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Abstract of the Dissertation 

Hardy-Weinberg Deviation and EM-based Haplotype Frequency Estimation 

by 

Hyeong Jun Ahn 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2011 

 

Single-nucleotide polymorphisms (SNPs) are the most common type of genetic variation 

in human genome. Haplotypes which combine multiple SNPs into super-alleles have been 

widely used in modern genetic analysis, especially in human disease association studies.  The 

Expectation Maximization (EM) algorithm is commonly used in haplotype phasing and 

frequency estimation, and Hardy-Weinberg (HW) equilibrium is a key assumption built into the 

EM algorithm. The accuracy of EM-based haplotype frequency estimation when the HW 

equilibrium assumption is violated has been explored by several studies. The general consensus 

is that the sampling error plays a more dominant role in haplotypes estimation than the 

estimation error due to HW deviation; the accuracy of haplotype frequency estimation tends to 

improve with increasing homozygosity in the sample. However, these studies mainly 

concentrated on the impact of SNP level HW deviation. A theoretical foundation for the impact 

of HW deviation at the haplotype level on haplotype frequency estimation has not been 

established.  
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In this dissertation, we derived the theoretical relationship among three haplotype mean 

squared errors: between population and sample frequencies (MSEPS), between true sample and 

sample estimated frequencies (MSESE), and between population and sample estimated 

frequencies (MSEPE). The theoretical relationship between SNP level and haplotype level HW 

deviations was also established. Our simulations show that the violation of HW equilibrium at 

haplotype level could result in more severe haplotype estimation error than sampling error, and 

the accuracy of haplotype frequency estimation is not always improved with increasing 

homozygosity.  

To incorporate the possible haplotype level HW deviations into the haplotype frequency 

estimation process, we propose a Hardy-Weinberg Deviation-Expectation/Conditional 

Maximization (HWD-ECM) method which allows us to estimate HW deviation parameters and 

haplotype frequencies simultaneously. For two SNPs cases, the HWD-ECM algorithm consists 

of three iteration steps: 1). an expectation step estimating genotype frequencies allowing HW 

deviation parameters; 2). a conditional maximization step for HW deviation parameter estimation 

utilizing constraints of SNP level or haplotype level HW deviation parameters; and 3). a 

conditional maximization step for haplotype frequencies. Simulation results show that the HWD-

ECM method performs significantly better than the EM-based approach in haplotype estimation 

when HWE assumption is violated. Algorithm for extension of HWD-ECM to multiple SNPs is 

also discussed.
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Chapter 1 

Introduction 

Single-nucleotide polymorphisms (SNPs) are the most common type of genetic variation 

in human genome. About 10 million SNPs exist in human populations for which the rarer SNP 

allele has a frequency of at least 1 percent (Sobrino et al. 2005). Alleles of SNPs that are close to 

each other tend to be inherited together. A set of associated SNP alleles in a region of a 

chromosome is called a haplotype. The haplotype block formed by these associated SNPs has 

very valuable information in detecting genes or region causing common diseases. Haplotype 

plays a key role in genetic association studies since haplotype block structure in human genome 

is related to hot spots and cold spots for recombination (Daly et al. 2001; Fallin et al. 2001; 

Arnheim et al. 2003; Schaid 2004). A haplotype map, or HapMap, intended to reveal such 

variation patterns, has been recently developed by the International HapMap Consortium (The 

International HapMap 2005). Once such variants have been discovered, we can learn much more 

about the origins of illnesses and about ways to prevent, diagnose, and treat those illnesses. 

However, haplotype usually cannot be obtained directly from unphased genotype data. 

Molecular experimental techniques were developed, including single-molecule dilution 

(Stephens et al. 1990), long-range allele-specific PCR (MichalatosBeloin et al. 1996), diploid-to-

haploid conversion (Douglas et al. 2001), carbon nanotube probing (Woolley et al. 2000), but 

such methods are not widely used because they are too expensive and low-throughput at this 

time for population research. Haplotypes can also be resolved via family data, which is also 
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expensive to collect (Wijsman 1987). Therefore, haplotype determination through statistical 

methods is most commonly used. Clark’s algorithm is the first statistical method for haplotype 

frequency estimation from genotypes of unrelated individuals (Clark 1990), but more 

sophisticated methods such as maximum likelihood methods or Bayesian approaches have been 

developed.   

Bayesian algorithm, incorporating prior information into the statistical model, has been 

applied to haplotype frequency estimation. Stephens et al. (2001) proposed a coalescence-based 

Markov-chain Monte Carlo (MCMC) approach. Instead of using a prior based on the coalescence 

theory, a Dirichlet prior was also used in the Gibbs sampling (Niu et al. 2002). Stephens and 

Donnelly (2003) modified the coalescence-based MCMC approach by incorporating a variant of 

the partition-ligation idea and by allowing for recombination and decay of linkage disequilibrium 

(LD) with distance. Since Bayesian algorithms depend on the prior information, whether the 

algorithm performs favorably compared to other algorithms when the prior model does not hold 

remains to be seen (Niu 2004). 

The Expectation Maximization (EM) algorithm (Dempster et al. 1977), a maximum 

likelihood based method, is commonly used in haplotype frequency estimation. The earlier 

works were first introduced to estimate haplotype frequencies from unrelated individuals 

(Excoffier and Slatkin 1995; Hawley and Kidd 1995; Long et al. 1995). Partition-Ligation 

approach was developed as a new strategy to infer haplotypes with large number of SNPs using 

the EM algorithm (Qin et al. 2002). Li et al. applied the estimation equation technique and 

further improved the statistical and computational efficiency in the estimation of haplotype 

frequencies (Li et al. 2003). EM algorithm was also used to estimate haplotype frequencies based 

on pedigree data (Zhang et al. 2006; Zhu et al. 2007). EM-based method was also developed to 
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reduce the impact on haplotype estimation of genotyping errors (Zhu et al. 2009). EM based 

methods have the advantage of being prior model-free, but all EM approaches assume Hardy-

Weinberg equilibrium in their algorithms.  

Hardy-Weinberg equilibrium (HWE) was independently introduced first by Hardy and 

Weinberg in early 1900s (Hardy 1908, Weinberg 1908). Within the EM algorithm HWE 

assumption allows the replacement of genotype frequencies by the product of haplotype 

frequencies. There were several attempts to consider HW deviation in haplotype analysis. Single 

et al. (2002) tried to improve the accuracy of haplotype frequency estimation by removing some 

loci which showed significant SNP level departure from HWE. However, their method didn’t 

consider the impact of haplotype level HW deviation.  Epstein and Satten (2003) used an 

Expectation/Conditional Maximization (ECM) (Meng and Rubin 1993)  approach for inference 

of haplotype effects in a genetic association study setting (Epstein and Satten 2003). They 

attempted to add a common fixation index (F) to allow some deviation from HWE (Satten and 

Epstein 2004). The method was applicable to case control studies only and allowed only a single 

fixation index. Kuk et al. (2009) developed a method to estimate haplotype frequencies from 

pooled DNA with or without HWE assumption (Kuk et al. 2009). However, pooling genotype 

has disadvantages such as loss of individual genotype information and relatively high 

measurement error (Zhang et al. 2008). 

Fallin and Schork (2000) investigated the accuracy of haplotype frequency estimation 

through simulation studies. They compared the mean square error between population haplotype 

frequencies and estimated haplotype frequencies, and the mean square error between sample 

haplotype frequencies and estimated haplotype frequencies. They simulated locus-specific allelic 

departures from Hardy-Weinberg equilibrium, i.e., SNP level HW deviations. They concluded 
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that the majority of errors between population haplotype frequencies and estimated haplotype 

frequencies were caused by the sampling error, not the estimation error. In addition, they 

concluded that HW deviation toward excessive heterozygosity increased estimation errors, and 

HW deviation toward excessive homozygosity improved the estimation accuracy.  

In this dissertation, we establish the theoretical relationship between SNP level and 

haplotype level HW deviations and among the three haplotype mean square errors (MSEs). We 

investigate how haplotype level HW deviations impact various MSE measures of haplotype 

frequency.  

To reduce haplotype frequency estimation error, HW deviation parameters need to be 

incorporated in the estimation process. We propose a Hardy-Weinberg Deviation-

Expectation/Conditional Maximization (HWD-ECM) method which allows us to estimate HW 

deviation parameters and haplotype frequencies simultaneously. HWD-ECM algorithm is an 

extension of ECM algorithm (Meng and Rubin 1993) which has two conditional maximization 

steps rather than a single complicated joint maximization step.  

 The dissertation is organized as follows. In Chapter 2, we first review Hardy-Weinberg 

equilibrium, the standard EM approach and several measures of assessing the accuracy of 

haplotype frequency estimation. The relationship between SNP and haplotype level HW 

deviations is established and theoretical bounds of haplotype level HW deviation are derived in 

Chapter 3. Simulation results of the impact of HW deviations on haplotype frequency estimation 

for two SNPs scenario are also summarized. In Chapter 4, the HWD-ECM approach for 

haplotypes and HW deviations’ simultaneous estimation is proposed and its advantage over 

traditional EM approach is established through simulation studies. The extension of HWD-ECM 
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approach for multiple SNPs is also described.  Discussions about HW deviations, haplotype 

frequency estimation and future work are provided in Chapter 5.  
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Chapter 2 

Hardy-Weinberg equilibrium and standard EM 

method for haplotype estimation 

 

2.1. Hardy-Weinberg equilibrium (HWE)  

For a single locus with two alleles A or a, we denote allele frequency of allele A by p and 

of allele a by q. If the population is in equilibrium under conditions of no mutation, no gene flow, 

no genetic drift, random mating and no natural selection, then we will have genotype frequency 

𝑃(𝐴𝐴)  =  𝑝2 for the AA homozygotes, 𝑃(𝑎𝑎)  =  𝑞2 for the aa homozygotes, and 𝑃(𝐴𝑎)  =

2𝑝𝑞 for the heterozygotes in the population. Procedures for testing HWE have been extensively 

investigated (Elston and Forthofer 1977; Emigh 1980; Hernandez and Weir 1989; Guo and 

Thompson 1992; Gomes et al. 1999; Cox and Kraft 2006). The modern concept of Hardy-

Weinberg (HW) deviation was introduced by Hernandez and Weir in 1989. For a locus with two 

alleles, A and B, HW deviation parameters are defined as  

                  𝐷𝐴𝐴 =  𝑃 𝐴𝐴 −𝑝2, 𝐷𝑎𝑎 = 𝑃 𝑎𝑎 − 𝑞2, 𝐷𝐴𝑎 = 𝑃 𝐴𝑎 − 2𝑝𝑞. 

HW equilibrium can be similarly defined for multiple alleles and applied to haplotype blocks. 

Statistical tests have been developed to directly evaluate the hypotheses in term of HW deviation 

parameters (Hernandez and Weir 1989; Chen and Thomson 1999; Chen et al. 2005) 
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2.2. Expectation Maximization (EM) approach 

The EM algorithm is an iterative method for finding maximum likelihood (Dempster et al. 

1977) and it is the leading numerical methods used to obtain the maximum likelihood estimation 

of haplotypes. The EM algorithm consists of an expectation step and a maximization step, 

computing the sets of haplotype frequencies, 𝑝1, 𝑝2, ⋯ , 𝑝𝑕 , iteratively starting with an initial set 

of values,𝑝1
(0)

, 𝑝2
(0)

, ⋯ , 𝑝𝑕
(0)

 (Excoffier and Slatkin 1995). The observed unphased genotype 

frequencies ( 𝑛1, 𝑛2, ⋯ , 𝑛𝑚 ) follow a multinomial distribution with unphased genotype 

probabilities, 𝑃1, 𝑃2 , ⋯ , 𝑃𝑚 : 

𝑃𝑗 =  𝑃(𝑕𝑘𝑕𝑙)𝑖

𝑐𝑗

𝑖=1

 , 

where 𝑐𝑗  is the number of phased genotypes leading to the j
th

 unphased genotype and  𝑃(𝑕𝑘𝑕𝑙)𝑖 

is the probability of the i
th

 phased genotype made up of haplotypes 𝑘 and 𝑙. In the current 

dissertation, we will also use the term phenotype interchangeably with unphased genotype. 

 

Expectation step  

 

At the expectation step, initial haplotype frequency values are used to estimate the 

genotype frequencies of the 1
st
 iteration. The 𝑔𝑡𝑕  iteration of genotype frequency, 𝑃 (𝑕𝑘𝑕𝑙)

(𝑔), 

can be estimated as follows: 

 𝑃 (𝑕𝑘𝑕𝑙)
(𝑔) =

𝑛𝑗

𝑛

𝑃(𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑕𝑘𝑕𝑙  𝑖𝑛 𝑝𝑕𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑗) 

𝑃(𝑝𝑕𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑗)
=

𝑛𝑗

𝑛

𝑃𝑗 (𝑕𝑘𝑕𝑙)
(𝑔) 

𝑃𝑗
(𝑔)

,  
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Assuming HWE, 𝑃𝑗 (𝑕𝑘𝑕𝑙)
(𝑔) =  

 (𝑝𝑘
 𝑔 

)2,   𝑖𝑓 𝑘 = 𝑙,

2𝑝𝑘
 𝑔 

𝑝𝑙
 𝑔 

,   𝑖𝑓 𝑘 = 𝑙,
  where 𝑝𝑘

 𝑔 
 is the 𝑔𝑡𝑕  iteration of 

frequency of haplotype k frequency and 𝑝𝑙
 𝑔 

 is the 𝑔𝑡𝑕  iteration of frequency of haplotype l. 

 Homozygous or single heterozygous genotypes can be phased directly without error and 

only multiple heterozygous genotypes (double heterozygous genotype for two SNPs scenarios) 

need to be estimated through the above expectation step.  

 

Maximization step 

The expectation step’s estimated genotype frequencies from the current iteration are used 

to update the next iteration’s haplotype frequencies in the maximization step. Given all phased 

genotype frequencies, the complete log likelihood is as follows: 

log 𝐿𝑐 =  𝑛𝑘𝑙 log 𝑃(𝑕𝑘𝑕𝑙) 

(𝑘,𝑙)∈𝑕

 . 

The maximum likelihood estimation of haplotype frequencies can then be computed 

easily by taking partial derivative of the complete log likelihood with respect to each haplotype 

frequency and the t 
th

 haplotype frequency of (g+1) 
th

 iteration is calculated as follows: 

𝑝𝑡
(𝑔+1) =  𝑃(𝑕𝑡𝑕𝑡)(𝑔) +

1

2
  𝑃(𝑕𝑡𝑕𝑖)

(𝑔)

𝑕

𝑖=1,𝑖≠𝑡

. 

