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Abstract of the Dissertation 

Genome-wide Analysis of Chromatin Binding Proteins in D. melanogaster and C. elegans  

By 

Xin Feng 

Doctor of Philosophy 

In 

Biomedical Engineering 

Stony Brook University 

2011 

The mechanisms of regulating the translation of information encoded in DNA into gene 

expression have been intensively investigated since last century. A large portion of the efforts 

concentrate on characterizing the proteins that bind to specific chromatin or DNA regions. These 

proteins play important roles in the regulating hierarchy. Until the beginning of the 21st century, 

studies probing these chromatin binding proteins are generally conducted at the scale of a single 

gene or a limited region of the whole genome. The recent advancement in next-generation 

sequencing has provided a revolutionary method named as ChIP-seq that accurately generates 

genome-wide profiles of chromatin binding proteins. The modENCODE project has generated 

genome wide protein binding sites for a large number of chromatin binding proteins of model 

organisms D.melanogaster and C.elegans. It is thus possible to investigate the spatial distribution 

of these proteins at the genome-scale. To achieve this goal, an algorithm is needed to find protein 

binding sites across the genome. Although many existing algorithms suffice the basic need, none 

of them can resolve binding sites that stay closely to each other and does not sacrifice other 

desired properties such as specificity of the algorithm. 

In this thesis, I present my work in designing a ChIP-seq peak calling algorithm called 

PeakRanger which addresses the above-mentioned concerns. PeakRanger, along with other 

accessory computing programs are used to analyze the datasets generated by the modENCODE 

project. With these tools, genome-wide binding sites of a large selection of chromatin binding 

proteins are generated for both D.melanogaster and C.elegans. The distributions of 

D.melanogaster insulator binding proteins were analyzed in details, showing their global 

correlation with gene expression regulation. The properties of binding sites that stay closely to 

each other are also characterized, which is the first report of doublet binding sites of 

D.melanogaster. It is shown that doublet binding sites are preferred regions for histone markers 

of promoters.   
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Chapter 1    Introduction 

1.1 The chromatin biology 

To transcribe and translate the genetic information properly, a regulatory system is built-in 

for every living organism. In eukaryotes such as human, fly and worm, a major portion of this 

regulatory system is consisted of the proteins that interact with DNA. Histones and transcription 

factors are the two main classes of proteins having this regulatory role. In particular, histones are 

involved in regulation of the chromatin structure. And transcription initiation requires a suitable 

chromatin structure. Transcription factors control the initiation of transcription and they decide 

the levels of transcription. Histones and transcription factors also interact, adding an additional 

level of regulation. 

1.1.1 DNA is packed into chromatin  

 DNA is usually packed into a much compact structure called chromatin[1]. There are both 

structural and functional reasons for this tight structure. By folding a long DNA sequence into 

chromatin, the space required to store the same amount of information is much less. It is 

estimated that the compression ratio can be 10,000[2]. The tight three-dimensional (3D) 

arrangement of chromatin also makes it easier for cis-regulatory elements, which are functional 

DNA sequence segments, to interact with each other. 

Nucleosome is the basic building unit for eukaryotes chromatin[3]. A nucleosome is a 

protein-DNA complex that organizes a DNA strand into a group of smaller pieces of sequences. 

Each nucleosome wraps about two rounds of DNA sequences with an appropriate length of 146 

base pairs[3]. The proteins involved in nucleosome building are generally referred as histones. 

Histone H2.A, H2.B, H3 and H4 form the central complex of nucleosome. With the help of 

histone H1 and other auxiliary proteins, nucleosomes are then further packed to form the 

chromosome. 

1.1.2 The two environments of chromatin: euchromatin and heterochromatin 

Two distinct types of chromatin exist in the cells: the euchromatin and the heterochromatin 

[4-6]. Euchromatin is less packed in structure, making it easier to access the genes. Euchromatin 

is thus associated with active gene transcription and is commonly referred as “open” 

chromatin[4]. On the contrary, heterochromatin is tightly condensed, making access to genes 

difficult[5]. Thus heterochromatin is considered “closed” regions. There are two types of 

heterochromatin: constitutive and facultative[7]. Constitutive heterochromatin remains packed 

all the time, which is usually found around highly repetitive DNA regions and centromere[8, 9]. 

Facultative heterochromatin is instead dynamic and can be unpacked as response to regulatory 

signals[7]. An important feature of heterochromatin is its ability to spread genomic regions and 

repress genes it encountered, causing sequence-independent repression[10]. A built-in 

mechanism to control the spreading of heterochromatin is through insulators and the proteins that 

bind to them, which is discussed later. 
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1.1.3 Histone modifications establish chromatin environments and regulate 

transcriptions 

 The partitioning of chromatin into two different environments is the functional 

consequence of histone modifications[3, 11]. Histone modification refers the changes to the 

amino-acid residues of histones[3, 11]. Commonly seen modifications include but are not limited 

to methylation, acetylation and de-acetylation, phosphorylation and ubiquitination[11]. Among 

them, methylation and acetylation are now being intensively studied. Histone modifications 

happen to both canonical histones and histone variants. Increasing evidences show that the 

modifications to histones regulate the interactions of histones to other proteins and thus regulate 

the structure of chromatin[3]. These modifications are selectively enriched in both the 

euchromatin and heterochromatin domains of chromatins and thus regulate the transcription of 

genes[3, 11]. The ability of histone modification to alter the structure of chromatin includes two 

aspects: the interruption of the interaction between DNA and histones; And the recruitment of 

additional proteins which confers further effects on chromatin structure[11]. Acetylation is 

considered to have the most potential to interrupt the interactions between DNA and histones 

since it neutralizes the charges of lysines[12]. A number of proteins are found to be recruited by 

a specific type of modified residues: The polycomb family protein Pc2 of the polycomb-

repressive-complex 1 (PRC1) is recruited by tri-methylation of H3K27 (H3K27Me3), and then 

other subunits of PRC1 will contribute to the ubiquitination of H2A tails to fully repress the 

genes[13]. 

Methylation is the process of adding a methyl group into the long tails of histone amino-

acid residues[11]. The phenomena of histone methylation was found in mid-20
th

 century and 

histone methylation has been found to associate with transcription in 1999[14, 15]. Lysines of 

histones are shown to be frequently marked by methylation[2]. It is also discovered that the 4
th

, 

9
th

 and 27
th

 lysine of core histone H3 and the 20
th

 lysine of H4 are common places for histone 

methylation[2, 11]. Unlike the acetylation process, a single histone can be mono-methylated, as 

well as di- and tri-methylated, thus adding an additional regulatory mechanism.[11] 

 
 

Activation H3K4Me1 H3K4Me3 H3K9Me1 H3K9Ac 

Repression H3K9Me2 H3K9Me3 H3K27Me3 

Table 1-1 Typical histone modifications and their functions 

 

Different degrees of histone methylation at the 4
th

 lysine have been shown to be concrete 

markers of euchromatin[3, 16-18]. And the methylation of the 27
th 

lysine proves to be associated 

with hetrochromatin[3, 16-18]. These methylation marks co-exist with many other histone 

modification marks and together they mark various cis-regulatory elements. One recent study has 

determined the correlation between the enhancers and mono- and di-methylation of the 4
th

 lysine 

of histone H3 (H3K4Me1 and H3K4Me2)[18]. In the reported study, the binding sites of 

p300/CBP, a family of histone acetyl-transferase (HAT, discussed below), are found to co-

localize with H3K4Me1, H3K4Me2 and the acetylation of the 27
th

 lysine of histone H3 

(H3K27Ac). Since p300/CBP possesses the role of HAT[19], it is considered that they 

selectively bind to putative enhancers. The co-existing marks of various histone methylations 

thus indicate that they might be predictive marks for enhancers and thus actively transcribed 

genes. The relationship between histone methylation and enhancers is further supported in 
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another study which uses DNase I hypersensitivity assays to predict enhancers. The study 

confirms the link between H3K4Me1, H3K4Me2 and enhancers and further argues that the 

mono-methylation of the 9
th

 lysine of histone H3 (H3K9Me1) is also linked to enhancer [16, 20]. 

Connection between histone methylation and promoters is also supported[18]. In particular, 

H3K4Me3 has been shown to associate with active promoters[18].  

Acetylation adds an acetyl group into the lysine residue of histone tails [3, 16-18]. 

Acetylation has been correlated to gene transcription and is among the most studied topic of 

histone modifications[21]. The major effect of acetylation is believed to be the removal of the 

electronic charge of the amid-acid tails which results a loose interaction of histones to DNA, thus 

granting accessibility to the packed DNA sequence.  

The process of acetylation is carried out by histone acetyl-transferase (HAT). The evidence 

of the link between acetylation and gene transcription is given by the HAT property of Gcn5, a 

determined transcription regulator conserved in both human and yeast[22]. The GNAT family, 

consisted of variants of Gcn5 and other related transcription factors, has been shown to associate 

with different stages of transcription[22]. Another HAT family that is much more famous than 

GNAT is the p300 and CBP family. p300/CBP has been shown to localize with active enhancers 

in both human and D.melanogaster [18, 23]. The role of p300/CBP as HAT and their links with 

enhancers support that acetylation and HAT is deeply involved in gene regulation. The 

acetylation of the 14
th

 and 18
th

 lysine of histone H3 (H3K14Ac and H3K18Ac) is shown to be 

present at a set of enhancers in CD4
+ 

cell lines[24, 25]. It is also shown that H3K27Ac involves 

in cell differentiation. A study in human embryonic stem cells (ESC) indicates that H3K27Ac 

and H3K4Me1 together mark active promoters but inactive promoters are instead marked by 

H3K27Me3 and H3K4Me1[26, 27]. In the stage of differentiation, some of these inactive genes 

are turned on through a process in which H3K27Me3 is replaced with H3K27Ac. 
  
  

In contrary to acetylation and HAT, Deacetylation and histone deacetylases (HDAC) is 

thought to serve as a layer to repress the activity of transcription[2]. A major mechanism through 

which the repression is conferred is the formation of heterochromatin after deacetylation of 

histones[28]. And like HAT, HDAC plays important roles in this process. Although it is known 

that the formation of condensed chromatin can be disrupted if the activity of HDAC is 

inhibited[28], it is still not clear how the instructions of deacytlating a segment of chromatin is 

given.  

Similar with HAT, HDAC is a large family of proteins. In D.melanogaster, five HDACs 

have been identified: HDAC3,HDAC6,  HDACX(also known as HDAC11) which has been 

shown to correlate with promoters, and HDAC1(also known as Rpd3) and HDAC4a, which has 

been found to associate with heterochromatin, as well as promoters[29]. 

Other than the methylation, acetylation and deacetylation described earlier, other types of 

histone modifications also exist. This includes histone phosphorylation[30] and 

ubiquitination[31]. The knowledge about these histone modifications is relatively limited. 

1.2 The role of transcription factors in regulating transcription 

 Transcription initiation requires an open chromatin so that various cis-regulatory elements 

such as promoters can be accessed[11]. Histone modification plays key roles in maintaining the 

open chromatin[2, 11]. The binding of PolII is initiated by binding of other proteins to the 

promoters of genes[32]. These proteins, along with other ones that bind to specific sequences in 

promoters are named transcription factors. Promoters can be conceptually divided into two parts: 
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core promoters and other functional elements[32]. The most examined core promoter is TATA 

box[33], which is about 30bp upstream of transcription start site (TSS).  At the time of 

transcription initiation, TATA box is bound by TATA box binding protein (TBP), which is part 

of transcription factor II D (TFIID). Following the binding of TFIID, TFIIB, TFIIE, TFIIF, 

TFIIH and PolII is recruited to form the pre-initiation complex (PIC)[32]. Binding of PolII to 

promoters occur ubiquitously across the genome and the basal level of transcription is very 

low[32]. To facilitate the level of transcription, other transcription factors referred as 

transcription activators are needed[32]. Proteins bind to proximity of promoters to support the 

transcription machinery of PolII complex[34]. Proteins also bind to enhancers to further boost 

the transcription activity of genes[34]. 

1.2.1 Regulation through binding to enhancers 

Enhancers are another class of cis-regulatory elements of the genome[35]. Enhancers 

regulate their target promoters to control gene expressions[35]. Enhancers contain binding sites 

for transcription factors which regulate the target genes[35]. Enhancers are distal to promoters. It 

has been reported that enhancers can even act on promoters not on the same chromosome[36]. 

There may be two explanations for the distal effect of enhancers. Since DNA usually exists as a 

compact 3D structure-chromatin, enhancers located in different chromosomes may actually be 

located near to the target promoters[37]. Enhancers may also help forming loop structures in 

chromatin so that they can reach promoters hundreds of kilo base pairs away[35, 36]. 

A major role of enhancer binding proteins is to recruit enzymes and other chromatin 

remodelers to change the histones and thus the structures of chromatin to make the DNA 

accessible to other regulators[35]. A recent study conducted in prostate cancer cell lines 

discovered a set of enhancers that respond to androgen stimulation[17]. The discovered 

enhancers are initially free of androgen receptor and FOXA1 binding. The sustained stimulation 

displaced the nucleosome at the enhancer and its location is later bound by FOXA1. It is found 

that the characteristic feature of these enhancers is the flanking histone modifications H3K4Me2 

and histone variants H2A.Z. This feature is then used to predict enhancers with similar properties 

and generated a comprehensive identification of these enhancers. 

A famous protein that binds to enhancer is CBP/p300[18]. CBP/p300 possesses the 

property of histone acetylation transferase and its presence helps maintain the open structure of 

chromatin. 

It is still not clear how enhancers find the target promoters[37, 38]. Once the connection is 

established between enhancer and promoter, the two regulatory elements interact through the 

proteins that bind to them[38].  

1.2.2 Insulators and insulator binding proteins 

Since enhancers control promoters in a way independent of the distance and orientation, 

other regulatory mechanism must exist so that gene expression maintains precision. One such 

control is through insulator, which binds to a class of transcription factors called insulator 

binding proteins (IBP). A number of IBP has been identified. In D.melanogaster, five IBPs have 

been identified: CCCTC-binding factor (CTCF), Suppressor of hairy wing (Su(Hw)), CP190, 

BEAF and Mod(mdg4)[37]. Among these five IBPs, CTCF is the only IBP that has homologue 

in human [39], which makes it of particular interest. In fact, CTCF has been implied to have 

multiple roles[40]. 
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Insulator and the proteins binding to them perform two basic functions: barriers to stop the 

spreading of heterochromatin and enhancer-blockers to prevent irrelevant regulation of 

enhancers to promoters[37].  

1.2.2.1 The barrier role of insulators 

This set of insulators was originally identified at the boundaries between euchromatin and 

heterochromatin[41]. In the β-globin locus of chicken cells, the spread of adjacent 

hetrochromatin domain is prevented by the HS4 insulator, which is bound by CTCF[41]. In 

D.melanogaster, CTCF is also found to have the role as a barrier[41]. 

1.2.2.2 The enhancer-blocker role of insulators 

Many enhancer-blockers have been identified in D.melanogaster[37]. The decoy model is 

proposed to explain the way enhancer-blockers work[37]. Enhancer may interact with the 

enhancer-blocker which serves as the decoy. This decoy interaction may thus prevent the 

unwanted interactions between enhancers and promoters. Another model to explain the effects of 

enhancer-blocker is that insulators collaborate with each other and other structures of the 

chromatin to form loop structures[37]. Enhancers thus can only interact with promoters within 

the same loop. 

1.3 Comprehensive catalogue of histone modifications and transcription 

factor binding sites 

As discussed earlier, histones and transcription factors are conserved regulators of gene 

transcriptions. The close collaboration between them, along with other regulatory systems 

guarantees the perfect amount of proteins is produced with a perfect timing. It is thus expected 

that malfunctioning of these two important classes of proteins may cause severe human diseases. 

It has been shown that more than one hundred of transcription factors are directly linked to 

diseases[42]. Given that around 2600 transcription factors have been found in human cells[43], 

the number of disease-responsible transcription factors will undoubtedly increase. On the side of 

histones, it has been recently found histone methylation transferase MLL2 mutations cause 

Kabuki syndrome[44]. 

Given their indispensable roles, it is important to figure out how transcription factors and 

histone modifications choose the binding sites or enriched regions. Until the beginning of 21th 

century, the studies on transcription factors and histone modifications are generally conducted at 

the level of genes or a very limited genomic region. These researches prove fruitful. However, 

many of the previously obtained conclusions are subject to questioning when put into the context 

of the whole genome. One such example is the determination of the structure of core promoter. 

Classically, TATA-box is considered the only core element that is capable of transcription 

initiation, however, recent analysis has indicated that a large portion of promoters in human, 

D.melanogaster and A.thaliana are actually free of TATA box[45-49]. 

It has been found that the typical range of the number of binding sites for a given 

transcription factor is up to ten thousands in the genome[38]. And it is also found that almost 

every transcription factor binds to the promoter region of genes[38]. An immediate question to 

ask is how the specificity of transcription regulation is achieved if transcription factors bind 

essentially to every possible place. Two hypotheses exist for this question: through the 
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combinatorial binding of a family of transcription factors or through the combinatorial marks of 

different histone modifications or the mixture of them both. 

To test the two hypotheses, the comprehensive map of transcription factor binding and 

histone modifications are needed. Although project such as ENCODE[50] and 

modENCODE[51] is generating parts of this global map, individual experiment may need more 

customized profiles for a set of factors-of-interest. Once the dataset is comprehensive enough, 

one can ask if any given combination of transcription factors and histone marks can reliably 

predict the outcome of treatment (gene down-regulation or up-regulation). Recent technology 

advancement in sequencing greatly helps the identification of the comprehensive catalogue of 

these genome-wide profiles for transcription factors and histone modifications. 

