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Abstract of the Dissertation

A Study of TeV-Scale Physics Beyond the
Standard Model, LHC Signals and Dark

Matter Implications

by

Ning Chen

Doctor of Philosophy

in

Physics

Stony Brook University

2011

This thesis is devoted to the study of two major scenarios of

physics beyond the Standard Model (SM), namely TeV-scale su-

persymmetric models and models with dynamical electroweak sym-

metry breaking.

For the supersymmetric models, we will concentrate on supergravity-

mediated grand unification models. We analyze the mass spectra

and collider signatures for minimal supergravity (mSUGRA) mod-

els. We also study benchmark models with non-universal masses in

the gaugino sector. We are particularly interested in some collider

signatures that can be discovered in the early LHC experiments

with center of mass energy of 7 TeV in operation in the years 2011

and 2012. In addition, we will discuss the dark matter implications
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for these benchmark models. For models with dynamical symme-

try breaking, we study prospects for the unification of different

gauge groups.
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Chapter 1

Motivations for Physics Beyond

Standard Model

In this chapter, we will review the structure of the Standard Model including

the Higgs mechanism for the electroweak symmetry breaking. We will moti-

vate why physics above the ∼ 100 GeV scale is needed both from theoretical

considerations and experimental evidence.

1.1 Brief Review of The Standard Model

1.1.1 Gauge fields and Higgs mechanism

The Standard Model is a gauge theory with gauge symmetry by a direct prod-

uct of three gauge groups: GSM = SU(3)c × SU(2)L × U(1)Y , which stands

for color strong interaction and electroweak interaction respectively. The pure

gauge sector is described by the Yang-Mills theory with the Lagrangian as

follows:

LYM = −1

4

3∑

a=1

(Ga
µν)

2 − 1

4

3∑

a=1

(W a
µν)

2 − 1

4
(Bµν)

2 (1.1)

where the field strengths for each gauge symmetry read:
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Ga
µν = ∂[µG

a
ν] + gsf

abcGb
µG

c
ν (1.2)

Wµν = ∂[µW
a
ν] + gεabcW b

µW
c
ν (1.3)

Bµν = ∂[µBν] (1.4)

Here fabc and εabc are structure constants for SU(3)c and SU(2)L gauge groups

respectively. gs and g are couplings for SU(3)c and SU(2)L. We also denote

the coupling constant for U(1)Y as g′.

Next we shall introduce a complex Higgs field ϕ for the electroweak sym-

metry breaking (EWSB) [4]. It is chosen to be ϕ ∈ 21 representation under

the SU(2)L ×U(1)Y , hence this is a proper candidate for the EWSB. Here we

use the metric (−,+,+,+). The part of Lagrangian for the Higgs field reads:

Lhiggs = −|Dµϕ|2 − V (ϕ) (1.5)

where the covariant derivative is:

Dµϕ = ∂µϕ− i(g ~Wµ ·
~σ

2
+ g′Bµ

1

2
)ϕ (1.6)

and the Higgs potential is:

V (ϕ) =
λ

4
(ϕ†ϕ− 1

2
v2)2. (1.7)

Notice here, the λ > 0 is required to have the Higgs potential bounded from

below. The minimum of this potential gives ϕ a non-zero vev as v/
√

2. We

denote the Higgs doublet explicitly as follows:

ϕ ≡

(
φ+

φ0

)
=

1√
2

(
iχ1 + χ2

v + h− iχ3

)
(1.8)
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where χ1,2,3 are the Nambu-Goldstone bosons (NGBs) to be eaten by the W±

and Z. Ignoring the NGB’s and putting (1.8) back into (1.7), one gets terms

for Higgs field as:

− L(h) =
λ

4
v2h2 +

λ

4
vh3 +

λ

16
h4 (1.9)

where the first term is the Higgs boson mass m2
h = 1

2
λv2, and the Higgs boson

can interact with itself in the form of three-point and four-point vertices. By

taking the vev back to the (1.5), one has the mass terms for gauge bosons

from the Higgs kinematic terms. With the gauge fields in their mass eigenstate

defined as:

W±
µ ≡ 1√

2
(W 1

µ ∓ iW 2
µ) (1.10)

Zµ ≡ cos θwW
3
µ − sin θwBµ (1.11)

Aµ ≡ sin θwW
3
µ + cos θwBµ (1.12)

where the Weinberg mixing angle θw is defined as1:

tan θw ≡ g′/g (1.13)

one gets the mass terms as:

Lmass = −g
2

4
v2W+µW−

µ −
1

4
(g′2 + g2)v2ZµZµ (1.14)

i.e.,

MW =
1

2
gv MZ =

1

2

√
g′2 + g2v (1.15)

1Later we use the short notations: sw = sin θw and cw = cos θw.
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1.1.2 Matter fields

The Standard Model matter fields coupled to the GSM gauge fields can be

summarized in the following table:

fermions SU(3)c × SU(2)L × U(1)Y representation

qai,L :
(
ua

da

)
L
,
(
ca

sa

)
L
,
(
ta

ba

)
L

(3, 2)1/3

uaR, caR, taR (3, 1)4/3

daR, saR, baR (3, 1)−2/3

li,L :
(
νe
e

)
L
,
(
νµ
µ

)
L
,
(
ντ
τ

)
L

(1, 2)−1

eR, µR, τR (1, 1)−2

Table 1.1: Standard Model matter fields and their representations under the
GSM.

The gauge-invariant Standard Model fermion terms contain the kinematic

terms for all fermions. We write down them explicitly:

L(f,G) = −(uL, dL)γµ(∂µ − igsGa
µT

a − ig ~Wµ ·
~σ

2
− ig′Bµ

1

6
)

(
uL

dL

)

−uRγµ(∂µ − igsGa
µT

a − ig′Bµ
2

3
)uR

−dRγµ(∂µ − igsGa
µT

a + ig′Bµ
1

3
)dR

−(νL, eL)γµ(∂µ − ig
~σ

2
· ~Wµ + ig′Bµ

1

2
)

(
νL

eL

)

−eRγµ(∂µ + ig′Bµ)eR (1.16)

Bare fermion mass terms are not gauge-invariant. Instead, one can write

down gauge-invariant Dirac fermion masses through Yukawa couplings. To

have both up-type and down-type quarks and charged leptons get Yukawa

couplings, one has to define a charge conjugated Higgs doublet:

ϕ̃ = iσ2ϕ
∗ =

(
φ∗0

−φ−

)
(1.17)
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which is ϕ̃ ∈ 2−1 of the SU(2)L × U(1)Y gauge symmetry. Hence the gauge-

invariant Yukawa couplings for Standard Model fermions are:

L(f, ϕ) = y
(e)
ij li,Lϕej,R + y

(u)
ij qi,Lϕ̃uj,R + y

(d)
ij qi,Lϕdj,R + h.c. (1.18)

where yij’s are the 3× 3 Yukawa coupling matrices for different flavors.

1.2 Problems with the SM Higgs mechanism

A central question for physics beyond the Standard Model is the mechanism for

electroweak symmetry breaking. The Standard Model does not explain this,

since it does not give any reason for picking the coefficient of the quadratic

term in the Higgs potential to be negative instead of the a priori an equally

likely positive value. Furthermore, even if one accepts this sign choice, there is

a very serious problem with the Higgs potential of the Standard Model, namely

its instability to radiative corrections. This problem is called the naturalness,

fine-tuning or gauge hierarchy problem. Recall that the tree-level Higgs boson

mass square reads 1
2
λv2 from the (1.9). The self-energy correction to the higgs

mass at the one-loop level from the (1.9) yields a term that is quadratically

sensitive to a high-energy cutoff ΛUV, namely δm2
h ∼ λΛ2

UV, where we view

this Higgs sector as a low-energy effective field theory. For typical high values

of this UV cutoff, one must then carry out an extreme fine-tuning to arrange

that the sum of the tree-level contribution to the higgs mass squared combines

with the one (and higher) loop contributions in such a manner as to yield a

sensible result. This result for the Higgs mass cannot be arbitrarily high. In

particular, if it were higher than a value of order a TeV, then the partial wave

amplitudes for longitudinally polarized vector boson scattering would violate

perturbative unitarity [5]. The Standard Model by itself does not contain any

mechanism to protect the Higgs mass squared from a huge radiative shift, of

order λΛ2
UV.

A related problem in the Standard Model is that the Higgs sector is not

asymptotically free. Thus for a fixed high-energy boundary value, λ(Q) > 0,
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the effective, running coupling λ(Q0) → 0 as the momentum scale at which

this coupling is evaluated, Q0 goes to 0. This is the so-called “triviality”

problem (called the Landau “zero-charge” problem in the case of quantum

electrodynamics, where a similar problem occurs). Phrased in a different but

equivalent manner, if one fixes λ(Q0) at some low-energy scale Q0, and then

tracks the evolution of the running quartic coupling at higher momentum scales

Q, λ(Q) will eventually diverge at a sufficiently large Q. This is called the

Landau pole. This is one of the reasons why one envisions that the Standard

Model with its Higgs sector is not a complete theory but instead is a low-

energy effective theory, valid up to some UV cutoff scale where it is embedded

in a more complete theory where these difficulties could be removed. For

example, this could be the scale of supersymmetry (SUSY) breaking, so that

above this scale, the theory is supersymmetric. As will be seen below, at

least in the simplest supersymmetric extension of the Standard Model, the

quartic coupling λ is replaced by sums of squares of the two electroweak gauge

couplings for the SU(2)L and U(1)Y gauge groups, (1/2)(g2 + g′2), removing

both the triviality problem. A supersymmetric extension also removes the

quadratic sensitivity of the higgs mass squared to the UV physics.

These problems with the Higgs potential of the Standard Model motivated

people to consider alternatives to the Standard Model Higgs mechanism for

electroweak symmetry breaking. One possibility is to have some new sym-

metry to protect Higgs mass from quantum corrections. This possibility is

realized in supersymmetric extensions of the Standard Model. Due to the

fact that the fermionic loop gives an opposite sign relative to the scalar loop,

the supersymmetry solves the gauge hierarchy problem. Furthermore, in the

simplest supersymmetric extension of the Standard Model, the quartic Higgs

coupling is replaced by (1/2)(g2 + g′2), removing the problem with triviality

and the Landau pole. Although the supersymmetry must be broken, if it re-

mains exact down to scales of order the electroweak scalar of ∼ 300 GeV, then

it can achieve its purpose of protecting the Higgs mass from large corrections.

Another possibility is to have a theory in which the electroweak symmetry

breaking is not due to the vev of a fundamental Higgs field, but instead is

produced dynamically as a nonzero value of a bilinear condensate of fermion
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fields. Indeed, in two of the main precursors to electroweak symmetry breaking

that we know of, namely the breaking of U(1)em gauge invariance in a super-

conductor below the phase transition temperature, and the breaking of global

SU(2)L × SU(2)R chiral symmetry in hadronic physics (below the deconfine-

ment temperature), phenomenological models were constructed using scalar

fields (the Ginzburg-Landau free energy functional for superconductivity and

the Gell-Mann Lévy sigma model for hadronic chiral symmetry breaking), and

the symmetry breaking was produced by the arranged nonzero vevs of these

scalar fields. But in both cases, the microscopic physics was not due to vevs of

such hypothetical scalar fields; instead, it was due to the formation of bilinear

fermion condensates. In the case of superconductivity, these are the Cooper

pairs, and in the case of hadronic symmetry breaking they are the 〈q̄q〉 quark

condensates. In the same way, technicolor theories of electroweak symmetry

breaking produce this by positing a new, asymptotically free gauge interac-

tion that gets strong on the TeV scale and produces bilinear condensates of

technifermions.

The Large Hadron Collider (LHC) currently running at CERN was de-

signed to elucidate the origin of electroweak symmetry breaking and the physics

of the TeV scale. Its first run in 2010 and its continuing run starting in the

spring of 2011 has a center-of-mass energy
√
s = 7 TeV, and it is continu-

ally increasing the luminosity toward 1032 cm−2 s−1. After a shutdown, it

then plans to upgrade to the full
√
s = 14 TeV and 1034 cm−2 s−1 luminosity.

It has already sent important limits on both supersymmetric and dynamical

EWSB scenarios for physics beyond the Standard Model.

1.3 Problems of The SM Fermions

1.3.1 Fermion Generations and Mass Hierarchies

Another basic problem in the Standard Model is that it gives no explanation

of the number of fermion generations (Ngen = 3), and it accommodates, but

does not explain the observed fermion masses. In particular, it produces the

masses of quarks and charged leptons via Yukawa couplings to the Higgs, but
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this requires a huge range of magnitudes of Yukawa couplings from 10−5 to

unity, without any explanation. It fails to explain either the intergenerational

fermion mass hierarchies of the mass splittings within each Standard Model

generation.

1.3.2 Neutrino masses

The original Standard Model made a prediction for neutrino masses, and

it was that they are zero. Hence, the evidence for neutrino masses and

lepton mixing that accumulated from the late 1960’s with the original so-

lar neutrino Chlorine experiment of Ray Davis and collaborators through to

the compelling evidence obtained by the SuperKamiokande experiment in

1998 from both its solar and atmospheric neutrino data have been the first

confirmed evidence for physics beyond the Standard Model. This evidence

has forced a modification of this model to include neutrino masses and lep-

ton mixing. The results from the Davis and the SuperKamiokande exper-

iments have been confirmed by later experiments, including the K2K and

MINOS accelerator experiments, the Sudbury Neutrino Observatory (SNO)

solar neutrino experiment, and the KamLAND reactor antineutrino exper-

iment. Defining ∆mij = m(νi)
2 − m(νj)

2, the existing neutrino data [62]

gives |∆m32| ' 2.4 × 10−3 eV2, and |∆m21| ' 7.6 × 10−5 eV2. Several lep-

tonic mixing angles have also been measured, with the results sin2(2θ23) ' 1,

sin2(2θ12) ' 0.9, with an upper bound sin2(2θ13) . 0.15. There are a number

of theoretical approaches to explaining very small neutrino masses. For exam-

ple, one can use a seesaw mechanism in the context of supersymmetric grand

unification [8] and also (with different Majorana and Dirac neutrino energy

scales) in the context of technicolor [121] [123].

1.4 Other Problems of the Standard Model

The Standard Model gauge sector has three gauge couplings (gs, g, g
′) for three

subgroups. Their strengths at the M2
Z scale were precisely measured at the

Large Electron-Positron (LEP) and Stanford Linear Collider (SLAC) as follows
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[61]:

g2
s(MZ) ' 1.495, g2(MZ) ' 0.424, g′2(MZ) ' 0.1277 (1.19)

or equivalently,

αs(MZ) ' 0.118, α(MZ) ' 3.37× 10−2, α′(MZ) ' 1.02× 10−2, (1.20)

where αs = g2
s/(4π), etc. The Standard Model itself does not predict the

magnitudes for three different gauge couplings. A complete theory would

predict the values of these couplings, or at least their ratios. One appealing

approach is a supersymmetric grand unification theory (GUT), where the GSM

is embedded into a larger simple non-Abelian gauge group, e.g. SU(5) or

SO(10) [6] [7].

In the Standard Model, the electric charge Q is given by Q = T3 + (Y/2),

where T3 and Y refer to weak isospin and hypercharge. Because the weak

hypercharge is an abelian U(1)Y group, this means that the Standard Model

does not explain the observed quantization of electric charge. Again, this can

be done in a grand unified theory. Other problems that the Standard Model

does not explain include the fact that, because of instantons, QCD does not

automatically conserve P or T (equivalently, CP).

A particularly important problem for the Standard Model is the issue of

dark matter. In the 1930s Zwicky analyzed the motions of galaxies in the

Coma cluster and found that these motions were considerably greater than

could be accounted for by visible matter [88] [89]. Since this time there has

been a progressive accumulation of evidence for dark matter. Among the more

recent pieces of evidence was the measurement of velocity rotation curves for

several galaxies by Rubin et al., which showed that these velocities were again

much greater than could be accounted for by the visible matter. From these

and other pieces of observational evidence, it has been concluded that baryonic

matter comprises only about ∼ 4% of all of the mass/energy in the Universe.

Approximately ∼ 23% is inferred to be composed of dark matter, while ∼ 70%
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is “dark energy” associated with the observed accelerated expansion of the

universe [88] [89]. (At present, this dark energy is consistent with being a

cosmological constant.) Clearly, a dark matter candidate particle should have

a lifetime comparable with the age of the universe. This property may be

built into a model if that model has some exact discrete parity that prevents

the particle from decaying. In addition, the dark matter particle should be

a color singlet and have zero electric charge, or else it would not be dark.

Aside from primordial black holes, the Standard Model does not contain a

candidate for this dark matter, so this strongly suggests further physics beyond

the Standard Model. There are many possible candidates for dark matter

particles. In gravity-mediated supersymmetric models, the lightest sparticle

(LSP) is generically the lightest neutralino χ̃0
1 with mass ∼ O(100 GeV). Such

a particle can satisfy basic requirements of a dark matter candidate.

Another relevant quantity from astrophysics and cosmology is the average

baryon asymmetry in the universe. To generate a non-zero baryon number

from the initially baryon symmetric state, three conditions (called Sakharov

conditions) [85] are necessary: (i) baryon number violation, (ii) C and CP

violation, and (iii) non-equilibrium condition.
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Chapter 2

The Minimal Supersymmetric

Standard Model (MSSM)

We shall apply the WZ theory and SYM theory to construct a supersymmet-

ric extension of the Standard Model. In this chapter, we focus on the mini-

mal extension, called the Minimal Supersymmetric Standard Model (MSSM).

During this construction, we shall use the Standard Model gauge symmetry

GSM = SU(3)c × SU(2)L × U(1)Y and the necessary matter representations.

The inclusion of soft SUSY-breaking terms will be shown in this chapter, and

their origins in the ultraviolet later in this thesis. We will also discuss the mass

spectrum of the supersymmetric particles (sparticles) in this MSSM model.

2.1 Field Contents of The MSSM

Now we list the field content of the MSSM. From the discussion of WZ theory

and SYM theory, the matter fields form chiral supermultiplets of the generic

form (φ, ψ, F ) and the gauge fields form Lie-algebra valued vector supermul-

tiplets of the generic form (λ,Aµ, D). Each component of the supermultiplet

transforms according to the same representation of the relevant gauge group.

Hence it is straightforward to list all MSSM fields1 in the gauge sector and

matter sector. The fermion fields are written in left-handed holomorphic form.

1We indicate the representation of all fields by their dimensions.
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Our notation is ψcL ≡ (ψR)c. The subscripts L on the scalar components refer

to their correspondence to the chiral fermion fields.

vector multiplet spin 1/2 spin 1 SU(3)c, SU(2)L, U(1)Y
and field strength

VG,WG g̃ g (8, 1)0

VW ,WW W̃ W (1, 3)0

VY ,WY B̃ B (1, 1)0

Table 2.1: MSSM superfields in the gauge sector.

chiral multiplet spin 0 spin 1/2 SU(3)c, SU(2)L, U(1)Y
Qi,L (ũ, d̃)L (u, d)L (3, 2)1/3

Ūi,L ũcL ucL (3, 1)−4/3

D̄i,L d̃cL dcL (3, 1)2/3

Li,L (ν̃, ẽ)L (ν, e)L (1, 2)−1

Ēi,L ẽcL ecL (1, 1)2

Hu (h+
u , h

0
u) (H̃+

u , H̃
0
u) (1, 2)1

Hd (h0
d, h
−
d ) (H̃0

d , H̃
−
d ) (1, 2)−1

Table 2.2: MSSM superfields in the matter sector. i = 1, 2, 3 are indices for
three generations of sfermions and fermions.

The MSSM contains two Higgs doublets and each is responsible for giving

mass to the up-type or down-type matters (i.e., both fermions and sfermions).

This is also necessary for the gauge anomaly cancellation.

2.2 Anatomy of The MSSM Lagrangian

The full Lagrangian of the MSSM is more complicated than the Standard

Model one. A most general form of the MSSM Lagrangian contains two parts:

LMSSM = LSUSY + Lsoft (2.1)
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One can denote all vector multiplets and their field strength as (VA,WA) =

(V a
A ,W

a
A)T a, and denote all chiral matter fields as Φi. The supersymmetric

part contains the pure gauge sector, matter-YM coupling part, and the super-

potential term for the chiral fields:

LSUSY =
1

4
(

ˆ
d2θWα

AWA,α + h.c.) +

ˆ
d4θΦ†i (e

gV )ijΦj

+

ˆ
d2θ(hiΦi +

1

2
µijΦiΦj +

1

3!
fijkΦiΦjΦk) + h.c. (2.2)

The most general soft SUSY-breaking terms are written as:

Lsoft = −(m2)ijφ
†
iφj − (

1

3!
Aijkφiφjφk +

1

2
Bijφiφj + Ciφi + h.c.)

−(
1

2
Mλaλa + h.c.) (2.3)

with φi being the scalar component of Φi and λa being the gaugino fields. The

m2
ij−term and the M−term are the soft masses for sfermions and gauginos.

The Aijk, Bij, and Ci are the most general soft terms for the scalar fields one

can write down as long as they are gauge invariant. In particular, the Ci term

requires that the scalar field φi itself to be gauge invariant. Since we do not

have a gauge invariant field in the MSSM, this linear term is not considered

in the soft term.

2.2.1 Supersymmetric terms

The LSUSY stands for the renormalizable supersymmetric part, which is just

SYM and WZ theories with the Standard Model gauge group and proper

quantum number assignment to matter fields following Table (2.1). Explic-

itly, the pure gauge sector (SYM) of the MSSM has the following Lagrangian

containing three separate superspace field strengths:
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LSYM =
1

4

ˆ
d2θ(Wα

GWG,α +Wα
WWW,α +Wα

YWY,α) + h.c. (2.4)

The gauge fields also couple to the matter fields (both sfermion-fermion

multiplets and higgs-higgsino multiplets) in forms of the (A.14):

Lmatter =

ˆ
d4θ(Q†i,L exp(gsVG + gVW + g′VY Y )Qi,L +

+U †i,R exp(gsVG + g′VY Y )Ui,R +D†i,R exp(gsVG + g′VY Y )Di,R

+L†i,L exp(gVW + g′VY Y )Li,L + E†i,R exp(g′VY Y )Ei,R

+
∑

p=u,d

H†p exp(gVW + g′VY Y )Hp) (2.5)

The MSSM superpotential contains all matter fields listed in Table (2.1)

as:

WMSSM = −(yu)ijQi,LHuUj,R − (yd)ijQi,LHdDj,R − (ye)ijLi,LHdEj,R

+µHuHd (2.6)

with yu, yd and ye being the 3× 3 dimensionless Yukawa coupling matrices in

the generation space.

2.2.2 Soft breaking terms

Without explaining the dynamical origin yet, we will simply write down the

most general soft SUSY-breaking terms for the MSSM. The soft SUSY-breaking

terms can be decomposed into four parts:

Lsoft = Lf̃ + LA + Lλ + Lh (2.7)
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where Lf̃ contains the sfermion mass terms, LA contains the trilinear couplings

between sfermions and MSSM Higgs, Lλ contains the gaugino (Majorana)

mass terms, and Lh contains the MSSM Higgs mass terms. Their explicit

expressions read:

Lf̃ = −q̃†iL(M2
q̃ )ij q̃jL − ũ†iR(M2

ũ)ijũjR − d̃†iR(M2
d̃
)ij d̃jR

−l̃†iL(M2
l̃
)ij l̃jL − ẽ†iR(M2

ẽ )ij ẽjR (2.8)

LA = −Hd · l̃iL(yeAe)ij ẽ
†
jR −Hd · q̃iL(ydAd)ij d̃

†
jR

−Hu · q̃iL(yuAu)ijũ
†
jR + h.c. (2.9)

Lh = −m2
Hu |Hu|2 −m2

Hd
|Hd|2 − (bHuHd + h.c.) (2.10)

Lλ = −1

2
(M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.) (2.11)

2.3 Sparticle Spectrum

In this part of discussion, we will present the sparticle spectrum based upon the

discussion of the general MSSM structures, including MSSM Higgs, charginos,

neutralinos, and sfermions.

2.3.1 MSSM Higgs

The Higgs spectrum in the context of MSSM is more complicated than the

Standard Model case in that: there are two complex Higgs doublets, which

yield five MSSM Higgs fields after the EWSB; there are both supersymmetric

and soft term contributions to the Higgs masses. The scalar potential for the

Higgs fields is the following:

V = (|µ|2 +m2
Hu)(|h0

u|2 + |h+
u |2) + (|µ|2 +m2

Hd
)(|h0

d|2 + |h−d |
2)

+
1

8
(g2 + g′2)(|h0

u|2 + |h+
u |2 − |h0

d|2 − |h−d |
2)2

+b(h+
u h
−
d − h

0
uh

0
d) + h.c.+

1

2
g2|h+

u h
0∗
d + h0

uh
−∗
d |

2 (2.12)
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where the MSSM higgs fields are in their gauge eigenstates following from

Table (2.1). The |µ|2 terms come from the F-terms of the Higgs doublets

inside the MSSM superpotential (2.6). The m2
Hu

, m2
Hd

, and b are the soft mass

terms shown in the (2.10). Different from the Standard Model, the Higgs also

get contributions proportional to g2 and g′2 as from the D-terms of the Higgs

chiral multiplets coupling to the vector multiplets (2.5).

