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Abstract of the Dissertation

Front Tracking and Adaptive Mesh
Refinement

by

Brian B. Fix

Doctor of Philosophy

in

Applied Mathematics & Statistics

Stony Brook University

2011

Multi component fluid instability problems suffer artificial mass
diffusion when numerical methods do not correct for numerical
dissipation at an interface. Front tracking provides a sharp inter-
face between components but can be computationally intensive.
Adaptive mesh refinement (AMR) is a method of increasing res-
olution only where needed, which can be more computationally
efficient. Under certain conditions AMR can achieve a high res-
olution numerical solution that would be otherwise unattainable
on a uniform grid. In this thesis, we combine front tracking and
AMR and apply the new algorithm to fluid mixing problems. A
series of timed simulations show that this algorithm can be faster
then uniform grid front tracking. The front tracked interface is less
diffuse than an AMR calculation at equivalent resolution without
front tracking. These results show that combining AMR and front
tracking is feasible and the strengths of both methods are retained.
The combined algorithm assumes front information resides only at
the finest level, simplifying the code and easing the way for future
modifications.
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Chapter 1

Introduction

1.1 General Description

Numerical analysis includes the study of discretization methods for the numer-

ical solution of partial differential equations (PDEs). The ability to compute

a numerical solution to a PDE with highly complex physics and geometry has

applications throughout engineering and science. Finite difference and finite

volume methods have been empirically shown to converge to similar answers

for well behaved computational fluid dynamics (CFD) problems using many

different algorithms. However there are many applications where computed

solutions are off by large factors. There are many reasons for the failure of

simulations to agree with experiment. These include, but are not limited to,

the use of inappropriate physics models, lack of knowledge of initial conditions

or material properties, undetected numerical errors (bugs in the code), and in

many cases lack of sufficient resolution for the computation. The focus of this

research is the latter. Namely, we investigate computational adaptivity to ad-
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dress under-resolved physical regimes. Specifically, fluid instability problems

suffer from the inability of a numerical implementation to achieve sufficient

resolution for the complex interface structure. To attain the full resolution

required for a fluid instability problem in 2D could take days on multiple pro-

cessors. Yet the answer still may not include all important features of the

solution. Furthermore, we are limited by available memory to store such a

refined solution. Through studying these types of numerical results, it is clear

that in many CFD problems there are significant sources of error due to un-

der resolving important features in small areas of a computation, or to the

inherent loss of sharp discontinuity over time due to numerical dissipation.

One approach to improving computational resolution in flow regimes domi-

nated by sharp and discontinuous interfaces is front tracking. The basic idea of

front tracking is to focus computational resources at wave fronts. There have

been a variety of approaches to accomplish this goal. These include explicit

interface tracking [1], volume of fluid (volume reconstruction) method [2], and

the level set methods [3]. For fluid instability problems involving two or more

materials, a sharp interface between components is essential for obtaining a

correct answer. Numerical methods that do not try to correct for numerical

dissipation at a fluid interface suffer artificial mass diffusion, which results in

a growth rate of instabilities slower than that measured in experiments. Front

tracking is a method which represents a fluid interface as a dynamically mov-

ing surface in a CFD discretization. This surface separates the fluids at an

interior boundary for solvers, allowing for the categorization of the numerical

stencils into internal stencil points and stencil points near an interface. Special

treatments are taken to ensure that the near-interface stencils will not diffuse
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the sharp boundary and maintain high solution gradients near the boundary.

The solver can also query which of the stencil points has crossed the interface

so that one can apply a different equation of state (EOS) and viscosity to the

fluid solver stencil. Even surface tension can be added to the interface.

Another approach to enhance local resolution is to use adaptive mesh re-

finement. In AMR additional cells are inserted in regions where greater res-

olution is required such as near shock regions, combustion regions, material

interfaces, and vortex sheets. The main idea of adaptive mesh refinement is

to provide a refined mesh grid for areas where high resolution is needed and

use coarse mesh in areas where low resolution is sufficient. There are several

ways to carry out the adaptive mesh refinement including block structured

[4] and oct/quad tree [5] [6]. All AMR algorithms require interpolation be-

tween consecutive levels so that several physical variables are conserved. The

refinement is carried out hierarchically, which makes the interpolation of the

embedded solution algorithmically and numerically simpler. The decision as

to when and where to refine mesh depends on the rate of change of physical

variables. For example, Richardson extrapolation can be used to estimate er-

rors in a given level of mesh refinement. Many AMR implementations allow

a user-defined refinement in places such as domain boundaries and specialized

geometry sections. It may also allow user-specified gradient cut-offs.

Simulations of multi-component fluid instabilities benefit greatly from the

ability of front tracking to supply complicated interface geometries. The in-

terface allows the instabilities to be sharp, and may also introduce extra detail

in the state solution near the interface that may not be seen with a method

where the interface is more diffuse or smeared. CFD simulations such as shocks
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and material interfaces with prominent features that don’t consume the entire

computational domain benefit greatly from adaptive mesh refinement. How-

ever, no refinement will be able to treat an interface as sharply as an explicit

tracking of the interface. Front tracking may introduce a discontinuous jump

in the state solution across the interface. Therefore combining front tracking

with refining the mesh around the interface is a natural idea. Enforcing refine-

ment near the fluid interfaces would allow for more exploration of the nature

of fluid instabilities. The addition of AMR to front tracking allows for higher

resolution studies with more complicated initial geometries and fluid features.

To couple AMR and front tracking many considerations must be taken into

account. Tracking a dynamically moving interface using topologically linked

marker particles is challenging. Much care is taken in front tracking code to

ensure topological consistency. Ensuring the correct behavior near boundaries

and across parallel subdomains is also an important in front tracking. Front

tracking is tightly coupled with the underlying state grid for interpolation of

state values at and around the interface. To ensure that coupling takes place

in a logical way, the front tracking algorithms must have proper access to grid

states. Adaptive mesh refinement has its own computational difficulties. It

is advantageous to use solvers that are well vetted on single grid calculations.

These solvers require large grid blocks for maximal efficiency. Block structured

AMR is a method which requires that refined regions exist in patches, or blocks

larger then a certain size, in order to maintain the efficiency for single grid

solvers. A block structured calculation is made up of nested levels of patches

of refinement. Patch sizes have restrictions placed on them to ensure efficient

calculation times.
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Proper coverage of areas where refinement is requested is also enforced. To

couple front tracking with AMR, we use block structured AMR. We enforce

sufficient refinement near the interface so that the interface always exists inside

the finest level of refinement. The front tracking algorithms and related solvers

can then operate as they normally would on a regular grid. The only front

tracking operation required after this point is to make sure proper data man-

agement of the interface is provided at patch boundaries. Extra AMR func-

tionality is needed to ensure that component information on coarser patches

is updated from overlapping finest level patches that have an interface. The

functionalities needed of AMR and front tracking are briefly described in this

introduction. Their implementations requires a detailed code to control several

steps of the process. These details will be elaborated upon in this thesis.

The perturbation in a fluid instability starts from a small area in the com-

putational domain with smooth state solutions on either side of the computa-

tion. The number of cells of the mixing zone in which the interface exists can

grow exponentially. AMR can reduce the amount of calculation in early states

of the simulation, when the interface still resides in a fraction of the compu-

tational domain. This allows calculations to progress to later time without

spending too much resource for early time. Many physical processes impor-

tant to engineering and science start with the interface residing in a very small

region and evolves into complicated late time mixings covering a larger part

of the domain. Applications of this code are useful in simulations of super-

nova, implosions, and injector jet spray. Another area where AMR and front

tracking shows promise is shock interface interactions, due to the relatively un-

perturbed state in the initial condition where only those cells near the shock
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and the interface need refinement.

AMR and front tracking are both advanced techniques in CFD in their own

right. This thesis proposes algorithms to couple these technologies. We explain

how these algorithms are implemented in a software framework. Verification

and refinement studies show promise for the coupling of these techniques.

Our research opens the door to simulations which could not have been done

previously, and should be useful for future numerical experiments.

1.2 Contributions

Work on combining front tracking with adaptive mesh refinement has been

worked on by several different investigators. Some basic data structures and

initialization exist in the FronTier code, but combining these algorithms is

a challenging task. The current work is a continuation of the work done by

by Zhiliang Xu. Xu developed FronTier and AMR with a different software

package, namely the Overture package [7]. The Xu approach uses the Overture

AMR algorithms for the decisions of where to place refinement grids. All other

aspects of AMR are taken care of inside the FronTier gas dynamics code. Xu’s

AMR code was developed in an isolated branch of the FronTier code without

version control that was not remerged. It took three years to get the Xu

approach working in the current FronTier development tree.

The development of a new light weight compressible solver based on the

FronTier-Lite code, cFluid, presented the opportunity for an alternate ap-

proach. We combine the cFluid code with the SAMRAI AMR package. The

SAMRAI routines take over much of the AMR related work. The new com-
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bined front tracking AMR algorithm has proven more robust and easy to use.

The combined algorithm changes the interface model by only allowing access

to the interface geometry at the finest level. This reduces the amount of spe-

cialized AMR routines. This reduced amount of specialty code requires only a

few functions that are dimensionally dependent. Much of the code in the com-

bined algorithm is modularized and already usable in two or three dimensions.

Due to the new algorithm and modern software design, this work furthers work

towards AMR front tracking in three dimensions.
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Chapter 2

Background

2.1 Front Tracking

Numerical modeling of interfaces can be done in several ways: particle meth-

ods, PLIC-VOF, level sets and capturing. Front tracking relies on marker

particles, and of the four groups of methods mentioned above, it is closest

conceptually to the marker particle methods. It differs from marker particles

in that the particles are located only on the interface, rather than in a volume

region near the interface, and in that the particles are connected to each other

to form a triangulation (3D) or piecewise linear (2D) description of the inter-

face. It is significantly faster than particle methods, since fewer particles (one

or two in 2D) are used per cell in front tracking than the number used (4D) in

typical particle method simulations.

The front tracking method has showed its advantage in the computation of

several important physical problems such as the study of fluid interface insta-

bilities [8–12], providing the first or the only physically validated simulation

8



for some important fluid instability problems.

The front tracking method provides several algorithms for the redistribu-

tion of marker points on curves (2D) and surfaces (3D). The most frequently

used method in 2D is the equal-bond redistribution. This function measures

the total length of the curve, which is then divided by the optimal bond length

to obtain N , the total number of bonds. The new bond list is created with

equal length starting from the first point (node).

In three dimensions, both the area and the aspect ratio of the triangles

are calculated and those with low quality are placed in a queue. A cyclic op-

timization procedure is called for elements of this queue to insert, delete or

re-triangulate the triangles until all the triangles satisfy a preset geometrical

criterion. Each of the optimization functions performs a complete set of oper-

ations to guarantee that the topological linkage of the interface is correct after

its operation.

Front tracking starts from a set of discrete marker points, topologically

organized through an interface data structure. The method provides a set of

functions to maintain its organization after dynamic propagation and bifurca-

tion [13–15]. For use below, we call this method grid free (GF) tracking, as

the interface handling has no logical relation to a finite difference grid. The

difficulties associated with topological bifurcations for GF tracking are ampli-

fied in 3D. As a result, a robust semi-Eulerian reconstruction method, called

grid based (GB) tracking [16], was introduced. GB tracking, although robust,

suffered from excessive interpolation and smoothing errors, the same inaccura-

cies as the level set method. A new method which combines the best features

of GF and GB tracking, is called the locally grid based (LGB) front tracking
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method.