The above equation is equivalent to the gene counting method. The EM iteration will stop 

under predetermined convergence criteria based on absolute change in log likelihood 

 (𝑒. 𝑔. , < 10−6 for R package haplo.em).  

2.3. Accuracy measures for haplotype frequency estimation 
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2.3.1. Mean squared errors for haplotype 

The mean squared error (MSE) for haplotype is our primary measure of accuracy. Three 

MSEs can be defined among the haplotype frequencies: population haplotype frequencies, true 

sample haplotype frequencies and sample estimated haplotype frequencies, i.e. MSEPE (mean 

squared error between population and estimated haplotype frequencies), MSEPS (mean squared 

error between population and sampled haplotype frequencies) and MSESE (mean squared error 

between sampled and estimated haplotype frequencies).  In a phased genotype sample, the 

sampled haplotype frequency is conventionally calculated by counting the number of each 

haplotype. Since each individual has one haplotype pair, the total number of haplotype should be 

twice as many as the total number of individuals. Fallin and Schork (2000) treated [MSEPE-

MSESE] as the sampling error of haplotype frequencies and compare it with MSESE, which was 

the estimation error. In the following Theorem, we derive the theoretical relationship among 

three MSEs. 

Theorem 2.1. Let (𝑃𝑡)𝑃𝑂𝑃  be the t 
th

 haplotype frequency of the population and  (𝑃𝑡)𝑆𝐴𝑀  be the 

sample haplotype frequency and (𝑃𝑡)𝐸𝑀  be the estimated haplotype frequency from EM 

algorithm, then the mean squared errors (MSEs) have the following relationship: 

                       𝑀𝑆𝐸𝑃𝐸 = 𝑀𝑆𝐸𝑃𝑆 + 𝑀𝑆𝐸𝑆𝐸 + 2
1

𝑕
 ((𝑃𝑡)𝑃𝑂𝑃 − (𝑃𝑡)𝑆𝐴𝑀)((𝑃𝑡)𝑆𝐴𝑀 −𝑕

𝑡=1  (𝑃𝑡)𝐸𝑀)           (2.1) 

Proof.  

𝑀𝑆𝐸𝑃𝐸 =
1

𝑕
 ((𝑃𝑡)𝑃𝑂𝑃 −

𝑕

𝑡=1

(𝑃𝑡)𝐸𝑀)2 =
1

𝑕
 ((𝑃𝑡)𝑃𝑂𝑃 −

𝑕

𝑡=1

(𝑃𝑡)𝑆𝐴𝑀 + (𝑃𝑡)𝑆𝐴𝑀 − (𝑃𝑡)𝐸𝑀)2 

          =
1

𝑕
 {((𝑃𝑡)𝑃𝑂𝑃 −

𝑕

𝑡=1

(𝑃𝑡)𝑆𝐴𝑀)2 + 2 (𝑃𝑡)𝑃𝑂𝑃 − (𝑃𝑡)𝑆𝐴𝑀)((𝑃𝑡)𝑆𝐴𝑀 −  𝑃𝑡)𝐸𝑀 + ((𝑃𝑡)𝑆𝐴𝑀 −  𝑃𝑡)𝐸𝑀 
2  
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          =
1

𝑕
 ((𝑃𝑡)𝑃𝑂𝑃 −

𝑕

𝑡=1

(𝑃𝑡)𝑆𝐴𝑀)2 + 2
1

𝑕
 ((𝑃𝑡)𝑃𝑂𝑃 − (𝑃𝑡)𝑆𝐴𝑀)((𝑃𝑡)𝑆𝐴𝑀 −  𝑃𝑡)𝐸𝑀 

𝑕

𝑡=1

+
1

𝑕
 ((𝑃𝑡)𝑆𝐴𝑀 −

𝑕

𝑡=1

(𝑃𝑡)𝐸𝑀)2 

          = 𝑀𝑆𝐸𝑃𝑆 + 𝑀𝑆𝐸𝑆𝐸 + 2
1

𝑕
 ((𝑃𝑡)𝑃𝑂𝑃 − (𝑃𝑡)𝑆𝐴𝑀)((𝑃𝑡)𝑆𝐴𝑀 −  𝑃𝑡)𝐸𝑀 

𝑕

𝑡=1

.                                                                  

                                                                                                                                                                                                                    ∎ 

Besides MSEPS and MSESE, there is an additional term 2
1

𝑕
 ((𝑃𝑡)𝑃𝑂𝑃 − (𝑃𝑡)𝑆𝐴𝑀)((𝑃𝑡)𝑆𝐴𝑀 −𝑕

𝑡=1

 𝑃𝑡)𝐸𝑀  in(2.1). Therefore,[𝑀𝑆𝐸𝑃𝐸 −𝑀𝑆𝐸𝑆𝐸], which was used as sampling error by Fallin and 

Schork (2000) is actually 𝑀𝑆𝐸𝑃𝑆 + 2
1

𝑕
 ((𝑃𝑡)𝑃𝑂𝑃 − (𝑃𝑡)𝑆𝐴𝑀)((𝑃𝑡)𝑆𝐴𝑀 −  𝑃𝑡)𝐸𝑀 

𝑕
𝑡=1 . In the following 

𝑀𝑆𝐸𝑃𝑆  will be sampling error and 𝑀𝑆𝐸𝑆𝐸  used as estimation error, and 𝑀𝑆𝐸𝑃𝐸  as the total MSE. 

For two SNPs scenario, since there is no estimation error for homozygous or single 

heterozygous genotype,  𝑀𝑆𝐸𝑆𝐸  is affected solely by the difference between sample and sample 

estimated double heterozygous genotypes. 

   

Theorem 2.2. For a two locus situation, let 𝑃(𝑕𝑡𝑕𝑖)𝑆𝐴𝑀
𝑑𝑜𝑢𝑏𝑙𝑒  be the sample double heterozygous 

genotype frequency with corresponding haplotypes 𝑕𝑡  and 𝑕𝑖 , 𝑃(𝑕𝑡𝑕𝑖)𝐸𝑀
𝑑𝑜𝑢𝑏𝑙𝑒  be the EM 

estimated double heterozygous genotype frequency, (𝑃𝑖)𝑆𝐴𝑀  𝑎𝑛𝑑 (𝑃𝑡)𝑆𝐴𝑀  be the sample 

haplotype frequencies, (𝑃𝑖)𝐸𝑀   and (𝑃𝑡)𝐸𝑀  be the EM estimated haplotype frequencies, then the 

estimation MSE can be described as 

𝑀𝑆𝐸𝑆𝐸 =
1

𝑕
 (

1

2
 {𝑃(𝑕𝑡𝑕𝑖)𝑆𝐴𝑀

𝑑𝑜𝑢𝑏𝑙𝑒 − 𝑃(𝑕𝑡𝑕𝑖)𝐸𝑀
𝑑𝑜𝑢𝑏 𝑙𝑒

𝑕

𝑖=1,𝑖≠𝑡

} 

𝑕

𝑡=1

)2 

 

Proof.  

(𝑃𝑡)𝑆𝐴𝑀 − (𝑃𝑡)𝐸𝑀  
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               = 𝑃(𝑕𝑡𝑕𝑡)𝑆𝐴𝑀 +
1

2
 𝑃(𝑕𝑡𝑕𝑖)𝑆𝐴𝑀

𝑕
𝑖=1,𝑖≠𝑡 − {𝑃(𝑕𝑡𝑕𝑡)𝐸𝑀 +

1

2
 𝑃(𝑕𝑡𝑕𝑖)𝐸𝑀

𝑕
𝑖=1,𝑖≠𝑡 }  

             =
1

2
 {𝑃(𝑕𝑡𝑕𝑖)𝑆𝐴𝑀

𝑑𝑜𝑢𝑏𝑙𝑒 − 𝑃(𝑕𝑡𝑕𝑖)𝐸𝑀
𝑑𝑜𝑢𝑏𝑙𝑒𝑕

𝑖=1,𝑖≠𝑡 } ,  

Therefore, for a two SNPs system, the estimation error for haplotype is affected by only double 

heterozygous genotypes as 

𝑀𝑆𝐸𝑆𝐸 =
1

𝑕
 ((𝑃𝑡)𝑆𝐴𝑀 −

𝑕

𝑡=1

(𝑃𝑡)𝐸𝑀)2 =
1

𝑕
  (

𝑕

𝑡=1

1

2
 {

𝑕

𝑖=1,𝑖≠𝑡

𝑃(𝑕𝑡𝑕𝑖)𝑆𝐴𝑀
𝑑𝑜𝑢𝑏𝑙𝑒 − 𝑃(𝑕𝑡𝑕𝑖)𝐸𝑀

𝑑𝑜𝑢𝑏𝑙𝑒 })2 

                                                                                                                                                                          ∎ 

When the frequency for double heterozygous genotypes is estimated incorrectly, the haplotype 

estimation error would occur.   

 

2.3.2.  Mean squared errors for genotype 

Similar to the above discussion on  𝑀𝑆𝐸𝑃𝑆  for haplotype, the sampling error for genotype 

can be defined as 

 𝑀𝑆𝐸𝑃𝑆(𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒) =
2

𝑕(𝑕+1)
  (𝑃(𝑕𝑖𝑕𝑗 )𝑃𝑂𝑃 −𝑕

𝑗=1,𝑖≤𝑗 𝑃(𝑕𝑖𝑕𝑗 )𝑆𝐴𝑀)2𝑕
𝑖=1  ,  

where total number of genotype can be counted as  
𝑕(𝑕+1)

2
  with h being the total number of 

haplotypes. 

Also, the estimation error for genotype can be defined as  

𝑀𝑆𝐸𝑆𝐸(𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒) =
2

𝑕(𝑕+1)
  (𝑕

𝑗=1,𝑖≤𝑗 𝑃(𝑕𝑡𝑕𝑖)𝑆𝐴𝑀
𝑑𝑜𝑢𝑏𝑙𝑒 − 𝑃(𝑕𝑡𝑕𝑖)𝐸𝑀

𝑑𝑜𝑢𝑏𝑙𝑒 )2𝑕
𝑖=1  , where 

𝑃(𝑕𝑡𝑕𝑖)𝑆𝐴𝑀
𝑑𝑜𝑢𝑏𝑙𝑒  is the sample double heterozygous genotype frequency with corresponding 
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haplotypes ht  and hi and P(hthi)EM
double  is the EM estimated double heterozygous genotype 

frequencies since there is no estimation error for homozygous and single heterozygous genotype. 

 

2.4.  Haplotype counting  

 According to Excoffier and Slakin (1995), calculation of haplotype frequencies from each 

maximization step is equivalent to the conventional gene-counting method (Ceppellini et al. 

1955; Smith 1957). At this section, we show how the gene-counting method is derived by taking 

partial derivative of log likelihood with respect to haplotype. When genotypes are in HWE, the 

complete log likelihood of phased genotype frequencies is 

log 𝐿𝑐 =  𝑛𝑘𝑙 log 𝑃(𝑕𝑘𝑕𝑙) 

(𝑘,𝑙)∈𝑕

 

= 𝑛𝑡𝑡 log 𝑃𝑡
2 +  𝑛𝑡𝑖 log 2𝑃𝑡𝑃𝑖 

𝑖=1,𝑖≠𝑡

+   𝑛𝑖𝑗 log 2𝑃𝑖𝑃𝑗  

𝑗=1,𝑗≠𝑡𝑖=1,𝑖≠𝑡

 

Since  𝑃𝑖 = 1, the Lagrange multiplier λ with its constraint should be considered to obtain the 

maximum likelihood of 𝑃𝑡 . The Lagrange multiplier λ can be derived as -2n through simple 

algebraic calculations. After taking partial derivative of the above complete log likelihood with 

respect to 𝑃𝑡  , we have 

𝑛𝑡𝑡

2𝑃𝑡

𝑃𝑡
2 +  𝑛𝑡𝑖

2𝑃𝑖
2𝑃𝑡𝑃𝑖

𝑖=1,𝑖≠𝑡

− 2𝑛 = 𝑛𝑡𝑡

2

𝑃𝑡
+  𝑛𝑡𝑖

1

𝑃𝑡
𝑖=1,𝑖≠𝑡

− 2𝑛 = 0 

When we solve the above equation for 𝑃𝑡  , we can easily derive the maximization step result 

as 𝑃𝑡 =
2𝑛𝑡𝑡 + 𝑛𝑡𝑖𝑖=1,𝑖≠𝑡

2𝑛
= 𝑃 𝑕𝑡𝑕𝑡 +

1

2
 𝑃 𝑕𝑡𝑕𝑖 

𝑕
𝑖=1,𝑖≠𝑡 .  
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Chapter 3 

Impact of Hardy-Weinberg deviation on standard EM 

haplotype estimation 

  One key assumption in the expectation step of the EM estimation of the gametic phase of 

multiple heterozygous genotypes is HWE. When true genotype samples are deviated from HWE, 

the assumption in expectation step can potentially cause severe phasing error, resulting in large 

estimation error for haplotype and genotype. Fallin and Schork (2000) studied the impact of SNP 

level departure from HWE on haplotype estimation accuracy when alleles at the loci are not in 

HWE. What directly affects the haplotype accuracy is haplotype level HW deviations. How SNP 

level HW deviation relates to haplotype level HW deviation has not been established. In order to 

investigate the impact on estimation error, we need to first explore this relationship. 

 

3.1. SNP level and haplotype level Hardy-Weinberg deviations 

For two SNPs scenarios, we assume that the two alleles are 𝐴 and 𝑎 at the first locus and  

𝐵 and 𝑏 at the second locus. We denote  𝑃𝐴𝐴  for the AA homozygotes,  𝑃𝑎𝑎  for the aa 

homozygotes, and  𝑃𝐴𝑎  for the heterozygotes at first locus in the population, with allele 

frequencies of A and a can be denoted by 𝑝𝐴  and 𝑝𝑎  , respectively. Similarly, we can 

define 𝑃𝐵𝐵 , 𝑃𝑏𝑏  ,𝑃𝐵𝑏  , 𝑝𝐵  and 𝑝𝑏  for the second locus. One-locus genotype frequencies are 

defined by the following relations (Weir 1996):  
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𝑃𝐴𝐴 = 𝑝𝐴
2 + 𝐷𝐴𝐴 ,  𝑃𝐴𝑎 = 2𝑝𝐴𝑝𝑎 + 𝐷𝐴𝑎 ,  𝑃𝑎𝑎 = 𝑝𝑎

2 + 𝐷𝑎𝑎  ,                        (3.1) 

where 𝐷𝐴𝐴 , 𝐷𝐴𝑎  and 𝐷𝑎𝑎  are the SNP level HW deviations corresponding to each genotypes at 

the first locus. Similarly we can define 𝐷𝐵𝐵 , 𝐷𝐵𝑏  and 𝐷𝑏𝑏  for the second locus. 

