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Abstract of the Dissertation

Aspects of Superconformal Field Theories

by

Abhijit Gadde

Doctor of Philosophy

in

Physics

Stony Brook University

2011

Recently, a lot of progress has been made towards understanding

the strongly coupled supersymmetric quantum gauge theories. The

problem of strong coupling for SU(N) gauge theories can be for-

mulated in two separate regimes of interest, one at finite N and the

other at large N in ’t Hooft limit. In the first case electric/magnetic

duality also called S-duality and in the second, AdS/CFT duality

map the strongly coupled problem to a weakly coupled one. Both

of the dualities have been well understood in the maximally su-

persymmetric 4d gauge theory, the N = 4 super Yang-Mills. In

this thesis, as a natural next step, we focus on the strong coupling

behavior in N = 2 supersymmetric gauge theories.
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Chapter 1

Introduction

Symmetries simplify the study of any dynamical system. Although, in quantum

theories the conventional (bosonic) symmetries help but only a little. The con-

straints imposed by bosonic symmetries on quantum theories are weak. The

quantum corrections rapidly become intractable with increasing loop order.

However, the fermionic symmetry - Supersymmetry helps keep the quantum

corrections under control. It is this tractability of quantum effects that has

given supersymmetry a very special place in modern theoretical physics. Quan-

tum field theories with more supersymmetry have larger number of fields in

order to be consistent with all the supersymmetries. In spite of the increasing

field content and hence the increasing apparent difficulty, a useful point of

view is: the more supersymmetry the simpler the quantum field theory. The

theory with the maximal supersymmetry in four dimensions, N = 4 super

Yang-Mills has even been termed as the harmonic oscillator of 21st century.

N = 4 SYM has been studied in great detail. Large amount of supersym-

metry allows it to enjoy a strong-weak coupling duality or electric-magnetic

duality called S-duality [9]. Montonen and Olive conjectured N = 4 SYM to

be a self dual theory i.e. the massive monopoles of the weakly coupled theory

become massless as coupling is increased and behave exactly as the quarks

of a different weakly coupled or S-dual N = 4 SYM. Rigorous checks of this

duality have been performed [10, 11].

The strong-weak coupling duality gives us a handle on strong coupling

behavior of SU(N) N = 4 SYM at finite N . On the other hand, AdS/CFT

correspondence is proves to be a very useful tool in understanding the large N
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behavior of N = 4 SYM at strong coupling [12–14]. The duality states that

SU(N) N = 4 SYM with coupling gYM is dual to type IIB string theory in

AdS5 × S5 of radius ∼ lsλ
1/4. The string theory has the coupling constant

λ/N . At large N with fixed λ, one can describe strongly interacting N = 4

in terms of free strings. If one further takes λ → ∞ the dual description is

in terms of the low energy limit of string theory, type IIB supergravity. Very

strong checks of the large N AdS/CFT correspondence have been performed.

Moreover, gauge theory computations in ’t Hooft limit e.g. the computation

of anomalous dimensions of single trace operators has led to the discovery of

integrable structures in planar N = 4 SYM [15]. These integrable structures

along with supersymmetry have played a very important role in verifying the

duality at any ’t Hooft coupling in the planar limit.

S-duality and AdS/CFT correspondence both are useful in understanding

the strong coupling dynamics of SU(N) N = 4 SYM, albeit in two different

limits. The former is applicable to the gauge theory at finite N and later

to the gauge theory at large N . We wish to take the next step in studying

these two aspects of gauge theories. From our point of view the next step

amounts to reducing the supersymmetry in half. Of N = 2 supersymmetric

field theories, N = 2 superconformal theories are especially interesting. They

do not have asymptotic freedom where perturbation theory is applicable but

they do enjoy state-operator correspondence makes it relatively simpler to

study their Hilbert space using radial quantization. In this thesis, we will

mainly focus our attention to S-duality and large N dynamics of N = 2

superconformal field theories.

1.1 N = 2 S-duality

Recently, an S-duality for N = 2 supersymmetric gauge theories has been

proposed by Gaiotto [16]. Most conveniently the duality is understood in

terms of the geometry of Riemann surfaces. The appearance of a Riemann

surface is manifest in M theory construction of 4d gauge theories [17]. A 4d

gauge theory is obtained by compactifying N M5 branes on a Riemann surface

(with a topological twist) and taking low energy limit. The complex structure

moduli space of the Riemann surface turns out be the same as the space of
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exactly marginal deformations of the N = 2 gauge theory. The action of S-

duality on the gauge parameter space is the same as the action of the mapping

class group of the Riemann surface on its complex moduli space. Riemann

surface can be decomposed into pairs of pants in a variety of ways. Each of

the decompositions represents a weakly coupled 4d gauge theory. In addition

to being a strong/weak coupling duality, S-duality relates all these weakly

coupled “corners” of the moduli space as well.

In the first part of the thesis, we mainly focus on this web of N = 2

dualities. Our main tool to study and check the S-dualities will be the Witten

index [18], a quantity that is invariant under the supersymmetric deformations

of the theory. The Witten index of the superconformal field theories in radial

quantization is called the superconformal index [19]. In addition to being

invariant under all the exactly marginal supersymmetric deformations of the

theory, the superconformal index also captures “cohomological” information

about the protected states of the theory. It counts (with signs) protected states

of the theory, upto an equivalence relation that sets to zero all sequences of

short multiplets that may in principle recombine into a long multiplets. As the

index is independent of the coupling, it can be easily computed in the weakly

coupled limit whenever such limit is available. In due course, we will see that,

conversely, using S-dualities one can even compute the superconformal index

of nontrivial fixed points.

For the class of gauge theories obtained from M5 brane compactification

on Riemann surface Σ, the gauge coupling independence also makes the index

independent of the complex structure of Σ. That is, the index of the 4d theory

abstractly defines a topological field theory on Σ. Having an independent

microscopic description of this TQFT would prove very useful as it will enable

use to compute the index of any 4d theory directly from the associated Σ.

This is especially useful when the 4d theory doesn’t admit a weakly coupled

limit e.g. 4d theories obtained from compactifying M5 branes on a sphere with

three punctures. Recall that the absence of complex structure moduli means

absence of any exactly marginal deformations. We will show that a certain

“reduced” superconformal index is computed by 2d q-YM on Σ in the zero

area limit!

The superconformal index of a 4d gauge theory is the supersymmetric
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partition function of the theory on S3 × S1. As the radius of S1 goes to zero,

the path integral is restricted to S3. In this limit, we expect the superconformal

index to yield the partition function of dimensionally reduced 3d gauge theory

on S3. Recently, the S3 partition function of 3d gauge theories has been

computed by Kapustin et. al. using localization methods [20, 21] and it

indeed agrees with this limit of the superconformal index. Remarkably, the

superconformal index of the “parent” 4d theory can be thought of as the q-

deformation of the 3d partition function.

1.2 N = 2 at large N

The gauge/gravity duality for N = 4 SYM has been used as an approxi-

mation to the physics of strong interactions. The approximation is not the

most ideal one due to the lack of quarks in fundamental representation. Most

of the attempts to include the effect of fundamental matter have considered

quarks in the probe approximation but in many physically relevant theories

such as QCD one would need to account for the effect of unquenched flavor.

It seems that the “simplest” theory that would incorporate this effect is the

N = 2 superconformal QCD, the N = 2 super Yang Mills theory with gauge

group SU(Nc) and Nf = 2Nc fundamental hyper multiplets. We attack the

long-standing problem of finding its AdS dual. The theory admits a Veneziano

expansion [22] of largeNc and largeNf , withNf/Nc and λ = g2
YMNc kept fixed.

The topological structure of large N diagrams motivates a general conjecture:

the flavor-singlet sector of a gauge theory in the Veneziano limit is dual to

a closed string theory; single closed string states correspond to “generalized

single-trace” operators, where adjoint letters and flavor-contracted fundamen-

tal/antifundamental pairs are stringed together in a closed chain. We look for

the string dual of N = 2 superconformal QCD from two fronts. From the

bottom-up, we perform a systematic analysis of the protected spectrum using

superconformal representation theory. We also evaluate the one-loop dilation

operator in the scalar sector, finding a novel spin chain. From the top-down,

we consider the decoupling limit of known brane constructions. In both ap-

proaches, more insight is gained by viewing the theory as the degenerate limit

of the N = 2 Z2 orbifold of N = 4 SYM, as one of the two gauge couplings
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is tuned to zero. A consistent picture emerges. We conclude that the string

dual is a sub-critical background with seven “geometric” dimensions, contain-

ing both an AdS5 and an S1 factor. The supergravity approximation is never

entirely valid, even for large λ, indeed the field theory has an exponential de-

generacy of exactly protected states with higher spin, which must be dual to

a sector of light string states.

Computing the spectrum of single trace operators in an interesting problem

in itself. Very strong checks of AdS/CFT correspondence can be performed by

matching the gauge theory operator spectrum with the string theory spectrum.

In N = 4 SYM a lot of progress was made on that front by thinking of single

trace operators as spin chains and the dilatation operator as the Hamiltonian.

The main reason for the success of this approach is the integrability1 of the

N = 4 SYM spin chain. Integrability is the existence of infinitely many

conserved charges. It leads to factorized scattering of fundamental excitations

i.e. n-body scattering factorizes into sequence of two body scatterings. Hence

complete spectrum of an integrable spin chain is encoded in just the two body

the scattering matrix or the S matrix of fundamental excitations and can be

found using Bethe ansatz.

We find preliminary evidence thatN = 2 superconformal QCD, the SU(Nc)

SYM theory with Nf = 2Nc fundamental hypermultiplets, might be integrable

in the large N Veneziano limit. We evaluate the one-loop dilation operator in

the scalar sector of the N = 2 superconformal quiver with SU(Nc)× SU(Nč)

gauge group, for Nc ≡ Nč. Both gauge couplings g and ǧ are exactly marginal.

This theory interpolates between the Z2 orbifold of N = 4 SYM, which cor-

responds to ǧ = g, and N = 2 superconformal QCD, which is obtained for

ǧ → 0. The planar one-loop dilation operator takes the form of a nearest-

neighbor spin-chain Hamiltonian. For superconformal QCD the spin chain is

of novel form: besides the color-adjoint fields, which occupy individual sites

of the chain, there are “dimers” of flavor-contracted fundamental fields, which

occupy two neighboring sites. We solve the two-body scattering problem of

magnon excitations and study the spectrum of bound states, for general ǧ/g.

The dimeric excitations of superconformal QCD are seen to arise smoothly for

ǧ → 0 as the limit of bound wavefunctions of the interpolating theory. Finally

1See individual chapters for the references.
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we check the Yang-Baxter equation for the two-magnon S-matrix, which is a

necessary but not sufficient condition for integrability. It holds as expected at

the orbifold point ǧ = g. While violated for general ǧ 6= g, it holds again in the

limit ǧ → 0, hinting at one-loop integrability of planar N = 2 superconformal

QCD.

Although, integrability is broken for the theory interpolating between the

Z2 orbifold of N = 4 and N = 2 SCQCD, we use the centrally extended

SU(2|2) symmetry of the magnons to fix their dispersion relation and two

body S-matrices as functions of exactly marginal couplings [23].

The rest of the thesis can be broadly divided into two parts: chapters 2,3,4,5

analyze S-duality aspects of N = 2 superconformal theories while chapters

6,7,8 study the large N limit. In chapter 2, we study the superconformal index

for the class of N = 2 superconformal field theory defined by compactifying

the (2,0) 6d theory on a Riemann surface with punctures. We interpret the

index of 4d theory associated to n-punctured Riemann surface as the n-point

correlation function of the topological QFT living on the surface. We focus on

the A1 case and calculate the 2 and 3 point function of the TQFT in terms

of elliptic hypergeometric gamma functions and verify S-dulity. In chapter

3, we study the A2 case which involves a strongly coupled SCFT with E6

flavor symmetry. We compute its index using Argyres-Seiberg duality. In

the next chapter, we give an independent identification of the 2d TQFT that

computes a certain limit of the 4d superconformal index. We demonstrate

the usefulness of this TQFT by computing the index of an infinite series of

strongly coupled theories. Chapter 5 is dedicated to the S1 reduction of the

4d index to the S3 partition function of the 3d gauge theories. The second

part begins with chapter 6 which is aimed at finding the holographic dual

of N = 2 superconformal QCD in the Veneziano limit. We approach the

problem from gauge theory side first then from the string theory side starting

from a Hanany-Witten type brane construction. In chapter 7, we compute the

one loop anomalous dimension operator in the scalar sector and display signs

of integrability in N = 2 SCQCD. In the last chapter, we use the SU(2|2)

symmetries of the theory to determine the all-loop dispersion relation and

the two body scattering matrix of magnons in a non-integrable theory that

interpolates between Z2 orbifold of N = 4 SYM and N = 2 SCQCD. We also
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comment on the dual description of such magnons. The thesis ends with a lot

of appendices that supplement the bulk of the thesis.
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Chapter 2

S-duality and 2d Topological

QFT

Electric-magnetic duality (S-duality) in four-dimensional gauge theory has a

deep connection with two-dimensional modular invariance. The canonical ex-

ample is the SL(2,Z) symmetry of N = 4 super-Yang-Mills, which can be

interpreted as the modular group of a torus. A physical picture for this corre-

spondence is provided by the existence of the six-dimensional (2, 0) supercon-

formal field theory, whose compactification on a torus of modular parameter

τ yields N = 4 SYM with holomorphic coupling τ (see [24] for a recent dis-

cussion).

Gaiotto [16] has recently discovered a beautiful generalization of this con-

struction. A large class ofN = 2 superconformal field theories in 4d is obtained

by compactifying a twisted version of the (2, 0) theory on a Riemann surface

Σ, of genus g and with n punctures. The complex structure moduli space

Tg,n/Γg,n of Σ is identified with the space of exactly marginal couplings of the

4d theory. The mapping class group Γg,n acts as the group of generalized S-

duality transformations of the 4d theory. A striking correspondence between

the Nekrasov’s instanton partition function [25] of the 4d theory and Liouville

field theory on Σ has been conjectured in [26] and further explored in [27–38].

Relations to string/M theory have been discussed in [39–42]. See also [43–45].

In this chapter we study the superconformal index [19] for this class of 4d

SCFTs. The index captures “cohomological” information about the protected

states of the theory. By construction, it counts (with signs) the protected
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states of the theory, up to equivalence relations that set to zero all sequences

of short multiplets that may in principle recombine into long multiplets.

The index is invariant under continuous deformations of the theory, and

is also expected to be invariant under the S-duality group Γg,n. Assuming

S-duality, this implies that the index must be computed by a topological QFT

living on Σ. The usual physical arguments involving the (2, 0) theory give a

“proof” of this assertion, as follows. The index has a path integral represen-

tation [19] as the partition function of the 4d theory on S3 × S1, twisted by

various chemical potentials, which uplifts to a (suitably twisted) path integral

of the (2, 0) theory on S3 × S1 × Σ. This path integral must be independent

of the metric on Σ. In the limit of small Σ we recover the 4d definition; in the

opposite limit of large Σ we expect a purely 2d description. Each puncture on

Σ should be regarded as an operator insertion. By this logic, the index must

be equal to the n-point correlation function of some TQFT on Σ. The question

is whether one can describe this TQFT more directly, and in the process check

the S-duality of the index.

It is likely that a “microscopic” Lagrangian formulation of the 2d TQFT

may be derived from the dimensional reduction of the twisted (2, 0) theory that

we have just described, but we will not pursue this here. Our approach will be

to start with the 4d definition of the index [19] and write its concrete expression

for Gaiotto’s A1 theories, which have a 4d Lagrangian description. We show in

section 2.1 that the index does indeed take the form expected for a correlator

in a 2d TQFT. We then evaluate explicitly the structure constants and metric

of the TQFT operator algebra, and check its associativity, which is the 2d

counterpart of S-duality (section 2.2). The metric and structure constants

have elegant expressions in terms of elliptic Gamma functions and the index

in terms of elliptic Beta integrals, a set of special functions which are a new

and active branch of mathematical research, see e.g. [46–48] and references

therein. For Gaiotto’s A1 theories associativity of the topological algebra (and

thus S-duality) hinges on the invariance of a special case of the E(5) elliptic

Beta integral under the Weyl group of F4. A proof of this symmetry appeared

on the math ArXiv just as the original paper was nearing completion [49].1 In

a related physical context, elliptic identities have been used in [50] (following

1We are grateful to Fokko J. van de Bult for sending us a draft of [49] prior to publication.
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[51]) to prove equality of the superconformal index for Seiberg-dual pairs of

N = 1 gauge theories.

It is also natural to ask how things work for the original paradigm of a

theory exhibiting S-duality, namely N = 4 SYM. From the viewpoint of the

superconformal index the only non-trivial N = 4 dual pairs are the theories

based on SO(2n+ 1)/Sp(n) gauge groups. We study these cases in Appendix

A. We write integral expressions for the index of two dual theories and check

their equality “experimentally”, for the first few orders in a series expansion

in the chemical potentials. It would be nice to find an analytic proof.

(a) (b)

Figure 2.1: (a) Generalized quiver diagrams representing N = 2 supercon-
formal theories with gauge group SU(2)6 and no flavor symmetries (NG = 6,
NF = 0). There are five different theories of this kind. The internal lines
of a diagram represent and SU(2) gauge group and the trivalent vertices the
trifundamental chiral matter. (b) Generalized quiver diagrams for NG = 3,
NF = 3. Each external leg represents an SU(2) flavor group. The upper left
diagram corresponds the N = 2 Z3 orbifold of N = 4 SYM with gauge group
SU(2).

We end this introduction by recalling the basics of Gaiotto’s analysis [16].

The main achievement of [16] is a purely four-dimensional construction of the

SCFT implicitly defined by compactifying the AN−1 (2, 0) theory on Σ. In

the A1 case an explicit Lagrangian description is available, in terms of a gen-

eralized quiver with gauge group SU(2)NG , see Figure 2.1 for examples. The

internal edges of a diagram correspond to the SU(2) gauge groups, the ex-
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(a) (b)

Figure 2.2: An example of a degeneration of a graph and appearance of flavour
punctures. As one of the gauge coupling is taken to zero the corresponding edge
becomes very long. Cutting the edge, each of the two resulting semi-infinite
open legs will be associated to chiral matter in an SU(2) flavor representation.
In this picture setting the coupling of the middle legs in (a) to zero gives two
copies of the theory represented in (b), namely an SU(2) gauge theory with a
chiral field in the bifundamental representation of the gauge group and in the
fundamental of a flavour SU(2).

ternal legs to SU(2) flavor groups and the the cubic vertices to chiral fields

in the trifundamental representation (fundamental under each of the groups

joining at the vertex). The corresponding Riemann surface is immediately

pictured by thickening the lines of the graph into tubes – with the external

tubes assumed to be infinitely long, so that they can be viewed as punctures.

The plumbing parameters τi of the tubes are identified with the holomorphic

gauge couplings; the degeneration limit when the surface develops a long tube

corresponds to the weak coupling limit τ → +i∞ of the corresponding gauge

group (Figure 2.2). The different patterns of degenerations (pair-of-pants de-

compositions) of a surface Σ of genus g and NF punctures give rise to the

different connected diagrams with NF external legs (SU(2) flavor groups) and

NG = NF + 3(g − 1) internal lines (SU(2) gauge groups). Since the map-

ping class group permutes the diagrams, the associated field theories must be

related by generalized S-duality transformations [16].

In the higher AN−1 cases the 4d theories are generically described by more

complicated quivers that involve new exotic isolated SCFTs as elementary

building blocks. While the correspondence between the index and 2d TQFT

is general, in this chapter we will focus on the A1 theories, where explicit

calculations can be easily performed.
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2.1 2d TQFT from the Superconformal Index

The superconformal index is defined as [19]

I = IWR = Tr(−1)F t2(E+j2)y2 j1v−(r+R) , (2.1)

where the trace is over the states of the theory on S3 (in the usual radial

quantization). For definiteness we are considering the “right-handed” Witten

index IWR of [19], which computes the cohomology of the supercharge Q̄2+, in

notations [52] where the supercharges are denoted as QIα, Q̄Iα̇, SIα, S̄Iα̇, with

I = 1, 2 SU(2)R indices and α = ±, α̇ = ± Lorentz indices. (For the class

of superconformal theories that we consider, the left-handed and right-handed

Witten indices are equal.) The chemical potentials t, y, and v keep track

of various combinations of quantum numbers associated to the supercorformal

algebra SU(2, 2|2): E is the conformal dimension, (j1, j2) the SU(2)1×SU(2)2

Lorentz spins, and (R , r) the quantum numbers under the SU(2)R×U(1)r R-

symmetry.2

For a theory with a weakly-coupled description the index can be explicitly

computed as a matrix integral,

I(V, t, y, v) =

ˆ
[dU ] exp

(
∞∑
n=1

1

n

∑
j

fRj(tn, yn, vn) · χRj(Un, V n)

)
. (2.2)

Here U is the matrix of the gauge group, V the matrix of the flavor group and

Rj label representations of the fields under the flavor and gauge groups. The

measure [dU ] is the invariant Haar measure, and it has the following property

ˆ
[dU ]

n∏
j=1

χRj(U) = #of singlets in R1 ⊗ · · · ⊗ Rn . (2.3)

For the A1 generalized quivers the index can be explicitly computed as a matrix
integral,

I =

ˆ ∏
`∈G

[dU`] exp

 ∞∑
n=1

1

n

∑
i∈G

fvectn · χadj(Uni ) +
∑

(i,j,k)∈V

f chin · χ3f (Uni , U
n
j , U

n
k )

 .(2.4)

2Our normalization for the R-symmetry charges is as in [52] and differs from [19]:
Rhere = Rthere/2, rhere = rthere/2.
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Here f vectn = f vect(tn, yn, vn) and f chin = f chi(tn, yn, vn), with f vect(t, y, v) and

f chi(t, y, v) the “single-letter partition functions” for respectively the vector

and half-hyper degrees of freedom, multiplying the corresponding SU(2) char-

acters. The explicit expressions for f vect and f chi will be given in the next

section. The {Ui} are SU(2) matrices. Their index i run over the NG + NF

edges of the diagram, both internal (“Gauge”) and external (“Flavor”). The

set G is the set of NG internal edges while the set V is the set of trivalent

vertices, each vertex being labelled by the triple (i, j, k) of incident edges. The

integral over {U` , ` ∈ P}, with [dU ] being the Haar measure, enforces the

gauge-singlet condition. All in all, the index I depends on the chemical po-

tentials t, y, v (through f vect and f chi) and on (the eigenvalues of) the NF

unintegrated flavor matrices.

The characters depend on a single angular variable αi for each SU(2) group

Ui. Writing

Ui = V †i

 eiαi 0

0 e−iαi

 Vi , (2.5)

we have

χadj(Ui) = TrUi TrUi − 1 = e2iαi + e−2iαi + 1 ≡ χadj(αi) , (2.6)

χ3f (Ui, Uj , Uk) = TrUi TrUj TrUk = (eiαi + e−iαi)(eiαj + e−iαj )(eiαk + e−iαk)(2.7)

≡ χ3f (αi, αj , αk) ,

where we have used the fact that 2 ∼ 2̄. Integrating over Vi, the Haar

measure simplifies to

ˆ
[dUi] =

1

π

ˆ 2π

0

dαi sin2 αi ≡
ˆ
dαi ∆(αi) . (2.8)

We now define

Cαiαjαk ≡ exp

(
∞∑
n=1

1

n
f chin · χ3f (nαi, nαj, nαk)

)
, (2.9)

ηαiαj ≡ exp

(
∞∑
n=1

1

n
f vectn · χadj(nαi)

)
δ̂(αi, αj) ≡ ηαi δ̂(αi, αj),

13



where δ̂(α, β) ≡ ∆−1(α)δ(α − β) (with the understanding that α and β are

defined modulo 2π) is the delta-function with respect to the measure (2.8).

Further define the “contraction” of an upper and a lower α labels as

A...α...B...α... ≡
ˆ 2π

0

dα∆(α)A...α...B...α... . (2.10)

The superconformal index (4.2) can then be suggestively written as

I =
∏

{i,j,k}∈V

Cαiαjαk
∏

{m,n}∈G

ηαmαn . (2.11)

The internal labels {αi , i ∈ G} associate to the gauge groups are contracted,

while the NF external labels associated to the flavor groups are left open.

The expression (2.11) is naturally interpreted as an NF -point “correlation

function” 〈α1 . . . αNF 〉g, evaluated by regarding the generalized quiver as a

“Feynman diagram”. The Feynman rules assign to each trivalent vertex the

cubic coupling Cαβγ, and to each internal propagator the inverse metric ηαβ. S-

duality implies that the superconformal indices calculated from two diagrams

with the same (NF , NG) must be equal. These properties can be summarized in

the statement that the superconformal index is evaluated by a 2d Topological

QFT (TQFT).

|α〉

|β〉

|γ〉

|α〉

|β〉

(a) (b)

Figure 2.3: (a) Topological interpretation of the structure constants Cαβγ ≡
〈C| |α〉|β〉|γ〉. The path integral over the sphere with three boundaries defines
〈C| ∈ H∗ ⊗ H∗ ⊗ H∗. (b) Analogous interpretation of the metric ηαβ ≡
〈η||α〉|β〉, with 〈η| ∈ H∗ ⊗H∗, in terms of the sphere with two boundaries.

At the informal level sufficient for our discussion, a 2d TQFT [53, 54] can

be characterized in terms of the following data: a space of states H; a non-

14



degenerate, symmetric metric η: H ⊗ H → C; and a completely symmetric

triple product C: H⊗H⊗H → C. The states in H are understood physically

as wavefunctionals of field configurations on the “spatial” manifold S1. The

metric and triple product are evaluated by the path integral over field con-

figurations on the sphere with respectively two and three boundaries (Figure

2.3). The 2d surfaces where the TQFT is defined are assumed to be oriented,

so the S1 boundaries inherit a canonical orientation. To a boundary of inverse

orientation (with respect to the canonical one) is associated the dual space H∗.
Choosing a basis for H, we can specify the metric and triple product in terms

of ηαβ ≡ η(|α〉, |β〉) and Cαβγ ≡ C(|α〉, |β〉, |γ〉), or

η =
∑
α,β

ηαβ〈α|〈β| , C =
∑
α,β,γ

Cαβγ〈α|〈β|〈γ| . (2.12)

The inverse metric ηαβ is associated to the sphere with two boundaries of

inverse orientation, and as its name suggests it obeys ηαβηβγ = δαγ , see Figure

2.4. Index contraction corresponds geometrically to gluing of S1 boundary of

compatible orientation.

〈α|

〈β|

|α〉

〈γ|

〈γ| |α〉=

(a) (b)

Figure 2.4: Topological interpretation of (a) the inverse metric ηαβ, (b) the
relation ηαβη

βγ = δγα. By convention, we draw the boundaries associated with
upper indices facing left and the boundaries associated with the lower indices
facing right.

The metric and triple product obey natural compatibility axioms which

can be simply summarized by the statement that the metric and its inverse

are used to lower and raise indices in the usual fashion. Finally the crucial

requirement: the structure constants Cαβ
γ ≡ Cαβεη

εγ define an associative
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algebra

Cαβ
δ Cδγ

ε = Cβγ
δ Cδα

ε , (2.13)

as illustrated in Figure 2.5. From these data, arbitrary n-point correlators on

a genus g surface can be evaluated by factorization (= pair-of-pants decom-

position of the surface). The result is guaranteed to be independent of the

specific decomposition.

|α〉

|β〉

|γ〉

〈ǫ| =

|α〉

|β〉

|γ〉

〈ǫ|

Figure 2.5: Pictorial rendering of the associativity of the algebra.

In our case the spaceH is spanned by the states {|α〉 , α ∈ [0, 2π)}, where α

parametrizes the SU(2) eigenvalues, equ.(2.5). Alternatively we may “Fourier

transform” to the basis of irreducible SU(2) representations, {|RK〉 , K ∈ Z+}.
We have concrete expressions (2.9, 2.10) for the cubic couplings Cαβγ and for

the inverse metric ηαβ, which are manifestly symmetric under permutations of

the indices. Formal inversion of (2.10) gives the metric ηαβ ≡ (ηα)−1δ̂(α, β).

Finally with the help of (2.10) we can raise, lower and contract indices at will.

On physical grounds we expect these formal manipulations to make sense, since

the superconformal index is well-defined as a series expansion in the chemical

potential t, which should have a finite radius of convergence [19]. The explicit

analysis of sections 3 and 4 will confirm these expectations. We will find ex-

pressions for the index as analytic functions of the chemical potentials. Our

definitions satisfy the axioms of a 2d TQFT by construction, and indepen-

dently of the specific form of the functions f vect(t, y, v) and f chi(t, y, v), except

for the associativity axiom, which is completely non-trivial. Associativity of

the 2d topological algebra is equivalent to 4d S-duality, and it can only hold

for very special choices of field content, encoded in the single-letter partition

functions f vect and f chi.
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Letters E j1 j2 R r I
φ 1 0 0 0 −1 t2v

λ1
±

3
2
±1

2
0 1

2
−1

2
−t3 y, −t3 y−1

λ̄2+
3
2

0 1
2

1
2

1
2

−t4/v
F̄++ 2 0 1 0 0 t6

∂−+λ
1
+ + ∂++λ

1
− = 0 5

2
0 1

2
1
2
−1

2
t6

q 1 0 0 1
2

0 t2/
√
v

ψ̄+
3
2

0 1
2

0 −1
2

−t4√v
∂±+ 1 ±1

2
1
2

0 0 t3 y, t3 y−1

Table 2.1: Contributions to the index from “single letters”. We denote by
(φ, φ̄, λIα, λI α̇, Fαβ, F̄α̇β̇) the components of the adjoint N = 2 vector multiplet,

by (q, q̄, ψα, ψ̄α̇) the components of the trifundamental N = 1 chiral multiplet,
and by ∂αα̇ the spacetime derivatives. Here I = 1, 2 are SU(2)R indices and
α = ±, α̇ = ± Lorentz indices.

2.2 Associativity of the Algebra

In this section we determine explicitly the structure constants and the metric

of the TQFT and write them in terms of elliptic Beta integrals. With the help

of a recent mathematical result [49] we prove analytically the associativity of

the topological algebra.

2.2.1 Explicit Evaluation of the Index

The “single letters” contributing to the index, which must obey ∆̄ ≡ E −
2j2 − 2R + r = 0 [19], are enumerated in Table 2.1. The first block of the

Table shows the contributing letters from the adjoint N = 2 vector multiplet

(associated to each internal edge of a graph), including the equations of motion

constraint. The second block shows the contributions from the N = 1 chiral

multiples in the trifundamental representation, associated to each cubic vertex.

Finally the last line of the Table shows the spacetime derivatives contributing

to the index. Since each field can be hit by an arbitrary number of derivatives,

the derivatives give a multiplicative contribution to the single-letter partition

17



α

β

γ

δ

θ

α γ

θ

β δ

=

Figure 2.6: The basic S-duality channel-crossing. The two diagrams are two
equivalent (S-dual) ways to represent the N = 2 gauge theory with a single
gauge group SU(2) and four SU(2) flavour groups, which is the basic building
block of the A1 generalized quiver theories. The indices on the edges label the
eigenvalues of the corresponding SU(2) groups.

functions of the form

∞∑
m=0

∞∑
n=0

(t3y)m (t3y−1)n =
1

(1− t3y)(1− t3y−1)
. (2.14)

All in all, the single letter partition function are given by

adjoint : f vect(t, y, v) =
t2v − t4

v
− t3(y + y−1) + 2t6

(1− t3 y)(1− t3y−1)
, (2.15)

trifundamental : f chi(t, y, v) =

t2√
v
− t4√v

(1− t3 y)(1− t3y−1)
. (2.16)

We are now ready to check explicitly the basic S-duality move – S-duality
with respect to one of the SU(2) gauge groups, represented graphically as
channel-crossing with respect to one of the edges of the graph (Figure 2.6).
The full S-duality group of a graph is generated by repeated applications of
the basic move to different edges. The contribution to the index from the left
graph in Figure 2.6 is

I =

ˆ
dθ∆(θ) exp(

∞∑
n=1

1

n

[
fvectn · χadj(nθ) + f chin · χ3f (nα, nβ, nθ) + f chin · χ3f (nθ, nγ, nδ)

]
)
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Substituting the expressions for the characters,

I =
e
∑∞
n=1

fvectn
n

π

ˆ 2π

0

dθ sin2 θ

e
∑∞
n=1

2fvectn
n

cos 2nθe
∑∞
n=1

8fchin
n

[cosnα cosnβ+cosnγ cosnδ] cosnθ , (2.17)

where f vectn ≡ f vect(tn, yn, vn) and f chin ≡ f chi(tn, yn, vn). S-duality of the index

is the statement this integral is invariant under permutations of the external

labels α, β, γ, δ. Since symmetries under α ↔ β and (independently) under

γ ↔ δ are manifest, the non-trivial requirement is symmetry under β ↔ γ,

which gives the index associated to the crossed graph on the right of Figure

2.6.

The integrand of (2.17) is not invariant under β ↔ γ, but the integral is, as

once can check order by order in a series expansion in the chemical potential t.

Here is how things work to the first non-trivial order. We expand the integrand

in t around t = 0, and set y = v = 1 for simplicity. The single-letter partition

functions behave as

f vect(t, y = 1, v = 1) ∼ t2 − 2 t3 , f chi(t, y = 1, v = 1) ∼ t2 − t4 . (2.18)

The first non-trivial check is for the coefficient of I of order O(t4),

I ∼ t4
ˆ 2π

0

dθ sin2 θ

(
cos 4θ + 2 cos2 2θ + 4A2 cos 2θ (2.19)

+32A2
1 cos2 θ − 2 cos 2θ + 16A1 cos θ cos 2θ − 8A1 cos θ

)
,

where An ≡ cosnα cosnβ+cosnγ cosnδ. Performing the elementary integrals,

I ∼ t4 [6π + 2π (cos 2α + cos 2β + cos 2γ + cos 2δ + 8 cosα cos β cos γ cos δ)] ,

which is indeed symmetric under α ↔ β ↔ γ ↔ δ. We stress that crossing

symmetry depends crucially on the specific form of the single-letter partition

functions (4.3) and thus on the specific field content. We have performed

systematic checks by calculating the series expansion to several higher orders

using Mathematica. Fortunately it is possible to give an analytic proof of
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crossing symmetry of the index, as we now describe.

2.2.2 Elliptic Beta Integrals and S-duality

The fundamental integral (2.17) can be recast in an elegant way in terms of

special functions known as elliptic Beta integrals. We start by recalling the

definition of the elliptic Gamma function, a two parameter generalization of

the Gamma function,

Γ(z; p, q) ≡
∏
j,k≥0

1− z−1 pj+1qk+1

1− z pjqk . (2.20)

For reviews of the elliptic Gamma function and of elliptic hypergeometric

mathematics the reader can consult [46–48]. Throughout this thesis we will

use the standard condensed notations

Γ(z1, . . . , zk; p, q) ≡
k∏
j=1

Γ(zj; p, q), (2.21)

Γ(z±1; p, q) = Γ(z; p, q)Γ(1/z; p, q) .

Two identities satisfied by the elliptic Gamma function that will be useful to

us are

Γ(z2; p, q) = Γ(±z,±√q z,±√p z,±√pq z; p, q) , (2.22)

Γ (pq/z; p, q) Γ (z; p, q) = 1 . (2.23)

(As an illustration of the shorthand (2.21), the rhs of (2.22) is a product of

eight Gamma functions.) Using the definition (2.20), it is straightforward to

show [50]

exp

(
∞∑
n=1

1

n

t2nzn − t4nz−n
(1− t3nyn)(1− t3ny−n)

)
= Γ(t2 z; p, q), (2.24)

exp

(
∞∑
n=1

1

n

2t6n − t3n(yn + y−n)

(1− t3nyn)(1− t3ny−n)
(zn + z−n)

)
= − z

(1− z)2

1

Γ(z±1; p, q)
,
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where

p = t3y, q = t3y−1 . (2.25)

With these preparations, the building blocks (2.9) for the index can be written

in the following compact form

Cαiαjαk = exp

(
∞∑
n=1

1

n
f chin χ3f (nαi, nαj, nαk)

)
= Γ(

t2√
v
a±1
i a±1

j a±1
k ; p, q),

ηαi = exp

(
∞∑
n=1

1

n
f vectn χadj(nαi)

)

=
1

∆(αi)

(p; p)(q; q)

4π
Γ(t2 v; p, q)

Γ(t2 v a±2
i ; p, q)

Γ(a±2
i ; p, q)

. (2.26)

Here we have defined ai = exp(iαi) and used

exp(
∞∑
n=1

1

n
f vectn ) = (p; p)(q; q) Γ(t2 v; p, q), (a; b) ≡

∞∏
k=0

(1− a bk) (2.27)

Again, the reader should keep in mind that the rhs of the first line in (2.26)

is a product of eight elliptic Gamma functions according to the condensed

notation (2.21).

Collecting all these definitions the fundamental integral (2.17) becomes

κΓ
(
t2v; p, q

) ˛ dz

z

Γ(t2 v z±2; p, q)

Γ(z±2; p, q)
Γ(

t2√
v
a±1b±1z±1; p, q)Γ(

t2√
v
c±1d±1z±1; p, q)

with pq = t6 , κ ≡ (p; p)(q; q)/4πi. As it turns out, this integral fits into a class

of integrals which are an active subject of mathematical research, the elliptic

Beta integrals

E(m)(t1, . . . , t2m+6) ∼
˛
dz

z

Γ(t1z, . . . t2m+6z; p, q)

Γ(z±2; p, q)
,

2m+6∏
k=1

tk = (pq)m+1(2.28)

Our integral is a special case of E(5). Elliptic Beta integrals have very interest-

ing symmetry properties. For instance the symmetry of E(2) is related to the

Weyl group of E7. Very recently van de Bult proved [49] that special cases of
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Symbol Surface Value

Cαβγ

|α〉

|β〉

|γ〉

Γ( t2√
v
a±1b±1c±1)

C γ
αβ

|α〉

|β〉
〈γ| iκ

∆(γ)
Γ(t2 v) Γ(t2 v c±2)

Γ(c±2)
Γ( t2√

v
a±1b±1c±1)

ηαβ

〈α|

〈β|

i κ
∆(α)

Γ(t2 v) Γ(t2 v a±2)
Γ(a±2)

δ̂(α, β)

Table 2.2: The structure constants and the metric in terms of elliptic Gamma
functions. For brevity we have left implicit the parameters of the Gamma
functions, p = t3y and q = t3y−1. We have defined a ≡ exp(iα), b ≡ exp(iβ),
and c ≡ exp(iγ). Recall also κ ≡ (p; p)(q; q)/4πi and ∆(α) ≡ (sin2 α)/π.
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the E(5) integral, which are equivalent to (2.28), are invariant under the Weyl

group of F4. In particular (2.28) is invariant under b ↔ c. This is theorem

3.2 in [49], with the parameters {t1,2,3,4, b} of [49] related to the parameters

{a, b, c, d, t2v} in our equation (2.28) by the substitution

t1 →
t2√
v
a b, t2 →

t2√
v
a/b, t3 →

t2√
v
c d, t4 →

t2√
v
c/d, b→ t2 v. (2.29)

This completes the proof of crossing symmetry of the fundamental integral

(2.17).

|α〉

Figure 2.7: Handle-creating operator Jα

The expressions for the structure constants and metric of the topological

algebra in terms of the elliptic Gamma functions are summarized in Table 2.2.

These expressions are analytic functions of their arguments, except for for the

metric ηαβ which contains a delta-function. One can try and use the results of

the theory of elliptic Beta integrals to represent the delta-function in a more

elegant way, indeed such a representation is sometimes available in terms of a

contour integral [55]. However, for generic choices of the parameters, the defini-

tion of [55] involves contour integrals not around the unit circle and thus using

this representation one presumably should also change the prescription (2.10)

for contracting indices. In the limit v → t the relevant contours do approach

the unit circle and the formalism of [55] yields elegant expressions. This limit

is however slightly singular. We discuss it in Appendix B.

As a simple illustration of the use of the expressions in Table 2.2 let us

compute the superconformal index of the theory associated to diagram (b) in

Figure 2.2. This is essentially the “handle-creating” vertex Jα of the TQFT,

Figure 2.7. We have

Jα = Cαβγη
βγ = κΓ

(
t2v
)

Γ

(
t2√
v
a±1

)2 ˛
dz

z

Γ(t2v z±2)

Γ(z±2)
Γ

(
t2√
v
z±2a±1

)
(2.30)
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Multivariate extensions of elliptic Beta integrals have appeared in the cal-

culation of the superconformal index for pairs of N = 1 theories related by

Seiberg duality [50]. Unlike our N = 2 superconformal cases, there is no con-

tinuous deformation relating two Seiberg-dual theories, and it is not a priori

obvious that their indices, evaluated at the free UV fixed points, should co-

incide – but it turns out that they do, thanks to identities satisfied by these

multivariate integrals [56]. See also [57]. In Appendix A we tackle the N = 4

case, evaluating the indices the S-dual pairs with gauge groups Sp(n) and

SO(2n + 1). Again S-duality predicts some new identities of elliptic Beta in-

tegrals, which we confirm to the first few orders in the t expansion. It appears

that there is a general connection between elliptic hypergeometric mathematics

and electric-magnetic duality of the index of 4d gauge theories.

2.3 Discussion

A rich class of 4d superconformal field theories arise by compactifying the 6d

(2, 0) theory on a punctured Riemann surface Σ [16], and this has inspired a

precise dictionary between 4d and 2d quantities [26–30]. In this chapter we

have added a new entry to this dictionary. Previous work has focussed on the

relation between the 4d theory on S4 (or more generally on the theory in the

Ω background) and Liouville theory on Σ. Here we have considered instead

the superconformal index [19], which can be viewed as the partition function

of the 4d theory on S3 × S1, with twisted boundary conditions labelled by

three chemical potentials. We have argued that the superconformal index is

evaluated by a topological QFT on Σ. In the A1 case we have computed

explicitly the structure constants of the topological algebra and checked its

associativity, using a rather non-trivial piece of contemporary mathematics

[49]. Physically this result can be regarded as a precise check that the protected

spectrum of operators is the same for the SU(2)NG theories related by the

generalized S-dualities of [16].

In the next chapter, we will compute the TQFT for the A2 class of theories.

S-dualities of the generalized A2 quivers leads to a strongly coupled SCFT with

E6 flavor symmetry. S-duality invariance of the superconformal index will

allow us to compute the index of this theory. This work will be extended to
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An generalized quivers with an independent characterization of the TQFT in

chapter 4. Finally, it would be illuminating to obtain a Lagrangian description

of the 2d TQFT from a twisted compactification of the (2, 0) theory on S3×S1,

and reproduce by that route the structure constants evaluated in this chapter.

We suspect that we are just scratching the surface of a general connection

between elliptic hypergeometric mathematics and S-duality. It is possible to

generate new elliptic hypergeometric identities by calculating the superconfor-

mal index of S-dual theories. Already the simplest S-dualities (from a physical

perspective), such as the SO(2n+ 1)/Sp(n) dualities in N = 4 SYM, lead to

identities that to the best of our knowledge have not appeared in the math-

ematical literature. One may wonder whether the logic can be reversed, and

new S-dualities discovered from known elliptic identities. Elliptic Beta inte-

grals are the most general known extensions of the classic Euler Beta integral,

and as such they are the natural mathematical objects to appear in the calcula-

tion of “crossing-symmetric” physical quantities. It is perhaps not coincidental

that the mathematics and the physics of the subject are being developed si-

multaneously, and we can look forward to a fruitful interplay between the two

viewpoints.
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Chapter 3

The Superconformal Index of

the E6 SCFT

In the last chapter we reviewed that the paradigmatic S-duality of N = 4 su-

per Yang-Mills is the simplest instance of a much more general web of duality

connections relating N = 2 4d superconformal field theories. This viewpoint

has been emphasized by Gaiotto [16], who introduced a large class of N = 2

SCFTs by compactifying the (2, 0) 6d theory on a Riemann surfaces Σ with

punctures. Different ways of cutting Σ into pairs of pants correspond to dif-

ferent S-duality frames for the 4d theory. A remarkable dictionary relates 4d

gauge theory quantities with calculations in 2d conformal field theory on Σ.

For example, the partition function of the gauge theory on S4, or more gener-

ally the Nekrasov instanton partition function [25], is reproduced exactly by

a Liouville or Toda correlation function on Σ [26, 27].

This dictionary was extended in the previous chapter based on [1], by

considering the superconformal index [19], which can be viewed as a twisted

partition function of the 4d gauge theory S3 × S1. The superconformal in-

dex counts the states of the 4d theory belonging to short multiplets, up to

equivalent relations that set to to zero all sequences of short multiplets that

may in principle recombine into long ones. By construction, the index is in-

variant under continuous deformations of the theory, and is also expected to

be independent of the S-duality frame. Assuming S-duality, it follows that

the index must be computed by a topological QFT living on Σ. In [1] this

TQFT structure was discussed for the generalized quiver gauge theories with

26



SU(2)k gauge group, which arise from compactifications on Σ of the A1 (2,0)

theory. Invariance of the index under S-duality translates into associativity of

the operator algebra of the 2d TQFT. In turn, associativity holds thanks to a

beautiful mathematical identity for an elliptic hypergeometric integral [49].

What distinguishes the A1 theories from their counterparts with An≥2 is

that in all duality frames they have a Lagrangian description. This makes it

easy to compute their superconformal index explicitly and to identify the struc-

ture constants of the 2d TQFT [1]. The situation for the generalized quiver

theories with higher rank gauge groups is qualitatively different: in some du-

ality frames the quivers contain intrinsically strongly-coupled blocks with no

Lagrangian description. The prototypical example of this phenomenon was

discussed by Argyres and Seiberg [58]1: the SYM theory with SU(3) gauge

group and Nf = 6 fundamental hypermultiplets has a dual description involv-

ing the strongly-coupled SCFT with E6 flavor symmetry [60]. In the absence

of a Lagrangian description for the E6 SCFT, it seems difficult to compute

its superconformal index and to define the TQFT structure for generalized

quivers with SU(3) gauge groups.

We solve this problem in this chapter. By demanding consistency with

Argyres-Seiberg duality, we are able to write down an explicit integral ex-

pression for the index of the E6 SCFT (equation (3.24)). Technically, this

is possible thanks to a remarkable inversion formula for a class of integral

transforms [55]. By construction, the resulting expression for the index is

guaranteed to be invariant under an SU(6)⊗SU(2) subgroup of the E6 flavor

symmetry. The index is seen a posteriori to be invariant under the full E6

symmetry, providing an independent check of Argyres-Seiberg duality itself.2

We proceed to define a TQFT structure for generalized quivers with SU(3)

gauge symmetries. We check associativity of the operator algebra, which is

equivalent to a check of S-duality for Gaiotto’s A2 theories. Most of our checks

are performed perturbatively, to several orders in an expansion in the chemical

potentials that enter the definition of the index. Conversely, S-duality implies

that associativity must hold exactly, so as a by-product of our analysis we

conjecture new identities between integrals of elliptic Gamma functions.

The chapter is organized as follows. In section 3.1.1 we set up the stage by

1See also [59] for more examples.
2For earlier checks of Argyres-Seiberg duality see [61] and [62].
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computing the superconformal index of SU(N) gauge theories in terms of the

elliptic Gamma functions. In section 3.1.2 the index of Nf = 6 SU(3) theory

is computed in the weakly-coupled frame and the usual S-duality invariance

of this index is discussed. In section 3.1.3 we use Argyres-Seiberg duality

to write down an explicit expression for the index of E6 SCFT; we check

perturbatively that the answer is E6 covariant and that it is compatible with

physical expectations about the Coulomb and Higgs branches of vacua. In

section 3.2 we check invariance under S-duality of the superconformal index for

the generalized SU(3) quiver theories, and we present the TQFT interpretation

of this index. In section 3.3 we briefly discuss our results. Four appendices

complement the text with technical details.

3.1 Argyres-Seiberg duality and the index of

E6 SCFT

The S-duality group of the N = 2 SU(2) gauge theory with four flavors is

SL(2,Z). The action of this group on the gauge coupling is generated by τ →
τ + 1 and τ → −1/τ . In Gaiotto’s description [16] this theory is constructed

by compactification of the 6d (2, 0) theory on a sphere with four punctures of

the same kind. Then, the S-duality group could be understood as the mapping

class group of this Riemann surface. The moduli space of the gauge coupling is

shown in figure 3.1 (a). We can see that a fundamental domain can be chosen

such that nowhere in the moduli space does the coupling take an infinite value.

For the case of N = 2 SU(3) gauge theory with 6 flavors, however, the

S-duality group is Γ0(2). The action of the S-duality on the complex coupling

is generated by the transformations τ → τ + 2 and τ → −1/τ . In Gaiotto’s

setup this theory is obtained by compactifying the (2, 0) theory on the sphere

with two punctures of one type and two of another. The mapping class group

of such a sphere is Γ0(2). The fundamental domain of this group is shown in

the figure 3.1 (b) and, unlike the SU(2) case, this does unavoidably contain a

point with infinite coupling. In [58], it was shown that this infinitely coupled

cusp could be described in terms of an SU(2) gauge group weakly-coupled to

a single hypermultiplet and a rank 1 interacting SCFT with E6 flavor sym-
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Figure 3.1: Moduli spaces for N = 2 SU(n) gauge theory with 2n flavors, (a)
for n = 2 and (b) for n = 3 (in fact, for any n > 2). The shaded region in (a)
is H/SL(2,Z) while in (b) it is H/Γ0(2), where H is the upper half plane.

metry. Figure 3.3 describes this duality pictorially. The SU(2) subgroup of

the flavor symmetry of the SCFT that is gauged commutes with the SU(6)

subgroup of E6. This SU(6) combined with SO(2) flavor symmetry of the

single hypermultiplet generates the full U(6) flavor symmetry of the original

SU(3) gauge theory. In other words, the SO(2) flavor symmetry of the single

hypermultiplet corresponds to the baryon number of the original SU(3) gauge

theory. The quarks of the SU(3) theory are charged ±1 under this U(1)B

while the quarks of the SU(2) theory are charged ±3 under the same.

The E6 SCFT has a Coulomb branch parametrized by the expectation

value of a dimension 3 operator u which is identified with Trφ3 of the dual

SU(3) theory, while the Trφ2 of the SU(3) theory corresponds to the Coulomb

branch parameter of the SU(2) gauge theory. The E6 CFT also has a Higgs

branch parametrized by the expectation value of dimension 2 operators X,

which transform in the adjoint representation of E6 (78). As shown in [62] the

Higgs branch operators obey a Joseph relation at quadratic order which leaves

a 22 complex dimensional Higgs branch. When coupled to the SU(2) gauge

group, the resulting Higgs branch has complex dimension 20. The dual SU(3)

theory also has a Higgs branch of complex dimension 20 and its Higgs operators

can be easily constructed by combination of squark fields. See appendix E for
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more details.