To reduce the GB interface interpolation error, we use the LGB, or the

locally grid based tracking, which combines the advantages of both methods.

We use the fully Lagrangian GF method to propagate the interface to obtain

an accurate solution of the interface position. Eulerian GB reconstruction

of the interface is only used in small regions where topological bifurcation is

detected. The detection of topological changes is through a fast algorithm

which walks through the Eulerian grid to check the consistency of the indices

assigned to grid nodes of each subdomain and the corresponding side of the

interface. In the first step of the procedure, the intersections between the

interface and cell edges of the Eulerian grid are inserted and the index of

every subdomain is assigned to each corner point of the Eulerian grid. We

then check the consistency between the indices of each crossing point and the

node point it faces. If inconsistency is detected, the corresponding mesh block

is recorded. This intersection detection algorithm is approximate in that it

will miss bifurcations totally internal to a single mesh cell.

The construction advances through four steps.

1. Those recorded blocks will be assembled to form boxes and overlapping

boxes will be merged.

2. Surgery is performed within each box. Triangles crossing the box bound-

aries are recorded for later use. All the triangles inside the box or at-

tached to the box will be deleted leaving only the crossing points of the

interface and grid edges. A grid-based reconstruction is followed to build

the new section of the interface inside the box.
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3. The triangles totally outside the box form the exterior interface.

4. The region between the exterior and interior interfaces is re-triangulated

to join the two smoothly.

Figure 2.1 shows the procedural steps of the local reconstruction of the in-

terface. The reconnection step 4 is the most crucial step in the LGB method.

We modify the triangles recorded in step 2 by a series of steps to make the tri-

angles in the reconnection region also grid based relative to the box boundary.

These substeps of step 4 are summarized as follows:

4.1 We split triangles crossing the box boundary which are recorded in step

2 using the intersection points between triangles and box boundaries.

There are two types of intersection points: one is the intersection points

between triangles and grid cell edges on the box boundary (TYPE I),

the other is the intersection points between the sides of triangles and the

box boundaries (TYPE II). We first divide each triangle by recursively

inserting the TYPE I intersection points (if any) inside the triangle. Each

triangle will be divided into three smaller triangles by joining the TYPE

I intersection point with the vertices of the triangle. Then we insert

the TYPE II intersection points recursively. Each triangle is divided

into two smaller triangles by joining the TYPE II intersection point and

the vertex opposite to the side containing this intersection point. After

this step, the triangles which crossed the box boundaries are split into

triangles lying either entirely inside the box or entirely outside the box.

We keep only the triangles entirely outside the box. These triangles meet
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the box surface along a closed curve which is actually a piece-wised linear

curve connecting all the intersection points.

4.2 The curve gives an ordering to these triangles, and in this ordering,

we merge triangles whose vertices are TYPE II intersection points until

there is no TYPE II intersection points in the curve. After this step it

is sufficient to examine that each triangle meets the box boundary only

as a line joining adjacent grid edge. i.e. the triangle meets the box in a

grid based manner.

After this operation, all triangles will meet the box edge only as a line

joining adjacent grid edges. That is, all triangles, inside and outside, meet

the box only in a grid based manner. The reconnection between the outside

triangles and the newly reconstructed triangles inside the box is then a simple

match of the triangle sides at the box boundaries.

This method reduces the use of the Eulerian reconstruction to a minimum.

It is particularly useful for the computation of interface motion in which the

interface has regions of large curvature. It reduces interface interpolation errors

and minimizes the unphysical disappearance of the fragmented components of

the material after bifurcation.
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2.2 Multi Component Fluid Dynamics and

Front Tracking

The Euler equations of compressible inviscid fluid dynamics are:

∂ρ

∂t
+∇ · ρv = 0

∂ρv

∂t
+∇ · ρvv +∇p = 0

∂ρE

∂t
+∇ · ρvE = −∇ · pv

Where the dependent variables v ρ, p, and E denote, respectively, the velocity,

density, pressure and total energy. With:

E = e+ v2

2

and e the internal energy. For the purposes of our research we are interested is

a split solver TVD method [17]. We use this method to solve these equations

and we apply the multi component ghost fluid method that follows.

The states at the interface are coupled with the fluid states on the com-

putational grid. In a single time step of a front tracking simulation, there are

two major function calls. First the interface is propagated using interpolated

velocity from the interior. Second, after the interface propagation, the inte-

rior variables are updated. This update is different from an untracked Euler

update. During a sweep, the state vector along the direction of the sweep is

broken up into subsections based on their components which are separated

13



by the interface. See figure 2.2. These subsections are solved independently

with corresponding boundary conditions applied at each end. These bound-

ary conditions at the ends of the subsections either use traditional boundary

conditions such as Neumann or Dirichlet boundary conditions at the domain

boundary, or interface boundary conditions from an interface coupling algo-

rithm. In a multi-component fluid simulation, the ghost fluid method (GFM)

[18] is applied at the internal interface boundary. These two function calls are

repeated as time advances.

2.3 AMR

Adaptive mesh refinement comes in different forms. Different numerical meth-

ods employ different algorithms and use different data structures to store data

for the discretization. Among all numerical methods for PDEs the idea for

AMR is the same: to add more data points/cells/memory for higher resolu-

tions only in regions where it is needed. We use finite difference and finite

volume methods on rectangular meshes.

On regular rectangular meshes there are two types of AMR, continuous and

patched based. They share many common traits. Both methods start with

a regular coarse Eulerian mesh. Finer cells are subdivided from coarser cells.

Each cell is divisible into an integer subdivision of finer cells. Cells that share

a common cell size are on the same level. In both methods successive levels

of refinement are hierarchical. This means that the Nth level is embedded in

the N-1st level.

In continuous AMR, the algorithms are designed to make a decision on a

14



single cell. If a cell needs refinement it will be refined. The process is then

repeated in each sub cell at every step [5] [6]. This allows for cell by cell

refinement. Refinement rules allow refinement in a cell to be one level higher

than its surrounding cells. In combination these rules can give a high quality

continuously varying mesh. [See Figure2.3.a] One of the disadvantages of this

method is that solvers must be written for the data structures to perform

updates to cell variables.

In patch based AMR, the initial coarse grid is swept and the cells which

require refinement are tagged with a boolean value. After the sweep, patches

are placed over the coarse grid to cover all regions in which refinement is

needed. The finer grid placement strategy is meant to optimize patch size and

location so that each patch is covers a high ratio of tagged cells to untagged

cells. These patches must also obey constraints on size, falling between a

minimum and maximum size in each direction. The sweep and placement of

finer grids is then repeated on each fine grid.

The decision on where to refine is usually a responsibility of the user of the

AMR code, and dependent on what the user of the code is interested in. One

could choose to refine cells based on a variation of a single variable, such as

the gradient, or simply a threshold value. Error estimates such as Richardson

extrapolation can also be used for refinement criteria. In shock physics, the

refinement is usually decided based on a cut-off value of the pressure gradient.

AMR refinement criteria is an active area of research. Many simulations using

AMR do empirical studies at low resolutions using a mixture of the above men-

tioned methods. Results are compared between AMR and fully refined results

in order to determine effective AMR refinement criteria to use for production
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runs at higher resolution.

Initialization of the two methods are similar. Because the initial condi-

tions are usually set by analytical functions, the initialized grids contain the

exact state information. Given a refinement decision function, initial shocks

or interfaces can be fully refined with exact information, along with any other

areas of interest.

Given the hyperbolic nature of compressible Euler equations, initial waves

will propagate away from the initially refined regions. If the initial condi-

tion is refined properly and the refinement options are chosen carefully, areas

of interest in calculations can have proper refinement throughout the entire

simulation. In these cases it is possible to have an AMR refined calculation

containing the same large scale structures, such as shock and interface position

and speed, as a fully refined single mesh calculation.

2.3.1 Patch Based AMR

The original descriptions of hyperbolic systems of PDE’s and a patch based

AMR scheme is given by Collella [4] [19]. In these papers Collella and Berger

define a patch description and the integration algorithm. Patches are placed

on the grid in a logically nested manner and a level of refinement must be

embedded in a patch of refinement only one level coarser.

One advantage of using patch based AMR for this work is that verified

solvers can be easily inserted into this system. Patch based AMR allows for

a software division of AMR and solver so that AMR libraries can be written

independent of solvers. This allows for easy reuse of AMR libraries, which
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is another advantage. Patch based AMR libraries include routines for data

management, input/output, visualization, and parallelization of patches. On

a numerical level these AMR libraries also include functions for interpolation,

and integration depending on the type of PDEs and numerical schemes used.

With hyperbolic PDEs of the form:

∂w

∂t
+

d∑
i=1

∂

∂xi
fi(x, t, w) = g(x, t, w), w(x, 0) = w0(x)

it has been shown that a numerical scheme with mixed cell sizes can have

mixed time steps instead of a global bound on timestep size [20]. The Berger

Oliger integration algorithm deals with the fact that due to the CFL condition,

smaller steps can be taken on finer patches. The algorithm is recursive and

insures that a series of substeps are taken on a given level for each step of the

next coarser level. This recursive algorithm is first applied on the coarsest level

and it dictates the dt calculation and the update of solution on all levels. The

outline of this algorithm is shown in Listing 2.1. In Figure 2.4 these different

stages and recursion are depicted in a simple example with 3 levels, with half

dx on every finer level. Assuming the velocity values on the coarse grid and

fine grid are about the same, then for every level to sync with the next finest

level, the next level will take approximately two steps. If the coarse grid takes

a step of size dtcoarse, then for the medium grid to sync with the coarse grid it

must take two steps of size approximately 1/2× dtcoarse, The finest grid must

take two intervals of two steps, of size 1/4 × dtcoarse In this case the order in

which the steps in our simple example in Figure 2.4 would occur would be A,

B, C, C, D, B, C, C, D, E .
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The hyperbolic AMR algorithms assume that state data on the finest level

is the most accurate, and it is conservatively coarsened to all coarser grids.

The coarsening from fine grid state to coarse grid state means that previously

calculated coarse state data is replaced with a new fine grid solution . In

addition, a flux correction on the coarse grid at the coarse/fine boundary is

necessary for the reason of conservation (see [20] and [21]).
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R e c u r s i v e I n t e g r a t e ( l e v e l i )

{

repeat hj /hc t imes

i f ( r e g r i d d i n g t i m e )

c a l c u l a t e e r r o r s f o r l e v e l i and f i n e r

s tep dt on a l l g r i d s at l e v e l i

i f l e v e l i+1 e x i s t s

R e c u r s i v e I n t e g r a t e ( l e v e l i +1)

update ( l e v e l i , l e v e l i +1)

}

Listing 2.1: The Berger Oliger Algorithm
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Figure 2.1: LGB Algorithm steps. Steps to reconstruct a tangled section of
the three dimensional interface. From left to right and top to bottom: (1)
assemble blocks which contain unphysical edges, (2) delete triangles attached
to the box and rebuild the interface through the grid-based method, using
the grid-based method to reconstruct the interface topology inside the box,
(3) align triangles inside the box and outside the box, (4) relink the interface
topology for triangles inside and outside the box, and thereby obtain the final
interface with new topology. Images courtesy of Yuanhua Li.
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Figure 2.2: Ghost cells of an interface. An interface and ghost cells for a stencil
size of one, in different sweep directions.

