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Abstract of the Dissertation

Extension of Lyapunov’s Convexity Theorem to
Subranges

by

Peng Dai

Doctor of Philosophy

in

Applied Mathematics and Statistics
(Operations Research)

Stony Brook University

2011

Consider a measurable space with a finite vector measure. This measure defines a

mapping of the σ-field into a Euclidean space. According to Lyapunov’s convex-

ity theorem, the range of this mapping is compact and, if the measure is atomless,

this range is convex. Similar ranges are also defined for measurable subsets of the

space. We show that the union of the ranges of all subsets having the same given

vector measure is also compact and, if the measure is atomless, it is convex. We

further provide a geometrically constructed convex compact set in the Euclidean

space that contains this union. We show that, for two-dimensional measures,

among all the subsets having the same given vector measure, there exists a set

with the maximal range of the vector measure (maximal subset). Furthermore,

for two-dimensional measures, the maximal subset, the above-mentioned union,

and the above-mentioned convex compact set are equal sets. We also give coun-

terexamples showing that, in three or higher dimensions, the maximal subset

may not exist and these equalities may not hold. We use the existence of max-
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imal subsets to strengthen the Dvoretzky-Wald-Wolfowitz purification theorem

for the case of two measures. We show that there are no similar results for three

or higher dimensions.
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Chapter 1

Review of Lyapunov’s Convexity

Theorem

In this chapter, we give a review of Lyapunov’s convexity theorem and the theory of pu-

rification developed on it. In Section 1.1, we give an introduction of Lyapunov’s convexity

theorem with some examples. Then we review the theorems on the purification of transition

probabilities in Section 1.2. Finally, we discuss the application of these purification results

to game theory in Section 1.3.

1.1 Lyapunov’s Convexity Theorem

Let (X,F) be a measurable space and µ = (µ1, ..., µm), m = 1, 2, . . . , be a finite vector

measure on it. Consider the range Rµ (X) = {µ (Y ) : Y ∈ F} ⊂ R
m of the vector measures

of all its measurable subsets Y . In [17], Lyapunov proved the following theorem, which is

now known as Lyapunov’s convexity theorem.

Theorem 1.1.1 (Lyapunov). The range Rµ (X) is compact and furthermore, if µ is atom-

less, this range is convex.

We recall that a measure ν is called atomless if for each Z ∈ F, such that ν (Z) > 0, there

exists Z ′ ∈ F such that Z ′ ⊂ Z and 0 < ν (Z ′) < ν (Z). A vector measure µ = (µ1, ..., µm),

is called atomless if each measure µi, i = 1 . . .m, is atomless. A measure is called atomic if

it is not atomless. In some literature, the word nonatomic is used for atomless and the word

nonatomless is used for atomic.
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In the following, we consider some examples of ranges in various dimensions. The simplest

(and trivial) cases are the ranges of one-dimensional measures. For instance, the range of any

one-dimensional atomless probability measure on any measurable space, is [0, 1], which is a

convex and compact set. The example below shows the range of a one-dimensional atomic

probability measure.

Example 1.1.2. Consider the probability space (X,F, µ), where X = {a, b, c}, F = 2X , and

µ(a) = 0.1, µ(b) = 0.2, µ(c) = 0.7. (1.1.1)

Then the range Rµ(X) = {0, 0.1, 0.2, 0.3, 0.7, 0.8, 0.9, 1} (shown in Fig. 1.1) is a compact set,

which simply follows from the fact that X is a finite set.

0 0.1 0.2 0.3 0.7 0.8 0.9 1
Μ

Figure 1.1: The range Rµ(X) in Example 1.1.2.

Note that, for a measure to be atomic, it is not necessary that the measurable space

is countable. In the example above, if X = [0, 1], F is the Borel σ-algebra on X , and the

probability measure µ is still defined by (1.1.1), where a, b, c ∈ X are three arbitrarily fixed

elements of X . Then the range is the same as that of the above case shown in Fig. 1.1. Since

the measure µ is atomic, the range Rµ(X) is not necessarily convex. �

The following example shows that the range of an atomic measure may or may not be

convex.

Example 1.1.3. Consider the probability space (X,F, ν), where X = N, F = 2X , and

ν(i) = 2−i, for any i ∈ N. Then the range Rν(X) = [0, 1] is convex and compact. However,

the convexity does not follow from Lyapunov’s theorem.

Consider the same measurable space (X,F) endowed with a different probability measure

µ, where µ(1) = 3
4
and µ(i) = 2−i

2
, for i = 2, 3, 4, . . .. The range Rµ(X) is shown in Fig. 1.2,

which is compact but not convex. �

Next, we give an example of the range of a two-dimensional atomless probability measure.
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0 1�4 3�4 1
Μ

Figure 1.2: The range Rµ(X) in Example 1.1.3.

Example 1.1.4. Consider the probability space (X,F, µ), where X = [0, 1], F is the Borel

σ-algebra on X , and the measure µ is defined in terms of density functions

µ (dx) = (µ1, µ2) (dx) = (1, 2x) dx.

Fig. 1.3 shows the range of the finite atomless probability measure µ. It is compact and

convex. �

1

1

0
Μ1

Μ2

Figure 1.3: The range Rµ(X) in Example 1.1.4.

Finally, we consider the range of a three-dimensional finite atomless measure.

Example 1.1.5. Consider the measure space (X,F, µ), where X = [0, 6], F is the Borel
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σ-field on X , and µ(dx) = (µ1, µ2, µ3) (dx) = (f1(x), f2(x), f3(x)) dx, where

f1(x) =











































30 x ∈ [0, 1),

40 x ∈ [1, 2),

10 x ∈ [2, 4),

15 x ∈ [4, 5),

5 x ∈ [5, 6];

f2(x) =











































40 x ∈ [0, 1),

10 x ∈ [1, 2),

20 x ∈ [2, 4),

10 x ∈ [4, 5),

30 x ∈ [5, 6];

f3(x) =











































10 x ∈ [0, 1),

20 x ∈ [1, 3),

30 x ∈ [3, 4),

20 x ∈ [4, 5),

25 x ∈ [5, 6].

These density functions are plotted in Fig. 1.4. The range Rµ(X) is plotted in Fig. 1.5 and

it is a convex compact set in R
3. �

In addition to compactness and convexity, the range of a finite atomless measure is

also centrally symmetric and contains the origin. Lyapunov [17] pointed out that a convex

compact subset of R2, which is centrally symmetric and contains the origin, is the range

of some two-dimensional vector measure. However, in R
3 or higher dimensional Euclidean

space, such a set may not necessarily be the range of a vector measure. In geometry, the

range of a finite atomless measure is called a zonoid. For a review on Lyapunov’s convexity

theorem and its applications see [19]. For a review on zonoids see [3, 4].

1.2 Purification Theorems

Based on Lyapunov’s convexity theorem, Dvoretzky, Wald, and Wolfowitz[7, 8] discovered

the purification of transition probabilities. Let (A,A) be a measurable space and π be

a transition probability from (X,F) to (A,A); that is, π(B|x) is a measurable function

on (X,F) for any B ∈ A and π(·|x) is a probability measure on (A,A) for any x ∈ X .

According to Dvoretzky, Wald, and Wolfowitz [7, 8], for measurable nonnegative functions

fi, i = 1, . . . , m, on X ×A, two transition probabilities π1 and π2 are called equivalent if for

each i = 1, . . . , m,

ˆ

X

ˆ

A

fi(x, a)π1 (da|x)µi (dx) =

ˆ

X

ˆ

A

fi(x, a)π2 (da|x)µi (dx) .
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f2HxL
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x
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40

f3HxL

Figure 1.4: Density functions of the vector measure in Example 1.1.5.

They also defined strong equivalence. Two transition probabilities π1 and π2 are called

strongly equivalent if for each i = 1, . . . , m and any B ∈ A,

ˆ

X

π1 (B|x)µi (dx) =

ˆ

X

π2 (B|x)µi (dx) . (1.2.1)

A transition probability π is called pure if each probability measure π(·|x) is concentrated

at one point. A pure transition probability π is defined by a measurable mapping ϕ : X → A

such that π(B|x) = I{ϕ(x) ∈ B} for all B ∈ A. We say that a transition probability can

be (strongly) purified if it is (strongly) equivalent to a pure transition probability. The
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Μ1

Μ2

Μ3

110

130

125

0

Figure 1.5: The range Rµ(X) in Example 1.1.5.

procedure to obtain the (strongly) equivalent pure transition probability is called (strong)

purification.

We emphasize that, although the names seem to suggest that strong equivalence implies

equivalence, neither of these two equivalence implies the other. Furthermore, a transition

probability can be strongly purified does not imply that it can be purified, and vice versa.

Finally, even if a transition probability can be both purified and strongly purified, one may

still need to check if it can be purified in these two senses simultaneously. We will see that

the purification of equilibriums in games will require simultaneous purification and strong

purification.

Dvoretzky, Wald, and Wolfowitz [7, 8] proved the following theorem.

Theorem 1.2.1 (Dvoretzky, Wald, and Wolfowitz). For a finite measurable space (A, 2A)

and a measurable space (X,F) with an atomless vector measure µ, any transition probability

can be purified and strongly purified.

Edwards [10, Theorem 4.5] generalized this result to the case of a countable set A for

strong purification. Khan and Rath [13, Theorem 2] gave another proof of this generalization.

Theorem 1.2.2 (Edwards). For a countable measurable space (A, 2A) and a measurable

space (X,F) with an atomless vector measure µ, any transition probability can be strongly

6



purified.

Feinberg and Piunovskiy [11] generalized Theorem 1.2.1 to the case of purification for

(A,A) being a Borel space. Khan and Rath [13, Corollary 1] also pointed out that purification

exists when A is a countable set, which is a special case of the theorem by Feinberg and

Piunovskiy below.

Theorem 1.2.3 (Feinberg and Piunovskiy). For (A,A) being a Borel space and a measurable

space (X,F) with an atomless vector measure µ, any transition probability can be purified.

However, strong purification may not be possible for (A,A) being a Borel space. Loeb and

Sun [16, Example 2.7] constructed an elegant example when a transition probability cannot

be strongly purified for m = 2, X = [0, 1], A = [−1, 1], and atomless µ. We summarize these

purification results in Table 1.1.

Table 1.1: Summary of purification theorems.
Action space Finite Countable Borel

Purification Exists Exists Exists
Strong purification Exists Exists May not exist

It is also noteworthy that with additional assumptions on the measure space (X,F, µ),

strong purification exists for a more general action space A. Specifically, strong purification

holds for a countable set of atomless, finite, signed Loeb measures, when A is a complete

separable metric space [16, Corollary 2.6]. Podczeck [20] proved that strong purification

holds for a countable set of finite signed measures µk absolutely continuous with respect to a

measure µ, when (X,F, µ) is a super-atomless probability space and A is a compact metric

space.

We conclude this section by presenting an application of the purification theorems to the

statistical decision problems, which was first mentioned in [7]. Without loss of generality,

we limit ourselves to the case of finite action set A. Since the following application uses only

theorems on purification (other than strong purification), the application can be extended

to the cases of (A,A) being countable or Borel spaces straightforwardly.

Example 1.2.4. Consider the outcome of an experiment described by a measurable space

(X,F) with m probability measures µ1, . . . , µm, where m ∈ N is a finite number. The true

probability measure µ on (X,F) is unknown, but known to be one of the above m measures.
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On observing the outcome of the experiment, the statistician can make a decision a from a

finite set of decisions A. A strategy π(a|x) is a transition probability from (X,F) to (A,A)

which specifies the probability that the statistician will adopt decision a on the condition

that the outcome of the experiment is x. A strategy is called pure if it is a pure transition

probability. Let wi(a, x) be the loss when the true measure is µi, i = 1, . . . , m, the outcome

of the experiment is x, and decision a is adopted. Then the risk ri, i = 1, . . . , m, or expected

loss, when the true measure is µi and strategy π is adopted, can be expressed as

ri(π) =
∑

a∈A

ˆ

X

wi(a, x)π(a|x)µi(dx).

According to Theorem 1.2.1, if all the measures µ1, . . . , µm are atomless, the transition

probability π can be purified. In other words, there exists a pure strategy π∗(a|x) such that,

ri(π) = ri(π
∗), for all i = 1, . . . , m. �

1.3 Applications in Game Theory

One of fundamental problems in game theory is to prove the existence of an equilibrium with

all players adopting the pure strategies (pure equilibrium). Such a proof generally requires

convexifying effect of large numbers to appear in the model (see [1, 15, 18, 21, 23, 25] for

such proofs for various games). In fact, this effect was the central point of Lyapunov’s

convexity theorem: when the measure of the atoms of the σ-algebra become smaller and

smaller and eventually tend to zero (in other words, the measure becomes atomless), the

range of the measure becomes more and more close to and eventually tends to be a convex

set. The convexifying effect is also the reason why in many games it is easy to prove that an

equilibrium with some of the players adopting mixed strategy (mixed equilibrium) exists, as

mixed-strategies can provide convexity.