Clearly the minima of the (2.12) should be electrically neutral, which means

one should set their vev’s to be 〈h+
u 〉 = 〈h−d 〉 = 0. Hence the (2.12) is simplified

into:

V = (|µ|2 +m2
Hu)|h0

u|2 + (|µ|2 +m2
Hd

)|h0
d|2 − (bh0

uh
0
d + h.c.)

+
1

8
(g2 + g′2)(|h0

u|2 − |h0
d|2)2 (2.13)

Two requirements should be made on the (2.13): (i) this potential should

be bounded from below; (ii) a linear combination of h0
u and h0

d should yield

negative mass square to trigger the EWSB. These two conditions are therefore:

2b < 2|µ|2 +m2
Hu +m2

Hd

b2 > (|µ|2 +m2
Hu)(|µ|2 +m2

Hd
) (2.14)

With necessary conditions (2.14) for h0
u and h0

d to get their vev’s, one can

assign them as:

〈h0
u〉 = vu = v sin β 〈h0

d〉 = vd = v cos β (2.15)

which are related to the W mass as:

m2
W =

1

2
g2v2 =

1

2
g2(v2

u + v2
d) (2.16)

and the ratio between two vev’s reads:
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tan β ≡ vu
vd

(2.17)

One can write down the conditions ∂V/∂h0
u = ∂V/∂h0

d = 0 which minimize

the potential (2.13) as follows:

|µ|2 +m2
Hu − b cot β − m2

Z

2
cos(2β) = 0

|µ|2 +m2
Hd
− b tan β +

m2
Z

2
cos(2β) = 0 (2.18)

However, these relations imply the so-called “µ problem” [14] immediately.

µ should be a supersymmetric parameter since it shows up in the MSSM

superpotential, while the other quantities mHu , mHd , and b are soft-breaking

parameters. In other words, the |µ|2 parameter should be fine-tuned into a

similar size with other soft parameters m2
Hu

, m2
Hd

, b, and also m2
Z .

Now we shall give the Higgs mass terms in their mass eigenstates. Two

complex Higgs doublets contain eight real components. After the EWSB, three

of them (one neutral G0 and two with ±1 charges G±) are eaten by the W±

and Z. Five real components (three neutral ones and two charged ones) shall

consist of two CP-even scalars h0 and H0, one CP-odd scalar A0, and two

charged ones H±. In particular, CP- is only used to refer the MSSM Higgs

sector here since the MSSM itself introduces CP-violation sources. Explicitly

we denote them as:

(
h0
u

h0
d

)
=

(
vu

vd

)
+

1√
2
Rα

(
h0

H0

)
+

i√
2
Rβ0

(
G0

A0

)
(2.19)

(
h+
u

h−∗d

)
= Rβ±

(
G+

H+

)
(2.20)

with Rα, Rβ0 , and Rβ± being the rotation matrices between the corresponding

gauge eigenstates and the mass eigenstates. Plugging the (2.19) and (2.20)
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into the (2.12), it is easy to obtain the tree-level Higgs masses as:

m2
A0 = 2|µ|2 +m2

Hu +m2
Hd

(2.21)

m2
h0,H0 =

1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 −m2

Z)2 + 4m2
Zm

2
A0 sin2(2β)

)
(2.22)

m2
H± = m2

A0 +m2
W (2.23)

However, another problem emerges from the (2.22), namely the lightest

Higgs h0 has an unacceptable mass upper bound at the tree level:

mh0 < mZ | cos(2β)| (2.24)

If the (2.24) were true, the lightest MSSM Higgs boson should have been

discovered at LEP2. From the above inequality, the lightest CP-even higgs

mass can approach to mZ when tan β � 1. However, it was shown that the

quantum corrections from the top quark loop and the stop loop turn out to

be significant. For example in the limit of small stop mixings and mt̃1,2 � mt,

one gets:

δ(m2
h0) =

3

4π2
cos2 αy2

tm
2
t log

mt̃1mt̃2

m2
t

(2.25)

2.3.2 Chargino

The gauge eigenstates for the chargino sector are ψ± ≡ (W̃+, H̃+
u , W̃

−, H̃−d ),

with the mass term expressed as:

LC̃ = −1

2
(ψ±)TMC̃ψ

± + h.c. (2.26)

where,
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MC̃ =

(
0 XT

X 0

)
(2.27)

with

X =

(
M2

√
2mW sin β√

2mW cos β µ

)
(2.28)

It is straightforward to diagonalize the (2.28) to obtain two chargino masses:

m2
C̃1,C̃2

=
1

2
(M2

2 + |µ|2 + 2m2
W

∓
√

(M2
2 + |µ|2 + 2m2

W )2 − 4|µM2 −m2
W sin 2β|2) (2.29)

Taking µ to be real by absorbing the phases into the gauginos and Higgs chiral

fields, and the limit of mZ � (µ,M2), their masses are simplified into:

mC̃1
= M2 −

m2
W (M2 + µ sin 2β)

µ2 −M2
2

+ ... (2.30)

mC̃2
= µ+

m2
W I(µ+M2 sin 2β)

µ2 −M2
2

+ ... (2.31)

with I ≡ sgn(µ) and ... stands for terms in higher order of (mZ/M2)2 and

(mZ/µ)2.

2.3.3 Neutralino

In terms of the gauge eigenstates ψ0 ≡ (B̃, W̃ , H̃0
d , H̃

0
u), one gets the neutralino

mass terms as:

LÑ = −1

2
(ψ0)TMÑψ

0 + h.c. (2.32)
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It is easy to see that the MÑ contains three parts: the SU(2)L×U(1)Y gaugino

soft masses M1,2, the higgsino µ terms, and the off-diagonal terms from the

higgsino-gaugino-higgs coupling after 〈h0
d〉 and 〈h0

u〉 getting their vev’s. The

explicit matrix reads:

MÑ =




M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβcWmZ 0 −µ
sβsWmZ −sβcWmZ −µ 0




(2.33)

By a unitary transformation, the (2.33) is diagonalized and the gauge

eigenstates are transformed into four mass eigenstates: χ̃0
i = Zijψ

0
j with

i, j = 1, 2, 3, 4 for four neutralino components. The Z1i entries measure the

eigen contents of the lightest neutralino χ̃0
1 (or the LSP in the context of

supergravity models): Z11 for bino B̃, Z12 for wino W̃ , and (Z13, Z14) for hig-

gsinos (H̃0
d , H̃

0
u). These components will turn out to play important roles in

the discussion of dark matter in the supergravity-mediation framework.

2.3.4 Sfermions

In the case of the MSSM, one would expect three 6 × 6 matrices for the up-

type squarks, down-type squarks, and the charged sleptons; together with

one 3 × 3 matrix for the sneutrinos. However, the third generations can get

very different masses since they get important contributions due to the large

Yukawa couplings (yt, yb, yτ ) and soft parameters (At, Ab, Aτ ).

The spectra for the first two generations of squarks and sleptons are the

following:
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m2
ũL,d̃L

= M2
0 +K3 +K2 +

1

36
K1 + ∆ũL,d̃L

(2.34)

m2
ũR

= M2
0 +K3 +

4

9
K1 + ∆ũR (2.35)

m2
d̃R

= M2
0 +K3 +

1

9
K1 + ∆d̃R

(2.36)

m2
ẽL,ν̃L

= M2
0 +K2 +

1

4
K1 + ∆ẽL,ν̃L (2.37)

m2
ẽR

= M2
0 +K2 +

1

4
K1 + ∆ẽR (2.38)

Some explanation is needed for three different contributions to sfermion masses.

Implicitly we have assumed a universal scalar squared mass M2
0 appearing for

all squark flavors. Such an assumption is quite natural in the minimal super-

gravity mediation (mSUGRA) models, which will be discussed in detail in the

next chapter. The contributions of K1,2,3 are due to the chiral supermultiplets

coupling to the gauginos. Explicitly, they read:

Kα(Q2) = C2,α ×
1

2π2

ˆ logQ0

logQ

dtg2
α(t)|Mα(t)|2 (2.39)

where α denotes different gauge symmetry contributions without summation.

The gα(t) and Mα(t) should run according to their RGE’s to be discussed soon.

The coefficients C2,α = (3/5, 3/4, 4/3) for α = 1, 2, 3 are the quadratic Casimir

invariants for the SU(3)c and SU(2)L respectively; while 3/5 for the K1(Q2)

is due to the U(1) coupling rescaling for the GUT model. Q0 is the input RG

scale where boundary conditions to the soft parameters are imposed, and Q

is typically the scale around the sfermion masses below 1 TeV. Specifically

when a universal gaugino mass is imposed at the GUT scale, one can easily

obtain that K3 � K2 � K1. This implies that squarks are generally heavier

than sleptons with this assumption. Furthermore, there is a hyperfine splitting

term ∆f̃ within each generation of squarks and sleptons due to the sfermion

couplings to the Higgs doublets ∼ f̃ ∗f̃Hu,d after Higgs doublets picking up the

vev’s. For particular sfermion f̃ , this reads:
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∆f̃ = (T3f̃ −Qf̃s
2
W ) cos(2β)m2

Z (2.40)

The spectra for the third generation of squarks and sleptons are different.

We shall take stop mass matrix for our illustration. First, there are usual

diagonal terms for t̃∗Lt̃L and t̃∗Rt̃R like the first two generations of squarks.

In addition, there is m2
t contribution due to the large top Yukawa coupling.

Second, there are soft trilinear coupling contributions from the Atq̃3H
0
u t̃+h.c..

Third, there are contribution from the combined Higgs F-terms of yuQLHuUR

and µHuHd. Such terms are neglected for the first two generational sfermions

since their Yukawa couplings are small. Therefore, the stop mass matrix reads:

m2
t̃ =




M2
0 +K3 +K2 + 1

36
K1 v(A∗t sin β − µyt cos β)

+∆ũL +m2
t

M2
0 +K3 + 4

9
K1

v(At sin β − µ∗yt cos β) +∆ũR +m2
t




(2.41)

It is easy to diagonalize the (2.41) by a unitary transformation into the mass

eigenstates:

(
t̃1

t̃2

)
=

(
ct̃ −st̃
st̃ ct̃

)(
t̃L

t̃R

)
(2.42)

The significant off-diagonal entries for the third generation squark here would

generally induce a strong mixing between the left and right components.

Therefore the t̃1 is the lightest squark among all.
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2.4 Renormalization Group Equations (RGE)

in The MSSM

Having demonstrated the structure of the MSSM sparticle mass spectra, one

needs the one-loop RGE’s of soft parameters in the MSSM to derive them

from some UV theories. This is summarized in the Ref. [12] with two-loop

effects taken into account. Here we will only focus on the gauge coupling

evolution in the MSSM, where three gauge couplings unify at a GUT scale

MU ' 2 × 1016 GeV. And we also mention the implication to the gaugino

masses at the electroweak scale.

We start from the one-loop RGE’s for the gauge couplings in the MSSM.

Recall that the one-loop β function for the non-supersymmetric YM coupling

(with t = log µ, where µ is the momentum scale) reads:

8π2dg
2

dt
=

(
−11

3
C2(G) +

2

3

∑

i

T (Ri) +
1

3

∑

α

T (Rα)

)
g4 (2.43)

Here C2(G) is the quadratic Casimir invariant of the gauge group G, which

reads C2(G) = N for non-Abelian gauge group G = SU(N) and vanishes for

Abelian gauge group U(1). T (Ri) and T (Rα) are trace invariants from the chi-

ral fermions in the representation Ri and complex scalars in the representation

Rα. In SM/MSSM case, matter fields are either in the fundamental represen-

tation of the non-Abelian gauge group or charged under the U(1)Y . Hence

T (R) = 1/2 for the non-Abelian fundamental representation, or T (R) = Y 2/4

for the U(1)Y charges.

The one-loop β function for the SYM (coupled with chiral matters) cou-

pling is simply obtained from the above (2.43) by the fact that fields within a

chiral supermultiplet (φ, ψ) and fields within vector multiplets (λα, Aµ) are in

the same representation. For the vector multiplet, its components are in the

adjoint representation of the G in particular. Therefore, one simply takes the

contribution from the chiral fermion into the gauge sector and complex scalars

respectively. Hence the one-loop β function for the SYM coupling reads:
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Figure 2.1: Gauge coupling constant evolution for the SM (dashed lines) and
the MSSM (double solid lines). Two-loop effects are included.

8π2dg
2

dt
=

(
−3C2(G) +

∑

α

T (Rα)

)
g4 ≡ b(1)g4 (2.44)

where one sums over all chiral matter multiplets in the trace invariants. Its

solution is then simply:

g2(Q) = g2(Q0)

(
1− 1

8π2
b(1)g2(Q0) log

Q

Q0

)−1

(2.45)

For the MSSM with G = SU(3)c×SU(2)L×U(1)Y , we can easily give the one-

loop coefficients2: b(1)(g2
s) = −3, b(1)(g2) = 1, and b(1)(g′2) = 11. In compari-

son, the one-loop β coefficients for the SM read: b(1)(g2
s) = −7, b(1)(g2) = −19

6
,

and b(1)(g′2) = 41
6

. One remarkable feature of the MSSM gauge coupling RGE’s

is that they demonstrate the gauge coupling unification. Using the (1.19) as

the boundary conditions for the set of one-loop gauge coupling RGE’s (2.45),

one gets the following gauge coupling evolutions for the Standard Model case

and the MSSM case respectively (2.1).

Notice that the U(1) coupling appearing in the Fig. (2.1) is g1 =
√

5
3
g′.

2Explicit computation of the one-loop β coefficients for the MSSM is: b(1)(g2
s) = −3 ×

3 + 1
2 × 2× 6 = −3, b(1)(g2) = −3× 2 + 1

2 × (4× 3 + 2) = 1, and b(1)(g′2) = 1
4 (( 1

9 × 2 + 16
9 +

4
9 )× 3 + 2 + 4)× 3 + 1

4 × 4 = 11.
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This is natural in the context of a grand unified theory. The MSSM prediction

of gauge coupling unification happens at MU ' 2×1016 GeV, where the unified

gauge coupling is α2
GUT ' 0.041.

The one-loop RGE’s for the gaugino masses simply read:

d(Mα/g
2
α)

dt
= 0 (2.46)

with α denoting different subgroups of the MSSM. This means that the gaugino

masses roughly evolve with the gauge coupling evolution. Assuming a universal

gaugino mass input at the MU as in the mSUGRA case to be discussed later,

one easily gets the following gaugino mass relation at the MZ scale with the

(1.19):

M1 : M2 : M3 ≈ 1 : 2 : 7 (2.47)

One should have other RGE’s for the general soft SUSY breaking param-

eters, e.g. the sfermion soft masses, the trilinear couplings, the Yukawa cou-

plings, and so on. Their RGE’s are presented in the Ref. [11].

2.5 Flavor Constraints for The MSSM

In this section, we shall mention the flavor constraint for the MSSM in gen-

eral. The expressions (2.8) and (2.9) imply complicated flavor structure for

the sfermions. As one diagonalizes them to get the mass eigenstates, one gets

sfermion mixings. Such mixings would generically introduce new contributions

to the flavor-changing neutral current (FCNC) processes. In other words, var-

ious FCNC processes give constraints to the MSSM parameters. For example,

the dominant supersymmetric contribution [16] of gluino box to the ∆S = 2

K0 −K0
mixing amplitude is proportional to :

25



g4
s

m̃6
|
∑

i

U d̃
diU

d̃†
is ∆m2

d̃
|2 (2.48)

where m̃ = Max(mq̃,mg̃), and U ’s are elements from the mixing matrix for

the down-type sfermions. In a simple two-generation version of the Standard

Model, the contribution to the K0 −K0
mixing amplitude reads:

g4 sin2 θc cos2 θc
m4
W

(mc −mu)
2 (2.49)

where θc is the Cabbibo mixing angle. This exhibits the Glashow-Iliopoulos-

Maiani (GIM) suppression to this flavor-changing neutral current process. This

generalizes in the full three-generation version of the Standard Model, and the

resulting prediction for K0−K0
mixing agrees with experiments well (to within

the uncertainties inherent in the estimate of the hadronic matrix element of

the relevant four-quark operator). Therefore, it is natural to require the (2.48)

amplitude to be smaller than the (2.49), which leads to:

|
∑

U d̃
diU

d̃†
is

∆m2

m̃2
| < g2 sin2 θc cos2 θc

g2
s

(mc −mu)m̃

m2
W

(2.50)

Using the (1.19), sin θc = 0.22, mW = 80.4 GeV and mc = 1.3 GeV, one gets

the following constraint:

|
∑

U d̃
diU

d̃†
is

∆m2

m̃2
| . 9.8× 10−4 m̃

100 GeV
(2.51)

In a more predictive theory from the ultraviolet, such SUSY contributions

to the FCNC processes should be suppressed adequately. The suppression can

be achieved in several ways. As is evident from the (2.51), a direct method is to

take the overall squark masses much larger than the gaugino and Higgs masses,

say m̃ & 1 TeV. This kind of “brute force” solution can appear for special
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parameter values in gravity-mediated SUSY-breaking models, which are called

the focus point models [23]. Sometimes models of this class are referred as more

minimal superysmmetry, since the first two generation sfermions decouple from

the accessible energy scale of the LHC. The other possibility is to assume the

off-diagonal components of U d̃
ji are extremely small, say . 10−3. A third

possibility is that a high degeneracy among sfermions exists to make the ∆m2
d̃

very small. This implies that some generation symmetry besides of the gauge

symmetries is needed for this to happen. Such a possibility is quite natural in

the framework of the gauge-mediation SUSY-breaking models3 where the scale

of flavor symmetry breaking is presumably above the SUSY-breaking scale4.

3The gauge-mediation SUSY breaking (GMSB) is reviewed on Ref. [17] and other
references therein. The minimal GMSB [18] contains only five free parameters, and more
general GMSB [19] scenario gives more possibilities to the spectrum.

4In the gauge-mediation, the SUSY breaking scale is typically ΛS ∼ 103 − 104 TeV;
while it becomes about 107 − 108 TeV in the gravity-mediation models.
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Chapter 3

SUSY and Higgs Signatures

Implied by Cancellations in

b→ sγ

In this chapter we discuss a recent re-evaluation of the Standard Model con-

tribution to Br(b→ sγ) which hints at a positive correction from new physics.

It is found that under the HFAG (Heavy Flavor Averaging Group) constraints

and with re-evaluated Standard Model results, large cancellations between the

charged Higgs and the chargino contributions in supersymmetric models occur.

Such cancellations then correlate the charged Higgs and the chargino masses,

often implying both are light. Inclusion of the more recent evaluation of gµ−2

is also considered. The combined constraints imply the existence of several

light sparticles. Signatures arising from these light sparticles are investigated

and the analysis indicates the possibility of their early discovery at the LHC

in a significant part of the parameter space. We also show that for certain re-

stricted regions of the parameter space, such as for very large tan β under the

1σ HFAG constraints, the signatures from Higgs production supersede those

from sparticle production and may become the primary signatures for the dis-

covery of supersymmetry. The main results presented here were published in

Ref. [47] co-authored with Dr. Daniel Feldman, Dr. Zuowei Liu and Prof.

Pran Nath.
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3.1 Introduction and Analysis

Recently a re-evaluation of the Standard Model result for the branching ratio

for the flavor changing neutral current (FCNC) process b → sγ including

NNLO corrections in QCD has been given [73]; this is Br(b → sγ) = (3.15 ±
0.23) × 10−4. Here, b → sγ means the sum of inclusive decays of the form

Bs → Xsγ, where Xs denotes a final state with strangeness S = −1. This new

estimate lies lower than the current experimental value which is given by the

Heavy Flavor Averaging Group (HFAG) [74] along with the BABAR, Belle and

CLEO experimental results: Br(B → Xsγ) = (352±23±9)×10−6. The above

result hints at a positive contribution to this process arising from new physics.

It is known from the early days that the experimental value of the branching

ratio b→ sγ is a very strong constraint on the parameter space of most classes

of SUSY models [75, 76] (for more recent theoretical evaluations of Br(b→ sγ)

in supersymmetry see [77]). A positive contribution to Br(b → sγ) suggests

either the existence of a light charged Higgs exchange, which always gives a

positive contribution [78], or the existence of a light chargino, which can give

either a positive or a negative contribution [79]. A significant cancellation

between the charged Higgs loop contribution and the chargino contribution

implies that individual contributions from the charged Higgs loops and the

gaugino loops are generically larger than their sum. Such cancellations then

necessarily imply that some of the sparticles that enter in the supersymmetric

contributions to the FCNC loops must be relatively light and thus should be

accessible in early runs at the LHC.

In addition to the above, recently the difference between experiment and

the standard model prediction of the anomalous magnetic moment of the

muon, aµ = (gµ − 2)/2, seem to converge [80] towards roughly a 3σ devia-

tion from the SM value. Thus the most recent analysis gives δaµ = aexpµ −aSMµ
as [80] δaµ = (24.6± 8.0)× 10−10. It is well known that supersymmetric elec-

troweak contributions to gµ − 2 can be as large or larger than the Standard

Model electroweak corrections [81]. Further, a large deviation of gµ − 2 from

the Standard Model is a harbinger [82], for the observation of low lying sparti-

cles [83? , 84] at colliders with the experimental data putting upper limits on
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some of the sparticle masses in SUGRA models [83]. The positive correction

to b → sγ which is of size (1 − 1.5)σ together with the 3σ level deviation of

gµ − 2 from the Standard Model value points to the existence of some of the

sparticles being light.

In this work we investigate the implications of the revised constraints in

the framework of supergravity grand unified models [20, 21] following the

analysis of [24, 40] with the parameter space characterized by parameters

m0,m1/2, A0, tan β, sign(µ) where for Monte Carlo simulations we have as-

sumed the following range: m0 < 4 TeV, m1/2 < 2 TeV, |A0/m0| < 10, and

1 < tan β < 60 with µ > 0 for three million candidate models. For the purpose

of selecting viable models from the large scan, we impose the following set of

constraints: (conservative bounds are given here to illustrate the constrain-

ing effects and also to account for experimental and theoretical uncertainties)

(i) The 5-year WMAP data constrains the relic density of dark matter so

that ΩDMh
2 = 0.1131 ± 0.0034 [87]. The bound 0.0855 < Ωχ̃0

1
h2 < 0.1189 is

taken; (ii) A 3 σ constraint for b → sγ is taken around the HFAG value (a

stricter constraint will be considered later); (iii) The 95% (90%) C.L. limit

reported by CDF in Br(Bs → µ+µ−) is 5.8 × 10−8 (4.7 × 10−8) [71] (we take

Br(Bs → µ+µ−) < 10−6); (iv) δaµ ∈ (−5.7, 47) × 10−10 is taken as in [72]

(a stricter limit on δaµ will be discussed in the last section); (v) The fol-

lowing mass limits on light Higgs boson mass and on sparticle masses are

imposed: mh > 100 GeV, (the current data sets limits for the MSSM case

of mh > 93 GeV at 95% C.L. [63]) mχ̃±1
> 104.5 GeV, mt̃1 > 101.5 GeV,

mτ̃1 > 98.8 GeV. For the calculations of the relic density of χ̃0
1, we use Mi-

crOMEGAs [56] with sparticle and Higgs masses calculated by the RGE pack-

age SuSpect [54]. Evaluation of the branching ratio b → sγ has been carried

out with both MicrOMEGAs and SusyBSG [58]. The models that pass the

above constraints are exhibited in Fig.(3.1).
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Figure 3.1: Left: Correlation of Br(Bs → µ+µ−) and Br(b → sγ) for models
surviving the constraints. Right: Charged Higgs loop contribution vs the
chargino loop contribution to the b→ sγ.

