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Abstract of the Thesis

A twistor-sphere of generalized Kähler potentials on hyperkähler manifolds

by

Malte Dyckmanns

Master of Arts

in

Physics

Stony Brook University

2011

We consider generalized Kähler structures (g,J+,J−) on a hyperkähler manifold (M,g,I,J,K),
where we use the twistor space of M to choose J+ and J−. Relating semi-chiral to arctic
superfields, we can determine the generalized Kähler potential for hyperkähler manifolds
whose description in projective superspace is known. This is used to determine an S2-family
of generalized Kähler potentials for Euclidean space and for the Eguchi-Hanson geometry.
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Chapter 1

Introduction

The main purpose of this thesis is to determine the generalized Kähler potential for hy-
perkähler manifolds.

First, we review aspects of hyperkähler geometry and its twistor space. We parametrize
the twistor-sphere of complex structures by a complex coordinate ζ and introduce holo-
morphic Darboux coordinates Υ(ζ), Υ̃(ζ) for a certain holomorphic symplectic form. This
construction is relevant for the projective superspace description of N = 2 sigma models,
where Υ, Υ̃ are arctic superfields. We consider four-dimensional hyperkähler manifolds and
explicitly determine the partial differential equations that the coordinates describing those
arctic superfields have to fulfill.

In chapter 3, we review the relevant features of generalized Kähler geometry in its biher-
mitian formulation. This geometry involves two complex structures J+, J− on a Riemannian
manifold (M,g) and can locally be described by a generalized Kähler potential. In this thesis,
we consider the case where the kernel of [J+,J−] is trivial. Then the potential is defined as
the generating function for a symplectomorphism between coordinates (xL,yL) and (xR,yR)
that are holomorphic w.r.t. J+ and J− respectively. We also derive a condition that the
generalized potential has to fulfill in order for M to be hyperkähler. Generalized Kähler
geometry has initially been found as the target space geometry of N = (2,2) supersymmet-
ric sigma models, where the potential turns out to be the superspace Lagrangian and the
coordinates xL, xR describe semi-chiral superfields.

Using its twistor space, a hyperkähler manifold can be seen as a generalized Kähler man-
ifold in various ways while keeping the metric fixed. In chapter 4, we consider a two-sphere
of generalized Kähler structures on a hyperkähler manifold and express the coordinates xL,R,
yL,R in terms of Υ,Υ̃. This enables us to determine the generalized Kähler potential on a
hyperkähler manifold if we can find the decomposition of the arctic superfields Υ,Υ̃ in terms
of their N = 1 components.

We determine the generalized potential for Euclidean space, where the differential equa-
tions for Υ,Υ̃ are easy to solve. As a nontrivial example, we look at the Eguchi-Hanson
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metric, where the relevant coordinates Υ,Υ̃ have been found previously. We give an explicit
expression for the S2-family of generalized Kähler potentials for this geometry, which belongs
to the family of gravitational instantons and is thus of interest to physicists.

In this chapter we also extend our results from the first section to an S2 × S2-family of
generalized Kähler structures on a hyperkähler manifold, i.e. we let both J+ and J− be an
arbitrary point on the twistor-sphere of complex structures. As an example we determine
this S2 × S2-family of generalized potentials for Euclidean space.

In chapter 4, we derive a method to determine the generalized Kähler potential for
hyperkähler manifolds. The coordinates Υ(ζ),Υ̃(ζ) are the starting point for this method. In
projective superspace, these coordinates are described by arctic superfields. Since projective
superspace provides powerful methods to determine the coordinates that we need, we briefly
review this formalism in chapter 5. In the case of hyperkähler metrics on cotangent bundles of
hermitian symmetric spaces, projective superspace methods have been successfully applied to
the problem of finding Υ,Υ̃. We briefly show how the results used in chapter 4 for Euclidean
space and the Eguchi-Hanson geometry arise in that context.

In the last chapter, we discuss possible applications and further research projects using
our method for finding generalized Kähler potentials on hyperkähler manifolds.
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Chapter 2

Hyperkähler manifolds and their
twistor spaces

The main goal of this thesis is to consider generalized Kähler structures (g,J+,J−) on a
hyperkähler manifold M and to investigate their generalized Kähler potentials. For the
choice of the two complex structures J+ and J−, we will make use of the twistor space
Z = M × S2 of M .

Hyperkähler manifolds appear for instance as the target spaces for hypermultiplet scalars
in four dimensional nonlinear σ-Models with N = 2 supersymmetry on the base space [1].
In geometric terms, they are described by the data (M,g,I,J,K), where g is a Riemannian
metric on M that is Kähler with respect to the three complex structures I,J,K, which fulfill
I ◦ J = K. Since complex structures square to −idTM , IJ = K implies that the complex
structures fulfill the algebra of the quaternions:

IJ = K = −JI, JK = I = −KJ, KI = J = −IK. (2.1)

The dimension of a hyperkähler manifold has to be a multiple of 4 and we define dimRM =: 4n.

2.1 Twistor-sphere of complex structures

In fact, a hyperkähler manifold does not only admit the three complex structures I,J,K, but
there exists a whole two-sphere of complex structures on M with respect to which g is a
Kähler metric, namely (M,g,J = v1I + v2J + v3K) is Kähler for each (v1,v2,v3) ∈ S2. Using
the stereographic projection,

S2 7→ C, (v1,v2,v3) 7→ ζ =
v2 + iv3

1 + v1

, (2.2)
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we parametrize this family of complex structures on M in a chart of S2 including the north-
pole by a complex coordinate ζ:

J (ζ) := v1(ζ)I + v2(ζ)J + v3(ζ)K :=
1

1 + ζζ̄

[
(1− ζζ̄)I + (ζ + ζ̄)J + i (ζ̄ − ζ)K

]
. (2.3)

We define the complex two-forms

ω(2,0) := ω2 + iω3, ω(0,2) := ω2 − iω3; (2.4)

where ω1 = gI, ω2 = gJ , ω3 = gK are the three Kähler forms. As the superscript indicates,
ω(2,0) and ω(0,2) = ω(0,2) are (2,0)- and (0,2)-forms with respect to I. (The ¯ will always refer
to the complex conjugate w.r.t. the first complex structure I.)

In fact, ω(2,0) is a holomorphic symplectic form, i.e. dω(2,0) = 0 and
(
ω(2,0)

)n
is nowhere

vanishing. As a consequence of the famous Calabi-Yau theorem, Bochner’s vanishing theorem
and Berger’s classification of irreducible holonomy groups, the existence of a holomorphic
symplectic form on a compact Kähler manifold (M,g,I) implies that M is hyperkähler.

The main point of this chapter is the fact that we can construct a holomorphic symplectic
form with respect to each J (ζ) on the sphere of complex structures and introduce adapted
coordinates that bring this symplectic form into its canonical form(

0 1n

−1n 0

)
. (2.5)

Namely for each ζ ∈ C,
ΩH(ζ) := ω(2,0) − 2ζω1 − ζ2ω(0,2) (2.6)

turns out to be a holomorphic symplectic form with respect to the complex structure J (ζ)
[2]. In particular, ω(2,0) = ΩH(ζ = 0) is a (2,0)-form w.r.t. I = J (ζ = 0).

Starting from ζ = 0, we can locally find holomorphic Darboux coordinates Υp(ζ) and
Υ̃p(ζ) (p = 1,...,n) for ΩH(ζ) that are analytic in ζ such that [3]

ΩH(ζ) = i dΥp(ζ) ∧ dΥ̃p(ζ). (2.7)

These canonical coordinates Υ,Υ̃(ζ) for ΩH are crucial for the projective superspace
formulation of N = 2 σ-models1, where they describe ”arctic” superfields. They have been
determined for instance in [3] for the Eguchi-Hanson metric and we will use them in chapter 4
to determine the generalized Kähler potential for hyperkähler manifolds. They can be found
for a large class of hyperkähler metrics on cotangent bundles of Kähler manifolds using the
projective superspace approach, which will be explained in chapter 5.

1If we define Ῠ(ζ) := Ῠ(− 1
ζ ), ˘̃Υ(ζ) := ¯̃Υ(− 1

ζ ), then Υ,Υ̃ and Ῠ, ˘̃Υ are related by a ζ2-twisted sym-

plectomorphism whose generating function f(Υ,Ῠ) can be interpreted as the N = 2 projective superspace
Lagrangian [3].
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2.2 The four dimensional case

In this section, we consider the four dimensional case and explicitly determine the partial
differential equations for Υ(ζ) and Υ̃(ζ) to be holomorphic with respect to J (ζ) and to fulfill
equation 2.7.

A four dimensional Kähler manifold (M,g,I) is hyperkähler if and only if there are holo-
morphic coordinates (z,u) on M such that the Kähler potential K(z,u) fulfills the following
Monge-Ampère equation [10]:

Kzz̄Kuū −KzūKuz̄ = 1. (2.8)

From a Kähler potential fulfilling this equation, we can construct the three Kähler forms
and the metric:

ω1 = − i
2
∂∂̄K,

ω2 =
i

2
(dz ∧ du− dz̄ ∧ dū),

ω3 =
1

2
(dz ∧ du+ dz̄ ∧ dū),

ds2 = Kzz̄ dzdz̄ +Kzū dzdū+Kuz̄ dudz̄ +Kuū dudū. (2.9)

In their matrix representation with respect to the basis {dz,du,dz̄,dū}, the Kähler forms and
the metric are given by

(ω1) = − i
2


0 0 Kzz̄ Kzū

0 0 Kuz̄ Kuū

−Kzz̄ −Kuz̄ 0 0
−Kzū −Kuū 0 0

 , (ω2) =
i

2


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0



(ω3) =
1

2


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (g) =
1

2


0 0 Kzz̄ Kzū

0 0 Kuz̄ Kuū

Kzz̄ Kuz̄ 0 0
Kzū Kuū 0 0

 . (2.10)

Since (z,u) are holomorphic coordinates w.r.t. to the first complex structure I, I is in its
canonical form with respect to those coordinates:

(I)(∂z ,∂u,∂z̄ ,∂ū) =


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

 . (2.11)
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Together with the metric’s inverse

(
g−1
)

=
2

Kzz̄Kuū −KzūKuz̄


0 0 Kuū −Kuz̄

0 0 −Kzū Kzz̄

Kuū −Kzū 0 0
−Kuz̄ Kzz̄ 0 0

 , (2.12)

we get the other two complex structures (with respect to the basis {∂z,∂u,∂z̄,∂ū}):

(J) = g−1ω2 =
i

Kzz̄Kuū −KzūKuz̄


0 0 −Kuz̄ −Kuū

0 0 Kzz̄ Kzū

Kzū Kuū 0 0
−Kzz̄ −Kuz̄ 0 0

 ,

(K) = g−1ω3 =
1

Kzz̄Kuū −KzūKuz̄


0 0 Kuz̄ Kuū

0 0 −Kzz̄ −Kzū

Kzū Kuū 0 0
−Kzz̄ −Kuz̄ 0 0

 . (2.13)

We see that equation 2.8 ensures that J and K indeed square to −idTM . For the rest of the
section, we will assume that equation 2.8 holds.