A natural way of proving the existence of the equilibrium in pure strategies consists of

two steps. The first step is to prove the existence of a mixed equilibrium, and the second step

(referred to as purification in games) is to prove that there exist pure strategies which are

“equivalent” to the mixed strategies played at the equilibrium. In the second step, one gener-

ally needs Lyapunov’s convexity theorem or purification results (reviewed in Section 1.2). In

[14], based on the Dvoretzky-Wald-Wolfowitz purification theorem (Theorem 1.2.1), Khan,

Rath, and Sun developed a unified framework for dealing with the purification in various fi-

nite action games considered in [18, 21, 23]. In [13], Khan and Rath extended this framework

8



to countably infinite action games, based on the purification results for countable action sets

(reviewed in Section 1.2).

In the example below, we show how purification works in a game introduced by Milgrom

Weber [18], following Khan, Rath, and Sun’s framework [14].

Example 1.3.1. Consider the situation in which l parties are evolved. After each party

has fixed its strategy (which may be mixed, but only depends on the state they will be in),

one of the m scenarios in the scenario set C will happen. In each scenario c ∈ C, each

player i, i = 1, . . . , l, will be randomly in a state from its state space (Xi,Fi), with respect

to a probability measure µic, which only depends on scenario c that has happened. The

payoff of each party depends on: (1) scenario c that has happened, (2) the party’s state and

its strategy on such state, and (3) the strategies played by all others. Such situation can

be described by the model of finite games with incomplete information introduced in [18].

Formally, this model consists of the following elements:

1. The game is played by l players.

2. The state space of the game (X,F) = (C ×
∏l

i=1Xi,C ×
∏l

i=1Xi) is the product of

the common state space (C,C) and the state space of each player (Xi,Fi), i = 1, . . . , l.

Assume that C = {1, 2, . . . , m} is a finite set and C = 2C . Let p be the probability

measure on (C,C), and µic, i = 1, . . . , l, c = 1, . . . , m, be the probability measure on

(Xi,Fi) on the condition that the common state is c. Then µi = (µi1, . . . , µim) is a

m-dimensional vector measure on (Xi,Fi). We further assume that µi is an atomless

probability vector measure for each i = 1, . . . , l.

3. The action space of the game (A,A) = (
∏l

i=1Ai,
∏l

i=1Ai) is the product of the action

space of each player (Ai,Ai), i = 1, . . . , l. Assume that Ai = {1, . . . , ni} is a finite set

and Ai = 2Ai.

4. The payoff of each player i, i = 1, . . . , l, is denoted by a function ui : A×C ×Xi → R.

In other words, the payoff of each player depends on the collection of actions a =

{a1, . . . , al} ∈ A taken by all players, the common state c ∈ C of all the players, and

its own state xi ∈ Xi.

5. A strategy πi(ai|xi), ai ∈ Ai, xi ∈ Xi of player i, i = 1, . . . , l, is the transition

probability from (Xi,Fi) to (Ai,Ai). In other words, it is the probability that the

player will take action ai ∈ Ai on the condition that it is in state xi ∈ Xi. πi is called

9



a pure strategy if it is a pure transition probability. The collection π = {π1, . . . , πl}

is called a strategy profile. π is called a pure strategy profile if πi is a pure transition

probability for each i = 1, . . . , l.

Now we assume that a mixed equilibrium is known, where a mixed strategy profile π is

adopted. Then at equilibrium, the expected payoff for player i is

Ui(π) =

ˆ

X

ˆ

A

[

p(dc)
l
∏

j=1

µjc(dxj)

][

l
∏

j=1

πj(daj|xj)

]

ui(a, xi, c). (1.3.1)

In (1.3.1) above, to make the expression concise, we have written all the sums as integrations

and will restore the notation of sums where it is appropriate. Let X−i =
∏

j 6=iXj and

A−i =
∏

j 6=iAj , where
∏

j 6=i is the abbreviation of
∏

1≤j≤l,j 6=i. In addition, the notation a−i

is understood as the collection of variables aj , where 1 ≤ j ≤ l and j 6= i. Then the expected

payoff can be further written as

Ui(π) =
∑

c∈C

p(c)

ˆ

Xi

µic(dxi)
∑

ai∈Ai

πi(ai|xi)

×

ˆ

X−i

[

∏

j 6=i

µjc(dxj)

]

∑

a−i∈A−i

[

∏

j 6=i

πj(aj|xj)

]

×ui(ai, a−i, xi, c)

=
∑

c∈C

p(c)

ˆ

Xi

∑

ai∈Ai

πi(ai|xi)µic(dxi)

×
∑

a−i∈A−i

[

∏

j 6=i

ˆ

Xj

πj(aj|xj)µjc(dxj)

]

×ui(ai, a−i, xi, c). (1.3.2)

For each j = 1, . . . , l, and any Bj ∈ Aj, define

pπjc(Bj) =

ˆ

Xj

πj(Bj |xj)µjc(dxj). (1.3.3)

10



Then, pπjc is a probability measure on (Aj,Aj), and (1.3.2) can be written as

Ui(π) =
∑

c∈C

p(c)

[

ˆ

Xi

∑

ai∈Ai

πi(ai|xi)µic(dxi)

]

×
∑

a−i∈A−i

[

ui(ai, a−i, xi, c)
∏

j 6=i

pπjc(aj)

]

. (1.3.4)

Furthermore, for each i = 1, . . . , l, each c = 1, . . . , m, and the strategy profile π, define

uπ
ic(ai, ti) =

∑

a−i∈A−i

[

ui(ai, a−i, xi, c)
∏

j 6=i

pπjc(aj)

]

. (1.3.5)

Then the expected payoff for player i can be further expressed as

Ui(π) =

m
∑

c=1

p(c)

[

ˆ

Xi

∑

ai∈Ai

uπ
ic(ai, ti)πi(ai|xi)µic(dxi)

]

. (1.3.6)

Now we discuss whether there exists a pure strategy profile π∗ under which the equilibrium

still holds. This question is equivalent to the question whether there exists a pure strategy

profile π∗ under which, for each player i, i = 1, . . . , l, the expected payoff is the same as that

under π:

Ui(π) = Ui(π
∗). (1.3.7)

The answer is positive, and we can prove it by using the purification theorems in Section 1.2.

According to an extension of Theorem 1.2.1 [14, Corollary 1], for each player i, i = 1, . . . , l,

there exists a pure strategy π∗
i such that: (1) for all c ∈ C,

ˆ

Xi

∑

ai∈Ai

uπ
ic(ai, ti)πi(ai|xi)µic(dxi)

=

ˆ

Xi

∑

ai∈Ai

uπ
ic(ai, ti)π

∗
i (ai|xi)µic(dxi), (1.3.8)

and (2) for all Bi ∈ Ai and all c ∈ C,

ˆ

Xi

πi(Bi|xi)µic(dxi) =

ˆ

Xi

π∗
i (Bi|xi)µic(dxi). (1.3.9)

11



We remark that the above result does not directly follow from Theorem 1.2.1, because we

have claimed that there exists a pure strategy π∗
i that is simultaneously equivalent and

strongly equivalent to πi, where Theorem 1.2.1 does not address that πi can be purified and

strongly purified simultaneously.

Note that (1.3.8) alone does not imply (1.3.7). In order to show that the equality in

(1.3.7) holds, we still need to show that, for any player i, and any c ∈ C,

uπ
ic(ai, ti) = uπ∗

ic (ai, ti). (1.3.10)

Indeed, (1.3.9) implies that pπjc(Bj) = pπ
∗

jc (Bj), and according to the definition of uπ
ic in

(1.3.5),

uπ
ic(ai, ti) =

∑

a−i∈A−i

[

ui(ai, a−i, xi, c)
∏

j 6=i

pπjc(aj)

]

=
∑

a−i∈A−i

[

ui(ai, a−i, xi, c)
∏

j 6=i

pπ
∗

jc (aj)

]

= uπ∗

ic (ai, ti).

�

We conclude this section by three remarks. Firstly, there are no standard names for dif-

ferent kinds of equivalence and purification concepts in the current literature. In particular,

the definitions of various types of equivalence in [14] are different from those of Dvoretzky,

Wald, and Wolfowitz [7, 8]. Throughout this dissertation, we stick with the definitions of

Dvoretzky, Wald, and Wolfowitz, and only use the concepts of (strong) equivalence and

(strong) purification. For the readers’ convenience, we compare the different notations in

Table 1.2.

Table 1.2: Comparison of notations of [7] and those of [14].
Notations in [7] Notations in [14]

Equivalence Payoff Equivalence (PE)
Strong Equivalence Distribution Equivalence (DE)

Equivalence & More Conditions Strong PE (SPE)
Strong Equivalence & More Conditions Strong DE (SDE)

Purification & Strong Purification Strong Purification

Secondly, the idea of purification can be applied to more general settings of games. In

12



particular, such purification framework is also suitable for other types of games described

in [14], and can be generalized to the case of countable action set A [13].

Finally, Theorem 1 in [14], which considers not only the strategy profiles in equilibrium

but also the general mixed strategy profiles, is a stronger result than that we have shown in

Example 1.3.1, which is enough to serve the purpose of demonstration.
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Chapter 2

Extension of Lyapunov’s Convexity

Theorem

In this chapter, we give an overview of our results about the extension of Lyapunov’s convex-

ity theorem to subranges [5, 6]. We first introduce the concept of subranges in Section 2.1.

Then we present the results on maximal and minimal subranges in Section 2.2, and results

on union and intersection of subranges in Section 2.3. Finally we give some examples to

demonstrate our results for two-dimensional finite atomless measures in Section 2.4.

2.1 Subranges

Let (X,F) be a measurable space and µ = (µ1, ..., µm), m = 1, 2, . . . , be a finite vector

measure on it. For each Y ∈ F consider the range Rµ (Y ) = {µ (Z) : Z ∈ F, Z ⊂ Y } ⊂ R
m

of the vector measures of all its measurable subsets Z. We call Rµ(Y ) a subrange of X

generated by its measurable subset Y . Lyapunov’s convexity theorem [17] states that the

range Rµ (X) is compact and furthermore, if µ is atomless, this range is convex. Of course,

this is also true for any subrange Rµ(Y ). Following is an example of a subrange.

Example 2.1.1. Let (X,F) be a measurable space, where X = [0, 1] and F is the Borel

σ-algebra on X . Consider the vector measure defined in terms of density functions

µ (dx) = (µ1, µ2) (dx) = (1, f (x)) dx,

14



where

f (x) =







4x, if x ∈
[

0, 1
2

)

;

1, if x ∈
[

1
2
, 1
]

.

Let Y =
[

0, 1
16

]

∪
[

7
16
, 7
8

]

. Then Rµ(Y ) is a subrange of X generated by Y . The range Rµ(X)

and the subrange Rµ(Y ) are plotted in Fig. 2.1. In particular, observe that the subrange

Rµ(Y ) is also convex and compact. �

H0.5,0.5L

RΜHXL

RΜHYL

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Μ1

Μ
2

Figure 2.1: The range Rµ(X) and the subrange Rµ(Y ) in Example 2.1.1.

Obviously, each measurable subset of X generates exactly one subrange. To study the

properties of subranges, we will first divide F into classes and then study the properties of the

subranges generated by the sets from each class. In fact, we can divide F into a three-level

hierarchy of classes.

1. Note that µ(Y1) = µ(Y2) is an equivalence relation on F. Thus it partitions F into

equivalence classes. Let S
p
µ(X) be the set of all measurable subsets of X with the

vector measure p ∈ Rµ(X),

S
p
µ (X) = {Y ∈ F : µ (Y ) = p} .

Then, for each p ∈ Rµ(X), Sp
µ(X) is one of the above-mentioned equivalence classes.

15



2. In addition, since the relation Y1 = Y2 (µ-everywhere) is an equivalence relation on

Sp
µ(X) for each p ∈ Rµ(X), it partitions Sp

µ(X) further into equivalence subclasses.

3. One can look into more detailed classification on each of the subclasses above by using

even stronger equivalence relation Y1 = Y2. However, this more detailed classification is

not interesting in this dissertation, since Y1 = Y2 (µ-everywhere) is already a sufficient

condition for Rµ(Y1) = Rµ(Y2).

For an atomless µ, Lyapunov [17, Theorem III] proved that: (i) Sp
µ (X) consists of one

equivalence subclass if and only if p is an extreme point of Rµ(X), and (ii) if p ∈ Rµ(X) is not

an extreme point of Rp
µ(X), then the set of equivalence subclasses in Sp

µ (X) has cardinality of

the continuum. Thus, in general, when p ∈ Rµ(X) is in the interior of Rp
µ(X), the elements

of Sp
µ (X), which are measurable subsets, may generate infinite number of different subranges

of X . The following example shows that three different elements of Sp
µ (X) generates three

different subranges.

Example 2.1.2. Consider the measure space (X,F, µ) described in Example 2.1.1. Let

Y 1 =
[

1
2
, 1
]

, Y 2 =
[

0, 1
16

]

∪
[

7
16
, 7
8

]

, and Y 3 =
[

0, 1
2

]

, then µ(Y 1) = µ(Y 2) = µ(Y ∗) =
(

1
2
, 1
2

)

,

and thus Y 1, Y 2, Y 3 ∈ Sp
µ (X), where p =

(

1
2
, 1
2

)

. The subranges generated by Y 1, Y 2, and

Y 3 are plotted in Fig. 2.2. Observe that these subranges are different. �

2.2 Maximal and Minimal Subranges

For any p ∈ Rµ(X), we first answer the question whether the class Sp
µ(X) contains an

element that generates the maximal subrange. In other words, is it always true that for any

p ∈ Rµ(X) there exists a measurable subset Y ∗ ∈ S
p
µ(X) such that Rµ (Y

∗) ⊇ Rµ (Y ) for

any Y ∈ Sp
µ(X)? For a finite atomless µ, we show that the answer is positive when m = 2

(Theorem 3.2.1) and negative when m > 2 (Example 4.1.2).