3.2 Cancellation of Charged Higgs and Chargino

Loop Contributions to Br(b→ sγ)

We discuss now in further detail the cancellation between the charged Higgs

and the chargino loop contributions in the process b→ sγ and the implications

of this cancellation, which may point to a light charged Higgs mass. The

effective interaction that controls the b→ sγ decay is given by:

Heff = −2
√

2GFV
∗
tsVtb

8∑

i=1

Ci(Q)Oi(Q), (3.1)

where Vts, Vtb are the CKM matrix elements, Oi(Q) are the effective dimension

six operators and Ci(Q) are the Wilson coefficients and Q is the renormaliza-

tion group scale. The b→ sγ receives contributions only from C2, C7, C8 where

the corresponding operators are:
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O2 = (c̄Lγ
µbL)(s̄LγµcL)

O7 = (e/16π2)mb(s̄Lσ
µνbR)Fµν

O8 = (gs/16π2)mb(s̄Lσ
µνT abR)Ga

µν (3.2)

The dominant contribution arises from C7, where C7(mb) is given by:

C
(0)
7 (mb) = η16/23C7(MW ) +

8

3
(η16/23 − η14/23)C8(MW ) + C (3.3)

where η = αs(MW )/αs(Qb) and C (' .175) arises from operator mixing. Now

C7,8 contain the Standard Model and new physics contributions so that:

C7,8(MW ) = CW
7,8(MW ) + CH

7,8(MW ) + Cχ
7,8(MW ) (3.4)

Here CW
7,8 is the standard model contribution arising from the W boson ex-

change, CH
7,8 is the supersymmetric contribution from the charged Higgs ex-

change and Cχ
7,8 is the contribution from the chargino exchange. In addition to

the constraints on models arising from the Br(b → sγ) experiment, there are

also constraints from the Br(Bs → µ+µ−) experiment. In the left panel of Fig.

(3.1) we display the theoretical predictions in the Br(Bs → µ+µ−)−Br(b→ sγ)

plane, where the 1σ, 2σ, 3σ corridors around the HFAG value of Br(b → sγ)

are also exhibited. The analysis of the left panel Fig. (3.1) exhibits that the

parameter space gets reduced in a significant way as the Br(b → sγ) con-

straint becomes more stringent. We now note that the sign of the chargino

contribution Cχ
7,8 has a very dramatic effect on the size of the supersymmet-

ric contribution. A positive contribution would add constructively with the

charged Higgs contribution CH
7,8 while a negative contribution cancels partially

the charged Higgs contribution reducing significantly the overall size. A nu-

merical analysis shows that essentially for all the model points that lie in the

3σ corridor around the HFAG value the chargino contribution is negative and
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Figure 3.2: Left: Correlation of Br(Bs → µ+µ−) and Br(b → sγ) for models
surviving the constraints. Right: Charged Higgs loop contribution vs the
chargino loop contribution to the b→ sγ.

often large resulting in large cancellations. We exhibit this in the right panel

of Fig.(3.1). One finds that a majority of the models are clustered around

the standard model prediction of the b → sγ. As discussed above this is a

consequence of the cancellation between the charged Higgs and the chargino

loop diagrams.

In the cancellations discussed above, the individual contributions from the

charged Higgs loop and from the chargino loop are often much larger than the

total SUSY contribution as exhibited in the right panel of Fig. (3.1). This

implies that some of the sparticle spectrum must be light to allow for such

large individual contributions in the branching ratio b → sγ. The above also

indicates that if the chargino is light, then correspondingly the charged Higgs

must be correspondingly light to generate a large compensating contribution.

So the cancellation phenomenon then strongly correlates the charged Higgs

mass and the chargino mass in the region of large cancellations, i.e., in the

region where the magnitude of the loop contributions from the chargino and

from the charged Higgs are individually multiples of their sum.

An illustration of the correlation between the charged Higgs mass and
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Figure 3.3: A display of the contributions from the charged Higgs loop, the
chargino loop (and also other gaugino loops), and the total effect beyond the
Standard Model.

Br(b → sγ) is given in the left panel of Fig. (3.2) in 1σ, 2σ, 3σ corridors

around the HFAG value. The analysis shows that a more stringent Br(b →
sγ) constraint typically leads to a lighter charged Higgs mass. Further, as

stated earlier the cancellation phenomenon also correlates the chargino mass

to the charged Higgs mass. This is illustrated the right panel of Fig. (3.2).

Specifically, here one finds that for the model points within HFAG 1σ, a light

charged Higgs mass often requires a light chargino to cancel the loop. So

one expects to have light Higgs and a light chargino with comparable sizes.

The cancellation between the charged Higgs contribution and the chargino

contribution is also shown in Fig. (3.3) where the models with charged Higgs

mass below 2 TeV are plotted. The charged Higgs contribution increases

with decreasing charged Higgs mass, which forces the chargino contribution to

increase in magnitude with decreasing charged Higgs mass in order that the

total effect is consistent with the HFAG constraints. We note that in the Two

Higgs Doublet Model (THDM), the charged Higgs mass is also constrained

from below, since there is no gaugino contributions to cancel the large positive
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Figure 3.4: Br(b→ sγ) vs tan β for the mass patterns mSP1 and mSP5. The
analysis of the figure shows that the 1σ b → sγ constraint selects models in
distinct regions of tan β: (i) a region of low tan β where the allowed models
are mostly of type mSP5, and (ii) a region of large tan β where the allowed
models are mostly of type mSP1.

contribution from the light charged Higgs. Thus, under the same constraints,

the allowed charged Higgs mass can be much smaller in SUGRA models with

a MSSM spectrum than in the THDM. We also note that the Br(Bs → µ+µ−)

constraint becomes important for the MSSM with large tan β. The current

experimental limit imposes a lower bound on the Higgs mass for models with

large tan β.

A display of the Br(b→ sγ) vs tan β for mSP1 and mSP5 models1 is given

in Fig. (3.4) and the models that pass the 1σ corridor cut on Br(b → sγ)

around the experimental value are shown. One finds that in the region of the

1σ HFAG corridor, the models from mSP1 where the lighter chargino is the

NLSP have large tan β values around 50, while the models from mSP5 where

the lighter stau is the NLSP has much smaller tan β values. We therefore

collectively refer to models that reside in the tan β region where tan β < 40 as

low and high tan β models, “LH tan β models”. We segregate these LH models

from those in which tan β ≥ 40 denoting these as very high tan β models, “VH

tan β models”, for all the models that fall within the 1σ corridor around the

1mSPs are supergravity mass hierarchies as defined in earlier works [24], where
(mSP1,mSP5) have a (chargino, stau) NLSP respectively.
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Figure 3.5: Total SUSY signatures at
√
s = 14 TeV analyzed with the SUSY

detector cuts.

HFAG value. We do so for all the different mass hierarchical patterns with

mSP1 and mSP5 serving as illustrative examples. Typically the “LH tan β

models” are the ones in which the stau, the stop, or the gluino can be light,

while the “VH tan β models” are the ones where the chargino, or the Higgs

is the next heavier particle than the LSP. Some implications of the updated

constraints on Higgs masses are also given in [64–66].

3.3 Production and Signatures of Sparticles

In the following, we focus our analysis on the models that are favored by the

b → sγ constraint, namely, models that fall within a 1σ corridor around the

HFAG value. We discuss here the signatures of the 2 to 2 SUSY processes. In

the analysis we use SuSpect to create a SUSY Les Houches Accord (SLHA)

[57] file which is then used as an input for PYTHIA [51] which computes the

production cross sections and branching fractions, and for PGS [52] which

simulates the LHC detector effects. The Level 1 (L1) trigger cuts based on the

Compact Muon Solenoid detector specifications [59] are employed to analyze

the LHC events. For our analysis of sparticles, we further impose the post

trigger detector cuts as follows: We only select photons, electrons, and muons
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that have transverse momentum PT > 10 GeV and pseudorapidity |η| < 2.4,

taus jets that have PT > 10 GeV and |η| < 2.0, and other hadronic jets that

have PT > 60 GeV and |η| < 3. We also require a large missing energy,

/ET > 200 GeV and at least two jets in an event to further suppress the

Standard Model (SM) background. We will refer this set of cuts as “SUSY

detector cuts” in the following analysis (for other recent works on signature

analysis of SUGRA models see [25]).

We analyze the total number of events arising from the models in a 1σ

corridor around the HFAG results out of the 3σ corridor using the SUSY

detector cuts. The effective SUSY cross sections are then translated from the

total number of events which are exhibited in Fig. (3.5). One finds that the

models with low values of tan β have strong SUSY signals since these models

tend to have a light sparticle spectrum, e.g., a light τ̃1, t̃1 or even g̃. Most of

the LH tan β models discussed above can be probed at the LHC at 100 fb−1

of integrated luminosity. It is found that the HFAG 1σ constraint places a

limit on the chargino mass of about 800 GeV for detectable models. We note

that different models with different mass hierarchical spectra can have distinct

SUSY signatures. For instance, models that have a light τ̃1 are rich in lepton

signals, while models with a light t̃1 tend to produce a high multiplicity of jet

signals. Thus the search strategies for new physics at the LHC for such models

are quite different, and a well designed search technique for every specific model

will surely further improve the discovery reach. Nevertheless, the models that

have low values of tan β have strong SUSY production cross sections, and can

be probed at the LHC. From the SUSY production analysis, one also finds

that most of the VH tan β models have much smaller SUSY cross sections.

3.4 LHC Signatures in Higgs Production

We discuss here the signatures of the Higgs bosons in MSSM (the CP-even

Higgs H0, the CP-odd Higgs A0, and the charged Higgs H±) for the models

that are within the 1σ corridor of the HFAG value. Specially, we are inter-

ested in the parameter region where the tan β value becomes very large. As

discussed previously, the VH tan β models within the 1σ corridor of HFAG
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Figure 3.6: Total MSSM Higgs signatures at
√
s = 14 TeV.

have less promising SUSY signals. However, the Higgs production can be

much enhanced at very high tan β. The dominant processes that lead to the

production of the MSSM Higgs bosons at the LHC for tan β � 1 are the bot-

tom quark annihilation process and the gluon fusion process [26] along with

associated production processes with bottom quarks.

In our analysis, we focus on the hadronic τ and jet production with bottom

quark tagging, since the bb̄ and τ+τ− modes are the dominant decays of the

MSSM Higgs bosons at large tan β. We analyze the opposite sign (OS) di-

tau signature and the 2b-jets signature using the L1 trigger cuts. For the

2b jet signatures, we also require the reconstructed invariant mass of these

two b-tagged jets to be larger than 100 GeV. An analysis of the signatures

for these models reveals the 2τ jet and the 2b jet channels to be two of the

optimal channels for the discovery of the Higgs bosons as shown in Fig. (3.6).

It is found that the HFAG 1σ constraint places a limit on the charged Higgs

mass about 1 TeV for the detectable models which can be probed with L =

100 fb−1 or so at LHC. We note that for the region tan β < 40, one needs much

more luminosity to observe discoverable events from the Higgs production,

and some of the models in this region may be even beyond the LHC reach in

the Higgs production. Thus the VH tan β models are discoverable via Higgs

production modes, while many of them have undetectable signals via sparticles
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productions. Thus the more optimal channels to discover supersymmetry in

these VH tan β models arise from Higgs production signals as they produce

larger event rates than the event rates from SUSY production processes with

R-parity odd particles. The associated production in which the Higgs bosons

are produced along with one or two bottom quarks in the final states can

be very useful for suppressing further the Standard Model background [28–

32, 34, 35]. One example of the associated production with one additional

bottom quark in the final state is given in Fig. (3.9). For the hadronic τ jets

signature, we utilize both the 1-prong and the 3-prong hadronic τ -jets [36] in

our analysis. We note that the leptonic decay modes of the τ lepton and a

combined analysis of leptonic and hadronic decays may yield an even better

discovery reach [37, 38, 60].

3.5 Complementarity of Signatures from Spar-

ticle Decays and from Higgs Decays

Before discussing the issue of complementarity we discuss first the more strin-

gent constraints arising from the recent revised analyses of gµ−2 which seem to

converge [80] towards a 3σ deviation from the Standard Model value. Fig.(3.7)

illustrates a 2σ corridor around the central values of δaµ and of the HFAG value

of Br(b → sγ). The analysis of Fig.(3.7) shows that the parameter space of

allowed models is drastically reduced. A model point from the allowed set of

models is discussed in further detail in the context of complementarity below.

Next we point out a complementarity that exists between two main types

of processes in the production and decays of new particles expected at the

LHC. The first of the main types consists of those production processes which

have in their final decay products an even number of massive LSPs (each an

R-parity odd particle). These arise from the production and subsequent decay

of an even number of R parity odd particles (due to R parity conservation)

such as pairs of squarks or gauginos or both at the LHC. These processes are

characterized by a large missing energy since the final states have at least two

or more LSPs, which for the models considered are the lightest neutralinos.
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Figure 3.7: Combined analysis with b → sγ and gµ − 2 constraints. Shaded
regions are the 2σ corridors from both constraints.

Thus here a larger missing transverse momentum is the smoking gun signature

for the SUSY productions.

The second type of processes are those which do not contain pairs of LSPs

and thus there is far less missing energy associated with these events. Such

events are expected to arise from the production of the Higgs bosons where the

dominant decay products are largely bb̄ and τ+τ−. The signals arising from

the Higgs decays typically suffer from a large QCD background, since the /ET

cut technique cannot be employed here which is efficient in suppressing the

background for SUSY production. However, for models with very high tan β,

the Higgs production is enhanced and such model points can yield signals which

can be discriminated from the QCD background. Thus we see that there is a

complementarity between the signatures arising from the production and decay

of the SUSY particles and from the Higgs particles, and this complementarity

is exhibited in Fig.(3.8). Indeed for models with small tan β, /ET continues

to be a dominant signal while for models with very high tan β and within 1σ

corridor of HFAG value of b→ sγ the Higgs production and decay into bb̄ and

τ+τ− can provide signatures which can supersede the signatures from sparticle
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Figure 3.8: A plot of both SUSY signatures and MSSM Higgs signatures for
the models that fall within the 1σ corridor around the HFAG value. The figure
shows complementarity and inversion.

production for the discovery of supersymmetry at the LHC.

A more detailed signal analysis on SUSY production and on Higgs produc-

tion is given in Fig.(3.9). In the left panel of Fig.(3.9), the model considered is

the one where stau is the NLSP and it shows a strong SUSY production signal

which is rich in lepton final states. The lightest sparticles in this model besides

the LSP are τ̃ , ˜̀
R, so in the cascade decays of heavier gauginos, these sleptons

can appear in the intermediate steps, for instance, χ̃0
2 decays predominantly

via BR(τ̃ τ) ∼ 70% and BR(˜̀
R`) ∼ 20%. The produced sleptons further decay

into the LSP plus one lepton. Thus the reconstruction of the di-lepton events

indicate the mass relations between the gauginos in the cascade decay chain

due to the /ET carried away by the LSP. In contrast, the invariant mass of the

b-tagged jets from the Higgs production gives rise to a resonance which points

to the actual value of the Higgs boson mass as exhibited by the right panel of

Fig.(3.9). As stated in the caption of Fig. (3.9) the cuts used in the left panel

are the SUSY detector cuts. The right panel of Fig.(3.9) is analyzed with the

standard L1 trigger cuts in PGS. The background in the left panel of Fig.(3.9)

is suppressed by using flavor subtraction in reconstructing the dilepton events.

For the right panel, the background is suppressed by reconstructing the two
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Figure 3.9: Invariant mass distributions for SUSY and Higgs productions for
two different models: (m0, m1/2, A0, tan β, sign(µ))=(70.4, 243.2, 685.6, 11,
1) (left panel); (1533.8, 216.4, 1750.3, 53.8, 1) (right panel) where all masses
are in GeV. Left: The opposite sign di-lepton with flavor subtraction (e+e−+
µ+µ− − e+µ− − µ+e−), for the model that fall within 1σ for both b → sγ
and gµ − 2 constraints. In this model, Mχ̃0

1
= 93 GeV and Mχ̃0

2
= 168 GeV.

The ending edge of the distribution indicates the mass difference (Mχ̃0
2
−Mχ̃0

1
).

Analysis is done with SUSY detector cuts. Shaded regions are the background
NSM. Right: Reconstruction of the two hardest b-tagged jets in 3 b-jets events
of Higgs productions for the model that satisfies the HFAG 1σ. The peak
indicates the position of the Higgs boson mass. L1 trigger cuts are employed.
Shaded regions are the background

√
NSM.

hardest b-tagged jets in the 3b events which can arise in the associated pro-

duction modes of Higgs bosons. The associated production where the Higgs

bosons are produced along with additional b-tagged jets is instrumental in

suppressing the background.
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Chapter 4

LHC Signals for

Gravity-mediation Models

The MSSM itself has more than one hundred free parameters, hence it cannot

be predictive. In addition, the MSSM spectrum contains 32 masses including

all R-parity odd sparticles and the MSSM Higgs bosons. With Stirling’s for-

mula [n! ∼
√

2πn(n/e)n], one would get more than O(1033) possibilities for the

MSSM hierarchical patterns. To reduce this huge number of possibilities for

the real phenomenological study, one is motivated to take the MSSM as a low-

energy effective theory from some UV-complete theory, e.g., the supergravity-

mediation theory as we have discussed in the previous chapter. Second, one

should consider the experimental constraints on MSSM models, which will re-

strict our choice of parameters in the SUGRA models. In addition, one only

needs to classify all MSSM models in terms of the mass hierarchies for several

light sparticles from the collider signature point of view. Because the pro-

duction of the light sparticles is relatively easy at the LHC, their signatures

can be characteristic depending on their decay chains. A number of studies

of SUGRA models have been carried out over the past 30 years, including

pioneering studies by P. Nath and coworkers [20]. Our discussion here and

below involves new results that we have published, with D. Feldman, Z. Liu,

P. Nath, G. Peim and coauthors, in Refs. [49] [50]. Other recent work on this

topic include: [24] [40] [41] [42] [44] [46].
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We devote this chapter to a discussion of sparticle properties based upon

the SUGRA-mediation models. We will start with mSUGRA models and an-

alyze their collider signatures with various experimental constraints imposed.

Then we will also discuss the LHC early discovery prospect for a class of non-

universal SUGRA models (NUSUGRA)1 in the gaugino sector. We will be

particularly interested in models with low-mass gluinos2 in contrast to the

mSUGRA models.

4.1 mSUGRA Models

The mSUGRA models are the simplest to study since one only needs four soft

SUSY parameters at the GUT scale MU ' 2 × 1016 GeV, as indicated from

the Appendix (B):

M0 M1/2 A0 tan β sgn(µ) (4.1)

Generically, the (M0,M1/2) set scales for the sfermion masses and the gaug-

ino masses respectively. Usually scans over the parameter space are performed

by taking a vanishing trilinear coupling, and/or by fixing the values of tan β

while varying (M0,M1/2). In what follows, we shall take a large random scan

over the 4-D mSUGRA parameter space within the following region:

0 < M0 < 4 TeV 0 < M1/2 < 2 TeV

|A0/M0| < 10 1 < tan β < 60 (4.2)

Here we shall take models with µ > 0 in particular. The other case of µ < 0 is

discussed on the Ref. [40]. This scan is done with the MicrOMEGAs version

1In general, “NUSUGRA” refers to any SUGRA-mediation models with more soft pa-
rameter inputs at the GUT scale. Throughout this thesis, we restrict our discussion to the
non-universality in the gaugino sector only.

2By “low-mass gluinos”, as discussed in the thesis, we mean gluinos with mass of several
hundred GeV. These are still heavier than the lightest neutralino so that no color/charge
breaking vacuum is present.
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2.4 [56], whose default RGE code to obtain the sparticle spectrum is SuSpect

2.34 [54].

4.1.1 Model classification

By an extensive scan over the mSUGRA parameter space (4.2), one noticed

that the possible next-to-lightest sparticles can have four possibilities in the

mSUGRA scenario; indicating masses by the corresponding sparticle symbols,

these possibilities are χ̃±1 ∼ χ̃0
2, τ̃1, t̃1, or A0 ∼ H0. A more detailed classi-

fication is to find the four lightest sparticles in the MSSM spectrum in the

following Table (4.1) [24].

Pattern Class mSP Mass Pattern
CP mSP1 χ̃0

1 < χ̃±1 < χ̃0
2 < χ̃0

3

mSP2 χ̃0
1 < χ̃±1 < χ̃0

2 < A/H
mSP3 χ̃0

1 < χ̃±1 < χ̃0
2 < τ̃1

mSP4 χ̃0
1 < χ̃±1 < χ̃0

2 < g̃

SUP mSP5 χ̃0
1 < τ̃1 < l̃R < ν̃τ

mSP6 χ̃0
1 < τ̃1 < χ̃±1 < χ̃0

2

mSP7 χ̃0
1 < τ̃1 < l̃R < χ̃±1

mSP8 χ̃0
1 < τ̃1 < A/H

mSP9 χ̃0
1 < τ̃1 < l̃R < A/H

mSP10 χ̃0
1 < τ̃1 < t̃1 < l̃R

SOP mSP11 χ̃0
1 < t̃1 < χ̃±1 < χ̃0

2

mSP12 χ̃0
1 < t̃1 < τ̃1 < χ̃±1

mSP13 χ̃0
1 < t̃1 < τ̃1 < l̃R

HP mSP14 χ̃0
1 < A/H < H±

mSP15 χ̃0
1 < A/H < χ̃±1

mSP16 χ̃0
1 < A/H < τ̃1

Table 4.1: Hierarchical mass patterns for the four lightest sparticles in
mSUGRA for µ > 0. The sparticle patterns are defined according to their
NLSP’s, including Chargino patterns (CP), Stau patterns (SUP), Stop pat-
terns (SOP), and Higgs patterns (HP). The patterns marked in red are the
dominant ones in each pattern class.

45



4.1.2 Experimental constraints

Now we list the relevant constraints from the collider experiments and astro-

physical observations.

• The Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data

[87] gives ΩDMh
2 = 0.1109± 0.0056. Assuming that the relic abundance

is solely due to the lightest supersymmetric particle (LSP) χ̃0
1, this con-

straints yields a narrow band of reasonable models. However, we shall

only take a conservative upper bound as Ωχ̃0
1
h2 < 0.13 (corresponding

to ∼ 3.4σ deviation) to take account of both experimental uncertainties

and other possible dark matter contributions. Among all experimental

constraints, this requirement from the dark matter relic density is the

most stringent one, which is typically satisfied in less than 1% of models

from a random scan. We will review the dark matter relic density in the

context of SUGRA-mediation models in the following chapter.

• The Bs → µ+µ− will be significant for large tan β region, since the

decay has a leading tan6 β dependence [15]. This limit has been updated

to Br(Bs → µ+µ−) < 5.8 × 10−8 [71] by the CDF-II detector with
√
s = 1.96 TeV and 2 fb−1 of integrated luminosity.

• The sparticle loop exchange can make a contribution to the FCNC pro-

cess of b → sγ also. The value of Br(B → Xsγ) inferred from B de-

cay data (as discussed by the Heavy Flavor Averaging Group, HFAG)

[74] is above the NNLO evaluation of the Standard Model contribution

[73]. Taking a 3σ corridor, we allow the models to have Br(b → sγ) ∈
(2.77− 4.27)× 10−4.

• We shall impose lower bounds on masses of several light sparticles. The

Standard Model Higgs boson is known to be excluded below ≈ 115 GeV

by LEP data, and there is also an excluded interval of Higgs masses in the

higher interval 158 GeV < mH < 175 GeV established by the CDF and

D0 experiments at the Fermilab Tevatron [67]. The mass limit on the

lightest MSSM Higgs is mh > 93 GeV at 95% C. L. [63]. Other sparticle
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Figure 4.1: The dispersion of mSPs in mSUGRA (µ > 0) in the tan β vs
A0/M0 plane (left panel), and in the M0 vs M1/2 plane (right-panel).

mass lower bounds applied are: mχ̃±1
> 104.5 GeV, mt̃1 > 101.5 GeV,

and mτ̃1 > 98.8 GeV.

4.1.3 Sparticle patterns

It is interesting to see if the patterns can be traced back to some specific

regions of the parameter of soft-breaking. The analysis illustrating the origin

of the patterns in the mSUGRA parameter space is given on Fig. (4.1).

Several observations can be made about the soft-parameter distributions.

For example, most mSP1 models lie in the region of |A0/M0| . 2 and corre-

spond to the Hyperbolic branch (HB)/ Focus Point (FP) regions [23]. Also,

models with NLSP being the third generational sfermions τ̃1 (e.g., mSP5 and

mSP6) or t̃1 (e.g., mSP11) are located at regions with large |A0/M0|, which is

due to the large off-diagonal mixing terms as seen from (2.41). On the right

panel of Fig. (4.1), one can see that the models with NLSP being τ̃1 or t̃1 are

in the region with smaller M0.
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4.1.4 Updated LHC 7 TeV implication

The CMS [68] and ATLAS [69] [70] Collaborations have recently reported

on the search for mSUGRA with 35 pb−1 of data and have put independent

limits on the parameter space of the mSUGRA models. Both analyses were

performed with fixed A0 = 0 and tan β = 3. The ATLAS analysis produces

a reach more stringent than the one from the CMS, hence the ATLAS results

will be taken as our constraint. Here we shall extend this study by examining

other regions of the mSUGRA parameter space in A0 and tan β. This section

contains results from [50], currently in press, coauthored with S. Akula, D.