The moduli space might contain also other infinitely coupled cusps which

however are S-dual to the weakly-coupled cusp τ = i∞. This is the usual

S-dualty mapping the Nf = 6 SU(3) gauge theory to itself with some of the

U(1) flavor factors interchanged. This duality is represented in figure 3.2.

We proceed to compute the superconformal index of the SU(3) theory and,

by using the Argyres-Seiberg duality, of the interacting E6 SCFT.

3.1.1 Elliptic hypergeometric expressions for the index

The contribution to the integrand of (4.2) from hypers in a fundamental rep-

resentation of an SU(n) gauge group is

exp

(
∞∑
k=1

1

k
f chi

(
tk, vk, yk

) [
χf (U

k) + χf̄ (U
k)
])

=
n∏
i=1

Γ

(
t2√
v
a±1
i ; p, q

)
.

(3.1)

The contribution to the integrand of (4.2) from the vector multiplet of SU(n)

is

exp

(
∞∑
k=1

1

k
f vect

(
tk, vk, yk

)
χadj(U

k)

)
= (3.2)

=
[Γ(t2 v; p, q) (p; p)(q; q)]

n−1

∆(a)∆(a−1)

∏
i 6=j

Γ(t2 v ai/aj; p, q)

Γ(ai/aj; p, q)
.

We have defined the characters of the fundamental representation to be

χf =
n∑
i=1

ai, χf̄ =
n∑
i=1

1

a i
,

n∏
i=1

ai = 1 . (3.3)

The character of the adjoint representation is

χadj = χf χf̄ − 1 =
∑
i 6=j

ai/aj + n− 1 . (3.4)
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SU(3)y

U(1)bU(1)a

SU(3) SU(3)

U(1)b U(1)a

SU(3)z SU(3)y SU(3)z

Figure 3.2: SU(3) SYM with Nf = 6. The U(6) flavor symmetry is decom-
posed as SU(3)z⊗U(1)a⊕SU(3)y⊗U(1)b. S-duality τ → −1/τ interchanges
the two U(1) charges.

We have also defined

∆(a) =
∏
i 6=j

(ai − aj) . (3.5)

The Haar measure is given by

˛
SU(n)

dµ(a)f(a) =
1

n!

˛
Tn−1

n−1∏
i=1

dai
2πi ai

∆(a)∆(a−1)f(a)

∣∣∣∣∣∏n
i=1 ai=1

, (3.6)

where T is the unit circle. Whenever we gauge a symmetry we have a vector
multiplet associated to the integrated group and thus we will use the following
notation

Fa Ga ≡
[
2 Γ(t2 v; p, q)κ

]n−1

n!

˛
Tn−1

n−1∏
i=1

dai
2πi ai

∏
i 6=j

Γ(t2 v ai/aj ; p, q)

Γ(ai/aj ; p, q)
F (a) G

(
a−1

)∣∣∣∣∣∣∏n
i=1 ai=1

where κ ≡ (p; p)(q; q)/2. In what follows for the sake of brevity we will omit

the parameters p and q from the elliptic Gamma function, i.e. Γ(x) should

always be understood as Γ(x; p, q).

3.1.2 Weakly-coupled frame

We take the chiral multiplets to be in the fundamental and antifundamental

of the color and flavor. U(1)B rotates them into each other. The vector

multiplet is in the adjoint of the color. The SU(3) characters of the relevant
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representations are:

χf = z1 + z2 + z3 χf̄ =
1

z1

+
1

z2

+
1

z3

and χadj = χfχf̄ − 1 (3.7)

while writing down these characters, we have to impose z1z2z3 = 1.

Let z’s stand for the eigenvalues of the flavor group and x’s be the eigen-

values of the color group. The U(1)B charge is counted by the variable a. Let

us write down the characters of the representation of the matter

χhyp =
3∑
i=1

3∑
j=1

a zi xj +
3∑
i=1

3∑
j=1

1

a zi xj
. (3.8)

Using (3.1) the index contributed by the matter can be written in a closed

form as

Ca,x,y =
3∏
i=1

3∏
j=1

Γ

(
t2√
v

(a xi yj)
±1

)
. (3.9)

The index for the SU(3) gauge theory with six hypermultiplets is then given
by the following contour integral.

Ia,z;b,y = Cb,y,x Ca,z
x = (3.10)

2

3
κ2Γ(t2v)2

˛
T2

2∏
i=1

dxi
2πi xi

3∏
i=1

3∏
j=1

Γ(
t2√
v

(
azi
xj

)±1)Γ(
t2√
v

(b yi xj)
±1)

∏
i 6=j

Γ(t2v
xi
xj

)

∏
i 6=j

Γ(
xi
xj

)

By expanding this integral in t one can show that it is symmetric under

interchanging the two U(1) factors (see appendix C),

a ↔ b . (3.11)

Interchanging the two U(1)s is equivalent to performing a usual S-duality

between a weakly-coupled and infinitely-coupled points of the moduli space

and thus we expect the index to be invariant under this operation.3

One can analytically prove this statement in a special case. Notice that if

3The integral (3.10) is an SU(3) generalization of the SU(2) integral in [1] for which the
analogous statement to (3.11) has an analytic proof [49]. It is easy to generalize [3.10,3.11]
for SU(n) theories with arbitrary n, see appendix F.
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t = v, the integral (3.10) is given by

Ia,z;b,y|v=t = I
(2)
A2

(
1| t 3

2a−1z−1, t
3
2 by; t

3
2az, t

3
2 b−1y−1

)
, (3.12)

where [56]

I
(m)
An

(Z|t0, . . . , tn+m+1;u0, . . . , un+m+1; p, q) = (3.13)

2n

n!
κn
˛
Tn−1

n−1∏
i=1

dxi
2πi xi

∏n
i=1

∏m+n+1
j=0 Γ(tj xi, uj/xi; p, q)∏
i 6=j Γ(xi/xj; p, q)

∣∣∣∣∣∏n
i=1 xi=Z

.

If the integral I
(m)
An

(Z| . . . ti . . . ; . . . ui . . .) satisfies the condition that
∏m+n+2

i=1 tiui =
(pq)m+1 then due to [56], the following theorem holds

I
(m)
An

(Z| . . . ti . . . ; . . . ui . . .) = I
(n)
Am

(
Z| . . . T

1
m+1

ti
. . . ; . . .

U
1

m+1

ui
. . .

)
m+n+2∏
r,s=1

Γ (trus) , (3.14)

where T ≡∏m+n+2
r=1 tr and U ≡∏m+n+2

r=1 ur.
4 Coincidently, our integral (3.10)

satisfies the above requirement and applying the theorem we can transform it
into

I
(2)
A2

(
1|t 3

2 bz, t
3
2 a−1y−1; t

3
2 b−1z−1, t

3
2 ay

)
= I

(2)
A2

(
1|t 3

2 b−1z−1, t
3
2 ay; t

3
2 bz, t

3
2 a−1y−1

)
.(3.15)

Note that the factor
∏m+n+2

r,s=1 Γ(trus) in (3.14) reduces to 1 after pairwise

cancelations using the property (2.23). What we have effectively achieved

through this transformation is that we have exchanged the U(1) quantum

numbers of the matter charged under the SU(3)2 flavor. This in particular

implies that both the SU(3) flavor groups are on the same footing and are not

associated with separate U(1)’s.

3.1.3 Strongly-coupled frame and the index of E6 SCFT

In the strongly-coupled S-duality frame, figure 3.3, we have a fundamental

hypermultiplet coupled to an SU(2) gauge theory. This gauge group is identi-

fied with an SU(2) subgroup of the E6 flavor symmetry of a strongly-coupled

rank one SCFT. We do not know the field content of the strongly-coupled

4This identity was extensively used in [50] to show that certain theories related by
Seiberg duality have equal superconformal indices [51]. In this context the authors of [57, 63]
applied the elliptic hypergeometric techniques to a large class of Seiberg dualities.
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SU(3) U(1)SU(3) ⊃ SU(2)E6

SU(3)z SU(3)y SU(3)z

SU(3)y

Figure 3.3: Argyres-Seiberg duality for SU(3) SYM with Nf = 6.

rank 1 E6 SCFT. This implies that we can not write down the “single letter”

partition function for that theory and, a-priori, can not directly compute its

index. In what follows we will use the index computed in the weakly-coupled

frame (3.10) and the above statements about Argyres-Seiberg duality to infer

the index of the E6 SCFT.

Let C(E6) denote the index of rank 1 E6 SCFT [60]. The maximal subgroup

of E6 is SU(3)3. Two among these three SU(3)’s are identified with the two

SU(3) factors in the flavor group of the weakly-coupled theory, see figure 3.3.

Let the additional SU(3) be denoted by w. The fundamental representation

of E6 is decomposed under SU(3)w ⊗ SU(3)y ⊗ SU(3)z as,

27E6 = (3, 3̄,1)⊕ (3̄,1,3)⊕ (1,3, 3̄) . (3.16)

Thus, the character of the E6 fundamental fields is,

χ27 =
3∑

i,j=1

(
wi
yj

+
zi
wj

+
yi
zj

)
,

3∏
i=1

yi =
3∏
i=1

zi =
3∏
i=1

wi = 1 . (3.17)

The index C(E6) is thus a function of w, y, and z. The S-duality picture
suggests that we should decompose SU(3)w as SU(2)e⊗U(1)r. This amounts
to the change of variables {w1, w2, w2} → {er, re , 1

r2}, for which the character
of the fundamental of E6 becomes

χ27 = (er +
r

e
+

1

r2
)(

1

y1
+

1

y2
+

1

y3
) + (

1

er
+
e

r
+ r2)(z1 + z2 + z3) +

3∑
i,j=1

yi
zj

(3.18)

Thus, the index of the E6 SCFT can be denoted as C(E6) ((e, r),y, z). In the
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above notations the index of the additional hypermultiplet of the theory is

Cs, e = Γ

(
t2√
v
e±1 s±1

)
. (3.19)

Thus, one can write the superconformal index of the theory in the strongly-

coupled frame as

Î (s, r; y, z) = Cs
eC

(E6)
(e,r),y,z = (3.20)

= κΓ(t2v)

˛
T

de

2πi e

Γ(t2ve±2)

Γ(e±2)
Γ(

t2√
v
e±1 s±1) C(E6) ((e, r),y, z) .

By Argyres-Seiberg duality we have to equate

Î (s, r; y, z) = Ia,z;b,y , (3.21)

where Ia,z;b,y is given in (3.10), and we appropriately identify the U(1) charges,

s = (a/b)3/2, r = (a b)−1/2 . (3.22)

It so happens that the integral of equation (3.20) has special properties
which allow us to invert it (see appendix D and [55] for the details). One can
write the following

κ

˛
Cw

ds

2πi s

Γ(
√
v
t2 w

±1 s±1)

Γ( vt4 , s
±2)

Î (s, r;y, z) = Γ(t2v w±2) C(E6) ((w, r),y, z) (3.23)

where the contour Cw is a deformation of the unit circle such that it encloses
s =

√
v
t2
w±1 and excludes s = t2√

v
w±1 (for precise definition and details see

appendix D and [55]). The above expression for the index C(E6) does sat-
isfy (3.20), but a-priori does not uniquely follow from it. However, as we will
explicitly see below, (3.23) is consistent with what is expected from E6 SCFT.
We will comment on this issue in the end of this section. We can thus use
the Argyres-Seiberg duality (3.21) to write a closed form expression for the E6
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index

C(E6) ((w, r),y, z) =
2κ3Γ(t2v)2

3 Γ(t2v w±2)

˛
Cw

ds

2πi s

Γ(
√
v
t2 w

±1 s±1)

Γ( vt4 , s
±2)

×

×
˛
T2

2∏
i=1

dxi
2πi xi

3∏
i=1

3∏
j=1

Γ

 t2√
v

(
s

1
3 zi
xj r

)±1
Γ

 t2√
v

(
s−

1
3 yi xj
r

)±1
∏
i6=j

Γ

(
t2v

xi
xj

)
∏
i 6=j

Γ

(
xi
xj

) .

(3.24)

One can rewrite the above expression without using the special integration

contour. The integration contour Cw can be split into five pieces: a con-

tour around the unit circle T, two contours encircling the simple poles of

Γ(
√
v
t2
w±1 s±1) at s =

√
v
t2
w±1, and two contours encircling in the opposite di-

rection the simple poles of Γ(
√
v
t2
w±1 s±1) at t2√

v
w±1. Using the fact that elliptic

Gamma function satisfies limz→1(1− z)Γ(z; p, q) = 1/(p; p)(q; q) we have

C(E6) ((w, r),y, z) =
κ

Γ(t2vw±2)

˛
T

ds

s

Γ(
√
v
t2
w±1 s±1)

Γ( v
t4
, s±2)

Î (s, r; y, z) (3.25)

+
1

2

Γ(w−2)

Γ(t2vw−2)

[
Î
(
s =

√
vw

t2
, r; y, z

)
+ Î

(
s =

t2√
vw

, r; y, z

)]
+

1

2

Γ(w2)

Γ(t2vw2)

[
Î
(
s =

√
v

t2w
, r; y, z

)
+ Î

(
s =

t2w√
v
, r; y, z

)]
.

The index (3.24) encodes some information about the matter content of the

E6 theory. To extract this information it is useful to expand the index (3.24)

in the chemical potentials. We define an expansion in t as

C(E6) ≡
∞∑
k=0

ak t
k . (3.26)
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The first several orders in this expansion have the following form

a0 =1

a1t =a2t
2 = a3t

3 = 0

a4t
4 =

t4

v
χE6

78

a5t
5 =0

a6t
6 =− t6χE6

78 − t6 + t6v3

a7t
7 =

t7

v

(
y +

1

y

)
χE6

78 +
t7

v

(
y +

1

y

)
− t7v2

(
y +

1

y

)
a8t

8 =
t8

v2

(
χE6

sym2(78) − χE6
650 − 1

)
+ t8v + t8v

a9t
9 =− t9

(
y +

1

y

)
χE6

78 − 2t9
(
y +

1

y

)
+ t9v3

(
y +

1

y

)
a10t

10 =− t10

v
(χE6

78 χ
E6
78 − χE6

650 − 1) +
t10

v

(
y2 + 1 +

1

y2

)
χE6

78+

+
t10

v

(
y +

1

y

)2

− t10v2

(
y +

1

y

)2

a11t
11 =

t11

v2

(
y +

1

y

)
(χE6

78 χ
E6
78 − χE6

650 − 1) + t11v

(
y +

1

y

)
+ t11v

(
y +

1

y

)
.

(3.27)

The adjoint representation of E6 , 78, decomposes in the following way in

terms of its maximal SU(3)3 subgroup

78 = (3,3,3) + (3̄, 3̄, 3̄) + (8,1,1) + (1,8,1) + (1,1,8) , (3.28)

and 650 of E6 is composed as

650 = 27× 27− 78− 1 . (3.29)

The Higgs branch operators X of E6 theory are in the adjoint (78) represen-

tation of E6 flavor algebra. The terms of the index proportional to χE6
78 are

forming the following series,[
t4

v
− t6 +

t7

v

(
y +

1

y

)
− t9

(
y +

1

y

)
+ · · ·

]
χE6

78 , (3.30)
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which is the index of a multiplet with ∆ = 2, j = j̄ = 0 and r = 0 and of its

derivatives (see appendix C.2 of [2]). Taken as a “letter” this multiplet has

the following “single letter” partition function

t4/v − t6
(1− t3y)(1− t3/y)

, (3.31)

which matches the quantum numbers of the Higgs branch operators on the

weakly-coupled side of the Argyres-Seiberg duality if we follow the identifica-

tions listed in [62].

The E6 singlet part of the index contains yet another series,

t6v3 − t7v2

(
y +

1

y

)
+ t8v + t9v3

(
y +

1

y

)
+ · · · . (3.32)

This series forms the index of a chiral multiplet with ∆ = 3, j = j̄ = 0 and

r = 3 together with its derivatives (appendix C.1 of [2])

t6v3 − t7v2
(
y + 1

y

)
+ t8v

(1− t3y)(1− t3/y)
. (3.33)

Since the Coulomb branch operator, u, of E6 theory (which is identified as

Trφ3 of the dual SU(3) theory) has exactly the same quantum numbers, this

multiplet is identified as the Coulomb branch operator.

The remaining singlet part of the index,

− t6 +
t7

v

(
y +

1

y

)
+ t8v − 2t9

(
y +

1

y

)
+ · · · , (3.34)

is just the index of the stress tensor multiplet and its derivatives (appendix

C.3 of [2])

−t6 + t7

v

(
y + 1

y

)
+ t8v − t9

(
y + 1

y

)
(1− t3y)(1− t3/y)

. (3.35)

Besides the matter content, the index also provides possible constraints

among operators. For example, it was argued [62] that the Higgs branch

operators of the E6 theory should obey the Joseph relations,

(X⊗ X)|I2 = 0 , (3.36)
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where the representation I2 is defined as

sym2(V (adj)) = V (2adj)⊕ I2 . (3.37)

For E6, adj = 78, 2adj = 2430 and then sym2(78) = 2430⊕650⊕1. Thus,

in our case

I2 = 650⊕ 1 . (3.38)

The Joseph relation in E6 theory reads,

(X⊗ X)|650⊕1 = 0 , (3.39)

which means that these operators should not appear in the index. The index

of X is t4/v, then the index of X ⊗ X is t8/v2. (3.27) shows that our index is

consistent with the Joseph relation.

Further constraints can also be derived from the higher order terms in (3.27).

Let us consider the index at order t10. The meaning of each term is clear.

The first term corresponds to operators X⊗ (QX) with the constraint Q(X⊗
X)650+1 = 0 which is a descendant of Joseph relation above (3.39). The last

three terms are derivative descendants of t4

v
χE6

78 , t7

v

(
y + 1

y

)
and −t7v2

(
y + 1

y

)
respectively. However, terms of the form

t10v2χE6
78 , (3.40)

which would be corresponding to the Higgs⊗Coulomb operators are absent.

This fact implies the constraint

X⊗ u = 0 . (3.41)

This is consistent with the fact that the E6 theory has rank 1. The absence of

− t10

v
χE6

78 also implies the constraint

X⊗ T = 0 , (3.42)

where T is the stress tensor. The structure of the index at order t11 is consistent

with these two constraints.

Finally, let us comment on the uniqueness of our proposal. In principle,
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the index (3.24) produced by the construction of this section might differ

from the true index of the E6 SCFT: C
(E6)
true ((e, r),y, z) = C(E6)((e, r),y, z) +

δC((e, r),y, z), with δC satisfying

˛
T

de

2πi e

Γ( t2√
v
e±1s±1)Γ(t2v e±2)

Γ(e±2)
δC((e, r),y, z) = 0 . (3.43)

At this stage we are not able to rigorously rule out such a possibility. However,

the E6 covariance of our proposal, its consistency with physical expectations

about protected operators and the further S-duality checks performed in the

following section, make us confident that we have identified the correct index

of the E6 SCFT.

Note that the expression for the index (3.24) is not explicitly given in

terms of E6 characters. However, as one learns from the perturbative ex-

pansion (3.27), the characters of SU(3)y ⊗ SU(3)z ⊗ SU(2)w ⊗ U(1)r always

combine into E6 characters. Essentially, since the weakly-coupled frame has

really SU(6) ⊗ U(1) flavor symmetry we can write an expression for the E6

index which has a manifest SU(6) ⊗ SU(2) symmetry,5 but not the full E6.

The fact that just by assuming Argyres-Seiberg duality we obtain an index

for a theory with an E6 flavor symmetry and with a consistent spectrum of

operators is a non-trivial check of Argyres-Seiberg duality.

3.2 S-duality checks of the E6 index

In the previous section we have discussed the superconformal index of the

Nf = 6 SU(3) theory and of its strongly-coupled dual. One can obtain this

theory by compactifying a (2, 0) 6d theory on a sphere with four punctures,

two U(1) punctures and two SU(3) punctures. The different S-duality frames

are then given by the different degeneration limits of this Riemann surface.

The weakly-coupled frames are obtained by bringing together one of the U(1)

punctures and one of the SU(3) punctures, and the strongly-coupled frame is

obtained by colliding the two SU(3) (U(1)) punctures. The coupling constant

of the theory is related to the cross ratio of the four punctured sphere.

5The fact that this symmetry can be manifestly seen in the expression for the index is
very reminiscent of the construction of the E6 symmetry using multi-pronged strings in [64].
It is very interesting to understand whether these facts are related.
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In [16] Gaiotto suggested to generalize this picture by considering general

Riemann surfaces with an arbitrary numbers of punctures of different types

(two types in case of the SU(3) theories). The claim is that all theories with

the same number and type of punctures and same topology of the Riemann

surface are related by S-dualities. The immediate consequence of this claim

for the superconformal index is that all such theories have to have the same

index as it is independent of the values of the coupling, i.e. the moduli of the

Riemann surface. This implies that the superconformal index is a topological

invariant of the punctured Riemann surface. It was claimed in [1] that the

superconformal index can be actually interpreted as a correlator in a two

dimensional topological quantum field theory. The structure constants of this

TQFT are given by the index of the three punctured sphere and the contraction

of indices (i.e. metric) is gauging of the flavor symmetries. The associativity of

the algebra generated by the structure constants is equivalent to the invariance

of the index of four punctured spheres under pair-of-pants decomposition into

two three punctured spheres. The structure constants and the metric were

constructed and the associativity was explicitly verified for the SU(2) case.

In this section we will make the same analysis for the SU(3) case. We

have two types of punctures, associated to U(1) and SU(3) flavor symmetries.

There are thus different three point functions one can construct. The index

of the theory on a sphere with three SU(3) punctures, i.e. the index of the

E6 theory, is a structure constant which we will denote by C
(333)
x,y,z and it is just

given by (3.24),

C(333)
x,y,z = C(E6)

((√
x1

x2

,
√
x1x2

)
,y, z

)
. (3.44)

This vertex corresponds to the E6 theory which has rank one, and thus we

will refer to it as a rank 1 vertex. We will denote by C
(133)
x,y,a the index of the

sphere with two SU(3) punctures and one U(1) puncture. This is a free theory

consisting of a hypermultiplet in fundamental of two SU(3) flavor groups and

its value is given by (3.9),

C(133)
a,x,y =

3∏
i,j=1

Γ

(
t2√
v

(axiyj)
±
)
. (3.45)
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This vertex corresponds to a free, rank 0, theory and we will refer to it as

rank zero structure constant. Later on we will define yet another three point

function, formally associated to a sphere with two U(1) punctures and one

SU(3) puncture. This vertex will have effective rank −1. The metric of the

model, ηx,y, is defined as

ηx,y =
2

3
κ2 Γ2(t2v)

∏
16i<j63

Γ

(
t2v
(
xi
xj

)±)
Γ

((
xi
xj

)±) ∆̂(x−1,y) , (3.46)

where ∆̂(x−1,y) is a δ-function kernel defined by

˛
T2

2∏
i=1

dxi
2πi xi

∆̂(x,w) f(x) = f(w) , w ∈ T2 . (3.47)

The indices are contracted as follows

A...u...B...u... ≡
˛
T2

2∏
i=1

dui
2πiui

A...u...B...u...

∣∣∣∣∣∏3
i=1 ui=1

. (3.48)

Following these definitions the superconformal indices of all the SU(3) gener-

alized quivers are obtained by contracting the structure constants in different

ways.

For the S-duality to hold, and subsequently for the structure constants to

have a TQFT interpretation, the algebra generated by these objects has to be

associative. We proceed to verify this fact.

(333)− (333) associativity

Let us consider the generalized quiver with genus zero and four SU(3) punc-

tures. The index should be invariant under the permutation of the four SU(3)

characters,

I3333(x,y; w, z) = C(333)
x,y,uη

u,vC(333)
v,z,w = C(333)

x,z,uη
u,vC(333)

v,y,w . (3.49)
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x y

z

x y

a

x a

b

C
(333)
x,y,z C

(133)
a,x,y C

(113)
a,b,x

Figure 3.4: The three structure constants of the TQFT. The dots represent
U(1) punctures and the circled dots SU(3) punctures.

At order O(t4) we find ,

I3333 ∼ t4
[

1

v
(χ8(x) + χ8(y) + χ8(z) + χ8(w)) + v2

]
, (3.50)

and at order O(t6),

I3333 ∼ t6
[
−(χ8(x) + χ8(y) + χ8(z) + χ8(w)) + 3v3

]
. (3.51)

These axpressions are symmetric under the exchange x ↔ y ↔ z ↔ w. The

associativity can be checked to hold to higher orders as well.

(333)− (331) associativity

Let us consider the generalized quiver with genus zero, three SU(3) punctures

and one U(1) puncture. The index should be invariant under permutations of

the three SU(3) characters

I3331(a,x; y, z) = C(133)
a,x,uη

uvC(333)
v,y,z = C(133)

a,y,uη
uvC(333)

v,x,z . (3.52)

We also expand the integrand in t around t = 0. The first non-trivial check is

for the coefficient of I3331 at order O(t4),

I3331 ∼ t4
[

1

v
(χ8(x) + χ8(y) + χ8(z) + 1) + v2

]
, (3.53)
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which is indeed symmetric under x↔ y↔ z. At order O(t6),

I3331 ∼
t6

v3/2

(
a−3 + a−1χ3(x)χ3(y)χ3(z) + aχ3(x)χ3(y)χ3(z) + a3

)
(3.54)

−t6 (χ8(x) + χ8(y) + χ8(z) + 1) + 2t6v3 ,

which is also symmetric under x↔ y↔ z. Again, we can perform systematic

checks to arbitrary high order in t.

The (311) three point function and (311) − (331) associa-

tivity

The index of the Nf = 6 SU(3) theory in the strongly-coupled frame is given

in terms of an integral over an SU(2) character. Thus, we can not write it

using the structure constants and the metric we defined in the beginning of

this section. The strongly-coupled frame is obtained when two U(1) punctures

collide and thus in what follows we will formally define a structure constant

with two U(1) characters and an SU(3) character such that when contracted

with the E6 structure constant using the metric above it will produce the index

of the strongly-coupled frame.

Let us rewrite the index in the strongly-coupled frame,

Î (s, r; y, z) = κ Γ(t2v)

˛
T

de

2πi e

Γ( t2√
v
e± s±)

Γ(e±2)
Γ(t2v e±2) C ((e, r),y, z)(3.55)

as rank one (E6) (333) and rank −1 (113) vertices contracted

Î (a, b; y, z) = C
(113)
a,b,x η

x,x′ C
(333)
x′,y,z = (3.56)

2

3
κ2 Γ(t2v)2

˛
T2

2∏
i=1

dxi
2πi xi

∏
i 6=j

Γ(t2v xi/xj)

Γ(xi/xj)
C(113)

(
a, b,x−1

)
C(333) (x,y, z)

For this we define

C(113)(a, b,x−1) =
3

2κΓ(t2v)

˛
T

de

2πi e

Γ( t
2
√
v
e±1 s±1) Γ(t2v e±2)

Γ(e±2)

∏
i6=j

Γ(xi/xj)

Γ(t2v xi/xj)
∆̂(x,w)

(3.57)

Here, w = (e, r) with e an SU(2) character and r a U(1) character. The
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U(1) charges are related as in (3.22), s = (a/b)3/2 and r = (a b)−1/2. ∆̂(x,w)

is a δ-function kernel defined in (3.47). The (113) vertex has effective rank

−1. Using the above definition the TQFT algebra is well defined with all the

contractions being SU(3) integrals.
The associativity of (311) vertex contracted with a (333) vertex is achieved

by construction: remember that we obtained the index of E6 SCFT by re-
quiring this property. Let us check the associativity of (331) contracted with
(113)

I(a, b; c,y) = C
(113)
a,b,x η

x,x′ C
(331)
x′,y,c = (3.58)

2

3
κ2 Γ(t2v)2

˛ 2∏
i=1

dxi
2πi xi

∏
i6=j

Γ(t2v xi/xj)

Γ(xi/xj)
C(113)

(
a, b,x−1

) ∏
i,j

Γ(
t2√
v

(c xi yj)
±1)

=
3∏
i=1

Γ

(
t2√
v

(c yi
r2

)±1
)
×

κΓ(t2v)

˛
de

2πi e

Γ(t2v e±2)

Γ(e±2)
Γ

(
t2√
v
s±1 e±1

)
Γ

(
t2√
v

(c r yi)
±1
e±1

)
This is exactly the index of SU(2) Nf = 4 (the fourth line in (3.58)) with

a decoupled hypermultiplet in the fundamental of an SU(3) flavor (the third

line in (3.58)). Remembering (3.22) and the results of [1, 49] it is easy to show

that there is a permutation symmetry between the three U(1) punctures a, b

and c,

a ↔ b ↔ c . (3.59)

Using the definition (3.57) the index of a sphere with four U(1) punctures

is singular. However, we do not have a physical interpretation of this surface

and it does not appear in any decoupling limit of a physical theory. Thus,

making sense of this surface is not essential.

We have shown that the structure constants define an associative algebra

and thus define a TQFT. In particular the superconformal index of theories

with equal genus and equal number/type of punctures is the same in agreement

with S-duality.
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Figure 3.5: The relevant four-punctured spheres for A2 theories. The three
different degeneration limits of a four-punctured sphere correspond to different
S-duality frames. For example, in (a) two of the degeneration limits (when
a U(1) puncture collides with an SU(3) puncture) correspond to the weakly-
coupled Nf = 6 SU(3) theory, the third limit (when two like punctures collide)
corresponds to the Argyres-Seiberg theory. In (d) the degeneration limits
correspond to the different duality frames of SU(2) SYM with Nf = 4 theory
plus a decoupled hypermultiplet.

3.3 Discussion

In this chapter we have obtained an explicit expression for the superconformal

index of the strongly-coupled SCFT with an E6 flavor symmetry [60]. The

strategy is to use the Argyres-Seiberg duality, which relates a weakly-coupled

theory, index of which can be easily obtained through the Lagrangian descrip-

tion of the theory, and E6 SCFT with part of the global symmetry gauged.

The index of the two theories should be the same. Thus, one obtains the index

of the E6 theory by “inverting” the gauging, see (3.24). Upon gauging a flavor

symmetry one looses information about the theory by projecting on gauge in-

variant states. However, what allows us to “invert” the gauging in our case is

the fact that additional matter is coupled to the SU(2) gauge group along with

the E6 SCFT, and thus effectively preserves enough information to reconstruct

the complete index of E6 SCFT. We do not have a physical interpretation of

the expression for the index (3.24) and it would be very interesting to find

such an interpretation.

In principle one can try to use the same techniques to obtain the super-

conformal index for other strongly-coupled SCFTs of [16]. However, the gen-

eralization is not completely straightforward. Let us discuss the case of the
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E7 SU(4) ⊃ SU(3)

SU(2)

SU(4)

SU(2)SU(4) SU(2) U(1)

SU(4)

SU(2)

Figure 3.6: An Argyres-Seiberg duality relating a Lagrangian theory (left
quiver) with a theory containing a strongly-coupled E7 piece (right quiver).

E7 theory [42, 58, 65] as an example. To obtain the E7 SCFT we can apply

Argyres-Seiberg duality to a Lagrangian theory with SU(4) ⊗ SU(2) gauge

group, with a single hypermultiplet in the bi-fundamental representation and

six hypermultiplets in the fundamental representation of SU(4). The Argyres-

Seiberg dual of this theory involves an E7 strongly-coupled piece, with an

SU(3) subgroup of E7 gauged. The theory has a second gauge group factor

SU(2) and two hypermultiplets: one in the fundamental of SU(2) and the

in bi-fundamental of the two gauge groups. See figure 3.6. The index of the

weakly-coupled theory can be easily written down,

Iweak = κΓ(t2v)

˛
T

de

2πi e

Γ(t2ve±2)

Γ(e±2)
× (3.60)

1

3
κ3 Γ(t2v)3

˛
T3

3∏
i=1

dui
2πi ui

∏
i 6=j

Γ(t2v ui
uj

)

Γ( ui
uj

)
Γ(

t2√
v

(e±1 ui a)±1) ×

4∏
i=1

4∏
j=1

Γ(
t2√
v

(yj ui b)
±1)

4∏
i=1

2∏
j=1

Γ(
t2√
v

(zj ui c)
±1) .

The index of the dual theory is given by

Istrong = κΓ(t2v)

˛
T

de

2πi e

Γ(t2ve±2)

Γ(e±2)
Γ(

t2√
v
e±1 s±1) × (3.61)

2

3
κ2 Γ(t2v)2

˛
T2

2∏
i=1

dui
2πi ui

∏
i 6=j

Γ(t2v ui
uj

)

Γ( ui
uj

)

3∏
i=1

Γ(
t2√
v

(e±1 uim)±1) ×

C(E7)
(
(ui, r)SU(4),ySU(4), zSU(2)

)
.
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One can invert the SU(2) integral by the same techniques we used for the

E6 index, but there is no simple inversion formula known to us for the SU(3)

integral. To obtain a closed form for the index of the strongly-coupled CFTs

appearing in higher rank theories one has to learn how to “invert the super-

conformal tails”. In the next chapter we bypass this problem and conjecture

an independent microscopic description of this TQFT and generalize it to the

case of An. Finally, from a pure mathematics viewpoint, we have seen that

S-duality implies a number of identities that must be obeyed by integrals of

elliptic Gamma functions and that we have checked perturbatively. We collect

the exact identities in appendix F. It would be nice to find analytic proofs.
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Chapter 4

The 4d Superconformal Index

from q-deformed 2d Yang-Mills

In this chapter we describe a new powerful duality, relating physics in four and

in two dimensions. We will argue that for a large class of four-dimensional

superconformal gauge theories, non-trivial information about the operator

spectrum is captured by correlators of a two-dimensional non-supersymmetric

gauge theory. The 4d side of the duality is generically strongly-coupled, and

difficult to analyze directly; on the other hand calculations on the 2d side will

be explicit and algorithmic. Thus our conjecture gives new information about

strongly-coupled 4d field theories.

Our proposal is in the same spirit as the Alday-Gaiotto-Tachikawa (AGT)

relation between the partition function of a 4dN = 2 gauge theory on S4 and a

correlator in 2d Liouville/Toda theory [26, 27]. In our case, the 4d observable

is a (twisted) supersymmetric partition function of an N = 2 superconfor-

mal field theory on S3 × S1, also known as the superconformal index. We

will focus on a “reduced” index that depends on a single fugacity q. On the

2d side, instead of Liouville/Toda we have the zero-area limit of q-deformed

Yang-Mills theory. The topological nature of this 2d theory dovetails with the

independence of the 4d index on the gauge theory moduli.

We begin by reviewing the 4d side of the duality. The full N = 2 super-

conformal index is defined as [19, 66]

I = Tr(−1)Fp
E−R

2
+j1q

E−R
2
−j1u−(r+R) , (4.1)
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where the trace is over the states of the theory on S3 (in the usual radial

quantization) and F the fermion number. The symbol E stands for the con-

formal dimension, (j1, j2) for the Cartan generators of the SU(2)1 ⊗ SU(2)2

isometry group, and (R , r) for the Cartan generators of the SU(2)R ⊗ U(1)r

R-symmetry. The fugacities p, q, and u keep track of the maximal set of quan-

tum numbers commuting with a single real supercharge, Q ≡ Q̃1−̇, which with

no loss of generality has been chosen to have R = 1
2
, r = −1

2
, j1 = 0, j2 = −1

2

and (of course) E = 1
2
. Only states that obey 2{Q,Q†} = E−2j2−2R+r = 0

contribute to the index. Note that the variables p, q, and u are related to t, y, v

of previous chapters as p = t3y, q = t3

y
and u = v

t
.

For a theory with a weakly-coupled Lagrangian description the index is

computed explicitly by a matrix integral,

I(p, q, u;V ) =

ˆ
[dU ] (4.2)

exp

(
∞∑
n=1

1

n

∑
j

f (j)(pn, qn, un)χRj(U
n, V n)

)
.

Here U denotes an element of the gauge group, with [dU ] the invariant Haar

measure, and V an element of the flavor group. The sum is over the different

N = 2 supermultiplets appearing in the Lagrangian, with Rj the represen-

tation of the j-th multiplet under the flavor and gauge groups and χRj the

corresponding character. The functions f (j) are the “single-letter” partition

functions, f (j) = f vect or f (j) = f chi according to whether the j-th multiplet

is an N = 2 vector or N = 2 1
2
-hypermultiplet. They are easily evaluated

[19, 66]:

f vect(p, q, u) =
(u− 1

u
)
√
pq − (p+ q) + 2pq

(1− p)(1− q) , (4.3)

f chi(p, q, u) =
(pq)

1
4

1√
u
− (pq)

3
4
√
u

(1− p)(1− q) . (4.4)

We will focus on a reduced index, by setting

u = 1, p = q , (4.5)
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which leads to the significant simplification

f vect =
−2q

1− q , f chi =
q

1
2

1− q . (4.6)

We consider a class of N = 2 4d superconformal theories (SCFTs) constructed

from a set of elementary building blocks [16]. The building blocks are isolated

SCFTs with flavor symmetry G1 ⊗G2 ⊗G3, Gi ⊆ SU(N) for given N . In the

simplest case of N = 2, the only building block is the free 1
2
-hypermultiplet in

the tri-fundamental representation of the SU(2)3 flavor group. For N > 2 most

of the building blocks are intrinsically strongly-interacting theories with no La-

grangian description. One can “glue together” two building blocks by gauging

a common SU(N) flavor symmetry. Iterating this procedure one constructs

a large class of N = 2 gauge theories, the SU(N) “generalized quivers” [16].

There is a geometric interpretation of this construction, where one regards

the building blocks as three-punctured spheres, with the punctures associated

to the flavor symmetries; the gluing operation is performed by connecting the

punctures with cylinders. The complex structure moduli of the resulting punc-

tured Riemann surface correspond to the complexified gauge couplings. The

same punctured Riemann surface can often be obtained by following several

different gluing paths (different pairs-of-pants decompositions). The general-

ized quiver theories associated to different decompositions of the same surface

are related by S-dualities [16].

The index of a generalized quiver can be written in terms of the index of

its constituents. We parametrize the index of an elementary building block

(3-punctured sphere) by “structure constants” IN(x1,x2,x3) where xi are

fugacities dual to the Cartan subgroup of Gi: except in special cases these are

a priori unknown functions. On the other hand we can easily write the index

ηN(x) of the SU(N) vector multiplets used in the gluing (propagators),

ηN(x) = exp

[
−2

∞∑
n=1

1

n

qn

1− qnχadj(x
n)

]
.

For example, gluing two 3-punctured spheres with one cylinder one obtains
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the following index

ˆ
[dU(x)] IN(x1,x2,x) ηN(x) IN(x,x3,x4) . (4.7)

By defining a metric

ηN(x1,x2) ≡ ηN(x1)
∑
R

χR(x1)χR(x2) , (4.8)

with R running over irreducible and finite representations of SU(N), we can

re-write (4.7) as

IN(x1,x2,x) · ηN(x,x′) · IN(x′,x3,x4) , (4.9)

where · multiplication means integration over the Haar measure. S-duality

then implies that the metric and structure constants form an associative al-

gebra and thus a 2d topological field theory (TQFT) [1]. (Strictly speaking,

the state-space at each puncture, which is spanned by Gi representations, is

infinite-dimensional, so one must slightly relax the standard mathematical ax-

ioms for a TQFT.) Associativity was directly verified for the SU(2) and SU(3)

generalized quiver theories in [1, 3], for generic values of the fugacities p, q and

u. In the following we will identify the 2d topological theory implicitly defined

by the reduced index with an explicit model: q-deformed Yang-Mills (qYM)

in the zero-area limit.

4.1 SU(2) generalized quivers

Let us start with the simplest case, the SU(2) quivers. Here the building

blocks are free tri-fundamental 1
2
-hypermultiplets,

I222(a1, a2, a3) = exp

[ ∞∑
n=1

1

n

q
1
2
n

1− qnχ�(an1 )χ�(an2 )χ�(an3 )

]
.
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Remarkably, one can prove (e.g. by comparing analytic properties) that

I222(a1, a2, a3) admits the equivalent representation

I222(a1, a2, a3) = (4.10)

(q; q)∞
1− q

3∏
i=1

η
− 1

2
2 (ai)

∑
R

χR(a1)χR(a2)χR(a3)

[|R|]q
.

Here (q; q)∞ ≡
∏∞

i=1(1 − qi). The sum is over irreducible SU(2) representa-

tions R, with |R| denoting the dimension of the representation. The SU(2)

characters are

χR(a) =
a|R| − a−|R|
a− a−1

. (4.11)

Finally the symbol [x]q denotes the q-deformed number,

[x]q ≡
q−

x
2 − q x2

q−
1
2 − q 1

2

. (4.12)

The structure constants contain the factors
∏

i η
−1/2
2 (ai), which cancel with

the metric η2(ai) when two punctures are glued. It is then natural to define

rescaled structure constants and metric,

Î222(a1, a2, a3) = N222(q)
∑
R

χR(a1)χR(a2)χR(a3)

[|R|]q
,

η̂2(a, b) =
∑
R

χR(a)χR(b) , (4.13)

where N222(q) = (q; q)∞/(1 − q). Up to the overall normalization N222, these

are precisely the structure constants and metric of 2d qYM in the zero area

limit [67–69]!

Note that [n]q = χn(q1/2). This implies that by setting one of the SU(2)

fugacities to q1/2 we “close” a puncture,

Î222(a, b, q1/2) = N222(q) η̂2(a, b) .

Applying this procedure again, we close another puncture and obtain the one-

punctured sphere (the cap). For higher-rank groups we will encounter a similar

53



procedure: setting some combination of the flavor fugacities to q1/2 one obtains

punctures with reduced flavor symmetry.

4.2 SU(3) generalized quivers

Next let us consider the SU(3) generalized quivers. Here two new generic

features appear. First, the basic building block is an interacting theory with

no Lagrangian description, the E6 SCFT [16, 70]. Second, there is more than

one type of puncture: in addition to the maximal SU(3) flavor puncture there

is a puncture with reduced flavor symmetry, U(1) [16].

The representations of SU(N) are parametrized by N integers λ1 ≥ λ2... ≥
λN−1 ≥ λN = 0, the row lengths of the corresponding Young diagram. The

q-deformed dimension of the representation is

dimqRλ =
∏
i<j

[λi − λj + j − i]q
[j − i]q

, (4.14)

and the characters are given by Schur polynomials

χλ(x) =
det
(
xi
λj+k−j

)
det (xik−j)

. (4.15)

Specializing to SU(3) we can parametrize all the Young diagrams by (λ1, λ2).

We observe again that the q-dimension of a representation is equal to the group

character with a particular choice of fugacities,

χλ1,λ2(q, 1, q−1) = dimqRλ1,λ2 . (4.16)

4.2.1 Three Maximal Punctures

The sphere with three maximal punctures corresponds to the strongly cou-

pled E6 SCFT (the SU(3)3 flavor symmetry is accidentally enhanced to E6.)

This theory has no Lagrangian description and thus we do not have a direct

way to compute its index. However, this index was computed [3] indirectly

by employing Argyres-Seiberg duality [70]. Inspired by the SU(2) case, we

conjecture that the index IE6({xi}3
i=1) of the E6 SCFT is proportional to the

54



structure constants CSU(3)q of q-deformed SU(3) Yang-Mills,

IE6(xi) =

[
3∏
i=1

η−
1
2 (xi)

]
N333(q)CSU(3)q(xi) ,

where

CSU(3)q(xi) =
∞∑

0≤λ2≤λ1

χλ1,λ2(x1)χλ1,λ2(x2)χλ1,λ2(x3)

dimqRλ1,λ2

,

and N333(q) a normalization factor. Using Mathematica, we have checked this

proposal against the results of [3] to several orders in q, and in the process

determined the normalization to be

N333(q) =
(q; q)2

∞
(1− q)2(1− q2)

. (4.17)

4.2.2 Two Maximal and One U(1) Puncture

Another building block is given by a sphere with two SU(3) punctures and

one U(1) puncture. This corresponds to a free hypermultiplet in the bi-

fundamental of SU(3)2 and charged under the U(1). The index of this theory

is explicitly given by

I331(x1,x2; a) = exp

[ ∞∑
n=1

1

n

q
1
2
n

1− qnχhyp(x1
n,x2

n; an)

]
,

where the flavor character is

χhyp(x1,x2; a) =
∑
i,j

(xi1x
j
2a+

1

xi1x
j
2a

) . (4.18)

One can verify by series expansion in q that

I331(x1,x2; a) = CSU(3)q(x1,x2; a)× (4.19)∏2
i=1 η

− 1
2 (xi)∏2

`=1(1− q`)
exp

[ ∞∑
n=1

q
3
2
n

1− qn
a3n + a−3n

n

]
,
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with

CSU(3)q(x1,x2; a) = (4.20)
∞∑

0≤λ2≤λ1

χλ1,λ2(x1)χλ1,λ2(x2)χλ1,λ2(a q1/2, aq−1/2, a−2)

dimqRλ1,λ2

.

Note that this result can be recovered by starting from the structure con-

stant with maximal punctures and “partially closing” one of the punctures by

embedding SU(2) fugacities (q
1
2 , q−

1
2 ) into fugacities of SU(3).

4.3 General statement

The generic building block of a higher-rank quiver is an interacting SCFT with

no Lagrangian description. Unlike the case of SU(2) and SU(3) quivers it is

very hard to calculate the index of these theories, either directly or indirectly.

However, we can naturally extrapolate the relation to 2d qYM to higher-rank

groups.

We conjecture that the reduced index of the theory corresponding to sphere

with three maximal punctures (the TN theory of [16]) is

ITN (xi) =
(q; q)N−1

∞
∏3

i=1 η
− 1

2 (xi)∏N−1
`=1 (1− q`)N−`

CSU(N)q(xi)

where

CSU(N)q(xi) =
∑
R

1

dimqR
χR(x1)χR(x2)χR(x3)

are the structure constant of SU(N) qYM. The sum is over irreducible SU(N)

representations and {xi} are the fugacities dual to the Cartan subgroup.

This conjecture can be tested against the numerous S-dualities of the gen-

eralized quivers [16]. For instance, a linear superconformal quiver theory with

two SU(4) nodes admits a dual description in terms of T4 coupled to SU(3)

gauge theory which in turn is coupled to an SU(2) gauge theory with a single

hypermultiplet. We have checked, in the q expansion, that the indices on both

sides of the duality indeed match if one uses our conjecture for the T4 index.

Another test is to compare with physical expectations for the spectrum of
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protected operators. A class of protected operators in the TN theories are the

Higgs branch operators [39, 45]. These come in two families: E = 2, R = 1 in

flavor representation (adj, 1, 1)⊕(1, adj, 1)⊕(1, 1, adj) and E = N−1, R = N−1
2

in representation (N,N,N) ⊕ (N̄ , N̄ , N̄). It is straightforward to see that

these operators appear in our conjecture for the index: the first family comes

from the η(x)−
1
2 factors, and the second from the χ�(x1)χ�(x2)χ�(x3) and

χ�(x1)χ�(x2)χ�(x3) terms in CSU(N)q .

We can generalize the conjecture to the structure constants with two max-

imal punctures and one U(1) puncture,

INN1(x1,x2, a) = exp

[ ∞∑
n=1

1

n

q
1
2
n

1− qnχhyp(x1
n,x2

n; an)

]
=

CSU(N)q
(x1,x2; a)∏2

i=1 η
1
2 (xi)

∏N−1
`=1 (1− q`)

exp

[ ∞∑
n=1

q
N
2
n

1− qn
aNn + a−Nn

n

]
,

where structure constants CSU(N)q
(x1,x2; a) are

CSU(N)q(x1,x2; a) = (4.21)∑
R

1

dimqR
χR(x1)χR(x2)χR(aq

N−2
2 , .., aq−

N−2
2 , a1−N) .

Again we have verified this conjecture in the q-expansion. Generic punctures

a q2

a q

a q−2

a

a q−1

b q2

b

b q−1

b q−2

b q

c q−3
2 d q−3

2 e q−3
2

c q−1
2 d q−1

2 e q−1
2

c q
1
2

c q
3
2 d q

3
2 e q

3
2

f q
1
2

g h

U (3)U (2) U (1)

f q−1
2

U (2)

d q
1
2 e q

1
2

Figure 4.1: An example of the rule to associate flavor fugacities for a non-
maximal puncture. Illustrated here is a puncture for N = 26 with flavor sym-
metry S(U(3)U(2)2U(1)). The S(. . . ) constraint imposes (ab)5(cde)4f 2gh = 1.

are classified [16] by the embeddings SU(2) ⊂ SU(N), which are specified by
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the decomposition of the fundamental of SU(N) into SU(2) representation.

(In the terminology of [71], we focus on regular punctures). This information

can be encoded into a Young diagram with N boxes, where the height of each

column denotes the dimension of an SU(2) representation. The commutant

of this embedding is the flavor symmetry associated to the puncture. The

maximal puncture corresponds to a single-row diagram, the closed puncture

(i.e. no puncture) corresponds to a single-column diagram, and the U(1)

puncture to a two-column diagram with N − 1 boxes in the first column and

a single box in the second column. The Young diagram in Fig. 4.1 exemplifies

a non-maximal puncture for N = 26 with S(U(3)U(2)2U(1)) flavor symmetry.

We are lead to the following conjecture for the index of a theory with three

generic punctures corresponding to Young diagarms λi

I(Λ1,Λ2,Λ3) = Nλ1,λ2,λ3(q)
3∏
i=1

Aλi(Λi)×∑
R

1

dimqR
χR(Λ1)χR(Λ2)χR(Λ3) ,

with Λi labeling an association of flavor fugacities according to the Young di-

agram λi. The rule to associate the flavor fugacities to the SU(N) fugacities

is illustrated in Fig. 4.1. For all maximal punctures we have given the normal-

ization factors (N and A) above, while for generic punctures these factors can

be in principle obtained by employing different S-dualities of the quivers [16].

As an example, consider the E7 SCFT which is given by a sphere with two

maximal punctures of SU(4) and one square Young diagram with four boxes.

Following the above procedure and fixing the normalization from the relevant

Argyres-Seiberg duality [70], we are led to propose

IE7(x,y; a) =

exp

[∑∞
n=1

qn(1+qn)
1−qn

a2n+a−2n

n

]
η

1
2 (x)η

1
2 (y)(1− q)(1− q2)2(1− q3)

×

∑
R

χR(x)χR(y)χR(q
1
2a, q−

1
2a, q

1
2/a, q−

1
2/a)

dimqR
,

Here x, y label the two sets of SU(4) fugacities and a the SU(2) fugacity. The

summation, as usual, is over finite irreducible representations of SU(4). We
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have verified perturbatively in q that this expression is indeed E7 covariant –

a tight check of our logic.