21



Figure 2.3: AMR types. a. continuous AMR b. patch based AMR (continuous
AMR image from [6])
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Figure 2.4: Simple AMR example
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Chapter 3

Gas-AMR

3.1 Combining Gas and AMR

Chapter 2 gives the history and background of the FronTier code. One of

FronTier’s premier applications is the gas package, designed as three distinct

parts, gas, hyp and driver to be used in unison. The driver package contains

a set of general purpose main loop functions to coordinate different parts of

the simulation including several types of solvers, output formats, state storage,

and front tracking maintenance calls. The hyp package provides the general

purpose hyperbolic solvers and state interpolation functions for hyperbolic

solvers. The gas package initializes compressible fluid dynamics problems,

provides EOSs, Riemann solution and ghost-cell method code, and provides

other physics options such as mass diffusion, viscosity, phase transition, as well

as problem specific extra statistics.

Adding AMR to FronTier’s gas has been progressing since 2000. This

work was carried out mainly by Zhiliang Xu and his co-workers [12, 22, 23].

24



The approach was to change code in all sections of the gas package to make

it AMR compatible. This work will be referred to as the Gas-AMR approach.

The Gas-AMR approach makes three important assumptions:

• The most up to date front geometry is needed on all levels.

• A full FronTier GFM calculation is carried out in all patches and on all

levels.

• The front is propagated with the most accuracy in the finest level of

patches.

The decision was made to parallelize the implementation which complicates

the data and functional structure of Gas-AMR. The parallel model for Gas-

AMR is an adaptation of the original FronTier data structure. It is essentially

a modified spatial domain decomposition approach. If there are P processors

in a two dimensional domain, this computational domain is partitioned into

N ×M pieces where P = N ×M . If the coarsest grid is in a I × J mesh,

then each processor has a coarse grid computational patch I/N × J/M . This

coarse grid is also referred to as the base patch. All finer patches are built

on top of the base patch. They are created and managed by the base patch’s

driver function.

After all fine level patch fronts are advanced via the propagation and

redistribution functions, these patch fronts are assembled to populate the

fronts on all coarser levels. The fragmented interfaces are propagated in the

finest patches. They are then sent to the base patch for assembly. Once there

they are stitched together to make up the interface in the base patch. The
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base patch front is then copied and cut to fit all other finer patches in the

computational subdomain. When this procedure is complete, every level is

updated with a full front covering the patch, containing correct geometry

and topology information. See Figure 3.1

This procedure is repeated in every timestep and is used for the FronTier

GFM calculation. In these procedures, the Gas-AMR uses a unified time step

across all levels, and all coarser levels take the timestep satisfying the CFL

condition of the finest grid. Regridding is enforced after a given number of

time steps, which is a user defined input.

FronTier load balancing is optimized by distributing patches among pro-

cessors. After each regridding, all data is returned to each base patch and

the external AMR library functions are called to make the decisions on patch

placement. A FronTier function is then called to balance the computational

load by sending patches from heavily loaded processors to lightly loaded pro-

cessors. See Figure 3.2 for an intuitive explanation.

3.2 The Software Maintenance

The Gas-AMR approach started in the early 2000’s by Zhiliang Xu [12, 22,

23]. We continued Xu’s AMR work by inserting his early implementation into

the main FronTier version. We adopted the version control system named

Mercurial [24] to track all the changes in both the FronTier and the AMR

libraries. The use of Mercurial has accelerated the code development and

merging, allowing us to revert changes when an incorrect addition has crept

into the system. After the merge was completed, the Gas-AMR code was
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still not compatible with the new system. We removed many bugs in the

interface clipping and parallel communication which occurred in standard test

problems. The Gas-AMR code was functional after all these changes. See

Figures 3.4 and 3.3 for an example of the Gas-AMR simulation of a jet and an

implosion problem.

3.2.1 Software Metrics

The use of a version control system makes it possible to determine precisely

what is added to the code. In all, Gas-AMR has added 28 files and changed

another 144 files. We have made total of 56,109 line insertions and 8,538

deletions of the code. Another code counting metric was used called Source

Lines of Code (SLOC), via a script called SLOCCount[25]. The FronTier code

started with 361,859 SLOC before merging and ended with 387,927 SLOC, a

difference of 26,068 SLOC and a growth of 7%.

The industry standard for errors per lines of code is 15-50 per 1000 lines

of delivered code. Corporations that make their primary profit from software

write code that has 10-20 errors per 1000 lines at development stage before

testing. After formal bug tracking and unit testing this error rate drops to .5

per 1000 at release [26]. The rate of .5/1000 errors/SLOC implies a tolerance

of 13 errors in the Gas-AMR code. With a rate of 4/1000 errors/SLOC the

number of errors in the Gas-AMR code is over 100. The number of successful

tests and production runs combined with the volume of code added to the

software library can be used as a measure for the error rate per SLOC in

Gas-AMR section of the FronTier library.
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3.3 Development Issues of the Gas-AMR code

3.3.1 Design Issue

The assumptions in section 3.1 on front tracking in AMR led to some difficulties

in making full use of the AMR libraries. The requirement that front must be

included at every level of the refinement patches makes it incompatible with

AMR libraries in parallel mode. As the result, the Gas-AMR attempts to re-

implement many routines that should be left to the external AMR libraries.

AMR libraries are used in the Gas-AMR code only to make decisions such as to

where to do the regridding, etc. Many features of the AMR library cannot be

used without a full re-implementation. The interoperation is rigid and limited.

The Gas-AMR model contains function calls to clip, send, receive, and

stitch patches in its AMR framework. The request for full front geometry at

every level requires the code to synchronize interfaces between patch levels.

Gas-AMR adds several files containing data structures and functions only to

maintain a collections of fronts in the AMR data model. Much of the code

written around this model is not modularized.

3.3.2 Programming Problems

FronTier, when not coupled with AMR, operates on one piece of interface at

a time with an old copy and a new copy of the interface. It swaps between the

old and new interfaces in each time step. To ease the difficulty in accessing

the data structure, a pointer to the current interface is set as a global address.

Global pointers and flags, such as cur intfc, impose no difficulty when there
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is only one piece of interface per MPI process. However, when a process

is dealing with multiple patches, the program must insure that these global

pointers and flags are consistently maintained and set. Any change in the code

that does not take into account these issues can lead to serious errors.

The programming features in the gas code are useful in the complex Fron-

Tier operation, but come at the expense of being too tightly integrated with

all aspects of the code. The hyp, driver, gas framework imposes program-

ming caveats and extra dependencies, which makes the system less general.

Because the gas, hyp, driver system was written in C and divided into

separate directories, function pointers and nested data structures tie them to-

gether. Gas-AMR integration introduces more pointers, more levels of nested

data structures, and more code to maintain these data structures.

The combined system also contains non unique macro and function names.

Name collision on variables and functions need to be detected and resolved.

Renaming all non unique function names in the gas framework was necessary

in order for these functions to work correctly and serve as subroutines to other

packages.
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Figure 3.1: Gas-AMR patch communication. a.) Original patch configuration
b.) Interface is removed from coarse patches c.) Finest level interface is sent
to base patch d.) Finest level interfaces are assembled on the base patch e.)
The base patch is copied to all other non finest level patchs f.) The copied
base patch is cut to all non finest patches
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Figure 3.2: Gas-AMR load balancing. a. Original patch configuration b. Load
balancing calculation determines where to send send patches c. Patch state
update and front propagation occur d. patches are sent back to base processor
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Figure 3.3: Gas-AMR implosion simulation
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Figure 3.4: Gas-AMR injector jet simulation Image courtesy of Zhiliang Xu
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Chapter 4

cFluid & AMR

4.1 The New Algorithm

The key to understanding how the new front tracking algorithm couples with

patch based AMR is to have a good understanding of patch based hyperbolic

AMR schemes and the integration algorithm.

To do front tracking with AMR we make a few assumptions. One is we

want the interface to exist on the finest level all the time. If we do not do

this, front tracking becomes extremely difficult, because the front tracking

repair and redistribution algorithms assume bond and triangle size that has a

minimum and maximum on the same order of magnitude. If the interface was

allowed to cross between areas that only had a coarse grid and areas that were

fully refined, the difference between minimum and maximum size bonds would

be enormous. Specialized and possibly unstable algorithms would have to be

developed to deal with this. AMR allows for easy user defined refinement, and

it is no trouble to ensure full refinement around the interface. This alleviates
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this potential problem and allows the interface to live on a uniform grid size.

Combining the above assumption about the interface always being on the

finest level, with our knowledge about AMR hyperbolic integration schemes,

we can arrive at another useful assumption. The recursive state update on

patch levels means that on every level except the finest, the portions of state

information that overlap with finer patch levels are replaced with the fine level

state data. The ghost fluid method at a time step only effects the solutions of

cells within the stencil length distance from the interface. If region within the

stencil length of the interface on all levels is always maximally refined then

the ghost fluid computation only has to be done correctly at the finest level,

because all other data in this region comes from the finest patch. This allows

us to make the interface only accessible on the finest level.

Restricting access to the interface to the finest level is optimal because

keeping interface information current on different patch levels requires lots of

computation and communication. These computations and communications

also require complex interface surgery. Due to the large amount of code re-

quired for this functionality, this functionality is very prone to mistakes.

Front information is used elsewhere in the calculation besides the ghost

fluid computation. Mainly, the front provides a way to get cell by cell com-

ponent information for multi component fluid operation. This is required to

apply different EOS information or other physics that is component dependent.

This component data is needed on all patches even far from the interface. To

provide this data we add one extra scalar field for component data to the AMR

software framework. To keep the component information correct, it must be

initialized correctly. Then when the finest level patches propagate the front,
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they also update component information. The AMR package is responsible

for data replacement on coarser levels. This replacement also updates the

component data on all coarser patch levels, using standard prepackaged data

coarsening algorithms.

Instead of doing a normal interior state update on a patch at a time step,

front tracking specific control code directs a sequence of events to do a ghost

fluid calculation. If on the finest level, the front is propagated. If not on the

finest level, AMR component information from the AMR coarsening routines

is used. Then the component information is used to calculate the new interior

state values with the ghost fluid method. The above description of this leads

to a modified FronTier enabled Berger Oliger Algorithm See Listing 4.1.

The AMR libraries are written for parallel operation. Patch data is dis-

tributed by the AMR library’s load balancing algorithms to different proces-

sors. In order for the FronTier interfaces to exist on the finest level, FronTier

code must be written to cut the interface into pieces that correspond to the

patch domains, and distribute them in the same manner as the patches.

4.2 Software Choices

The ability to combine AMR and front tracking depends on the ease of use of

two fairly complex libraries, and making them coexist in one program without

much linking and namespace collision trouble. The new approach takes heavy

advantage of FronTier-Lite design philosophy, which re-factors a large portion

of the FronTier code as a library that is callable by other codes.

The gas package in FronTier does not meet several requirements to be
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integrated into another software package. It is not a standalone package,

but instead depends on several other directories such as driver hyp and tri.

Designing a simple way to make few calls to the gas/driver/hyp system with-

out writing a complex supporting code would be difficult. Function pointers,

nested data structures, and legacy code to support unused options, change

how the code was designed, and runs. This makes integrating gas into another

package challenging.