1.3.1 ChIP-Chip and ChIP-Seq 

Chromatin immunoprecipitation (ChIP) is a technique that selectively extracts proteins of 

interest and the sequences bound by them from cells[52]. A typical workflow of ChIP starts with 

cross-linking proteins to DNA in a cell lysate. The chromatin is then sheared into a cohort of 

pieces. A specific antibody is then applied to precipitate the proteins of interest. The 

immunoprecipitated complex of proteins and their cross-linked DNA then undergoes a process to 

remove the proteins, leaving only pure DNA sequences bound by the proteins of interest.  The 

purified DNA sequences can be finally determined by various techniques such as PCR, 

microarray hybridization (ChIP-Chip) and next-generation sequencing (ChIP-Seq). 

ChIP-Chip is the combination of ChIP and microarray (Chip)[53]. A microarray contains a 

large number DNA segments which are identical to the reference genome of the species of 

interest.  By hybridizing the ChIPed DNA sequences to the microarray, the binding sites of 

proteins can be decided. 

Instead of hybridizing the purified DNA to a set of fixed reference sequences in chips, 

these DNA of interest can also be directly sequenced using the high-throughput next-generation 

sequencing technology (seq)[54, 55]. Compared to ChIP-Chip, ChIP-Seq has much better 

resolution[54]. ChIP-Chip suffers from the noise during hybridization to the microarray[54]. 

ChIP-Chip also relies on the tiled sequences of the microarray, limiting its genome coverage[54]. 

The major dis-advantage of ChIP-Seq is its high cost[54]. However, the cost is decreasing 

rapidly with higher through-put of newer sequencing platforms and technologies[54].  Besides, 

the cost can also be tuned by trading-off the sensitivity. With lower sequenced reads, the cost is 

lower at the cost of lower sensitivity due to lower genome coverage. Another limitation of ChIP-

Seq is the availability of quality antibodies to the proteins of interest[54]. In case a low quality 

antibody is used, the proteins immunoprecipitated could be only fractions of the actual binding 

proteins.  

A typical ChIP-Seq experiment usually consists of two sets of sub-experiment: the 

sequencing of the ChIPed regions and the sequencing of the genomic background as the control. 

The utility of the control experiment is to remove the noise generated during the shearing 

process. Since portions of DNA are packed with histones, open chromatin regions are likely to 

be fragmented and result higher sequenced reads. Repetitive regions of the genome are also 

likely to be enriched due to the incomplete number of repeat pieces in the reference genome[54]. 

It is thus possible that the dataset generated by the pre-immunoprecipitation also contains peaks 

that resemble a true binding site. By comparing the ChIP-Seq dataset with the control dataset, 

computer software could better recognize suspicious binding sites and avoid false positives. 



7 

 

ChIP-Seq can be used to identify the binding sites of transcription factors and also the 

enriched regions for histone modifications. The major difference among these two types of 

experiments is the antibody used to perform the ChIP process. 

Due to the superior performance of ChIP-Seq and its ability to profile the genome-scale 

localization of transcription binding sites, it is now the standard tool to probe the transcription 

factor regulatory system. Another important tool that directly measures the levels of 

transcriptions is RNA-Seq[55]. RNA-Seq can indirectly sequence the sequence of transcripts and 

thus gives the genome-wide transcription levels. 

1.3.2 The typical data processing flow of ChIP-Seq data 

The processing flow of ChIP-Seq data can be divided into four parts: base-calling, reads-

alignment, peak-calling and downstream integrative analysis. Each part of the processing flow 

involves a separate set of algorithms and software which differ significantly in design. Data 

processing before the part of integrative analysis is now relatively routine but the integrative 

analysis remains flexible with no routines to follow.  

1.3.2.1 Raw reads alignment using aligners 

The output of base callers is a nucleotide sequence, the raw read. A single ChIP-Seq 

experiment usually generates millions of raw reads. Raw reads must first be annotated with the 

exact location and strand orientation relative to the reference genome. This stage is thus referred 

as raw reads alignment. 

The basic idea shared by all aligners is to look up a raw read in the dictionary, which is the 

reference genome. Based on how the dictionary is represented in these aligners, they can be 

classified into two generations. The first generation aligners are usually referred as hash-table-

based aligners, because they all use hash table to store the information of the reference genome. 

A hash table is a data structure used to represent the one-to-one or one-to-many relationship. 

When aligner processes a read, it compares the fed raw reads against the hash table and searches 

for any match. The raw read is transformed to a key using an aligner-specific hashing function, 

which takes time to finish. Once the key is generated, the match can be found immediately if 

such a match exists. Aligners falling into this category includes: Eland which is shipped with the 

Illumina sequencer, ZOOM[56], MAQ[57], SOAP[58], RMAP[59], and SHRiMP[60].  

The second generation aligners use burrows-wheeler transform (BWT) to build the look-up 

table in more space efficient way. BWT was originally developed for text compression. The 

major reason that BWT is preferred over hash table is its much lower memory foot-print. A 

human reference genome needs only 2.7Gb to store when transformed using BWT and 

compressed accordingly. Among this category of aligners are Bowtie[61], BWA[62] and 

SOAPV2[63]. Bowtie and BWA use essentially the same BWT indexing algorithms, varying 

mainly in how the index is searched. 

BWT based aligners are usually preferred to the hash table based aligners in the application 

of ChIP-Seq. They are generally much faster than their processors. Bowtie is up to hundreds of 

times faster than SOAP and thirty-five times faster than MAQ[61]. BWT based aligners also 

have significant advantages in memory consumptions, primarily due to the benefit of using BWT 

to index the reference genome. Bowtie, however, suffers from loss of sensitivities compared to 

MAQ. MAQ is thus preferred in the applications of single nucleotide polymorphism (SNP) 
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finding. For ChIP-Seq, with increased sequencing depth, Bowtie is good for most datasets given 

its fastest running speed. 

1.3.2.2 Finding the enriched regions of ChIP-Seq dataset with peak callers 

With aligned reads generated by raw reads aligners, the next step is to find the enriched 

regions, or peaks of the dataset. The peaks should correspond to the actual binding locations of 

transcription factors, or the specifically targeted genomic regions by other proteins such as 

histones or PolII. More and more ChIP-Seq experiments now also include an additional control 

experiment in which the genomic background is also sequenced. An algorithm should be able to 

find in the treatment dataset the enriched regions of aligned reads, relative the same region in the 

control dataset. 

Before peak calling, a genome-scale profile of the aligned reads is constructed. Since reads 

are from both the positive and negative strands, each of the two strands can have an individual 

profile. The two sets of profiles can then be combined to get a single profile by shifting the 

profiles of each strand with the length estimated from the dataset[64]. Another way to build the 

profile is to extend the aligned reads with a fixed length close to the size of the fragment of the 

library and then combine the reads on both strands to obtain a single profile[65]. The shifting 

method is expected to be more accurate in terms of its ability to identify the precise binding sites 

of transcription factors since it utilizes the information on both strands. However, the estimating 

of the shift size remains a challenging task. The benefits of shifting method will also degrade 

when the actual enriched regions span over a large segment due to the complexities of topologies 

of the region. In contrast, the extending method is faster since it does not estimate the shift length 

but suffers from the relatively less accuracies. 

With the genome-wide reads profile, a straight forward way to find the enriched regions is 

to measure the enrichment ratio of the reads in the treatment over the reads in the control. Both 

the ratio and the absolute reads should be considered when evaluating the significance of 

enrichment. A pair of region with 10 and 1 reads respectively is not as significant as the pair of 

100 and 10. A realistic way to model the enrichment is through the binomial distribution. In 

particular, the reads of the candidate region in the treatment dataset can be modeled as the total 

number of trials and reads in the control as the number of successes. The significance of the 

enrichment can be measure as the probability of observing equal or less number of control reads. 

With this binomial distribution model, a paired reads of 10 and 1 obtains the significance of 1e
-2

 

while the pair of 100 and 10 gets 1e
-17

. Other statistical distributions can also be used. A 

modified Poisson distribution is used to model the regional enrichment in ChIP-Seq dataset by 

peak caller MACS[66]. Another strategy is to measure the similarity of reads profile between the 

positive and negative strands. It is observed that the distribution of aligned reads around the 

binding sites show a bi-modal distribution in the positive and negative strands[64]. By 

calculating the correlation between the two strands, the binding sites can be found by looking for 

the position of the local maximum of correlations. Both the enrichment ratio and the correlation 

maximum method work well in identifying the binding sites of transcription factors. However, 

the correlation method is not appropriate when the enriched regions are broadly stretched. 

Histone modification datasets are usually of such character and cannot be processed in this way. 

In fact, it does not make sense to find the sharp binding sites in these datasets. The similar case 

also happened to PolII datasets where broad and sharp enriched regions interleave with each 

other. 
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An important aspect of a peak caller is the way it determines the significance of the 

discovered regions. Ideally, a peak caller should be able to assess the likelihood that the 

discovered enriched regions represent true binding sites or histone modification marks. However, 

current peak callers only assign a value of statistical significance, usually in the form of p value. 

There have been relatively few reports on how the two different kinds of measures agree. 

Fortunately, p values are so far working well. In addition to the assignment of p values, false 

discovery rate (FDR) serves as an additional control of the quality of called peaks. In statistical 

distribution based methods, FDR estimation is usually based on the Bonferroni correction, which 

controls the added errors when multiple statistical tests are considered simultaneously. Due to the 

uncertainty of connection between biological significance and statistical significance, the 

performance evaluation of peak callers is now only empirical. Two major benchmarks for peak 

callers are its ability to discover biologically validated enriched regions and the distance between 

the called peaks and the occurrence of motifs. qPCR validation can be performed for a set of 

binding sites and test the percentage of qPCR validated sites out of the total called peaks[54]. For 

transcription factors with motifs known in prior, one can search the sequences of the binding 

sites and measure the distance between the center of binding sites and the center of the motifs. 

Implementation of peak callers is also of great importance. ChIP-Seq experiments generate 

datasets at the scale of gigabytes and thus challenge the efficiency of a peak caller. The 

implementation should be a good compromise of memory consumption and running speed. 

Given that most workstation computers now have powerful central processing unit (CPU) with 

multiple processing cores, a peak caller should be able to run in parallel mode to fully utilize the 

powerful CPUs. Unfortunately, only a few existing peak callers support parallel processing. 

Another issue related the large size of input files is the efficiency of data loading module of the 

peak caller. The speed of transferring data from computer hard drives to memories takes much 

more time than from memories to CPUs. It is estimated that the data loading costs more than 

50% of the total running time. To solve this problem, the C or C-plus-plus (C++) language is 

preferred over scripting languages such as R. C/C++ has proven record of excellent performance 

over many other programming languages, at the price of more difficulties in maintaining the 

source codes. 

1.3.2.3 Downstream analysis after peak calling 

The most challenging part of interpreting the ChIP-Seq results usually happens after the 

peak calling step. To make sense of the peak calling results, the first step usually involves direct 

visualization of the called peaks aligned to the reads profile and genome annotations. This step 

serves as a naive but effective way to assess the overall quality of called peaks. By checking the 

localization of called peaks with annotated genomic regions such as transcription start sites, the 

quality of called peaks can be roughly estimated. To further analyze the dataset, multiple extra 

datasets are needed. It is a common practice to overlay genome-wide profiles of a set of 

transcription factors and histone modifications and analyze the overlapped regions. An 

aggregating profile plot can be generated by averaging the reads count of one ChIP-Seq dataset 

over a set of specific regions in another. For example, the aggregating profile of a transcription 

factor over annotated promoters will show a peak in the center of promoters if it preferably binds 

to promoters. Motif-discovery analysis can also be conducted using the sequences of discovered 

binding sites. A motif is a recurring pattern of DNA sequence that directs the binding of proteins. 

Established motif-finder such as MEME[67] can be applied to search for a consensus sequence 
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out of a group of sequences extracted from the called peaks. A motif-scanner such as MAST[68] 

is then able to scan the whole genome for occurrences of this consensus motif. Another useful 

analysis is to search for differentially regulated genes. This type of analysis usually requires 

additional information of genome-wide transcription profiles. A gene with upstream binding sites 

can be compared with the one in the control for any changes of transcription levels. Other types 

of analysis are also possible and the key to success is close collaboration between 

bioinformaticians and wet-lab researchers. 

1.4 The modENCODE project 

As shown by the discussions presented earlier in this introduction, fully decoding the 

genome is requires genome-wide knowledge about transcription factors, histones and many other 

proteins which together regulate the activities of genes by interacting with various functional 

elements of DNA. This global regulatory map is still missing.  

To facilitate the discovery of the regulatory map in human, the National Human Genome 

Research Institute (NHGRI) launched the Encyclopedia of DNA Elements (ENCODE) project, 

aiming at determining the regulatory DNA elements in the 1% of human genome[50]. The pilot 

phase of ENCODE finds that the complexity of human genome is far more than what was 

expected. In 2007, as an expansion to the original ENCODE project, the model organism 

ENCODE (modENCODE) project was initiated with a similar aim to annotate the functional 

elements in D.melanogaster and C.elegans[51]. Both of the two model organisms have been 

intensively researched before the modENCODE project. A large number of research tools and 

systems are developed and for the study of biological processes that resemble those in human. 

Besides, the most immediate benefit is that the size of the genomes of both D.melanogaster and 

C.elegans is only thirtieth of human, thus reducing costs significantly. 

1.4.1 Probing the binding profiles of histones and transcription factors 

An immediate goal of the modENCODE project is to generate the genome-scale binding 

sites for a vast number of transcription factors as well as histone modification marks in both 

D.melanogaster and C.elegans. The primary technology used for C.elegans is ChIP-Seq and both 

ChIP-Chip and ChIP-Seq will be used for D.melanogaster[51]. Multiple cell lines or 

developmental stages will be investigated, adding an extra dimension of the datasets. 

1.4.2 Data management and the Data Coordinating Center (DCC) 

The data generated by the modENCODE project is beyond the management capacity of 

any individual laboratories participated in the consortium. To effectively manage these datasets, 

the Data Coordinating Center (DCC), led by Dr. Lincoln Stein, is established. Both the raw and 

processed datasets are accessible through the FTP services provided by DCC[51]. Various 

facilities are also provided to help data visualization and integrative analysis. 

The processing and storage of most ChIP-Seq datasets happens at cluster led by Dr. Robert 

Grossman at University of Illinois at Chicago (UIC).  
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1.5 Unsolved problems  

1.5.1 The genome wide distribution of insulator binding proteins 

Although insulators and insulator binding proteins play important roles in the regulation 

hierarchy, the studies are usually limited to a certain classical loci. The modENCODE project 

has generated the genome scale binding sites of a number of insulator binding proteins in 

D.melanogaster, which provides a great opportunity to investigate the spatial distributions of 

these proteins. It is also interesting to analyze the potential relationship of IBP and genes near to 

the binding sites. In chapter 2, I present my work in analyzing the insulator binding proteins of 

D.melanogaster, with focus on their genome-scale distributions and co-localizations with 

different kinds of chromatin. The relationship between insulator binding proteins and their 

nearby genes are also analyzed. 

1.5.2 Finding the interactions of transcription factor binding sites 

The accurate answer of questions regarding the genome-wide distributions of transcription 

factors or histone marks rely on the accurate identification of enriched regions profiled by ChIP-

Seq. The peak caller which finds all the enriched regions thus plays indispensable roles. A most 

wanted ability of peak caller is to identify interactions of transcription binding sites. Most 

existing peak callers work well when peaks are spaced far from each other but they fail to 

distinguish peaks that stay close to each other. In the modENCODE project, the original peak 

caller could not resolve close peaks. The ideal peak caller should be able to differentiate these 

close peaks and does not sacrifice other performance index, such as specificities. Due to the lack 

of the appropriate tools, these closely spaced peaks have not been systematically investigated. In 

Chapter 3, I present my work in developing the peak caller: PeakRanger. PeakRanger works 

equally well on punctate and broad sites, can resolve closely-spaced peaks, has excellent 

performance, and is easily customized. Benchmarks show that PeakRanger is a well-balanced 

and is particularly suitable for large-scale data processing. Following that, I demonstrate the 

discovery and characterization of a class of special binding sites: doublet peaks. The profile of 

doublet peaks is compared to the regular peaks with highest binding signal. The result shows that 

the identified doublet peaks may be preferred sites for promoters. 

1.5.3 The comprehensive binding sites profile for D.melanogaster and C.elegans 

The ongoing modENCODE project has generated raw datasets for the genome-wide 

binding sites and histone modification profiles for a large number of transcription factors. In 

Chapter 4, my work on the modENCODE project is described. In particular, I show my efforts in 

building the computational pipelines for the raw datasets. The big picture about the ChIP-Seq 

datasets processed for both fly and worm is shown.  

1.5.4 The facility to support large-scale ChIP-Seq data processing 

The datasets generated by the sequencers are of huge volumes. The size of the raw images 

is at the scale of terabytes and aligned reads at the scale of gigabytes. A typical human whole 

genome resequencing analysis generates more than 100Gb data. For ChIP-Seq experiments in 

model organisms such as fly and worm, the generated dataset per run is smaller than whole 

genome resequencing but is still significantly large. With this huge size, most web-lab 

laboratories will soon run out of storage spaces.  
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On the other hand, the huge size of next-generation sequencing dataset is no longer 

suitable for earlier algorithms that are designed for much smaller datasets. To extract the 

information from these datasets, multi-steps are required. This hierarchy thus calls for 

coordination among algorithms involved in analysis. Theoretically good algorithms may not 

work in real worlds without taking care of careful allocations of computing resources. Computer 

memory falls in to this category. In order to process 100Gb data with much less memory, 

bioinformaticians need to apply knowledge of computer system architecture and software 

engineering to implement algorithms and brutal naïve codes will not be able to process data 

efficiently. 

