partial differential equations by approximating the

derivatives using divided differences. These are defined at so-called discrete mesh points.

Having set up FDM, we will then apply the resulting finite difference schemes to the

single asset Black-Scholes model.

3.2 FDM Schemes for Hyperbolic Equation

There is a vast literature on first-order hyperbolic equations. Much effort has gone into

devising robust approximate schemes in application areas such as gas and fluid dynamics,

chemical reactor theory and wave phenomena. We consider first-order partial differential

equations in two independent variables x and t. The first variable is typically space (or

some other dimension) and the second variable usually represents time. The following is

14



an initial boundary value problem (IBVP) on an interval

∂u

∂t
+ a

∂u

∂x
= 0, 0 < x < 1, t > 0

u (x, 0) = f (x) , 0 < x < 1

u (0, t) = g (t) , t ≥ 0

Determining boundary conditions is essential to solving these problems. We will discuss

it in detail in latter chapters. Before we go into details on differencing schemes, let’s

define

δ+um = um+1 − um

δ−um = um − um−1

δ0um = um+1 − um−1

3.2.1 Explicit Upwind Scheme

In following scheme, we assume a > 0 and R = a
∆t

∆x
.

un+1
j − unj

∆t
+ a

unj − unj−1
∆x

= 0 , un+1
j = unj −Rδ−unj (3.1)

Note for an explicit scheme to be stable, we need the CFL number |R| < 1.

3.2.2 Central Implicit Scheme

un+1
j − unj

∆t
+ a

un+1
j+1 − un+1

j−1

2∆x
= 0 , un+1

j +
1

2
Rδ0un+1

j = unj (3.2)

3.2.3 Crank-Nicholson Scheme

un+1
j − unj

∆t
+

1

2
a
unj+1 − unj−1

2∆x
+

1

2
a
un+1
j+1 − un+1

j−1

2∆x
= 0 , un+1

j +
1

4
Rδ0un+1

j = unj −
1

4
Rδ0unj

(3.3)

Both of the implicit schemes are unconditionally stable. With exception of Crank-

Nicholson being 2nd order accurate in terms of time and space, all other schemes intro-

duced here are 1st order accurate.
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3.3 FDM Schemes for Parabolic Equation

Considering the following parabolic equation

ut = buxx b > 0 r = b
∆t

∆x2

And define

δ2um = um+1 − 2um + um−1

3.3.1 Central Explicit Scheme

un+1
j − unj

∆t
= b

unj+1 − 2unj + unj−1
∆x2

, un+1
j = unj + rδ2unj (3.4)

This scheme is 1st order accurate in terms of time and 2nd order accurate in terms of

space. CFL condition is r ≤ 1

2
.

3.3.2 Central Implicit Scheme

un+1
j − unj

∆t
= b

un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
,
(
1− rδ2

)
un+1
j = unj (3.5)

This scheme is 1st order accurate in terms of time and 2nd order accurate in terms of

space. And it is unconditionally stable.

3.3.3 Crank-Nicholson Scheme

un+1
j − unj

∆t
=

1

2
b
unj+1 − 2unj + unj−1

∆x2
+

1

2
b
un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
, (3.6)(

1− 1

2
rδ2
)
un+1
j =

(
1 +

1

2
rδ2
)
unj

This scheme is 2nd order accurate in terms of time and space. And it is unconditionally

stable.

Since the B-S PDE is a mixture of hyperbolic and parabolic equations, we will put

our attention on these schemes primarily.
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3.4 Front-Tracking Method

Front tracking method (Crank, 1984) is a Lagrangian method for the propagation of a

moving manifold. Front tracking works by moving marker particles which represent the

interface. It is distinguished from the marker particle method in that the particles are lo-

cated only on the interface, rather than in a volume region near the interface, and in that

the particles are connected to each other, to form a triangulated mesh (3D) or piecewise

linear segments (2D) of the interface. It is significantly faster than other particle meth-

ods, since fewer particles (one or two in 2D) are used per cell in front tracking than the

number used in typical particle method simulations. 2D bifurcations of interface topology

in front tracking are resolved accurately through detection of interface intersections. In

three dimensions, we use a local Eulerian reconstruction method. This method has the

robustness of the Eulerian method while it maintains the high resolution and accuracy

of the Lagrangian method.

The front tracking method has showed its advantage in the computation of several im-

portant physical problems such as the study of fluid interface instabilities, providing the

first or the only physically validated simulation for the solution of turbulent mixing.

Free and moving boundary value problems have their origins in the physical sciences.

Problems in which the solution of differential equations must satisfy certain conditions

on the boundary of a prescribed domain are called boundary value problems. In many

cases the boundary of the domain is not known a priori but it must be determined as

part of the problem. We partition such problems into two groups: first, the term ’free

boundary problem’ is used when the boundary is stationary and a steady-state solution

exists (for example, the solution of an elliptic problem). We then have the class of moving

boundary value problems that are associated with time-dependent problems (for exam-

ple, defined by a parabolic partial differential equation). The unknown boundaries in

the latter case are a function of both space and time. In all cases we must specify two

conditions on the free or moving boundary. Of course, the usual boundary conditions are

specified on the fixed boundary as well as some appropriate initial conditions, as already

discussed. In general, we can classify free and moving boundary value problems into

different categories depending on the types of problem that they model. For example, a
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one-phase problem is one where we model a PDE in a single domain with an unknown

boundary. The solution on the other side of the unknown boundary is known. With

two-phase problems we model different PDEs, that is, defined in two domains that are

separated by a free or moving boundary. Most problems in financial engineering at the

moment of writing are described as one-phase problems. In this case the solution is zero

on one side of the moving boundary and it satisfies the BlackScholes equation on the

other side of the boundary.

Moving boundary value problems are sometimes called Stefan problems in honor of

the Austrian mathematician, J. Stefan, who in 1890 studied the melting of the polar ice

cap.
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4

European Options

As we mentioned in chapter 1, a European option taken out at current time t gives the

holder the right to do something when the option expires at time T . This could for

example be the right to buy or sell stocks at a particular strike price. The option would

of course only be exercised if it was in the holder’s interest to do so.

4.1 European Put Options

A single asset European put option, with strike price E and expiry time T ,gives the owner

the right at time T to sell a particular asset for E. If the asset is worth ST at maturity

then the value of the put option at maturity, known as the payoff, is thus max (E − ST ,

0 ).