4.4 Discussion

We have given compelling evidence that the reduced superconformal index of

anN = 2 generalized SU(N) quiver theory is exactly computed by a correlator

in 2d SU(N)q Yang-Mills. This duality is new tool to investigate interacting

field theories without a Lagrangian description. For example, it should be

useful to study the constraints obeyed by the Higgs branch operators, gener-

alizing to N > 3 the analysis of [62]. Two-dimensional qYM first appeared in

a physical setting in the context of counting BPS states [67], and it would be

interesting to find a relation with our work. An obvious question is whether

our results can be generalized to the full index, with all fugacities turned on.

It is already remarkable that the known structure constants of the SU(2) quiv-

ers implicitly define a (q, p, u) deformation of SU(2) Yang-Mills. Work is in

progress in investigating the nature of this deformation, in order to extrapolate

it to N > 2. The q and p fugacities appear on a symmetric footing, in a way

which is strongly suggestive of an elliptic, or “dynamical”, deformation of the

quantum group structure SU(N)q that we have uncovered for p = q, u = 1. In-

deed the full index is most elegantly expressed [50] in terms of elliptic Gamma

functions [48]. Finally, a more conceptual understanding of the duality would

be very desirable. As for the AGT correspondence [26], the existence, but not

the details, of a 4d/2d relation can be traced to the definition of the 4d SCFT

as the infrared limit of the 6d (2,0) theory on a Riemann surface. Whether

this intuition can be turned into a microscopic derivation remains to be seen.

In the next chapter we focus our attention on an exactly computable ob-

servable in 3d gauge theories, their partition function on S3. The index of

the 4d gauge theories can be thought of as a twisted supersymmetric partition

function on S3 × S1. As the radius of the circle goes to zero, the partition

function reduces to the path integral on S3 of the dimensionally reduced 3d

gauge theory. We study this reduction in the next chapter.
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Chapter 5

Reducing the 4d Index to the S3

Partition Function

String/M theory has led to a rich web of non-perturbative dualities between

supersymmetric field theories. Checking/exploiting/extending these dualities

requires exact computations in field theories. In recent years, using methods

based on localization, several exact quantities in supersymmetric gauge theo-

ries have been computed. Two of such quantities, the superconformal index of

4d gauge theories [19, 66] and the partition function of supersymmetric gauge

theories on S3 [20, 21], are the main focus of this note.

The superconformal index of N = 1 IR fixed points was computed in

[50, 57, 63], there it served as a check of Seiberg duality. The indices of N = 4

SYM and type IIB supergravity in AdS5 were computed and matched in [19].

The superconformal index of N = 2 supersymmetric gauge theories was used

to check N = 2 S-dualities conjectured by Gaiotto and to define a 2d topo-

logical field theory in the process [1, 3]. Recently the partition function of

supersymmetric gauge theories on S3 has been used to check a variety of 3d

dualities including mirror symmetry [21] and Seiberg-like dualities [72]. Re-

markably, the exact partition function has also allowed for a direct field theory

computation of N3/2 degrees of freedom of ABJM theory [73, 74]. The S3 par-

tition function of N = 2 theories is extremized by the exact superconformal

R-symmetry [75–77] so just like the a-maximization in 4d, the 3d partition

function can be used to determine the exact R-charges at interacting fixed

points. The purpose of this note is to relate these two interesting and useful
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exactly calculable quantities in 3 and 4 dimensions.

The superconformal index of a 4d gauge theory can be computed as a path

integral on S3 × S1 with supersymmetric boundary conditions along S1. All

the modes on the S1 contribute to this path integral. In a limit with the

radius of the circle shrinking to zero the higher modes become very heavy and

decouple. The index is then given by a path integral over just the constant

modes on the circle. In other words, the superconformal index of the 4d theory

reduces to a partition function of the dimensionally reduced 3d gauge theory

on S3. The 3d theory preserves all the supersymmetries of the “parent” 4d

theory on S3 × S1.

More generally, for any d dimensional manifold Md, one would expect the

index of a supersymmetric theory on Md×S1 to reduce to the exact partition

function of dimensionally reduced theory on Md. This idea was applied by

Nekrasov to obtain the partition function of 4d gauge theory on Ω-deformed

background as a limit of the index of a 5d gauge theory [25].

A crucial property of the four dimensional index that facilitates its compu-

tation is the fact that it can be computed exactly by a saddle point integral.

We show that in the limit of vanishing circle radius, this matrix integral re-

duces to the one that computes the partition function of 3d gauge theories on

S3 [20, 21]. It doesn’t come as a surprise as the path integral of the N = 2 su-

persymmetric gauge theory on S3 was also shown to localize on saddle points

of the action.

The note is organized a follows. In section 5.1 we write the superconformal

index of 4d theory as a saddle point integral and describe the limit in which

this integral reduces to the S3 partition function. The limit is performed in

section 5.2. In particular, we show that the building blocks of the matrix

model that computes the superconformal index in 4d map separately to the

building blocks of the 3d partition function matrix model. In section 5.3, we

comment on the connections between 4d and 3d dualities. We conclude with

an appendix that generalizes the Kapustin et. al. matrix model for N = 4

gauge theories with two supersymmetric deformations. One such deformation

involving squashed S3 was studied in [78].
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5.1 4d Index as a path integral on S3 × S1

The superconformal index is a Witten index with respect to one of the su-

percharges. For concreteness, let us restrict ourselves to the supercharge 1

Q ≡ Q̄2+ ∈ N = 2 superconformal algebra, although the index can be defined

more generally. In radial quantization the superconformal index is defined as

I = TrH(−1)F t2(E+j2)y2j1v−(r+R) . (5.1)

The fugacities t, y and v couple to all possible SU(2, 2|2) charges that commute

with Q. E is the conformal dimension. (j1, j2) are the SU(2)1 ⊗ SU(2)2

Lorentz spins and (R, r) are the charges of SU(2)R×U(1)r R-symmetry. The

superconformal index doesn’t depend on the couplings of the theory and hence

it can be calculated in the weak coupling limit. The entire contribution to the

supersymmetric partition function on S3 × S1 thus comes from the saddle

point approximation. One loop partition function of a 4d gauge theory on

S3 × S1 was computed in [79] in the presence of fugacities associated with

various conserved charges. To compute the superconformal index, we only

allow fugacities for charges which commute with Q; i.e. t, y and v.

For the one loop computation in SU(N) gauge theory, it is convenient to

use the Coulomb gauge ∂iA
i = 0 where i, j, k are S3 coordinates and ∂i are

covariant derivatives. The residual gauge freedom is fixed by imposing ∂0α = 0

where α = 1
V

´
S3 A0 and V is the volume of S3. The partition function is then

written as

Z =

ˆ
dα∆2

ˆ
DA∆1e

−S(A,α) , (5.2)

where ∆1 and ∆2 are Fadeev-Popov determinants associated with the first

and second gauge fixing conditions respectively. For a charge s that commutes

with Q, we can add a supersymmetric coupling with a constant background

gauge field as

S → S +

ˆ
d4x sµχµ, (5.3)

1The supercharges of N = 2 gauge theory are denoted as QIα and Q̄Iα̇ where I = 1, 2 is
an SU(2)R index and α = ±, α̇ = ±̇ are Lorentz indices.
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where sµ is associated conserved current. χµ is take to be a (χ, 0, 0, 0) and χ

is identified with the chemical potential for charge s. The chemical potential

is related to the fugacity, say x, of the Hamiltonian formalism as x = e−βχ. In

our case, x can be any of the t, y and v.

After performing
´
DA, one gets an SU(N) unitary matrix model

Z =

ˆ
[dU ]e−Seff [U ] , (5.4)

where U = eiβα and β is the circumference of the circle, [dU ] is the invariant

Haar measure on the group SU(N). We can write Seff concisely as follows

Seff [U ] =
∞∑
m=1

1

m

∑
j

iRj(t
m, ym, vm)χRj(U

m, V m) . (5.5)

Here, V denotes the chemical potential that couples to the Cartan of the flavor

group; Rj labels the representation of the fields under gauge and flavor groups

and iRj is the single letter index of the fields in representation Rj.

The circumference β of the circle is related to the fugacity t as t = e−β/3.

To produce the partition function of dimensionally reduced gauge theory on

S3 [20, 21] we also scale v = e−β/3, y = 1, and take the limit β → 0. In

appendix G we restore the additional deformations by defining v = e−β(1/3+u)

and set y = e−βη where u and η are chemical potentials for fugacities v and y

respectively. The partition function of 3d gauge theories on squashed S3 was

computed in [78], the η deformation is related to the squashing parameter of

S3.

5.2 4d Index to 3d Partition function on S3

A matrix model for computing the partition function of 3d gauge theories on

S3 (S3 matrix model) was obtained in [20, 21]. In this section, we will derive

this matrix model as a β → 0 limit of the matrix model that computes the

superconformal index (5.5) (index matrix model) of the 4d gauge theories.

Both matrix models involve integrals over gauge group parameters and their

integrand contains one-loop contributions from vector- and hyper-multiplets.

We will show that the gauge group integral together with the contribution
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from the vector multiplet map nicely from the index model to the S3 model.

The contributions of the hypermultiplets match up separately. We also show

that the superconformal index is the q-deformation of the S3 partition function

of the daughter theory.

5.2.1 Building blocks of the matrix models

For concreteness, let us consider 4d N = 2 SU(N) gauge theory. It is con-

structed using two basic building blocks: hyper-multiplets and vector multi-

plets.

Hyper-multiplet

As was first observed in [50], the index of the hypermultiplet can be written

elegantly in terms of a special function [1]

Ihyp =
∏
i

Γ

(
t2√
v
ai; t

3y, t3y−1

)
, (5.6)

where Γ is the elliptic gamma function [80] defined to be

Γ(z; r, s) =
∏
j,k≥0

1− z−1rj+1sk+1

1− zrjsk , (5.7)

and ai are eigenvalues of the maximal torus of the gauge/flavor group satisfying∏N
i=1 ai = 1. In this section, for the sake of simplicity, we set v = t and y = 1

and will discuss the general assignment of chemical potentials in appendix G.

We choose a convenient variable q ≡ e−β to parametrize the chemical potentials

of the Cartan of the flavor group as ai = q−iαi , and the chemical potential t

as t = q
1
3 . The index of the hyper-multiplet then becomes

Ihyp =
∏
i

∏
j,k≥0

1− q− 1
2

+iαiqj+1qk+1

1− q 1
2
−iαiqjqk

=
∏
i

∏
n≥1

(
[n+ 1

2
+ iαi]q

[n− 1
2
− iαi]q

)n
, (5.8)

where [n]q ≡ 1−qn
1−q is the q-number. It has the property [n]q

q→1−→ n. So far

we have fixed the chemical potentials v and y that couple to −(R+ r) and j1

respectively. To recover 3d partition function on S3 we should take the radius
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of S1 to be very small, which corresponds to the limit q → 1.

Ihyp =
∏
i

∏
n≥1

(
n+ 1

2
+ iαi

n− 1
2
− iαi

)n
=
∏
i

(cosh παi)
− 1

2 . (5.9)

One can find a proof of the second equality in [20]. From the limiting pro-

cedure, it is clear that the superconformal index of the hypermultiplet is the

q-deformation of the 3d hypermultiplet partition function.

Vector multiplet

The index of an N = 2 vector multiplet is given by

Ivector =
∏
i<j

1

(1− ai/aj)(1− aj/ai)
Γ(t2v(ai/aj)

±; t3y, t3y−1)

Γ((ai/aj)±; t3y, t3y−1)
, (5.10)

Here we have dropped an overall ai-independent factor. We use the condensed
notation, Γ(z±1; r, s) = Γ(z−1; r, s)Γ(z; r, s). With the same variable change as
above we get

Ivector =
∏
i<j

1

1− qi(αi−αj)

1

1− q−i(αi−αj)

1

Γ(q±i(αi−αj); q, q)

=
∏
i<j

1

1− qi(αi−αj)

1

1− q−i(αi−αj)

∏
n≥1

(
1− qn+i(αi−αj)+1

1− qn−i(αi−αj)−1

1− qn−i(αi−αj)+1

1− qn+i(αi−αj)−1

)−n
reg
=

∏
i<j

∏
n≥1

(
[n− i(αi − αj)]q

[n]q

[n+ i(αi − αj)]q
[n]q

)2

. (5.11)

The last line involves regulating the infinite product in a way that doesn’t

depend on α. In the limit q → 1, i.e. the radius of the circle goes to zero, we

get

Ivector =
∏
i<j

∏
n≥1

(
1 +

(αi − αj)2

n2

)2

=
∏
i<j

(
sinhπ(αi − αj)
π(αi − αj)

)2

. (5.12)

The last equality again is explained in [20]. Again, the we see that the index

of the vector multiplet is the q-deformation of the 3d vector partition function.

Most general expression for the one-loop contribution of the vector multiplet

with u and η turned on is obtained in appendix G.
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Gauge group integral

The gauge group integral in the 4d index matrix model is done with the in-

variant Haar measure

[dU ] =
∏
i

dαi
∏
i<j

sin2

(
β(αi − αj)

2

)
β→0−→

∏
i

dαi
∏
i<j

(
β(αi − αj)

2

)2

(5.13)

After appropriate regularization, the measure factor precisely cancels the weight

factor in the denominator of the vector multiplet one-loop determinant. The

unitary gauge group integral in the index matrix model can be done as a con-

tour integral over a variables parametrizing the Cartan sub-group, i.e. a ∈ T.

After the change variables a = q−iα the contour integral becomes a line inte-

gral as follows. We write a = q−iα = eiβα. The contour integral around the

unit circle is then

˛
T

da

a
· · · =

ˆ π/β

−π/β
dα . . . : β → 0,

˛
T

da

a
· · · =

ˆ ∞
−∞

dα . . . .(5.14)

5.3 4d↔ 3d dualities

S duality

Let us illustrate the reduction of a four dimensional index to three dimensional

partition function with a simple example. ConsiderN = 2 SU(2) gauge theory

with four hypermultiplets in four dimensions. The index of this theory is given

by the following expression (up to overall normalization constants)

˛
dz

z

Γ(t3/2a±1b±1z±1; t3, t3) Γ(t3/2c±1d±1z±1; t3, t3)

Γ(z±2; t3, t3)
. (5.15)

Here, a, b, c and d label the Cartans of SU(2)4 ⊂ SO(8) flavor group. The

Gamma functions in the numerator come from the four hyper-multiplets; the

Gamma functions in the denominator come from the N = 2 vector multiplet.

From the results of the previous section this expression for the index gives

rise to the partition function ofN = 2 SU(2) gauge theory in three dimensions.
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We scale t→ 1 and rewrite this as

Z(α, β, γ, δ) =

ˆ
dσ

sinh2 2πσ

cosh π(σ ± α± β) coshπ(σ ± γ ± δ) , (5.16)

where, each cosh is product of four factors with all sign combinations. The

flavor (now mass) parameters α, β, γ and δ are related to the flavor parameters

in 4d as before.

The superconformal index of the N = 2 SU(2) gauge theory with four

hypermultiplets in four dimensions is expected to be invariant under the ac-

tion of an S-duality group which permutes the four hypermultiplets. The

expression above can be explicitly shown to exhibit this property [1]. The four

dimensional S-duality implies that the three dimensional partition function is

invariant under permuting α, β, γ, and δ. One can show (e.g. numerically or

order by order expansion in α) that this is indeed true. Note that this implies

a new kind of Seiberg-like duality in three dimensions. This computation can

be generalized to any of the theories recently discussed by Gaiotto [16] in four

dimensions. In particular the index of these theories was claimed to posses a

TQFT structure [1]; and this structure is inherited by the three dimensional

partition functions after doing the dimensional reduction. The reasoning in

four dimensions and three dimensions is however different. In four dimensions

one can associate a punctured Riemann surface to each of the superconfomal

theories with the modular parameters of the surface related to the gauge cou-

pling constants. The index does not depend on the coupling constants and thus

is independent of the moduli giving rise to a topological quantity associated

to the Riemann surface. After dimensionally reducing to three dimensions the

theories cease to be conformal invariant and flow to a fixed point in the IR.

The statement is then that at the IR fixed point the information about the

original coupling constant is “washed away” and theories originally associated

to punctured Riemann surfaces of the same topology flow to an equivalent

fixed point in the IR.

Mirror symmetry

In principle one can try to use relations special to field theories in three dimen-

sions to gain information about the four dimensional theories. Let us comment
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how this can come about. In three dimensions certain classes of theories are

related by mirror symmetry. for example, in [81] it is claimed that mirror duals

of TN [16] theories have Lagrangian description and are certain star shaped

quiver gauge theories. Let us see if the partition function of T2 (free hyper-

multiplet in trifundamental of SU(2)3) matches with the partition function of

its mirror dual:

ZT2 =
1

cosh π(α± β ± γ)
, (5.17)

ZT̃2
=

ˆ
dσdµdνdρ

sinh2 2πσ e2πi(µα+νβ+ργ)

cosh π(σ ± µ) coshπ(σ ± ν) coshπ(σ ± ρ)
.

In ZT , the parameters α, β, γ appear as masses while in ZT̃ they appear as FI

terms. Let us compute ZT̃2
. One can perform the ZT̃2

integrations. First we

work out ˆ
dµ

e2πiαµ

cosh π(µ± σ)
=

2 sin 2πασ

sinhπα sinh 2πσ
.

Then we find that

ZT̃2
=

ˆ
dσ

8 sin 2πασ sin 2πβσ sin 2πγσ

sinhπα sinhπβ sinhπγ sinh 2πσ
=

1

cosh π(α/2± β/2± γ/2)
.

(5.18)

ZT̃2
is actually ZT2 if we rescale α, β and γ in ZT̃2

by a factor of 2. This

fact can be in principle use to investigate the index of the strongly coupled

SCFTs in four dimensions which do not have Lagrangian description. One

can dimensionally reduce these theories to three dimensions, consider their

mirror dual and compute its 3d partition function; finally, one can try to uplift

this result to 4d and obtain thus the superconformal index of the original

four dimensional theory. The feasibility of this approach is currently under

investigation.

With this we end the first part of the thesis which studied the behavior of

the N = 2 superconformal gauge theories of finite rank. In the second part,

we will study their large N dynamics.
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Chapter 6

Towards the string dual of

N = 2 Superconformal QCD

6.1 Motivation

How general is the gauge/string correspondence? ’t Hooft’s topological argu-

ment [82] suggests that any large N gauge theory should be dual to a closed

string theory. However, the four-dimensional gauge theories for which an in-

dependent definition of the dual string theory is presently available are rather

special. Even among conformal field theories, which are the best understood,

an explicit dual string description is known only for a sparse subset of models.

In some sense all examples are close relatives of the original paradigm ofN = 4

super Yang-Mills [12–14] and are found by considering stacks of branes at local

singularities in critical string theory, or variations of this setup, e.g. [83–89].1

Conformal field theories in this class can have lower or no supersymmetry, but

are far from being “generic”. Some of their special features are:

(i) The a and c conformal anomaly coefficients are equal at large N [91].

(ii) The fields are in the adjoint or in bifundamental representations of the

gauge group. (Except possibly for a small number of fundamental flavors

– “small” in the large N limit – as in [92]).

1We should perhaps emphasize from the outset that our focus is on string duals of
gauge theories. There are strongly coupled field theories that admit gravity duals with no
perturbative string limit, see e.g. [39, 90].
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(iii) The dual geometry is ten dimensional.

(iv) The conformal field theory has an exactly marginal coupling λ, which

corresponds to a geometric modulus on the dual string side. For large λ

the string sigma model is weakly coupled and the supergravity approxi-

mation is valid.2

The situation certainly does not improve if one breaks conformal invariance –

the field theories for which we can directly describe the string dual remain a

very special set, which does not include some of the most relevant cases, such as

pure Yang-Mills theory. Many more field theories, including pure Yang-Mills,

can be described indirectly, as low-energy limits of deformations ofN = 4 SYM

(as e.g. in [93] for N = 1 SYM) or of other UV fixed points, not necessarily

four-dimensional (as in [94] for N = 0 YM or [95, 96] for N = 1 SYM). These

constructions count as physical “existence proofs” of the string duals, but if

one wishes to focus just on the low-energy dynamics, one invariably encounters

strong coupling on the dual string side. In the limit where the unwanted UV

degrees of freedom decouple, the dual appears to be described (in the most

favorable duality frame) by a closed-string sigma model with strongly curved

target. This may well be only a technical problem, which would be overcome

by an analytic or even a numerical solution of the worldsheet CFT. The more

fundamental problem is that we lack a precise recipe to write, let alone solve,

the limiting sigma model that describes only the low-energy degrees of freedom.

To break this impasse and enlarge the list of dual pairs outside the N = 4

SYM universality class, we can try to attack the “next simplest case”. A

natural candidate for this role is N = 2 SYM with gauge group SU(Nc) and

Nf = 2Nc flavor hypermultiplets in the fundamental representation of SU(Nc).

The number of flavors is tuned to obtain a vanishing beta function. We refer

to this model as N = 2 superconformal QCD (SCQCD). The theory violates

properties (i) and (ii) but it still has a large amount of symmetry (half the

maximal superconformal symmetry) and it shares withN = 4 SYM the crucial

simplifying feature of a tunable, exactly marginal gauge coupling gYM . (The

theory also exhibits S-duality [16, 70, 97], though this will not be important

2In some cases, as in N = 4 SYM, the opposite limit of small λ corresponds to a weakly
coupled Lagrangian description on the field theory side. In other cases, like the Klebanov-
Witten theory [86], the Lagrangian description is never weakly coupled.
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for our considerations, since we will work in the large N limit, which does not

commute with S-duality.)

The large N expansion of N = 2 SCQCD is the one defined by Veneziano

[22]: the number of colors Nc and the number of fundamental flavors Nf are

both sent to infinity, keeping fixed their ratio (Nf/Nc ≡ 2 in our case) and the

combination λ ≡ g2
YMNc. Which, if any, is the dual string theory? And what

happens to it for large λ?

6.2 The Veneziano Limit and Dual Strings

6.2.1 A general conjecture

To understand in which sense we should expect a dual string description of

a gauge theory in the Veneziano limit, we start by reviewing general elemen-

tary facts about large N counting, Feynman-diagrams topology, and operator

mixing. At this stage we have in mind a generic field theory that contains

both adjoint fields, which we collectively denote by φab, with a, b = 1, . . . , Nc,

and fundamental fields, denoted by qai, with i = 1, . . . , Nf . We can consider

the theory both in the ’t Hooft limit of large Nc with Nf fixed, and in the

Veneziano limit of large Nc ∼ Nf .

Nc →∞, Nf fixed

Let us first recall the familiar analysis in the ’t Hooft limit [82], where the

number of colors Nc is sent to infinity, with λ = g2
YMNc and the number of

flavors Nf kept fixed. In this limit it is useful to represent propagators for

adjoint fields with double lines, and propagators for fundamental fields with

single lines – the lines keep track of the flow of the a type (color) indices.

Vacuum Feynman diagrams admit a topological classification as Riemann sur-

faces with boundaries: each flavor loop is interpreted as a boundary. The N

dependence is N2−2h−b
c N b

f , for h the genus and b the number of boundaries.

The natural dual interpretation is then in terms of a string theory with

coupling gs ∼ 1/Nc, containing both a closed and an open sector – the latter

arising from the presence of Nf explicit “flavor” branes where open strings can

end. Indeed this is the familiar way to introduce a small number of flavors

in the AdS/CFT correspondence [98]: by adding explicit flavor branes to the
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bulk geometry (the simplest examples is adding D7 branes to the AdS5 × S5

background). Since Nf � Nc, the backreaction of the flavor branes can be

neglected (probe approximation).

According to the standard AdS/CFT dictionary, single-trace “glueball”

composite operators, of the schematic form Trφ` (where Tr is a color trace)

are dual to closed string states, while “mesonic” composite operators, of the

schematic form q̄iφ`qj, are dual to open string states. At large Nc, these

two classes of operators play a special role since they can be regarded as

“elementary” building blocks: all other gauge-invariant composite operators

of finite dimension can be built by taking products of the elementary (single-

trace and mesonic) operators, and their correlation functions factorize into the

correlation functions of the elementary constituents.3 This factorization is dual

to the fact for gs → 0 the string Hilbert space becomes the free multiparticle

Fock space of open and closed strings.

Flavor-singlet mesons, of the form
∑Nf

i=1 q̄
iφ`qi, mix with glueballs in per-

turbation theory, but the mixing is suppressed by a factor of Nf/Nc � 1,

so the distinction between the two classes of operators is meaningful in the

’t Hooft limit. On the dual side, this translates into the statement that the

mixing of open and closed strings in subleading since each boundary comes

with a suppression factor of gsNf ∼ Nf/Nc.

Nc ∼ Nf →∞
We can now repeat the analysis in the Veneziano limit of large Nc and large

Nf with λ = g2
YMNc and Nf/Nc fixed. In this limit it is appropriate to use a

double-line notation with two distinct types of lines [22]: color lines (joining

a indices) and flavor lines (joining i indices). A φ propagator decomposes as

two color lines with opposite orientations, while a q propagator is made of a

color and a flavor line (Figure 6.1). Since Nf ∼ Nc ≡ N , color and flavor

lines are on the same footing in the counting of factors of N . It is natural to

regard all vacuum Feynman diagrams as closed Riemann surfaces, whose N

dependence is N2−2h, for h the genus. At least at this topological level, by

3Note that in this discussion we are not considering baryonic operators, since they have
infinite dimension in the strict large Nc limit. Baryons are interpreted as solitons of the
large Nc theory; as familiar, in AdS/CFT they correspond to non-perturbative (D-brane)
states on the string theory side [85].
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a d

b c

a b

i j

Figure 6.1: Double line propagators. The adjoint propagator 〈φab φcd〉 on the
left, represented by two color lines, and the fundamental propagator 〈qai q̄jb〉
on the right, represented by a color and a flavor line.

the same logic of [82], we should expect a gauge theory in the Veneziano limit

to be described by the perturbative expansion of a closed string theory, with

coupling gs ∼ 1/N . More precisely, there should be a dual purely closed string

description of the flavor-singlet sector of the gauge theory.

This point can be sharpened looking at operator mixing. It is consistent to

truncate the theory to flavor-singlets, since they close under operator product

expansion. The new feature that arises in the Veneziano limit is the order-one

mixing of “glueballs” and flavor-singlet “mesons”. For large Nc ∼ Nf , the

basic “elementary” operators are what we may call generalized single-trace

operators, of the form

Tr
(
φk1M`1φk2 . . . φknM`n

)
, Ma

b ≡
Nf∑
i=1

qai q̄
i
b . (6.1)

Here we have introduced a flavor-contracted combination of a fundamental

and an antifundamental field, Ma
b, which for the purpose of the large N

expansion plays the role of just another adjoint field. The usual large N

factorization theorems apply: correlators of generalized multi-traces factorize

into correlators of generalized single-traces. In the conjectural duality with a

closed string theory, generalized single-trace operators are dual to single-string

states.

We can imagine to start with a dual closed string description of the field

theory with Nf = 0, and first introduce a small number of flavors Nf � Nc

by adding flavor branes in the probe approximation. As we increase Nf to

be ∼ Nc, the probe approximation breaks down: boundaries are not sup-

pressed and for fixed genus we must sum over worldsheets with arbitrarily

many boundaries. The result of this resummation – we are saying – is a new
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closed string background dual to the flavor-singlet sector of the field theory.

The large mixing of closed strings and flavor singlet open strings gives rise to

new effective closed-string degrees of freedom, propagating in a backreacted ge-

ometry. This is the string theory interpretation of the generalized single-trace

operators (7.1).

In stating the conjectured duality we have been careful to restrict ourselves

to the flavor-singlet sector of the field theory. One may entertain the idea that

“generalized mesonic operators” of the schematic form q̄i φk1M`1φk2 . . . φknM`n qj

(with open flavor indices i and j) would map to elementary open string states

in the bulk. However this cannot be correct, because generalized mesons and

generalized single-trace operators are not independent – already in free field

theory they are constrained by algebraic relations – so adding an independent

open string sector in the dual theory would amount to overcounting.

6.2.2 Outline of the chapter

In this chapter we focus on the concrete example of N = 2 SCQCD and look

for a closed string theory description of its flavor-singlet sector. We work at

the superconformal point (zero vev for all the scalars) and thus look for a

string background with unbroken AdS5 isometry. We attack the problem from

two fronts: from the bottom-up, using the weakly-coupled Lagrangian descrip-

tion, and from the top-down, studying brane constructions in string theory.

Correspondingly, the chapter is divided into two main parts. The field theory

analysis occupies sections 6.3-6.5, the string theory analysis sections 6.7-6.8.

Section 6.6 provides a bridge, a first attempt to put together the clues of the

field theory analysis and guess features of the dual string theory. In the field

theory sections we pose and answer in rigorous detail a well-defined question:

what is the protected spectrum of N = 2 SCQCD in the generalized single-

trace sector? The string theory analysis is more qualitative and our program

not yet complete. We review brane constructions and argue that the decou-

pling limit leads to a sub-critical string background. We carry the analysis far

enough to see that the string dual, which is largely constrained by symmetry,

matches several field theory expectations, but we leave the determination of

the precise non-critical background for future work.
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In both the bottom-up and top-down approaches it is very useful to view

N = 2 SCQCD as part of an “interpolating” N = 2 superconformal field

theory (SCFT) that has product gauge group SU(Nc) × SU(Nč) and corre-

spondingly two exactly marginal couplings g and ǧ. For ǧ → 0 one findsN = 2

SCQCD plus a decoupled vector multiplet, while for ǧ = g one finds the Z2

orbifold of N = 4 SYM. The orbifold theory has a well-known closed string

dual, type IIB on AdS5 × S5/Z2, and changing ǧ/g amounts to changing the

period of the NSNS B-field through the blow-down cycle of the orbifold. As

we are going to discuss in detail, the flavor-singlet operators of N = 2 SCQCD

are a subsector of the operators of the interpolating SCFT. So in a sense we are

guaranteed success: we know a priori that the flavor-singlet sector of N = 2

SCQCD must be described by the closed string theory obtained by following

the limit ǧ → 0 in the bulk. This is however a rather subtle limit, and making

sense of it will occupy us in the second part of the chapter.

In the next chapter (based on [99]) we have taken the next step of the

bottom-up analysis. We have evaluated the planar one-loop dilation operator

in the scalar sector of N = 2 SCQCD, as well as of the interpolating SCFT,

and written it as the Hamiltonian of a spin-chain system. The spin-chain for

N = 2 SCQCD is novel, since the chain is of the “generalized single-trace” form

(7.1). The dynamics of magnon excitations is quite interesting. In particular

it is amusing to see how the flavor-contracted fundamental/antifundamental

pairs Ma
b arise as ǧ → 0 by a process of “dimerization” of the magnons of

the interpolating SCFT. Some results of the next chapter will be an input in

section 6.4 to the analysis of the protected spectrum of N = 2 SCQCD.

A more detailed outline of the rest of chapter is as follows. We begin

in section 6.3 with a review of the Lagrangian and symmetries of N = 2

SCQCD and of the interpolating SCFT that connects it to the Z2 orbifold

of N = 4 SYM. In sections 6.4 and 6.5 we study the protected spectrum of

short supermultiplets4 of N = 2 SCQCD and its relation with the spectrum

of the interpolating SCFT. This turns out to be a rather intricate exercise

in superconformal representation theory. A part of the protected spectrum

4We use the word “short” casually, to denote a multiplet that obeys any of type of short-
ening condition, unlike some authors who distinguish between “short” and “semi-short”. We
use the precise notation for multiplets reviewed in appendix H when we need to make such
distinctions.
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of N = 2 SCQCD is easy to determine, namely the supermultiplets built on

primaries made of scalar fields: (7.24) is the complete list of such primaries, as

shown in [99] using the one-loop spin-chain. In section 6.4 we follow in detail

the evolution of the protected states of the interpolating SCFT, starting at

the orbifold point ǧ = g where the complete protected spectrum is easily

determined. In the limit ǧ → 0 we recover (7.24) as the subsector of protected

primaries of the interpolating SCFT that are flavor singlets. Now there are

many more protected states in N = 2 SCQCD than there are for generic ǧ in

the interpolating SCFT: the extra protected states arise from long multiplets of

the interpolating SCFT that split into short multiplets at ǧ = 0. In section 6.5

we use the superconformal index to demonstrate the existence of these extra

protected states. We show that the number of extra states grows exponentially

with the conformal dimension. We also characterize the quantum numbers of

the first few of them using a “sieve” algorithm; this characterization is up

to a certain intrinsic ambiguity of the superconformal index, which can only

determine “equivalence classes” of short multiplets, as we review in detail.

Still, we have enough information to unambiguously demonstrate the existence

of higher-spin protected states in the generalized single-trace sector, in sharp

contrast with N = 4 SYM.

In section 6.6 we use the clues offered by the protected spectrum to argue

that the dual of N = 2 SCQCD should be a sub-critical string background,

with seven “geometric” dimensions, containing both an AdS5 and an S1 factor.

There must be a sector of light string states, with mass of the order of the

AdS scale for all λ, dual to the higher-spin protected states detected by the

superconformal index – so even for large λ the supergravity approximation

cannot be entirely valid. We suggest that there is also a separate sector of

heavy string states, with m2RAdS � 1 for λ→∞. We have in mind a scenario

where in the interpolating SCFT there are two effective string lengths ls and

ľs, corresponding to the two ‘t Hooft couplings λ and λ̌: for λ̌ → 0 and fixed

λ� 1, the string length ls � RAdS is associated with the massive sector, while

ľs ∼ RAdS is associated with the light sector. In section 6.7 we review brane

constructions of the interpolating SCFT and of N = 2 SCQCD. The most

useful construction is the Hanany-Witten setup with D4 branes suspended

between NS5 branes. We argue that the relevant dynamics is captured by
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a sub-critical brane setup, with color D3 and flavor D5 boundary states in

the exact IIB worldsheet CFT R5,1 × SL(2)2/U(1)/Z2. We identify the dual

of N = 2 SCQCD with the backreacted background, where the D-branes

are replaced by flux. We do not yet know the precise background, but it is

largely constrained by symmetries. In section 6.8 we show that just assuming

a solution exists, the results of the top-down approach are in nice qualitative

agreement with the bottom-up expectations. A useful tool is the spacetime

“effective action” of the non-critical theory, which we identify as the seven-

dimensional maximal supergravity with the (non-standard) SO(4) gauging.

We conclude in section 6.9 with a brief discussion.

Several technical appendices supplement the text. In appendix A we review

the shortening conditions of the N = 2 superconformal algebra. In appendix

B we review the N = 1 chiral ring of N = 2 SCQCD and of the interpolat-

ing SCFT. In appendix C we evaluate the superconformal index for various

combinations of short multiplets. In appendix D we review the Kaluza-Klein

reduction on AdS5 × S1 of the (2, 0) tensor multiplet, with a new detailed

treatment of the zero modes. In appendix E we review the sub-critical IIB

background R5,1 × SL(2)2/U(1)/Z2 and its spectrum. We make a new claim

about the 7d “effective action” describing the lowest plane-wave states, which

we identify with maximally supersymmetric SO(4)-gauged supergravity.

6.2.3 Relation to previous work

The idea that sub-critical string theories play a role in the gauge/gravity cor-

respondence is of course not new. Polyakov’s conjecture that pure Yang-Mills

theory should be dual to a 5d string theory, with the Liouville field playing

the role of the fifth dimension, predates the AdS/CFT correspondence (see

e.g. [100–102]). In fact one of the surprises of AdS/CFT was that some su-

persymmetric gauge theories are dual to simple backgrounds of critical string

theory. General studies of AdS solutions of non-critical spacetime effective ac-

tions include [103, 104]. Non-critical holography has been mostly considered,

starting with [105, 106], in the N = 1 supersymmetric case, notably for N = 1

super QCD in the Seiberg conformal window, which is argued to be dual to

6d non-critical backgrounds of the form AdS5 × S1 with string-size curvature.

There is an interesting literature on the RNS worldsheet description of these
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6d non-critical backgrounds and their gauge-theory interpretation, see e.g.

[107–110]. Non-critical RNS superstrings were formulated in [111, 112] and

shown in [113–115, 115–117] to describe subsectors of critical string theory –

the degrees of freedom localized near NS5 branes or (in the mirror description)

Calabi-Yau singularities. Non-critical superstrings have been also considered

in the Green-Schwarz and pure-spinor formalisms, see e.g. [118–122].

Our analysis in sections 6.6 and 6.7 for N = 2 SCQCD will be in the same

spirit as the analysis of [107, 110] for N = 1 super QCD. We will use the

double-scaling limit defined in [116, 117] and further studied in e.g. [123–125].

One of our points is that theN = 2 supersymmetric case should be the simplest

for non-critical gauge/string duality. On the string side, more symmetry does

not hurt, but the real advantage is on the field theory side. Little is known

about the SCFTs in the Seiberg conformal window, since generically they are

strongly coupled, isolated fixed points. By contrast N = 2 SCQCD has an

exactly marginal coupling λ, which takes arbitrary non-negative values. There

is a weakly coupled Lagrangian description for λ→ 0, and we can bring to bear

all the perturbative technology that has been so successful for N = 4 SYM,

for example in uncovering integrable structures.5 At the same time we may

hope, again in analogy with N = 4 SYM, that the string dual will simplify in

the strong coupling limit λ→∞.

There are also interesting approaches to holography for gauge theories with

a large number of fundamental flavors in critical string theory/supergravity,

see e.g. [126–134]. The critical setup inevitably implies that the boundary

gauge theory will have UV completions with extra degrees of freedom (e.g.

higher supersymmetry and/or higher dimensions).

6.3 Field Theory Lagrangian and Symmetries

In this section we briefly review the structure and symmetries of N = 2 SC-

QCD, and its relation to the Z2 orbifold of N = 4 SYM. Much insight is gained

by viewing N = 2 SCQCD, which has one exactly marginal parameter (the

5N = 1 SQCD at the Seiberg self-dual point Nf = 2Nc admits an exactly marginal
coupling (the coefficient of a quartic superpotential), which however is bounded from below
– the theory is never weakly coupled.
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SU(Nc) gauge coupling gYM), as the limit of a two-parameter family of N = 2

superconformal field theories. This is the family of N = 2 theories with prod-

uct gauge group6 SU(Nc)× SU(Nč) and two bifundamental hypermultiplets;

its exactly marginal parameters are the two gauge-couplings gYM and ǧYM . For

ǧYM → 0 one recovers N = 2 SCQCD plus a decoupled free vector multiplet

in the adjoint of SU(Nč). At ǧYM = 0, the second gauge group is interpreted

as a subgroup of the global flavor symmetry, SU(Nč) ⊂ U(Nf = 2Nc). For

ǧYM = gYM , we have instead the familiar Z2 orbifold of N = 4 SYM. Thus

by tuning ǧYM we interpolate continuously between N = 2 SCQCD and the

N = 4 universality class.

The a and c anomalies are constant, and equal to each other, along this

exactly marginal line: at the end point ǧYM = 0, the SU(Nč) vector multiplets

decouples, accounting for the “missing” a− c in N = 2 SCQCD.

6.3.1 N = 2 SCQCD

Our main interest is N = 2 SYM theory with gauge group SU(Nc) and Nf =

2Nc fundamental hypermultiplets. We refer to this theory as N = 2 SCQCD.

Its global symmetry group is U(Nf )×SU(2)R×U(1)r, where SU(2)R×U(1)r

is the R-symmetry subgroup of the superconformal group. We use indices

I,J = ± for SU(2)R, i, j = 1, . . . Nf for the flavor group U(Nf ) and a, b =

1, . . . Nc for the color group SU(Nc).

Table 6.1 summarizes the field content and quantum numbers of the model:

The Poincaré supercharges QIα, Q̄I α̇ and the conformal supercharges SI α, S̄Iα̇
are SU(2)R doublets with charges ±1/2 under U(1)r. The N = 2 vector

multiplet consists of a gauge field Am, two Weyl spinors λIα, I = ±, which

form a doublet under SU(2)R, and one complex scalar φ, all in the adjoint

representation of SU(Nc). Each N = 2 hypermultiplet consists of an SU(2)R

doublet QI of complex scalars and of two Weyl spinors ψα and ψ̃α, SU(2)R

singlets. It is convenient to define the flavor contracted mesonic operators

M Ia
J b ≡

1√
2
Q a
J i Q̄

I i
b , (6.2)

6The ranks of the two groups coincide, Nc ≡ Nč, but it will be useful to always distin-
guish graphically with a “check” all quantities pertaining to the second group SU(Nč).
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SU(Nc) U(Nf ) SU(2)R U(1)r

QIα 1 1 2 +1/2

SI α 1 1 2 −1/2

Am Adj 1 1 0

φ Adj 1 1 −1

λIα Adj 1 2 −1/2

QI 2 2 2 0

ψα 2 2 1 +1/2

ψ̃α 2 2 1 +1/2

M1 Adj + 1 1 1 0

M3 Adj + 1 1 3 0

Table 6.1: Symmetries of N = 2 SCQCD. We show the quantum numbers
of the supercharges QI , SI , of the elementary components fields and of the
mesonic operatorsM. Conjugate objects (such as Q̄Iα̇ and φ̄) are not written
explicitly.

which may be decomposed into the SU(2)R singlet and triplet combinations

M1 ≡M I
I and M I

3J ≡M I
J −

1

2
M K
K δIJ . (6.3)

The operators M decompose into adjoint plus singlet representations of the

color group SU(Nc); the singlet piece is however subleading in the large Nc

limit.

The Lagrangian is

L = LV + LH , (6.4)

where LV stands for the Lagrangian of the N = 2 vector multiplet and the

LH for the Lagrangian of N = 2 hypermultiplet. Explicitly7

LV = −Tr
[1

4
F µνFµν + i λ̄I σ̄

µDµλ
I + (Dµφ)(Dµφ)†

+i
√

2 (gYM εIJλ
IλJφ† − gYM εIJ λ̄I λ̄Jφ) +

g2
YM

2

[
φ , φ†

]2]
.(6.5)

7In our conventions, Dµ ≡ ∂µ + igYMAµ. We raise and lower SU(2)R indices with the
antisymmetric symbols εIJ and εIJ , which obey εIJ ε

JK = δKI .
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LH = −
[
(DµQ̄I)(DµQI) + i ψ̄σ̄µDµψ + i ψ̃σ̄µDµ

¯̃ψ (6.6)

+i
√

2 (gYM εIJ ψ̄λ̄IQJ − gYM εIJ Q̄
IλJψ

+gYM ψ̃λIQI − gYM Q̄I λ̄I
¯̃ψ

+gYM ψ̃φψ − gYM ψ̄φ̄ ¯̃ψ)

+g2
YMQ̄I(φ

†φ+ φφ†)QI + g2
YMV(Q)

]
,

where the potential for the squarks is

V(Q) = (Q̄I i
a Q

a
I j)(Q̄

J j
b Q b

J i)−
1

2
(Q̄I i

a Q
a
J j)(Q̄

J j
b Q b

I i)

+
1

Nc

(
1

2
(Q̄I i

a Q
a
I i)(Q̄

J j
b Q b

J j)− (Q̄I i
a Q

a
J i)(Q̄

J j
b Q b

I j)) . (6.7)

Using the flavor contracted mesonic operator (6.2), V can be written more

compactly as

V = Tr[MJ
IMI

J ]− 1

2
Tr[MI

IMJ
J ]

− 1

Nc

Tr[MJ
I ]Tr[MI

J ] +
1

2

1

Nc

Tr[MI
I ]Tr[MJ

J ]

= Tr[M3M3]− 1

Nc

Tr[M3]Tr[M3] .

6.3.2 Z2 orbifold of N = 4 and interpolating family of

SCFTs

N = 2 SCQCD can be viewed as a limit of a family of superconformal theories;

in the opposite limit the family reduces to a Z2 orbifold of N = 4 SYM. In

this subsection we first describe the orbifold theory and then its connection to

N = 2 SCQCD.

As familiar, the field content of N = 4 SYM comprises the gauge field

Am, four Weyl fermions λAα and six real scalars XAB, where A,B = 1, . . . 4 are

indices of the SU(4)R R-symmetry group. Under SU(4)R, the fermions are in

the 4 representation, while the scalars are in 6 (antisymmetric self-dual) and
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obey the reality condition8

X†AB =
1

2
εABCDXCD . (6.8)

We may parametrize XAB in terms of six real scalars Xk, k = 4, . . . 9,

XAB =
1√
2


0 X4 + iX5 X7 + iX6 X8 + iX9

−X4 − iX5 0 X8 − iX9 −X7 + iX6

−X7 − iX6 −X8 + iX9 0 X4 − iX5

−X8 − iX9 X7 − iX6 −X4 + iX5 0

 (6.9)

Next, we pick an SU(2)L × SU(2)R × U(1)r subgroup of SU(4)R,

1 +

2 −
3 +̂

4 −̂


SU(2)R × U(1)r

SU(2)L × U(1)∗r

 . (6.10)

We use indices I,J = ± for SU(2)R (corresponding to A,B = 1, 2) and indices

Î, Ĵ = ±̂ for SU(2)L (corresponding to A,B = 3, 4). To make more manifest

their transformation properties, the scalars are rewritten as the SU(2)L ×
SU(2)R singlet Z (with charge −1 under U(1)r) and as the bifundamental

XIÎ (neutral under U(1)r),

Z ≡ X4 + iX5√
2

, XIÎ ≡
1√
2

 X7 + iX6 X8 + iX9

X8 − iX9 −X7 + iX6

 . (6.11)

Note the reality condition X †IÎ = −εIJ εÎĴXJ Ĵ . Geometrically, SU(2)L ×
SU(2)R ∼= SO(4) is the group of 6789 rotations and U(1)R ∼= SO(2) the group

of 45 rotations. Diagonal SU(2) transformations X → UXU−1 (UR = U,UL =

U∗) preserve the trace, Tr[X ] = 2iX6, and thus correspond to 789 rotations.

We are now ready to discuss the orbifold projection. In R-symmetry space,

8The † indicates hermitian conjugation of the matrix in color space. We choose hermitian
generators for the color group.
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the orbifold group is chosen to be Z2 ⊂ SU(2)L with elements ±I2×2. This is

the well-known quiver theory [135] obtained by placing Nc D3 branes at the

A1 singularity R2×R4/Z2, with (X6, X7, X8, X9)→ ±(X6, X7, X8, X9) and X4

and X5 invariant. Supersymmetry is broken to N = 2, since the supercharges

with SU(2)L indices are projected out. The SU(4)R symmetry is broken to

SU(2)L×SU(2)R×U(1)r, or more precisely to SO(3)L×SU(2)R×U(1)r since

only objects with integer SU(2)L spin survive. The SU(2)R × U(1)r factors

are the R-symmetry of the unbroken N = 2 superconformal group, while

SO(3)L is an extra global symmetry under which the unbroken supercharges

are neutral.

In color space, we start with gauge group SU(2Nc), and declare the non-

trivial element of the orbifold to be

τ ≡

 INc×Nc 0

0 −INc×Nc

 . (6.12)

All in all the Z2 action on the N = 4 fields is

Am → τAmτ , ZIJ → τZIJ τ , λI → τλIτ , XIÎ → −τXIÎτ , λÎ → −τλÎτ .
(6.13)

The components that survive the projection are

Am =

 Aaµb 0

0 Ǎǎ
µb̌

 Z =

 φa b 0

0 φ̌ǎ
b̌

 (6.14)

λI =

 λaIb 0

0 λ̌ǎIb̌

 λÎ =

 0 ψaÎǎ

ψ̃b̌Îb 0

 (6.15)

XIÎ =

 0 Q a
IÎǎ

−εIJ εÎĴ Q̄b̌Ĵ J
b 0

 . (6.16)

The gauge group is broken to SU(Nc)×SU(Nč)×U(1), where the U(1) factor

is the relative9 U(1) generated by τ (equ.(8.17)): it must be removed by hand,

since its beta function is non-vanishing. The process of removing the relative

9Had we started with U(2Nc) group, we would also have an extra diagonal U(1), which
would completely decouple since no fields are charged under it.
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SU(Nc)1 SU(Nc)2 SU(2)R SU(2)L U(1)R

QIα 1 1 2 1 +1/2

SI α 1 1 2 1 –1/2

Am Adj 1 1 1 0

Ǎm 1 Adj 1 1 0

φ Adj 1 1 1 –1

φ̌ 1 Adj 1 1 –1

λI Adj 1 2 1 –1/2

λ̌I 1 Adj 2 1 –1/2

QIÎ 2 2 2 2 0

ψÎ 2 2 1 2 +1/2

ψ̃Î 2 2 1 2 +1/2

Table 6.2: Symmetries of the Z2 orbifold of N = 4 SYM and of the interpo-
lating family of N = 2 SCFTs.

U(1) modifies the scalar potential by double-trace terms, which arise from the

fact that the auxiliary fields (in N = 1 superspace) are now missing the U(1)

component. Equivalently we can evaluate the beta function for the double-

trace couplings, and tune them to their fixed point [136].

Supersymmetry organizes the component fields into the N = 2 vector

multiplets of each factor of the gauge group, (φ, λI , Am) and (φ̌, λ̌I , Ǎm), and

into two bifundamental hypermultiplets, (QI,+̂, ψ+̂, ψ̃+̂) and (QI,−̂, ψ−̂, ψ̃−̂).

Table 2 summarizes the field content and quantum numbers of the orbifold

theory.

The two gauge-couplings gYM and ǧYM can be independently varied while

preserving N = 2 superconformal invariance, thus defining a two-parameter

family of N = 2 SCFTs. Some care is needed in adjusting the Yukawa and

scalar potential terms so that N = 2 supersymmetry is preserved. We find

LY ukawa(gYM , ǧYM) = i
√

2Tr
[
− gYMεIJ λ̄I λ̄Jφ− ǧYMεIJ ¯̌λI

¯̌λJ φ̌

+ gYMε
ÎĴ ψ̃ÎφψĴ + ǧYMε

ÎĴψĴ φ̌ψ̃Î

+ gYMε
ÎĴ ψ̃Ĵλ

IQIÎ + ǧYMε
ÎĴQIÎ λ̌

Iψ̃Ĵ

− gYMεIJ Q̄
Ĵ IλJψĴ − ǧYMεIJψĴ λ̌IQ̄Ĵ J

]
+ h.c.(6.17)
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V(gYM , ǧYM) = g2
YMTr

[1
2

[φ̄, φ]2 +M I
I (φφ̄+ φ̄φ) +M J

I M I
J −

1

2
M I
I M J

J
]

+ ǧ2
YMTr

[1
2

[ ¯̌φ, φ̌]2 + M̌I
I(φ̌

¯̌φ+ ¯̌φφ̌) + M̌I
JM̌J

I −
1

2
M̌I

IM̌J
J
]

+ gYM ǧYMTr
[
− 2QIÎ φ̌Q̄

ÎI φ̄+ h.c.
]
− 1

Nc

Vd.t. , (6.18)

where the mesonic operators M are defined as10

M Ia
J b ≡

1√
2
Qa
J Ĵ ǎQ̄

Ĵ Iǎ
b , M̌Iǎ

J b̌ ≡
1√
2
Q̄Ĵ Iǎ aQ

a
J Ĵ b̌ , (6.19)

and the double-trace terms in the potential are

Vd.t. = g2
YM

(
Tr[M J

I ]Tr[M I
J ]− 1

2
Tr[M I

I ]Tr[M J
J ]
)

(6.20)

+ǧ2
YM

(
Tr[M̌I

J ]Tr[M̌J
I ]−

1

2
Tr[M̌I

I ]Tr[M̌J
J ]
)

=
(
g2
YM + ǧ2

YM

)(
Tr[M J

I ]Tr[M I
J ]− 1

2
Tr[M I

I ]Tr[M J
J ]
)
.