Cloud computing may provide a solution to these problems[69, 70]. Cloud computing 

service provides instant access to computing resources on demand. Commercial cloud computing 

service provides host thousands of computers and organize them as a whole so that computing 

resources on each individual computer can be accessed as if they are a single powerful computer. 

In chapter 3, I demonstrate a peak caller that is capable to utilize the power of cloud computing 

to process huge amounts of datasets.  

The complex structure of algorithms and demanding requirements of software engineering 

make the processing of next-generation sequencing data less accessible to scientists. Without the 

aid from bioinformaticians with significant expertise, interpreting datasets is formidable. And 

this has been a bottleneck of applying next-generation sequencing technology. One effective way 

to cope with the burden of informatics is to encapsulate algorithms and other details of data 

processing into pipelines. By providing researchers the interface and hiding the implementations, 

it allows scientists understand and interpret their datasets much easier without worrying about 

the underlying complex computations. To address this problem, I show in chapter 3 a library that 

is able to perform integrative analysis in a much organized fashion. 
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Chapter 2    Genome-wide analysis of insulator binding proteins 

of D.melanogaster 

2.1 Background 

Insulators are a group of classical regulatory elements which have been implicated in many 

biological functions[71]. Their action is mediated by a group of insulator binding proteins (IBPs) 

which recognize and bind go the insulator in order to mediate their function. Currently, five 

D.melanogaster insulator binding proteins are known:  CTCF, CP190, Su(Hw), BEAF and 

Mod(mdg4) [72]. Over the past decade, IBPs have been found to regulate a large number of 

biological functions. The best characterized of these, CTCF, is thought to act both as a 

transcriptional activator and repressor[73, 74], to mediate X chromosome inactivation[75], and 

may be involved in genetic imprinting at the IGF2/H19 locus [76].  

 Despite emerging insights into the functions of IBP and how they deliver these functions, 

our knowledge is limited to a small number of specific genomic contexts. Although the enhancer 

blocker role of CTCF in the classical Bithorax complex (BX-C) region has been well studied 

with both computational prediction and experimental validation[77], it is still not clear why 

CTCF also play other roles outside of the BX-C region.  

2.2 Identified properties of insulator proteins 

2.2.1 CP190 and CTCF binding sites are enriched of actively transcribed regions 

My first work was directed at correlating the binding of Drosophila IBPs to chromatin 

state. To identify the position of IBPs I used ChIP-chip[53] binding site data from Kevin White's 

group at the University of Chicago. This data set was created by extracting chromatin from S2 

cells and from pooled 0-12 hour embryos, cross-linking and shearing it, then 

immunoprecipitating with antibodies against one of the insulator binding proteins. The 

immunopreciptated chromatin fragments were then labeled, the cross-links reversed, and the 

fragments identified by hybridization to Affymetrix tiling arrays, thereby providing a profile of 

insulator binding sites. 

To relate IBP binding to chromatin state, I took advantage of a recent innovation in 

genome-profiling which uses successive salt-extracted chromatin fractions to distinguish 

transcriptionally active versus inactive chromatin[78]. Chromatins extracted with 80mM NaCl is 

thought to represent transcriptionally active regions, while fractions obtained from 600mM can 

almost quantitatively recover the whole chromatin. The insoluble fractions remaining after 

600mM extraction is also rich in actively transcribed regions. Using tiling arrays the Henikoff 

group has created salt solubility profiles for chromatin isolated from S2 cells, thereby allowing 

the salt solubility profile to be directly compared to IBP binding profiles. I correlated the salt 

extraction profiles with three IBPs:CP190, CTCF and Su(Hw). By averaging the values of salt 

extractions aligned to the center of IBP binding sites, I generated salt extraction profiles for each 

IBP, at the three different salt levels of 80mM, 150mM-600mM and 80-600mM, respectively 

(Figure 2-1). The 80mM extraction covers actively transcribed regions, while the 150-600mM 

and 80-600mM extractions represent transcriptionally inactive regions[78]. For both CP190 and 

CTCF, the profiles are similar for all salt extractions. The 80mM extraction shows a sharp peak 
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within +/- 2kb from the binding sites midpoint, indicating that these two IBP preferably bind to 

regions with active transcription. Correspondingly, the 150-600mM and 80-600 mM extraction 

profiles, which correspond to inactive chromatin, show no such peak, but are instead flat or even 

have a shallow valley centered around the binding site. 

(a)  (b) 
Figure 2-1 The correlation between IBPs and low-salt-soluble regions. (a) Low-salt-soluble 

chromatins correlate with CTCF binding sites, while the higher salt-soluble regions don’t. (b) The 
same correlation pattern was found for CP190. 

 

To exclude the possibility that the correlation of IBP binding peaks with chromatin 

solubility had occurred by chance, I generated a set of random binding sites and repeated the 

same analysis. No correlation with chromatin solubility was identified. Therefore, CP190 and 

CTCF binding sites colocalize with low-salt extractions and thus overlap genomic regions of 

active transcription. 

2.2.2 CP190 and CTCF binding sites correlate with transcription levels 

The previous analysis demonstrates that CP190 and CTCF binding sites are enriched in 

active chromatin, as defined by salt solubility. This suggests that these regions will be 

transcriptionally active. To directly test this, I compared the binding sites densities for 

transcription fragments separated according to their mean expression levels in D.melanogaster 

embryos. The data was obtained from the public website of modENCODE 

(www.modencode.org). I aligned transcription fragments by their transcription start sites (TSS), 

averaged their expression tiling array signal and quantized them into 5 successive 20% quintiles. 

I then plotted the position of the IBP binding site relative to the TSS against the IBP binding 

signal across the five quintiles (Figure 2-2). A similar plot is also produced for the end sites of 

transcription fragments. 

(a)  (b) 



15 

 

Figure 2-2 IBP correlate with gene transcription levels.(a)The higher the transcription levels, 
the more saturated the binding of CTCF. (b) The same pattern was found for CP190. 

 

As expected, we observed similar profiles for CP190 and CTCF. Both of the two IBPs 

have higher binding densities in transcription fragments with a higher mean level of 

transcriptions. The first four quantile groups possess similar shapes of peaks which differ 

primarily in amplitude. For these four quantile groups, CP190 and CTCF have binding density 

peaks near the TSS and transcription end sites. Downstream of the TSS the level of IBP binding 

diminishes. The lowest expression quintile group shows little or no binding of CTCF or CP190. 

2.2.3 Su(Hw) behaves in a reversed style compared with CP190 and CTCF 

Surprisingly, IBP Su(Hw) shows a totally inverse pattern with respect to both salt 

extraction profiles and transcription level profiles (Figure 2-3). With respect to gene expression 

levels (Figure 2-3, left), Su(Hw) shows no peak of binding near the TSS. Instead, it is strongly 

depleted in the bodies of active genes, and has relatively high levels of binding in the upstream 

regions and bodies of inactive genes. With respect to chromatin state, there is no association 

between Su(Hw) binding sites and salt extractability. 

(a)  (b) 
Figure 2-3 Su(Hw) shows a different pattern compared to the other two IBPs.(a)In contrary to 

CTCF and CP190, the higher the expression level, the lower the saturation of Su(Hw) binding 
is.(b)The salt solubility profiles shows that Su(Hw) does not correlate with any salt solubility 

profiles. 

 

To explain these observations, I examined the relative distributions of these three 

IBPs(Figure 2-4). CP190 shows substantial colocalization with CTCF, but neither CP190 nor 

CTCF colocalize with Su(Hw) (data not shown). While 67% of CTCF and 76% of CP190 

binding sites reside within the 2 kb region around the TSS, only 35% of Su(Hw) sites are found 

in this range (Figure 2-4). This supports the concept that CTCF and CP190 are both involved in 

positively regulating the activity of promoters, and possibly interact with each other, while 

Su(Hw) is involved in other aspects of genomic organization. This analysis is consistent with an 

earlier study[79].  
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Figure 2-4 The distribution of the distance from insulators to TSS. The majority of 

CTCF(67%) and CP190(76%) binding sites are located within 2kb of TSS, However, Su(Hw) has 
only 35% of its sites located within this range. 

2.2.4 Genes regulated by insulator binding proteins are functionally distinct 

2.2.4.1 Su(Hw) or CTCF bound genes are shared by CP190 

To distinguish whether different classes of genes are regulated by the three characterized 

IBPs, I defined an IBP-bound gene as one with at least one IBP within 200bp upstream of its 

TSS. I searched for genes using gene annotation files from Flybase [80]. 630, 2466 and 5539 

genes were found for Su(Hw),CTCF and CP190 respectively (Figure 2-5). At the first glance, it 

is surprising to see that genes with Su(Hw) is only one fourth of that with CTCF because Su(Hw) 

has more enriched regions than CTCF on a genome-wide scale. A reasonable explanation is that 

a much larger portion of Su(Hw) enriched regions are outside promoters [81].  

 
Figure 2-5  The Venn diagram of genes bound by each IBP. The number is the total number 

of genes bound by each IBP. Diagrams were drawn in proportion to the size of shared groups. 

 

  

Since IBPs are known to form protein complexes, I expected that the three groups of genes 
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should show large overlaps between each other. I thus analyzed the overlap between these genes. 

Indeed, 80% of genes with Su(Hw) overlap with genes bound by CP190, and 96% CTCF bound 

genes are shared by CP190 bound genes. This supports the proposed role of CP190 as a shared 

recruiter of other IBPs[81]. Although CTCF and Su(Hw) bound genes are shared by CP190, it is 

interesting to note that the overlap between Su(Hw) bound genes and CTCF bound genes is 

much smaller. The overlap of genes between CP190 and the other two IBPs, but not between 

CTCF and Su(Hw) suggests that CTCF and Su(Hw) may regulate different groups of genes, 

along with the coworker CP190. Since 96% CTCF genes are shared by CP190, I only analyze 

genes with overlapping CP190 and CTCF sites in the following sections. 

2.2.4.2 Su(Hw) bound genes were inactive compared to those with CTCF 

 
Figure 2-6 The distribution of expression levels of genes bound by each IBP. 
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To investigate the three groups of genes with each IBP, I first calculated the expression 

values for each gene and performed statistical tests to see if three groups of genes elicit similar 

distribution of expression values (Figure 2-6). In coherence with the overlap of genes, the 

Su(Hw) gene group differs significant from the CTCF group (p < e-085, Wilcoxon rank sum 

test), even though a lot of genes with Su(Hw) are shared by CP190. 

  
Figure 2-7 The histone profiles of the IBP binding regions of genes. 

 
 

To further dissect the difference, genes in two groups were ranked and then assigned to 

three groups representing high, medium and low expression values. In the case of CTCF, the 

bound genes distributes evenly in each bin. However, nearly 80% Su(Hw)-binding genes are 

found in the group of low expression levels. These observations raised a hypothesis that genes 

with CP190 may be functionally heterogeneous, with Su(Hw) and CTCF being the two markers. 

To evaluate the hypothesis, I first asked whether the three groups of genes were actively 

transcribed during the early embryo stages. I expected that genes bound by Su(Hw) should be 

generally inactive compared to genes bound by CTCF since the majority of them exhibited low 

transcription levels. I performed this analysis with two categories of data: H3K4Me3 and 

H3K9Me3. Genes were aligned by TSS and regions within +- 3kb on both sides of TSS were 

sampled. In the profiles of H3K4me3, CTCF bound genes are characterized by a peak centered at 

the TSS, which was absent in the gene group with Su(Hw). Since the peak of H3K4me3 at TSS 

is a positive sign of active genes, this was consistent of the distribution as shown in Figure 2-7. 

For H3K9Me3, since it is correlated with inactive genomic regions, I expected to see a dip 

around TSS and much lower levels of it on the downstream of genes with CTCF. Indeed, all IBP 

bound genes showed a dip centered at TSS and the downstream of genes with CTCF less 

enriched of H3K9Me3 compared to those with Su(Hw). 
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2.2.4.3 PCA analysis revealed different characters of bound genes by CTCF and Su(Hw) 

 I then asked if the genes bound by IBP also elicit characteristic behaviors throughout 

early embryogenesis. To test his possibility I performed principle component analysis (PCA)[82] 

on different groups of genes. The data for analysis was downloaded from the publicly available 

website of modENCODE. The data contains measured mRNA levels on a genome-wide scale of 

D.melanogaster melanogaster. For every 2 hours, data was collected until embryo 12 hour. The 

data thus has 6 stages (0-2hours, 2-4 hours, 4-6 hours, 6-8 hours,8-10 hours, and 10-12 hours) 

and the resulting data matrix is 6x8635 in size. 

 The analysis reveals that the first principle component accounts for 87.2% variance in the 

data and the second one contributes 9% (Table 2-1). Thus, the first two components represent 

more than 96% variance in the date, indicating that the overall shape and trend of the data can be 

best visualized when plotting against the first and second principle components. 

 

Projection 
coefficients 

Principle components 

1 2 3 4 5 6 

E0-2 -0.5152 -0.78132 -0.3414 0.012211 0.086075 -0.00082 

E2-4 -0.28115 -0.13481 0.540978 -0.14156 -0.74258 -0.19664 

E4-6 -0.30937 -0.04166 0.691876 0.094313 0.504784 0.400199 

E6-8 -0.4374 0.320943 -0.01681 0.581169 0.140493 -0.58983 

E8-10 -0.43739 0.391877 -0.31766 0.175621 -0.33959 0.63879 

E10-12 -0.42094 0.336247 -0.10444 -0.77609 0.226508 -0.21265 

% variance 87.2% 9.0% 2.2% 1.1% 0.3% 0.2% 

Table 2-1 PCA results of the development stages data. The 6 stages are treated as variables 
and gene expression levels as observations. The first two components represent more than 96% 
variance in the date  

 

The biological meaning of the first and second principle components can be distilled from 

the projection coefficients. The first principle component can be explained as the negative of 

overall expression value. Consider a gene that is actively expressed in every stage throughout the 

embryo 0-12 hours, its projection on the first component is a small negative value. Alternatively, 

a gene that is repressed should be projected as a large positive value. In this case, I conclude that 

the first principle component represents a weighted average of all developmental stages. The 

second principle component represents genes that are expressed at low levels in the early 

embryo, but become transcriptionally active later. The second principle component is different 

from the first one in that only the first three projection coefficients are negative and the rest three 

are positive. Given a gene that is repressed before  
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Figure 2-8 The plot of data against first two principle components. The overall average 

expression level stands for the first principle component while the increasingly positively 
regulated trend stands for the second one. 

 
The 6th hour and actively transcribed later, it should be mapped to the positive half of the 

second principle component. And thus the more dramatic the change is, the larger the mapped 

positive value is.  

To continue our comparison of CTCF and Su(Hw)-bound genes, I plotted these groups of 

genes against their two principle components (Figure 2-8). For convenience, I plotted the 

negative values of the mapped first principle component against the second principle component 

for all genes. The understanding of the plot can be obtained by checking the four quadrants. 

Genes falling into the top right quadrant (positive component1, positive component2) are 

initially repressed but later up-regulated. Genes falling into the bottom right quadrant (positive 

component1, negative component 2) instead should undergo the opposite developmental pattern. 

Genes with a large positive first component should have overall high expression levels, while 

genes occupying the left two quadrants should have much lower overall expression levels and are 

relatively constant throughout the stages. I found that most Su(Hw)-bound genes are located in 

the center of the graph, corresponding to constitutively low expression genes. Only 5% Su(Hw)-

bound genes are found outside this central area. In contrary, genes bound by CTCF dominate two 

right quadrants. A large portion of these genes showed a very high positive value on the first 

principle component and maintain active transcriptions during all tested embryonic stages. The 

genes located in the right half of the plot undergo dramatic change of expression levels during 

embryonic development. Thus, I conclude that CTCF regulates a differential group of genes 

compared with Su(Hw). 

2.2.4.4 Gene ontology (GO) analysis revealed different functional annotations of genes 

bound by CTCF and Su(Hw) 

To further explore the significance of the differential genes bound by the three IBPs, I 

conducted gene ontology (GO) analysis[83] using these genes. Three major GO categories, 

including molecular functions, cellular components and biological process were analyzed (Table 

2-2). 
GO Terms, Molecular functions Genes with CTCF Genes with Su(Hw) 
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binding  ●  

translation regulator activity  ●  

transcription regulator activity ●  

structural molecule activity ●  

enzyme regulator activity    

catalytic activity    

transporter activity    ● 

molecular transducer activity  ● 

GO Terms, Cellular components Genes with CTCF Genes with Su(Hw) 

macromolecular complex   ●  

organelle part  ●  

organelle  ●  

membrane-enclosed lumen  ●  

cell  ●  

cell part  ●  

envelope  ●  

GO Terms, Biological process Genes with CTCF Genes with Su(Hw) 

biological regulation  ●  

metabolic process  ●  

cellular process  ●  

growth  ●  

gene expression  ●  

localization  ●  

reproduction  ●  

developmental process  ● ● 

establishment of localization  ●  

multicellular organismal process  ● ● 

maintenance of localization   

Table 2-2 Gene ontology analysis for genes bound by CTCF and Su(Hw). Only significant 

GO terms are listed for each category. 

 

I found that although these genes shared some GO terms in the biological process category, 

they were substantially different in molecular functions and cellular components. The most 

significant case is the cellular components category in which CTCF bound genes share no GO 

term with Su(Hw) bound genes. In the molecular function category, CTCF bound genes are 

enriched in the structural molecule activity. Since CTCF is thought to play major roles in 

chromatin organization, this observation is as expected. However, Su(Hw)-bound genes are 

never annotated with this GO term. In the biological process category, I still observed a 

significant discrepancy between genes with CTCF and genes with Su(Hw) for many GO terms. 