4.1.1 Black-Scholes PDE
∂V

∂τ
− 1

2
σ2S2∂

2V

∂S2
− (r −D)S

∂V

∂S
+ rV = 0 (4.1)

Note τ is the time to expiry (T − t). The domain is S ∈ [0,∞] and τ ∈ [0, T ]. The initial

condition is

P (S, 0) = max (E − S, 0) for put options
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4.1.2 Exact Solution

The Black-Scholes formula for a European put

P (S, τ) = Ee−rτN (−d2)− SN (−d1)

where

d1 =
log (S/E) + (r + σ2/2)

σ
√
τ

and d2 = d1 − σ
√
τ

and

N (x) =
1√
2π

∫ x

−∞
e
−

1

2
y2

dy

4.1.3 Crank-Nicholson Finite-Differencing Formulation

Following the finite differencing formulas 3.3 and 3.7, we can get the Crank-Nicholson

finite differencing formulation for Black-Scholes PDE 4.1. After rearranging the terms,

the formulation becomes

P n+1
i−1

[
1

4
∆t
(
(r −D)S − σ2S2

)]
+ P n+1

i

[
1 +

1

2
∆t
(
σ2S2 + r

)]
+ P n+1

i+1

[
−1

4
∆t
(
(r −D)S + σ2S2

)]
=

P n
i−1

[
1

4
∆t
(
(r −D)S − σ2S2

)]
+ P n

i

[
1 +

1

2
∆t
(
σ2S2 + r

)]
+ P n

i+1

[
−1

4
∆t
(
(r −D)S + σ2S2

)]
Note that there are only three unknowns on the left side of the equation, which means

the coefficient matrix of this system of linear equations is a tri-diagonal matrix. And

we can solve such system easily and efficiently using Thomas algorithm (Wilmott et al.,

1997).
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4.2 European Call Options

A single asset European call option, with strike price E and expiry time T , gives the

owner the right at time T to buy (instead of sell) a particular asset for E. If the asset is

worth ST at maturity then the value of the put option at maturity, known as the payoff,

is thus max (ST − E, 0 ).

4.2.1 Black-Scholes PDE
∂V

∂τ
− 1

2
σ2S2∂

2V

∂S2
− (r −D)S

∂V

∂S
+ rV = 0 (4.2)

Note τ is the time to expiry (T − t). The domain is S ∈ [0,∞] and τ ∈ [0, T ]. The initial

condition is

C (S, 0) = max (S − E, 0) for call options

4.2.2 Exact Solution

The Black-Scholes formula for a European call

C (S, τ) = SN (d1)− Ee−rτN (d2)

where

d1 =
log (S/E) + (r + σ2/2)

σ
√
τ

and d2 = d1 − σ
√
τ

and

N (x) =
1√
2π

∫ x

−∞
e
−

1

2
y2

dy

4.2.3 FDM Formulation

The FDM is the same as the one for European put option, the only changes are boundary

conditions and initial conditions.
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4.3 Multi-Asset European Option

Let’s consider a 2-asset basket put option. Assume correlations and risk-free rate are

constant. Let’s also assume zero dividend (δ = 0) and ρ12 = ρ21 = 1. The 2-D Black-

Scholes equation is

∂V

∂τ
− 1

2
σ2
1S

2
1

∂2V

∂S2
1

− 1

2
σ2
2S

2
2

∂2V

∂S2
2

+ σ1σ2S1S2
∂2V

∂S1S2

− rS1
∂V

∂S1

− rS2
∂V

∂S2

+ rV = 0 (4.3)

4.3.1 Initial Condition

The payoff function is (when τ = 0)

V (0, S1, S2) = max [0, K − (w1S1 + w2S2)] (4.4)

4.3.2 Boundary Conditions

If S1 = S2 = 0, then V (τ, 0, 0) = 0.

If S1 (or S2) = 0, the 2-D equation reduces to a standard 1-D Black-Scholes equa-

tion. Hence the boundary conditions are V (τ, 0, S2) = P1−D (τ, S2) and V (τ, S1, 0) =

P1−D (τ, S1).

Now we put the artificial upper boundaries “far enough” at 50 (normally 2 or 3 times of

the strike price is considered “far enough”). A commonly used Dirichlet boundary condi-

tion is to set option price to zero at far field (Duffy, 2006). So we have V (τ, 50, S2) = 0

and V (τ, S1, 50) = 0.

Now we have boundary conditions on all four boundary edges and four boundary vertices.

That is 32 − 1 = 8 boundary conditions.

Note that sometime a more economical solution is to apply the pricing equation itself as

the B.C., but with the second derivative term set to zero (Tavella and Randall, 2000).

For example, the single asset Black-Scholes PDE 4.1 has this “linear” B.C.

∂V

∂τ
+ (r − δ) ∂V

∂S
− rV = 0
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where S is understood to be the boundary Smax. A discretization of the above equation

will give us an approximation on the boundary.

In any case, the sensitivity of the boundary conditions should be small due to the strong

diffusion.
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4.3.3 A 2-D Crank-Nicholson Finite-Differencing Example

Here is an example of two dimensional Crank-Nicholson finite-differencing method for

2-asset Black-Scholes PDE. We will introduce the details in Chapter 6.

V n+1
i−1,j−1

[
1

8
σ1σ2 (∆S1 · i) (∆S2 · j)

∆τ

∆S1∆S2

]
+ V n+1

i,j−1

[
1

4
σ2
2 (∆S2 · j)2

∆τ

∆S2
2

− 1

4
r (∆S2 · j)

∆τ

∆S2

]
+ V n+1

i+1,j−1

[
−1

8
σ1σ2 (∆S1 · i) (∆S2 · j)

∆τ

∆S1∆S2

]
+ V n+1

i−1,j

[
1

4
σ2
1 (∆S1 · i)2

∆τ

∆S2
1

− 1

4
r (∆S1 · i)

∆τ

∆S1

]
+ V n+1

i,j

[
1− 1

2
σ2
1 (∆S1 · i)2

∆τ

∆S2
1

− 1

2
σ2
2 (∆S2 · j)2

∆τ

∆S2
2

]
+ V n+1

i+1,j

[
1

4
σ2
1 (∆S1 · i)2

∆τ

∆S2
1

+
1

4
r (∆S1 · i)

∆τ

∆S1

]
+ V n+1

i−1,j+1

[
−1

8
σ1σ2 (∆S1 · i) (∆S2 · j)

∆τ

∆S1∆S2

]
+ V n+1

i,j+1

[
1

4
σ2
2 (∆S2 · j)2

∆τ

∆S2
2

+
1

4
r (∆S2 · j)

∆τ

∆S2

]
+ V n+1

i+1,j+1

[
1

8
σ1σ2 (∆S1 · i) (∆S2 · j)

∆τ

∆S1∆S2

]
=

V n
i−1,j−1

[
−1

8
σ1σ2 (∆S1 · i) (∆S2 · j)

∆τ

∆S1∆S2

]
+ V n

i,j−1

[
−1

4
σ2
2 (∆S2 · j)2

∆τ

∆S2
2

+
1

4
r (∆S2 · j)

∆τ

∆S2

]
+ V n

i+1,j−1

[
1

8
σ1σ2 (∆S1 · i) (∆S2 · j)

∆τ

∆S1∆S2

]
+ V n

i−1,j

[
−1

4
σ2
1 (∆S1 · i)2

∆τ

∆S2
1

+
1

4
r (∆S1 · i)