The coordinates Υ,Υ̃(ζ) in equation 2.7 must be holomorphic with respect to

(J (ζ)) =
i

1 + ζζ


1− ζζ̄ 0 −2ζKuz̄ −2ζKuū

0 1− ζζ̄ 2ζKzz̄ 2ζKzū

2ζ̄Kzū 2ζ̄Kuū ζζ̄ − 1 0
−2ζ̄Kzz̄ −2ζ̄Kuz̄ 0 ζζ̄ − 1

 (2.14)

(see equation 2.3), so we first have to determine a basis for the forms that are (1,0) with
respect to J (ζ). We find the following eigenvector fields of J (ζ) with eigenvalue +i:

(X1) =
1

1 + ζζ̄


1
0

ζ̄Kzū

−ζ̄Kzz̄

 , X1 =
1

1 + ζζ̄

(
∂z + ζ̄Kzū∂z̄ − ζ̄Kzz̄∂ū

)
;

(X2) =
1

1 + ζζ̄


0
1

ζ̄Kuū

−ζ̄Kuz̄

 , X2 =
1

1 + ζζ̄

(
∂u + ζ̄Kuū∂z̄ − ζ̄Kuz̄∂ū

)
. (2.15)
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The complex conjugates have eigenvalue −i:

(
X̄1

)
=

1

1 + ζζ̄


ζKuz̄

−ζKzz̄

1
0

 , X̄1 =
1

1 + ζζ̄
(∂z̄ + ζKuz̄∂z − ζKzz̄∂u) ;

(
X̄2

)
=

1

1 + ζζ̄


ζKuū

−ζKzū

0
1

 , X̄2 =
1

1 + ζζ̄
(∂ū + ζKuū∂z − ζKzū∂u) . (2.16)

From the rows of the matrix

(
X1X2 X̄1 X̄2

)−1
=


1 0 −ζKuz̄ −ζKuū

0 1 ζKzz̄ ζKzū

−ζ̄Kzū −ζ̄Kuū 1 0
ζ̄Kzz̄ ζ̄Kuz̄ 0 1

 , (2.17)

we can read off the dual basis to {X1,X2,X̄1,X̄2}:(
θ1
)

= (1, 0, − ζKuz̄, − ζKuū), θ1 = dz − ζKuz̄dz̄ − ζKuūdū,(
θ2
)

= (0, 1, ζKzz̄, ζKzū), θ2 = du+ ζKzz̄dz̄ + ζKzūdū,(
θ̄1
)

= (−ζ̄Kzū, − ζ̄Kuū, 1, 0), θ̄1 = dz̄ − ζ̄Kzūdz − ζ̄Kuūdu,(
θ̄2
)

= (ζ̄Kzz̄, ζ̄Kuz̄, 0, 1), θ̄2 = dū+ ζ̄Kzz̄dz + ζ̄Kuz̄du. (2.18)

θ1 and θ2 form a basis for the (1,0)-forms with respect to J (ζ).
For Υ,Υ̃ to be holomorphic with respect to J (ζ), dΥ(ζ) and dΥ̃(ζ) must be linear com-

binations of θ1 and θ2 (here, the differential does not act on ζ):

dΥ = αθ1 + βθ2, dΥ̃ = ηθ1 + λθ2; (2.19)

where α,β,η,λ are complex functions in (z,u; ζ). Plugging this into 2.18 and expressing the
differential on the left side in terms of (dz,du,dz̄,dū), one can read off the coefficients

α =
∂Υ

∂z
, β =

∂Υ

∂u
, η =

∂Υ̃

∂z
, λ =

∂Υ̃

∂u
. (2.20)

Plugging 2.18 and 2.20 into 2.19 and comparing the dz̄- and dū-terms on both sides, one
obtains the following two partial differential equations:

∂Ψ

∂z̄
= ζ

(
Kzz̄

∂Ψ

∂u
−Kuz̄

∂Ψ

∂z

)
,

∂Ψ

∂ū
= ζ

(
Kzū

∂Ψ

∂u
−Kuū

∂Ψ

∂z

)
(Ψ = Υ,Υ̃). (2.21)

7



Υ and Υ̃ have to fulfill the two equations in 2.21 in order to be holomorphic with respect to
J (ζ).

Apart from being holomorphic with respect to J (ζ), we want Υ and Υ̃ to be Darboux
coordinates for the symplectic holomorphic form ΩH(ζ), i.e. to fulfill equation 2.7. We find
that

ΩH(ζ) = idz ∧ du+ iζ∂∂̄K + iζ2dz̄ ∧ dū = iθ1 ∧ θ2, (2.22)

so equation 2.7 corresponds to the requirement

dΥ ∧ dΥ̃ = θ1 ∧ θ2. (2.23)

2.19 implies
dΥ ∧ dΥ̃ = (αλ− βη)θ1 ∧ θ2. (2.24)

Combining this with 2.20, we obtain the requirement

∂Υ

∂z

∂Υ̃

∂u
− ∂Υ

∂u

∂Υ̃

∂z
= 1 (2.25)

for Υ and Υ̃ to fulfill equation 2.7.

2.3 Higher dimensional hyperkähler manifolds

In the last section, we have seen that given a Kähler manifold (M,g,I) with the Kähler po-
tential K in terms of holomorphic coordinates (z,u), we can define the hyperkähler structure
(g,I,J,K) on M with ω2, ω3 as in 2.9 if and only if K fulfills the Monge-Ampère equation 2.8.
We want to generalize this to higher dimensions and determine what requirements K(zi,ui)
needs to fulfill in order for

ω1 = − i
2
∂∂̄K,

ω2 =
i

2

n∑
i=1

(dzi ∧ dui − dz̄i ∧ dūi),

ω3 =
1

2

n∑
i=1

(dzi ∧ dui + dz̄i ∧ dūi),

g = Kziz̄j dz
idz̄j +Kziūj dz

idūj +Kuiz̄j du
idz̄j +Kuiūj du

idūj (2.26)

to define a hyperkähler structure on M .
Here, we cannot invert g explicitly, but we know that J2 = (g−1ω2)2 has to be −1, so we

get the requirement
(ω−1

2 g)2 = −1. (2.27)
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In coordinates (z1,...,zn,u1,...,un,z̄1,...,z̄n,ū1,...,ūn), we have

(ω2) =
i

2


0 1n 0 0
−1n 0 0 0

0 0 0 −1n
0 0 1n 0

 ,
(
ω−1

2

)
= −2i


0 −1n 0 0
1n 0 0 0
0 0 0 1n

0 0 −1n 0



(g) =
1

2


0 0 Kzz̄ Kzū

0 0 Kuz̄ Kuū

Kzz̄ Kuz̄ 0 0
Kzū Kuū 0 0

 , (2.28)

where K are now 4× 4-matrices, e.g. (Kzz̄)ij = Kziz̄j . From this, we find
(
ω−1

2 g
)2

to be

−


KuūKzz̄ −Kuz̄Kzū KuūKuz̄ −Kuz̄Kuū 0 0
Kzz̄Kzū −KzūKzz̄ Kzz̄Kuū −KzūKuz̄ 0 0

0 0 KuūKzz̄ −KzūKuz̄ KuūKzū −KzūKuū

0 0 Kzz̄Kuz̄ −Kuz̄Kzz̄ Kzz̄Kuū −Kuz̄Kzū

 .

The requirements one gets from setting this to −14n can be combined into

I) Kzz̄Kuū −KzūKuz̄ = 1

II) [K◦•,K�⊗] = 0 (◦, • ,� ,⊗ = z,z̄,u,ū); (2.29)

i.e. K has to fulfill a higher dimensional analog of the Monge-Ampère equation and all
K-matrices have to commute.

2.4 Rotating the basis of complex structures {I,J,K}
In section 2.1, we have seen that a hyperkähler manifold (M,g,I,J,K) is naturally equipped
not only with the three complex strctures I,J,K, but with a whole two-sphere of complex
structures. All complex structures in the twistor-sphere of complex structures are given by
a linear combination of I,J,K, so we view {I,J,K} as an orthonormal basis for the space of
complex structures. There is no reason for the basis {I,J,K} to be special in any way, so we
can rotate it to a new basis {I ′,J ′,K ′} and statements expressed in terms of {I,J,K} should
be equally valid after replacing {I,J,K} by {I ′,J ′,K ′}.

The choice of a basis for the complex structures leads to the choice of basis {ω1 = gI,
ω2 = gJ, ω3 = gK} for the space of Kähler forms. Above, we have seen that ω(2,0) = ω2 + iω3

is a holomorphic symplectic form w.r.t. the complex structure I. From the point of view
of twistor space, I does not play a special role, so we should be able to find such a decom-
position of a holomorphic symplectic form w.r.t. an arbitrary complex structure J (ζ) on
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the twistor sphere. We rotate the basis {I,J,K} by the angle θ = ∠(I,J (ζ)) around the
axis perpendicular to I and J (ζ) to get a new orthonormal basis {J1(ζ),J2(ζ),J3(ζ)} with
J1(ζ) = J (ζ):

Let ~I := (I,J,K)T . We express the complex structures w.r.t. that basis:

I = ~e1 ·~I, J = ~e2 ·~I, K = ~e3 ·~I; J1(ζ) =: ~v1 ·~I, J2(ζ) =: ~v2 ·~I, J3(ζ) =: ~v3 ·~I. (2.30)

{~e1,~e2,~e3} is the standard orthonormal basis of R3 and since J1(ζ) = J (ζ), we have

~v1 =
1

1 + ζζ̄

(
1− ζζ̄, ζ + ζ̄ , i(ζ̄ − ζ)

)T
. (2.31)

The axis of rotation will be

~n =
~e1 × ~v1

|~e1 × ~v1|
=

1√
4ζζ̄

(
0, i(ζ − ζ̄), ζ + ζ̄

)
(2.32)

and the angle θ is given by

cos θ = ~e1 · ~v1 =
1− ζζ̄
1 + ζζ̄

, sin θ = ||~e1 × ~v1|| =
√

4ζζ̄

1 + ζζ̄
. (2.33)

We use 2.32 and 2.33 in the standard formula for the rotation around an axis ~n in R3:

R =

 cos θ + n2
x(1− cos θ) nxny(1− cos θ)− nz sin θ nxnz(1− cos θ) + ny sin θ

nynx(1− cos θ) + nz sin θ cos θ + n2
y(1− cos θ) nynz(1− cos θ)− nx sin θ

nznx(1− cos θ)− ny sin θ nzny(1− cos θ) + nx sin θ cos θ + n2
z(1− cos θ)


=

1

1 + ζζ̄

 1− ζζ̄ −ζ − ζ̄ −i(ζ̄ − ζ)
ζ + ζ̄ 1− 1

2
(ζ2 + ζ̄2) i

2
(ζ2 − ζ̄2)

i(ζ̄ − ζ) i
2
(ζ2 − ζ̄2) 1 + 1

2
(ζ2 + ζ̄2)

 . (2.34)

From the columns, we can read off the rotated orthonormal basis: R = (~v1 ~v2 ~v3). This leads
to the following rotated complex structures:

J1(ζ) = ~v1(ζ) ·~I =
1

1 + ζζ̄

(
(1− ζζ̄)I + (ζ + ζ̄)J + i(ζ̄ − ζ)K

)
, (2.35)

J2(ζ) = ~v2(ζ) ·~I =
1

1 + ζζ̄

(
−(ζ + ζ̄)I + (1− 1

2
(ζ2 + ζ̄2))J +

i

2
(ζ2 − ζ̄2)K

)
,

J3(ζ) = ~v3(ζ) ·~I =
1

1 + ζζ̄

(
−i(ζ̄ − ζ)I +

i

2
(ζ2 − ζ̄2)J + (1 +

1

2
(ζ2 + ζ̄2))K

)
.