The SU(2)L symmetry is present for all values of the couplings (and so is

the SU(2)R×U(1)r R-symmetry, of course). At the orbifold point gYM = ǧYM

there is an extra Z2 symmetry (the quantum symmetry of the orbifold) acting

as

φ↔ φ̌ , λI ↔ λ̌I , Am ↔ Ǎm , ψÎ ↔ ψ̃Î , QIÎ ↔ −εIJ εÎĴ Q̄J Ĵ .
(6.21)

Setting ǧYM = 0, the second vector multiplet (φ̌, λ̌I , Ǎm) becomes free and

completely decouples from the rest of theory, which happens to coincide with

N = 2 SCQCD (indeed the field content is the same and N = 2 susy does

the rest). The SU(Nč) symmetry can now be interpreted as a global flavor

symmetry. In fact there is a symmetry enhancement SU(Nč) × SU(2)L →
U(Nf = 2Nc): one sees in (6.17, 6.18) that for ǧYM = 0 the SU(Nč) index ǎ

and the SU(2)L index Î can be combined into a single flavor index i ≡ (ǎ, Î) =

1, . . . 2Nc.

In the rest of the chapter, unless otherwise stated, we will work in the large

10Note that Tr[M J
I ] = Tr[M̌JI ].
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Nc ≡ Nč limit, keeping fixed the ‘t Hooft couplings

λ ≡ g2
YMNc ≡ 8π2g2 , λ̌ ≡ ǧ2

YMNč ≡ 8π2ǧ2 . (6.22)

The normalizations of g and ǧ are convenient for the perturbative calculations

of [99], in this chapter it is just important to keep in mind that they are (square

roots of) the ’t Hooft couplings. We will refer to the theory with arbitrary g

and ǧ as the “interpolating SCFT”, thinking of keeping g fixed as we vary ǧ

from ǧ = g (orbifold theory) to ǧ = 0 (N = 2 SCQCD ⊕ extra N2
č − 1 free

vector multiplets).

6.4 Protected Spectrum of the Interpolating

Theory

In the present and in the following section we will study the protected spectrum

of N = 2 SCQCD at large N , in the flavor singlet sector, and its relation with

the protected spectrum of the interpolating SCFT. We have argued that in the

large N Veneziano limit, flavor singlets that diagonalize the dilation operator

take the “generalized single-trace” form (7.1). We will look for the general-

ized single-trace operators belonging to short multiplets of the superconformal

algebra. These are the operators expected to map to the Kaluza-Klein tower

of massless single closed string states, so they are the first place to look in a

“bottom-up” search for the string dual.

The determination of the complete list of short multiplets of N = 2 SC-

QCD in this “generalized single-trace” sector turns out to be more subtle than

expected. A class of short multiplets is relatively easy to isolate, namely the

multiplets based on the following superconformal primaries:

TrM3 = (Qa
i Q̄

i
a)3 , Trφ`+2 , Tr[Tφ`] , ` ≥ 0 . (6.23)

Here T ≡ φφ̄ −M1. We hasten to add that this will turn out to be only a

small fraction of the complete set of protected operators. The set (7.24) is the

complete list of one-loop protected primaries in the scalar sector, as we show

in [99] by a systematic evaluation of the one-loop anomalous dimension of all
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operators that are made out of scalars and obey shortening conditions. The

operators Trφ` correspond to the vacuum of the spin-chain studied in [99],

while the TrTφ` correspond to the p → 0 limit of a gapless magnon T (p) of

momentum p.

The operators TrM3 and Trφ`+2 obey the familiar BPS condition ∆ =

2R+ |r|, where R is the SU(2)R spin and r the U(1)r charge, and they are gen-

erators of the chiral ring (with respect to an N = 1 subalgebra), see appendix

B.11 By contrast Tr[Tφ`] obey a “semi-shortening” condition and it may be

missed in a naive analysis; in these operators there is a large mixing of “glue-

balls” and “mesons” and the idea of considering “generalized single-traces” is

essential. The TrT multiplet plays a distinguished role since it contains the

stress-energy tensor and R-symmetry currents.

Protection of the operators (7.24) can be understood from the viewpoint

of the interpolating SCFT connecting N = 2 SCQCD with the Z2 orbifold

of N = 4 SYM, as follows. The complete spectrum of short multiplets at

the orbifold point g = ǧ is well-known. We will argue, using superconformal

representation theory [52], that the protected multiplets found at the orbifold

point cannot recombine into long multiplets as we vary ǧ, so in particular

taking ǧ → 0 they must evolve into protected multiplets of the theory

{N = 2 SCQCD ⊕ decoupled SU(Nč) vector multiplet} . (6.25)

The list (7.24) is precisely recovered by restricting to U(Nf ) singlets. Remark-

ably however, the superconformal index of N = 2 SCQCD, evaluated in the

next section, will show the existence of many more protected states. The ex-

tra protected states arise from the splitting long multiplets of the interpolating

theory into short multiplets as ǧ → 0.

We will make extensive use of the the list given by Dolan and Osborn[52]

of all possible shortening conditions of the N = 2 superconformal algebra. We

11 Incidentally, the analysis of the chiral ring extends immediately to flavor non-singlets.
The only chiral ring generator which is not a flavor singlet is the SU(2)R triplet bilinear

Oi3 j ≡ (Q̄iaQ
a
j)3 = Q̄ia {IQ

a
J} j , (6.24)

in the adjoint of SU(Nf ). The conserved currents for the SU(Nf ) ⊂ U(Nf ) flavor symmetry
belong to the short multiplet with bottom component Oi3 j . Similarly the current for the
U(1) ⊂ U(Nf ) baryon number belongs to the TrM3 multiplet.
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summarize their results and establish notations in appendix H.

6.4.1 Protected Spectrum at the Orbifold Point

At the orbifold point (g = ǧ) the state space of the field theory is the direct

sum of an untwisted and a twisted sector, respectively even and odd under the

“quantum” Z2 symmetry (6.21).

6.4.1.1 Untwisted sector

Operators in the untwisted sector of the orbifold descend from operators of

N = 4 SYM by projection onto the Z2 invariant subspace. Their correlators

coincide at large Nc with N = 4 correlators [137, 138]. In particular the

complete list of untwisted protected states is obtained by projection of the

protected states of N = 4. We will be interested in single-trace operators; as

is well-known, the only protected single-trace operators of N = 4 belong to

the 1
2

BPS multiplets B
1
2
, 1
2

[0,p,0], built on the chiral primaries TrX{i1 . . . X ip}, with

p ≥ 2, in the [0, p, 0] representation of SU(4)R (symmetric traceless of SO(6))

The decomposition of each 1
2

BPS multiplet N = 4 into N = 2 multiplets

reads [52]

B
1
2
, 1
2

[0,p,0] ' (p+ 1)B̂ 1
2
p ⊕ Ep(0,0) ⊕ Ē−p(0,0)

⊕(p− 1)Ĉ 1
2
p−1(0,0) ⊕ p(D 1

2
(p−1)(0,0) ⊕ D̄ 1

2
(p−1)(0,0)

⊕
p−2⊕
k=1

(k + 1)(B 1
2
k,p−k(0,0) ⊕ B̄ 1

2
k,k−p(0,0))

⊕
p−3⊕
k=0

(k + 1)(C 1
2
k,p−k−2(0,0) ⊕ C̄ 1

2
k,k−p+2(0,0))

⊕
p−4⊕
k=0

p−k−4⊕
l=0

(k + 1)Ap1
2
k,p−k−4−2l(0,0)

, (6.26)

which can be understood by considering all possible ways to substitute X i →
Z, Z̄,XIÎ , i.e. 6 → (0, 0)1 ⊕ (0, 0)−1 ⊕ (1

2
, 1

2
)0 in the branching SU(4)R →

SU(2)L × SU(2)R × U(1)r. The Z2 orbifold projection is then accomplished

by the substitution (8.19); states with an even (odd) number of X s are kept

(projected out), or equivalently, states with integer (half-odd) SU(2)R spin are
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Multiplet Orbifold operator (R, ` ≥ 0, n ≥ 2)

B̂R+1 Tr[(Q++̂Q̄++̂)R+1]

Ē−(`+2)(0,0) Tr[φ`+2 + φ̌`+2]

ĈR(0,0) Tr[
∑ T (Q++̂Q̄++̂)R]

D̄R+1(0,0) Tr[
∑

(Q++̂Q̄++̂)R+1(φ+ φ̌)]

B̄R+1,−(`+2)(0,0) Tr[
∑

i(Q
++̂Q̄++̂)R+1φiφ̌`+2−i]

C̄R,−(`+1)(0,0) Tr[
∑

i T (Q++̂Q̄++̂)Rφiφ̌`+1−i]

A∆=2R+`+2n
R,−`(0,0) Tr[

∑
i T n(Q++̂Q̄++̂)Rφiφ̌`−i]

Table 6.3: Superconformal primary operators in the untwisted sector of the
orbifold theory. They descend from the 1

2
BPS primaries of N = 4 SYM. The

symbol
∑

indicates summation over all “symmetric traceless” permutations
of the component fields allowed by the index structure.

Multiplet Orbifold operator (` ≥ 0)

B̂1 Tr[(Q++̂Q̄+−̂ −Q+−̂Q̄++̂)] = TrM3

Ē−`−2(0,0) Tr[φ`+2 − φ̌`+2]

Table 6.4: Superconformal primary operators in the twisted sector of the
orbifold theory.

kept (projected out). Table 6.3 lists all the superconformal primaries of the

orbifold theory obtained by this procedure.

Let us explain the notation. The explicit expressions in terms of fields are

schematic. The symbol
∑

indicates summation over all “symmetric traceless”

permutations of the component fields allowed by the index structure. The

symbol T stands for the appropriate combination of two scalar fields, neutral

under the R symmetry. In the case of the multiplet Ĉ0(0,0), Tr T = Tr [T + φ̌ ¯̌φ],

the bottom component of the stress tensor multiplet of the orbifold theory.

The SU(2)R × U(1)r quantum numbers are manifest as labels of the N = 2

multiplets, while the SU(2)L quantum numbers can be seen from the multi-

plicity of each multiplet on the right hand side of (6.26) – the SU(2)L spin

always equals the SU(2)R spin of the multiplet, because SU(2)R and SU(2)L

indices always come in pairs (IÎ) and are separately symmetrized.
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6.4.1.2 Twisted sector

In the twisted sector, we claim that the complete list of single-trace supercon-

formal primary operators obeying shortening conditions is

Tr[τZ`] = Tr[φ` − φ̌`] for ` ≥ 2

Tr[τXIÎXJ Ĵ εIJ ] = −Tr[QÎ{IQ̄
Î
J }] = −TrM3 . (6.27)

That these operators are protected can be seen by the fact that they are the

generators of the N = 1 chiral ring in the twisted sector, as we show in

appendix I. A priori there could be extra twisted states that do not belong to

the chiral ring, as is the case for the untwisted sector. In the next section we

will evaluate the superconformal index of the orbifold theory and find that it

matches perfectly with the contribution of our claimed list of short multiplets.

The primary Tr[φ`− φ̌`] corresponds for each ` ≥ 2 to a second copy of the

chiral multiplet Ē−`(0,0) – the first copy being the one in the untwisted sector

built on Tr[φ` + φ̌`]. The operator Tr[QÎ{IQ̄
Î
J }] is an SU(2)R triplet with

vanishing U(1)r charge and ∆ = 2, and must be identified with the primary

of a B̂1 multiplet. This protected multiplet has been overlooked in previous

discussions of the orbifold field theory. It is protected only in the theory where

the relative U(1) has been correctly subtracted (see section 6.3.2), as seen both

in the chiral ring analysis of appendix B and in an explicit one-loop calculation.

6.4.2 From the orbifold point to N = 2 SCQCD

As we move away from the orbifold point by changing ǧ, the short multiplets

that we have just enumerated may a priori recombine into long multiplets and

acquire a non-zero anomalous dimension. The possible recombinations of short

multiplets of the N = 2 superconformal algebra were classified in [52]. For

short multiplets with a Lorentz-scalar bottom component, the relevant rule is

A2R+`+2
R,−`(0,0) ' C̄R,−`(0,0) ⊕ B̄R+1,−(`+1)(0,0) . (6.28)
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In the special case ` = 0, the short multiplets on the right hand side further

decompose into even shorter multiplets as

A2R+2
R,0(0,0) ' ĈR(0,0) ⊕DR+1(0,0) ⊕ D̄R+1(0,0) ⊕ B̂R+2(0,0) (6.29)

It follows that the short multiplets of the orbifold theory that that could in

principle recombine are

Tr[
∑
i

T (Q++̂Q̄++̂)Rφiφ̌`−i]⊕ Tr[
∑
i

(Q++̂Q̄++̂)R+1φiφ̌`−i] −→ A2R+`+2
R,−`(0,0)

Tr[
∑

T (Q++̂Q̄++̂)R]⊕ Tr[
∑
i

(Q++̂Q̄++̂)R+1φ̄i ¯̌φ1−i]⊕

Tr[
∑
i

(Q++̂Q̄++̂)R+1φiφ̌1−i]⊕ Tr[
∑

(Q++̂Q̄++̂)R+2] −→ A2R+2
R,0(0,0). (6.30)

However we see that the proposed recombinations entail short multiplets with

different SU(2)L quantum numbers, which is impossible since the supercharges

are neutral under SU(2)L. Thus SU(2)L selection rules forbid the recombina-

tion, and the protected multiplets of the orbifold theory remain short for all

values of g and ǧ. This conclusion was reached using superconformal repre-

sentation theory, and it is a rigorous result valid at the full quantum level.12

In the limit ǧ → 0, we must be able to match the protected states of the

interpolating SCFT with protected states of {N = 2 SCQCD ⊕ decoupled

vector multiplet}. In [99] we follow this evolution in detail using the one-loop

spin chain Hamiltonian. The basic features of this evolution can be understood

just from group theory. The protected states naturally splits into two sets:

SU(2)L singlets and SU(2)L non-singlets. It is clear that all the (generalized)

single-trace operators of N = 2 SCQCD must arise from the SU(2)L singlets.

The SU(2)L singlets are:

(i) One B̂1 multiplet, corresponding to the primary Tr[QÎ{IQ̄
Î
J }] = TrM3.

Since this is the only operator with these quantum numbers, it cannot

mix with anything and its form is independent of ǧ.

(ii) Two Ē−`(0,0) multiplets for each ` ≥ 2, corresponding to the primaries

12We will rephrase the same result in the next section by computing a refined supercon-
formal index that also keeps track of the SU(2)L quantum number.
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Tr [φ` ± φ̌`]. For each `, there is a two-dimensional space of protected

operators, and we may choose whichever basis is more convenient. For

g = ǧ, the natural basis vectors are the untwisted and twisted combi-

nations (respectively even and odd under φ ↔ φ̌), while for ǧ = 0 the

natural basis vectors are Trφ` (which is an operator of N = 2 SCQCD)

and Tr φ̌` (which belongs to the decoupled sector).

(iii) One Ĉ0(0,0) multiplet (the stress-tensor multiplet), corresponding to the

primary Tr T = Tr [T + φ̌ ¯̌φ]. We have checked that this combination is

an eigenstate with zero eigenvalue for all ǧ. For ǧ = 0, we may trivially

subtract out the decoupled piece Tr φ̌ ¯̌φ and recover TrT , the stress-tensor

multiplet of N = 2 SCQCD.

(iv) One C̄0,−`(0,0) multiplet for each ` ≥ 1. In the limit ǧ → 0, we expect this

multiplet to evolve to the TrTφ` multiplet of N = 2 SCQCD. We have

checked this in detail in [99].

All in all, we see that this list reproduces the list (7.24) of one-loop protected

scalar operators of N = 2 SCQCD, plus the extra states Trφ̌` that decouple

for ǧ = 0.

The basic protected primary of N = 2 SCQCD which is charged under

SU(2)L is the SU(2)L triplet contained in the mesonic operator Oi3R j =

(Q̄i
aQ

a
j )3R

(see footnote 11). Indeed writing the U(Nf = 2Nc) flavor indices

i as i = (ǎ, Î), with ǎ = 1, . . . Nf/2 = Nc “half” flavor indices and I = ±̂
SU(2)L indices, we can decompose

Oi3R j → Oǎ3R3L b̌
, Oǎ

3R1L b̌
. (6.31)

In particular we may consider the highest weight combination for both SU(2)L

and SU(2)R,

(Q̄++̂Q++̂)ǎ
b̌
. (6.32)

States with higher SU(2)L spin can be built by taking products of O3R3L
with

SU(2)L and SU(2)R indices separately symmetrized – and this is the only way

to obtain protected states of N = 2 SCQCD charged under SU(2)L which

have finite conformal dimension in the Veneziano limit. It is then a priori

clear that a protected primary of the interpolating theory with SU(2)L spin L
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must evolve as ǧ → 0 into a product of L copies of (Q̄++̂Q++̂) and of as many

additional decoupled scalars φ̌ and ¯̌φ as needed to make up for the correct

U(1)r charge and conformal dimension. Examples of this evolution are given

in [99].

6.4.3 Summary

In summary all the short multiplets of the interpolating theory remain short

as ǧ → 0, and have a natural interpretation in this limit. The SU(2)L-singlet

protected states evolve into the list (7.24) of protected states of SCQCD, plus

some extra states made purely from the decoupled vector multiplet. The

interpolating theory has also many single-trace protected states with non-

trivial SU(2)L spin, which are flavor non-singlets from the point of view of

N = 2 SCQCD: we have seen that in the limit ǧ → 0, a state with SU(2)L spin

L can be interpreted as a “multiparticle state”, obtained by linking together L

short “open” spin-chains with of SCQCD and decoupled fields φ̌. This is also

suggestive of a dual string theory interpretation: as ǧ → 0, single closed

string states carrying SU(2)L quantum numbers disintegrate into multiple

open strings.

Thus by embedding N = 2 SCQCD into the interpolating SCFT we have

confirmed that the operators (7.24) are protected at the full quantum level,

since they arise as the limit of operators whose protection can be shown at the

orbifold point and is preserved by the exactly marginal deformation. However

this argument does not guarantee that (7.24) is the complete set of protected

generalized single-trace primaries of N = 2 SCQCD. Indeed we will exhibit

many more such states in the next section: they arise from long multiplets of

the interpolating theory splitting into short multiplets at ǧ = 0.

6.5 Extra Protected Operators of N = 2 SC-

QCD from the Index

The superconformal index [19] (see also [66]) computes “cohomological” in-

formation about the protected spectrum of a superconformal field theory. It

counts (with signs) the multiplets obeying shortening conditions, up to equiv-
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alence relations that set to zero all sequences of short multiplets that may in

principle recombine into long multiplets. The index is invariant under exactly

marginal deformations and can thus be evaluated in the free field limit (if the

theory admits a Lagrangian description). It should be kept in mind that the

index does not completely fix the protected spectrum. A first issue is a certain

ambiguity in the quantum numbers of the protected multiplets detected by the

index. Short multiplets can be organized into “equivalence classes”, such that

each short multiplet in a class gives the same contribution to the index. For

N = 2 4d superconformal theories these equivalence classes contain a finite

number of short multiplets. This finite ambiguity could in principle be resolved

by an explicit one-loop calculation, but in practice this is difficult since the

diagonalization of the one-loop dilation operator becomes rapidly complicated

as the conformal dimension increases. A second issue is that some sequences

of short multiplets that are kinematically allowed to recombine into long mul-

tiplets may in fact remain protected for dynamical reasons. This dynamical

protection is known to occur at large Nc in N = 4 SYM for certain multi-trace

operators, but not for single-trace operators.

Despite these caveats, the index is a very valuable tool. In this section,

after reviewing the definition of the index [19], we explain exactly what kind

of information can be extracted from it, by characterizing the “equivalence

classes” of short multiplets that give the same contribution to the index. We

then proceed to concrete calculations, evaluating the index for the interpolat-

ing SCFT and for N = 2 SCQCD. The free field contents of the two theories,

and thus their indices, are different: recall that the interpolating SCFT has

an extra vector multiplet in the adjoint of SU(Nč). The index for the in-

terpolating theory confirms the protected spectrum of single-trace operators

discussed in the previous section. By contrast, the index for N = 2 SCQCD

reveals the existence of many more generalized single-trace operators obeying

shortening conditions: their degeneracy grows exponentially with the confor-

mal dimension. Interestingly, we find protected operators with arbitrarily high

spin, though none of them is a higher-spin conserved current. We account for

the origin of these extra protected states by identifying long multiplets of the

interpolating theory that at ǧ = 0 split into short multiplets: some of the re-

sulting short multiplets belong purely to N = 2 SCQCD (i.e. do not contain
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fields in the decoupled vector multiplet) and comprise the extra states.

6.5.1 Review of the Superconformal Index

The superconformal index [19] is just the Witten index with respect to one

of the Poincaré supercharges, call it Q, of the superconformal algebra. Let

S = Q† be the conformal supercharge conjugate to Q, and δ ≡ 2{S,Q}. Every

state in a unitary representation of the superconformal algebra has δ ≥ 0. The

index is defined as

I = Tr (−1)F e−αδ+M , (6.33)

where the trace is over the Hilbert space of the theory on S3, in the usual radial

quantization, and M is any operator that commutes with Q and S. The index

receives contributions only from states with δ = 0, which are in one-to-one

correspondence with the cohomology classes of Q. It is thus independent of α.

There are in fact two inequivalent possibilities for the choice of Q, leading

to a “left” index IL and a “right” index IR. The choice Q = Q1
− leads to the

“left” index IL. In this case

δL = ∆− 2j − 2R− r . (6.34)

Introducing chemical potentials for all the operators that commute with Q
and S, one defines

IL(t, y, v) ≡ Tr (−1)F t2(∆+j) y2j̄vr−R . (6.35)

The choice Q = Q̄2+ gives instead the “right” index IR. In this case

δR ≡ ∆− 2j̄ − 2R + r (6.36)

IR(t, y, v) = Tr (−1)F t2(∆+j̄) y2jv−r−R. (6.37)

The relation between the left and right index is simply j ↔ j̄ and r ↔ −r. For

an N = 2 theory, which is necessarily non-chiral, the left and right indices are

in fact equal as functions of the chemical potentials, IL(t, y, v) = IR(t, y, v),

but it will be useful to have introduced the definitions of both.
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6.5.2 Equivalence Classes of Short Multiplets

We have mentioned that there is a certain finite ambiguity in extracting from

the index which are the actual multiplets that remain short. Schematically,

the issue is the following. Suppose that two short multiplets, S1 and S2, can

recombine to form a long multiplet L1,

S1 ⊕ S2 = L1 , (6.38)

and similarly that S2 can recombine with a third short multiplet S3 to give

another long multiplet L2,

S2 ⊕ S3 = L2 . (6.39)

By construction, the index evaluates to zero on long multiplets, so

I(S1) = −I(S2) = I(S3) . (6.40)

We say that the two multiplets S1 and S3 belong to the same equivalence

class, since their indices are the same. Note that S2 can be distinguished from

S1 ∼ S3 by the overall sign of its index.

The recombination rules for N = 2 superconformal algebra are [52]

A2R+r+2j+2
R,r(j,j̄)

' CR,r(j,j̄) ⊕ CR+ 1
2
,r+ 1

2
(j− 1

2
,j̄) (6.41)

A2R−r+2j̄+2
R,r(j,j̄)

' C̄R,r(j,j̄) ⊕ C̄R+ 1
2
,r− 1

2
(j,j̄− 1

2
) (6.42)

A2R+j+j̄+2
R,j−j̄(j,j̄) ' ĈR(j,j̄) ⊕ ĈR+ 1

2
(j− 1

2
,j̄) ⊕ ĈR+ 1

2
(j,j̄− 1

2
) ⊕ ĈR+1(j− 1

2
,j̄− 1

2
) (6.43)

Notations are reviewed in appendix H. The C, C̄ and Ĉ multiplets obey certain

“semi-shortening” conditions, see Table H.1, while A multiplets are generic

long multiplets. A long multiplet whose conformal dimension is exactly at the

unitarity threshold can be decomposed into shorter multiplets according to

(6.41,6.42,6.43). We can formally regard any multiplet obeying some short-

ening condition (with the exception of the E and Ē types) as a multiplet of

type C, C̄ or Ĉ by allowing the spins j and j̄, whose natural range is over the

non-negative half-integers, to take the value −1/2 as well. The translation is

as follows:

CR,r(− 1
2
,j̄) ' BR+ 1

2
,r+ 1

2
(0,j̄). (6.44)
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ĈR(− 1
2
,j̄) ' DR+ 1

2
(0,j̄), ĈR(j,− 1

2
) ' D̄R+ 1

2
(j,0) . (6.45)

ĈR(− 1
2
,− 1

2
) ' DR+ 1

2
(0,− 1

2
) ' D̄R+ 1

2
(− 1

2
,0) ' B̂R+1. (6.46)

Note how these rules flip statistics: a multiplet with bosonic primary (j + j̄

integer) is turned into a multiplet with fermionic primary (j+ j̄ half-odd), and

viceversa. With these conventions, the rules (6.41, 6.42, 6.43) are the most

general recombination rules. The E and Ē multiplets never recombine.

Let us start by characterizing the equivalent classes for C-type multiplets.

The right index vanishes identically on C multiplets. From (6.41), we have

IL[CR,r(j,j̄)] + IL[CR+ 1
2
,r+ 1

2
(j− 1

2
,j̄)] = 0 . (6.47)

Clearly R̃ ≡ R + j, r̃ ≡ r + j and j̄ and the overall sign are the invariant

quantum numbers that label an equivalence class. We denote by [R̃, r̃, j̄]L+ the

equivalence class of C multiplets with IL = IL[CR̃,r̃(0,j̄)], and by [R̃, r̃, j̄]L− the

class with IL = −IL[CR̃,r̃(0,j̄)],

[R̃, r̃, j̄]L+ = {CR̃−m,r̃−m (m,j̄) |m = 0, 1, 2 . . . ,m ≤ R̃} (6.48)

[R̃, r̃, j̄]L− = {CR̃−m,r̃−m (m,j̄) |m = −1

2
,
1

2
,
3

2
. . . ,m ≤ R̃} . (6.49)

Explicitly, the left index of the class [R̃, r̃, j̄]L± is:

IL
[R̃,r̃,j̄]L±

= ±(−1)2j̄+1t6+4R̃+2r̃v−2+r̃−R̃ (1− t2v)(t− v
y
)(t− vy)

(1− t3y)(1− t3

y
)

(y2j̄ + . . .+ y−2j̄)

(6.50)

We have illustrated the equivalence classes [1, 1, 0]L± in Figure 6.2 by listing

multiplets on the j axis. The allowed values of R̃ and j̄ are −1
2
, 0, 1

2
, 1, . . . ,

C3
2,32(−1

2,0) C1,1(0,0)
C1

2,12(1
2,0) C0,0(1,0)

−IL
[1,1,0] +IL

[1,1,0] −IL
[1,1,0] +IL

[1,1,0]

Figure 6.2: The equivalence classes [1, 1, 0]L±. The multiplets belonging to
[1, 1, 0]L± have index ±IL[1,1,0]. The sum of the indices of adjacent multiplets is
zero, as required by the recombination rule.

with the proviso that j = −1
2

or j̄ = −1
2

must be interpreted according to
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(6.44). For the lowest value of R̃, R̃ = −1
2
, the class [−1

2
, r̃, j̄]L+ is empty while

the class [−1
2
, r̃, j̄]L− = B 1

2
,r̃+1(0,j̄) consists of a single multiplet, which can then

be determined without any ambiguity. For R̃ = 0, [0, r̃, j̄]L+ = C0,r̃(0,j̄) and

[0, r̃, j̄]L− = B1,r̃+1(0,j̄) both contain a single multiplet and again there is no

ambiguity. Finally for R̃ = 1
2
, [1

2
, r̃, j̄]+ = C 1

2
,r̃(0,j̄) contains a single multiplet,

but [1
2
, r̃, j̄]− already has two and from the index alone cannot decide which of

the two actually remains protected. Clearly the ambiguity grows linearly with

R̃.

The analysis for the C̄ multiplets is entirely analogous, and follows from

the previous discussion by the substitutions j ↔ j̄, r ↔ −r. One needs to

consider IR, since now it is IL that evaluates to zero. The equivalence classes

are defined to be the set of all the C̄ multiplets with same IR up to sign, and

are denoted as [ ¯̃R, ¯̃r, j]R±, where ¯̃R ≡ R + j̄, ¯̃r ≡ −r + j̄.

j

j̄

(a) Ĉ0( 1
2 ,

1
2 ) and Ĉ2(− 1

2 ,−
1
2 ) ≡

B̂3(0,0)

j

j̄

(b) Ĉ1(− 1
2 ,

1
2 ) ≡ D 3

2 (0, 12 ) and

Ĉ1( 1
2 ,−

1
2 ) ≡ D̄ 3

2 (0, 12 )

Figure 6.3: Example of two configurations of the Ĉ multiplets with R+j+j̄ = 1
contributing the same to both IL and IR. The multiplets are denoted by
crosses on the (j, j̄) grid. The indices are the same for (a) and (b) because the
projections on the j and j̄ (i.e. the sets of j and j̄ values) are the same.

The analysis for the Ĉ multiplets is slightly more involved. Unlike C and C̄
multiplets, Ĉ multiplets contribute to both IL and IR. Moreover the quantum

number r is fixed by the additional shortening condition r = j̄−j. The left and

right equivalence classes of ĈR(j,j̄) are [R+j, j̄, j̄]L± and [R+j̄, j, j]R± respectively.

The left index determines R̃ = R+ j and the right index ¯̃R = R+ j̄, so all in

all no two different Ĉ multiplets give the same contribution to both IL and IR.
Nevertheless different direct sums of Ĉ multiplets can have the same IL and
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Multiplet Equivalence class

C [R̃, r̃, j̄]L± ≡ [R + j, r + j, j̄]L±

C̄ [ ¯̃R, ¯̃r, j]R± ≡ [R + j̄,−r + j̄, j]R±

Ĉ [R̂, j̄]L± ≡ [R + j + j̄, j̄]L±

[R̂, j]R± ≡ [R + j + j̄, j]R±

Table 6.5: Summary of notation for equivalence classes of short multiplets.

IR. It is convenient to introduce the quantum number R̂ ≡ R + j + j̄, which

is an invariant for both the left and the right equivalence classes, and to label

the equivalence classes for Ĉ multiplets as [R̂, j̄]L± and [R̂, j]R±. This new way

to label the classes does not entail any loss of information, and makes it more

convenient to analyze both the indices simultaneously. Explicitly, the left and

right indices for these equivalence classes are:

IL
[R̂,j̄]L±

= ±(−1)2j̄ t
6−2j̄+4R̂v−1+2j̄−R̂(1− t2v)

(1− t3y)(1− t3/y)

(t(y2j̄+1 + . . .+ y−(2j̄+1))− v(y2j̄ + . . .+ y−2j̄)) (6.51)

IR
[R̂,j]R±

= ±(−1)2j t
6−2j+4R̂v−1+2j−R̂(1− t2v)

(1− t3y)(1− t3/y)

(t(y2j+1 + . . .+ y−(2j+1))− v(y2j + . . .+ y−2j)) . (6.52)

Now the point is that given a collection of Ĉ multiplets with the same value

of R̂, the left index determines the set of j̄ values while the right index deter-

mines the set of j values, but in general there is not enough information to fix

uniquely all quantum numbers. Figure 6.3 illustrates the ambiguity in a sim-

ple example: two different configurations, each consisting of two Ĉ multiplets,

give the same contribution to both IL and IR.
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Letters ∆ j j̄ R r IR

φ 1 0 0 0 -1 t2v

λ1
+ 3/2 1/2 0 1/2 -1/2 −t3y
λ1
− 3/2 -1/2 0 1/2 -1/2 −t3y−1

λ̄2+ 3/2 0 1/2 1/2 1/2 −t4v−1

F̄++ 2 0 1 0 0 t6

∂++ 1 1/2 1/2 0 0 t3y

∂−+ 1 -1/2 1/2 0 0 t3y−1

∂−+λ
1
+ + ∂++λ

1
− = 0 5/2 0 1/2 1/2 1/2 t6

Table 6.6: Letters with δR = 0 from the N = 2 vector multiplet

6.5.3 The Index of the Interpolating Theory

We now review the calculation of the index for the orbifold theory [19, 139].13

The index is invariant under exactly marginal deformation and is thus the

same for the whole family of interpolating SCFTs. The procedure is well-

established. One enumerates the “letters” of the theory with δ = 0 and then

counts all possible gauge-invariants words. This is done efficiently by a matrix

model, which for large N can be evaluated by saddle point. Tables 6.6 and

6.7 list the δR = 0 letters from the N = 2 vector and hyper multiplets.14

Equations of motion are accounted for by introducing words with “wrong”

statistics. One finds the single-letter indices for the vector multiplet and the

“half” hyper multiplet

fV (t, y, v) =
t2v − t3 (y + y−1)− t4v−1 + 2t6

(1− t3y) (1− t3y−1)
(6.53)

fH(t, y, v) =
t2

v1/2

(1− t2v)

(1− t3y) (1− t3y−1)
. (6.54)

13While we agree with the general procedure followed in [139], we disagree with the final
result, equ.(3.5) of [139]. The discrepancy can be traced to an incorrect subtraction of the
U(1) factors in [139], they are apparently taken to be N = 1 rather than N = 2 vector
multiplets (equ.(2.12) of [139]). For the same reason we disagree with the expression ((3.7)
of [139]) for the contribution to the index of the 6d (2, 0) massless tensor multiplet, which
we evaluate in appendix J.

14For definiteness we evaluate IR, but recall that IL(t, y, v) = IR(t, y, v). The concrete
letters with δL = 0 are different but the left and right single-letter indices coincide.
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Letters ∆ j j̄ R r IR

q 1 0 0 1/2 0 t2v−1/2

ψ̄+ 3/2 0 1/2 0 -1/2 −t4v1/2

q̃ 1 0 0 1/2 0 t2v−1/2

¯̃ψ+ 3/2 0 1/2 0 -1/2 −t4v1/2

Table 6.7: Letters with δR = 0 from the hyper multiplet

The single-letter index then reads

iorb(t, y, v;U, Ǔ) = fV (t, y, v)(TrU TrU † − 1) + fV (t, y, v)(TrǓ TrǓ † − 1)

+

(
w +

1

w

)
fH(t, y, v)(TrU TrǓ † + TrU †TrǓ) . (6.55)

Here U and Ǔ are is an Nc × Nc unitary matrices out of which we construct

the relevant characters of SU(Nc) and SU(Nč). We have also introduced

a potential w that keeps track of SU(2)L quantum numbers: w + 1
w

is the

character of the fundamental representation of SU(2)L. The index is obtained

by enumerating all gauge-invariant operators in terms of the matrix integral

Iorb =

ˆ
[dU ][dǓ ] exp

(∑
n

1

n
iorb(t

n, yn, vn;UnǓn)

)
, (6.56)

which for large Nc can be carried out explicitly,

Iorb ∼=
∞∏
n=1

e−
2
n
fV (tn,yn,vn)

(1− fV (tn, yn, vn))2 − (w2n + w−2n + 2)f 2
H(tn, yn, vn)

≡ Im.t.orb .

(6.57)

This expression contains the contribution from all the gauge-invariant opera-

tors of the theory, which at large Nc are multi-traces, hence the superscript in

Im.t.orb . To extract the contribution from single-traces we evaluate the plethystic

logarithm (see e.g. [140])
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Is.t.orb =
∞∑
n=1

µ(n)

n
log[Im.torb (tn, yn, vn)] (6.58)

= −
∞∑
n=1

ϕ(n)

n
log[(1− fV (tn, yn, vn))2 − (w2n + w−2n + 2)f 2

H(tn, yn, vn)]

−2fV (t, y, v) (6.59)

= 2

[
t2v

1− t2v −
t3y

1− t3y −
t3y−1

1− t3y−1

]
+

t4w2

v

1− t4w2

v

+
t4

vw2

1− t4

vw2

−2fV (t, y, v) . (6.60)

Here µ(n) is the Moebius function (µ(1) ≡ 1, µ(n) ≡ 0 if n has repeated

prime factors, and µ(n) = (−1)k if n is the product of k distinct primes),

and ϕ(r) is the Euler Phi function, defined as the number of positive integers

less than or equal to r that are coprime with respect to r. We have used the

properties

∑
d|n

d µ
(n
d

)
= ϕ(n) ,

∑
r

ϕ(r)

r
log(1− xr) =

−x
1− x . (6.61)

The index is of course independent of g and ǧ. At the orbifold point g = ǧ

it makes sense organize the spectrum into a twisted and an untwisted sector.

Protected operators in the untwisted sectors are known from inheritance from

N = 4 SYM. To evaluate the contribution to the index from the untwisted

sector we start with the single-trace index for SU(Nc) N = 4 SYM and project

onto the Z2 invariant subspace. The single-trace index for N = 4 is found by

regarding N = 4 as an N = 2 theory with one adjoint vector and one adjoint

hyper. A short calculation gives [19]15

IN=4 =
t2v

1− t2v +

t2w√
v

1− t2w√
v

+

t2

w
√
v

1− t2

w
√
v

− t3y

1− t3y −
t3y−1

1− t3y−1

−fV (t, y, v)− (w +
1

w
)fH(t, y, v) . (6.62)

The Z2 acts as w → −w leaving invariant the under potentials, so the index

15Our notations for the chemical potentials are slightly different from [19].
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of the untwisted sector of the Z2 orbifold theory is

Iuntwist =
1

2
(IN=4(t, y, v, w) + IN=4(t, y, v,−w)) (6.63)

=
t2v

1− t2v −
t3y

1− t3y −
t3y−1

1− t3y−1
+

t4w2

v

1− t4w2

v

+
t4

vw2

1− t4

vw2

− fV (t, y, v) .

Subtracting the contribution of the untwisted sector from the total index

(6.60), we finally find

Itwist =
t2v

1− t2v −
t3y

1− t3y −
t3y−1

1− t3y−1
− fV (t, y, v) . (6.64)

In appendix J we confirm that this precisely matches with the contribution

from the twisted multiplets {M3,Tr(φ2+` − φ̌2+`) , ` ≥ 0}, which are the gen-

erators of the N = 1 chiral ring in the twisted sector.

6.5.4 The Index of N = 2 SCQCD and the Extra States

The single-letter index for N = 2 SCQCD is

iQCD(t, y, v;U, V ) = fV (t, y, v)(TrU TrU †−1)+fH(t, y, v)(TrU TrV †+TrU †TrV )

(6.65)

where U an Nc × Nc matrix and V an Nf × Nf matrix, with Nf = 2Nc. We

are interested in gauge and flavor-singlets, so we integrate over both U and V ,

IQCD =

ˆ
[dU ][dV ] exp

(∑
n

1

n
iQCD(tn, yn, vn;UnV n)

)
. (6.66)

For large Nc and Nf with Nf/Nc fixed we can again use saddle point,

IQCD ∼=
∞∏
n=1

e−
1
n
fV (tn,yn,vn)

(1− fV (tn, yn, vn))− f 2
H(tn, yn, vn)

≡ Im.t.QCD . (6.67)

The index that enumerates (generalized) single-trace operators is then

Is.t.QCD = −
∞∑
n=1

ϕ(n)

n
log[(1− fV (tn, yn, vn)) − f 2

H(tn, yn, vn)]− fV (t, y, v) .

(6.68)
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Unlike the orbifold theory, there is no nice factorization of the single-letter

index and we cannot extract the plethystic log explicitly. This is already an

indication of a more complicated structure than expected. The naive expecta-

tion is that all protected generalized single-trace multiplets of N = 2 SCQCD

are exhausted by the list {M3 ,Trφ2+` ,TrTφ` , ` ≥ 0}, obtained by project-

ing the protected single-trace spectrum of the interpolating theory onto U(Nf )

singlets. We evaluate the corresponding index in appendix J,

Inaive =
1

(1− t3y)(1− t3

y )
[−t6(1− t

v
(y +

1

y
))− t10

v
+
t4v2(1− t

vy )(1− ty
v )

1− t2v +
t4

v
(1− t2v)]

which is different from the correct index (6.68). Expanding in powers of t,

the first discrepancy appears at O(t13).

To get some insight, let us rewrite the single-trace index of the orbifold

theory as

Is.t.(h, k) = −
∞∑
n=1

[ϕ(n)

n
log[(1− fV (tn, yn, vn))(1− hfV (tn, yn, vn))

−(k(w2n + 1 + w−2n) + 1)f 2
H(tn, yn, vn)

]
− fV (t, y, v) .(6.69)

We have introduced a variable h that keeps track of the number of SU(Nč)

vector multiplets, and a variable k associated with the triplet combination of

two neighboring SU(2)L indices. The index (6.68) for N = 2 SCQCD is recov-

ered in the limit (h, k) → (0, 0). Indeed setting (h, k) = (0, 0): this amounts

to omitting the “second” vector multiplet and to project onto U(Nf ) singlets,

which is equivalent to first projecting onto SU(Nč) singlets (automatically

done in the interpolating theory) and then contracting all neighboring SU(2)L

indices into the singlet combination. The grading of gauge-invariant words by

powers of h (number of letters in the SU(Nč) vector multiplet) makes sense

only for ǧ = 0. Similarly, for ǧ 6= 0 only the overall SU(2)L spin of a state

is a meaningful quantum number, not the specific way neighboring SU(2)L

indices are contracted. (For example it is clearly possible to construct SU(2)L

singlets which are not U(Nf ) singlets.) At ǧ 6= 0 words with different h or k

grading will generically mix.

The origin of the extra protected states is then clear. As ǧ → 0, a long

104



multiplets of the interpolating theory, which obviously does not contribute to

Iorb, may hit the unitarity bound and decompose into a sum of short multiplets,

some of which are U(Nf ) singlets and thus belong to N = 2 SCQCD, but some

of which have instead non-trivial h or k grading. Schematically

lim
ǧ→0

L = ⊕S(h,k)=(0,0) ⊕ S(h,k)6=(0,0) . (6.70)

The operators {S(h,k)=(0,0)} are the extra states. They are protected in N = 2

SCQCD because they have no partners to recombine with.

Remarkably the extra protected states are vastly more numerous than the

naive list. The asymptotic growth of states in the naive list is clearly linear in

the conformal dimension – the number of states with ∆ < N grows as ∼ 2N ,

in other terms the density of states ρ(∆) is constant. This modest growth is

consistent with the fact that the naive single-trace index does not “deconfine”,

i.e. it does not diverge as a function of t = e−1/T for any finite temperature

T . The same behavior holds for the orbifold theory or for N = 4 SYM. By

contrast, the single-trace index of N = 2 SCQCD exhibits Hagedorn behavior.

Setting for simplicity all other potentials to 1, we encounter a divergence at

t = tH such that

1− fV (tH , 1, 1)− f 2
H(tH , 1, 1) = 0 −→ tH ∼= 0.897769 . (6.71)

This implies an exponential growth in the density of states contributing to the

index,

ρ(E ′) ∼ eβHE
′
, E ′ ≡ ∆ + j , βH = − ln tH ∼= 0.107842 . (6.72)

It is interesting to compare this behavior with the density of generic generalized

single-trace operators of N = 2 SCQCD. The density of generic states, unlike

the density of protected states, is of course a function of the coupling. For

g = 0, it is obtained by calculating the phase transition temperature of the

complete generalized single-trace partition function (with no (−1)F ). We find

∼ eβ
′
H(∆+j) with β′H = 1.34254. Not surprisingly, βH < β′H . The density

of protected states, while exponential, grows at a much slower rate than the

density of the generic states, or at least this is the behavior for small g.
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6.5.5 Sieve Algorithm

We would like to list the quantum numbers of the extra protected states, up

to the finite equivalence class ambiguity intrinsic to the index. There is no

closed-form expression for Is.t.QCD but we can identity the equivalence classes

contributing to it in a systematic expansion in powers of t, by implementing

a “sieve” algorithm similar in spirit to the one of [141].

The first discrepancy between Is.t.QCD is the O(t13) term

IQCD − Inaive = −t
13

v
(y +

1

y
) + . . . (6.73)

On the other hand, expanding (6.50) in powers of t, the lowest term is

− t6+4R̃+2r̃vr̃−R̃(y2j̄ + . . .+ y−2j̄) . (6.74)

Matching with (6.73) we determine the equivalence class of the first new pro-

tected multiplet to be [R̃, r̃, j̄]L+ = [3
2
, 1

2
, 1

2
]L+. Since r̃ = j̄, this is actually a

Ĉ multiplet so we rewrite its equivalence class as [R̂, j̄]L = [2, 1
2
]L+. Subtract-

ing the whole index of the class from the discrepancy we proceed to the next

mismatch in the t expansion, and so on. In this way, we can systematically

construct the equivalence classes of all the extra protected multiplets of the

SCQCD. The results from IL for first few multiplets are:

• C multiplets: [2, 2, 0]L+, [2, 3, 0]L+, [2, 4, 0]L+, [3, 2, 0]L−, [3, 2, 1]L−, . . .

• Ĉ multiplets: [2, 1
2
]L+, [4, 1]L+, [4, 3

2
]L+, . . .

From the analysis of IR we can write down the right equivalence classes of the

protected multiplets. Since IR = IL, the list of right equivalence classes is ob-

tained immediately from the list of left equivalence classes by the substitutions

C → C̄ and L→ R.

Protected C̄ multiplets are just conjugates of protected C multiplets. The Ĉ
multiplets, however, appear in both left and right classes, and as we discussed

this gives more information. For example the Ĉ multiplet in [2, 1
2
]L+ also belongs

to [2, 1
2
]R+ and furthermore it is the only multiplet with R̂ = R + j + j̄ = 2.

The left equivalence class determines j̄ = 1
2
, the right equivalence class j = 1

2

and both also imply R = R̂ − j − j̄ = 1. This determines the lowest-lying
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extra protected Ĉ multiplet to be Ĉ1( 1
2
, 1
2

). For R̂ = 4, there are two multiplets

with j̄ = 1, 3
2

and with same values of j. Two possible (j, j̄) Lorentz spins

are (1, 1), (3
2
, 3

2
) or (1, 3

2
), (3

2
, 1) but we also know that it is a bosonic multiplet

from the subcript +. This picks out the pair (1, 1), (3
2
, 3

2
) with R = 4−1−1 = 2

and R = 4 − 3
2
− 3

2
= 1 respectively. This determines the next protected Ĉ

multiplets to be Ĉ1( 3
2
, 3
2

) and Ĉ2(1,1). To summarize, the first three protected Ĉ
multiplets are:

• Ĉ multiplets: Ĉ1( 1
2
, 1
2

), Ĉ1( 3
2
, 3
2

), Ĉ2(1,1), . . .

A striking feature of the extra protected multiplets is that they contain states

with higher spin, in fact we believe that the sieve will produce arbitrarily

high spin. To the best of our knowledge this is the first time that higher-

spin protected multiplets are found in an interacting 4d superconformal field

theory. Note that none of the protected states we find are higher spin conserved

currents, which correspond to the multiplets Ĉ0(j,j̄). This is not surprising:

higher spin conserved currents are the hallmark of a free theory, but N = 2

SCQCD is most definitely an interacting quantum field theory. As in N = 4

SYM [142], higher spin conserved currents exist at strictly zero coupling, but

they are anomalous and recombine into long multiplets at non-zero coupling.

6.6 Dual Interpretation of the Protected Spec-

trum

As we have repeatedly emphasized, N = 2 SCQCD can be obtained as the

ǧYM → 0 limit of a family of N = 2 superconformal field theories, which

reduces for gYM = ǧYM to the N = 2 Z2 orbifold of N = 4 SYM. This latter

theory has a familiar dual description has IIB string theory on AdS5 × S5/Z2

[83], so it would seem that to find the dual of N = 2 SCQCD we simply

need to follow the fate of the bulk string theory under the exactly marginal

deformation. Recall that at the orbifold point the NSNS B-field has half-unit

period through the blown-down S2 of the orbifold singularity,
´
S2 BNS = 1/2

[143]. Taking ǧYM 6= gYM is dual to changing the period of B-field, according
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to the dictionary [84, 144]

1

g2
YM

+
1

ǧ2
YM

=
1

2πgs
(6.75)

ǧ2
YM

g2
YM

=
β

1− β , β ≡
ˆ
S2

BNS . (6.76)

The catch is that the limit ǧYM → 0 translates on the dual side to the singular

limit of vanishing BNS and vanishing string coupling gs, and the IIB back-

ground AdS5 × S5/Z2 becomes ill-defined. We will study in the next section

how to handle this subtle limit. In this section we will try to learn about

the string dual of N = 2 SCQCD from the “bottom-up”, collecting the clues

offered by the spectrum of protected operators. We start by reviewing the

well-known bulk-boundary dictionary for the protected states of the orbifold

theory.

6.6.1 KK interpretation of the orbifold protected specrum

The untwisted spectrum of the orbifold field theory (summarized in Table

6.3), has a transparent dual interpretation as the Kaluza-Klein spectrum of

IIB supergravity on AdS5 × S5/Z2. It is appropriate to write the metric of

S5/Z2 as [92]

ds2
S5/Z2

= dα2 + sin2 α dϕ2 + cos2 α ds2
S3/Z2

, 0 ≤ ϕ ≤ 2π , 0 ≤ α ≤ π

2
.