Feldman, M. Liu, Z. Liu, Prof. P. Nath, and G. Peim. Specifically, we found

that a significant part of the parameter space excluded by CMS and ATLAS

is essentially already excluded by the indirect constraints. We also found

that models with gluino masses as low as 400 GeV but for Mq̃ � Mg̃ remain

unconstrained.

The ATLAS collaboration has released two analyses, one with 1 lepton [69]

and the other with 0 lepton [70]. For the 1 lepton analysis, we shall list the

pre-selection requirements:

• For any jet, pT > 20 GeV and |η| < 2.5; electrons must have pT >

20 GeV3 and |η| < 2.47 and muons must have pT > 20 GeV and |η| < 2.4.

We further veto electrons in the electromagnetic calorimeter transition

region 1.37 < |η| < 1.52.

• An event is considered if it has a single lepton with pT > 20 GeV and

its three hardest jets have pT > 30 GeV, with the leading jet having

pT > 60 GeV.

• The distance4 between each jet with the lepton should satisfy ∆R(ji, `) >

0.4. An event is rejected if ∆φ(ji, /ET ) > 0.2 with i = 1, 2, 3.

Following the framework of the ATLAS Collaboration we have carried out a

set of three parameter sweeps in theM0−M1/2 plane takingM0 ≤ 500 GeV and

3In the 0 lepton ATLAS analysis, leptons are identified to have pT > 10 GeV instead.
4The distance on the η − φ plane is defined as ∆R ≡

√
(∆η)2 + (∆φ)2.
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Figure 4.2: Left: Reach plot with Ltot = 35 pb−1 data using the ATLAS
1 lepton cuts with different (A0, tan β): (A0, tan β) = (0, 3) (dashed line);
(A0, tan β) = (0, 45) (solid green line); (A0, tan β) = (2M0, 45) (solid red line).
For comparison we give the ATLAS observed limit (A0, tan β) = (0, 3) (solid
blue line). Right: Reach plot with Ltot = 35 pb−1 data using the ATLAS 0
lepton cuts. For comparison we give the ATLAS observed limit (red dashed
line).

M0 ≤ 1 TeV. Each of the parameter sets has (A0, tan β) being (0, 3), (0, 45)

and (2M0, 45). Throughout the analysis we also take µ > 0 and mpole
t =

173.1 GeV. A comparison of our reach to the reach done by the ATLAS

Collaboration is shown in Fig (4.2).

In the analysis of the reach plots, other experimental constraints from

collider, flavor and astrophysics were not imposed beyond those arising from

the ATLAS analyses. Next we include these constraints in our analysis when

all four mSUGRA parameters M0, M1/2, A0, and tan β are varied. These

constraints are the same as the constraints we listed in the subsection (4.1.2),

where the Br(b→ sγ) is taken within the 3σ corridor of (2.77− 4.27)× 10−4.

The effects of these sets of constraints are explicitly shown on Fig (4.3). As

was pointed out in Ref [46] and also shown on Fig (4.3), the models with low

mass gluinos (as low as even 420 GeV in mSUGRA) are allowed for the region

with large M0, where the relic density can be satisfied on the light CP even

Higgs pole. Along the Higgs pole region, the electroweak symmetry breaking

can also be natural, i.e., one has a small µ.
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Figure 4.3: (color online) Upper left panel: An exhibition of the allowed mod-
els indicated by grey (dark) dots in the m0−m1/2 plane when only flavor and
collider constraints are imposed. The region excluded by ATLAS (as well as
CMS) lies below the thick black curve in the left hand corner. Upper right
panel: same as the left upper panel except that only an upper bound on relic
density of Ωh2 ≤ 0.13 is imposed. Lower left panel: Same as the upper left
panel except that the relic density constraint as in the upper right panel is
also applied. This panel exhibits that most of the parameter space excluded by
ATLAS is already excluded by the collider/flavor and relic density constraints.
The dark region below the ATLAS curve is the extra region excluded by AT-
LAS which was not previously excluded by the indirect constraints. Lower
right panel: The analysis of this figure is similar to the lower left panel except
that models with |µ| < 500 GeV are exhibited in green.
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4.2 Non-Universal SUGRA Models

In this section, we extend our discussion of sparticle mass spectra into NUSUGRA

models. We include results that have been published in [49] [50]. As was clear

from our discussion on the gaugino masses in the SUGRA-mediation models,

the property of universality of the gaugino masses is a simplification. With

such an assumption, one would get a well-known gaugino mass ratio in the

MZ scale (2.47). However, this assumption can certainly be generalized. Our

discussion here will focus on models with arbitrary M1, M2, and M3 inputs.

4.2.1 Low-mass gluino benchmark models

In particular, we are interested in the region of parameter space which will

be promising in the LHC early run with
√
s = 7 TeV. The favorite models

can be the ones with lighter gluinos other than the ratio predicted from the

mSUGRA (2.47). An early study in the Ref [42] focus on the gluino as the

NLSP (GNLSP) models. Here we extend our consideration such that gluino

masses are within some accessible range in the LHC early run. A case of

interest for LHC analysis is M3(MU) ∈ (100, 300) GeV and this translates into

gluino masses in the range of (350, 750) GeV at the electroweak scale to be

considered. Now we give a broad sample of benchmark models listed in Table

(4.2), where the SUGRA model parameters are at the GUT scale MU . The

sparticle mass hierarchies corresponding to these models are given in Table

(4.3). We shall mention that these models are subject to various dark matter

constraints to be discussed in detail in chapter (5), including relic densities

Ωχ̃0
1
h2 . 0.13, spin-independent WIMP-nucleon cross section subject to the

most recent direct detection results, and indirect detection results by Fermi-

LAT on the gamma ray line. These model should also satisfy the collider

constraints mentioned in the context of mSUGRA. We shall discuss the dark

matter implications for some of the light gluino models in the next chapter.

These benchmark models are intrinsically different in their nature, both

in their sparticle spectra and their dark matter implication. A more detailed

discussion of these benchmark models follows.
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Label Mg̃ m0 M1 M2 M3 A0 tan β
LG1 424 2000 130 130 130 -1000 8
LG2 715 60 300 300 300 -100 8
LG3 386 1400 800 528 132 3000 25
LG4 378 3785 836 508 98 -6713 20
LG5 385 2223 859 843 130 4680 48
LG6 391 1180 860 790 138 2692 42
LG7 442 2919 263 151 138 4206 18
LG8 417 1303 257 152 139 1433 18
LG9 696 1845 327 193 249 1898 13
LG10 365 1500 1600 1080 120 2100 15
LG11 433 605 302 176 161 1781 22
LG12 588 636 419 249 228 1568 37
LG13 684 335 391 466 279 -1036 3
LG14 618 48 289 310 256 -407 6
LG15 602 61 310 351 249 0 9
LG16 343 2200 450 235 100 300 5
LG17 425 3000 400 207 125 0 4

Table 4.2: A sample of low mass gluino models where additionally we take
µ > 0 and mt(pole) = 173.1 GeV. The soft breaking parameters are given at
the high scale of MU ' 2× 1016 GeV. Nonuniversalites in the gaugino sector
Ma=1,2,3 are taken in 15 of the models. All masses in the table are in unit of
GeV.

1. Low mass gluinos in mSUGRA: The possibility that a low mass gluino

and heavy scalars can arise in the radiative breaking of the electroweak sym-

metry (REWSB) in SUGRA models was seen early on [22]. It was later real-

ized that this phenomenon is more general, and the Hyperbolic Branch (HB)

or the Focus Point (FP) region of radiative electroweak symmetry breaking

(REWSB) was discovered where scalars are heavy and gauginos are light [23].

In the analysis of HB/FP models, it was found that the chargino is predom-

inantly the NLSP over a very broad class of soft breaking models. However,

a low mass gluino, around 400 GeV, can arise in minimal supergravity if the

neutralinos annihilate near the Z-pole or near the Higgs poles [92]. Specif-

ically a low mass gluino arises in mSUGRA in the sparticle mass landscape

which was labeled as mSP4 in [24] where the first four sparticles have the mass
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A sample of the sparticle landscape for low mass gluino SUGRA models

Label Mass Pattern Mg̃ Lightest Mq̃

LG1 χ̃0
1 < χ̃±1 < χ̃0

2 < g̃ < χ̃0
3 < χ̃0

4 424 1985

LG2 χ̃0
1 < τ̃1 < ˜̀

R < ν̃τ < ν̃` < ˜̀
L 715 635

LG3 χ̃0
1 < g̃ < χ̃±1 < χ̃0

2 < t̃1 < χ̃0
3 386 1411

LG4 χ̃0
1 < g̃ < χ̃±1 < χ̃0

2 < t̃1 < χ̃0
3 378 3751

LG5 χ̃0
1 < g̃ < χ̃±1 < χ̃0

2 < t̃1 < τ̃1 385 2217
LG6 χ̃0

1 < t̃1 < g̃ < χ̃±1 < χ̃0
2 < χ̃0

3 391 1202
LG7 χ̃0

1 < χ̃±1 < χ̃0
2 < g̃ < χ̃0

3 < χ̃0
4 442 2888

LG8 χ̃0
1 < χ̃±1 < χ̃0

2 < g̃ < χ̃0
3 < χ̃0

4 417 1314
LG9 χ̃0

1 < χ̃±1 < χ̃0
2 < χ̃0

3 < χ̃0
4 < χ̃±2 696 1882

LG10 χ̃0
1 < χ̃±1 < χ̃0

2 < g̃ < χ̃0
3 < t̃1 365 1511

LG11 χ̃0
1 < χ̃±1 . χ̃0

2 < t̃1 < g̃ < b̃1 433 690
LG12 χ̃0

1 < χ̃±1 < χ̃0
2 < τ̃1 < χ̃0

3 < χ̃0
4 588 790

LG13 χ̃0
1 < t̃1 < χ̃±1 < χ̃0

2 < τ̃1 < ˜̀
R 684 677

LG14 χ̃0
1 < τ̃1 < ˜̀

R < ν̃τ < ν̃` < ˜̀
L 618 550

LG15 χ̃0
1 < τ̃1 < ˜̀

R < ν̃τ < ν̃` < χ̃±1 602 536
LG16 χ̃0

1 < χ̃±1 < χ̃0
2 < g̃ < χ̃0

3 < χ̃±2 343 2178
LG17 χ̃0

1 < χ̃±1 < χ̃0
2 < g̃ < χ̃0

3 < χ̃±2 425 2966

Table 4.3: Sparticle mass hierarchies for the low mass gluino models. Listed
are the first six lightest sparticles in the spectra. The lightest squark, shown
in the fourth column, is taken from the first two generations. All masses are
expressed in unit of GeV.

hierarchy as follows:

Model LG1 : χ̃0
1 < χ̃±1 < χ̃0

2 < g̃, Mg̃ = 424 GeV. (4.3)

A very different situation holds for the model point LG2. While the gluino

is still light in this model, lying in the sub-TeV region, it is actually the heaviest

sparticle in the whole sparticle spectrum. Specifically the hierarchy is:

Model LG2 : χ̃0
1 < τ̃1 < ˜̀

R < ν̃τ < . . . < g̃, Mg̃ = 715 GeV. (4.4)

The relic density in the model LG2 is satisfied via coannihilations with the stau
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Low mass gluino models in minimal SUGRA

Label Mh Mχ̃0
1

Mχ̃±1
Mg̃ Z11 Z12 Z13 Z14 σSI

χ̃0
1p

(cm2)

LG1 115 53 104 424 0.993 -0.051 0.103 -0.025 5.4× 10−46

LG2 111 118 220 715 0.990 -0.044 0.127 -0.051 5.2× 10−45

Table 4.4: mSUGRA models of a low mass gluino and a display of some of
the lighter masses within the sparticle mass hierarchies. In model LG1 the
neutralino, the chargino and the gluino are all light while the SUSY scalars
are heavy. This model generates the relic density in the WMAP band via the
annihilation of the neutralinos near the Higgs pole. However, in model LG2
the scalars are also light and the relic density lies in the WMAP band via
coannihilations of the neutralinos with the stau and other light sleptons. All
masses are in GeV.

and with the other sleptons. Since model LG2 has a lighter scalar sparticle

spectrum, it has a larger spin-independent cross section than LG1 by a factor

of about 10.

2. GNLSP models: Such models can lead to a low mass gluino that can be

the NLSP, the NNLSP, etc. The case when the gluino is the NLSP requires

special attention since here the relic density can be satisfied by the neutralino

coannihilations with the gluino, as in the model LG3. This case was discussed

at length in [42]. For the models LG3–LG5 discussed in Table. (4.2) the

sparticle mass hierarchies are given by [42]:

Models (LG3,LG4,LG5) : χ̃0
1 < g̃ < χ̃±1 < χ̃0

2 < t̃1

Mg̃ = (386, 378, 385) GeV (4.5)

Since the gluino coannihilation in the GNLSP model is a relatively new

entry among the ways dark matter originates in the early Universe, we sum-

marize the main features of the relic density calculation here first, before dis-

cussing the relevant features of this class of models that enter in the LHC

signature analysis. Thus, for a GNLSP the relic density depends strongly on

coannihilation effects which are controlled by the Boltzmann factor [91]
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Low mass gluinos in GNLSP models

Label Mh Mχ̃0
1

Mχ̃±1
Mg̃ Z11 Z12 Z13 Z14 σSI

χ̃0
1p

(cm2)

LG3 112 340 429 386 0.997 -0.026 0.067 -0.029 6.3× 10−46

LG4 125 377 454 378 0.999 -0.006 0.021 -0.005 8.4× 10−48

LG5 117 365 660 385 0.999 -0.003 0.039 -0.012 2.1× 10−46

Table 4.5: A display of the lighter sparticle masses within the mass hierarchies,
and other attributes of GNLSP models with low mass gluinos. The mass
splitting between the gluino and neutralino is between ∼ (1 − 50) GeV for
these models. Further details are given in the text. All masses are in GeV.

γi =
neq
i

neq
=

gi(1 + ∆i)
3/2e−∆ix

∑
j gj(1 + ∆j)3/2e−∆jx

, (4.6)

where gi are the degrees of freedom of χi, x = m1/T , and ∆i = (mi−m1)/m1,

with m1 defined as the LSP mass. Thus, for the analysis of the relic density,

the effective annihilation cross section σeff can be written approximately as:

σeff =
∑

i,j

γiγjσij ' σg̃g̃γ
2
g̃ + 2σg̃χ̃0

1
γg̃γχ̃0

1
+ σχ̃0

1χ̃
0
1
γ2
χ̃0

1
' σg̃g̃γ

2
g̃ , (4.7)

where we have used the fact that the gluino annihilation cross sections are usu-

ally much larger than the LSP annihilation even with inclusion of the Boltz-

mann factor and:

σ(g̃g̃ → qq̄) = Eq
πα2

sβ̄

16βs
(3− β2)(3− β̄2) , (4.8)

σ(g̃g̃ → gg) = Eg
3πα2

s

16β2s

{
log

1 + β

1− β
[
21− 6β2 − 3β4

]
− 33β + 17β3

}
,(4.9)

where the non-perturbative corrections to the annihilation cross section can

arise via multiple gluon exchange, giving rise to a Sommerfeld enhancement

factor E. These effects may be approximated by [27]:
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Ej =
Cjπαs
β

[
1− exp

{
−Cjπαs

β

}]−1

, (4.10)

where Cj=g = 1/2(Cj=q = 3/2) for g̃g̃ → gg(g̃g̃ → qq̄). In the above

β =
√

1− 4m2
g̃/s, and β̄ =

√
1− 4m2

q/s. Although the gluino annihilation

cross section σg̃g̃ varies with gluino mass, the Boltzmann suppression factor γg̃

controls the contribution to the σeff so that the relic density of the bino-like

neutralino is consistent with WMAP. We note that the effects of the Som-

merfeld enhancement on the gluino cross sections can increase ∆g̃ by a small

amount for a bino-like LSP ∼ (2− 3)% [33, 42]. Such an increase in the mass

gap between the gluino and the neutralino can potentially enhance the dis-

covery reach of this class of models at the LHC as the mass gap between the

g̃ and χ̃0
1 plays a crucial role in the strength of the LHC signals [42] which

we will discuss in details later. Three GNLSP models are exhibited in Table.

(4.5). Some of their pertinent spectra and other attributes, including their

spin-independent cross sections, are also given in Table. (4.5). It is seen from

this table the neutralino is dominantly a bino. For each of these models gluino

coannihilation dominates the relic density calculations. In the absence of ad-

ditional hidden sector gauge groups (to be discussed in what follows), only

LG3 lies in the WMAP band, while models LG4 and LG5 each have a reduced

relic abundance and reduced mass gaps between g̃ and χ̃0
1.

3. GNNLSP models: Next we consider five models, LG6–LG10, in Table

(4.2) where the gluino is light and in some cases it is the next to next to LSP

(GNNLSP). Specifically the sparticle mass hierarchies are:

Model LG6 : χ̃0
1 < t̃1 < g̃ < χ̃±1 < χ̃0

2, Mg̃ = 391 GeV ,

Model LG7 : χ̃0
1 < χ̃±1 < χ̃0

2 < g̃ < χ̃0
3, Mg̃ = 442 GeV ,

Model LG8 : χ̃0
1 < χ̃±1 < χ̃0

2 < g̃ < χ̃0
3, Mg̃ = 417 GeV ,

Model LG9 : χ̃0
1 < χ̃±1 < χ̃0

2 < χ̃0
3,4 < χ̃±2 < g̃, Mg̃ = 696 GeV ,

Model LG10 : χ̃0
1 < χ̃±1 < χ̃0

2 < g̃ < χ̃0
3 < t̃1, Mg̃ = 365 GeV .(4.11)
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Low mass gluinos including GNNLSP models

Label Mh Mχ̃0
1

Mχ̃±1
Mg̃ Z11 Z12 Z13 Z14 σSI

χ̃0
1p

(cm2)

LG6 109 359 570 391 0.992 -0.020 0.109 -0.064 6.6× 10−45

LG7 119 108 120 442 0.998 -0.049 0.039 -0.006 2.4× 10−47

LG8 112 104 117 417 0.968 -0.202 0.143 -0.041 2.7× 10−45

LG9 115 135 152 696 0.985 -0.136 0.098 -0.030 7.8× 10−46

LG10 112 111 115 365 0.058 -0.075 0.721 -0.686 7.3× 10−45

Table 4.6: The spectrum of low mass sparticles including the GNNLSP mod-
els within the sparticle mass hierarchies, and other attributes of models in
NUSUGRA with a low mass gluino. Model LG6 is a GNNLSP, and mod-
els LG7, LG8, and LG9 are effectively GNNLSP as the chargino and second
heaviest neutralino are roughly mass degenerate. LG10 has a mass splitting
between the chargino and the neutralino of ∼ 5 GeV and is effectively a
GNNLSP model. All masses are in GeV.

Here the NLSP can be t̃1 or χ̃±1 . The specific nature of the neutralino eigencon-

tent makes these models significantly different from each other and from other

light gluino models. This includes an interesting subclass of models where the

LSP is dominantly Higgsino (LG10). Such a model class will be analyzed in

the next chapter on both the PAMELA positron excess and the Fermi-LAT

photon line constraint.

4. Low mass gluinos with light sfermions: we further discuss five models,

LG11–LG15 where in addition to the low mass gluino one also has a light τ̃1,

a light t̃1 (due to the smaller GUT value of M0) along with a light χ̃±1 . Models

LG11–LG15 have compressed sparticle spectra with the heaviest sparticle mass

around 850 GeV. Model LG11 has a highly reduced overall mass scale of the

sparticles, with a low mass gluino and a light stop with the mass hierarchy

Model LG11 : χ̃0
1 < χ̃±1 < χ̃0

2 < t̃1 < g̃, Mg̃ = 433 GeV , (4.12)

with the remaining sparticles in the mass range (500-700) GeV. In each of

these models the relic density can be satisfied via coannihilations with differ-

ent superparticles, and, in particular, model LG13 proceeds via stop coanni-

hilations. For LG12, the gluino mass lies in the middle of the sparticle mass
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spectra, while for (LG13-LG15) the gluino mass is close to being the largest

mass even though it is still relatively light, i.e., Mg̃ < 700 GeV. Models LG11

and LG13 have rather low-lying light Higgs. However, the extraction of the

Higgs mass from LEP data is model dependent, and we retain these models

in the analysis pending further experimental data.

5. Low mass gluinos in extended SUGRA models and PAMELA data: Re-

cently, the PAMELA collaboration [107] has included an analysis of statistical

uncertainties in the positron fraction and presented its results on the absolute

p flux. Models LG10, LG16, and LG17 in Table. (4.2) have low mass gluinos

with many other desirable features. Specifically, they can explain the positron

excess in the PAMELA satellite experiment. The detailed discussion for these

models will be presented in the next chapter.

4.2.2 Signature analysis at the LHC with
√
s = 7 TeV

For this analysis, our emphasis is on the discovery of models which admit low

mass gluinos in early runs at the LHC consistent with dark matter interpre-

tations for a neutralino LSP.

Standard Model background: The discovery of new physics requires an ac-

curate determination of the Standard Model background. The recent works

of [44] have given an analysis of such backgrounds including 2 → n processes

at
√
s = 7 TeV appropriate for pp collisions at the LHC. We use for our

analysis the simulated SM background of [44] which was generated with Mad-

Graph 4.4 [55] for parton level processes, Pythia 6.4 [51] for hadronization

and PGS-4 [52] for detector simulation. An MLM matching algorithm with a

kT jet clustering scheme was used to prevent double counting of final states.

Further, the b-tagging efficiency in PGS-4 is based on the Technical Design

Reports of ATLAS (see [44]), which is similar to the efficiency of CMS, with

the mis-tagging rate of b-jet unmodified from the default in PGS-4. In ad-

dition Tauola is called for tau decays. The processes that are included in

the SM background are: (QCD 2, 3, 4 jets), (tt̄+ 0, 1, 2 jets), (bb̄+ 0, 1, 2 jets),

(Z/γ
(
→ ll̄, νν̄

)
+0, 1, 2, 3 jets), (W± (→ lν)+0, 1, 2, 3 jets), (Z/γ

(
→ `¯̀, νν̄

)
+

tt̄+0, 1, 2 jets), (Z/γ
(
→ ll̄, νν̄

)
+bb̄+0, 1, 2 jets), (W± (→ lν)+bb̄+0, 1, 2 jets),

58



(W± (→ lν) + tt̄ + 0, 1, 2 jets), (W± (→ lν) + tb̄ (t̄b) + 0, 1, 2 jets), (tt̄tt̄, tt̄bb̄,

bb̄bb̄), (W± (→ lν) + W± (→ lν)), (W± (→ lν) + Z (→ all)), (Z (→ all) +

Z (→ all)), (γ + 1, 2, 3 jets). A more detailed discussion of the Standard

Model background can be found in the [44] which includes a list of cross sec-

tion, number of events and luminosity for each process.

SUSY signal generation and optimization of cuts: For these benchmark

models with light gluinos, we emphasize the discovery possibility in early runs

at the LHC with
√
s = 7 TeV. These models are expected to be significant in

their SUSY productions. A large number of cuts on the events are investigated

which includes: pT of jets and leptons, the jet transverse sphericity ST , and

missing energy /ET . Accordingly, we shall optimize the cuts to enhance the

significance of signal over the background S/
√
B. In each event, we order

objects by their pT ’s, i.e., the hardest jet would be denoted as j1 and so on.

We shall define several kinematic variables mentioned in the above list. They

are the jet transverse sphericity ST , the effective mass meff , and the HT :

ST ≡ 1−
(

1− 4(

∑
i p

2
x(ji)

∑
i p

2
y(ji)∑

i p
2
x(ji) +

∑
i p

2
y(ji)

− (
∑

i px(ji) · py(ji))2

∑
i p

2
x(ji) +

∑
i p

2
y(ji)

)

)1/2

(4.13)

meff ≡
4∑

i=1

pT (ji) + /ET (4.14)

HT ≡
4∑

i=1

pT (xi) + /ET (4.15)

where xi stand for any visible objects. In this analysis we define a signal

that produces S events to be discoverable for a particular signature cut if

S ≥ max{5
√
B, 10}, where B stands for the number of SM background events.

The optimal cuts were found by varying the bounds on observables. First, a

broad optimization was carried out where the varied observables include /ET

(100 GeV to 800 GeV in steps of 50 GeV), ST of all visible objets (0.15 to 0.25

in steps of 0.05), number of jets (2 to 6 in integer steps), number of b-jets (0

to 3 in integer steps), as well as the pT of the hardest jet (10 GeV to 500 GeV

in steps of 10 GeV) and the second hardest jet (10 GeV to 250 GeV in steps
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of 10 GeV). For the particular cuts which deal with opposite sign same flavor

(OSSF) leptons, a Z-veto is applied, i.e., the 76 GeV ≤ m`` ≤ 105 GeV region

is excluded. A subset of cuts found using the procedure above are listed below.