Instead cFluid was used. cFluid is a light weight compressible CFD package

written in C++ which has front tracking capabilities using FronTier. cFluid

is written in an modularized object oriented design. It lacks function pointers

and associated macros to hide them, as well as the complicated initialization

code. cFluid uses standard C++ memory management. cFluid only depends

on standard FronTier-Lite with no external dependencies.

SAMRAI is an acronym for Structured Adaptive Mesh Refinement Appli-

cation Infrastructure. The SAMRAI library consists of a collection of classes

that are meant to be combined for use in any numerical PDE calculation

requiring Structured Adaptive Mesh Refinement (SAMR) calculations. Struc-

tured AMR refers to the fact that the overlapping grids are regular structured,

and in most cases cartesian grids. However, cartesian patch based AMR is a

sub classification of SAMR. These structured meshes are of different coarse-

ness and are overlapped in a domain to cover it. Figure 4.5 shows an example

of such an overlapping grid.

SAMRAI has a rich code base with many useful capabilities. SAMRAI can

be used to restart a multi processor MPI simulation with a different number

of processors. Class hierarchies exist to facilitate AMR calculations for hy-
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perbolic, parabolic and elliptic calculations. SAMRAI provides state of the

art load balancing and data placement algorithms that make SAMRAI scal-

able to thousands of processors. SAMRAI provides easy to use input files

and documentation to easily change AMR decisions. User variables include

number of levels, clustering efficiency, refinement, ratio per level, min/max

patch size, refinement choices such as Richardson extrapolation, and per data

variable refinement decisions such as cut-off, gradient cut-off, and shock de-

tection. SAMRAI also provides extensive example codes and documentation

that allow for quick development by outside users. SAMRAI is interoperable

with plugin solver packages such as SPOOLES, SuperLU, PETSc, SUNDI-

ALS. Performance and tuning is provided via vampir and tau and IO with

silo and hdf5. The only package required to build SAMRAI is hdf5, which

makes SAMRAI also easy to build and use without problems. Visualization is

a simple task with the built in Visit output support.

The combined program of cFluid, SAMRAI and FronTier is called SAM FT.

SAM FT lives in its own directory, outside SAMRAI and FronTier. As a sep-

arate program, it requires FronTier Lite, SAMRAI, and cFluid to be built

already. In overview of SAM FT, the SAMRAI library provides all code re-

lated to adaptive mesh refinement and storage of interior state information.

FronTier provides front propagation and front query operations, and cFluid

provides a front tracking aware solver to update interior state solutions. See

Figure 4.2 for a diagram of software dependencies and what they provide.
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4.3 FronTier and cFluid

4.3.1 FronTier Modifications

As mentioned in Chapter 3, in the Xu AMR attempt code was changed in many

locations throughout hyp/ driver/ tri/ front/ and gas/ directories. Much

of this code was written around assumptions about the Xu AMR model and

was a duplication of code that other AMR packages do more efficiently (load

balancing, data placement, coarsening and refining of data, etc). However,

some tools needed for the new algorithm were already in place from Xu’s work,

mostly functions relating to AMR in the front/ directory. Xu’s changes to

the front/ directory that were part of the previous merge work were directly

transferred into the new algorithm code. Most changes for the new AMR in

the front/ directory are Xu’s. However some of the code is rearranged to

keep AMR code separate, and clean.

FronTier’s parallel model assumes that there is one front per processes.

In Frontier AMR there are multiple fronts per processes. The single front

assumption is coded into several FronTier functions involving patch scatters

and redistribution. In between different steps in these functions a call to

pp min status() occurs to ensure all fronts on all processors have done the

correct thing. In FronTier AMR these functions are wrapped in a loop:

for(i=0; i < numPatches; i++)

{

status = redistribute(front[i]);

}
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However other functions in AMR do require MPI. Special compile time

macro USE AMR is used to ensure that pp min status is not called in these

locations.

In parallel FronTier there is an assumption that processors spatial decom-

position follows the regular pattern:

M = 3

___________________

| 9 | 10 | 11 |

|_____|_____|_____|

| 6 | 7 | 8 | N = 4

|_____|_____|_____|

| 3 | 4 | 5 |

|_____|_____|_____|

| 0 | 1 | 2 |

|_____|_____|_____|

In the boundary condition code an enumerator for processor subdomain was

called SUBDOMAIN BOUNDARY. Periodic boundaries have no enum so a

statement such as:

if(pp\_id\%M == 0 || pp\_id\%M == 0)

{

treat as upper boundary

}
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was used to detect if a boundary was periodic, and then take appropriate

steps to enforce periodic boundaries. In AMR the spatial decomposition is

not regular so it is not possible to infer this information. To reconcile this a

boundary type was added AMR SUBDOMAIN BOUNDARY.

Another change was to an existing function in front/ called cut interface().

This function is called to remove the part of the interface that falls along one

side of a line. Depending on the type of interface and why the cut is made,

special operations can be performed during the the cut. This is an intricate

function and care was made to ensure changes made did not affect normal

operation.

Three external functions and their sub functions developed by Xu for AMR

compatibility were reorganized so that all related code exists in one file fam-

rextra.c:

• clip patch front() - a wrapper for cut interface to ensure front is cut

properly during interface communication and regrid steps.

• ng form patch subintfc 2d() - this functions is responsible for reforming

the boundary curves after a front has been clipped. Information about

the type of interface, the boundary, and buffer types is taken in, and the

boundary curves are reinstalled properly.

• setupPatchFront - after a front is clipped and reformed, ensure data

structures associated with front such as RECT GRID and Patch bdry flag

properly reflect the new front patch configuration.

Xu amr code was removed from many files such as fadv.c fredist.c

fredist2d.c fscat2d.c fsub.c. Several files were completely removed:
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front/: famr\_adv.c famrscat2d.c

driver/: doverturepatch.c doverturepatch2.c damr.h

damrpatch2d.c damrpatch3d.c dpatchmesh.c

gas/: goverinterp.c goverinterp2d.c goverinterp3d.c

hyp/: hoverture_driver.c hamrscatter.c

tri/: overture_trigrid1.c

4.3.2 G CARTESIAN cFluid Modifications

Care was taken to ensure that the structure of the cFluid code was not changed.

The main data structure for cFluid is the G CARTESIAN class. Three new

data members are added to G CARTESIAN: int level, max level, and

bool amr. These new G CARTESIAN members serve as a way to make small

edits to member functions without interfering with functionality. Without

these members, important G CARTESIAN member functions would need to

be copied, renamed and modified for only a small unintrusive change. Search-

ing the G CARTESIAN code, for these variables will find the only changes

made to it.

Member functions that required large edits were made virtual, then a

new class was made to inherit the G CARTESIAN class. This class is called

G CARTESIAN AMR. Listing 4.2 shows the important features of

the G CARTESIAN AMR header file.

Since AMR libraries are in charge of ensuring patch buffers are up to date

cFluid parallel functions to sync buffers were not needed. These functions were

also made virtual so they could be set to empty functions: scatMeshArray()
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scatMeshFlux() scatMeshVst() scatMeshStates() scatMeshGhost() .

For every patch operation which requires cFluid code, the state data from

SAMRAI is copied into the cFluid state storage area. This reduces indexing

differences between SAMRAI and cFluid, and is an important design decision.

To prevent memory thrashing, the state storage memory pointer is allocated

once at startup and is allocated to the size of the maximum patch size. To facil-

itate these initial allocations two new functions were added to G CARTESIAN

ft dim size(), and ft vec size(). These functions return integers that in-

dicate the number of data points to allocate for the given grid size. In a single

grid simulation the G CARTESIAN version of these functions return the grid

size of the simulation. In an AMR simulation the G CARTESIAN AMR ver-

sion of these functions return the maximum patch size.

When SAMRAI calls cFluid code, G CARTESIAN member functions as-

sume that the grid and domain variables are already set properly. A new mem-

ber function called G CARTESIAN AMR::resize interior and front() does this.

It sets patch related variables such as patch size in each direction (top gmax),

domain border coordinates (top L and top U), buffer sizes (lbuf, ubuf), and

loop begin and end indices (imin imax). This function also sets the proper

front for each patch. Only after this call can SAMRAI state data be copied

into the G CARTESIAN storage and other G CARTESIAN calls can be made.

The most important numerical change to cFluid is the addition of a wrap-

per function for the ghost fluid code. When addFluxInDirection2dTracked

calls appendGhostBuffer() its actually calling a wrapper. The pseudo code for

this function is in Listing 4.3. On a fine patch the G CARTESIAN version of

appendGhostBuffer code is called as normal, but on coarse patches, the solver
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has component information but no front. In addFluxInDirection2dTracked,

the decision to call appendGhostBuffer happens at either a domain boundary,

or a cell where the next cell is of a different component. On a coarse patch

this code fills in the correct information at the domain boundary, and at a

component change, it fills in buffer values with a flow through condition. The

choice of using flow through is arbitrary, and could be anything. As long as

the area around the interface is fully refined to within the length of the flux

solver’s stencil size on any level, the data is replaced with real ghost fluid

method calculated fluxes after the next fine level update. This data replace-

ment always occurs before the next coarse flux calculation occurs, due to the

recursive nature of the Berger Oliger integration scheme.

4.3.3 FTPatches

The Xu front tracking algorithm and parallel scheme did have high level func-

tions that were reusable for the new algorithm, so a new framework was created

for tying front tracking and patch based AMR together. FTPatches.cpp and

FTPatches.h were written to make collections of fronts on patches do common

front tracking tasks. The AMR front tracking algorithm described in Section

4.1 requires front buffer updates between propagates and redistributes and

regridding of the front when a new fine patch layer is made. For these high

level capabilities low level requirements include multiple front storage per pro-

cess, box overlap calculations, front clipping, and clip communication between

patches.

There is a small amount of box logic code that may duplicate AMR box
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algorithms but the code is simple, and avoids too much dependency on an

external library. This code exists in the boxFT class. boxFT is then used

throughout the FTPatches.cpp code. If future changes occur such as a dif-

ferent index or coordinate system, it is much easier to simply re-implement

CoordsOfBoxContainingCells and overlapingCells in this small subsection of

boxFt rather then changing internals of other sections of FTPatches.

Built on top of boxFT is several other classes. patchFT is a class with

member data describing a patch, its buffer regions, and the front that belongs

to it. patchFT also has temporary storage areas for interface clips to be

sent and received during communication sections. patchLevelFT is the master

class which stores all patchFT objects and their fronts for one process. It has

member functions to control operations on all patches including regridding,

redistribution, scattering clips, and printing and restart for all patch fronts.

See Listing 4.5 for FTPatches.h and associated documentation.

The most complicated part of maintaining a collection of patches is ex-

changing front information to update patch buffers. The FTPatches code has

been written to be as modular as possible, and simple to understand and read.

In order to maintain a patch on a buffer correctly after every front modifica-

tion, the buffer region of a front at the patch boundary must be gotten from

the front that is in the interior of the neighboring patch, near the patch bound-

ary. This process can be seen in Figures 4.3 and 4.4. The order in which this

happens is as follows:

• fillPatchClipsForScatter() - For each patch, patchLevelFT calculates which

other patches it overlaps with, then fills patchFT.send and
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patchFT.receive for each patch.

• clipPatches() - Prepares clips of each patch for communication. For

each scheduled clip in patchFT.send the interface is copied, clipped and

associated.