Furthermore, for m = 2, this maximal subrange is equal to the set Qp
µ(X) ⊂ R

m con-

structed by a simple geometric transformation of Rµ (X). More specifically, Qp
µ(X) is the

intersection of the Rµ(X) with its shift by a vector −(µ(X)− p),

Qp
µ (X) = (Rµ (X)− {µ (X)− p}) ∩ Rµ (X) ,

where S1 − S2 = {q − r : q ∈ S1, r ∈ S2} for S1, S2 ⊆ R
m. In particular, Rµ (X)− {r} is a

parallel shift of Rµ (X) by −r.
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Figure 2.2: Three different subranges Rµ(Y
1), Rµ(Y

2), and Rµ(Y
3).

For an atomic µ, we show that a maximal subrange may not exist even for m = 1, and

thus for any natural number m (Example 4.1.4).

In addition to the maximal subrange, it is possible to consider a minimal subrange.

For q ∈ Rµ(X), the set M∗ ∈ Sq
µ(X) generates minimal subrange corresponding to q if

Rµ(M
∗) ⊆ Rµ (M) for any M ∈ Sp

µ(X). We show that a subset generates a maximal

subrange corresponding to p if and only if its complement generates a minimal subrange

corresponding to µ(X) − p (Theorem 3.2.2). Therefore, minimal subranges also exist for

two-dimensional finite atomless measure µ and they may not exist for higher-dimensional or

atomic measures.

The following example demonstrates minimal and maximal subranges.

Example 2.2.1. Consider the measure space (X,F, µ) described in Example 2.1.1. Y 1

and Y 3 defined in Example 2.1.2 respectively generate the minimal and maximal subranges

corresponding to p =
(

1
2
, 1
2

)

(see Fig. 2.2). �

17



2.3 Union and Intersection of Subranges

For any p ∈ Rµ(X), we further study the union of the subranges generated by all the elements

of the class Sp
µ(X). Let Rp

µ(X) denote such a union. In other words,

Rp
µ (X) =

⋃

Y ∈S
p
µ(X)

Rµ (Y ) .

When m = 2 and µ is atomless, there exists a set Y ∗ ∈ Sp
µ (X) that generates the maximal

subrange Rµ(Y
∗), and the maximal subrange is a convex compact set by Lyapunov’s con-

vexity theorem. Then, in this case, the set Rp
µ(X) is obviously a convex compact set, since

Rp
µ(X) = Rµ(Y

∗). In addition, Rp
µ(X) = Qp

µ(X). However, a maximal subrange may not

exist for an atomless vector measure µ when m > 2. In such cases, we raise two questions.

1. Is Rp
µ(X) still a convex compact set?

2. Does the equality Rp
µ(X) = Qp

µ(X) still hold?

We answer these two questions completely. In general, the union of an uncountably infinite

number of convex compact sets may be neither closed nor convex. We prove (Theorem 3.3.1)

that for any natural number m the set Rp
µ(X) is compact and, if µ is atomless, this set is

convex. This is a generalization of Lyapunov’s convexity theorem, which is a particular

case of this statement for p = µ(X). We also prove that Rp
µ(X) ⊆ Qp

µ(X) (Theorem 3.3.2).

Example 4.2.1 demonstrates that it is possible that the equality Rp
µ(X) = Qp

µ(X) does not

hold when m > 2 and µ is atomless. Example 4.2.2 further demonstrates that such equality

may not hold when µ is atomic even for m = 1 (and thus for any natural number m).

Naturally, one can also consider the intersection of the subranges generated by all the

elements of the class Sp
µ(X). Let Ipµ(X) denote such an intersection. In other words,

Ipµ (X) =
⋂

Y ∈S
p
µ(X)

Rµ (Y ) .

Obviously, this intersection is compact and, if µ is atomless, it is also convex, because the

intersection of compact or convex sets is still a compact or convex set. We further consider

the relation between Rp
µ(X) and Ipµ(X). We show (Theorem 3.3.3) that, for any natural

number m, a m-dimensional finite atomless vector measure µ, and a vector p ∈ Rµ(X),

I
µ(X)−p
µ (X) = Rµ(X)⊖Rp

µ(X).
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2.4 Geometric construction

In [17], Lyapunov commented that a subset of the two-dimensional Euclidean space R
2

is the range of some two-dimensional finite atomless vector measure on some measurable

space if and only if it satisfies the following conditions: (1) it is convex; (2) it is closed;

(3) it is centrally symmetric; (4) it contains the origin. Since the geometrically constructed

set Qp
µ(X) satisfies the conditions (1)-(4), it must be the range of some two-dimensional

finite atomless vector measure on some measurable space. Theorem 3.2.1 immediately tells

us that it is the range of the vector measure µ on the measurable space (Z∗,FZ∗), where

FZ∗ = {Z ∈ F : Z ⊆ Z∗}. The second equality in Theorem 3.2.1 allows us to construct

geometrically the set Rp
µ(x) by shifting the set Rµ(X) by (p− µ(X)) and intersecting the

shifted set with Rµ(X).

We consider three examples with the same set X = [0, 1], but with different probability

vector measures. Let p = (0.7, 0.8) in all these examples.

Example 2.4.1. Let the probability measures µ1 and µ2 be singular. Then the range

Rµ(X) is the unit square enclosed by the dashed lines in Fig. 2.5. The area enclosed by the

dotted lines is obtained by parallelly shifting Rµ(X) by (−0.3,−0.2). The shaded area is the

intersection of the above two areas and represents the identical sets Rµ (Z
∗), Rp

µ (X), and

Qp
µ (X) with p = (0.7, 0.8). �

Example 2.4.2. Consider the probability vector measure defined in terms of density func-

tions

µ (dx) = (µ1, µ2) (dx) = (1, f (x)) dx,

where

f (x) =







1
2
, if x ∈

[

0, 1
2

)

;

3
2
, if x ∈

[

1
2
, 1
]

.

Then the range of Rµ(X) is the area enclosed by the dashed lines in Fig. 2.4. The area

enclosed by the dotted lines is obtained by parallelly shifting Rµ(X) by (−0.3,−0.2). The

shaded area is the intersection of the above two areas and represents the identical sets

Rµ (Z
∗), Rp

µ (X), and Qp
µ (X) with p = (0.7, 0.8). �

Example 2.4.3. Consider the probability vector measure defined in terms of density func-

tions

µ (dx) = (µ1, µ2) (dx) = (1, 2x) dx.
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Figure 2.3: The sets Rµ (Z
∗), Rp

µ (X), and Qp
µ (X) in Example 2.4.1.
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Figure 2.4: The sets Rµ (Z
∗), Rp

µ (X), and Qp
µ (X) in Example 2.4.2.

Then the range Rµ(X) is the area enclosed by the dashed lines in Fig. 2.5. The area enclosed

by the dotted lines is obtained by parallelly shifting Rµ(X) by (−0.3,−0.2). The shaded area
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is the intersection of the above two areas and represents the identical sets Rµ (Z
∗), Rp

µ (X),

and Qp
µ (X) with p = (0.7, 0.8). �

p
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Figure 2.5: The sets Rµ (Z
∗), Rp

µ (X), and Qp
µ (X) in Example 2.4.3.
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Chapter 3

Main Theorems

In this chapter, we present our results about subranges in a series of theorems as well as their

proofs. In Section 3.1, we give formal definitions of some concepts. Then, we prove two theo-

rems (Theorems 3.2.1 and 3.2.2) on maximal and minimal subranges in Section 3.2. Finally,

we prove three more theorems (Theorems 3.3.1-3.3.3) on the union and the intersection of

subranges in Section 3.3.

3.1 Definitions

In the following, we give the formal definitions of the sets Sp
µ (X), Rp

µ (X), Ipµ (X), and

Qp
µ (X), as well as those of the maximal and minimal subsets.

Definition 3.1.1. Given a measurable space (X,F) with a vector measure µ and a vector

p ∈ Rµ (X), we define

1. the set of all subsets of X with vector measure p,

S
p
µ (X) = {Z ∈ F : µ (Z) = p} ;

2. the union of the subranges generated by all measurable subsets of X with the vector

measure p,

Rp
µ (X) =

⋃

Z∈S
p
µ(X)

Rµ (Z) ;

3. the intersection of the subranges generated by all measurable subsets of X with the
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vector measure p,

Ipµ (X) =
⋂

Z∈S
p
µ(X)

Rµ (Z) ;

4. the intersection of the Rµ(X) with its shift by a vector −(µ(X)− p),

Qp
µ (X) = (Rµ (X)− {µ (X)− p}) ∩ Rµ (X) ,

where S1 − S2 = {q − r : q ∈ S1, r ∈ S2} for S1, S2 ⊆ R
m.

Definition 3.1.2. Given a measurable space (X,F) with a vector measure µ and vectors

p, q ∈ Rµ (X), the set Z∗ ∈ Sp
µ (X), such that Rµ (Z

∗) ⊇ Rµ (Z) for any Z ∈ Sp
µ(X), is

called the maximal subset of X with the measure p. The set M∗ ∈ Sq
µ (X), such that

Rµ (M
∗) ⊆ Rµ (M) for any M ∈ Sq

µ (X), is called the minimal subset of X with the measure

q.

In other words, maximal (minimal) subset ofX with the measure p generates the maximal

(minimal) subrange among the subranges generated by all elements of Sp
µ (X).

3.2 Maximal and Minimal Subranges

In this section, we prove two theorems on maximal and minimal subranges. The first theorem

(Theorem 3.2.1) guarantees the existence of a maximal subrange in two-dimensional case and

gives a way to geometrically construct it. The second theorem (Theorem 3.2.2) links the

notions of maximal and minimal subsets.

Theorem 3.2.1. For a measurable space (X,F) with a two-dimensional finite atomless

vector measure µ = (µ1, µ2) and for a vector p ∈ Rµ (X), there exists a maximal subset

Z∗ ∈ Sp
µ (X) and, in addition, Rµ (Z

∗) = Qp
µ (X) .

Theorem 3.2.2. For a measurable space (X,F) with a two-dimensional finite atomless vec-

tor measure µ = (µ1, µ2) and for a vector p ∈ Rµ (X), the set Z∗ is the maximal subset of X

with the measure p, if and only if M∗ = X \Z∗ is the minimal subset of X with the measure

µ(X)− p.

With Theorem 3.2.2, the existence of the minimal subset M∗ ∈ S
q
µ (X) immediately

follows from the existence of the maximal subset Z∗ ∈ S
µ(X)−q
µ (X). Furthermore,

Rµ (M
∗) = (Rµ (M

∗)⊕Rµ (Z
∗))⊖ Rµ (Z

∗) = Rµ(X)⊖Qµ(X)−q
µ (X) .
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Recall that, for sets A,B ⊆ R
m, A⊕B =

⋃

b∈B (A+ b) is called the Minkowski addition (or

sum), and A⊖ B =
⋂

b∈B (A− b) is called the Minkowski subtraction (or difference), where

A + b = {a+ b : a ∈ A} and A− b = A + (−b). These results are collected in the following

corollary.

Corollary 3.2.3. For a measurable space (X,F) with a two-dimensional finite atomless

vector measure µ = (µ1, µ2) and for a vector q ∈ Rµ (X), there exists a minimal subset

M∗ ∈ Sq
µ (X) and, in addition, Rµ (M

∗) = Rµ(X)⊖Q
µ(X)−q
µ (X).

We first consider Theorem 3.2.1. Recall that for a set S ⊆ R
m, its reflection across a

point c ∈ R
m is Ref(S, c) = {2c} − S. If S = {s} is a singleton, we shall write Ref(s, c)

instead of Ref({s}, c). A set S ⊆ R
m is called centrally symmetric if Ref (S, c) = S for some

point c ∈ R
m called the center of S. Any bounded centrally symmetric set has only one

center.

Throughout this section, we let Y ∈ F be any measurable subset of X . Lemmas 3.2.4-

3.2.6 hold for any finite atomless vector measure µ = (µ1, . . . , µm) on (X,F), where m =

1, 2, . . . .

Lemma 3.2.4. The set Rµ(Y ) is centrally symmetric with the center 1
2
µ (Y ).

Proof. The proof is straightforward, and this fact was observed by Lyapunov [17, p. 476].

Lemma 3.2.5. The equality Rµ (Y ) − {µ (Y )− p} = Ref
(

Rµ (Y ) , 1
2
p
)

holds for any p ∈

Rµ (Y ).

Proof. By Lemma 3.2.4, Rµ (Y ) = Ref
(

Rµ (Y ) , 1
2
µ (Y )

)

= {µ(Y )} − Rµ (Y ). Therefore,

Rµ (Y )−{µ (Y )− p} = ({µ (Y )}−Rµ (Y ))−{µ (Y )− p} = {p}−Rµ (Y ) = Ref
(

Rµ (Y ) , 1
2
p
)

.

Lemma 3.2.6. Each of the sets Rp
µ (Y ) and Qp

µ (Y ) is centrally symmetric with the center
1
2
p.