Indeed, they fulfill the quaternion algebra J1J2 = J3.

10



We denote the corresponding Kähler forms by Ω1 := gJ1, Ω2 := gJ2, Ω3 := gJ3. In
analogy to the fact that ω(2,0) = ω2 + iω3 is holomorphic symplectic with respect to I, we
expect that Ω(2,0) := Ω2+iΩ3 is a holomorphic symplectic form with respect to J1(ζ). Indeed,
we find that Ω(2,0) is proportional to ΩH(ζ) which is known to be a holomorphic symplectic
form with respect to J (ζ):

Ω(2,0) = Ω2 + iΩ3 =
1

1 + ζζ̄

(
−2ζω1 + (1− ζ2)ω2 + i(1 + ζ2)ω3

)
=

1

1 + ζζ̄
ΩH(ζ). (2.36)

For ζ = 0, Ω(2,0) = Ω2 + iΩ3 becomes ω(2,0) = ω2 + iω3. So here, we have explicitly
shown that ΩH(ζ) = (1 + ζζ̄)Ω(2,0)(ζ) arises from ω(2,0) by rotating the complex stucture I.
Correspondingly Υ(ζ) and Υ̃(ζ) arise from z = Υ(ζ = 0) and u = Υ̃(ζ = 0) by rotating the
complex structure.
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Chapter 3

Generalized Kähler geometry

Generalized Kähler geometry first appeared in the study of 2D N = (2,2) nonlinear σ-
Models [5] and was later rediscovered by mathematicians as a special case of generalized
complex geometry, which is a generalization of the concepts of complex and symplectic
geometry [4]. Generalized complex geometry is expressed in terms of generalized complex
structures, which are maps TM⊕T ∗M → TM⊕T ∗M . A generalized Kähler manifold admits
two commuting generalized complex structures. Here we will, however, study generalized
Kähler geometry in its original ”bihermitian” formulation in terms of two ordinary complex
structures J± : TM → TM .

3.1 Bihermitian Formulation

In its bihermitian formulation, generalized Kähler geometry consists of two (integrable)
complex structures J+, J− on a Riemannian manifold (M,g), where the metric is hermitian
w.r.t. J+ and J−. Furthermore, the forms ω± := gJ± have to fulfill [7]

dc+ω+ + dc−ω− = 0, ddc+ω+ = 0, (3.1)

where dc± = i(∂̄± − ∂±). This allows us to define the closed three-form

H := dc+ω+ = −dc−ω−, (3.2)

whose local two-form potential we denote by B (H = dB). Since ω± = gJ± and g is
bihermitian, ω± is a (1,1)-form with respect to J± respectively and thus, from equation 3.2,
H has to be (2,1) + (1,2), both with respect to J+ and with respect to J−.

In general, ω± is not closed and thus (M,g,J±) is not Kähler. In this thesis however, we
will mostly consider the case where H = 0. Then from equation 3.2, ∂±ω±, ∂̄±ω± have to
vanish separately, so dω± = 0, i.e. (M,g,J±) is Kähler.
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A condition which is equivalent to 3.1 can be given in terms of the so called Bismut
connections

∇± = ∇± 1

2
g−1H, (3.3)

where H is again no independent geometrical ingredient, but given by H = dc+ω+. The
integrability condition 3.1 is then equivalent to

∇±J± = 0. (3.4)

Since H = dB is a differential form, the torsion T := g−1H is asymmetric in its lower indices.

3.2 Poisson structures

On a generalized Kähler manifold, one can define the following three real tensor fields

σ := [J+,J−]g−1, π± := (J+ ± J−)g−1; (3.5)

which turn out to be Poisson structures on M [6]. They give rise to the following splitting
of the tangent bundle TM into a direct sum1:

TM = ker[J+,J−]⊕ (ker[J+,J−])⊥ = ker(J+ − J−)⊕ ker(J+ + J−)⊕ (ker[J+,J−])⊥ . (3.6)

In sigma model language, these three subspaces are tangent to chiral, twisted chiral and
semichiral coordinates respectively.

The Poisson structure σ plays a special role for the definition of the generalized Kähler
potential. We state its important properties and prove some of them:

1.

σ(θ,η) = −σ(η,θ), (3.7)

i.e. σ is a bivector field.

2.

J±σJ
T
± = −σ. (3.8)

1Let X ∈ Γ(M ;TM) s.t. (J+ + J−)X = 0, (J+ − J−)X = 0. Addition then gives 2J+X = 0 and thus
X = 0, since J+ is invertible. So ker(J+ + J−) ∩ ker(J+ − J−) = {0}, i.e. the sum is direct.
From the identities [J+,J−] = (J+ − J−)(J+ + J−) = −(J+ + J−)(J+ − J−), we immediately get
ker(J+ + J−)⊕ ker(J+ − J−) ⊂ ker[J+,J−].
Let X ∈ Γ(M ;TM) s.t. [J+,J−]X = 0. Then X = X+ + X−, with X+ = − 1

2J+(J+ − J−)X,
X− = − 1

2J+(J+ + J−)X. We find (J+ + J−)X+ = 1
2J−[J+,J−]X = 0, (J+ − J−)X− = 1

2J−[J+,J−]X = 0.
Thus ker[J+,J−] ⊂ ker(J+ + J−)⊕ ker(J+ − J−).
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This can be shown using J±g
−1JT± = g−1 (which follows from the fact that g is biher-

mitian) and [J+,J−]J± = −J±[J+,J−]. Thus, σ can be written as the sum of a (2,0)-
and a (0,2)-bivector field both w.r.t. J+ and w.r.t. J−:

σ = σ
(2,0)
+ + σ

(0,2)
+ = σ

(2,0)
− + σ

(0,2)
− . (3.9)

Explicitly, the decomposition is

σ
(2,0)
± =

1

2
(1− iJ±)σ

1

2
(1− iJ±)T =

1

2
(1− iJ±)σ, (3.10)

σ
(0,2)
± =

1

2
(1+ iJ±)σ

1

2
(1+ iJ±)T =

1

2
(1+ iJ±)σ, (3.11)

where the last equality uses the fact that σ does not contain a (1,1)-term with respect
to J±.

3.
∂̄±σ

(2,0)
± = 0, ∂±σ

(0,2)
± = 0. (3.12)

Together with 2., this makes σ a real holomorphic bivector with respect to J±.

Proof. [8] Let (zµ,z̄µ ≡ zµ̄)µ=1,...,n:=dimCM : U ⊂M → Cn be a holomorphic coordinate
system w.r.t. to J+. In these local coordinates, σ is given by

σ|U = σ
(2,0)
+ |U + σ

(0,2)
+ |U =

1

2
σµν

∂

∂zµ
∧ ∂

∂zν
+

1

2
σµ̄ν̄

∂

∂zµ̄
∧ ∂

∂zν̄
, (3.13)

with σµν = σ(dzµ,dzν) and σµ̄ν̄ = σ(dzµ̄,dzν̄) = σµν .

We will only proof ∂̄+σ
µν = 0. ∂+σ

µ̄ν̄ = 0 then follows from the fact that σ is real and
the proof for the decompositon w.r.t. J− is analogous to this one.

We use the fact that in our coordinate system J+ is in its canonical form and that
gµν = gµ̄ν̄ = 0 to determine σµν (here, Greek indices run over {1,...,n} and Latin
indices run over {1,...,n,1̄,...,n̄}):

σµν =
(
[J+,J−]g−1

)µν
= [J+,J−]µκ̄g

κ̄ν =
(
J+

µ
jJ−

j
κ̄ − J−µjJ+

j
κ̄)
)
gκ̄ν

=
(
iδµjJ−

j
κ̄ − J−µj(−iδj κ̄)

)
gκ̄ν = 2iJ−

µ
κ̄g

κ̄ν . (3.14)

Since J+ is preserved by ∇+, ∇+
j dz

µ is a (1,0)-form w.r.t. J+:

JT+(∇+
j dz

µ) = ∇+
j (JT+dz

µ) = i∇+
j dz

µ (µ ∈ {1,...,n}, j ∈ {1,...,n,1̄,...,n̄}) ,

i.e. the (0,1) component of

∇+
j dz

µ = −(Γj
µ
k +

1

2
Tj

µ
k)dz

k = −(Γj
µ
ρ +

1

2
Tj

µ
ρ)dz

ρ − (Γj
µ
ρ̄ +

1

2
Tj

µ
ρ̄)dz

ρ̄ (3.15)
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must vanish, leading to Γj
µ
ρ̄ = −1

2
Tj

µ
ρ̄. Using the symmetry of Γ (the Levi-Civita

connection is torsionless) and the asymmetry of T in the lower indices, we get

Γρ̄
µ
j =

1

2
Tρ̄

µ
j. (3.16)

In addition to this identity, we need Tρ̄g
−1 = −g−1(Tρ̄)

T :

Tρ̄
q
kg

kl = Tρ̄
ql = −Tρ̄lq = −gqjTρ̄lj. (3.17)

Now we can finish the proof:

1

2i
∂ρ̄σ

µν = ∂ρ̄
(
(J−g

−1)µν
)

=
(
∇+
ρ̄ (J−g

−1)
)µν − (Γρ̄

µ
j +

1

2
Tρ̄

µ
j

)
(J−g

−1)jν

−
(

Γρ̄
ν
j +

1

2
Tρ̄

ν
j

)
(J−g

−1)µj

=
(
∇+
ρ̄ (J−g

−1)
)µν − Tρ̄µjJ−jkgkν − Jµ−qgqjTρ̄ν j, (3.18)

where for the last equality we used equation 3.16. The covariant derivative in equation
3.18 is (

∇+
ρ̄ (J−g

−1)
)µν

=
(
(∇+

ρ̄ J−)g−1
)µν

= (Tρ̄(J−))µ kg
kν

=
(
Tρ̄

µ
jJ−

j
k − Tρ̄qkJ−µq

)
gkν

= Tρ̄
µ
jJ−

j
kg

kν + J−
µ
qg
qjTρ̄

ν
j, (3.19)

where we have first used the fact that ∇+ is preserving the metric, then ∇+ = ∇−+T
and ∇−J− = 0; and finally equation 3.17. Plugging this into equation 3.18, we get

∂ρ̄σ
µν = 0, i.e. σ

(2,0)
+ is holomorphic.