∆τ

∆S1

]
+ V n

i,j

[
1 + r +

1

2
σ2
1 (∆S1 · i)2

∆τ

∆S2
1

+
1

2
σ2
2 (∆S2 · j)2

∆τ

∆S2
2

]
+ V n

i+1,j

[
−1

4
σ2
1 (∆S1 · i)2

∆τ

∆S2
1

− 1

4
r (∆S1 · i)

∆τ

∆S1

]
+ V n

i−1,j+1

[
1

8
σ1σ2 (∆S1 · i) (∆S2 · j)

∆τ

∆S1∆S2

]
+ V n

i,j+1

[
−1

4
σ2
2 (∆S2 · j)2

∆τ

∆S2
2

− 1

4
r (∆S2 · j)

∆τ

∆S2

]
+ V n

i+1,j+1

[
−1

8
σ1σ2 (∆S1 · i) (∆S2 · j)

∆τ

∆S1∆S2

]
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There should be 9 non-zero entries in each row of the coefficient matrix.
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5

American Options

5.1 American Put Options

5.1.1 Introduction

The majority of traded options are of American type. However their valuation, even

in the standard case of a log-normal process for the underlying asset, remains a topic

of active research. This situation stems from the nature of the solution which requires

the determination of the optimal exercise strategy as well as the value of the option. In

contrast to the European option, which can only be exercised at its expiration date, has

been valued by the celebrated BlackScholes formula (Black and Scholes, 1973) (Merton,

1973) for the standard financial model.

Due to a lack of closed-form solutions to American option valuation problems, a vast

array of approximation schemes has been advanced. While other studies have focused

on modified pricing model (Jamshidian, 1996), formulating the problem as a non-linear

model (Kholodnyi, 1997), using front-fix methods (Crank, 1984) to fix the moving bound-

ary (Wu and Kwok, 1996) (Pantazopoulos et al., 1998), or trying to find semi-/analytical

solutions to the problem (Sevcovic, 2001), we introduce and analyze a front-tracking (FT)

finite difference method (FDM) based on original Black-Scholes Model with free moving

boundary.
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5.1.2 Black-Scholes PDE

Let P = P (S, τ) be the put option price. Then put satisfies the PDE:

∂P

∂τ
− 1

2
σ2S2∂

2P

∂S2
− (r −D)S

∂P

∂S
+ rP = 0

Note τ is the time to expiry (τ = T − t). The domain is S ∈ (Sf (τ) , Smax] and τ ∈ [0, T ].

The initial condition is

P (S, 0) = max (E − S, 0) , S > 0 Sf (0) = E

And the boundary conditions are

P (0, τ) = E

P (Sf (τ) , τ) = E − Sf (τ) ,
∂P (Sf (τ) , τ)

∂S
= −1 (5.1)

For S ∈ [0, Sf (τ)), the value of the put is equal to the payoff function max(E − S, 0).

5.1.3 Tracking the Front Point

In order to approximation the moving boundary, we assume that the stock price S lies

on a quadratic curve near the moving front Sf . As shown in figure 5.1, we will use three

points Si, i = 1, 2, 3 and the corresponding Pi to compute the coefficients a, b and c.

aS2
i + bSi + c = Pi i = 1, 2, 3

Note that P2 and P3 can be obtained from the current time step. In order to get a better

estimation for the next Sf , we will try to approximate P1 differently from other Pi. First

let’s consider the Black-Scholes equation

∂P

∂τ
− 1

2
σ2S2∂

2P

∂S2
− (r −D)S

∂P

∂S
+ rP = 0

S1 is in the exercise region, which means P1 = E − S1. We know the 2nd order term
∂2P

∂S2
= 0, and

∂P

∂S
= −1. Furthermore, we let

∂P

∂τ
=
P n+1
1 − P n

1

∆τ
. So the Black-Scholes

equation becomes

P n+1
1 = −∆τ (r −D)S + (1− r∆τ)P n

1

After obtaining P1, the linear system can be easily solved since we have 3 unknowns and

3 equations. Once we have a, b and c, and we know P
(
Sn+1
f

)
= E − Sn+1

f , we can plug
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Figure 5.1: Tracking American Put Option Front

all these into aS2
f + bSf + c = E − Sf and solve for Sf at the next time step.

After getting Sf at the next time step, we can set up the boundary condition and solve

the Black-Scholes PDE equation.
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5.1.4 Crank-Nicholson Finite-Differencing Formulation

Similar to the Crank-Nicholson finite-differencing formulation for European options, within

the domain S ∈ (Sf (τ) , Smax] we will have

P n+1
i−1

[
1

4
∆t
(
(r −D)S − σ2S2

)]
+ P n+1

i

[
1 +

1

2
∆t
(
σ2S2 + r

)]
+ P n+1

i+1

[
−1

4
∆t
(
(r −D)S + σ2S2

)]
=

P n
i−1

[
1

4
∆t
(
(r −D)S − σ2S2

)]
+ P n

i

[
1 +

1

2
∆t
(
σ2S2 + r

)]
+ P n

i+1

[
−1

4
∆t
(
(r −D)S + σ2S2

)]
Given the initial conditions and boundary conditions, after obtaining the moving front

at each time step we will be able to solve this system of linear equations. Outside of

the domain S ∈ (Sf (τ) , Smax] the value of the put option is just the pay-off function

P (S, 0) = max (E − S, 0). Hence the option prices over the entire domain S ∈ (0, Smax]

are solved.

5.2 American Call Options

5.2.1 Black-Scholes PDE

We already know that a European option can be exercised only at the expiry date.

American options, on the other hand, can be exercised at any time before, or up to, the

expiry date. In this section we concentrate on a call option with an early exercise feature

with dividend D. Let C = C (S, τ) be the call option price. Then C satisfies the PDE:

∂C

∂τ
− 1

2
σ2S2∂

2C

∂S2
− (r −D)S

∂C

∂S
+ rC = 0

Note τ is the time to expiry (τ = T − t). The domain is S ∈ [0, Sf (τ)] and τ ∈ [0, T ].

The initial condition is
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C (S, 0) = max (S − E, 0) , S > 0 Sf (0) =
rE

D
And the boundary conditions are

C (0, τ) = 0

C (Sf (τ) , τ) = Sf (τ)− E, ∂C (Sf (τ) , τ)

∂S
= 1 (5.2)

For S ∈ [Sf (τ) ,∞), the value of the call is equal to the payoff function max(S − E, 0).

5.2.2 Tracking the Front Point

Similar to American put option, we will use three points near the moving boundary Sf

at time n to approximate Sf at time n + 1. The procedure is merely identical to what

we have done for put option, with the exception of C
(
Sn+1
f

)
= Sn+1

f − E. Consequently

Cn+1
1 = +∆τ (r −D)S + (1− r∆τ)Cn

1

5.2.3 Crank-Nicholson Finite-Differencing Formulation

Again the same finite-differencing formulation holds. So along with the proper initial and

boundary conditions we can solve the system.