 Given the four possible haplotypes (𝐴𝐵, 𝐴𝑏, 𝑎𝐵, 𝑎𝑏), genotype frequencies can then be defined 

by the haplotypes and haplotype level HW deviations in the following way: 

𝑃𝑖|𝑗 =  
     𝑃𝑖

2 + 𝐷𝑖|𝑖 ,   𝑖𝑓 𝑖 = 𝑗,

2𝑃𝑖𝑃𝑗 + 𝐷𝑖|𝑗 ,   𝑖𝑓 𝑖 ≠ 𝑗,
  

where 𝑖 𝑎𝑛𝑑 𝑗 ∈ (𝐴𝐵, 𝐴𝑏, 𝑎𝐵, 𝑎𝑏). 

The relationship between SNP level and haplotype level HW deviations can be established by 

counting alleles or haplotypes from genotypes. 

Theorem 3.1.  Let 𝐷𝐴𝐴 , 𝐷𝐴𝑎  𝑎𝑛𝑑 𝐷𝑎𝑎  be SNP level HW deviations at the first locus, 

𝐷𝐵𝐵 , 𝐷𝐵𝑏  𝑎𝑛𝑑 𝐷𝑏𝑏  be SNP level HW deviations at the second locus, and 𝐷𝑖|𝑗  be haplotype level 

HW deviations 𝑤𝑕𝑒𝑟𝑒 𝑖 𝑎𝑛𝑑 𝑗 ∈  𝐴𝐵, 𝐴𝑏, 𝑎𝐵, 𝑎𝑏 . Then, 

𝐷𝐴𝐴 = 𝐷𝐴𝐵|𝐴𝐵 + 𝐷𝐴𝐵|𝐴𝑏  + 𝐷𝐴𝑏|𝐴𝑏  

𝐷𝐴𝑎 = 𝐷𝐴𝐵|𝑎𝐵 + 𝐷𝐴𝐵|𝑎𝑏  + 𝐷𝐴𝑏|𝑎𝐵 + 𝐷𝐴𝑏|𝑎𝑏  

𝐷𝑎𝑎 = 𝐷𝑎𝐵|𝑎𝐵 + 𝐷𝑎𝐵|𝑎𝑏  + 𝐷𝑎𝑏 |𝑎𝑏  

𝐷𝐵𝐵 = 𝐷𝐴𝐵|𝐴𝐵 + 𝐷𝐴𝐵|𝑎𝐵  + 𝐷𝑎𝐵|𝑎𝐵  

𝐷𝐵𝑏 = 𝐷𝐴𝐵|𝐴𝑏 + 𝐷𝐴𝐵|𝑎𝑏  + 𝐷𝐴𝑏|𝑎𝐵 + 𝐷𝑎𝐵|𝑎𝑏  

𝐷𝑏𝑏 = 𝐷𝐴𝑏|𝐴𝑏 + 𝐷𝐴𝑏|𝑎𝑏  + 𝐷𝑎𝑏 |𝑎𝑏  



15 

 

Proof.  

The SNP level genotype frequency 𝑃𝐴𝐴  can be expressed by the sum of haplotype level 

genotypes sharing allele A: 

𝑃𝐴𝐴 = 𝑃𝐴𝐵|𝐴𝐵 + 𝑃𝐴𝐵|𝐴𝑏 + 𝑃𝐴𝑏|𝐴𝑏                                        

                            = (𝑃𝐴𝐵)2 + 𝐷𝐴𝐵|𝐴𝐵 + 2𝑃𝐴𝐵𝑃𝐴𝑏 + 𝐷𝐴𝐵|𝐴𝑏 + (𝑃𝐴𝑏 )2 + 𝐷𝐴𝑏|𝐴𝑏  

  =  𝑃𝐴𝐵 + 𝑃𝐴𝑏  
2 + 𝐷𝐴𝐵|𝐴𝐵 + 𝐷𝐴𝐵|𝐴𝑏 + 𝐷𝐴𝑏|𝐴𝑏  

 

Since the allele frequency 𝑝𝐴 can be expressed as sum of 𝑃𝐴𝐵  and 𝑃𝐴𝑏  , 

𝑝𝐴
2 + 𝐷𝐴𝐵|𝐴𝐵 + 𝐷𝐴𝐵|𝐴𝑏 + 𝐷𝐴𝑏|𝐴𝑏 = 𝑝𝐴

2 + 𝐷𝐴𝐴   by definition (3.1) 

Therefore, we can obtain 𝐷𝐴𝐴 = 𝐷𝐴𝐵|𝐴𝐵 + 𝐷𝐴𝐵|𝐴𝑏  + 𝐷𝐴𝑏|𝐴𝑏 . Other formula can be similarly 

derived. 

                                                                                                                                                       ∎ 

 Based on Theorem 3.1., we have the following two corollaries. 

Corollary 3.1. Let 𝐷𝐴𝐴 , 𝐷𝐴𝑎  𝑎𝑛𝑑 𝐷𝑎𝑎  be SNP level HW deviations for first locus and 

𝐷𝐵𝐵 , 𝐷𝐵𝑏  𝑎𝑛𝑑 𝐷𝑏𝑏  be SNP level HW deviations for second locus. Suppose 𝐷𝑖|𝑗 = 0, where 

𝑖 𝑎𝑛𝑑 𝑗 ∈  𝐴𝐵, 𝐴𝑏, 𝑎𝐵, 𝑎𝑏 . Then 

 𝐷𝐴𝐴 =  𝐷𝐴𝑎 = 𝐷𝑎𝑎 = 𝐷𝐵𝐵 =  𝐷𝐵𝑏 = 𝐷𝑏𝑏 = 0. 
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Based on Theorem 3.1, we can conclude that if haplotype level HW deviations are zero (i.e. in 

HWE), then SNP level HW deviations is also zero (i.e. in HWE).  

Corollary 3.2. Let 𝐷𝐴𝐴 , 𝐷𝐴𝑎  𝑎𝑛𝑑 𝐷𝑎𝑎  be SNP level HW deviations for the first locus and 

𝐷𝐵𝐵 , 𝐷𝐵𝑏  𝑎𝑛𝑑 𝐷𝑏𝑏  be SNP level HW deviations for the second locus. Suppose that 𝐷𝑖|𝑗 ≠

0,𝑤𝑕𝑒𝑟𝑒 𝑖 𝑎𝑛𝑑 𝑗 ∈  𝐴𝐵, 𝐴𝑏, 𝑎𝐵, 𝑎𝑏 ,   𝐷𝑘𝑙 |𝑚𝑛𝑙,𝑛∈ 𝐵,𝑏 = 0 for 𝑘 𝑎𝑛𝑑 𝑚 ∈  𝐴, 𝑎  and  

 𝐷𝑘𝑙 |𝑚𝑛𝑘,𝑚∈ 𝐴,𝑎 = 0 for 𝑙 𝑎𝑛𝑑 𝑛 ∈  𝐵, 𝑏 . Then 

 𝐷𝐴𝐴 =  𝐷𝐴𝑎 = 𝐷𝑎𝑎 = 𝐷𝐵𝐵 =  𝐷𝐵𝑏 = 𝐷𝑏𝑏 = 0. 

In other words, if SNP level HW deviations are zero, haplotype HW deviations are not 

necessarily zero. Furthermore, the SNP level HW deviations don’t guarantee the extent of 

haplotype level HW deviation because SNP level HW deviations are sums of the haplotype level 

HW deviations corresponding to each SNP. Specifically, even though SNP level HW deviations 

are zero, haplotype level HW deviations can still be severe. This suggests that the impact of HW 

deviation on EM-based approach should be explored at haplotype level rather than at SNP level. 

 

3.2. Constraints and bounds of SNP level and haplotype level Hardy-

Weinberg deviations 

SNP level HW deviations’ constraints have been established (Weir 1996): 

𝐷𝐴𝐴 +
1

2
𝐷𝐴𝑎 = 0 𝑎𝑛𝑑 𝐷𝑎𝑎 +

1

2
𝐷𝐴𝑎 = 0. 
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Similarly we can establish the constraints of haplotype level HW deviations.  

Theorem 3.2. For two SNPs scenario, let 𝐷𝑖|𝑗  be a haplotype level HW deviation where 

 𝑖 𝑎𝑛𝑑 𝑗 ∈  𝐴𝐵, 𝐴𝑏, 𝑎𝐵, 𝑎𝑏 . Then, 

𝐷𝑖|𝑖 +
1

2
 𝐷𝑖|𝑗

𝑖≠𝑗

= 0. 

Proof. 

This can be proof since haplotype frequencies can be obtained by genotypes related to each 

haplotype,  

𝑃𝐴𝐵 = 𝑃𝐴𝐵|𝐴𝐵 +
1

2
 𝑃𝐴𝐵|𝐴𝑏 + 𝑃𝐴𝐵|𝑎𝐵 + 𝑃𝐴𝐵|𝑎𝑏   

= 𝑃𝐴𝐵
2 + 𝐷𝐴𝐵|𝐴𝐵 +

1

2
 2𝑃𝐴𝐵𝑃𝐴𝑏 + 𝐷𝐴𝐵|𝐴𝑏  + 2𝑃𝐴𝐵𝑃𝑎𝐵 + 𝐷𝐴𝐵|𝑎𝐵 + 2𝑃𝐴𝐵𝑃𝑎𝑏 + 𝐷𝐴𝐵|𝑎𝑏   

= 𝑃𝐴𝐵(𝑃𝐴𝐵 + 𝑃𝐴𝑏 + 𝑃𝑎𝐵 + 𝑃𝑎𝑏 ) + 𝐷𝐴𝐵|𝐴𝐵 +
1

2
 𝐷𝐴𝐵|𝐴𝑏  + 𝐷𝐴𝐵|𝑎𝐵 + 𝐷𝐴𝐵|𝑎𝑏  = 𝑃𝐴𝐵  

Then we have the constraint of HW deviation related to haplotype 𝐴𝐵 as 

𝐷𝐴𝐵|𝐴𝐵 +
1

2
 𝐷𝐴𝐵|𝐴𝑏  + 𝐷𝐴𝐵|𝑎𝐵 + 𝐷𝐴𝐵|𝑎𝑏  = 0 

For other haplotypes, other constraints can be obtained in the same way. 

■ 
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Theorem 3.1 and Theorem 3.2 allow us to reduce the number of possible independent 

haplotype level HW deviations to be estimated. For two SNPs scenario, the independent number 

of HW deviation parameters is 10-4=6. 

 

Bounds of haplotype level Hardy-Weinberg deviation 

The bounds of HW deviations can be established from the fact that genotypic frequencies 

are bounded below by zero and above by gene frequencies (Hernandez and Weir 1989): 

0 ≤ 𝑃 𝑕𝑖𝑕𝑖 ≤ 𝑃𝑖   ⇒  0 ≤ 𝑃𝑖
2 + 𝐷𝑖𝑖 ≤ 𝑃𝑖 ⇒ −𝑃𝑖

2 ≤ 𝐷𝑖𝑖 ≤ 𝑃𝑖(1 − 𝑃𝑖) 

0 ≤ 𝑃 𝑕𝑖𝑕𝑗  ≤ min 2𝑃𝑖 , 2𝑃𝑗  , 𝑤𝑕𝑒𝑟𝑒 𝑖 ≠ 𝑗 

⇒  0 ≤ 2𝑃𝑖𝑃𝑗 + 𝐷𝑖𝑗 ≤ min 2𝑃𝑖 , 2𝑃𝑗  ⇒ 0 ≤ 2𝑃𝑖𝑃𝑗 + 𝐷𝑖𝑗 ≤ min 2𝑃𝑖 , 2𝑃𝑗   

       ⇒ −2𝑃𝑖𝑃𝑗 ≤ 𝐷𝑖𝑗 ≤ min 2𝑃𝑖(1 − 𝑃𝑗 ) , 2𝑃𝑗 (1 − 𝑃𝑖)   

For simulations, to generate a random selection of HW deviation set, individual bounds 

must be used for the first HW deviation, however, the sequential bounds must be used for 

subsequent HW deviation values chosen. Given population haplotype setting, to generate a HW 

deviation set for simulation studies, sequential bounds of HW deviations should be considered. 

Since genotype frequencies are bounded below by zero and above by haplotype frequencies, we 

can generate the first genotype frequency using the individual bound of the corresponding HW 

deviation. For the second genotype, if we use the individual bound of the corresponding HW 

deviation, the haplotype frequency based on selected genotypes may not match population 
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haplotype set. For example, suppose that we select first genotype frequency 𝑃𝐴𝐵|𝐴𝑏  as 2𝑃𝐴𝐵  

assuming min 2𝑃𝐴𝐵 , 2𝑃𝐴𝑏  = 2𝑃𝐴𝐵 . For second genotype 𝑃𝐴𝐵|𝑎𝐵 , if we select any value large 

than zero (i.e. within the individual bound), then the haplotype frequency 𝑃𝐴𝐵  from the two 

genotypes will be larger than the population haplotype frequency 𝑃𝐴𝐵  since 𝑃𝐴𝐵|𝐴𝐵 +

1

2
 𝑃𝐴𝐵|𝐴𝑏  + 𝑃𝐴𝐵|𝑎𝐵 + 𝑃𝐴𝐵|𝑎𝑏  > 𝑃𝐴𝐵 . Therefore, sequential ranges of haplotype level HW 

deviations will be required for the constraints of HW deviations.  