(6.77)

Momentum on S1 corresponds to the U(1)r charge r. The SO(4) ∼= SU(2)L⊗
SU(2)R isometry of the 3-sphere is broken to SO(3)L ⊗ SU(2)R by the Z2

orbifold, which projects out harmonics with jL half-odd. Needless to say,

SU(2)R and SO(3)L are interpreted as the field theory symmetry groups of

the same name, so in particular the right spin jR is identified with the quantum

number R. Finally the harmonics on the α interval are parametrized by an

integer n, dual to the power of neutral scalar T (with ∆ = 2) in the schematic

expressions of the operators in Table 6.3. It is not difficult to carry an explicit

KK expansion and confirm that ∆ = |r| + 2R + 2n. A nice shortcut is to

consider the KK expansion of the ten dimensional dilaton-axion [92], since

only scalar harmonics on S5/Z2 are required. Scalar harmonics on S3/Z2

108



have (jL, jR) = (2R, 2R) with 2R a non-negative integer. One finds ∆ =

|r| + 2R + 2n + 4 [92], as expected from the fact that the KK modes of the

dilaton-axion are dual to the descendants obtained by acting with Q4Q̄4 on

the superconformal primaries of Table 6.3.

The twisted states of the orbifold field theory (shown in Table 7.3), must

map on the dual side to twisted closed string states localized at the fixed

locus of the orbifold, which is AdS5 × S1, corresponding to α = π/2 in the

parametrization (6.77). The massless twisted states of IIB on the A1 sin-

gularity comprise one massless six-dimensional tensor multiplet, so the KK

reduction of the tensor multiplet on AdS5 × S1 must reproduce the protected

twisted states of the orbifold field theory. It does, as we review in appendix

K following the analysis of [145], to which we add a detailed treatment of the

zero modes. We find that the zero modes of the tensor multiplet correspond

to the multiplet build on the “exceptional state” TrM3.

6.6.2 Interpretation for N = 2 SCQCD?

The protected spectrum of N = 2 SCQCD (restricting as usual to flavor

singlets, and in the large N Veneziano limit) consists of two sectors: the

“naive” list of protected primaries (7.24) easily found by a one-loop calculation

in the scalar sector [99]; and the many more extra “exotic” states found in the

analysis of the superconformal index.

The “naive” spectrum arises from a truncation of the protected spectrum

of the interpolating theory (as ǧ → 0) to U(Nf ) singlets. We have already

discussed the reason to focus on the flavor-singlet sector: flavor-singlet opera-

tors, which necessarily are of “generalized single-trace type” in the Veneziano

limit, are expected to map to single closed string states. The restriction to

U(Nf ) singlets has an interesting geometric interpretation: flavor singlets are

in particular SU(2)L singlets, and thus they are dual to supergravity states

with no angular momentum on S3/Z2 in the parametrization (6.77). So in

performing this restriction we are “losing” three spatial dimensions. As ex-

plained around (6.32), the protected primaries of the interpolating theory that

are not flavor-singlets can be decomposed in the limit ǧ → 0 as products of

“mesonic” operators (Q̄++̂Q++̂)ǎ
b̌

and decoupled scalars of the “second” vector
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multiplet. The dual interpretation in the bulk is that as ǧ → 0 KK modes on

S3/Z2 become multi-particle states of open strings. The flavor singlet sector of

N = 2 SCQCD does not “see” the S3/Z2 portion of the geometry. We regard

the “loss” of S3/Z2 as a first hint that the string dual to the singlet sector of

N = 2 SCQCD should be a sub-critical string background. The S1 factor on

the other hand is preserved.

We may also ignore the relation of N = 2 SCQCD with the orbifold theory,

and consider the protected states (7.24) at face value: they are immediately

suggestive of Kaluza-Klein reduction on a circle. The dual geometry must

contain an AdS5 factor to implement the conformal symmetry, and an S1 factor

to generate the two KK towers dual to {TrT φ`} and {Trφ`+2}. Moreover the

radii of the AdS5 and S1 factor must be equal. Indeed Kaluza-Klein reduction

on S1 gives a mass spectrum m2 ∼ `2/R2
S1 (for ` large), and correspondingly a

conformal dimension ∆ ∼= mRAdS
∼= `RAdS

RS1
. Inspection of (7.24) gives RAdS =

RS1 . The isometry of S1 is interpreted as the U(1)r R-symmetry. On the other

hand, there is no hint in the protected spectrum (7.24) of a “geometrically”

realized SU(2)R. The relation with the interpolating theory makes it clear

that indeed the geometric factor S3/Z2, with isometry SU(2)R ⊗ SO(3)L, is

lost in the limit ǧ → 0.

We can further split the “naive” spectrum (7.24) into the primaries {TrM3,

Trφ`} and the primaries {TrTφ`}. The first set, of course, is isomorphic to

the twisted states of the orbifold, and can be precisely matched with the KK

reduction on AdS5×S1 of one tensor multiplet of (2, 0) chiral supergravity. A

first guess is that the primaries {TrTφ`} correspond to the KK reduction of

the 6d (2, 0) gravity multiplet on AdS5 × S1, but this is incorrect. The zero

modes of the 6d gravity multiplet correctly match the stress-energy tensor

multiplet (whose bottom component is the primary TrT ), but there are not

enough states in the higher KK modes to match the states in the TrTφ` for

` > 0. This could have been anticipated by tracing the origin of the states

{TrTφ`} in the orbifold theory: the dual supergravity states have no angular

momentum on S3/Z2 in the parametrization (6.77), but they are extended in

the remaining seven dimensions. So a better guess is that the states {TrTφ`}
should have an interpretation in seven-dimensional supergravity.

In summary, with some hindsight, the “naive” spectrum appears to indi-
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cate a sub-critical string background, with seven “geometric” dimensions, and

containing both an AdS5 and an S1 factor, with RAdS = RS1 .

The extra exotic protected states teach another important lesson. They

arise in the limit ǧ → 0 from long multiplets on the interpolating theory that

hit the unitarity bound and split into short multiplets. In the dual string

theory, this means that a fraction of the massive closed string states become

massless in the limit ǧ → 0. It is a substantial enough fraction to give rise

to a Hagedorn degeneracy, as we saw in section 6.5.4. This has the crucial

implication that the dual description of N = 2 SCQCD is never in terms of

supergravity, since even in the limit λ ≡ g2
YMNc → ∞ there is an infinite

tower of “light” closed string states, with a mass of the order of the AdS scale.

However it seems plausible to conjecture that there is also a second sector of

“heavy” string states that decouple for λ→∞.

The picture that we have in mind is the following. There are really two ’t

Hooft couplings in the interpolating theory, λ ≡ g2
YMNc and λ̌ ≡ ǧ2

YMNc, and

correspondingly two effective string tensions Ts ∼ 1/l2s and Ťs ∼ 1/ľ 2
s . The

idea of two effective string tensions is intuitive from the spin chain viewpoint,

since the bifundamental fields separate different regions of the chain, occupied

by adjoint fields of the two different groups SU(Nc) and SU(Nč) and thus

governed by the two different gauge couplings. At the orbifold point, of course,

λ = λ̌. In the limit in which the unique ’t Hooft coupling of the orbifold

theory is sent to infinity the string length goes to zero in AdS units according

to the usual AdS/CFT dictionary RAdS5/ls ∼ λ1/4, leading to the decoupling

of all massive string states. To approach N = 2 SCQCD we are interested in

what happens as λ is kept large, but λ̌ is sent to zero. At present we do not

know how to modify the AdS/CFT dictionary in this limit. The most naive

extrapolation would suggest a hierarchy between two different scales: there

should be one sector of closed string states governed by ls ∼ λ−1/4RAdS and

thus very massive, and another governed by ľs ∼ RAdS and thus light. The

latter would correspond to the exotic protected states revealed by the index.
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6.7 Brane Constructions and Non-Critical Strings

The interpolating SCFT has a dual description as IIB on AdS5 × S5/Z2, but

this description breaks down in the ǧ → 0 limit that we wish to study. We

must describe the theory in a different duality frame. We will argue that the

correct description is in terms of a non-critical superstring background. In

this section we reconsider the IIB brane setup leading to the interpolating

SCFT, and review how it can be T-dualized to a IIA Hanany-Witten setup

(see e.g. [146] for a review). The T-dual frame allows for a more transparent

understanding of the limit ǧ → 0, as a double-scaling limit in which two brane

NS5 collide while the string coupling is sent to zero. In this limit the near-

horizon dynamics is described a non-critical string background, which (before

the backreaction of the D-branes) admits an exact worldsheet description as

R5,1 times SL(2)2/U(1), the supersymmetric cigar CFT. We are led to identify

the near-horizon backreacted background, where D-branes are replaced by flux,

with the dual of N = 2 SCQCD.

6.7.1 Brane Constructions

The interpolating SCFT arises at the low-energy limit on Nc D3 branes sitting

at the orbifold singularity R2 × R4/Z2. The blow-up modes of the orbifold

are set to zero, since they correspond to massive deformations of the 4d field

theory. The NSNS period β is related to gYM and ǧYM by the dictionary (6.75).

As β → 0 the D-strings obtained by wrapping D3 branes on the blow-down

cycle of the orbifold become tensionless and string perturbation theory breaks

down. It is useful to T-dualize to a IIA Hanany-Witten description, where

the deformation β can be pictured more easily. To perform the T-duality we

should first replace the A1 singularity R4/Z2 with its S1 compactification, a

two-center Taub-NUT space of radius R̃. The local singularity is recovered for

R̃→∞.

Recall, more generally, that the S1 compactification of the resolved Ak−1

singularity is a k-center Taub-NUT, a hyperkäler manifold which can be con-

cretely described as an S1 fibration of R3. Let τ̃ be the coordinate of the S1

fiber and ~y the coordinates of the R3 base. The S1 fiber degenerates to zero

size at k points on the base, ~y = ~y(a), a = 1, . . . k, and goes to a finite radius R̃

112



at the infinity of R3. (Topologically the S1 is non-trivially fibered over the S2

boundary of R3, with monopole charge k.) Rotations of the ~y coordinates are

interpreted as the SU(2) symmetry that rotates the complex structures. From

the viewpoint of the worldvolume theory of D3 branes probing the singularity,

this is the SU(2)R R-symmetry. The geometry has also an extra U(1)L sym-

metry acting as angular rotation in the S1 fiber.16 (Finally the U(1)r of the

4d gauge theory corresponds to an isometry outside the Taub-NUT, namely

rotations in the R2 factor of R2 × R4/Z2.)

The metric of a k-center Taub-NUT space has 3(k − 1) non-trivial hy-

perkähler moduli (after setting say ~y(1) ≡ 0 by an overall translation), which

correspond to the blow-up modes of the (k−1) cycles – one SU(2)R triplet for

each cycle. In the string sigma model one needs to further specify the periods

of BNSNS and BRR on each cycle,which gives two extra real moduli for each

cycle, singlets under SU(2)R. Altogether the 5 = 3 + 1 + 1 moduli for each cy-

cle are the scalar components of a tensor multiplet living in the six transverse

directions to the Taub-NUT (or ALE) space. T-duality along the τ̃ direction

yields a string background with non-zero NSNS H flux and non-trivial dilaton,

which is interpreted as the background produced by k NS5 branes [113, 147].

The NS5 branes sit at ~ya in the R3 directions, and are localized on the dual

circle.17 The NSNS periods map to the relative angles of the NS5 branes on

the dual circle.

Let us apply these rules to our case. We start on the IIB side with the

configuration

IIB x0 x1 x2 x3 x4 x5 τ̃ y1 y2 y3

TN2 × × × ×
D3 × × × ×

The two-center Taub-NUT TN2 has radius R̃, vanishing blow-up modes (~y(1) =

~y(2) = 0) and
´
S2 BNSNS = β. T-duality gives the IIA configuration

16The A1 singularity (k = 2, ~ya = 0, R̃ = ∞) has a symmetry enhancement U(1)L →
SO(3)L, whose field theory manifestation is the SO(3)L global symmetry of the Z2 orbifold
of N = 4 SYM, discussed in section 6.3.2. The symmetry is broken to U(1)L for finite R̃;
the full SO(3)L is recovered in the infrared.

17Naive application of the T-duality rules gives NS5 branes smeared on the dual circle.
The localized solution arises after taking into account worldsheet instanton corrections [148].
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IIA x0 x1 x2 x3 x4 x5 τ y1 y2 y3

2 NS5 × × × × × ×
D4 × × × × ×

Nc D4

Nc D4

NS5 NS5

2πβ τ

Nc D4 Nc D4

Nc D4

τ = y4

y3

NS5 NS5

Figure 6.4: Hanany-Witten setup for the interpolating SCFT (on the left)
and for N = 2 SCQCD (on the right).

The two NS5 branes, at the origin of R3 are localized on the dual circle of

radius R = α′/R̃ and at an angle 2πβ from each other. The string couplings

are related as

gAs =
R

ls
gBs =

ls

R̃
gBs . (6.78)

T-duality maps the Nc D3 branes on the IIB side (which can also be thought as

two stacks of fractional branes [149]) to two stacks of Nc D4 branes on the IIA

side, each stack ending on the two NS5 branes and extended along either arc

segment of the τ circle (see Figure 6.4). This is the familiar Hanany-Witten

setup for the Z2 orbifold field theory. The four-dimensional field theory living

on the non-compact directions 0123 decouples from the higher dimensional

and stringy degrees of freedom in the limit

gAs → 0 ls → 0 , R→ 0 , (6.79)

with
βR

2πgAs ls
≡ 1

g2
YM

and
(1− β)R

2πgAs ls
≡ 1

ǧ2
YM

fixed .

At this stage we are still keeping both gauge couplings gYM and ǧYM finite. If

L is the 4d length scale above which the field theory is a good description, we
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have the hierarchy of scales

L� ls � R ∼= gAs ls . (6.80)

Again, rotations in the yi directions correspond to the SU(2)R R-symmetry

of the N = 2 4d field theory, while rotations in the 45 plane correspond to

the 4d U(1)r symmetry. Finally the U(1)L symmetry, which was related to

momentum conservation along the S1 fiber in the IIB setup, is T-dualized to

winding symmetry in the Hanany-Witten IIA setup. It gets enhanced in the

infrared to the SO(3)L symmetry of the 4d field theory.

6.7.2 From Hanany-Witten to a Non-Critical Background

The limit ǧYM → 0 (with gYM fixed) can now be understood more geometri-

cally: it corresponds to β → 0, the limit of coincident NS5 branes. In this limit

we can ignore the periodicity of the τ direction and think of two NS5 branes

located in R4 at a distance τ0 ≡ 2πβR from each other, with τ0 → 0. There is

a stack of Nc D4 branes suspended between the two NS5s and two stacks of Nc

semi-infinite D4s, ending on either NS5 brane. As is well-known, k ≥ 2 coinci-

dent NS5 branes generate a string frame background with a strongly coupled

near horizon region – the string coupling blows up down the infinite throat

towards the location of the branes. The throat region is the CHS background

[150]

R5,1 × SU(2)k × Rρ , with dilaton Φ = − ρ√
2k

, (6.81)

where ρ is the radial direction (the NS5 branes are located at ρ = −∞). The

supersymmetric SU(2)k WZW model describes the angular S3; it arises by

combining the bosonic SU(2)k−2 and three free fermions ψi, i = 1, 2, 3, which

make up an SU(2)2. This description breaks down for large negative ρ where

the string coupling eΦ is large. In Type IIA (our case), we must uplift to

M-theory to obtain the correct description of the near horizon region strictly

coincident NS5 branes. However, what we are really interested in is bringing

the branes together in a controlled fashion, simultaneously turning off the

string coupling gAs . We can break the limit (6.79) into two steps:
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(i) We first take the double scaling limit [116, 117]

τo → 0 , gAs → 0 ,
τ0

lsgAs
≡ 1

geff
∼ 1

g2
YM

fixed , ls fixed. (6.82)

(ii) We then send ls → 0.

Let us first consider the purely closed background without the D4 branes. The

double-scaling limit (i) has been studied in detail in [116, 117], precisely with

the motivation of avoiding strong coupling. In this limit the region near the

location of the NS5 branes decouples from the rest of the geometry and is

described by a perfectly regular background of non-critical superstring theory

[116, 117]. To describe the background as a worldsheet CFT it is useful to

perform a further T-duality, in an angular direction around the branes. If

τ ≡ y4 is the direction along which the branes are separated, we pick say the

y3y4 plane and perform a T-duality around χ = arctan y3/y4. The result is the

exact IIB background

R5,1 × SL(2)2/U(1)/Z2 . (6.83)

The Z2 orbifold implements the GSO projection. The Kazama-Susuki coset

SL(2)2/U(1) is the supersymmetric Euclidean 2d black hole, or supersymmet-

ric cigar, at level k = 2. The corresponding sigma-model background is

ds2 = dρ2 + tanh2(
Qρ

2
)dθ2 + dXµdXµ θ ∼ θ +

4π

Q
(6.84)

Φ = − ln cosh(
Qρ

2
), Bab = 0 . (6.85)

In appendix E we review several properties of this background. An equivalent

(mirror) description of SL(2)/U(1) is as theN = 2 superLiouville theory [151].

The two descriptions are manifestly equal in the asymptotic region ρ → ∞,

where they reduce to (S1× linear dilaton). At large ρ, the leading perturbation

away from the linear dilaton takes a different form in the semiclassical cigar

and Liouville descriptions, but in the complete quantum description both the

cigar and Liouville perturbations are present. The cigar description is more

appropriate for k →∞, since in this limit the cigar perturbation dominates at

large ρ over the Liouville perturbation, while the Liouville description is more

appropriate for k → 0, where the opposite is true. For k = 2 both descriptions
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are precisely on the same footing – the cigar and Liouville perturbations are

present with equal strength and are in fact rotated into each another by the

SU(2)R symmetry [125]. For k = 2 the asymptotic radius of the cigar is
√

2α′,

which is the free fermion radius, implying that for large ρ the angular coor-

dinate θ and its superpartner ψθ can then be replaced by three free fermions

ψi, or equivalently by SU(2)2. The cigar background is thus a smoothed out

version of the CHS background (6.81) – the negative ρ region of CHS has been

cut-off and the string coupling is now bounded from above by its value geff at

the tip of the cigar.18

To summarize, we started from a IIA configuration of two separated NS5

branes in flat space, and took the double-scaling limit (6.82). In this limit the

near-horizon region decouples from the asymptotic flat space region, and is

described by the exact non-critical IIB background (6.83). (The switch from

IIA and IIB is due to the angular T-duality along χ.) The reduction of degrees

of freedom from critical to non-critical strings happens because we are focusing

on a subsector of the full theory, namely the degrees of freedom near the

singularity produced by the colliding NS5 branes. The transverse direction ρ

can be thought of as a worldsheet RG scale, with the asymptotically flat region

at large ρ playing the role of the UV and the cigar geometry playing the role

of the IR – in focusing to the near horizon region we lose the asymptotic flat

space degrees of freedom. In particular, what remains of the transverse S3 is

just the “stringy” SU(2)2 associated with the free fermions ψi, i = 1, 2, 3.

We can easily follow the fate of the D-branes through the double scaling

limit and Tχ-duality: the D4 branes suspended between the two NS5s become

D3 branes localized at the tip of the cigar, while the semi-infinite D4 branes

18As an aside, it is worth recalling the generalization of this discussion to k NS5 branes,
equally spaced on a contractible circle in the y3y4 plane. T-duality around the angular
coordinate χ produces the background [116]

R5,1 × (SL(2)k/U(1)× SU(2)k/U(1))/Zk . (6.86)

The central charges are of the Kazama-Susuki cosets are

c(SL(2)k/U(1)) = 3 +
6

k
, c(SU(2)k/U(1)) = 3− 6

k
. (6.87)

The CFT (6.86) In the semiclassical limit k →∞ we have a weakly curved “geometric” 10d
background, while in the opposite limit k = 2 the curvature is string scale, the SU(2)/U(1)
piece disappears and we have the “non-critical” string background (6.83).
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become D5 branes extended on the cigar. This at least is the intuitive geo-

metric picture. Since the cigar background has string-size curvature near the

tip, a more appropriate description of the D-branes is in terms of the exact

boundary states. Boundary states for the Kazama-Susuki coset SL(2)/U(1)

(equivalently, for the superLiouville CFT) have been studied in several papers

[152–156], following the construction of boundary states in bosonic Liouville

theory, and used in N = 1 non-critical holography in [107, 108, 110]. There

are indeed natural candidates for the two types of cigar D-branes that we

need. The branes localized near the tip of the cigar are the analog of Liouville

ZZ [157] branes, while the branes extended along the cigar are the analog of

the Liouville FZZT [158, 159] branes. The non-critical string setup can be

summarized by the following diagram:

IIB x0 x1 x2 x3 x4 x5 ρ θ

D3 × × × ×
D5 × × × × × ×

We could have taken this as our starting point. The theory on the worldvolume

of theNc D3 branes (the “color” branes) reduces for energies much smaller than

the string scale to N = 2 SU(Nc) SYM, coupled to Nf = 2Nc hypermultiplets

arising from the open strings stretched between the D3s and the “flavor” D5s.

This is true by construction, since we obtained this non-critical setup as a

limit of a well-known brane realization of the same field theory, and it could

also be checked directly, by examining the open string spectrum and preserved

supersymmetries.

To decouple the field theory we need to take ls → 0 (step (ii) in our previous

discussion of the field theory limit). This amounts on the gravity side to the

near-horizon limit of the geometry produced by the D-branes. By the usual

arguments [12], we are led to conjecture that the resulting non-critical string

background is dual to N = 2 SCQCD.

6.8 Towards the String Dual of N = 2 SCQCD

The explicit construction of the background after the backreaction of the D-

branes is left for future work. In this section we outline a line of attack, based
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on a 7d “effective action” which we identify as maximal supergravity with

SO(4) gauging. In fact several features of the background can be determined

from symmetry considerations alone, and just assuming that a solution ex-

ists we will find a nice qualitative agreement with the bottom-up field theory

analysis, notably in the protected spectrum of operators.

6.8.1 Symmetries

Let us start by recapitulating the symmetries. The obvious bosonic symmetries

of the closed string background (6.83) (the background before introducing D-

branes, henceforth the “cigar background”) are the Poincaré group in R5,1 and

the U(1) isometry of the θ circle. In fact since as ρ → ∞ the θ circle is at

the free fermion radius, there is an asymptotic “stringy” enhancement of the

U(1) symmetry to SU(2)ψi × SU(2)ψ̃i
∼= SO(4). At finite ρ the cigar and

super-Liouville interactions break this symmetry to the diagonal SU(2). This

has a clear geometric interpretation in the HW picture (before the angular Tχ-

duality) of the two colliding NS5 branes: the SO(4) symmetry is the isometry

of the transverse four directions to two coincident NS5 branes; separating the

branes along one direction (τ = y4 in the picture on the right of Figure 4)

breaks the symmetry to SO(3) ∼= SU(2) (rotations of yi, i = 1, 2, 3). This

surviving diagonal SU(2) is interpreted as the SU(2)R R-symmetry of the

N = 2 4d gauge theory. Adding the color D3 branes and the flavor D5 branes

breaks the 6d Poincaré symmetry to 4d Poincaré symmetry in the directions

xm, m = 0, 1, 2, 3, times the rotational symmetry in the 45 plane. The latter

is interpreted as the U(1)r R-symmetry of the gauge theory. Note that the

branes preserve the same (diagonal) SU(2) as the cigar and super-Liouliville

interactions. This is again transparent in the picture of colliding NS5 branes,

since both the “compact” D4 branes and the “non-compact” D4 branes, which

become respectively the color D3s and the flavor D5s after Tχ-duality, are

oriented along the same τ = y4 direction in which the two NS5s are separated.

Finally we should mention the fermionic symmetries. As we review in appendix

E, the background (6.83) has 16 real supercharges, corresponding to the (2, 0)

Poincaré superalgebra in R5,1. Adding the D-branes breaks the supersymmetry

in half, so that 8 Poincaré supercharges survive (that D3s and D5s break the

same half is again obvious in the T-dual frame where they are both (parallel)
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D4 branes). Taking the near-horizon geometry is expected to give the usual

supersymmetry enhancement, restoring a total of 16 supercharges that form

the N = 4 AdS5 superalgebra (isomorphic to the N = 2 4d superconformal

algebra).

6.8.2 The cigar background and 7d maximal SO(4)-gauged

supergravity

The cigar background (6.83) is analyzed in some detail in appendix E, which

the reader is invited to read at this point. Let us summarize some of the

relevant points. The physical spectrum of the cigar background consists of:

(i) normalizable states localized at the tip of the cigar ρ ∼ 0, living in R5,1:

they fill a tensor multiplet of (2, 0) 6d supersymmetry; (ii) delta-function nor-

malizable states, corresponding to plane waves in the radial ρ direction; (iii)

non-normalizable vertex operators, supported in the large ρ region.

We are only interested in the cigar background as an intermediate step

towards the background dual to N = 2 SCQCD, obtained in the near-horizon

limit of the D3/D5 brane configuration. A possible strategy is to use the cigar

background, which admits an exact CFT description, to derive a spacetime

“effective action”. The spacetime action is expected to be background inde-

pendent and should admit as classical solutions both the cigar background and

the background dual to N = 2 SCQCD. (In this respect, the cigar background

is analogous to the 10d flat background of IIB string theory, which is described

at low energies by 10d IIB supergravity; another solution of IIB supergravity

is the AdS5×S5 background dual to N = 4 SYM.) For the purpose of deriving

an “effective action” the relevant part of the spectrum is (ii), the continuum

of plane-wave states. Performing a KK reduction on the θ circle, the plane-

wave states are naturally organized in a tower of increasing 7d mass (which

gets contribution both from the θ momentum and from string oscillators).

There is is no real separation of scales between the lowest mass level and the

higher ones, because the linear dilaton has string-size gradient. Nevertheless

the states belonging to lowest level are special: although they obey “massive”

7d wave-equations, this is an artifact of the linear dilaton; the counting of

degrees of freedom is that of massless 7d states because of gauge invariances.
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Remarkably, we find that for large ρ the lowest-mass level of the continuum

spectrum is described by seven dimensional maximally supersymmetric super-

gravity (32 supercharges), but with a non-standard gauging: only an SO(4) of

the full SO(5) R-symmetry is gauged. This supergravity has been constructed

only quite recently [160, 161]. The maximal supersymmetry (which, as we

shall see momentarily, is spontaneously broken to half-maximal, consistently

with our previous counting) can be understood as follows. After fermioniz-

ing the angular coordinate θ, we have a total of ten left-moving fermions, ψµ,

µ = 0 . . . 5 along R5,1, ψρ and ψi, i = 1, 2, 3 (the last three corresponding to

∂θ, ψθ), and similarly ten right-moving fermions. So the construction of the

lowest-level physical states of our sub-critical theory is entirely isomorphic to

the construction of the massless states of the standard critical IIB string the-

ory, except of course that the momenta are now seven dimensional. The SO(4)

that is being gauged is the asymptotic SU(2)ψi × SU(2)ψ̃i
∼= SO(4) that we

have mentioned. It turns out that unlike the standard SO(5)-gauged 7d sugra,

which admits the maximally supersymmetric AdS7 vacuum, the SO(4)-gauged

theory breaks half of the supersymmetry spontaneously. The scalar potential

of the SO(4)-gauged theory does not admit a stationary solution but only

a domain wall solution [160, 161], which is nothing but the linear dilaton

background, with 16 unbroken supercharges – the 6d (2, 0) super-Poincaré

invariance discussed earlier.

Incidentally, we believe that this is a general phenomenon: non-critical su-

perstrings in various dimensions must admit (non-standard) gauged supergrav-

ities as their spacetime “effective actions”, in the sense that we have discussed.

It may be worth to explore this connection systematically.

6.8.3 An Ansatz

We expect the SO(4)-gauged 7d sugra that describes the “massless” fields to

be a useful tool, though not a perfect one because we know that the higher

levels are not truly decoupled. The next step is to look for a solution of

this supergravity with all the expected symmetries. In the seven dimensional

theory the SU(2)R symmetry is not realized geometrically – its last remnant

was the (string-size) θ circle, over which we have KK reduced to get down

to 7d. On the other hand, the U(1)r symmetry is geometric, and conformal
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symmetry is expected to arise in the near-horizon geometry, which must then

contain both an S1 and an AdS5 factor. The most general ansatz for the 7d

metric with the expected isometries is

ds2 = f(y)ds2
AdS5

+ g(y)dϕ2 + C(y)dy2 . (6.88)

Here ϕ is the angular coordinate of the S1 associated to U(1)r isometry, while

the y has range in a finite interval, say y ∈ [0, 1]. Restoring the θ coordinate,

the non-critical background would have the form

ds2 = f(y)ds2
AdS5

+ g(y)dϕ2 + h(y)dθ2 + C(y)dy2 . (6.89)

Comparing with the brane setup, which is again

IIB x0 x1 x2 x3 x4 x5 ρ θ

D3 × × × ×
D5 × × × × × ×

we identify ϕ is angular coordinate in the 45 plane, while y could be taken to

be a relative angle between the radial distance in the 45 plane and the radial

distance ρ along the cigar, y = 2
π

arctan(ρ/
√
x2

4 + x2
5). The D5 branes sit at

y = 1.

The program is then to look for a solution (6.88) of the SO(4)-gauged

7d supergravity, possibly allowing for singular behavior at the original loca-

tion y = 1 of the flavor branes. For fixed Nc and Nf (= 2Nc), we expect a

one-parameter family of solutions, because the ’t Hooft coupling λ is exactly

marginal – the AdS scale should be a modulus, as in the familiar AdS5 × S5

case. The color (D3) branes are magnetically charged under the RR one-form

C
(2,2)
µ̂ (see Table 18) and the flavor branes (which are actually D4 branes from

the viewpoint in the 7d theory) are magnetically charged under the RR zero-

form C(2,2). The corresponding fluxes will be turned on in the solution. As

usual the color branes will be completely replaced by flux. Our analysis of

the large N Veneziano limit suggests that new effective closed string degrees

of freedom, dual to “generalized single-trace” operators, arise from the resum-

mation of open string perturbation theory. This favors the scenario in which

also the flavor branes are completely replaced by flux. This fundamental issue
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would be illuminated by an explicit solution.

The program of finding a supergravity background for N = 2 SCQCD was

also discussed in critical IIB supergravity [162] and in 11d supergravity [39],

but no explicit solutions are yet known. It would be interesting to understand

the relation of these approaches with our sub-critical setup. In particular a

somewhat singular limit of solutions found in [39] should correspond to N = 2

SCQCD, and it would be nice to understand this in detail.

6.8.4 Spectrum

Already at this stage we can recognize that the top-down (string theory) and

bottom-up (field theory) analyses are in qualitative agreement. Both suggest

that the string dual of N = 2 SCQCD is a sub-critical background with an

AdS5 and an S1 factor. In the field theory protected spectrum we found a sharp

difference between the U(1)r and SU(2)R factors of the R-symmetry group:

there are towers of states with increasing U(1)r, but no analogous towers for

SU(2)R. The brane construction confirms the natural interpretation of this

fact: while the U(1)r is realized geometrically as the isometry of a “large”

S1
ϕ, with its towers of KK modes, the SU(2)R is associated to the string-

sized S1
θ of the cigar (and in fact the very enhancement from the θ isometry

U(1) ⊂ SU(2)R to the full SU(2)R is a stringy phenomenon). The “naive”

part of the protected spectrum nicely matches:

(i) The multiplets built on the primaries {TrM3 ,Trφ2+`} correspond to

the KK modes on S1
ϕ of the 6d tensor multiplet (see appendix D): these

are the truly normalizable states of the cigar background, localized at

the tip of the cigar (y = 0 in the parametrization (6.88)).

(ii) The multiplets built on {TrTφ`} correspond to the KK modes on S1
ϕ

of the bulk 7d SO(4)-gauged supergravity: this is the lowest level of

the plane-wave spectrum of the cigar background. While we have not

performed a detailed KK reduction, for which the precise geometry is re-

quired, it is clear that the bulk graviton maps to the stress tensor, which

is part of the TrT multiplet, and that the `-th KK mode of the graviton

maps to the unique spin 2 state in the TrTφ` multiplet. Supersymmetry

should do the rest.
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The “extra” protected states of the field theory must correspond to light string

states in the bulk, with mass of order of the AdS scale, but we do not know

how to establish a more precise dictionary at this point. We have suggested

in section 6.6 that the string theory dual to N = 2 SCQCD may contain two

sectors of string states, in correspondence with the two effective string scales ls

and ľs of the interpolating theory: a light sector, controlled by ľs ∼ RAdS for all

λ, and a heavy sector, controlled by ls � RAdS for λ� 1. The string length of

the cigar background should be identified with ls, so the massive string states

of the cigar background would correspond to the heavy sector and decouple

for large λ. The light sector is more mysterious. A tantalizing speculation is

that the light states correspond to cohomology classes with non-normalizable

N = 2 Liouville dressing, i.e. supported at large ρ (operators of type (iii)

in the list of section L.4). It is clearly possible to tune the ρ-momentum

to achieve “massless” six-dimensional states, at the expense of making them

non-normalizable in the ρ direction. Perhaps the extra protected states of

N = 2 SCQCD are somewhat analogous to the discrete states of the c = 1

matrix model, which are indeed dual to vertex operators with non-normalizable

Liouville dressing.19

If indeed ls � RAdS for large λ, the 7d supergravity, while not capturing

the whole theory even in this limit (as we know from the existence of the extra

protected states), may still offer a useful description of a subsector.

6.9 Discussion

We may now look back to section 6.1, at the list of special features shared by all

4d CFTs for which an explicit string dual is presently known. We have studied

in some detail perhaps the most symmetric theory that violates property (i)

(since a 6= c at large N) and property (ii) (since it has a large number of fields

in the fundamental representation), while still satisfying the nice simplifying

feature (iv) of an exactly marginal coupling λ. We have argued that the

dual string theory is not ten dimensional, thus violating (iii), and proposed a

19Alternatively, our idea of two effective string scales may be wrong, and the unique scale
ls may be of the order of RAdS for all λ. In this case all anomalous dimensions would remain
small for large λ. The extra protected states would be special only in that their anomalous
dimension is exactly zero for all λ. This is certainly a logical possibility.
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sub-critical string dual in eight dimensions (including the string-size θ). The

theory emerges as a limit of a family of superconformal field theories that

have a = c and admit ten dimensional string duals. In this singular limit

some fields decouple on the field theory side, leading to a 6= c, while on the

string side two dimensions are lost (counting θ as a dimension). It is tempting

to link the two phenomena. The natural speculation is that the 4d gauge

theories in the “N = 4 universality class” (which among other things are

characterized by a = c) have 10d string dual, while theories with “genuinely”

fewer supersymmetries have sub-critical duals. A plausible pattern for (susy

—dimension) is (N —d) = (4—10), (2—8), (1—6), (0—5). We have given

evidence for the N = 2 ↔ d = 8 connection, while [106, 107, 110] focused on

N = 1↔ d = 6.

Our example is in harmony with the no-go theorem that a = c for all field

theories with an AdS5 gravity dual, since we argued that even for large λ the

supergravity approximation to the dual of N = 2 SCQCD cannot be entirely

valid. The imbalance between a and c must arise from higher-curvature terms

in the AdS5 gravity theory [163]. We believe that the stringy origin of these

higher curvature terms is the Wess-Zumino action of the flavor branes, as in

the example studied in [164, 165]: the flavor Wess-Zumino terms were shown

to generate R2 corrections to the 5d Einstein-Hillbert action, contributing at

order O(Nf/Nc) to a − c. In the example of [164, 165] Nf � Nc, while in

our case Nf ∼ Nc and a − c = O(1), but the mechanism must be the same.

It is important to keep in mind that the higher-curvature terms from the

WZ action are topological in nature and are on a different footing from the

higher-curvature corrections due to the closed string sigma-model loops, which

are instead suppressed by powers of ls/RAdS. So there is no contradiction in

principle between our suggestion that for large λ the non-critical background

has a string length ls � RAdS, and the fact that a − c = O(1), since a − c

arises from the higher-curvature terms coming from the WZ action, since they

are not suppressed.

It is worth pointing out a simple relation between our N = 2 story and

the N = 1 story of [106, 107, 110], if we specialize their setup to N = 1 super

QCD with Nf = 2Nc, the Seiberg self-dual theory. This theory can be viewed

as the ǧ → 0 limit of a family of N = 1 SCFTs with product gauge-group
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SU(Nc) × SU(Nč); when the couplings are equal the family reduces to the

Klebanov-Witten theory [86], which is dual to AdS5 × T 1,1. This is entirely

analogous to the relation betweenN = 2 SCQCD and the Z2 orbifold ofN = 4

SYM, and of course this is not a coincidence: the two-parameter family of

N = 1 theories is obtained from the two-parameter family of N = 2 theories

flowing in the IR by a relevant deformation. For g = ǧ, this is the well-known

RG flow from the Z2 orbifold to the KW theory triggered by Tr(φ2 − φ̌2)

[86]. Unlike the N = 2 family, for N = 1 the couplings are bounded from

below and the family of N = 1 SCFTs is never weakly coupled. The exactly

marginal coupling of the self-dual N = 1 super QCD is the coefficient of a

quartic superpotential – it cannot be taken arbitrarily small but it can be

taken arbitrarily large. Our analysis of appendix E should easily generalize

to this case, to find the gauged supergravity describing the lightest modes of

the continuum spectrum. Only an isolated supergravity solution exists [106]

(for arbitrary Nf ∼ Nc), but in the special case Nf = 2Nc a one-parameter

family of solutions is expected. This is also confirmed by the vanishing of the

dilaton tadpole when Nf = 2Nc [110]. It would be nice to understand this

point better.

Clearly there are many open questions. The bottom-up analysis would

be greatly enhanced if we could determine the large λ behavior of generic

non-protected operators. This may eventually be possible if N = 2 SCQCD

exhibits an all-loop integrable structure. In the next spin-chain chapter [99]

we find a preliminary hint of one-loop integrability. In the top-down approach,

work is in progress to verify whether the ansatz (6.88) is indeed a solution of

the SO(4)-gauged supergravity. It will be interesting to understand its phys-

ical implications, especially the role of the warping factors and their possible

singularity at y = 1.

Ultimately an accurate description of the string dual will require the full

non-critical sigma-model in RR background. It would be very interesting to

start with the sigma-model for AdS5 × S5/Z2, which can be quantized either

in the generalized light-cone gauge or in the pure-spinor formalism, and un-

derstand the transition to a non-critical sigma-model in the ǧ → 0 limit. This

may well be the simplest instance of such a transition – we should learn the

rules of the game in this highly symmetric example.
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Chapter 7

Spin Chains in N = 2

Superconformal Theories

In the previous chapter, we made some progress towards the AdS dual ofN = 2

SCQCD. We attacked the problem from two fronts: from the bottom-up, we

performed a systematic analysis of the protected spectrum using superconfor-

mal representation theory; from the top-down, we considered the decoupling

limit of known brane constructions in string theory. We concluded that the

string dual is a sub-critical string background with seven geometric dimen-

sions, containing both and AdS5 and an S1 factor. In this chapter we take the

next step of the bottom-up (=field theory) analysis, by evaluating the one-loop

dilation operator in the scalar sector of the theory.

Perturbative calculations of anomalous dimensions have given important

clues into the nature of N = 4 SYM. They gave the first hint for integrability

of the planar theory: the one-loop dilation operator in the scalar sector is the

Hamiltonian of the integrable SO(6) spin chain [15] – a result later generalized

to the full theory and to higher loops, using the formalism of the asymptotic

Bethe ansatz (see e.g. [166–170] for a very incomplete list of references.)

Remarkably, the asymptotic S-matrix of magnon excitations in the field theory

spin chain can be exactly matched with the analogous S-matrix for the dual

string sigma-model. Thus perturbative calculations open a window into the

structure of the dual string theory.1 It is natural to attempt the same strategy

1The calculation of the circular Wilson loop by localization techniques [171] is another
interesting probe of the dual theory.
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for N = 2 SCQCD. As explained in the previous chapter, the theory admits

a large N expansion in the Veneziano sense [22]: the number of colors Nc

and the number of fundamental flavors Nf are both sent to infinity keeping

fixed their ratio (Nf/Nc ≡ 2 in our case) and the combination λ = g2
YMNc.

We focus on the flavor-singlet sector of the theory as before. Let us recall

few essentials from the last chapter. A generic color-adjoint field by φab , with

a, b = 1, . . . Nc, and a generic color-fundamental and flavor-fundamental field

by Qa
i, where i = 1, . . . Nf ; we are suppressing all other quantum numbers. In

the Veneziano limit, single-trace “glueball” operators, of the schematic form

Trφ`, are not closed under the action of the dilation operator – this is a major

difference with respect to the the standard ’t Hooft limit of large Nc with

Nf fixed [82]. Rather, glueball operators mix at order one (in the large N

counting) with flavor-singlet meson operators of the form
∑

i Q̄
iφkQi. The

simplest example is the mixing of Tr(φφ̄) with the singlet meson
∑

i Q̄
iQi,

which occurs at one-loop in planar perturbation theory (order O(λ)). The

basic “elementary” operators are thus what we call generalized single-trace

operators, of the schematic form

Tr
(
φk1M`1φk2 . . . φknM`n

)
, Ma

b ≡
Nf∑
i=1

Qa
i Q̄

i
b , (7.1)

where Tr is a color trace. We have introduced a flavor-contracted combination

of a fundamental and an antifundamental field, Ma
b, which for the purpose

of the large N expansion plays the role of just another color-adjoint field.

The usual large N factorization theorems apply: correlators of generalized

multi-traces factorize into correlators of generalized single-traces. In partic-

ular, acting with the dilation operator on a generalized single-trace operator

yields (at leading order in N) another generalized single-trace operator, so

we may consistently diagonalize the dilation operator in the space of gener-

alized single-traces. The dilation operator acting on generalized single-traces

can then be interpreted, in the usual fashion, as the Hamiltonian of a closed

spin chain. Just as in the ’t Hooft limit, planarity of the perturbative dia-

grams translates into locality of the spin chain: at one-loop the spin chain has

only nearest neighbor interactions, at two two-loops there are next-to-nearest

neighbors interactions, and each higher loop spreads the range interaction one
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site further.

More insight is gained by viewing N = 2 SCQCD as part of an “interpo-

lating” N = 2 superconformal field theory (SCFT) that has a product gauge

group SU(Nc) × SU(Nč), with Nč ≡ Nc, and correspondingly two exactly

marginal couplings g and ǧ. For ǧ → 0 one recovers N = 2 SCQCD plus a

decoupled free vector multiplet, while for ǧ = g one finds the familiar Z2 orb-

ifold of N = 4 SYM. We have evaluated the one-loop dilation operator for the

whole interpolating theory, in the sector of operators made out of scalar fields.

The magnon excitations of the spin chain and their bound states undergo an

interesting evolution as a function of κ = ǧ/g. For κ = 0 (that is, for N = 2

SCQCD itself), the basic asymptotic excitations of the spin chain are linear

combinations of the the adjoint impurity φ̄ and of “dimer” impuritiesMa
b (we

refer to them as dimers since they occupy two sites of the chain). From the

point of view of the interpolating theory with κ > 0, these dimeric asymptotic

states of N = 2 SCQCD are bound states of two elementary magnons; the

bound-state wavefunction localizes in the limit κ→ 0, giving an impurity that

occupies two sites.

Armed with the one-loop Hamiltonian in the scalar sector, we can easily

determine the complete spectrum of one-loop protected composite operators

made of scalar fields. It is instructive to follow the evolution of the protected

eigenstates as a function of κ, from the orbifold point to N = 2 SCQCD. Some

of these results were quoted with no derivation in the previous chapter, where

they served as input to the analysis of the full protected spectrum, carried out

with the help of the superconformal index [19].

An important question is whether the one-loop spin chain ofN = 2 SCQCD

is integrable. The spin chain for the Z2 orbifold of N = 4 SYM (which by

definition has ǧ = g) is known to be integrable [172, 173]. We find that

as we move away from the orbifold point integrability is broken, indeed for

general κ = ǧ/g the Yang-Baxter equation for the two-magnon S-matrix does

not hold. Remarkably however the Yang-Baxter equation is satisfied again

in the N = 2 SCQCD limit κ → 0. Ordinarily a check of the Yang-Baxter

equation is strong evidence in favor of integrability. In our case things are

more subtle: the elementary Q excitations freeze in the limit κ → 0 (their

dispersion relation becomes constant), while some (but not all) of their dimeric
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bound states retain non-trivial dynamics. Nevertheless, for infinitesimal κ the

elementary Qs are propagating excitations, and the Yang-Baxter equation fails

only infinitesimally, so it seems plausible that one can define consistent Bethe

equations by taking small κ as a regulator, to be removed at the end of the

calculation. A systematic analysis of this approach is in progress.

In section 7.1.1 we evaluate the one-loop dilation operator of SCQCD (in

the scalar sector), and write it as a spin-chain Hamiltonian. In section 7.1.2 we

find the spectrum of magnon excitations of this spin chain. These calculations

are repeated in sections 7.1.3 and 7.1.4 for the the interpolating SCFT. A

simplified derivation of the Hamiltonians is presented in appendix M, while

appendix N contains an equivalent way to write the Hamiltonian for N = 2

SCQCD in terms of composite (dimeric) impurities. In section 7.2 we study

the spectrum of protected operators of the interpolating theory, and follow

its evolution in the limit κ → 0. In section 7.3 we solve the two-magnon

scattering problem and analyze the spectrum of bound states in the spin chain

of the interpolating SCFT, with particular attention to the κ → 0 limit. In

section 7.3 we check the Yang-Baxter equation for the two-body S-matrix of

the interpolating theory, finding that it holds for κ = 1 and κ → 0. We

conclude in section 7.4 with a brief discussion of integrability and of future

directions of research.

7.1 One-loop Dilation Operator in the Scalar

Sector

At large Nc ∼ Nf , the dilation operator of N = 2 SCQCD can be diagonalized

in the sector of generalized single-trace operators, of the form (7.1), indeed the

mixing with generalized multi-traces is subleading. Motivated by the success

of the analogous calculation in N = 4 SYM [15], we have evaluated the one-

loop dilation operator on generalized single-trace operators made out of scalar

fields. An example of such an operator is

Tr[φ̄φφQIQ̄
J φ̄] = φ̄abφ

b
cφ

c
dQ

d
I iQ̄

J i
eφ̄

e
a, a, . . . , e = 1, . . . Nc , i = 1, . . . Nf

(7.2)
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Since the color or flavor indices of consecutive elementary fields are contracted,

we can assign each field to a definite “lattice site”2 and think of a generalized

single-trace operator as a state in a periodic spin chain. In the scalar sector, the

state space Vl at each lattice site is six-dimensional, spanned by {φ, φ̄, QI , Q̄J }.
However the index structure of the fields imposes restrictions on the total space

⊗Ll=1Vl: not all states in the tensor product are allowed. Indeed a Q at site l

must always be followed by a Q̄ at site l + 1, and viceversa a Q̄ must always

be preceded by a Q. Equivalently, as in appendix N, we may use instead the

color-adjoint objects φ, φ̄, M1 and M3 (recall the definitions (6.3)), where

the M’s are viewed as “dimers” occupying two sites of the chain.

As usual, we may interpret the perturbative dilation operator as the Hamil-

tonian of the spin chain. It is convenient to factor out the overall coupling

from the definition of the Hamiltonian H,

Γ(1) ≡ g2H , g2 ≡ λ

8π2
, λ ≡ g2

YMNc , (7.3)

where Γ(1) is the one-loop anomalous dimension matrix. By a simple extension

of the usual arguments, the Veneziano double-line notation (see figure M.1 for

an example) makes it clear that for large Nc ∼ Nf (with λ fixed) the dominant

contribution comes from planar diagrams. Planarity implies that the one-loop

Hamiltonian is of nearest-neighbor type, H =
∑L

l=1Hkk+1 (with k ≡ k + L),

where Hk,k+1 : Vk ⊗ Vk+1 → Vk ⊗ Vk+1. The two-loop correction is next-to-

nearest-neighbor and so on. In section 7.1.1 we present our results for the one-

loop Hamiltonian of the spin chain for SCQCD. We then derive (section 7.1.2)

the one-particle “magnon” excitations of the infinite chain above the BPS

vacuum . . . φφφ . . . . The one-particle eigenstates are interesting admixtures of

the adjoint φ̄ impurity and of the “dimeric” QQ̄ impurities.

The generalization to the full interpolating SCFT is straightforward and

is carried out in sections 7.1.3 and 7.1.4. The structure of this more general

spin chain is in a sense more conventional, and it is somewhat reminiscent of

the spin chain [174–177] for the ABJM [178] and ABJ [179] theories. There

are two types of color indices, for the two gauge groups SU(Nc) and SU(Nč),

with adjoint fields φab and φ̌ǎ
b̌

carrying two indices of the same type, and

2Up to cyclic re-ordering of course, under which the trace is invariant.
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Figure 7.1: Various types of Feynman diagrams that contribute, at one loop,
to anomalous dimension. The first diagram is the self-energy contribution.
The second diagram represents the gluon exchange contribution whereas the
third one stands for the quartic interaction between the fields. The first and
the second diagrams are proportional to the identity in the R symmetry space
while the third one carries a nontrivial R symmetry index structure.

bifundamental fields Qa
b̌

and Q̄ǎ
b carrying two indices of opposite type. Of

course one must contract neighboring indices of the same type. Now a Q

and a Q̄ need not be adjacent since they can be separated for φ̌ fields. The

infinite chain admits two BPS vacua, the state with all φs and the state with

all φ̌s. The magnons are momentum eigenstates containing a single Q or Q̄

impurity, separating one BPS vacuum on the left from the other vacuum on

the right. We will see in section 7.3 how the “dimeric” QQ̄ impurities of the

SCQCD chain arise in the limit ǧ → 0 from the localization of the bound state

wavefunctions of the interpolating chain.

The spin-chain Hamiltonian of the interpolating SCFT violates parity for

ǧ 6= g. This is expected from the dual picture, where the difference of the ’t

Hooft couplings maps to a worldsheet θ angle [84, 144].3 Parity is restored in

the SCQCD spin chain.

7.1.1 Hamiltonian for N = 2 super QCD

We have determined the one-loop dilation operator in the scalar sector by ex-

plicit evaluation of the divergent part of all the relevant Feynman diagrams,

3A similar parity violation is expected in the spin chain of the ABJ theory, which some-
what surprisingly however appears to be parity invariant to the first non-trivial perturbative
order (two loops) [177, 180].
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which can be classified as self energy diagrams, gluon interaction diagrams

and quartic vertex diagrams and are schematically shown in figure 7.1. The

calculation is straightforward and its details will not be reproduced here. In

appendix M we present a shortcut derivation that bypasses the explicit eval-

uation of the self-energy and gluon exchange diagrams, whose contribution

can be fixed by requiring the vanishing of the anomalous dimension of certain

protected operators.