Cn+1
i−1

[
1

4
∆t
(
(r −D)S − σ2S2

)]
+ Cn+1

i

[
1 +

1

2
∆t
(
σ2S2 + r

)]
+ Cn+1

i+1

[
−1

4
∆t
(
(r −D)S + σ2S2

)]
=

Cn
i−1

[
1

4
∆t
(
(r −D)S − σ2S2

)]
+ Cn

i

[
1 +

1

2
∆t
(
σ2S2 + r

)]
+ Cn

i+1

[
−1

4
∆t
(
(r −D)S + σ2S2

)]
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5.3 Numerical Experiments

5.3.1 Numerical Results Comparison

In this section we present a series of numerical results of the front-tracking method.

Another front-tracking method (EFT/IFT) was discussed in (Pantazopoulos et al., 1998).

The method-of-lines with invariant imbedding (MLII) was discussed in (Goldenberg and

Schmidt, 1994), and the linear complementarity method (LC) was presented extensively

in (Wilmott et al., 1993). Since the American pricing problem has no analytic solution,

for comparison purposes we use the binomial method which is known to converge to the

true value (Amin and Khanna, 1994) for a large number of time steps. We refer to the

results given by the binomial method as benchmark (BENCH) (see Table 5.1).

Stock Price EFT IFT MLII LC BENCH FT

7.00000 0.003939 0.004025 0.003977 0.004057 0.003988 0.003995

7.54545 0.016429 0.016526 0.016450 0.016577 0.016450 0.016459

8.09091 0.051271 0.051412 0.051360 0.051353 0.051323 0.051258

8.63636 0.127828 0.127973 0.128069 0.127895 0.127893 0.127901

9.18182 0.266722 0.266247 0.266645 0.266366 0.266390 0.266331

9.72727 0.481699 0.481072 0.481230 0.480727 0.481106 0.481026

10.27273 0.776188 0.775478 0.775818 0.775283 0.775587 0.775938

10.81818 1.143544 1.142981 1.143191 1.142845 1.142953 1.142812

11.36364 1.569059 1.569793 1.569901 1.569956 1.569856 1.569819

11.90909 2.040716 2.040556 2.040546 2.040665 2.040508 2.040312

13.00000 3.059954 3.060005 3.059906 3.060106 3.059931 3.059884

Table 5.1: American Call Results Comparison

5.3.2 Computation Consistency and Efficiency

In this section we will exam the consistency and efficiency of our method. If we consider

Binomial Method with very large time steps as benchmarks (i.e. “exact” solution), we
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demonstrate that as mesh size increases, the difference between our results and Binomial

method decreases (as shown in figure 5.2). However, In figure 5.6 we can see in Binomial

method time step doubles from 5000 to 10000, the running time goes from 45 seconds to

185 seconds. On the other hand, in FT method in order to produce similar numerical

results (within 10−3) we only need mesh size of 100. Moreover when mesh size doubles

from 100 to 200, the running time only goes from 3 to 6 seconds. In figures 5.3 and 5.4,

we show the option price differences (from one mesh size to a bigger mesh size) as mesh

size increases (and cell size ∆S decreases). In figure 5.5, we can see as mesh size increases

the running time increases substantially. However, even with smaller mesh size (100 or

200) we can obtain relatively accurate results.

Figure 5.2: Error vs Mesh Size
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Figure 5.3: Difference vs dS

Figure 5.4: Difference vs Mesh size
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Figure 5.5: Running time vs Mesh size

Figure 5.6: Running time for FT and Binomial Methods
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6

Multi-Asset Options

6.1 Introduction

In this chapter we give an introduction to option problems with two or more correlated

underlying assets. We will focus on deriving finite difference methods (FDM) for these

problems, not using ADI or splitting. Because of the size of linear system for 2-D or

3-D models, we will utilize the PDE solver in FronTier PETSC. One of the goals of

this chapter is to provide a setting so that financial models for correlation options can be

posed and then mapped to a PDE formulation. We then approximate the corresponding

initial boundary value problem using finite differences. Finally, we solve the discrete sets

of equations using PETSC.

We will provide a detailed derivation for Crank-Nicholson and Implicit method, although

Crank-Nicholson method doesn’t not always produce accurate results (see (Duffy, 2004b)

for details).

6.2 Multi-Dimension Black-Scholes Model

The d-asset European option can be priced using the following d-dimension Black-Scholes

equation.

∂V

∂τ
− 1

2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2V

∂SiSj
−

d∑
i=1

(r − δi)Si
∂V

∂Si
+ rV = 0 (6.1)
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We let τ = T − t. The solution V is the option price based on the underlying assets Si

with i = 1, . . . , d, σi is the volatility of asset i, ρij is the correlation coefficient between

the assets i and j, and with ρii = 1, r is the risk-free interest rate, and δi is a continuous

dividend yield. Equation (1) comes with a pay-off that determines the type of the option.

We will assume a put basket option for now, whose payoff function is

V (T, S1, . . . , Sd) = max

[
0, K −

d∑
i=1

wiSi

]
(6.2)

where wi is weight of asset i and
∑d

i=1wi = 1.

6.2.1 Initial Condition

Since τ = T − t, the final condition (i.e. the payoff function) is our initial condition.

When τ = 0 (t = T ), we have

V (0, S1, . . . , Sd) = max

[
0, K −

d∑
i=1

wiSi

]
(6.3)

6.2.2 Boundary Conditions

The boundary conditions require a little bit more. For most financial problems, the do-

main is semi-infinite or infinite. However, for most of the financial models, the diffusion

term is normally the dominate one. So the disturbance from the hyperbolic terms due

to imperfect boundary conditions will be minimized. If we place the boundaries “far

enough”, the artificial boundary conditions won’t affect the solution.

In one dimension, three equations are needed in addition to the payoff function (interior

function and two boundary functions). In two dimensions, eight equations are needed.

In general, 3n are needed. We will discuss it later in 2-D and 3-D cases.

6.3 2-D Case

Let’s consider a 2-asset basket put option. Assume correlations and risk-free rate are

constant. Let’s also assume zero dividend (δ = 0) and ρ12 = ρ21 = 1. The 2-D Black-
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Scholes equation is

∂P

∂τ
−1

2
σ2
1S

2
1

∂2P

∂S2
1

−1

2
σ2
2S

2
2

∂2P

∂S2
2

−σ1σ2S1S2
∂2P

∂S1S2

−(r −D1)S1
∂P

∂S1

−(r −D2)S2
∂P

∂S2

+rP = 0

(6.4)

6.3.1 Initial Condition

The payoff function is (when τ = 0)

V (0, S1, S2) = max [0, K − (w1S1 + w2S2)] (6.5)

6.3.2 Boundary Conditions

If S1 = S2 = 0, then V (τ, 0, 0) = 0.

If S1 (or S2) = 0, the 2-D equation reduces to a standard 1-D Black-Scholes equa-

tion. Hence the boundary conditions are V (τ, 0, S2) = P1−D (τ, S2) and V (τ, S1, 0) =

P1−D (τ, S1).

Now we put the artificial upper boundaries “far enough” at 50 (normally 2 or 3 times of

the strike price is considered “far enough”). A commonly used Dirichlet boundary condi-

tion is to set option price to zero at far field (Duffy, 2006). So we have V (τ, 50, S2) = 0

and V (τ, S1, 50) = 0.