• exchangeClips() - The communication of clips happens. All patches in

send are transmitted to the receive of the patch they are destined for.

• clipPatchesToInterior() - Removes old front geometry in the patch buffer

so the new clips can be stitched in.

• mergeClips() - Assembles clips on the new patch. Several steps occur.

First the new clip geometry is put into the patch front, then the clip

geometry is merged with the patch front, and finally new boundary line

segments are installed.

• deleteClips() - The old patchFT.send and patchFT.receive clips are

removed from each patchFT.

The other major operation is regridding the fine patch level. This consists

of reassembling the interface in the new fine patch structure. The current

implementation is for single processor only. The order in which this happens

is as follows:

• makeOneBigFront() - Glues all patches in the patchList together.

• cutPatchesFromBigFront() - Cuts out an interface per patch.
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4.4 The SAMRAI Code

4.4.1 The main() Function

The code shown in Listing 4.4 is an abbreviated version of the main driver

provided by the Euler example code that comes with SAMRAI. This is only

a slightly abbreviated version of the actual code with a only few lines missing

for MPI initialization and IO setup. No major modifications exist to the Euler

driver code, instead modifications occur to the Euler class. Observing the

initialization of these classes is a good way to understand SAMRAI inheritance.

After all objects are initialized the end product is a simple loop with a call to

advanceHierarchy(dt now).

For time dependent hyperbolic calculations SAMRAI provides an overar-

ching class called the TimeRefinementIntegrator. Into this class is added all

objects of the calculation. All objects placed into the TimeRefinementInte-

grator are orchastrated by it during the course of a calculation. Figure 4.1

shows the TimeRefinementIntegrator and all the sub classes it uses to per-

form a hyperbolic simulation. Table 4.1 describes all classes required by the

TimeRefinementIntegrator.

4.4.2 Euler Modifications

The Euler class and accompanying main loop code is an example provided by

the SAMRAI packages that demonstrates how a code should use the SAMRAI

library for a generic hyperbolic simulation. It shows how to write a concrete

class to inherit abstract SAMRAI classes in order to fill in all the off the shelf
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solver aspects of a cartesian structured AMR simulation. This concrete class

implements the inherited virtual members to initialize and solve the generic

hyperbolic equations on a single cartesian patch. An aspect that must be

implemented by the user is the coarsening and refining of data between grid

levels.

The Euler class is a concrete implementation of several abstract SAMRAI

classes. The inheritance model allows for the Euler class to accumulate these

virtual members in one class. All functions that require user implementation

in the class hierarchy tree are concrete members in the Euler class. Functions

required for gridding and integration have abstract members that are imple-

mented in the Euler class. The Euler class implements the solvers, and perform

data interpolation between levels for the Euler equations. Solving on a single

patch involves computing fluxes, using those fluxes to compute the solution

for the next time step on that patch, and choosing a dt for that patch.

Most of the changes made to the original Euler code relating to state/in-

terior data were changed in the examples/Euler.C and Euler.h files.

The initialization code also operates in a similar manner to the Berger

Oliger algorithm by supplying a virtual member function which the user im-

plements to initialize one patch at a time. After all patches for each level are

initialized, the refinement decision code is swept over that level, the next level

is created, and the process starts again.

The Euler class was used as a skeleton code in order to install FronTier

cFluid solvers and FronTier front tracking calls. The Euler class and where

it fits in the SAMRAI class hierarchy can be seen in Figure 4.1. The SAM-

RAI/examples/Euler directory was copied to a new directory named SAM FT.
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Then, the single patch operations were removed and replaced with FronTier

cFluid code. The following single patch operations were completely replaced:

• Euler::initializeDataOnPatch - replaced with

G CARTESIAN.setInitialStates the cFluid initialization code for sev-

eral multimaterial problems

• Euler::computeStableDtOnPatch - replaced with code to take into ac-

count front speed

• Euler::computeFluxesOnPatch - replaced with several cFluid calls, and

the major source area for the front tracking modified Berger Oliger al-

gorithm. Fluxes are calculated and summed here, and stored for flux

summing in the reflux step.

• Euler::conservativeDifferenceOnPatch - work is done here only at the

reflux step. Existing Euler code and SAMRAI, calculates proper flux

summing, from fluxes given from computeFluxesOnPatch. Fluxes are

summed only when the reflux flag is true.

For each of the above mentioned Euler single patch operations, the SAM FT

code copies the necessary state data into the cFluid storage area, along with all

grid parameters (via a call to G CARTESIAN AMR::resize interior and front()

). cFluid can then operate on the patch as it would with a normal Fron-

Tier/cFluid serial simulation. See 4.3.2 for more details.

The Euler class also was modified to hold a variable for the component

information, stored as a double precision variable. By doing so, we can take

advantage of SAMRAI’s automatic refinement and coarsening code. A few
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added lines to the Euler constructor, and one new data member add the

double ftcomp variable. Since the stored interface is on the finest level, we

can update the component values after a propagation, or a redistribute, and

the rest of the coarse patches will automatically get the correct component val-

ues through the built in coarsening algorithms. The computeFluxesOnPatch

code updates the component values on the finest level patches after the front

propagation. To ensure refinement always occurs at the interface, we add code

to tagGradientDetectorCells to refine when a component change occurs.

4.4.3 HyperbolicLevelIntegrator Modifications

The parent class of the Euler class is the HyperbolicLevelIntegrator class

(HLI) see Figure 4.1. This class implements the Berger and Oliger hyperbolic

AMR recursive integration algorithm[4] [19]. The HLI class is included in the

SAMRAI library, rather than the Euler example code, because no modifica-

tions are made to it, when incorporating a users single grid patch solver into

SAMRAI. It was written to be generally useful for all coupled hyperbolic prob-

lems. The SAMRAI Euler class, and corresponding HLI class was designed as

a system where the user implements only the code needed to solve for regular

cartesian numerical floating point data on a single cartesian patch.

The patchData class is designed to be inherited by other classes for the

purpose of representing data on a patch. It contains virtual members to be

implemented with code relevant to the specific data type being represented.

This allows SAMRAI users to add data per patch with a few lines of code.

The HLI class is written to manipulate collections of patchData objects.
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Including routines to update patches, and collect time step size for patch lev-

els. HLI also interpolates data between level advances. Inside the HLI class

is a advanced collection of MPI and scheduling code that ensures patchData

objects are operated on in an efficient manner. This communication schedul-

ing does not take into account the interface, or its associated communication

requirements. Interface buffers need to be updated after every single patch

operation, such as advance and redistribute.

As mentioned in Section 4.3.3, FTpatches was written to allow the flexi-

bility required to easily insert code to operate on collections of interfaces. The

FTPatches framework was written to be reusable with other AMR libraries.

To operate on interface in the correct order in it was necessary to directly mod-

ify the HLI code to add FTPatches calls. This allows us to modify the Berger

Oliger Algorithm with Front tracking sepefic calls on the finest level patch.

4.1. The two most important changes to the HLI class are in the following

member functions:

• initializeLevelData - on the finest level, add each new patch to

FTPatches new.addPatchToList() and then

FTPatchLevel new.Regrid(FTPatchLevel old,...); then destroy FT-

PatchLevel old and swap pointers.

• advanceLevel - on the finest level before the next state update exchange

interface clips as described in 4.3.3
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4.5 Code Metrics

As an analog to chapter 3.2.1 we will inspect the code metrics of the cFluid-

AMR code. Version control tracking the changes to FronTier’s source reports

36 files changed, with 4990 insertions and 1164 deletions. In addition to the

FronTier changes we must also quantify our changes to the Euler example code,

as discussed in section 4.4.2. Early development was untracked but since check

in 38 files were changed, with 4652 insertions, and 1138 deletions.

Using SLOCCount[25] gives FronTier 499,834 SLOC before merging the

cFluid-AMR changes and 502,561 SLOC after, an addition of 2727. The Euler

SLOC before changes is 9,063 and 9,195 after, an addition of 132 SLOC.

With the cFluid-AMR changes applied, and all the code associated with

the Gas-AMR work, that is not used by cFluid-AMR removed, the FronTier

code measures 486,798 SLOC a difference of -15763 SLOC. Adding this 15763

to the 26,068 of the changes to make mentioned in 3.2.1 gives us a total of

41,832 SLOC for the Gas-AMR functionality.

4.6 Notes on Extending to 3D

Much of the changes mentioned are written in a dimensionally independent

way. SAMRAI operates with almost no difference in programing in two or

three dimensions.
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4.6.1 FTPatches and famextra Changes

The variables TMPDIM and N PATCH BUFS are used to do all box calcula-

tions in FTPatches in a dimensionally independent way. The only code that

needs inspection and replacement are FronTier interface geometry functions

that are two dimensional specific. The challenging changes needed will occur

in FTPatches.cpp or famrextra.c .

Dimensionally dependent code exists in the following functions: getBufferI-

Coords(), cutPatchesFromBigFront(), makeOneBigFront() clipPatchesToInte-

rior(), clipPatches(), printVTKPatches(). The work in FTPatches.cpp func-

tions listed requires that FronTier 2D calls to be replaced with 3D equivalents

for the following functions: cut interface(), clip patch front(),

ng form patch subintfc 2d(), remove patch all boundary curves(),

delete subdomain curves().

4.6.2 SAM FT and G CARTESIAN AMR Changes

Simply reading through the code in cFcartsnAMR.cpp and Euler.C will show

where three dimensional cases need to be filled in. These files deal mainly

with solving interior state values so the majority of the work is looping over

the state values. In these files the most prevalent change will be a two or three

dimension conditional statement where there is a cleanup with a comment on

what needs to be changed in three dimensions. In most cases, its a simple loop

index modification.
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4.7 Installing the Code

SAM FT depends on SAMRAI and Frontier. Frontier can be compiled with

no extra dependencies. SAMRAI however, depends on HDF5. HDF5 and

SAMRAI are libraries that are simply downloaded, untared, configured and

compiled. SAM FT links with libFrontier libcfluid and several libsamrai*

libraries.

To do a majority of the compiling simply run:

untar sam_ft_XXXX_XX_XX.tar.gz

cd sam_ft/

./install

This script will untar, configure and compile

hdf frontier and SAMRAI once these are all build

you can type:

cd samft/

make main2d

to build a 2d binary or

make main3d

to build a 3d binary.

to retar all this code simply commit your changes

in Frontier/ and sam_ft and this dir. Then type:

./package

there are 2 input files to run this code. The main

input file is a SAMRAI style input file. This file

contains all variables related to amr, such as

patch size, patch efficiency, refinement ratio,

load balancing, dt decisions, and boundary conditions.

this file also contains a variable called
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frontier_input and frontier_output.

frontier_input -- is the cFluid file. This contains

all solver info, front tracking

info and initialization info.

to run the code type:

./main2d sample_input/rm2d.input

make sure that the file sample_input/rm2d.input

has the correct absolute path to the frontier_input file.
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R e c u r s i v e I n t e g r a t e ( l e v e l i )

{

repeat hj /hc t imes

i f ( r e g r i d d i n g t i m e )

c a l c u l a t e e r r o r s f o r l e v e l i and f i n e r

s tep dt on a l l g r i d s at l e v e l i

i f l e v e l i +1 e x i s t s

R e c u r s i v e I n t e g r a t e ( l e v e l i +1)

update ( l e v e l i , l e v e l i +1)

i f l e v e l i == f i n e s t l e v e l

propagate i n t e r f a c e

update l e v e l i component f i e l d

else

c r e a t e empty f r o n t and copy in component i n f o from

SAMRAI.

