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Abstract of the Dissertation

Practical Reasoning with Transaction Logic Programming for

Knowledge Base Dynamics

by

Paul Fodor

Doctor of Philosophy

in

Computer Science

Stony Brook University

2011

Transaction Logic is an extension of classical predicate calculus for representing declar-

ative and procedural knowledge in logic programming, databases, and artificial intelli-

gence. Since it provides a logical foundation for the phenomenon of state changes, it has

been successful in areas as diverse as workflows, planning, reasoning about actions, Web

services, security policies, active databases and more. Although a number of implemen-

tations of Transaction Logic exist, none is logically complete due to the time and space

complexity of such implementations.

In the first part of this thesis, we describe an approach for performing actions in the

logic, which has better complexity and termination properties via a logically complete

tabling evaluation strategy. Then we describe a series of optimizations, which make

this algorithm practical and analyze their performance on a set of benchmarks. Our

performance evaluation study shows that the tabling algorithm can scale well both in

time and space.

In the second part of the thesis, we extend Transaction Logic in the direction of defea-

sible reasoning, which has a number of interesting applications, including specification of

defaults in action theories and heuristics for directed search in planning. In this setting

we show that heuristics expressed as defeasible actions can significantly reduce the search

space and thus the execution time and space requirements.
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Chapter 1

Introduction

Transaction logic (abbr., T R) [BK93, BK94b, BK98c] is a general logic for representing

knowledge base dynamics. Its model and proof theories cleanly integrate declarative and

procedural knowledge and, as a result, the logic has been employed in domains ranging

from reasoning about actions ([BK98a, Bon97]), to AI planning ([BK95, Fod09]), knowl-

edge representation ([BK94a]), event processing ([AFSS09b]), workflow management and

Semantic Web services ([DKRR98, DKR04, RK07, RK08]), security policy frameworks

[BN07], and general knowledge base programming ([BK98b]). In logic programming, T R
provides a clean, logical alternative to the assert and retract operators of Prolog, while,

in databases, T R is a declarative language for programming transactions, for updating

database views, and for specifying active rules. Moreover, in AI, T R can be used for

representing procedural knowledge, planning, hypothetical reasoning, subjunctive queries

and counterfactuals.

A couple of implementations of T R exist [Hun96a, Hun96b, Sle00, F.S00, YKZ03, Kif]

but, unfortunately, all are logically incomplete. The major barrier to completeness for

these implementations is similar to the reasons for Prolog incompleteness: the compu-

tation is based on an SLD-like resolution procedure with a depth - first goal selection

strategy. This problem has been studied extensively in the logic programming literature

[TS86, CW96], and this led to the development of tabling (or memoing)— an efficient

algorithm for logically complete implementation of logic programs based on SLD resolu-

tion [War92, SW94]. The best known implementation of tabling is XSB,1 but there are

1http://xsb.sourceforge.net
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others, such as Yap,2 B-Prolog,3 and Mercury.4

The success of this tabled technique in Prolog makes it a natural candidate for solving

the analogous problems in Transaction Logic. The major difference in T R is that the

latter deals with the phenomenon of changing states, which is not an issue in XSB and

similar systems, where state changes are viewed as a non - logical feature that is best left

outside of the scope of the tabling mechanism. In contrast, state updates have both model

- theoretic and procedural semantics in Transaction Logic, and their correct treatment is

essential.

The first part of the thesis will be about extending Transaction Logic with the tabling

algorithm (published in [FK10b]). The issue is that tabling for T R requires memoing of

the underlying database state and not just memoing of the previously called subgoals.

Clearly, this is a major problem both in terms of space and time. Of course, a powerful

formalism such as Transaction Logic does not come without a price, but our contribution

is in showing that there is ample room for optimization. After describing the extended

tabling algorithm, we discuss the major trade - offs in its implementation and propose

several time and space optimizations. We implemented a dozen of algorithms, which

combine our optimizations in various ways. Here we discuss six of those that illustrate

the most salient points. We discuss the rationale behind each of them, and then present

our experimental results. These results show that a proper integration of our techniques

results in a system with the best overall performance and scalability characteristics.

We are not aware of any work that directly deals with problems similar to ours.

However, we are building on a host of results, which became ingredients in our opti-

mization techniques or could be used for further optimization. These include the al-

ready mentioned works on tabling, the various indexing data structures, such as B+ trees

and other balanced trees (like AVL, Red-Black, and 23-trees), tries, sets, and others

[Com79, GS78, SRV01, Pon92, DPR96, Liu98].

Defeasible reasoning is another important paradigm, which has been extensively stud-

ied as a knowledge representation paradigm, including in fields such as policies, regu-

lations, law, learning, and others [BH95, BE99, BE00, DST03, DS01, EFLP03, GS98,

Gro99, Nut94, Pra93, SI00, WZL00, ZWB01]. In the second part of the thesis, we will

combine T R with defeasible reasoning (published in [FK11]) and show that the resulting

2http://www.dcc.fc.up.pt/~vsc/Yap
3http://www.probp.com
4http://www.cs.mu.oz.au/mercury
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logic language has many important applications. This logic is called T RDA (Transaction

Logic with Defaults and Argumentation Theories) and it extends T R in the direction of

the Logic Programming with Defaults and Argumentation theories (LPDA) [WGK+09b],

a unifying framework for defeasible reasoning that we proposed recently. Along the way

we define the well - founded semantics [VRS91] for T R, which allows the computation of

three valued models for Transaction Logic programs that use the negation - as - failure

operator over actions. The combined logic enables a number of interesting applications,

such as specification of defaults in action theories and heuristics for pruning search in such

search - intensive applications and planning. We also demonstrate the usefulness of the

approach by experimenting with a prototype of T RDA and showing how heuristics ex-

pressed as defeasible actions can significantly reduce the search space as well as execution

time and space requirements.

Apart from the contributions in the main part of the thesis we also worked on appli-

cations of T R in the complex event processing domain. Results for these applications are

presented in the Appendix A.

3



Chapter 2

Preliminaries

In this chapter we present the basic notions and definitions used in the rest of this thesis.

In Section 2.1 we present the general logic of state change for deductive databases and logic

programs named Transaction Logic, its model theory, its Horn subset, a specialized proof

theory and procedural interpretation. In Section 2.2, we shortly describe the classical

technique of tabling applied in our new implementation of T R. In Section 2.3, we present

defeasible reasoning for logic programming and our former work on Logic Programming

with Defaults and Argumentation theories (LPDA), work that sits at the base of the

new extension to Horn - T R, called Transaction Logic with Defaults and Argumentation

theories (T RDA).

2.1 Transaction Logic

Transaction logic (T R) ([BK93, BK94b, BK98c]) is a general logic of state change, which

extends classical first - order logic with new connectives that make it suitable for repre-

senting both procedural and declarative knowledge. The alphabet of the language LT R
of general T R is similar to that of first-order logic: a countably-infinite set of variables

V , a countably-infinite set of function symbols F (where each functor f has an arity and

constants are 0-ary function symbols), a countably-infinite set of predicate symbols P ,

logical connectives (disjunction ∨, classical conjunction ∧, serial conjunction ⊗, classical

negation neg , default negation not , concurrent conjunction |, isolation �), and the quan-

tifiers ∀ and ∃. We will describe the operands and we will define formulas in T R later in

this thesis for various subsets of the language. One the most important contribution of

T R is that T R comes with a pair of oracles, one called the data oracle Od which specifies

4



the static semantics of states and one called transition oracle which specifies the dynamic

semantics of states (or updates).

2.1.1 Serial Transaction Logic Syntax

In this thesis we use a subset of Transaction Logic called serial Horn-T R. This subset is

interesting because it is sufficiently expressive for many applications, including planning,

workflow management, and action languages [BK95, BK98a, Bon97, BK94a, DKRR98,

DKR04, RK07, RK08].

The syntax of Horn-T R is derived from that of standard Horn logic programming. As

described above, the alphabet of the language LT R of T R contains an infinite number of

constants, function symbols, predicate symbols, and variables. The atomic formulas have

the form p(t1, ..., tn), where p is a predicate symbol, and ti are terms (variables, constants,

function terms). However, unlike standard logic programming, predicate symbols are

partitioned into fluents and actions. Fluents are predicates whose execution does not

change the state of the database, while actions are predicates that can change the state of

the database. Fluents are further partitioned into base fluents and derived fluents. Base

fluents correspond to the classical base predicates in relational databases; they represent

stored data and are inserted and deleted in the database. Derived fluents correspond

to derived predicates, which represent database views. An atomic formula p(t1, ..., tn)

will be also called a fluent or an action atomic formula if p is a fluent or an action

symbol, respectively. Furthermore, if p is a derived (respectively, base) fluent symbol

then p(t1, ..., tn) is a derived (respectively, base) fluent atomic formula. An expression is

called ground if it does not contain any variables.

The symbol neg will be used to represent the explicit negation (also called “strong”

negation) and not will be used for default negation, that is, negation as failure. A fluent

literal is either an atomic fluent or has one of the following negated forms:

• neg atm, not atm, not neg atm,

where atm is a fluent atomic formula, An action literal is an action atomic formula or has

the form notα, where α is a action atomic formula. Literals of the form negα are not

allowed.

A database state is a set of ground base fluents. All database states are assumed to

be consistent, meaning that it is not possible for both f and neg f belong to the same

database state, for any base fluent f .

5



Transaction Logic distinguishes a special sort of actions, called elementary transitions

or elementary updates. Intuitively, an elementary transition is a “builtin” action that

transforms a database from one state into another. All other actions are defined via rules

using the elementary transitions and fluents. In this thesis, elementary transitions are

deletions and insertions of base fluents. Formally, an elementary state transition is an

action atomic formula of the form insert(f) or delete(f), where f is a ground base fluent

or has the form neg g, where g is a ground base fluent. For any given database D,

• insert(f) causes a transition from D to the state D ∪ {f} \ {neg f}; and

• delete(f) causes a transition from D to D \ {f} ∪ {neg f}.

In addition to the classical connectives ∧, ∨, and quantifiers, T R has new logical connec-

tives (we will add them per need basis in this thesis). Two of the new connectives are:

the sequential conjunction ⊗ and the modal operator of hypothetical execution 3. The

formula φ⊗ψ represents an action composed of an execution of φ followed by an execution

of ψ, while the formula 3φ is an action of hypothetically testing whether φ can be executed

at the current state, but no actually state changes take place. For example, executing

delete(on(blk1, table)) ⊗ insert(on(blk1, blk2)) means, in procedural terms, “first delete

on(blk1, table) from the database, and then insert on(blk1, blk2) into the database.” The

current database state changes as a result. In contrast, 3move(blk1) is only a “hypothet-

ical” execution: it checks whether move(blk1) can be executed in the current state, but

whether it can or not the current state does not change.

The semantics of Transaction Logic is such that when f1 and f2 are fluents, f1 ⊗ f2 is

equivalent to f1 ∧ f2 and 3f to f . Therefore, when no actions are present, T R reduces

to classical logic. This will explain later our use of ∧ in Example 3.4.2 where it can be

replaced with ⊗ without changing the meaning (but, the uses of ⊗ in the Examples 4.6

and 3.4.2 cannot be replaced with ∧ without changing the meaning).

Definition 2.1 (Serial goal) Serial goals are defined recursively as follows:

• If P is a fluent or an action literal then P is a serial goal. Note that fluent literals

can contain both not and neg , and action literals can contain not .

• If P is a serial goal, then so are notP and 3P .

• If P1 and P2 are serial goals then so are P1 ⊗ P2 and P1 ∧ P2.

6



Definite serial goals are defined similarly to serial goals, the only difference being that

they can contain only atomic fluents and atomic actions instead of fluent and action

literals (that is, definite serial goals do not contain the not and neg operators). 2

Definition 2.2 (Serial rules) A serial rule is an expression of the form:

H : − B. (1)

where H is a not -free literal and B is a serial goal. We will be dealing with two classes

of serial rules:

• Fluent rules: In this case, H is a derived fluent or the explicit negation of a

derived fluent and B = f1 ⊗ ... ⊗ fn, where each fi is a fluent literal (and thus ⊗
could be replaced with ∧).

• Action rules: In this case, H must be an atomic action formula, while the body

of the rule, B, is a serial goal.

A transaction base is a finite set of serial rules.

A definite serial rule is a serial rule where all the fluents fi in the bodies B = f1 ⊗
... ⊗ fn of fluent rules are atomic fluents, while the serial goals in the bodies of action

rules are definite serial goals.

2

In the above definition, the literal H is called the head of the rule, while the serial goal

B is called the body of the rule. The rule can be viewed as a procedure declaration, and

the rule body can be viewed as a procedure call. This is also the operational interpretation

similar to the logic programming SLD-style resolution (Linear resolution with Selection

function for Definite programs) that we will formalize later in this section.

Definition 2.3 (Serial transaction formula) A serial transaction formula in the

language T R is a literal, a serial goal or a serial rule. 2

2.1.2 Transaction Logic Semantics

As described in Section 2.1, general T R uses plug - ins for the data oracle Od and the

transaction oracle Ot. These oracles come with a set of database state identifiers (or

7



states). The key concept underlying the semantics of T R is the concept of execution

paths, which are sequences of database states.

Definition 2.4 (Paths and Splits) A path of length k, or a k-path, is a finite sequence

of states, π = 〈D1 . . . Dk〉, where k ≥ 1.

A split of π is any pair of sub paths, π1 and π2, such that π1 = 〈D1 ... Di〉 and

π2 = 〈Di ... Dk〉 for some i (1 ≤ i ≤ k). If π has a split into π1 and π2 then we write

π = π1 ◦ π2. 2

The T R model theory is defined using path structures, which are mappings from paths

to classical interpretations conforming to the data and the transaction oracles as plug -

ins. A path structure I over L is a quadruple 〈U, IF , Ipath〉, where U is the domain of I,

IF is an interpretation of function symbols in L assigning a function Un 7−→ U to every

n-ary function symbol in F and Ipath is a total mapping that assigns to every path a

first - order semantic structure in Struct(U, IF), compliant with the data and transaction

oracles: Ipath(〈D〉) |=c φ for every formula φ ∈ Od(D), and Ipath(〈D1,D2〉) |=c u

for every atom u ∈ Ot(D1,D2) (where the symbol |=c denotes satisfaction in these

structures).

Here, we depart from the general Transaction Logic framework and the plug - in type

of definitions and models that consider oracles and we give direct semantics for specialized

transaction logics variants used in this thesis. We address tabling for definite Horn-T R
programs in Section 2.2, extending it with concurrency in Section 3.5, and with a 3-valued

well-founded version in Section 4. Like in classical Horn rules, we only consider Herbrand

interpretations and models. We start with the definite Horn-T R programs and their

semantics.

Definition 2.5 (Herbrand universe and base of T R) The Herbrand universe of

T R, denoted U , is the set of all ground terms built using the constants and function

symbols of the language of T R.

The Herbrand base, denoted B, is the set of all ground not -free literals that can

be constructed using the language of T R. Within this set we distinguish the following

subsets:

• BF , the Herbrand Base of fluents is a subset of B that consists of the fluent-

literals.
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• BEU , the Herbrand Base of elementary updates is a subset of ground insert-

and delete-literals that are used for elementary transitions.

• BA, the Herbrand Base of actions is the subset of B that consists of action-

literals. 2

As in classical logic programming, a variable assignment is a mapping ν : V → U ,

which takes a variable and returns a Herbrand term as output. The mapping is extended

to terms as follows: i.e., ν(f(t1, . . . , tn)) = f(ν(t1), . . . , ν(tn)). We can omit variable

assignment for formulas with no free variables (called sentences) and, from now on, we

will deal only with sentences, unless explicitly stated otherwise.

The definite Horn-T R model theory uses the usual two truth values t and f , which

stand for the usual true and false, respectively. In Section 4, we will add a third truth

value, u, that stays for undefined.

Definition 2.6 (2-valued Herbrand interpretation for definite programs) A 2-

valued Herbrand interpretation for definite programs is a mapping H that assigns

f or t to every formula L in B. 2

Definition 2.7 (2-valued Herbrand Path Structure for Horn-T R) A

2-valued Herbrand Path Structure is a mapping I that assigns a 2-valued Herbrand

interpretation to every path subject to the following restrictions:

1. I(〈D〉)(d) = t, if d ∈ D;

I(〈D〉)(d) = f , if d /∈ D;

for every ground base fluent literal d and every database state D.

2. I(〈D1,D2〉)(insert(p)) = t if D2 = D1 ∪ {p} and P is a ground fluent literal;

I(〈D1,D2〉)(insert(p)) = f , otherwise.

3. I(〈D1,D2〉)(delete(p)) = t if D2 = D1 \ {p} and P is a ground fluent literal;

I(〈D1,D2〉)(delete(p)) = f , otherwise.

2

Definition 2.8 (Truth valuation in 2-valued path structures) Let I be a path

structure for Horn-T R, π a path, L a ground not -free literal, and let F , G ground

Horn-serial goals We define truth valuations with respect to the 2-valued path structure

I as follows:
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• If φ and ψ are serial goals and π = π1 ◦ π2 then

I(π)(φ⊗ ψ) = f if ( I(π1)(p) = f or I(π2)(q)) = f )

I(π)(φ⊗ ψ) = t, otherwise.

• If φ and ψ are serial goals then

I(π)(φ ∧ ψ) = f if ( I(π)(p) = forI(π)(q)) = f )

I(π)(φ ∧ ψ) = t, otherwise.

• If φ is a serial goal and π = 〈D〉, where D is a database state, then

I(π)(3φ) = t if I(π′)(φ) | π′ is there is a path that starts at D

I(π)(3φ) = f , otherwise.

• For a definite serial rule F :-G,

I(π)(F :-G) = t iff I(π)(F ) = I(π)(G) or (I(π)(F ) = t and I(π)(G) = f)

I(π)(F :-G) = f , otherwise.

We will say that φ is satisfied on path π in the path structure I and write I, π |= φ if

I(π)(φ)=t.

2

As we said before, in most of this thesis we deal only with sentences and we will

omit the variable assignments ν from these definitions. However, for completeness, if ν

is variable assignment, then we write that under ν, φ is satisfied on path π in the path

structure I, as I, π |=ν φ.

Definition 2.9 A 2-valued path structure, I, is a 2-valued model of a transaction for-

mula φ if I, π |= φ for every path π. In this case, we write I |= φ and say that say that

I is a model of φ or that φ is satisfied in I. A path structure I is a model of a set of

formulas if it is a model of every formula in the set.

A path structure I is a 2-valued model of a definite serial Horn-T R transaction base

P if all the rules in P are satisfied in I (that is, I |= R for every R ∈ P). 2

We now define two order relations between path structures. In classical logic program-

ming, a Herbrand interpretation σ1 precedes another interpretation σ2, written σ1 � σ2 if

all not -free literals that are true in σ1 are also true in σ2 and all not -literals that are

true in σ2 are also true in σ1. We also say that a Herbrand interpretation σ1 is smaller

(that is, it contains less information) than another interpretation σ2, written σ1 ≤ σ2 if
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all not -free literals that are true in σ1 are also true in σ2 and all not -literals that are

true in σ1 are also true in σ2.

If M1 and M2 are two Herbrand path structures, then M1 �M2 if

M1(π) �M2(π) for every path, π. We also have M1 ≤M2 if M1(π) ≤M2(π) for ev-

ery path, π.

A model M of P is minimal with respect to � iff for any other model, N, of P N �M

implies N = M. The least model of P is a minimal model that is unique. In [BK95], it

was shown that every definite Horn T R program has a unique least total model.

An existential serial goal is a statement of the form ∃X̄ψ where ψ is a serial goal and

X̄ is a list of all free variables in ψ. For instance, ∃Xmove(X, blk2) is an existential serial

goal. Informally, the truth value of an existential goal in T R is determined over sequences

of states, called execution paths, which makes it possible to view truth assignments in T R’s

models as executions. If an existential serial goal, ψ, defined by a program P, evaluates

to true over a sequence of states D0, . . . Dn, we say that it can execute at state D0 by

passing through the states D1, ..., Dn−1, and ending in the final state Dn. Formally, this

is captured by the notion of executional entailment, which is written as follows:

P,D0, . . . Dn |= ψ

2.1.3 A Proof Theory for the serial-Horn Transaction Logic

The =I proof theory for serial-Horn T R, described in [BK95, BK98c], resembles the well-

known SLD resolution proof strategy for Horn clauses, but it has additional inference

rules and axioms. The theory aims to prove statements of the form P,D0 --- `ψ, which

are called sequents. Here P is a set of serial-Horn rules and φ is a serial-Horn goal, i.e.,

a formula that has the form of a body of a serial-Horn rule. An inference succeeds if

and only if it finds an execution for the transaction ψ—a sequence of database states

D1, . . . , Dn—such that P,D0,D1, . . . ,Dn |= ψ. Informally, this statement says that

transaction ψ can successfully execute starting from state D0.

The axiom of the =I proof theory for serial-Horn T R uses a special propositional

constant in the T R language, namely state (also abbreviated as ( )), which is true only

on all paths of length 1 (those are all database states). In the model-based declarative

semantics, that is, for any path structure M and path π, it is the case that M, π |= state

if and only if π is a path of length 1. state is false (that is, M(π)(state) = f) on every
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path having more than one state.

Axioms: P,D --- ` ( )

Inference Rules: In Rules 1–3 below, σ is a substitution, a and b are atomic formulas,

and φ and rest are serial goals.

1. Applying transaction definitions :

Suppose a ← φ is a rule in P whose variables have been renamed apart so

that the rule shares no variables with b ⊗ rest. If a and b unify with a most

general unifier σ, then

P,D --- ` (∃) (φ⊗ rest)σ
P,D --- ` (∃) (b⊗ rest)

2. Querying the database:

If b is a fluent literal, bσ and rest σ share no variables, and bσ is true in the

database state D then

P,D --- ` (∃) rest σ
P,D --- ` (∃) (b⊗ rest)

3. Performing elementary updates :

If bσ and rest σ share no variables, and b σ is an elementary action that

changes state D1 to state D2 then

P,D2 --- ` (∃) rest σ
P,D1 --- ` (∃) (b⊗ rest)

Given an inference system, an executional deduction (or proof ) of a sequent, seqn, is a

series of sequents, seq1, seq2, . . . , seqn−1, seqn, where each seqi is either an axiom-sequent

or is derived from earlier sequents by one of the above inference rules. If D0, D1, ..., Dn−1,

Dn are the database states of these sequents, respectively, then Dn,Dn−1, . . . ,D1,D0 is

called the execution path of the deduction.

Theorem 2.1 (Soundness and Completeness [BK95]) If φ is a serial-Horn goal,

the executional entailment

P,D0,D1, . . . ,Dn |= (∃)φ
holds if and only if there is an executional deduction of (∃)φ whose execution path is

D0,D1, . . . ,Dn.
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It is important to keep in mind that this completeness result does not prescribe any

particular way of applying the inference rules. If these rules are applied in the forward

direction, then all execution paths will be enumerated and completeness will be realized.

However, such proofs are undirected, exhaustive,and impractical. In contrast, if we apply

the rules backwards, then we obtain a strategy that generalizes the usual SLD resolution

with left-to-right literal selection—exactly the strategy used in Prolog. This strategy

provides an efficient, goal-directed search strategy for proofs, but it is, unfortunately,

incomplete. In many cases, recursive (especially left-recursive) rules cause SLD resolution

with left-to-right literal selection to get stuck in an infinite depth-first search of the proof

tree. Just as in ordinary logic programming, to make the above proof theory complete

for an SLD-style strategy, it is necessary for the first rule (the one that most resembles

SLD resolution) to be applied in a breadth-first manner, but this is hard to implement

efficiently.