4.

σil∂lσ
jk + σjl∂lσ

ki + σkl∂lσ
ij = 0 (3.20)

in any coordinate system or equivalently

{f,g} := σ(df,dg) ∀f,g ∈ C∞(M) (3.21)

fulfills the Jacobi identity [8]. Together with 1. this makes σ a Poisson structure.

The combination of all these properties can be expressed as the statement that σ is a real
holomorphic Poisson structure, i.e. the real part of a holomorphic Poisson structure.
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3.3 The generalized Kähler potential

In [6] it was shown that like ordinary Kähler geometry, generalized Kähler geometry is
locally described by a single function, the generalized Kähler potential. The proof uses the
symplectic foliation of a generalized Kähler manifold induced by the Poisson structure σ:

A Poisson structure can be thought of as a map T ∗M → TM . The image D of this map
constitutes (at least for regular Poisson manifolds) an integrable distribution, so there is a
foliation of M by maximal integral manifolds of D. These submanifolds are called symplectic
leaves, since the restriction of the Poisson stucture to a symplectic leaf is invertible and the
inverse of a Poisson structure is always a symplectic structure.

In this thesis, we restrict our attention to a symplectic leaf of σ or, equivalently, consider
generalized Kähler manifolds where σ is invertible. In sigma model language this means that
we consider Lagrangians that are exclusively described by semichiral superfields.

3.3.1 Ker[J+,J−] = {0}
Here we consider the case, where [J+,J−] is invertible and recall how the generalized Kähler
potential is defined in this case [13]:

Inverting σ gives
ΩG := σ−1 = g[J+,J−]−1, (3.22)

which is a real, closed and non-degenerate two-form that fulfills JT±ΩGJ± = −ΩG [8], i.e. it
is a real holomorphic symplectic form both w.r.t. J+ and w.r.t. J−. This means that ΩG

can be split into the sum of a (2,0)- and a (0,2)-form both w.r.t. J+ and w.r.t. J−:

ΩG = Ω
(2,0)
+ + Ω

(0,2)
+ = Ω

(2,0)
− + Ω

(0,2)
− , (3.23)

where ∂̄±Ω
(2,0)
± = 0 and ∂±Ω

(0,2)
± = 0.

One then introduces Darboux coordinates xpL and yLp (holomorphic w.r.t. J+) for Ω
(2,0)
+

and xpR and yRp (holomorphic w.r.t. J−) for Ω
(2,0)
− [13].2 Then

ΩG = Ω
(2,0)
+ + Ω

(0,2)
+ = dxpL ∧ dyLp + dx̄pL ∧ dȳLp,

ΩG = Ω
(2,0)
− + Ω

(0,2)
− = dxpR ∧ dyRp + dx̄pR ∧ dȳRp, (3.24)

i.e. the coordinate transformation from {xL,x̄L,yL,ȳL} to {xR,x̄R,yR,ȳR} is a symplecto-
morphism (canonical transformation) preserving ΩG. It is thus described by a generating
function P (xL,x̄L,xR,x̄R) such that

∂P

∂xL
= yL,

∂P

∂x̄L
= ȳL,

∂P

∂xR
= −yR,

∂P

∂x̄R
= −ȳR. (3.25)

2The index p runs over {1,...,n}, where dimRM = 4n. We will omit it most of the time.
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This generating function is the generalized Kähler potential and can be used to recon-
struct all the geometric data of generalized Kähler geometry [13], i.e. the two complex
structures J+, J− the metric g and the B-field. It also turns out to be the superspace La-
grangian for theN = (2,2) σ-models that led to the discovery of generalized Kähler geometry
[6].

Note that we could as well choose to let the potential depend on other combinations
of old and new coordinates. The potentials corresponding to the four different choices of
variables are then related via Legendre transforms. In previous papers, the potential was
chosen to depend on {xL,x̄L,yR,ȳR} to avoid singularities for the case J+ = ±J−. Formulas
in previous papers for reconstructing g, J+, J− and B from the potential remain unchanged,
however, in our basis {xL,x̄L,xR,x̄R} (see their derivation below).

3.4 Reconstruction of geometric data

The local reconstruction of the geometric data from the generalized Kähler potential P is
based on the fact that J± is in its canonical form in the coordinates xL/R, yL/R:

J+ = i
∂

∂xL
⊗ dxL − i

∂

∂x̄L
⊗ dx̄L + i

∂

∂yL
⊗ dyL − i

∂

∂ȳL
⊗ dȳL,

J− = i
∂

∂xR
⊗ dxR − i

∂

∂x̄R
⊗ dx̄R + i

∂

∂yR
⊗ dyR − i

∂

∂ȳR
⊗ dȳR. (3.26)

We denote the coordinate representation by surrounding brackets and use a subscript to
indicate the set of coordinates used3:

(J+)L =

(
Jn 0
0 Jn

)
, (J−)R =

(
Jn 0
0 Jn

)
; (3.27)

where Jn is the 2n×2n-matrix Jn = diag(+i,−i,...). We will use the transformation matrices

∂(xL,yL)

∂(xL,xR)
=


∂xLxL ∂x̄LxL ∂xRxL ∂x̄RxL
∂xLx̄L ∂x̄Lx̄L ∂xR x̄L ∂x̄R x̄L
∂xLyL ∂x̄LyL ∂xRyL ∂x̄RyL
∂xL ȳL ∂x̄L ȳL ∂xR ȳL ∂x̄R ȳL

 =


1n 0 0 0
0 1n 0 0

PxLxL PxLx̄L PxLxR PxLx̄R
Px̄LxL Px̄Lx̄L Px̄LxR Px̄Lx̄R

 ,

∂(xR,yR)

∂(xL,xR)
=


0 0 1n 0
0 0 0 1n

−PxRxL −PxRx̄L −PxRxR −PxRx̄R
−Px̄RxL −Px̄Rx̄L −Px̄RxR −Px̄Rx̄R

 ; (3.28)

3x=̂(xL,x̄L,xR,x̄R), L=̂(xL,x̄L,yL,ȳL), R=̂(xR,x̄R,yR,ȳR).
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to express all geometric data in terms of the coordinates {xL,x̄L,xR,x̄R}. Here, we used
equation 3.25 to express the Jacobi matrix in terms of double derivatives of the generalized
potential. This leads to the fact that all the expressions that we will derive for J+, J−,
B and g in terms of the x-coordinates are nonlinear combinations of double derivatives
of P . As always, we are omitting indices here, e.g. PxLxL stands for the n × n-matrix(
PxiLx

j
L

)
1≤i,j≤n

. From now on, we work with blocks of 2n × 2n-matrices and introduce the

following abbreviations:

∂(xL,yL)

∂(xL,xR)
=:

(
1 0
PLL PLR

)
,

∂(xR,yR)

∂(xL,xR)
=:

(
0 1

−PRL −PRR

)
. (3.29)

In this blockform, inverting ∂(xL,yL)
∂(xL,xR)

and ∂(xR,yR)
∂(xL,xR)

is straightforward:

∂(xL,xR)

∂(xL,yL)
=

(
1 0
PLL PLR

)−1

=

(
1 0

−P−1
RLPLL P

−1
RL

)
,

∂(xL,xR)

∂(xR,yR)
=

(
0 1

−PRL −PRR

)−1

=

(
−P−1

LRPRR P
−1
LR

1 0

)
; (3.30)

where we use the notation P−1
RL := (PLR)−1, P−1

LR := (PRL)−1. Note that while the matrices
in 3.29 and 3.30 are coordinate representations w.r.t. different sets of coordinates, their
entries are all expressed in terms of the coordinates {xL,x̄L,xR,x̄R}.

Now we can express the complex structures with respect to the x-coordinates:

(J+)x =
∂(xL,xR)

∂(xL,yL)
(J+)L

∂(xL,yL)

∂(xL,xR)
=

(
Jn 0

P
−1
RLCLL P

−1
RLJnPLR

)
,

(J−)x =
∂(xL,xR)

∂(xR,yR)
(J−)R

∂(xR,yR)

∂(xL,xR)
=

(
P
−1
LRJnPRL P

−1
LRCRR

0 Jn

)
. (3.31)

(3.32)

Here, we used the abbreviation C◦• := JnP◦• −P◦•Jn.