Proof. According to Lemma 3.2.4, each set Z ∈ Sp
µ(Y ) is centrally symmetric with the center

1
2
p. Therefore, Rp

µ (Y ), which is the union of all the sets in Z ∈ S
p
µ(Y ), is also centrally

symmetric with the center 1
2
p.
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In addition,

Ref

(

Qp
µ (Y ) ,

1

2
p

)

= Ref

(

(Rµ (Y )− {µ (Y )− p}) ∩ Rµ (Y ) ,
1

2
p

)

= Ref

(

Ref

(

Rµ (Y ) ,
1

2
p

)

∩ Rµ (Y ) ,
1

2
p

)

= Rµ (Y ) ∩ Ref

(

Rµ (Y ) ,
1

2
p

)

= Rµ (Y ) ∩ (Rµ (Y )− {µ (Y )− p}) = Qp
µ (Y ) ,

where the first and last equalities follow from the definition of Qp
µ, the second and second to

the last equalities follow from Lemma 3.2.5. The third equality holds because a reflection of

intersections equals the intersection of reflections and, in addition, a reflection of a reflection

across the same point is the original set.

Here we present the major ideas of the proof of Theorem 3.2.1. First, as shown later, after

Theorem 3.2.1 is proven for equivalent measures µ1 and µ2, this condition can be removed.

So, we make the following assumption in Lemmas 3.2.8, 3.2.10-3.2.16.

Assumption 3.2.7. The measures µ1 and µ2 are finite, atomless, and equivalent.

Under Assumption 3.2.7, let f (x) = dµ2

dµ1
(x) be a Radon-Nikodym derivative of µ2 with

respect to µ1. Since f is defined µ1-a.e., we fix any its version. We shall frequently use

notations similar to

{f(x) < l} = {x ∈ X : f(x) < l} .

Second, under Assumption 3.2.7, for any a ∈ [0, µ1 (X)], we denote

la = min {l ≥ 0 : µ1 ({f (x) ≤ l}) ≥ a} . (3.2.1)

Observe that the minimum in (3.2.1) exists. Indeed, let

la = inf {l ≥ 0 : µ1 ({f (x) ≤ l}) ≥ a} .

We need to show that µ1 ({f (x) ≤ la}) ≥ a. If la = ∞ then µ1({f(x) ≤ ∞}) = µ1(X) ≥ a.

Let la < ∞. Consider a sequence lk ց la, k = 1, 2, . . . . Then ∩∞
k=1{f(x) ≤ lk} = {f(x) ≤ la}

and {f(x) ≤ lk} ⊇ {f(x) ≤ lk+1}. Therefore µ1({f(x) ≤ la}) = limk→∞ µ1({f(x) ≤ lk}) ≥

a.
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Third, it is possible to construct the maximal subset Z∗ = X \ M∗, where M∗ can be

defined explicitly. Let X l = {f (x) = l}. If µ1(X
l) = 0 for all l ∈ [0,∞), then the definition

of M∗ is easier and we explain it first. In this case, there exists a∗ ∈ [0, µ1(X)] such that

µ2 (M
∗) = µ2(X)− p2, and M∗ can be defined as

M∗ = {la∗ ≤ y < la∗+(µ1(X)−p1)}. (3.2.2)

In the general situation, the number a∗ can be chosen to satisfy

µ2({la∗ < y < la∗+(µ1(X)−p1)}) ≤ µ2(X)− p2 ≤ µ2({la∗ ≤ y ≤ la∗+(µ1(X)−p1)}),

and

M∗ = {la∗ < y < la∗+(µ1(X)−p1)} ∪ Z1 ∪ Z2, (3.2.3)

for Z i, i = 1, 2, being some measurable subsets of X li, where l1 = la∗ and l2 = la∗+(µ1(X)−p1).

In particular, if µ1

(

X l1
)

= 0, let Z1 = X l1, and if µ1

(

X l2
)

= 0, let Z2 = ∅. If µ1

(

X l1
)

=

µ1

(

X l2
)

= 0, then (3.2.3) reduces to (3.2.2). It is easy to show that the number of l such

that µ1

(

X l
)

= 0 is countable, but we do not use this fact.

The proof of Theorem 3.2.1 is based on several lemmas.

Lemma 3.2.8. Under Assumption 3.2.7, the numbers la, a ∈ [0, µ1(X)] have the following

properties: (a) µ1 ({f (x) < la}) ≤ a ≤ µ1 ({f (x) ≤ la}); (b) la ≤ la′ if a ≤ a′.

Proof. For (a), by definition, a ≤ µ1 ({f (x) ≤ la}) holds. To prove that µ1 ({f (x) < la}) ≤

a, assume that µ1 ({f (x) < la}) > a. If la = 0, then µ1 ({f (x) < la}) = 0 > a which

contradicts the assumption that a ≥ 0. If la > 0, let ǫk ց 0, k = 1, 2, . . . , be a sequence of

positive numbers. Then, for k = 1, 2, . . . ,

µ1 ({f(x) < la}) = µ1 ({f(x) ≤ la − ǫk}) + µ1 ({la − ǫk < f(x) < la}) > a.

Let Dk = {la − ǫk < f(x) < la}. We observe that Dk+1 ⊆ Dk and ∩∞
u=1Dk = ∅. Therefore,

limk→∞ µ1 (Dk) = 0. Thus, µ1 (f(x) ≤ la − ǫ) > a for some ǫ > 0 and this contradicts (3.2.1).

These contradictions imply the lemma.

For (b), assume la > la′ , then µ1 ({f (x) ≤ la′}) ≥ a′ ≥ a, and this contradicts (3.2.1).

Note that for each l ∈ [0,∞), there exists a subfamily

{

Wb

(

X l
)

∈ FXl : b ∈
[

0, µ1

(

X l
)]}
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such that (1) µ1

(

Wb

(

X l
))

= b for each b ∈
[

0, µ1

(

X l
)]

and (2) Wb

(

X l
)

⊂ Wb′
(

X l
)

⊆ X l

whenever b < b′ ≤ µ1

(

X l
)

. This fact follows from Ross [22, Theorem 2(LT3)]. We set

W0

(

X l
)

= ∅. From now on we fix a family of Wb

(

X l
)

for each l ∈ [0,∞).

Definition 3.2.9. Under Assumption 3.2.7, for each a, define the following set

La = {f (x) < la} ∪Wc

(

X la
)

, (3.2.4)

where c = a− µ1 ({f (x) < la}).

Note that property (a) in Lemma 3.2.8 guarantees that c ∈
[

0, µ1

(

X l
)]

.

Lemma 3.2.10. Under Assumption 3.2.7, the sets La ∈ F, a ∈ [0, µ1(X)], have the following

properties: (a) µ1 (La) = a; (b) {f (x) < la} ⊆ La ⊆ {f (x) ≤ la}; (c) La ⊂ La′ ⊆ X if

a < a′ ≤ µ1 (X).

Proof. For (a),

µ1 (La) = µ1 ({f (x) < la}) + µ1

(

Wc

(

X la
))

= µ1 ({f (x) < la}) + a− µ1 ({f (x) < la}) = a.

Property (b) follows from Wc

(

X la
)

⊆ X la and (3.2.4). For (c), if la = la′ then c < c′ where

c′ = a′ − µ1 ({f (x) < la}), and thus

La = {f (x) < la} ∪Wc

(

X la
)

⊂ {f (x) < la} ∪Wc′
(

X la
)

= La′ .

If la < la′ then La ⊆ {f (x) ≤ la} ⊂ {f (x) < la′} ⊆ La′ .

Let Ma,d = La+d \ La. For each d ∈ [0, µ1 (X)] and each a ∈ [0, µ1 (X)− d], denote

gd (a) = µ2 (Ma,d) =
´

Ma,d
f(x)µ1(dx). The function gd(a) is non-decreasing and continuous

in a ∈ [0, µ1 (X)− d] for each d ∈ [0, µ1(X)]. However, we will not use the fact that it is

non-decreasing. So we only prove the continuity in the following lemma.

Lemma 3.2.11. Under Assumption 3.2.7, for each d ∈ [0, µ1(X)], the function gd (a) is

continuous in a ∈ [0, µ1 (X)− d].

Proof. We show that µ2(La+d) is continuous in a ∈ ([0, µ1(X)− d] for any d ∈ [0, µ1(X)].

Since gd(a) = La+d − La, this implies the lemma. Consider a sequence {ak : k = 1, 2, . . .},

where ak ∈ [0, µ1(X) − d]. Let ak ր a. Then Lak+d ⊂ Lak+1+d ⊂ B ⊆ La+d, where
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B = ∪∞
k=1Lak+d. Therefore, µi(Lak+d) ր µi(B) and µi(La+d) = µi(B)+µi(La+d\B), i = 1, 2.

Since µ1(Lak+d) = ak + d ր a+ d = µ1(La+d), we have µ1(B) = a+ d and µ1(La+d \B) = 0.

Since µ1 and µ2 are equivalent measures, µ2(La+d \B) = 0 and µ2(Lak+d) ր µ2(La+d).

Now let ak ց a. Then Lak+d ⊃ Lak+1+d ⊃ D ⊇ La+d, where D = ∩∞
k=1Lak+d, and

µi(Lak+d) ց µi(D), µi(La+d) = µi(D)−µi(D\La+d) for i = 1, 2. Similar to the previous case,

µ1(Lak+d) = ak + d ց a+ d = µ1(La+d), so µ1(D) = a+ d, µ2(D \La+d) = µ1(D \La+d) = 0,

and µ2(D) = µ2(La+d). Thus, µ2(Lak+d) ց µ2(La+d).

Observe that a point q ∈ R
2 is on the upper (lower) boundary of Rµ (X), if and only if

q ∈ Rµ (X) and q′2 ≤ q2 (q′2 ≥ q2) for any q′ ∈ Rµ (X) with q′1 = q1.

Lemma 3.2.12. Under Assumption 3.2.7, a point q ∈ R
2 is on the lower boundary of Rµ (X)

if and only if 0 ≤ q1 ≤ µ1(X) and q2 = µ2 (Lq1), and it is on the upper boundary of Rµ (X)

if and only if 0 ≤ q1 ≤ µ1(X) and q2 = µ2

(

X \ Lµ1(X)−q1

)

.

Proof. For the lower boundary, let q2 = µ2(Lq1). Since q1 = µ1(Lq1), we have q = µ(Lq) ∈

Rµ(X). For any set Z ∈ F with µ1 (Z) = q1, define disjoint sets Z1 = Z \ Lq1 , Z2 = Lq1 \ Z,

and M = Z ∩ Lq1. Then Z = Z1 ∪ M , Lq1 = Z2 ∪ M , and µ1(Z1) = µ1(Z2), since

µ1(Z) = q1 = µ1(Lq1). Furthermore, Z1 ⊆ {f(x) ≥ lq1} and Z2 ⊆ {f(x) ≤ lq1}. Therefore,

µ2 (Z1) =

ˆ

Z1

f (x)µ1 (dx) ≥ lq1

ˆ

Z1

µ1 (dx)

= lq1

ˆ

Z2

µ1 (dx) ≥

ˆ

Z2

f (x)µ1 (dx) = µ2 (Z2) .

So µ2 (Z) = µ2 (Z1) + µ2 (M) ≥ µ2 (Z2) + µ2(M) = µ2 (Lq1), and thus q is on the lower

boundary of Rµ (X).

If q is on the lower boundary of Rµ (X), then q2 ≤ µ2 (Lq1). Since q ∈ Rµ (X), there

exists Z ∈ F with µ (Z) = q. But, as proved above, µ2 (Z) ≥ µ2 (Lq1) for any Z ∈ F with

µ1 (Z) = q1. Thus q2 ≥ µ2 (Lq1). Therefore, q2 = µ2 (Lq1).

The statement on the upper boundary follows from the symmetry of the range Rµ (X).

Lemma 3.2.13. Under Assumption 3.2.7, given u = (u1, u2) ∈ Rµ (X), there exists a∗ ∈

[0, µ1 (X)− u1] such that µ (Ma∗,u1) = u.

Proof. Since µ1(L0) = 0 and µ1 and µ2 are equivalent, µ2(L0) = 0. Therefore, gu1(0) =

µ2 (Lu1 \ L0) = µ2 (Lu1) − µ2 (L0) = µ2 (Lu1) . Similarly, since µ1

(

X \ Lµ1(X)

)

= µ1 (X) −
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µ1

(

Lµ1(X)

)

= 0 and µ1 and µ2 are equivalent, µ2

(

X \ Lµ1(X)

)

= 0. Thus

gu1 (µ1(X)− u1) = µ2

(

Lµ1(X) \ Lµ1(X)−u1

)

= µ2

(

Lµ1(X)

)

− µ2

(

Lµ1(X)−u1

)

= µ2 (X)− µ2

(

X \ Lµ1(X)

)

− µ2

(

Lµ1(X)−u1

)

= µ2

(

X \ Lµ1(X)−u1

)

.

According to Lemma 3.2.12, the point (u1, gu1 (0)) is on the lower boundary of the range

Rµ (X) and the point (u1, gu1 (µ1 (X)− u1)) is on the upper boundary of the range Rµ (X).