Together, the GO analysis shows that CTCF may regulate a group of genes which are 

functionally distinct from those regulated by Su(Hw). 

2.3 Discussions 

In this chapter, the genome-wide analysis of D.melanogaster insulator binding proteins is 

shown. We have confirmed that Su(Hw) serves as an indicator for repressed genes, at the 

genome-scale, which agrees with its roles previously identified in a few loci. The sharing of 

CTCF peaks with CP190 indicates that they are close collaborators. The much larger number of 
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CP190 peaks indicates that it may serve as the factor that first binds to insulators, followed by 

the binding of CTCF. The co-localization of CP190 and CTCF with active chromatins indicates 

that open chromatin may be a requirement for the effects of IBP. Another interesting to note is 

the discrepancy of the genome-wide distributions between CP190/CTCF and Su(Hw). 

CP190/CTCF appears like other putative transcription factors that are primarily enriched at 

promoters. However, Su(Hw) does not show this trend, although it binds to certain promoters. 

This indicates that even for the family of insulator binding proteins, there may be functional 

distinctions.  
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Chapter 3    Building the computational tools for ChIP-Seq 

analysis 

3.1 Building an ultra-fast and multi-purpose peak caller 

3.1.1 Background 

The genome-wide characterization of chromatin protein binding sites and the profiling of 

patterns of histone modification marks are essential for understanding the dynamics of 

chromatin, unraveling the transcriptional regulatory code and probing epigenetic inheritance. The 

main technique for performing this characterization is chromatin immunoprecipitation (ChIP), 

coupled with massively parallel short-read sequencing (seq)[16, 54, 84-86]. Unlike its 

predecessor ChIP-chip [53, 87], ChIP-seq provides improved dynamic range and spatial 

resolution[54]. 

After mapping sequenced ChIP reads to the reference genome, the first critical task of 

ChIP-seq data analysis is to accurately identify the target binding sites or regions enriched in 

histone marks [55]. Since downstream analysis relies heavily on the accurate identification of 

such binding sites or regions, a large number of algorithms have been proposed for peak 

calling[64-66, 85, 88-100].  

Despite the availability of such a large set of peak callers, many of these algorithms have 

disadvantages in real-world settings. Some algorithms have high sensitivity, but call an excessive 

number of false positive peaks due to low specificity. Others have the opposite problem. Another 

limitation of the current generation of peak callers is that many are optimized to detect either 

narrow punctate features, such as those generated by transcription-factor binding site 

experiments, or else optimized to detect broad peaks, such as those characterized by regions of 

modified histones. Hence a ChIP-seq production environment may need to install and maintain 

two different peak calling software packages. Those algorithms that attempt to handle both type 

of peak typically do so at the sacrifice of inter-peak and spatial resolution. The former is the 

ability to distinguish two or more closely-spaced peaks, while the latter is the ability to correctly 

locate the target binding site or histone modification boundaries. Both types of resolution are 

essential for understanding the underlying biology of chromatin dynamics. An example of how 

loss of resolution can affect the interpretation of ChIP-seq data is shown in Figure 3-1. 

Software usability is also an issue. Some otherwise excellent peak callers are difficult to 

use because they require unusual data file formats, run slowly on real-world data sets, or do not 

take advantage of cluster computing. Poor usability can also impede the ability of a researcher to 

integrate the software with other tools in an analytic pipeline. 

Here we present our efforts to address these concerns by creating PeakRanger, a novel 

peak caller that is both accurate and usable. Across a series of six accuracy benchmarks and three 

software usability benchmarks, it compares favorably to 10 other peak callers selected from the 

recent literature. In addition, PeakRanger supports MapReduce[101] based parallel computing in 

a cloud environment, allowing it to scale well to large data sets in high-volume applications. 
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Figure 3-1 The strategy of calling broad regions and resolutive power of peak callers. Some 

peak callers are designed to call surrounding enriched regions instead of summits. This will 
degrade the accuracies of estimating the locations of binding events(summits) and also 
significantly reduce the resolutions. 

 

3.1.2 Algorithm design and implementation 

3.1.2.1 Reads profile building 

The first step of peak calling is to build a read coverage profile using aligned raw reads. A 

key step in ChIP-Seq is to shear the immunoprecipitated chromatin into fragments of 200-500 bp 

prior to extracting the DNA and sequencing it. Because the shear size is much larger than the 

small reads produced by early next-generation sequencing machines, many peak calling 

algorithms make use of the “shift” distance between coverage peaks defined by plus and minus 

strand read alignments, but this has become less useful as the read length produced by next-

generation sequencers approaches the ChIP-Seq DNA shear size. PeakRanger uses the same 

“blind-extension” strategy as PeakSeq[65] in which the shear size is provided by the user and not 

estimated from aligned raw reads. This choice significantly simplifies the software design and 

improves performance.  

3.1.2.2 Peak calling and summit identification 

We identify broad regions of signal enrichment using the same algorithm as PeakSeq, 

which detects contiguous enrichment regions by thresholding. To localize summits within these 

regions of enrichment we use a "summit-valley-alternator" algorithm. This algorithm starts by 

searching for the first summit within the region, where a summit is defined as the location that 

has the maximum signal value before subsequent locations drop below a pre-defined cutoff 

value. The value is calculated by multiplying the current maximum signal value with delta, a 

tuning factor that should be chosen based on the needs of users. Delta is in the range (0, 1); an 

optional dynamic delta algorithm is also provided. Since the reads signal of broad regions are 

usually noisy, we perform additional signal processing before calling summits. See methods for 

details. 
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3.1.2.3 Software Engineering 

PeakRanger is written in C++, and can be compiled on Linux, MacOS and Windows 

Platforms. It runs as a command-line program. 

3.1.3 Algorithm evaluation 

3.1.3.1 Sensitivity 

In order to evaluate the sensitivities of the 11 algorithms, we evaluated them using two 

independent ChIP-Seq datasets whose binding sites had been validated by qPCR[85, 96].Peaks 

called by each peak caller were ranked by their confidence scores and then compared to the list 

of validated sites. As measured by the average recovered proportion of validated sites, 

PeakRanger ranks within the top group, all of which have very similar sensitivities(Figure 3-2). 

The highest ranking peak caller in this set was F-Seq, but it performed poorly in the specificity 

test as described below. 

 
Figure 3-2 Sensitivity test using qPCR validated ChIP-Seq binding sites. The proportion of 

recovered qPCR validated binding sites is shown as a function of the ranked peaks called by each 
peak caller. Peaks are ranked based on significance values reported. A) Test results on the GABP 
dataset. B) Test results on the NRSF dataset. 

3.1.3.2 Specificity 

It is more difficult to evaluate the specificity of peak calling than sensitivity because there 

is no golden standard of true-negative binding sites of sufficient size to confidently evaluate 

specificity. To partially address this issue, we performed a specificity analysis using a 

previously-published synthetic dataset [97]. This data set was generated from a real-world 

control (no antibody) experiment that contains no binding events, which was then spiked with 

simulated binding site peaks. Since all peaks were generated by the author, the locations of all 

simulated binding sites are known and false positive peaks can thus be defined.  

Figure 3-3 graphs the true positive rate against (1-the false positive rate) for each of the 

peak callers at a fixed FDR rate of 0.01, as shown in Figure 3, in the top group, PeakRanger, 

PeakSeq, GPS and MACS have nearly the same good specificity and sensitivity. SPP is close to 
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the top group. While SISSRs has higher sensitivity, it suffers from higher false positives. In 

contrast, although CisGenome called only a few false positive peaks, it recovered fewer peaks 

than the top group. F-Seq, Erange and FindPeaks all had unusually high false positive rates in 

this test. 

 
Figure 3-3 The specificity test. Peak calls of all peak callers on a synthetic dataset are 

shown. All peak callers were configured to have a FDR cut off of 0.01. 

3.1.3.3 Spatial accuracy 

Spatial accuracy measures the ability of the peak caller to correctly identify the biological 

binding site underlying punctate peaks. To evaluate spatial accuracy, we again used the ChIP-

Seq data sets for the GABP and NSRF transcription factor targets. To identify the most likely 

biological binding sites, we used MAST[68] and the canonical target binding site motif and 

corresponding position specific scoring matrices (PSSMs) to find all matches in the 200bp 

surrounding regions. 

We ran each of the peak callers on the data sets, and measured the distance between the 

binding site motifs and the centers of the closest overlapping peak call. As shown in Figure 3-4, 

algorithms that report peaks as single bp coordinates are significantly better than those that report 

broader regions. In particular, SPP, FindPeaks, GPS and QuEST were all tied for first place, 

closely followed by PeakRanger. However, the difference in spatial accuracy among the top-

ranked peak callers is small. 
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Figure 3-4 The spatial accuracies of peak callers. The distance from binding sites to motif 

center is measured for A) GABP and B) NRSF. 

 

3.1.3.4 Intra-peak resolution  

This benchmark measures the ability of peak callers to distinguish between two closely-

spaced peaks. This is a particularly difficult task for region-reporter algorithms, which tend to 

merge close peaks, potentially missing biologically-significant duplets. PeakRanger identifies 

closely-spaced summits within an enriched region by identifying local maxima within a 

smoothed model of coverage. 

There are no real-world gold standard data sets for evaluating inter-peak resolution, so we 

adapted the semi-synthetic data set used previously for the specificity benchmarks. We created a 

series of derivative data sets to simulate closely spaced binding sites by generating a peak 

adjacent to each synthetic binding site. The inter-peak spacing varied from 200 to 500 bp in each 

of 13 derived data sets. To compensate for changes in coverage introduced by this modification, 

we added the same number of reads to the control. Some peak callers, including PeakRanger, 

provide a “resolution mode” that seeks to discover all summits within an enriched region. For 

this benchmark, we set each algorithm to use resolution mode or equivalent when available, or 

the default settings when not. 

As shown in Figure 3-5A, no peak caller is able to resolve closely-spaced peaks in this data 

set when the peak separation is less than 250 bp. In the range of 250-350 bp, FindPeaks and 

PeakRanger lead the group in sensitivity, but FindPeaks produces an excessive number of false 

positives, as shown in Figure 3-5B. The other algorithms have lower sensitivities across this 

range, and some exhibit very high false positive rates as well. MACS crashed on the 200bp, 

400bp and 500bp data sets, and so these data points are missing. 
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Figure 3-5 Resolution test.  We called peaks on a series of semi-synthetic datasets 

consisting of paired peaks of increasing inter-peak separation. A) The percentage of close peaks 
recovered as the function of increasing inter-peak distance. B) The percentage of false positive 
peaks called. MACS crashed on the  200bp, 400bp and 500bp datasets, and so these data points 
are not plotted. 

3.1.4 Usability design and performance tuning 

Published algorithms are sometimes released in the research prototype stage, and do not 

have the software engineering necessary to work in a high volume, high availability setting. 

Ideally, a number of software engineering issues should be addressed. First, the software should 

be as fast as possible. Our experience in large projects such as the modENCODE project[51] 

supports the notion that a faster peak caller will significantly reduce the time to analyze and 

interpret ChIP-Seq data, because all the downstream analyses rely on accurate peak calls and 

there is often a cycle in which the results of downstream analyses inform additional rounds of 

peak calling using different parameter sets. Second, the software should support multiple 

common data formats. Transforming file formats requires extra time, computing resources, and 

introduces a step in which programming errors can creep in. Third, the software should be easy 

to use and requires less computing expertise from users. Finally, the software should be able to 

handle very large ChIP-Seq data sets, given the rapid increase in next generation sequencing 

capacity. 

We implemented PeakRanger in the compiled C++ programming language to optimize 

performance. We avoided performance losses from disk I/O by keeping all working data in 

memory rather than in temporary files; this has the effect of trading a larger memory footprint for 

increased execution speed. To take advantage of modern multi-core processors, we also designed 

PeakRanger to use parallel processing. 

To benchmark the performance of PeakRanger against other peak callers, we recorded the 

running time of them required to process a typical data set. As shown in Figure 3-6, PeakRanger 

is more than twice as fast as the next fastest peak caller tested, while consuming an acceptable 

amount of memory. 
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Figure 3-6 The performance of peak callers. Running time and memory footprint was 

recorded for peak callers using the GABP dataset. 

 

To enable the support of multiple input data formats, we adopted designs shared by SPP 

and MACS which separate data loading from data processing. We wrote individual modules for 

specific data formats and let users to choose the one they need. PeakRanger currently supports 

Bowtie[61], Eland, SAM[102] and BAM[102] formats. Other file formats can be added by 

writing additional importation modules. PeakRanger is also capable of exporting its results in 

formats suitable for data visualization, including both compressed and uncompressed versions of 

the UCSC Genome Browser “wiggle” format. 

To support multiple species, peak calling packages need basic genome build information 

such as the names and sizes of chromosomes. For users' convenience, PeakRanger can either 

derive this information directly from the input files, or can be given pre-computed genome 

tables. Although the former mode is convenient, it does add a small amount of overhead to the 

execution time.  

Although hard to quantify, we noted considerably variation in the difficulty of installing 

and configuring the various peak caller packages during our benchmarking tests. For example, 

some packages require the user to make changes to the source code in order to change the 

location of hard-coded file paths and run-time parameters. PeakRanger makes all its run-time 

configuration parameters available as command-line options, and also provides a reasonable set 

of presets for common analysis tasks. For example, PeakRanger provides “resolution mode” and 

“region mode”, which are presets suitable for analyzing transcription factor binding sites and 

other punctate data on the one hand, and broad regions such as histone modifications on the 

other. All run-time parameters can be read from external configuration files as well, allowing 

parameter sets to be managed by source code control, versioned, and shared among laboratories. 

PeakRanger does not provide a graphical user interface (GUI) such as those provided by 

CisGenome , USeq and Sole-Search[89]. While GUIs are convenient for casual users, they make 

it difficult to integrate the software into the automatic workflows needed by high-throughput 

laboratories, which are the target audience for PeakRanger. 
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Table 3-1 Usability summary of peak callers. This table summarizes commonly supported 

software features by existing peak callers.  

3.1.5 Real world usage of PeakRanger 

It is common for studies of histone modifications to identify broad regions enriched in the 

modification of interest and then to correlate these broad regions with other biological 

annotations such as genes. Although this type of analysis is straightforward, it ignores the 

detailed internal structure of the enriched profiles, which can contain summits and valleys 

relating to quantitative differences in modification efficiency and/or heterogeneity within the 

sample. 

Recently there have been several publications reporting biologically significant phenomena 

based on the internal structures of the enriched histone modification regions [17, 18, 103]. 

Therefore it is desirable that a peak caller be able to retrieve both broad enriched regions while 

simultaneously identifying the detailed summits within these regions. Here we demonstrate such 

an example using PeakRanger. 

In the paper recently published by He et al[17], the authors found that after exposures to 5-

α-dihydrotestosterone (DHT) the central nucleosome was depleted from a subpopulation of 

androgen receptor (AR) binding sites, leaving a pair of flanking nucleosomes. Without knowing 

the region structure in advance, it is difficult to identify the paired nucleosomes from the read 

coverage signal alone, and He et al built additional models to identify and quantify the paired 

binding sites. 

We applied PeakRanger directly to the He data set, using a preset that allowed it to find 

both broad enriched regions and summits within the regions. We then compared the number of 

summits in each enriched region before and after DHT exposure to directly identify the 

subpopulation of AR binding sites that have depleted central nucleosomes. In order to 

accomplish this objective, we configured PeakRanger to detect summits with comparable 

heights. As shown in Figure 3-7A, the profile plot strongly resembled that reported in the 

original publication, and had an average twin-peak separation of 360 bp, close to the publication 

estimate of 370 bp. As a comparison, we repeated the same procedure using QuEST. The 

resulting estimated peak distance was 240 bp and the profile plot departed from the original one. 
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For other peak callers, since no information is available for the number of summits of an 

enriched region, we could not perform the same analysis. 

 
Figure 3-7 Estimating the peak distance from DHT sensitive subgroups. The analysis 

conducted by He et al[17] is repeated by using just peak calls generated by A) PeakRanger and B) 
QuEST. PeakRanger gave a much closer estimate of the twin-peak distance than QuEST. 

3.2 Enabling cloud computing for peak calling 

3.2.1 Background 

Chromatin immunoprecipitation sequencing (ChIP-Seq) is establishing itself as an 

essential tool for probing the dynamics of chromatin and protein interactions. After mapping the 

raw output reads to reference genomes, obtaining the bound regions of the proteins is crucial for 

understanding the underlying cis-regulations. This "peak calling" step thus has attracted lots of 

attentions of researchers.  

With sequencing industry's rapidly increasing capacity to generate more and longer 

sequencing reads, peak calling algorithms face similar challenging demand for computational 

resources as other next generation sequencing data processing algorithms. Instead of purchasing 

and maintaining new hardware and over-pay for the new hardware, cloud computing offers an 

alternative way to satisfy the demand for computing resources. Researchers are able to rent 

computing facilities from cloud computing service provides and only pay for the computing 

hours actually used. Researchers also have great flexibility to add or remove computing units at 

will and need not to worry about maintaining and upgrading of these rented computing units. 

Beyond these benefits, current cloud computing infrastructures also offer a computational model 

called MapReduce[101] which was originally designed by Google to process huge datasets. 

Unlike previous parallel programming frameworks, MapReduce hide the details of coordination 

of cluster computers so that users only need to work on their own algorithms and thus greatly 

reduces the difficulties of designing parallel applications. There has been a lot of 

implementations of Map Reduce and among them Hadoop is a free open source implementation. 
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After years Hadoop[104] is now the industry standard and has been deployed by many large 

companies like Amazon and Yahoo.  