2.2 Tabled Logic Programming

The paradigm of Tabled Logic Programming (TLP) was invented to circumvent Prolog’s

incompleteness: the computation based on an SLD-like resolution procedure with a depth

- first goal selection strategy. This incompleteness problem has been studied extensively

in the logic programming literature [TS86, CW96], leading to the development of tabling

(or memoing) as an efficient algorithm for logically complete implementation of logic

programs based on SLD resolution [War92, SW94]. The best known implementation of

tabling is XSB,1 but there are others, such as Yap,2 B-Prolog,3 and Mercury.4

The idea behind tabling is to maintain in a table all subgoals encountered in a query

evaluation and answers to these subgoals. If a subgoal encountered more than once, the

evaluation reuses information from the table rather than re - performing resolution against

program clauses.

The technique is simple, but it has very important consequences. The tabling tech-

nique ensures termination of programs with the bounded term - size property, those are

the programs where the size of subgoals and answers produced during an evaluation is

1http://xsb.sourceforge.net
2http://www.dcc.fc.up.pt/~vsc/Yap
3http://www.probp.com
4http://www.cs.mu.oz.au/mercury
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less than some fixed number. This leads to an easier technique to reason about termina-

tion than in basic Prolog and better termination properties. For instance, using tabling, a

query to a Prolog predicate for transitive closure over a graph would terminate computing

all the reachability pairs of nodes avoiding infinite branches and redundant computation

due to repeated subgoals in the search space of SLD resolution. The technique avoids

redundant evaluation of subgoals.

Tabling can also be used to evaluate programs with negation according to the Well-

Founded Semantics (WFS) [VRS91] (including programs that have recursion through

negation). Tabling can achieve the optimal complexity for query evaluation for queries

to Datalog programs with negation (with or without function symbols) and other large

classes of programs, since it does not recompute the answers for any goals that it al-

ready encountered. Finally, tabling integrates closely with Prolog and implicitly with

Transaction Logic because of the top - down evaluation strategy.

2.3 Defeasible Reasoning

We conclude this preliminary chapter by introducing preliminaries to the second part of

this thesis, namely defaults and defeasible reasoning over Transaction Logic. Defeasible

reasoning in logic programming (LP) has been successfully used to model a broad range of

application domains and tasks, including security policies, regulations, laws, Web services,

aspects of inductive/scientific learning and natural language understanding. There has

been a multitude of formal approaches to defeasibility based on a large variety of intuitions

about the desired behavior [BH95, BE99, BE00, DST03, DS01, EFLP03, GS98, Gro99,

Nut94, Pra93, SI00, WZL00, ZWB01]. Most of these are based on Reiter’s Default Logic

[Rei80], stable models [GL88], and only a few [Gro99, MN06, WGK+09a] use the well -

founded semantics [VRS91].

Our approach builds upon our previous work on unifying research on defeasible rea-

soning in classical logic programming [WGK+09a]. The LPDA novel approach has the

advantages that generalizes Courteous Logic [Gro99] and other previous defeasible LP

approaches to include HiLog-style higher - order [CKW93] and F-logic style object - ori-

ented features [KLW95], and has the ability to combine multiple defeasible LP approaches

within a single system.
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LPDA deals with tagged rules, expressions of the form

@r L :-Body (2)

where r, called the tag of the rule, is a term, L, called the head of the rule, is a not -

free literal in L, and Body, called the body of the rule, is a conjunction of literals in L. A

logic program with defaults and argumentation theories is a set of tagged rules.

The LPDA framework abstracts the intuitions about defeasibility into argumentation

theories, a separate set of rules that contain a special predicate $defeatedAT that does

not appear in the rule heads of the main program. The semantics of LPDA are based

on well - founded models [VRS91] and stable models [GL88], and for further details the

reader can examine its details in [WGK+09a].
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Chapter 3

Tabling for Transaction Logic

A number of implementations of T R exist [Hun96a, Hun96b, Sle00, F.S00, YKZ03, Kif]

but, unfortunately, all are logically incomplete. The major barrier to completeness for

these implementations is similar to the reasons for Prolog incompleteness: the compu-

tation is based on an SLD- like resolution procedure with a depth - first goal selection

strategy. We extend Transaction Logic with tabling, keeping into consideration that T R
deals with the phenomenon of changing states, which is not an issue in classical logic

programming, where state changes are viewed as a non - logical feature that is best left

outside of the scope of the tabling mechanism.

The following example shows the effects of the original proof theory presented in

Section 2.1 of this thesis.

Example 3.1 (Consuming paths)

Suppose edge is a binary fluent and delete(edge(N,M)) denotes the action of deleting the

edge that goes from node N to node M . The following rules compute reachability in the

graph by traversing edges and then swallowing them:

reach(X, Y ) : −
reach(X,Z)⊗ edge(Z, Y )⊗ delete(edge(Z, Y )).

reach(X,X).

(3)

Note that the first rule defines the action reach recursively.

Lets consider the initial graph in Figure 1 and a query reach(a,X) to find all nodes X

reachable from the node a and return the states obtained after the deletion of each path.
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Notice that the example has a recursive definition. Just as in Prolog, it is not hard to

see that the SLD strategy for the above proof theory will get stuck in infinite derivation

paths. As seen in Figure 2, the proof tree is infinite and the reach(a,X) query will run

into an infinite loop by applying the first rule for reach(X, Y ) over and over again before

it would return any single solution. 2

a

c

b

d

Figure 1: An initial graph for the consuming paths reachability example

reach(a,Z),edge(Z,Y),delete(edge(Z,Y)) s02:

reach(a,X) s01:

[X/Z]

Figure 2: SLD-style tree for the query reach(a,X) in the consuming paths example with
an infinite derivation branch

Just as in ordinary logic programming, to make the above proof theory complete

for an SLD-style strategy, it is necessary for the first rule (the one that most resembles

SLD resolution) to be applied in a breadth - first manner, but this is hard to define and

implement efficiently.

T R tabling requires memoing of the underlying database state and not just memoing

of the previously called subgoals. Clearly, this is a major problem both in terms of

space and time. Of course, a powerful formalism such as Transaction Logic does not

come without a price, but our contribution is in showing that there is ample room for

optimization. After describing the extended tabling algorithm, we discuss the major trade

- offs in its implementation and show several time/space optimizations. We implemented

a dozen of algorithms, which combine our optimizations in various ways. In the end of

this chapter we discuss six of those that illustrate the most salient points, the rationale

behind each of them, and then present our experimental results. These results show that a

proper integration of our techniques results in a system with the best overall performance

and scalability characteristics.
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3.1 Tabling for Definite Serial Horn-Transaction

Logic Programs

Tabling for definite serial-Horn T R is analogous to tabling for Datalog, but with one

major difference: not only the goals that are yet to be proved need to be memoized, but

also the database states in which the calls to those goals were made. Likewise, not only

the answers to these goals must be memoized, but also the states that get created by

execution of those goals. We first describe the main principles of the algorithm and then

incorporate it into the proof theory of Section 2.1 by modifying the first inference rule

(we call the new inference system FT ).

The main idea in tabled logic programming is to re - use answers that were computed

for previous calls to the same goal. First, predicates of the program are partitioned

into the tabled ones and those that are not tabled. In principle, all predicates could be

tabled and query execution would still be correct. However, in some cases, knowing that

some predicates do not have to be tabled (while still preserving completeness) can lead

to significant savings (Sections 3.2, 3.4). One tabled goal is said to dominate another

in tabled resolution if the two goals are variants of each other (variant tabling), i.e., are

identical up to variable renaming, or if the first goal subsumes the second (subsumption

- based tabling). When a subgoal to a tabled predicate starting in a particular state is

encountered, a check is made to see whether this is the first occurrence of this subgoal in

that state (i.e., no dominating goal call was made before in the same state).

• If the call is new, the pair (goal, state) is saved in a global data structure called the

table space, and evaluation uses normal clause resolution to compute answers and

generate new database states for the subgoal. The computed

(answer - unification, new - state) pairs are recorded in the answer table created for

the aforesaid (goal, state) pair each time they are computed.

• If the call is not new, i.e., a pair (goal, state) exists in the table space for a domi-

nating goal, the answers to the call are returned directly from the answer table for

(goal, state) and no clause resolution is used.

The evaluation goes on by returning new answers to subgoals until all answers for all goals

generated during this process are computed.

The Inference System FT ):
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As in the previous section, P is a transaction base, D and Di are any databases, σ denotes

substitutions, a and b atomic formulas, and φ, rest are definite serial-Horn goals.

Axioms: P,D1 --- ` state
Rule 1a. Applying transaction definitions for tabled predicates:

Suppose b’s predicate is tabled and there is no dominating pair (c,D1) in the table

space. Let a ← φ be a rule in P whose variables have been renamed apart from

b ⊗ rest (i.e., the rule shares no variables with the goal) and suppose that a and b

unify with the most general unifier σ. Then:

P,D1 --- ` (∃) (φ⊗ rest)σ
P,D1 --- ` (∃) (b⊗ rest)
(b,D1) ∈ table space

∀ P,D1 . . .Di ` bγ, (bγ,Di) ∈ answer table(b,D1)

That is, given a sequent P,D1 --- ` (∃) (φ ⊗ rest)σ, the rule allows us to derive

P,D1 --- ` (∃) (b ⊗ rest). In addition, (b,D1) is added to the table space, and for

all γ such that P,D1 . . .Di`bγ is derivable, the answer (bγ,Di) is added to the

answer table for (b,D1).

Rule 1b. Returning answers from answer tables:

Suppose: (1) b’s predicate symbol is declared as tabled, (2) there is a dominating

pair (c,D1) in the table space, (3) the answer table for (c,D1) has an entry (a,Di),

and (4) a and b unify with most general unifier σ. Then:

P,Di --- ` (∃) (rest)σ

P,D1 --- ` (∃) (b⊗ rest)

Rule 1c. Applying transaction definitions for non - tabled predicates:

This rule is identical to Rule 1 in the proof theory of Section 2.1: let a ← φ be a

rule in P and a’s predicate symbol is not tabled. Assume that this rule’s variables

have been renamed apart from b ⊗ rest and that a and b unify with most general

unifier σ. Then:

P,D1 --- ` (∃) (φ⊗ rest)σ
P,D1 --- ` (∃) (b⊗ rest)

Rule 2. Querying the database:

If b is a fluent literal, bσ and rest σ share no variables, and bσ is true in the

database state D1, then:
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P,D1 --- ` (∃) rest σ
P,D1 --- ` (∃) (b⊗ rest)

Rule 3. Performing elementary updates :

If bσ and rest σ share no variables, and b σ is an elementary action that changes

state D1 to state D2, then:

P,D2 --- ` (∃) rest σ
P,D1 --- ` (∃) (b⊗ rest)

The rest of the tabling proof theory for Transaction Logic (Rules 2 and 3) is identical

to the original theory of Section 2.1. The inference system FT also contains the same

axiom of the =I proof theory for serial-Horn T R that says that the propositional constant

state is true only on all paths of length 1: P,D --- ` ( ).

The rules 1a–1c modify the original proof theory for T R by capturing the effects of

tabling. Rule 1a creates new entries in the table space and their associated answer tables.

When a call to a subgoal is complete, the corresponding answer (both the substitution

and the resulting database state) are added to an appropriate answer table. Rule 1b

deals with calls for which dominating table entries already exist. In those cases, no clause

resolution is used and answers are returned directly from the appropriate answer tables.

Rule 1c is identical to Rule 1 of the original proof theory for Transaction Logic, but here

it is applied only to non - tabled predicates. It simply does clause resolution SLD-style.

Notice that Rule 1b might change the current database state after returning an answer

for b, since the returned answer might have been obtained as a result of execution of state

- changing actions.

We show first a simple example where the main properties of tabling are easy to

observe: completeness and termination.

Example 3.2 (Simple infinite derivations) Suppose flag is a 0-ary fluent and

insert(flag) denotes the action of inserting the flag in the current database, while

delete(flag) denotes the action of deleting the flag from the current database.

a(X) : − insert(flag)⊗ b(X).

b(X) : − delete(flag)⊗ a(X).

b(X) : − test(X).

(4)

test(1). test(2). test(3). (5)
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Suppose that the initial database is the empty database. Given the query ? − a(X)., the

original system performs consecutive insertions and deletions of flag ad infinitum. This

type of depth - first execution is neither complete nor terminates. However, it is easy

to observe that the tabled execution performs one insertion and one deletion of flag and

is suspended, because it’s useless to continue these consecutive updates. The system will

then query for test(X) and terminate. Although in the original system, there were an

infinite number of possible executions of a(X), corresponding to the path - answers of the

form 〈{}, {flag}, {}, . . . , {flag}〉, it is pointless to compute all of them if all that the user

wants is the initial and the final database states. In this case, the transaction succeeds for

a(1), a(2) and a(3), all the solution paths starting in the database state {} and ending in

the database state {flag}. 2

We modify the definition of deduction in Section 2.1 to accommodate tabling: A tabled

deduction for P,D ---` (∃)φ, is a series of sequents, where each sequent is an axiom or is

derived from earlier sequents by an inference rule of the above tabling inference system.

Theorem 3.2 (Soundness and Completeness) Suppose φ is a definite serial-Horn

goal.

Soundness: If there is a tabled deduction of the sequent P,D1 --- ` (∃)φ with the

execution path 〈D1 . . .Dn〉 then the executional entailment P,D1 . . .Dn |= (∃)φ holds.

Completeness: If the executional entailment P,D1D2 . . .Dn−1Dn |= (∃)φ holds then

there exists a tabled deduction of the sequent P,D1 --- ` (∃)φ with an execution path

〈D1,D
′
2 . . .D

′
m,Dn〉 that starts in the database state D1 and ends in Dn.

Proof: See Appendix B. 2

This theorem is different from the completeness of the proof theory in Section 2.1

(Theorem 2.1) in that it does not guarantee that all execution paths will be found: it

only guarantees that all final states will be found. This is a very essential difference

because the number of all execution paths can be infinite (even in simple cases where

function symbols are not involved), while the number of final states is often finite. The

user typically is interested in finding out whether a particular transaction can execute

starting at a particular state and finish in a particular final state (or a group of states).

The fact that there are additional executions where the same sub - sequence sequence of

states repeats itself (which is the main cause of infiniteness) is usually of no interest to

the user. This leads to the following important termination results.
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Theorem 3.3 (Termination)

Let P be a program with no function symbols with arity greater than 0, that is, it allows

only constants (i.e., 0-ary function symbols). Let us further assume that all recursive

predicates in P are marked as tabled. Then, for any definite serial-Horn goal φ, the

tabled proof theory finds one or more proofs of P,D ---`(∃)φ and terminates.

Proof: See Appendix C. 2

Note that the above theorem does not guarantee that all executions found by the

original proof theory of [BK95] will also be found by the tabling proof theory, and this is

a good thing! In this way, the new proof theory will find all the executions that matter, and

will be able to terminate. In the Appendix C we compute an upper bound for the number

of sequents in the proof of any transaction using the tabled derivation trees defined in the

Section 3.1.1).

3.1.1 Tabled-T R derivation trees

In this section we introduce the tabled derivation trees, a formalism used in the proof of

termination of the tabled inference system FT and also to exemplify the inference in a

user friendly way similar to that of Extended SLG (SLGX) in [Swi99].

Given the tabled proof theory, a program P, an initial database D and a definite

serial-Horn goal φ, we can build a Tabled-T R derivation tree with a root corresponding

to the goal φ and the database D, whose nodes correspond to sequents in the proof theory.

Each arc is labeled with an inference rule and a set of substitutions σ, while each node is a

pair 〈answer − substitution, database state〉 that corresponds to a new sequent obtained

by applying the inference rule on the parent sequent. In fact, each node in the tree is

associated with one and only one database, namely the current state of the database

that starts the paths on which the transaction has to be proved true. The construction

of this tree proceeds as follows. In the initial step, the goal φ becomes the root of the

tree and is associated with the initial database, bD, constituting parts of the sequent:

P,D --- ` (∃)φ. A node is empty if the current goal in the sequent is empty (these are

the success leaves of the derivation tree). These empty goals correspond to application

of axioms in the proof theory and they still contain a current database state. A node is

completed (completely evaluated) if it is empty, or if it is a node that is not a suspended

sequent (that is, the inference rule 1b is applied for it returning answers from answer

table of a dominating goal) and no inference rule can be applied to the node, or it is
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a suspended sequent where there is a completed node for the dominating pair (c,D) in

the table space whose all entries (a,D′) were applied with most general unifiers to the

current node (all of its possible answers were fed to the node) and all possible operations

have been done on its nodes, and the nodes of subtree upon which the node depends.

A ground subgoal is completely evaluated when an answer is derived for it and all the

returning databases have been determined. A node is active if it not completed. At each

step in the tree construction that follows the initial step, an active node is chosen in the

tree and we proceed by applying a resolution which has not been performed yet. If the

resolution succeeds and we reach an empty goal, we add a child node to the current node

for the sequent resulting from the resolution. A tree is completed if all it’s nodes are

completed.

3.1.1.1 A Step-by-step Tabling Example for Definite Serial Horn Transaction

Logic

Lets consider the consuming paths example 3 to provide a detailed example for tabled

Horn-T R. We reproduce this short example here:

reach(X, Y ) : −
reach(X,Z)⊗ edge(Z, Y )⊗ delete(edge(Z, Y )).

reach(X,X).

(6)

The tabled resolution (implemented with delaying) uses two tables: a solution table

to save the tabled queries and a lookup table to mark the answers tried in each node

in the evaluation tree for calls that were not dominant calls. In the Figure 3, node 1

is a dominating call because it was the first time the evaluation encountered the goal

reach(a, V ariable), while node 2 is a dominated node for reach(a, V ariable). The call

reach(a,X) and the initial state of the graph is saved in the call− initial state column of

the table, while the node 2 is added to the lookup table with no solutions currently tried.

The computation in node 2 is stalled until we have additional solutions for the query.

The Figure 4 shows the resolution for the consuming paths top - down tabled example

where the second rule is applied and an answer to the query is computed and added to

the solution table: a can be reached from a (i.e., reach(a, a)), leaving the database in the

initial database state, s0.

The Figure 5 shows that the solution reach(a, a) in state s0 for the query reach(a,X)
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reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

Figure 3: The tabled resolution tree at step 2 for the query reach(a,X) in the consuming
paths example

reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

[] s0

[X/a]

Figure 4: The tabled resolution tree at step 3 for the query reach(a,X) in the consuming
paths example

was applied in the node 2 and two new solutions are found by the algorithm: reach(a, b)

bringing the database into the new state {edge(a, c), edge(b, a), edge(b, d)} and reach(a, c)

bringing the database into the new database state {edge(a, b), edge(b, a), edge(b, d)}. The

answer reach(a, a) with resulting state s0 is marked in the lookup table as tested for the

node 2.

The Figure 5 shows that the solution reach(a, a)ins0 for the query reach(a,X) was

applied in the node 2 and two new solutions are found by the algorithm: reach(a, b)

bringing the database into the new state {edge(a, c), edge(b, a), edge(b, d)} and reach(a, c)

reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

[] s0

[X/a]

edge(a,Y),del.edge(a,Y) s0

[Z/a]>s0

[Y/b] [Y/c]

del.edge(a,b) s0 del.edge(a,c) s0

[] s1 [] s2
a

c

b

d

a

c

b

d

a

c

b

d

Figure 5: The tabled resolution tree at step 7 for the query reach(a,X) in the consuming
paths example
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reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

[] s0

[X/a]

edge(a,Y),del.edge(a,Y) s0

[Z/a]>s0

[Y/b] [Y/c]

del.edge(a,b) s0 del.edge(a,c) s0

[] s1 [] s2

edge(b,Y),del.edge(b,Y) s1

[Z/b]>s1

[Y/a] [Y/c]

del.edge(b,a) s1 del.edge(b,c) s1

[] s3 [] s4

a

c

b

d

a

c

b

d

a

c

b

d

Figure 6: The tabled resolution tree at step 11 for the query reach(a,X) in the consuming
paths example

bringing the database into the new database state {edge(a, b), edge(b, a), edge(b, d)}. The

answer reach(a, a) with resulting state s0 is marked in the lookup table as tested for the

node 2.

Following the application of the two solutions reach(a, b) and reach(a, c) to the domi-

nated call in the node 2, additional solutions are added to the dominant goal reach(a,X),

namely reach(a, a), bringing the database into the new state {edge(a, c), edge(b, d)} and

reach(a, d) bringing the database into the new database state {edge(a, c), edge(b, a)} (see

Figure 6. The dominated goal 2 in the lookup table marks that the answers reach(a, b)

and reach(a, c) were applied to 2.

The algorithm continues by feeding all answers to the dominated node 2 and computing

all answers to the query reach(a,X). The algorithm finds all the solutions (i.e., answer

substitutions and return states) for the query, terminates and does not repeat inferences,

being an optimal computation for the query.

3.2 Problems and Solutions in Implementing Tabled

Transaction Logic

In this section we discuss the major hurdles on the way to implementing the algorithm

of Section 3.1 and propose a number of solutions. Then we describe six different imple-

mentations that progressively adopt these solutions. A performance evaluation of these
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reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

[] s0

[X/a]

edge(a,Y),del.edge(a,Y) s0

[Z/a]>s0

[Y/b] [Y/c]

del.edge(a,b) s0 del.edge(a,c) s0

[] s1 [] s2

edge(b,Y),del.edge(b,Y) s1

[Z/b]>s1

[Y/a]

del.edge(b,a) s1

[] s3

edge(c,Y),del.edge(c,Y) s2

[Z/c]>s2

[Y/c]

del.edge(b,c) s1

[] s4

fail

edge(a,Y),del.edge(a,Y) s3

[Z/a]>s3

[Y/c]

del.edge(a,c) s3

[] s5

Figure 7: The tabled resolution tree at step 12 for the query reach(a,X) in the consuming
paths example

reach(a,Z),edge(Z,Y),del.edge(Z,Y) s02:

reach(a,X) s01:

[X/Z]

[] s0

[X/a]

edge(a,Y),del.edge(a,Y) s0

[Z/a]>s0

[Y/b] [Y/c]

del.edge(a,b) s0 del.edge(a,c) s0

[] s1 [] s2

edge(b,Y),del.edge(b,Y) s1

[Z/b]>s1

[Y/a]

del.edge(b,a) s1

[] s3

edge(c,Y),del.edge(c,Y) s2
[Z/c]>s2

[Y/d]

del.edge(b,d) s1

[] s4

fail

edge(a,Y),del.edge(a,Y) s3
[Z/a]>s3

[Y/c]

del.edge(a,c) s3

[] s5

edge(d,Y),del.edge(d,Y)
[Z/d]>s4

fail

edge(c,Y),del.edge(c,Y)
[Z/c]>s5

fail

Figure 8: The tabled resolution tree at step 14 for the query reach(a,X) in the consuming
paths example

implementations is described in Section 3.4.

3.2.1 Main Difficulties with Implementing Tabled Transaction

Logic

The first obvious problem in implementing Transaction Logic is the transactional seman-

tics of its actions, which requires atomicity. As it turned out, this is the easiest problem

to address, and all existing implementations support atomicity.

The hard implementational issues have to do with tabling. These issues stem from the

same major difficulty, which is easy to spot after a quick review of the tabling algorithm:

unlike normal logic programming, tabling in T R implies saving the underlying database

states as part of the answer tables. This raises the following problems:

1. Space. Saving database states in answer tables potentially leads to huge duplication

of information. This is particularly troublesome for large database states (e.g., tens

of thousands or even millions of facts).

2. Time. Tabling database states implies the following time - consuming operations:
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(a) Copying of states. Since states are modified in the course of transaction execu-

tion, tabled states must be copied, since once tabled the contents of that state

must stay immutable.

(b) Comparison of states. When a transactional subgoal is invoked at a state,

we must check whether that particular goal/state pair is already tabled. This

involves comparison of states as sets. In the worst case, comparing two states

might take O(n · log(n)) time, where n is the size of the states. Worse, newly

created states might have to be compared with other tabled states to determine

if the newly created set of facts is a genuinely new state or has been seen before.

(c) Querying of states. The states created during the execution of transactions

must be efficiently queryable. We will soon see, however, that there is a tension

between the efficiency of querying and the various solutions to the aforemen-

tioned problems with time and space.