 

An illustrative example of sequential bounds for haplotype level HW 

deviations 

For two SNPs scenario, there are four possible haplotypes 

(1(𝐴𝐵), 2(𝐴𝑏), 3(𝑎𝐵), 4(𝑎𝑏)) assuming 𝑃1 ≤ 𝑃2 ≤ 𝑃3 ≤ 𝑃4 and 10 unordered genotypes. Given 

that three genotypes (𝑃1|3
𝐵 , 𝑃2|2

𝐵 , 𝑃3|4
𝐵 ) already have been selected according to corresponding HW 

deviations (denoting B as already selected genotypes before current genotype selection), then 

there are seven remaining genotypes.   
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 AB Ab aB ab 

AB 𝑃1|1 𝑃1|2 𝑃1|3
𝐵  𝑃1|4 

Ab  𝑃2|2
𝐵  𝑃2|3 𝑃2|4 

aB   𝑃3|3 𝑃3|4
𝐵  

ab    𝑃4|4 

Haplotype frequency is obtained by summing genotypes related to the haplotype and one 

genotype in each group can be reparameterized in the following way: 

𝑃1 = 𝑃1|1 +
1

2
 𝑃1|2 + 𝑃1|3

𝐵 + 𝑃1|4 ⇒ 𝑃1|4 = 2𝑃1 −  2𝑃1|1 + 𝑃1|2 + 𝑃1|3
𝐵   ≥ 0 

𝑃2 = 𝑃2|2
𝐵 +

1

2
 𝑃1|2 + 𝑃2|3 + 𝑃2|4  ⇒ 𝑃2|4 = 2𝑃2 −  2𝑃2|2

𝐵 + 𝑃1|2 + 𝑃2|3  ≥ 0  

𝑃3 = 𝑃3|3 +
1

2
 𝑃1|3

𝐵 + 𝑃2|3 + 𝑃3|4
𝐵   ⇒  𝑃3|3 = 𝑃3 −

1

2
 𝑃1|3

𝐵 + 𝑃2|3 + 𝑃3|4
𝐵   ≥ 0  

𝑃4 = 𝑃4|4 +
1

2
 𝑃1|4 + 𝑃2|4 + 𝑃3|4

𝐵  ⇒ 𝑃4|4 = 𝑃4 −
1

2
 𝑃1|4 + 𝑃2|4 + 𝑃3|4

𝐵                

⇒ 𝑃4|4 = 𝑃4 −  𝑃1 + 𝑃2 +
1

2
  2𝑃1|1 + 𝑃1|3

𝐵  +  2𝑃2|2
𝐵 + 𝑃2|3 + 2𝑃1|2 − 𝑃3|4

𝐵  ≥ 0, 

If the next HW deviation selection is for genotype 𝑃1|1, then the inequalities related to 

𝑃1|1  should be set up to determine the corresponding sequential bounds of 𝑃1|1. From the above 

reparameterization, there are two inequalities: 

𝑃1|1 ≤ 𝑃1 −
1

2
 𝑃1|2 + 𝑃1|3

𝐵     
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𝑃1|1 ≥  𝑃1 + 𝑃2 − 𝑃4 −
1

2
 𝑃1|3

𝐵 +  2𝑃2|2
𝐵 + 𝑃2|3 + 2𝑃1|2 − 𝑃3|4

𝐵   

since 𝑃1|1 ≥ 0, max 𝑃1|1 = min⁡(𝑃1, 𝑃1 −
1

2
 𝑃1|2 + 𝑃1|3

𝐵  ) and min 𝑃1|1 = max  0,  𝑃1 +

𝑃2 − 𝑃4 −
1

2
 𝑃1|3

𝐵 +  2𝑃2|2
𝐵 + 𝑃2|3 + 2𝑃1|2 − 𝑃3|4

𝐵   . Moreover, 𝐷11  is bounded below by 

[max 𝑃1|1 − 𝑃1
2] , and bounded above by [min 𝑃1|1 − 𝑃1

2]. Sequential bounds for other HW 

deviations can be obtained similarly.  

 

3.3. Analytical calculation of genotype frequency at the expectation 

step 

 For two SNPs scenarios, we denote the unphased double heterozygous (DH) genotypes 

frequency as 𝑃𝐷𝐻 = 𝑃𝐴𝐵|𝑎𝑏 + 𝑃𝐴𝑏|𝑎𝐵  . The expectation step for 𝑃𝐴𝐵|𝑎𝑏  at 
th

 iteration can be 

derived as 

𝑃𝐴𝐵|𝑎𝑏
 𝑔 

=  𝑃𝐷𝐻
2𝑃𝐴𝐵

 𝑔−1 
𝑃𝑎𝑏
 𝑔−1 

2𝑃𝐴𝐵
 𝑔−1 

𝑃𝑎𝑏
 𝑔−1 

+2𝑃𝐴𝑏
 𝑔−1 

𝑃𝑎𝐵
 𝑔−1 , 

 where 𝑃𝑖
(𝑔−1)

𝑠, 𝑤𝑕𝑒𝑟𝑒 𝑖 ∈  𝐴𝐵, 𝐴𝑏, 𝑎𝐵, 𝑎𝑏 , are haplotype frequency estimates at the (𝑔 − 1)𝑡𝑕  

iteration. 

The products of haplotypes are replaced by the corresponding sum of genotypes:  

2𝑃𝐴𝐵
 𝑔−1 

𝑃𝑎𝑏
 𝑔−1 

= 2  𝑃𝐴𝐵|𝐴𝐵 +
1

2
 𝑃𝐴𝐵|𝐴𝑏 + 𝑃𝐴𝐵|𝑎𝐵 + 𝑃𝐴𝐵|𝑎𝑏

 𝑔−1    𝑃𝑎𝑏|𝑎𝑏 +
1

2
 𝑃𝐴𝐵|𝑎𝑏

 𝑔−1 
+ 𝑃𝐴𝑏|𝑎𝑏 + 𝑃𝑎𝐵|𝑎𝑏   

g
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2𝑃𝐴𝑏
 𝑔−1 

𝑃𝑎𝐵
 𝑔−1 

= 2  𝑃𝐴𝑏|𝐴𝑏 +
1

2
 𝑃𝐴𝐵|𝐴𝑏 + 𝑃𝐴𝑏|𝑎𝐵

 𝑔−1 
+ 𝑃𝐴𝑏|𝑎𝐵   𝑃𝑎𝐵|𝑎𝐵 +

1

2
 𝑃𝐴𝐵|𝑎𝐵 + 𝑃𝐴𝑏|𝑎𝐵

 𝑔−1 
+ 𝑃𝑎𝐵|𝑎𝑏  . 

When 𝑃𝐴𝐵|𝑎𝑏
 𝑔 

→ 𝑝 𝐴𝐵|𝑎𝑏  as 𝑔 → ∞ and  𝑝 𝐴𝑏|𝑎𝐵 =  𝑃𝐷𝐻 − 𝑝 𝐴𝐵|𝑎𝑏  , then the above expectation step 

becomes a third order polynomial of 𝑝 𝐴𝐵|𝑎𝑏  and all coefficients are function of homozygous or 

single heterozygous genotypes (Mano et al. 2004).  

 To present the coefficients, we denote 𝑃𝐴𝐵|𝐴𝐵 +
1

2
 𝑃𝐴𝐵|𝐴𝑏 + 𝑃𝐴𝐵|𝑎𝐵  as 𝑘AB , 𝑃𝑎𝑏 |𝑎𝑏 +

1

2
 𝑃𝐴𝑏|𝑎𝑏 + 𝑃𝑎𝐵|𝑎𝑏   as 𝑘ab , 𝑃𝐴𝑏|𝐴𝑏 +

1

2
 𝑃𝐴𝐵|𝐴𝑏 + 𝑃𝐴𝑏|𝑎𝐵  as  𝑘Ab  and 𝑃𝑎𝐵|𝑎𝐵 +

1

2
 𝑃𝐴𝐵|𝑎𝐵 +

𝑃𝑎𝐵|𝑎𝑏   as 𝑘Ab . Then the third order polynomial of 𝑝 𝐴𝐵|𝑎𝑏  is 

               2𝑝 𝐴𝐵|𝑎𝑏
3 + {2(𝑘AB + 𝑘ab−𝑘Ab − 𝑘aB ) − 3𝑃DH }𝑝 𝐴𝐵|𝑎𝑏

2 + {4(𝑘ab𝑘AB + 𝑘aB𝑘Ab ) −

              2 𝑘AB + 𝑘ab−𝑘Ab − 𝑘aB  𝑃DH + 𝑃DH
2 }𝑝 𝐴𝐵|𝑎𝑏 − 4𝑘AB𝑘ab𝑃DH = 0.                (3.3.1) 

The roots for 𝑝 𝐴𝐵|𝑎𝑏  can be obtained by the cubic formula: 

Root 1: 𝑝 𝐴𝐵|𝑎𝑏 = −
1

3
 2 𝑘AB + 𝑘ab−𝑘Ab − 𝑘aB  − 3𝑃DH  +  S + T                               (3.3.2) 

Root 2: 𝑝 𝐴𝐵|𝑎𝑏 = −
1

3
 2 𝑘AB + 𝑘ab−𝑘Ab − 𝑘aB  − 3𝑃DH  −

1

2
 S + T +

1

2
𝑖 3 S − T    (3.3.3) 

Root 3: 𝑝 𝐴𝐵|𝑎𝑏 = −
1

3
 2 𝑘AB + 𝑘ab−𝑘Ab − 𝑘aB  − 3𝑃DH  −

1

2
 S + T −

1

2
𝑖 3 S − T ,   (3.3.4) 

where S and T are defined as 

𝑄 ≡
1

9
 3𝑎1 − 𝑎2

2 , R ≡
1

54
 −27𝑎0 + 9𝑎1𝑎2 − 2𝑎2

3 , D ≡ Q3 + R2 
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S ≡  R +  D
3

 , T ≡  R −  D
3

, 

where 𝑎2 =
2 𝑘AB +𝑘ab −𝑘Ab −𝑘aB  −3𝑃DH

2
 , 𝑎1 =

4(𝑘ab 𝑘AB +𝑘aB 𝑘Ab )−2 𝑘AB +𝑘ab −𝑘Ab −𝑘aB  𝑃DH +𝑃DH
2

2
 and 

𝑎0 =
−4𝑘AB 𝑘ab 𝑃DH

2
. 

Determining which root is real and which is complex can be categorized by the polynomial 

discriminant (D). If D > 0, then the equation has three distinct real roots and if D < 0, then the 

equation has one real root and two non real complex conjugate roots (Abramowitz and Stegun 

1964). It is interesting that above roots all include a common term [𝑘AB + 𝑘ab−𝑘Ab − 𝑘aB ], 

which is equivalent to the difference between four homozygous genotypes as [𝑃𝐴𝐵|𝐴𝐵 + 𝑃𝑎𝑏 |𝑎𝑏 −

𝑃𝐴𝑏|𝐴𝑏 − 𝑃𝑎𝐵|𝑎𝐵 ].    

 

3.4. Residuals from EM based haplotype frequency estimation  

 We will call the EM estimation error (the difference between genotype frequency and the 

product of constituent haplotypes) as EM residual. EM-based haplotype frequency estimation 

shows no residuals when phased genotype frequencies are correct. When genotype sample is in 

HWE, multiple heterozygous genotypes will have correct phased genotype configurations. Even 

when genotype sample is not in HWE, it is possible to have no EM residuals as long as phased 

genotype frequencies are same as true genotypes. For example, when there is no double 

heterozygous genotype, we can obtain haplotype frequencies without phasing process. We 

denote these cases when no EM residuals exist as balanced genotype settings. 
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 When a genotype sample is unbalanced, the products of haplotype frequency estimations 

are no longer the same as genotype frequencies, indicating that the genotype sample is deviated 

from HWE. However, EM residuals are not the true haplotype level HW deviations. 

 

3.5. Simulation settings 

To sample genotypes from the population, Fallin and Schork (2000) assigned a first 

haplotype to each individual, with probabilities equal to the population haplotype frequencies. 

Then they used conditional probabilities for each haplotypes to assign the second haplotype for 

each individual and the joint probabilities could be expressed as functions of SNP level HW 

deviations. However, haplotype level HW deviations are not fully investigated. The primary goal 

of our simulation is to explore the haplotype level HW deviations from a particular haplotype 

setting. The simulation settings are summarized in Table 1. 

Population settings 

For two SNPs scenario, population settings for HW deviations and genotypes are 

specified for different haplotype scenarios. Given population haplotype frequencies, genotype 

frequencies under HWE is simply product of two constituent haplotypes.  Haplotype level HW 

deviations can be randomly generated by predetermined sequential HW deviation bounds. For 

two SNPs scenario, 100,000 HW deviation sets were selected each from equal haplotype 

frequencies setting (0.25, 0.25, 0.25, 0.25) and unequal haplotype frequencies setting (0.1, 0.2, 

0.3, 0.4). Population genotype frequency can be obtained from the selected HW deviation 
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scenarios of a particular haplotype setting by adding to the product of two constituent haplotype 

frequencies. 

Sampling setting 

 Genotype samples with sample size n are randomly chosen from each population 

genotype frequency setting. The true sample haplotype frequencies are calculated by counting 

the number of occurrences of each haplotype in the genotype sample and divided by the total 

number of haplotypes (2n).  As double heterozygous genotypes play the critical role in haplotype 

determination, for equal or unequal haplotype frequency settings, we sort the simulated data 

according to the sum of double heterozygous genotype frequencies. We choose the following 

percentiles for further investigation (1
st
, 5

th
, 10

th
, 25

th
, 50

th
, 75

th
, 90

th
, 95

th
 and 99

th
) from 

simulated data. To capture reasonable number of genotype sets at each percentile, we pick a 

small bin by adding or subtracting 0.0001 from each chosen percentile of sum of double 

heterozygous genotype frequencies (e.g. at 50
th

 percentile, we use the bin from [50
th

 percentile -

0.0001, 50
th

 percentile + 0.0001]). Population genotype sets within each bin are selected to start 

sampling. Samples are repeated 200 times with different sample sizes (25, 50, 100 and 500) and 

means (standard deviations) of sampling error (𝑀𝑆𝐸𝑃𝑆) are calculated. Double heterozygous 

genotypes from the samples are then unphased based on EM algorithm to investigate the 

haplotype frequency estimation error. The means and standard deviations for estimation errors 

(𝑀𝑆𝐸𝑆𝐸  and  𝑀𝑆𝐸𝑃𝐸) are also obtained. Four mean squared errors are specified to distinguish the 

source of estimation error: 1). EM estimation error between population haplotype and EM 

estimated haplotype for the population genotype setting (𝑀𝑆𝐸𝑃𝐸𝑝 ), 2). EM estimation error 

between sample haplotype and sample estimated haplotype frequency (𝑀𝑆𝐸𝑆𝐸𝑠), 3). sampling 
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error between population haplotype and sample haplotype frequency from genotype sample 

(𝑀𝑆𝐸𝑃𝑆) and 4). error between population haplotype and estimated haplotype frequency from 

genotype sample (𝑀𝑆𝐸𝑃𝐸𝑠). To avoid local maxima issue of EM algorithm, different initial 

values are used and we set the convergence criteria of 10−6 based on absolute change in log 

likelihood similar to that of program haplo.em in R package. 