So u2 ∈ [gu1 (0) , gu1 (µ1 (X)− u1)]. Since gu1 (a) is continuous in a ∈ [0, µ1 (X)− u1], there

exists a∗, such that gu1 (a
∗) = u2. That is, µ2 (Ma∗,u1) = u2. By definition, µ1 (Ma∗,u1) = u1.

Therefore, µ (Ma∗,u1) = u.

Note that Lemmas 3.2.8, and 3.2.10-3.2.13 hold if one replaces everywhere the set X

with any measurable subset Z ∈ F. In particular, expressions such as {f(x) < l} should be

replaced with {x ∈ Z : f(x) < l}. We define explicitly

la(Z) = min {l ≥ 0 : µ1 ({x ∈ Z : f (x) ≤ l}) ≥ a} . (3.2.5)

Let Z l = {x ∈ Z : f(x) = l}. As follows from Ross [22, Theorem 2(LT3)], for each l ∈ [0,∞),

there exists a family
{

Wb

(

Z l
)

∈ FZl : b ∈
[

0, µ1

(

Z l
)]}

such that (1) µ1

(

Wb

(

Z l
))

= b for each b ∈
[

0, µ1

(

Z l
)]

and (2) Wb

(

Z l
)

⊂ Wb′
(

Z l
)

⊆ Z l

whenever b < b′ ≤ µ1

(

Z l
)

. Again, we fix a family of Wb

(

Z l
)

for each l ∈ [0,∞) and each

Z, and define

La(Z) = {x ∈ Z : f (x) < la} ∪Wc

(

Z la
)

,

where c = a − µ1({x ∈ Z : f(x) < a}). Note that la(X) = la and La(X) = La, for each

a ∈ [0, µ1(X)]. In the following two lemmas and their proofs, for a given u ∈ Rµ(X), we

consider a point a∗ ∈ [0, µ1(X)− u1] with µ (Ma∗,u1) = u and the set Z = X \Ma∗,u1. The

existence of a∗ is stated in Lemma 3.2.13. Later it will become clear that that Z is the

maximal subset with the vector measure p = µ(X)−u and Ma∗,u1 is the the minimal subset

with the vector measure p = u.

Lemma 3.2.14. Let Assumption 3.2.7 hold. For a given u = (u1, u2) ∈ Rµ(X), consider
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a∗ ∈ [0, µ1(X)− u1] such that µ (Ma∗,u1) = u. Then

µ2 (La(Z)) =







µ2 (La) , if a ∈ [0, a∗] ;

µ2 (La+u1 \Ma∗,u1) , if a ∈ (a∗, µ1 (X)− u1] .
(3.2.6)

Proof. First, consider the case a ∈ [0, a∗]. We have Z = X \ Ma∗,u1 ⊇ La∗ ⊇ La =

{f(x) < la}∪Wc

(

X la
)

, where c = a−µ1 ({f(x) < la}). In addition, {f(x) < la}∪Wc

(

X la
)

⊆

{f(x) ≤ la}. Therefore

µ1 ({x ∈ Z : f(x) ≤ la})

= µ1(Z ∩ {f(x) ≤ la}) ≥ µ1

(

Z ∩ ({f(x) < la} ∪Wc(X
la))
)

= µ1

(

{f(x) < la} ∪Wc(X
la)
)

= a.

Thus, (3.2.5) implies that la(Z) ≤ la. On the other hand, take an arbitrary l < la. Since

Z ⊆ X ,

µ1 ({x ∈ Z : f(x) ≤ l}) ≤ µ1 ({f(x) ≤ l}) < a.

Therefore, la(Z) > l for all l < la. Thus, la(Z) ≥ la. We conclude that la(Z) = la.

Denote A = {f(x) < la}. Since Z ⊇ La ⊇ A and la(Z) = la, then {x ∈ Z : f(x) <

la(Z)} = A. By definition, each of the sets La and La(Z) is the union of two disjoint

subsets: La = A ∪Wc(X
la) and La(Z) = A ∪Wb(Z

la) with c = a− µ1(A) = b. Thus, since

X la ⊇ Z la and f(x) = la when x ∈ X la , we have µ2(Wc(X
la)) = µ2(Wc(Z

la)) = lac. So,

µ2(La(Z)) = µ2(A) + µ2(Wc(Z
la)) = µ2(A) + µ2(Wc(X

la)) = µ2(La).

Second, consider the case a ∈ (a∗, µ1(X)− u1]. Observe that

Ma∗,u1 ⊆ La∗+u1 ⊂ La+u1 = {f(x) < la+u1} ∪Wc

(

X la+u1

)

,

where c = a+ u1 − µ1 ({f(x) < la+u1}). In addition,

{f(x) < la+u1} ∪Wc

(

X la+u1

)

⊆ {f(x) ≤ la+u1} .
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Therefore,

µ1 ({x ∈ Z : f(x) ≤ la+u1})

= µ1 ({f(x) ≤ la+u1} ∩ Z) = µ1 ({f(x) ≤ la+u1} \Ma∗,u1)

≥ µ1

(

{f(x) < la+u1} ∪Wc

(

X la+u1

)

\Ma∗,u1

)

= a + u1 − u1 = a.

Thus, (3.2.5) implies that la(Z) ≤ la+u1 . On the other hand, observe that Ma∗,u1 ⊆

{f(x) ≤ la(Z)}. Indeed, since a > a∗, we have la(Z) ≥ la∗(Z) = la∗ . Assume la∗ ≤

la(Z) < la∗+u1, then {x ∈ Z : f(x) ≤ la(Z)} = {f(x) ≤ la(Z)} \ Ma∗,u1 = La∗ , and

a = µ1({x ∈ Z : f(x) ≤ la(Z)}) = µ1(La∗) = a∗, which is a contradiction. Therefore,

la(Z) ≥ la∗+u1 and Ma∗,u1 ⊆ {f(x) ≤ la∗+u1} ⊆ {f(x) ≤ la(Z)}. Thus, {x /∈ Z : f(x) ≤

la(Z)} = {x ∈ Ma∗,u1 : f(x) ≤ la(Z)} = Ma∗,u1 and

µ1 ({f(x) ≤ la(Z)}) = µ1 ({x ∈ Z : f(x) ≤ la(Z)}) + µ1 (Ma∗,u1) ≥ a+ u1,

where the last step follows from property (b) in Lemma 3.2.10. Formula (3.2.1) implies that

la(Z) ≥ la+u1 . Therefore, la(Z) = la+u1 .

Consider again the identity La+u1 = {f(x) < la+u1} ∪Wc(X
la+u1), where the sets in the

union are disjoint and c = (a + u1) − µ1({f(x) < la+u1}). Similarly, La(Z) = {x ∈ Z :

f(x) < la+u1} ∪Wb(Z
la+u1), where b = a− µ1({x ∈ Z : f(x) < la(Z)}). Since la(Z) = la+u1

and {f(x) < la+u1} ⊃ Ma∗,u1, we have b = a− µ1({x ∈ Z : f(x) < la+u1}) = a− µ1({f(x) <

la+u1} \Ma∗,u1) = (a+ u1)− µ1({f(x) < la+u1}) = c. Thus,

µ2(La(Z)) = µ2({x ∈ Z : f(x) < la(Z)}) + µ2(Wb(Z
la(Z)))

= µ2({x ∈ Z : f(x) < la+u1}) + la+u1µ1(Wb(Z
la+u1 ))

= µ2({f(x) < la+u1})− µ2(Ma∗,u1) + la+u1µ1(Wc(X
la+u1 ))

= µ2(La+u1)− µ2(Ma∗,u1) = µ2(La+u1 \Ma∗,u1),

where the second equality holds because la(Z) = la+u1 , f(x) = la+u1 for x ∈ X la+u1 , and

Z la+u1 ⊆ X la+u1 (in fact Z la+u1 = X la+u1 , but we do not use this). The third equality holds

because of {x ∈ Z : f(x) < la+u1} = {f(x) < la+u1} \Ma∗,u1, {f(x) < la+u1} ⊃ Ma∗,u1, and

b = c. The fourth equality follows from la+u1µ1(Wc(X
la+u1 )) = µ2(Wc(X

la+u1)).

Lemma 3.2.15. Let Assumption 3.2.7 hold. For a given u = (u1, u2) ∈ Rµ(X), consider
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a∗ ∈ [0, µ1(X)− u1] such that µ (Ma∗,u1) = u. Let q = (q1, q2) be on the lower (upper)

boundary of Rµ (Z). If q1 ∈ [0, a∗] (q1 ∈ [0, µ1(X)− u1 − a∗)), then q is on the lower (upper)

boundary of Rµ (X) and, if q1 ∈ (a∗, µ1(X)− u1] (q1 ∈ [µ1(X)− u1 − a∗, µ1(X)− u1]), then

r = µ (X)− u− q is on the upper (lower) boundary of Rµ (X).

Proof. When q is on the lower boundary of Rµ (Z), according to Lemma 3.2.12, µ2(Lq1(Z)) =

q2. If q1 ∈ [0, a∗], then by Lemma 3.2.14, µ2(Lq1) = µ2(Lq1(Z)) = q2, and Lemma 3.2.12

implies that q is on the lower boundary of Rµ (X).

If q1 ∈ (a∗, µ (X)− u1], then for r = (r1, r2)

r2 = µ2 (X)− u2 − q2 = µ2 (X)− µ2 (Ma∗,u1)− µ2 (Lq1(Z))

= µ2 (X)− (µ2 (Ma∗,u1) + µ2 (Lq1+u1 \Ma∗,u1))

= µ2 (X)− µ2 (Lq1+u1) = µ2 (X \ Lq1+u1) = µ2

(

X \ Lµ1(X)−r1

)

,

where the first and last equalities follow from the definition of r, the second equality follows

from Lemma 3.2.13, the third equality follows from Lemma 3.2.14, and the fourth equality

follows from q1 > a∗. According to Lemma 3.2.12, r is on the upper boundary of Rµ (X).

If q is on the upper boundary of Rµ (Z), then, because of symmetry of Rµ (Z), r =

µ(X)−u−q is on the lower boundary of Rµ (Z). If q1 ∈ [µ1(X)− u1 − a∗, µ1(X)− u1], then

µ1(X)− u1 − q1 ∈ [0, a∗]. From the first part of the proof, r = µ(X)− u− q is on the lower

boundary of Rµ (X). If q1 ∈ [0, µ1(X)− u1 − a∗), then µ1(X)− u1 − q1 ∈ (a∗, µ1(X)− u1].

Again, from the first part of the proof, µ(X) − u − (µ(X) − u − q1) = q1 is on the upper

boundary of Rµ (X).

Lemma 3.2.16. Under Assumption 3.2.7, for any vector p ∈ Rµ (X), there exists a maximal

subset Z∗ ∈ Sp (X) and, in addition, Rp
µ (X) = Qp

µ (X) .

Proof. For u = µ(X)− p, consider a∗ defined in Lemma 3.2.13. For Z∗ = X \Ma∗,µ1(X)−p1 ,

the following three statements are true: (1) Rµ (Z
∗) ⊆ Rp

µ (X); (2) Rp
µ (X) ⊆ Qp

µ (X); (3)

Qp
µ (X) ⊆ Rµ (Z

∗).

For (1), µ (Z∗) = µ
(

X \Ma∗,µ1(X)−p1

)

= µ(X)−µ
(

Ma∗,µ1(X)−p1

)

= µ(X)−(µ(X)− p) =

p, where the second to the last equality follows from Lemma 3.2.13. Thus, Rµ (Z
∗) = Rp

µ(X).

For (2), assume that there exists a vector q ∈ Rp
µ (X) such that q /∈ Qp

µ (X). Then

Definition 3.1.1 implies that either q /∈ Rµ (X) − {µ (X)− p} or q /∈ Rµ (X). However

q ∈ Rp
µ(X) ⊆ Rµ(X). Therefore, q /∈ Rµ (X) − {µ (X)− p}, which is equivalent to p − q /∈

{µ(X)} − Rµ(X) = Rµ(X), where the equality follows from Lemma 3.2.4. Since Rp
µ(X) ⊆
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Rµ(X), we have p − q /∈ Rp
µ(X). By Lemma 3.2.6, Rp

µ(X) is centrally symmetric with the

center p

2
. Therefore q /∈ Rp

µ(X). The above contradiction implies (2).

For (3), assume q ∈ Qp
µ (X), but q /∈ Rµ (Z

∗). By Lyapunov’s theorem Rµ (Z
∗) is a

convex compact set. Let qu = (q1, q
u
2 ) and ql =

(

q1, q
l
2

)

be the intersection points of the

vertical line µ1 = q1 and the upper and lower boundaries of Rµ (Z
∗) respectively. Then one

of the following must be true: q2 > qu2 or q2 < ql2. Without loss of generosity, we consider the

former case. Since qu is on the upper boundary of Rµ (Z
∗), according to Lemma 3.2.15, one

of the following is true: (a) qu is on the upper boundary of Rµ (X) or (b) r = p − qu is on

the lower boundary of Rµ (X). For (a), q2 > qu2 implies q /∈ Rµ (X). Thus q /∈ Qp
µ (X). This

contradicts our assumption. For (b), we let r′ = p− q. Obviously, r′1 = r1 and r′2 < r2. This

implies that r′ is below the lower boundary point r. Thus, r′ /∈ Rµ (X) and r′ /∈ Qp
µ (X).