(d) Reinstating states. During backtracking and restarting of suspended goals with

new solutions, the data structures for current state need to be resumed for

querying and updating. This process might take a constant time when just

pointers to the state have to be changed or a variable time when new data

structures necessary for querying need to be created. A similar operation in

SLG-WAM is called forward trail of reinstalling variable bindings. Both opera-

tions have the goal to reinstate the environment in the suspended computation.

(e) Backtracking of updates. Although, it’s a problem inherited from T R and not

a new issue in tabling of T R, backtracking of updates is done differently in

various data structures.

Each of the above problems has a number of solutions, but the different solutions involve

various trade - offs, so it is not obvious how the different solutions fare when combined.

The next section discusses ideas that lead to substantial savings in various situations.

3.2.2 The Space of Possible Solutions

We will now map the space of possible approaches to the problems listed in the previous

section and discuss the various trade - offs in adopting the different space - and time -

saving solutions. In Section 3.3, we discuss the most interesting combinations of these

solutions, and their performance is evaluated in Section 3.4.
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3.2.2.1 Space issues in tabled T R

Our first observation is that although the initial state of a transaction might be huge,

a typical transaction changes only a few dozens of facts. Transactions that originate in

AI or graph algorithms, as in our Examples 3.1, 3.4.1, and 3.4.2, might modify hundreds

or even thousands of facts, but this is still far cry from millions or even billions of facts

that an initial state might contain. This suggests an obvious idea: differential logs. That

is, instead of tabling an entire state, we can represent a state as a pair of the form

(initial state, changelog). This representation not only saves space, but also reduces the

amount of time required for copying states. A differential log is normally represented as a

pair of logs (InsertLog,DeleteLog). The former contains the records of inserted facts and

the latter of deleted ones. Differential logs introduce a trade - off between the decreasing

cost of storing and copying states and the increasing time for querying database states.

Depending on the data structures used for change logs, this overhead could be a constant

factor of 2 or more.

The next possibility is to employ the various forms of compression, such as:

• Sharing. Logs can be stored using data structures, like tries, which enable high

degree of sharing, so the total space requirement would be less than the sum of the

sizes of all the logs.

• Factoring. Database facts can be stored on a heap and shared among states. The

states themselves can refer to these facts using pointers or a numbering scheme.

Thus, duplication of facts that are common to many different states is much less

costly (only one word per duplicate fact).

• Table skipping. It might be possible to reduce the number of states that need to

be tabled by carefully analyzing the rules and determining that only the states

associated with certain subgoals have to be tabled. Other states can be modified

directly without the need for storing or copying them. The theoretical basis for

skipping is Theorem 3.3. All that is needed is to ensure that enough predicates are

tabled to affect termination. The theorem states that it suffices to table just the

recursive predicates, but in some cases even that much might be unnecessary.

• Double-differential logs. When table - skipping is used, the changes made by the

transaction with respect to the previous tabled state can be kept in a log and not
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s0 = {edge(a, b), edge(a, c), edge(b, a), edge(b, d)}
s1 = {edge(a, c), edge(b, a), edge(b, d)}
s2 = {edge(a, b), edge(b, a), edge(b, d)}

s3 = {edge(a, c), edge(b, d)}
s4 = {edge(a, c), edge(b, a)}

s5 = {edge(b, d)}

Table 1: A set of states saved during the tabling algorithm

edge/2

a b

b c a d

r1 r2 r3 r4

Figure 9: Rule trie example

merged to that state until the next tabled state is reached. In this case, the current

state is represented as a pair

(tabled state, changelog relative to tabled state). In turn, the tabled state is rep-

resented as a pair

(initial state,main changelog), so the entire state is represented using the initial

state and two relative change logs. The first of these logs is called the main change

log and the second is the residual change log. We call this state representation

strategy double - differential logging.

The techniques of sharing and factoring are exemplified in the Figures 9 and 10 where

we have an example with 4 fluents edge(a, b), edge(a, c), edge(b, a) and edge(b, d) and 5

possible states (see Table 1). The tries are very compact and reusing common facts in

multiple states occupies a relatively compact space.
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r1
r2

r2

r3

r4

r4

s1

r3

s0

s2

r4

s3

r4

s4

r3

r4

s5
r4

r3

Figure 10: State trie example

Subsumptive tabling Finally, in general, a transaction depends on only a small

portion of the database state. In such a case, if a transaction repeats itself on different

databases, but the database portion that it depends on remains the same, this derivation

branch can be suspended and the proof theory slightly modified to account for this opti-

mization. Such detections of dependencies between transaction calls and database fluents

can be done using the dependency graph (like the one that we address later in this thesis

in Section 3.5). One example that could take advantage of this feature is the Hamiltonian

cycle use case mentioned in the evaluation Section 3.4.1.

3.2.2.2 Time issues in tabled T R

Two of the main time - related issues are copying and comparing of states. The third

issue, which stems from the suggestion to use differential logs, has to do with the increased

cost of querying the underlying database states.

• State comparison. Our first observation is that, in most cases, the newly created

states are different from most of the already seen tabled stated. So, we need a fast

method to rule out most of the equalities. One such method is based on incremental

hash functions. Simple incremental hash functions are cardinality, the total num-

ber of arities of the facts in the states, or, for example, any function of the form

h̄(State) = Σe∈State h(e) modN . For better results, one can employ several such
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functions. (These hash functions must be incremental so they could be computed

quickly over large sets.)

If the hash functions fail to differentiate among the new state and some of the tabled

states, the sets must be compared directly. This can be made faster if replicas of

tabled states are kept sorted, since comparing two sorted lists is linear in the size

of the lists.

Still, this is not completely satisfactory if, for example, a newly created state has

to be directly compared with multiple tabled states, which the hash functions failed

to tell apart. It turns out, however, that the problem can be avoided by the use of

data structures, such as tries. For instance, we can store the already seen tabled

states as sorted lists in a trie. Then, comparison of any new state with all the stored

states can be done in time linear in the size of the new state and will not depend on

the number of the already seen states. We can further combine hashing with trie

comparison by representing each tabled state as a list whose prefix (say, the first

three elements, if we choose to use three hash functions) are the hash values of our

hash functions and the rest is a sorted list of the actual facts that belong to the

state. Thus, in searching the trie the first few comparisons will be made based on

the hash values and then states will be discriminated based on the actual facts they

contain.

• Separate state repository. Tabled states and goal calls are typically kept in tries,

because this data structure enables fast (linear time) checks to find out whether a

pair (call, state) had been seen before. The question is then whether these pairs

are stored in one trie (say, as a term pair(call, state)) or the calls are stored in one

trie and states in another (the latter is called a state repository). Storing states and

calls in the same trie typically requires more space (because calls and states tend to

share less structure in such tries) and time (since call - state comparisons tend to

fail later than in the case of separate state repositories).

• Querying of states. The data structures used for differential logs make a big dif-

ference for the querying time of the states, since in order to find out whether a

particular fact is in a state one has to query both the initial state and the log. For

double-differential logs, the overhead is even higher, since two logs must be queried

in addition to the initial state. Since the initial state is static, it can be designed in
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the most advantageous way as far as querying is concerned. For the logs, we have

to balance the insertion time against the query time.

Unordered lists are best as far as the update time goes, but they are some of the

worst for querying. Also, for state comparison we need sorted list, which makes

unsorted lists less attractive. Tries are good for querying and updating, but they

are poor at maintaining the sorted order among the facts. For state comparison,

tries must be converted to lists at the cost of n · log(n) · |S|, where |S| is the number

of facts in the trie.

Nevertheless, in our experiments, we stored some logs as tries, since they are the

most optimized data structure in our underlying platform, XSB. To compensate for

the tries’ inefficiency in keeping the logs sorted, we sometimes maintained sorted

lists as auxiliary data structures. A much better choice would have been B+ trees,

as they can be made shallow (thus improving the search) and they naturally keep

data sorted.

• Copying of states. First, note that the table skipping and factoring methods that

were introduced as space - saving techniques are also important time - saving tech-

niques, because the fewer states are tabled — the fewer state - comparisons and

copying are needed. Double - differential logs can also reduce the number of times

states have to be copied. This happens because in double - differential logging, new

tabled states are created by merging the previous tabled state with the residual log.

This is done just before entering the next tabled state. In contrast, in single - dif-

ferential logging, states that might get tabled at the next opportunity are initially

created by copying the state that was tabled just now. The copy is then modified

directly and it gets saved in the state repository when the next tabled call is made.

If no new tabled call is reached, the copy has been made in vain. Double-differential

logging delays copying of states and thus is less prone to wasteful copying.

Beyond that, the fastest data structure to copy would be a list. In fact, if logs are

represented as unsorted lists then no copying would be needed whatsoever. Logs

can simply be passed as arguments to the predicates that represent actions. For

instance, the log at state k could be

(InsertLogk, DeleteLogk) and the next state (say, after inserting p) it would be

([p|InsertLogk], DeleteLogk), which shares the lists InsertLogk and DeleteLogk

with the previous state.
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Unfortunately, as discussed earlier, lists are not efficient for querying, and we need

them sorted. In our performance evaluation, we compared list - based implementa-

tions with others to validate the trade - off between copying and querying of states.

With an eye on querying, balanced trees are reasonably efficient to copy, since their

space overhead is a constant factor (compared to lists). In our comparisons, how-

ever, red - black trees and AVL trees did worse than tries because tries are highly

optimized in XSB. However, an optimized implementation of B+ trees would be far

superior than tries. The space overhead factor for B+ trees is only 1 + 1/(k − 1),

where k is the degree of the tree, and they can be copied very efficiently, if imple-

mented in a low - level language like C.

Thus, a trade - off exists between the costs of querying and copying, which we

evaluate in our performance study.

3.3 Implementations of Tabled Transaction Logic

Overall, we implemented more than a dozen of different algorithms, which realize various

combination of the above ideas. In this section, we discuss six of the most interesting

such implementations1 .

Common features. All implementations discussed here share the following common

features, which were introduced earlier:

• Data compression via factoring.

• Differential logs.

• State comparison:

– via incremental hash functions — to quickly rule out most false matches

– state repositories that use tries to store replicas of the main differential logs

— to ensure at most linear - time match of newly created states against all

previously seen states

1http://flora.sourceforge.net/tr-interpreter-suite.tar.gz
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Implementation 1. This implementation uses the above common features in which

differential logs are single, since table - skipping is not used. The logs are maintained as

ordered lists stored in the state repository. New states are constructed via insertion - sort

operations. As noted earlier, lists are a poor choice for querying states, but they are near

- optimal for copying. Recall that a differential log has the form (InsertLog,DeleteLog).

Moving to the next state is accomplished by inserting a record in the insertion or deletion

logs. In the worst case, this is linear in the log size, but the average is under 3/4 of the

log size. Since successive states often share their list tails, this can also result in space

savings.

Implementation 2. This implementation is similar to #1, but logs are stored both as

ordered lists and tries. The ordered lists reside in the state repository, as before, and tries

are used to speed up querying. When moving from state to state, the tries are modified

directly, without copying, so the only significant overhead here is the need to maintain a

query trie. To improve performance, creation of the query trie can be delayed until the

first query or update.

Implementations 3a and 3b. These implementations use table skipping to reduce

the number of tabled states. Table-skipping avoids state comparison and copying when

executing non - tabled (usually non - recursive) actions. State copying is still required

at tabled states. Furthermore, since states produced by non - tabled transactions are

not saved in tables, there is no need to check if we have seen such states before. Both

implementations use sorted lists to represent logs. However, 3a uses single differential log

and 3b uses double logs.

Implementations 4a and 4b. Like 3a and 3b, these implementations use table skip-

ping, where 4a uses single differential logs and 4b uses double logs. The difference is that

4a represents its single log as a trie and 4b does the same for its main differential log.

The residual differential log in 4b is still maintained as a sorted list. (In our tests, the

residual differential logs were generally short, which did not justify the overhead of using

tries for them.) Similar to the implementation 2, the creation of the main differential log

(e.g., for the implementations 4b) is delayed until such data structure is needed.
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3.4 Applications and performance evaluation

The following examples provide a test - bed for performance evaluation study.

3.4.1 Hamiltonian cycles

A Hamiltonian cycle is a cycle in a directed graph that visits each vertex exactly once.

Similarly to consuming paths, Hamiltonian cycles are detected here by swallowing the

already traversed vertexes.

hCycle(Start, Start) : − not vertex(X).

hCycle(Start,X) : −
edge(X, Y )⊗ vertex(Y )

⊗delete(vertex(Y ))⊗ insert(mark(X, Y ))

⊗hCycle(Start, Y )⊗ insert(vertex(Y )).

(7)

This solution to Hamiltonian paths relies on the transactional semantics of T R. The

second rule does the search and there are many possible ways for it to fail. Due to the

transactional semantics of the logic, changes to the database state made while expanding

these failing derivation paths are “forgotten” and new derivations are then tried. 2

Note that so far we have been describing the consuming paths and Hamiltonian cycle

examples procedurally, in terms of search. The actual model - theoretic semantics has

none of that. It simply says that (in Example 3.4.1) the transaction hCycle(Start, Start)

can execute, i.e., that there is an executional entailment of the form

P,D0, . . . Dn |= hCycle(Start, Start)

where D0 is the original graph, if and only if there is a Hamiltonian cycle in the graph.

The actual cycle can be extracted from the above sequence of states. While the model

theory is completely declarative, the aforesaid search does take place: it is performed by

the sound and complete proof theory of T R, which appears later.

3.4.2 Artificial Intelligence planning in the blocks world

The following rules define a STRIPS-like planner for building pyramids of blocks. We

represent the blocks world using the fluents on(x, y), which say that block x is on top
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of block y and isclear(x), which says that nothing is on top of block x. The action

pickup(X) picks up block X and the action putdown(X, Y ) puts it down on top of block

Y . The action move(X,From, To) moves block X from its current position on top of

block From to a new position on top of block To. This action is defined by combining

the afore mentioned actions pickup and putdown if certain pre - conditions are satisfied.

In addition, it defines the recursive action stack, which represents the pyramid building

transaction.

stack(0, Block).

stack(N,X) : − N > 0⊗move(Y,X)⊗ stack(N − 1, Y )

⊗on(Y,X).

stack(N,X) : − N > 0⊗ on(Y,X)⊗ unstack(Y )

⊗stack(N,X).

unstack(X) : − on(Y,X)⊗ unstack(Y )⊗ unstack(X).

unstack(X) : − isclear(X) ∧ on(X, table).

unstack(X) : − (isclear(X) ∧ on(X, Y ) ∧ Y 6= table)

⊗move(X, table).
unstack(X) : − on(Y,X)⊗ unstack(Y )⊗ unstack(X).

move(X, Y ) : − X 6= Y ⊗ pickup(X)⊗ putdown(X, Y ).

pickup(X) : − isclear(X)⊗ on(X, Y )

⊗delete(on(X, Y ))⊗ insert(isclear(Y )).

putdown(X, Y ) : − isclear(Y )⊗ not on(X,Z1)

⊗not on(Z2, X)⊗ delete(isclear(Y ))

⊗insert(on(X, Y )).

(8)

The above rules represent a straightforward algorithm for building a pyramid. The first

rule says that stacking zero blocks on top of X is a no - op. The second rule says that, for

bigger pyramids, stacking N blocks on top of X involves moving some other block, Y , on

X and then stacking N − 1 blocks on Y . To make sure that the planner did not remove

Y from X while building the pyramid on Y , we are verifying that on(Y,X) continues to

hold at the end. Looking down at the definition of move we may notice that this action

will not be performed if X is not clear. The third rule for stack says that in that case

the robot should unstack whatever is no X and make X clear. The unstack action is also

recursively defined and is, in a sense, the opposite of stacking. Definition of the other

actions is straightforward. 2
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3.4.3 Evaluation for tabled T R implementations

The tabled T R implementations were tested on a workstation with Pentium dual - core

2.4GHz CPU and 3GB memory running on Ubuntu Linux and XSB Prolog version 3.2.

In describing the results of our tests, we use tables that show time (in seconds) and

space (in Kb) costs for the different implementations using the problems in this section

of gradually increasing size. To increase accuracy, we make the tests run for considerable

amounts of time and avoid the possibility where different algorithms might pick up solu-

tions that incur different costs. To this end, our tests compute all possible solutions for

every problem in our suite and the numbers of solutions for each case are listed in the

tables.

One of the important goals of this performance study is to demonstrate the benefits

of table - skipping and double - differential logging. To show this, we include tables that

display the numbers of tabled (saved) states, the numbers of times states were copied, and

the numbers of times new states were compared with the contents of the state repositories

(table - skipping implementations should do fewer of these operations). These tables also

help us explain the reported times and assess the various trade - offs.

The overall conclusion from the study is that table - skipping and double - differential

logging incur relatively small overheads for small problems, but bring substantial savings

for larger problems and make them scale better. Likewise, maintaining data structures,

like tries, that speed up querying of states brings significant speedups. The main overhead

of those of our implementations that rely on tries (implementations 2, 4a, and 4b) is that

copying tries is slow (7 times slower than copying lists in XSB). Since XSB’s tries do not

preserve the order on their contents, we had to also keep states as sorted lists — both

time and space overhead. The use of B+ trees in lieu of tries would have solved both of

these problems, if an efficiently integrated version existed for XSB.

The suite of the different implementations of T R and of the test cases used in this com-

parison is provided at http://flora.sourceforge.net/tr-interpreter-suite.tar.

gz.

Consuming paths

Table 2 shows execution times and memory consumption for the consuming paths

problem for graphs with 100, 250, and 350 vertices. The row # of Solutions also shows
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the total number of solutions found.

It might seem surprising that Implementation 1, which incorporates only the basic

optimizations, is one of the two best performers. Implementation 3, which adds table

skipping, does only infinitesimally better. The explanation for this behavior is provided

by Table 3: The nature of the consuming paths problem is such that all states must be

tabled, so there is no advantage to table - skipping. Indeed, Table 3 shows that the number

of tabled states and state comparisons is exactly the same for all implementations and

depends only on the problem size. Using efficient data structures for logs, such as tries,

does not help either. Only a relatively small number of queries is issued, and the benefits

of faster querying using tries are negated by the overhead of copying tries compared to

lists (earlier we mentioned that copying a trie takes 7 times longer). Tries also take more

space than lists and, since the number of tabled states is the same for all implementations,

the ones that maintain the logs using tries require significantly more space.

Nevertheless, it is easy to demonstrate that even for the consuming paths problem the

use of table - skipping, tries, and double - differential logging is greatly beneficial. To

see this, we can use the consuming paths method to find ten paths simultaneously in ten

disjoint graphs. Our solution to this problem was obtained from the original consuming

paths problem by simply repeating the “consuming” part of the rules in (3) ten times on

different edge predicates.

reach(X, Y ) : −
reach(X,Z)

⊗ edge1(Z, Y )⊗ delete(edge1(Z, Y ))

⊗ edge2(Z, Y )⊗ delete(edge2(Z, Y ))

...

⊗ edge10(Z, Y )⊗ delete(edge10(Z, Y )).

reach(X,X).

(9)

Table 4 clearly shows that table - skipping, tries, and differential logging bring substantial

time benefits, as Implementation 4a, which incorporates all of these optimizations is by

far the best.
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Similarly to the ordinary consuming paths example, the explanation is provided by

Table 5: the number of tabled states and state comparisons performed by the table -

skipping implementations 3 – 4b is ten times less than the corresponding numbers for

implementations 1 and 2. We also see that table - skipping is better memory - wise,

since implementations 3a and 3b consume half of the memory used by Implementation 1.

Implementations 4a and 4b are much more memory hungry compared to implementations

3a and 3b because of the use of query tries, which consume much more memory than lists.

Hamiltonian cycles

Our next experiment computes all Hamiltonian cycles in graphs of sizes 50, 150, and

200 nodes. The results are shown in Table 6. This table provides several interesting

observations:

• In constructing Hamiltonian cycles, many more queries are issued than in the case

of consuming paths, so efficient data structures for querying are important. Thus,

Implementation 2 is much faster than Implementation 1.

• Table 7 shows that using table - skipping reduces the number of tabled states and

state comparisons by about 1/3. This is not high enough to offset the benefits of

fast querying, so Implementation 1 is still slightly better that Implementations 3a

and 3b.

• The querying overhead of double - differential logging is quite noticeable in this case,

so the times for implementations 3b and 4b are higher than for implementations 2

and 3a. Nevertheless, Implementation 4b beats 3b (both use double differential

logs) because it uses query tries rather than lists.

• The number of state comparisons performed by versions 3a and 4a is higher than

in case of 3b and 4b. This validates our earlier observation that, since double -

differential logging defers state copying and comparison (unlike single - differential

logs), this might lead to fewer of such comparisons and copies being done overall.

This problem is partially responsible for the higher runtime of Implementation 4a,
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which makes a larger number of expensive trie copies and comparisons. The other

reason is that the query tries need to be transformed into sorted lists at state

comparison.

As with consuming paths, it is easy to demonstrate that, for larger examples, the

combination of table - skipping, query tries, and double - differential logging, i.e., Imple-

mentation 4b, scales better and is the overall winning combination. To this end, we can

use the problem of constructing ten Hamiltonian cycles in ten disjoint graphs analogously

to the way the ten simultaneous consuming paths problem was constructed in (9). Table

8 shows the results, which do not require further elaboration.

Blocks World

We conclude our performance study with the blocks world planning example for pyra-

mids of 5, 6, and 7 blocks. Since the number of plans grows exponentially, we could not

evaluate larger problems on our test machine. Our results are shown in Table 9.

Since our largest problem uses only seven active blocks, the main differential logs and,

especially, the residual logs tend to be quite small. As a result, there is no significant

benefit in using query tries. Similarly, although Table 10 indicates that table skipping

reduces the number of comparisons by the factor of 3, the overhead of creating and

comparing all those extra states in implementations 1 and 2 is not high. On the other

hand, implementations 3b and 4b suffer slightly due to the higher querying overhead

associated with double - differential logging.

Interestingly, Table 10 again shows the higher number of state comparisons (and there-

fore state copies) performed by single - differential logging implementations 3a and 4a. In

case of 4a, this leads to a significant overhead because copying and comparing tries takes

7 times more time than in case of lists. Since Implementation 3a uses lists (and these lists

are short) this implementation is not seriously affected by all the extra copying.
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Once again, transforming our planning problem into one in which ten separate pyra-

mids are being built in ten parallel worlds clearly shows the advantage of our optimiza-

tions. The performance figures in Table 11 point to Implementation 4b as a clear winner.

In this section we presented several examples using the tabled T R interpreter. In

Appendix A, we present a new language for complex event processing using transaction

logic.

3.5 Tabling for Concurrent Transaction Logic Pro-

grams

We end this chapter by attacking the problem of lifting the tabling technique from the

Sequential Transaction Logic to its concurrent version. Concurrent Transaction Logic

(CT R) [BK96] extends the sequential version of the T R with the operator for concurrent

or parallel execution “|” and the isolation operator “�”. The formula φ|ψ means that the

subtransactions φ and ψ execute concurrently (interleaved). The formula �φ means that

φ must execute “atomically” and its execution should not be interleaved with any other

transactions.

In the following paragraphs, we describe CT R and we show that the same tabling

technique used for the sequential version is incapable of functioning for all the programs

using the concurrent version of T R due to the fact that multiple parts of the program can

be executed interleaved. We show that memoizing the set of so - called “hot” components

and execution candidates at each step does not solve the infinite recursion problem by

means of counter - examples.

Formally, Concurrent Transaction Logic extends the concept of paths (sequences of

databases) to sequences of paths, called multi - paths. Formally, a multi - path is a finite

sequence of paths, where each constituent path represents a period of continuous execu-

tion, separated by periods of suspended execution. For example, if D0, D1, D2, . . . , D6 are

database states, then 〈D0D1D2, D3D4, D5D6〉 is a multi - path.