 

3.6. Simulation results 

Analytical calculation of genotype frequency on the expectation step 

We plot the difference between true and estimated frequency for one of the double 

heterozygous genotype (𝑃𝐴𝐵|𝑎𝑏 − 𝑝 𝐴𝐵|𝑎𝑏 ) against [𝑘AB + 𝑘ab−𝑘Ab − 𝑘aB ] based on 10,000 

random HW deviation scenarios from equal and unequal haplotype frequency setting (Figures 

A1.1 and A1.2). There exist distinct areas according to the cubic discriminant (D) and the root 

identification from (3.3.2) or (3.3.3). The root (3.3.4) is not shown since the value is out of 

genotype boundary. For equal haplotype frequency setting, the theoretical maximum of the 

difference (𝑃𝐴𝐵|𝑎𝑏 − 𝑝 𝐴𝐵|𝑎𝑏 ) is 0.5 when 𝑃𝐴𝐵|𝑎𝑏  is its maximum as min 2𝑃𝐴𝐵 , 2𝑃𝑎𝑏  = 0.5 from 

the genotype bounds and 𝑝 𝐴𝐵|𝑎𝑏 = 0. When [𝑘AB + 𝑘ab−𝑘Ab − 𝑘aB ] is deviated from zero, the 

genotype has severe estimation error that would result in incorrect haplotype frequency 

estimations.  
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Genotype frequency estimation and HW deviations for double 

heterozygous genotypes 

A root for double heterozygous genotype estimation is shown to be a function of the 

unphased genotype frequencies in section 3.3. The relationship between the root and HW 

deviations for double heterozygous genotypes fixing haplotypes can also be explored by 

simulations. We can parameterize all coefficients of the third order polynomial in terms of 

haplotype frequencies and HW deviations of double heterozygous genotypes as: 

 𝑘AB = 𝑃𝐴𝐵|𝐴𝐵 +
1

2
 𝑃𝐴𝐵|𝐴𝑏 + 𝑃𝐴𝐵|𝑎𝐵 = 𝑃𝐴𝐵

2 + 𝐷𝐴𝐵|𝐴𝐵 +
1

2
 2𝑃𝐴𝐵𝑃𝐴𝑏 + 𝐷𝐴𝐵|𝐴𝑏  + 2𝑃𝐴𝐵𝑃𝑎𝐵 + 𝐷𝐴𝐵|𝑎𝐵 

= 𝑃𝐴𝐵
2 + 𝑃𝐴𝐵𝑃𝐴𝑏 + 𝑃𝐴𝐵𝑃𝑎𝐵 + 𝐷

𝐴𝐵|𝐴𝐵
+

1

2
 𝐷𝐴𝐵|𝐴𝑏  + 𝐷𝐴𝐵|𝑎𝐵 = 𝑃𝐴𝐵 1 − 𝑃𝑎𝑏 −

1

2
𝐷𝐴𝐵|𝑎𝑏 

 𝑘ab = 𝑃𝑎𝑏 1 − 𝑃𝐴𝐵 −
1

2
𝐷𝐴𝐵|𝑎𝑏,  𝑘Ab = 𝑃𝐴𝑏 1 − 𝑃𝑎𝐵 −

1

2
𝐷𝐴𝑏|𝑎𝐵,  𝑘aB = 𝑃𝑎𝐵 1 − 𝑃𝐴𝑏 −

1

2
𝐷𝐴𝑏|𝑎𝐵 

𝑃DH = 2𝑃𝐴𝐵𝑃𝑎𝑏 + 𝐷𝐴𝐵|𝑎𝑏  + 2𝑃𝐴𝑏𝑃𝑎𝐵 + 𝐷𝐴𝑏|𝑎𝐵 . 

Given that the sum of the two unphased double heterozygous genotype frequencies (𝑃DH ) is 

fixed and haplotype frequencies are known, then all coefficients of the third order polynomial are 

functions of haplotypes and the HW deviations corresponding to the root which is one of double 

heterozygous genotypes.  It is challenging to figure out the relationship between the genotype 

frequency estimation and the corresponding HW deviation analytically since the root itself has 

complicate form. However, we can investigate the relationship through simulation.  
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Since the true genotype frequency is determined by the sum of product of haplotype 

frequencies and corresponding haplotype level HW deviation, the amount of the genotypes 

increases as the corresponding HW deviation increases when haplotype frequencies are fixed. 

However, the genotype frequency decreases when the true genotype frequency increases under 

different levels of 𝑃DH  for equal and unequal haplotype frequency setting (Figure A1.3 and A1.4). 

This result also shows that the haplotype frequency estimation based on EM algorithm under 

HWE assumption could result in incorrect genotype frequency estimation at expectation step 

because of HW deviation.   

 

EM estimation error between population haplotype and EM estimated 

haplotype for the population genotype setting  

For equal haplotype frequency setting, the relationship between sum of double 

heterozygous genotypes in population and EM estimation error for population genotype 

(𝑀𝑆𝐸𝑃𝐸𝑝 ) is illustrated (Figure A1.5). Theoretical maximum 𝑀𝑆𝐸𝑃𝐸𝑝  is 0.0625 when two 

estimated haplotype frequencies are 0.5 and the other two are zero, i.e.  max 𝑀𝑆𝐸𝑃𝐸𝑝  =

(0.25−0.5)2+(0.25−0)2+(0.25−0)2+(0.25−0.5)2

4
= 0.0625. This error comes from incorrect estimation 

for double heterozygous genotype assuming HWE. Since one of double heterozygous genotype 

frequency is bounded above by 0.5, when the 𝑃DH  is larger than 0.5, 𝑀𝑆𝐸𝑃𝐸𝑝  could reach up to 

its theoretical maximum. For example, when the 𝑃DH  is 0.6 and 𝑘𝐴𝐵 = 𝑘𝑎𝐵 = 0, 𝑘𝑎𝑏 = 𝑘𝐴𝑏 =

0.2, 𝑃𝐴𝐵|𝑎𝑏 = 0.5 𝑎𝑛𝑑 𝑃𝐴𝑏|𝑎𝐵 = 0.1 , then population haplotype frequency is 𝑃𝐴𝐵 = 𝑘𝐴𝐵 +
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1

2
𝑃𝐴𝐵|𝑎𝑏 = 0.25, 𝑃𝑎𝐵 = 𝑘𝑎𝐵 +

1

2
𝑃𝐴𝑏|𝑎𝐵 = 0.25, 𝑃𝐴𝑏 = 𝑘𝐴𝑏 +

1

2
𝑃𝐴𝑏|𝑎𝐵 = 0.25, and 𝑃𝑎𝑏 = 𝑘𝑎𝑏 +

1

2
𝑃𝐴𝐵|𝑎𝑏 = 0.25. The maximum estimation error occurs when EM estimated haplotype frequency 

is 𝑝 𝐴𝐵 =  𝑝 𝑎𝑏 = 0 , 𝑎𝑛𝑑  𝑝 𝐴𝑏 =  𝑝 𝑎𝐵 = 0.5  from estimated genotype frequency   𝑝 𝐴𝐵|𝑎𝑏 = 0 

and  𝑝 𝐴𝑏|𝑎𝐵 = 0.6. When 𝑃DH  is less than 0.5, 𝑀𝑆𝐸𝑃𝐸𝑝  is bounded above because estimated 

haplotype frequency is always less than 0.5, and 𝑀𝑆𝐸𝑃𝐸𝑝  can be zero when EM estimated 

haplotype is evenly distributed, i.e. balanced cases.   

Unequal haplotype frequency setting has a more complicated pattern because of unequal 

haplotype frequency (Figure A1.9). Since there is a difference between the double heterozygous 

genotype frequencies in HWE, the bounds of the genotypes are also different and the interval of 

EM estimated genotype frequency is from zero to 𝑃DH . This means that the absolute differences 

of  |𝑃𝐴𝐵|𝑎𝑏 − 𝑝 𝐴𝐵|𝑎𝑏 | and |𝑃𝐴𝑏|𝑎𝐵 − 𝑝 𝐴𝑏|𝑎𝐵 | have different bounds resulting for different levels 

of 𝑀𝑆𝐸𝑃𝐸𝑝 . 

 

Sampling error vs. estimation error  

 Comparing 𝑀𝑆𝐸𝑃𝐸𝑠  and 𝑀𝑆𝐸𝑃𝑆   with 𝑀𝑆𝐸𝑆𝐸𝑠  at different levels of 𝑀𝑆𝐸𝑃𝐸𝑝  in our 

simulation study showed different results and it depends on the sum of double heterozygous 

genotypes ( 𝑃DH ).  When  𝑃DH  is low (1
st
, 5

th
, 10

th
 and 25

th
 percentiles), sampling error is 

dominant and similar to Fallin and Schork (2000) have found (Tables A2.1 and A2.2, Figures 

A1.6 and A1.10). However, when  𝑃DH   is relatively high, estimation error is at least comparable 

to sampling error (75, 90, 95 and 99 percentiles) (Figures A1.6 and A1.10). We find that 𝑀𝑆𝐸𝑆𝐸𝑠  
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can be more serious than 𝑀𝑆𝐸𝑃𝑆  at even small sample size (25) for larger than 50
th

 percentile of 

𝑃DH  for equal and unequal haplotype settings (Tables A2.1 and A2.2). The pattern of severe 

estimation error is clearer when we fix the sample size at 100 for equal and unequal haplotype 

settings (Figures A1.7 and A1.11). When  𝑀𝑆𝐸𝑃𝐸𝑝  increases, 𝑀𝑆𝐸𝑆𝐸𝑠  and 𝑀𝑆𝐸𝑃𝐸𝑠  also increase 

whereas 𝑀𝑆𝐸𝑃𝑆  is consistent even though the standard deviations of  𝑀𝑆𝐸𝑃𝐸𝑠  and 𝑀𝑆𝐸𝑆𝐸𝑠   are 

larger than the standard deviations of  𝑀𝑆𝐸𝑃𝑆 . The sampling error is shown to converge to zero 

as the sample size increases. The estimation error 𝑀𝑆𝐸𝑃𝐸𝑠  converges to the true estimation error 

𝑀𝑆𝐸𝑃𝐸𝑝  with increasing sample size. One should be careful to estimate haplotype frequencies 

via EM algorithm when the true genotypes are deviated from HWE.   

 The sum of double heterozygous genotype frequencies can be a measure of missing phase 

information since single or homozygous genotypes can be phased without error. It is found that 

the estimation error depends on the sum of double heterozygous genotypes (Figures A1.5 and 

A1.9). When the sum of double heterozygous genotype frequencies is fixed, the estimation error 

varies according to the actual genotype setting. Heterozygosity might not reflect the information 

because it includes single heterozygous genotype frequencies which can be phased without any 

estimation process. It is obvious that the genotype setting with excessive homozygosity as close 

to one has relatively small estimation error since it has small amount of double heterozygous 

genotypes. However, it doesn’t guarantee that increased homozygosity (same as decreased 

heterozygosity) has always decreased estimation error and increased heterozygosity (same as 

decreased homozygosity) has always increased estimation error (Figures A1.8 and A1.12).  
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Chapter 4 

HWD-ECM: a proposed method for haplotype and 

HW deviation joint estimation 

4.1. HWD-ECM approach for haplotype frequency and HW deviation 

parameter estimation 

We studied the impact of HW deviation on EM-based haplotype frequency estimation in 

chapter 3. In this chapter, we propose a new method which incorporates HW deviation 

parameters into the haplotype frequency estimation process. The proposed Hardy-Weinberg 

Deviation-Expectation/Conditional Maximization (HWD-ECM) method enables to estimate 

haplotype frequencies and HW deviations simultaneously.  

When the genotype frequencies are not in HWE, HW deviation parameters have to be 

incorporated for genotype frequencies and the complete log likelihood is modified: 

log 𝐿𝑐 =  𝑛𝑘𝑙 log 𝑃(𝑕𝑘𝑕𝑙) 

(𝑘,𝑙)∈𝑕

 

=   𝑛𝑡𝑡 log 𝑃𝑡
2 + 𝑑𝑡𝑡 +  𝑛𝑡𝑖 log 2𝑃𝑡𝑃𝑖 + 𝑑𝑡𝑖 𝑖=1,𝑖≠𝑡  𝑕

𝑡=1 . 

The traditional EM approach does not allow HW deviation parameters to be estimated. It 

is also not attractive to use the EM algorithm when adding HW deviation parameters since its 

maximization step will be too complicated. The HWD-ECM approach can resolve this problem 
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by using two conditional maximization steps rather than a single maximization step. The 

following diagram summarizes the whole process. 

 

4.1.1. Expectation step allowing for HW deviations  

 The expectation step of the HWD-ECM approach is constructed by modifying the 

expectation step of EM-based haplotype frequency estimation adding HW deviation parameters:  

 𝑃 (𝑕𝑘𝑕𝑙)
(𝑔) =

𝑛𝑗

𝑛

𝑃(𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑕𝑘𝑕𝑙  𝑖𝑛 𝑝𝑕𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑗) 

𝑃(𝑝𝑕𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑗)
=

𝑛𝑗

𝑛

𝑃𝑗 (𝑕𝑘𝑕𝑙)
(𝑔) 

𝑃𝑗
(𝑔)

,  

where 𝑃𝑗 (𝑕𝑘𝑕𝑙)
(𝑔) =  

(𝑝𝑘
 𝑔 

)2 + 𝑑𝑘𝑘
 𝑔 

,   𝑖𝑓 𝑘 = 𝑙,

2𝑝𝑘
 𝑔 

𝑝𝑙
 𝑔 

+ 𝑑𝑘𝑙
 𝑔 

,   𝑖𝑓 𝑘 = 𝑙.
  