Now we have boundary conditions on all four boundary edges and four boundary vertices.

That is 32 − 1 = 8 boundary conditions.

Note that sometime a more economical solution is to apply the pricing equation itself as

the B.C., but with the second derivative term set to zero (Tavella and Randall, 2000).

For example, the single-asset Black-Scholes PDE ?? has this “linear” B.C.

∂V

∂τ
+ (r − δ) ∂V

∂S
− rV = 0 (6.6)

where S is understood to be the boundary Smax. A discretization of the equation 6.6 will

give us an approximation on the boundary.
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In any case, the sensitivity of the boundary conditions should be small due to the strong

diffusion.

6.3.3 Finite-Differencing Examples

6.3.3.1 2-D Crank-Nicholson Method

Let n, i and j be indices for τ , S1 and S2 respectively.

∂P

∂τ
=
P n+1
i,j − P n

i,j

∆τ

∂2P

∂S2
1

=
1

2

1

∆S2
1

[(
P n+1
i+1,j − 2P n+1

i,j + P n+1
i−1,j

)
+
(
P n
i+1,j − 2P n

i,j + P n
i−1,j

)]
∂2P

∂S2
2

=
1

2

1

∆S2
2

[(
P n+1
i,j+1 − 2P n+1

i,j + P n+1
i,j−1

)
+
(
P n
i,j+1 − 2P n

i,j + P n
i,j−1

)]
∂P

∂S1

=
1

4∆S1

[(
P n+1
i+1,j − P n+1

i−1,j
)

+
(
P n
i+1,j − P n

i−1,j
)]

∂P

∂S2

=
1

4∆S2

[(
P n+1
i,j+1 − P n+1

i,j−1
)

+
(
P n
i,j+1 − P n

i,j−1
)]

rP =
r

2

(
P n+1
i,j + P n

i,j

)
∂2P

∂S1∂S2

=
1

8∆S1∆S2

[(P n+1
i+1,j+1 − P n+1

i+1,j−1) + (P n+1
i−1,j+1 − P n+1

i−1,j−1)

+(P n
i+1,j+1 − P n

i+1,j−1) + (P n
i−1,j+1 − P n

i−1,j−1)]
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Now (6.4) becomes

P n+1
i,j − P n

i,j

∆τ

− 1

2
σ2
1S

2
1

1

2

1

∆S2
1

[(
P n+1
i+1,j − 2P n+1

i,j + P n+1
i−1,j

)
+
(
P n
i+1,j − 2P n

i,j + P n
i−1,j

)]
− 1

2
σ2
2S

2
2

1

2

1

∆S2
2

[(
P n+1
i,j+1 − 2P n+1

i,j + P n+1
i,j−1

)
+
(
P n
i,j+1 − 2P n

i,j + P n
i,j−1

)]
− σ1σ2S1S2

1

8∆S1∆S2

[(
P n+1
i+1,j+1 − P n+1

i+1,j−1
)

+
(
P n+1
i−1,j+1 − P n+1

i−1,j−1
)]

− σ1σ2S1S2
1

8∆S1∆S2

[(
P n
i+1,j+1 − P n

i+1,j−1
)

+
(
P n
i−1,j+1 − P n

i−1,j−1
)]

− (r −D1)S1
1

4∆S1

[(
P n+1
i+1,j − P n+1

i−1,j
)

+
(
P n
i+1,j − P n

i−1,j
)]

− (r −D2)S2
1

4∆S2

[(
P n+1
i,j+1 − P n+1

i,j−1
)

+
(
P n
i,j+1 − P n

i,j−1
)]

+ rP n+1
i,j

= 0

Let

coeff [0] =
1

8
σ1σ2ij∆τ

coeff [1] =

(
−1

4
σ2
2j

2 +
1

4
(r −D2) j

)
∆τ

coeff [2] = coeff [0]

coeff [3] =

(
−1

4
σ2
1i

2 +
1

4
(r −D1) i

)
∆τ

coeff [4] = 1 +
(
0.5r + σ2

1i
2 + σ2

2j
2
)

∆τ

coeff [5] =

(
−1

4
σ2
1i

2 − 1

4
(r −D1) i

)
∆τ

coeff [6] = −coeff [0]

coeff [7] =

(
−1

4
σ2
2j

2 − 1

4
(r −D2) j

)
∆τ

coeff [8] = −coeff [0]

(6.7)
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Then we have

P n+1
i−1,j−1 · coeff [0]

P n+1
i,j−1 · coeff [1]

P n+1
i+1,j−1 · coeff [2]

P n+1
i−1,j · coeff [3]

P n+1
i,j · coeff [4]

P n+1
i+1,j · coeff [5]

P n+1
i−1,j+1 · coeff [6]

P n+1
i,j+1 · coeff [7]

P n+1
i+1,j+1 · coeff [8]

=

P n
i−1,j−1 · (−coeff [0])

P n
i,j−1 · (−coeff [1])

P n
i+1,j−1 · (−coeff [2])

P n
i−1,j · (−coeff [3])

P n
i,j · (−coeff [4] + 2)

P n
i+1,j · (−coeff [5])

P n
i−1,j+1 · (−coeff [6])

P n
i,j+1 · (−coeff [7])

P n
i+1,j+1 · (−coeff [8])

For convection-dominated problems some papers suggest that they have difficulty with

CrankNicholson (time-averaging), in particular they experience spurious oscillations and

spikes in the solution and the Greeks as well as near barriers Tavella and Randall (2000).

A remedy is to use the exponentially fitted schemes in each underlying direction (see
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(Duffy, 2004b) for details).

6.3.3.2 2-D Implicit Method

Let n, i and j be indices for τ , S1 and S2 respectively.

∂P

∂τ
=
P n+1
i,j − P n

i,j

∆τ

∂2P

∂S2
1

=
1

∆S2
1

(
P n+1
i+1,j − 2P n+1

i,j + P n+1
i−1,j

)
∂2P

∂S2
2

=
1

∆S2
2

(
P n+1
i,j+1 − 2P n+1

i,j + P n+1
i,j−1

)
∂P

∂S1

=
1

2∆S1

(
P n+1
i+1,j − P n+1

i−1,j
)

∂P

∂S2

=
1

2∆S2

(
P n+1
i,j+1 − P n+1

i,j−1
)

rP = rP n+1
i,j

∂2P

∂S1∂S2

=
1

4∆S1∆S2

[(
P n+1
i+1,j+1 − P n+1

i+1,j−1
)

+
(
P n+1
i−1,j+1 − P n+1

i−1,j−1
)]

Now (6.4) becomes

P n+1
i,j − P n

i,j

∆τ

− 1

2
σ2
1S

2
1

P n+1
i+1,j − 2P n+1

i,j + P n+1
i−1,j

∆S2
1

− 1

2
σ2
2S

2
2

P n+1
i,j+1 − 2P n+1

i,j + P n+1
i,j−1

∆S2
2

− σ1σ2S1S2
1

4∆S1∆S2

[(
P n+1
i+1,j+1 − P n+1

i+1,j−1
)