}

Listing 4.1: The FronTier Modified Berger Oliger Algorithm
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class G CARTESIAN AMR: public G CARTESIAN {

// NEW MEMBERS

// i n i t i a l i z a t i o n memeber f u n c t i o n s

void r e s i z e i n t e r i o r a n d f r o n t ( int iminn [ ] , int imaxx [ ] , int i gho s t [ ] ,

double top LL [ ] , double top UU [ ] ,

int f t l e v e l , int samid , int center comp ) ;

void f r o n t i e r i n i t ( const char∗ , const char∗ , int , bool ) ;

void s e tupCe l lCente r s (void ) ;

void appendGhostBuffer ( SWEEP ∗ , SWEEP ∗ , int , int , int ∗ , int , int ) ;

// NEW DATA

// f r o n t l e v e l da ta

patchLevelFT ∗AmrLevelInfo ;

patchLevelFT ∗AmrLevelInfo tmp ;

// new f l u x s t o r a g e

SWEEP ∗ s t f i e l damr , st tmpamr ;

FSWEEP ∗ s t f l uxamr ;

double ∗∗a ,∗b ;

void so lveFlux (double dt ) ;

void solveRKFLux ( int order , double dt ) ;

void sumFlux ( FSWEEP a f lux , FSWEEP b f lux , double ch i ) ;

} ;

Listing 4.2: G CARTESIAN AMR

57



void G CARTESIAN AMR : : appendGhostBuffer (
SWEEP ∗vst ,
SWEEP ∗m vst ,
int n ,
int nrad ,
int ∗ i coords ,
int i d i r ,
int nb)

{

// i f on the f i n e s t l e v e l , we c a l l t h e r e g u l a r appendGhos tBuf fer code
// then e x i t t h i s f u n c t i o n .
i f ( l e v e l == max leve l && eqn params−>tracked )

return G CARTESIAN : : appendGhostBuffer ( vst , m vst , n , nrad ,
i coords , i d i r , nb ) ;

// o t h e rw i s e we are on a coar s e pa tch and we c a l l our t h e wrapper code be low .

INTERFACE ∗ i n t f c = front−>i n t e r f ;
int i , j , k , index ;
HYPER SURF ∗hs = NULL; // t h i s s hou l d be changed
COMPONENT comp ;
double c rx coo rd s [MAXD] , coords [MAXD] ;
STATE ∗ s tate , st , gho s t s t ;
int ind2 [ 2 ] [ 2 ] = {{0 ,1} ,{1 ,0}} ;
int ind3 [ 3 ] [ 3 ] = {{0 ,1 ,2} ,{1 ,2 ,0} ,{2 ,0 ,1}} ;
int vec idx , l a s t o r f i r s t ;

index = d i nd ex f t ( i coords , top gmax , dim) ;
comp = c e l l c e n t e r [ index ] . comp ;

bool ismin = ( i c oo rd s [ i d i r ] == imin [ i d i r ] ) && (nb == 0) ;
bool ismax = ( i c oo rd s [ i d i r ] == imax [ i d i r ] ) && (nb == 1) ;
i f ( ismin == true | | ismax == true )
{

// i f here , we are a t a pa tch boundary , and we c a l l
// boundary f i l l in f u n c t i o n s .

switch ( rect boundary type ( i n t f c , i d i r , nb ) )
{

case SUBDOMAINBOUNDARY:
case AMRSUBDOMAINBOUNDARY:

i f ( ismin == true )
setFromBuf ferStates ( vst , m vst , hs , i coords , i d i r , nb , 0 , 1 , comp)

;
else

setFromBuf ferStates ( vst , m vst , hs , i coords , i d i r , nb , n , 1 , comp)
;

break ;
break ;

case NEUMANNBOUNDARY:
i f ( ismin == true )

setNeumannStates ( vst , m vst , hs , i coords , i d i r , nb , 0 , 1 , comp) ;
else

setNeumannStates ( vst , m vst , hs , i coords , i d i r , nb , n , 1 , comp) ;
break ;

case DIRICHLET BOUNDARY:
i f ( ismin == true )

s e tD i r i c h l e t S t a t e s ( vst , m vst , hs , i coords , i d i r , nb , 0 , 1 ) ;
else

s e tD i r i c h l e t S t a t e s ( vst , m vst , hs , i coords , i d i r , nb , n+nrad , 0 ) ;
break ;

}
}
else
{

// f o r NOT boundary , we assume t h a t t h i s da ta w i l l be over
// w r i t t e n by f i n e r l e v e l pa tches , so t h i s cou l d be any th ing
// t h a t i s r e l a t i v l y i n e r t .
//
// what we f i l l t h e s e b u f f e r s w i th i s a crude f l ow through ,
// t h a t s imp l y t a k e s t h e l a s t v a l i d s t a t e on the s i d e
// we are sweep ing and d u p l i c a t e s i t t o a l l s t e n c i l p o i n t s
// t h a t are pa s t t h e non e x i s t a n t i n t e r f a c e ( because were are on a
// coar s e g r i d )
//
i f (nb == 0)

l a s t o r f i r s t = nrad ;
else
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l a s t o r f i r s t = n+nrad − 1 ;

gho s t s t . dens = vst−>dens [ l a s t o r f i r s t ] ;
g ho s t s t . engy = vst−>engy [ l a s t o r f i r s t ] ;
g ho s t s t . pres = vst−>pres [ l a s t o r f i r s t ] ;

i f (dim == 2)
for ( j =0; j <2; j++)

gho s t s t .momn[ ind2 [ i d i r ] [ j ] ]= vst−>momn[ j ] [ l a s t o r f i r s t ] ;
else i f (dim == 3)

for ( j =0; j <3; j++)
gho s t s t .momn[ ind3 [ i d i r ] [ j ] ]= vst−>momn[ j ] [ l a s t o r f i r s t ] ;

for ( i = 0 ; i < nrad ; ++i )
{

i f (nb == 0)
vec idx = nrad−i ;

else
vec idx = n+nrad+i ;

vst−>dens [ vec idx ] = gho s t s t . dens ;
vst−>engy [ vec idx ] = gho s t s t . engy ;
vst−>pres [ vec idx ] = gho s t s t . pres ;

for ( j =0; j <3; j++)
vst−>momn[ j ] [ v ec idx ] = 0 . 0 ;

i f (dim == 2)
for ( j =0; j <2; j++)

vst−>momn[ j ] [ v ec idx ] =
gho s t s t .momn[ ind2 [ i d i r ] [ j ] ] ;

else i f (dim == 3)
for ( j =0; j <3; j++)

vst−>momn[ j ] [ v ec idx ] =
gho s t s t .momn[ ind3 [ i d i r ] [ j ] ] ;

}
}

}
/∗ end G CARTESIAN AMR : : appendGhos tBuf fer ∗/

Listing 4.3: appendGhostBuffer wrapper code.
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// Package : SAMRAI a p p l i c a t i o n
// Copyr i gh t : ( c ) 1997−2008 Lawrence Livermore Na t i ona l Se cu r i t y , LLC
// De s c r i p t i o n : Main program f o r SAMRAI Euler gas dynamics sample a p p l i c a t i o n

int main ( int argc , char ∗argv [ ] )
{

// Create major a l g o r i t hm and data o b j e c t s which comprise a p p l i c a t i o n .
geom : : CartesianGridGeometry gr id geometry = new geom : : CartesianGridGeometry ( . . . ) ) ;

h i e r : : PatchHierarchy patch h i e ra rchy = new h i e r : : PatchHierarchy ( . . . , g r id geometry ) ;

Euler∗ eu le r mode l = new Euler ( . . . , g r id geometry ) ;

a l g s : : FronTie rHyperbo l i cLeve l In tegrator h yp l e v e l i n t e g r a t o r =
new a l g s : : FronTie rHyperbo l i cLeve l In tegrator ( . . . , eu ler model , true ,

u s e r e f i n ed t ime s t epp i ng ) ;

mesh : : StandardTagAndIni t ia l i ze e r r o r d e t e c t o r =
new mesh : : StandardTagAndIni t ia l i ze ( . . . , h y p l e v e l i n t e g r a t o r ) ) ;

mesh : : BergerRigoutsos box generator = new mesh : : BergerRigoutsos ( ) ;

mesh : : LoadBalancer l oad ba l ance r =
new mesh : : LoadBalancer ( . . . ) ) ;

mesh : : GriddingAlgorithm gr idd ing a l go r i thm =
new mesh : : GriddingAlgorithm ( . . . , e r r o r d e t e c t o r , box generator , l oad ba l ance r ) ;

a l g s : : TimeRef inementIntegrator t ime i n t e g r a t o r =
new a l g s : : TimeRef inementIntegrator ( . . . , patch h ierarchy , hyp l e v e l i n t e g r a t o r ,

g r idd ing a l go r i thm ) ;

// I n i t i a l i z e h i e r a r c h y c o n f i g u r a t i o n and data on a l l p a t c h e s .
double dt now = t ime in t eg ra to r−>i n i t i a l i z eH i e r a r c h y ( ) ;

// Time s t e p l oop . Note t h a t t h e s t e p count and i n t e g r a t i o n
// t ime are mainta ined by a l g s : : T imeRe f inement In tegra tor
double l oop t ime = t ime in t eg ra to r−>get IntegratorTime ( ) ;
double l oop t ime end = t ime in t eg ra to r−>getEndTime ( ) ;

while ( ( loop t ime < l oop t ime end ) &&
t ime in t eg ra to r−>stepsRemaining ( ) ) {

int i t e rat ion num = t ime in t eg ra to r−>ge t In t eg ra to rS t ep ( ) + 1 ;
double dt new = t ime in t eg ra to r−>advanceHierarchy ( dt now ) ;
loop t ime += dt now ;
dt now = dt new ;

}

Listing 4.4: An abreviated SAMRAI Euler main driver code
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enum SHIFT{ up , down , none } ;
c l a s s boxFT
{

pub l i c :
int iL [ 3 ] ; // lower c e l l c en t e r e d index o f pa tch
int iU [ 3 ] ; // upper c e l l c en t e r ed index o f pa tch
double gL [ 3 ] ; // g l o b a l l ower domain coo r d i na t e
double dx [ 3 ] ; // c e l l s i z e
void CoordsOfBoxContainingCells (double L [ 3 ] , double U[ 3 ] ) ; // g i v e t h e upper and

lower c o o r d i n a t e s o f t h e box from the s t o r e d index .
boolean ov e r l ap i ngCe l l s (boxFT ∗boxOther , boxFT ∗boxOverlap ) ; // r e t u rn t r u e and

s e t boxOver lap i f boxOther o v e r l a p s w i th t h i s boxFT .
} ;

// Cl ipOfThisPatch con t a i n s in f o rma t i on about a c l i p to send .
// C o l l e c t i o n s o f t h e s e o b j e c t s are put in a con t a i n e r i n s i d e
// o f patchFT . This c o l l e c t i o n o f c l i p s i s taken o f t h a t patchFT .
c l a s s ClipOfThisPatchFT : pub l i c boxFT
{

pub l i c :
int patchImGoingTo ; //!< in t h e p a t c hL i s t
INTERFACE ∗ i n t f c ; //!< t h e c l i p e d i n t e r f a c e
boolean s a v e I n t e r i o r [ 2 ] [TMPDIM] ; //!< i n s t r u c t i o n s on how

//!< t o c l i p t h e pa tch
boolean setCutNoneLocal [ 2 ] [TMPDIM] ;
enum SHIFT s h i f t [TMPDIM] ; //!< de t e rmines i f t h e pa t c h e s

//!< are s h i f t e d f o r p e r i o d i c BCs .
int uid ; //!< f o r comunica t ions purpose s .