If the 〈D0D1D2, D3D4, D5D6〉 multi - path was the execution history of an action φ

then the action had three periods of continuous execution: D0D1D2, D3D4 and D5D6. In
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the first period, φ changed the database from D0 to D2 going through the intermediate

state D1 and is suspended, re - awakening at state D3. Similarly, in φ’s second period

of continuous execution, it changed the database from D3 to D4 and is suspended, while

in its third period of continuous execution, it changed the database from D5 to D6 and

finishes.

In the following definitions, we introduce the interleaving and reduction operations

on multi - paths. The inverse operation of the split operation from Section 2.1 is called

concatenation.

Definition 3.10 (Concatenation) Suppose that κ = 〈D1 . . . Dk〉 and

κ′ = 〈Dk . . . Dk+l〉 are two paths, where Dk is the last state of the path κ and the

first state of the path κ′. Then, their concatenation is the path κ ◦ κ′ = 〈D1 . . . Dk+l〉.

Definition 3.11 (Interleaving) Suppose that π1, . . . , πn are multi - paths, then a multi

- path π is an interleaving if it can be partitioned into order - preserving subsequences

π1, . . . , πn. The set of all interleavings of two multi - paths π1 and π2 is denoted π1||π2

κ′ = 〈Dk . . . Dk+l〉.

Definition 3.12 (Reduction) Suppose that τ = 〈κ1, . . . , κn〉 is a multi - path. If

the paths κi and κi+1 can be concatenated, for some i, then τ reduces to the multi - path

τ ′ = 〈κ1, . . . , κi−1, κi ◦ κi+1, κi+2, . . . , κn〉.

CT R formulas are interpreted by multi - path structures which are used to tell which

ground atoms (fluents and actions) are true on what multi - paths. They are similar to

Herbrand path structures for Sequential T R, the difference being that the mapping I

conforms to the reduction operation: if a multi - path π1 reduces to a multi - path π2,

then I(π1)(a) = t implies I(π2)(a) = t for every atom a (i.e., if a can execute along π1

then it can also execute along π2). It was also shown in Lemma 3.6 in [BK96] that this

property is true for any formula φ if a multi - path π1 reduces to a multi - path π2, then

I(π1)(φ) = t implies I(π2)(φ) = t (i.e., if φ can execute along π1 then it can also execute

along π2).

Concurrent goals are defined recursively as follows:

• If P is a fluent or an action literal then P is a concurrent goal.
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• If P is a concurrent goal, then so are �P and 3P .

• If P1 and P2 are concurrent goals then so are P1 | P2, P1 ⊗ P2 and P1 ∧ P2. 2

A concurrent rule is an expression of the form H : − B., where H is a not - free literal

and B is a concurrent goal.

A proof theory for concurrent Horn transaction logic An inference system

for CT R, FC [BK96], verifies that P,D0 ---` (∃)φ, saying, informally, that transac-

tion (∃)φ can successfully execute starting from state D0 if and only if an execution

path is found for the transaction (i.e., a sequence of databases D0, D1, . . . , Dn such that

P,D0, D1, . . . , Dn`(∃)φ). The inference system FC tries to execute transactions left - to

- right, that is, left subtransactions first. These “left” subtransactions are called “hot”

components and are defined as follows:

Definition 3.13 (Hot Components) Consider φ a concurrent goal. Its set of hot com-

ponents hotφ is:

• hot( () ) = {}, where ( ) is the empty goal.

• hot( b ) = {b}, where b is an atomic formula.

• hot( φ1 ⊗ φ2 ⊗ . . . ⊗ φn ) = hot(φ1).

• hot( φ1 | φ2 | . . . | φn ) = hot(φ1) ∪ . . . ∪ hot(φn).

• hot( � φ1) = {� φ1}. 2

Informally, hot components are those subprocesses that are ready to execute. In Figure

12, we illustrate the hot components of a few transaction formulas.

Definition 3.14 (Inference in FC) Consider a concurrent Horn transaction base P

and D is any database state.

Axioms: P,D --- ` ( ), for any D.

Inference Rules: In Rules 1–4 below, σ is a substitution, φ and φ′ are concurrent serial

conjunctions, and a is an atomic fluent or action in hot(φ).
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1. Applying transaction definitions:

Suppose b← β is a rule in P whose variables have been renamed apart so that

the rule shares no variables with φ. If a and b unify with a most general unifier

σ, then

P,D --- ` (∃)φ′σ
P,D --- ` (∃)φ

where φ′ is obtained from φ by replacing a hot occurrence

of a with β.

2. Querying the database:

If a is a fluent literal, aσ and φ′ σ share no variables, and aσ is true in the

database state D then

P,D --- ` (∃)φ′ σ
P,D --- ` (∃)φ

where φ′ is obtained from φ by deleting a hot occurrence

of a.

3. Performing elementary updates:

If aσ and φ′ σ share no variables, and a σ is an elementary action that changes

state D1 to state D2 then

P,D2 --- ` (∃)φ′ σ
P,D1 --- ` (∃)φ

where φ′ is obtained from φ by deleting a hot occurrence

of a.

4. Executing atomic transactions:

If �α is a hot component in φ then

P,D2 --- ` (∃) (α ⊗ φ′)

P,D1 --- ` (∃)φ
where φ′ is obtained from φ by deleting a hot oc-

currence of �α.

Example 3.3 (CTR workflow example 1) Lets consider the program where we have

two recursive actions: a recursive producer a and a recursive consumer b. Note that here

ins/1 and del/1 are considered strict updates, i.e., ins(i) (i is a fluent) fails if t is already

in the current database state, respectively, del(i) fails if t is not in the current database

state. In fact, this is just syntactical sugar and not a real restriction since strict updates

can be always be represented with non - strict updates: ins(i) as not t ⊗ not− strict−
insert(i) and del(i) as t ⊗ not− strict− delete(i).
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a | b {}2:

c {}1:
{}

(a, ins.i, ins.i) | b {}

{}

a | (b, del.i, del.i, del.i) {} (ins.i, ins.i) | b {} a | (del.i, del.i, del.i) {}

(a, ins.i, ins.i, ins.i, ins.i) | b {}

(a, ins.i, ins.i, ins.i, ins.i, ins.i, ins.i) 
| b

{}

infinite

Figure 11: Part of the resolution tree for the Concurrent T R Example 3.3

Suppose i is a fluent, ins.i denotes the action of strict inserting i in the database and

del.i denotes the action of strict deleting i from the database. The following rules define

a workflow:

c : −a|b.
a : −a ⊗ ins.i ⊗ ins.i.

a : −ins.i ⊗ ins.i.

b : −b ⊗ del.i ⊗ del.i ⊗ del.i.

b : −del.i ⊗ del.i ⊗ del.i.

(10)

And the query: : −c. is a query to execute the action c, which tries to communicate

between the “producer” action a and the “consumer” action b.

2

Like in serial Horn-T R, the SLD style proof theory for several queries to recursive

programs goes into infinite loops. Such an infinite branch in the SLD proof can be seen

in Figure 11.

The CT R proof theory 3.14 can be modified in a similar way the proof theory for

the serial Horn-T R was modified. However, we will show that the tabling algorithm

cannot always be applied to CT R because no suitable tabling component can be found.

Tabling the entire goal does not solve the issue showed in Figure 11 because the goal is

extended ad infinitum. Tabling the set of hot components is not correct either due to

the interleaving of entire concurrent conjunctions and not only of the hot components.

Consider a concurrent Horn transaction base P, any database state D, a substitution

σ, any concurrent conjunctions φ and φ′, the sets of hot components for the concurrent

conjunctions φ and φ′, namely hot(φ) and hot(φ′), and an atomic fluent or action in
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hot(φ), a. For simplicity, lets also consider that all the predicates in the program are

tabled. One set of hot components is said to dominate another set of hot components in

tabled resolution if the for each goal in any of the sets there is a dominant goal (see Section

3.1) in the other set. For instance, if the dominance relation is the variant relation, i.e.,

identity up to variable renaming, then this type of CT R tabling is a form of variant tabling,

while if for each goal in the first set of hot components there is a subsuming goal in the

second set, then the technique is a subsumption - based tabling. When a goal φ is called,

the set of hot components hot(φ) is encountered and one hot component is selected as a

candidate to be executed in a particular state, a check is made to see whether this is the

first occurrence of this set of hot components and candidate component was tabled before

in that state (i.e., no dominating set of hot components and dominant candidate were

encountered before in the same state). If pair formed by the set of hot components and

the execution candidate is new, the tuple (hot(φ), candidate, state) is saved in the global

data structure called the table space, and the evaluation uses normal clause resolution to

compute answers and generate new return database states.

Lets consider that we modified the first inference rule in the CT R proof theory 3.14.

Suppose φ is a goal for the program P. If the pair (hot(φ), candidate) is encountered

for the first time at state D (i.e., no dominating entry (Set, Candidate,D) is in the table

space), then the transaction definitions are applied as before. Let b ← β be a rule in P

whose variables have been renamed apart so that the rule shares no variables with φ. If

the candidate a and the head b unify with a most general unifier σ, then

P,D --- ` (∃)φ′σ
P,D --- ` (∃)φ

where φ′ is obtained from φ by replacing the hot occurrence of the candidate a with β.

The computed (candidate answer - unification, new - state) answer pairs cannot be

recorded for the aforesaid (hot(φ), candidate, state) entry because this result is due to

the interleaving of all parts of concurrent conjunctions, and not of the execution of only

the hot candidate. As a consequence, in the general case, there is nothing to be saved

as answers for any tuple (Set, candidate, state) in the table space. We also show by

means of a counter - example that such a tabling algorithm for CT R does not help with

termination. Figure 13 shows the application of this tabling algorithm on the Example

3.3 and the query to c fails on all paths. However, Figure 12 shows a successful derivation.

In consequence the method in incomplete.
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a | b {}2:

c {}1:

a | (b, del.i, del.i, del.i)

(a, ins.i, ins.i) | (del.i, del.i, del.i) {}

{}

(ins.i, ins.i, ins.i) | (del.i, del.i, del.i) {i}

(ins.i, ins.i, ins.i) | (del.i, del.i) {}

(ins.i, ins.i) | (del.i, del.i) {i}

(ins.i, ins.i) | (del.i) {}

(ins.i,ins.i, ins.i, ins.i) | (del.i, del.i, del.i)

{}

(ins.i) | (del.i) {i}

ins.i {}

{i}

Figure 12: A successful branch in the resolution tree for the Concurrent T R Example 3.3

Suspended/
Tabling 
stopped

a | b {}2:

c {}1:
{}

(a, ins.i, ins.i) | b {}

{}

a | (b, del.i, del.i, del.i) {} (ins.i, ins.i) | b {} a | (del.i, del.i, del.i) {}

(ins.i, ins.i) | (b, del.i, del.i, del.i) {} (ins.i, ins.i) | (del.i, del.i, del.i) {}

fail

(a,ins.i, ins.i) | (b, del.i, del.i, del.i) {} (ins.i, ins.i) | (del.i, del.i, del.i) {}

(ins.i) | (del.i, del.i, del.i) {i}

ins.i | (del.i, del.i) {}

del.i, del.i {i}

del.i {}

Suspended/
Tabling 
stopped

Suspended/
Tabling 
stopped

Suspended/
Tabling 
stopped

Figure 13: Tabling of only hot components for the Concurrent T R Example 3.3
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However, the proof procedure FT works for programs with no interactions between

concurrent branches in the transaction base. If φ was a goal for the program P, with

a candidate a in the set of hot components hot(φ), and b ← β the rule in P whose

variables have been renamed apart so that the rule shares no variables with φ, then, for

non - interfering computations, if the sequent P,D --- D′ ` (∃)βσ is derived in isolation

with the rest of φ and the answer (hot(φ), βσ,D′) can be added to the answer table

associated with the table entry (hot(φ), a,D).

In non - interfering computations, there are either only queries, only inserts, or only

deletes, in which case the outcome of a goal for different interleavings does not change

because the different branches do not interact. Such interactions can be found by ex-

amining the rules in the transaction base using an algorithm based on the dependency

graph to detect the dependencies between predicates. Given a CT R program, the nodes

in the dependency graph are: all predicates that are heads of rules and all queries and

elementary operations invoked in the rules. The graph has an edge from X to Y , if for

some rules X is the predicate in the head of the rule and Y is a predicate or an elementary

operation in the rule body.

Example 3.4 (Financial Transactions) Lets consider the program where we have the

balance of a bank account represented by relation balance(Acct, Amt) and the follow-

ing transactions: change balance(Acct, Bah,Bal2), to change the balance of an account

from Ball to Bal2, withdraw(Amt,Acct) to withdraw an amount from an account,

sell(Product, Amt,Acct) to sell a product to a customer with the account Acct.

withdraw(Amt,Acct) : − balance(Acct, Bal) ⊗ Bal ≥ Amt

⊗ change balance(Acct, Bal, Bal − Amt).
change balance(Acct, Bal, Bal2) : − del.balance(Acct, Ball) ⊗ ins.balance(Acct, Bal2).

sell(Amt, Product, Acct) : − withdraw(Amt,Acct) | ins.delivered(Product, Acct).

(11)

To withdraw Amt from an account, Acct, the balance of the account is retrieved by the

query balance(Acct, Bal) and, then the test Bal ≥ Amt compares the balance with the

amount to ensure that the account will not be overdrawn. The change balance rule uses

two elementary updates, del.balance and ins.balance, to change the balance of an account

from Ball to Bal2. The third rule defines the action sell as withdrawing the money form

the account and, in parallel, delivering the product. If one of the transfers succeeds and
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c

a b

ins.i del.i

Figure 14: The dependency graph for the Concurrent T R Example 3.3

sell(Amt,Product,Acct)

withdraw(Amt,Acct) ins.delivered(Product,Acct)

balance(Acct,Bal) change_balance(Acct, Bal,Bal2)

del.balance(Acct,Ball) ins.balance(Acct,Ball2)

Figure 15: The dependency graph for the Concurrent T R Example 3.4

the other fails, then CT R query for sell(Amt, Product, Acct) behaves correctly, rolling

back the entire transaction.

2

The dependency graph for the Concurrent T R Example 3.3 is depicted in Figure 14,

while The dependency graph for the Concurrent T R Example 3.4 is depicted in Figure

15.

Given an action predicate a, the insert set of a, written Ins(a), is the set of all

insert(f) predicates reachable from node a in the dependency graph, where f is a flu-

ent predicate. For an action a, the query set of a, written Query(a), is the set of all

calls to f predicates reachable from node a in the dependency graph, where f is a fluent

predicate. Similarly, given an action predicate a, the delete set of a, written Dels(a),

is the set of all delete(f) predicates reachable from node a in the dependency graph,

where f is a fluent predicate. Two action predicates, a1 and a2, do not interact if the

intersection of the set Ins(a1) with Dels(a2), the intersection of the set Dels(a1) with

Ins(a2), the intersection of the set Query(a1) with Ins(a2), the intersection of the set

Ins(a1) with Query(a2), the intersection of the set Query(a1) with Dels(a2) and the
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intersection of the set Dels(a1) with Query(a2) are empty. For concurrent goals where

the concurrent actions do not interact the tabling technique memoizing the set of “hot”

components and the candidate at each step solves the infinite recursion problem because

the concurrent process can be reduced to sequential cases. In can be easily seen from

the dependency graph 14 for the Concurrent T R Example 3.3 that the intersection of

the set Ins(a) with Dels(b) is non empty. The dependency graph 15 for the Concur-

rent T R Example 3.4 also shows that the above condition for the concurrent formula

withdraw(Amt,Acct) | ins.delivered(Product, Acct) is satisfied, in which case the two

actions are non - interacting and the tabling algorithm is possible. The concurrent for-

mula withdraw(Amt,Acct) | ins.delivered(Product, Acct) can be reduced to a sequential

case by writing the last rule as two definitions of the action sell:

sell(Amt, Product, Acct) : − ins.delivered(Product, Acct) ⊗ withdraw(Amt,Acct).

sell(Amt, Product, Acct) : − withdraw(Amt,Acct) ⊗ ins.delivered(Product, Acct).

(12)

in which case the tabling algorithm reduces to the Sequential T R tabling inference system

FT .
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Graph size 100 250 350
# of Solutions 5050 31375 61425

CPU Mem. CPU Mem. CPU Mem.
1 0.128 806 1.544 4843 3.940 9473
2 0.212 5538 2.292 66413 5.996 173389
3a 0.136 807 1.540 4843 3.924 9473
3b 0.152 806 1.672 4843 4.608 9473
4a 0.224 10325 2.796 128434 7.880 337070
4b 0.204 5538 2.128 66413 5.680 172976

Table 2: Times for finding consuming paths in graphs

Graph size 100 250 350
States Comp. States Comp. States Comp.

1 5051 5050 31376 31375 61426 61425
2 5051 5050 31376 31375 61426 61425
3a 5051 5050 31376 31375 61426 61425
3b 5051 5050 31376 31375 61426 61425
4a 5051 5050 31376 31375 61426 61425
4b 5051 5050 31376 31375 61426 61425

Table 3: Numbers of tabled states and state comparisons for finding consuming paths in
graphs

Graph size 100 200 250
CPU Mem. CPU Mem. CPU Mem.

1 6.236 4580 47.642 18219 92.425 28881
2 8.568 371762 M.Err. M.Err. M.Err. M.Err.
3a 4.796 2533 37.182 10066 71.840 15620
3b 4.024 2533 30.073 10065 58.083 15620
4a 1.780 77873 13.536 596734 25.929 1155434
4b 1.292 39744 8.564 301429 16.325 582398

Table 4: Time and space for building 10 consuming paths in 10 graphs
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Graph size 100 200 250
States Comp. States Comp. States Comp.

1 50501 50500 201001 201000 313751 313750
2 50501 50500 201001 201000 313751 313750
3a 5051 5050 20101 20100 31376 31375
3b 5051 5050 20101 20100 31376 31375
4a 5051 5050 20101 20100 31376 31375
4b 5051 5050 20101 20100 31376 31375

Table 5: Numbers of tabled states and state comparisons for building 10 consuming paths
in 10 graphs

Graph size 50 150 200
# of Solutions 50 150 200

CPU Mem. CPU Mem. CPU Mem.
1 0.252 2412 8.392 51543 23.405 118248
2 0.244 6111 4.144 132082 9.148 303932
3a 0.164 2362 3.956 51091 10.100 118566
3b 0.236 7337 5.644 187927 13.968 442537
4a 0.300 15284 6.852 330211 16.105 755352
4b 0.300 15446 5.696 379042 12.584 885453

Table 6: Times for finding Hamiltonian cycles in graphs

Graph size 50 150
States Comp. States Comp.

1 7403 7500 67203 67500
2 7403 7500 67203 67500
3a 4903 5051 44703 45151
3b 4903 5000 44703 45000
4a 4903 5051 44703 45151
4b 4903 5000 44703 45000

Table 7: Numbers of tabled states and state comparisons for finding Hamiltonian cycles
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Graph size 50 150
CPU Mem. CPU Mem.

1 4.912 164777 M.Err. M.Err.
2 6.052 424113 M.Err. M.Err.
3a 3.076 9878 86.505 255174
3b 4.340 14854 105.814 391963
4a 1.656 58959 M.Err. M.Err.
4b 1.356 46072 27.4210 1228925

Table 8: Times for finding 10 Hamiltonian cycles in 10 graphs

Blocks 5 6 7
# of Pyramids 120 720 5050

CPU Mem. CPU Mem. CPU Mem.
1 0.212 576 2.392 5586 29.265 63207
2 0.196 656 2.100 6197 26.265 68636
3a 0.196 546 2.192 5286 27.905 60105
3b 0.228 544 2.528 5284 31.661 60102
4a 0.288 3296 3.268 46269 41.958 1005012
4b 0.204 608 2.268 5793 28.117 64915

Table 9: Time and space requirements for building pyramids of N blocks in blocks worlds

Blocks 5 6 7
States Comp. States Comp. States Comp.

1 1546 4210 13327 42792 130922 480326
2 1546 4210 13327 42792 130922 480326
3a 501 9767 4051 107882 37633 1364911
3b 501 1300 4051 13020 37633 144354
4a 501 9767 4051 107882 37633 1364911
4b 501 1300 4051 13020 37633 144354

Table 10: Numbers of tabled states and state comparisons for building pyramids in blocks
worlds
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Blocks 5 6 7
CPU Mem. CPU Mem. CPU Mem.

1 1.800 9696 21.457 72741 286.413 128150
2 1.780 29289 19.441 233285 M.Err. M.Err.
3a 1.140 889 13.208 7346 172.838 55984
3b 1.808 892 21.433 7349 287.413 75930
4a 1.312 30988 15.588 409155 M.Err. M.Err.
4b 1.096 1614 11.984 12854 148.109 128150

Table 11: Time and space requirements for building pyramids of N blocks in 10 parallel
blocks worlds

Formula Hot components
a | b {a, b}

a | delete(i) ⊗ b {a, delete(i)}
�(a ⊗ b) | delete(i) ⊗ b {�(a ⊗ b), delete(i)}

(a | b) ⊗ (c | d) {a, b}
(a ⊗ b) | (c ⊗ d) {a, c}

Table 12: CT R formulas and their hot components
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Chapter 4

A Well-founded Semantics for

Transaction Logic with Defaults and

Argumentation Theories

Defeasible reasoning is an important paradigm, which has been extensively studied as

a knowledge representation paradigm, including in fields such as policies, regulations,

law, learning, and others [BH95, BE99, BE00, DST03, DS01, EFLP03, GS98, Gro99,

Nut94, Pra93, SI00, WZL00, ZWB01]. We combine T R with defeasible reasoning and

show that the resulting logic language has many important applications. This logic is

called T RDA (Transaction Logic with Defaults and Argumentation Theories) because it

extends T R in the direction of the recently proposed logic programming with defaults and

argumentation theories (LPDA) [WGK+09b], a recently proposed unifying framework for

defeasible reasoning. In order to accomplish the above tasks we define the well-founded

semantics [VRS91] for T R.

T RDA extends traditional logic programming, Transaction Logic, and LPDA and their

application domains. Moreover, we show that the combined logic enables a number of

interesting applications, such as specification of defaults in action theories and heuristics

for pruning search in such search - intensive applications as planning. We also demonstrate

the usefulness of the approach by experimenting with a prototype of T RDA and showing

how heuristics expressed as defeasible actions can significantly reduce the search space as

well as execution time and space requirements.
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4.1 Defeasibility in Transaction Logic

In this section we define a form of defeasible Transaction Logic, which we call Transaction

logic with defaults and argumentation theories (T RDA). The development was inspired

by our earlier work on logic programming with argumentation theories, which did not

support actions [WGK+09b]. Language-wise, the only difference between T RDA and

serial T R is that the rules in T RDA are tagged.

4.1.1 T RDA Syntax

Definition 4.15 (Tagged rules) A tagged rule in the language T RDA is an expres-

sion of the form

@r H : − B. (13)

where the tag r of a rule is a term. The head literal, H, and the body of the rule, B, have

the same restrictions as in Definition 2.2.

A serial T RDA transaction base P is a set of rules, which can be strict or defea-

sible. 2

Definition 4.16 (T RDA Transaction formula) A T RDA transaction formula in

the language T RDA is a literal, a serial goal, a tagged or an untagged serial rule. 2

We note that the rule tag in the above definition is not a rule identifier: several rules

can have the same tag, which can be useful for specifying priorities among sets of rules.

Strict rules are used as definite statements about the world. In contrast, defeasible

rules represent defeasible defaults whose instances can be “defeated” by other rules. In-

ferences produced by the defeated rules are “overridden.” We assume that the distinction

between strict and defeasible rules is specified in some way: either syntactically or by

means of a predicate (note that in this thesis, we consider strict rules to be unlabeled

rules as in Definition 2.2).

Definition 4.17 (Rule handle) Given a rule of the form (13), the term

handle(r,H) (14)

is called the handle of that rule. 2
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T RDA transaction bases are used in conjunction with argumentation theories, which

are sets of rules that define conditions under which some rule instances in the transaction

base may be defeated by other rules. The argumentation theory and the transaction base

share the same set of fluent and action symbols.

