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Abstract of the Thesis

Multimodal Tagging of Human Motion Using Skeletal Tracking With

KinectTM

by

Debaleena Chattopadhyay

Master of Science

in

Computer Science

Stony Brook University

2011

Recognizing moves and movements of human body(s) is a challenging prob-

lem due to their self-occluding nature and the associated degrees of freedom for

each of the numerous body-joints. This work presents a method to tag human

actions and interactions by first discovering the human skeleton using depth im-

ages acquired by infrared range sensors and then exploiting the resultant skeletal

tracking. Instead of estimating the pose of each body part contributing to a set of

moves in a decoupled way, we represent a single-person move or a two-person

interaction in terms of its skeletal joint positions. So now a single-person move

is defined by the spatial and temporal arrangement of his skeletal framework

over the episode of the associated move. And for a two-person interactive se-

quence, an event is defined in terms of both the participating agents’ skeletal

framework over time. In this work we have experimented with two different

modes of tagging human moves and movements. In collaboration with the Mu-

sic department we tried an innovative way to tag a single person’s moves with

music. As a participating agent performs a set of movements, musical notes

iii



are generated depending upon the velocity, acceleration and change in position

of his body parts. We also try to recognize human interactions into a set of

well-defined classes. We present the K-10 Interaction Dataset with ten differ-

ent classes of two-person interactions performed among six different agents and

captured using the KinectTM for Xbox 360. We construct interaction represen-

tations in terms of local space-time features and integrate such representations

with SVM classification schemes for recognition. We further aligned the clips

in our dataset using the Canonical Time Warping algorithm that led to an im-

provement in the interaction classification results.
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Chapter 1
Introduction

A full grown adult body has 206 bones and over 230 moveable and semi-

moveable joints. The maximum number of degrees of freedom that any joint can

have is three. However, the effect of adjacent joints may be summated to express

the total amount of freedom between one part of the body and an area more dis-

tant to it. The more distant a segment, the greater the degrees of freedom it will

possess relative to the torso. Jones et al. [2] cites the example of the degrees of

freedom between the distant fingers of the hand and the torso amounting to 17.

Figure 1.1. 2 Reasons Why I Want
To Be A Stick Figure. [Comic Credit:
ThadGuy.com]

Now, with such a wide choice of

poses and possibilities the human

body is capable of numerous moves

and movements. And, as it happens,

human beings use their bodily move-

ments more than often as a mode to

interact. But interaction needs the

participation of more than one agent.
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Hence since not long before, interactions utilizing human motion were re-

stricted only to human-human interactions. However with the recent devel-

opments in technology, the field of Human Computer Interaction has been

exploiting human motion as one of the multimodal interaction possibilities.

Figure 1.2. HCI Future. [Comic Credit:
Wearable Interaction]

Human Computer Interaction

applications exploiting gesture recog-

nition, full body tracking and motion

detection has become a commoner

in today’s everyday world. Among

the recent advances is the launch of

the videogame console Kinect TM for

Xbox 360 in the late Fall of 2010. The

following one-liner from Microsoft’s marketing campaign for KinectTM defines

what human motion was made capable of:

“You are the controller.”

1.1 Our Approach

This work talks about two different types of interactions; human-computer in-

teraction and human-human interaction. And what bridges these two domains

in this study is the mode of interaction: human motion. In this thesis, we have

experimented with human motion initiated computer interaction as well as used

human motion as cues to classify human-human interactions. We also collected

our own dataset (K-10 Interaction Dataset) of two-person interactions using the

Kinect. We recorded both the depth map and the image map for ten deifferent set

of interactions with 6 different subjects. The details of this dataset is presented
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in Section 3.2 and available for download at our project website [3].

We have used the technology for skeletal tracking available with the

KinectTM videogame console and developed some algorithms and applications

to do multimodal tagging of human moves and movements. The two different

modes of tagging used here are tagging human moves with music and tagging

human-human interactions into classes. The former is a Human Computer Inter-

action project and later is a standard classification problem in Computer Vision.

To use the Kinect videogame console for Xbox 360, we had to first interface it

with a computer. For that we have used the OpenNI TM framework [4] and NITE

Middleware from PrimeSenseTM [5].

1.2 Thesis Overview

In Chapter 1 we introduce the thesis work as well as give a short background

study. In Chapter 2, we talk about the application—Tagging moves with music.

This is where we have used human motion as a mode of Human Computer

Interaction and given expression to that motion in the form of musical notes.