Using the fact that in the L-coordinates the real holomorphic two-form ΩG is the canonical
symplectic structure, we can also easily express it in the x-basis:

ΩG = dxL ∧ dyL + dx̄L ∧ dȳL = dxL ∧
(
∂yL
∂x̄L

dx̄L +
∂yL
∂xR

dxR +
∂yL
∂x̄R

dx̄R

)
+ dx̄L ∧

(
∂ȳL
∂xL

dxL +
∂ȳL
∂xR

dxR +
∂ȳL
∂x̄R

dx̄R

)
= dxL ∧ (PxLxRdxR + PxLx̄Rdx̄R) + dx̄L ∧ (Px̄LxRdxR + Px̄Lx̄Rdx̄R) , (3.33)
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where we used the fact that PxLx̄L = (Px̄LxL)T . Written as a matrix, this gives

(ΩG)x =


0 0 PxLxR PxLx̄R
0 0 Px̄LxR Px̄Lx̄R

−PxRxL −PxRx̄L 0 0
−Px̄RxL −Px̄Rx̄L 0 0

 =

(
0 PLR

−PRL 0

)
. (3.34)

The metric g and the B-field can then be determined via g = ΩG[J+,J−], B = ΩG{J+,J−}
[11]. Since the expressions for g and B do not simplify, we just state the result for the
individual parts E := 1

2
(g +B) = ΩGJ+J− and F := 1

2
(−g +B) = ΩGJ−J+:

(E)x =

(
CLLP

−1
LRJnPRL CLLP

−1
LRCRR + JnPLRJn

−PRLJnP−1
LRJnPRL −PRLJnP−1

LRCRR

)
,

(F )x =

(
PLRJnP

−1
RLCLL PLRJnP

−1
RLJnPLR

−JnPRLJn −CRRP
−1
RLCLL −CRRP

−1
RLJnPLR

)
. (3.35)

3.5 Hyperkähler condition

In order for M to be a hyperkähler manifold, the anticommutator of the two complex struc-
tures must be equal to a constant times the identity on TM . Setting {J+,J−} = c1 gives
the following four equations:

I) JnP
−1
LRJnPRL +P−1

LR

(
JnPRLJn +CRRP

−1
RLCLL

)
= c1,

II) JnP
−1
LRCRR +P−1

LRCRRP
−1
RLJnPLR = 0,

III) P
−1
RLCLLP

−1
LRJnPRL + JnP

−1
RLCLL = 0,

IV ) P
−1
RL

(
CLLP

−1
LRCRR + JnPLRJn

)
+ JnP

−1
RLJnPLR = c1. (3.36)

Using (C◦•)
T = −C•◦ and

(
P
−1
LR

)T
= P

−1
RL, we find

PRL(I)P−1
LR=̂(IV )T . (3.37)

Thus, requirement (I) implies (IV ). Applying PRL to (II) from the left yields

A := PRLJnP
−1
LRCRR = −CRRP

−1
RLJnPLR =

(
PRLJnP

−1
LRCRR

)T
= A

T . (3.38)

PLR(II) corresponds to

B := PLRJnP
−1
RLCLL = −CLLP

−1
LRJnPRL =

(
PLRJnP

−1
RLCLL

)T
= B

T . (3.39)

So all in all, we find that the requirements for the manifold described by the generalized
Kähler potential P to be hyperkähler are (I), A = AT and B = BT .
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The four dimensional case

In four dimensions, PRL and PLR are 2× 2-matrices and thus easy to invert:

P
−1
LR =

1

|PxLxR |2 − |PxLx̄R |2

(
Px̄Lx̄R −Px̄LxR
−PxLx̄R PxLxR

)
, P

−1
RL =

(
P
−1
LR

)T
. (3.40)

The requirements A = AT and B = BT are then automatically satisfied and requirement
(I) from equation 3.36 yields

2
2PxLx̄LPxRx̄R − |PxLxR |2 + |PxLx̄R |2

|PxLxR |2 − |PxLx̄R |2
= c. (3.41)

The requirement for a four dimensional manifold that is described by the generalized poten-
tial P to be hyperkähler is thus that the left side of equation 3.41 is constant. This result
has been first obtained in [11] for the special case c = 0 and then generalized in [12] for an
arbitrary c ∈ R.
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Chapter 4

Generalized Kähler structures on
hyperkähler manifolds

We want to transport the idea of a twistor space from hyperkähler to generalized Kähler
geometry, namely we interpret a hyperkähler manifold (M,g,I,J,K) as a generalized Kähler
manifold (M,g,J+,J−), where we fix the left complex structure J+ = I and let the right
complex structure depend on ζ: J− = J (ζ) (see eq. 2.3). So for a given hyperkähler
manifold, we consider an S2-family of generalized Kähler structures whose generalized Kähler
potentials we now try to determine.

4.1 Expressing semichiral superfields xL,yL, xR,yR in terms

of arctic superfields Υ(ζ),Υ̃(ζ)

The generalized Kähler potential is a generating function for the symplectomorphism from
holomorphic coordinates (xLx̄L,yL,ȳL) with respect to J+ to holomorphic coordinates (xR,x̄R,
yR,ȳR) with respect to J− preserving the symplectic form ΩG. To determine the generalized
Kähler potential, we first need to find the coordinates x,y on a given hyperkähler manifold.
In order to find them, we need an explicit expression for ΩG = g[J+,J−]−1 (eq. 3.22), which
now depends on ζ.

The anticommutator of two complex structures on an irreducible hyperkähler manifold
is equal to a constant times the identity, {J+,J−} = c1 [9]. If J+ 6= ±J−, then |c| < 2 and

1√
4−c2 [J+,J−] is another complex structure, so in particular, it squares to −1. Using this, we

have

ΩG = g[J+,J−]−1 = − 1

4− c2
g[J+,J−]. (4.1)
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The two complex structures for the generalized Kähler manifold are chosen to be

J+ = I, J− = v1I + v2J + v3K =
1

1 + ζζ̄

[
(1− ζζ̄)I + (ζ + ζ̄)J + i (ζ̄ − ζ)K

]
, (4.2)

where I,J,K pairwise anticommute. This gives c = −2v1 = −21−ζζ̄
1+ζζ̄

and [J+,J−] = 2v2K−2v3J ,
so 4.1 becomes

ΩG(ζ) = − 1

2− 2v2
1

(v2ω3 − v3ω2) = −1 + ζζ̄

8ζζ̄

[
(ζ + ζ̄)ω3 − i(ζ̄ − ζ)ω2

]
. (4.3)

On the one hand, we need to split this into the sum of a (2,0)- and a (0,2)-form with
respect to J+. From the first chapter, we know that ω(2,0) = ω2 +iω3 and ω(0,2) = ω2−iω3 are

such forms. Indeed, we find a splitting into the holomorphic form Ω
(2,0)
+ = iζ̄ 1+ζζ̄

8ζζ̄
ω(2,0) and

the antiholomorphic form Ω
(0,2)
+ = −iζ 1+ζζ̄

8ζζ̄
ω(0,2) with respect to J+. Combining equations

2.6 and 2.7, we get1

ω(2,0) = idΥ(ζ = 0) ∧ dΥ̃(ζ = 0), ω(0,2) = idῩ(ζ̄ = 0) ∧ d ¯̃Υ(ζ̄ = 0). (4.4)

Thus, we can choose the following Darboux coordinates for ΩG(ζ):

xpL = Υp(ζ = 0), yLp = −ζ̄ 1 + ζζ̄

8ζζ̄
Υ̃p(ζ = 0),

x̄pL = Ῡp(ζ = 0), ȳLp = −ζ 1 + ζζ̄

8ζζ̄
¯̃Υp(ζ = 0); (4.5)

to ensure
Ω

(2,0)
+ = dxL ∧ dyL, Ω

(0,2)
+ = dx̄L ∧ dȳL. (4.6)

On the other hand, we need to split ΩG into a (2,0)- and a (0,2)-form with respect to
J− = J (ζ). Again, we know from the first chapter that ΩH(ζ) and ΩH(ζ) fulfill this property

and indeed we find that Ω
(2,0)
− and Ω

(0,2)
− are proportional to ΩH(ζ) and ΩH(ζ), respectively:

Ω
(2,0)
− = iζ̄

1

8ζζ̄
ΩH(ζ), Ω

(0,2)
− = −iζ 1

8ζζ̄
ΩH(ζ). (4.7)

Knowing ΩH(ζ) = idΥ(ζ) ∧ dΥ̃(ζ) and imposing

Ω
(2,0)
−

!
= dxR ∧ dyR, Ω

(0,2)
−

!
= dx̄R ∧ dȳR, (4.8)

1We denote the complex conjugate of Υ(ζ) by Ῡ ≡ Ῡ(ζ̄) ≡ Υ(ζ) which is not to be confused with the
notation in [3], where Ῡ is short for Ῠ(ζ) = Ῡ(−ζ−1).
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we can choose

xpR = Υp(ζ), yRp = −ζ̄ 1

8ζζ̄
Υ̃p(ζ);

x̄pR = Υp(ζ), ȳRp = −ζ 1

8ζζ̄
Υ̃p(ζ). (4.9)

The choice of Darboux coordinates in 4.5 and 4.9 is not unique. For instance, we could
distribute factors differently and set

x′L = i

√
1 + ζζ̄

8ζ
Υ(0), x′R = i

√
1

8ζ
Υ and y′L = i

√
1 + ζζ̄

8ζ
Υ̃(0), y′R = i

√
1

8ζ
Υ̃. (4.10)

We could also use a more complicated symplectomorphism to make a different identification
of x,y in terms of Υ and Υ̃.

With the identifications 4.5 and 4.9, we are now able to express the coordinates xL,R and
yL,R that describe semichiral superfields in 2D N = (2,2) models in terms of the coordinates
Υ(ζ), Υ̃(ζ) describing arctic superfields in the projective superspace formulation of N = 2
supersymmetric sigma models. This will enable us to determine the ζ-dependent generalized
Kähler potential for hyperkähler manifolds whose projective superspace description is already
known.

4.2 Euclidean space

We now use the relation between x,y and Υ,Υ̃ derived in the last section to determine the
generalized Kähler potential for Euclidean space. Here the Kähler potential is given by

K = zz̄ + uū, (4.11)

which clearly fulfills equation 2.8. All the results in this section can be extended to higher
dimensional Euclidean space by introducing additional indices.

Assuming that (z,u) are holomorphic coordinates w.r.t. I and setting ω(2,0) = idz ∧ du,
we get the complex structures as described in section 2.2:

I = i
∂

∂z
⊗ dz − i ∂

∂z̄
⊗ dz̄ + i

∂

∂u
⊗ du− i ∂

∂ū
⊗ dū,

J = −i ∂
∂z
⊗ dū+ i

∂

∂u
⊗ dz̄ + i

∂

∂z̄
⊗ du− i ∂

∂ū
⊗ dz,

K =
∂

∂z
⊗ dū− ∂

∂u
⊗ dz̄ +

∂

∂z̄
⊗ du− ∂

∂ū
⊗ dz. (4.12)
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They are the differentials of the imaginary basis quaternions2 i,j,k acting on H ≈ C2 by left
multiplication, where we make the identification (z,u) = (x0+ix1,x2+ix3) 7→ x0+ix1+jx2+kx3.