} ;

// ClipOfOtherPatchFT con t a i n s in f o rma t i on about a c l i p to r e c e i v e .
// C o l l e c t i o n s o f t h e s e o b j e c t s are put in a con t a i n e r i n s i d e o f
// patchFT . This c o l l e c t i o n o f c l i p s i s g i v en to t h a t patchFT ,
// from o th e r pa t c h e s .
c l a s s ClipOfOtherPatchFT : pub l i c boxFT
{

pub l i c :
int patchICameFrom ; //!< in t h e p a t c hL i s t
INTERFACE ∗ i n t f c ; //!< t h e r e c e i v e d c l i p from the o t h e r pa tch
int uid ; //!< f o r comunica t ions purpose s .

} ;

// patchFT con t a i n s a l l i n f o about a pa tch . I t a l s o c on t a i n s i n f o on
// c l i p s o f t h i s patch , t h a t are to be c l i p e d and sent , and c l i p s o f
// o t h e r pa tches , which are r e c e i v e d from o th e r pa tches , t o be
// a t t a c h e d here . This c l a s s a l s o con t a i n s memeber f u n c t i o n s to query
// i n f o about i n t e r s e c t i o n s w i th o t h e r pa t c h e s .
c l a s s patchFT
{

pub l i c :
patchFT( int iLL [ 3 ] , int iUU [ 3 ] , int l b u f f [ 3 ] ,

double dxx [ 3 ] ,
double LL [ 3 ] , Front ∗ f r ont t , int samid ) ; //!< c on s t r u c t o r

˜patchFT ( ) ;
void pr in t ( ) ;
boolean bu f f e r I n t e r s e c t i o n ( patchFT ∗p ,

int bufferNum ,
boxFT ∗boxOverlap ) ; //!< query i f t h i s pa tch i n t e s e c t s

//!< another patchFT ∗p , on a g i v en
//!< bufferNum .

boolean p e r i o d i cBu f f e r I n t e r s e c t i o n ( patchFT ∗p ,
int bufferNum ,
boxFT ∗domain ,
boxFT ∗boxtmp ,
enum SHIFT C l i pSh i f t [ 2 ] ) ; //!< query i f t h i s pa tch

//!< i n t e s e c t s ano ther patchFT ∗p , on the o t h e r
//!< s i d e o f a p e r i o d i c Domain , on a g i v en
//!< bufferNum .

boolean getBuf f e r ICoords ( int buf f e r , boxFT ∗boxBuff ) ;
Front ∗ f r on t ; //!< t h e f r o n t f o r t h i s pa tch
l i s t < ClipOfThisPatchFT > send ; //!< c l i p s o f t h i s pa tch to be s en t .
l i s t < ClipOfOtherPatchFT > r e c e i v e ; //!< c l i p s o f o t h e r pa t c h e s to be r e c e i v e d .
boxFT box ; //!< t h e geometry o f t h i s pa tch .
int buf [ 3 ] ; //!< b u f f e r i n f o
int samidx ;

} ;

/// This c l a s s c on t a i n s a l l data , and to methods ope ra t e on a c o l l e c t i o n o f
/// i n t e r f a c e s on patches , on a s i n g l e l e v e l in an AMR s imu l a t i o n .
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c l a s s patchLevelFT
{

pub l i c :
patchLevelFT ( ) ;
void addPatchToList ( int iLL [ 3 ] , int iUU [ 3 ] , int l bu f [ 3 ] ,

double dx [ 3 ] ,
double gL [ 3 ] , int samidx ) ; //!< addPatchToLis t i s used to

//!< add pa t c h e s to t h e p a t c hL i s t
//!< vec to r , which s e r v e s as t h e
//!< con t a i n e r o f a l l pa tch i n f o on
//!< t h e cu r r en t l e v e l .

vector< patchFT > patchLi s t ;
vector< s t r i n g > r e s t a r t L i s t ;
vector< Front∗ > f r o n t s ;
vector<int> i comp ;
G CARTESIAN AMR ∗ g c a r t e s i a n ;

boxFT Domain ; //!< t h e e n t i r e compu ta t i ona l domain boxFT .

//major f u n c t i o n s
void Regrid ( patchLevelFT ∗ , bool ) ; //!< removes i n t e r f a c e from the b u f f e r s o f a l l p a t c h e s

.
void r ed i s t r i bu t ePa t ch e s ( ) ; //!< r e d i s t r i b u t e s

// t o o l s f o r used f o r b u f f e r c l i p exchange
void c l i pPa t che sTo In t e r i o r ( ) ; //!< removes i n t e r f a c e from the b u f f e r s o f a l l p a t c h e s .
void f i l l P a t chC l i p sC l a s sFo rS c a t t e r ( ) ; //!< f i l l s t h e ClipOfThisPatchFT and

//!< ClipOfOtherPatchFT o f each patchFT in
p a t c hL i s t

void c l i pPatche s ( ) ; //!< a f t e r f l l P a t c hC l i p p sC l a s s F o r S c a t t e r i s c a l l e d , t h e pa t c h e s
//!< i n t e r f a c e on t h a t pa tch i s cop i ed and c l i p e d f o r each c l i p in

t h e
//!< send v e c t o r .

void exchangeCl ips ( ) ; //!< a f t e r c l i pP a t c h e s i s c a l l e d , t h e c l i p s can be s en t from the
//!< pa t c h e s t h a t t h ey o r i g i n a t e d from , to t h e pa t c h e s t h ey are

go ing to .
void mergeClips ( ) ; //!< a f t e r t h e e x changeC l i p s happens , t h e c l i p sO fO th e rPa t c h e s i s

f i l l e d ,
//!< and the c l i p s from the o t h e r pa t c h e s can be merged .

void de l e t eC l i p s ( ) ; //!< a f t e r t h e merge t a k e s p lace , a l l l e f t o v e r i n t e r f a c e p e i c e s in
t h e

//!< send and r e c e i v e v e c t o r s are d e l e t e d .

// t o o l s used f o r Regr id
void makeOneBigFront ( ) ; //!< g l u e s a l l p a t c h e s in t h e p a t c hL i s t t o g e t h e r
void cutPatchesFromBigFront ( ) ;

// p r i n t and r e s t a r t f u n c t i o n s
void printVTKPatches ( s t r i n g FTout ) ;
void pr in tRes ta r t ( s t r i n g FTout ) ;
void readRestart ( Front ∗main front ) ;
void pr in tPatchCl ip sC la s sForScat t e r ( ) ;
void pr in tPatchL i s t ( ) ;
void pr in tS ing l ePatch ( s t r i n g FTout ,INTERFACE ∗ i n t f c ) ;
void s implePr int ( char ∗name) ;

// misc f u n c t i o n s
void se tStep ( int s tep ) ;
void s e tRe s ta r t ( bool r e s t a r ){ r e s t a r t = r e s t a r ;}
bool ge tRes tar t ( ) {return r e s t a r t ;}
pr i va t e :

bool r e s t a r t ;
} ;

Listing 4.5: FTPatches.h Header File
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Figure 4.1: Graph of SAMRAI class nesting and inheritance, with notes on
where changes were made.
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PatchHierarchy A container for the AMR patch hierarchy and the data on the
grid.

CartesianGridGeometry Defines and maintains the Cartesian coordinate system on the
grid. The PatchHierarchy maintains a reference to this object.

TimeRefinementIntegrator Coordinates time integration and adaptive griding procedures for
the various levels in the AMR patch hierarchy. Local time refine-
ment is employed during hierarchy integration; i.e., finer levels
are advanced using smaller time increments than coarser level.
Thus, this object also invokes data synchronization procedures
which couple the solution on different patch hierarchy levels. The
time refinement integrator is not specific to the numerical meth-
ods used and the problem being solved. It maintains references
to two other finer grain algorithmic objects, more specific to the
problem at hand, with which it is configured when they are passed
into its constructor.

HyperbolicLevelIntegrator Defines data management procedures for level integration, data
synchronization between levels, and tagging cells for refinement.
These operations are tailored to explicit time integration algo-
rithms used for hyperbolic systems of conservation laws, such as
the Euler equations. This integrator manages data for numerical
routines that treat individual patches in the AMR patch hierarchy.
In this particular application, it maintains a pointer to the Euler
object that defines variables and provides numerical routines for
the Euler model.

Euler Defines variables and numerical routines for the discrete Euler
equations on each patch in the AMR hierarchy.

GriddingAlgorithm Drives the AMR patch hierarchy generation and regriding proce-
dures. This object maintains references to three other algorithmic
objects with which it is configured when they are passed into its
constructor.

BergerRigoutsos Clusters cells tagged for refinement on a patch level into a collec-
tion of logically-rectangular box domains.

LoadBalancer Processes the boxes generated by the BergerRigoutsos algorithm
into a configuration from which patches are constructed. The al-
gorithm we use in this class assumes a spatially-uniform workload
distribution; thus, it attempts to produce a collection of boxes
each of which contains the same number of cells. The load bal-
ancer also assigns patches to processors.

StandardTagAndInitialize Couples the gridding algorithm to the HyperbolicIntegrator. Se-
lects cells for refinement based on either Gradient detection,
Richardson extrapolation, or pre-defined Refine box region. The
object maintains a pointer to the HyperbolicLevelIntegrator,
which is passed into its constructor, for this purpose.

Table 4.1: Descriptions of classes in the SAMRAI hierarchy, from SAMRAI
manual
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Figure 4.2: Showing software dependencies between FronTier cFluid and SAM-
RAI
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Figure 4.3: Patch Front update
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Figure 4.4: Patch Front update 2
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Figure 4.5: A patch based mesh (left) and the accompanying density profile
(right) 68



Chapter 5

Results

We present several benchmark test problems to illustrate the effectiveness of

the new combined cFluid-AMR algorithm. Using AMR to calculate problems

involving a shock wave is very common because for such problems, changes are

concentrated around the shock and contact interaction region. Shock repre-

sents a sharp and discontinuous change in a physical variable such as density,

velocity or pressure. Initially the adaptive refinement area only covers a small

region in the neighborhood of the discontinuity. As the simulation progresses,

the shock moves through the entire domain and interacts with other discon-

tinuities such as a contact surface. As a shock moves through the domain,

the AMR patches in the simulation can track and refine it along with its

reflections and refractions. FronTier can deal with multi-material or multi-

component computation. The tracked moving interface is used as a boundary

between two materials. In a combined cFluid-AMR simulation, the discon-

tinuities are detected and tracked by both AMR patches and the interface.

In our benchmark problems, we choose to simulate problems which need to
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combine these two features. The Richtmyer-Meshkov [27] instability serves as

a good example.

These benchmarks comparisons are carried out on the same computer with

identical memory and CPU load. The test case RM2D-N has Neumann bound-

aries at the top and bottom of the computational domain. The simulations

were performed on a single core of the Intel Xeon X5650 @ 2.67GH CPU.