In Chapter 3 we set out for solving a standard Computer Vision classification

problem. Firstly we talk about the collection of our working dataset. We delve

into how the videogame console technology was interfaced with the computer

and talk about pros and cons of using an out-of-the-shelf skeletal tracking API.

We give the specifications for the K-10 Interaction dataset and also describe

why these 10 classes of interactions were chosen for our set of experiments.

Finally we discuss how we learn to automatically recognize the interactions

captured in the K-10 Interaction Dataset. We give the details of the algorithm,

comment on the features used and insights on how this can be extended to any
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other activity recognition problem. In Chapter 4 we conclude the thesis with an

overall discussion of the work and possible future extensions.

1.3 Background

This background study consists of three subsections. Firstly, we discuss some

relevant works that talk about the connection of human motion and music, how

one can be mapped into another and possible ways of interactivity. Then we

briefly talk about the action and interaction recognition literature, state the two

main approaches towards analysis of motion and mention a few state-of-the-

art methods for such tasks. The final section gives a short background on the

KinectTM technology and presents a few published works that exploit the avail-

able depth sensors of the KinectTM.

1.3.1 Music & Motion

“Is there a true perceptual experience of movement when listening to music, or

is it merely a metaphorical one owing to associations with physical or human

motion?”

Honing [6] gives an informal yet informative description on how the

apparent relation between motion and music has been investigated in a consid-

erable number of works. This article reviews a family of computational models

called kinematic models that create explicit relation between motion and music

which can be tested and validated on real performance data. The main purpose

of citing this article in this section is not to delve into how these computational

models express, test or validate this relation, but to justify that tagging human

motion with musical notes is not an arbitrary experiment.
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The key component behind the symbiotic relationship between dance

and music is a series of body movements or human motion. In the computer

music literature and the sensor system literature, different systems are proposed

from time to time [7] to record different context of motion to better understand

this relation.

Figure 1.3. Thriller Dance Steps: Mu-
sic Video Originally from Michael Jack-
son’s Thriller In the video’s most iconic
scene, Jackson leads other actors cos-
tumed as zombies to dance in a chore-
ographed routine heavily influenced with
music beats and sound effects. [Image
Credit: brian.hoover.net.au]

There are existing sensor sys-

tems that capture various forms of

gestures using spatial mapping for

building interactive surface like smart

walls as proposed by Paradiso et al.

[8] or dance floors for tracking dance

steps as described by Griffith et al.[9].

Paradiso et al. [10] designed an

arrangement of tilted accelerometers

and pressure sensors at various posi-

tions to capture high-level podiatric

gesture and proposes an interface for

interactive dance. The goal of their

work had been to capture a collection

of action-to-sound rules for improvisational dancers. Lee et al. [11] proposed a

system to extract rhythmic patterns from movement of a single limb using ac-

celerometers in real-time. Wechsler et al. [12] introduces a camera-based mo-

tion sensing system that is essentially an interactive video environment which

permits performers to use their movements to control or generate sounds.

In our work, we propose an interactive system that uses the depth sensors

of KinectTM for a whole body skeletal tracking. It is able to automatically gen-
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erate musical notes based on the changes in velocity, acceleration and position

of a set of skeleton joints in a performing agents body.

1.3.2 Interaction Recognition

Figure 1.4. Human Interactions: These are two clips from the silent movie The Kid
(1921) by Charlie Chaplin. Before the modern motion pictures, the silent films mostly
expressed their storyline through human interactions and occasional on-screen flash of
written dialogues. This urges us to think how expressive human actions and interactions
are. While the image in the left shows some complex facial emotion, which, given the
state-of-the-art Computer Vision Methods still may not be easy to be automatically
annotated as an event; we are getting closer towards automatically understanding the
event happening in the right image. [Image Credit: doctormacro.com]

Action and Interaction Recognition can more generally be categorized

under the domain of Human Motion Analysis. Human Motion Analysis con-

cerns detection, tracking and recognition of people, and also, the understanding

of human behaviors. The tremendous interest in this field is mainly fuelled by

a wide range of potential applications such as smart surveillance, advanced user
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interface, motion based diagnosis etc. Aggarwal et al. [13] gives an extensive

survey on the prevalent methods in Human Motion Analysis. It can be summa-

rized as in the Fig. (1.4). The three main stages of Human Motion Analysis,

Figure 1.5. Relationship among three major areas of Human Motion Analysis

as shown in the figure, are body structure analysis, tracking and recognition.