But according to Lemma 3.2.6, this means q /∈ Qp
µ (X), which contradicts to our assumption.

Statement (1)-(3) imply the lemma.

Let D be a two-by-two invertible matrix with positive entries, and A ⊆ R
2. We denote

by AD the set {pD : p ∈ A}. For a vector measure µ = (µ1, µ2), let ν = µD be the vec-

tor measure (ν1, ν2) = (D11µ1 +D21µ2, D12µ1 +D22µ2). Then the measure ν1 and ν2 are

equivalent.

Lemma 3.2.17. (a) Rµ(Y )D = Rν(Y ) for all Y ∈ F; (b) Rp
µ(X)D = RpD

ν (X) for all

p ∈ Rµ(X); (c) Qp
µ(X)D = QpD

ν (X) for all p ∈ Rµ(X).

Proof. (a) For any point q ∈ Rν(Y ), there exists a set Z ∈ FY such that ν(Z) = q. Since

µ(Z) = qD−1 and qD−1 ∈ Rµ(Y ), we have q ∈ Rµ(Y )D. For any point q ∈ Rµ(Y )D, we

have qD−1 ∈ Rµ(Y ). Thus there exists a set Z ∈ FY such that µ(Z) = qD−1, and ν(Z) = q.

Therefore, ν(Z) ∈ Rν(Y ).

(b) For any point q ∈ RpD
ν (X), there exist sets Y ∈ F and Z ∈ FY such that ν(Y ) = pD

and ν(Z) = q. So µ(Y ) = p and µ(Z) = qD−1. Thus, qD−1 ∈ Rp
µ(X) and therefore,

q ∈ Rp
µ(X)D. For any point q ∈ Rp

µ(X)D, we have qD−1 ∈ Rp
µ(X). So there exist sets

Y ∈ F and Z ∈ FY such that µ(Y ) = p and µ(Z) = qD−1, and consequently ν(Y ) = pD

and ν(Z) = q. Thus q ∈ RpD
µ (X).

(c) According to Definition 3.1.1, Qp
µ(X)D = (Rµ(X)D − {µ(X)D− pD}) ∩Rµ(X)D =

(Rν(X)− {ν(X)− pD}) ∩ Rν(X) = QpD
ν (X).

Proof of Theorem 3.2.1. According to Lemma 3.2.16, Theorem 3.2.1 holds under Assump-

tion 3.2.7 that states that µ1 and µ2 are equivalent. If µ1 and µ2 are not equivalent, consider
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ν = µD. Since ν1 and ν2 are equivalent, Qp
µ(X) = QpD

ν (X)D−1 = RpD
ν (X)D−1 = Rp

µ(X),

where the first equality and the last equality is by Lemma 3.2.17, and the second equality is

due to Lemma 3.2.16. Furthermore, according to Lemma 3.2.16, there exists a maximal sub-

set Z∗, such that Rν (Z
∗) = RpD

ν (X). Therefore, Rµ (Z
∗) = Rν (Z

∗)D−1 = RpD
ν (X)D−1 =

Rp
µ(X).

Now we consider Theorem 3.2.2. The proof of this theorem uses the following lemma.

Lemma 3.2.18. Let A1, A2, B1, B2 ⊆ R
2 be convex and compact sets such that A1 ⊕ B1 =

A2 ⊕B2 and B1 ⊆ B2. Then A2 ⊆ A1.

Proof. According to [24, Lemma 3.1.8], if A,B ⊆ R
2 are convex and compact sets then (A⊕

B)⊖B = A. Thus if a ∈ A2, then a ∈ (A2 ⊕ B2)⊖B2, and consequently a ∈ (A1 ⊕ B1)⊖B2.

So a ∈ (A1 ⊕ B1) − b, for any b ∈ B2. Since B1 ⊆ B2, we have a ∈ (A1 ⊕ B1) − b, for any

b ∈ B1, and thus a ∈ (A1 ⊕ B1)⊖B1 = A1.

Proof of Theorem 3.2.2. Now let Z∗ be the maximal subset with the measure p. Then,

µ (X \ Z∗) = µ(X) − p. Consider any set M , such that µ(M) = µ(X) − p. Obviously,

Rµ(M)⊕Rµ(X \M) = Rµ (X \ Z∗)⊕Rµ (Z
∗) = Rµ(X). In addition, Rµ(X \M) ⊆ Rµ (Z

∗)

by definition. Thus according to Lemma 3.2.18, Rµ (X \ Z∗) ⊆ Rµ(M).

Similarly, let M∗ = X \ Z∗ be the minimal subset with the measure µ(X) − p. Then,

µ (Z∗) = p. Consider any set Z, such that µ(Z) = p. Obviously, Rµ(Z) ⊕ Rµ(X \ Z) =

Rµ (Z
∗) ⊕ Rµ (X \ Z∗) = Rµ(X). In addition, Rµ(X \ Z∗) = Rµ(M

∗) ⊆ Rµ (X \ Z) by

definition. Thus according to Lemma 3.2.18, Rµ (Z) ⊆ Rµ(Z
∗).

3.3 Union and Intersection of Subranges

Theorem 3.2.1 immediately implies that, when µ is a two-dimensional finite atomless measure

on (X,F), the set Rp
µ (X), which is the union of the ranges of µ on Y , for all Y ∈ Sp

µ (X),

is a convex compact set. Furthermore, if Rµ (X) and p are given, the set Rp
µ(X) is defined

by two simple geometric operations, a shift and an intersection, since Qp
µ (X) is defined by

these operations.

In this section, we remove the assumption that µ is a two-dimensional measure and

prove a theorem (Theorem 3.3.1) on the compactness and convexity of the union Rp
µ (X). In

addition, for any natural number m, we prove that Rp
µ(X) ⊆ Qp

µ(X) (Theorem 3.3.2).
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Theorem 3.3.1. For a measurable space (X,F) with a finite vector measure µ and for any

vector p ∈ Rµ (X), the set Rp
µ(X) is compact and, in addition, if the vector measure µ is

atomless, this set is convex.

Theorem 3.3.2. For a measurable space (X,F) with a finite vector measure µ and for any

vector p ∈ Rµ (X), Rp
µ(X) ⊆ Qp

µ(X).

We also give a theorem (Theorem 3.3.3) that links the union Rp
µ(X) and the intersection

I
µ(X)−p
µ (X).

Theorem 3.3.3. For a measurable space (X,F) with a finite atomless vector measure µ and

for any vector p ∈ Rµ (X), I
µ(X)−p
µ (X) = Rµ(X)⊖ Rp

µ(X).

We first prove Theorem 3.3.1.

Proof of Theorem 3.3.1. We say that a partition is measurable, if all its elements are mea-

surable sets. Consider the set

Vµ,3(X) = {(µ(S1), µ(S2), µ(S3)) :

{S1, S2, S3} is a measurable partition of X} .

According to Dvoretzky, Wald, and Wolfowitz [9, Theorems 1 and 4], Vµ,3(X) is compact

and, if µ is atomless, this set is convex. Now let

W p
µ (X) = {(s1, s2, s3) : (s1, s2, s3) ∈

Vµ,3(X), s3 = µ(X)− p, s1 + s2 = p} .

This set is compact and, if µ is atomless, it is convex. This is true, because W p
µ (X) is an

intersection of Vµ,3(X) and two planes in R
3m. These planes are defined by the equations

s3 = µ(X)− p and s1 + s2 = p respectively. We further define

Sp
µ(X) =

{

s1 : (s1, s2, s3) ∈ W p
µ(X)

}

.

Since Sp
µ(X) is a projection of W p

µ(X), the set Sp
µ(X) is compact and, if µ is atomless, it is

convex.

The last step of the proof is to show that Sp
µ(X) = Rp

µ(X) by establishing that (i)

Sp
µ(X) ⊆ Rp

µ(X), and (ii) Sp
µ(X) ⊇ Rp

µ(X). Indeed, for (i), for any s1 ∈ Sp
µ(X), there exists
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(s1, s2, s3) ∈ W p
µ(X) or equivalently there exists a measurable partition {S1, S2, S3} of X

such that µ(S3) = µ(X) − p and µ(S1) + µ(S2) = p. Let Z = S1 ∪ S2. Then µ(Z) = p,

s1 ∈ Rµ(Z), and thus s1 ∈ Rp
µ(X). For (ii), for any s1 ∈ Rp

µ(X), there exists a set Z ∈ F,

such that µ(Z) = p and s1 ∈ Rµ(Z), which further implies that there exists a measurable

subset S1 of Z such that µ(S1) = s1. Let S2 = Z\S1 and S3 = X\Z. Then µ(S1)+µ(S2) = p

and µ(S3) = µ(X) − p, which further implies that (s1, µ(S2), µ(S3)) ∈ W p
µ(X). Thus s1 ∈

Sp
µ(X).

Now we consider Theorem 3.3.2. The proof of Theorem 3.3.2 uses the following lemma,

which was proved in [5] and presented in Section 3.2 above (Lemma 3.2.6).

Lemma 3.3.4. ([5, Lemma 3.3]) For any vector p ∈ R(X), each of the sets Rp
µ (X) and

Qp
µ (X) is centrally symmetric with the center 1

2
p.

Though it is assumed in [5] that the measure µ is atomless, this assumption is not used

in the proofs of Lemmas 3.1-3.3 therein.

Proof of Theorem 3.3.2. Let q ∈ Rp
µ (X). Since Rp

µ(X) ⊆ Rµ(X), then q ∈ Rµ(X). Fur-

thermore, in view of Lemma 3.3.4, p − q ∈ Rp
µ (X). Therefore, p − q ∈ Rµ(X). Since

Rµ(X) is centrally symmetric with the center 1
2
µ(X), then Rµ(X) = {µ(X)} − Rµ(X) and

p− q ∈ Rµ(X) = {µ(X)} − Rµ(X). Therefore, q ∈ Rµ (X)− {µ (X)− p}. As follows from

the definition of Qp
µ (X) in Definition 3.1.1, q ∈ Qp

µ (X).

Finally, to prove Theorem 3.3.3, observe that the Minkowski difference of two sets A,B ⊆

R
m (defined in Section 3.2) can also be written as A⊖ B = {r ∈ R

m : B + r ⊆ A}.

Proof of Theorem 3.3.3. Consider any q ∈ I
µ(X)−p
µ (X). Then, for all Z ∈ Sp

µ, Rµ(Z) + q ⊆

Rµ(X), since q ∈ Rµ(X \ Z) and Rµ(Z)⊕ Rµ(X \ Z) = R(X). Thus, Rp
µ(X) + q ⊆ Rµ(X),

and q ∈ Rµ(X)⊖ Rp
µ(X). Therefore I

µ(X)−p
µ (X) ⊆ Rµ(X)⊖ Rp

µ(X).

On the other hand, consider any q ∈ Rµ(X)⊖ Rp
µ(X). Then Rp

µ(X) + q ⊆ Rµ(X). This

implies that, for all Z ∈ Sp
µ, Rµ(Z)+q ⊆ Rµ(X). Thus, q ∈ Rµ(X)⊖Rµ(Z) = Rµ(X \Z), for

all Z ∈ Sp
µ. In other words, q ∈ Rµ(Y ), for all Y ∈ S

µ(X)−p
µ . It follows that q ∈ I

µ(X)−p
µ (X).

Therefore I
µ(X)−p
µ (X) ⊇ Rµ(X)⊖Rp

µ(X).
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Chapter 4

Counterexamples

In this chapter, we give some counterexamples to demonstrate that the theorems we have

presented in Chapter 3 do not hold any more if various assumptions are removed from these

theorems. In Section 4.1, we show that the maximal and minimal subranges may not exist

when the dimension of the vector measure m > 2 or the vector measure µ is atomic. In

Section 4.2, we show that the union of subranges Rp
µ(X) may not be equal to Qp

µ(X) when

m > 2 or µ is atomic.

4.1 Maximal and Minimal Subranges

In this section, we present an example of a measurable space (X,F) endowed with a three-

dimensional atomless finite measure ν = (ν1, ν2, ν3) and a vector p ∈ Rν(X) such that a

maximal subset of X with the measure p does not exist. Theorem 3.2.2 implies that the

minimal subset does not exist either in this example.

Recall that, with respect to a measure µ, set A and B are said to be equal up to null sets

(denoted by A ≃ B) if µ (A \B) = µ (B \ A) = 0. Also recall that X l = {f(x) = l}.

Proposition 4.1.1. Let µ = (µ1, µ2) satisfy Assumption 3.2.7 and Y ∈ F. If µ1

{

X lµ1(Y )
}

=

0 and µ2(Y ) = µ2

(

Lµ1(Y )

)

, then Y ≃ Lµ1(Y ).

Proof. Assume that Y ≃ Lµ1(Y ) does not hold. We define three disjoint sets Z1 = Y \

Lµ1(Y ), Z2 = Lµ1(Y ) \ Y , and M = Y ∩ Lµ1(Y ). Observe that Y = Z1 ∪ M and Lµ1(Y ) =

Z2 ∪ M . These equalities and µ1(Y ) = µ1(Lµ1(Y )) imply µ1(Z1) = µ1(Z2). Furthermore,

Z1 ⊆
{

f(x) ≥ lµ1(Y )

}

and Z2 ⊆
{

f(x) < lµ1(Y )

}

, because according to (3.2.4), Lµ1(Y ) =
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{

f (x) < lµ1(Y )

}

when µ1

{

X lµ1(Y )
}

= 0. Therefore,

µ2 (Z1) =

ˆ

Z1

f (x)µ1 (dx) ≥ lµ1(Y )

ˆ

Z1

µ1 (dx)

= lµ1(Y )

ˆ

Z2

µ1 (dx) >

ˆ

Z2

f (x)µ1 (dx) = µ2 (Z2) .