 Like EM-based haplotype frequency estimation, the initial values of haplotype frequency 

and HW deviations will be needed to start the HWD-ECM algorithm. Even though the initial 

haplotypes can be randomly chosen, the HW deviations should be selected within the boundaries 

E step for 

genotype 

frequency 

estimation 

CM step for HW 

deviation estimation 
CM step for 

haplotype estimation 

 

Initial values for 

haplotypes and 

HW deviations 

Iterating until converge  
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from the initial haplotypes considering the constraints of HW deviations. For simplicity, zero 

HW deviations (HWE) are used as initial haplotype frequencies. 

  

4.1.2. Conditional maximization step for HW deviation parameter 

estimation 

 To obtain the maximum likelihood estimation of HW deviation parameters, score 

functions which are partial derivatives with respect to each HW deviation parameter are used 

conditioning on other parameters. Since the sum of HW deviation parameter values should be 

zero, it is necessary to solve the differential equation with this constraint. Lagrange multiplier 

𝜆𝐻𝑊𝐷  can be used to find the maximum likelihood estimates of HW deviation parameters subject 

to the constraint. When we take a partial derivative with respect to 𝑑𝑖𝑗 , 

𝜕log⁡(𝐿𝑐)

𝜕𝑑𝑖𝑗
+ 𝜆𝐻𝑊𝐷 ⟹

 
 

 
𝑛𝑖𝑖

𝑝𝑖𝑖
2 + 𝑑𝑖𝑖

+ 𝜆𝐻𝑊𝐷 = 0,   𝑖𝑓 𝑖 = 𝑗,

𝑛𝑖𝑗

2𝑝𝑖𝑝𝑗 + 𝑑𝑖𝑗
+ 𝜆𝐻𝑊𝐷 = 0,   𝑖𝑓 𝑖 ≠ 𝑗

  

Since    𝑑𝑖𝑗
𝑕
𝑗=1,𝑖≠𝑗

𝑕
𝑖=1 = 0, the Lagrange multiplier 𝜆𝐻𝑊𝐷  can be analytically obtained by 

simple algebraic procedures as –n which is negative of total number of individuals in the sample.  

The (g+1) 
th

 iteration of HW deviation estimates conditioning on the above Lagrange multiplier 

and the g 
th

 iteration of haplotype frequency estimates can be written as 

𝑑𝑖𝑖
(𝑔+1)

=
𝑛𝑖𝑖

𝑛
− (𝑝𝑖

 𝑔 
)2, 𝑖𝑓 𝑖 = 𝑗, 

                                                           𝑑𝑖𝑗
(𝑔+1)

=
𝑛𝑖𝑗

𝑛
− 2𝑝𝑖

 𝑔 
𝑝𝑗
 𝑔 

, 𝑖𝑓 𝑖 ≠ 𝑗.                           (4.1.2) 
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  Besides the Lagrange multiplier 𝜆𝐻𝑊𝐷 , the additional constraints of HW deviation related 

to each haplotype should be considered. For two SNPs scenarios, based on the constraints of 

haplotype level HW deviations, we can reduce the four HW deviation parameters in terms of six 

haplotype level HW deviations obtained by (4.1.2). For example, four HW deviations including 

one of double heterozygous genotypes can be calculated by remaining six HW deviations.  It is 

important to determine which four should be selected out of ten HW deviation parameters. Since 

the constraints can be treated as equations of four unknown variables (HW deviations), one HW 

deviation parameter of each equation can be solved in terms of other parameters. Since HW 

deviation parameters of single or double heterozygous genotypes exist simultaneously in two 

different equations, particular settings of four HW deviations need be chosen. We select 

𝐷1|2, 𝐷1|4 , 𝐷2|2  𝑎𝑛𝑑 𝐷3|3 , where 1: 𝐴𝐵, 2: 𝐴𝑏, 3: 𝑎𝐵, 𝑎𝑛𝑑 4: 𝑎𝑏. Base on haplotype level HW 

deviation constraints, we can substitute 𝐷1|2, 𝐷1|4 , 𝐷2|2 𝑎𝑛𝑑 𝐷3|3 in terms of other six HW 

deviations: 

𝐷1|4 = −2𝐷4|4 − 𝐷2|4 − 𝐷3|4 

𝐷1|2 = −2𝐷1|1 − 𝐷1|4 − 𝐷3|4 

𝐷2|2 = −
1

2
(𝐷1|2 + 𝐷1|4 + 𝐷1|3) 

𝐷3|3 = −
1

2
(𝐷1|3 + 𝐷2|3 + 𝐷3|4) 

 

In addition to the constraint of haplotype level HW deviation, we can exploit SNP level 

HW deviation information based on Theorem 3.1. We substitute one double heterozygous 

genotype using SNP level HW deviations and other haplotype level HW deviations. To 

summarize the process for two SNPs scenario, we illustrated this CM step using a simple 

diagram labeling haplotypes AB, aB, Ab and ab as 1, 2, 3 and 4 respectively: 
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4.1.3. Conditional maximization step for haplotype frequency estimation 

The conditional maximization step for t 
th

 haplotype frequency of (g+1) 
th

 iteration was 

obtained in a similar way as the maximization step of EM-based haplotype frequency estimation: 

𝑝𝑡
(𝑔+1) =  𝑃(𝑕𝑡𝑕𝑡)(𝑔) +

1

2
  𝑃(𝑕𝑡𝑕𝑖)

(𝑔)

𝑕

𝑖=1,𝑖≠𝑡

. 

This process updates genotype frequency by the product of haplotype frequency and 

corresponding HW deviation estimates from the previous iteration.  Since the configurations of 

haplotypes in single or homozygous genotypes are already determined, only multiple 

heterozygous genotypes need to be updated by the expectation step (e.g. double heterozygous 

genotypes for two SNPs scenarios).  

 

4.2. Simulation settings 

𝐷3|4 

𝐷2|4 

𝐷1|3 

𝐷1|1 

𝐷4|4 

 

𝐷2|3 = 𝐷1|1 + 𝐷4|4 − 𝐷𝐵𝐵 − 𝐷𝑎𝑎  

𝐷1|1 

 

Solved by formula 4.1.2 

𝐷1|4 = −2𝐷4|4 − 𝐷2|4 −𝐷3|4 

𝐷1|2 = −2𝐷1|1 − 𝐷1|4 − 𝐷3|4 

𝐷2|2 = −
1

2
(𝐷1|2 + 𝐷1|4 + 𝐷1|3) 

𝐷3|3 = −
1

2
(𝐷1|3 + 𝐷2|3 + 𝐷3|4) 

 

 

 

 

Haplotype level HWD constraints 

Add SNP level HW deviations information 
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One technical issue of allowing HW deviations at the expectation step is that it is possible 

to have the sum of haplotype frequency product and HW deviation being negative at certain 

iteration. It can cause incorrect phasing for multiple heterozygous genotypes since negative 

genotype frequency is not allowed. The problem can be avoided by forcing the negative values to 

be zero.  The estimated genotype frequencies are then sent to the conditional maximization steps. 

Based on one expectation step and two conditional maximization steps, when we insert 

one initial haplotype frequency set and zero HW deviations, it converges under the criteria 

of 10−6 based on absolute change in log likelihood. To investigate the convergence on different 

initial haplotype frequency, 5000 random initial haplotypes were used in the HWD-ECM 

algorithm for 50 randomly selected genotype settings each for equal and unequal haplotype 

frequency settings. The means (standard deviations) of 𝑀𝑆𝐸𝑃𝐸𝑝 s from HWD-ECM method were 

compared with 𝑀𝑆𝐸𝑃𝐸𝑝  based on EM method. 

To investigate the performance of different numbers of initial haplotypes for HWD-ECM, 

25, 50, 100 and 200 random initial haplotypes were studied with 20 replicates. For 50 random 

genotype sets each from equal and unequal haplotype setting, we plot 𝑀𝑆𝐸𝑃𝐸𝑝 s to check the 

performance of HWD-ECM compared with EM method.  We illustrate the process by following 

diagram. 
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  To further illustrate the possible improvement of our method, we select five genotype 

settings where 𝑀𝑆𝐸𝑃𝐸𝑝>0.01 based on EM algorithm for each equal and unequal haplotype 

frequency setting. Sampling procedure is similar to that in section 3.5. For each of the five 

genotypes, samples are repeated 50 times with different sample sizes (50, 100 and 500) and 

estimation errors (𝑀𝑆𝐸𝑆𝐸𝑠) from HWD-ECM algorithm are compared to estimation errors from 

EM algorithm. 

 

4.3. Simulation results 

 Based on 𝑀𝑆𝐸𝑃𝐸𝑝  from 50 randomly selected genotype sets of equal and unequal 

haplotype frequency setting, HWD-ECM algorithm performs better than EM algorithm (Figure 

Equal haplotype frequency / 

Unequal haplotype frequency 

50 random genotype sets 

HWD-ECM algorithm 

         20        50      100      200    

 initial haplotype settings with 20 replicates 

repeated) 

          average haplotype and genotype estimates 
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A1.13 and A1.15). We obtain averages of 5000 𝑀𝑆𝐸𝑃𝐸𝑝 s with standard deviations according to 

5000 initial haplotypes. For equal haplotype frequency setting, HWD-ECM performs 

significantly better than EM algorithm where 𝑀𝑆𝐸𝑃𝐸𝑝 > 0.01. In average, 0.01 level of MSE 

represents absolute difference of true and estimated haplotype of 0.1 based on MSE calculation. 

For low level of 𝑀𝑆𝐸𝑃𝐸𝑝  (<0.0001), the absolute difference of true and estimated haplotype is 

about 0.01. HWD-ECM may perform worse than EM algorithm for low level of 𝑀𝑆𝐸𝑃𝐸𝑝 . 

However, the absolute difference might be acceptable. For example, 𝑀𝑆𝐸𝑃𝐸𝑝  of EM algorithm is 

0.0000001 and 𝑀𝑆𝐸𝑃𝐸𝑝  of HWD-ECM is 0.0001. The absolute difference is 0.0001 from the EM 

algorithm and 0.01 from HWD-ECM algorithm even though EM algorithm performed 10000 

times better than HWD-ECM in term of MSE. Therefore, we should have more attention to high 

level of 𝑀𝑆𝐸𝑃𝐸𝑝 . The performance of HWD-ECM for unequal haplotype frequency setting is 

similar.   

 There is no large difference among 25, 50 and 100 initial numbers (Figure A1.14 and 

A1.16). As EM 𝑀𝑆𝐸𝑃𝐸𝑝  increases, HWD-ECM performs well for different number of initial 

haplotypes. We use 100 initial haplotypes for HWD-ECM to make sure stable estimates. For 750 

samples (5 genotype setting × 3 different sample size × 50 replicates) each from equal and 

unequal haplotype settings, we confirm that HWD-ECM performs better than EM algorithm 

using two ratios of estimation errors (EM estimation error/ HWD-EDM estimation error,  HWD-

ECM estimation error/ EM estimation error) (Figure A1.17 and A1.18). Four cases from HWD-

ECM are worse than EM algorithm for equal haplotype frequency setting and a single case for 

unequal haplotype frequency setting. Since the levels of estimation error are relatively low, the 

performances of EM and HWD-ECM are similar. 
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4.4. Extension to multiple SNPs scenarios 

The HWD-ECM approach for two SNPs scenarios can be extended to multiple SNPs 

scenarios. It requires sequential steps to estimate multiple heterozygous genotype frequencies. 

As the current HWD-ECM approach for two SNPs scenarios can estimate two double 

heterozygous genotypes, conditioning on alleles of other SNPs enables us to estimate each two 

double heterozygous genotypes by constructing multiple two SNPs sets within a multiple SNPs 

scenarios. 

When the number of SNPs is k, the number of haplotypes is 2𝑘 . The genotype can be 

summarized as either ordered genotypes which consider the order of two constituent haplotypes 

or the unordered genotypes without considering the order, so the total number of the ordered 

genotypes is 22𝑘  and the total number of the unordered genotypes is  
2𝑘 (2𝑘+1)

2
. From now on, we 

consider the unordered genotypes only. Furthermore, the number of homozygous genotypes is 

same as the number of haplotypes (2𝑘) and the number of unordered heterozygous genotypes 

is 
2𝑘(2𝑘+1)

2
− 2𝑘 =

2𝑘(2𝑘−1)

2
.  The number of m-tuple unordered heterozygous genotypes 

is  𝑘
𝑚
 2𝑘−1, where 0 < 𝑚 ≤ 𝑘. 

An illustrative example: three SNPs scenarios   

We denote H as homozygous genotype, S as single heterozygous genotype, D as double 

heterozygous genotype and T as triple heterozygous genotype. For a three SNPs scenario, we 

have 8 Hs, 12 Ss, 12 Ds and 4 Ts. All possible genotype features of three SNPs scenarios are 

illustrated (Figure A1.19). When we relabel haplotype "ABC", "aBC", "AbC", "abC", "ABc", 
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"aBc", "Abc" and "abc" as 1 to 8, each genotype can be identified as one pair of the numbers, e.g. 

ABC|AbC by S13.  

By conditioning on a particular allele for each SNP one by one, there are six sets of two 

SNPs scenarios (Figure A1.20). When the HWD-ECM approach is applied to each set, all double 

heterozygous genotypes can be phased.  The sum of all genotype frequencies of each set can then 

be multiplied by the estimated double heterozygous genotype frequencies to obtain joint 

probability. 