Among the appearance based and model based approaches for body structure

analysis, the KinectTM technology uses a novel intermediate body parts repre-

sentation designed to spatially localize joints of interest at low computational

cost and high accuracy as proposed by Shotton et al. in [14]. Regarding action

recognition, some of the different approaches are image based methods as de-

scribed by Junejo et al. in [15], [16], part-based methods as proposed by Allin

et al. in [17] , and state-space methods using HMM as described by Ramanan

et al. [18]. Park [19] proposed an appearance based and state-space modeled

method for event recognition of human actions and interactions. He worked to-

wards estimating body-part features (ellipses and convex hulls extracted from

already developed segmentation) into body poses using a Bayesian Network.

Then the pose estimation results are concatenated to form a sequence which is
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classified using a dynamic Bayesian network. Finally, a verbal semantic de-

scription of the interaction is generated. Park et al. [20] proposed a method to

figure out semantic interpretation of several human interaction sequences. They

adopt the verb argument structure in linguistics to represent human action in

terms of <agent—motion—target> triplets. They are finally able to annotate

various human interactions with user-friendly natural language description and

also describe positive, neutral, and negative interactions occurring between two

persons.

Our work of interaction recognition is similar in the lines of [19] . We

also perform two-person interaction recognition and tag or classify them into

one of the 10 well-defined classes. However we use the model based approach

of [14] in discovering the skeletal framework of the participating agents and a

template-matching method to classify interactions. For classification our tem-

plate exploits the participating agents joints spatial and temporal information in

an inter-dependent way. We give details of our algorithm and furnish results in

Chapter 3.

1.3.3 The KinectTM

The recent advances on imaging hardware and computer vision algorithms had

led to the emerging technology of markerless motion capture using a camera

system. The commercial solution for markerless motion capture currently avail-

able in the market is the Microsofts Kinect videogame console. The technol-

ogy associated with the KinectTM console discovers the 3D skeleton for a hu-

man body and gives us a robust tracking output [14]. The Kinect essentially

uses a range camera technology developed by PrimeSenseTM that interprets 3D
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Figure 1.6. The KinectTM Game Console. [Image Credit: gamentrain.com]

scene information from a continuously-projected infrared structured light. The

depth sensors in Kinect consist of an infrared laser projector combined with a

monochrome CMOS sensor, which captures video data in 3D under any ambi-

ent light conditions. After recording the 3D scene information, the Kinect first

evaluates how well each pixel fits certain features for example, is the pixel at

the top of the body, or at the bottom? This gives each pixel a certain score.

The score for each feature is then combined with a randomized decision forest

search through. A randomized decision forest search is essentially a collection

of decisions that asks whether a pixel with a particular set of features is likely to

fit a particular body part. The Kinect technology has already been trained on a

collection of motion capture data (around 500,000 frames). Once the body parts

have been identified, the system then calculates the likely location of the joints

within each one to build a 3D skeleton. The Microsoft Xbox runs this algorithm

200 times per second, which is around ten times faster than any previous body-

recognition techniques ensuring players can easily be tracked fast enough for

9



their motions to be incorporated in to games.

Figure 1.7. The KinectTM Sensors in Play [Image Credit: wired.com]

The depth sensors of Kinect are being recently utilized into different

Computer vision tasks. Bleiweiss et al. [21] proposes a real-time framework for

blending full-body tracking of a player with pre-defined set of gestures to en-

hance interactive gaming experience. Xia et al. [22] uses the depth information

from Kinect and proposes an algorithm with 2-D head contour and a 3-D head

surface model for human detection.

We have used the depth sensors of the KinectTM to do full-body tracking

of human agents and tagged the moves and movements into different modes like

musical notes and classification categories.

10



Chapter 2
Tagging Moves with Music

2.1 Introduction

The idea of tagging moves with musical notes came to us while on a discussion

on how music can give us a sense of depth. While designing an application,

depth visualizer [screenshots in Figure 2.1] that will enable a visualization of

how an agents/objects 3D position is changing and also sync an Open Sound

Control-enabled application to generate musical notes based on those 3d co-

ordinate positions, we realized it will be worthwhile to think of an extension.