In choosing these cuts we have taken into account of the uncertainty of how

well /ET can be determined in the early runs. For this reason we have taken

lower values of /ET as low as 100 GeV. Better optimization can occur with

larger values of /ET . However, this requires a greater degree of confidence on

how well /ET is determined in the early runs.

C1: /ET ≥ 100 GeV

C2: ST ≥ 0.2, /ET ≥ 100 GeV

C3: ST ≥ 0.2, /ET ≥ 100 GeV, n(`) = 0, pT (j1) ≥ 150 GeV, pT (j2, j3, j4) ≥
40 GeV

C4: ST ≥ 0.2, /ET ≥ 250 GeV, n(`) = 0, pT (j1) ≥ 250 GeV, pT (j2, j3, j4) ≥
40 GeV

C5: ST ≥ 0.2, /ET ≥ 150 GeV, n(`) = 0, pT (j1) ≥ 150 GeV, pT (j2, j3, j4) ≥
40 GeV

C6: ST ≥ 0.2, /ET ≥ 250 GeV, n(`) = 0, pT (j1) ≥ 100 GeV, pT (j2) ≥ 40 GeV

C7: ST ≥ 0.2, /ET ≥ 200 GeV, n(`) = 0, pT (j1) ≥ 30 GeV

C8: ST ≥ 0.2, /ET ≥ 200 GeV, n(j) ≥ 2, n(`) ≥ 2

C9: ST ≥ 0.2, /ET ≥ 200 GeV, n(b-jets) = 1

C10: ST ≥ 0.2, /ET ≥ 100 GeV, n(`) = 0, n(b-jets) ≥ 1

C11: ST ≥ 0.2, /ET ≥ 100 GeV, n(`) = 0, n(b-jets) ≥ 2

C12: ST ≥ 0.2, /ET ≥ 100 GeV, n(j) ≥ 4

C13: ST ≥ 0.2, /ET ≥ 100 GeV, n(j) ≥ 4, pT (j1) ≥ 100 GeV, meff ≥ 400 GeV

C14: ST ≥ 0.2, /ET ≥ 100 GeV, n(j) ≥ 4, pT (j1) ≥ 100 GeV, meff ≥ 550 GeV
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C15: ST ≥ 0.2, /ET ≥ 100 GeV, n(j) + n(`) ≥ 4, pT (j1) ≥ 100 GeV, HT ≥
400 GeV

C16: ST ≥ 0.2, /ET ≥ 100 GeV, n(j) + n(`) ≥ 4, pT (j1) ≥ 100 GeV, HT ≥
550 GeV

C17: ST ≥ 0.2, /ET ≥ 100 GeV, Z-veto, n(`+
a ) = 1, n(`−b ) = 1, pT (`2) ≥

20 GeV, pT (j1) ≥ 100 GeV, pT (j2) ≥ 40 GeV ,5

C18: ST ≥ 0.2, /ET ≥ 100 GeV, Z-veto, n(`+
a ) = 1, n(`−b ) = 1, pT (`2) ≥

20 GeV, pT (j2) ≥ 40 GeV

C19: ST ≥ 0.2, /ET ≥ 100 GeV, /ET ≥ 0.2meff , n(j) ≥ 4 , pT (j1) ≥ 100 GeV,

C20: /ET ≥ 100 GeV, n(`) = 3, pT (j1) ≥ 150 GeV, n(j) ≥ 2

C21: /ET ≥ 150 GeV, n(`) = 3, pT (j2) ≥ 40 GeV

Signature analysis: Our analysis is carried out to determine the potential

for discovery of the dark matter motivated models LG1, . . . ,LG17, for 0.5 fb−1,

1 fb−1, 2 fb−1 and 5 fb−1 (with a focus on 1 fb−1) of integrated luminosity with

7 TeV center of mass energy. These models exhibit generic features of a very

broad class of SUSY models.

We now discussion Fig. (4.4) a bit more generally. The potential for

discovering the models of Table. (4.2) at 1 fb−1 of integrated luminosity is

given in Table. (4.7). A subset of the results in Table. (4.7) are given in

Fig. (4.4). Thus, Table. (4.7) displays each model’s significance, S/
√
B, for

the 21 cuts listed above. One finds that a particular model, LGk, often has

several signatures that lead to large excesses of signal over background, i.e.

S/
√
B > 5, and the set of signatures in which the model becomes visible

varies significantly from one model to the next. Additionally, in studying the

tri-leptonic channels, C20 and C21, we see that consistently only 6 models

among those listed in Table (4.2) are discoverable (LG1, LG2, LG10, LG11,

LG14, LG15) and the majority of the other models show less then 10 events

in the tri-leptonic channels.

5In the specification of the cuts C17 and C18, the subscripts a and b indicate that they
may be different flavors, but a Z-veto is applied only to OSSF.
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Figure 4.4: A summary of significance S/
√
B for various signature chan-

nels/cuts for a subset of low gluino (LG) models. The data is simulated under
Ltot = 1fb−1 at the LHC for

√
s = 7 TeV.
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The overall production cross section of superparticles is determined mainly

by the production of squarks and gluinos. For the gluino production modes

at the LHC, the cross section is determined by the gluino mass. However,

for models with low mass gluinos, like those that appear in Table. (4.2), the

detectable signals at the LHC are strongly influenced by the other low-lying

sparticles, i.e., the superparticles that are lighter than the gluino. In Fig.(4.5),

an analysis of the jet multiplicity and the transverse momentum of the leading

jets is given for LG3, LG4, LG11, LG13, and LG14. The distributions for

jet multiplicity and jet momentum look quite different from model to model.

For instance, the model LG11 has a gluino mass of 433 GeV, and several of

its superparticles are lighter than the gluino, including the lighter stop and

gauginos. This leads to lengthy cascade decay chains which produce multiple

jets. Further, the mass differences between the sparticles in LG11 are relatively

large which give rise to large momentum of the SM final states including

jets. In contrast, models LG3 and LG4 tend to produce events with less jet

multiplicity and smaller transverse momentum, which is due to the fact that

these models having a gluino as the NLSP; i.e., these models are GNLSPs.

For these GNLSP models the masses of the gluino and the LSP are correlated

in the gluino coannihilation mechanism such that the mass gap is relatively

small.

Specifically, LG3 has Mg̃ −Mχ̃0
1
∼ 50 GeV and the gluino production is,

overwhelmingly, the dominant production mode. For this model, the gluinos

decay directly to the LSP + 2 jets, i.e., Br(g̃ → (bb̄χ̃0
1, qq̄χ̃

0
1)) ∼ (20, 80)%

where q stands for first two generation quarks. We note in passing that gener-

ally one needs to take into account the radiative decay of the gluino, g̃ → gχ̃0
1.

Such a case occurs, for example, in LG4, and the decay g̃ → gχ̃0
1 dominates the

branching ratio. The relatively small mass splitting in model LG3 between the

gluino and the LSP (as well as the extreme case of LG4) makes this model class

harder to discover due to the softer jets and low jet multiplicity, compared to

other models. (For recent work on relatively small gluino-LSP splittings see

[39, 40, 42] and [43, 45].) This feature is illustrated further in Table. (4.7) and

Table. (4.8). We note that in such cases where the mass gap between gluino

and the LSP is extremely small, the effects of the initial state radiation (ISR)
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Figure 4.5: (Color online) Top Left: Distribution of the number of jets with-
out cuts. Top Right: Distribution of the pT of the hardest jet also without
cuts. Bottom Left: Distribution of the number of SUSY events (plus SM back-
ground) vs. the number of jets after a cut of /ET ≥ 200 GeV. Bottom Right:
Distribution of the number of SUSY events (plus SM background) vs. the pT
of the hardest jet after a cut of /ET ≥ 200 GeV.

can be substantial for the collider signatures. We also note that although it

can be challenging to discover events from gluino production for the GNLSP

models, (depending on the degree of the mass degeneracy), one should keep

in mind that some other subdominant SUSY production modes could be de-

tectable and become the leading signals for such models. For example, in

model LG3, the stop is relatively light and decays entirely into a chargino and

bottom quark, i.e., Br(t̃1 → χ̃±1 b) ∼ 100%, and the chargino subsequently de-

cays entirely into a neutralino and a W boson, i.e., Br(χ̃±1 → χ̃0
1W

+) ∼ 100%.

Hence, this GNLSP model class may be able to produce discoverable leptonic
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Figure 4.6: SUSY plus Standard Model background events vs pT (j1) at 1 fb−1

for the signature cut pT (j1) ≥ 100 GeV, pT (j2) ≥ 40 GeV, /ET ≥ 250 GeV,
ST ≥ 0.2 and n(`) = 0 for LG2, LG3, LG13. The figure illustrates the softness
of the jets in model LG3, a GNLSP model, relative to the models LG2 and
LG13.

events through these decay chains with upgraded center of mass energy and

luminosity.

Further, these features of the GNLSP models can explicitly be seen by

studying the top panels of Fig. (4.5) and by observing the relative broadness

(or width) of the pT distribution of models LG11 and LG14 relative to LG3

and LG4. In addition, LG13, a stop NLSP model, is also peaked at low jet pT

much like LG3 and LG4. The stop mass for model LG13 is near 200 GeV and

the stop-LSP mass splitting is small (. 30 GeV). Thus, this model produces

stops at a large rate, which decay (via an off-shell loop-induced and FCNC

decay) into a charm quark and LSP (t̃1 → cχ̃0
1) with a ∼ 75% branching ratio.

However, the softness of jets in LG13 mimics the softness of jets in LG4 in

part due to the phase space, which explains the peaking of the distributions at

low pT . The restricted phase space from the small mass splittings is also why

the effective mass distribution for stop NLSPs is narrow (see [40]) relative to

other cases.
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In Fig. (4.6) we highlight the GNLSP model LG3, which satisfies the

double-sided relic density band, along with the light stau and stop models,

LG2 and LG13, which also satisfy the WMAP bound via scalar coannihila-

tions. Thus, Fig. (4.6) shows jet pT , signal plus background, for the models

LG2, LG3, and LG13 compared to the Standard Model background alone. As

discussed earlier the model LG3 arises from gluino coannihilations and has

a relatively small mass splitting between the gluino and the LSP neutralino.

This is to be contrasted with the model LG2, which satisfies the WMAP relic

density band via stau coannihilations, or the model LG13, which also satis-

fies the WMAP relic density band via stop coannihilations. Because of the

compressed spectra of LG2 and LG13, there are more jets arising from the

combinations of both low mass gluino and the low mass squark production

relative to the dominant gluino production found in the GNLSP model LG3.

This effect is exhibited in the figure. For model LG2, as the scalars are quite

light, and even lighter than the 715 GeV gluino, the cross section for the

production of squarks as well as the mixed squark gluino production cross

sections are about an order of magnitude larger than the g̃g̃ production. Here

the gluino two body decay modes are spread out rather uniformly with no

dominant channel. Instead the first two generation squark decay modes are

short with large branchings. In particular, one has for the first two genera-

tion squarks, Br(q̃R → χ̃0
1q) ∼ 100% and Br(q̃L → χ̃0

2q) ∼ 32% as well as

Br((q̃dL , q̃uL) → χ̃
(−,+)
1 (qu, qd)) ∼ (60 − 65)% for each decay. Thus, the two

body decays of the first two generation squarks provide the large signal in

model LG2 even though the gluino is quite light. In addition, for LG2, the

direct production of chargino pairs as well as chargino and neutralino pro-

duction is competitive with the squark production, leading to leptonic decays

and large lepton multiplicities. The discovery potential of the models is also

exhibited in Fig. (4.4), where one finds that the significance of LG3 and LG4

is much less than for LG11.

In Fig. (4.7) (left-panel) we show the potential for early discovery for the

PAMELA compliant models (LG10, LG16, LG17) listed in Table. (4.2) at
√
s = 7 TeV and at an integrated luminosity of 1 fb−1. The displayed models

have a rather large gluino production. Since the gluino, the light chargino,
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Figure 4.7: Left: SUSY plus SM background events vs meff at 1 fb−1 of
integrated luminosity for the signature cut pT (j1) ≥ 150 GeV, pT (j2, j3, j4) ≥
40 GeV, /ET ≥ 150 GeV, ST ≥ 0.2 and n(`) = 0 for the PAMELA compliant
models. As discussed in the text LG10 is a Higgsino LSP model and LG16 and
LG17 are models with a mixed-wino LSP. Right: The same as the left panel
except for a subset of the GNNLSP models (with chargino and neutralino
degenerate), i.e., LG7, LG8, along with the compressed models LG11, LG12,
which in addition to a low mass gluino, also have a light stau and a light stop
and have a compressed mass spectrum for the first two generation squarks and
sleptons.

and the second heaviest neutralino are the lightest SUSY particles beyond

the LSP, and the squarks are rather heavy for these models, the sparticle

production at the LHC will be dominated by g̃g̃, χ̃0
2χ̃
±
1 and χ+

1 χ
−
1 production.

For example, models (LG10, LG16, and LG17) have a total SUSY cross section

of ∼ (12, 15, 5) pb at leading order and the gluino production is at the level

of ∼ (9, 14, 4) pb, respectively. The chargino neutralino production makes up

most of the remaining part of the cross section. The leading decays of the

gluino are g̃ → χ̃±1 + q̄q′ and g̃ → χ̃0
2/χ̃

0
1 + qq̄. These decays are subsequently

followed by χ̃0
2 → χ̃0

1 + f̄f and χ̃±1 → χ̃0
1 + f̄f ′ where f, f ′ are the standard

model quarks and leptons. In particular, the lightness of the gluino in the three

models (LG10, LG16,and LG17) gives rise to multi-jets which produce a strong

signal over the background. Hence, these models are good candidates for early

discovery. Further, if a model of the type LG10, LG16, or LG17 is verified

at the LHC, it would also provide a consistent explanation of the PAMELA
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Figure 4.8: Left: SUSY plus SM background events vs the di-jet invariant
mass (mjj) at 1 fb−1 of integrated luminosity for signature cut /ET ≥ 200 GeV,
ST ≥ 0.2 and n(j) ≥ 2 for the models LG7, LG8, LG10. Right: Same as the
left plot except that the analysis is for models LG11, LG14, LG15. The left
panel shows the light gluino models which are effectively GNNLSP models,
while the right panel shows the models with a compressed mass spectrum for
the scalars and for the light gluinos. As such the right panel shows distributions
which are significantly broader from the squark production and decays.

anomaly. However, to fully demonstrate the validity of the models, additional

luminosity would be needed to extract information about the neutralino mass.

We do not give a detailed methodology for accomplishing this, but as argued

in [96] it may be possible to extract information about the neutralino and the

chargino states in the gluino decay products.

In Fig. (4.8), we show a comparison of di-jet invariant mass distributions

for the GNNLSP models compared to models where the gluino is positioned

higher in the mass hierarchy. One sees the GNNLSP models (LG7, LG8,

and LG10) have a relatively narrow di-jet invariant mass which arises from

these models being dominated by the three-body decays resulting from χ̃0
2χ̃
±
1 ,

χ̃+
1 χ̃
−
1 , and g̃g̃ production. Further, the distributions for the models LG8 and

LG10 become depleted (or more narrow) relative to the light stau and light

stop models from the three-body decays which result in softer jets. These

subsequent decays produce an increase in the multi-jet signal compared to

the SM background. However, the light stau and light stop models LG11,
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Figure 4.9: Left: SUSY plus background events for models LG11, LG14, LG15
vs the OSSF di-lepton invariant mass (m`+`−) at 1 fb−1 for signature cut
/ET ≥ 200 GeV, ST ≥ 0.2 and n(j) ≥ 2 with 2 leptons of any sign and flavor.
Right: SUSY plus background events for models LG1, LG11, LG14 vs the
di-jet invariant mass (mjj) at 1 fb−1 of integrated luminosity for signature cut
/ET ≥ 100 GeV, ST ≥ 0.2, pT (j1) ≥ 100 GeV, meff ≥ 550 GeV and n(j) ≥ 4.
Here the peak in the distribution is a consequence of the meff cut.

LG14, and LG15 have a relatively broader distribution, which arises from the

compression of their sparticle spectrum. For these models, all the sparticle

masses are below 700 GeV. Further, LG14 and LG15, where the mass spectra

are compressed, the gluino is in the 31st position of the mass hierarchy. The

compressed spectra causes a large sampling of sparticle production, which

results in a production of many jets with a more diverse range of momentum.

The right panel of Fig. (4.9) shows the number of SUSY signature events

plus the SM background in 40 GeV energy bins at 1 fb−1 of integrated lu-

minosity vs the di-jet invariant mass for models LG1, LG11, and LG14. As

exhibited in this figure, these models have a significantly larger di-jet invari-

ant mass compared to the Standard Model. As discussed earlier LG11 has

a relatively large sparticle mass splittings in the scalar sector relative to the

LSP mass as well as lengthy cascade decay chains that produce multiple final

state jets with large momentum. Further, the right panel of Fig. (4.9) helps

illustrate the effectiveness of the meff cut. Comparing the values of C13 to

C14 in Table. (4.7), one sees that the significance for models LG1, LG11,
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and LG14 increases as meff increases. For the case when meff ≥ 400 GeV

(C13) we get S/
√
B = (17, 34, 15) and when meff ≥ 550 GeV (C14) we get

S/
√
B = (20, 38, 20), respectively, for (LG1 ,LG11, LG14). However, models

LG3, LG10, and LG16 have a reverse effect, i.e., S/
√
B = (3, 23, 27) for meff ≥

400 GeV (C13) and S/
√
B = (2, 15, 15) for meff ≥ 550 GeV (C14) for (LG3,

LG10, LG16), respectively. These effects arise since models LG3, LG10, and

LG16 have lower jet multiplicity, less missing energy, and fewer cascades than

the models shown in the right panel of Fig. (4.9). For instance, the model

LG16 cross section is dominated by g̃g̃ production with the g̃ dominantly de-

caying into χ̃0
1 or χ̃±1 . This results in low jet multiplicity and lower missing

energy compared to models LG1, LG11, and LG14.

Mass Reconstruction: We now discuss the potential to do mass reconstruc-

tion for some of the models with the early data. In the left panel of Fig. (4.9)

we display the number of SUSY signature events plus background events in

20 GeV energy bins at 1 fb−1 of integrated luminosity vs the OSSF di-lepton

invariant mass for models LG11, LG14, and LG15. The plot also displays the

cuts used as well as the standard model background alone for comparison. In

large portions of the figure, the SUSY signals plus the background distribu-

tion stands significantly above the background. The leptonic events are mostly

produced from the gaugino cascade decays through low-lying sleptons. If the

OSSF di-leptons arise from the same decay chain χ̃0
2 → ˜̀±`∓ → χ̃0

1`
±`∓, the

invariant mass from the reconstruction of the di-leptons obeys the following

mass relations for on-shell sleptons:

M`+`− ≤Mχ̃0
2

√√√√1−
M2

˜̀

M2
χ̃0

2

√√√√1−
M2

χ̃0
1

M2
˜̀

. (4.16)

In particular, for model LG15 the three sleptons, (τ̃1, ẽR, µ̃R) with the latter

two being degenerate, contribute to the OSSF di-lepton events with the di-

lepton invariant mass lying between χ̃0
1 and χ̃0

2. Using the sparticle masses from

LG15, i.e., (Mχ̃0
1
,M˜̀

R
,Mχ̃0

2
) = (121, 137, 240) GeV, one can use Eq. (4.16) to

obtain M`+`− . 92 GeV from the ẽR/µ̃R decay modes. The χ̃0
2 decays into χ̃0

1
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Figure 4.10: Left: SUSY plus Standard Model background events vs the b-
tagged di-jet invariant mass (mbb) at 1 fb−1 of integrated luminosity for sig-
nature cut /ET ≥ 100 GeV, ST ≥ 0.2, pT (j1) ≥ 100 GeV, meff ≥ 550 GeV and
n(j) ≥ 4 for the models LG1, LG7, LG8. Right: Same as the left panel except
that the analysis is for models LG11, LG14, LG15. As discussed in the text,
there is a hint of kinematical endpoints forming for some of the models in the
di-b-jet invariant mass plots exhibited above.

via Br(χ̃0
2 → ˜̀±

R`
∓) ' 28%, and then the right-handed slepton decays entirely

into a lepton and χ̃0
1, i.e., Br(˜̀±

R → χ̃0
1`
±) ' 100%. The decay of the light stau

follows similarly through Br(χ̃0
2 → τ̃±1 τ

∓) ' 33%, and then the stau decays

entirely into χ̃0
1 and a τ , i.e., Br(τ̃±1 → χ̃0

1τ
±) ' 100%. The tau produced

from the χ̃0
2 decay has a subsequent leptonic tau decay with branching ratio

of Br(τ → `ν`ντ ) ' 35%. We do not attempt to reconstruct taus here, and we

note that there are also further mixings arising from chargino decays which

require flavor subtraction and other techniques to isolate lepton pairs coming

from the same cascade decay. Further, due to the low statistics at the early

runs of the LHC data, we do not perform a more detailed mass reconstruction

in our analysis here. As discussed above, and as can be seen in Fig. (4.9),

the mixings arising from other processes are rather small and the edge in the

di-lepton invariant mass agrees well with the prediction of Eq. (4.16).

We now discuss the reconstruction of the b-tagged di-jet invariant mass

peak. In the left panel of Fig. (4.10) we give an analysis of the number

of SUSY event vs the b-tagged di-jet invariant mass (mbb) at 1 fb−1 for the

73



models LG1, LG7, and LG8 for the cuts displayed as well as a comparison

to the Standard Model background. One finds that the three models are

distinguishable above the background. For these models, the majority of the

b-tagged di-jet events come from the gluino off-shell decay g̃ → χ̃0
2 + bb̄, which

leads to an upper bound of the kinematic endpoint Mbb ≤ Mg̃ −Mχ̃0
2

that is

estimated to be in the range (300− 322) GeV. In the left panel of Fig. (4.10),

one sees a hint of an endpoint forming in this region. However, for these

models, the kinematic endpoint is not yet discernible; more luminosity would

be needed, and further, additional uncertainties arise in the interpretation of

the invariant mass endpoint due to additional cascade processes. A similar

analysis can be given for models LG11, LG14, and LG15 in the right panel

of Fig. (4.10). The source of the jets for the three models differ from those

of the left panel of Fig. (4.10) due to their spectra. Further, LG11 produces

a significantly larger number of jet events compared to those for LG14 and

LG15 due to its light color particles, i.e., the gluino and the stop, dominantly

decaying to b jet final states. In addition, some of the b jets in the models from

Fig. (4.10) come from the light CP even Higgs. For example, in model LG15

Br(χ̃0
2 → χ̃0

1h) ∼ 30% and Br(h → bb̄) ∼ 80%. Thus with increased statistics

one may be able to partially reconstruct events coming from the Higgs decay

in this model and other models as well.

More generally in Table. (4.8) we summarize the result of our analysis for

the full set of integrated luminosities 0.5 fb−1, 1 fb−1, 2 fb−1, and 5 fb−1. The

entries in the boxes in this table indicate the integrated luminosity at which

a model listed in the first column will become visible in a specific signature

channel listed in the top row. Thus, the entries in Table. (4.8) show that a

good number of the models in Table. (4.2) will become visible at 0.5 fb−1 of

integrated luminosity, and all of the models given in Table. (4.2) will become

visible (in at least one channel) at 5 fb−1 of integrated luminosity. Indeed, as

discussed above, one observes that the relative mass splitting and the relative

position of the gluino within the sparticle mass hierarchies strongly influences

the discovery capability of the LG models. Several channels in some cases are

needed to establish a signal, and the variance amongst channels for different

models is apparent.
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Chapter 5

Dark Matter in Supersymmetric

Models with Gravity Mediation

Dark matter is a significant component of the total mass of the Universe, yet

it is not addressed by the Standard Model itself. In this chapter, we will study

the dark matter phenomena in supersymmetric models with gravity mediation.

This scenario for supersymmetry breaking has been intensively studied over

more than twenty years. One obvious reason is that the lightest sparticle

(LSP) is always the neutralino with typical mass ∼ 100 GeV. Its lightness

and protection from decay by R-parity assures its stability. We will start with

a brief introduction about the dark matter evidence and some of candidates

from particle physics. Afterwards, we will move to the recent discussion of the

possible dark matter detection in the framework of NUSUGRA, where the dark

matter detection techniques will be briefly reviewed. Our original research in

this area has been published in the following two papers: N. Chen, D. Feldman,

Z. Liu, P. Nath, and G. Peim, “Higgsino dark matter model consistent with

galactic cosmic ray data and possibility of discovery at LHC-7”, Phys. Rev.