Definition 4.18 (Argumentation theory) An argumentation theory, AT, is a set

of strict serial rules. We also assume that the language of T RDA includes a unary pred-

icate, $defeatedAT, which may appear in the heads of some rules in AT but not in the

transaction base. A T RDA P is said to be compatible with AT if $defeatedAT does not

appear in any of the rule heads in P, 2

The rules AT are used to specify how the rules in P get defeated. This can be accom-

plished using special predicates defined in T RDA, such as, the !opposes and !overrides

predicates in the courteous argumentation theories. For the purpose of defining the se-

mantics, we assume that the argumentation theories AT are grounded. This grounding

can be done by appropriately instantiating the variables and meta - predicates in AT.

Although Definition 4.18 imposes almost no restrictions on the predicate $defeatedAT,

practical argumentation theories are likely to require that it is executed hypothetically,

i.e., that its execution does not change the current state. This is certainly true of the

argumentation theories used in this thesis.

4.1.2 T RDA Well - founded Semantics

We extend the well - founded semantics for logic programing [VRS91] to T RDA using the

Przymusinski-style definition [Prz94]. In the following definition, we use the usual three

truth values t, f , and u, which stand for true, false, and undefined, respectively. We also

assume the existence of the following total order on these values: f < u < t.

Definition 4.19 (3-valued Partial Herbrand interpretation) A

partial Herbrand interpretation is a mapping H that assigns f , u or t to every

formula L in B.

A partial Herbrand interpretation H is consistent relative to an atomic formula

L if it is not the case that H(L) = H(negL) = t. H is consistent if it is consistent

relative to every formula. H is total if, for every ground not -free formula L (other than

u), either H(L) = t and H(negL) = f or H(L) = f and H(negL) = t.
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Partial Herbrand interpretations are used to define path structures, which are used to

tell which ground atoms (fluents and actions) are true on what paths. Path structures

play the same role in T R and T RDA as the role played by the classical semantic structures

in classical logic. The semantic structures of T RDA are mappings from paths to partial

Herbrand interpretations.

Definition 4.20 (3-valued Herbrand Path Structure) A partial Herbrand Path

Structure is a mapping I that assigns a partial Herbrand interpretation to every path

subject to the following restrictions:

1. I(〈D〉)(d) = t, if d ∈ D;

I(〈D〉)(d) = f , if neg d ∈ D;

I(〈D〉)(d) = u, otherwise, for every ground base fluent literal d and every database

state D.

2. I(〈D1,D2〉)(insert(p)) = t if D2 = D1 ∪ {p} \ {neg p} and p is a ground fluent

literal;

I(〈D1,D2〉)(insert(p)) = f , otherwise.

3. I(〈D1,D2〉)(delete(p)) = t if D2 = D1 \ {p} ∪ {neg p} and p is a ground fluent

literal;

I(〈D1,D2〉)(delete(p)) = f , otherwise.

Without loss of generality, in defining the semantics of T RDA we will consider ground

rules only. This is possible because all variables in a rule are considered to be universally

quantified, so such rules can be replaced with a set of all of their ground instantiations.

We assume that the language includes the following special propositional constants:

uπ and tπ, for each path π. Informally, tπ is a propositional transaction that is true

precisely over the path π and false on all other paths; uπ is a propositional transaction

that has the value u over π and is false on all other paths.

Definition 4.21 (T RDA 3-valued Truth valuation in path structures) Let I be a

path structure, π a path, L a ground not -free literal, and let F , G ground serial goals We

define truth valuations with respect to the path structure I as follows:

• If P is a not -free literal then I(π)(p) is already defined because I(π) is a Herbrand

interpretation, by definition of I.
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• For any path π:

I(π)(tπ) = t and I(π′)(tπ) = f , if π′ 6= π;

I(π)(uπ) = u and I(π′)(uπ) = f , if π′ 6= π.

• If φ and ψ are serial goals, then

I(π)(φ⊗ ψ) = max{ min(I(π1)(φ), I(π2)(ψ))|π = π1 ◦ π2} .

• If φ and ψ are serial goals, then I(π)(φ ∧ ψ) = min(I(π)(φ), I(π)(ψ)).

• If φ is a serial goal, then I(π)(notφ) =∼ I(π)(φ), where ∼ t = f , ∼ f = t, and

∼ u = u.

• If φ is a serial goal and π = 〈D〉, where D is a database state, then

I(π)(3φ) = max{I(π′)(φ) | π′ is a path that starts at D}
I(π)(3φ) = f , otherwise.

• For a strict serial rule F :-G,

I(π)(F :-G) = t iff I(π)(F ) ≥ I(π)(G).

• For a defeasible rule @r F :-G,

I(π)(@r F :- G) = t iff

I(π)(F ) ≥ min ( I(π)(G), I(〈D0〉)(not 3 $defeated(handle(r, F )))),

where D0 is the first database in the path π.

We will write I, π |= φ and say that φ is satisfied on path π in the path structure I if

I(π)(φ)=t.

We will say that a path structure I is total if, for every path π and every serial goal φ,

I(π)(L) is either t or f . 2

Definition 4.22 (T RDA 3-valued Model of a transactional formula) A path struc-

ture, I, is a model of a transaction formula φ if I, π |= φ for every path π. In this case,

we write I |= φ and say that say that I is a model of φ or that φ is satisfied in I. A

path structure I is a model of a set of formulas if it is a model of every formula in the set.

Definition 4.23 (Model of T RDA) A path structure I is a model of a serial T RDA

transaction base P if all the rules in P are satisfied in I (that is, if I |= R for every

R ∈ P). Given a T RDA transaction base P, an argumentation theory AT, and a path
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structure M, we say that M is a model of P with respect to the argumentation theory AT,

written as M |= (P,AT), if M |= P and M |= AT. 2

Like classical logic programs, the Herbrand semantics of serial T R can be formulated

as a fixpoint theory [BK98a]. In classical logic programming, given two Herbrand partial

interpretations σ1 and σ2, σ1 � σ2 if all not -free literals that are true in σ1 are also true

in σ2 and all not - literals that are true in σ2 are also true in σ1. Similarly, given two

Herbrand partial interpretations σ1 and σ2, σ1 ≤ σ2 if all not - free literals that are true

in σ1 are also true in σ2 and all not - literals that are true in σ1 are also true in σ2.

Definition 4.24 (Order on Path Structures) If M1 and M2 are two Herbrand partial

path structures, then M1 �M2 if M1(π) �M2(π) for every path, π (truth ordering).

Similarly, we have M1 ≤M2 if M1(π) ≤M2(π) for every path, π (information ordering).

A model M of P is minimal with respect to � iff for any other model, N, of P N �M

implies N = M. The least model of P is a minimal model that is unique.

It is well - known that in ordinary logic programming any set of Horn rules always has

a least model. In [BK95], it is shown that every definite Horn T R program has a unique

least total model. Theorem 4.4, below, shows that this property is preserved by serial

not -free T R programs, but in this case the model might be a partial path structure.

Serial not -free programs are more general than the positive T R programs because the

undefined propositional symbol uπ for some path π may occur in the bodies of the program

clauses.

Theorem 4.4 (Unique Least Partial Model for serial not -free T R programs)

If P is a not -free T R program, then P has a least Herbrand model, denoted LPM(P).

Proof: See Appendix D. 2

Example 4.5 Let the T R program P be:

a : − state.

b : − a⊗ u〈D∅〉.

c : − c⊗ u〈D∅〉.

where a, b, and c are action symbols and D∅ is the empty database state. The least partial

model of P is a path structure that maps any 1-path to a classical Herbrand partial model
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where a is true, c is false, and b is undefined. All other paths are mapped to the classical

Herbrand partial model where all formulas are mapped to u. Note that b is not false in

LPM(P) because the truth value of the sequential conjunction of premises in the second

rule is u, so the truth value of b must be at least u. 2

For not -free T R programs, the least partial model LPM(P ) can be obtained as the

least fixed point of the immediate consequence operator T̂ , which is applied to all paths.

However, we will not pursue this line here.

Next we define well - founded models for T RDA by adapting the definition from

[Prz94]. First, we define the quotient operator, which takes a T RDA program P and a

path structure I and yields a serial-Horn T R program
P

I
.

Definition 4.25 (T RDA Quotient) Let P be a set of T RDA rules and I a path structure

for P. The T RDA quotient of P by I, written as
P

I
, is defined through the following

sequence of steps:

1. First, each occurrence of every not - literal of the form notL in P is replaced by tπ

for every path π such that I(π)(notL) = t and with uπ for every path π such that

I(π)(notL) = u.

2. For each labeled rule of the form @r L :-Body obtained in the previous step, replace

it with the rules of the form:

L :- t〈Dt〉 ⊗ Body

L :- u〈Du〉 ⊗ Body

for each database state Dt such that

I(〈Dt〉)(not (3 $defeated(handle(r, L)))) = t

and each database state Du such that

I(〈Du〉)(not (3 $defeated(handle(r, L)))) = u

3. Remove the labels from the remaining rules.

The resulting set of rules is the quotient
P

I
. 2
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Note that in Step 1 of the above definition of the quotient each occurrence of notL is

replaced with different tπ and uπ for different π’s, so every rule in P may be replaced with

several (possibly infinite number of) not -free rules. All combinations of replacements for

the not - literals in the body of the rules have to be used. Only the π’s where I(π)(notL) =

f are not used, which effectively means that the rule instances that correspond to those

cases are removed from consideration. Also note that, the T RDA quotient of a T RDA

transaction base P with respect to an argumentation theory AT (the program union

P∪AT) for any path structure I,
P ∪ AT

I
, is a negation-free T R program, so, by Theorem

4.4, it has a unique least Herbrand model, LPM(
P ∪ AT

I
).

We will now give the definition for the immediate consequence operator Γ. For com-

patibility with the classical notations in logic programming, we will use the set repre-

sentation of Herbrand models: I+ = {L | L ∈ I is a not -free literal}, I− = {L | L ∈
I is a not -literal} and I = I+ ∪ I−.

Definition 4.26 (T RDA immediate consequence operator) The incremental con-

sequence operator, Γ, for a T RDA transaction base P with respect to the argumentation

theory AT takes as input a path structure I and generates a new path structure as follows:

Γ(I) =def LPM

(
P ∪ AT

I

)
Suppose I∅ is the path structure that maps each path π to the empty Herbrand interpre-

tation in which all propositions are undefined (i.e., for every path π and every literal L,

we have I∅(π)(L) = u.

The ordinal powers of the immediate consequence operator Γ are defined inductively as

follows:

• Γ↑0(I∅) = I∅;

• Γ↑α(I∅) = Γ(Γ↑α−1(I∅)), for α a successor ordinal;

• Γ↑α(I∅)(π) = ∪β<αΓ↑β(I∅)(π), for every path π and α a limit ordinal.

2

The operator Γ is monotonic with respect to the ≤ order relation when P and

AT are fixed (see Appendix E). Because Γ is monotonic, the sequence {Γ↑n(I∅)}
(Γ↑0(I∅), Γ↑1(I∅), Γ↑2(I∅), . . .) has a least fixed point and is computable via transfinite

induction (see Appendix E).
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Definition 4.27 (Well-founded model) The well - founded model of a T RDA

transaction base P with respect to the argumentation theory AT, written as WFM(P,AT),

is defined as the limit of the sequence {Γ↑n(I∅)}. 2

The next theorem states that our constructive computation of the least model of the

program (P,AT) is correct.

Theorem 4.5 (Correctness of the Constructive T RDA Least Model)

WFM(P,AT) is the least model of (P,AT).

Proof: See Appendix E. 2

The next theorem shows that T RDA programs under the well - founded semantics

reduce to ordinary T R programs under the same well - founded semantics. In conclusion,

T RDA can be implemented using ordinary transaction logic programming systems that

support the well - founded semantics.

Theorem 4.6 (T RDA Reduction) WFM(P,AT) coincides with the well - founded

model of the T R program P′ ∪AT, where P′ is obtained from P by changing every defea-

sible rule (@r L :- Body) ∈ P to the plain rule L :- not (3 $defeated(handle(r, L)) ) ⊗
Body and removing all the remaining tags.

Proof: See Appendix F. 2

4.2 Argumentation theory representatives

Various argumentation theories can be defined to abstract the multiple intuitions about

defeasibility. These argumentation theories are a set of definitions for concepts that a

reasoner might use to argue why certain conclusions are to be defeated or to win over

other conclusions. In the following sections we define two such argumentation theories:

one for the generalized courteous logic programs (GCLP) ([Gro99] being the only com-

mercially available defeasible reasoning formalism, i.e., IBM’s CommonRules1 ), and one

for defeasible logic, a popular formalism that attracts a lot of attention in the field.

1http://www.alphaworks.ibm.com/tech/commonrules
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4.2.1 The GCLP T R courteous argumentation theory

As our first example of an argumentation theory, we present here a particularly interesting

argumentation theory which extends generalized courteous logic programs (GCLP) [Gro99]

to T R under the T RDA framework. This argumentation theory was used in the trade

4.6 and planning 3.4.2 examples in Section 4.4.1. We will call this argumentation theory

GCLP T R. As any argumentation theory in this framework, GCLP T R defines a version

of the $defeated predicate using various auxiliary concepts. We define these concepts

first. The user - defined predicates !opposes and !overrides are relations specified over

rule handles telling the system what rules are in opposition, respectively, what rules are

preferred over the application of other rules. For instance, in the example 4.6, the pred-

icate instance !opposes(handle( , sell(Stock)), handle( , buy(Stock))) is used to specify

that any rule whose head is an instance of the sell/1 relation is incompatible with any

rule whose head is an instance of the buy/1 with the same argument Stock (that is, selling

and buying the same stock in the same state is contradictory). In a parallel manner, the

predicate !overrides specifies that some actions have higher priority than other actions.

For instance, in the same trade example 4.6, the predicate instance !overrides(handle(

sell action, ), handle(buy action, )) is used to specify that the rule sell action has higher

priority than the rule buy action, regardless to their rule heads if an opposition situation

arises.

The predicate $defeated is defined indirectly in terms of the predicates !opposes

and !overrides. In the following definitions the variables R and S are expected to

range over rule handles, while the implicit current state identifier D is expected to range

over the possible database states. A rule is $defeated if it is refuted or rebutted by

some other rule, where the former rule itself is defeasible (in our case, tagged) and the

winning rule is not compromised, or the rule is disqualified. We will define these relations

shortly, for the moment we just mention the most common meanings of these predicates:

$refutes means that a higher - priority rule implies a conclusion that is incompatible

with the conclusion implied by the another rule, $rebuts means that a pair of rules assert

conflicting conclusions without being able to select a conclusion “more important” than

the other conclusion, $compromised means that it’s argument rule handle is defeated by

some other rule handle, while $disqualified is a special situation when a rule refutes

itself (for instance, such a situation is actually possible in the block world when the action

of moving an unique block requires this action to beat all other move actions, but not
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itself).

$defeated(R) : − $refutes(S,R) ∧ not $compromised(S).

$defeated(R) : − $rebuts(S,R) ∧ not $compromised(S).

$defeated(R) : − $disqualified(R).

(15)

In this thesis we define a single GCLP-style argumentation theory, so we will use

the most common interpretation of the aforementioned predicates. However, the reader

should keep in mind that the argumentation theory is an input in our theory and can be

changed as needed.

A rule R $refutes another rule S if R has higher - priority than S and R’s conclusion

is incompatible with the conclusion of S. Two rule handles are in conflict if they are

both candidates and (their handles) are in opposition to each other. These are defined as

follows:
$refutes(R, S) :- $conflict(R, S) ∧ !overrides(R, S).

$conflict(R, S) :-

$candidate(R), $candidate(S), !opposes(R, S).

(16)

A rule R $rebuts another rule S if the two rules assert conflicting conclusions, but

neither rule is “more important” than the other, that is, there is preference relation can

be inferred between the two rules. This intuition can also be expressed in several different

ways, but we have selected the following definition 18 as the most intuitive definition

matching the GCLP theory. We define a candidate rule handler as a rule instance whose

body is hypothetically true in the current database state (that is, it can be executed

hypothetically in the current state) in the rule 19, and the symmetric !opposes relation

in the rule 20 with the addition that every literal must oppose its explicit negation (neg )

in the rule 21. We use two meta-predicates, body and call, where the body meta -

predicate in $candidate binds B to the body of a rule with handle R, and the call meta

- predicate takes a serial goal and executes it. We emphasize that the key aspect of the

candidacy predicate is the fact that the bodies are executed hypothetically, so they do

not modify the current state of the database.
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$rebuts(R, S) :- $candidate(R) ∧ $candidate(S) ∧ (17)

!opposes(R, S) ∧ not $compromised(R) ∧ (18)

not $refutes( , R) ∧ not $refutes( , S).

$candidate(R) :- body(R,B)⊗3call(B). (19)

!opposes(X, Y ) :- !opposes(Y,X). (20)

!opposes(handle( , H), handle( , neg H)). (21)

A rule is compromised if it is defeated, and it is disqualified if it transitively refutes

itself. The predicate $refutestc denotes the transitive closure of the predicate $refutes.

$compromised(R) :- $refutes( , R) ∧ $defeated(R).

$disqualified(X) :- $refutestc(X,X).

$refutestc(X, Y ) :- $refutes(X, Y ).

$refutestc(X, Y ) :- $refutestc(X,Z) ∧ $refutes(Z, Y ).

(22)

As in [WGK+09b], one can define other versions of the above argumentation theory,

which differ from the above in various edge cases. However, defining such variations is

tangential to our main focus here.

4.2.2 An argumentation theory for defeasible logic

We develop here an argumentation theory that captures the reasoning in the Defeasible

Logic family of logics [Nut94, ABGM01, AM02, MN06]. This form of defeasible reason-

ing is particularly interesting because Governatori, Rotolo and Sadiq used it to execute

workflows in [GRS04]. Formally, Defeasible Logic is a triple (R, > , K), where K is a

finite set of literals, R is a set of rules, such that if q is any ground literal then the rules

whose head is q, R[q] is finite, and “>” is a superiority relation on R. Defeasible Logic

partitions the rules R into strict, defeasible, and defeater rules, where :
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(a) the strict rules are rules which cannot be defeated and need to be satisfied even if the

database is inconsistent,

(b) the defeasible rules are rules that can be defeated either by facts inferred by the strict

rules or by the defeaters, and

(c) the defeater rules are used only to defeat other rules, but they do not produce any

inferences. The purpose of the defeater rules is to block inferences produced by other

rules.

The opposition among literals is limited to p and neg p, for each fluent p, while the

use of the default negation is not allowed, so all literals are not -free, and rule tags are

unique identifiers of the rules. The theory of Defeasible Logic easily translates into the

computation of the fixed point of four sets: ground literals that are strictly true, ground

literals that are strictly false, ground literals that are defeasible true, and ground literals

that are defeasible false.

We need a few special predicates provided by the interpreter: a meta - predicate

head/2 that binds the first argument to the head of a rule with the identifier the second

argument, a meta - predicate body/2 that binds the first argument to the body of a rule

with the identifier the second argument, a meta - predicate call/1 that takes a serial goal

and executes it on an execution path and and a predicate break ⊗ /3 that takes a serial

conjunction B1 ⊗ B2 ⊗ . . . ⊗ Bn and returns the first element of the conjunction as the

second argument and the rest of the conjunction as the third argument or state if the

conjunction was a single element B1.

The program the following extra predicates: !strict/1 for rules that cannot be de-

feated, $defeater/1 for rules used only to defeat other rules, but do not produce any

inferences, and > /2 as a superiority relation between rules.

A rule is defeated if any of the following conditions hold: another conclusion in conflict

with the current conclusion is definitely proved, the conclusion is detected by a defeater

(because defeaters make no inferences), or the conclusion is refuted.

$defeated(handle(T,H)) :- $conflict(handle(T,H), handle(S,H))

∧ head(S,H) ∧ $definitely(H).

$defeated(handle(T,H)) :- $defeater(handle(T,H)).

$defeated(handle(T,H)) :- $refutes( , handle(T,H)).
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Two rules are in conflict if they are both candidates and their literals are incompatible

(i.e., a literal L and its explicit negation negL).

$conflict(handle(T1, H1), handle(T2, H2)) :-

$candidate(handle(T1, H1)) ∧ $candidate(handle(T2, H2))

∧ !opposes(H1, H2).

$candidate(R) :- body(R,B)⊗3call(B).

!opposes(L1, negL1).

!opposes(negL1, L1).

A literal is definitely proved if it is the head of a strict rule whose body is proved

only by strict clauses. We prove the body by proving all the literals in the body using

the meta predicate break ⊗ and recursion. The effects of the $definitely call are not

visible to the rest of the computation.

$definitely(L) :- 3strictly proved(L).

strictly proved(state).

strictly proved(L) :- !strict(R) ∧ head(R,L)

∧ body(R,B)⊗ strictly proved conj(B).

strictly proved conj(state).

strictly proved conj(B) :- break ⊗ (B,B1, B2)

⊗strictly proved(B1)⊗ strictly proved conj(B2).

An additional rule is added to the instances of the predicate > /2 to state that any

strict rule has priority to any non - strict rule:

> (R1, R2) :- !strict(R1) ∧ not !strict(R1).

Finally, the $refutes/2 relation is defined using the notions of $candidate and

$conflict.
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$refutes(S, T ) :- $conflict(S, T ) ∧ $candidate(S) ∧ $candidate(T )

∧ not $refutes( , S).

$refutes( , S) :- $conflict(S, T ) ∧ $candidate(T )

∧ > (T, S) ∧ not $defeater(T ).

4.3 T RDA discussion and related work

Although a great number of works deal with defeasibility in logic programming, few have

goals similar to ours: to lift defeasible reasoning from static logic programming to a

logic for expressing knowledge base dynamics, such as T R. Such lifting opens up new

applications for Transaction Logic by allowing it to take advantage of preferences among

rules and defeasibility. As far as the actual chosen approach to defeasible reasoning is

concerned, this work is based on [WGK+09b], and extensive in-depth comparison with

other works on defeasible reasoning can be found there. There, we compare LPDA based

approaches to the frameworks presented by Gelfond and Son in [GS98] (i.e., the logic of

prioritized defaults), by Delgrande, Schaub, and Tompits in [DST03] (i.e., the ordered

logic programs), and by Eiter et al. in [EFLP03] (i.e., the meta - interpretation approach

to handling preferences) because they allow adaptive behaviours in using the preference

information similar to our argumentation various theories. The main difference from

[GS98] is that our approach distills all the differences between the different default theories

to the notion of an argumentation theory with a simple interface to the user - provided

domain description, the predicate $defeated. In the case of [DST03], the framework does

not come with a unifying model - theoretic semantics, but comes as a transformation

of normal logic programs under the stable model semantics. The variable part is the

transformation, which encodes a fairly low - level mechanism: the order of rule applications

required to generate the preferred answer set. In the following paragraphs we will focus

on comparing our work with prior research on defeasibility of actions.

The main contribution here relies not in the use of different argumentation theories,

but in the lifting of LPDA to a dynamic logic, such as T R. To our knowledge, none

of the works surveyed by [DSTW04] has a similar goal as ours, but some defeasible

logic formalisms match various applications of T R, and such, we will compare our work

with these works aimed to apply defeasible reasoning to various dynamic domains. In
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particular, we compare our work with the most representative works aiming to apply

defeasible reasoning in planning represented in ASP, namely, the approach by Son and

Pontelli in [SP02, SP03, SP04, SP06] and the approach by Delgrande, Schaub and Tompits

in [DST04, DST07b, DST07a]. On another hand, the approaches adopted in [GRS04,

GMS06, GR10] aim to apply defeasible reasoning for another application of the results

presented in this thesis, namely, in modeling, execution and verification of workflows.