Υ(ζ) = z − ζū, Υ̃(ζ) = u+ ζz̄ (4.13)

fulfill equations 2.21 and 2.25, i.e. they are holomorphic w.r.t. J (ζ) and satisfy equation
2.7. Using equations 4.5 and 4.9, we make the identifications

xL = Υ(ζ = 0) = z, xR = Υ(ζ) ≡ Υ and yL = −1 + ζζ̄

8ζ
u, yR = − 1

8ζ
Υ̃. (4.14)

Solving for yL, yR in terms of xL, xR, we get

yL = −1 + ζζ̄

8ζζ̄
(x̄L − x̄R), yR = − 1

8ζζ̄

(
(1 + ζζ̄)x̄L − x̄R

)
, (4.15)

which leads (up to an additive constant) to the generating function (see equation 3.25)

P = − 1

8ζζ̄

[
xRx̄R + (1 + ζζ̄) · (xLx̄L − xLx̄R − x̄LxR)

]
. (4.16)

This is the generalized Kähler potential for Euclidean space, where J+ = I and J− is an
arbitrary point on the twistor-sphere of complex structures, J− 6= ±I. However, we notice
that P only involves the combination ζζ̄, i.e. it only depends on the angle between J+ and
J− in the space spanned by the three complex structures (I,J,K). Also, P turns out to be
asymmetric between left- and right-coordinates. This can be resolved however, as there are
various ambiguities in the generalized Kähler potential. For instance, we could distribute
factors differently in 4.14 or even perform a more complicated symplectomorphism, going to
new coordinates x′L/R, y′L/R. Furthermore, we can perform Legendre transforms and express
the potential in terms of a different set of variables.

If we make the identifications

x′L = i

√
1 + ζζ̄

8ζ
z, x′R = i

√
1

8ζ
Υ and y′L = i

√
1 + ζζ̄

8ζ
u, y′R = i

√
1

8ζ
Υ̃, (4.17)

the potential becomes left-right-symmetric. Performing an additional Legendre transform
exchanging the roles of x′R and y′R for instance then leads the potential

P ′ =

√
1 + ζζ̄ · (x′Ly′R + x̄′Lȳ

′
R) +

√
ζζ̄ · (x′Lx̄′L + y′Rȳ

′
R). (4.18)

2We stick to the convention from previous papers and include the i-factor in the choice of ω(2,0). This
interchanges the complex structures J and K, such that J acts like left multiplication by k and K acts like
left multiplication by −j.
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4.3 Example: Eguchi-Hanson geometry

The real function

K =
√

1 + 4uū(1 + zz̄)2 +
1

2
ln

 4uū(1 + zz̄)2(
1 +

√
1 + 4uū(1 + zz̄)2

)2

 (4.19)

in the two complex variables z, u fulfills the Monge-Ampère equation 2.8. It thus defines
a hyperkähler metric, where the Kähler forms are given by equation 2.9. The first Kähler
form takes the form

ω1 = − i
2

1 + zz̄√
1 + 4uū(1 + zz̄)2

[
(1 + zz̄) du ∧ dū+ 2uz̄ dz ∧ dū

+2zū du ∧ dz̄ +

(
1

(1 + zz̄)3
+ 4uū

)
dz ∧ dz̄

]
, (4.20)

from which the metric can be read off. This is the well-known Eguchi-Hanson geometry:
Setting u = 1

2
u′2, z = z′

u′
and r :=

√
u′ū′ + z′z̄′ gives the familiar Kähler potential

K =
√

1 + r4 + log
r2

1 +
√

1 + r4
(4.21)

for the Eguchi-Hanson metric [3].
The holomorphic Darboux coordinates for ΩH(ζ) (fulfilling equations 2.21 and 2.25) can

be chosen as [3]

Υ̃ = u+ ζ2z̄2ū+
z̄ζ

1 + zz̄

√
1 + 4uū(1 + zz̄)2,

Υ = z − 2ūζ(1 + zz̄)2

1 +
√

1 + 4uū(1 + zz̄)2 + 2ūz̄ζ(1 + zz̄)
. (4.22)

We solve Υ,Ῡ(z,z̄,u,ū) for u and ū to get

u(z,z̄,Υ,Ῡ) =
ζ

1 + zz̄
· (z̄ − Ῡ)(1 + Υz̄)

ζζ̄(1 + Ῡz)(1 + Υz̄)− (z −Υ)(z̄ − Ῡ)
(4.23)

and its complex conjugate. Using this and the identifications derived in section 4 (equation
4.14), we get yL(xL,xR). We then integrate yL(xL,xR) w.r.t. xL to get the generalized Kähler
potential up to a possible additive term that is independent of xL:

P =

∫
yL(xL,xR) dxL = −ζ̄ 1 + ζζ̄

8ζζ̄

∫
u(z,Υ) dz

= −1

8
· log 1 + xLx̄L

ζζ̄(1 + xLx̄R)(1 + x̄LxR)− (xL − xR)(x̄L − x̄R)
(4.24)
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Plugging u(z = xL,Υ = xR) into Υ̃(z = xL,u) (equation 4.22) gives

yR(xL,xR) = −ζ̄ 1

8ζζ̄
Υ̃(xL,xR) = −1

8
·

(1 + ζζ̄) · x̄L −
(
1− ζζ̄ · xLx̄L

)
x̄R

ζζ̄(1 + xLx̄R)(1 + x̄LxR)− (xL − xR)(x̄L − x̄R)
,

(4.25)
which is indeed equal to − ∂P

∂xR
. P is real, so ∂P

∂x̄L
= ȳL and ∂P

∂x̄R
= −ȳR are also fulfilled

and thus equation 4.24 gives indeed the ζ-dependent generalized Kähler potential for the
Eguchi-Hanson geometry:

P (xL,x̄L,xR,x̄R) = −1

8
· log 1 + |xL|2

ζζ̄ · |1 + xLx̄R|2 − |xL − xR|2
. (4.26)

Again, the generalized Kähler potential turns out to depend only on the combination ζζ̄,
i.e. on the angle between J+ and J−. Of course, there are again many ambiguities in the
potential, but 4.26 seems to be already in its simplest form.

4.3.1 Legendre transform

Since the generalized Kähler potential was chosen to depend on yR instead of xR in all
references, we originally determined it for this choice of variables. For the record, we state
these results in this section and show that the potential 4.26 then arises from a Legendre
transform exchanging yR and xR.

Inverting Υ̃, ¯̃Υ(z,u,z̄,ū) from equation 4.22, we obtain

u =
1

(1 + zz̄)(1− zz̄ζζ̄)2

(
(1 + zz̄)(Υ̃ + Υ̃∗z̄2ζ2)− z̄ζ

√
(1− zz̄ζζ̄)2 + 4Υ̃Υ̃∗(1 + zz̄)2

)
.

(4.27)
Plugging this into Υ(z,u,z̄,ū), one obtains

Υ = z − 2ζ · 1 + zz̄

1− zz̄ζζ̄
·

(1 + zz̄)(Υ̃∗ + Υ̃z2ζ̄2)− zζ̄
√

(1− zz̄ζζ̄)2 + 4Υ̃Υ̃∗(1 + zz̄)2

1− zz̄ζζ̄ +
√

(1− zz̄ζζ̄)2 + 4Υ̃Υ̃∗(1 + zz̄)2 − 2zζ̄Υ̃(1 + zz̄)
. (4.28)

As in the last section, we make the replacements

xL = z, yL = −1 + ζζ̄

8ζ
u; xR = Υ(ζ), yR = − 1

8ζ
Υ̃(ζ). (4.29)
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Up to an additive constant in xL, the generalized Kähler potential is

P ′ =

∫
yL(xL,yR) dxL = −1 + ζζ̄

8ζ

∫
u(z,Υ̃) dz =

1 + ζζ̄

ζζ̄

1

1− ζζ̄xLx̄L

(
yR
x̄L

+ ζζ̄x̄LȳR

)
− 1

8
log

(
1− ζζ̄xLx̄L +

√
(1− ζζ̄xLx̄L)2 + 256ζζ̄yRȳR(1 + xLx̄L)2

1 + xLx̄L

)

+
1

8

√
(1− ζζ̄xLx̄L)2 + 256ζζ̄yRȳR(1 + xLx̄L)2

1− ζζ̄xLx̄L
+ cxL(x̄L,yL,ȳL). (4.30)

Setting cxL = −1+ζζ̄
ζζ̄

yR
x̄L

makes P ′ real, so that it also fufills ∂P ′

∂x̄L
= ȳL. P ′ then becomes

P ′ =
1 + ζζ̄

1− ζζ̄xLx̄L
(xLyR + x̄LȳR)

− 1

8
log

(
1− ζζ̄xLx̄L +

√
(1− ζζ̄xLx̄L)2 + 256ζζ̄yRȳR(1 + xLx̄L)2

1 + xLx̄L

)

+
1

8

√
(1− ζζ̄xLx̄L)2 + 256ζζ̄yRȳR(1 + xLx̄L)2

1− ζζ̄xLx̄L
. (4.31)

and fulfills ∂P ′

∂yR
= xR and ∂P ′

∂ȳR
= x̄R without any further corrections. It is thus the generalized

Kähler potential.

Now we perform a Legendre transform replacing yR,ȳR by xR,x̄R. The new coordinate in
terms of the old one is given by xR = ∂P ′

∂yR
:

xR =
1 + ζζ̄

1− ζζ̄xLx̄L
xL +

1

16yR

(√
(1− ζζ̄xLx̄L)2 + 256ζζ̄yRȳR(1 + xLx̄L)2

1− ζζ̄xLx̄L
− 1

)
. (4.32)

Surprisingly, this causes the linear terms in the Legendre transform to cancel all terms in P ′

except for the logarithm (up to a an irrelevant additive constant):

P = P ′ − xRyR − x̄RȳR (4.33)

=
1

8
− 1

8
log

(
1− ζζ̄xLx̄L +

√
(1− ζζ̄xLx̄L)2 + 256ζζ̄yRȳR(1 + xLx̄L)2

1 + xLx̄L

)
.