D 83, 023506 (2011), Ref. [48]; and “Low-mass gluino within the sparticle

landscape, implications for dark matter, and early discovery prospects at LHC-

7”, Phys. Rev. D83, 035005 (2011), Ref. [49].
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Figure 5.1: Rotation curve of NGC 6503 [90]

5.1 Dark Matter Evidence, Relic Density, And

Candidates

5.1.1 Evidence from different scales

As noted before, the first evidence for dark matter was reported by Zwicky

in the 1930’s on the basis of his observation of the motion of galaxies in the

Coma cluster, and his finding that this motion was considerably greater than

could be accounted for by the visible matter and resultant gravitation acting

on these galaxies in the cluster.

Within galaxies, on the scale of 10-20 kpc, strong evidence for dark matter

comes from the observation of galactic velocity rotation curves. A curve of this

type usually exhibits a flat behavior at large distance from the galactic center.

A typical example is shown on the Fig. (5.1). By Newtonian dynamics, the

circular velocity should be:

v(r) =

√
GNM(r)

r
(5.1)

with the mass being M(r) = 4π
´
ρ(r)r2dr. ρ(r) is the mass density and should

fall as 1/
√
r beyond the optical disc. However, the observed v(r) = const

implies a possible halo with M(r) ∝ r and ρ(r) ∝ 1/r2.

In addition to evidence of dark matter from galactic rotation curves, it is

crucial to know the total amount of dark matter in the Universe. This in-

76



formation can be extracted from the analysis of the Cosmic Microwave Back-

ground Radiation (CMBR) [86]. Such background radiation is due to the

propagation of photons in the early Universe. The CMBR is observed to be

isotropic and homogenous at the level of δT/T ' 10−5. In recent years, the

best constraints on the relic abundances of baryons and matter in the Uni-

verse are obtained from the Wilkinson Microwave Anisotropy Probe (WMAP)

data [87]. Their seven-year data shows the relic density of baryon, matter and

cold dark matter as: ΩBh
2 = 0.02260 ± 0.00053, ΩMh

2 = 0.1334+0.0056
−0.0055, and

ΩCDMh
2 = 0.1123± 0.0035. Here, for each contribution of type i, one defines

the dimensionless ratio Ωih
2 ≡ ρi/ρc, where ρc ≡ 3H2

0/8πGN is the critical

density for closure1, with H0 Hubble constant2 in the present epoch, and GN

is the Newton gravitational constant. The data clearly indicates that the dark

matter should be non-baryonic.

5.1.2 Dark matter relic density

We shall briefly discuss the evaluation of the relic abundance Ωχh
2 ≡ ρχ/ρc

(Here and below, we use the notation χ for the dark matter in general. In

most cases, we focus on the case where χ is the neutralino in the MSSM.).

One uses the Boltzmann equation for one particular species of dark matter

particle number density n:

dn

dt
+ 3Hn = −〈σv〉(n2 − n2

eq) (5.2)

If there were no dark matter annihilation, the total dark matter particle num-

ber would be a constant. This means n ∝ R−3, hence ṅ = −3Hn. In reality,

one should also take the χχ annihilation into account, which is described on

the RHS of Eq. (5.2). The 〈σv〉 is the thermal averaged annihilation cross

section times the relative velocity v between χ and χ. The neq stands for the

1The ρ > ρc, ρ = ρc, and ρ < ρc correspond to the closed, flat and open universe.
2In practice, one usually uses the dimensionless Hubble parameter h ≡

H0/(100 km/s/Mpc).
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number density of the dark matter species while in thermal equilibrium3. For

heavy states like the χ̃0
1 in our discussion, v � 1. Eq. (5.2) cannot be analyt-

ically solved, one can at best get the approximated estimation about the relic

density as:

Ωχh
2 ≈ 3× 10−27cm3s−1

〈σv〉
(5.3)

If one or more particles have masses close to the relic particle, which is

often the case in various SUGRA-mediation parameter regions, the standard

calculation of relic density should be modified. Assuming N particles χi with

masses Mi and intrinsic degrees of freedom gi (1 ≤ i ≤ N), we shall modify

Eq. (5.2) into:

dn

dt
+ 3Hn = −

N∑

i,j=1

〈σijvij〉(ninj − neqi n
eq
j ) (5.4)

where n ≡
∑

i ni is the number density of the relic particles. Besides, σij is the

total annihilation cross section for the χiχj into the Standard Model particles,

and vij is the relative velocity defined as:

vij =

√
(~pi · ~pj)2 −M2

iM
2
j

EiEj
(5.5)

Therefore, the effective annihilation rate of the dark matter particles becomes

much faster with a modified effective annihilation rate:

〈σeffv〉 =
∑

ij

〈σijvij〉
neq
i n

eq
j

(neq)2
(5.6)

3The equilibrium number density is approximately to be a Boltzmann distribution:
neq ≈ gχ(MχT

2π )−3/2 exp(−Mχ/T ), where gχ is the intrinsic degrees of freedom of the dark
matter particle χ.
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Such co-annihilation effects [91] have been included in the numerical compu-

tations of relic densities, e.g., the MicrOMEGAS computer program [56].

5.1.3 Candidates

Many candidates for the non-baryonic dark matter have been studied, with

masses span a wide range from sub-eV scale to O(100 TeV). We will briefly

discuss some typical candidates here.

The Standard Model, as augmented to include massive neutrinos, does

have a candidate that could contribute to the dark matter, namely neutrinos.

An estimate of the relic density contribution from the neutrino reads:

Ωνh
2 =

3∑

i=1

mνi

93 eV
(5.7)

If one uses as an upper limit the neutrino mass bound from the non-observation

of neutrinoless double β decay, mν < 2.05 eV, then one infers that Ωνh
2 .

0.02. Hence, obviously, massive neutrinos in the (augmented) Standard Model

cannot be the dominant part of the dark matter. However, there are also the

possibilities of sterile (i.e., electroweak-singlet) neutrinos or fourth-generation

neutrinos with masses at least greater than MZ/2.

Supersymmetric models have provided varieties of sparticles to be the dark

matter candidates. In general, the dark matter in a supersymmetric model that

is R-parity odd and neutral in color and charge is the lightest supersymmetric

particle (LSP). The most widely studied example of an LSP is the lightest

neutralino in the gravity-mediation model. In the framework of MSSM, the

neutralino is a mixture of bino (B̃), wino (W̃ ) and two higgsino states (H̃1,2).

Generically, with soft masses around several hundred GeV for these states,

one gets the neutralino mass ∼ O(100 GeV). Using the rough information

we know here, one can estimate that the annihilation cross section of the

neutralino goes like 〈σv〉 ∼ α2/Λ2 with α ∼ 0.01 and Λ ∼ 100 GeV. Using

the estimate from (5.3), one gets Ωχh
2 ' 2.5 × 10−2, which is not very far

away from the WMAP data we mentioned before. Therefore, this so-called
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WIMP miracle strongly suggests that the WIMP could very well saturate the

measured cold dark matter relic density. In the NMSSM a further gauge singlet

state (called singlino) will enter, and this could also play a role in dark matter.

Many other efforts to build models of dark matter are being pursued at

present, e.g. [95] among many others. It is an open question what the real

source of dark matter is; however, the SUSY LSP remains one of the most

appealing candidates.

5.2 Dark Matter in mSUGRA

In this section, we briefly mention the DM in the mSUGRA models. The LSPs

in the mSUGRA must be bino-like, as from the simple gaugino mass relation

(2.47). As we mentioned in the previous chapter, the relic density constraint

we imposed Ωχ̃0
1
h2 < 0.13 is the most stringent one among all. In general,

viable mSUGRA models satisfying the relic density constraints should have

an adequately large 〈σv〉 (5.3). Three well-known scenarios4 are possible for a

viable relic density:

• The stau or stop co-annihilation [91] is important when τ̃1 or t̃1 are the

NLSP.

• The enhancement of 〈σv〉 could also happen when the LSP sits on the

h-pole mχ = mh/2
5 or the MSSM Higgs pole mχ = mH/2. [92] .

• The “Focus Point” SUSY models [23] with multi-TeV sfermions not only

have the appeal to suppress the FCNC amplitudes, but also appear con-

sistent with the relic density constraints.

5.3 Dark Matter in NUSUGRA

In this section, we discuss the dark matter implication in the framework of

the gaugino NUSUGRA models. The key observation is that the most rele-

4For decoding various DM scenarios at the LHC, see Ref. [41].
5It was possible to have the LSP on the Z-pole, i.e., mχ = MZ/2. This has been

eliminated from the lower bounds on the chargino mass.
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vant sparticles in the discussion of dark matter are the LSP and sometimes

also the NLSP when co-annihilation becomes important. For the NUSUGRA

models, their LSP eigen-contents can be different from the bino-like case in

the mSUGRA; they can be wino-like or Higgsino-like instead. These models

could enhance the χ̃0
1χ̃

0
1 annihilation cross sections via the Z or (MSSM) Higgs

channels. Further more, the gluino is not always the heaviest among all gaug-

inos. In a special case when g̃ becomes the NLSP [42], there can strong gluino

co-annihilation with the LSP. Hence there are more annihilation channels open

in the NUSUGRA models for reasonable relic densities.

5.3.1 Direct detection constraints

Besides the dark matter relic density constraint from the WMAP data, one

important constraint is from the direct detection experiments, where one mea-

sures the recoil energy produced by a dark matter particle scattering off a

nucleus in the detector. The velocity of DM particles near the Earth is ex-

pected to be of the same order as the orbital velocity of the Sun and solar

system around the galaxy, which is v ≈ .001c. For typical masses of WIMP

mχ ≈ 100 GeV and of nuclei mN ≈ 100 GeV, the maximum recoil energy is:

Erec. ∼
(mχvχ)2

2mN

≈ 100 keV (5.8)

In general, the WIMP-nucleon elastic amplitudes are divided into spin-

independent (SI) interaction or spin-dependent (SD) interaction. In particular,

the cross section for the SI interaction6 gets enhanced by nuclei with large

nucleon numbers A.

Many experiments searching for direct detection of dark matter have been

performed or are being performed. A few of these include Edelweiss [100],

6For a point-like nuclei, one gets the cross section for a WIMP scattering as: σSI
0 =

4µ2
χ

π (λpZ + λn(A − Z))2, with µχ ≡ mχmN/(mχ + mN ) being the WIMP-nucleus reduced
mass. The cross section adds coherently so that there is a strong enhancement ∝ A2 for
large nuclei when λp ≈ λn. For real WIMP-nucleon amplitudes, the nucleon structure must
be taken into account. Details of this computation are reviewed on the Ref. [88].
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Figure 5.2: 90% confidence limit on the SI elastic WIMP-nucleon cross section
together with the best limit from CDMS [103] (dotted) and Xenon100 2010
data [105] (solid and dashed).

DAMA [101], CDMS [102], and Xenon [104]. Of these, only DAMA has defi-

nitely claimed to have observed a dark matter signal. We should particularly

mention the first results of the SI direct detection from the Xenon 100 [105],

which is given on the Fig (5.2). For our later discussion on the LSP DM in

the context of gravity-mediation models, we would focus on the region with

mχ ∼ 100 GeV. Therefore, the WIMP-nucleon SI interaction should have

σSI . 5 × 10−44 cm2 in such a region7. Notice also the CoGeNT and DAMA

detections are focusing on the region with DM masses ∼ 10 GeV. They were

designed for models with lower masses. As we mentioned earlier, a typical ex-

ample is from the NMSSM model. Their results are not particularly relevant

to our following discussions.

5.3.2 Indirect detection constraints

There are also a number of efforts to detect dark matter indirectly, via its

annihilation or decays into Standard Model particles in the galactic halo. The

dark matter annihilation rate depends on the dark matter density: Γ ∝ ρ2
DM.

Therefore, one promising place to look for such a signal is the galactic center

7During the preparation of this thesis, we got to learn the updated dark matter results
from 100 live days of Xenon100 data [106]. With the 2σ exclusion band of the updated data,
we found that the models LG2, LG6, LG8, and LG10 as displayed in Table (4.2) have very
well been excluded.
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with large DM densities. Two recent experiments are the PAMELA exper-

iment [107] and the Fermi-LAT (large-area telescope) experiment [108]. Of

these, PAMELA has reported observing high energy positrons that may be

in excess of known astrophysical sources (although it has also been suggested

that conventional astrophysical source can account for the PAMELA data).

The Fermi-LAT mission has reported finding no significant excess in its search

for monochromatic photons with energies Eγ ∈ (30− 200) GeV range.

In general, the observed flux of dark matter annihilation products reads:

Φi(ψ,E) =
〈σv〉
4πm2

χ

dNi

dE

ˆ
line

dsρ2(r(s, ψ)) (5.9)

Here 〈σv〉 is the thermal averaged annihilation cross section, and dNi/dE is the

energy distribution of Standard Model particle i produced in one reaction. The

ρ(r) is the dark matter halo distribution function. Several useful spherically

symmetric halo profiles are listed in Table. (5.1).

Halo parameters for three common profiles
Halo model α β γ a (kpc)
Isothermal 2 2 0 4

NFW 1 3 1 20
Moore 1.5 3 1.5 28

Table 5.1: The halo distribution function is parameterized by ρ(r) = ρ�F (r),

with F (r) = ( r�
r

)γ
(

1+(r�/a)α

1+(r/a)α

)β−γ
α

. Here, ρ� and r� are the solar location

and the distance of the Sun to the galactic center. There is also another
totally different parameterization for the halo called the “Einasto profile”. Its
distribution function is F (r) = exp[− 2

α
(( r
r�

)α − 1)], with the default value for
α is 0.17.

The PAMELA experiments [107] measured both e+ and p 8. The antiproton-

to-proton flux ratio is well measured with energy up to 100 GeV and shows no

8The propagation of the charged particles from the dark matter annihilation is affected
by the galactic magnetic field, synchrotron radiation and inverse Compton scattering. The
detailed discussion of their propagation can be found on Ref [97] [98] [99].
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anomalous behavior. As remarked above, PAMELA reports a possible exces-

sive positron flux with energies up to ∼ 100 GeV in the cosmic radiation. If

one takes the point of view that conventional astrophysical sources cannot ac-

count for this, then it is suggestive of classes of DM with O(100) GeV masses,

subject to the constraint that they do not produce p̄’s also. We will mention

one such possibility in the context of NUSUGRA soon.

Another possible and distinctive signal for the indirect detection is a narrow

γ-ray line from dark matter particle annihilating or decaying into γX, where

X can be another photon, a Z boson, or a Higgs boson. Dark matter particles

of mass mχ annihilating (in pair) into γX produce monochromatic γ-rays of

energy Eγ = mχ(1− m2
X

4m2
χ
). Therefore, one would expect a strong line feature,

or a strong line-like feature as a sharp cut-off in the γ-ray spectrum. The most

recent results set γ-ray line upper limits from 30 GeV to 200 GeV obtained

from 11 months of Fermi-LAT data from 20 − 300 GeV energy region. The

γ-ray line flux upper limits are in the range of 0.6− 4.5× 10−9 cm−2s−1, and

their corresponding DM annihilation cross sections can be found on Ref. [108].

Prior to our work, wino-like LSP models [96] were suggested to be promis-

ing for the PAMELA data since they can have strong annihilation of neutrali-

nos into W+W− and/or ZZ. However, this type of models are disfavored by

the null results of the Fermi-LAT searches for the gamma ray lines as shown

on Fig (5.3).

5.3.3 Higgsino-like LSP scenario

Here we present several SUSY models with a Higgsino LSP which can accom-

modate various dark matter constraints: relic abundance, the positron excess

from PAMELA, the anti-proton flux, as well as the Fermi-LAT gamma ray

line data. The benchmark models are (P1-P3)9 listed in Table. (5.2). In

Table. (5.3), we give the theoretical predictions of the Higgsino LSP models

for the γZ and γγ modes and the exhibit the current upper limits from the

Fermi-LAT search. However, these models give fairly small contributions to

9These benchmarks are similar to the benchmark models (LG10, LG16, LG17) defined
in the Table (4.2) from the previous chapter.

84



Line Energy (GeV)
140 150 160 170 180 190 200 210

/s
)

3
v>

 (c
m

!Z
"<

-2710

-2610

G2 Models
G2-like Models
Wino-like Models
Fermi (Isothermal)
Fermi (NFW)

Figure 5.3: The 〈σv〉Zγ for wino-like models as from Ref. [96]. The upper
bounds are the Fermi-LAT data with either an NFW or an isothermal halo
profile.

the relic densities, which are generally smaller than the relic density upper

bounds from the electroweak neutrinos as we evaluated above. One way to

enhance the relic density is via an extended Abelian gauge symmetry from the

hidden sector, which is called the Stueckelberg mechanism. In such mechanism,

one is allowed to include kinematic mixings between the hypercharge gauge

multiplet (λY , Yµ, DY ) and the hidden gauge multiplet of U(1)X (λX , Xµ, DX).

The effective Lagrangian containing the mixing terms is:

−1

2
(∂µσ +MY Yµ +MXXµ)2 + [ψ(MXλX +MY λY ) + h.c.] (5.10)

with the axionic field σ arising from a chiral multiplet S = (ρ+ iσ, ψ, FS). The

ψ and λX produce two Majorana spinors, which are hidden sector neutralinos

mixing with the MSSM neutralinos. Such analysis can be extended to a U(1)nX
gauge symmetry in the hidden sector, which yields 2n additional Majorana

fields. Therefore, the LSP can co-annihilate with the hidden sector Majorana

fields, which yields the following enhancement factor for the density of relic

neutralinos relative to that in the MSSM:
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Model m0 M1 M2 M3 A0 tan β µ′ M
′
1 M

′
2 M

′
3 Ωh2

P1 1033 1600 1051 120 2058 13 195 683 836 259 6× 10−3

P2 1150 1600 1080 160 2080 15 152 684 859 347 4× 10−3

P3 950 1425 1820 748 1925 25 109 617 1453 1589 2× 10−3

WB 2000 400 210 200 300 5 562 170 163 441 2× 10−3

Table 5.2: Parameters which produce an LSP which are mostly Higgsino (P1-
P3), or mixed wino-bino, WB. Here m0(A0) is the universal scalar mass (tri-
linear coupling), M1,M2,M3 are the gaugino masses at the GUT scale for the
gauge groups U(1)Y , SU(2)L, SU(3)c and tan β is the ratio of the two Higgs
vacuum expectation values in the MSSM. The parameters that enter the neu-
tralino mass matrix at scale Q =

√
Mt̃1Mt̃2 are (µ′,M

′
1,M

′
2,M

′
3), where µ′ is

the Higgs mixing parameter. The models have also been run through both
SuSpect [54] and SOFTSUSY [53] via micrOMEGAs [56]. Here mpole

top =173.1
GeV.

Eγ Einasto NFW Isothermal Model 〈σv〉theory
γZ,[γγ]

180[190] 4.4[2.3] 6.1[3.2] 10.4[5.5] P1 0.24[0.08]
130[150] 5.3[2.5] 7.3[3.5] 12.6[6.0] P2 0.23[0.09]
90[110] 4.3[0.7] 6.0[1.0] 10.3[1.7] P3 0.18[0.09]
150[160] 5.9[2.0] 8.2[2.7] 14.1[4.7] WB 7.00[1.29]

Table 5.3: Cross sections 〈σv〉γZ and 〈σv〉γγ upper limits (10−27cm3/s) [108]
for three halo profiles (Einasto, Navarro-Frenk-White (NFW), and Isothermal)
along with predictions for (P1-P3) and WB. The mostly Higgsino models (P1-
P3) are unconstrained by any profile while the mixed wino-bino model, WB,
is on the edge.

Ωχ̃0
1
h2 ' fE × ΩMSSM

χ̃0
1

h2 fE = (1 + 2n)2 (5.11)

Roughly for models we listed in Table (5.2), one can reasonably enhance the

relic densities close to the WMAP value with n ' 5.

Next, we discuss the positron excess prediction in the Higgsino-like model.

In Higgsino and wino models, the high energy positron flux can arise from

WW and ZZ production from the neutralino annihilation in the halo with

approximate cross sections at leading order [88]:
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〈σv〉(χχ→ V V ) ' g4

CV 2πM2
χ

(1− xV )3/2

(2− xV )2
, (5.12)

where V = (W,Z), xV = M2
V /M

2
χ, CW = 16 (1) for Higgsino (wino) models

and the ZZ production is only significant for Higgsino models where CZ =

32 cos4(θW ). For the models (P1-P3) the LSP is mostly a Higgsino with only

a very small portion being gaugino. Here the cross sections that enter in the

positron excess are size 〈σv〉(χχ→ WW,ZZ)Higgsino . 4× 10−25cm3/s.

The positron flux from the Higgsino dark matter can be decribed semi-

analytically (for general discussion for positron propagation and fluxes in the

halo, see Ref. [93]). The flux enters as a solution to the diffusion loss equation,

which is solved in a region with a cylindrical boundary. The particle physics

determines the 〈σv〉halo and the energy distributions dNi/dE. The astrophysics

determines the dark matter profile and the energy loss in the flux from the

presence of magnatic fields and from scattering off galactic photons. A boost

factor B which parametrizes the possible local inhomogeneities of the dark

matter distribution can be present, which is as low as ∼ (2 − 3) in our con-

sideration. The antiproton flux follows reather analogously, and the general

dicussion follows the Ref [94].

The full analysis of the positron flux is exhibited in the left panel of Fig.

(5.4) where we show fits to the PAMELA positron fraction. For comparison

we also show the essentially pure wino case, which will generally lead to an

overproduction of photons however. In the right panel of Fig. (5.4), we give a

comparison of the p flux with the recent data from PAMELA [107]. It is seen

that the theoretical prediction of the p flux is in good accord with the data.
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Chapter 6

Dynamical Electroweak

Symmetry Breaking

In this chapter, we discuss another type of beyond Standard Model physics,

namely the dynamical electroweak symmetry breaking models.

6.1 Motivation and Technicolor Model

6.1.1 New strong dynamics

Even without Higgs mechanism, the electroweak symmetry is already broken

by the bilinear quark condensation in quantum chromodynamics (QCD) [109,

110]: 〈qq〉 = Λ3
QCD ' 4πf 3

π , with ΛQCD ' 200 MeV and the pion decay constant

fπ ' 93 MeV. This quantity transforms with weak T3 = 1/2 and |∆Y | = 1.

If the quark condensation were the only source for EWSB, one would get a W

boson mass like:

MW =
gfπ
2
∼ 30 MeV (6.1)

Since this is much smaller than the observed value, MW ' 80.4 GeV, QCD

makes only a very small contribution to the actual EWSB in nature. How-

ever, this immediately suggests that maybe there exists another kind of strong
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gauge theory somewhat similar to QCD, but with its dynamical scale around

the electroweak scale ΛTC ' 250 GeV. The new gauge theory is required to

be vectorial and asymptotically free like QCD. This hypothetical new strong

gauge theory is called technicolor (or TC for short) [109]. One may construct

TC models with a TC gauge group of the form SU(NTC). One should have at

least two Dirac technifermions so that these can be assigned to transform as

the upper and lower components of a left-handed SU(2)L doublet and corre-

sponding right-handed SU(2)L singlets. The dynamical scale of technicolor is

obtained by rescaling relation as:

ΛTC '
√

3

NTC

FTC

fπ
ΛQCD (6.2)

At scale slightly above ΛTC, the operative gauge symmetry is

SU(NTC)× SU(3)c × SU(2)L × U(1)Y (6.3)

In order to give masses to quarks and leptons, which are TC-singlets, it is

necessary to embed the TC theory in a larger theory, called extended techni-

color (ETC), which contains fields that communicate the EWSB in the TC sec-

tor to these Standard-Model fermions [111]. Some recent reviews of TC/ETC

theories include Refs. [112]-[115].

6.1.2 One-doublet model

A minimal TC model contains a weak doublet of (color-singlet) technifermions

in the fundamental representation of the TC gauge group,

Qτ
L =

(
U τ

Dτ

)

0,L

U τ
1,R Dτ

−1,R (6.4)
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where τ = 1, ..., NTC is the technicolor index. For generic NTC, the formation

of the technifermion condensates 〈UU〉 and 〈DD〉 breaks the SU(2)L×SU(2)R

chiral symmetry of the model to SU(2)V , yielding three Nambu-Goldstone

bosons (NGBs), which are absorbed by the W± and Z, giving them masses

and longitudinal components. This is thus dynamical electroweak symmetry

breaking. In contrast to the Standard Model Higgs sector, one did not have

to artificially set the sign of any quadratic term in a Higgs potential to get

this breaking; it follows automatically from the property that the TC theory is

asymptotically free, so that the TC gauge coupling increases as the reference

energy scale decreases and eventually becomes large enough (at the scale ΛTC)

to produce these technifermion condensates. TheW mass in this model is given

by the expression M2
W = 1

4
g2F 2

TC , which implies that FTC = v ' 250 GeV. Be-

cause the technifermion condensates transform as weak T3 = 1/2 and |∆Y | = 1

operators, it follows that, to leading order, the ρ = [MW/(MZ cos θW )]2 pa-

rameter is unity, in agreement with experiment.