The work [SP06] develops a high-level language for the specification of preferences over

trajectories and provides a logic programming encoding of the language based on answer

set planning. They combine the action language B [GL98] with the prioritized default

theory developed in [GS98]. T RDA is quite different from [SP06] in that it is a full-fledged

logic that combines both declarative and procedural elements, while [SP06] specifically is

geared towards specifying preferences over trajectories in planning. Whereas T RDA deals

with infinite domains and allows function symbols and non-deterministic actions, the

approach in [SP06] considers only planning with complete information on finite domains

and deterministic actions. Thus, although the two approaches have common applications

in the area of planning, they target different knowledge representation scenarios.

The approach in [DST04, DST07a] uses two types of preferences over plans for achiev-

ing goals in a plan. The choice order specifies when a plan satisfying a goal, φ1, is preferred

over another plan satisfying another goal φ2. The temporal order specifies when the plan-

ning heuristic has a preference concerning the order in which subgoals are to be achieved.

That is, when subgoals must become true in a specific order. The set of solution histories

is ordered according to these partial order relations, ≤c (choice) and ≤t (temporal), and

the maximal elements are chosen as the most preferred solutions. Both of these types of

preference can be expressed in the T RDA framework, although due to the difference in

the semantics the exact relationship needs further study. In the choice ordering, the ap-

plication of rule definitions for actions whose effect is to update fluents in the fluent serial

goal φ2 are defeated when actions that update fluents in the fluent serial goal φ1 can be

executed. In the temporal ordering, application of rule definitions for actions whose effect

is to update fluents in the fluent serial goal φ2 are defeated if some fluents in the fluent

serial goal φ1 were not satisfied. This encoding mirrors the dualism between fluents and

corresponding actions that update these fluents signaled in [DST07a]. Moreover, while

the original work by Delgrande, Schaub, and Tompits in [DST03] was a framework of

ordered logic programming that could use a variety of preference handling strategies, its

application to planning resumes to a single behaviour of dealing with preferences.
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Other systems have also adopted various kinds of preferences in planning, for instance,

quality of planning in [Bal04], solving multiple prioritized goals [Bal09], but these works

do not study a unified context for an active deductive database such as ours, but special

cases of using defeasible logic programming formalisms to implement certain problems

or translations of certain dynamic languages (for instance, action languages) in LP for-

malisms supporting certain kinds of defeasibility. In [EFL+03], a framework for planning

with cost preferences is introduced. Each action is assigned a numeric cost, and plans

with the minimal cost are considered to be optimal. Clearly, this work uses a completely

different type of preferences and tackles a different and very specific problem in planning,

which we do not address. Similar to our work, [EFL+03]’s work is the only other work

that deals with planning in the presence of non - deterministic actions.

Finally, regarding dealing with preferences in modeling, execution and verification of

workflows, we mention the work of Governatori et al. on modelling notions like delega-

tion of tasks in the execution of a workflow. Another work by the same group, [GMS06],

deals compliance of workflows to a given regulation formulated in a variant of deontic

logic, allowing expressions similar to what we have in transaction logic (with sequences

of task/actions and or branching of actions), but not dealing with defeasible reasoning.

Recently, [GR10] extended the work of [GMS06] to model control flow patterns in work-

flows. However, in the last two papers defeasible reasoning is not studied at all, while in

the case of the first paper is just tangential to our goals, being applied in the special case

of delegation from one agent to another (more important) agent.

4.4 Applications, implementation and evaluation

We implemented an interpreter for T RDA in XSB 2 and tested it on a number of examples,

including Example 3.4.2. The goal of these tests was to demonstrate how preferential

heuristics can be expressed in T RDA and to evaluate their effects on the efficiency of

planning (see Example 4.7).

2http://xsb.sourceforge.net/
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4.4.1 T RDA Aplications in action priorities, planning and work-

flows

In this section, we employ several applications in order to illustrate the advantages of

extending Transaction Logic with the well founded semantics and defeasible reasoning.

Using the GCLP T R courteous argumentation theory, the rules in these examples are more

powerful than simple T R rules since they use a relative independence in writing the rule

bodies, but retain the concept of defeasible reasoning. The meaning of the !opposes and

!overrides predicates is the same as in the Section 4.2.1.

Example 4.6 (Stock market actions) Consider a broker who trades stock on the mar-

ket. He uses a computerized system, which makes various decisions about buying and

selling stocks. The system weighs recommendations, which sometimes might conflict with

each other, and performs appropriate actions. For simplicity, we ignore issues such as

the amount of funds available for purchase and so on.

@buy actionbuy(Stock, Amount) : −
recommendation(buy, Stock)⊗ owns(Stock, Qty)⊗
delete(owns(Stock, Qty))⊗ insert(owns(Stock, Qty + Amount)).

@sell actionsell(Stock, Amount) : −
recommendation(sell, Stock)⊗ owns(Stock, Qty)⊗
delete(owns(Stock, Qty))⊗ insert(owns(Stock, Qty −Amount)).

!opposes(sell(Stock), buy(Stock)).

!overrides(sell action, buy action).

recommendation(buy, C) : − services(X).

recommendation(sell, C) : − media(X).

services(acme).

media(acme).

owns(acme, 100).

trade(Stock, Amount) : − buy(Stock, Amount).

trade(Stock, Amount) : − sell(Stock, Amount).

(23)

The above rules specify that selling and buying the same stock as part of the same

decision is contradictory, so these rules are declared to be in conflict. To be on the safe

side, the second rule (sell) is said to override the first (buy). Lets consider an existential

goal (∃)trade(acme, 100). Without the !opposes and !overrides information this goal
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would have two non - deterministic possible executions: one in which the trader buys an

additional 100 stocks in the company acme, and another one in which the trader sells his

100 stocks because he got recommendations both to buy stocks for services companies and

to sell the stocks for media companies. However, the second execution is preferred because,

in such a contradictory state it’s advisable to sell the stocks. 2

Example 4.7 (Blocks world planning) This example illustrates the use of defeasible

reasoning for heuristic optimization of planning in the blocks world. The example is

similar to the one used in Section 3.4.2, but here the rules are labeled and additional

information about the opposition and the priority between actions is used in the defeasible

reasoning. The T RDA program below is designed to build pyramids of blocks that are

stacked on top of each other so that smaller blocks are piled up on top of the bigger ones.

The construction process is non - deterministic and several different blocks can be chosen

as candidates to be stacked on top of the current partial pyramid. The heuristic uses

defeasibility to give priority to larger blocks so that higher pyramids can be constructed.3

In this example, we represent the blocks world using the familiar fluents on(x, y) and

isclear(x) (see Section 3.4.2), but also the new fluent larger(x, y), which says that the

size of x is larger than the size of y. The action pickup(X) picks up block X and the

action putdown(X, Y ) puts it down on top of block Y . These actions are specified by the

second and third rules, respectively. The action move(Block, From, To), specified by the

first rule, moves Block from its current position on top of block From to a new position

on top of block To, where the block Block is smaller then the block To. This action is

defined by combining the afore mentioned actions pickup and putdown if certain pre -

conditions are satisfied. The stacking action (included later in this section) then uses the

move action to construct pyramids. The key observation here is that at any given point

several different instances of the rule tagged with mv rule might be applicable and several

different moves might be performed. The predicate !opposes stipulates that two different

move - actions for different block are considered to be in conflict (because only one action

at a time is allowed).

3For more information about planning with T R the reader is referred to [BK95].
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@mv rule(Block, To) move(Block, From, To) : −
(on(Block, From) ∧ larger(To, Block))⊗
pickup(Block, From)⊗ putdown(Block, To).

pickup(X, Y ) : − (isclear(X) ∧ on(X, Y ))⊗
delete(on(X, Y ))⊗ insert(isclear(Y )).

putdown(X, table) : − (isclear(X) ∧ not on(X, Z))

⊗insert(on(X, table)).

putdown(X, Y ) : − (isclear(X) ∧ isclear(Y ) ∧ not on(X, Z))

⊗delete(isclear(Y ))⊗ insert(on(X, Y )).

!opposes(move(B1, F1, T1), move(B2, F2, T2)) : − B1 6= B2.

(24)

Note that the first rule is tagged with a term, mv rule(Block, To) and, according to

our conventions, such a rule is defeasible. Various heuristics can be used to improve

construction of plans for building pyramid of blocks. In particular, we can use preferences

among the rules to cut down on the number of plans that need to be looked at. For instance,

the following rule says that move - actions that move bigger blocks are preferred to move -

action that move smaller blocks (unless the blocks are moved down on the table surface).

!overrides(mv rule(B2, T o), mv rule(B1, T o)) : −
larger(B2, B1) ∧ To 6= table.

(25)

Consider the configuration of blocks in (26).

on(blk1, blk4). on(blk2, blk5).

on(blk3, table). on(blk4, table). on(blk5, table).

isclear(blk1). isclear(blk2). isclear(blk3).

larger(blk2, blk1). larger(blk3, blk1). larger(blk3, blk2).

larger(blk4, blk1). larger(blk5, blk2). larger(blk2, blk4).

(26)

Although, both blk1 and blk2 can be moved on top of blk3, moving blk2 has higher priority

because it is larger.

For moving blocks to the table surface, we use the opposite heuristic, one which prefers

unstacking smaller blocks:

!overrides(mv rule(B2, table), mv rule(B1, table)) : − larger(B1, B2). (27)
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In our example, this makes unstacking blk1 and moving it to the table surface preferable

to unstacking blk2, since the former is a smaller block. This blocks the opportunity to then

move blk4 on top of blk2 and subsequently put blk1 on top of blk4. These preference rules

can be applied to a pyramid-building program like this:

stack(0, Block).

stack(N, X) : − N > 0⊗move(Y, , X)⊗ stack(N − 1, Y )⊗ on(Y,X).

stack(N, X) : − (N > 0 ∧ on(Y, X))⊗ unstack(Y )⊗ stack(N, X).

unstack(X) : − on(Y, X)⊗ unstack(Y )⊗ unstack(X).

unstack(X) : − isclear(X) ∧ on(X, table).

unstack(X) : − (isclear(X) ∧ on(X, Y ) ∧ Y 6= table)⊗move(X, , table).

unstack(X) : − on(Y, X)⊗ unstack(Y )⊗ unstack(X).

(28)

Testing the above program on the tabled interpreter shows that the aforesaid rule prefer-

ences can significantly reduce the number of plans that need to be considered — sometimes

to just one plan. 2

Example 4.8 (Workflow modeling and execution example) This example illus-

trates the use of defeasible reasoning for modeling business workflows. Transaction Logic

have been used before for modeling concurrent workflows in [DKRR98, Dav02, DKR04].

Although, these works address a multitude of issues, including model checking for verifying

workflows, integration of the data flow into the control flow by using transition conditions,

sub - workflows, loops and iteration, and so on, priorities between different execution paths

in the workflow haven’t been considered before, leaving the task of implementing opposition

and preferences between execution branches to the programmer. Although we don’t talk in

the T RDA defeasible reasoning about various aspects of transaction logic used in modeling

workflows, like concurrency and constraints on the interleaved execution, in this case of

non - recursive workflows, this program can be systematically transformed into a purely

sequential T R program.

Let’s consider the following example of a workflow where various branches in the work-

flow execution oppose other branches. In this scenario depicted in Figure 16, a buy trans-

action is designed to make a financial transaction and a delivery of a product.

The following T RDA program implements this simple workflow using sub - workflow
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start_buy

delivery
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gold 
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ground
mail
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pay
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pay cheque
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OR 

OR 

PAR MERGE

Figure 16: A transaction workflow example for defeasible reasoning in T R

actions defined in T R. The execution process is non - deterministic and several different

OR-branches of the workflow can be chosen to be executed. In this example, we represent

the transaction buy as an interleaving of transactions, namely pay|delivery, where these

transactions can non - deterministically choose various options: pay with credit card or

with wire transfer from a bank account and deliver using express or ground mail. However,

the policy of the store is that if the customer is a gold member, then the delivery is done

using express mail, otherwise using ground mail, or, that a wire transfer from a bank

account is preferred to a credit card payment since the payment does not require a filling

period. These actions are specified below by the opposes and overrides rules, respectively.

The action delivery, defined by the second and the third rules, and the action pay, defined

by the forth and the fifth rules, combine sub - workflows (actions) determined by what

internal conditions are satisfied.

The key observation here is that at any given point certain workflow branches are

preferred over other workflow branches. For instance, a successful branch @b4 pay cheque

is preferred instead of the branch @b3 pay credit card although both might be applicable

and several different combinations of the concurrent - branches in the workflow might be

performed.
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buy : − pay|delivery.

@b1delivery : − gold member ⊗ express mail.

@b2delivery : − ground mail.

@b3pay : − pay credit card.

@b4pay : − pay cheque.

!opposes(b1, b2).

!overrides(b1, b2).

!opposes(b4, b3).

!overrides(b4, b3).

gold member.

express mail : − insert(delivered express mail).

ground mail : − insert(delivered ground mail).

pay credit card : − credit card credentials⊗ insert(credit card payment).

pay cheque : − bank account⊗ insert(bank payment).

credit card credentials.

bank account.

(29)

2

4.4.2 T RDA Evaluation

Table 13 shows how the preferential heuristic of Example 4.7 helps reduce the number

of plans for pyramid construction (pruning away the plans for uninteresting pyramids),

space, and time requirements. It shows that the number of plans and space requirements

are reduced by an order of magnitude and time is reduced by a factor of about 5. The

discrepancy between improvements in the runtime and the reduction in the number of

plans can be explained by the fact that, even without the optimizing heuristics, out

implementation of T RDA takes advantage of sharing of partially constructed plans among

the different searches. Therefore, the reduction in the runtime is not as dramatic compared

to the reduction and space and the number of plans.

We conclude the evaluation section with the extreme case where we have a world

of 10,000 blocks blk1, blk2, ..., blk10,000 being on the table with blk2 being larger than
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the block blk1 and blk3 being larger than both blocks blk1 and blk2, and so on, and an

existential goal, (∃)stack(10, 000, blk10,000) for stacking a pyramid of 9,999 blocks on the

block blk10,000 as a base. The original tabling algorithm presented in [FK10a] would try to

try plan 9,999 different pyramids where one block blki, 1 ≤ i ≤ 9, 999, would sit separately

on the table and easily fail because this requires a very large memory to store all reachable

states. With the heuristic rules in Section 4.4.1, the new algorithm will return a single

pyramid containing the blocks blk2 to blk10,000 with the block blk1 sitting separately on

the table, the rule being that on top of each clear block blki is preferred to stack the block

blki−1 since it’s the largest clear block on the table. This will succeed in a short time

because it requires only 1,000 steps and only 1,000 intermediate states to store in tables.
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World size No heuristics With preferential heuristics

10 blocks
Plans 120 8
Time(sec.) 0.078 0.016
Space(kBs) 155 26
Tabled states 296 36
Transient states 165 17
State comps. 605 89

20 blocks
Plans 1140 18
Time(sec.) 0.563 0.109
Space(kBs) 1162 60
Tabled states 2491 76
Transient states 1330 37
State comps. 4410 189

30 blocks
Plans 4060 28
Time(sec.) 2.390 0.438
Space(kBs) 3730 90
Tabled states 8586 116
Transient states 4495 57
State comps. 14415 289

40 blocks
Plans 9880 38
Time(sec.) 7.000 1.219
Space(kBs) 8562 120
Tabled states 20581 156
Transient states 10660 77
State comps. 33620 389

50 blocks
Plans 19600 48
Time(sec.) 17.109 2.938
Space(kBs) 16347 150
Tabled states 40476 196
Transient states 20825 97
State comps. 65025 489

Table 13: Time, space, tabled states and state comparisons for planning in the blocks world
with and without preferential heuristics
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Chapter 5

Conclusion and future work

In this thesis we focused on Transaction Logic, a language for specifying actions and state

updates similar to Datalog rules with state changing elementary actions in the body of

rules. We have addressed the following aspects: tabled definite Horn-Transaction Logic

and defeasible reasoning in Transaction Logic.

Tabled Transaction Logic In the first part of the thesis we adapted the commonly

used tabling technique [TS88, War92, SW94] from ordinary logic programs to Transaction

Logic. We have shown that the proof theory of Transaction Logic modified with tabling

is sound, complete and it terminates for programs satisfying certain conditions. We

discussed a host of difficulties in implementing tabling for Transaction Logic and proposed

various optimizations. The implementation was developed within the framework of XSB

and it combines several different optimizations as plug - ins, enabling us to compare the

different optimizations.

Defaults and defeasibility for Transaction Logic In the second part of the thesis we

developed a well - founded semantics and a theory of defeasible reasoning for Transaction

Logic. This extends our previous work on defeasible reasoning in logic programming using

argumentation theories from static logics to a logic of state changes and transaction, which

is capable to representing both declarative and procedural knowledge. We also extend

the Courteous style of defeasible reasoning [Gro99] to incorporate actions, planning, and

other dynamic aspects of knowledge representation. We believe that TRDA can become

a rich platform for expressing heuristics about actions. Along the way, we defined the

well founded semantics for the T RDA extension of T R, an adaptation of the classical well
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founded semantics of [VRS91] for the T R dynamic logic. The primary advantages of this

part of this work are: a direct model theory for defeasible Transaction Logic, a simple

implementation for Courteous and other defeasible reasoning approaches as argumentation

theories to this extension for T R, and better control over edge case behavior.

The appendix outlines our contributions to complex event processing using T R with

the goal of detecting event patterns of interest. We present a rule language for event

processing with several event operators and temporal relationships, used in combining

events into patterns, detecting complex events, and addressing issues like event filtering,

routing, and consumption.

We outline here the possible future directions of the research in this thesis. In the

short term, the following research problems are within grasp.

Formalisms for tabled evaluations developed for normal logic programs, such as, SLG

[CW96] and Extended SLG (SLGX) [Swi99], could be lifted to Transaction Logic Pro-

gramming. For instance, we believe that in the partial deduction procedure for the SLG

resolution, the SLG systems of the form (A : δ), where A is a subgoal and δ is a sequence

of annotated rules for A, can be extended with the state in which the call to the goal A

was made (two pairs would be considered different even if the two subgoals are identical

but the calling states are different). The six fundamental SLG transformations can be

modified with the above change for systems, so that each query in a calling state can be

transformed step by step into a set of answers and return states. This new partial deduc-

tion technique would be a program transformation for Transaction logic that specializes

the transaction logic program for a serial goal to produce a more efficient program equiv-

alent to the original program as far as the serial goal is concerned. Similarly, the SLGX

algorithm from [Swi99] can be also reformulated to fit T R. The SLG forest consisting of

trees whose nodes have the form: Answer Template : − Delay Set | GoaLList or fail,

could include information about the states where these calls were made (Call State).

Moreover, the delay literals in the Delay Set should also be annotated with the calling

state Call State, while answers should be annotated with their return states. We sus-

pect that both extensions are sound and search space complete for the existence of paths

between any two states with respect to the well-founded partial model for T R programs

that address a finite number of states and all non-floundering queries.

The effects of tabling on a large number of optimizations have not been studied and it’s

another possible future direction. Such optimizations can include: the transformations of

T R programs described in [Hun96b] and [F.S00], pushing fluents ahead of actions in the
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rule bodies and optimizations inherited from normal logic programming like heuristics for

join - order optimization complemented by complexity analysis, and specialization.

In the long term, there are various interesting and highly challenging directions to

pursue. The following are a few of these directions. We plan to further validate our

results by incorporating an efficient implementation of B+ trees. We also believe that

applications on the new tabled and defeasible T R extensions have important applications

in security frameworks, semantic Web services composition and execution, and we plan

to investigate these applications.
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Appendix A

Application of Transaction Logic in

CEP

In parallel to our work presented in the main part of the thesis we have applied T R to the

area of Complex Event Processing (CEP). In this appendix, we outline this additional

work. For more details the reader can consult several documents about the ETALIS

language for event composition [AFSS09a, AFR+10a, AFR+10b, AFSS09b, FAR+10,

FAR11].

CEP has the task of processing streams of events with the goal of detecting event

patterns of interest. An event represents something that occurs, happens or changes

the current state of affairs. For example, an event may signify a problem, a threshold,

an opportunity, an information becoming available or a deviation. An atomic event is

defined as an instantaneous occurrence of interest at a point in time. In order to describe

more complex dynamic matters that involve several atomic events, formalisms have been

created which allow for combining atomic into complex events using event operators and

temporal relationships. The goal of CEP is to detect complex events according to a set

of event patterns, addressing other issues like event filtering, routing, consumption and

transformation. It is typically assumed that events in an event stream are totally ordered,

that is, the order in which events are received by the system is the same as their time

stamp order.

We implemented such a CEP system in Prolog using T R named ETALIS 1 [AFSS09a,

AFR+10a, AFR+10b, AFSS09b] with various extensions: support for garbage collection

1ETALIS: http://code.google.com/p/etalis
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[FAR11], processing of out - of - order event streams [FAR+10], time - based and count

- based windowing [FA], justification and debugging, support for streams of RDF triples

in the Semantic Web domain [AFRS11] and extended applications [FA09].

In the ETALIS system, the events occur over time intervals, time instants as well as

durations being modeled as nonnegative rational numbers q ∈ Q+. Events can be atomic

or complex, while no distinction is made in their applicability to rules. In ETALIS,

an atomic event refers to an instantaneous occurrence, i.e., the time interval length is

zero. Although not a requirement, atomic events are ground (i.e. predicates followed

by arguments which are terms not containing variables). Intuitively, the arguments of a

ground atom describing an atomic event denote information items (i.e. event data) that

provide additional information about the event.

Events participate in composition rules to trigger complex events. The syntax of

ETALIS Language for Events allows for the description of event patterns as event rules

of the form: complexEvent ← eventPattern. When an event stream of atomic events

is fed into the system, all patterns are considered and complex events are triggered. A

variable assignment is a mapping µ : V ar → Con assigning a value to every variable. The

event stream is formalized as a mapping ε : Ground → 2Q+
from ground predicates into

sets of nonnegative rational numbers. It thereby indicates at what time instants what

simple events occur. As a side condition, it is required that ε is free of accumulation points,

i.e. for every q ∈ Q+, the set {q′ ∈ Q+ | q′ < q and q′ ∈ ε(g) for some g ∈ Ground} is

finite.

We define an interpretation I : Ground → 2Q+×Q+
as a mapping from the ground

atoms to sets of pairs of nonnegative rationals, such that q1 ≤ q2 for every 〈q1, q2〉 ∈ I(g)

for all g ∈ Ground. Given an event stream ε, an interpretation I is called a model for a

rule set R – written as I |=ε R – if the following conditions are satisfied:

C1 〈q, q〉 ∈ I(g) for every q ∈ Q+ and g ∈ Ground with q ∈ ε(g)

C2 for every rule complexEvent ← eventPattern and every variable assignment µ ,

Iµ(complexEvent) ⊆ Iµ(eventPattern) where Iµ is inductively defined as follows:
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pattern Iµ(pattern)

q {〈q, q〉} for all q ∈ Q+

p1 seq p2 {〈q1, q4〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q3, q4〉 ∈ Iµ(p2)

for some q2, q3 ∈ Q+ with q2 < q3}
p1 and p2 {〈min(q1, q3),max(q2, q4)〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q3, q4〉 ∈ Iµ(p2)

for some q2, q3 ∈ Q+}
p1 par p2 {〈min(q1, q3),max(q2, q4)〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q3, q4〉 ∈ Iµ(p2)

for some q2, q3 ∈ Q+ with max(q1, q3) < min(q2, q4)}
p1 or p2 Iµ(p1) ∪ Iµ(p2)

p1 equals p2 Iµ(p1) ∩ Iµ(p2)

p1 meets p2 {〈q1, q3〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q2, q3〉 ∈ Iµ(p2)

for some q2 ∈ Q+}
p1 starts p2 {〈q1, q3〉 | 〈q1, q2〉 ∈ Iµ(p1) and 〈q1, q3〉 ∈ Iµ(p2)

for some q2 ∈ Q+ with q2 < q3}
p1 finishes p2 {〈q1, q3〉 | 〈q2, q3〉 ∈ Iµ(p1) and 〈q1, q3〉 ∈ Iµ(p2)

for some q2 ∈ Q+ with q1 < q2}

The intuitive meanings for the patterns presented above are the following (we assume

that instances of two events, p1 and p2, are occurring):

• p1 seq p2 represents a sequence of two events, i.e. an occurrence of p1 is followed

by an occurrence of p2; thereby p1 must end before p2 starts.