Researchers of next-generation sequencing projects have investigated a lot on how to 

utilize the power of cloud computing with the help of Hadoop. CloudBurst[105] is among the 

earliest that use Hadoop to speed up aligning raw sequenced reads. Soon after that, 

CrossBow[106] and Myrna[107] illustrated processing RNA-seq datasets in hours that would 

otherwise months if using regular methods. There are also Hadoop projects in other fields other 

that next-generation sequencing. They show the MapReduce framework help spread the demand 

for computing sources to individual nodes in the cloud and thus greatly reduces the demand for a 

single computer. 

Even though Hadoop has made great success, the reports on integrating Hadoop with 

ChIP-Seq algorithms are rare. The reason partly roots in the nature of peak calling algorithms. 

Hadoop requires the input of an algorithm can be splitted to random smaller portions which can 

then be processed independently of each other. Further, the core algorithm should also be 

splittable to independent sub-jobs. This diagram fits very well to the above mentioned next 

generation sequencing reads aligner projects. For example, since each read can be mapped 

independently of other reads, CrossBow launches a large number of workers for individual reads. 

Unlike these read aligners, ChIP-Seq peak callers usually need to compile information of the 

whole chromosome before calling individual peaks. These characteristics significantly limit the 

potentials of applying Hadoop to ChIP-Seq peak calling algorithms. It is ideal that these peak 

callers can be rewritten from bottom up to satisfy the requirements for independencies, however, 

the process can be significantly time-consuming. Further, not every computing language can be 

supported out of box by Hadoop.  

Another issue to be handled is the security and privacy of the data. In order to use the 

rented computing units, users have to first transfer the data to the remote computers. No matter 

how users send the data to cloud service providers, the chance still exists for information leak. 

Besides, given the current network transfer rates, it will be time-consuming to upload and 

download huge datasets. In this case, for laboratories already having private local clusters, it will 

be nice if we can transform them into private clouds and perform Hadoop computing within 

them. However, up to today, most Hadoop projects are conducted on Amazon AWS and other 

off-site cloud service providers. 

In order to address these concerns, we first investigated the potentials of integrating cloud 

computing with ChIP-Seq peak calling algorithms without total rewriting original algorithms. 

We proposed a design pattern that may help applying Hadoop to peak calling algorithms. We 

then modified PeakRanger based on the proposed pattern. Subsequent benchmarks show that the 

cloud-PeakRanger is up to 10 times faster in a 64 node cluster, while maintaining the same 

sensitivity and specificity of the original algorithm. After that, we evaluated the efforts needed to 

deploy cloud-PeakRanger in our own private cloud. With a set of customized scripts, we found 

the configuration of private cloud and Hadoop cluster doable. 

3.2.2 Algorithm design 

3.2.2.1 Chromosome-level-independency (CLI) model  

Existing peak calling algorithms generally follow a "read-and-call" scheme. They have to 

first load sufficient reads into memories and then build models for sample and control datasets in 
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order to call peaks. The process of finding enriched regions needs not just the information of the 

candidate region but also data of its neighborhood or even the chromosome. For example, 

PeakRanger divides a chromosome into a series of windows. After that, it calls candidate regions 

within each window using the reads within the whole window. It also has a post-peak-calling 

process in which it conducts the correction for multi statistical tests to further remove called 

peaks that are likely false positives. This multi-test-correction step also depends on information 

of other chromosomes because it needs the number of called raw peaks of other chromosomes. 

Another similar example is the QuEST algorithm which first estimates the peak shift distance 

based on a series of regions scattered in the whole chromosome. These characteristics are not 

favored by Hadoop. However, we find that usually peak calling on one chromosome is 

independent of other chromosomes. In another word, peak callers usually will repeat the same set 

of calculations on each chromosome and processing one chromosome does not require the input 

from another chromosome. The above mentioned PeakRanger and QuEST all follow this pattern. 

This finding inspires us to propose the straight-forward chromosome-level-independency (CLI) 

model. 

In the CLI model, we make the following rules: 

 Users should split the input to peak callers by chromosomes. Further, the splitting 

process must be independent of each other. For algorithms that also require control 

datasets, the control datasets must be labeled so that the algorithm can differentiate 

it from sample datasets.  

 Users should modify the peak caller so that it is able to process a stream of mixed 

sample and control reads. The peak caller should not hold any assumption on when 

and where it will get a sample or control read. 

 Algorithms should defer post-calling-process to another dedicated application that 

runs after all sub-programs finish.  

In general, the CLI model detaches the data-loading and preprocessing step from the core 

of the algorithms to enable the parallel preprocessing. It also postpones the post-processing step 

so that the core algorithm can run independently from each other.  

The major benefits of the CLI model is that users do not have to completely re-coding the 

algorithm, instead, they can keep the efforts minimal by just modifying segmentations that deal 

with data input and output. The detached preprocessing step of the CLI model will also scale 

very well with increasing nodes. Since the splitting process is independent of each other, it does 

not really matter where the reads are actually processed and thus we should initiate a large 

cluster to maximize the parallelization of preprocessing and reduce the time for data loading. 

This feature is particularly important for peak callers. Currently, the time for loading the datasets 

is usually the major portion of time cost for many concurrent peak callers. For example, we 

tested MACS on a dataset with around 200 million reads and found it spent more than half an 

hour to load the dataset but only less than 5 minutes to finish model building and peak calling. 

3.2.2.2 Adaptation of CLI to the Hadoop framework 

We then have to adapt the CLI model to the Hadoop framework. Within the Hadoop 

framework, a job can be expressed as a series of "map-then-reduce" sub-jobs(). In a typical 

MapReduce job, Hadoop first starts a certain number of mappers to map the input datasets to set 

of keys. Then a Hadoop partitioner assigns keys to a set of reducers. Each individual reducer 

then fetches the data according to the keys it receives and processes these data.  In the context of 
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our proposed CLI model, "map-then-reduce" is analogue to "split-then-call-peaks" and 

chromosomes are used as keys. That is, we delegate the data loading/preprocessing to mappers 

and peak calling to reducers. After mappers finishes splitting data by chromosomes, the 

partitioner assigns jobs based on the number of available reducers and reducers will do the actual 

peak calling. 

Hadoop is written in Java and supports Java applications out of the box. Unfortunately, 

most existing ChIP-Seq peak calling algorithms are written in non-Java languages, with only a 

few exceptions such as USeq and FindPeaks. Although Hadoop is now adding support to other 

languages such as C/C++ and Python, the efforts remain in infancy. It is doable that we recode 

the algorithms written in supported languages, but since our goal is to minimize the efforts for 

recoding, we instead go with an alternative mechanism provided by Hadoop: the Hadoop 

Streaming system. Hadoop Streaming provides an extra level of job abstraction so that mappers 

and reducers can be coded using non-Java languages. This mechanism allows us only to tailor 

the interfaces of the algorithm and leave the rest untouched so that re-programming the whole 

algorithm is avoided. We thus consider Hadoop Stream a perfect match with our goal. 

3.2.3 Implementation of the Chromosome-level-independency with PeakRanger 

PeakRanger consists of two parts: the preprocessing and peak calling, which is ideal to test 

the CLI model. After the modification, the preprocessing part runs as the mapper, an individual 

application. Each mapper will read a small portion of the datasets and emit a series of records to 

the Hadoop partitioner. The format for emitted records by mappers is straight forward: 

chromosome read_coordianate orientation sequence 

 

As required by the CLI model, we enabled mappers to differentiate sample reads from 

control reads. If the read is from control datasets, it will emit records with negative genomic 

coordinates, in contrary, reads from sample datasets will all be emitted with positive coordinates. 

The orientation field is either "+" for reads of positive strand or "-" for reads of negative strand. 

A typical emitted record is: 

 

 chrX   154577574 - ATGCAAGAAAGCGATTTTAAA 

 

Since PeakRanger ignores the read qualities, the quality scores are not coded in the emit 

format. In case other peak calling algorithms want more information such as quality scores, these 

extra information can just be added to the end of the line, as long as the chromosome goes first. 

For reducers, we added support for the emit format mentioned above. If supports for other 

formats are required, users can enhance mappers to correctly parse the input datasets and emit 

the same records. The downstream reducers thus will not be affected. 

The core of PeakRanger algorithm was not modified except we cancelled its routines for 

doing the post-call-processing, as required by the CLI model. We instead wrote a script to do the 

multiple-testing-correction after the peak calling results.  

Finally, as required by the Hadoop Streaming system, we programmed both the mappers 

and reducers so that they both can read a special data file called "STDIN" and write to 

"STDOUT". 
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3.2.4 Configuration and deployment of Hadoop-PeakRanger 

We currently run our own cluster with capable number of computers. Since it is also our 

goal to evaluate the potentials of using local computing facilities, we configured our cluster to 

make it run as a private mini-cloud. Similar to Amazon AWS which runs a much larger number 

of cluster nodes, our private cloud has a central cloud controller that process user requests and 

allocate cloud units. We chose Eucalyptus as the cloud controller. Although Eucalyptus is 

commercial software, it does provide a nicely maintained free open source version suitable for 

most academic projects. To save repeated work, we wrote our own scripts that can deploy 

Hadoop to a large set of allocated cloud nodes. As long as the network address list for all cloud 

nodes is available, the script is able to copy Hadoop binaries to each machine and then updates 

all necessary configurations. We also wrote utility scripts for starting, stopping and checking the 

Hadoop server. This Hadoop install script along with these utility scripts build a convenient 

package that provides most functions needed for our projects. 

The optimal performance of Hadoop depends on the data and the hardware. Hadoop thus 

provides a large number of tunable parameters. Some major parameters such as the maximum 

number of parallel Hadoop tasks per node have great impacts on the system performance. 

Discovering the favorable set of parameters requires a lot of field tests and cooperation of IT 

experts. We thus just left most parameters at default values and only configured required ones 

such as server network address. By doing this we hope to try the best to leave our test results 

independent of computer hardware and any tricky system configuration. For the list of 

configured parameters, please refer to the supplementary lists. 

Characteristic to most cloud applications, we started with building our own virtual system 

image. The raw image is based on the Linux distribution Debian. We then configured the raw 

image to run the standard Java system with Hadoop binaries installed. After that, a number of 

nodes were initiated with the configured image loaded. We then use our in-house made scripts to 

initiate the Hadoop system based on the nodes we started. The Hadoop system takes a while to 

go online. During the system initialization, the master will register nodes within the network. In 

our study, a 64-node Hadoop system took about 15 minutes to get ready. 

3.2.5 Performance evaluation 

After the system was online, we did two tests: 1) test with fixed number of nodes and 

datasets with increasing sizes; 2) test with increasing number of nodes and datasets with fixed 

sizes. All nodes used in this test are single-core computers with 3G RAM memories except for 

the master node which is a quad-core computer. 

For the first test, we used a semi-synthetic datasets as described in the USeq paper. To 

increase the dataset volume, we just added to the original datasets additional copies of all the 

original reads. We chose node size 64 for this test. The number of mapper tasks was 

automatically determined by Hadoop based on the size of input datasets. The number of reducers 

was configured as 64 to make sure that partitioner assign reduce tasks evenly to each node. The 

mapper and reducer executables were copied by Hadoop to each node. 
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Figure 3-8 Performance comparison of the original PeakRanger and Hadoop-PeakRanger: 

increasing dataset size. 

As shown in Figure 3-8, in general, the running time for Hadoop-PeakRanger increased 

much slower than the original PeakRanger. Initially, with only 32M total reads, the Hadoop-

PeakRanger didn‟t outperform the original significantly. This was actually expected due to the 

overhead of Hadoop system. Because during system initialization, Hadoop has to split the input 

datasets and transmits them to mappers on each node. After mappers finish, Hadoop shuffles and 

sorts the output of mappers, which also brings overhead. However, the situation soon changed 

when the size of datasets got larger. With larger datasets, the overhead is diluted by the power of 

parallelization. As shown in the figure, the Hadoop-PeakRanger finished processing a 14G 

dataset with 192 million reads in less than 5 minutes, which was more than 10 times faster than 

the original PeakRanger. 

 
Figure 3-9 Performance comparison of the original PeakRanger and Hadoop-PeakRanger: 

increasing node numbers. 

In the second test, we tested how fast the running time would reduce with increasing 

number of nodes (Figure 3-9). We used the dataset as described earlier without any duplication. 

The test sequence of nodes number is 2N, where N is from 1 to 6. Since the number of reducers 
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will significantly affect the performance, we used the same number of reducers as computing 

nodes to make the performance comparable among the set of tests. The number of mappers was 

the same for each test since the size of the input was fixed. The benchmarks shows that the 

running time reduced dramatically while the total number of nodes were less than 25-the number 

of total chromosomes of the test datasets. Adding more than 25 nodes did not significantly 

reduce running time because the system can run at most 25 simultaneous reducer tasks. The lag 

is actually in accordance to the Amdahl's law which states that the marginal benefits of adding 

more parallel processors falls rapidly, as long as the non-parallel portion of the algorithm is not 

zero.  To ensure that the modified PeakRanger is algorithmically correct as the original version, 

we also tested the specificity and sensitivity of Hadoop-PeakRanger and found the results 

generally agree on each other. 

3.3 A library designed for integrative analysis  

3.3.1 Background 

The datasets generated by next-generation sequencing technology are usually a bunch of 

raw reads. These raw datasets then go through another set of algorithms to produce meaningful 

processed datasets. Although the algorithms used to process raw datasets may differ in a lot of 

aspects, the results of these downstream algorithms are usually expressed in terms of genomic 

regions. A copy number variation (CNV) detector, for example, reports each CNV as: 

chromosome, start of CNV region, end of CNV region; RNA-Seq algorithms report regions with 

significant transcriptions; ChIP-Seq peak detectors such as PeakRanger report each peak in a 

similar way. Analyzing these next-generation sequencing datasets thus relies on manipulating 

these genomic regions.  For example, a popular way to analyze next-generation sequencing 

datasets is to integrate multiple genomic features, including transcription factor binding sites, 

gene expression values from RNA-seq datasets and other genomic annotations. This type of 

integrative analysis usually involves calculating overlap of regions between two sets of datasets 

and also many other regions-based calculations. 

To deal with the requirements of handling genomic regions, a couple of tools have been 

proposed. BEDTools[108] and CEAS[109] are two nice software suites that can perform region 

analyses. The biggest issue for these tools, however, is the lack of flexibility. Users may not be 

able to perform customized region analysis. For example, CEAS by default only provides results 

against promoters. And CEAS does not support the use of only a subset of promoters in a 

specific chromosome. These libraries are also not easy to expand in order to handle new input 

types. To address these issues, a library that models genomic regions and can also be easily 

expanded and customized is necessary.  By design, the proposed library should be able to 

provide a set of interfaces so that users can build their own analysis based on these interfaces; 

The library should also be able to handle different types of input and output formats without re-

writing the core of the library. In this chapter, I propose xBED, a library written in Java that 

models genomic regions and address these concerns. I first show the framework of the library 

and demonstrate its flexibility; A couple of analysis based on the proposed framework is then 

shown to illustrate the effectiveness of the library. 



38 

 

3.3.2 Design of the library 

3.3.2.1 Overview 

xBED models genomic regions at three levels: the region, the chromosome and the dataset 

as a whole (Figure 3-10).  A dataset is modeled as a set of sub-dataset organized by 

chromosomes. Each sub-dataset is then modeled as a cohort of genomic regions. 

+getRegionsOnChr()
+setRegionsOnChr()
+getRegionsCount()
+getRegionsCountofChr()
+getRegions()
+getChrStrings()
+removeRedudantRegions()
+addRegionToChr()
+removeRegionAtChr()
+sortRegionsByStartLoc()
+export()

-_name
-_genomeRegionDataExporter : GenomeRegionDataExporter
-_genomeRegionDataLoader : GenomeRegionDataLoader

GenomeRegionData

+getFirstRegion()
+getLastRegion()
+removeRedundantRegions()
+addRegion()
+removeRegion()
+getAggregatedRegionSignal()

ChromosomeRegionData

-_data : ArrayList<BindingSite>

<<implementation class>>
BindingSitesList

-_data : HashMap<String, BindingSitesList>

<<implementation class>>
BindingSites

+getValue()
+setValue()

-_value

BindingSite

+getStartPos()
+getEndPos()
+setStartPos()
+setEndPos()
+getRegionLength()
+getRegionMiddlePoint()
+isOnTheLeftOf()
+isOnTheRightOf()
+overlapsWith()
+isConstrainedIn()

-start
-end

Region

+loadRegionsOnAllChrs()
+loadRegionsOnChr()

<<interface>>
GenomeRegionDataLoader

+exportRegionsOnChr()
+exportRegionsOnAllChrs()

<<interface>>
GenomeRegionDataExporter

 
Figure 3-10 The overview of the xBED library. 

 

The main class of this library is GenomeRegionData and ChromosomeRegionData, which 

encapsulate the whole dataset and the chromosome level data, respectively. The 

GenomeRegionData  class has two interface classes: GenomeRegionDataLoader and 

GenomeRegionDataExporter. As implied by their names, these two interface classes specifiy the 

requirements for loading and exporting the datasets as a whole. Every GenomeRegionData is 

consisted of a set of ChromosomeRegionData, which represents the regions on each 

chromosome. The Region class provides abstraction for the actual individual genomic region. 

Thee GenomeRegionData, ChromosomeRegionData and Region classess are all abstract or 

partially abstract so they only specify the framework of the whole library. To actually use the 

framework, three concrete classes are provided:BindingSites implements GenomeRegionData; 

BindingSitesList implements ChromosomeRegionData; And BindingSite implements the Region 

class. 
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3.3.2.2 Flexible Data input and output 

-_columnDataConfiguration : ColumnDataLoaderConfiguration

<<implementation class>>
ColumnDataLoader

BED3SpaceFileLoader BED3TabFileLoader

+loadRegionsForAllChromosomes()
+loadRegionsForChromosome()

<<interface>>
GenomeRegionDataLoader

-_inputStream
-_cChr
-_cStart
-_cEnd
-_cValue
-_delimiter

<<utility>>
ColumnDataLoaderConfiguration

-_wiggleType

WiggleDataLoaderConfiguration

-_wigFileConfiguration : WiggleDataLoaderConfiguration

<<implementation class>>
WiggleFileLoader

 
Figure 3-11 The overview of the data loading module. 