6.1.3 One-family model

A different TC model that can be more conveniently embedded in an ETC

model has a set of technifermions that transform according to the fundamental

representation of the TC gauge group and form one family under the Standard

Model gauge group. These can be written as

Qτ,a
L =

(
U τ,a

Dτ,a

)

1/3,L

U τ,a
4/3,R Dτ,a

−2/3,R

(
N τ

Eτ

)

−1,L

Eτ
−2,R (6.5)

where τ = 1, ..., NTC and a = 1, 2, 3. The formation of technifermion conden-

sates 〈FF 〉, where F = U, D, N, E, produces the EWSB. The resultant part,

yielding 63 (P)NGBs. Three of these are absorbed to produce the W and Z

masses. We have M2
W = 1

4
g2(Nc + 1)F 2

TC, so that FTC ' 130 GeV. The ρ
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parameter is unity at tree level, so MZ = MW/ cos θW . In addition to these

three, the model also has a number of other (P)NGBs. There are also other

techni-hadrons, including techni-vector and axial-vector mesons. In modern

TC models, one often takes the minimal TC gauge symmetry to be SU(2)TC.

This choice minimizes the TC contributions to electroweak corrrections, such

as corrections to the Z and W propagators (encloded in the S parameter

[117]) and can also lead to an approximate infrared fixed point (IRFP) in the

TC theory. In turn, the latter property produces a large but slowly running

(“walking”) TC gauge coupling, which enhances quark and charged lepton

masses.

TC/ETC models are subject to a number of stringent constraints from

measurements of and limits on flavor-changing neutral current interactions

(FCNCs), precision electroweak corrections, and limits on techni-hadrons.

These models are very ambitious; for example, a truly successful TC/ETC

model would answer longstanding questions such as explaining mass ratios

like me/mµ, mµ/mτ , mu/md, mu/mc, and other quark mass ratios including

mb/mt. Not surprisingly, there is no fully realistic TC/ETC model at present.

Recent LHC results from the ATLAS and CMS experiments have set lower

limits of order 1.5 TeV on a color-octet technivector meson [118, 119].

6.2 Extended Technicolor Model

6.2.1 Model setup

Now we discuss an ETC model. The ETC gauge symmetry is usually taken

to be:

GETC = SU(NETC) NETC = NTC +Ngen (6.6)

where the ETC theory gauges the SM generational indices, of which there

are Ngen = 3. This means that the first Ngen components of a fundamental

representation of the ETC theory are for the SM fermions, and the remaining
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NTC components are the TC fermions. For the observed Standard Model

fermion generations of Ngen = 3 and the minimal choice of the NTC = 2, one

typically takes an SU(5)ETC gauge theory. Therefore, the set of ETC fermions

here follows from Eq. (6.5), with the τ index generalized to i = 1, ..., 5 for the

fundamental representation of SU(5). To explain the hierarchy structure of

the Standard Model families, the ETC gauge symmetry should break in three

steps: SU(5)ETC
Λ1−→ SU(4)ETC

Λ2−→ SU(3)ETC
Λ3−→ SU(2)TC. The Λi represents

the scale for each symmetry-breaking. The sequential symmetry breaking in

the ETC models is produced by certain ETC fermion condensates. In general,

the determination of which condensation channels occur is based on the most

attractive channel (MAC) criterion. Consider the channel R1 × R2 → R0.

Then the MAC is the channel that maximizes the quantity ∆C2 = C2(R1) +

C2(R2)−C2(R0). The model is designed so that these channels break the ETC

gauge symmetry in the desired sequential manner.

The Standard Model fermion masses are related to the TC condensate

through the ETC gauge boson exchange. An estimate of the dynamical masses

(actually, the diagonal elements of the SM fermion mass matrices) is

Mii ' (
gETC√

2
)2η〈FF 〉

M2
i

(6.7)

where 〈FF 〉 stands for the TC fermion condensation, and Mi ∼ gETCΛi is

the mass of the ETC gauge bosons which get their masses at scale Λi. The

quantity η is an renormalization group (RG) factor which reads:

η = exp[

ˆ
dµ

µ
γ(αTC(µ))] (6.8)

with γ being the anomalous dimension for the bilinear operator FF . For a TC

theory with walking behavior γ ' 1 between ΛTC and the lowest ETC scale

Λ3, one has η ' Λ3/ΛTC. It follows that
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Mii '
8π

3

Λ2
TCΛ3

Λ2
i

(6.9)

Choosing the ETC scales to be (Λ1,Λ2,Λ3) ' (103, 50, 4) TeV and using that

ΛTC = 250 GeV, this procedure can yield roughly reasonable values of SM

fermion masses, although it does not have enough ingredients to fit these

masses precisely. Explaining light neutrino masses has been a further chal-

lenge, but a mechanism for doing this has been given in [121] [123]. Some

related works include [120]-[126].

6.3 Standard Model Gauge Symmetry Unifi-

cation in Technicolor

We mentioned in the introduction that the SM gauge couplings are well mea-

sured at the MZ scale, but the Standard Model does not explain their values.

Grand unified theories (GUTs) can do this. Such GUTs include those with

the gauge groups SU(5) and SO(10). However, nonsupersymmetric GUTs are

excluded by their lack of gauge coupling unification as well as their prediction

of excessive proton decay. (Of course, their Higgs sectors are also unstable

to large radiative corrections; i.e., even before being ruled out experimentally,

they had a hierarchy problem.) The MSSM has the appeal of gauge coupling

unification as well as stabilization of the Higgs sector. Here we shall study

the partial and/or complete unification of gauge symmetries in theories with

dynamical symmetry breaking. The results here are based on the paper [127],

which continued the earlier study of Christensen and Shrock, [122]. A related

work is [128].
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6.4 Unification of SM and TC gauge symme-

tries

An interesting question concerns the extent to which one might unify the

Standard Model gauge symmetry with the TC/ETC gauge symmetry, and

embed these in a simple group. Since the ETC theory encodes the number

Ngen of SM fermion generations, if such a unification were successful, it would

predict this number. This would thus be an even more ambitious unification

than the previous GUT theories, which put in the value of Ngen as a free

parameter. In one approach we shall look for a simple gauge group G such that

G ⊃ GTC × GSM. At an appropriate scale, G should break to GTC × GSM. An

alternate approach is to consider G ⊃ GSC × GGUT with GSC ⊇ GTC containing

the TC interaction and GGUT ⊃ GSM being the GUT symmetry. It is natural

to take the unified symmetry to be G = SU(N) with N = NSC + 5, i.e.,

the GGUT = SU(5) is chosen as the symmetry containing the SM-nonsinglet

fermions.

6.4.1 General structure of unification models

We consider a general approach in which some Standard Model fermion gener-

ations may arise directly from the representations of the unified group G, while

the remaining ones arise indirectly, from sequential symmetry breaking of a

subgroup of G at ETC-type scales. Let us denote Ngh and Ng` as the num-

bers of standard-model fermion generations arising from these two sources,

respectively, where the subscripts gh and g` refer to generations from the rep-

resentation content of the high-scale symmetry group and from the lower-scale

breaking. The sum of these satisfies:

Ngen = 3 = Ngh +Ng` . (6.10)

At this stage the number Ng` is only formal; that is, we construct a model

so that, a priori, it can have the possibility that a subgroup of G such as
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GSC might break in such a manner as to peel off Ng` Standard Model fermion

generations. However, we must examine for each model whether this breaking

actually occurs; this will be discussed further below.

We next sketch our procedure for analyzing the models; for further details,

the reader is referred to Ref. [122]. The fermion representations are determined

by the structure of the fundamental representation, which we take to be:

ψR =




(N c)τ

da

−ec

νce



R

(6.11)

where d, e, and ν are generic symbols for the fermions with these quantum

numbers. Thus, the indices on ψR are ordered so that the indices in the SC

(strongly coupled) set, which we shall denote τ , take on the values τ = 1, ...NSC

and then the remaining five indices are those of the 5R of SU(5)GUT, including

the color index a on da. The components of N c
R transform according to the fun-

damental representation of SU(NSC), are singlets under SU(3)c and SU(2)w,

and have zero weak hypercharge and hence also zero electric charge. This

structure is concordant with the direct product of GSC × GGUT and the corre-

sponding commutativity property [GSC,GGUT] = 0 and hence [GTC,GGUT] = 0.

(Recent discussions of models with higher-dimensional representations of GTC

include [129].)

We next specify the fermion representations of G = SU(N). In the fol-

lowing, we shall usually write the fermion fields as left-handed. In order to

avoid fermion representations of SU(3)c and SU(2)w other than those experi-

mentally observed, namely singlets and fundamental or conjugate fundamental

representations, we restrict the fermions to transform as k-fold totally antisym-

metrized products of the fundamental or conjugate fundamental representation

of SU(N); these are denoted as [k]N and [k̄]N = [k]N . A set of (left-handed)

fermions {f} transforming under G is thus given by:
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{f} =
N−1∑

k=1

nk [k]N (6.12)

where nk denotes the multiplicity (number of copies) of each representation

[k]N . We use a compact vector notation n ≡ (n1, ..., nN−1)N . If k = N − `
is greater than the integral part of N/2, we shall work with [¯̀]N rather than

[k]N ; these are equivalent with respect to SU(N).

An acceptable model should satisfy the following requirements: (i) the

contributions from various fermions to the total SU(N) gauge anomaly must

cancel each other, yielding zero gauge anomaly; (ii) the resultant TC-singlet,

SM-nonsinglet left-handed fermions must comprise a well-defined set of gen-

erations, i.e., must consist of Ngen. = 3 copies of [(1, 5̄)L + (1, 10)L], where the

first number in parentheses signifies that these are singlets under GTC and the

second number denotes the dimension of the SU(5)GUT representation; and

(iii) in order to account for neutrino masses, one needs to have TC-singlet,

electroweak-singlet neutrinos to produce Majorana neutrino mass terms that

can drive an appropriate seesaw [121, 123]. Here these are also singlets under

SU(5)GUT.

As another requirement, (v), the ETC gauge bosons should have appropri-

ate masses, in the range from a few TeV to 103 TeV, so as to produce accept-

able Standard Model fermion masses. This requirement cannot be satisfied

if G breaks directly to the direct product group GTC × GSM at the unification

scale MGU. The requirement could be satisfied if the breaking of G at MGU

would leave an invariant subgroup SU(2)w × GSCC , where

SU(NSCC) ⊃ SU(NSC)× SU(3)c (6.13)

with

NSCC = NSC +Nc = NSC + 3 . (6.14)
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Here SCC stands for the SC group together with the color group. As the energy

scale decreases, this intermediate symmetry GSCC should break at ETC scales,

eventually yielding the residual exact symmetry group SU(2)TC×SU(3)c. This

could occur naturally if the SCC gauge interaction is chiral and asymptotically

free; as the energy scale decreases and the SCC gauge coupling increases, it

could thus trigger the formation of a fermion condensate which would self-

break GSCC. This type of process in which a strongly coupled chiral gauge

interaction self-breaks via formation of a fermion condensate has been termed

“tumbling” [116]. Further requirements are that (vi) if NSC > NTC, there

should be a mechanism to break SU(NSC) to SU(NTC); (vii) the TC interaction

should be vectorial and asymptotically free, so that the TC gauge coupling gets

large as the energy scale decreases to the TeV scale, triggering the formation

of a technifermion condensate for EWSB; and (viii) the residual SU(3)c color

group should be asymptotically free.

Let us define a (N−1)-dimensional vector whose components are the values

of the anomaly A([k]N) with respect to SU(N), a = (A([1]N), ..., A([N−1]N)).

Then the constraint that there be no G gauge anomaly is the condition

n · a = 0 . (6.15)

This is a diophantine equation for the components of the vector of multiplicities

n, subject to the constraint that the components nk are non-negative integers

(as well as additional constraints discussed below).

It is convenient to display the transformation property of a fermion repre-

sentation of G with respect to the subgroups GSC and SU(5)GUT by the notation

(RSC,RGUT). The number of (left-handed) fermions that transform as singlets

under GSC and 5̄’s of SU(5)GUT is

N(1,5̄) = n
NSC+4

+ n4 (6.16)

and the number of (left-handed) fermions that transform as singlets under GSC

and 10’s of SU(5)GUT is

N(1,10) = n2 + n
NSC+2

. (6.17)
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Hence, the requirement that the left-handed SC-singlet, SM-nonsinglet fermions

comprise equal numbers of (1, 5̄) and (1,10)’s implies the condition

n
NSC+4

+ n4 = n2 + n
NSC+2

. (6.18)

The number of Standard Model fermion generations Ngh produced by the

representations of G is given by either side of this equation;

Ngh = n2 + n
NSC+2

. (6.19)

The remaining Ng` generations of Standard Model fermions arise via the break-

ing of GSC. Electroweak-singlet neutrinos, arise, in general, from two sources:

(i) [NSC]N , when all of the NSC indices take values in SU(NSC); and (ii) [5]N ,

when all of the indices take values in SU(5)GUT. In the special case NSC = 5,

these each contribute. Hence,

N(1,1) = n
NSC

+ n5 . (6.20)

Electroweak-singlet neutrinos arise from fermions that are singlets under both

GSC and SU(5)GUT; there are N(1,1) = n
NSC

+ n5 of these.

With the envisioned sequential breaking of GSCC and GSC that would pro-

duce the Ng` SM fermion generations, one has Ng` = NSCC − (NTC + Nc)

and

Ng` = NSC −NTC . (6.21)

The requirement that there be no (left-handed) fermions transforming as sin-

glets under SU(NSC) and in an exotic manner, as 5’s or 10’s of SU(5)GU is

satisfied if

n1 = 0, n
NSC+1

= 0 (6.22)
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and

n3 = 0, n
NSC+3

= 0 (6.23)

respectively. In the following, we list our discussion of two GUT models with

G = SU(11) and G = SU(12) respectively. The cases with G = SU(N) for

N = 7, 8, 9, 10 had already been studied in Ref. [122, 127].

6.4.2 NSC = 6, G = SU(11)

Here we consider the case where NSC = 6, so that N = NSC + 5 = 11 and

n = (n1, ..., n10)11. With Ngh + Ng` = Ngen. = 3 and NSC − NTC = Ng`, one

has, a priori, four possibilities for the manner in which the Standard Model

fermion generations arise, as specified by (Ngh, Ng`, NTC), namely (3,0,6),

(2,1,5), (1,2,4), and (0,3,3). However, only the cases with Ngh = 0 and Ngh = 2

are actually allowed by the various constraints. This SU(11) model was not

studied in Ref. [122] because it does not allow one to use the preferred, minimal

value, NTC = 2. This latter value is preferred in order to minimize techni-

color corrections to precisely measured electroweak quantities and because it

makes possible a mechanism to produce light neutrino masses [121, 123, 125].

However, if one takes into account the fact that quasi-conformal behavior in

the technicolor theory can reduce the technicolor corrections to the Z and W

boson propagators, the effect of the larger value of NTC might not be too seri-

ous. The conditions (6.22) and (6.23) that the theory should not contain any

5L or 10L yield

n1 = n3 = n7 = n9 = 0 , (6.24)

and Eq. (6.18) is

Ngh = n2 + n8 = n4 + n10 . (6.25)
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The condition of zero gauge anomaly, Eq. (6.15), is

7(n2 + 4n4 + 2n5 − 2n6)− 20n8 − n10 = 0 . (6.26)

For a given value of Ngh = 3 − Ng`, these are three nondegenerate linear

equations for the six quantities n2, n4, n5, n6, n8, and n10. The solution

entails the relation

n5 = n6 +
1

14
(27n8 + 29n10)− 5

2
Ngh . (6.27)

A necessary condition for an acceptable solution is thus that

27n8 + 29n10 − 35Ngh = 0 mod 14 . (6.28)

Let r be a non-negative integer. We find two classes of such solutions: (i)

Ngh = 0, n8 = n10 = r and hence, from Eq. (6.27), n5 = n6 + 4r; (ii) Ngh = 2,

n8 = n10 = r, and hence n5 = n6 + 4r − 5.

We first consider solutions of class (i). These have Ng` = 3 and NTC = 3.

Now Ngh = n2 + n8 = n4 + n10 = 0, which implies that r = 0, n2 = n8 = n4 =

n10 = 0, and n5 = n6 = s, where s is some positive integer. The resultant

vector n is

class (i) : n = (0, 0, 0, 0, s, s, 0, 0, 0, 0) . (6.29)

The minimal choice would be s = 1, but for generality, we shall keep s arbi-

trary. Since [6]11 ≈ [5̄]11, this SU(11) theory has left-handed chiral fermion

content

s{[5]11 + [5̄]11} (6.30)

and thus is vectorial. Consequently, the fermion content with respect to the

subgroups SU(9)SCC and SU(6)SC is also vectorial. With respect to the sub-

group

SU(2)w × SU(9)SCC , (6.31)
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the [5]11 representation transforms as

[5]11 = (1, [4̄]9) + (2, [4]9) + (1, [3]9) , (6.32)

where we use the [k]9 notation for the representations of SU(9)SCC and the well-

known dimensions to label the representations of SU(2)w. The total fermion

content with respect to the subgroup (6.31) is comprised of s copies of Eq.

(6.32) and its conjugate.

With respect to the subgroup

SU(6)SC × SU(5)GUT , (6.33)

the [5]11 representation transforms as

[5]11 = (1, 1) + ([1]6, 5̄) + ([2]6, 10) + ([3]6, 10)

+ ([2̄]6, 5) + ([1̄]6, 1) , (6.34)

where, aside from the overall singlet (1,1), we use the [k]6 notation for the

representations of SU(6)SC and the well-known dimensions to label the rep-

resentations of SU(5)GUT. The fermion content of this model with respect to

the subgroup (6.33) is the sum of s copies of eq. (6.34) and its conjugate.

We recall the requirement that the SCC and SC interactions should be

asymptotically free. For a given gauge group Gj with gauge coupling gj and

αj = g2
j/(4π), the evolution of the gauge couplings as a function of the momen-

tum scale µ is given by the beta function βj = dαj/dt = −bGj0 α2
j/(2π)+O(α3

j ),

where t = lnµ. We find that the SU(9)SCC and SU(6)SC gauge interactions

are non-asymptotically free, which disfavors models of class (i).

We next consider models of class (ii). These have Ng` = 1 and NTC = 5.

The relations Ngh = n2 + n8 = n4 + n10 = 2, together with the assignment

n8 = n10 = r imply that

n2 = n4 = 2− r . (6.35)

102



We thus have three subclasses of solutions, namely (ii.a) r = 2, whence n2 =

n4 = 0 and n5 = n6 + 3; (ii.b) r = 1, whence n2 = n4 = 1 and n5 = n6 − 1;

and (ii.c) r = 0, whence n2 = n4 = 2 and n5 = n6 − 5. Minimal choices in

each of these three subclasses have the following n vectors:

(iia) : n = (0, 0, 0, 0, 3, 0, 0, 2, 0, 2) (6.36)

(iib) : n = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1) (6.37)

(iic) : n = (0, 2, 0, 2, 0, 5, 0, 0, 0, 0) . (6.38)

The fermions of set (iia) transform, with respect to the subgroup (6.31),

according to

3[5]11 = 3{(1, [4̄]9) + (2, [4]9) + (1, [3]9)} (6.39)

2[3̄]11 = 2{(1, [3̄]9) + (2, [2̄]9) + (1, [1̄]9)} (6.40)

2[1̄]11 = 2{(1, [1̄]9) + (2, 1)} . (6.41)

With the SU(2)w couplings small, the nonsinglet SU(9)SCC fermion content is

thus

{f} = 4[1̄]9 + 4[2̄]9 + 3[3]9 + 2[3̄]9 + 6[4]9 + 3[4̄]9 . (6.42)

Hence, the SU(9)SCC sector is a chiral gauge theory. If the SU(9)SCC gauge

interaction were asymptotically free and hence increased as the energy scale

decreased below MGU, one could proceed to the next step and analyze self-

breaking condensate formation in the theory. However, we find that the

SU(9)SCC interaction is non-asymptotically free.

With respect to the subgroup (6.33), the (left-handed chiral) fermions of
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the set (iia) decompose according to

3[5]11 = 3{(1, 1) + ([1]6, 5̄) + ([2]6, 10) + ([3]6, 10)

+ ([2̄]6, 5) + ([1̄]6, 1)} (6.43)

2[8]11 ≈ 2[3̄]11 = 2{(1, 10) + ([1̄]6, 10)+

+ ([2̄]6, 5̄) + ([3̄]6, 1)} (6.44)

and

2[10]11 ≈ 2[1̄]11 = 2{([1̄]6, 1)) + (1, 5̄)} . (6.45)

With the SU(5)GUT couplings small, the nonsinglet left-handed fermions trans-

form according to the following SU(6)SC representations:

{f} = 15[1]6 + 25[1̄]6 + 30[2]6 + 25[2̄]6 + 32[3]6 (6.46)

where we have used the fact that [3]6 is equivalent to [3̄]6. Hence, the SU(6)SC

gauge interaction is chiral. However, we find that the SU(6)SC gauge interac-

tion is not asymptotically free. Because of the lack of asymptotic freedom of

the SU(9)SCC and SU(6)SC gauge sectors, this class of models (iia) is disfavored.

We next consider the subclass (iib). The fact that an SU(N) gauge theory

with odd N ≥ 5 and left-handed fermion content given by ni = 0 for i =

1, 3, ..., N−2 and ni = 1, i = 2, 4, ..., N−1 is anomaly-free was shown in [130].

With respect to the subgroup (6.31), the fermions for this class decompose

according to

[2]11 = (1, [2]9) + (2, [1]9) + (1, 1) (6.47)

[4]11 = (1, [4]9) + (2, [3]9) + (1, [2]9) (6.48)
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[6]11 ≈ [5̄]11 = (1, [4]9) + (2, [4̄]9) + (1, [3̄]9) (6.49)

[8]11 ≈ [3̄]11 = (1, [3̄]9) + (2, [2̄]9) + (1, [1̄]9) (6.50)

[10]11 ≈ [1̄]11 = (1, [1̄]9) + (2, 1) . (6.51)

With the SU(2)w couplings small, the nonsinglet SU(9)SCC fermion sector is

then

{f} = 2{[1]9 + [1̄]9 + [2]9 + [2̄]9+

[3]9 + [3̄]9 + [4]9 + [4̄]9} . (6.52)

Hence, although the SU(11) gauge interaction is chiral, the SU(9)SCC gauge

interaction is vectorial. Even if the SU(9)SCC interaction were asymptotically

free, this vectorial property would disfavor this class of models because it

would not self-break. We find that the SU(9)SCC interaction is actually not

asymptotically free.

With respect to the subgroup (6.33), the fermion decompose according to

[2]11 = (1, 10) + ([1]6, 5) + ([2]6, 1) (6.53)

[4]11 = (1, 5̄) + ([1]6, 10) + ([2]6, 10)+

+ ([3]6, 5) + ([2̄]5, 1) (6.54)

and

[6]11 ≈ [5̄]11 = (1, 1) + ([1̄]6, 5) + ([2̄]6, 10)+

+ ([3̄]6, 10) + ([2]6, 5̄) + ([1]6, 1) . (6.55)
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with the decompositions of [8]11 ≈ [3̄]11 and [10]11 ≈ [1̄]11 given above. With

the SU(5)GU couplings small, the nonsinglet fermion content under SU(6)SC is

16{[1]6 + [1̄]6 + [2]6 + [2̄]6 + [3]6} . (6.56)

As before, we find that the SU(6)SC gauge interaction for this set of fermions is

not asymptotically free. This disfavors this class of models. We have analyzed

the class (iic) in a similar manner and find that it is disfavored for the same

reason, lack of asymptotic freedom.

6.4.3 NSC = 7, G = SU(12)

We have also studied the case where NSC = 7, so that N = NSC + 5 = 12 and

n = (n1, ..., n11)12. With Ngh + Ng` = Ngen. = 3 and NSC − NTC = Ng`, one

has, a priori, four possibilities for the manner in which the SM fermion genera-

tions arise, as specified by (Ngh, Ng`, NTC), namely (3,0,7), (2,1,6), (1,2,5), and

(0,3,4). The conditions (6.22) and (6.23) that the theory should not contain

any 5L or 10L yield

n1 = n3 = n8 = n10 = 0 , (6.57)

and Eq. (6.18) is

Ngh = n2 + n9 = n4 + n11 . (6.58)

The condition of zero gauge anomaly, Eq. (6.15), is

8n2 + 48n4 + 42(n5 − n7)− 27n9 − n11 = 0 . (6.59)

For a given value of Ngh = 3 − Ng`, these are three linear equations for the

seven quantities n2, n4, n5, n6, n7, n9, and n11. The solution implies the

relations

n4 =
1

7

[
6(−n5 + n7) + 5n9 −Ngh

]
(6.60)

106



and

n11 =
1

7

[
6(n5 − n7)− 5n9 + 8Ngh

]
. (6.61)

If Ngh = 0, then n4 = −n11, so the only allowed values are n4 = n11 = 0.