• p1 and p2 is a pattern that is detected when instances of both p1 and p2 occur no

matter in which order.

• p1 par p2 occurs when instances of both p1 and p2 happen, provided that their

intervals have a non - zero overlap.

• p1 or p2 is triggered for every instance of p1 or p2.

• p1 equals p2 is triggered when the two events occur exactly at the same time

interval.

• p1 meets p2 happens when the interval of an occurrence of p1 ends exactly when

the interval of an occurrence of p2 starts.
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• p1 starts p2 is detected when an instance of p2 starts at the same time as an

instance of p1.

• p1 finishes p2 is detected when an instance of p2 ends at the same time as an

instance of p1.

It is worth noting that the defined pattern language captures the set of all possible 13

relations on two temporal intervals as defined in [All83]. The set can also be used for rich

temporal reasoning.

Given an interpretation I and some q ∈ Q+, we let I|q denote the interpretation

defined via I|q(g) = I(g) ∩ {〈q1, q2〉 | q2− q1 ≤ q}.
Given two interpretations I and J , we say that I is preferred to J if there exists a

q ∈ Q+ with I|q ⊂ J |q.
A model I is called minimal if there is no other model preferred to I. It is easy to show

that for every event stream ε and rule set R there is a unique minimal model Iε,R. Given

an atom a and two rational numbers q1, q2, we say that the event a[q1,q2] is a consequence

of the event stream ε and the rule base R (written ε,R |= a[q1,q2]), if 〈q1, q2〉 ∈ Iε,Rµ (a)

for some variable assignment µ. The behavior of the event stream ε beyond the time

point q2 is irrelevant for determining whether ε,R |= a[q1,q2] is the case. For any two event

streams ε1 and ε2 with ε1(g) ∩ {〈q, q′〉 | q′ ≤ q2} = ε2(g) ∩ {〈q, q′〉 | q′ ≤ q2} we have that

ε1,R |= a[q1,q2] exactly if ε2,R |= a[q1,q2]. This justifies to take the perspective of ε being

only partially known (and continuously unveiled along a time line) while the task is to

detect event - consequences as soon as possible.

An example of CEP rules is the transitive closure rules in (30). The event e of arity 2 is

an atomic event, while the event tc of arity 2 is a composed event computing the transitive

closure of the event stream composed of instances of the event e. In this example and

in the semantics above, the event pattern is considered under the so - called unrestricted

policy. In event processing, consumption policies deal with an issue of selecting particular

events occurrences when there are more than one event instance applicable and consuming

events after they have been used in patterns.

tc(X, Y )← e(X, Y ).

tc(X, Y )← tc(X,Z) seq e(Z, Y ).
(30)

We now define how T R is used for the run - time detection of complex events in

ETALIS. Lets consider the CEP rule e← a seq b seq c.. The first step in the algorithm
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is events coupling or binarization of events, an operation that break event formulas into

rules with one operand and at most two events. For example, now we can rewrite the

rule e← a seq b seq c. as ie1 ← a seq b, and the e← ie1 seq c. Every monitored event

(either atomic or complex), including intermediate events, will be assigned with one or

more rules, fired whenever that event occurs. Using the binarization, it is more convenient

to construct T R rules for three reasons. First, it is easier to implement an event operator

when events are considered on “two by two” basis. Second, the binarization increases

the possibility for sharing among events and intermediate events, when the granularity of

intermediate patterns is reduced. Third, the binarization eases the management of rules.

Each new use of an event (in a pattern) amounts to appending one or more rules to the

existing rule set. However what is important for the management of rules, we don’t need

to modify existing rules when adding new ones.

The second step in the algorithm accepts binary rules and produces T R rules belonging

to two different classes of rules: goal inserting rules and checking rules. The sequence

operation in the event binary rule ie1 ← a SEQ b is converted into the following rules:

a(T1, T2) : −trigger all(a s(T1, T2)).

a s(T1, T2) : −insert(goal(b, a(T1, T2), e1)).

b(T3, T4) : −trigger all(b s(T3, T4)).

b s(T3, T4) : −goal(b, a(T1, T2), ie1), T2 < T3, ie1(T1, T4).

The first and the third rules call all the rules triggered by the event in an arbitrary

order where a s and b s are the various definitions of a and b in the program. The second

rule will fire when a occurs, and the meaning of the goal it inserts is as follows: “an event

a has occurred at [T1, T2],
2 and we are waiting for b to happen in order to detect ie1”.

Obviously, the goal does not carry information about the times for b and ie1, as we don’t

know when they will occur. The second event in the goal denotes the event that has just

occurred, while the role of the first event in the goal is to specify what we are waiting for

to detect an event that is on the third position in the goal. The forth rule belongs to the

class of checking rules. It checks whether certain prerequisite goals already exist in the

database, in which case it triggers the more complex event. The time occurrence of ie1

(i.e. T1, T4) is defined based on the occurrence of constituting events (i.e. a(T1, T2), and

b(T3, T4)). Calling ie1(T1, T4), this event is effectively propagated either upward (if it is

an intermediate event) or triggered as a finished complex event.

2Apart from the time stamp, an event may carry other data parameters. They are omitted here for
the sake of readability.
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The algorithm sketched above was applied for all operands and the resulting set of

event calls (and truth values in the final database if we would insert corresponding fluents

for these event calls in the database) matches the events in the fixed point semantics of the

ETALIS language defined above. Both the above translation and our fixed point semantics

is defined for the the “unrestricted” consumption policy (we are still investigating if similar

fixed point semantics and run - time detection algorithms can be developed for other

consumption policies). For further details on ETALIS the reader is referred to [AFSS09a,

AFR+10a, AFR+10b, AFSS09b, FAR+10, FAR11].
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Appendix B

Appendix: Tabled T R Soundness

and Completeness

In this appendix, we prove the soundness and completeness of the inference system FT

developed in Section 3.1. For convenient reference, we reproduce the axioms and inference

rules of system FT below. If P is a transaction base and Di (1 ≤ i) are database state

identifiers, then FT is the following system of axioms and inference rules.

Axioms: P,D1 --- ` state
Rule 1a. Applying transaction definitions for tabled predicates:

Suppose b’s predicate is tabled and there is no dominating pair (c,D1) in the table

space. Let a ← φ be a rule in P whose variables have been renamed apart from

b ⊗ rest (i.e., the rule shares no variables with the goal) and suppose that a and b

unify with the most general unifier σ. Then:

P,D1 --- ` (∃) (φ⊗ rest)σ
P,D1 --- ` (∃) (b⊗ rest)
(b,D1) ∈ table space

∀ P,D1 . . .Di ` bγ, (bγ,Di) ∈ answer table(b,D1)

That is, given a sequent P,D1 --- ` (∃) (φ ⊗ rest)σ, the rule allows us to derive

P,D1 --- ` (∃) (b ⊗ rest). In addition, (b,D1) is added to the table space, and for

all γ such that P,D1 . . .Di`bγ is derivable, the answer (bγ,Di) is added to the

answer table for (b,D1).

Rule 1b. Returning answers from answer tables:

Suppose: (1) b’s predicate symbol is declared as tabled, (2) there is a dominating
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pair (c,D1) in the table space, (3) the answer table for (c,D1) has an entry (a,Di),

and (4) a and b unify with most general unifier σ. Then:

P,Di --- ` (∃) (rest)σ

P,D1 --- ` (∃) (b⊗ rest)

Rule 1c. Applying transaction definitions for non - tabled predicates:

This rule is identical to Rule 1 in the proof theory of Section 2.1: let a ← φ be a

rule in P and a’s predicate symbol is not tabled. Assume that this rule’s variables

have been renamed apart from b ⊗ rest and that a and b unify with most general

unifier σ. Then:

P,D1 --- ` (∃) (φ⊗ rest)σ
P,D1 --- ` (∃) (b⊗ rest)

Rule 2. Querying the database:

If b is a fluent literal, bσ and rest σ share no variables, and bσ is true in the

database state D1, then:

P,D1 --- ` (∃) rest σ
P,D1 --- ` (∃) (b⊗ rest)

Rule 3. Performing elementary updates :

If bσ and rest σ share no variables, and b σ is an elementary action that changes

state D1 to state D2, then:

P,D2 --- ` (∃) rest σ
P,D1 --- ` (∃) (b⊗ rest)

Theorem 3.2 (Soundness and Completeness)

Suppose φ is a definite serial-Horn goal.

Soundness: If there is a tabled deduction of the sequent P,D1 --- ` (∃)φ with the

execution path 〈D1 . . .Dn〉 then the executional entailment P,D1 . . .Dn |= (∃)φ holds.

Completeness: If the executional entailment P,D1D2 . . .Dn−1Dn |= (∃)φ holds then

there exists a tabled deduction of the sequent P,D1 --- ` (∃)φ with an execution path

〈D1,D
′
2 . . .D

′
m,Dn〉 that starts in the database state D1 and ends in Dn.

Note that the path 〈D1,D
′
2 . . .D

′
m,Dn〉 has only the extremities D1 and Dn, but

does not have to be identical with the path 〈D1,D2 . . .Dn−1,Dn〉 as a result of the fact
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that the intermediate states D′2, . . . ,D
′
m can be different from the intermediate states

D2, . . . ,Dn−1.

Proof:

Soundness: The inference system FT is sound if all its axioms and inference rules

are sound. First, we consider the axioms P,D1 --- ` state. For any database state D1,

we have M,D1 |= state by definition of the propositional constant state for all models

M of P. Thus, we have P,D1 |= state.

Inference Rule 1: To prove the soundness of the inference rules 1a, 1b and 1c,

suppose that a ← φ is a rule in P whose variables have been renamed apart from

b⊗ rest, a and b unify with the most general unifier σ.

Rules 1a and 1c: Suppose that b is a call to a tabled predicate encountered for the

first time in a current state D1 (i.e., no dominating pair (c,D1) is in the table space)

and we apply Rule 1a, or b is is a call to a non-tabled predicate and we apply Rule 1c,

and P,D1 . . .Dn |= (∃) (φ ⊗ rest)σ holds. For every model M of P, M, 〈D1 . . .Dn〉 |=
(∃) (φ⊗rest)σ holds by executional entailment. Therefore, M, 〈D1 . . .Dn〉 |=ν (φ⊗rest)σ
for some variable assignment ν and, by Definition 2.8, we also have: M, 〈D1 . . .Di〉 |=ν φσ

and M, 〈Di . . .Dn〉 |=ν rest σ for some split 〈D1 . . .Di〉 ◦ 〈Di . . .Dn〉 of the path

〈D1 . . .Dn〉. Due to the fact that M is a model of P, it is also a model of a ← φ and

M, 〈D1 . . .Di〉 |=ν aσ holds. On account that a and b unify with the most general unifier

σ, aσ = bσ, it results that M, 〈D1 . . .Di〉 |=ν bσ holds. By Definition 2.8, we also have

that M, 〈D1 . . .Dn〉 |=ν (b⊗ rest)σ and M, 〈D1 . . .Dn〉 |= (∃) (b⊗ rest) hold.

Rule 1b: There exists a dominating pair (c,D1) in the table space such that bγ = cγ.

Suppose a and c unify with the most general unifier σ: aσ = bσ. Hence, aσγ = bγσ.

Since M, 〈D1 . . .Di〉 |=ν aσ holds, we obtain that M, 〈D1 . . .Di〉 |=ν bγσ holds. Hence,

by Definition 2.8, M, 〈D1 . . .Dn〉 |=ν (b ⊗ rest)γσ and M, 〈D1 . . .Dn〉 |= (∃) (b ⊗ rest)
hold.

The proof for the inference Rules 2 and 3 is identical to the classical T R case [BK95], so

we skip it. Since all the axioms and the inference rules used to prove sequents of the form

P,D --- ` (∃)φ are sound, it results that the executional entailment P,D1 . . .Dn |= (∃)φ
holds.

Completeness:

Lets consider a serial goal b. We will prove the following claim. Here we use `n-t

to denote non-tabled inference in the proof theory F I from [BK95] and ` for the tabled
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inference system FT .

Claim B.1: For any given path 〈D1,D2 . . .Dn−1,Dn〉, if P,D1 ---`n−tb with

some execution path 〈D1,D2 . . .Dn−1, Dn〉, then P,D1 ---`b with an execution path

〈D1,D
′
2 . . .D

′
m, Dn〉 with the same extremities D1 and Dn.

Using Claim B.1 and the completeness of the non-tabled inference system F I , we

can also deduce the completeness of the tabled inference system. Namely, suppose the

executional entailment P,D1D2 . . .Dn−1Dn |= b holds. By completeness of the non-

tabled inference system, it follows that P,D1 ---`n−t b is derivable with the execution

path 〈D1,D2 . . .Dn−1,Dn〉. By the above Claim B.1, it follows that P,D1 ---`b with

some execution path 〈D1,D
′
2 . . .D

′
m, Dn〉 that ends in the final state Dn.

It remains to prove Claim B.1. We will prove it by induction on the number of

applications of inference axioms and rules of the non-tabled inference system N ≥ 1. We

will use a stronger variant of the non-tabled inference system F I , denoted F IS, where

sequents have the form P,D1 . . .Dn`n−tψ. The inference rules 1, 2 and 3 are changed by

replacing D1 --- with D1 . . .Dn and D2 --- with D2 . . .Dn everywhere. This is a simple

extension of the inference system Ground F I in [BK95] which also applies to non-ground

transactions (Ground =I assumes that all transaction invocations are ground, but we

don’t make this assumption in F IS). We will also use a stronger variant of the proof

theory FT , where sequents have the form P,D1, . . .Dn`ψ. We will denote the stronger

theory with FTS . Similarly to [BK95], it can be shown that any proof in this stronger

theory can be converted to a proof in the original theory. Rule 1a is changed as follows:

P,D1,D2 . . .Dn ` (∃) (φ⊗ rest)σ
P,D1,D2 . . .Dn ` (∃) (b⊗ rest)

(b,D1) ∈ table space

∀ P,D1 . . .Di ` bγ, (bγ,Di) ∈ answer table(b,D1)

Rule 1b is changed as follows: suppose (1) b’s predicate symbol is declared as tabled, (2)

there is a dominating pair (c,D1) in the table space, (3) the answer table for (c,D1) has

an entry (a,Di), and (4) a and b unify with most general unifier σ. Then:

P,Di . . .Dn ` (∃) (rest)σ

P,D1 . . .Di . . .Dn ` (∃) (b⊗ rest)
The rest of the inference rules (i.e., 1c, 2 and 3) are changed by replacing D1 --- with

D1 . . .Dn and D2 --- with D2 . . .Dn everywhere.

We now return to proving the Claim B.1 using the theory FTS . Suppose N = 1. Then

b is a fluent, an elementary update, or the propositional constant state. These can be
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derived only via the inference rules 2, 3, or the axioms. Since these steps are identical for

the tabled and the non-tabled inference systems, the claim follows.

For the induction step, consider the sequent Σ = P,D1 . . .Dn`n−t ∃b⊗ rest derived

via N + 1 derivation steps in the non-tabled inference system F IS. Consider the last

derivation step N + 1 where the sequent Σ was derived from some sequent Σ′ of the form

P,D′1,D
′
2 . . .D

′
k`n−t ∃ ψ. For the final step, we have an application of some inference

rule in F IS as follows:

Σ′ = P,D′1,D
′
2 . . .D

′
k−1,D

′
k`n−t ∃ ψ

Σ = P,D1,D2 . . .Dn`n−t ∃ b⊗ rest
(31)

The sequent Σ′ must have been derived in ≤ N steps, thus, by the inductive hypoth-

esis, we have that some sequent Υ′ of the form P,D′1,D
′′
2 . . .D

′
k−1,D

′
k` ∃ ψ can be

derived in the tabled inference system FTS . We will prove that some Υ of the form

P,D1,D
′′′
2 . . .D

′′′
m,Dn` ∃ b⊗ rest can be derived in the tabled inference system.

We now consider the different possibilities how Σ could have been derived from Σ′,

i.e., where (31) is Rule 1, 2 or 3 of F IS.

The cases of Rules 2 and 3 are trivial, since these rules are identical in F IS and in FTS .

Suppose that (31) is rule F IS. Then there is a rule head ← body in the program P

whose variables have been renamed apart from b⊗ rest and head unifies with b with the

most general unifier σ. Thus, in the above sequent Σ′, we have that ψ = body ⊗ rest,
n = k and D1 = D′1, . . . ,Dn = D′k, Υ′ = P,D1,D

′′
2 . . .D

′′
n−1,Dn` ∃ body ⊗ rest and

Υ = P,D1,D
′′′
2 . . .D

′′′
m,Dn` ∃ b⊗ rest. We need to show that Υ is derivable in FTS .

Suppose the predicate symbol for the call b is tabled and there is no dominating pair

(c,D1) in the table space. Rule 1a of FTS is applicable and Υ can be derived from Υ′. In

addition, for all γ such that P,D1 . . .Di ` b σγ, the answer (b σγ,Di) is added to the

answer table for (b,D1).

Suppose the predicate symbol for the call b is tabled and there is a dominating pair

(c,D1) in the table

space. Since there is a proof of P,D1,D2 . . .Dn−1,Dn`n−t(b ⊗ rest)σ, there must be

a proof of P,D1,D2 . . .Di−1,Di`n−tbσ and of Σ′′ = P,Di,Di+1 . . .Dn−1,Dn`n−trestσ.

These proofs have fewer than N + 1 steps, so, by induction, there is a proof in FTS of

P,D1,D2 . . .Dr,Di`bσ and a proof of Υ′′ = P,Di,D
′′
i+1 . . .D

′
m,Dn`restσ. Therefore,

there must be an answer (bσ,Di) in the answer table for (c,D1), by the definition of Rule
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1a. Therefore, we can apply Rule 1b to the sequent Υ′′ and derive Υ.

If b is non-tabled, then Rule 1c of FTS applies to Υ′ in exactly th same way as Rule 1

of F IS applies to Σ′.

2
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Appendix C

Tabled T R Termination

In this Appendix we prove termination of the inference system FT developed in Section

3.1. A transaction may have: an infinite number of different answers on various paths, a

finite number of answer substitutions on infinitely many paths, or a finite number of an-

swers on a finite number of paths. The case of an infinite number of answer substitutions

appears due to function symbols and infinite recursive relation derivations in a similar

manner to the classical Horn logic programming. The case of a finite number of answer

substitutions on infinitely many paths occurs due to infinitely many database transforma-

tions. If the number of databases generated by the elementary updates in a program is

finite, then there is a finite number of pairs of path extremities (InitialState, F inalState).

If the program has no function symbols with arity greater than 0, then the proof for a

serial-Horn goal always terminates due to the fact that there is a finite number of tabled

calls and a finite number of databases, resulting in a finite number of answer substitutions

and final database states. We have that for any tabled atomic subgoal b a dominating call

c will be solved with the Inference Rule 1a., all the other subsequent calls being fed with

results obtained for this dominant goal. Naturally, from the Inference Rule 1b, it can be

inferred that for all goals rest, if b⊗ rest is the current goal in some database D with b’s

predicate symbol declared as tabled and a dominating pair (c,D) in the table space, then

the inference rule 1.b is applied taking an answer for (c,D).

Theorem 3.3 (Termination): Let P be a program with no function symbols with arity

greater than 0, that is, it allows only constants (i.e., 0-ary function symbols). Let us fur-

ther assume that all recursive predicates in P are marked as tabled. Then, for any definite

serial-Horn goal φ, the tabled proof theory finds one or more proofs of P,D ---`(∃)φ and
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terminates.

Proof: The inference Rules 1b, 2 and 3 cannot be applied an infinite number of times

because they reduce the size of the transaction formula, resulting that either the Rule

1c or the Rule 1a are applied infinitely many times. The Rule 1c applies only to non-

tabled predicates that are non-recursive (all recursive predicates are tabled by the theorem

hypothesis). The Rule 1a is applicable only for dominating goals, but since there are no

function symbols, the number of different dominating goals is finite. It follows that all

inference rules are applied finitely many times.

2

Note that we can compute upper bounds for the derivation trees defined in Section

3.1.1. The tabled-T R derivation tree for any definite serial-Horn goal φ in a database D

corresponds to the proofs of P,D --- |= (∃)φ because for every application of the inference

rules a new child node and an arc are created (construction correspondence from the proof

theory to the tabled derivation trees). Since there are no function symbols there are a

finite number of queries and a finite number of elementary updates because each ground

fluent can be queried, inserted or deleted and there is only a finite number of fluents. If

m is an upper bound on the arity of fluent predicates and there are a finite number of C

constants in the system, then there can be at most Cm different tuples for each fluent.

Let F be this number of ground fluents in the system that can be constructed from the

initial database and the transaction base. We can have at most 2F different database

states, because this is the set of all subsets of F , including the empty set and F itself.

Following a similar reasoning as above (C is the finite number of constants in the

system, m is an upper bound on the arity of tabled predicates), there can be at most

Cm different ground calls to tabled predicates. For each ground call, there can be 2m

non-ground calls because every argument position can be taken by a variable. As a

consequence, under such conditions, there will be a limited number T of variant calls to

tabled predicates (it is less than 2m ∗ Cm for each tabled predicate symbol). Additionally,

we can also see that the elementary updates are also limited to 2 ∗ F because each fluent

can only be inserted or deleted. We can see that there can be a finite number of sequents

(T ∗ 2F ) in the proof for any serial goal. This is also the finite number of producer tabled

left-most variant subgoals, and, from the non-repeating property for tabled derivation

trees, we can also see that the number of nodes in the tree for these producer subgoals is

finite.
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The number of entries in the answer table for each of the producer subgoals are also

finite because there is a finite number of substitutions and a finite number of databases.

As a consequence, the number of arcs originating in dominated sequents in the derivation

tree is also finite.

We can also see that the elementary updates are also limited to 2 ∗ F because each

fluent can only be inserted or deleted and there is a finite number of fluents. Finally,

we have a finite number of dominated goals because if R is the number of rules in the

program and B is the maximal number of literals in the bodies of all the clauses in the

program, then each node in the tree has a serial goal with at most R ∗ B ∗ D atoms (each

rule can be applied for each database, with the maximum number of body literals). This

gives us the limit on the depth of each branch in the tree. The result that the number of

nodes in the tree is finite follows from the fact that we have a finite depth for each branch

and a finite number of nodes (in effect, a finite branching factor for each node).
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Appendix D

Unique Least Model for not -free T R
Programs

In this appendix, we prove that any not -free T R program has a unique least partial

model (see Section 4.1).

Theorem 4.4 (Unique Least Partial Model for serial not -free T R programs)

If P is a not -free T R program, then P has a least Herbrand model, denoted LPM(P).

Proof: Let P+ denote the positive program obtained from P by replacing all body

literals of the form uπ, where π is a path, with tπ. (We will call such literals u - literals

and t - literals, respectively.) Similarly, let denote P− the positive program obtained by

deleting the rules whose body includes u - literals. (This is equivalent to replacing all u

- literals with a propositional constant f that is false on any paths). Note that both P+

and P− have unique minimal Herbrand models, since they do not have the special literals

uπ and thus are simply serial-Horn clauses; these minimal models are 2 - valued, as shown

in [BK95].

Let M+ be the least model of P+ and M− be the least model of P−. As noted above,

both of these models are 2 - valued. Clearly, P− is a subprogram of P+, so M+ is also a

model of P−. Since M− is the least model of P−, it follows that M− � M+. Thus, for

any path π and any not -free literal L

M−(π)(L) ≤M+(π)(L) and M+(π)(notL) ≤M−(π)(notL) (32)
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This means that all not -free literals that are true in M−(π) are also true in M+(π) and

all not - literals that are true in M+(π) are also true in M−(π).