To derive the triple heterozygous genotype frequencies, we merge the genotypes 

according to each SNP. There are three sets of two SNPs scenarios (Figure A1.21). For the first 

SNP, unphased genotype frequency is 

 𝑃𝐵𝐶|𝑏𝑐 + 𝑃𝐵𝑐|𝑏𝐶 = 𝐷17 + 𝑇18 + 𝑇27 + 𝐷28 + 𝐷35 + 𝑇36 + 𝑇45 + 𝐷46 by merging “A” or 

“a” for first SNP. The unphased genotype can be phased into 

 𝑃𝐵𝐶|𝑏𝑐 = 𝐷17 + 𝑇18 + 𝑇27 + 𝐷28, 𝑃𝐵𝑐|𝑏𝐶 = 𝐷35 + 𝑇36 + 𝑇45 + 𝐷46  

For the second SNP,  

𝑃𝐴𝐶|𝑎𝑐 + 𝑃𝐴𝑐|𝑎𝐶 = 𝐷16 + 𝑇18 + 𝑇36 + 𝐷38 + 𝐷25 + 𝑇27 + 𝑇45 + 𝐷47 by merging “B” or “b” 

can be phased into  

𝑃𝐴𝐶|𝑎𝑐 = 𝐷16 + 𝑇18 + 𝑇36 + 𝐷38, 𝑃𝐴𝑐|𝑎𝐶 = 𝐷25 + 𝑇27 + 𝑇45 + 𝐷47  

For the third SNP,  

𝑃𝐴𝐵|𝑎𝑏 + 𝑃𝐴𝑏|𝑎𝐵 = 𝐷14 + 𝑇18 + 𝑇45 + 𝐷58 + 𝐷23 + 𝑇27 + 𝑇36 + 𝐷67 by merging “C” or “c” 

can be phased into 

              𝑃𝐴𝐵|𝑎𝑏 = 𝐷14 + 𝑇18 + 𝑇45 + 𝐷58, 𝑃𝐴𝑏|𝑎𝐵 = 𝐷23 + 𝑇27 + 𝑇36 + 𝐷67  

Then we can set up a system of equations for triple heterozygous genotypes: 
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𝑇18 + 𝑇27 = 𝑃𝐵𝐶|𝑏𝑐 − (𝐷17 + 𝐷28), 

𝑇36 + 𝑇45 = 𝑃𝐵𝑐|𝑏𝐶 − (𝐷36 + 𝐷46), 

𝑇18 + 𝑇36 = 𝑃𝐴𝐶|𝑎𝑐 − (𝐷16 + 𝐷38), 

𝑇27 + 𝑇45 = 𝑃𝐴𝑐|𝑎𝐶 − (𝐷25 + 𝐷47), 

𝑇18 + 𝑇45 = 𝑃𝐴𝐵|𝑎𝑏 − (𝐷14 + 𝐷58), 

𝑇27 + 𝑇36 = 𝑃𝐴𝑏|𝑎𝐵 − (𝐷23 + 𝐷67), 

and T18+T27+T36+T45=P(sum of triple heterozygous genotypes). 

We can obtain phased triple heterozygous genotype frequencies by solving the above system of 

equations. For three SNPs scenario, we need to run six HWD-ECM algorithm runs for double 

heterozygous genotypes and three HWD-ECM runs for triple heterozygous genotypes. In total, 

we need nine runs of HWD-ECM algorithm to solve a three SNPs scenario. 
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Chapter 5 

Discussion 

The Expectation Maximization (EM) algorithm is widely used in haplotype phasing and 

frequency estimation. When Hardy-Weinberg (HW) equilibrium assumption is violated, the 

estimation errors for haplotype and genotype frequency can be severe. This estimation error also 

impacts the downstream genetic analysis, e.g. case-control risk analysis based on estimated 

haplotypes. 

Our simulations show that the EM algorithm can result in more severe estimation error 

than sampling error for haplotypes and genotypes. With increasing sample size, the estimation 

error (𝑀𝑆𝐸𝑆𝐸) converges to its true estimation error (𝑀𝑆𝐸𝑃𝐸𝑝 ) because of the existence of 

haplotype level HW deviations. The increased homozygosity (same as decreased heterozygosity) 

does not guarantee decreased estimation error and increased heterozygosity (same as decreased 

homozygosity) does not always increase estimation error. The estimation errors are related to 

incorrect estimation of multiple heterozygous genotypes frequencies (double heterozygous 

genotypes in two SNPs cases) since the EM expectation step assumes HWE.  

SNP level HW deviations are not very useful for the investigation of multiple loci 

genotype frequency estimation space because the variation of genotype frequencies is directly 

produced by haplotype level HW deviations. Based on Theorem 3.1, haplotype level HW 

deviation can be severe when all SNP level HW deviations are zero (Corollary 3.1 and 3.2). 
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Therefore, haplotype frequency estimation error should be explored in terms of haplotype level 

HW deviation and cover the full range of genotype frequency space. 

To modify the incorrect HWE assumption in EM algorithm, we developed a HWD-ECM 

algorithm to estimate haplotype frequencies as well as HW deviation parameters. Simulation 

results show that the HWD-ECM method performs significantly better than the EM-based 

approach in haplotype estimation when HWE assumption is violated.  

Limitations and future work 

Ideally, we would want a single execution of HWD-ECM algorithm to converge to true 

haplotype frequencies and HW deviations. However, because of the identifiable issue of our 

parameterization of HW deviations and haplotype frequencies, the results depend on the initial 

haplotypes. By incorporating SNP level HW deviation, we narrow down the parameter space and 

improve the estimation. We provide a workable solution by averaging haplotype frequency 

estimates from multiple initial haplotype values. The results are significantly better than those 

from EM algorithm. There are several other limitations on the HWD-ECM algorithm. 

First, the computational issue of running HWD-ECM appears with multiple initials and 

multiple SNPs scenario. The more initial haplotypes, the more computing will be needed. There 

is no dramatic difference among 25, 50, 100 and 200 initials (Figure A1.14, A1.16). We 

recommend using 100 initial haplotypes to make sure the results are stable. The computational 

burden can also be severe for multiple SNPs scenarios. Even for three SNPs scenario, we need to 

run HWD-ECM algorithm nine times. For multiple SNPs scenario, one way to relieve 

computational burden is to develop a fast algorithm such as Partition-Ligation approach (Qin et 
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al. 2002). If we can obtain partitioned haplotype frequencies and HW deviations by parallel 

calculations, then much of computational time would be saved. 

Second, we need to consider additional information (constraint) about haplotype level 

HW deviations. We did not obtain unique solution set which are true haplotypes and HW 

deviations via Theorem 3.1 and the constraints of SNP and haplotype level HW deviations. In 

other words, there are too many parameters to be estimated. When we fix single haplotype level 

HW deviation value, the algorithm has no issue of initial haplotypes and unique solution. 

Furthermore, when we fix the haplotype level HW deviation at true value, it converges to true 

haplotypes and HW deviations with zero estimation error. It is worthwhile to explore additional 

information of SNP level or haplotype level HW deviation. One approach is to develop a model 

selection procedure, step-be-step, reducing the number of parameters needs to be established. 

Third, we did not investigate analytic solutions of the differential equation. We obtained 

four HW deviation parameters by calculating the other six HW deviations rather than by 

substituting four HW deviation parameters in terms of other six HW deviations in the differential 

equation. There are advantages of using substitution as it does not require incorporation of the 

Lagrange multiplier 𝜆𝐻𝑊𝐷 . However, one possible issue of the substitution approach is that 

multiple roots can occur in the process of solving the differential equations. Even though the 

multiple roots issue can be solved by several methods (Barnett 1966; Small et al. 2000), they 

were all based on the existence of unique and consistent estimator under regularity conditions. 

However, those methods may not applicable because haplotype frequency and HW deviation 

parameter following a multinomial distribution violates the one of regularity conditions. In other 

words, the haplotype frequency and HW deviation parameters are non-identifiable since the 
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different combinations of haplotype and HW deviation can produce same genotype frequency 

which causes the same likelihood.    

Satten and Epstein (2004) attempted to estimate haplotype frequencies, single common 

fixation index (F) parameter and relative risk parameters simultaneously in their case control 

study. However, it is not practical to use single fixation index (F). The impact of HW deviation 

on relative risk estimation in case control studies should be investigated. We will modify the 

HWD-ECM approach to allow estimation of haplotype frequency and HW deviation parameters, 

and relative risk parameters simultaneously for case control studies. 

We did not compare with Bayesian approaches, which would be useful to guide 

practitioner in choosing the most appropriate haplotype estimation programs for their research. 
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Figure 1. Difference between true and estimated frequency of one of double heterozygous 

(𝑃𝐴𝐵|𝑎𝑏 ) according to 𝑘AB + 𝑘ab−𝑘Ab − 𝑘aB  for equal haplotype frequency setting (0.25, 0.25, 

0.25, 0.25) 
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Figure A1. 2. Difference between true and estimated frequency of one of double heterozygous 

(𝑃𝐴𝐵|𝑎𝑏 ) according to 𝑘AB + 𝑘ab−𝑘Ab − 𝑘aB  for unequal haplotype frequency setting (0.1, 0.2, 

0.3, 0.4) 
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Figure A1. 3. EM estimated vs.  true genotype frequency of one of double (𝑃𝐴𝐵|𝑎𝑏 ) for 

different levels of sum of double heterozygous genotypes for equal haplotype frequency 

setting (0.25, 0.25, 0.25, 0.25) 
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Figure A1. 4. EM estimated vs.  true genotype frequency of one of double (𝑃𝐴𝐵|𝑎𝑏 ) for 

different levels of sum of double heterozygous genotypes for unequal haplotype frequency 

setting (0.1, 0.2, 0.3, 0.4) 
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Figure A1. 5. Mean squared error of haplotype and genotype estimation by sum of double heterozygous genotype frequencies for 

equal haplotype frequency setting (100,000 population genotypes) 
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Figure A1. 6. Average mean squared errors at different percentiles of sum of double heterozygous genotype frequencies for equal 

haplotype frequency setting (sample size: 25, 50, 100, 200, replicates: 200 each) 
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Figure A1. 6. (continued) Average mean squared errors at different percentiles of sum of double heterozygous genotype frequencies 

for equal haplotype frequency setting  (sample size: 25, 50, 100, 200, replicates: 200 each) 
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Figure A1. 6. (continued) Average mean squared errors at different percentiles of sum of double heterozygous genotype frequencies 

for equal haplotype frequency setting  (sample size: 25, 50, 100, 200, replicates: 200 each) 

 
Note: 50

th
 percentile of sum of double heterozygous genotypes: 0.180454 

          75
th

 percentile of sum of double heterozygous genotypes: 0.380338 

0.000 0.001 0.002 0.003 0.004

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Total error at 50
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
E

s

0.000 0.001 0.002 0.003 0.004

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Sampling error at 50
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
S

n:25

n:50

n:100

n:500

0.000 0.001 0.002 0.003 0.004

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Estimation error at 50
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.S
E

s

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

Total error at 75
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
E

s

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
Sampling error at 75

th
 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
S

n:25

n:50

n:100

n:500

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

Estimation error at 75
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.S
E

s



57 

 

Figure A1. 6. (continued) Average mean squared errors at different percentiles of sum of double heterozygous genotype frequencies 

for equal haplotype frequency setting  (sample size: 25, 50, 100, 200, replicates: 200 each) 
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Figure A1. 6. (continued) Average mean squared errors at different percentiles of sum of double heterozygous genotype frequencies 

for equal haplotype frequency setting  (sample size: 25, 50, 100, 200, replicates: 200 each) 
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Figure A1. 7. Averages ± Standard deviations of mean squared errors against MSEPEp at sample size 100 for equal haplotype 

frequency setting  
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Figure A1. 8. Mean squared error of estimation for haplotype or genotype against heteozygosity for equal frequency setting (100,000 

population genotypes) 
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Figure A1. 9. Mean squared error of haplotype and genotype estimation for by sum of double heterozygous genotype frequencies for 

unequal haplotype frequency setting (100,000 population genotypes) 
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Figure A1. 10. Average mean squared errors at different percentiles of sum of double heterozygous genotype frequencies for unequal 

haplotype frequency setting (sample size: 25, 50, 100, 200, replicates: 200 each) 
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Figure A1. 10. (continued) Average mean squared errors at different percentiles of sum of double heterozygous genotype frequencies 

for unequal haplotype frequency setting  (sample size: 25, 50, 100, 200, replicates: 200 each) 

 

 

Note: 10
th

 percentile of sum of double heterozygous genotypes: 0.035951 

          25
th

 percentile of sum of double heterozygous genotypes: 0.078705 

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Total error at 10
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
E

s

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012
0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Sampling error at 10
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
S

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Estimation error at 10
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.S
E

s

n:25

n:50

n:100

n:500

0e+00 2e-04 4e-04 6e-04 8e-04

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Total error at 25
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
E

s

0e+00 2e-04 4e-04 6e-04 8e-04

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Sampling error at 25
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
S

0e+00 2e-04 4e-04 6e-04 8e-04

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Estimation error at 25
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.S
E

s

n:25

n:50

n:100

n:500



64 

 

Figure A1. 10. (continued) Average mean squared errors at different percentiles of sum of double heterozygous genotype frequencies 

for unequal haplotype frequency setting  (sample size: 25, 50, 100, 200, replicates: 200 each) 
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Figure A1. 10. (continued) Average mean squared errors at different percentiles of sum of double heterozygous genotype frequencies 

for unequal haplotype frequency setting  (sample size: 25, 50, 100, 200, replicates: 200 each) 

 

Note: 90
th

 percentile of sum of double heterozygous genotypes: 0.366842 

          95
th

 percentile of sum of double heterozygous genotypes: 0.421101 

0.005 0.010 0.015 0.020 0.025 0.030

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6

Total error at 90
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
E

s

0.005 0.010 0.015 0.020 0.025 0.030

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6

Sampling error at 90
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
S

n:25

n:50

n:100

n:500

0.005 0.010 0.015 0.020 0.025 0.030

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6

Estimation error at 90
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.S
E

s

0.010 0.015 0.020 0.025 0.030 0.035

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6

Total error at 95
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
E

s

0.010 0.015 0.020 0.025 0.030 0.035

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6
Sampling error at 95

th
 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.P
S

n:25

n:50

n:100

n:500

0.010 0.015 0.020 0.025 0.030 0.035

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6

Estimation error at 95
th

 percentile of PDH

MSE.PEp

a
v
g
.M

S
E

.S
E

s



66 

 

Figure A1. 10. (continued) Average mean squared errors at different percentiles of sum of double heterozygous genotype frequencies 

for unequal haplotype frequency setting  (sample size: 25, 50, 100, 200, replicates: 200 each) 

 

Note: 99
th

 percentile of sum of double heterozygous genotypes: 0.509127 
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Figure A1. 11. Averages ± Standard deviations of mean squared errors against MSEPEp at sample size 100 for unequal haplotype 

frequency setting  
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Figure A1. 12. Mean squared error of estimation for haplotype or genotype against heteozygosity for unequal frequency setting 

(100,000 population genotypes) 
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Figure A1. 13. Averages ± Standard deviations of MSE.PEp from HWD-ECM against 

MSE.PEp from EM algorithm with 5000 initial haplotypes for 50 randomly selected genotype 

sets of equal haplotype frequency setting 
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Figure A1. 14. Scatter plot of average HWD-ECM MSE.PEp s sorted according to EM MSE.PEp from 25, 50, 100 and 200 initial 

haplotypes for 50 randomly selected genotype sets with equal population haplotype frequency setting 
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Figure A1. 14. (Continued) Scatter plot of average HWD-ECM MSE.PEp s sorted according to EM MSE.PEp from 25, 50, 100 and 