Figure 2.1. A Simple Depth Visualizer Synced with OSC-enabled Multimedia Appli-
cations

Now, with the KinectTM console interfaced with the computer using

proper interfaces, what was required was to make a bridge between the KinectTM

11



Console and Open Sound Control. This would enable us to actually use human

Motion in real time to generate musical signatures. So, essentially we could tag

certain moves and movements into musical notes. We built a system to make

this possible using the OpenNI, the NITE Middleware, the Open Sound Control

Library and the Open Frameworks Library. Using all this available frameworks,

we built a system that can essentially permit human agents to interact with an

application using their motion and create music seamlessly. This system uses

the KinectTM and a computer as its hardware components and hence is very

portable and inexpensive to use.

2.2 Human Motion Capture System with KinectTM

Figure 2.2. Motion To Music Working Flow Chart.

We present all our software systems at [3]. We also present a work-flow

of the final system that we have used to tag moves with music in Figure 2.2.

2.3 Music Generation

When approaching the OSC Skeleton application we wanted a solution that was

accessible and interesting. The goal was that each joint should have its own

customizable sound source and that the performer and audience should easily

be able to discern the sound changing and have a general idea of which sounds

are coming from which joints.
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Joint name
User Id
”confidence of the joint position co-ordinate”
/xjoint
/yjoint
/zjoint
9 values of the joint orientation matrix.
”confidence of the joint orientation”

Table 2.1. Skeletal Joint Information as sent over OSC

The entry point of this project is an application called Max/MSP or Max

for short. Max is a visual object oriented programming language which has

three cores. The first core is the Max core which handles mathematic functions.

The second core is MSP which is used for signal processing to generate sound

and manipulate existing sound. The thirds core is Jitter which is used for video

processing. All of the cores are fully accessible from application which makes

Max a very powerful multimedia visual language.

The software OSC Skeleton [3] sends Open Sound Control or “OSC”

data packets through the local network. OSC is an ideal method of passing data

because unlike MIDI, it can be passed very easily over the local network con-

nection. The first step in building the Max patch receiver for OSC Skeleton is

the unpacking process. OSC Skeleton sends data in a particular way. Infor-

mation for all joints sent from the Kinect to the OSC is as shown in Table 2.1.

Figure 2.3. Joint Information Routing
Building Block of Motion-to-Music Appi-
cation

The first function seen in Figure 2.3

tells the program to receive all UDP

data on port 3333 and route every-

thing under the joint heading along

the path of j which stands for joint.

13



Figure 2.4. Visual Aide of Motion-to-
Music Appication

Next, Figure 2.4 shows a vi-

sual aide that is constructed to assist

in organizing the unpacking of each

of the 15 joints. This hand drawn

stick figure helps to better visualize

how the Kinect is tracking the agent,

and where the joints are located on

the body. Each one of the boxes seen

in Figure 2.4 receives the joint data

and unpacks it in a sub-patch, which

allows users to create programs or

patches inside of an existing patch.

The sub-patches that unpack the joint

data look like what is in Figure 2.5.

As we can see, the only data being un-

packed for this project is the position of the X, Y, and Z coordinates of the joints,

Figure 2.5. Motion To Music Application Sub-patch.
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and not the orientations. These values are then packed into the range of 0 and

127 which is the standard range for MIDI. This is done for simplification pur-

pose and to allow better interaction with components inside of Max and also for

quick redirecting of data to programs outside of Max.

Figure 2.6. Another Motion To Music Ap-
plication Sub-patch.

The last part of the Figure 2.5

sends the three values (X,Y,Z) to an-

other sub-patch, seen in Figure 2.6.

This sub patch receives the XYZ data

and filters it through switches, which

can be globally and locally activated

and deactivated. This allows one to

easily turn on or off and join with one

click. Next, the XYZ values are visualized to give the composer and performer

feedback.

Figure 2.7. Visual Panels
for each Joints

One of the visual panels as shown in Figure

2.7 is created and labeled for each of the 15 joints.

The blue box in the top left is a toggle switch. When

the box is empty, the joint is inactive. When one clicks

the box, the joint becomes active. The final part of the

patch is passing the data from the sliders to another

sub patch which takes the values and generates sound. The type of sound be-

ing generated is called Frequency Modulation which takes a carrier frequency,

modulator frequency, and amplitude to generate a complex waveform.
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Figure 2.8. Frquency Modulation

As shown in Figure 2.8, the

three values of X-Y-Z are assigned re-

spectively to carrier frequency, modu-

lator frequency, and amplitude. Each

joint has a dedicated frequency modu-

lation sound generator allowing them

to act as unique instruments.

After the sound is generated,

it is passed to two sliders which act as

stereo volume control. Also, all of the

scaling for the incoming XYZ values and respective carrier frequency, modula-

tor frequency, and amplitude can be scaled easily in the final patch along clearly

labeled along the side walls. The final patch (with the sub patches hidden) looks

like in Figure 2.9.