We construct the least model M of P as a path structure such that, for any path π,

M(π) is the classical Herbrand structure where

− M(π)(L) = t iff M−(π)(L) = t

M(π)(notL) = f iff M−(π)(notL) = f

− M(π)(L) = f iff M+(π)(L) = f

M(π)(notL) = t iff M+(π)(notL) = t

− otherwise, M(π)(L) = M(π)(notL) = u

(33)

for any ground not -free literal L. We will now prove that M is LPM(P), the unique

minimal model of P.

By (32), M is well - defined, since it is not possible that M−(π)(L) = t and M+(π)(L)

= f or that M−(π)(notL) = f and M+(π)(notL) = t.

Next, we show that M is a partial model of P. Suppose C is a rule in P of the

form H : −B1 ⊗ ... ⊗ Bn, such that none of the Bis is a u - literal. By definition,

C belongs both to P− and P+. If, for some path π, M(π)(B1 ⊗ ... ⊗ Bn) = t, then

M−(π)(B1 ⊗ ...⊗ Bn) = t, by the construction of M in (33). Since M− is a model of C,

the head H of C must be true in M−(π) hence also in M(π). Thus, M(π) makes C true.

If M(π)(B1 ⊗ ...⊗ Bn) = f then M(π) satisfies C trivially. If M(π)(B1 ⊗ ...⊗ Bn) = u,

it means that, for some split π = π1 ◦ ... ◦ πn, M(πi)(Bi) is either u or t. By (33), this

implies M+(πi)(L) = t, and since M+ is also a model of C it follows that H must be true

in M+(π). The definition of M then implies that H must have the truth value u or t in

M(π), so M(π) satisfies C once again.

Next, suppose that C is a clause H : −B1 ⊗ ... ⊗ Bn in P \ P−, and suppose π is a

path with a split π = π1 ◦ ... ◦ πn such that none of the M(πi)(Bi) = f . Note that since

C is not in P−, at least one of the Bis must be uπi for some subpath πi. So, it must be

the case that M(B1 ⊗ ... ⊗ Bn) = u (it cannot be t because of uπi and it cannot be f

because of the assumption that none of the M(πi)(Bi)s is f). This implies (again by (33))

that none of the M+(πi)(Bi)s equals f . Therefore M(πi)(Bi) = t for all body literals in

the corresponding clause C+ in P+ (one that is obtained from C by changing each uπi

to tπi). Therefore, H (which is the head of both C and C+) must be true in M+(π). So

M(π)(H) is either t or u. Thus, M(π) models every rule in P \P− either and, therefore,

108



M is a model of P.

To prove minimality and uniqueness of M, let N be a model of P. We will show that

M � N, which would imply that M is the least model. We need to establish the following

properties:

Property D.1: M(π)(L) ≤ N(π)(L)

Property D.2: N(π)(notL) ≤M(π)(notL)

The proof of these relies on the following claims, which will be proved at the end:

Claim D.1: If M−(π)(L) = t then N(π)(L) = t.

Claim D.2: If M−(π)(notL) = f then N(π)(notL) = f .

Claim D.3: If M+(π)(L) = t then N(π)(L) ≥ u.

Claim D.4: If M+(π)(notL) = f then N(π)(notL) ≤ u.

To establish Property D.1, suppose that M(π)(L) = t. By (33), this means that

M−(π)(L) = t and, by Claim D.1, N(π)(L) = t. If M(π)(L) = u then, by (33), this im-

plies M+(π)(L) = t and, by Claim D.3, N(π)(L) ≥ u = M(π)(L). This proved Property

D.1.

For Property D.2, suppose M(π)(notL) = u. By the definition of M, this implies

M+(π)(notL) = f and, by Claim D.4, N(π)(notL) ≤ u = M(π)(notL). Similarly, if

M(π)(notL) = f , then M−(π)(notL) = f and, by Claim D.2, N(π)(notL) = f .

It remains to prove claims D.1–D.4. Claims D.1 and D.2 follow directly from the fact

that N is be a model of P− for which M− is the least model, so M− � N. Claim D.3

can be easily proved by induction on the number of inference rules that need to be used

in order to prove that L is true on π with respect to the program P+. Claim D.4 follows

from Claim D.3: If M+(π)(notL) = f then M+(π)(L) = t. By Claim D.3, N(π)(L) ≥ u,

which implies that N(π)(notL) ≤ u. 2
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Appendix E

T RDA Fixpoint and Well-founded

Model

In this appendix, we prove that any T RDA program has a unique well-founded model.

For convenient reference, we reproduce the Definition 4.25 from Section 4.1 below.

Definition 4.25 (T RDA Quotient): Let P be a set of T RDA rules and I a path

structure for P. The T RDA quotient of P by I, written as
P

I
, is defined through the

following sequence of steps:

1. First, each occurrence of every not - literal of the form notL in P is replaced by tπ

for every path π such that I(π)(notL) = t and with uπ for every path π such that

I(π)(notL) = u.

2. For each labeled rule of the form @r L :-Body obtained in the previous step, replace

it with the rules of the form:

L :- t〈Dt〉 ⊗ Body

L :- u〈Du〉 ⊗ Body

for each database state Dt such that

I(〈Dt〉)(not (3 $defeated(handle(r, L)))) = t
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and each database state Du such that

I(〈Du〉)(not (3 $defeated(handle(r, L)))) = u

3. Remove the labels from the remaining rules.

The resulting set of rules is the quotient
P

I
. 2

Note that, the T RDA quotient of a T RDA transaction base P with respect to an

argumentation theory AT (denoted (P,AT)) for any path structure I,
P ∪ AT

I
, is a

negation-free T R program, so, by Theorem 4.4, it has a unique least Herbrand model,

LPM(
P ∪ AT

I
).

We will now give the definition for the immediate consequence operator Γ. We will

use the set representation of Herbrand models: I+ = {L | L ∈ I is a not -free literal},
I− = {L | L ∈ I is a not -literal} and I = I+ ∪ I−.

Definition 4.26 (T RDA immediate consequence operator):

The incremental consequence operator, Γ, for a T RDA transaction base P with respect to

the argumentation theory AT takes as input a path structure I and generates a new path

structure as follows:

Γ(I) =def LPM

(
P ∪ AT

I

)
Suppose I∅ is the path structure that maps each path π to the empty Herbrand interpre-

tation in which all propositions are undefined (i.e., for every path π and every literal L,

we have I∅(π)(L) = u.

The ordinal powers of the immediate consequence operator Γ are defined inductively as

follows:

• Γ↑0(I∅) = I∅;

• Γ↑α(I∅) = Γ(Γ↑α−1(I∅)), for α a successor ordinal;

• Γ↑α(I∅)(π) = ∪β<αΓ↑β(I∅)(π), for every path π and α a limit ordinal.

2

The following lemma states a basic result about the immediate consequence operator

Γ.
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Lemma E.1 (Γ is monotonic) The operator Γ is monotonic with respect to the infor-

mation order relation ≤ when P and AT are fixed, i.e.

Γ(I) ≤ Γ(I ′) if I ≤ I ′ .

Proof:

The proof relies on the following claim.

Claim E.1: if I and I ′ are two Herbrand path structures, I ≤ I ′, D is a database

state and Γ↑n(I)(〈D〉)(not (3 $defeated(handle(r, B )))) = v with v ∈ {f , t}, then

Γ↑n(I ′)(〈D〉)(not (3 $defeated(handle(r, B )))) = v.

Proof of Claim E.1:

By hypothesis, Γ↑n(I)(〈D〉)(3 $defeated(handle(r, B ))) =∼ v. If v = t, then

Γ↑n(I)(ρ)($defeated(handle(r, B )) = f =∼ v for every path ρ that starts at D, and,

by induction hypothesis, Γ↑n(I ′)(ρ)($defeated(handle(r, B )) = f =∼ v. If v = f ,

then Γ↑n(I)(ρ)($defeated(handle(r, B )) = t for some path ρ that starts at D, and,

by induction hypothesis, Γ↑n(I ′)(ρ)($defeated(handle(r, B )) = t =∼ v. In both

cases, by Definition 4.21, Γ↑n(I ′)(〈D〉)(3 $defeated(handle(r, B ))) =∼ v. Hence,

Γ↑n(I ′)(〈D〉)(not (3 $defeated(handle(r, B )))) = v. Q.E.D.

Continuing with the proof of Lemma E.1, let I and I ′ be two Herbrand path structures,

where I ≤ I ′. Thus, for any path π, I(π)+ ⊆ I ′(π)+ and I(π)− ⊆ I ′(π)−. In order

to show that Γ(I) ≤ Γ(I ′), we will prove that Γ↑n(I) ≤ Γ↑n(I ′), for all n. This is true

for n = 0 (since I ≤ I ′).

Suppose Γ↑n(I) ≤ Γ↑n(I ′) holds true for some n, and Γ↑n+1(I)(π)(A) = t for some

literal A. There must be a clause @r B : − L1 ⊗ . . . ⊗ Lm in P and a ground substi-

tution θ such that A = Bθ, Γ↑n(I)(π)(L1θ ⊗ . . . ⊗ Lmθ) = t and Γ↑n(I)(〈D0〉)(not (3

$defeated(handle(r, B θ)))) = t, where D0 is the initial database of π. By Definition

4.21, there exists a split π = 〈D0〉 ◦ π1 ◦ . . . ◦ πm, such that Γ↑n(I)(πi)(Liθ) = t for each

1 ≤ i ≤ m. In
P ∪ AT

I
, we have rules of the form B : − t〈Dt〉 ⊗ L′1 ⊗ . . . ⊗ L′m and

B : − u〈Du〉 ⊗ L′1⊗ . . .⊗L′m , where the literals L′i (1 ≤ i ≤ m) denote the results of Step

1 transformation, i.e., L′i is either Li, if Li is a not -free literal, or tρ or uρ, for some path ρ

where the Step 1 conditions in Definition 4.25 are satisfied. By the induction hypothesis,

if Γ↑n(I)(πi)(Liθ) = t, then Γ↑n(I ′)(πi)(Liθ) = t. For every Liθ not -free literal, we have

L′iθ = Liθ, so Γ↑n(I ′)(πi)(L
′
iθ) = t. If Liθ is a not -literal, then from Γ↑n(I)(πi)(Liθ) = t

follows that L′iθ = tπi and, by Definition 4.21, Γ↑n(I ′)(πi)(L
′
iθ) = Γ↑n(I ′)(πi)(tπi) = t.
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Since π can be split into π1 ◦ . . . ◦ πm, it follows that Γ↑n(I ′)(π)(L′1θ ⊗ . . . ⊗ L′mθ) = t.

By Claim E.1, Γ↑n(I ′)(〈D0〉)(not (3 $defeated(handle(r, B θ)))) = t. It follows that

Γ↑n+1(I ′)(π)(Bθ) = Γ↑n+1(I ′)(π)(A) = t.

Suppose Γ↑n+1(I)(π)(A) = f for some literal A. For any clause @r B : − L1⊗ . . .⊗Lm
in P such that A = Bθ for some substitution θ, Γ↑n(I)(π)(L1θ ⊗ . . . ⊗ Lmθ) = f or

Γ↑n(I)(〈D0〉)(not (3 $defeated(handle(r, B θ)))) = f (and the rule is not present in

the quotient
P ∪ AT

I
). By Definition 4.21, for any split π = 〈D0〉 ◦ π1 ◦ . . . ◦ πm, we have

Γ↑n(I)(πi)(Liθ) = f for some 1 ≤ i ≤ m. By induction hypothesis, if Γ↑n(I)(πi)(Liθ) = f ,

then Γ↑n(I ′)(πi)(Liθ) = f . If Liθ is a not -free literal, then L′i = Li and Γ↑n(I ′)(πi)(L
′
iθ) =

f . Hence, Γ↑n(I ′)(π)(L′1⊗. . .⊗L′m) = f . If Liθ is a not -literal, then the corresponding rule

is not present in the quotient. On the other hand, by Claim E.1, Γ↑n(I ′)(〈D0〉)(not (3

$defeated(handle(r, B θ)))) = f and the rule is not present in the quotient corresponding

to I ′. In all cases, it follows that Γ↑n+1(I ′)(π)(A) = f . 2

Since Γ is monotonic, the sequence {Γ↑n(I∅)} has a limit which is the unique least

fixed point of Γ. It is computable via transfinite induction [Mos74, Llo84].

Definition 4.27 (Well-founded model): The well - founded model of a T RDA

transaction base P with respect to the argumentation theory AT, written as WFM(P,AT),

is defined as the limit of the sequence {Γ↑n(I∅)}. 2

We will show that WFM(P,AT) is a model of (P,AT) by using the following lemma.

This lemma states that the application of the immediate consequence operator Γ on

models of the program (P,AT) results in smaller models with respect to the truth order

�. The reciprocal direction is also true.

Lemma E.2 : N is a model of (P,AT) iff Γ(N) � N.

Proof:

The proof relies on the following claim.

Claim E.2: if a rule of the form:

B : − L′0 ⊗ L′1 ⊗ . . .⊗ L′m. (34)
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in
P ∪ AT

N
was obtained using the quotient Definition 4.25 from a rule of the form:

@r B : − L1 ⊗ . . .⊗ Lm (35)

in (P,AT), then min(N(π)(L′1), . . . ,N(π)(L′m)) = min(N(π)(L1), . . . ,N(π)(Lm)) and

N(〈D0〉)(L′0) = N(〈D0〉)(not (3 $defeated(handle(r, L)))), for any path π = 〈D0〉 ◦π1 ◦
. . . ◦ πm.

Proof of Claim E.2:

If Li is a not -free literal, then L′i = Li, so N(ρ)(L′i) = N(ρ)(Li) for every path ρ. If Li is

a not -literal notCi, then:

• if N(ρ)(notCi) = t, then L′i = tρ. Hence, N(ρ)(L′i) = N(ρ)(tρ) = t,

• if N(ρ)(notCi) = u, then L′i = uρ. Hence, N(ρ)(L′i) = N(ρ)(uρ) = u,

• if N(ρ)(notCi) = f , then the rule in
P ∪ AT

N
is not created,

for any path ρ. Hence, in all the above cases, when the rule (34) exists, we have that

N(ρ)(L′i) = N(ρ)(Li). Therefore, min(N(π)(L′1), . . . , N(π) (L′m)) = min(N(π) (L1), . . . ,

N(π)(Lm)).

By the quotient Definition 4.25, the literal L′0 in the Rule (34) must be either

the propositional constant t〈D0〉, if N(〈D0〉)(not (3 $defeated(handle(r, L)))) = t, or

the propositional constant u〈D0〉, if N(〈D0〉)(not (3 $defeated(handle(r, L)))) = u.

However, the propositional constant t〈D0〉 is true only on the path 〈D0〉, otherwise it is

false, while the propositional constant u〈D0〉 is undefined only on the path 〈D0〉, otherwise

it is false. Hence, N(〈D0〉)(L′0) = N(〈D0〉)(not (3 $defeated(handle(r, L)))). Q.E.D.

We continue with the proof of Lemma E.2.

(⇒):

In order to show that Γ(N) � N, we have to prove that Γ(N)(π)(A) ≤ N(π)(A) for

all paths π and all literals A.

Since the path structure Γ(N) is the least partial model of the program
P ∪ AT

N
, it

follows that:

• Γ(N) satisfies every rule in
P ∪ AT

N
, i.e., for every clause in

P ∪ AT

N
of the form

(34) we have:

Γ(N)(π)(B) ≥ Γ(N)(π)(L′0 ⊗ L′1 ⊗ . . .⊗ L′m) (36)
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for every path π;

• Γ(N) is minimum model, i.e., for any other model M ′ of
P ∪ AT

N
, we have:

Γ(N) � M ′ (37)

By Definition 4.25, each rule of
P ∪ AT

N
must correspond to a rule in (P,AT) of the

form (35) where the L′i literals (1 ≤ i ≤ m) are the results of Step 1 transformation, i.e.,

L′i is either Li, if Li is a not -free literal, or tρ or uρ for some path ρ, if Li is a not -literal.

By hypothesis, N models every rule in (P,AT):

N(π)(B) ≥ min( N(π)(L1⊗. . .⊗Lm), N(〈D0〉)(not 3 $defeated(handle(r, B)))). (38)

where D0 is the initial database in the path π.

Consider a split π = 〈D0〉 ◦ π1 ◦ . . . ◦ πm. By Definition 4.21, N(π)(L1⊗ . . .⊗ Lm) =

min(N(π1) (L1), . . . , N(πm) (Lm)). Hence, N(π)(B) ≥ min(N(π1)(L1), . . . ,N(πm)(Lm)).

We also have N(π)(L′0⊗ L′1⊗ . . . ⊗ L′m) = min(N(〈D0〉)(L′0), N(π1)(L
′
1), . . . ,

N(πm)(L′m)). Hence, by Claim E.2, N(π)(L′0⊗ L′1⊗ . . . ⊗L′m) = min(N(〈D0〉)
(not 3 $defeated(handle(r, B)))), N(π1)(L1), . . . , N(πm)(Lm)). Hence, N(π)(L′0⊗ L′1⊗
. . .⊗L′m) = min(N(〈D0〉) (not 3 $defeated(handle(r, B)))) ,N(π)(L1⊗ . . .⊗Lm)). By

(38), N(π)(B) ≥ N(π)(L′0 ⊗ L′1 ⊗ . . . ⊗ L′m). Therefore, N models every rule (34). It

follows that N is a model of
P ∪ AT

N
, and, by (37), that Γ(N) � N.

(⇐):

In order to show that N is a model of (P,AT) we have to prove that N models every

rule in (P,AT).

By hypothesis, N ≥ LPM(
P ∪ AT

N
). Hence, N is a model of the program

P ∪ AT

N
. Therefore, for every rule B : − L′0 ⊗ L′1 ⊗ . . . ⊗ L′m and path π, we have

N(π)(B) ≥ N(π)(L′0 ⊗ L′1 ⊗ . . . ⊗ Lm). Consider a split π = 〈D0〉◦ π1◦ . . . ◦ πm. By

Definition 4.21, N(π)(L′0 ⊗L′1 ⊗ . . .⊗Lm) = min(N(〈D0〉) (L′0), N(π1) (L′1), . . . , N(πm)

(L′m)).

By Claim E.2, N(〈D0〉) (L′0) = N(〈D0〉) (not (3 $defeated(handle(r, L)))) and

min(N(π)(L1), . . . ,N(π)(Lm)) = min(N(π)(L′1), . . . ,N(π)(L′m)). Hence, N(π)(L1⊗
. . .⊗ Lm) = min(N(π1) (L′1), . . . , N(πm) (L′m)). Therefore, N(π)(B) ≥ min (N(π)
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(L1 ⊗ . . .⊗ Lm), N(〈D0〉) (not3 $defeated(handle(r, B)))). It follows that N models

every rule in (P,AT). Hence N is a model of (P,AT). 2

The following corollary states that WFM(P,AT) is a model of the program P with

respect to the argumentation theory AT.

Corollary E.3 : WFM(P,AT) is a model of (P,AT).

Proof: By Definition 4.27, Γ(WFM(P,AT)) = WFM(P,AT). Hence, by Lemma

E.2, it follows that WFM(P,AT) is a model. 2

The next theorem states that our constructive computation of the least model of the

program (P,AT) is correct.

Theorem 4.5 (Correctness of the Constructive T RDA Least Model)

WFM(P,AT) is the least model of (P,AT).

Proof:

By Corollary E.3, WFM(P,AT) is a model of (P,AT). We will show by contra-

diction that WFM(P,AT) is the least model. Suppose that N is a model of (P,AT)

such that N � WFM(P,AT). Hence, N(π)(A) � WFM(P,AT)(π)(A) for every path

π and literal A. We will show that we must have that WFM(P,AT) � N, i.e.,

WFM(P,AT)(π)+ ⊆ N(π)+ and N(π)− ⊆ WFM(P,AT)(π)−.

The set inclusion for positive literals can be shown using the monotonicity of the

immediate consequence operator Γ since I∅(π)+ ⊆ N(π)+: Γ↑1(I∅)(π)+ ⊆ Γ(N)(π)+ after

one step, and, Γ↑α(I∅)(π)+ ⊆ Γ↑α(N)(π)+, after α steps (where α is a limit ordinal), for

any path π. By Lemma E.2, we also have: Γ(N) � N, Γ↑2(N) � Γ(N), and Γ↑α(N) �
Γ↑α−1(N) after applying Γ a number of α times. Therefore, Γ↑α(I∅)(π)+ ⊆ N(π)+, for

any path π. Hence, WFM(P,AT)(π)+ ⊆ N(π)+.

We will now prove by contradiction that N(π)− ⊆ WFM(P,AT)(π)−. Suppose

N(π)(A) = f and WFM(P,AT)(π)(A) > f , for some path π and a literal A. For

any clause @r B : − L1 ⊗ . . .⊗Lm in (P,AT), ground substitution θ such that A = Bθ,

and any split π = 〈D0〉 ◦ π1 ◦ . . . ◦ πm, either N(πi)(Liθ) = f or N(〈D0〉)(not (3

$defeated(handle(r, B θ)))) = f for some i (where i ≤ m). If Liθ is a not -literal

not C, then N(πi)(C) = t, and thus, WFM(P,AT)(πi)(C) = t, by the first part of this
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proof. Therefore, WFM(P,AT)(πi)(Liθ) = f . If Liθ is an atom, then N(πi)(Liθ) = f .

We will use the following property to show that WFM(P,AT)(πi)(Liθ) must also be

false.

Property E.1: a set S of atom/path pairs is N-unsupported (analogous to unfounded

sets in [VRS91]) if for every pair L/π in S, N(π)(L) = f and for every rule in (P,AT)

that has L in the head, @r′ L : − L′1 ⊗ . . .⊗ L′k , has a split of π = 〈D0〉 ◦ π′1 ◦ . . . ◦ π′k,
so that for some body atom L′i, the corresponding pair L′i/π

′
i also belongs to S. It can

be shown by induction that in every iteration of Γ all the pairs L/π in S are such that

Γ↑n(π)(L) = f .

By Property E.1, if Liθ is an atom, then WFM(P,AT)(πi)(Liθ) = f . Therefore,

WFM(P,AT)(π)(L1θ ⊗ . . . ⊗ Lmθ) = f . Hence, WFM(P,AT)(π)(Bθ) = f . However,

this is impossible since we started the proof by assuming WFM(P,AT)(π)(A) > f . 2
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Appendix F

T RDA Reduction to Transaction

Logic

In this appendix, we prove that the well-founded model of any T RDA program is identical

with the well-founded model of a T R program obtained via a transformation of the

original T RDA program. Suppose a T RDA program (P,AT) where P is a set of labeled

T RDA rules and AT is an argumentation theory.

Theorem 4.6 (T RDA Reduction)

WFM(P,AT) coincides with the well - founded model of the T R program P′ ∪ AT,

where P′ is obtained from P by changing every defeasible rule

@r L :- Body (39)

in P to the plain rule

L :- not (3 $defeated(handle(r, L)) )⊗ Body (40)

and removing all the remaining tags.

Proof:

We will prove that the programs resulted after each quotient operation in the trans-

finite sequence during the computation of the well-founded model are the same for both

the original T RDA program P and the transformed program P′.
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We split the first step of the Definition 4.25 into two steps:

Step 1a. Each occurrence of every not -literal of the form notL in the bodies of the

rules of P, except the $defeated/1 literals, is replaced by tπ for every path π such that

I(π)(notL) = t and with uπ for every path π such that I(π)(notL) = u. This step

applies identically both to 39 and to 40.

Step 1b. The literals in 40 of the form not (3 $defeated(handle(r, L)) ) are re-

placed by tπ for every path π such that I(π)(not3 $defeated(handle(r, L))) = t and

with uπ for every path π such that I(π)(not3 $defeated(handle(r, L))) = u. Step

1b is precisely what Step 2 does to 39 except that instead of replacing the literals

not (3 $defeated(handle(r, L)) ) (which 39 does not have) Step 2 simply adds the ap-

propriate tπ and uπ.

2
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