So µ2 (Y ) = µ2 (Z1) + µ2 (M) > µ2 (Z2) + µ2(M) = µ2

(

Lµ1(Y )

)

. This contradiction implies

the proposition.

Example 4.1.2. Let X = [0, 1] and F is the Borel σ-field. Consider the three-dimensional

vector measure ν (dx) = (ν1, ν2, ν3) (dx) = (1, 2x, ρ (x)) dx, where

ρ (x) =

{

4x, if x ∈
[

0, 1
2

)

;

4x− 2, if x ∈
[

1
2
, 1
]

.

Consider the points p =
(

1
2
, 1
2
, 1
2

)

, q1 =
(

1
4
, 1
16
, 1
8

)

, and q2 =
(

1
4
, 5
32
, 1
16

)

. It is easy to show that

q1, q2 ∈ Rp
ν(X). Indeed let Z1 =

[

0, 1
4

)

∪
[

3
4
, 1
]

, Z2 =
[

0, 1
8

)

∪
[

3
8
, 5
8

)

∪
[

7
8
, 1
]

, W 1 =
[

0, 1
4

)

⊆ Z1,

and W 2 =
[

0, 1
8

)

∪
[

1
2
, 5
8

)

⊆ Z2, and we have ν (Z1) = ν (Z2) = p, ν (W 1) = q1, and

ν (W 2) = q2. Since Z1 and Z2 are not equal up to a null set, Proposition 4.1.3 implies that

there does not exist a set Z such that ν(Z) = p and q1, q2 ∈ Rµ(Z).

Proposition 4.1.3. Consider the sets X, Z1, Z2, the measure ν and vectors p, q1, q2 from

Example 4.1.2. Let Z ∈ S
p
ν(X). For each i = 1, 2, if qi ∈ Rν(Z), then Z ≃ Z i.

Proof. Let i = 1. Since q1 ∈ Rν(Z), there exists a set W 1 ∈ FZ such that ν(W 1) = q1.

Define two-dimensional vector measure µ = (µ1, µ2) = (ν1, ν2). Then µ(W 1) =
(

1
4
, 1
16

)

.

Observe that, according to (3.2.1) and (3.2.4), lµ1(W 1) = l 1
4
= 1

2
and Lµ1(W 1) = L 1

4
=
[

0, 1
4

)

.

In addition, µ1

(

X l
µ1(W

1)

)

= 0 and µ2(W
1) = 1

16
= µ2

(

Lµ1(W 1)

)

. Therefore, according to

Proposition 4.1.1, W 1 ≃ Lµ1(W 1) =
[

0, 1
4

)

. On the other hand, let Y = W 1 ∪ (X \ Z).

Since W 1 ⊆ Z, ν(Y ) = ν(W 1) + (ν(X) − ν(Z)) = q1 + (ν(X) − p) =
(

3
4
, 9
16
, 5
8

)

, and

thus, µ(Y ) =
(

3
4
, 9
16

)

. Observe that, according to (3.2.1) and (3.2.4), lµ1(Y ) = l 3
4
= 3

2

and Lµ1(Y ) = L 3
4
=
[

0, 3
4

)

. In addition, µ1

(

X lµ1(Y )
)

= 0 and µ2(Y ) = 9
16

= µ2

(

Lµ1(Y )

)

.

Therefore, according to Proposition 4.1.1, Y ≃ Lµ1(Y ) = L 3
4
. Above observations imply that

Z = W 1 ∪ (X \ Y ) ≃ L 1
4
∪
(

X \ L 3
4

)

=
[

0, 1
4

)

∪
(

[0, 1] \
[

0, 3
4

))

=
[

0, 1
4

)

∪
[

3
4
, 1
]

= Z1.

Let i = 2. Since q2 ∈ Rν(Z), there exists a set W 2 ∈ FZ such that ν(W 2) = q2. Define

two-dimensional vector measure µ = (µ1, µ2) = (ν1, ν3). Then µ(W 2) =
(

1
4
, 1
16

)

. Observe
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that, according to (3.2.1) and (3.2.4), lµ1(W 2) = l 1
4
= 1

2
and Lµ1(W 2) = L 1

4
=
[

0, 1
8

)

∪
[

1
2
, 5
8

)

.

In addition, µ1

(

X l
µ1(W

2)

)

= 0 and µ2(W
2) = 1

16
= µ2

(

Lµ1(W 2)

)

. Therefore, according to

Proposition 4.1.1, W 2 ≃ Lµ1(W 2) =
[

0, 1
8

)

∪
[

1
2
, 5
8

)

. On the other hand, let Y = W 2∪ (X \Z).

Since W 2 ⊆ Z, ν(Y ) = ν(W 2) + (ν(X) − ν(Z)) = q2 + (ν(X) − p) =
(

3
4
, 21
32
, 9
16

)

, and

thus, µ(Y ) =
(

3
4
, 9
16

)

. Observe that, according to (3.2.1) and (3.2.4), lµ1(Y ) = l 3
4
= 3

2
and

Lµ1(Y ) = L 3
4
=
[

0, 3
8

)

∪
[

1
2
, 7
8

)

. In addition, µ1

(

X lµ1(Y )
)

= 0 and µ2(Y ) = 9
16

= µ2

(

Lµ1(Y )

)

.

Therefore, according to Proposition 4.1.1, Y ≃ Lµ1(Y ) = L 3
4
. Above observations imply

that Z = W 2 ∪ (X \ Y ) ≃ L 1
4
∪
(

X \ L 3
4

)

=
([

0, 1
8

)

∪
[

1
2
, 5
8

))

∪
(

[0, 1] \
([

0, 3
8

)

∪
[

1
2
, 7
8

)))

=
[

0, 1
8

)

∪
[

3
8
, 5
8

)

∪
[

7
8
, 1
]

= Z2.

The following counterexample shows that, if µ is atomic, then even for m = 1 (and,

therefore, for any natural number m) a maximal subset Z∗, defined in Definition 3.1.2, may

not exist.

Example 4.1.4. Consider the probability space (X, 2X , µ), where

X = {1, 2, 3, 4},

and

µ({1}) = 0.1, µ({2}) = 0.4, µ({3}) = 0.2, µ({3}) = 0.3.

Let p = 0.5. Then S
p
µ = {{1, 2}, {3, 4}}. In other words, the only subsets that have the

measure 0.5 are Z1 = {1, 2} and Z2 = {3, 4}. However, Rµ(Z
1) is not a subset of Rµ(Z

2)

and vice versa. Therefore, a maximal subset does not exist for p = 0.5. �

4.2 Union and Intersection of Subranges

The following example shows that the equality Rp
µ(X) = Qp

µ(X) may not hold when µ is

atomless and m > 2. In particular, the inclusion in Theorem 3.3.2 cannot be substituted

with the equality.

Example 4.2.1. Consider the measure space (X,F, µ) described in Example 1.1.5. Note

that µ(X) = (110, 130, 125) and

Rµ(X) =

{

6
∑

i=1

αip
i : αi ∈ [0, 1], i = 1, . . . , 6

}
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is a zonotope, where p1 = µ([0, 1)) = (30, 40, 10), p2 = µ([1, 2)) = (40, 10, 20), p3 =

µ([2, 3)) = (10, 20, 20), p4 = µ([3, 4)) = (10, 20, 30), p5 = µ([4, 5)) = (15, 10, 20), p6 =

µ([5, 6)) = (5, 30, 25).

Let p = p1+p2+p3 = (80, 70, 50). Observe that p is an extreme point of Rµ(X). Indeed,

consider the vector d =
(

7
5
, 1,−8

5

)

and the linear function ld(α) defined for all α ∈ R
6 by the

scalar product

ld(α) = d ·

(

6
∑

i=1

αip
i

)

=
6
∑

i=1

αi(d · p
i)

= 66α1 + 34α2 + 2α3 − 14α4 − α5 − 3α6.

For α ∈ [0, 1]6, this function achieves maximum at the unique point α∗ = (1, 1, 1, 0, 0, 0),

and ld(α
∗) = 66 + 34 + 2 = 102. In addition,

∑6
i=1 α

∗
i p

i = p. So, d · r − 102 ≤ 0 for

all r ∈ Rµ(X) and the equality holds if and only if r = p. Thus, d · r − 102 = 0 is a

supporting hyperplane of the convex polytope Rµ(X), and the intersection of the polytope

and hyperplane consists of the single point p. This implies that p is an extreme point of

Rµ(X).

According to the definition of Rµ(X), for p ∈ Rµ(X) there exists a measurable subset

Z ∈ F such that µ(Z) = p and, according to [17, Theorem III] described in Section 2.1, since

p is extreme, such Z is unique up to null sets. In particular, p = µ(Z) for Z = [0, 3]. Thus,

Rp
µ(X) = Rµ(Z) =

{

3
∑

i=1

αip
i : αi ∈ [0, 1], i = 1, 2, 3

}

.

Choose q = (56, 29, 31) and observe that q /∈ Rp
µ(X). Indeed, q ∈ Rp

µ(X) if and only if there

exist α1, α2, α3 ∈ [0, 1], such that
∑3

i=1 αip
i = q, which is equivalent to

α1(30, 40, 10) + α2(40, 10, 20) + α3(10, 20, 20) = (56, 29, 31), (4.2.1)

but the only solution to the linear system of equations (4.2.1) is

α1 =
3

10
, α2 =

11

10
, α3 =

3

10
,

where α2 /∈ [0, 1].

On the other hand, q ∈ Qp
µ(X), because: (i) q ∈ Rµ(X), and (ii) q ∈ Rµ(X)−{µ(X)− p}.
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Indeed, (i) holds since, for Z1 =
[

0, 42
115

)

∪
[

1, 1229
230

)

∪
[

2, 2 33
460

)

∪
[

4, 4 3
10

)

,

µ (Z1) =
42

115
× (30, 40, 10) +

229

230
× (40, 10, 20)

+
33

460
× (10, 20, 20) +

3

10
× (15, 10, 20)

= (56, 29, 31) = q.

Notice that (ii) is equivalent to q + µ(X)− p ∈ Rµ(X), where q + µ(X)− p = (56, 29, 31) +

(110, 130, 125)− (80, 70, 50) = (86, 89, 106). Let Z2 =
[

0, 15
46

)

∪
[

1, 145
46

)

∪
[

2, 2209
230

)

∪ [3, 5) ∪
[

5, 53
5

)

. Then

µ (Z2) =
15

46
× (30, 40, 10) +

45

46
× (40, 10, 20) +

209

230
× (10, 20, 20)

+ 1× (10, 20, 30) + 1× (15, 10, 20) +
3

5
× (5, 30, 25)

= (86, 89, 106) = q + µ(X)− p.

Thus (ii) holds too, and Rp
µ(X) 6= Qp

µ(X). �

In conclusion of this section, we provide a simple example showing that, if µ is not

atomless, then even for m = 1 (and, therefore, for any natural number m), the equality

Rp
µ(X) = Qp

µ(X) may not hold.

Example 4.2.2. Consider the probability space (X, 2X , µ), where

X = {1, 2, 3}

and

µ({1}) = 0.1, µ({2}) = 0.55, µ({3}) = 0.35.

The range of µ on X is Rµ(X) = {0, 0.1, 0.35, 0.45, 0.55, 0.65, 0.9, 1}. Let p = 0.55. Then

Qp
µ = {0, 0.1, 0.45, 0.55} and Rp

µ = {0.55}. Thus Rp
µ ⊂ Qp

µ, but R
p
µ 6= Qp

µ. �
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Chapter 5

Application to Purification Theorems

In this chapter we present a theorem (Theorem 5.1.1) that strengthens Theorem 1.2.2 for

two-dimensional vector measures. We prove this theorem in Section 5.1, and give a coun-

terexample to show that this stronger result does not hold when m > 2 in Section 5.2.

5.1 Partition of the State Space

We will use Theorem 3.2.1 to prove the following theorem.

Theorem 5.1.1. Consider a measurable space (X,F) with a two-dimensional finite atom-

less vector measure µ, a countable set A, and a countable set of two-dimensional vectors

{pa : a ∈ A}. A partition {Za ∈ F : a ∈ A} of X, with pa = µ(Za) for all a ∈ A, exists if

and only if (i)
∑

a∈A pa = µ(X) and (ii)
∑

a∈B pa ∈ Rµ(X) for any finite subset B ⊂ A.

For any B ⊆ A, denote p(B) =
∑

a∈B pa, where either A = {1, 2, . . .} or A = {1, . . . , n}

for some n = 1, 2, . . . .

Lemma 5.1.2. Let µ = (µ1, µ2) be a two-dimensional finite atomless measure. If p(B) ∈

Rµ(X) for all B ⊂ A and
∑

a∈A pa = µ(X), then there exists a partition {Za ∈ F : a ∈ A}

of X, such that pa = µ(Za) for each a ∈ A.