200 initial haplotypes for 50 randomly selected genotype sets with equal population haplotype frequency setting 
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Figure A1. 15. Average ± Standard deviation of MSE.PEp from HWD-ECM against 

MSE.PEp from EM algorithm with 5000 initial haplotypes for 50 randomly selected genotype 

sets of unequal haplotype frequency setting (0.1, 0.2, 0.3, 0.4) 
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Figure A1. 16. Scatter plot of average HWD-ECM MSE.PEp s sorted according to EM MSE.PEp from 25, 50, 100 and 200 initial 

haplotypes for 50 randomly selected genotype sets with unequal population haplotype frequency setting 
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Figure A1. 16. (Continued) Scatter plot of average HWD-ECM MSE.PEp s sorted according to EM MSE.PEp from 25, 50, 100 and 

200 initial haplotypes for 50 randomly selected genotype sets with unequal population haplotype frequency setting 
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Figure A1. 17. Comparison of HWD-ECM MSE.SE from against EM MSE.SE for five genotype settings with different levels of 

MSE.PEp for equal haplotype frequency setting (left: (EM MSE.SE)/ (HWD-ECM MSE.SE) vs. MSE.SE from EM, right: (HWD-

ECM MSE.SE) / (HWD-ECM MSE.SE) 

 

 
 

Note: sample size: 50, 100, 500 (50 replicates each) 
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Figure A1. 18. Comparison of HWD-ECM MSE.SE from against EM MSE.SE for five genotype settings with different levels of 

MSE.PEp for equal haplotype frequency setting (left: (EM MSE.SE)/ (HWD-ECM MSE.SE) vs. MSE.SE from EM, right: (HWD-

ECM MSE.SE) / (HWD-ECM MSE.SE) 

 
 

Note: sample size: 50, 100, 500 (50 replicates each) 
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Figure A1. 19. All possible genotype features of 3 SNPs 
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H: homozygous genotype 

S: single heterozygous genotype 

D: double heterozygous genotype 

T: triple heterozygous genotype

 "ABC"              "aBC"          "AbC"            "abC"           "ABc"        "aBc"           "Abc"              "abc" 

"ABC" H11 S12 S13 D14 S15 D16 D17 T18 

"aBC"  H22 D23 S24 D25 S26 T27 D28 

"AbC"   H33 S34 D35 T36 S37 D38 

"abC"    H44 T45 D46 D47 S48 

"ABc"     H55 S56 S57 D58 

"aBc"      H66 D67 S68 

"Abc"       H77 S78 

"abc"        H88 
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Figure A1. 20.  Genotype features by fixing particular allele for each SNP 
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5. Fixing “C” for third SNP, 
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"ABC" H11 S12 S13 D14 

"aBC"  H22 D23 S24 

"AbC"   H33 S34 

"abC"    H44 

 

 

 

 

 

 

 

 

 

 

 

2. Fixing “a” for first SNP, 

 "aBC"              "abC"            "aBc"        "abc"              

"aBC"              H22 S24 S26 D28 

"abC"             H44 D46 S48 

"aBc"          H66 S68 

"abc"                 H88 

 

4. Fixing “b” for second SNP, 

 "AbC"              "abC"          "Abc"        "abc"           

"AbC"              H33 S34 S37 D38 

"abC"           H44 D47 S48 

"Abc"          H77 S78 

"abc"              H88 

 

6. Fixing “c” for third SNP, 

 "ABc"        "aBc"           "Abc"              "abc" 

"ABc" H55 S56 S57 D58 

"aBc"  H66 D67 S68 

"Abc"   H77 S78 

"abc"    H88 

 



79 

 

 

 

Figure A1. 21.  Genotype features by merging genotypes according to each SNP 

 

1. Merging  “A” or “a” for first SNP, 

 "BC"              "bC"            "Bc"        "bc"              

"BC"              H11+S12+H22 S13+D14+D23+S24 S15+D16+D25+S26 D17+T18+ T27+D28 

"bC"             H33+S34+H44 D35+T36+ T45+D46 S37+D38+D47+S48 

"Bc"          H55+S56+H66 S57+D58+D67+S68 

"bc"                 H77+S78+H88 

 

2. Merging “B” or “b” for second SNP, 

 "AC"              "aC"            "Ac"        "ac"              

"AC"              H11+S13+H33 S12+D14+D23+S34 S15+D17+D35+S37 D16+T18+ T36+D38 

"aC"             H22+S24+H44 D25+T27+ T45+D47 S26+D28+D46+S48 

"Ac"          H55+S57+H77 S56+D58+D67+S78 

"ac"                 H66+S68+H88 

 

3. Merging “C” or “c” for third SNP, 

 "AB"              "aB"            "Ab"        "ab"              

"AB"              H11+S15+H55 S12+D16+D25+S56 S13+D17+D35+S57 D14+T18+T45+D58 

"aB"             H22+S26+H66 D23+T27+T36+D67 S24+D28+D46+S68 

"Ab"          H33+S37+H77 S34+D38+D47+S78 

"ab"                 H44+S48+H88 
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Table 1. Summary of population and sampling settings based on nine percentiles of sum of double heterozygous genotype frequencies 

for equal (0.25, 0.25, 0.25 and 0.25) and unequal (0.1, 0.2, 0.3 and 0.4) haplotype setting 

Population percentile 1
st
 5

th
 10

 th
 25

 th
 50

 th
 75

 th
 90

 th
 95

 th
 99

 th
 

Equal 

haplotype 

frequency 

(0.25,0.25, 

0.25,0.25):  

 

100,000 

HW 

deviation 

sets 

sum of 

double 

heterozygous 

genotype 

±0.0001 

0.002343 

±0.0001 

0.012051 

±0.0001 

0.024944 

±0.0001 

0.070267 

±0.0001 

0.180454 

±0.0001 

0.380338 

±0.0001 

0.579567 

±0.0001 

0.692275 

±0.0001 

0.857524 

±0.0001 

n 87 96 73 60 30 14 14 6 10 

mean 

(MSE.PEp) 
1.38E-07 2.75E-06 1.70E-05 0.000167 0.001324 0.01238 0.034835 0.037752 0.053939 

sd 

(MSE.PEp) 
1.19E-07 2.86E-06 1.22E-05 0.000142 0.001302 0.011022 0.019527 0.009125 0.004533 

Unequal 

haplotype 

frequency 

(0.1,0.2, 

0.3, 0.4) :  

 

100,000 

HW 

deviation 

sets 

sum of 

double 

heterozygous 

genotype 

±0.0001 

0.006497 

±0.0001 

0.020859 

±0.0001 

0.035951 

±0.0001 

0.078705 

±0.0001 

0.156601 

±0.0001 

0.259721 

±0.0001 

0.366842 

±0.0001 

0.421101 

±0.0001 

0.509127 

±0.0001 

n 44 61 62 71 70 28 16 11 6 

mean 

(MSE.PEp) 
9.53E-07 1.32E-05 3.73E-05 0.000256 0.001626 0.004339 0.016414 0.022393 0.034753 

sd 

(MSE.PEp) 
9.85E-07 1.17E-05 3.72E-05 0.000234 0.001305 0.003767 0.008976 0.011168 0.004036 
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Table  A2. 2. Summary of MSEs for each bin according to different sample sizes (25, 50, 100 

and 200) for equal haplotype frequency setting (0.25, 0.25, 0.25 and 0.25) 

  MSE.PEs MSE.PS MSE.SEs 

Bin 
Sample 

size 
mean std dev mean std dev mean std dev 

1
st
  

25 0.003645 0.000638 0.003645 0.000636 4.36E-06 1.92E-06 

50 0.001915 0.000364 0.001915 0.000363 2.19E-06 4.28E-07 

100 0.001005 0.000199 0.001005 0.000199 1.39E-06 2.32E-07 

200 0.000191 3.62E-05 0.000191 3.62E-05 4.24E-07 1.30E-07 

5
th

 

25 0.003563 0.000572 0.003562 0.000555 3.52E-05 5.82E-06 

50 0.001874 0.000326 0.001874 0.000318 1.87E-05 4.21E-06 

100 0.000973 0.000169 0.000971 0.000166 9.82E-06 3.06E-06 

200 0.000193 3.18E-05 0.00019 3.13E-05 4.17E-06 2.75E-06 

10
th

 

25 0.003685 0.00058 0.003657 0.000549 8.92E-05 2.16E-05 

50 0.001954 0.000343 0.001933 0.000325 5.46E-05 1.74E-05 

100 0.001017 0.000184 0.000997 0.000175 3.52E-05 1.38E-05 

200 0.000214 3.51E-05 0.000197 3.29E-05 1.97E-05 1.19E-05 

25
th

 

25 0.003882 0.000735 0.003618 0.00063 0.000401 0.000153 

50 0.00213 0.000375 0.001916 0.00031 0.000274 0.000151 

100 0.001144 0.00023 0.000965 0.000171 0.000227 0.00015 

200 0.000365 0.00014 0.000197 3.19E-05 0.000184 0.000146 

50
th

 

25 0.005442 0.001341 0.003641 0.000432 0.002222 0.00147 

50 0.003472 0.001278 0.001934 0.000228 0.001731 0.001328 

100 0.002371 0.001268 0.000955 0.000117 0.001516 0.001317 

200 0.001537 0.001319 0.000191 2.25E-05 0.001366 0.001318 

75
th

 

25 0.017761 0.00997 0.003689 0.00039 0.015144 0.010349 

50 0.015177 0.010261 0.001937 0.000236 0.013603 0.010566 

100 0.013789 0.010445 0.000977 0.000107 0.013057 0.010623 

200 0.012684 0.010825 0.000199 2.80E-05 0.012517 0.010903 

90
th

 

25 0.038661 0.01775 0.003562 0.000554 0.036935 0.020078 

50 0.037017 0.018479 0.001889 0.000331 0.035855 0.019788 

100 0.035889 0.019067 0.000982 0.000197 0.034988 0.019544 

200 0.035029 0.019472 0.000192 3.15E-05 0.034668 0.019345 

95
th

 

25 0.040782 0.007776 0.003061 0.000182 0.038705 0.009802 

50 0.03965 0.0081 0.001633 0.000132 0.038151 0.009428 

100 0.038662 0.008503 0.000812 7.23E-05 0.037828 0.009019 

200 0.037956 0.009043 0.000173 1.46E-05 0.037404 0.009178 

99
th

 

25 0.048261 0.007092 0.002978 0.00024 0.046918 0.008207 

50 0.053658 0.005134 0.001537 8.94E-05 0.053202 0.006229 

100 0.054178 0.004637 0.000789 7.23E-05 0.053724 0.00501 

200 0.054071 0.004503 0.000159 8.54E-06 0.053483 0.00455 
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Table  A2. 3. Summary of MSEs for each bin according to different sample sizes (25, 50, 100 

and 200) for unequal haplotype frequency setting (0.1, 0.2, 0.3 and 0.4) 

  MSE.PEs MSE.PS MSE.SEs 

Bin 
Sample 

size 
mean std dev mean std dev mean std dev 

1
st
  

25 0.003457 0.000678 0.003454 0.000674 1.49E-05 5.07E-06 

50 0.00182 0.000353 0.001816 0.00035 7.95E-06 2.59E-06 

100 0.000935 0.000186 0.000933 0.000184 4.30E-06 1.44E-06 

200 0.000174 3.21E-05 0.000173 3.22E-05 1.82E-06 1.04E-06 

5
th

 

25 0.003453 0.000834 0.00342 0.000802 7.46E-05 2.83E-05 

50 0.001801 0.000442 0.001786 0.000431 4.29E-05 1.93E-05 

100 0.000927 0.000221 0.000911 0.000216 2.72E-05 1.45E-05 

200 0.00019 4.01E-05 0.000177 4.04E-05 1.54E-05 1.18E-05 

10
th

 

25 0.003606 0.000855 0.003525 0.000798 0.000146 6.42E-05 

50 0.00188 0.000442 0.001827 0.000417 8.89E-05 4.99E-05 

100 0.000982 0.000242 0.000936 0.000225 6.42E-05 4.32E-05 

200 0.000218 6.05E-05 0.000179 4.28E-05 4.11E-05 3.71E-05 

25
th

 

25 0.003807 0.000936 0.00345 0.000839 0.000535 0.000303 

50 0.002118 0.000518 0.001811 0.000434 0.000387 0.000268 

100 0.0012 0.000334 0.00092 0.000216 0.000331 0.000259 

200 0.000444 0.000245 0.000177 4.29E-05 0.000277 0.000243 

50
th

 

25 0.00567 0.001622 0.003523 0.000728 0.002539 0.001423 

50 0.00368 0.001381 0.001829 0.00036 0.002093 0.001391 

100 0.002645 0.001333 0.000929 0.000176 0.001845 0.001362 

200 0.001829 0.001335 0.00018 3.82E-05 0.001692 0.001345 

75
th

 

25 0.009724 0.003587 0.003761 0.000578 0.006356 0.003872 

50 0.007083 0.003482 0.001955 0.000296 0.00536 0.003743 

100 0.005681 0.003619 0.000982 0.000136 0.004768 0.003727 

200 0.004561 0.003675 0.000193 3.10E-05 0.004337 0.00368 

90
th

 

25 0.020858 0.008114 0.003448 0.000469 0.018694 0.008883 

50 0.018491 0.008411 0.001813 0.000288 0.017435 0.008777 

100 0.017292 0.00874 0.000919 0.000117 0.016832 0.00887 

200 0.016436 0.008878 0.000179 2.49E-05 0.016388 0.008945 

95
th

 

25 0.026819 0.00946 0.003587 0.00053 0.024384 0.011243 

50 0.024342 0.010314 0.001769 0.000216 0.023088 0.011082 

100 0.023422 0.010759 0.000941 0.000103 0.022531 0.011095 

200 0.022557 0.011114 0.000185 2.74E-05 0.022386 0.011115 

99
th

 

25 0.037177 0.004117 0.00326 0.000135 0.036835 0.004711 

50 0.03583 0.004143 0.001646 4.62E-05 0.035379 0.004163 

100 0.035161 0.004238 0.000869 3.76E-05 0.034743 0.004075 

200 0.034777 0.004049 0.000185 1.72E-05 0.034657 0.003962 

 