 

 

 

 
Figure 3-12 The sample data importing codes. 

 

The data loading and exporting part are both extracted as two interfaces(Figure 3-11,Figure 

3-12,Figure 3-13,Figure 3-14). By doing this, xBED can support future data I/O format and 

requirements. At the same time, xBED provides two loaders that process most tabulated files and 

wiggle files. Many popular data formats follow the table fashion: a file is consisted of a number 

of lines with each line a number of columns delimited by either space or the tab-character. 

Currently, xBED implements I/O facilities to read BED/GFF as well as other tabulated files or 

input streams. Reading of BED/GFF files can be abstracted as a process of extracting 

information from some or all columns of a tabulated file. For BED file, usually columns 1-4 

contain essential information to build a genomic region: chromosome name, start location, end 

location and region value. For GFF file, the case is similar with only different columns. Thus 

ColumnDataLoader is designed to implement this abstract behavior. It allows users to specify, 

via the ColumnDataLoader class, how to process the tabular text file. For the convenience of 

users, the library also provides wrapper classes for BED files: BED3SpaceFileLoader and 

BEDTabFileLoader. Both of these two loaders are based on ColumnDataLoader, with a specific 

importRegions(){ 
……..  //Actual data export  
} 

import(GenomeRegionDataImporter exporter){ 
 importer.importRegions();//Delegate the export job to the exporter  
} 

GenomeRegionData data = new GenomeRegionData(); 
……..  //Data initialization  
GenomeRegionDataImporter importer = new GenomeRegionDataImporter(); 
……..  //Exporter initialization  
data.import(importer); //export the data now 
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ColumnDataLoaderConfiguration associated with each other. Users do not have to specify the 

loader configuration if they use these two wrapper classes. 

Wiggle file loading is implemented as WiggleFileLoader. Parsing wiggle files is a different 

type of work compared to parsing tabular files and thus it is implemented separately. 

 

+exportRegionsOnChr()
+exportRegionsOnAllChrs()

<<interface>>
GenomeRegionDataExporter

-_fileName

GFFFileExporter

-_fileName

BED3FileExporter

-_fileName
-_wiggelType
-_fileMarker
-_colorRGB
-_maxValue

WiggleFileExporter

 
Figure 3-13 The overview of the data exporting module 

 

 

 

 
Figure 3-14 The overview of the data exporting module 

 

The exporters share a similar design as loaders. xBED supports exporting genome datasets 

as BED, GFF and Wiggle files. The support for new file formats can be added very easily by 

implementing the GenomeRegionDataExporter accordingly. The GenomeRegionData class does 

not need to modify its exporting codes since it can just call the two abstract functions. A sample 

segment for exporting is as following: 

3.3.3 Performance of the xBED library 

The performance of libraries serving similar purposes as xBED is rarely mentioned. This is 

at least partly due to the fact that the whole bioinformatics community has not finished transition 

into the stage where performance of software plays a key role. The implementation of algorithms 

in xBED always put the performance on top of the priority list. A core algorithm that lies under a 

lot of analysis is the one that finds regions in a dataset that overlap with a specified region. Given 

the fact that each element in the dataset is a region that is sorted based on the start index, the 

binary search algorithm is applied to ensure a O(nlogn) complexity. The binary search algorithm 

exportRegions(){ 
……..  //Actual data export  
} 

export(GenomeRegionDataExporter exporter){ 
 exporter.exportRegions();//Delegate the export job to the exporter  
} 

GenomeRegionData data = new GenomeRegionData(); 
……..  //Data initialization  
GenomeRegionDataExporter exporter = new GenomeRegionDataExporter(); 
……..  //Exporter initialization  
data.export(exporter); //export the data now 
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is slightly modified so that all overlapped regions around the first found region are also found. A 

benchmark was performed to evaluate the performance of the aggregating profile algorithm 

which relies heavily on this algorithm. In the benchmark, a test dataset with binding sites and a 

wiggle file were fed to the XBED aggregating profiler and the one from the CEAS suite. The 

running time for the two profilers was recorded. As shown in Figure 3-15, the profiler from 

xBED is much more efficient than the one from CEAS. 

 
Figure 3-15 Performance comparison of the xBED library and CEAS. 

3.3.4 Using xBED to implement various genomic analysis 

3.3.4.1 Introduction 

A large number of genomic analyses can be implemented using xBED since nearly all of 

these analyses are just combinations of various operations on the genomic regions on each 

chromosome.  On top of that, xBED provides additional abstraction of the chromosomes and the 

whole dataset, which facilitates the cross-datasets integrative analysis. In the following I will 

show how to use the API included in xBED to implement some most popular analysis of next 

generation sequencing datasets. 

3.3.4.2 Use xBED to implement aggregating profile plot 

One of the most useful plots generated from sequencing datasets is the aggregating profile 

plot. Under the framework of xBED, it is straight forward to implement this feature with the 

following algorithm: 
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Figure 3-16 The sample codes for aggregating plot. 

 

The ChromosomeRegionData class has the getAggregatedRegionSignal() method which 

will provide the profile of overall signals of a specific region. By adding all such profiles 

together, we can get the aggregating profile plot.  For datasets with very low resolutions, a 

pad_profile() method is provided to do basic intrapolations to compensate the low quality 

signals. Currently, xBED provides a set of implementation of variants of the aggregate profile 

plotting, as shown below: 

+profiling_centerAligned()
+profiling_leftAligned()
+profiling_rightAligned()
+profiling_returnAllValue_centerAligned()
+profiling_returnAllValue_leftAligned()
+profiling_returnAllValue_rightAligned()
-pad_zero_regions()

<<utility>>
AggregateProfiler

-_getSharedRatio()
+main()

<<utility>>
SharedRatioOfTwoDatasets

<<utility>>
ProfilePlot

 
Figure 3-17 Aggregating utilities provided by the xBED library. 

3.3.4.3 Use xBED to find the overlap regions between two datasets 

Another useful function is to check the percentages of shared regions between two 

datasets. The key of this function is to get the overlapped regions and it can be implemented as 

shown in : 

 AggregatePlot(GenomeRegionData target, GenomeRegionData ref){ 
  result = InitiateResult(); 
 
  for (Each Chromsome at target.getChrStrings()) { 
   for (Each BindingSite of target.getRegionsOnChr(Chromosome) ) { 
    profile = getAggregatedRegionSignal(BindingSite); 
    if (profile.IsOfLowResolution()) { 
     pad_profile(profile) 
    } 
    AddProfileToResult(profile, result); 
   } 
  } 
   
  GetMeanProfile(result); 
  return result; 
 } 
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Figure 3-18 Sample codes for region overlap calculation 

 

This algorithm serves as the basis for many useful analysis. Once such analysis is to find 

out genes that overlap with any transcription factor binding sites. To do this, the program starts 

by loading the gene annotations and binding sites regions. Following that, the program can just 

copy the algorithm described in Figure 3-18. 

3.4 Discussions and Conclusions 

Figure 3-19 summarizes the accuracy and software engineering benchmarks discussed 

above, where each of the 11 peak callers examined is ranked from 0 (worst) to 10 (best) for a 

particular benchmark. The last column of the table is a simple sum of the ranks. No single peak 

caller ranks as the best on all benchmarks; in particular, algorithms with high sensitivity often 

have low specificity. However, PeakRanger manages a good compromise among all the 

performance benchmarks and ranks first in the aggregate ranking. 
 

   
Figure 3-19 Summary of benchmarks performed in this study. For each benchmark item, 

peak callers are ranked and scored (see methods). The score has a range of 0 to 10 and 10 is the 
best score. The overall rank is based on the sum of all scores in all benchmarks. 

 

While the PeakRanger algorithm shares many design characteristics with QuEST and 

FindPeaks, it makes improvements on them both. One such improvement is the algorithm to find 

local maxima and minima within enriched regions. QuEST searches for local maxima one at a 

time. While this design makes sense at the first glance, we found it improvable after a lot of tests 

using real datasets. In this regard, we instead designed PeakRanger to find all local maxima at 

one time. This "one-stop and all" ideology was originally inspired by SPP. To compensate the 

overlappedData(BindingSites targetData, BindingSites inputData) { 
 result = new BindingSites(); 
 for (Each Chromsome at target.getChrStrings()) { 

 result.setRegionsOnChr(Chromosome, getOverlappedRegions(targetData, inputData)) 
 } 
// Print out the overlap ratio 
   Printout( result.getRegionsCount() / inputData.getRegionsCount()) 
// Export the overlapped dataset as BED file 
   Result.export(new BED3FileExporter()); 
} 
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unique properties of each enriched region, we also designed a naive adaptive algorithm which 

will generate an optimal threshold used in detection of local maxima for each enriched region. 

The tests presented in this study demonstrate the effectiveness of these refinements. 

Although PeakRanger represents a successful compromise among multiple measures of 

accuracy, researchers should consider one of the other peak calling algorithms if a particular 

performance characteristic is of the top priority. For example, if identifying the precise center of 

the peak is critical to an experiment, then researchers should consider GPS, QuEST, MACS, SPP 

or FindPeaks, all of which have better spatial accuracy than PeakRanger. 

The current design for the cloud version is based on chromosome-level-independence 

(CLI), which limits the practical level of parallelization to the number of chromosomes in the 

genome. This concept can be generalized to region-level-independence (RLI) by breaking the 

genomes into a set of arbitrary regions and call peaks in each individual region. However, this is 

dependent on the peak calls for each region being independent of each other, a criterion that is 

not satisfied when an enriched region crosses the region boundary. Additional manipulation of 

the regions to allow for overlap between them, and adjustments for the changes in coverage in 

overlapped regions will be necessary to implement this, and is deferred to future work. However, 

even with the current design we are able to archive an order-of-magnitude increase in speed, 

which is sufficient for most practical applications. 

In this study, we only applied the CLI model to PeakRanger but we believe that the same 

model should also work on other peak callers as long as they do peak calling by chromosomes. 

We do realize that there are exceptions. One such example is MACS. Unlike QuEST which 

estimates the peak shift distance based on a single chromosome, MACS selects candidate regions 

across the genome to estimate the shift distance. In this case, if peaks across the whole genome 

have similar characteristics, the results should not be affected and MACS could also adapt to the 

CLI model. In the extreme case, if  the quality of peak calling degrades significantly without 

information from other chromosomes, users can still parallelize the data loading part and leave 

the rest peak calling serial.  

We also believe that similar performance gain is expected to other peak callers. The reason 

is that many peak callers spend the most time on the "read" step of the "read-and-call". The CLI 

model guarantees that the "read" step is completely parallel and scales well with the capacity of 

service providers. And since our design ensures that only one MapReduce job will be launched. 

This will save additional time by avoiding overheads of initiating multiple MapReduce jobs. 

The Chromosome-level-independency (CLI) model can be further generalized as Region-

level-independency (RLI). In concept, we can break the genomes into a set of regions and do the 

peak calling in each individual region, as long as the processes of peak calling in these regions 

are independent of each other. According to the RLI model, we can scale Hadoop based 

applications with the capacity of cloud service providers to fully explore the power of cloud 

computing. It is expected that the RLI model may require a lot of efforts of redesigning existing 

peak callers. But it is worth of trying if users want further performance gains. 

Compared to Hadoop projects that archived hundreds of folds of performance gains, the 

largest speed up we observed in the project is about 10. While this is much less than Crossbow, 

our Hadoop-PeakRanger can process about 14G data in less than 5 minutes. The throughput per 

hour is still comparable to Crossbow. Besides, the author of Crossbow did a lot of application-

specific optimizations to further improve the performance gains. Advanced techniques such as 

shared memories and memories mapping are not applicable to every peak caller. Adding these 

features require above-average programming expertise and much more time. In contrary, we 
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discussed a method that may be applicable to a large number of applications. What‟s more, the 

performance gains are obtained with much less efforts-no advanced system configuration and no 

advanced time-consuming re-programming. 

Working with private cloud instead of manipulating datasets remotely is much more 

convenient and safer. In the private cloud we have more detailed control of the cluster 

configuration and can make adjustments whenever necessary. It is also a nice discovery that 

home-made scripts for Hadoop setup are practical and suffice most research purposes.  

The framework and the design of xBED has been shown and two sample algorithms were 

given to show the utility of the proposed framework. The performance of the library is also 

demonstrated by the aggreagating profiler of the library. The presented library has been used in 

the modENCODE project and all the aggregating profile plots used in this thesis were produced 

by the library. 

3.5 Methods 

Read coverage profile building and peak calling 

The procedures for building reads profiles and peak calling are based on those used by 

PeakSeq with the following modifications: Application of a mappability map is removed to 

enable support for multiple species. A fixed number of windows are used. Candidate regions are 

required to have a positive excess value in order to reduce false positives. 

Coverage profile enhancement and summit detection 

The read coverage profile is padded prior to summit detection. The original profile is 

scanned and locations with zero read counts are detected. These locations are padded with the 

average value of the two nearest non-zero coverage regions. The padded profiles are then 

scanned for summits. The algorithm starts by searching for the coordinate with reads maxima in 

the region. Then, all the remaining coordinates that have above-threshold reads are selected as 

summits. The threshold is obtained by multiplying the region-maximum value with a tuning 

factor (Delta) in the range (0, 1). Smaller Delta results in more summits and vice. versa. An 

optional dynamic delta algorithm is also provided. If users enable the dynamic delta option, 

PeakRanger will try its best to identify all valid summits in enriched regions while at the same 

time ignoring noises.   

Algorithm implementation 

PeakRanger is implemented using C++ and is open source. It compiles and runs on any 

operating systems that support the GNU G++ development environment. PeakRanger includes 

source files from PeakSeq, Bowtie and Bamtools [42]. Valgrind [47] tests for possible memory 

leaks are done for all tests described in this manuscript. Additional Valgrind tests were done 

using private datasets. The support for cloud computing relies on the Hadoop library[104]. 

Selection and configuration of peak callers 

We based our selection of peak callers on two recent reviews [55, 110] to represent the 

algorithm diversity and popularity. We also added recently-published algorithms which had not 

been included in the reviews. This resulted in an initial set of 17 candidate peak callers(Table 

3-2), which we then screened to exclude callers that could not be compiled, required additional 
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data files that we could not provide, or failed to produce peak calls in an initial test set. After 

screening, we finally included 10 peak callers in remained.  

 
Table 3-2 The compilation and selection of peak callers. 

 

All programs were run with their default/recommended settings. Tests were done in a 

generic desktop with the following specs: CPU: Intel Q6600, RAM: 12G, Harddisk: 2TB 7200 

rpm. 

Sensitivity test 

The GABP dataset and NRSF dataset were downloaded from the website of QuEST 

(http://mendel.stanford.edu/SidowLab/downloads/quest/). The qPCR validation list was 

downloaded from the [110] paper. Peaks were ranked based on the metrics provided by each 

peak caller. For F-Seq, which identified too many peaks, only the top 10,000 ranked peaks were 

used. 

Specificity test 

The original dataset used in the resolution test was from the website of USeq 

(http://sourceforge.net/projects/useq/). Peak callers were configured to have FDR 0.01 when 

calling peaks. 

Spatial accuracy test 

The GABP dataset and NRSF dataset were downloaded from the website of QuEST 

(http://mendel.stanford.edu/SidowLab/downloads/quest/). PSSMs were obtained from 

TRANSFAC[111]. The MAST program from the MEME software suite was used to detect motif 

occurrences[67]. Boxplots were generated with R[112]. 

Resolution test 

The original dataset used in the resolution test was from the website of USeq 

(http://sourceforge.net/projects/useq/). Peaks were systematically shifted and reintroduced into 
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the dataset to produce a series of synthetic peak pair datasets (Figure 3-20). We excluded 

CisGenome from the test because it failed to complete the benchmark. MACS version 1.4.0 beta 

was used in this test instead of MACS 1.3.7.1 since the latter does not have the ability to call 

multiple summits within a region. For the PeakRanger benchmark, we used a delta value of 0.2 

to enable the ability to call multiple summits. For QuEST, we used a dip_fraction of 0.8 because 

QuEST uses a threshold value of  (1-dip_fraction) X (maxima reads). For FindPeaks, we used a -

subpeaks option of  0.2 for the “-subpeaks” option. We calculated recovery rate and false 

discovery rate using custom Java programs. 

 
Figure 3-20 Generating the synthetic dataset 

Histone modification usage example  

The dataset was downloaded from GEO using the accession ID: GSE20042. We used a 

delta value of 0.4 for PeakRanger, and a dip_fraction of 0.6 for QuEST. 

Speed and memory footprint test 

We used the GABP dataset. SPP gave us an error message when we attempted to run it 

with parallel support, so it was run in regular mode. We ran PeakRanger with the “-t 4” option to 

enable parallel processing. QuEST automatically launched multiple processing sub-programs.  

Plots and data visualizing 

Signal tracks are drawn using the IGB browser[113]. 

Preparation of Summary Table 

For the Figure 3-19, we ranked each peak caller based on its relative performance in each 

benchmark. For the resolution:recovery test, we ranked average recovery rate. For the 

resolution:false discovery rate, we ranked average false discovery rate. For the specificity test, 
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we ranked recovery rate minus false discovery rate. For the spatial accuracy test, we ranked the 

absolute distance between the higher and lower hinge of the distance distribution. For the 

sensitivity test, we ranked the average recovery rate. For the speed test, we ranked elapsed clock 

time. For the memory test, we ranked the peak memory footprint consumed during execution. 