As we are at it, we may as well consider the case of arbitrary Nf , though

we are ultimately interested in the conformal case Nf = 2Nc. In the non-

conformal case, it is more useful to normalize the fields so that the Lagrangian

has an overall factor of 1/g2
YM in front [181]. This different normalization

affects the anomalous dimension of composite operators for Nf 6= 2Nc, which

acquire an extra contribution due to the beta function, but it is of course

immaterial for Nf = 2Nc. It is in this normalization that the chiral operator

Trφ` has vanishing anomalous dimension for all Nf .

We find4

Hk,k+1 = (7.4)



φpφq QIQ̄
J Q̄KQL Q̄Iφp φpQI

φp′φq′ 2δ
p

p′δ
q

q′ + gpqgp′q′ − 2δ
p

q′δ
q

p′

√
Nf
Nc

gp′q′δ
J
I 0 0 0

Q̄I
′
QJ′

√
Nf
Nc

gpqδI
′
J ′ (2δI

′
I δ
J
J′ − δ

J
I δ
I′
J ′ )

Nf
Nc

0 0 0

+ 1
2

(1 + ξ)δI
′
I δ
J
J′

QK′ Q̄
L′ 0 0 2δKL δ

L′
K′ 0 0

− 1
2

(1 + ξ)δKK′δ
L′
L

QI′φp′ 0 0 0 1
4

(7− ξ)δII′δ
p

p′ 0

φp′ Q̄
I′ 0 0 0 0 1

4
(7− ξ)δI

′
I δ

p

p′



The indices p, q = ± label the U(1)r charges of φ and φ̄, in other terms we

have defined φ− ≡ φ, φ+ ≡ φ̄, and gpq =

 0 1

1 0

. The parameter ξ is the

gauge parameter that appears in the gluon propagator as 1
k2 (gµν−(1−ξ)kµkν

k2 ).

Although the form of nearest-neighbor Hamiltonian depends on gauge choice

4The spin chain with this nearest-neighbor Hamiltonian reproduces the one-loop anoma-
lous dimension of all operators with L > 2, where L is the number of sites. The L = 2 case is
special: the double-trace terms in the scalar potential, which give subleading contributions
(at large N) for L > 2, become important for L = 2 and must be added separately. This
special case plays a role in the protection of TrM3, see section 7.2.
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ξ, it is easy to check that ξ dependence drops when H acts on a closed chain.

In the following we will set ξ = −1.5

We may rewrite Hkk+1 more concisely (we have set ξ = −1) as

Hk,k+1 =



φφ QQ̄ Q̄Q Q̄φ φQ

φφ 2I + K− 2P
√

Nf
N

0 0 0

Q̄Q
√

Nf
N

(2I−K)
Nf
Nc

0 0 0

QQ̄ 0 0 2K 0 0

Qφ 0 0 0 2 0

φQ̄ 0 0 0 0 2


(7.5)

The symbols I,P and K for identity, permutation and trace operators respec-

tively. Their position in the matrix specifies the space in which they act. For

example, the operator P that appears in the matrix element of 〈φp′φq′|φpφq〉
is δpq′δ

q
p′ , the operator K that appears in the matrix element 〈Q̄I′QJ ′|QIQ̄J 〉

stands for the operator δI
′

J ′δ
J
I and so on. The entries where no symbols appear

have an unambiguous index structure.

Although not obvious from the form (7.5), the Hamiltonian of the SC-

QCD spin chain preserves parity, once the constraints on the states allowed

by the index structure are taken into account. In appendix B we rewrite the

Hamiltonian in terms of composite (dimeric) impurities, and parity is then

manifest.

For Nf = 0, the Hamiltonian can be consistently truncated to the space of

φ (and φ̄): it reduces 2Iφφ+Kφφ−2Pφφ, which is Hamiltonian of the XXZ spin

chain, confirming the result found in [181] for pure N = 2 SYM. The Nf 6= 0

the φ sector is not closed in our case due to the leading order glueball-meson

mixing.

5This choice corresponds to setting to zero the self-energy of Q and Q̄. Then our
Hamiltonian can also be used as is to calculate the anomalous dimension of operators with
open flavor indices, of the schematic form Q̄i . . . Qj . For ξ 6= −1 there are extra contributions
form the self-energy of the Qi and Q̄j at the edge of the chain.
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7.1.2 Magnons in the SCQCD spin chain

The chiral operator Tr φ` and the antichiral operator Tr φ̄` are zero-energy

eigenstates (in particular the mixing element that is responsible for φφ→ QQ

is proportional to K in φ space, and thus vanishes when two neighboring φ

fields have the same U(1)r index). They correspond to the two ferromagnetic

ground states of the spin chain (all spins up or all down). We choose for

definiteness the chiral vacuum Tr φ`. Recall that in our conventions the U(1)r

charge of φ is r = −1, so the ground state obeys ∆ + r = 0, where ∆ is the

total conformal dimension. Both Q and Q̄ have ∆ + r = 1, but the index

structure forbids the insertion of only one of them. The simplest impurities

that can be excited on the ground state are φ̄,M1 andM3, where the last two

are “dimeric” impurities which occupy two sites (recall (6.19)). All of them

have ∆ + r = 2, and should be viewed in this sense as double excitations,

though they are the most elementary we can find in the spin chain for N = 2

SCQCD. We will see that they can be viewed as bound states of the elementary

impurities of the interpolating theory with ǧ 6= 0. This hidden compositeness

makes the scattering problem somewhat harder than usual.

In the map from the (generalized) single-trace operators to the states of

the spin chain, cyclycity of the trace gives periodic boundary conditions on the

chain, along with the constraint that the total momentum of all the impurities

in the spin be zero. As usual, it is convenient to first consider the chain to

be infinite, and impose later the zero-momentum constraint on multi-impurity

states. We now proceed to diagonalize the Hamiltonian on the space of states

containing a single impurity (which in the present context means a single φ̄ or

M1 or M3). The action of H on single impurities in position space is

H[φ̄(x)] = 6φ̄(x)− φ̄(x+ 1)− φ̄(x− 1) (7.6)

+

√
2Nf

Nc

M1(x) +

√
2Nf

Nc

M1(x− 1) (7.7)

H[M1(x)] = 4M1(x) +

√
2Nf

Nc

φ̄(x) +

√
2Nf

Nc

φ̄(x+ 1)

H[M3(x)] = 8M3(x) , (7.8)

where the coordinate x denotes the site of the impurity on the chain; for the

dimeric impurities M1 and M3 we use the coordinate of the first site. To
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diagonalize the Hamiltonian on the φ̄/M1 sector, we go to momentum space,

φ̄(p) ≡
∑
x

φ̄(x)eipx , M1(p) ≡
∑
x

M1(x)eipx (7.9)

H

 φ̄(p)

M1

 =

 6− eip − e−ip (1 + e−ip)
√

2Nf
Nc

(1 + eip)
√

2Nf
Nc

4

 φ̄(p)

M1

 .(7.10)

The expressions for the eigenvalues and eigenvectors are not very illuminating
for generic values of the ratio Nf/Nc. For the conformal case of Nf = 2Nc,
however, they simplify. The eigenstates for Nf = 2Nc are

T (p) ≡ −1

2
(1 + e−ip)φ̄(p) +M1(p) =

∑
x

eipx[−1

2
(φ̄(x) + φ̄(x+ 1)) +M1(x)] (7.11)

T̃ (p) ≡ φ̄(p) +
1

2
(1 + eip)M1(p) =

∑
x

eipx[φ̄(x) +
1

2
(M1(x) +M1(x− 1))] , (7.12)

with eigenvalues

HT (p) = 4 sin2(
p

2
)T (p) (7.13)

HT̃ (p) = 8 T̃ (p) . (7.14)

Interestingly, precisely at the conformal point Nf = 2Nc the magnon excitation

T (p) becomes gapless: in general the gap of T (p) is 4−2
√

2Nf/Nc. From now

on we will only consider the superconformal case and set Nf ≡ 2Nc. Besides

T (p) and T̃ (p), we have of course also the M3 momentum eigenstate,

M3(p) ≡
∑
x

M3(x)eipx , (7.15)

which has the same momentum-independent energy as T̃ (p),

HM3(p) = 8M3(p) . (7.16)

7.1.3 Hamiltonian for the interpolating SCFT

We have generalized the calculation of the one-loop dilation operator to the

full interpolating family of N = 2 SCFTs, in the scalar sector. We find
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H =


φpφq QIÎQ̄

ĴJ

φp′φq′ (2δp
p′δ

q
q′ + gpqgp′q′ − 2δp

q′δ
q
p′ ) δJI δ

Ĵ
Î
gp′q′

Q̄Î
′I′QJ ′Ĵ ′ δI

′
J ′δ
Î′
Ĵ ′
gpq (2δI

′
I δ
J
J ′ − δ

J
I δ
I′
J ′ )δ

Ĵ
Î
δÎ
′

Ĵ ′
+ 2κ2δJI δ

I′
J ′δ
Î′
Î
δĴ
Ĵ ′



⊕


φ̌pφ̌q Q̄ĴJQIÎ

φ̌p′ φ̌q′ κ2(2δp
p′δ

q
q′ + gpqgp′q′ − 2δp

q′δ
q
p′ ) κ2δJI δ

Ĵ
Î
gp′q′

QJ ′Ĵ ′Q̄
Î′I′ κ2δI

′
J ′δ
Î′
Ĵ ′
gpq κ2(2δI

′
I δ
J
J ′ − δ

J
I δ
I′
J ′ )δ

Ĵ
Î
δÎ
′

Ĵ ′
+ 2δJI δ

I′
J ′δ
Î′
Î
δĴ
Ĵ ′



⊕


φpQIÎ QIÎ φ̌

p

φp′Q̄
Î′I′ 2δI

′
I δ
Î′
Î
δp
p′ −2κδI

′
I δ
Î′
Î
δp
p′

Q̄Î
′I′ φ̌p′ −2κδI

′
I δ
Î′
Î
δp
p′ 2κ2δI

′
I δ
Î′
Î
δp
p′



⊕


φ̌pQ̄ĴJ Q̄ĴJ φp

φ̌p′QJ ′Ĵ ′ 2κ2δJJ ′δ
Ĵ
Ĵ ′
δp
p′ −2κδJJ ′δ

Ĵ
Ĵ ′
δp
p′

QJ ′Ĵ ′φp′ −2κδJJ ′δ
Ĵ
Ĵ ′
δp
p′ 2δJJ ′δ

Ĵ
Ĵ ′
δp
p′

 (7.17)

In concise form,6

Hk,k+1 =



φφ QQ̄ φ̌φ̌ Q̄Q φQ Qφ̌ φ̌Q̄ Q̄φ

φφ (2 + K− 2P) K 0 0 0 0 0 0

QQ̄ K (2− K)K̂ + 2κ2K 0 0 0 0 0 0

φ̌φ̌ 0 0 κ2(2 + K− 2P) κ2K 0 0 0 0

Q̄Q 0 0 κ2K κ2(2− K)K̂ + 2K 0 0 0 0

φQ 0 0 0 0 2 −2κ 0 0

Qφ̌ 0 0 0 0 −2κ 2κ2 0 0

φ̌Q̄ 0 0 0 0 0 0 2κ2 −2κ

Q̄φ 0 0 0 0 0 0 −2κ 2



where

κ ≡ ǧ

g
, g2 ≡ g2

YMN

8π2
, ǧ2 ≡ ǧ2

YMN

8π2
. (7.18)

It is easy to check that in the limit κ→ 0 this Hamiltonian reduces to that of

the SCQCD spin chain, as it should.7

6The meaning of the different operators can be read off by comparing with the explicit
form above. Note in particular that to avoid cluttering we have dropped the identity symbol
I. Also in the subspaces QQ̄, Q̄Q we use the notation K for the trace operator acting on
SU(2)R indices and K̂ that acts on the SU(2)L indices.

7In the comparison, it is important to take into account the factors that arise by nor-
malizing to one the tree-level two-point function. Recall that in SCQCD Q̄iQ

i is contracted
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The Hamiltonian can also be compactly written in terms of the Z2-projected

SU(2Nc) adjoint fields Z and X ,

Z =

 φ 0

0 φ̌

 , XIÎ =

 0 QIÎ

−εIJ εÎĴ Q̄Ĵ J 0

 . (7.19)

In this notation,

g2H =



ZZ XX ZX XZ

(g+ + γg−)2(2 + K− 2P) (g+ + γg−)2KK̂ 0 0

(g+ + γg−)2KK̂ (g+ + γg−)2(2K̂− KK̂) 0 0

+2(g+ − γg−)2K

0 0 2(g+ + γg−)2 −2(g+
2 − g−2)

0 0 −2(g+
2 − g−2) 2(g+ − γg−)2


(7.20)

where γ is the twist operator (8.17), and we have defined g± ≡ (g ± ǧ)/2.

Parity is broken for g 6= ǧ by the terms odd in the twist operator. Although

not obvious from this form of the Hamiltonian, parity is actually restored for

SCQCD (ǧ = 0), as seen most clearly in the dimer picture of appendix B.

7.1.4 Magnons in the interpolating spin chain

The spin chain of the interpolating SCFT admits two degenerate chiral vacua

with ∆ + r = 0, namely Tr φ` and Tr φ̌`. The elementary impurities are Q

and Q̄, which have ∆ + r = 1. In the infinite chain it makes sense to consider

states with a single impurity. A single Q impurity separates the φ vacuum to

its left from the φ̌ vacuum on its right; viceversa for a Q̄ impurity.

The action of the Hamiltonian on a single Q impurity in position space is

g2HQIÎ(x) = 2(g2 + ǧ2)QIÎ(x)− 2gǧ[QIÎ(x− 1) +QIÎ(x+ 1)] (7.21)

summing over the Nf = 2Nc flavors, while in the interpolating SCFT Q̄ǎQ
ǎ is contracted

summing over the Nc colors (leaving open the SU(2)L indices).
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Fourier transforming as Q(p) =
∑

x e
ipxQ(x) we have

g2HQIÎ(p) = 2(g2 + ǧ2 − 2gǧ cos p)QIÎ(p)

= [2(g − ǧ)2 + 4gǧ(1− cos p)]QIÎ(p)

= [2(g − ǧ)2 + 8gǧ sin2(
p

2
)]QIÎ(p) (7.22)

Hence the dispersion relation for QIÎ(p) is,

E(p;κ) = 2(1− κ)2 + 8κ
(

sin2 p

2

)
. (7.23)

The magnon is gapless at the orbifold point κ = 1, and it develops a gap as

we move towards SCQCD. Precisely at the SCQCD point, the single impu-

rity state ceases to be meaningful and its dispersion relation trivializes. An

identical analysis holds for the Q̄ impurity, leading to the same dispersion

relation.

7.2 Protected Spectrum

In this section we put to use the one-loop Hamiltonian to study the protected

spectrum of N = 2 SCQCD and of the interpolating SCFT. The results pre-

sented here were quoted without proof and used in the previous chapter. The

remainder of the present chapter is independent of this section, and readers

mainly interested in dynamics and integrability of the spin chain may proceed

directly to section 7.3.

We are going to determine all the generalized single-trace operators in the

scalar sector of SCQCD having vanishing one-loop anomalous dimension. We

find the complete list of such operators to be:8

Trφk+2, Tr[Tφk], TrM3. (7.24)

Here, T ≡ φφ̄ −M1 and k ≥ 0. We are first led to (7.24) by an educated

guess. In section H we list all operators in the scalar sector that obey any

of the the shortening or semi-shortening conditions of the N = 2 supercon-

8As explained in [2], N = 2 SCQCD has a second class of protected operators, which
are outside the scalar sector.
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formal algebra, which have been completely classified [52, 182–185]. Using

the spin-chain Hamiltonian, we compute the one-loop anomalous dimension of

these candidate protected states, and find that only (7.24) have zero anoma-

lous dimension. Even though here we only perform a one-loop analysis, the

operators (7.24) can be seen to be protected at full quantum level using the

superconformal index [2].

In section 7.2.2, we list the protected operators of the orbifold theory (they

can be exhaustively enumerated by a variety of methods [2]) and follow their

evolution along the exactly marginal line κ.

7.2.1 Protected spectrum in N = 2 SCQCD

A generic long multipletA∆
R,r(j,j̄) of theN = 2 superconformal algebra is gener-

ated by the action of the 8 Poincaré superchargesQ and Q̄ on a superconformal

primary, which by definition is annihilated by all conformal supercharges S.

If some combination of the Q’s also annihilates the primary, the correspond-

ing multiplet is shorter and the conformal dimensions of all its members are

protected against quantum corrections. We follow the conventions of [52] for

the possible shortening conditions for the N = 2 superconformal algebra, see

table H.1.

In table 7.1 we list all the generalized single-trace operators of N = 2

SCQCD made out of scalar fields, which obey any of the possible shortening

conditions. Using the spin-chain Hamiltonian of section 7.1.1, we find that the

only operators with zero anomalous dimension are the one listed in (7.24)9.

The operators Trφ` correspond to the vacuum of the spin chain, while the

operators TrT φ` correspond to the zero-momentum limit of the gapless ex-

citation T (p), eq. (7.13) . There is one more protected operator, which is

“exceptional” in not belonging to an infinite sequence: TrM3. Its anomalous

dimension is zero for gauge group SU(Nc) but not for gauge group U(Nc): the

double-trace terms in the Lagrangian that arise from the removal of the U(1)

are crucial for the protection of this operator (see footnote at page 133).

9Together of course with their conjugates. Note that since in our conventions φ has
r = −1, the multiplet Ē−`(0,0), ` > 0, is represented by Trφ`. The conjugate multiplet E`(0,0)

is represented by Trφ̄` and is of course also protected.
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Scalar Multiplets SCQCD operators Protected

B̄R,−`(0,0) Tr[φ`MR
3 ]

Ē−`(0,0) Tr[φ`] Yes

B̂R Tr[MR
3 ] Yes for R = 1

C̄R,−`(0,0) Tr[TMR
3 φ

`]

C̄0,−`(0,0) Tr[Tφ`] Yes

ĈR(0,0) Tr[TMR
3 ]

Ĉ0(0,0) Tr[T ] Yes

D̄R(0,0) Tr[MR
3 φ]

Table 7.1: N = 2 SCQCD protected operators at one loop

7.2.2 Protected spectrum in the orbifold theory

N = 2 SCQCD can be obtained as the ǧYM → 0 limit of a family of N = 2

superconformal field theories, which reduces for gYM = ǧYM to the N = 2

Z2 orbifold of N = 4 SYM. In this section we find the protected spectrum

of single-trace operators of the interpolating family. We start at the orbifold

point, where the protected states are easy to determine, and follow their fate

along the exactly marginal line towards N = 2 SCQCD.

At the orbifold point, operators fall into two classes: untwisted and twisted.

In the untwisted sector, the protected states are well-known, since they are

inherited from N = 4 SYM. The protected operators in the twisted sector are

chiral with respect to N = 1 subalgebra and could be obtained by analyzing

the chiral ring [145]. 10 Both the classes of operators can be rigorously checked

to be protected by computing the superconformal index.11 Using the index

one can also argue that the protected multiplets found at the orbifold point

cannot recombine into long multiplets as we vary ǧ [2], so in particular taking

ǧ → 0 they must evolve into the protected multiplets of the theory

{N = 2 SCQCD ⊕ decoupled SU(Nĉ) vector multiplet} . (7.25)

10We confirm the spectrum in [2] up to one operator that was missed in the analysis of
[145].

11The calculation for the orbifold was carried out already in [139], which we confirm up
to a minor emendation in [2].
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In section 7.2.3 we follow this evolution in detail. We find that the SU(2)L-

singlet protected states of the interpolating theory evolve into the list (7.24)

of protected states of SCQCD, plus some extra states made purely from the

decoupled vector multiplet. On the other hand, the interpolating theory has

also many single-trace protected states with non-trivial SU(2)L spin, which are

of course absent from the list (7.24): we see that in the limit ǧ → 0, a state

with SU(2)L spin L can be interpreted as a “multiparticle state”, obtained

by linking together L short “open” spin chains of SCQCD and decoupled

fields φ̌. By this route we confirm that (7.24) is the correct and complete

list of protected single-traces in the scalar sector for N = 2 SCQCD. The

results are also suggestive of a dual string theory interpretation: as ǧ → 0,

single closed string states carrying SU(2)L quantum numbers disintegrate into

multiple open strings. The above argument, however, doesn’t imply that all

the protected operators of SCQCD are obtained as degenerations of protected

operators of the interpolating theory. Indeed, they aren’t. In [2], we discuss

an alternative mechanism that brings about more protected SCQCD operators

from the decomposition of long multiplets of the interpolating theory as ǧ → 0.

In summary, the degeneracy of protected states is independent of the ex-

actly marginal deformation that changes ǧYM and is thus the same for the

orbifold theory and for the theory (7.25). At ǧYM = 0 there is a symmetry

enhancement, SU(2)L × SU(Nč) → U(Nf = 2Nc), and we can consistently

truncate the spectrum of generalized single trace operators to singlets of the

flavor group U(Nf ) – which in particular do not contain any of the decoupled

states φ̌. This is the flavor singlet spectrum of N = 2 SCQCD that we have

analyzed in the previous section.

7.2.3 Away from the orbifold point: matching with N =

2 SCQCD

In the limit ǧ → 0, we must be able to match the protected states of the

interpolating family with protected states of {N = 2 SCQCD ⊕ decoupled

vector multiplet}. For the purpose of this discussion, the protected states

naturally splits into two sets: SU(2)L singlets and SU(2)L non-singlets. It is

clear that all the (generalized) single-trace operators of N = 2 SCQCD must

142



Multiplet Orbifold operator (R, ` ≥ 0, n ≥ 2)

B̂R+1 Tr[(Q++̂Q̄++̂)R+1]

Ē−(`+2)(0,0) Tr[φ`+2 + φ̌`+2]

ĈR(0,0) Tr[
∑ T (Q++̂Q̄++̂)R]

D̄R+1(0,0) Tr[
∑

(Q++̂Q̄++̂)R+1(φ+φ̌)]

B̄R+1,−(`+2)(0,0) Tr[
∑

i(Q
++̂Q̄++̂)R+1φiφ̌`+2−i]

C̄R,−(`+1)(0,0) Tr[
∑

i T (Q++̂Q̄++̂)Rφiφ̌`+1−i]

A∆=2R+`+2n
R,−`(0,0) Tr[

∑
i T n(Q++̂Q̄++̂)Rφiφ̌`−i]

Table 7.2: Superconformal primary operators in the untwisted sector of the
orbifold theory that descend from the 1

2
BPS primary of N = 4. The symbol∑

indicates summation over all “symmetric traceless” permutations of the
component fields allowed by the index structure.

Multiplet Orbifold operator (` ≥ 0)

B̂1 Tr[(Q++̂Q̄+−̂ −Q+−̂Q̄++̂)] = TrM3

Ē−(`+2)(0,0) Tr[φ`+2 − φ̌`+2]

Table 7.3: Superconformal primary operators in the twisted section of the
orbifold theory.
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arise from the SU(2)L singlets.

7.2.3.1 SU(2)L singlets

They are:

(i) One B̂1 multiplet, corresponding to the primary Tr[QÎ{IQ̄
Î
J }] = TrM3.

Since this is the only operator with these quantum numbers, it cannot

mix with anything and its form is independent of ǧ.

(ii) Two Ē−`(0,0) multiplets for each ` ≥ 2, corresponding to the primaries

Tr [φ` ± φ̌`].
For each `, there is a two-dimensional space of protected operators, and

we may choose whichever basis is more convenient. For g = ǧ, the natural

basis vectors are the untwisted and twisted combinations (respectively

even and odd under φ↔ φ̌), while for ǧ = 0 the natural basis vectors are

Trφ` (which is an operator of N = 2 SCQCD) and Tr φ̌` (which belongs

to the decoupled sector).

(iii) One Ĉ0(0,0) multiplet (the stress-tensor multiplet), corresponding to the

primary Tr T = Tr [T + φ̌ ¯̌φ]. We have checked that this combination is

an eigenstate with zero eigenvalue for all ǧ.

For ǧ = 0, we may trivially subtract out the decoupled piece Tr φ̌ ¯̌φ and

recover TrT , the stress-tensor multiplet of N = 2 SCQCD.

(iv) One C̄0,−`(0,0) multiplet for each ` ≥ 1. In the limit ǧ → 0, we expect

this multiplet to evolve to the TrTφ` multiplet of N = 2 SCQCD. Let

us check this in detail.

The primary of C̄0,−`(0,0) has R = 0, r = −` and ∆ = `+ 2. The space of

operators which classically have these quantum numbers is spanned by

|a〉 = Tr[φ̌`+1 ¯̌φ], |bi〉 ≡
1

2
Tr[φiQIÎ φ̌

`−iQ̄ÎI ] for 0 ≤ i ≤ `

|c`〉 ≡ Tr[φ`+1φ̄] (7.26)

Diagonalizing the Hamiltonian in Fourier space, we find the protected
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operator to be

|C̄0,−`(0,0)〉κ = κ`|a〉 −
∑̀
i=0

κ`−i|bi〉+ |c`〉 (7.27)

where κ ≡ ǧ/g. In the limit κ→ 0,

|C̄0,−`(0,0)〉κ→0 = Tr[(φφ̄− 1

2
QIÎQ̄

IÎ)φ`] = Tr[Tφ`] , (7.28)

as claimed.

All in all, we see that this list reproduces the list (7.24) of one-loop protected

scalar operators of N = 2 SCQCD, plus the extra states Trφ̌` which decouple

for ǧ = 0. This concludes the argument that that the operators (7.24) are

protected at the full quantum level, and that they are the complete set of

protected generalized single-trace primaries of N = 2 SCQCD.

7.2.3.2 SU(2)L non-singlets

The basic protected primary of N = 2 SCQCD which is charged under SU(2)L

is the SU(2)L triplet contained in the mesonic operator Oi3R j = (Q̄i
aQ

a
j )3R

.

Indeed writing the U(Nf = 2Nc) flavor indices i as i = (ǎ, Î), with ǎ =

1, . . . Nf/2 = Nc “half” flavor indices and I = ±̂ SU(2)L indices, we can

decompose

Oi3R j → Oǎ3R3L b̌
, Oǎ

3R1L b̌
. (7.29)

In particular we may consider the highest weight combination for both SU(2)L

and SU(2)R,

(Q̄++̂Q++̂)ǎ
b̌
. (7.30)

States with higher SU(2)L spin can be built by taking products of O3R3L
with

SU(2)L and SU(2)R indices separately symmetrized – and this is the only way

to obtain protected states of N = 2 SCQCD charged under SU(2)L which

have finite conformal dimension in the Veneziano limit. It is then a priori

clear that a protected primary of the interpolating theory with SU(2)L spin L

must evolve as ǧ → 0 into a product of L copies of (Q̄++̂Q++̂) and of as many

additional decoupled scalars φ̌ and ¯̌φ as needed to make up for the correct
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U(1)r charge and conformal dimension. It is amusing to follow in more detail

this evolution for the various multiplets:

(i) B̂R multiplet.

This is a trivial case, since for each R there is only one operator with

the correct quantum numbers, namely

|B̂R〉κ ≡ Tr[(Q++̂Q̄++̂)R] , (7.31)

for all g and ǧ. We have checked that it is indeed an eigenstate of zero

eigenvalue for all couplings.

(ii) D̄R(0,0) multiplet.

The primary of D̄R(0,0) has SU(2)R spin equal R, U(1)r charge r = −1

and ∆ = 2R + 1. The space of operators which classically have these

quantum numbers is two-dimensional, spanned by Tr[(Q++̂Q̄++̂)Rφ] and

Tr[(Q̄++̂Q++̂)Rφ̌]. The spin chain Hamiltonian in this subspace reads

g2HD̄ =

 4g2 −4gǧ

−4gǧ 4ǧ2

 (7.32)

The protected operator (eigenvector with zero eigenvalue) is

|D̄R(0,0)〉κ ≡ Tr[κ(Q++̂Q̄++̂)Rφ+ (Q̄++̂Q++̂)Rφ̌] . (7.33)

For κ = 0, the protected operator is interpreted as a “multi-particle

state” of R open chains of SCQCD and one decoupled scalar φ̌. For

example for R = 2, the operator will be broken into the following gauge-

invariant pieces,

(Q̄++̂Q++̂)ǎ
b̌
, (Q̄++̂Q++̂)b̌č and φ̌čǎ . (7.34)

In the limit ǧ → 0, the “closed chain” of the interpolating theory ef-

fectively breaks into “open chains” of {N = 2 SCQCD ⊕ decoupled

multiplet}, with the rupture points at the contractions of the “half-

flavor” indices ǎ, b̌, č.
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(iii) B̄R,r(0,0) multiplet.

Finding the protected multiplet for arbitrary coupling amounts to diag-

onalizing the spin-chain Hamiltonian of the interpolating theory in the

space of operators with quantum numbers R, r and ∆ = 2R − r. The

dimension of this space increases rapidly with R and r. Let us focus on

two simple cases.

case 1: R = 1, r ≡ −` < 0

In this case, the space is `+ 1 dimensional, spanned by

|ψi〉 ≡ Tr[φiQ++̂φ̌`−iQ̄++̂] , i = 0, . . . ` . (7.35)

The protected operator is found to be

|B̄1,−`(0,0)〉κ ≡
∑̀
i=0

κi|ψi〉 (7.36)

In our schematic notation of
∑

, introduced earlier, the same operator

would read

|B̄1,−`(0,0)〉κ = Tr[
∑
i

κi(Q++̂Q̄++̂)φiφ̌`−i] . (7.37)

Note that at κ = 0, the U(1)r charge of the operator is all carried by the

decoupled scalars φ̌ – there are no φ. This is again consistent with the

picture of the closed chain disintegrating into open pieces.

case 2: r = −2, R = 2

The relevant vector space is spanned by the operators

|0〉 = Tr[φφQ++̂Q̄++̂Q++̂Q̄++̂] |0̌〉 = Tr[Q++̂φ̌φ̌Q̄++̂Q++̂Q̄++̂]

|1〉 = Tr[φQ++̂φ̌Q̄++̂Q++̂Q̄++̂] |1̌〉 = Tr[Q++̂φ̌Q̄++̂φQ++̂Q̄++̂]

|2〉 = Tr[φQ++̂Q̄++̂φQ++̂Q̄++̂] |2̌〉 = Tr[Q++̂φ̌Q̄++̂Q++̂φ̌Q̄++̂]

(7.38)

The Hamiltonian in this subspace is (the basis vectors are read in the
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sequence |0〉, |0̌〉, |1〉, . . . )

g2HB̄2,−2(0,0)
=



4g2 0 −2gǧ −2gǧ 0 0

0 4ǧ2 −2gǧ −2gǧ 0 0

−2gǧ −2gǧ 4g2 + 4ǧ2 0 −2gǧ −2gǧ

−2gǧ −2gǧ 0 4g2 + 4ǧ2 −2gǧ −2gǧ

0 0 −2gǧ −2gǧ 4g2 0

0 0 −2gǧ −2gǧ 0 4ǧ2


(7.39)

There is an eigenvector with zero eigenvalue for all κ, namely

|B̄2,−2(0,0)〉κ ≡ κ2|0〉+ |0̌〉+ κ|1〉+ κ|1̌〉+ κ2|2〉+ |2̌〉
= Tr[

∑
i

κi(Q++̂Q̄++̂)2φiφ̌2−i]

As expected, for κ = 0 the operator contains φ̌ and no φ.

Extrapolating from these cases, we make an educated guess for the form

for general protected operator,

|B̄R,−`(0,0)〉κ = Tr[
∑
i

κi(Q++̂Q̄++̂)Rφiφ̌`−i] . (7.40)

In the limit κ→ 0, this operator breaks into R mesons (Q̄Q)ǎ
b̌

of N = 2

SCQCD and ` decoupled scalars φ̌ǎ
b̌
.

(iv) ĈR(0,0) and C̄R,−`(0,0) multiplets.

We have not studied these cases in detail since they are technically quite

involved. It is clear however that for ǧ → 0 the protected primaries must

evolve into states of the schematic form

Tr
[
OR3R3L

φ̌`+n ¯̌φn
]
, (7.41)

with ` = 0, n = 1 for ĈR(0,0) and n = 1 for C̄R,−`(0,0).
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7.3 Two-body scattering

In this section we study the scattering of two magnons in the spin chain for

the interpolating SCFT. We take the chain to be infinite. Because of the

index structure of the impurities, one of the asymptotic magnons must be a

Q and the other a Q̄, and their ordering is fixed – we can have a Q impurity

always to the left of a Q̄ impurity, or viceversa. The scattering is thus pure

reflection. For the case of Q to the left of Q̄, and suppressing momentarily the

SU(2)L × SU(2)R quantum numbers, the asymptotic form of the eigenstates

of the Hamiltonian is∑
x1�x2

(
eip1x1+ip2x2 + S(p2, p1)eip2x1+ip1x2

)
| . . . φQ(x1)φ̌ . . . φ̌Q̄(x2)φ . . .〉 .

(7.42)

This is the definition of the two-body S-matrix. In fact, thanks to the nearest-

neighbor nature of the spin chain, if the impurities are not adjacent we are

already in the “asymptotic” region, so x1 � x2 should be interpreted as x1 <

x2 − 1. Similarly, for the case where Q to the right of Q̄ the asymptotic form

of the two-magnon state is∑
x1�x2

(
eip1x1+ip2x2 + Š(p2, p1)eip2x1+ip1x2

)
| . . . φ̌Q̄(x1)φ . . . φQ(x2)φ̌ . . .〉 ,

(7.43)

which defines Š. The two-body S-matrices S and Š are related by exchanging

g ↔ ǧ,

S(p1, p2; g, ǧ) = Š(p1, p2; ǧ, g) . (7.44)

The total energy of a two-magnon state is just the sum of the energy of the

individual magnons,

E(p1, p2;κ) =
(

2(1− κ)2 + 8κ(sin2 p1

2
)
)

+
(

2(1− κ)2 + 8κ(sin2 p2

2
)
)
. (7.45)

Besides the continuum of states with real momenta p1 and p2, there can be

bound and “anti-bound” states for special complex values of the momenta. A

bound state occurs when

S(p1, p2) =∞ , with p1 =
P

2
− iq , p2 =

P

2
+ iq , q > 0 . (7.46)
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Since S(p2, p1) = 1/S(p1, p2)→ 0, the asymptotic wave-function is

eiP
x1+x2

2
−q(x2−x1) , (7.47)

which is indeed normalizable (since x2 > x1 in our conventions). A bound

state has smaller energy than any state in the two-particle continuum with

the same total momentum P . An anti-bound state occurs when

S(p1, p2) =∞ , with p1 =
P

2
− iq+π , p2 =

P

2
+ iq−π , q > 0 . (7.48)

The asymptotic wave-function is now

(−1)x2−x1eiP
x1+x2

2
−q(x2−x1) . (7.49)

The energy of an anti-bound state is strictly bigger than the two-particle con-

tinuum. It is easy to see that (8.4) and (7.48) are the only allowed possibilities

for complex p1 and p2 such that the total momentum and the total energy are

real.

The analysis of two-body scattering proceeds independently in four differ-

ent sectors, corresponding the choice of the triplet or singlet combinations for

SU(2)L and SU(2)R. In each sector, we will compute the S-matrix and look

for the (anti)bound states associated to its poles.

7.3.1 3L ⊗ 3R Sector

In the 3L ⊗ 3R sector, we write the general two-impurity state with Q to the

left of Q̄ as

|Ψ3⊗3〉 =
∑
x1<x2

Ψ3⊗3(x1, x2)| . . . φQ(x1)φ̌ . . . φ̌Q̄(x2)φ . . .〉3⊗3 . (7.50)

There is no mixing with states containing φ̄ and ¯̌φ since they have different

SU(2)L × SU(2)R × U(1)r quantum numbers. Acting with the Hamiltonian,

one finds:
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• For x2 > x1 + 1,

g2H ·Ψ3⊗3(x1, x2) = 4(g2 + ǧ2)Ψ3⊗3(x1, x2)− 2gǧΨ3⊗3(x1 + 1, x2)

−2gǧΨ3⊗3(x1 − 1, x2)− 2gǧΨ3⊗3(x1, x2 + 1)− 2gǧΨ3⊗3(x1, x2 − 1)

(7.51)

• For x2 = x1 + 1,

g2H ·Ψ3⊗3(x1, x2) = 4g2Ψ3⊗3(x1, x2)− 2gǧΨ3⊗3(x1 − 1, x2)− 2gǧΨ3⊗3(x1, x2 + 1) .

(7.52)

The plane wave states ei(p1x1+p2x2) and ei(p1x2+p2x1) are separately eigenstates

for the “bulk” action of the Hamiltonian (7.51), with eigenvalue (7.45). The

action of the Hamiltonian on the state with adjacent impurities, equ.(7.52),

provides the boundary condition that fixes the exact eigenstate of asymptotic

momenta p1, p2,

Ψ3⊗3(x1, x2) = ei(p1x1+p2x2) + S3⊗3(p1, p2)ei(p1x2+p2x1) , (7.53)

where

S3⊗3(p1, p2) = −1 + eip1+ip2 − 2κeip1

1 + eip1+ip2 − 2κeip2
, κ ≡ ǧ

g
. (7.54)

In this sector, the S-matrix coincides with the familiar S-matrix of the XXZ

chain, with the identification ∆XXZ = κ. The pole of the S-matrix,

eip2 =
1 + ei(p1+p2)

2κ
, (7.55)

is associated to a bound state. Writing p1 = P/2− iq, p2 = P/2 + iq, we have

e−q =
cos(P

2
)

κ
. (7.56)

The wave-function is normalizable provided q > 0, which implies 2 arccosκ <

|P | < π. Substituting p1 and p2 into the expression for the total energy (7.45),

we find that the dispersion relation of the bound state is simply

[
QQ̄
]bound

3L 3R
: E = 4 sin2(

P

2
) , 2 arccosκ < |P | < π . (7.57)
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This dispersion relation is plotted as the dotted (orange) curve in the left

column of figure 7.2. When the total momentum P is smaller than 2 arccosκ

the bound state dissolves into the two-particle continuum. The bound state

exists for the full range of P at the orbifold point κ = 1, but the allowed range

of P shrinks as κ is decreased, and the bound state disappears in the SCQCD

limit κ→ 0.

The S-matrix in the 3L⊗ 3R sector with Q to the right of Q̄ is obtained by

switching g ↔ ǧ,

Š3⊗3(p1, p2;κ) = S3⊗3(p1, p2; 1/κ) = −1 + eip1+ip2 − 2
κ
eip1

1 + eip1+ip2 − 2
κ
eip2

. (7.58)

Now the pole of the S-matrix is associated to a bound state with

e−q = κ cos(
P

2
) . (7.59)

The bound state exists for all P in the whole range of κ ∈ (0, 1]. Its dispersion

relation is [
Q̄Q
]bound

3L 3R
: E = 4κ2 sin2(

P

2
) , (7.60)

plotted as the dotted (orange) curve in the right column of figure 7.2. The

existence of this bound state is consistent with our analysis of the protected

spectrum in section 7.2.

7.3.2 1L ⊗ 3R Sector

The general two-body state with Q to the left of Q̄ is

|Ψ1⊗3〉 =
∑
x1<x2

Ψ1⊗3(x1, x2)| . . . φQ(x1)φ̌ . . . φ̌Q̄(x2)φ . . .〉1⊗3 (7.61)

The action of the Hamiltonian for x2 = x1 + 1 is now

g2H·Ψ1⊗3(x, x+1) = 8g2Ψ1⊗3(x, x+1)−2gǧΨ1⊗3(x−1, x+1)−2gǧΨ1⊗3(x, x+2)

(7.62)

Writing

Ψ1⊗3(x1, x2) = ei(p1x1+p2x2) + S1⊗3(p2, p1)ei(p1x2+p2x1) , (7.63)
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we find

S1⊗3(p1, p2;κ) = −1 + eip1+ip2 − 2(κ− 1
κ
)eip1

1 + eip1+ip2 − 2(κ− 1
κ
)eip2

, (7.64)

which is again the S-matrix of the XXZ chain, now with ∆ = κ − 1
κ
. The

S-matrix blows up for

eip2 =
1 + ei(p1+p2)

2(κ− 1
κ
)

. (7.65)

This pole is associated to an anti-bound state. Parametrizing p1 = P/2−iq+π,

p2 = P/2− iq − π, the location of the pole is given by

e−q =
cos(P

2
)

1
κ
− κ . (7.66)

Normalizability of the wave-function requires q > 0, which occurs for a re-

stricted range of P for κ∗ < κ < 1, and for the full range of P for κ < κ∗,

2 arccos(
1

κ
− κ) < |P | < π for

√
5− 1

2
< κ < 1 (7.67)

0 < |P | < π for 0 < κ <

√
5− 1

2
.

Substituting in E(p1, p2;κ) we find the dispersion relation for the anti-bound

state, [
QQ̄
]antibound

1L 3R
: E =

4(2− κ2)

1− κ2
− 4κ2

1− κ2
sin2 P

2
, (7.68)

which is plotted as the solid (red) curve in the left column of figure 7.2. The

anti-bound state is absent at the orbifold point κ = 1. For κ → 0, q → +∞,

so that the wave-function (7.49) localizes to two neighboring sites and in fact

coincides with the dimeric excitation M3 = (QQ̄)3 of N = 2 SCQCD; in the

limit we smoothly recover the M3 dispersion relation E(P ) = 8.

For Q̄Q scattering, we have

Š1⊗3(p1, p2;κ) = S1⊗3(p1, p2; 1/κ) = −1 + eip1+ip2 − 2( 1
κ
− κ)eip1

1 + eip1+ip2 − 2( 1
κ
− κ)eip2

. (7.69)

Now the pole corresponds to a bound state, indeed it occurs for p1 = P/2− iq,
p2 = P/2 + iq with q and P related as in (7.66). Clearly the allowed range of
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P is as in (7.67). We find the dispersion relation

[
QQ̄
]bound

1L 3R
: E =

4κ2

(1− κ2)
(1− 2κ2 + sin2 P

2
) , (7.70)

which is plotted as the solid (red) curve in the right column of figure 7.2.

7.3.3 3L ⊗ 1R Sector

The scattering problem in the 3L⊗ 1R sector is solved by the same technique.

We find

S3⊗1(p1, p2) = Š3⊗1(p1, p2) = −1 , (7.71)

which coincides with the scattering matrix of free fermions, or with the ∆XXZ →
∞ limit of the S-matrix for the XXZ chain. Clearly there are no (anti)bound

states.

7.3.4 1L ⊗ 1R Sector

The analysis for the 1L ⊗ 1R sector is slightly more involved because a two-

impurity state is not closed under the action of Hamiltonian: when Q and Q̄

are next to each other they can transform into φφ̄. The general state for QQ̄

scattering in the singlet sector is

|Ψ1⊗1〉 =
∑
x1<x2

Ψ1⊗1(x1, x2)| . . . φQ(x1)φ̌ . . . φ̌Q̄(x2)φ . . .〉1⊗1 (7.72)

+
∑
x

Ψφ̄(x)| . . . φφ̄(x)φ . . .〉 .

The first term is an eigenstate for “bulk” action of the Hamiltonian (x2 >

x1 + 1) with the usual eigenvalue E(p1, p2;κ) of equ.(7.45). The action of the

Hamiltonian for x2 = x1 + 1 is

g2H ·Ψ1⊗1(x, x+ 1) = 4(g2 + ǧ2)Ψ1⊗1(x, x+ 1)− 2gǧΨ1⊗1(x− 1, x+ 1)

−2gǧΨ1⊗1(x, x+ 2) + 2g2Ψφ̄(x) + 2g2Ψφ̄(x+ 1). (7.73)
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Furthermore,

g2H ·Ψφ̄(x) = 6g2Ψφ̄(x)− g2Ψφ̄(x+ 1)− g2Ψφ̄(x− 1) (7.74)

+2g2Ψ1⊗1(x, x+ 1) + 2g2Ψ1⊗1(x− 1, x) .

We take the ansatz

Ψ1⊗1(x1, x2) = ei(p1x1+p2x2) + S1⊗1(p2, p1)ei(p1x2+p2x1) (7.75)

Ψφ̄(x) = Sφ̄(p2, p1)ei(p1+p2)x . (7.76)

Note that S1⊗1(p1, p2) still has the interpretation of the scattering matrix of

the magnons Q and Q̄, which are the asymptotic excitations, while φ̄ is an

“unstable” excitations created during the collision of Q and Q̄. We find

S1⊗1(p1, p2) = −
(

1 + eip1+ip2 − 2(κ− 1
κ
)eip1

1 + eip1+ip2 − 2(κ− 1
κ
)eip2

)(
1 + eip1+ip2 − 2κeip1

1 + eip1+ip2 − 2κeip2

)−1

Sφ̄(p1, p2) =
4iei(p1+p2)(sin p1 − sin p2)

(1 + eip1+ip2 − 2κeip1)(1 + eip1+ip2 − 2(κ− 1
κ
)eip2)

.

S1⊗1 is the product of two factors, and it admits two poles. The first factor

coincides with S1⊗3, so its pole is associated to an anti-bound state entirely

analogous to the anti-bound state in the 1L ⊗ 3R sector. The pole is located

at p1 = P/2− iq + π, p2 = P/2 + iq − π, with

e−q =
cos(P/2)

1
κ
− κ . (7.77)

The dispersion relation is again

[
QQ̄
]antibound

1L 1R
: E =

4(2− κ2)

1− κ2
− 4κ2

1− κ2
sin2 P

2
, (7.78)

and the range of P for which the wave-function is normalizable is as in (7.67)

– see the solid (red) curve in the left column of figure 7.2. It is interesting to

analyze the explicit form of the wave-function in the κ → 0 limit. The QQ̄

piece has the form

Ψ1⊗1(x1, x2) = (−1)x2−x1eiP (
x1+x2

2
)e−q(x2−x1) , q →∞ (7.79)
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so only the x2 = x1 + 1 term survives in the limit, and we recover the dimeric

impurity M1 of SCQCD. A short calculation gives

Ψφ̄(x)

Ψ(x, x+ 1)
|κ→0 =

2

(1 + eiP )
. (7.80)

Comparison with (7.12) shows that that in the κ → 0 limit the antibound

state in the QQ̄ singlet sector becomes precisely the dimeric excitation T̃ of

SCQCD.

The pole in the second factor of S1⊗1 corresponds instead to a bound state,

with

eq =
cos(P/2)

κ
. (7.81)

The dispersion relation and range of existence are

[
QQ̄
]bound

1L 1R
: E = 4 sin2 q

2
, 0 < |P | < 2 arccosκ , (7.82)

which are shown as the dashed (green) curve on the left column of figure 7.2.

This bound state is absent at the orbifold point and comes into full existence

(for any P ) in the SCQCD limit κ→ 0. The natural guess is that in this limit

it reduces to the gapless T (p) magnon of SCQCD, and it does:

Ψφ̄(x)

Ψ(x, x+ 1)
|κ→0 = −1 + e−iP

2
, (7.83)

in agreement with (7.11).

The S-matrix in the Q̄Q channel is obtained as usual by κ→ 1/κ,

Š1⊗1(p1, p2;κ) = −
(

1 + eip1+ip2 + 2(κ− 1
κ
)eip1

1 + eip1+ip2 + 2(κ− 1
κ
)eip2

)(
1 + eip1+ip2 − 2

κ
eip1

1 + eip1+ip2 − 2
κ
eip2

)−1

Šφ̄(p1, p2;κ) =
4iei(p1+p2)(sin p1 − sin p2)

(1 + eip1+ip2 − 2
κ
eip1)(1 + eip1+ip2 + 2(κ− 1

κ
)eip2)

.

The pole in the first factor of Š1⊗1 corresponds to a bound state, with

[
Q̄Q
]bound

1L 1R
: E(P ) =

4κ2

1− κ2

(
1− 2κ2 + sin2 P

2

)
, (7.84)

with the range of existence given by (7.67). Finally, the pole in the second
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Pole of the S-matrix Range of existence Dispersion relation E(P )

M33 e−q = cos(P
2

)/κ 2 arccosκ < |P | < π 4 sin2(P
2

)

T eq = cos(P
2

)/κ 0 < |P | < 2 arccosκ 4 sin2(P
2

)

T̃ and M3 e−q = cos(P
2

)/(κ− 1
κ
) See equ.(7.67) 4κ2

(1−κ2)
( 2
κ2 − 1− sin2 P

2
)

M̌33 e−q = κ cos(P
2

) 0 < |P | < π 4κ2 sin2(P
2

)

Ť eq = κ cos(P
2

) No solution
ˇ̃
T and M̌3 e−q = cos(P

2
)/( 1

κ
− κ) See equ.(7.67) 4κ2

(1−κ2)
(1− 2κ2 + sin2 P

2
)

Table 7.4: Dispersion relations and range of existence of the various
(anti)bound states in two-body scattering. The first three entries correspond
to the QQ̄ channel and the last three entries to the Q̄Q channel. The color-
coding of the third entry is a reminder that these are anti-bound states with
energy above the two-particle continuum.

factor of Š1⊗1 never corresponds to a normalizable solution.

7.3.5 Summary

The two-body scattering problem in the spin chain of the interpolating SCFT

admits a rich spectrum of bound and anti-bound states. The results are sum-

marized in table 7.4 and figure 7.2. The QQ̄ scattering channel (that is, the

channel with Q to the left of Q̄, and the φ vacuum on the outside) is the

one relevant to make contact with N = 2 SCQCD, which is obtained in the

κ→ 0 limit. Remarkably, the magnon excitations of SCQCD are recovered as

the smooth limits of the QQ̄ (anti)bound states: as κ→ 0 the wavefunctions

of the (anti)bound states localize to two neighboring sites and reproduce the

“dimeric” magnons T (p), T̃ (p) and M3(p) of SCQCD.

7.3.6 Left/right factorization of the two-body S-matrix

As is well-known, the magnon excitations of the N = 4 SYM spin chain

transform in the fundamental representation of SU(2|2)× SU(2|2), and their

two-body S-matrix factorizes into the product of the S-matrices for the “left”

and “right” SU(2|2). The Z2 orbifold preserves this factorization. Remarkably,

this left/right factorization persists even away from the orbifold point, for the

full interpolation SCFT – or at least this is what happens at one-loop in the
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QQ̄ scattering channel Q̄Q scattering channel

κ = 0.999

κ = 0.65

κ = −1+
√

5
2

κ = 0.35

κ = 0.001

Figure 7.2: Plots of the dispersion relations of the (anti)bound states for dif-
ferent values of κ. The shaded region represents the two-particle continuum.
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L⊗R S(p1, p2, κ)

1⊗ 1 −S(p1, p2, κ− 1
κ
)S−1(p1, p2, κ)

1⊗ 3 S(p1, p2, κ− 1
κ
)

3⊗ 1 −1

3⊗ 3 S(p1, p2, κ)

Table 7.5: The S-matrix in the QQ̄ scattering channel.