Figure 2.9. Final patch for the MAX application.
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2.4 Results

To check out a demo of this application and generate musical notes as you per-

form a set of movements using the KinectTM and our systems, please visit our

project website [3].
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Chapter 3
Tagging Moves into Human

Interactions

3.1 Introduction

Next to verbal language what human beings often use as a mode of interaction

is their body language. And hence is the interest in trying to recognize human

gestures, expressions, micro-expressions and also to use them as cues for build-

ing interactive applications. Human-gesture driven applications has gained hung

popularity in todays commercial market. From gesture to action to interaction,

Figure 3.1. Silhouette from Skeleton
Tracking

human motion has many applica-

tion is video surveillance, video-event

annotation, virtual reality, human-

computer interaction, and robotics.

Here we propose a system to automat-

ically annotate a sequence of human

movements with an interaction class.
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Recognizing human interactions has been a challenging task due to the over-

whelmed dependency on low-level vision algorithms that include segmentation

and tracking of salient image regions and extraction of object features.

In this work, we try to overcome some limitations of human interac-

tion recognition by utilizing infrared range sensor quipped technology available

commercially and inexpensively with the Kinect console.

3.2 K-10 Interaction Dataset

3.2.1 Description

In this work, we present a dataset of two-person interactions captured with the

Kinect videogame Console interfaced with the computer. In the present day,

motion capture is usually done with a marker-based system. A performer wears

markers near each body joint to identify the motion by the positions or angles

between the markers [23]. Acoustic, inertial, LED, magnetic or reflective mark-

ers, or combinations of any of these, are tracked, optimally at least two times the

frequency rate of the desired motion to finally output a robust motion tracking

for the participating agents. An example of a widely used database for such mo-

tion capture data is present at the CMU Graphics Lab Motion Capture Databases

[24] and for building this database they have used a Vicon motion capture system

consisting of 12 infrared MX-40 cameras, each of which is capable of record-

ing at 120 Hz with images of 4 megapixel resolution. Motions are captured

in a working volume of approximately 3m x 8m. The capture subject wears

41 markers and a stylish black garment. But the recent advances on imaging

hardware and computer vision algorithms had led to the emerging technology
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of markerless motion capture using a camera system. The commercial solution

for markerless motion capture currently available in the market is Microsoft’s

Kinect videogame console. Using a Kinect to obtain Motion analysis data is af-

fordable, portable and robust enough to evaluate the performance of Computer

Vision Algorithms. To use the Kinect videogame console for Xbox 360, we

had to first interface it with a PC. For that we have used the OpenNI TM frame-

work [4] and NITE Middleware from PrimeSense [5]. We then used our setup

to record video clips of 2-person interactions. We made sure that the lighting

conditions are optimal to give a robust tracking output and recorded both the im-

age map and the depth map of the scene. The recorder records depth and image

frames at 30 FPS [25]. Later these depth frames are used to extract the skeleton

tracking data and record the joint position co-ordinates which are used in our

algorithm for classification purposes. All our software systems for recording

video, extracting skeletons at key-frames and playing the frames with skeleton

tracking from stored information on joint positions is available on the project

website [3]

3.2.2 Specifications

We worked with 10 classes of two person interactions. The clips were recorded

with 6 participating agents. There are 25 different sets of agents performing

the same interactions. In Table 3.1 we give the name of the Interaction classes

and the number of clips we have for each class. We have tried to work with

interactions where the human body orientation is either frontal or sub-frontal

to the Kinect sensors and are un-occluded for most of the interaction sequence.

The complete dataset is available on our project page.[3]
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Interaction Class Number of Clips
Approaching 57
Departing 55
Pointing 47
Pushing 55
Kicking 55
Punching 48
Exchanging objects 47
Walking Hand in Hand 25
Hugging 27
Shaking Hands 55

Table 3.1. K-10 Interaction Dataset Specifications

3.3 Our Approach

Firstly, we interface the Kinect console using OpenNI framework and NITE

middleware with the computer. We then use our system to capture video clips

of two-person interactions. Then these recordings are played and key frames

for all classes of interactions are annotated manually. Finally we have our

dataset of video clips containing image and depth maps for 10 different in-

teractions. With the raw skeleton joint positions (in reference to the world

co-ordinate system) extracted from the system, we delve into getting a spatial

representation for these joints over time. Now, our skeleton recorder gives the

x-y-z joint position for 15 joints [5] of the two interacting agents per frame.