+
(
P n+1
i−1,j+1 − P n+1

i−1,j−1
)]

− (r −D1)S1
1

2∆S1

(
P n+1
i+1,j − P n+1

i−1,j
)

− (r −D2)S2
1

2∆S2

(
P n+1
i,j+1 − P n+1

i,j−1
)

+ rP n+1
i,j

= 0
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Let

coeff [0] =
1

4
σ1σ2ij∆τ

coeff [1] =

(
−1

2
σ2
2j

2 +
1

2
(r −D2) j

)
∆τ

coeff [2] = coeff [0]

coeff [3] =

(
−1

2
σ2
1i

2 +
1

2
(r −D1) i

)
∆τ

coeff [4] = 1 +
(
r + σ2

1i
2 + σ2

2j
2
)

∆τ

coeff [5] =

(
−1

2
σ2
1i

2 − 1

2
(r −D1) i

)
∆τ

coeff [6] = −coeff [0]

coeff [7] =

(
−1

2
σ2
2j

2 − 1

2
(r −D2) j

)
∆τ

coeff [8] = −coeff [0]

(6.8)

Then we have

P n+1
i−1,j−1 · coeff [0]

P n+1
i,j−1 · coeff [1]

P n+1
i+1,j−1 · coeff [2]

P n+1
i−1,j · coeff [3]

P n+1
i,j · coeff [4]

P n+1
i+1,j · coeff [5]

P n+1
i−1,j+1 · coeff [6]

P n+1
i,j+1 · coeff [7]

P n+1
i+1,j+1 · coeff [8]

= P n
i,j
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6.4 3-D Case

Now consider the 3-D case. Again, the Black-Scholes equation is

∂V

∂τ
− 1

2

3∑
i=1

3∑
j=1

ρijσiσjSiSj
∂2V

∂SiSj
−

3∑
i=1

rSi
∂V

∂Si
+ rV = 0 (6.9)

And again all coefficients are constant and dividend is zero.

6.4.1 Initial Condition

The payoff function is (when τ = 0)

V (0, S1, S2, S3) = max [0, K − (w1S1 + w2S2 + w3S3)] (6.10)

6.4.2 Boundary Conditions

The boundary conditions for the 2-D case can be extended into 3-D.

If Si = 0, i = 1, 2, 3, the 3-D equation reduces to 2-D equation. If any two of the three

assets are zero, then it becomes a 1-D equation.

Now consider the value in the far field. We can set the value to zero at a far enough”

point. Or we can apply the ”linear” boundary conditions, eliminate all second order

derivative terms from the equation on the boundaries and discretize the drift terms using

one-sided difference operators.

Again, we will have equations on all six boundary surfaces, all twelve boundary edges and

eight boundary vertices. So we have a total of 33 − 1 B.C. equations. Detailed study on

3-D case will be a big part of future research. Given FronTier package’s built-in parallel

computing capability, 3-D case is very much within our reach.

6.5 Numerical Experiments

In this section we will show some numerical results of 2-asset European put basket option.

We set parameters as S1,2 = [0, 400], mesh size N = 200 for both S1 and S2, t = [0, 4],
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strike price K = 150, volatility σ1 = σ2 = 0.4, interest rate r = 0.1 (dividend D = 0),

and correlation ρ = 0.5. In figure 6.1 we show the initial state of our model at t = 0.

Figure 6.2 is the option price at expiry (t = 4)

Figure 6.1: 2-asset European Put basket option t=0

45



Figure 6.2: 2-asset European Put basket option t=4
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7

Stochastic Volatility

7.1 Introduction

Some of the important assumptions of the Black-Scholes model (see Section 2.1) are

that the underlying asset’s price process is continuous and that the volatility is constant.

The second assumption leads to the conclusion that if we plot volatility against the strike

price we would obtain a straight line, parallel to the horizontal axis. Setting up the Black-

Scholes model with the market observed option price and solving for volatility gives us

the implied volatility. However, when plotting implied volatility using real market data

one typically obtains a convex curve, known as the “smile curve” or the “volatility smile”,

with minimum price “at the money” i.e. where the strike price is equal to the underlying

spot.

In order to have a more realistic approach to the problem of option pricing, jump mod-

els and stochastic volatility models have been introduced. Jump models deal with the

assumption of continuity by allowing the spot asset’s process to jump. When studying

stochastic volatility models the volatility is described by a stochastic process. These

models are used in order to price options where volatility varies over time. If we denote

the underlying stock price by S, and W1 and W2 two wiener processes with correlation

ρ, then S satisfies the stochastic differential equation (Hull and White, 1987)

dS = rSdt+ σ (t) dW1
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where the volatility process σ (t) satisfies some stochastic differential equation of the form

d (σ) = b (σ) dt+ a (σ) dW1

7.2 Heston Model

7.2.1 Heston Model

Let’s assume that asset S follows

dS = µSdt+
√
υ (t)StdW1

where W1 is a Wiener process. The volatility υ (t) follows an Ornstein-Unlenbeck process

d
√
υ (t) = −β

√
υ (t)dt+ δdW2

where W2 is another Wiener process. And W1 and W2 are correlated with correlation ρ.

Let x =
√
υ (t) and apply Ito’s formula in f(x) = x2. The result is

dυ(t) = [δ2 − 2βυ(t)]dt+ 2δ
√
υ(t)dW2

If we let k = 2β, θ =
σ2

2β
, and σ = 2δ we will have the Heston model (Heston, 1993).

dS = µSdt+
√
υ (t)SdW1 (7.1)

dυ (t) = k [θ − υ (t)] dt− σ
√
υ (t)dW2 (7.2)

dW1dW2 = ρdt (7.3)

The relationship between the parameter θ and the volatility υ (t) determines the instan-

taneous drift of ν.The parameter θ is the long-term variance. The parameter k shows

how fast the process reverts to θ. A high k implies higher rate of reversion and vice versa.

The parameter σ in 7.2 is the volatility of the volatility. Finally, the correlation between

the two Wiener processes is denoted by ρ, where ρ ∈ [−1, 1].
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7.2.2 Derivation of PDE Model

Looking at the model and comparing this model with the vanilla Black-Scholes model,

we will see the number of the random sources (two Wiener processes) with the number

of the risky traded assets (only the underlying stock since volatility is not traded). We

can easily see that the Heston model is an incomplete model. Therefore, it is not possible

to obtain a unique price using only the underlying asset and a bank account, which is

normally the case for complete models such as the Black-Scholes model. In order for the

portfolio to be hedged we need to have equal number of random sources with risky traded

assets. Now considering the portfolio as P and the relative weights of the bank account,

the stock and the benchmark derivative as x, y, and z, respectively, we get

P = xB + yS + zC (7.4)

where C = C(S, υ, t) is the derivative (for example a European Put), and B is a risk-free

asset (for example government bond) which satisfying

dB = rBdt (7.5)

We also assume that P is self-financing, which means

dP = xdB + ydS + zdC (7.6)

Now we try to hedge a contingent claim (denoted by U = U(S, υ, t)) using P .