Now it just remains to invert the relation 4.32 to get yR(xR) and to plug this into 4.33.
Indeed, after some calculation we find that (ignoring the additive constant) the resulting
potential is exactly 4.26.
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4.4 S2 × S2-family of generalized complex structures

In this section, we generalize our results from section 4.1. Instead of fixing one complex
structure, we let both J+ and J− depend on an individual complex coordinate and thus
consider an S2 × S2-family of generalized complex structures (M,g,J+,J−) on a given hy-
perkähler manifold (M,g,I,J,K). We parametrize vectors ~u, ~v ∈ S2\(−1,0,0) by complex
coordinates ζ1, ζ2 like in equation 2.3 and define

J+ := J (ζ1) = u1I + u2J + u3K, J− = J (ζ2) = v1I + v2J + v3K. (4.34)

The anticommutator depends only on the angle θ between ~u and ~v:

{J+,J−} = −2(~u · ~v)1 = −2 cos θ 1. (4.35)

The commutator turns out to be perpendicular to J+ and J− in the space spanned by (I,J,K):

[J+,J−] = 2(u2v3−u3v2)I−2(u1v3−u3v1)J+2(u1v2−u2v1)K = 2(~u×~v) · (I,J,K)T . (4.36)

In order to determine the coordinates xR,yR, we need to split ΩG into a (2,0)- and a
(0,2)-form w.r.t. J−. Indeed, we find that

g[J+,J−] =
i

(1 + ζ2ζ̄2)2

(
(~a(ζ2) · ~u) ΩH(ζ2)− (~a(ζ2) · ~u) ΩH(ζ2)

)
=

i

(1 + ζ2ζ̄2)2

(
(~a(ζ2) · ~u)~a(ζ2)− (~a(ζ2) · ~u)~a(ζ2)

)
· ~ω, (4.37)

where ~a(ζ) = (−2ζ,1− ζ2,i(1 + ζ2))T , i.e. ΩH(ζ) = ~a(ζ) · ~ω (see eq. 2.6). So we find

ΩG = − 1

4− 4(~u · ~v)2
g[J+,J−] = Ω

(2,0)
− + Ω

(0,2)
− , (4.38)

where

Ω
(2,0)
− =

−i (~a(ζ2) · ~u)

4 sin2 θ (1 + ζ2ζ̄2)2
ΩH(ζ2), Ω

(0,2)
− =

i (~a(ζ2) · ~u)

4 sin2 θ (1 + ζ2ζ̄2)2
ΩH(ζ2). (4.39)

Thus knowing that ΩH(ζ2) = idΥ(ζ2) ∧ dΥ̃(ζ2), we can choose (omitting indices)

xR = Υ(ζ2) ≡ Υ2, yR =
~a(ζ2) · ~u

4 sin2 θ (1 + ζ2ζ̄2)2
Υ̃(ζ2) ≡ c2Υ̃2. (4.40)

to get ΩG = dxR ∧ dyR + dx̄R ∧ dȳR.

28



Exchanging the roles of ~u,~v and ζ1, ζ2, respectively, and considering the antisymmetry of
[J+,J−], we get the following splitting w.r.t. J−:

Ω
(2,0)
+ =

i (~a(ζ1) · ~v)

4 sin2 θ (1 + ζ1ζ̄1)2
ΩH(ζ1), Ω

(0,2)
+ =

−i (~a(ζ1) · ~v)

4 sin2 θ (1 + ζ1ζ̄1)2
ΩH(ζ1), (4.41)

which allows us to choose

xL = Υ(ζ1) ≡ Υ1, yL =
−~a(ζ1) · ~v

4 sin2 θ (1 + ζ1ζ̄1)2
Υ̃(ζ1) ≡ c1Υ̃1. (4.42)

The constants c1,c2(ζ1,ζ2) can be written as

c1 =
−(ζ̄2 − ζ̄1)

2(1 + ζ1ζ̄1)2(1 + ζ2ζ̄2)2 sin2 θ
(1 + ζ̄1ζ2)(1 + ζ2ζ̄2),

c2 =
−(ζ̄2 − ζ̄1)

2(1 + ζ1ζ̄1)2(1 + ζ2ζ̄2)2 sin2 θ
(1 + ζ1ζ̄2)(1 + ζ1ζ̄1). (4.43)

We see that by exchanging ζ1 with ζ2, we exchange xL with xR and yL with −yR.
In the special case where ζ1 = 0 (i.e. ~u = (1,0,0)) and ζ2 = ζ, we have

sin2 θ =
4ζζ̄

(1 + ζζ̄)2
(4.44)

and 4.40, 4.42 reduce to the results 4.5, 4.9 from section 4.1.
Using 4.40 and 4.42, we can now determine an S2 × S2-family of generalized Kähler

potentials Pζ1,ζ2 for hyperkähler manifolds.

4.4.1 Example: Euclidean space

We extend the results from section 4.2 and determine the generalized Kähler potential for
Euclidean space depending on two complex variables ζ1 and ζ2. We set

xL = Υ(ζ1) = z − ζ1ū, xR = Υ(ζ2) = z − ζ2ū. (4.45)

Inverting this leads to

z =
ζ2xL − ζ1xR
ζ2 − ζ1

, u =
x̄L − x̄R
ζ̄2 − ζ̄1

. (4.46)

The y-coordinates are then given in terms of the x-coordinates by

yL = c1Υ̃(ζ1) = c1(u+ ζ1z̄) =
c1

ζ̄2 − ζ̄1

(
(1 + ζ1ζ̄2)x̄L − (1 + ζ1ζ̄1)x̄R

)
,

yR = c2Υ̃(ζ2) = c2(u+ ζ2z̄) =
c2

ζ̄2 − ζ̄1

(
(1 + ζ2ζ̄2)x̄L − (1 + ζ̄1ζ2)x̄R

)
. (4.47)
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Checking a few identities involving expressions of c1,c2,ζ1,ζ2, we see that

P =
1

ζ̄2 − ζ̄1

(
c1(1 + ζ1ζ̄2)xLx̄L − c1(1 + ζ1ζ̄1)xLx̄R

+c2(1 + ζ̄1ζ2)xRx̄R − c2(1 + ζ2ζ̄2)x̄LxR

)
(4.48)

is the generalized Kähler potential, i.e. fulfills 3.25. Plugging in c1, c2 from 4.43, this becomes

P =
−1

2(1 + ζ1ζ̄1)2(1 + ζ2ζ̄2)2 sin2 θ

(
(1 + ζ1ζ̄2)(1 + ζ̄1ζ2)

(
(1 + ζ2ζ̄2)xLx̄L + (1 + ζ1ζ̄1)xRx̄R

)
−(1 + ζ1ζ̄1)(1 + ζ2ζ̄2)

(
(1 + ζ̄1ζ2)xLx̄R + (1 + ζ1ζ̄2)x̄LxR

) )
,

which is perfectly left-right symmetric.
For the special case ζ1 = 0, ζ2 = ζ, this becomes exactly 4.16.
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Chapter 5

Projective Superspace

The target space of 4D N = 2 sigma models is constrained to be a hyperkähler manifold
[1]. Projective superspace provides methods to construct such models and thus can be used
to find new hyperkähler metrics [17]. We will consider models that describe self-couplings
of the so called polar multiplet consisting of arctic and antarctic superfields [3]. For a large
class of examples, the projective superspace formalism can be used to extract from these
models the coordinates Υ and Υ̃ that we need to determine the generalized Kähler potential
of the hyperkähler target space using the method derived in chapter 4 [23].

5.1 Review of projective superspace

In ordinary 4D N = 2 superspace, we have eight fermionic derivatives [14]

Daα = ∂aα +
1

2
θ̄β̇a i∂αβ̇, D̄a

α̇ = ∂̄aα̇ +
1

2
θaβi∂βα̇, (5.1)

where a = 1,2 are coordinates in the fundamental representation of SU(2) and α,α̇ = ± are
left and right handed spinor indices respectively. They fulfill the algebra

{Daα,Dbβ} = {D̄a
α̇,D̄

b
β̇
} = 0, {Daα,D̄

b
β̇
} = iδba∂αβ̇. (5.2)

In projective superspace we now parametrize a two-sphere of N = 1 subalgebras by a
complex coordinate ζ (in a chart around the north pole):

∇α(ζ) := D2α + ζD1α, ∇̄α̇(ζ) := D̄1
α̇ − ζD̄2

α̇. (5.3)

Using 5.2 one can check that the new derivatives anticommute, e.g. {∇α,∇̄β̇} = 0. Thus we
can impose the constraints

∇αΥ = ∇̄α̇Υ = 0 (5.4)

31



without causing Υ to be constant in the bosonic coordinates.
Projective superfields are expansions in ζ,

Υ =

q∑
j=p

Υjζ
j, (5.5)

where the coefficients Υj are ordinary N = 2 superfields and where we can choose p < q
in Z ∪ {−∞,∞}. Projective superfields are constrained as in 5.4 and in addition to the
choice of p and q, one sometimes imposes a reality condition in terms of the real structure

Υ(ζ) 7→ Ῠ(ζ) := Ῡ(−1
ζ̄
) [3]. Applying the constraints 5.4 to the expansion of Υ in powers of

ζ (5.5), one obtains the following constraints for the N = 2 components Υj:

D1αΥj−1 +D2αΥj = D̄2
α̇Υj−1 − D̄1

α̇Υj = 0. (5.6)

We will exclusively consider the polar multiplet in this thesis. It is described by an arctic
superfield Υ(ζ) =

∑∞
j=0 Υjζ

j and its conjugate antarctic superfield

Ῠ(ζ) := Υ

(
−1

ζ̄

)
≡ Ῡ

(
−1

ζ

)
=
∞∑
j=0

Ῡj(−ζ)−j. (5.7)

So arctic superfields are determined by the choice p = 0, q = ∞ and as the name indicates
they are analytic around the north-pole, while antarctic superfields have p = −∞, q = 0 and
are analytic around the south-pole.

Since the constraint 5.6 completely determines the θ2-dependence of projective superfields
in terms of their θ1-dependence, we can go to N = 1 components Υj|θ2,θ̄2=0 without losing
any information. From now on, we are always looking at N = 1 components and omit the
subscript: Υj ≡ Υj|θ2,θ̄2=0. In combination with 5.2, the constraints 5.6 imply the following
N = 1 constraints for Φ := Υ0 and Σ := Υ1:

D̄1
α̇Φ = 0, D̄1

α̇D̄
1α̇Σ = 0, (5.8)

i.e. Φ is a chiral and Σ is a complex linear (or nonminimal) N = 1 superfield. Xj := Υj

(j ≥ 2) is unconstrained as a N = 1 superfield [23]. The decomposition of Υ(ζ), Ῠ(ζ) into
ordinary N = 1 superfields is thus given by

Υ(ζ) =
∞∑
j=0

ζjΥj = Φ + ζΣ +
∞∑
j=2

ζjXj, Ῠ(ζ) =
∞∑
j=0

(−ζ)−jῩj. (5.9)

The polar multiplet can be used to define the action

S(Υi,Ῠi) =
1

2πi

∮
C

dζ

ζ

∫
d4xDα

1D1αD̄
1β̇D̄1

β̇
f(Υi(ζ),Ῠi(ζ); ζ), (5.10)
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which admits off-shell N = 2 supersymmetry [3]. f is a real-valued function and is called the
projective superspace Lagrangian. C is a contour in the ζ-plane that orbits the origin once
in counterclockwise direction. The unconstrained N = 1 superfields Xj, j ≥ 2, are auxiliary
and have to be integrated out using their equations of motion given by

1

2πi

∮
C

dζ

ζ
ζj
∂f

∂Υj
= 0 ∀j ≥ 2,

1

2πi

∮
C

dζ

ζ
(−ζ)−j

∂f

∂Ῠj
= 0 ∀j ≥ 2. (5.11)

If the projective superspace Lagrangian f in the sigma model 5.10 does not explicitly de-
pend on ζ, it can be interpreted as the Kähler potential of a Kähler manifold M . The target
space of such a model turns out to be part of the tangent bundle TM of M and the target
space of the dualized model is the cotangent bundle T ∗M [19]. Since the projective sigma
model 5.10 admits N = 2 supersymmetry, its target space and the target space of the dual
model are hyperkähler manifolds [1]. This agrees with the theorem that (part of) the cotan-
gent bundle of a Kähler manifold admits a hyperkähler structure ([15],[16]). The problem
in finding the N = 1 component decomposition of the Lagrangian, which after dualization
yields the Kähler potential on T ∗M , is to eliminate the occuring infinite set of auxiliary
superfields. This problem has been solved for M = CP n = SU(n + 1)/[SU(n) × U(1)]
([18],[19]) and Qn = SO(n + 2)/[SO(n) × U(1)] [20] and in fact for many more Hermitian
symmetric spaces ([21],[22]).