Figure 3.2. Interaction Example

And we compute feature vectors over

these joint positions (converted to

viewport co-ordinates) and use Sup-

port Vector Machine classification

schemes to recognize interactions.

We have done experiments with fea-

21



tures like Euclidian distances between every pair of joints, correlation between

every pair of joint-distances (both the participating agents), inverse correlation

between every pair of joint-distances (both the participating agents), correlation

between all joint-positions (both the participating agents), inverse correlation

between all joint-positions (both the participating agents) and Euclidian Euler-

angle distances between every pair of joints. Among all these, the Euclidian

distance (position and Euler angle) feature between every pair of joints showed

fair results. But, later we inferred, only the Euclidian distances between every

pair of joints give much better classification results. And we think this is in re-

lation with the not-so-confident capture of the joint orientation during skeletal

tracking of participating agents [5]. So, we decided to make our classification

schemes use the Euclidian distance between every pair of joint distances as fea-

ture vectors. To capture the temporal aspect of a set of moves that plays the

vital role in human interaction recognition, we used a defined window over a

set of frames and use that window of frames as a single feature-vector for our

template-based classification.

We use one-VS-all SVM classification scheme for our interaction recog-

nition algorithm. We have experimented with both linear and rbf kernel and

found the later giving better performance.

3.4 Training and Testing

For training and testing we have used clips from the K-10 Interaction Dataset.

Table 3.2 shows the number of clips for each of the interaction classes.
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Interaction Number of
Classes (Frames)
Approaching 1018
Departing 814
Pointing 484
Pushing 322
Kicking 277
Punching 238
Exchanging 485
objects
Walking 322
Hand in Hand
Hugging 430
Shaking 412
Hands

Table 3.2. Training & Testing Specifications

Even though we used our very own dataset to evaluate the results of this

algorithm, since we use as features joint distances of 15 major skeletal joints of

a human body, our system can essentially be used with any other conventional

MoCap dataset that captures two person Interactions over a time frame. Again

our system can be trained and evaluated with any other user-defined classes of

two-person interactions where the user has a Kinect to record videos of those

interactions or set of movements. We present all our software systems on our

project page with which any user having a Kinect can define his own set of two-

person interactions and train the classifier for automatically annotating them.

3.5 Canonical Time Warping

Template matching method for performing human motion analysis compares

features extracted from the given image sequence to the pre-stored patterns dur-
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ing the recognition process. A well-known advantage of using the template

matching technique to do human motion analysis is its inexpensive computa-

tional cost. But one of the problems associated with this method is that it is

relatively sensitive to the variance of the movement duration. And thus, many

prefer to use the alternative state-space models that define each static posture

as state and connect these states by certain probabilities. A motion sequence is

then seen as a composition of these poses and a particular one considered as a

tour going through certain states.

We tried to come around this problem by posing the difference in move-

ment duration as an alignment problem. We used the method developed in [1]

to align our training set clips with each other. This helped in better classifica-

tion results. Zhou et al. showed the effectiveness of Canonical Time Warping in

alignment of motion capture data of two subjects performing similar actions in

[1]. Their results confirm that CTW provides qualitatively better alignment than

state-of-the-art techniques based on DTW. We experimented with the alignment

algorithm in the following two ways.

Figure 3.3. Canonical Time Warping Algorithm applied to Motion Alignment Image
Credit: [1].

In one of our experiments, we aligned video clips from both the training

and the test set with a base sequence. We choose the base sequence as the longest
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available sequence for an interaction class (largest number of frames). For the

training set, all the interactions from a certain class were aligned with the base

sequence of that class. For the test set, each of the interactions were aligned

with each of the base sequences and tested against the respective classifier. For

example, a test clip “0001” is aligned with the clip “02Base” and tested against

the “02 Class classifier” to see how confidently it is classified to the “02 class”.

Again the clip “0001” is aligned with the clip “03Base” and tested against the

“03 Class classifier” to see how confidently it is classified to the “03 class”. The

most confident result decides the interaction class a test clip is entailed to.

In another experiment setup, we only align the training set clips. This

experiment surprisingly gives us a better performance on the classification re-

sults. The reason, it appears, is when we try to align a clip like pushing with

approaching; the CTW algorithm makes sure that the frames in the test clip that

has more properties similar to the base sequence take the major length of the

sequence. As a result, the classification performance drops slightly in the first

set of experiments from the unaligned experiments while the later experiments

perform way better.