For the usability test, we ranked the sum of the features listed in Table 3-1. 

Software licensing and availability 

PeakRanger can be downloaded from: http://www.modencode.org/software/ranger. We 

currently provide the full source code, as well as binaries for Linux 64-bit systems. Binaries for 

other operating system and an Amazon EC2 image will be available during the first quarter of 

2011. 
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Chapter 4    Application of PeakRanger in the modENCODE 

project 

4.1 Comprehensive identification of transcription binding sites in 

D.melanogaster and C.elegans 

PeakRanger was used by modENCODE as the standard ChIP-Seq peak caller for 29 ChIP-

Seq experiments for involving 23 C. elegans transcription factors across various developmental 

stages. It was used by modENCODE project to process all worm transcription factors‟ ChIP-Seq 

datasets. For the ChIP-Seq datasets from D.melanogaster, PeakRanger was used in the process 

both datasets from transcription factors and histone modifications. PeakRanger was able to 

process the entire C.elegans datasets in less than 2 hours running on a regular workstation with 

8G ram and a quad core CPU. This illustrates PeakRanger's ability to integrate into a high-

throughput environment. Ultra-high through-put enabled great collaborated analysis among 

different labs. A couple of internal analysis shows that peaks produced by PeakRanger were of 

high quality (Data not shown). 

4.1.1 PeakRanger effectively recognize close summits 

 
Figure 4-1 PeakRanger result for region 6520000-6600000 of chromosome I of dataset for 

C.elegans transcription factor BLMP-1. PeakRanger successfully identified most obvious summits 
within enriched regions without introducing any false positives. 

 

After processing all ChIP-Seq datasets for C.elegans, I checked the results for a couple of 

transcription factors to confirm that PeakRanger was able to correctly distinguish closely 

clustered binding sites without introducing false positives. Figure 4-1shows a regional snapshot 

of the region starting at 6520000 for C.elegans transcription factor BLMP-1. As shown in the 

picture, especially in the region around 6580000, PeakRanger correctly marks clustered peaks 

with zero false positive peaks called. At the same region of 6580000, two tiny peaks were not 

reported by PeakRanger. The reason for this is that compared to other called summits within this 

regions, these two peaks do not possess enough confidences as peaks instead of noises. 

4.1.2 IDR analysis and quality control of binding sites 

For experiments with replicates, an additional quality control process is applied. The 

primary procedure involved is the irreproducibility discovery rate (IDR) analysis [114]. The IDR 
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analysis evaluates the reads coverage signal as well as the reproducibility of the signals in each 

of the replicates, thus giving a score to measure the reliability of the peaks. The IDR score is 

designed to resemble FDR value and a smaller IDR value represents higher quality threshold. 
 

Dataset 
# peaks 

in Rep 1 

# peaks in 

Rep 2 

% 

Reproducible 

in intersection 

Corr in 

reproducible 

component 

# 

peaks 

at 

1% 

IDR 

# 

peaks 

at 

5% 

IDR 

# 

peaks 

at 

25% 

IDR 

caudal_1 54 780 59% 81% 0 1 24 

caudal_2 127 1536 64% 60% 0 1 51 

ctcf500 2137 2149 76% 99% 1278 1505 1964 

Table 4-1 Sample IDR analysis results for CTCF and Caudal. 

 

For all datasets in D.melanogaster and C.elegans, IDR analysis was performed for those 

with replicated datasets. In Table 4-1, two sample IDR analysis results are shown. The CTCF500 

dataset is of much higher quality than both caudal_1 and caudal_2, as indicated by the 99% 

correlation value in reproducible component as well as the 70% peaks that passed the IDR 5% 

threshold. The reason for low portions of IDR-passing peaks varies. For the caudal datasets 

shown here, the major reason is that the number of called peaks in the replicates departs from 

each other. It is possible the quality of replicate 1 of the caudal dataset is questionable so that it 

produced only a few peaks. For the datasets like caudal that didn‟t pass the IDR analysis, they 

were further examined by the data production group of modENCODE and were corrected later. 

4.1.3 Data organization and processing 

All datasets were processed using the computational cluster provided by Dr. Robert 

Grossman from the University of Illinois at Chicago (UIC). The results are also stored in the 

same cluster. The modENCODE DCC also has a dedicated website to provide access to these 

results: http://www.modencode.org/ . 

Various processing pipelines were assembled to automate the processing procedure. In 

particular, these pipelines were fed with datasets. Aligned reads were then generated by Bowtie, 

the second generation Burrows-Wheeler Transform (BWT) based reads aligner. The 

configuration of Bowtie used default values except for the treatment for reads that map to 

multiple locations. Only reads that were uniquely mapped to the reference genome were kept for 

downstream analysis. PeakRanger was then used to call peaks using aligned reads. If needed, 

PeakRanger was applied to replicates. IDR analysis was then carried out for replicates. Multiple 

instances of these pipelines were usually running simultaneously in the cluster, based on the 

private cloud environment in the UIC cluster.  

4.2 Characterization of doublet peaks 

Since closely cluster peaks have been observed during the data processing, these peaks, 

which were named as doublet peaks, were further analyzed.  

4.2.1 Background 

There have been few papers investigating the properties of these closely spaced binding 

sites. A primary reason for this is the lack of computational tools effective in identifying these 

special peaks. Now with PeakRanger, researchers can easily discover these doublet peaks by 

http://www.modencode.org/
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configuring PeakRanger with a high-resolution setup. I have systematically identified doublet 

peaks using modENCODE ChIP-Seq datasets of D.melanogaster. In this section, we are going to 

report the efforts in characterizing these doublet peaks. In particular, we claim that these doublet 

peaks are not likely due to data artifacts and they may play certain roles different from non-

doublet peaks. 

4.2.2 Calling doublet peaks for fly transcription factors 

We used datasets of CTCF, CBP, ORC and MCM. The selection of these factors is based 

on the availability of the datasets.  

To identify doublet peaks, we first used PeakRanger to call peaks in a set of ChIP-Seq 

datasets of fly transcription factors. The parameters were tuned so that PeakRanger can identify 

peaks with high resolution. The number of peaks identified for each factor is comparable and is 

in the range 1500 ~ 2000. Of these identified peaks, we found significant portions of doublet 

peaks. To verify that the identified doublet peaks indeed contain more than 1 summit, we plotted 

the average profile around these doublet peaks using their own read coverage profiles. We also 

plotted the average profile for the same number of regular single summit peaks from the top 

group of all peaks. As shown in Figure 4-2, compared to top regular peaks, the identified doublet 

peaks all demonstrate a clear twin-summit pattern. The average height of these doublet peaks are 

around half of that of the top regular peaks. These doublet peaks also appear to span a wider 

region than regular peaks, up to a couple of hundred base pairs. CTCF‟s doublet peaks does not 

show a strong pattern as others, although after zooming-in the region we confirm that it indeed 

shows a twin-summit pattern for doublet peaks. 

 
Figure 4-2 The reads profile of doublet peaks compared to regular peaks. 
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4.2.3 Doublet peaks are prevalent among fly transcription factors 

 
Figure 4-3 The distribution of randomly generated doublet peaks. 

 
Transcription 

factor 

Count of doublet 

peaks 

Percentage of  doublet peaks P value 

CBP 348 17% < 1e-5 

CTCF 190 8% <1e-5 

ORC 232 15% <1e-5 

MCM2-7 314 15% <1e-5 

Table 4-2 Statistics of the simulation results. 

 

We found that for all tested transcription factors, up to 17% of called peaks are doublet 

peaks(Figure 4-3, Table 4-2). To estimate the statistical significance of these peaks, we did a 

simulation to count the odds of having such kind of doublet peaks. The simulation is based on 

genome annotations of worm and fly. In such a simulation, a fixed number of regions are 

randomly dispensed to upstream regions of genes and the occurrence of closely spaced peaks is 

counted for each such simulation. For each of transcription factors, we did such simulation and it 

turned out that the maximum expected portion of doublet peaks were usually below 5%, far less 

than the observed percentages. We thus believe that these doublet peaks are not likely data 

artifacts. 

4.2.4 Doublet peaks are marked by PolII 

To further characterize doublet peaks, we generated the genome-wide PolII profile plots of 

doublet peaks. The result shows that PolII demonstrates a coherent doublet peak in these 

transcription factor binding sites. As a comparison, we extracted the same number of peaks from 
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top non-doublet binding sites with highest significance. We then plotted the same profile for 

these non-doublet top regular peaks (Figure 4-4). As expected, only a single PolII peak is 

observed. This discovery supports that these doublet binding sites are likely to be biologically 

functional since the enrichment of PolII indicates the possibility of active gene transcriptions. 

CTCF is an exception to the PolII-Doublet peaks correlation, although there is a single-summit 

PolII in CTCF binding sites profile. 

 
Figure 4-4 The PolII profile at doublet peaks and regular peaks. 

4.2.5 Doublet peaks regions are more enriched with histones marking active 

promoters 

We then obtained similar profile plots of various histone marks. The plot was generated for 

both doublet peaks and top regular peaks. As shown in Figure 4-5, the doublet peaks tend to be 

synergetic to cluster in much active genomic regions compared to regular singleton peaks.  

All four factors show that their doublet peaks, compared to top regular peaks, are more 

enriched with H3K4ME3. For H3K4ME1, MCM and ORC„s doublet peaks show a stronger 

valley pattern but CTCF and CBP are on the contrary. Since the peak pattern of H3K4ME3 and 

the valley pattern of H3K4ME1 resembles previously published prediction of promoters[18, 

115], our results indicate that double binding of these transcription factors may more likely to 

mark promoters than top regular peaks. It is also possible that promoters marked by doublet 

peaks are more likely to be active than those marked by top regular peaks. To test the likelihood 

of the promoter-enrichment hypothesis, we measured the percentage of binding sites in each 

group that overlap with an annotated promoter. However, the result shows that doublet peaks of 

MCM and ORC do not exhibit a significantly higher overlap with promoters than regular peaks.   

For CTCF and CBP, we did not observe the similar pattern. The reason may be that CTCF 

possess a complex combination of roles and it is not solely a marker for promoters. And since 

CBP is believed to be a close collaborator of CTCF, it is not surprise that its profile is similar to 

that of CTCF. 
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Figure 4-5 Various histone modification profiles at doublet peaks and regular peaks. 

 

4.3 Conclusion 

In this chapter, the peak calling of ChIP-Seq datasets in the modENCODE datasets is 

shown. In particular, the steps involved and the quality control of these steps are demonstrated. 

Followed by that, the properties of the doublets peaks were analyzed at the genome-scale, which 

should be the first report in the field. The authenticity of these doublets peaks are confirmed by 

their correlation with multiple other biological marks, especially the correlation with PolII. A 

statistical modeling of these doublet peaks shows that they are not like to be noises in terms of 

statistical significance. However, due to the limited datasets, the concrete biological roles of 

doublet peaks could not be fully identified, although there are clues that these doublet peaks may 

serve as synergetic marks of promoters. All these results were generated by PeakRanger and the 

xBED library.  
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Chapter 5    Conclusions 

5.1 The genome-wide properties of insulator binding proteins and doublet 

peaks 

In this thesis, I have demonstrated the analysis of the genome-scale distribution of 

insulator binding proteins (IBP) and doublet peaks. The analysis is based on the datasets 

generated by the modENCODE project and proves fruitful. In particular, the relationship 

between IBP and active chromatin and genes is analyzed. The results confirmed many previous 

conclusions obtained in local analysis but also reveals that the functions of IBP at the global 

scale are more complex than it is thought previously. On the other hand, the identification of 

doublet peaks for some D.melanogaster transcription factors demonstrates again the utility of 

genome-wide analysis. This type of clustered peaks has not yet been analyzed at the genome-

scale before due to the lack of appropriate tools. The exciting discovery that PolII and H3K4Me3 

are coherently enriched at the regions of doublet peaks indicates that these special peak clusters 

may confer synergetic effects on transcriptions. 

5.2 PeakRanger greatly contributes to the identification of global 

transcription factor binding profiles  

The development of PeakRanger and its application to the modENCODE project has 

proved a great success. PeakRanger demonstrated its ultra-high resolution in calling peaks from 

ChIP-Seq datasets, which brings almost zero false positive peaks. The work of PeakRanger has 

been included in two Science papers [116, 117]. 

5.3 Future work 

In despite of the problems I have addressed in this thesis, many other problems remain and 

it is expected that more problems will emerge with the increasing popularity of genome-wide 

analysis of transcription factors and histone modifications. On the other hand, the characterized 

IBP and doublet peaks still have more to discover.  I present a few such problems below. 

5.3.1 The classification of CTCF binding sites 

It has been shown that CTCF cannot be clearly classified as a specific category of 

transcription factors. Based on the result shown in this thesis, CTCF binding sites may enrich in 

promoters and active chromatins; CTCF sometimes also bind to inactive regions. CTCF is also 

present in binding sites where binding of CP190 is absent. The flexibility of CTCF binding sites 

indicate that CTCF possess a complex combination of biological roles in regulating gene 

transcriptions and chromatin structures. To further classify subsets of CTCF binding sites based 

on their distinct biological functions, we can integrate CTCF binding sites with its close 

collaborators, not limited to other insulator binding proteins. The increasing completeness of co-

binding patterns of CTCF and other transcription factors will help identify the mechanisms of 

CTCF‟s functions. 

5.3.2 Assignment of target genes of transcription factors 

The current practice to determine the target genes of transcription factors is simply to find 

the genes that have upstream or downstream binding sites within a distance limit. Although this 
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method sounds reasonable given the fact that the regulation of genes involves binding of 

promoters, it does not fully capture the regulatory systems well. A particular example is the 

effect of binding to enhancers, which can exhibit effects even on genes located in different 

chromosomes. It is also possible that a group of distant binding sites collaborate in the regulation 

of a common gene. This task may require the genome-wide structural datasets of chromatin, such 

as the chromatin conformation capture [118] datasets. 

 



57 

 

 

 

References 
 

 

 

1. Widom J: STRUCTURE, DYNAMICS, AND FUNCTION OF CHROMATIN IN 

VITRO. Annual Review of Biophysics and Biomolecular Structure 1998, 27(1):285-327. 

2. Grant P: A tale of histone modifications. Genome Biology 2001, 2(4):reviews0003.0001 

- reviews0003.0006. 

3. Kornberg RD, Lorch Y: Twenty-Five Years of the Nucleosome, Fundamental Particle 

of the Eukaryote Chromosome. Cell 1999, 98(3):285-294. 

4. Huisinga K, Brower-Toland B, Elgin S: The contradictory definitions of 

heterochromatin: transcription and silencing. Chromosoma 2006, 115(2):110-122. 

5. Grewal SIS, Jia S: Heterochromatin revisited. Nat Rev Genet 2007, 8(1):35-46. 

6. Ward WS: The structure of the sleeping genome: implications of sperm DNA 

organization for somatic cells. J Cell Biochem 1994, 55(1):77-82. 

7. Craig JM: Heterochromatin—many flavours, common themes. BioEssays 2005, 

27(1):17-28. 

8. Lohe AR, Hilliker AJ, Roberts PA: Mapping Simple Repeated DNA Sequences in 

Heterochromatin of Drosophila melanogaster. Genetics 1993, 134(4):1149-1174. 

9. Pidoux AL, Allshire RC: The role of heterochromatin in centromere function. 

Philosophical Transactions of the Royal Society B: Biological Sciences 2005, 

360(1455):569-579. 

10. Talbert PB, Henikoff S: Spreading of silent chromatin: inaction at a distance. Nat Rev 

Genet 2006, 7(10):793-803. 

11. Kouzarides T: Chromatin Modifications and Their Function. Cell 2007, 128(4):693-

705. 

12. Clayton AL, Hazzalin CA, Mahadevan LC: Enhanced Histone Acetylation and 

Transcription: A Dynamic Perspective. Molecular Cell 2006, 23(3):289-296. 

13. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G: Genome 

Regulation by Polycomb and Trithorax Proteins. Cell 2007, 128(4):735-745. 

14. Murray K: The occurence of epsilon-N-methyl lysine in histones. Biochemistry 1964, 

3:10 - 15. 

15. Chen D, Ma H, Hong H, Koh S, Huang S, Schurter B, Aswad D, Stallcup M: Regulation 

of transcription by a protein methyltransferase. Science 1999, 284:2174 - 2177. 

16. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao 

K: High-resolution profiling of histone methylations in the human genome. Cell 

2007, 129(4):823-837. 

17. He HH, Meyer CA, Shin H, Bailey ST, Wei G, Wang Q, Zhang Y, Xu K, Ni M, Lupien 

M et al: Nucleosome dynamics define transcriptional enhancers. Nat Genet 2010, 

42(4):343-347. 



58 

 

18. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, 

Stuart RK, Ching CW et al: Histone modifications at human enhancers reflect global 

cell-type-specific gene expression. Nature 2009, 459(7243):108-112. 

19. Shiama N: The p300/CBP family: integrating signals with transcription factors and 

chromatin. Trends in Cell Biology 1997, 7(6):230-236. 

20. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh T-Y, 

Peng W, Zhang MQ et al: Combinatorial patterns of histone acetylations and 

methylations in the human genome. Nat Genet 2008, 40(7):897-903. 

21. Shahbazian MD, Grunstein M: Functions of Site-Specific Histone Acetylation and 

Deacetylation. Annual Review of Biochemistry 2007, 76(1):75-100. 

22. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD: 

Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking 

Histone Acetylation to Gene Activation. Cell 1996, 84(6):843-851. 

23. Das C, Lucia MS, Hansen KC, Tyler JK: CBP/p300-mediated acetylation of histone 

H3 on lysine 56. Nature 2009, 459(7243):113-117. 