P = U and dP = dU

and applying Ito’s formula, we get

dU = (Ut + µSUs + k(θ − υ(t))Uυ +
1

2
S2υ(t)Uss +

1

2
σ2υ(t)Uυυ + συ(t)SρUsυ)dt

+
√
υ(t)SUsdW1 +

√
υ(t)σUυdW2

where

Ut =
∂U

∂t
,Us =

∂U

∂s
,Uυ =

∂U

∂υ

Uss =
∂2U

∂S2
,Uυυ =

∂2U

∂υ2(t)
,Usυ =

∂2U

∂S∂υ(t)
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Assuming C is at least twice differentiable, we will get

dC = (Ct + µSCs + k(θ − υ(t))Cυ +
1

2
S2υ(t)Css +

1

2
σ2υ(t)Cυυ + συ(t)SρCsυ)dt

+
√
υ(t)SCsdW1 +

√
υ(t)σCυdW2 (7.7)

Substituting 7.1, 7.5 and 7.7 in 7.6 we will have

dP = z(Ct + µSCs + k(θ − υ(t))Cυ +
1

2
S2υ(t)Css +

1

2
σ2υ(t)Cυυ + συ(t)SρCsυ)dt

+(xrB + yµS)dt+ (z
√
υ(t)SCs + y

√
υ(t)S)dW1 + z

√
υ(t)σCυdW2 (7.8)

Now comparing dW1 and dW2 terms, we will find that

z =
Uυ
Cυ

and y = Us − zCs

In order to compare the drift terms we combine 7.4 and P = U

xB = U − yS − zC

Thus we have

z(Ct + µSCs + k(θ − υ(t))Cυ +
1

2
S2υ(t)Css

+
1

2
σ2υ(t)Cυυ + συ(t)SρCsυ) + yµS + r(U − yS − zC)

= Ut + µSUs + k(θ − υ(t))Uυ +
1

2
S2υ(t)Uss

+
1

2
σ2υ(t)Uυυ + συ(t)SρUsυ

After performing some manipulations and substitutions, we get

1

Uυ
(Ut + µSUs + k(θ − υ(t))Uυ +

1

2
S2υ(t)Uss

+
1

2
σ2υ(t)Uυυ + συ(t)SρUsυ − (µ− r)SUs − rU)

=
1

Cυ
(Ct + µSCs + k(θ − υ(t))Cυ +

1

2
S2υ(t)Css

+
1

2
σ2υ(t)Cυυ + συ(t)SρCsυ − (µ− r)SCs − rC)

= λ(S, υ, t)
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where λ(S, υ, t) is the market price of volatility. After some more manipulations, we

obtain the Heston partial differential equation

∂U

∂t
+ rS

∂U

∂S
+ (k (θ − υ (t))− λ (S, υ, t))

∂U

∂υ

+
1

2
S2ν (t)

∂2U

∂S2
+

1

2
σ2υ (t)

∂2U

∂υ2
+ συ (t)Sρ

∂2U

∂S∂υ
− rU = 0 (7.9)

7.2.3 Boundary Conditions

We now discuss the boundary conditions for 7.9. Similarly to Black-Scholes model, we

will set an artificial upper boundary for stock price S and volatility υ far enough so that

they won’t affect our numerical results too much. So we will have four boundary condi-

tions to form our domain.

As first mentioned in (Heston, 1993) For European call options when S = 0 we con-

sider the call to be worthless; when S becomes very large we use a Neumann boundary

condition which more or less is the same as a linearity boundary condition. When the

volatility is 0 we assume that the PDE 7.9 is satisfied on the line υ = 0; in this case some

of the terms in 7.9 fall away. Finally, when υ is very large we assume that the option

behaves as a standard European option.

U (S, υ, T ) = max (0, S −K) at t=T

U (0, υ, t) = 0 at S=0

Neumann boundary conditions give the value of the derivative of the function at the

boundaries. Such conditions are used at the points where the stock and the volatility

take their largest values.

For large values of S the option price grows linearly. The boundary condition we use

at the point S = Smax is
∂U (Smax, υ, t)

∂S
= 1

The option price is typically increasing with volatility. It is however bounded by the stock

price. When the volatility obtains its highest value the option price tends to become
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constant. The boundary condition we use at this point is

∂U (S,υmax, t)

∂υ
= 0

In our computation, we will use an alternative condition U(S, υmax, t) = S).

And at υ = 0, we have
∂U

∂t
+ rS

∂U

∂S
− rU +Kθ

∂U

∂υ
= 0

All these conditions can be approximated numerically, hence they will be used in our

model.

Now for European put, the conditions are (Ikonen and Toivanen, 2004) :

U(0, υ, t) = K

∂U (Smax, υ, t)

∂S
= 0

U(S, 0, t) = max (K − S, 0)

∂U (S,υmax, t)

∂υ
= 0

Again, we need to set far-field conditions to make one-sided domain into a two-sided

domain. For more alternative boundary conditions, please see (Duffy, 2004a) for details.

7.2.4 A brief Explicit Finite-Differencing Example of Heston

PDE Model

The details of finite difference approximation of derivatives are covered in previous chap-

ters. Here we will give the result directly. For example, we use Central difference to
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approximate the mixed term
∂U2

∂ν∂S
.

Un−1
i,j = ∆t[(

1

∆t
− νS2

∆S2
− νσ2

∆ν2
− r)Un

i,j + (
νS2

2∆S2
− rS

2∆S
)Un

i−1,j

+(
νS2

2∆S2
+

rS

2∆S
)Un

i+1,j]

+∆t[(
νσ2

2∆ν2
− k(θ − ν)− λ

2∆ν
)Un

i,j−1

+(
νσ2

2∆ν2
+
k(θ − ν)− λ

2∆ν
)Un

i,j+1]

+∆t[
ρσνS

4∆S∆ν
(Un

i+1,j+1 − Un
i−1,j+1 − Un

i+1,j−1 + Un
i−1,j−1)]

Where n is index for time t, i for stock S and j for volatility ν. (Note we start at n = T

and going backwards in time.)