5.2 Hyperkähler structures on cotangent bundles of

Kähler manifolds

If we have a chart (φi,φ̄i)i=1,...,n on a Kähler manifold M with Kähler potential K(φi,φ̄i) and

if we take f(Υi,Ῠi) := K(Υi,Ῠi) to be the projective superspace Lagrangian, then we obtain
a sigma model whose target space is part of the tangent bundle of M ([17],[18],[20]). The
constrained N = 1 components

Φi = Υi(ζ = 0), Σi =
∂Υi

∂ζ

∣∣∣
ζ=0

(5.12)

of Υi can be interpreted as coordinates on M and on the fibers of TM respectively. Namely
a holomorphic reparametrization

Υi(ζ)→ F i(Υ(ζ)) (5.13)

leads to

Φi → F i(Φ), Σi →
(
F i(Υ(ζ))

∂Υk

∂Υk

∂ζ

) ∣∣∣∣∣
ζ=0

=
∂F i(Φ)

∂Φk
Σk. (5.14)
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Thus the fields Φi transform like coordinates on M and the Σi transform like components
of a tangent vector at the point described by Φi. If we dualize the model and exchange the
complex linear superfield Σ with a chiral field ψ and integrate out ζ and the unconstrained
fields Xj, then we can read off the Kähler potential of the cotangent space from the La-
grangian [19]. The Σi independend part then reduces to the original Kähler potential on
M .

5.2.1 Euclidean space

To see that the results for Υ, Υ̃ that one obtains from the projective superspace formal-
ism agree with the examples in chapter 4, we consider the projective sigma model on the
cotangent bundle of Euclidean space M = R2n = Cn, i.e. we set the projective superspace
Lagrangian to

f(Υ(ζ),Ῠ(ζ)) =
n∑
j=1

ΥjῨj̄. (5.15)

With C being a contour in the ζ-plane that orbits the origin once in counterclockwise direc-
tion, the equations of motion 5.11 for the auxiliary superfields X i

n, n ≥ 2 become

X i
n = X̄ i

n = 0, (5.16)

i.e. Υ and Ῠ are of the form

Υi(ζ) = Φi + ζΣi, Ῠī(ζ) = Φ̄ī − 1

ζ
Σ̄ī. (5.17)

In terms of N = 1 superfields, the projective superspace Lagrangian then becomes

f(Υi(Φi,Σi; ζ),Ῠī(Φ̄ī,Σ̄ī; ζ)) =
n∑
j=1

(
φj + ζΣj

)(
Ψ̄j̄ − 1

ζ
Σ̄j̄

)
. (5.18)

After integrating out ζ, only the ζ-independent part of f remains and we get an N = 1
model in ordinary superspace with chiral and complex linear superfields:

S =

∫
d8z(ΦjΦ̄j̄ − ΣjΣ̄j̄). (5.19)

To dualize the action and express it purely in terms of chiral superfields, we replace it by

S =

∫
d8z(ΦjΦ̄j̄ − U jŪ j̄ − U jψj − Ū j̄ψ̄j̄), (5.20)
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with an unconstrained auxiliary superfield U , i.e. we perform a Legendre transform inter-
changing Σ and Ψ. Integrating out U gives

U i = −ψ̄ī, Ū ī = −ψi (5.21)

and thus the action becomes

S =

∫
d8z(ΦjΦ̄j̄ + ψjψ̄j̄), (5.22)

from which the unsurprising result for the hyperkähler potential of the cotangent bundle
T ∗R2n ≈ R4n can be read off.

However, we are more interested in the transformation Σi = −ψ̄ī (see eq. 5.21) that we
need to determine

Υi(Φ,ψ; ζ) = Φi − ζψ̄ī, Ῠ(Φ,ψ; ζ) = Φ̄ī +
1

ζ
ψi; (5.23)

and

Υ̃i(ζ) = ζ
∂f

∂Υi
= ζῨi = ψi + ζΦ̄ī. (5.24)

With Φ ≡ z, Ψ ≡ u this matches the results from chapter 4.

5.2.2 M = CP n

We consider the projective sigma model on the cotangent bundle of CP n, i.e. we take the
projective superspace Lagrangian f to be the Kähler potential of CP n, where the arctic
superfields Υ replaces the coordinates on CP n and Ῠ their complex conjugates:

f(Υi(ζ),Ῠī(ζ)) = a2ln

(
1 +

∑n
j=1 ΥjῨj̄

a2

)
. (5.25)

Here a is a real parameter. Solving the equations of motion for the auxiliary superfields
yields Υ in terms of chiral and complex linear N = 1 superfields [20]:

Υi = Φi + ζ
Σi

1− ζ Φ̄k̄Σk

a2+ΦlΦ̄l̄

. (5.26)

This result has been obtained in [20] by writing down a solution for Υ at Φ = 0 and
rotating this solution to an arbitrary point of CP n = SU(n + 1)/U(n) using its SU(n + 1)
isometry. This is the generalization of the method used in [3] to find Υ for the Eguchi-
Hanson geometry, which is defined on T ∗CP 1; and it also generalizes to arbitrary Hermitian
symmetric spaces M = G/H [23].
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Dualizing the M = CP n model to go from the complex linear coordinate Σ to the chiral
coordinate ψ gives the equations

ψi = −
gij̄Σ̄

j̄

1− gkl̄Σ
kΣ̄l̄

a2

, ψ̄ī = −
gījΣ

j

1− gkl̄Σ
kΣ̄l̄

a2

; (5.27)

which have to be solved for the old coordinates Σ, Σ̄ in terms of ψ, ψ̄. Here gij̄ is the
Fubini-Study metric on CP n

gij̄ =
a2δij

a2 + ΦkΦ̄k̄
− a2Φ̄īΦj

(a2 + ΦlΦ̄l̄)2
(5.28)

and gij̄ its inverse. We find the following solution:

Σi = −
2gij̄ψ̄j̄

1 +

√
1 + 4

gkl̄ψkψ̄l̄

a2

, Σ̄ī = − 2gījψj

1 +

√
1 + 4

gkl̄ψkψ̄l̄

a2

. (5.29)

Plugging this into 5.26 gives the arctic superfields Υ in terms of chiral N = 1 superfields
Φ and ψ which are coordinates on the base space M = CP n and on the fibers of T ∗M
respectively:

Υi = Φi − ζ
2ψ̄j̄g

ij̄

1 +

√
1 + 4

gkl̄ψkψ̄l̄

a2 + 2ζ gpq̄Φ̄pψ̄q̄

a2+ΦmΦ̄m̄

. (5.30)

Together with

Υ̃i = ζ
∂f

∂Υi
=

ζῨi

1 + ΥjῨj̄

a2

, (5.31)

this is all the information we need to use the methods from chapter 4 to determine the
generalized Kähler potential for T ∗CP n.

For n = 1, gΦΦ̄ = a4

(a2+ΦΦ̄)2 and if we set a = 1, then 5.30 reduces to the result that we

obtained earlier from [3] for the Eguchi-Hanson metric (see equation 4.22), where z ≡ Φ and
u ≡ ψ.
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Chapter 6

Discussion

The Eguchi-Hanson metric lives on the cotangent bundle of CP 1. The method used in [3]
to determine the arctic superfields Υ(z,u; ζ), Υ̃(z,u; ζ) using the SU(2)-isometry of the total
space generalizes to the hyperkähler structure defined on T ∗CP n−1 with its SU(n)-isometry
([18],[19]). Generally, projective superspace can be used to find hyperkähler metrics on
the cotangent bundles of Kähler manifolds. In order to use this in practice, however, the
equations of motion for an infinite tower of unconstrained auxiliary N = 1 superfields have
to be solved. There is an increasing number of examples, most notably among Hermitian
symmetric spaces, where this problem has been solved ([20],[21]). For these manifolds, we
thus have the decomposition of the N = 2 arctic superfields Υ, Υ̃ in terms of their N = 1
components (z,u) and are able to apply the methods developed in this paper to find their
generalized Kähler potentials. Having whole classes of manifolds available for our analysis,
one could try to find more general statements about the generalized Kähler potential in the
case of hyperkähler manifolds.

The Eguchi-Hanson geometry is one of the hyperkähler manifolds that can be obtained
from the generalized Legendre transform construction in [2] (generalized T-duality). The
manifolds stemming from that construction are 4n-dimensional hyperkähler manifolds ad-
mitting n commuting tri-holomorphic killing vectors. They are called toric hyperkähler
manifolds and have been classified in [24]. It should be possible to determine the relevant
coordinates Υ(z,u; ζ) and Υ̃(z,u; ζ) for toric hyperkähler manifolds. For four-dimensional
toric hyperkähler manifolds, [11] gives a formula for the generalized Kähler potential as a
certain threefold Legendre transform in the special case ζζ̄ = 1. One could compare this
construction with our results at least for the examples given in this paper or try to relate
the two methods in general for four-dimensional toric hyperkähler manifolds. As a further
explicit example, one could for instance consider the Taub-NUT geometry and determine its
generalized Kähler potential.

The generalized Kähler potential for the Eguchi-Hanson geometry can also be obtained
from a generalized quotient of Euclidean 8-dimensional space by a U(1)-isometry and in this

37



setting turns out to be exactly 4.26 as well [12].
The relation between the coordinates xL/R, yL/R and Υ, Υ̃ has been obtained in this

paper from a purely differential geometric approach. xL/R, yL/R describe left- and right-
semichiral superfields in 2D N = (2,2) sigma models. For a target space that is hyperkähler,
these models admit N = (4,4) supersymmetry. The coordinates Υ(ζ), Υ̃(ζ) however describe
arctic superfields in 4D N = 2 sigma models in projective superspace. The field theoretical
interpretation and understanding of this relation between 4D N = 2 models and the 2D
N = (4,4) models remains an open problem.
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