24. Roh TY, Cuddapah S, Zhao K: Active chromatin domains are defined by acetylation 

islands revealed by genome-wide mapping. Genes Dev 2005, 19:542-552. 

25. Roh TY, Wei G, Farrell CM, Zhao K: Genome-wide prediction of conserved and 

nonconserved enhancers by histone acetylation patterns. Genome Res 2007, 17:74-81. 

26. Rada-Iglesias A: A unique chromatin signature uncovers early developmental 

enhancers in humans. Nature 2011, 470:279-283. 

27. Creyghton MP: Histone H3K27ac separates active from poised enhancers and 

predicts developmental state. Proc Natl Acad Sci USA 2010, 107:21931-21936. 

28. Ekwall K, Olsson T, Turner B, Cranston G, Allshire R: Transient inhibition of histone 

deacetylation alters the structural and functional imprint at fission yeast 

centromeres. Cell 1997, 91:1021 - 1032. 

29. Negre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, Kheradpour P, Eaton 

ML, Loriaux P, Sealfon R et al: A cis-regulatory map of the Drosophila genome. 

Nature 2011, 471(7339):527-531. 

30. Nowak SJ, Corces VG: Phosphorylation of histone H3: a balancing act between 

chromosome condensation and transcriptional activation. Trends in Genetics 2004, 

20(4):214-220. 

31. Shilatifard A: Chromatin Modifications by Methylation and Ubiquitination: 

Implications in the Regulation of Gene Expression. Annual Review of Biochemistry 

2006, 75(1):243-269. 

32. Patikoglou G, Burley SK: EUKARYOTIC TRANSCRIPTION FACTOR-DNA 

COMPLEXES. Annual Review of Biophysics and Biomolecular Structure 1997, 

26(1):289-325. 

33. Lifton RP, Goldberg ML, Karp RW, Hogness DS: The organization of the histone 

genes in Drosophila melanogaster: functional and evolutionary implications. Cold 

Spring Harb Symp Quant Biol 1978, 42 Pt 2:1047-1051. 

34. Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA: Mammalian 

RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev 

Genet 2007, 8(6):424-436. 

35. Ong C-T, Corces VG: Enhancer function: new insights into the regulation of tissue-

specific gene expression. Nat Rev Genet 2011, 12(4):283-293. 



59 

 

36. Blackwood EM, Kadonaga JT: Going the Distance: A Current View of Enhancer 

Action. Science 1998, 281(5373):60-63. 

37. Raab JR, Kamakaka RT: Insulators and promoters: closer than we think. Nat Rev 

Genet 2010, 11(6):439-446. 

38. Farnham PJ: Insights from genomic profiling of transcription factors. Nat Rev Genet 

2009, 10(9):605-616. 

39. Moon H, Filippova G, Loukinov D, Pugacheva E, Chen Q, Smith ST, Munhall A, Grewe 

B, Bartkuhn M, Arnold R et al: CTCF is conserved from Drosophila to humans and 

confers enhancer blocking of the Fab-8 insulator. EMBO Rep 2005, 6(2):165-170. 

40. Phillips JE, Corces VG: CTCF: Master Weaver of the Genome. Cell 2009, 

137(7):1194-1211. 

41. Valenzuela L, Kamakaka RT: Chromatin Insulators. Annual Review of Genetics 2006, 

40(1):107-138. 

42. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM: A census of human 

transcription factors: function, expression and evolution. Nat Rev Genet 2009, 

10(4):252-263. 

43. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA: Structure and 

evolution of transcriptional regulatory networks. Current Opinion in Structural 

Biology 2004, 14(3):283-291. 

44. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, 

Beck AE, Tabor HK, Cooper GM, Mefford HC et al: Exome sequencing identifies 

MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010, 42(9):790-793. 

45. Cooper SJ, Trinklein ND, Anton ED, Nguyen L, Myers RM: Comprehensive analysis of 

transcriptional promoter structure and function in 1% of the human genome. 

Genome Res 2006, 16:1-10. 

46. Gershenzon NI, Ioshikhes IP: Synergy of human Pol II core promoter elements 

revealed by statistical sequence analysis. Bioinformatics 2005, 21:1295-1300. 

47. Ohler U: Identification of core promoter modules in Drosophila and their 

application in accurate transcription start site prediction. Nucleic Acids Res 2006, 

34:5943-5950. 

48. Ohler U, Liao GC, Niemann H, Rubin GM: Computational analysis of core promoters 

in the Drosophila genome. Genome Biol 2002, 3. 

49. Molina C, Grotewold E: Genome wide analysis of Arabidopsis core promoters. BMC 

Genomics 2005, 6:25. 

50. Identification and analysis of functional elements in 1% of the human genome by 

the ENCODE pilot project. Nature 2007, 447:799-816. 

51. Celniker SE: Unlocking the secrets of the genome. Nature 2009, 459:927-930. 

52. Collas P: The Current State of Chromatin Immunoprecipitation. Molecular 

Biotechnology 2010, 45(1):87-100. 

53. Ren B: Genome-wide location and function of DNA binding proteins. Science 2000, 

290:2306-2309. 

54. Park PJ: ChIP-seq: advantages and challenges of a maturing technology. Nat Rev 

Genet 2009, 10(10):669-680. 

55. Pepke S, Wold B, Mortazavi A: Computation for ChIP-seq and RNA-seq studies. Nat 

Meth 2009, 6(11s):S22-S32. 



60 

 

56. Lin H, Zhang Z, Zhang M, Ma B, Li M: ZOOM! Zillions Of Oligos Mapped. 

Bioinformatics 2008, 24:2431 - 2437. 

57. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants 

using mapping quality scores. Genome Res 2008, 18:1851 - 1858. 

58. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment program. 

Bioinformatics 2008, 24:713 - 714. 

59. Smith A, Xuan Z, Zhang M: Using quality scores and longer reads improves accuracy 

of Solexa read mapping. BMC Bioinformatics 2008, 9:128. 

60. Rumble SM: SHRiMP: accurate mapping of short color-space reads. PLoS Comput 

Biol 2009, 5:e1000386. 

61. Langmead B, Trapnell C, Pop M, Salzberg S: Ultrafast and memory-efficient 

alignment of short DNA sequences to the human genome. Genome Biology 2009, 

10(3):R25. 

62. Li H, Durbin R: Fast and accurate short read alignment with Burrows–Wheeler 

transform. Bioinformatics 2009, 25(14):1754-1760. 

63. Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J: SOAP2: an improved 

ultrafast tool for short read alignment. Bioinformatics 2009, 25(15):1966-1967. 

64. Kharchenko PV, Tolstorukov MY, Park PJ: Design and analysis of ChIP-seq 

experiments for DNA-binding proteins. Nature Biotech 2008, 26:1351-1359. 

65. Rozowsky J: PeakSeq enables systematic scoring of ChIP-seq experiments relative to 

controls. Nature Biotech 2009, 27:66-75. 

66. Zhang Y: Model-based analysis of ChIP-seq (MACS). Genome Biol 2008, 9:R137. 

67. Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover 

motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994, 2:28-36. 

68. Bailey TL, Gribskov M: Combining evidence using p-values: application to sequence 

homology searches. Bioinformatics 1998, 14(1):48-54. 

69. Stein L: The case for cloud computing in genome informatics. Genome Biology 2010, 

11(5):207. 

70. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson 

DA, Rabkin A, Stoica I et al: Above the Clouds: A Berkeley View of Cloud 

Computing. In.: EECS Department, University of California, Berkeley; 2009. 

71. Gaszner M, Felsenfeld G: Insulators: exploiting transcriptional and epigenetic 

mechanisms. Nat Rev Genet 2006, 7(9):703-713. 

72. Cuddapah S, Jothi R, Schones DE, Roh T-Y, Cui K, Zhao K: Global analysis of the 

insulator binding protein CTCF in chromatin barrier regions reveals demarcation 

of active and repressive domains. Genome Research 2009, 19(1):24-32. 

73. Lobanenkov VV, Nicolas RH, Adler VV, Paterson H, Klenova EM, Polotskaja AV, 

Goodwin GH: A novel sequence-specific DNA binding protein which interacts with 

three regularly spaced direct repeats of the CCCTC-motif in the 5'-flanking 

sequence of the chicken c-myc gene. Oncogene 1990, 5(12):1743-1753. 

74. Vostrov AA, Quitschke WW: The Zinc Finger Protein CTCF Binds to the APBbeta 

Domain of the Amyloid beta -Protein Precursor Promoter. EVIDENCE FOR A 

ROLE IN TRANSCRIPTIONAL ACTIVATION. J Biol Chem 1997, 272(52):33353-

33359. 

75. Filippova GN, Cheng MK, Moore JM, Truong J-P, Hu YJ, Di Kim N, Tsuchiya KD, 

Disteche CM: Boundaries between Chromosomal Domains of X Inactivation and 



61 

 

Escape Bind CTCF and Lack CpG Methylation during Early Development. 

Developmental Cell 2005, 8(1):31-42. 

76. Kanduri C, Pant V, Loukinov D, Pugacheva E, Qi C-F, Wolffe A, Ohlsson R, 

Lobanenkov VV: Functional association of CTCF with the insulator upstream of the 

H19 gene is parent of origin-specific and methylation-sensitive. Current Biology 

2000, 10(14):853-856. 

77. Holohan EE, Kwong C, Adryan B, Bartkuhn M, Herold M, Renkawitz R, Russell S, 

White R: CTCF Genomic Binding Sites in Drosophila and the Organisation of the 

Bithorax Complex. PLoS Genet 2007, 3(7):e112. 

78. Henikoff S, Henikoff JG, Sakai A, Loeb GB, Ahmad K: Genome-wide profiling of salt 

fractions maps physical properties of chromatin. Genome Research 2009, 19(3):460-

469. 

79. Smith ST, Wickramasinghe P, Olson A, Loukinov D, Lin L, Deng J, Xiong Y, Rux J, 

Sachidanandam R, Sun H et al: Genome wide ChIP-chip analyses reveal important 

roles for CTCF in Drosophila genome organization. Dev Biol 2009, 328(2):518-528. 

80. Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, Marygold S, Millburn G, 

Osumi-Sutherland D, Schroeder A, Seal R et al: FlyBase: enhancing Drosophila Gene 

Ontology annotations. Nucl Acids Res 2008:gkn788. 

81. Bushey AM, Ramos E, Corces VG: Three subclasses of a Drosophila insulator show 

distinct and cell type-specific genomic distributions. Genes & Development 2009, 

23(11):1338-1350. 

82. Raychaudhuri S, Stuart JM, Altman RB: Principal components analysis to summarize 

microarray experiments: application to sporulation time series. Pac Symp Biocomput 

2000:455-466. 

83. Michael Ashburner CAB, Judith A. Blake , David Botstein , Heather Butler , J. Michael 

Cherry , Allan P. Davis , Kara Dolinski , Selina S. Dwight , Janan T. Eppig , Midori A. 

Harris , David P. Hill , Laurie Issel-Tarver , Andrew Kasarskis , Suzanna Lewis , John C. 

Matese , Joel E. Richardson , Martin Ringwald , Gerald M. Rubin & Gavin Sherlock 

Gene Ontology: tool for the unification of biology. Nature Genet 2000, 25:25-29. 

84. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, 

Brockman W, Kim TK, Koche RP et al: Genome-wide maps of chromatin state in 

pluripotent and lineage-committed cells. Nature 2007, 448(7153):553-560. 

85. Johnson DS, Mortazavi A, Myers RM, Wold B: Genome-wide mapping of in vivo 

protein-DNA interactions. Science 2007, 316(5830):1497-1502. 

86. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, 

Bernier B, Varhol R, Delaney A: Genome-wide profiles of STAT1 DNA association 

using chromatin immunoprecipitation and massively parallel sequencing. Nat 

Methods 2007, 4:651 - 657. 

87. Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO: Genomic binding sites 

of the yeast cell-cycle transcription factors SBF and MBF. Nature 2001, 

409(6819):533-538. 

88. Lun D, Sherrid A, Weiner B, Sherman D, Galagan J: A blind deconvolution approach 

to high-resolution mapping of transcription factor binding sites from ChIP-seq data. 

In., vol. 10; 2009: R142. 



62 

 

89. Blahnik KR, Dou L, O'Geen H, McPhillips T, Xu X, Cao AR, Iyengar S, Nicolet CM, 

Lud盲 scher B, Korf I et al: Sole-Search: an integrated analysis program for peak 

detection and functional annotation using ChIP-seq data. In., vol. 38; 2009: e13. 

90. Ji H, Jiang H, Ma W, Johnson D, Myers R, Wong W: An integrated software system 

for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 2008, 26:1293 - 1300. 

91. Jothi R, Cuddapah S, Barski A, Cui K, Zhao K: Genome-wide identification of in vivo 

protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 2008, 36:5221 - 

5231. 

92. Zang CZ, Schones DE, Zeng C, Cui KR, Zhao KJ, Peng WQ: A clustering approach for 

identification of enriched domains from histone modification ChIP-Seq data. 

Bioinformatics 2009, 25(15):1952-1958. 

93. Fejes A, Robertson G, Bilenky M, Varhol R, Bainbridge M, Jones S: FindPeaks 3.1: a 

tool for identifying areas of enrichment from massively parallel short-read 

sequencing technology. Bioinformatics 2008, 24:1729 - 1730. 

94. Boyle AP, Guinney J, Crawford GE, Furey TS: F-Seq: a feature density estimator for 

high-throughput sequence tags. Bioinformatics 2008, 24(21):2537-2538. 

95. Tuteja G, White P, Schug J, Kaestner KH: Extracting transcription factor targets from 

ChIP-Seq data. Nucleic Acids Res 2009, 37(17). 

96. Valouev A, Johnson D, Sundquist A, Medina C, Anton E, Batzoglou S, Myers R, Sidow 

A: Genome-wide analysis of transcription factor binding sites based on ChIP-Seq 

data. Nat Methods 2008, 5:829 - 834. 

97. Nix D, Courdy S, Boucher K: Empirical methods for controlling false positives and 

estimating confidence in ChIP-Seq peaks. BMC Bioinformatics 2008, 9:523. 

98. Guo Y, Papachristoudis G, Altshuler RC, Gerber GK, Jaakkola TS, Gifford DK, Mahony 

S: Discovering homotypic binding events at high spatial resolution. Bioinformatics 

2010. 

99. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying 

mammalian transcriptomes by RNA-Seq. Nat Meth 2008, 5(7):621-628. 

100. Qin Z, Yu J, Shen J, Maher C, Hu M, Kalyana-Sundaram S, Yu J, Chinnaiyan A: HPeak: 

an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data. 

BMC Bioinformatics 2010, 11(1):369. 

101. Jeffrey Dean SG: MapReduce: Simplified Data Processing on Large Clusters In: 

OSDI'04: Sixth Symposium on Operating System Design and Implementation. San 

Francisco, CA; 2004. 

102. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, 

Durbin R, Genome Project Data Processing Subgroup: The Sequence Alignment/Map 

format and SAMtools. Bioinformatics 2009, 25(16):2078-2079. 

103. Ramsey SA, Knijnenburg TA, Kennedy KA, Zak DE, Gilchrist M, Gold ES, Johnson 

CD, Lampano AE, Litvak V, Navarro G et al: Genome-wide histone acetylation data 

improve prediction of mammalian transcription factor binding sites. Bioinformatics 

2010:btq405. 

104. Hadoop [http://hadoop.apache.org/] 

105. Schatz MC: CloudBurst: highly sensitive read mapping with MapReduce. 

Bioinformatics 2009, 25(11):1363-1369. 



63 

 

106. Langmead B, Schatz M, Lin J, Pop M, Salzberg S: Searching for SNPs with cloud 

computing. Genome Biology 2009, 10(11):R134. 

107. Langmead B, Hansen K, Leek J: Cloud-scale RNA-sequencing differential expression 

analysis with Myrna. Genome Biology 2010, 11(8):R83. 

108. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics 2010, 26(6):841-842. 

109. Shin H, Liu T, Manrai AK, Liu XS: CEAS: cis-regulatory element annotation system. 

Bioinformatics 2009, 25(19):2605-2606. 

110. Wilbanks EG, Facciotti MT: Evaluation of Algorithm Performance in ChIP-Seq Peak 

Detection. PLoS ONE 2010, 5(7):e11471. 

111. Wingender E, Dietze P, Karas H, Knüppel R: TRANSFAC: A Database on 

Transcription Factors and Their DNA Binding Sites. In., vol. 24; 1996: 238-241. 

112. Team RDC: R: A Language and Environment for Statistical Computing; 2008. 

113. Nicol JW, Helt GA, Blanchard SG, Raja A, Loraine AE: The Integrated Genome 

Browser: free software for distribution and exploration of genome-scale datasets. 

In., vol. 25; 2009: 2730-2731. 

114. Qunhua Li JBB, Haiyan Huang and Peter J. Bickel: MEASURING 

REPRODUCIBILITY OF HIGH-THROUGHPUT EXPERIMENTS. Annals of 

Applied Statistics 2011. 

115. Visel A: ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 

2009, 457:854-858. 

116. Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, Yip KY, Robilotto 

R, Rechtsteiner A, Ikegami K et al: Integrative Analysis of the Caenorhabditis elegans 

Genome by the modENCODE Project. Science 2010, 330(6012):1775-1787. 

117. Consortium Tm, Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, 

Landolin JM, Bristow CA, Ma L et al: Identification of Functional Elements and 

Regulatory Circuits by Drosophila modENCODE. Science 2010, 330(6012):1787-

1797. 

118. Dekker J, Rippe K, Dekker M, Kleckner N: Capturing Chromosome Conformation. 

Science 2002, 295(5558):1306-1311. 

 

 