SU(2)L SL(p1, p2;κ) SU(2)R SR(p1, p2;κ)

1 S(p1, p2;κ− 1
κ
) 1 −1

3 S(p1, p2;κ) 3 S(p1, p2;κ)

Table 7.6: Definitions of the SU(2)L and SU(2)R S-matrices.

scalar sector. Our results for the S-matrix in the QQ̄ channel in the four

different SU(2)L×SU(2)R sectors are summarized in table 7.5, where we have

defined

S(p1, p2, κ) ≡ −1− 2κeip1 + ei(p1+p2)

1− 2κeip2 + ei(p1+p2)
, (7.85)

i.e. the standard S-matrix of the XXZ chain, with ∆XXZ = κ. We see that

we can write

S(p1, p2;κ) =
SL(p1, p2;κ)SR(p1, p2;κ)

S3⊗3(p1, p2;κ)
(7.86)

where SL and SR are defined in table 7.6.

In the analysis of the Yang-Baxter equation, it will be useful to write the

S-matrices in both the SU(2)L and SU(2)R sectors using the identity (I) and

trace (K) tensorial structures,

SL(p1, p2;κ) = AL(p1, p2;κ) I +BL(p1, p2;κ)K (7.87)

SR(p1, p2;κ) = AR(p1, p2;κ) I +BR(p1, p2;κ)K . (7.88)

Writing the indices explicitly,

(SR)MNIJ = AR δMI δ
N
J +BR εIJ ε

MN , (7.89)

Recalling that eigenvalue of K on the triplet is zero while it is two on the
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singlet, we see that

A = S3 (7.90)

B =
1

2
(S1 − S3) . (7.91)

The values of S1 and S3 in both the SU(2)L and SU(2)R sectors can be read

off from table 7.6,

AL(p1, p2, κ) = S(p1, p2, κ) (7.92)

BL(p1, p2, κ) =
1

2

(
S(p1, p2, κ−

1

κ
)− S(p1, p2, κ)

)
(7.93)

AR(p1, p2, κ) = S(p1, p2, κ) (7.94)

BR(p1, p2, κ) = −1

2
(1 + S(p1, p2, κ)) . (7.95)

In complete analogy, in the Q̄Q channel we have the factorization

Š(p1, p2;κ) =
ŠL(p1, p2;κ)ŠR(p1, p2;κ)

Š3⊗3(p1, p2;κ)
, (7.96)

and we can write

ŠL(p1, p2;κ) = ǍL(p1, p2;κ) I + B̌L(p1, p2;κ)K (7.97)

ŠR(p1, p2;κ) = ǍR(p1, p2;κ) I + B̌R(p1, p2;κ)K . (7.98)

As always, each “checked” quantity is obtained from the corresponding unchecked

one by sending κ→ 1/κ.

7.4 Yang-Baxter Equation

The one-loop spin chain of the Z2 orbifold of N = 4 SYM is known to be

integrable [172, 173]. A natural question is whether integrability persists for

the ǧ 6= g. We can explore the integrability of the spin chain for the interpolat-

ing SCFT by checking the Yang-Baxter equation for the two-body S-matrix.

Integrability of the spin chain amounts to the existence of higher conserved

quantities beyond the momentum and the Hamiltonian, which would imply

exact factorization of many-body scattering into a sequence of two-body scat-
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=

p1 p2 p3 p1 p2 p3

I J K I J K

M N

I ′ J ′ K′ I ′ J ′ K′

L L

PN

Figure 7.3: Yang-Baxter equation in each SU(2) sector. Simple lines represent
Q impurities, double lines Q̄ impurities.

terings. For this to happen it is necessary that different ways to factorize

three-body scattering into two-body scatterings should commute: the Yang-

Baxter equation expresses this consistency condition.

The two-body S-matrix of our theory factorizes into the S-matrix for the

SU(2)L sector times the S-matrix for the SU(2)R sector. The Yang-Baxter

equation must be satisfied separately in each sector. Clearly this is a sufficient

condition for the full Yang-Baxter equation to hold; it is also a necessary

condition since we can always restrict the asymptotic states to one sector by

setting their quantum numbers in the other sector to be highest weights. In

each sector, the Yang-Baxter equation is represented by the diagram of figure

7.3, and reads explicitly

SMNIJ (p1, p2)ŠLK
′

NK (p1, p3)SI
′J ′
ML (p2, p3) = ŠJ

′K′
LP (p1, p2)SI

′L
IN (p1, p3)ŠNPJK (p2, p3)

(7.99)

Using the decomposition introduced in the previous section, we can write the

left-hand side as

SMNIJ (p1, p2)ŠLK
′

NK (p1, p3)SI
′J ′
ML (p2, p3)

= AǍAδK
′

K δ
I′
I δ
J ′
J + AB̌BgJKδ

K′
I g
I′J ′ +BB̌AgIJ δ

I′
K g
J ′K′

+ (AǍB +BǍA+ 2BǍB +BB̌B)δK
′

K gIJ g
I′J ′ + AB̌AgJKg

J ′K′δI
′

I

We have suppressed the momentum arguments with the convention that the

first symbol in each term is a function of (p1, p2), the second is function of
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(p1, p3) and the third (p2, p3). Similarly, for the right-hand side

ŠJ
′K′
LP (p1, p2)SI

′L
IN (p1, p3)ŠNPJK (p2, p3)

= ǍAǍδI
′

I δ
J ′
J δ
K′
K + ǍBB̌gI

′J ′gJKδ
K′
I + B̌BǍgJ

′K′gIJ δ
I′
K

+ ǍBǍgIJ g
I′J ′δK

′

K + (ǍAB̌ + B̌AǍ+ 2B̌AB̌ + B̌BB̌)gJ
′K′δI

′

I gJK

Collecting the terms with the same index structure, the Yang-Baxter equation

in each SU(2) sector reduces to the following five equations:

AǍA = ǍAǍ (7.100)

AB̌B = ǍBB̌ (7.101)

BB̌A = B̌BǍ (7.102)

2BǍB + AǍB +BǍA+BB̌B = ǍBǍ (7.103)

AB̌A = 2B̌AB̌ + ǍAB̌ + B̌AǍ+ B̌BB̌. (7.104)

At the orbifold point, κ = 1/κ = 1 and thus A = Ǎ, B = B̌: the first

three equations are trivial; the forth and fifth become equivalent. In both

the SU(2)L and SU(2)R sectors (which are in fact equivalent for κ = 1),

the remaining equation is easily checked. Thus as expected, the Yang-Baxter

equation is satisfied at the orbifold point. We then find that YB is violated as

we move away from the orbifold point, for all κ ∈ (0, 1), showing conclusively

that the spin chain of the interpolating theory is not integrable for general κ.

To our surprise however, YB holds again in the SCQCD limit κ→ 0! We take

this as a good hint that planar N = 2 SCQCD might be integrable, at least

at one loop.

7.5 Discussion

Ordinarily, verification of the Yang-Baxter equation for the two-magnon S-

matrix counts as strong evidence for integrability. In our case, however, for κ

strictly zero, the elementary Q impurities “freeze”, and only QQ̄ dimers can

propagate on the chain. Correspondingly, the Q dispersion relation becomes

162



SU(2)R sector SU(2)L sector

Figure 7.4: The figure shows the differences between the left and right-hand
sides of the five Yang-Baxter equations, as a function of κ, for the specific
choice of momenta p1 = 0.3, p2 = 0.8 and p3 = 1.4. The blue, red, green,
orange and purple curves show (l.h.s)−(r.h.s) for the the first to fifth equation.

momentum-independent,

EQ(p;κ) = 2(1− κ)2 + 8κ sin2(
p

2
) −−→
κ→0

2 , (7.105)

and the S-matrix also degenerates to a simple expression. Verification of YB

strictly at κ = 0 may then appear like an accident due to this degenerate limit.

What we find more significant, and non-trivial evidence for integrability, is that

the integrable point κ = 0 is reached smoothly, with YB failing infinitesimally

for infinitesimal κ – this is clear since the S-matrices are analytic (rational)

functions of κ. This smooth behavior is illustrated in figure 7.4, where we

plot the differences between the left and right hand sides of the five equations

(7.100–7.104) (for some choice of the momenta).

An elegant way to conclusively prove integrability at κ = 0 would be to

exhibit the algebraic Bethe ansatz for the SCQCD spin chain. The simplest

guess for the R-matrix does not appear to work [186], but the issue needs

further investigation.
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Another approach being pursued [186] is to assume integrability to derive

Bethe equations for the periodic chain, and then check whether their (numer-

ical) solutions agree with the solutions obtained by direct diagonalization of

the Hamiltonian. This is not entirely straightforward, because we cannot work

strictly at κ = 0. The naive Bethe equations at κ = 0 have no interesting so-

lutions for finite values of the Bethe roots – the non-trivial dynamics is hidden

in Bethe roots with infinite imaginary parts (in the momentum variable). We

saw this phenomenon in the evolution of the bound states as κ → 0, where

the individual magnon momenta behave as i log κ. Taking the SCQCD limit

κ→ 0 too early we lose information about the bound states. (It is conceivable

that the failure of the (simplest) algebraic Bethe ansatz is also due to this

order-of-limits issue.) Nevertheless, it makes sense to write Bethe equations

for small κ, viewed as a regulator to be removed at the end of the calculation.

We can also calculate the S-matrix of the bound states, by using the fusion

procedure for infinitesimal κ, and check their YB equation in the SCQCD

limit. The consistency of this approach should follow from the smoothness of

the κ→ 0 limit.

A natural extension of our work is the calculation of one-loop dilation

operator in the complete theory, including fermions and derivatives [187]. Let

us briefly comment on the symmetry structure of the complete spin chain.

As is well-known, the symmetry of the N = 4 spin chain in the excitation

picture is PSU(2|2)L×PSU(2|2)R×R, where the central factor R is identified

with the Hamiltonian. The Z2 orbifold projection preserves the PSU(2|2)R

in the “right” sector (this is a subgroup of the N = 2 superconformal group

SU(2, 2|2)), but breaks PSU(2|2)L to the bosonic subgroup SU(2)L×SU(2)α,

where SU(2)α denotes the left-handed Lorentz symmetry. At the orbifold point

κ = 1, the breaking is only due to a global twist of the chain, while locally

the symmetry is the same as in N = 4, but for κ 6= 1 the symmetry is truly

broken. All in all, the symmetry of the spin chain of the interpolating theory

is SU(2)L × SU(2)α × PSU(2|2)R ×R. In this chapter we have found that in

the two-body S-matrix of Q impurities has a left × right factorization, and we

expect this feature to persist for the full chain [187].

An obvious question is whether symmetry is sufficient to fix the form of the

S-matrix, as it does to all loops in N = 4 SYM (up to an overall scalar factor).
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While unlikely for SL, this is likely for SR, which has a large supergroup

symmetry. Note that the left sector is trivial in SCQCD limit (by construction,

we restrict to flavor singlets, which are in particular SU(2)L singlets), so luckily

the right-sector dynamics is both the most relevant and the most constrained.

In fact, the symmetry in the right sector of the interpolating SCFT the same

as in (either sector of) N = 4 SYM. This raises a small puzzle. The SR matrix

of N = 4 is uniquely fixed, up to an overall scalar factor, from the (centrally

extended) SU(2|2)R symmetry [23]. But our results for SR in the interpolating

theory are definitely different (for κ 6= 1) from the N = 4 results. This is clear

already in the scalar sector studied in this chapter, by inspection of the S-

matrix of the QI+̂ impurities. In the next chapter, we compute the S-matrix

in the right-sector to all loops using centrally extended SU(2|2) symmetry. In

the process we answer the puzzle raised here.

Finally it would be very interesting to evaluate the two-body S-matrix

at strong coupling, in the dual string sigma-model, and see whether it has

the same κ dependence as the perturbative S-matrix. Failure of integrability

for generic κ is not an issue here, since we would not be using in any way

factorization of n-body scattering, but rather focus on the two-body S-matrix,

which we expect to have a smooth interpolation from weak to strong coupling.

The sigma-model at the orbifold point is well-known, and moving away from

the orbifold point corresponds to changing the value of a theta angle β (the

period of the NSNS B-field through the collapsed cycle of the orbifold). The

orbifold point corresponds to β = 1/2, while the SCQCD limit corresponds to

β → 0. From the dual side, it is very natural to expect integrability precisely

at the two extrema 0 and 1/2, but not for generic values of the B-field. A toy

model for this behavior is the O(3) sigma-model in a magnetic field [188].12

One of our original motivations was to collect “bottom-up” clues about

the string dual of N = 2 SCQCD. While firm conclusions will have to wait

a higher-oder (all order?) analysis, we can already see a qualitative agree-

ment with the “top-down” approach of our previous chapter. We argued that

N = 2 SCQCD is dual to a non-critical string background, with seven geo-

metric dimensions, containing both an AdS5 and an S1 factor. Rotation in S1

corresponds to the U(1)r quantum number. In lightcone quantization of the

12Similar considerations apply to the ABJ model [177, 179, 180].
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sigma-model, the lightcone coordinates would be obtained by combining this

S1 and the timelike direction of AdS5. We then expect five bosonic gapless

excitations, four associated to the transverse AdS coordinates and one to the

seventh dimension. The vacuum of the lightcone sigma-model corresponds to

chiral vacuum Trφ` of the spin chain, while the four AdS excitations corre-

spond to derivative impurities on the chain. In the scalar sector that we have

studied in this chapter, one gapless excitation is then expected, the one corre-

sponding to the seventh dimension: just what we found, the gapless magnon

T (p). As κ → 0, the Q impurities, carriers of the SU(2)L × SU(2)R quan-

tum numbers associated with the three extra dimensions (the transverse S3,

see [2] for details), become non-dynamical, and only their composite bound

state T (p) survives as a gapless mode. We interpret this phenomenon as the

field theory counterpart of the transition from the critical to the non-critical

background.
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Chapter 8

Twisted Magnons

The spin chain associated to the planar dilation operator of N = 4 super-Yang

Mills [15, 166, 189] is strongly constrained by symmetry. While the structure of

the Hamiltonian becomes unwieldy beyond one loop, and no closed form is yet

in sight, the S-matrix of magnon excitations of the infinite chain is a relatively

simple object [23, 167, 168]. Assuming integrability (for which there is by

now strong evidence), the n-body S-matrix factorizes in terms of two-body S-

matrices. In turn, the full matrix structure of the two-body S-matrix is fixed

by Beisert’s centrally extended SU(2|2)×SU(2|2) symmetry [23]. Finally, the

overall phase is determined with the help of crossing symmetry and plausible

physical assumptions [169, 190–192].

The centrally extended SU(2|2) symmetry is a general feature of spin chains

for N = 2 4d superconformal theories1, indeed SU(2|2) is a subgroup of the

N = 2 superconformal group SU(2, 2|2) preserved by the choice of the spin

chain vacuum. In this chapter we explore the consequences of this symmetry

in a class of N = 2 SCFTs, the quiver theories related by exactly marginal

deformations to N = 2 orbifolds of N = 4 super-Yang Mills.

Unlike the case of N = 4 SYM, only one copy of the SU(2|2) supergroup

is preserved, while the other is broken to its bosonic subgroup. We show how

to fix the dispersion relations and two-body S-matrices of the magnons trans-

forming under the surviving SU(2|2) by a generalization of Beisert’s approach.

Since the SU(2|2) representations are now “twisted”, the generalization is not

entirely trivial and leads to interesting functions of the exactly marginal cou-

1See also [193] for applications of SU(2|2) to a class theories with 16 supercharges.
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plings. At the orbifold point the magnons are gapless and the spin chain is

integrable [172, 173] but as we perturb away from it, the magnons acquire a

gap, and their two-body S-matrices do not satisfy the Yang-Baxter equation.

So for general values of the couplings the theories are not integrable, and the

complete magnon S-matrix cannot be deduced from the two-body S-matrix.

Nevertheless the dispersion relations and two-body S-matrices are interesting

pieces of information in their own right, and it is remarkable that one can ob-

tain for them all-order expressions. At one-loop, we find agreement with the

explicit perturbative calculations of [4, 187]. At strong ’t Hooft coupling, one

should be able to compare our field-theoretic results with a giant-magnon [194]

calculation in the dual string theory, which is a deformation of the orbifold

background AdS5 × S5/Γ [83, 144].

For ease of notation, in most of the chapter we focus on the simplest case,

the N = 2 superconformal quiver with SU(Nc)×SU(Nč) gauge group,2 which

is in the moduli space of the Z2 orbifold of N = 4 SYM. In section 8.1 we

determine the dispersion relation of the bifundamental magnons and in section

8.2 their two-body S-matrix.

Following Berenstein et al. [195], in section 8.3 we re-derive the dispersion

relations of the twisted magnons from a large N analysis of the quiver ma-

trix model, obtained by quantizing the gauge theory on S3 × R and keeping

the zero modes on S3. It is not a priori obvious that this approach, which

relies on an uncontrolled approximation, should give the same answer as the

exact algebraic analysis, but it does. This viewpoint gives a simple geomet-

ric interpretation of dispersion relations, very suggestive of an emergent dual

geometry.

The generalization to N = 2 Zk orbifolds is straightforward, and we indi-

cate it in section 8.4.

In the rest of this introduction we describe the symmetry structure of the

Z2-quiver spin chain, contrasting it with the N = 4 chain. This will serve as

an overview of our logic and to orient the reader through our notations.

The superconformal symmetry of N = 4 SYM is PSU(2, 2|4). It is broken

to PSU(2|2)×PSU(2|2)×R, where R is a central generator corresponding to

2The two gauge groups are identical, Nc ≡ Nč, but we find it useful to always denote
with a “check” quantities associated to the second gauge group.
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the spin chain Hamiltonian, by the choice of the BMN [196] vacuum Tr ΦJ . The

magnon excitations on this vacuum are in the fundamental representation of

the unbroken symmetry, and they are gapless because they are the Goldstone

modes associated to the broken generators. The PSU(2, 2|4) symmetry gen-

erators are shown in table 8.1. The boxed generators, in the diagonal blocks,

are preserved by the choice of the vacuum while the off-diagonal ones are

broken and correspond to the magnons. The broken generators are labelled

in terms of the corresponding magnons: the upper-right block contains the

magnon creation operators and the lower-left block the magnon annihilation

operators.

SU(2α̇) SU(2I) SU(2α) SU(2Î)

SU(2α̇) Lα̇
β̇

Qα̇J D†α̇β λ†α̇
Ĵ

SU(2I) SI
β̇

RI
J λ†Iβ X †I

Ĵ

SU(2α) Dα
β̇

λαJ Lαβ Qα
Ĵ

SU(2Î) λÎ
β̇

X Î
J S Îβ RÎ

Ĵ

Table 8.1: The PSU(2, 2|4) symmetry generators. The R-symmetry subgroup
SU(4) is represented as branched into SU(2I)× SU(2Î). We have introduced
the notation SU(2α) for SU(2)α etc.

A priori, the two-body magnon S-matrix, decomposed according to the

SU(2α|2Î)× SU(2α̇|2I) quantum numbers, can take the schematic form

SSU(2α|2Î)×SU(2α̇|2I) = SSU(2α|2Î)⊗SSU(2α̇|2I) +S ′SU(2α|2Î)⊗S ′SU(2α̇|2I) + . . . (8.1)

As it turns out, the SU(2|2) S-matrix is unique up to an overall phase [23], so

one has the useful factorization

SSU(2α|2Î)×SU(2α̇|2I) = SSU(2α|2Î) ⊗ SSU(2α̇|2I) . (8.2)

The SU(2α|2Î) S-matrix describes the scattering of magnons in the highest

weight state of SU(2α̇|2I), and viceversa.

The Z2 projection ofN = 4 SYM breaks PSU(2α, 2α̇|4IÎ) to SU(2α, 2α̇|2I)×
SU(2Î). At the orbifold point gYM = ǧYM the breaking is only global (by
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boundary conditions on the periodic chain), but for general couplings the

PSU(2α, 2α̇|4IÎ) is truly lost. The symmetry preserved by the spin chain vac-

uum is SU(2α̇|2I)×SU(2α)×SU(2Î). Table 8.2 lists the symmetry generators

of the theory, with the broken generators identified as Goldstone modes. The

Goldstone excitations (gapless magnons) are in the fundamental representa-

tion of SU(2α) × SU(2α̇|2I). The {X I
Ĵ
, λα̇

Ĵ
} magnons, in the fundamental of

SU(2Î)× SU(2α̇|2I), are omitted in table 8.2 because they do not correspond

to broken generators – indeed they have a gap for gYM 6= ǧYM . Their dynamics

is the main focus of this chapter.

Here we are using the “orbifold” notation, where the fields are labeled as

in N = 4 SYM, and are 2Nc × 2Nc matrices in color space (see equ.(8.19)).

The state space of the spin chain consists of an twisted and and untwisted

sector, distinguished by whether or not the twist operator τ (equ.(8.17)) is

inserted on the chain. The two sectors mix for gYM 6= ǧYM . In particular

the symmetry generators and the central charges acquire twisted components,

see (8.22, 8.23).

SU(2α̇) SU(2I) SU(2α) SU(2Î)

SU(2α̇) Lα̇
β̇

Qα̇J D†α̇β

SU(2I) SI
β̇

RI
J λ†Iβ

SU(2α) Dα
β̇

λαJ Lαβ
SU(2Î) RÎ

Ĵ

Table 8.2: The generators of SU(2, 2|2) × SU(2Î), the symmetry of the Z2

quiver. As before, the boxed generator are preserved by the choice of the
spin-chain vacuum while the other correspond to Goldstone excitations.

The scattering of any two magnons (gapless or gapped) is given by a fac-

torized two-body S-matrix,

SSU(2α)×SU(2Î)×SU(2α̇|2I) = SSU(2α)×SU(2Î) ⊗ SSU(2α̇|2I) . (8.3)

The SSU(2α̇|2I) S-matrix describes the scattering of magnons in the highest

weight of SU(2α)×SU(2Î). It has both an untwisted and a twisted component,
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schematically

SSU(2α̇|2I) |X1X2〉 = SI |X1X2〉+ Sτ |X1X2τ〉 . (8.4)

The centrally extended SU(2|2) symmetry will fix both components uniquely,

up to the usual phase ambiguity.

8.1 Magnon Dispersion Relations

8.1.1 Review: N = 4 magnons

The field content ofN = 4 super Yang-Mills consists of the gauge field Aµ, four

Weyl spinors λAα and six real scalars X i, where A = 1, . . . 4 and i = 1, . . . 6 are

indices labelling fundamental and antisymmetric self-dual representation of the

SU(4A) R-symmetry group respectively. Under U(1)r×SU(2I)R×SU(2Î)L ⊂
SU(4A), the scalars branch into one complex scalar Φ, charged under U(1)r,

and SU(2I)R × SU(2Î)L bifundamental scalars X IÎ , with zero U(1)r charge,

satisfying the reality condition X IÎ† = −εIJεÎĴX JĴ . The fermions decompose

as λIα and λÎα. The N = 2 supersymmetry organizes Aµ, λ
I
α,Φ into a vector

multiplet and X IÎ , λÎα into a hypermultiplet.

For definiteness we focus on the “right-handed” magnons, in the funda-

mental of SU(2α̇|2I) and in the highest-weight state of of SU(2α|2Î),

X I
+̂ ≡ X I , λα̇+̂ ≡ λα̇ . (8.5)

Beisert determined the magnon dispersion relation from symmetry arguments,

as we now review. The non-zero commutation relations of the SU(2|2) gener-

ators are:

[RI
J ,J K ] = δKJ J I − 1

2
δIJJ K

[Lα̇
β̇
,J γ̇] = δγ̇

β̇
J α̇ − 1

2
δα̇
β̇
J γ̇

{Qα̇I ,SJβ̇} = δJI Lα̇β̇ + δα̇
β̇
RJ

I + δJI δ
α̇
β̇
C

where J represents any generator with the appropriate index. The central

charge C is related to the scaling dimension as C = 1
2
(∆− |r|). The impurities

171



(X I , λα̇) transform in the fundamental representation of SU(2|2), and closure

of the algebra fixes C = 1
2
, corresponding to the canonical dimensions ∆ = 1

and ∆ = 3
2

for X and λ. Consider now a magnon of momentum p,

Ψ(p) =
∞∑

l=−∞

eipl|X (l) 〉. (8.6)

For p 6= 0, the state acquires a non-vanishing anomalous dimension, so C 6= 1
2
,

but the representation remains short, as there are no other degrees of freedom

with which it could combine to become long. This is in conflict with the

SU(2|2) algebra. The resolution is to allow for a further central extension by

momentum-dependent central charges P and K,

{Qα̇I ,Qβ̇J} = εα̇β̇εIJP , {SIα̇,SJβ̇} = εIJεα̇β̇K . (8.7)

The most general action of the generators in the excitation picture is :

Qα̇I |X J〉 = aδJI |λα̇〉 (8.8)

Qα̇I |λβ̇〉 = bεα̇β̇εIJ |X JΦ+〉
SIα̇|X J〉 = cεIJεα̇β̇|λβ̇Φ−〉
SIα̇|λβ̇〉 = dδβ̇α̇|X I〉 ,

which implies

P|X〉 = ab|XΦ+〉 (8.9)

K|X〉 = cd|XΦ−〉 . (8.10)

C|X 〉 =
1

2
(ad+ bc)|X 〉 . (8.11)

Closure of the algebra requires ad− bc = 1. We can then formally solve

C =
1

2

√
1 + 4PK . (8.12)

For a quick heuristic derivation of the central charges, we can proceed as

follows. The supersymmetry transformations of the fields appearing in the
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Lagrangian,

Qα̇IXK = δKI λ
α̇

Qβ̇Jλα̇ = εβ̇α̇
∂W

∂X J
=

g√
2
εβ̇α̇εJL[X L,Φ]

where W = g√
2
Tr X IÎΦXIÎ is the superpotential of N = 4 super Yang-Mills.

The coupling g is the square root of the ’t Hooft coupling, normalized as

g2 =
g2
YMNc

8π2
. (8.13)

These susy transformations lead to the anticommutators

{Qα̇I ,Qβ̇J}XK =
g√
2
εα̇β̇εIJ [Φ,XK ]

{Qα̇I ,Qβ̇J}λγ̇ =
g√
2
εα̇β̇εIJ [Φ, λγ̇]

Using the fact that momentum eigenstates satisfy

|Φ±X〉 = e∓ip|XΦ±〉 , (8.14)

we can realize the susy transformation laws on the spin chain as

{Qα̇I ,Qβ̇J}|X 〉 = εα̇β̇εIJP|X〉 = εα̇β̇εIJ
g√
2

(e−ip − 1)|XΦ+〉 , (8.15)

implying ab = g√
2
(e−ip − 1). Similarly using {S,S}, we can obtain cd =

g√
2
(eip − 1). Finally, from (8.12),

∆− |r| = 2C =

√
1 + 8g2 sin2 p

2
. (8.16)

This derivation3 is only heuristic because of the assumption that the susy

transformations in the excitation picture can be simply read off from the clas-

sical Lagrangian. In [23], Beisert used a purely algebraic method to determine

the central charges, as we review in appendix O. The algebraic method con-

firms the form (8.16), but with g2 a priori replaced by a renormalized coupling

3The first field-theoretic argument for the square-root form (8.16) was given in [197].
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g2 = g2 + O(g4). There is strong evidence that in N = 4 SYM g2 = g2. In

the ABJM theory [178] one can run an identical argument, but the coupling

is renormalized [176, 198, 199]. See [200, 201] for discussions of this issue.

8.1.2 The Z2 orbifold and its deformation

The Z2 orbifold theory is the well known quiver gauge theory living on the

worldvolume of D3 branes probing R2 × R4/Z2 singularity. It is obtained

from N = 4 super Yang-Mills by projecting onto the Z2 ⊂ SU(2)L invariant

states. The Z2 action identifies X IÎ → −X IÎ while acting trivially on Φ. The

supersymmetry is broken to N = 2 as the supercharges with SU(2)L indices

are projected out. The SU(4) R symmetry group is broken to SU(2)R ×
SO(3)L × U(1)r. SU(2)R × U(1)r is the R symmetry group of the N = 2

theory while SO(3)L is a global symmetry. In color space, we start with

SU(2Nc) gauge group and declare the nontrivial element of the orbifold to be

τ =

 INc×Nc 0

0 −INč×Nč

 . (8.17)

It acts on the fields of N = 4 SYM as

Aµ → τAµτ, Φ→ τΦτ, λI → τλIτ, X IÎ → −τX IÎτ, λÎ → −τλÎτ.
(8.18)

The components that survive the projection are

Aµ =

 Aµ 0

0 Ǎµ

 , Φ =

 φ 0

0 φ̌

 , λI =

 λI 0

0 λ̌I

 , (8.19)

X IÎ =

 0 QIÎ

Q̄IÎ 0

 , λÎ =

 0 ψÎ

ψ̃Î 0

 .
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The orbifold theory has an untwisted sector of states, which descend by projec-

tion from N = 4, and a twisted sector of states, characterized by the presence

of one insertion of the twist operator τ in the color trace. We refer to this

presentation of the theory (in terms of 2Nc × 2Nc matrices) as the “orbifold

basis”.

Equivalently, we can present the theory as an N = 2 quiver gauge theory

with product gauge group SU(Nc)×SU(Nč) and two bifundamental hypermul-

tiplets: (Aµ, λ
I , φ) and (Ǎµ, λ̌, φ̌) are the two vector multiplets while (QIÎ , ψÎ)

and (Q̄IÎ , ψ̃Î) are the two hypermultiplets transforming respectively in the

Nc ×Nč and Nc ×Nč representations.

The two gauge couplings g and ǧ are exactly marginal. For g 6= ǧ the

superpotential acquires a twisted term,

W =
G√

2
Tr [

1

2
(
√
κ+

1√
κ

) + τ
1

2
(
√
κ− 1√

κ
)]X IÎΦXIÎ (8.20)

where

G ≡
√
gǧ , κ ≡ ǧ

g
. (8.21)

In the quiver language,

W =
g√
2

Tr Q̄IÎφQIÎ +
ǧ√
2
QIÎ φ̌Q̄IÎ

=
G√

2
(Tr

1√
κ
Q̄IÎφQIÎ +

√
κQIÎ φ̌Q̄IÎ) .

8.1.3 Twisted magnons

As we have explained in the introduction, the magnons of the Z2 theory fall

into two classes: Goldstone magnons associated with the broken generators,

carrying an α index, and magnons not associated with symmetries, carrying a

Î index. Both types are in the fundamental representation of SU(2α̇|2I). The

algebraic analysis for the Goldstone magnons is exactly as in N = 4 SYM, so

they obey the same dispersion relation. On the other hand, the non-Goldstone
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magnons transform in a “twisted” representation of the SU(2|2) superalgebra,

Qα̇I |X J〉 = a0δ
J
I |λα̇〉+ a1δ

J
I |τλα̇〉 (8.22)

Qα̇I |λβ̇〉 = b0ε
α̇β̇εIJ |X JΦ+〉+ b1ε

α̇β̇εIJ |τX JΦ+〉
SIα̇|X J〉 = c0ε

IJεα̇β̇|λβ̇Φ−〉+ c1ε
IJεα̇β̇|τλβ̇Φ−〉

SIα̇|λβ̇〉 = d0δ
β̇
α̇|X I〉+ d1δ

β̇
α̇|τX I〉

One then finds for the central charges:

P|X〉 = (a0b0 + a1b1)|XΦ+〉+ (a0b1 + a1b0)|τXΦ+〉 (8.23)

K|X〉 = (c0d0 + c1d1)|XΦ−〉+ (c0d1 + c1d0)|τXΦ−〉
C|X 〉 = [

1

2
(a0d0 + b0c0) +

1

2
(a1d1 + b1c1)]|X 〉

+ [
1

2
(a0d1 + b0c1) +

1

2
(a1d0 + b1c0)]|τX〉 .

Using the supersymmetry transformations following from the deformed super-

potential (8.20), a little calculation gives

a0b0 + a1b1 =
G√

2

1

2
(

1√
κ

+
√
κ)(e−ip − 1) (8.24)

a0b1 + a1b0 =
G√

2

1

2
(

1√
κ
−√κ)(e−ip + 1)

c0d0 + c1d1 =
G√

2

1

2
(

1√
κ

+
√
κ)(eip − 1)

c0d1 + c1d0 =
G√

2

1

2
(

1√
κ
−√κ)(eip + 1) .

We can then read off the central charges

C0 ≡
1

2
(a0d0 + b0c0) +

1

2
(a1d1 + b1c1)

=
1

2

√
1 + 8G2

(
sin2 p

2
+

1

4
(
√
κ− 1√

κ
)2

)
C1 ≡

1

2
(a0d1 + b0c1) +

1

2
(a1d0 + b1c0) = 0 .

It is illuminating to repeat the exercise in the quiver basis, as it will give

us the dispersion relation of the perhaps more “physical” bifundamental ex-
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citations that interpolate between the TrφJ and Trφ̌J vacua. In the quiver

basis, the (X , λ) doublet splits into two doublets, (Q, ψ) and (Q̄, ψ̃). Let us

call these two fundamental SU(2|2) representations V and Ṽ . The action of

the algebra A : V → V and A : Ṽ → Ṽ is given in table 8.3.

Qα̇I |QJ〉 = aδJI |ψα̇〉 Qα̇I |Q̄J〉 = ãδJI |ψ̃α̇〉

Qα̇I |ψβ̇〉 = bεα̇β̇εIJ |QJ φ̌+〉 Qα̇I |ψ̃β̇〉 = b̃εα̇β̇εIJ |Q̄Jφ+〉

SIα̇|QJ〉 = cεIJεα̇β̇|ψβ̇φ̌−〉 SIα̇|Q̄J〉 = c̃εIJεα̇β̇|ψ̃β̇φ−〉

SIα̇|ψβ̇〉 = dδβ̇α̇|QI〉 SIα̇|ψ̃β̇〉 = d̃δβ̇α̇|Q̄I〉.

Table 8.3: Representation of the magnons in the quiver basis.

The a, b, c, d coefficients in this basis are related to the coefficients in the

orbifold basis as a = a0 + a1, ã = a0 − a1 and so on. One easily finds

ab =
G√

2
(
e−ip√
κ
−√κ) ≡ P ãb̃ =

G√
2

(e−ip
√
κ− 1√

κ
) ≡ P̃ (8.25)

cd =
G√

2
(
e+ip

√
κ
−√κ) ≡ K c̃d̃ =

G√
2

(e+ip
√
κ− 1√

κ
) ≡ K̃ .

Finally the dispersion relations for (Q,ψ) and (Q̄.ψ̃) are

∆− |r| = 2C =
√

1 + 4PK =

√
1 + 8G2

(
sin2 p

2
+

1

4
(
√
κ− 1√

κ
)2

)
(8.26)

∆̃− |r| = 2C̃ =
√

1 + 4P̌ Ǩ =

√
1 + 8G2

(
sin2 p

2
+

1

4
(
√
κ− 1√

κ
)2

)
(8.27)

Recall the definitions G ≡ √gǧ, κ ≡ ǧ/g. As expected, the non-Goldstone

magnons acquire a gap for g 6= ǧ. The derivation of the dispersion relation

just presented suffers from the same criticism as the derivation in the N = 4

case: a priori we should allow for renormalization of the gauge couplings. A

purely algebraic method for determining P and K, along the lines of [23], is

described in the appendix O, and confirms this expectation. From symmetry
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alone, one can only conclude that both dispersion relations take the form

2C = 2Č =

√
1 + 2(g − ǧ)2 + 8gǧ sin2 p

2
(8.28)

where g(g, ǧ) = g+. . . and ǧ(g, ǧ) = ǧ+. . . are a priori renormalized couplings.

(Of course such renormalization is known to not occur at the orbifold point

g = ǧ.) This issue also affects the forthcoming expressions for the S-matrix:

the couplings g and ǧ could in principle be replaced by g and ǧ. The expansion

of (8.28) agrees at one-loop with the result of [4]. It will be interesting to test

it at higher orders.

8.2 Two-body S-matrix

The scattering problem is formulated on the infinite spin chain. The scattering

of two Goldstone magnons is uninteresting, since the matrix structure of their

two-body S-matrix is exactly as inN = 4 SYM. We will focus on the scattering

of two “non-Goldstone” magnons, both in the highest weight of SU(2Î). The

scattering of a Goldstone and a non-Goldstone magnon is also non-trivial, and

could be studied by the same methods.

In the quiver basis, because of the index structure of the impurities, one

of the non-Goldstone magnons must be from the Q multiplet and the other

from the Q̄ multiplet. Their ordering is fixed, we can have Q type magnons

always on left of Q̄ type ones, or viceversa. The scattering is pure reflection.

For the case of Q type magnon on the left of Q̄ type magnon, the schematic

asymptotic form of the two body wavefunction is∑
x1�x2

(eip1x1+ip2x2 + S(p2, p1)eip2x1+ip1x2)| . . . φQ(x1)φ̌ . . . φ̌Q̄(x2)φ . . .〉. (8.29)

This is the definition of the two body S matrix S(p1, p2). We dropped the

SU(2|2) indices of the excitations for clarity. Similarly, for the other case

where Q is on the right side of Q̄, the aymptotic form of the wavefunction is∑
x1�x2

(eip1x1+ip2x2 + Š(p2, p1)eip2x1+ip1x2)| . . . φ̌Q̄(x1)φ . . . φQ(x2)φ̌ . . .〉 (8.30)
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which defines Š. The two-body S matrices S and Š are related by exchanging

g ↔ ǧ,

S(p1, p2; g, ǧ) = Š(p1, p2; ǧ, g). (8.31)

For this reason, without loss of generality, we restrict our analysis to finding

S(p1, p2).

8.2.1 Rapidity variables

Following Beisert, a preliminary step is to solve for the coefficients a, b, c, d

and ã, b̃, c̃, d̃ appearing in the magnon representation (table 8.3) in terms of

convenient rapidity variables.

For the representation coefficients of the Q multiplet, we write

a = γ, b = − G√
2

1

γx+
(x+
√
κ− x−√

κ
), c =

G√
2

iγ′

x−
, d = − i

γ′
(
x+

√
κ
− x−√κ)

(8.32)

The relative factor between γ and γ′ corresponds to relative rescalings of the

fields Q and ψ and affects the S matrix as an overall phase. We choose γ = γ′.

For the Q̄ coefficients, we write

ã = γ̃, b̃ = − G√
2

1

γ̃x̃+
(
x̃+

√
κ
− x̃−√κ), c̃ =

G√
2

iγ̃

x̃−
, d̃ = − i

γ̃
(x̃+
√
κ− x̃−√

κ
).

(8.33)

Both pairs of rapidity variables obey x+

x−
= x̃+

x̃−
= eip. For hermitian represen-

tations we have to choose

|γ| = |i(x−√κ− x+

√
κ

)|1/2, |γ̃| = |i( x̃
−
√
κ
− x̃+

√
κ)|1/2. (8.34)

The closure of the algebra requires ad− bc = 1 and ãd̃− b̃c̃ = 1 i.e.

x+

√
κ
− x−√κ+

G2

2
(

1

x+
√
κ
−
√
κ

x−
) = i

x̃+
√
κ− x̃−√

κ
+
G2

2
(

√
κ

x̃+
− 1

x̃−
√
κ

) = i.
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The central charges are then

C =
1

2
+ i

G2

2
(

1

x+
√
κ
−
√
κ

x−
) = −i x

+

√
κ

+ ix−
√
κ− 1

2

C̃ =
1

2
+ i

G2

2
(

√
κ

x̃+
− 1

x̃−
√
κ

) = −ix̃+
√
κ+ i

x̃−√
κ
− 1

2
.

Although the expressions for the central charges (=anomalous dimensions) of

Q and Q̄ look different in terms of rapidity variables x and x̃, they are in fact

equal (by construction) as functions of the momenta.

8.2.2 The S-matrix

The S-matrix S is an operator

S : V ⊗ Ṽ → V ⊗ Ṽ (8.35)

and similarly

Š : Ṽ ⊗ V → Ṽ ⊗ V . (8.36)

The SU(2|2) algebra acts on V ⊗ Ṽ as follows,

A(v × ṽ) = (Av)× ṽ + (−1)FAFvv × (Aṽ) , (8.37)

where A is an element of the algebra, v, ṽ vectors in V and Ṽ , and F the

fermion number. To guarantee the SU(2|2) symmetry of the S-matrix we

simply need to impose the matrix equation [A, S] = 0. This is sufficient to

determine S up to an overall phase.

Following [23], we parametrize the S-matrix as

S|QI
1Q̄

J
2 〉 = A|Q{I2 Q̄J}

1 〉+B|Q[I
2 Q̄

J ]
1 〉+

1

2
CεIJεα̇β̇|ψα̇2 ψ̃β̇1φ−〉

S|ψα̇1 ψ̃β̇2 〉 = D|ψ{α̇2 ψ̃
β̇}
1 〉+ E|ψ[α̇

2 ψ̃
β̇]
1 〉+

1

2
Fεα̇β̇εIJ |QI

2Q̄
J
1φ

+〉

S|QI
1ψ̃

β̇
2 〉 = G|ψβ̇2 Q̄I

1〉+H|QI
2ψ̃

β̇
1 〉

S|ψα̇1 Q̄J
2 〉 = K|ψα̇2 Q̄J

1 〉+ L|QJ
2 ψ̃

α̇
1 〉. (8.38)

The linear constraints obeyed by the S-matrix are listed in equ.(P.9). Below
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we give the solution for the components A, B, C, G, H, K, L. The solution

for B, D and E involve lengthier expressions – they can be readily obtained

from equ.(P.9) with Mathematica’s help.

A =
x̃−1 x

−
2

x−1 x̃
−
2

(
x̃+

2 − x−1
x−2 − x̃+

1

) (8.39)

B = x̃−1 x
−
2 [x̃+

1 x
+
2 κ(2x−2 x

+
1 x̃

+
2 − x̃+

1 x
+
2 (x−1 + x̃+

2 ))

+x̃−1 (2x̃+
1 x

+
2 (x−1 x

+
2 + x̃+

2 (x+
2 − x−1 ))

+x−2 (−2x+
1 x̃

+
2 x

+
2 + κx̃+

1 (2x+
1 x̃

+
2 − x+

2 (x−1 + x̃+
2 ))))]/

κx̃+
1 x

+
2 x
−
1 x̃
−
2 (x−2 − x̃+

1 )(x̃−1 x
−
2 − x̃+

1 x
+
2 )

C = 2
√

2γ̃1γ2x̃
−
1 x
−
2 (x̃+

1 x
+
2 (x−1 + x̃+

2 )− x+
1 x̃

+
2 (x−2 + x̃+

1 ))/

κGx−1 x̃
−
2 (x−2 − x̃+

1 )(x̃−1 x
−
2 − x̃+

1 x
+
2 )

G =
γ2

γ̃2

x̃−1 x
−
2 x̃

+
2

x−1 x̃
−
2 x

+
2

(
x+

2 − x+
1

x−2 − x̃+
1

)

H =
γ̃1x̃

−
1 x
−
2 x̃

+
2

γ̃2x
−
1 x̃
−
2 x

+
2 x̃

+
1

(
x̃+

1 x
+
2 − x−2 x+

1

x−2 − x̃+
1

)

K =
γ2x̃

−
1 x
−
2

γ1x
−
1 x̃
−
2 x

+
2

(
x+

1 x̃
+
2 − x−1 x+

2

x−2 − x̃+
1

)

L =
γ̃1

γ1

x̃−1 x
−
2

x−1 x̃
−
2 x̃

+
1 x

+
2

(
x−2 x

+
1 x̃

+
2 − x−1 x̃+

1 x
+
2

x−2 − x̃+
1

)

The Yang-Baxter equation fails to hold for g 6= ǧ, as already observed in

the one-loop result of [4].

One-loop limit

At one-loop, going back to the momentum representation, the S-matrix sim-

plifies to

A = E = −1 + eip1+ip2 − 2κeip2

1 + eip1+ip2 − 2κeip1
(8.40)

B = D = −1

C = F = 0

G = L = − κ(eip1 − eip2)

1 + eip1+ip2 − 2κeip1

H = K = −1 + eip1+ip2 − κ(eip1 + eip2)

1 + eip1+ip2 − 2κeip1
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The S-matrix Š for Q̄Q scattering is given by sending κ → 1
κ

in the above

expressions.

The bosonic and fermionic impurities do not mix at one-loop. The Q Q̄ S-

matrix agrees with the explicit perturbative calculation of [4]. The fermion S-

matrix has also been successfully checked against one-loop perturbation theory

[187].

All-loops at κ = 0

For κ = 0, the all-loop S matrix at κ = 0 in the QQ̄ channel is rather trivial,

A = E = −1 (8.41)

B = D = −1

C = F = 0

G = L = 0

H = K = −1 .

This is intuitively clear: the Q and Q̄ impurities are separated by adjoint fields

in the “checked” vector multiplet, which decouples in the limit κ→ 0.

On the other hand, in the Q̄Q scattering sector the scattering retains a a

non-trivial dependence on the coupling (now the impurities are separated by

the interacting fields of the “unchecked” vector multiplet),

Ǎ = −ei(p2−p1) Ď = −1

B̌ = −ei(p2−p1)(cos(p1 − p2)− i sin(p1−p2)√
1+2g2

) Ě = −(cos(p1 − p2) + i sin(p1−p2)√
1+2g2

)

Č = −ieip2
√

2g sin(p1−p2)√
1+2g2

F̌ = −ie−ip1
√

2g sin(p1−p2)√
1+2g2

Ǧ = 1
2
(1− ei(p2−p1)) Ľ = 1

2
(1− ei(p2−p1))

Ȟ = −1
2
(1 + ei(p2−p1)) Ǩ = −1

2
(1 + ei(p2−p1)) .

The limit κ → 0 is interesting because the Z2 quiver theory reduces to

N = 2 superconformal QCD (plus the decoupled “checked” vector multiplet).
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We refer to [2, 4] for detailed discussions. For κ = 0 the global symmetry

SU(2Î) combines with the second gauge group SU(Nč) and there is a symmetry

enhancement to the flavor group U(Nf = 2Nc).

An important question is whether the flavor-singlet sector of the SCQQD

spin-chain is integrable. We may now look forward to shed new light on this

question using the above all-loop results. Unfortunately, flavor singlets are in

particular SU(2Î) singlets, and the methods of this chapter only allow us to

consider scattering of SU(2Î) triplets. So our results have no direct bearing on

the question of integrability of the N = 2 SQCD spin-chain. With this caveat,

we may nevertheless go ahead and check whether the Yang-Baxter equation

holds at κ = 0 for SU(2Î) triplets. It doesn’t.4

8.3 Emergent Magnons

In [195], following [202], Berenstein et al. reproduced the all-loop magnon dis-

persion relation in N = 4 SYM using a simple matrix quantum mechanics.

The matrix quantum mechanics is obtained by truncating to the lowest modes

of SU(Nc) N = 4 SYM on S3. The ground state is obtained by minimizing

the potential energy, which leads to a model of commuting hermitian matrices.

The matrix eigenvalues are localized on a five-sphere of radius5 1√
2
, which is

naturally identified with the S5 in the dual background. This gives a simple

picture for emergent geometry. Each point in the emergent geometry corre-

sponds to an eigenvalue and is labelled by an SU(Nc) index. In [203, 204] the

same exercise for orbifolds of N = 4 SYM shows that the ground state of the

matrix model is localized on the orbifolded S5.

The excitations of the vacuum obtained by turning on off-diagonal modes

of the matrix model are interpreted as string bits. They are bilocal in the

emergent geometry because they are labelled by two SU(Nc) indices and are

visualized as string bits stretching between two points (see figure 8.1). An

off-diagonal excitation of momentum p is peaked at the configuration where

4In [4], it was found that in the scalar sector, at one-loop, the YB equation holds as
κ→ 0 both for SU(2Î) triplets and SU(2Î) singlets. Only the result for singlets is relevant
to the integrability question.

5Our normalization for the fields are related to the normalization in [195] as φhere =
φthere/

√
Nc.
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the corresponding string bit subtends an angle p at the center. The expec-

tation value of their energy precisely reproduces the exact magnon dispersion

relation [195]. A very similar picture for the magnons was obtained in [194]

Φa

Φb

(X i)ab

p
1

eip

x1

x2

Figure 8.1: The left figure shows the string bit corresponding to the off-
diagonal excitation (X i)ab . The right figure shows the configuration where the
wavefunction of a magnon with momentum p is peaked.

on the dual string side. Moreover, the x1 and x2 components of the vector
~M associated with the magnon were identified with the central charges of the

SU(2|2) algebra [194]

M1 =
1

2
(K + P ) , M2 =

1

2i
(K − P ) . (8.42)

8.3.1 Emergent magnons for the Z2 quiver

Following [195], we truncate the Z2 quiver theory to its lowest bosonic modes

on S3, which gives us the matrix quantum mechanis

S = Nc

ˆ
dtTr

1

2

(
(Dtφ)2 + (Dtφ̌)2 + (DtQ

IÎ)2 − φ2 − φ̌2 − (QIÎ)2
)

(8.43)

− g2

(
[φ, φ̄]2 +

√
2QIÎQ̄IÎ(φφ̄+ φ̄φ) +QIÎQ̄JÎQ

JĴQ̄IĴ −
1

2
QIÎQ̄IÎQ

JĴQ̄JĴ

)
− ǧ2

(
[φ̌, ¯̌φ]2 +

√
2Q̄IÎQ

IÎ(φ̌ ¯̌φ+ ¯̌φφ̌) + Q̄JÎQ
IÎQ̄IĴQ

JĴ − 1

2
Q̄IÎQ

IÎQ̄JĴQ
JĴ

)
+

√
gǧ
(

4QIÎ φ̌Q̄IÎ φ̄+ h.c.
)

+
1

Nc

(double− trace).
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The mass terms arise due to the conformal couplings of the scalars to curvature

of S3. The eigenvalue distribution of the ground state is same as that of the

Z2 orbifold of N = 4 SYM. We now excite the off-diagonal mode (QIÎ)a
b̌
. The

linearized theory describing this excitation is the harmonic oscillator,

H =
1

2
(ΠIÎ)

a
b̌
(ΠIÎ)b̌a +

1

2
ωab̌(Q

IÎ)a
b̌
(Q̄IÎ)

b̌
a

ωab̌ = 1 + 4|gφa − ǧφ̌b̌|2.

Note the difference in the frequency compared to the N = 4 case, where

ωab = 1 + 4g2|φa − φb|2. This motivates the effective picture of figure 8.2.

φa

φ̌b̌

(QIÎ)ab̌ √
κ

1√
κ eip

x1

x2

p

Figure 8.2: The figure on the left shows the string bit in the Z2 quiver the-
ory. On the right, the wavefunction of the bifundamental magnon QIÎ with
momentum p.