It follows that n2 = n9 = 0 also, and, substituting these values into eqs. (6.60)

and (6.61), one obtains n5 = n7. Thus, this class of solutions, which we denote

as (i), has an n vector equal to

n = (0, 0, 0, 0, s, t, s, 0, 0, 0, 0) , (6.62)

where s and t are non-negative integers. Since [6]12 ≈ [6̄]12 and [5]12 ≈ [7̄]12,

this SU(12) theory is vectorial, and hence so are resultant SU(10)SCC and

SU(5)SC theories. Hence, even if the SCC and SC interactions were asymptot-

ically free (which they are not), these sectors would not self-break via conden-

sate formation as would be necessary in order to extract the TC theory and

the Standard Model fermion generations. In order to minimize the number

of fermions in an effort to maintain asymptotic freedom, we consider the two

minimal classes (cases), (ia) s = 0, t = 1; and (ib) s = 1, t = 0. As mentioned,

we find that the SU(10SCC) sector is not asymptotically free for either the

cases (ia) or (ib).

Among other solutions, we focus on one that minimize the fermion content

in an effort to preserve asymptotic freedom. We find cases with minimal n

vectors for Ngh = 3. Among these, the minimal one has

(ii) : n = (0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 2) . (6.63)

We find that this yields a chiral SU(10)SCC gauge interaction, as desired, but

the SU(10)SCC sector is again not asymptotically free. We have found similar

non-asymptotically free SCC sectors for other solutions for this Ng = 3 case,

and also for cases with Ng = 1, 2. Our results suggest that non-asymptotically

free SCC and SC sectors appear to be a generic problem with models having

unification groups SU(N) with N ≥ 11.

107



N NSC NTC Ngl Ngh n SCC N(1,1)

11 6 5 1 2 (0000300202) iia, CGT, NAF 3
11 6 5 1 2 (0101010101) iib, VGT, NAF 1
11 6 5 1 2 (0202050000) iic, CGT, NAF 5
11 6 3 3 0 (0000110000) i, VGT, NAF 2
12 7 4 3 0 (00000100000) ia, VGT, NAF 0
12 7 4 3 0 (00001010000) ib, VGT, NAF 2
12 7 7 0 3 (01010000202) ii, CGT, NAF 0

Table 6.1: Solutions to models with GSC and GSM unified into a simple gauge
group G = SU(N) from [127]. Here GSC = SU(NSC) and GSC ⊇ GTC. The
“SCC” notation list the properties of the SU(NSC) and the SU(3)c. The no-
tation VGT and CGT stand for vectorial or chiral gauge theory respectively;
AF and NAF stand for asymptotically free theories or non asymptotically free
theories respectively. The n notation follows the (6.12). The N(1,1) is the
number of EW-singlet neutrinos.
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Chapter 7

Outlook

This thesis has reported new results on phenomenological implications for

two scenarios for physics beyond the Standard Model, namely supersymmetric

models with supergravity mediation and models with dynamical electroweak

symmetry breaking. Experiments at the LHC are giving important informa-

tion constraining both of these scenarios. The experimental analysis has been

carried out with focus on the mSUGRA models. Within this scenario, our re-

sults suggest that models with lighter MSSM Higgs should also be considered

seriously, which would need completely different searching strategies compared

to the large /ET plus jets signals. Of course, the NUSUGRA models have more

sparticle hierarchies, which lead to more possibilities to the LHC signals. As

we have analyzed, one type of such models are those with light gluinos in the

spectrum, which can be soon discovered or ruled out in the LHC run in Year

2011 and 2012 with
√
s = 7 TeV. In our extended study of SUGRA models,

we have also noticed the possibility of explaining the anomalous positron sig-

nals from PAMELA search for dark matter. Several direct and indirect dark

matter detection null results yield constraints on the SUGRA models, and

their improved results in the near future will be directly related to the current

SUGRA model searches.

We are already in the exciting LHC era. Above all, we shall have a com-

plete understanding of electroweak symmetry breaking from the LHC data.

Yet there should be more ultraviolet completion work to understand other
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puzzles beyond Standard Model, e.g., the fermion mass hierarchies, the neu-

trino masses and mixing, the dark matter candidates, and so on. Experimental

results from LHC and the dark matter searches would be important guidelines

for the future work.
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Appendix A

N = 1 Rigid Supersymmetric

Models

In this chapter, we will review two basic N = 1 rigid supersymmetric theories

for the realistic model building, namely the Wess-Zumino (WZ) theory and

supersymmetric Yang-Mills (SYM) theory. Their generalization into Standard

Model yields the supersymmetric Standard Model to be discussed in chapter

(2). We start from reviewing the supersymmetric vacuum and where super-

symmetry is broken in the rigid supersymmetric theories in Section (A.1).

Then we discuss the WZ and SYM theories in Section (A.2) and (A.3) within

the superspace. Our convention and details of the “superspace calculus” fol-

lows Ref. [2]. Other reviews include [1] [3].

A.1 Introduction to SUSY Vacuum

In rigid supersymmetry, the Hamiltonian is the sum of the squares of the

SUSY generators1: H = Q†Q. Because of this, the energy of any state in

the theory should be semi-positive definite. A SUSY vacuum state is defined

such that Q|Ω〉 = 0. Hence it is clear that it has a vanishing vacuum energy

EΩ = 0. Furthermore, one may notice that states of non-zero energy in the

1The SUSY generator is a two-component spinor, which is defined as: Qα ≡
´
d3xS0α,

with S0α being the time component of the super-current Sµα.
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SUSY theory must be paired by the supercharge Q in the following fashion:

Q|b〉 =
√
E|f〉 Q|f〉 =

√
E|b〉 (A.1)

However, this is not the case for E = 0 states. One is allowed to have any num-

ber of bosonic/fermionic states at E = 0 level. As one varies some parameter of

the theory, some zero-energy states may make transitions into non-zero energy

states and vice versa. However, there must be pair of bosons/fermions to tran-

sit between states. Under any variation of states, the quantity of nE=0
B −nE=0

F

is always unchanged. This quantum invariant is called Witten index [9, 10],

denoted as ∆ ≡ Tr(−1)F . This quantity can be reliably computed in many

different models. Its physical meaning is the following:

• For ∆ 6= 0, it must be either nE=0
B 6= 0 or nE=0

F 6= 0 or both. In any case,

SUSY is unbroken.

• For ∆ = 0, there can be two sub cases. One may have nE=0
B = nE=0

F 6= 0,

which means there are vacuum states with EΩ = 0; hence SUSY is

unbroken. One may also have nE=0
B = nE=0

F = 0, i.e. all states in the

spectrum must have E > 0; hence SUSY is broken.

One can also view from the perspective of the vacuum energy density in

the SUSY theory, which is defined as the expectation value of the energy-

momentum tensor:

〈Ω|Tµν |Ω〉 = EΩηµν (A.2)

(where ηµν is the flat-space metric) with the energy-momentum tensor in the

SUSY theory being Tµν = (γµ)αβ{Qα, Sνβ}. Hence for any non-zero EΩ, this

means SUSY is spontaneously broken. For the SUSY breaking case, an ana-

logue of Goldstone’s theorem can be formulated in terms of SUSY currents.

By current algebra, one can write the anti-commutator from Eq. (A.2) into:
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〈Ω|{Qα, Sµβ}|Ω〉 =

ˆ
d4x∂ρ〈Ω|TSρα(x)Sµβ(0)|Ω〉 (A.3)

To have a non-vanishing contribution from the (A.3), the two-point func-

tion 〈Ω|TS(x)S(0)|Ω〉 should behave as 1/r3 as r → ∞. The only possible

intermediate state is the spin 1/2 massless fermion, which is known as Gold-

stino. One can define the coupling between the Goldstino and the super-

current through:

〈Ω|Sµα|ψβ〉 = f(γµ)αβ (A.4)

It is not hard to find that the coupling f is related to the vacuum energy density

as: EΩ = f 2. In other words, for the SUSY-breaking vacuum with EΩ 6= 0,

there should be a massless Golstino emerge with the coupling strength to the

super-current being f =
√
EΩ.

A.2 Wess-Zumino Theory

The Wess-Zumino (WZ) theory, expressed in superspace form, contains a chiral

supermultiplet Φ(x, θ) (and its conjugate Φ†(x, θ) in the superspace) with its

general form as follows:

L =

ˆ
d4θK(Φ†,Φ) + (

ˆ
d2θW(Φ) + h.c.) (A.5)

The first term in Eq. (A.5) is a real function of Φ, which is called Kähler

potential. In other words, the chiral field must appear in the form of f(Φ†Φ)

in the Kähler potential. This function gives the kinematic terms for the scalar

and spinor components of the supermultiplet. The simplest Kähler potential

reads K(Φ†,Φ) = Φ†Φ, which is called the canonical Kähler potential. The
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second one is a holomorphic function2 of Φ, which is called the superpotential.

This term yields masses and interactions for the chiral fields.

The chiral supermultiplet contains three components: Φ = (φ, ψ, F ). One

easy way is to define each component by the covariant derivatives in the su-

perspace as:

Φ|θ=0 = φ, DαΦ|θ=0 = ψα, −1

2
D2Φ|θ=0 = F (A.6)

With this definition one can easily show that the canonical Kähler potential

yields the following kinematic terms by performing the superspace integration:

LWZfree =

ˆ
d4θΦ†Φ = −|∂φ|2 − ψσµ∂µψ +

1

4
|F |2 (A.7)

The scalar potential of the WZ model V (φ†, φ) is derived by varying the chiral

field Φ in the superspace:

δ

δΦ
[

ˆ
d2θ(−1

4
D

2
Φ†)Φ + W(Φ)] + h.c. = 0

⇒ F ∗sol = −2
∂W

∂Φ
|θ=0 Fsol = −2

∂W†

∂Φ†
|θ=0 (A.8)

By substituting the solution (A.8) into the auxiliary part in the (A.7), one

gets the scalar potential3:

V (φ, φ†) =
1

4
|Fsol|2 = |∂W

∂Φ
|2 (A.9)

2By ‘holomorphic’, we mean that W(Φ) is a polynomial in Φ and does not contain the
conjugated fields Φ†.

3In the more general case where one can have multiple chiral fields Φi, the scalar potential
reads: V (φ†i , φi) = (KΦ†Φ)ij(∂iW)(∂jW†)|θ=θ=0, where (KΦ†Φ)ij ≡ (∂K/∂Φ∂Φ†)−1

ij is the
inverse of the Kähler metric, and ∂iW = ∂W/∂Φi.
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This expression tells where does supersymmetry break in the WZ theory. From

our previous discussion of the SUSY vacuum, it is obvious that when a non-

vanishing vev of 〈F 〉 6= 0 exists, one gets a positive-definite scalar potential in

the vacuum. Hence this breaks the rigid SUSY. This type of breaking is called

the F-term breaking.

A.3 Super Yang-Mills Theory

To describe the superfields in the gauge sector, one uses a hermitian vector4

superfield V ≡ V aT a for the gauge multiplet (Aaµ, λ
a
α, D

a). We shall also define

the gauge covariant field strength Wα and its conjugates W α̇ (which are also

shown to be chiral Dβ̇Wα = 0 and anti-chiral DβW α̇ = 0) as 5:

Wα ≡ D
2
(e−VDαe

V ) W α̇ ≡ D2(e−VDα̇e
V ) (A.10)

Therefore, a gauge invariant pure SYM action in the superspace reads:

SSYM =
1

4

ˆ
d4xd2θtr(WαWα) + h.c. (A.11)

Each component of the vector supermultiplet is defined as:

D = −2DαWα|θ=0 λα = Wα|θ=θ=0

Aµ = −1

4
(σµ)αβ̇[Dα, Dβ̇]V |θ=θ=0 (A.12)

where each component is Lie-algebra valued. Then in the x-space, the SYM

action reads:

4We define V † = V for real vector multiplet. We also define the Lie algebra generator
to be anti-hermitian as (T a)† = −T a, hence V a is imaginary: (V a)∗ = −V a. The gauge
transformation of V is exp(V ) → exp(Λ) exp(V ) exp(−Λ), where Λ = ΛaT a and Λ ≡ −Λ†

are the gauge transformation parameters in the superspace.
5The gauge transformation of the field strength reads: Wα → exp(Λ)Wα exp(−Λ), and

one also has the equality DαWα = D
α̇
W α̇.
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SSYM = tr

ˆ
d4x(−1

4
F2
µν −

1

2
λγµDµλ+

1

2
D2) (A.13)

Similarly if 〈D〉 6= 0 is found, then the rigid SUSY breaks. This is called the

D-term breaking.

Finally, we shall couple the matter chiral superfield 6 with the SYM field. A

gauge-invariant action is easily obtained by generalizing the canonical Kähler

potential in the WZ theory:

ˆ
d4xd4θΦ†(egV )Φ (A.14)

which simply modifies the free WZ action (A.7) into the following interacting

WZ action:

Lint = −|Dµφ|2 − ψσµDµψ +
1

4
F 2

−
√

2g((φT aψ)λa + h.c.) + g(φ∗T aφ)Da (A.15)

Combining the D-term from the (A.13), one can integrate out both F and Da

auxiliary fields to get:

L = −|Dµφ|2 − ψσµDµψ + V (φ†, φ)

−
√

2g((φT aψ)λa + h.c.)− g2

2
(φ∗T aφ)2 (A.16)

6The gauge transformation for a chiral superfield goes as: Φa → (eΛ)abΦ
b, where Λab

represents the gauge transformation parameter in the representation R.
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Appendix B

Gravity-mediated

Supersymmetry Breaking

Models

Since no supersymmetric partner of any known particle has been observed,

supersymmetry must be broken in nature. Much important work on super-

symmetric model building since the birth of the MSSM has been devoted to

investigating the origin of supersymmetry breaking. In the discussion of chap-

ter (2), many soft SUSY-breaking terms have been introduced in an ad hoc

fashion. With more than one hundred free parameters introduced, the MSSM

itself cannot be a predictive theory.

The spontaneous SUSY-breaking models cannot be achieved within the

MSSM itself. Some separate hidden sector in addition to the MSSM (typically

at some higher energy scale) is then introduced where SUSY can be sponta-

neously broken. The breaking of SUSY leads to a massless Goldstino to be

absorbed by a gravitino. This led to the pioneering idea of coupling the su-

pergravity into a realistic SUSY breaking model [20] [21] in early 1980’s. The

spontaneous SUSY breaking in a separate hidden sector is communicated to

the MSSM sector via gravity. Hence, this leads to various soft breaking terms

as we introduced in the previous discussion on the MSSM. Such a scheme of

breaking the SUSY through a hidden sector and mediated by supergravity is
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called the SUGRA-mediation.

B.1 Spontaneous SUSY breaking

We come to mention two spontaneous (rigid) SUSY-breaking models at the

tree-level, either from the F-term breaking called O’Raifeartaigh model or from

the D-term breaking called Fayet-Iliopoulos (FI) model. We shall explain why

they are not realistic for the MSSM.

In the O’Raifeartaigh model, one introduces three different chiral super-

multiplets into a superpotential:

W(Φ1,Φ2,Φ3) = −kΦ1 +mΦ2Φ3 +
y

2
Φ1Φ2

3 (B.1)

which translates into the following scalar potential:

V (φ1, φ2, φ3) = |k − y

2
φ2

3|2 +m2|φ3|2 + |mφ2 + yφ1φ3|2 (B.2)

without a consistent solution for V (φ1, φ2, φ3) = 0, hence the supersymmetry is

broken at tree-level with such a superpotential. However, the mass spectrum1

of this model follows the following supersymmetric sum rule:

STr(m2) ≡
∑

j

(−)2j(2j + 1) Tr(m2
j ) = 0 (B.3)

If the O’Raifeartaigh F-term breaking scheme were true for the MSSM fields,

this implies the following relation between the electron and selectrons:

1Assuming that m2 ≥ ky, an expansion of the (B.2) around the 〈φ1〉 = 〈φ2〉 = 〈φ3〉 = 0
yields the tree-level squared masses of: 0, m2, and m2 ± ky. Meanwhile, the Weyl fermion
squared masses are 0, m2, and m2. For the different case when m2 < ky, one should
expand the scalar potential in a different vacuum. This does not change the result of the
supersymmetric sum rule.
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2m2
e = m2

ẽ1
+m2

ẽ2
(B.4)

However, no such scalar electrons with mass < 0.5 MeV were found in nature.

Another type of spontaneous SUSY-breaking model is by introducing a

linear U(1) D-term. Combined with the D-term from the kinematic part of

the SYM (A.13) and the interacting term (A.15), and also assuming a mass

term (from the superpotential) for the scalar φ, one writes:

LFI =
1

2
D2 −m2|φ|2 + gD(q|φ|2)− κD (B.5)

where q is the charge of φ. Since we are discussing the U(1) case, the interacting

term from the (A.15) should be replaced with the U(1) charge of the scalar

field φ. Integrating out the auxiliary D field in the same way as we derive the

(A.16), one gets the following FI-potential:

VFI = m2|φ|2 +
1

2
(κ− gq|φ|2)2 (B.6)

Clearly this potential cannot vanish, hence SUSY is spontaneously broken.

Again, such a D-term breaking is impossible in the MSSM. The only scalar

fields that can enter the (B.6) are the sfermions charged under the U(1)Y ,

while the MSSM superpotential (2.6) does not contribute the mass term. To

have a non-vanishing scalar potential (B.6), one must have some of sfermions

picking up non-zero vev’s: 〈f̃〉 6= 0. If squarks or charged sleptons got non-zero

vev’s, this will lead to color/charge-breaking (CCB) SUSY breaking vacuum.

However, the SU(3)c×U(1)em is not a broken symmetry in nature2. Therefore,

the FI D-term for U(1)Y must be subdominant compared to other sources of

superysmmetry breaking. Or one may consider the FI-type supersymmetry

breaking by some other unknown U(1) gauge symmetry broken at very high

2Even if the sneutrinos pick up non-zero vev’s, this FI D-term breaking leaves all gaugino
fields massless, which makes it again unrealistic for the MSSM.
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scale.

B.2 Supergravity GUT Model

We next review the SUGRA GUT model where the N = 1 SUGRA is cou-

pled to chiral multiplets and vector multiplets. We shall recall that the full

Lagrangian of the N = 1 rigid supersymmetric theory reads:

Lrigid =

ˆ
d2θ(−1

8
D

2
Φ†i (e

gV )ijΦj + W(Φi) +
1

4
Wα
AWA,α) + h.c. (B.7)

Now we extend the discussion into the curved spacetime. This means that

the (B.7) will be generalized into:

L =

ˆ
d2θ(−1

8
D

2
K[Φ†i (e

gV )ijΦj] + W(Φi) +
1

4
fAB(Φi)W

α
AWB,α)(B.8)

where K is a general real function and fAB is a dimensionless analytic function

of the chiral superfields. It will be convenient to re-write the Kähler potential

function as:

K(Φ†i (e
gV )ijΦj) ≡ −3 log(−1

3
κ2K(Φ†i (e

gV )ijΦj)) (B.9)

where we have defined κ ≡ 1/Mpl.

Meanwhile, the generalization into the N = 1 local supersymmetry means

that one needs to include the gravitational fields. In the N = 1 supergravity,

they are graviton field eµ
m with its spin 3/2 superpartner gravitino ψµ. They

together form the super vielbein field EΠ
M = (eµ

m, ψµ). Correspondingly,

the usual Einstein scalar curvature R should be generalized to the superspace

scalar curvature R. Then the supergravity Lagrangian in terms of the N = 1

superspace reads:
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L = −3

κ

ˆ
d2θER + h.c. (B.10)

Or combining the (B.8) and the (B.10), one gets the full N = 1 Lagrangian

for pure supergravity and its coupling to the chiral and vector superfields as:

Lsugra =

ˆ
d2θE[

3

8κ2
(D

2 − 8κR) exp(−1

3
K[Φ†egV Φ])

+W(Φ) +
1

4
fAB(Φ)Wα

AWB,α] + h.c. (B.11)

The final Lagrangian in the ordinary x-space is extremely lengthy after su-

perspace integration from the (B.11), which contains bosonic kinematic term,

fermionic kinematic term, the scalar potential term, the fermion mass term,

and the four-fermion interaction term. In our following discussion, we shall

combine the Kähler potential in the supergravity (B.9) with the superpotential

into the following modified Kähler potential3:

G(Φi,Φ
†
i ) ≡

1

κ2
(K(Φi,Φ

†
i )− log(κ6|W(Φi)|2)) (B.12)

We shall first mention a fermionic kinematic term for the gravitino ψµ as

follows:

LFK = − e

2κ
exp(−κ2G/2)ψµσ

µνψν + ... (B.13)

with e ≡ det eµ
m and ... being the irrelevant terms for our discussion. If the

N = 1 local SUSY breaks spontaneously, the gravitino eats the goldstino to

become massive (called the Super-Higgs mechanism). The spontaneous break-

ing of local SUSY means a non-vanishing vev of 〈G〉 6= 0, with the gravitino

3The modified Kähler potential is invariant under the transformation: K→ K+h(Φi)+
h∗(Φ†i ) and W→ exp(−h(Φi))W.
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mass reading:

m3/2 =
1

κ
exp(−κ2〈G〉/2) (B.14)

As the rigid SUSY-breaking, one should have the spontaneous breaking of

the local SUSY only when (at least) one auxiliary component of the super-

fields get non-vanishing vev’s. In our consideration, the F-term of the chiral

superfield reads:

Fi =
1

κ
exp(−κ2G/2)(G−1)i

j
Gj +

1

4
f ∗ABk (G−1)i

k
λAλB + ... (B.15)

where we have:

Gj ≡
∂G

∂Φj† | Gij ≡
∂2G

∂Φi∂Φj† | (B.16)

and

f ∗ABk ≡ ∂f ∗AB

∂Φk† | (B.17)

Next, the F-term scalar potential then reads:

VF = − exp(−κ2G)[
1

κ2
Gi(G−1)i

j
Gj +

3

κ4
] (B.18)

Here we shall make an ansätz to split the chiral multiplet into the observed

piece Z and the hidden piece Σ. We denote their lowest scalar components

as (z, σ). The superpotential is separated into two parts correspondingly with

the following modified Kähler potential G assumed:
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G = − Zi†Zi − Σ†Σ− 1

κ2
log(κ6|W(zi, σ)|2) (B.19)

W = Wo(Zi) + Wh(Σ) (B.20)

With these assumptions and using that K(zi, z
i†, σ, σ†) = −κ2(zi†zi+σ

†σ), the

scalar potential (B.18) becomes:

eKVF = κ4|W|2(|zi|2 + |σ|2) + |∂Wo

∂zi
|2 + κ2(W∗zi(∂

iWo) + h.c.)

+|∂Wh

∂σ
|2 + κ2(W∗σ

∂Wh

∂σ
+ h.c.) (B.21)

Notice that the ∂iWo ≡ ∂Wo

∂Zi
|θ=0 and similar relations should be understood

in this expression of the scalar potential. One can see a universal mass for all

scalars zi in the visible sector:

m2
i = exp(−〈K〉)κ4|W|2 = m2

3/2 ≡M2
0 (B.22)

In addition, the last term yields a universal trilinear coupling term among all

scalar fields:

A0 = e−〈K〉/2〈 σ
|W|

∂Wh

∂σ
〉m3/2 (B.23)

Finally, we shall give the gaugino mass from the crossing terms of the

(B.15):

Lλ =
1

4κ
e−κ

2〈G〉/2〈Gj(G−1)jkf
AB,k〉(λAλB) + h.c. (B.24)

which yields the following gaugino masses:
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mAB
λ =

1

2
m3/2Re〈Gj(G−1)jkf

AB,k〉 (B.25)

Unlike the scalar soft masses or the trilinear couplings, Eq. (B.25) does not

imply the universality for gaugino masses. Notice that the RefAB is the co-

efficient of the gauge kinematic term FA
µνF

µν,B, which is proportional to 1/g2.

One can further assume the grand unification at the MU ' 1016 GeV, hence

Re〈fAB,k〉 ∝ δAB can be the simplest assumption. Thus, a universal gaugino

mass can be assumed in the supergravity GUT model:

mλ = M1/2 (B.26)

Since fAB is symmetric in the adjoint indices AB, the above statement is

equivalent to the case when we only take the singlet contribution from the

product of adj⊗ adj = 1 + ... to the gaugino masses. Inclusion of non-singlet

contributions denoted by ... leads to non-universality of the gaugino masses,

i.e. there are different gaugino mass terms for different factor groups. The

full discussion of the non-universal gaugino masses due to non-singlet terms

from SU(5), SO(10), and E6 gauge symmetries is presented in Ref [13]. In the

text we have analyzed the collider signatures and dark matter implications in

both mSUGRA models and SUGRA models with non-universal gaugino mass

terms.
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