We furnish the results from all the experiments we performed to give a

better overview on the classification performance.

3.6 Results

In this section we furnish our results for interaction recognition. Among all our

experiments we cite the results from these three set of experiments:

• Experiment 1 deals with unaligned training and test set frames with

Euclidian joint distances calculated among every joint pairs as features.
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Frames with a window size 3 is considered to construct a feature vector

and a rbf-kernel SVM is used for building one-VS-all classifier.

• Experiment 2 deals with aligned training and test set frames with Euclid-

ian joint distances calculated among every joint pairs as features. Frames

with a window size 3 is considered to construct a feature vector and a

rbf-kernel SVM is used for building one-VS-all classifier.

• Experiment 3 deals with aligned training set and unaligned test set frames

with Euclidian joint distances calculated among every joint pairs as fea-

tures. Frames with a window size 3 is considered to construct a feature

vector and a rbf-kernel SVM is used for building one-VS-all classifier.

3.6.1 Confusion Matrices

Here we present the Confusion Matrices from the above mentioned 3 set of

Experiments. All uses Euclidian joint distances calculated among every joint

pairs as features. Frames with a window size 3 was considered to construct the

feature vectors and an (rbf-kernel SVM) one-VS-all classifier was built for each

classes.
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Figure 3.4. Confusion Matrix for Interaction Recognition with 10 classes in Experi-
ment 1 Average Accuracy: 78.79%

27



Figure 3.5. Confusion Matrix for Interaction Recognition with 10 classes in Experi-
ment 2. Average Accuracy: 74.42%
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Figure 3.6. Confusion Matrix for Interaction Recognition with 10 classes in Experi-
ment 3. Average Accuracy: 81.03%
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3.6.2 Precision Recall Curves

Here we present the PR curves from the Experiment 3. These PR curves are for

the individual interaction classifiers. A better sense of the classification accura-

cies can however be made from the confusion matrices, where it shows which

class gets confused with another.

Experiment 3

Figure 3.7. PR curve for Approaching Classifier.
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Figure 3.8. PR curve for Departing Classifier.

Figure 3.9. PR curve for Pointing Classifier.
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Figure 3.10. PR curve for Pushing Classifier.

Figure 3.11. PR curve for Kicking Classifier.
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Figure 3.12. PR curve for Punching Classifier.

Figure 3.13. PR curve for Exchanging Classifier.
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Figure 3.14. PR curve for Walking Hand in Hand Classifier.

Figure 3.15. PR curve for Hugging Classifier.
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Figure 3.16. PR curve for Shaking Hands Classifier.
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3.6.3 Performance Evaluation

In this section we present the performance accuracies for all our three sets of

Experiments. We present the recognition accuracy for each interaction class in

each table. We also computed the performance considering the fact that some in-

teractions have overlapped characteristics. Like in pushing, there will be always

departing interaction present, which is not wrong. So, we tried to observe how

much the accuracy changes if we consider the correct decision (ground truth,

in our case human annotated interaction labels) to be in Top-1 predicted class,

Top-2 predicted classes, Top-3 predicted classes, Top-4 predicted classes and

Top-5 predicted classes where the prediction values are ranked by their proba-

bilities to belong to a certain class. In the following tables, rank levels indicate

how many classes we considered for the right decision.

One noticeable thing is that for the class Shaking Hands the accuracies

do not increase with the rank. We found that that the right decision for this class

is either in rank 1 or in rank later than 7. This can be reasoned as this class is

confused with about 5 different classes with noticeable probabilities.
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Interaction Class Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
Name Acc. % Acc. % Acc. % Acc. % Acc. %

Approaching 80.98 91.34 96.09 99.32 100.00
Departing 91.67 95.49 98.19 98.42 100.00
Pointing 44.57 72.28 86.41 98.37 100.00
Pushing 65.63 96.88 99.22 100.00 100.00
Kicking 97.32 100.00 100.00 100.00 100.00

Punching 73.75 92.50 97.50 100.00 100.00
Exchanging 73.09 92.83 95.07 98.21 100.00

objects
Walking 100.00 100.00 100.00 100.00 100.00

Hand in Hand
Hugging 100.00 100.00 100.00 100.00 100.00
Shaking 60.87 67.39 67.39 67.39 67.39
Hands

Average 78.79 90.87 93.99 96.17 96.74

Table 3.3. Performance Accuracies (Experiment 1)