Proof. Consider p = µ(X)− p1. According to Theorem 3.2.1, there exists a maximal subset

Z∗ ∈ Sp
µ(X) and Rµ (Z

∗) = Qp
µ(X). Let Z1 = X \ Z∗, X1 = Z∗, and A1 = A \ {1}. Note

that p1 = µ(Z1) and p(B) ∈ Rµ (X
1) for all B ⊆ A1. Indeed, p(B) + p1 = p(B ∪ {1}) ∈

Rµ(X). Thus, p(B) ∈ Rµ(X) − {(µ(X) − p)}, and in addition p(B) ∈ Rµ(X). Therefore,

p(B) ∈ Qp
µ(X) = Rµ (X

1).
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Now for p2 ∈ {pa : a ∈ A1} there exists a maximal subset Z∗ ∈ S
p
µ(X

1), where p =

µ(X1) − p2. Let Z2 = X1 \ Z∗, X2 = Z∗, and A2 = A1 \ {2}, then p2 = µ(Z2) and

p(B) ∈ Rµ (X
2) for all B ⊆ A2. The repetition of this procedure generates the desired

partition {Za ∈ F : a ∈ A}.

Proof of Theorem 2.5. The necessity is obvious. For the sufficiency, in view of Lemma 5.1.2,

it is enough to prove that condition (ii) implies p(B) ∈ Rµ(X) for all B ⊆ A. If B is

finite, condition (ii) implies p(B) ∈ Rµ(X). If B is infinite, let B = {a1, a2, . . . } and

Bn = {a1, a2, . . . an}, n = 1, 2, . . . . Then p(B) = limn→∞ p(Bn) and p(Bn) ∈ Rµ(X) for

n = 1, 2, . . . , according to condition (ii). Since Rµ(X) is closed, p(B) ∈ Rµ(X).

Finally we show that, when m = 2, the Dvoretzky-Wald-Wolfowitz purification the-

orem for a countable image set A [10, 13] is a particular case of Theorem 5.1.1. Let

pa =
´

X
π (a|x)µ (dx), a ∈ A. If these vectors pa satisfy conditions (i) and (ii) of Theo-

rem 5.1.1, then Theorem 5.1.1 implies that transition probability can be purified in the case

of countable A and m = 2. Indeed, for (i), obviously
∑

a∈A pa = µ(X). For (ii), if B ⊆ A

then
∑

a∈B

pa =
∑

a∈B

ˆ

X

π (a|x)µ (dx) =

ˆ

X

π (B|x)µ (dx) ∈ Rµ(X),

where the inclusion follows from a version of Lyapunov’s theorem [2, p. 218].

5.2 A Counterexample

The following example demonstrates that the necessary conditions in Theorem 5.1.1 for the

existence of a measurable partition {Xa : a ∈ A} with µ(Xa) = pa, a ∈ A, is not sufficient for

an atomless measure µ when m > 2. In this example, A consists of three points. According

to Theorem 5.1.1, this condition is necessary and sufficient when m = 2, A is countable, and

µ is atomless. If A consists of two points, say a and b, and pa ∈ Rµ(X), pb = µ(X)−pa, then

the partition {Xa, Xb} always exists with Xa selected as any Xa ∈ F satisfying µ(Xa) = pa

and with Xb = X \Xa.

Example 5.2.1. Consider the measure space (X,F, µ) described in Example 1.1.5. Let p1 =

(56, 29, 31), p2 = (24, 41, 19), p3 = (30, 60, 75), and A = {1, 2, 3}. Then p1 + p2 + p3 = µ(X).

We further observe that: (1) p1 is the vector q from Example 4.2.1, so p1 ∈ Rµ(X) and

therefore p2+ p3 = µ(X)− p1 ∈ Rµ(X); (2) p1+ p3 is the vector q+µ(X)− p from Example

4.2.1, so p1 + p3 ∈ Rµ(X) and therefore p2 = µ(X) − p1 − p3 ∈ Rµ(X); (3) p1 + p2 is the
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vector p from Example 4.2.1, so p1+p2 ∈ Rµ(X) and therefore p3 = µ(X)−p1−p2 ∈ Rµ(X).

Thus, the vectors pa, a ∈ A, satisfy conditions (i) and (ii) in Theorem 5.1.1.

If there exists a partition {Xa ∈ B : a ∈ A} of X with µ(Xa) = pa for all a ∈ A, let

Y = X1∪X2. Since X1∩X2 = ∅, µ(X1) = p1 = q, and µ(Y ) = p1+p2 = p, then q ∈ Rp
µ(X).

However, according to Example 4.2.1, q /∈ Rp
µ(X). This contradiction implies that a partition

{Xa ∈ B : a ∈ A} of X , with µ(Xa) = pa for all a ∈ A, does not exist. �
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Chapter 6

Outlook

In this chapter we mention three directions of future developments on the topic discussed in

this dissertation. In Section 6.1, we discuss whether similar results hold for signed measures.

In Section 6.2, we ask the question whether the Minkowski sum of the union Rp
µ(X) and the

intersection I
µ(X)−p
µ (X) is equal to the range Rµ(X). In Section 6.3, we consider a potential

extension of the purification theorems.

6.1 Extension to Signed Measures

Up to this point, we have only considered nonnegative vector measures. A measure ν on the

measurable space (X,F) is called nonnegative if ν(Y ) ≥ 0 for any Y ∈ F. A vector measure

is called nonnegative if all its components are nonnegative. In this section, we discuss what

will happen when this assumption is removed. A measure that is not nonnegative is called

a signed measure.

Note that the proofs of Theorems 3.3.1-3.3.3 did not use the nonnegativity of the vector

measure, so we do not actually need this assumption in them and they can be generalized

to the following theorems.

Theorem 6.1.1. For a measurable space (X,F) with a finite signed vector measure µ =

(µ1, µ2) and for any vector p ∈ Rµ (X), the set Rp
µ(X) is compact and, in addition, if the

vector measure µ is atomless, this set is convex.

Theorem 6.1.2. For a measurable space (X,F) with a finite signed vector measure µ =

(µ1, µ2) and for any vector p ∈ Rµ (X), Rp
µ(X) ⊆ Qp

µ(X).
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Theorem 6.1.3. For a measurable space (X,F) with a finite atomless signed vector measure

µ and for any vector p ∈ Rµ (X), I
µ(X)−p
µ (X) = Rµ(X)⊖ Rp

µ(X).

Concerning the maximal and minimal subranges when µ is two-dimensional and signed,

we raise the following question.

Question 6.1.4. For a measurable space (X,F) with a two-dimensional finite atomless

signed vector measure µ = (µ1, µ2) and for a vector p ∈ Rµ (X), does there exist a max-

imal subset Z∗ ∈ Sp
µ (X)?

Note that, if the maximal subset above does exist, Theorem 3.2.2 and Corollary 3.2.3

can be straightforwardly extended to the case of signed measures. In addition, even if the

answer to Question 6.1.4 is positive, the equality Rµ (Z
∗) = Qp

µ (X) does not hold as for

nonnegative measures. The following example demonstrates this fact.

Example 6.1.5. For the measurable space (X,F), where X = [−1, 1] and F is the Borel

σ-field on X , consider the measure µ (dx) = (µ1, µ2) (dx) = (f(x), 2x) dx, where

f(x) =

{

−1, if x ∈ [−1, 0) ;

1, if x ∈ [0, 1] .

Let p = (1, 1) and Z∗ = [0, 1]. Then obviously, µ(Z∗) = p. Furthermore Sp
µ(X) consists of

one equivalence subclass. In other words, Z = Z∗ (µ-everywhere) for any Z ∈ Sp
µ(X), and

thus, Rµ(Z) = Rµ(Z
∗). Therefore Z∗ is the maximal subset with measure p.

However, Rµ (Z
∗) 6= Qp

µ (X). To show this, let q =
(

1
2
, 1
8

)

. Then obviously q /∈ Rµ(Z
∗),

but q ∈ Qp
µ (X). Indeed, observe that (i) q ∈ Rµ(X), since µ

([

−1,−3
4

]

∪
[

0, 3
4

])

=
(

1
2
, 1
8

)

=

q, and (ii) q ∈ Rµ(X)−{µ(X)−p}, since µ
([

−1,−1
4

]

∪
[

0, 1
4

])

=
(

−1
2
,−7

8

)

= q+(µ(X)−p).

�

6.2 Minkowski Sum of the Union and the Intersection

Consider the measurable space (X,F) with am-dimensional finite atomless vector measure µ.

Recall that the range Rµ(X) can be written as Minkowski sums of various pairs of subranges

in R
m. In particular, for any Y ∈ F, Rµ(X) = Rµ(Y )⊕ Rµ(X \ Y ). Naturally, we ask the

question whether the Minkowski sum of Rp
µ(X) and I

µ(X)−p
µ (X) equals to the range Rµ(X).
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Question 6.2.1. Given a measurable space (X,F) with a m-dimensional finite atomless

vector measure µ, and a vector p ∈ Rµ(X), Does the following equality hold?

Rµ(X) = Rp
µ(X)⊕ Iµ(X)−p

µ (X) (6.2.1)

We remark that it is straightforward to prove that Rµ(X) ⊇ Rp
µ(X)⊕I

µ(X)−p
µ (X). Indeed,

consider any q ∈ Rp
µ(X) ⊕ I

µ(X)−p
µ (X). Then there exist q1 ∈ Rp

µ(X) and q2 ∈ I
µ(X)−p
µ (X),

such that q = q1 + q2. According to Definition 3.1.1, there exists Y ∈ Sp
µ, such that q1 ∈

Rµ(Y ), and thus there exists Z1 ∈ F such that Z1 ⊂ Y and q1 = µ(Z1). In addition, since

q2 ∈ Rµ(X \ Y ) according to Definition 3.1.1, there exists Z2 ∈ F such that Z2 ⊂ X \ Y and

q2 = µ(Z2). Therefore, q = µ(Z1) + µ(Z2) = µ(Z1 ∪ Z2), and thus q ∈ Rµ(X).

In Section 3.3, we proved that the union Rp
µ(X) and the intersection I

µ(X)−p
µ have the

following relation (see Theorem 3.3.3),

Iµ(X)−p
µ (X) = Rµ(X)⊖Rp

µ(X). (6.2.2)

It is noteworthy that (6.2.2) does not always imply (6.2.1). To show that (6.2.1) holds, one

has to show that Rp
µ(X) is a summand of Rµ(X). Recall that, for convex compact sets

A,B ⊂ R
m, A is called a summand of B, if there exists a convex compact set C ⊂ R

m such

that A⊕ C = B.

6.3 Extension of the Purification Theorems

The results on strong purification presented in Section 1.2 (see Theorems 1.2.1 and 1.2.2)

can be rephrased into the following theorem.

Theorem 6.3.1. Consider a measurable space (X,F) with a m-dimensional finite atom-

less vector measure µ, a countable set A, and a countable set of m-dimensional vectors

{pa : a ∈ A}. A partition {Za ∈ F : a ∈ A} of X, with pa = µ(Za) for all a ∈ A, exists if

and only if there exists a transition probability π(a|x) from (X,F) to A, such that

pa =

ˆ

X

π(a|x)µ(dx), for all a ∈ A.

For m = 2, Theorem 5.1.1 provides a different necessary and sufficient condition for the

partition described in Theorem 6.3.1 to exist. This condition is that: (i)
∑

a∈A pa = µ(X),
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and (ii)
∑

a∈B pa ∈ Rµ(X) for any finite subset B ⊂ A. Obviously, this is a necessary

condition for any natural number m. However Example 5.2.1 implies that it is not sufficient

for an atomless µ, when m > 2 and A consists of more than two points.

For any B ⊆ A, denote p(B) =
∑

a∈B pa, where either A = {1, 2, . . .} or A = {1, . . . , n}

for some n = 1, 2, . . . . Then p(·) is a measure on the space (A, 2A). In addition, the

existence of the partition described in Theorem 6.3.1 can be restated as the existence of a

pure transition probability π∗(B|x) = I{ϕ(x) ∈ B} from (X,F) to (A, 2A), such that

p(B) =

ˆ

X

I{ϕ(x) ∈ B}µ(dx) for all B ∈ 2A.

Now consider a general measurable space (A,A). We raise the following question.

Question 6.3.2. Given measurable spaces (A,A) and (X,F), endowed with m-dimensional

vector measures η and µ respectively. What is the necessary and sufficient condition for the

existence of a pure transition probability from (X,F) to (A,A),

π∗(B|x) = I{ϕ(x) ∈ B},

such that

η(B) =

ˆ

X

I{ϕ(x) ∈ B}µ(dx) for all B ∈ A. (6.3.1)

Obviously, the following condition is necessary: (i) η(A) = µ(X) and (ii) Rη(A) ⊆ Rµ(X).

In addition, from Theorems 6.3.1 and 5.1.1, we know that for (6.3.1) to hold, either of the

following conditions is sufficient:

1. (i) m is finite, (ii) A is countable, (iii) µ is finite and atomless, and (iv) there exists a

transition probability π(a|x) from (X,F) to (A, 2A), such that

η(a) =

ˆ

X

π(a|x)µ(dx), for all a ∈ A;

2. (i) m = 2, (ii) A is countable, (iii) µ is finite and atomless, (iv) η(A) = µ(X), and (v)

Rη(A) ⊆ Rµ(X).
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