7.2.5 Detailed Implicit Finite-Differencing of Heston PDE Model

Recall the Heston PDE 7.9,

∂U

∂τ
− rS ∂U

∂S
− (k (θ − υ (τ))− λ (S, υ, τ))

∂U

∂υ

−1

2
S2ν (τ)

∂2U

∂S2
+

1

2
σ2υ (τ)

∂2U

∂υ2
− συ (τ)Sρ

∂2U

∂S∂υ
+ rU = 0

Let n, i and j be indices for τ , S and υ respectively. By standard implicit finite differ-

encing method, we have
∂U

∂τ
=
Un+1
i,j − Un

i,j

∆τ

∂2U

∂S2
=

1

∆S2

(
Un+1
i+1,j − 2Un+1

i,j + Un+1
i−1,j

)
∂2U

∂υ2
=

1

∆υ2
(
Un+1
i,j+1 − 2Un+1

i,j + Un+1
i,j−1

)
∂U

∂S
=

1

2∆S

(
Un+1
i+1,j − Un+1

i−1,j
)

∂U

∂υ
=

1

2∆υ

(
Un+1
i,j+1 − Un+1

i,j−1
)
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rU = rUn+1
i,j

∂2U

∂S∂υ
=

1

4∆S∆υ

[(
Un+1
i+1,j+1 − Un+1

i+1,j−1
)

+
(
Un+1
i−1,j+1 − Un+1

i−1,j−1
)]

Now (7.9) becomes

Un+1
i,j − Un

i,j

∆τ

− 1

2
υS2

Un+1
i+1,j − 2Un+1

i,j + Un+1
i−1,j

∆S2

− 1

2
σ2υ

Un+1
i,j+1 − 2Un+1

i,j + Un+1
i,j−1

∆υ2

− συSρ
1

4∆S∆υ

[(
Un+1
i+1,j+1 − Un+1

i+1,j−1
)

+
(
Un+1
i−1,j+1 − Un+1

i−1,j−1
)]

− (r −D)S
1

2∆S

(
Un+1
i+1,j − Un+1

i−1,j
)

− (k − (θ − υ)− λ)
1

2∆υ

(
Un+1
i,j+1 − Un+1

i,j−1
)

+ rUn+1
i,j

= 0 (7.10)

Define coefficients as,

coeff [0] =
1

4
σρij∆τ

coeff [1] =

(
− 1

2∆υ
σ2j +

1

2∆υ
(k(θ − υ)− λ)

)
∆τ

coeff [2] = coeff [0]

coeff [3] =

(
−1

2
υi2 +

1

2
(r −D) i

)
∆τ

coeff [4] = 1 +

(
r + υi2 +

σ2j

∆υ

)
∆τ

coeff [5] =

(
−1

2
υi2 − 1

2
(r −D) i

)
∆τ

coeff [6] = −coeff [0]

coeff [7] =

(
− 1

2∆υ
σ2j − 1

2∆υ
(k(θ − υ)− λ)

)
∆τ

coeff [8] = −coeff [0]

(7.11)

54



Then we have

Un+1
i−1,j−1 · coeff [0]

Un+1
i,j−1 · coeff [1]

Un+1
i+1,j−1 · coeff [2]

Un+1
i−1,j · coeff [3]

Un+1
i,j · coeff [4]

Un+1
i+1,j · coeff [5]

Un+1
i−1,j+1 · coeff [6]

Un+1
i,j+1 · coeff [7]

Un+1
i+1,j+1 · coeff [8]

= Un
i,j

In order to solve Heston PDE 7.9, we need to solve a linear system with nine unknowns.

With corresponding boundary conditions, we can do this efficiently. Again, this is very

similar to our approach to solve 2-asset Black-Scholes PDE 6.4.

7.3 Numerical Examples

7.3.1 European Call Option with Stochastic Volatility

Let’s consider a simple example with initial volatility υ = 0.4, K = 100, σ = 0.25, ρ = 0,

θ = 0.4, λ = 0, Smax = 400, νmax = 1, T = 0.5, ∆t = 0.001, k = 2, and r = 0. And

we discretize 30 steps in S direction and 80 steps in volatility direction. The results are

shown in figures 7.1, 7.2 and 7.3.

7.3.2 European Put Option with Stochastic Volatility

Here is a more detailed example on European put option. We set parameters υ = [0, 3],

S = [0, 400], K = 100, σ = 0.25, ρ = −0.1, θ = 0.04, λ = 0.1, T = 4, k = 2, and r = 0.1.

And we discretize 100 steps in both S direction and volatility υ direction. In figure 7.4 we

can see the initial condition for Heston Model. At expiry T = 4 (as shown in figure 7.5)
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Figure 7.1: Stock S vs Option Price U at t=0

the difference in terms of option prices is obvious given different volatility values. And

in figure 7.6 we can see a snapshot of option prices for a given volatility value υ = 1.5.

7.3.3 Heston Model versus Black-Scholes Model

Now let’s take a look at option prices determined by Black-Scholes model (constant

volatility) and Heston’s Model (stochastic volatility). We set parameters S = [0, 400],

K = 100, T = 4, r = 0.1 and mesh sizeN = 100 for both models. Additionally we set

υ = [0, 3], σ = 0.25, ρ = −0.1, θ = 0.04, λ = 0.1, k = 2 for Heston Model and constant

volatility 0.4 for Black-Scholes Model. At expiry T = 4, we plot option price v.s. stock

price from both Models (for Heston model, we take υ = 0.4 at T = 4). As we expected,

since the volatility value is generally larger in Heston Model than it is in Black-Scholes

Model, the result (see figure 7.7) shows that put option price is smaller in Heston Model.

56



Figure 7.2: 3D Side View of Eu Call with Stoch Vol

7.4 Summary

The papers of Black-Scholes in 1973 (Black and Scholes, 1973) and (Merton, 1973) were

(and still are) enormous contribution to the development of financial markets. However,

the assumption of constant volatility has been a drawback to accurately model the market.

Studying stochastic volatility models can be very useful since they capture the situation

where volatility varies over time. In this chapter the Heston model, one of the most

popular stochastic volatility models, was discussed. After solving the Heston PDE 7.9

using the Finite Difference Method 7.10 7.11 7.12, we obtained the arbitrage free price of
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Figure 7.3: 3D plot of Eu Call with Stoch Vol

a European option at any time step.
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Figure 7.4: 3D View of Heston Model for European Put at time 0

Figure 7.5: 3D View of Heston Model for European Put at expiry T=4
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Figure 7.6: 2D Plot of Heston Model for European Put at t=0 and 4

Figure 7.7: Heston Model vs Black-Scholes Model
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8

Other Applications And Future

Research

We shall extend this study into other areas. An immediate extension of our front-tracking

method is pricing American options in Heston model. Since we only use “smooth past-

ing” property (
∂U

∂Sf
= 1 or − 1) when deriving our front-tracking method, we can apply

the same method to Heston model. At any time t and given any volatility υ(t), the same

“smooth pasting” property holds. So at each time step tn, we track the front (which is a

line instead of a point) for all υ(tn). Then after updating the front and applying proper

boundary conditions, we can solve Heston PDE 7.9 for the next time step tn+1.

Another application for our front-tracking method is to solve Lévy model. The same

“smooth pasting” property is still true. Similarly to Black-Scholes-Merton model, we can

track the front at each time step when we solve the partial integro-differential equation

(PIDE). Along with proper boundary and initial conditions, such system can be solved

numerical using FronTier package.

Lastly when we extend FronTier into 3-D cases, the build-in parallel computing ca-

pability in FronTier will be essential. Because of the advanced structure of FronTier,

such extension can be done fairly easily. Possible application in real financial market for

the FronTier package will also be explored.
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