RM2D-D uses Dirichlet boundaries at the top and bottom, and the simula-

tions were carried out on a single core of a Intel Xeon CPU L5430 @ 2.66GHz

CPU. Care was taken to ensure that no computing resources were used by

other programs, and I/O was turned off to eliminate errors in CPU counting

due to system delay. The CFL factor in all cases was set to 0.75 for both sin-

gle grid and AMR calculations. We also make sure we use the same software

versions for all comparison simulations.

5.1 Input Choices

For both RM2D-N and RM2D-D, we use the density ratio 1:2 across the con-

tact surface and the polytropic constant γ = 1.667. The pre-shock pressure is

set to 1 for a Mach 2 shock. The computational domain is a 1× 4 rectangular

region.

5.1.1 Refinement Criteria

The SAMRAI input file contains two general types of AMR specific parame-

ters: refinement criteria parameters and gridding algorithm parameters. The

choice of these parameters significantly affect the efficiency of AMR, and there-

70



fore the comparison between an AMR simulation with a simulation using a

single fully refined grid.

The refinement criteria section of the SAMRAI’s input file allows the choice

of user defined refinement algorithms. For each scalar variable managed by

SAMRAI the user is given the option to choose different refinement criterion

functions. In the case of Euler equations, these scalar variables include pressure

and density. The built-in refinement choices for scalar variables are deviation,

gradient and shock condition.

After a hyperbolic sweep, the selected functions are used to compute on

the updated variables, and those regions with values exceeding the criteria

will be refined. Among these functions, deviation is the difference between

neighboring cells. The region is refined if it exceeds the cut-off value from the

user input. The gradient function calculates the first order gradient across the

cells and compares it to the the user input value. The shock detector tags cells

where

|V aluen+2 − V aluen−2| × SHOCK ONSET < |V aluen+1 − V aluen−1|

or

|V aluen+2 − V aluen−2| × |V aluen+1 − V aluen−1|

and

Max(|V aluen − V aluen−1|, |V aluen − V aluen+1|) > SHOCK TOL

where SHOCK ONSET and SHOCK TOL are user supplied parameters.

In addition to these generic refinement options, a specific function is im-

plemented to enforce refinement within a certain distance from the tracked
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front. Since SAMRAI also maintains the grid component at all levels, we

inserted a function to search for component changes in N cells around each

cell, where N is a user supplied integer value. A discussion of the results of

different AMR gridding and refinement parameters can be found in section

5.2.2.

5.1.2 Gridding Algorithm Parameters

While the refinement criteria function calculates and decides where to refine

the mesh, the selection of gridding algorithm and its associated parameters de-

termine how to refine. The SAMRAI-AMR library provides many user defined

parameters for the size and placement of AMR patches over the tagged cells.

These parameters have large effect on the performance gains when compared

with a single fully refined grid simulations.

• max levels - the number of patch levels.

• ratio to coarser - ratio of refinement to next coarser level.

• largest patch size - the largest size a patch can be.

• smallest patch size - the smallest size a patch can be.

• efficiency tolerance - the minimum percentage of tagged cells a patch can

contain.

• combine efficiency - the efficiency parameter which determines when

large patches can be split into smaller ones.
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Unless otherwise noted, each simulation has a max level of 3, largest patch size

of 50, 100, or 200 per level, and a smallest patch size of 12, 24, or 48 per level.

Each simulation has an efficiency tolerance of .65 and a combine efficiency of

.85.

5.2 Objectives of Test Cases

Simulations were carried out on Dirichlet and Neumman boundary conditions.

The Dirichlet boundary condition case compares cFluid-AMR interoperation

with other methods. The Neumman boundary condition case compares com-

putational efficiency under different AMR parameters.

5.2.1 RM2D with Dirichlet Boundary

This set of simulations show the differences in solution and calculation time

of different methods. We compared cFluid-AMR tracked, cFluid tracked with

fully refined mesh, and cFluid untracked at regular and high resolutions. The

CPU times are listed in Table 5.1. For the tracked AMR simulation the ef-

fective resolution, which is defined as the resolution at the finest level when

applied to the entire domain is 200×800. cFluid tracked and cFluid untracked

at regular resolutions are also 200× 800. The high resolution untracked sim-

ulation was set by doubling the number of grid points in each dimension so

that the numerical diffusion is not visually significant.

The numerical solutions are compared side-by-side at t = 3, 6, and 9,

respectively (Figures 5.1, 5.2, 5.3). The untracked simulation with regular

resolution shows a large difference from the others in that the interface is
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very diffused. A much refined mesh is needed for the untracked simulation to

show comparably sharp material interface, see the case with 800× 3200 mesh.

However, we can see from Table 5.1 that the computational time required

for this level of refinement is very large which will make three dimensional

simulation impossible.

The growth rate, resolution of the interface and vortex rolling of the bubble

and spike in the tracked AMR and the tracked fully refined calculation are

comparable. This shows that the quality of the solution in the AMR simulation

is the same as the fully refined non-AMR solution, see 4.1. However, the AMR

simulation takes 40% less CPU time compared to the non-AMR simulation.

5.2.2 RM2D with Neumann Boundary

This set of simulations tests AMR capabilities in a more demanding situation,

where we are interested in refining the pressure gradient as well as the region

near the contact surface. We make a comparison between AMR-tracking and

fully refined tracking. The shock wave in this set of simulations is reflected

by both top and bottom boundaries each time it passes through the mate-

rial interface. Such reflection is repeated three times during the simulations.

This set of simulations also generate complicated reflected rarefaction waves.

The computational domain was changed slightly to 1.024 x 4.096 to make

comparisons easier with different ratios of refinement. In all of these AMR

simulations, we use three levels of refinement and the same mesh size at the

finest level. However coarse grid size and refinement ratios per level vary.

Figure 5.4 presents the end time solution and Table 5.2 shows the corre-
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sponding CPU times and other statistical data of the simulations.

The pressure gradient refinement criteria used in the simulations shown in

Figure 5.4 C and D are shock tolerance = 460 and onset = .95. These param-

eters were chosen to resolve the primary shock through most of the simulation

but do not resolve reflected waves when the shock passes through the interface.

The pressure gradient refinement criteria for simulation B is shock tolerance

= 30 and onset = .85. As we can see from Figure 5.4, simulation B captures

almost the same degree of detail for the secondary waves as the fully refined

calculation. However, this also makes their CPU time almost comparable to

each other.

Simulations C and D differ only in their coarse mesh size, and the ratio

of mesh refinement at the last level. Simulation C has 2,2 refinement ratio in

two levels, and simulation D has 2,4 refinement ratio in two levels. There is a

noticeable difference in performance due to the change of the last refinement

ratio from 2 to 4. The major difference is in the number of fine level steps

taken. This is shown in Table 5.2. The timeRefinementIntegrator’s function

makes this decision. The maximum velocity values on different grid levels can

be slightly different, and the maximum velocity values on the finest level are

slightly larger then on coarser levels. For a doubling of refinement the CFL

dictates:

Umedium × ∆tmedium

∆x
= 2Ufine × ∆tfine

∆x

If Ufine > Umedium then the finest level can not take 2 steps of size 1/2dtmedium

to reach the sync time with the next coarser level. Instead the finest level must

take 3 steps of size 1/3dtmedium + epsilon where epsilon << dtmedium. Simula-

tion D has a finest cell size 1/4×dxmedium as opposed to 1/2×dxmedium in sim-
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ulation C. This allows simulation D to take 5 steps of size 1/5dtmedium+epsilon

. Due to this phenomenon, to advance the the same amount of time D takes

5 steps and one sync when optimally it should take 4, as opposed to C which

takes 6 steps and 2 syncs when it optimally should take 4. This leads to the

biggest calculation time improvement over fine grid, of 43 percent between

simulation D and the fully refined simulation A.

The number of cell operations per coarse time step is a a measure of com-

putational intensity at that step in the calculation. The plot of this value

during the course of a calculation is shown in Figure 5.5 for simulation D in

Figure 5.4. The graph has rapid jumps that correspond to the gridding al-

gorithm’s decisions of where and how to place refined patches. A sample of

this is illustrated by the jump indicated by the first two arrows in Figure 5.5

and the corresponding patch configuration change. An overall growth trend

can be seen as the instability spreads, with more mixing toward the end of the

simulation.
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Simulation Resolution Time (s)

AMR Tracked effective
200x800

6174

Tracked 200x800 10015

Un-Tracked 200x800 5885

Un-Tracked 800x3200 480416

Table 5.1: Timing results for RM2D Dirichlet
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Image A B C D

Simulation Type Fully Refined AMR AMR AMR

Levels 1 3 3 3

Ratio NA 2,4 2,2 2,4

Coarse Grid 256x1024 32x128 64x256 32x128

Fine Grid 256x1024 256x1024 256x1024 256x1024

Shock Tolerance NA 30 460 460

Shock Onset NA .85 .95 .95

Cell Updates 3.51e9 1.27e9 9.84e8 7.73e8

Time per Cell Update 3.8e-6 9.6e-6 1.2e-5 9.8e-6

Fine Steps 9850 14164 17493 13033

Time (s) 13380 12106 12061 7589

Table 5.2: Timing results for RM2D NEUMANN effective 256x1024

78



Figure 5.1: Richtmyer-Meshkov comparison at t = 3
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Figure 5.2: Richtmyer-Meshkov comparison at t = 6
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Figure 5.3: Richtmyer-Meshkov comparison at t = 9
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Figure 5.4: RM2D NEUMANN
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Figure 5.5: Cell operations vs coarse grid step
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Chapter 6

Conclusion

We reviewed previous work on the interoperation between front tracking (Fron-

Tier) and adaptive mesh refinement (AMR), and the implementation algo-

rithms by Xu, et al. The old algorithms were based on the unmodularized

front tracking code which requires complex insertion and revision of the front

tracking functions. The implementation added significant volume of special-

ized functionalities to the FronTier code and was error-prone.

We presented a new algorithm for the FronTier-AMR interoperation. This

new algorithm is based on a modularized cFluid package and the FronTier-

Lite library. The new algorithm significantly improves the code clarity and

simplifies the coupling of FronTier and AMR. We replaced the Overture AMR

package with the high quality SAMRAI library. We made one important

change to the FronTier-AMR coupling by requiring that front propagation and

ghost-fluid cell update only be carried out in the finest level of AMR patches.

This change greatly reduced the need for the inter-level data communication

of front geometry. It also allows the interface optimization and topological
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reconstruction to be performed in a uniform grid, that is, the finest level of

grid. This new algorithm is simpler with a significant reduction in number of

functions in the code. We estimate that the new code for the interoperation

between FronTier and AMR is ten times smaller than the previous one. The

new code is easy to understand and debug. It is also more robust and more

efficient for parallel communication and load balancing, and should provide

significant speed ups.

The new cFluid based FronTier-AMR algorithm has been tested on sev-

eral cases for the simulation of Richtmyer Meshkov instability. The results

are comparable to solutions with fully refined mesh without AMR, while the

computation is much faster. As with all AMR calculations, the parallel scaling

and speed-up is dependent on the specific problem and parameters chosen, but

the benefit of FronTier-AMR coupling is evident.

Our work shows that a truly adaptive method with both AMR and front

tracking is possible.
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