Interaction Class Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
Name Acc. % Acc. % Acc. % Acc. % Acc. %

Approaching 77.79 92.65 96.48 99.08 99.85
Departing 81.35 86.11 96.83 99.20 100.00
Pointing 69.03 88.49 96.90 97.35 97.79
Pushing 81.82 96.02 96.02 96.02 97.73
Kicking 88.83 90.86 91.88 91.88 92.89

Punching 54.09 68.85 69.67 69.67 69.67
Exchanging 65.92 83.89 86.14 88.76 89.89

objects
Walking 77.78 93.65 93.65 93.65 93.65

Hand in Hand
Hugging 86.05 86.05 86.05 86.04 86.05
Shaking 61.54 61.54 61.54 61.54 61.54
Hands

Average 74.42 84.81 87.52 88.32 88.91

Table 3.4. Performance Accuracies (Experiment 2)
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Interaction Class Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
Name Acc. % Acc. % Acc. % Acc. % Acc. %

Approaching 79.46 92.69 96.60 99.15 100.00
Departing 86.03 90.54 97.97 99.32 100.00
Pointing 70.65 92.39 100.00 100.00 100.00
Pushing 82.81 100.00 100.00 100.00 100.00
Kicking 97.98 100.00 100.00 100.00 100.00

Punching 75.00 92.50 93.75 95.00 95.00
Exchanging 71.75 92.83 95.52 97.76 99.10

objects
Walking 79.25 100.00 100.00 100.00 100.00

Hand in Hand
Hugging 100.00 100.00 100.00 100.00 100.00
Shaking 67.39 67.39 67.39 67.39 67.39
Hands

Average 81.03 92.83 95.12 95.86 96.15

Table 3.5. Performance Accuracies (Experiment 3)
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Now, we would like to cite the results as reported by the work [19] that

is closest to our work. They worked with the interaction classes: (1) approach-

ing, (2) departing, (3) pointing,(4) standing hand-in-hand, (5) shaking hands,

(6) hugging, (7) punching, (8) kicking, and (9) pushing. They report an overall

average accuracy of 78%. The accuracies of each of the interaction class classi-

cation are 100, 100, 67, 83, 100, 50, 67, 83, 50% respectively. We report a final

accuracy for these classes as 79, 86, 71, 79, 67, 100, 75, 98, 83 % respectively

and an average overall accuracy as 81.03%.

3.6.4 Example Frame Sequences

Figure 3.17. Pushing Sequence

Figure 3.18. Punching Sequence
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Figure 3.19. Kicking Sequence

Figure 3.20. Exchanging Sequence
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Figure 3.21. Hugging Sequence

Figure 3.22. Handshake Sequence
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Chapter 4
Conclusion

This work is a human motion analysis study that essentially uses human motion

for two different tasks: human computer interaction and human-human interac-

tion. We use human motion to generate musical signatures in one of our HCI

applications. The idea behind this project had been to use a markerless motion

capture system , the Kinect videogame console, to capture human motion eas-

ily, portably and use it to control computer mediated applications like generating

musical notes in a real time way. We had also used some recorded motion cap-

ture data to train an interaction classifier and used alignment algorithms to come

around the relative sensitivity of template-based action recognition methods to

the variation of movement duration. Our use of the CTW algorithms for align-

ment before the classifier learning improves its performance. The framework

proposed here can be used for any MoCap dataset with two persons interacting

over a time period. And also, we can define new classes of interactions and

train new classifiers using this framework. All required software systems are

available on the project page.

As a future work possibility, we plan to work on designing a better clas-
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sifier using other Machine Learning approaches like Multiple Instance Learning

with Boosting. The idea behind using MIL Boost is to do feature classification

on joint distances as well as key frames for an interaction class. By doing boost-

ing on bags of joint distances, we hope to learn both the joints playing important

role in an interaction as well as the major frames in a sequence of moves that

serves as a signature for the interaction.

There is also scope of future work in experimenting with the state space

methods for interaction recognition on K-10 or a similar interaction dataset.

Using probabilistic models to model connection among each state of static pos-

tures, it would be interesting to see how different the classification performance

is. And as always applicable to algorithms using intrinsic non-linear models

choosing a proper number of states and dimensions of a feature vector will con-

trol the overfitting and underfitting problems.

Our results show that the skeletal tracking algorithm available through

the Kinect hardware and OpenNI and NITE libraries can boost some of the

action recognition algorithms that uses template matching methods by its robust

performance.
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