The circle spanned by the eigenvalues of Φ has split into two circles, one

spanned by the eigenvalues of φ and the other by eigenvalues of φ̌. The radii

of the two circles are taken to be 1√
κ
G√

2
and
√
κ G√

2
respectively, by normaliz-

ing the tension of the string bit to unity. The string bit corresponding to a

bifundamental excitation stretches from one circle to the other. A magnon of

momentum p again localizes on the configuration where the string bit subtends

an angle p at the center. Using (8.42) we learn

P = x1 − ix2 =
G√

2
(e−ip

1√
κ
−√κ) = K∗ , (8.44)
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Figure 8.3: A state of the spin chain with six magnons.

so the energy of the magnon is

∆− |r| =
√

1 + 8G2

(
sin2 p

2
+

1

4
(
√
κ− 1√

κ
)2

)
. (8.45)

The central charges agree precisely with the from obtained earlier from the

algebraic method.6

It is clear that the adjoint excitations λ and D (λ̌ and Ď) are string bits

that stretch between two points of φ circle (φ̌ circle). Their dispersion relation

coincides with the N = 4 SYM dispersion relation, as clear from the picture.

A generic state of the spin chain is shown in figure 8.3.

At strong ’t Hooft coupling, Hofman and Maldacena [194] obtained the

dual description of an N = 4 magnon as a semiclassical strings rotating on

the S2 ⊂ S5. In LLM coordinates this “giant magnon” has precisely the shape

of figure 8.1. The energy of the string was matched with the strong coupling

limit of the exact magnon dispersion relation. (See also [205] for a sigma-model

derivation of the SU(2|2) central charges.) The Z2 quiver theory is dual to

the AdS5 × S5/Z2 background. The ratio of the gauge couplings is related

the period of the NSNS B-field through the collapsed two-cycle. It must be

possible to reproduce the effective picture of figure 8.2 and the associated

dispersion relation by studying the giant magnon solution in this background.

This problem is under investigation [206].

6Of course, as before, there is no guarantee that the couplings do not get renormalized.
This caveat is all the more obvious in this approach, since integrating out massive modes
would generically lead to such a renormalization.
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8.3.2 Bound states

In addition to the elementary magnons with real momenta, the spectrum of

the theory also contains bound states at some special complex values of the

momenta. A two-magnon bound state occurs at the pole of the two-body

S-matrix,

S(p1, p2) =∞ with p1 =
P

2
− iq, p2 =

P

2
+ iq, q > 0 . (8.46)

Since S(p2, p1) = 1/S(p1, p2)→ 0, the asymptotic wavefunction becomes

eiP
x1+x2

2
−q|x2−x1|. (8.47)

A bound state has smaller energy than any state in the two particle contin-

uum with the same total mometum P . The exact dispersion relation of the

bound states in N = 4 SYM was found in [207] and their S-matrix in [208].

The two-body S-matrix in the present case allows us to determine the bound

state dispersion relation. Finding their S-matrix, however, would requires the

four-body magnon S-matrix, which we cannot determine in the absence of

integrability.

Let us first analyze the bound state of Q+ (on the left of the chain) and

Q̄+ (on the right). Their scattering matrix given in equ.(8.39),

A(p1, p2) = S0
12

x̃−2 x
−
1

x−2 x̃
−
1

(
x̃+

1 − x−2
x−1 − x̃+

2

) , (8.48)

where S0
12 is the overall dressing factor which is not determined by symmetries.

Clearly there is a pole is at x−1 = x̃+
2 . We assume that this pole is not cancelled

by a zero of the dressing factor. Following [209], we define the bound state

rapidity variables as

X+ ≡ x+
1 , X− ≡ x̃−2 . (8.49)

Remarkably, at the pole they obey the relations

X+

X−
= eiP

X+ −X− +
G2

2
(

1

X+
− 1

X−
) = 2i

√
κ.
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The bound state dispersion relation can also be expressed completely in terms

of X±,

CQQ̄ = C1 + C̃2 = 1 + i
G2

2
√
κ

(
1

X+
− 1

X−
)

=
1

2

√
4 + 8g2 sin2 p

2
. (8.50)

This dispersion is exactly the same as the one of the two-magnon bound states

in N = 4 SYM. Thus the QQ̄ bound state can be elegantly represented as a

string bit of “weight two” stretching between two points of the outer circle.

The analogous exercise for the Q̄Q bound state gives the dispersion relation

CQ̄Q =
1

2

√
4 + 8ǧ2 sin2 p

2
. (8.51)

This bound state is represented as a weight-two string bit stretching between

two points of the inner circle.

As we vary the momentum P of the bound state the pole iq moves on the

positive imaginary axis. For certain values of P where q approaches zero, the

bound state is only marginally stable. This phenomenon does not occur in

N = 4 SYM, the bound states of N = 4 are stable for all values of P but

this is not the case for the Z2 quiver theory. The marginal stability condition

q = 0 gives respectively for the QQ̄ and Q̄Q bound states

κ = cos
P

2
and

1

κ
= cos

P

2
(8.52)

In the latter case, there is no solution which means that Q̄Q bound state is

stable for all values of the momenta. On the other hand, the QQ̄ bound state

on the other hand can decay at P = 2 arccosκ. These conclusions exactly

match with results obtained at one loop in [4].

Geometrically, there is simple way of understanding the boud state decay,

see figure 8.4. As the bound state string bit stretching in the outer circle (which

means it is a QQ̄ bound state) touches the inner circle, its energy becomes

manifestly equal to the sum of the energies of the constituents. Vanishing of

the binding energy allows the QQ̄ state to decay. Simple trigonometry reveals

the threshold momentum P = 2 arccosκ at this point. From this picture it is
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P/2

Figure 8.4: The figure on the left represents a QQ̄ bound state at generic
momenta. In the middle is the marginally stable QQ̄ bound state. From the
figure one can easily see that P = 2 arccosκ since the ratio of the radii of the
two circles is κ. On the right is a Q̄Q bound state, which is stable for all values
of momenta.

also immediate to see that the Q̄Q bound state is stable for all values of the

momenta.

As we move around in the parameter space of the quiver gauge theory, at

certain codimension one “walls”, the bound states of the elementary magnons

decay. It would be interesting to understand bound state decay as a wall-

crossing phenomenon in the dual sigma model.

8.4 Generalization to Zk orbifolds

The analysis presented for the Z2 quiver can be extended to a general ADE

N = 2 orbifold of N = 4 SYM. In this section we indicate the generalization

for the (marginally deformed) Zk orbifolds. The quiver gauge theory describing

such an orbifold is shown in figure 8.5.

The superpotential at a generic point in the parameter space is

W =
1√
2

∑
i

g(i)

(
TrQI

(i−1,i)φ(i)Q̄I(i,i−1) + TrQ̄I(i+1,i)φ(i)Q
I
(i,i+1)

)
. (8.53)

We impose the periodicity condition i+ k ∼ i on the indices.

To compute the SU(2|2) central charges for the representation of the
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i− 1
i

i + 1

i + 2

(A(i), λ(i), φ(i))

(Q(i,i+1), ψ(i,i+1))

Figure 8.5: The quiver diagram for N = 2 Z2 orbifold of N = 4 SYM. It is
a circular necklace with k nodes, four of which are shown. A vector multiplet
(A, λ, φ) is associated to each node and a hypermultiplet (QI , ψ) is associated
to each edge.

QI
(i,i+1) magnon we evaluate the anticommutator of two supersymmetries,

{Qα̇
I , Q

β̇
J}QK

(i,i+1) = εα̇β̇εIJ(
g(i)√

2
φ(i)Q

K
(i,i+1) −

g(i+1)√
2
QK

(i,i+1)φ(i+1)) (8.54)

which, on the spin chain, leads to

{Qα̇
I , Q

β̇
J}|QK

(i,i+1)〉 = εα̇β̇εIJ
1√
2

(g(i)e
−ip − g(i+1))|QK

(i,i+1)φ
+〉

⇒ P =
1√
2

(g(i)e
−ip − g(i+1)) = K∗.

Interchanging g(i) ↔ g(i+1) gives us the central charges of the Q̄(i+1,i) represen-

tation. In both cases we get the dispersion relation

∆− |r| = 2C =

√√√√1 + 8G2
(i,i+1)

(
sin2 p

2
+

1

4
(
√
κ(i,i+1) −

1
√
κ(i,i+1)

)2

)
. (8.55)

Here we have defined

G(i,i+1) =
√
g(i)g(i+1) and κ(i,i+1) =

g(i+1)

g(i)

. (8.56)

The dispersion relation of the adjoint magnons λ(i) and D(i) works the same
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i + 1

i − 1

i

Figure 8.6: The emergent picture describing Zk orbifold. Only the circles
corresponding to i− 1, i, i+ 1 gauge node are shown. We have also shown two
magnons, one in the adjoint of SU(N)i and the other in the bifundamental of
SU(N)i × SU(N)i+1.

way as N = 4 and is equal to

∆− |r| = 2C =

√
1 + 8g2

(i) sin2 p

2
. (8.57)

The picture presented in section 8.3 also generalizes to Zk orbifolds, see

figure 8.6. It consists of k concentric circles which are labelled by i, corre-

sponding to the gauge group SU(Nc)i. The radius of i-th circle is
g(i)√

2
. The

magnons in the adjoint of the i-th node are represented by string bits that

stretch between the i-th circle, while the SU(N)i × SU(N)i+1 bifundamental

magnons correspond to string bits stretching from i-th to i+ 1-th circle. The

dispersion relations of both adjoint and bifundamental magnons is summarized

by the simple formula

∆− |r| =
√

1 + 4`2 (8.58)

where ` is the length of the corresponding string bit. The two-body S-matrix

is also fixed by the centrally extended SU(2|2) symmetry, and can be obtained

by straightforward extension of our analysis of the Z2 case.
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Appendix A

S-duality for N = 4

SO(2n + 1)/Sp(n) SYM

In this Appendix we compute the superconformal indices for N = 4 SYM with

gauge groups SO(2n+1) and Sp(n). Since the SO and Sp theories are related

by S-duality, their indices are expected to agree. These are in fact the only

non-trivial N = 4 cases from the viewpoint of index calculations. Indeed the

index depends on the adjoint representation of the group: the A, D, E, F and

G cases are manifestly self-dual, and the only interesting duality is B ↔ C.

The characters of the adjoint representations of for Sp(n) and SO(2n+ 1)
are

χSp(n)({zi}) :
∑

1≤i<j≤n
(
zizj + ziz

−1
j + zjz

−1
i + z−1

i z−1
j

)
+
∑n
i=1(z2

i + z−2
i ) + n,

χSO(2n+1)({zi}) :
∑

1≤i<j≤n
(
zizj + ziz

−1
j + zjz

−1
i + z−1

i z−1
j

)
+
∑n
i=1(zi + z−1

i ) + n.

(A.1)

Their Haar measures are

Sp(n) :

ˆ
Sp(n)

dµ(z)f(z) =
(−)n

2n n!

˛
Tn

n∏
j=1

dzj

2πizj

n∏
j=1

(zj − z−1
j )2∆(z + z−1)2 f(z), (A.2)

SO(2n+ 1) :

ˆ
So(2n+1)

dµ(z)f(z) =
(−)n

2n n!

˛
Tn

n∏
j=1

dzj

2πizj

n∏
j=1

(z
1/2
j − z−1/2

j )2∆(z + z−1)2 f(z),

where Tn is an n-dimensional torus with unit radii and ∆(x) the van der

Monde determinant

∆(x) =
∏
i<j

(xi − xj) . (A.3)
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The single letter partition function is in both cases equal to [19]

f(t, y) =
3t2 − 3t4 − t3(y + y−1) + 2t6

(1− t3 y)(1− t3y−1)
, (A.4)

where for simplicity we have omitted the chemical potentials of the R-charges
– we will restore them in the end. Using the identities (2.24),

e
∑

k

fk
k χSp(n)({zki }) = Γ3n(t2; p, q)(p; p)n(q; q)n

∏
i<j

z2
j

(1− zizj)2(1− z−1
i zj)2

1

Γ(z±1
i z±1

j ; p, q)∏
j

−z2
j

(1− z2
j )2

1

Γ(z±2
j ; p, q)

∏
i<j

Γ(t2z±1
i z±1

j ; p, q)3
∏
j

Γ(t2z±2
i ; p, q)3. (A.5)

Recall the definition (2.26) of the product (x; y). Further, using∏
i<j

(1− zizj)(1− zi/zj)(1− zj/zi)(1− 1/(zizj)) = ∆(z + z−1)2, (A.6)∏
j

(1− z2
j )(1− 1/z2

j ) = (−1)n
∏
j

(zj − 1/zj)
2 ,

we obtain
ˆ
Sp(n)

dµ(z) e
∑

k
1
k fkχSp(n)({zi}) = (A.7)

Γ3n(t2; p, q)

2n n!
(p; p)n(q; q)n

˛ ∏
j

dzj
2πizj

∏
i<j

Γ(t2z±1
i z±1

j ; p, q)3

Γ(z±1
i z±1

j ; p, q)

∏
j

Γ(t2z±2
j ; p, q)3

Γ(z±2
j ; p, q)

.

In complete analogy we obtain for the SO(2n+ 1) gauge group

ˆ
SO(2n+1)

dµ(z) e
∑

k
1
k fkχSo(2n+1) = (A.8)

Γ3n(t2; p, q)

2n n!
(p; p)n(q; q)n

˛ ∏
j

dzj
2πizj

∏
i<j

Γ(t2z±1
i z±1

j ; p, q)3

Γ(z±1
i z±1

j ; p, q)

∏
j

Γ(t2z±1
j ; p, q)3

Γ(z±1
j ; p, q)

.

S-duality predicts that the integrals (A.7) and (A.8) must agree. For Sp(1) ∼=
SO(3) this is trivially checked by a change of variable: in the SO(3) integral

make the substitution z → y =
√
z. The case of Sp(2) ∼= SO(5) is also trivial

(as it should be). Define ẑ1 =
√
z1z2 and ẑ2 =

√
z1/z2. Then in (A.8) the first

product is exchanged with the second with a doubled power of the z argument

and we obtain (A.7). We have checked for the first few orders in a series

expansion in t that (A.7) (A.8) also agree for higher rank groups. We do not
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have an analytic proof of this statement.

Given an orthonormal basis ei of Rn the root system of Cn (Sp(n)) consists

of vectors of the form X(Cn) = {±2ei, ±ei ± ej, i < j}. The root system of

Bn (SO(2n + 1)) on the other hand consists of vectors of the form X(Bn) =

{±ei, ±ei±ej, i < j}. These two systems are dual to one other. The integrands

in (A.7) and (A.8) are given by

∏
α∈X

Γ(t2 eα; p, q)3

Γ(eα; p, q)
, (A.9)

where X is the corresponding root system and we formally identify zi =

eei . In this language it is easy to understand why the integrals (A.8) with

SO(3)/SO(5), (A.7) with Sp(1)/Sp(2) are equal to one other. In these cases

the two root systems are linear transformations of one other, i.e. rescaling and

in the case of Sp(2)/SO(5) also rotation. For higher n the relation is more

complicated. For example for n = 3 the SO(7) lattice is a cube and the Sp(3)

lattice is an octahedron.

Finally, let us indicate how the expressions for the indices are modified

by adding the chemical potentials for the R-symmetry charges [19]. The only

differences are in the numerators of (A.7,A.8), which become

Sp(n) :
∏
i<j

Γ(t2v z±1
i z±1

j ; p, q)Γ(
t2

w
z±1
i z±1

j ; p, q)Γ(
wt2

v
z±1
i z±1

j ; p, q)

∏
j

Γ(t2v z±2
j ; p, q)Γ(

t2

w
z±2
j ; p, q)Γ(

wt2

v
z±2
j ; p, q),

SO(2n+ 1) :
∏
i<j

Γ(t2v z±1
i z±1

j ; p, q)Γ(
t2

w
z±1
i z±1

j ; p, q)Γ(
wt2

v
z±1
i z±1

j ; p, q)

∏
j

Γ(t2v z±1
j ; p, q)Γ(

t2

w
z±1
j ; p, q)Γ(

wt2

v
z±1
j ; p, q), (A.10)

and in the prefactor of the integrals,

Γ3n(t2; p, q) → Γn(t2 v; p, q) Γn(
t2

w
; p, q) Γn(

w t2

v
; p, q) . (A.11)
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Appendix B

TQFT Algebra for v = t

For v = t we can rewrite the algebra of the topological quantum field the-

ory (2.9) in a more elegant way, removing the delta-functions by making use

of identities obeyed by elliptic Beta integrals. This does not appear to be a

preferred limit physically, except for the fact that the contribution to the index

of the chiral superfield in the N = 2 vector multiplet vanishes, see (4.3). Our

manipulations will be slightly formal since the limit v = t of the formulae we

will use is somewhat singular. We start by quoting the important identity

E(m=0)(t1, . . . , t6) = κ

˛
dz

z

∏6
k=1 Γ (tk z

±1; p, q)

Γ (z±2; p, q)
=

∏
1≤j<k≤6

Γ (tj tk; p, q) .

(B.1)

with
∏6

k=1 tk = pq. This is a vast generalization to elliptic Gamma functions

of that seminal object in string theory, the classic Beta integral of Euler,

B(α, β) =

ˆ 1

0

dt tα−1(1− t)β−1 =
Γ(α)Γ(β)

Γ(α + β)
, (B.2)

which is recovered as a special limit, see e.g. [46]. Applying (B.1) we have

κ

˛
dz

z

Γ (τ
√
ν a±1b±1z±1) Γ

(
τ
ν
z±1y±1

)
Γ (z±2)

= (B.3)

Γ

(
τ 2

√
ν
a±1b±1y±1

)
Γ
(
τ 2ν a±2

)
Γ
(
τ 2ν b±2

)
Γ

(
τ 2

ν2

)
Γ
(
τ 2 ν

)2
.
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For brevity we have omitted the p and q parameters in the Gamma functions.

We assume pq = τ 6. For these values of p and q, Γ(τ 3z±1) = 1. Now if we

take ν = τ ,

κ

˛
dz

z

Γ
(
τ 3/2 a±1b±1z±1

)
Γ (z±1y±1)

Γ (z±2)
= Γ

(
τ 3/2 a±1b±1y±1

)
Γ (1) . (B.4)

Strictly speaking the elliptic Beta integral formula (B.1) holds when |tk| < 1

for all k = 1 . . . 6. For ν = τ some of the tks in (B.3) saturate this bound. The

elliptic Beta integral (B.3) is proportional to Γ( τ
2

ν2 ; p, q) → Γ(1; p, q). Since

the elliptic Gamma function has a simple pole when its argument approaches

z = 1 (see (2.20)), (B.3) diverges in the limit. We will proceed by keeping

formal factors of Γ(1) in all the expressions. Thanks to (B.4), the expression

Γ(z±1y±1)

Γ(z±2)Γ(1)
≡ δzy (B.5)

acts as a formal identity operator. All factors of Γ(1) will cancel in the final

expression for the index.

Symbol Surface Value Symbol Surface Value

Cabc

|a〉

|b〉

|c〉

Γ(t
3
2a±1b±1c±1) V a 〈a| 1

Γ(1)2

Γ(t±
3
2 a±1)

Γ(a±2)

ηab

〈a|

〈b|

1
Γ(1)

Γ(a±1b±1)
Γ(a±2,b±2) ηab

|a〉

|b〉

1
Γ(1)

Γ (a±1b±1)

Table B.1: The basic building blocks of the topological algebra in the v = t
case.

For t = v we can write the building blocks of the topological algebra in the
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form summarized in Table B.1. Contraction of indices is defined as

A..a..B..a.. → κ

˛
d a

a
A..a..B..a... (B.6)

We now proceed to perform a few sample calculations and consistency checks.

We can raise an index of the structure constants to obtain

Cabe η
ec =

κ

Γ(1)

˛
d e

e
Γ(t

3
2a±1b±1e±1)

Γ(e±1c±1)

Γ(e±2, c±2)
=

Γ(t
3
2a±1b±1c±1)

Γ(c±2)
= Cab

c

(B.7)

In particular we see that the index (2.28) is finite and is simply given by

Cab
cCcde. The “vacuum state” |V 〉 ≡ V a|a〉 satisfies by definition (see e.g.

[54]) Cabc V
c = ηab, as illustrated in Figure B.1. This determines V a to be the

expression in Table B.1,

Cabc V
c =

κ

Γ(1)2

˛
dz

z
Γ(t

3
2a±1b±1z±1)

Γ(t±
3
2 z±1)

Γ(z±2)
=

1

Γ(1)
Γ(a±1b±1) = ηab(B.8)

|a〉

|b〉

|a〉

|b〉
=

Figure B.1: Constructing the metric by capping off the trivalent vertex.

Further, we can check that ηab and ηab in Table B.1 are one the inverse of the

other,

ηae ηec =
κ

Γ(1)2

˛
d e

e

Γ(a±1e±1)

Γ(a±2, e±2)
Γ
(
e±1c±1

)
=

1

Γ(1)

Γ(a±1c±1)

Γ(a±2)
= δac . (B.9)

As a consistency check one can verify in examples that δab is indeed an identity.
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|a〉

〈c|

〈c| |a〉=

Figure B.2: Topological interpretation of the property ηce ηea = δca.

For instance

δza Czbc =
κ

Γ(1)

˛
dz

z

Γ(a±1z±1)

Γ(z±2)
Γ(t

3
2 z±1b±1c±1) = Γ(t

3
2 a±1b±1c±1) = Cabc, (B.10)

as illustrated in Figure B.3. For completeness we can also compute the sphere

|a〉

|b〉 =

|c〉

|a〉

|b〉

|c〉

Figure B.3: The consistency requirement δzc Cabz = Cabc.

and the torus partition functions. (These partition functions do not appear

in any index computation of a 4d superconformal theory so their physical

interpretation is unclear.)

(a) (b)

Figure B.4: The sphere (a) and the torus (b) partition functions.
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The sphere partition function is given by

V c V e ηce =
κ2

Γ(1)5

˛
de

e

˛
dc

c

Γ (c±1e±1) Γ
(
t±3/2 c±1

)
Γ
(
t±3/2 e±1

)
Γ (c±2) Γ (e±2)

=

=
κ

Γ(1)4

˛
de

e

Γ
(
t±3/2 e±1

)2

Γ (e±2)
= Γ(t−3)

1

Γ(1)
. (B.11)

The torus partition function is given by

ηabη
ab =

κ

Γ(1)

˛
d a

a

Γ(a±1a±1)

Γ(a±2)
= κΓ(1)

˛
d a

a
= 2π i κΓ(1). (B.12)

Since Γ(1) =∞ the sphere partition function vanishes and the torus partition

function diverges.

218



Appendix C

t expansion in the

weakly-coupled frame

We expand the index (3.10) in t as

Ia,z;b,y =
∞∑
k=0

bk t
k. (C.1)

The first few orders are

b0 = 1,

b1 = b2 = b3 = 0,

b4 =
1

v
χ
SU(6)
35,adj +

1

v
+ v2,

b5 = −v(y +
1

y
), (C.2)

b6 =
1

v3/2
χ
SU(6)
20 ((

a

b
)3/2 + (

b

a
)3/2)− χSU(6)

35,adj + v3 − 1,

b7 =
1

v
(y +

1

y
)χ
SU(6)
35,adj +

2

v
(y +

1

y
),

b8 =
1

v2
χ
SU(6)
sym235 + vχ

SU(6)
35,adj −

1√
v
χ
SU(6)
20 ((

a

b
)3/2 + (

b

a
)3/2) + v4 − v(y +

1

y
)2 + 2v,

b9 = −2(y +
1

y
)χ
SU(6)
35,adj +

1

v3/2
(y +

1

y
)χ
SU(6)
20 ((

a

b
)3/2 + (

b

a
)3/2)− 2(y +

1

y
).
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In the above equation we decomposed SU(6) ⊃ SU(3)z ⊗ SU(3)y−1 ⊗ U(1).

The branching of 35 and 20 of SU(6) is given by (see [210]),

35 = (1,1)0 + (8,1)0 + (1,8)0 + (3̄,3)2 + (3, 3̄)−2 , (C.3)

20 = (1,1)3 + (1,1)−3 + (3̄,3)−1 + (3, 3̄)1 .

For example, the character of the adjoint is

χ
SU(6)
35,adj =

[
(a b)1/2 (z1 + z2 + z3) + (a b)−1/2 (

1

y1

+
1

y2

+
1

y3

)

]
× (C.4)

×
[
(a b)−1/2

(
1

z1

+
1

z2

+
1

z3

)
+ (a b)1/2 (y1 + y2 + y3)

]
− 1 .

We conclude that the U(1) charge in SU(6) can be identified as (a b)−1/2.
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Appendix D

Inversion theorem

In this appendix we quote the inversion theorem [55], which we use in sec-

tion 3.1.3 to obtain the index of the E6 theory. Define

δ(z, w;T ) ≡ Γ(T z±1w±1; p, q)

Γ(T 2, z±2; p, q)
. (D.1)

If T , p and q are such that

|max(p, q)| < |T | < 1 , (D.2)

then the following theorem holds true. For fixed w on the unit circle we define

a contour Cw (see figure D.1) in the annulus A = {|T | − ε < |z| < |T |−1 + ε}
with small but finite ε ∈ R+, such that the points T−1w±1 are in its interior

and Cw = C−1
w (i.e. an inverse of the point in the interior of Cw is in the

exterior of Cw). Let f(z) = f(z−1) be a holomorphic function in A. Then for

|T | < |x| < |T |−1,

f̂(w) = κ

˛
Cw

dz

2πi z
δ(z, w; , T−1) f(z)→ f(x) = κ

˛
T

dw

2πiw
δ(w, x; , T ) f̂(w) .

(D.3)

Our expression for the index in the strongly-coupled frame (3.20) is of the

form of the right hand side of (D.3). Thus, to use the inversion theorem to
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t2w√
v

√
v

t2w

t2

w
√

v

w
√

v
t2

Figure D.1: The integration contour Cw (green). The dashed (black) circle

is the unit circle T. Black dots are poles of Γ
(√

v
t2
w±1 z±1

)
. There are four

sequences of poles: two sequences starting at
√
v
t2
w±1 and converging to z = 0,

and two sequences starting at t2√
v
w±1 and converging to z =∞. The contour

encloses the two former sequences.
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obtain the index of E6 theory we assume that this index can be written as

Γ(t2v w±2) C(E6) ((w, r),y, z) = κ

˛
Cw

ds

2πi s

Γ(
√
v
t2
w±1 s±1)

Γ( v
t4
, s±2)

F (s, r; y, z)(D.4)

for some function F . The theorem (D.3) then implies that F (s, r; y, z) =

Î (s, r; y, z) with I (s, r; y, z) given in (3.20).
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Appendix E

The Coulomb and Higgs branch

operators of E6 SCFT

We collect here a few facts about the Coulomb and the Higgs branches of

E6 SCFT, following the analysis of [62]. Argyres-Seiberg duality can be used

to determine the quantum numbers of protected operators of E6 theory if

their dual operators in the dual SU(3) theory are known. The Coulomb

branch operator u of the E6 theory (the operator whose vev parametrized

the Coulomb branch) is identified as Trφ3 in the SU(3) theory. Since φ has

quantum numbers (E, j1, j2, R, r) = (1, 0, 0, 0,−1), u should have quantum

numbers (3, 0, 0, 0,−3) and contribute to the superconformal index as t6v3.

The operator X whose vev parametrized the Higgs branch transforms in

the adjoint representation of E6. Under the SU(2)⊗ SU(6) subgroup of E6 it

decomposes as

X i
j, Y [ijk]

α , Zαβ , (E.1)

where i, j, k = 1, . . . , 6 are the SU(6) indices, and α, β = 1, 2 are the SU(2)

indices. At the same time, the SU(2) gauge theory provides the quarks qα, q̃α

and the F -term constraint

Zαβ + q(αq̃β) = 0 . (E.2)

Thus the gauge-invariant operators are

(qq̃), X i
j, (Y ijkq), (Yijkq̃) . (E.3)
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On the SU(3) side, the Higgs branch is parameterized by gauge invariant

operators

M i
j = Qi

aQ̃
a
j , Bijk = εabcQi

aQ
j
bQ

k
c , B̃ijk = εabcQ̃

a
i Q̃

b
jQ̃

c
k , (E.4)

where Qi
a and Q̃a

i are the squark fields, i = 1, . . . , 6 are flavor indices, and

a = 1, 2, 3 the color indices.

The duality of the two sides suggests the following identification

TrM ↔ (qq̃), M̂ i
j ↔ X i

j, (E.5)

Bijk ↔ (Y ijkq), B̃ijk ↔ (Yijkq̃) (E.6)

where M̂ i
j is the traceless part of M i

j . Since the quantum numbers of Q are

(1, 0, 0, 1/2, 0), the quantum numbers of X should be (2, 0, 0, 1, 0), and con-

tribute to the index as t4/v.
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Appendix F

Identities from S-duality

In this appendix we summarize identities of integrals of elliptic Gamma func-

tions implied by S-duality of the SU(3) quiver theories.

Generalization of [49]

We define

I(n)
(
a , zSU(n); b ,ySU(n)

)
≡

2n−1

n!
κn−1Γ(t2v)n−1 × (F.1)

˛
Tn−1

n−1∏
i=1

dxi

2πi xi

∏n
i=1

∏n
j=1 Γ

(
t2√
v

(
azi
xj

)±1
)

Γ
(
t2√
v

(b yi xj)
±1
)∏

i6=j Γ
(
t2v xi

xj

)
∏
i6=j Γ

(
xi
xj

)
∣∣∣∣∣∣∣∣∏n

j=1 xj=1

The claim is that

I(n)
(
a , zSU(n); b ,ySU(n)

)
= I(n)

(
b , zSU(n); a ,ySU(n)

)
. (F.2)

For SU(2) this identity was proven in [49], and for SU(3) we have performed

perturbative checks. The usual S-duality of Nf = 2n SU(n) theories implies

that this identity should be true for any n. Note that for t = v this is a special

case of identities discussed in [56].
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E6 Integral

We define

C(E6) ((w, r),y, z) ≡ 2κ3Γ(t2v)2

3 Γ(t2v w±2)

˛
Cw

ds

2πi s

Γ(
√
v
t2 w

±1 s±1)

Γ( vt4 , s
±2)

×

×
˛
T2

2∏
i=1

dxi
2πi xi

3∏
i=1

3∏
j=1

Γ

 t2√
v

(
s

1
3 zi
xj r

)±1
Γ

 t2√
v

(
s−

1
3 yi xj
r

)±1
∏
i6=j

Γ

(
t2v

xi
xj

)
∏
i 6=j

Γ

(
xi
xj

)

This integral has manifest symmetry under SU(2)w⊗SU(6), where the SU(6)

has been decomposed as SU(3)z ⊗ SU(3)y−1 ⊗ U(1)r. The identification with

the index of the E6 SCFT implies that there must be a symmetry enhancement

SU(2)w ⊗ SU(6) → E6. Two properties that are sufficient to guarantee E6

covariance are: first,

C(E6) ((w, r),y, z) = C(E6)

((
w1/2

r3/2
,

1

w1/2 r1/2

)
,y, z

)
, (F.3)

which is the statement that (w, r) combine into a character of SU(3) (which

we shall denote by w); second,

C(E6)(w,y, z) = C(E6)(y,w, z) . (F.4)

We presented perturbative evidence for the full E6 symmetry in the text.

S-dualities of SU(3) quivers

Define

I3333 (y, z,u, s) ≡
˛
T2

2∏
i=1

dxi
2πixi

∏
i6=j

Γ
(
t2vxi/xj

)
Γ (xi/xj)

C(E6) (y, z,x)C(E6)(u, s,x−1) , (F.5)

I3331 (y, z,u, a) ≡
˛
T2

2∏
i=1

dxi
2πixi

∏
i6=j

Γ
(
t2vxi/xj

)
Γ (xi/xj)

C(E6) (y, z,x)

3∏
i,j=1

Γ(
t2√
v

(a x−1
i uj)

±).

227



The S-dualities of the SU(3) quivers imply

I3333 (y, z,u, s) = I3333 (y,u, z, s) , (F.6)

I3331 (y, z,u, a) = I3331 (y,u, z, a) .
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Appendix G

Refinement of 3d partition

function

The superconformal index defined in section 5.1 is a function of fugacities t, y

and v. In order to recover the matrix model of Kapustin et al. [20, 21] in

section 5.2 we simply fixed the v → t and y → 1. In this appendix we refine

the 3d partition function by keeping track of all the fugacities in the index. It

is convenient to define the chemical potentials

v = e−β(1/3+u), y = e−βη. (G.1)

The index, in terms of β, u and η becomes

I = Tr(−1)F e−β[ 2
3

(E+j2)− 1
3

(r+R)−(r+R)u+2j1η]. (G.2)
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Let us compute the partition function of the hypermultiplet after turning on

only u.

Ihyp =
∏
i

Γ

(
t2√
v
ai; t

3y, t3y−1

)
=
∏
i

∏
n>1

(
[n+ 1

2
+ u

2
+ iαi]q

[n− 1
2
− u

2
− iαi]q

)n
q→1−→

∏
i

[
cosh π

(
αi − i

u

2

)]− 1
2

Ivector =
∏
i<j

1

1− q−i(αi−αj)
1

1− qi(αi−αj)
Γ(q1+u±i(αi−αj); q, q)

Γ(q±i(αi−αj); q, q)

q→1−→
∏
i<j

(
sinhπ(αi − αj)
π(αi − αj)

)2(
cosh π(∓(αi − αj) + i/2)

cosh π(∓(αi − αj) + i(u+ 1/2))

)1/2

.

(G.3)

Both partition functions reduce to the ones in section 5.2 as we set u to zero.

Now we restore y = q−βη to produce the more refined 3d partition function.

The chemical potential η has a nice physical interpretation as the U(1)×U(1)

isometry preserving squashing deformation of the S3. The partition function

of 3d gauge theories on this squashed background was computed in [78].

The contribution due to the hypermultiplet with η deformation turned on

is

Ihyp =
∏
i

Γ(
t2√
v
ai; t

3y, t3/y)

y→q−βη−→
∏
i

Γ(q1/2−u/2−iαi ; q1+η, q1−η)

=
∏
i

∏
j,k>0

1− q3/2+u/2+iαiq(1+η)jq(1−η)k

1− q1/2−u/2−iαiq(1+η)jq(1−η)k
.

(G.4)

Using the regularized infinite product representation of Barnes’ double-Gamma

function

Γ2(x|ε1, ε2) ∝
∏
m,n>0

(x+mε1 + nε2)−1, (G.5)
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the partition function of hyper-multiplet can be written in a compact way

Ihyper →
∏
i

Γ2(1/2− u/2− iαi|1 + η, 1− η)

Γ2(3/2 + u/2 + iαi|1 + η, 1− η)

=
∏
i

Γ2(Q
2

(1/2− u/2)− iα̂i|b, b−1)

Γ2(Q
2

(3/2 + u/2) + iα̂i|b, b−1)
,

(G.6)

where we have defined1

α̂i =
αi√

1− η2
, b =

√
1− η
1 + η

, Q = b+ b−1. (G.7)

With this change of variables it is easy to see that for u = 0, our result is in

agreement with [78]. The partition function of the vector multiplet:

Ivector →
∏
i<j

1

1− q−i(αi−αj)
1

1− qi(αi−αj)
Γ(q1+u±i(αi−αj); q1+η, q1−η)

Γ(q±i(αi−αj); q1+η, q1−η)
. (G.8)

reduces to

Ivector =
∏
i<j

(1− η2) sinh
π(αi−αj)

1+η sinh
π(αi−αj)

1−η

π2(αi − αj)2

Γ2(1 + u± i(αi − αj)|1 + η, 1− η)

Γ2(1− u± i(αi − αj)|1 + η, 1− η)

=
∏
i<j

sinhπb(α̂i − α̂j) sinhπb−1(α̂i − α̂j)
π2(α̂i − α̂j)2

Γ2(Q2 (1 + u)± i(α̂i − α̂j)|b, b−1)

Γ2(Q2 (1− u)± i(α̂i − α̂j)|b, b−1)
.

(G.9)

Again, we find a precise agreement with the partition function of the vector

multiplet on squashed S3.

1We thank Davide Gaiotto for pointing out this change of variables.
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Appendix H

Shortening Conditions of the

N = 2 Superconformal Algebra

A generic long multipletA∆
R,r(j,j̄) of theN = 2 superconformal algebra is gener-

ated by the action of the 8 Poincaré superchargesQ and Q̄ on a superconformal

primary, which by definition is annihilated by all conformal supercharges S.

If some combination of the Q’s also annihilates the primary, the correspond-

ing multiplet is shorter and the conformal dimensions of all its members are

protected against quantum corrections. A comprehensive list of the possible

shortening conditions for the N = 2 superconformal algebra was given in [52]

. Their findings are summarized in Table H.1. We take a moment to explain

the notation.1 The state |R, r〉h.w.(j,j̄) is the highest weight state with SU(2)R

spin R > 0, U(1)r charge r, which can have either sign, and Lorentz quantum

numbers (j, j̄). The multiplet built on this state is denoted as XR,r(j,j̄), where

the letter X characterizes the shortening condition. The left column of Table

H.1 labels the condition. A superscript on the label corresponds to the index

I = 1, 2 of the supercharge that kills the primary: or example B1 refers to Q1
α.

Similarly a “bar” on the label refers to the conjugate condition: for example

B̄2 corresponds to Q̄2 α̇ annihilating the state; this would result in the short

anti-chiral multiplet B̄R,r(j,0), obeying ∆ = 2R − r. Note that conjugation

reverses the signs of r, j and j̄ in the expression of the conformal dimension.

We refer to [52] for more details.

1We follow the conventions of [52], except that we have introduced the labels D, F , F̂
and G to denote some shortening conditions that were left nameless in [52].
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Shortening Conditions Multiplet

B1 Q1
α|R, r〉h.w. = 0 j = 0 ∆ = 2R + r BR,r(0,j̄)

B̄2 Q̄2α̇|R, r〉h.w. = 0 j̄ = 0 ∆ = 2R− r B̄R,r(j,0)

E B1 ∩ B2 R = 0 ∆ = r Er(0,j̄)
Ē B̄1 ∩ B̄2 R = 0 ∆ = −r Ēr(j,0)

B̂ B1 ∩ B̄2 r = 0, j, j̄ = 0 ∆ = 2R B̂R
C1 εαβQ1

β|R, r〉h.w.α = 0 ∆ = 2 + 2j + 2R + r CR,r(j,j̄)
(Q1)2|R, r〉h.w. = 0 for j = 0 ∆ = 2 + 2R + r CR,r(0,j̄)

C̄2 εα̇β̇Q̄2β̇|R, r〉h.w.α̇ = 0 ∆ = 2 + 2j̄ + 2R− r C̄R,r(j,j̄)
(Q̄2)2|R, r〉h.w. = 0 for j̄ = 0 ∆ = 2 + 2R− r C̄R,r(j,0)

F C1 ∩ C2 R = 0 ∆ = 2 + 2j + r C0,r(j,j̄)

F̄ C̄1 ∩ C̄2 R = 0 ∆ = 2 + 2j̄ − r C̄0,r(j,j̄)

Ĉ C1 ∩ C̄2 r = j̄ − j ∆ = 2 + 2R + j + j̄ ĈR(j,j̄)

F̂ C1 ∩ C2 ∩ C̄1 ∩ C̄2 R = 0, r = j̄ − j ∆ = 2 + j + j̄ Ĉ0(j,j̄)

D B1 ∩ C̄2 r = j̄ + 1 ∆ = 1 + 2R + j̄ DR(0,j̄)

D̄ B̄2 ∩ C1 −r = j + 1 ∆ = 1 + 2R + j D̄R(j,0)

G E ∩ C̄2 r = j̄ + 1, R = 0 ∆ = r = 1 + j̄ D0(0,j̄)

Ḡ Ē ∩ C1 −r = j + 1, R = 0 ∆ = −r = 1 + j D̄0(j,0)

Table H.1: Shortening conditions and short multiplets for the N = 2 super-
conformal algebra.
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Appendix I

N = 1 Chiral Ring

An important subset of the protected operators of a supersymmetry theory are

the operators in the chiral ring. Chiral operators, by definition, are annihilated

by the supercharge of one chirality, Q̄α̇, and thus obey a B-type shortening

condition. (If the theory has extended supersymmetry we focus on an N =

1 subalgebra.) The product of two chiral operators is again chiral. Chiral

operators are normally considered modulo Q̄α̇-exact operators. The chiral

cohomology classes can be specified by a set of generators and relations, which

are easy to determine at weak (infinitesimal but non-zero) coupling. At higher

orders the relations may get corrected, but the basic counting of chiral states

is not expected to change [19, 211].

Let us first consider the case of pureN = 2 SYM with gauge group SU(Nc).

Under an N = 1 subalgebra the field content is decomposed as a chiral super-

field Φ and a vector superfield Wα, both in the adjoint representation of the

gauge group.. A generic chiral operator of the theory in the adjoint represen-

tation of the gauge group obeys

[Wα,O} =
[
Q̄α̇, Dαα̇O

}
. (I.1)

Substituting O = Φ and O = Wβ we see that, modulo Q̄ exact terms, Wα

(anti-)commutes with Φ and Wβ respectively. Using these relations we can

narrow down the single-trace chiral operators to

Tr Φk+2, Tr Φk+1Wα, Tr ΦkεαβWαWβ , for k ≥ 0 . (I.2)
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We have listed one representative from each cohomology class. For finite Nc

the operators are further related by trace relations. In the large Nc limit of

N = 2 supersymmetric Yang Mills, (I.2) is the complete and unconstrained

list of single-trace chiral operators. Taking products we generate the whole

chiral ring. In N = 2 language the chiral operators are assembled in a single

supermultiplet for each k, the multiplet with primary Trφk+2.

To obtain N = 2 SCQCD we add Nf fundamental hypermultiplets, equiv-

alent to Nf fundamental chiral multiplets Q and Nf antifundamental chiral

multiplets Q̃, with the N = 2 invariant superpotential Q̃ΦQ. There are no

chiral operators containing both Wα and Q because WαQ is Q̄ exact. Gen-

erally, in a theory with superpotential, further relations are imposed by the

equations of motion

∂AW (Ai) = D̄α̇D̄
α̇A ⇒ ∂AW (Ai)c.r. = 0 , (I.3)

where {Ai} is the set of chiral superfields. The subscript c.r. denotes that

the relation is valid in the chiral ring. In our case this implies that operators

containing both Φ and Q are constrained by the equations of motion

ΦQ = 0, Q̃Φ = 0 and Qa
iQ̃

i
b −

1

Nc

δabQ
c
iQ̃

i
c = 0 . (I.4)

These relations set to zero all generalized single-trace operators1 containing Q,

except for TrQQ̃. When expressed in SU(2)R covariant fashion, this operator

corresponds to the N = 2 superconformal primary TrM3. Note that for gauge

group U(Nc) instead of SU(Nc) the third relation gets modified to Qa
iQ̃

i
b = 0

implying that even TrQQ̃ is absent from the chiral ring. (For U(Nc) we would

have to also add the operator Tr Φ to the list (I.2)). All in all, consideration of

the chiral ring for N = 2 SCQCD has led to identify the following protected

N = 2 superconformal primaries:

TrM3 , Trφ`+2 , ` ≥ 0 . (I.5)

Note that the multiplets {TrTφ`}, as well as the extra exotic protected states

discussed in section 6.5.4, are not part of the chiral ring.

1In the flavor non-singlet sector they also allow for Qa
iQ̃

j
a .
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It is straightforward to repeat this exercise for the Z2 orbifold of N = 4

SYM. InN = 1 language the field content of the orbifold theory consists of vec-

tor multiplets (Φ,Wα) and (Φ̌, W̌α), in the adjoint representation of SU(Nc)

and SU(Nč) respectively. They are coupled to bifundamental chiral multi-

plets (QÎ , Q̃
Ĵ ) through the superpotential Q̃ÎΦQÎ + QÎΦ̌Q̃Î . Here Î, Ĵ are

SU(2)L indices. At large Nc, the chiral ring of the orbifold is generated by

the operators (I.2), by a second copy of (I.2) with Φ,Wα → Φ̌, W̌α correspond-

ing to the two vector multiplets, and by single-trace operators involving the

fields from hypermultiplets. The latter obey following constraints due to the

superpotential:

Q̃ÎΦ = −Φ̌Q̃Î , ΦQÎ = −QÎΦ̌ (I.6)

Qa
Î ǎQ̃

Îǎ
b −

1

Nc

δabQ
c
Î ǎ Q̃

Îǎ
c = 0, Q̃Îǎ aQ

a
Î b̌ −

1

Nč

δǎ
b̌
Q̃Îč aQ

a
Î č = 0

Using the first two equivalence relations we could always choose a class rep-

resentative that doesn’t contain any Φ̌. Then the relations in the second line

allow for highest SU(2)L spin chiral operators of schematic form Tr (QQ̃)`+1
3L

Φk.

This operator is in the untwisted sector as it is invariant under quantum Z2

symmetry of the orbifold upto Q̄α̇ exact terms. As before, the chiral ring of

the SU(Nc) theory (as opposed to U(Nc)), also contains the “exceptional”

operator Tr (QQ̃)1L
, which belongs to the twisted sector. Assembling these

N = 1 chiral multiplets into full N = 2 multiplets, we find the following list

of N = 2 superconformal primaries:

Tr (φk+2 + φ̌k+2) , Tr (M`+1
3R3L

φk) , (I.7)

Tr (φk+2 − φ̌k+2) , TrM3R1L
, for k ≥ 0, ` ≥ 0 . (I.8)

The primaries in the first line belong to the untwisted sector and the primaries

in the second line belong to the twisted sector. We know from inheritance from

N = 4 SYM that in the untwisted sector there are additional protected op-

erators (see section 6.4.1.1). On the other hand, in the twisted sector this is

plausibly the complete list, as confirmed by the calculation of the supercon-

formal index in appendix J.

As we move away from the orbifold point by taking ǧ 6= g, the calculation of

the chiral ring is almost unchanged, we only need to perform the substitutions
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Φ̌, W̌α → κΦ̌, κW̌α, with κ ≡ ǧ/g that take into account the deformation

of the superpotential. The quantum numbers of the chiral operators remain

unchanged.
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Appendix J

The Index of Some Short

multiplets

In this appendix we calculate the index of various short multiplets. A first

goal is to determine the index of the set { B̂1, E`(0,0), ` ≥ 2 } (the multiplets

found by the analysis of the chiral ring in the twisted sector of the orbifold),

and show that it agrees with (6.64). A second goal is to calculate Inaive, the

index of the “naive” protected spectrum (7.24) of N = 2 SCQCD.

J.1 E`(0,0) multiplet

The chiral multiplet E`(0,0) [52] is defined to be the multiplet that descends

from the operator with R = 0, that is annihilated by both Q1 and Q2. The

shortening condition is ∆ = `. We have arranged the operator content of the

multiplet in the array below. We represent the action of the supercharge Q to

the left and Q̄ to the right. As E`(0,0) is annihilated by Qs, it only extends to
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the right.

∆

` 0(0,0)

`+ 1
2

1
2(0, 1

2)

`+ 1 0(0,1), 1(0,0)

`+ 3
2

1
2(0, 1

2)

`+ 2 0(0,0)

r ` `− 1
2

`− 1 `− 3
2

`− 2

(J.1)

This multiplet contributes only to the left index IL. The operators with δL = 0

are underlined and their contribution to the index is listed in table J.1.

∆ R(j,j̄) IL(t, y, v)

` 0(0,0) t2`v`

`+ 1
2

1
2(0, 1

2) −t2`+1v`−1
(
y + 1

y

)
`+ 1 1(0,0) t2`+2v`−2

Table J.1: Operators with δL = 0 in E`(0,0)

For ` > 1, we sum the contribution of the operators from the above table

and divide it by the contribution (1− t3y) (1− t3y−1) from the derivatives,

∞∑
`=2

ILE`(0,0)
=

1

(1− t3y) (1− t3y−1)

∞∑
`=2

t2`v`(1− t1v−1(y + y−1) + t2v−2)

=
t4v2(1− t

vy
)(1− ty

v
)

(1− t2v) (1− t3y) (1− t3y−1)

The conjugate multiplet Ē−`(0,0) contributes exactly the same but to IR.

J.2 B̂1 multiplet

Next we consider the nonchiral multiplet B̂1 [52], with the shortenning con-

dition that the highest weight state is anihilated by Q2, Q̄1. This shortening
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condition requires r = 0, j = j̄ = 0 and ∆ = 2 for the highest weight state.

∆

2 1(0,0)

5
2

1
2( 1

2
,0)

1
2(0, 1

2)

3 0(0,0) 0( 1
2
, 1
2) 0(0,0)

7
2

4 −0(0,0)

r 1 1
2

0 −1
2

−1

(J.2)

The operator −0(0,0) at ∆ = 4 stands for an equation of motion – the negative

sign in front of it means that its contribution to the index (partition function

in general) has to be subtracted. We have underlined the operators with δL = 0

and their contribution to IL is listed in table J.2.

∆ R(j,j̄) IL(t, y, v)

2 1(0,0)
t4

v
5
2

1
2( 1

2
,0) −t6

Table J.2: Operators with δL = 0 in B1

Summing the individual contributions and dividing with the contribution

from the derivatives, we get the index for this multiplet as,

ILB1
=

t4 (1− t2v)

v (1− t3y) (1− t3y−1)
. (J.3)
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J.3 Ĉ0(0,0) multiplet

The stress tensor, supercurrents and R-symmetry currents of theN = 2 theory

are part of this multiplet. Its shortening condition Ĉ is explained in table H.1.

The operator content of this multiplet is displayed in the array below.

∆

2 0(0,0)

5
2

1
2( 1

2
,0)

1
2(0, 1

2)

3 0(1,0) 1( 1
2
, 1
2

), 0( 1
2
, 1
2) 0(0,1)

7
2

1
2(1, 1

2)
1
2( 1

2
,1)

4 0(1,1)

−0(0,0), −1(0,0)

9
2

−1
2 ( 1

2
,0)

−1
2 (0, 1

2
)

10 −0( 1
2
, 1
2

)

r 1 1
2

0 −1
2

−1

(J.4)

The operators with negative signs stand for equations of motion as before.

We have underlined the operators with δL = 0 and their contribution is listed

in the table below. Summing the contributions, we get the left index of this

multiplet to be

ILĈ(0,0)
= −t6(1− vt2)(1− t

v
(y +

1

y
)) . (J.5)
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∆ R(j,j̄) IL(t, y, v)

5
2

1
2 ( 1

2
,0)
−t6

3 0(1,0) t8v

3 1( 1
2
, 1
2

)
t7

v
(y + 1

y
)

7
2

1
2 (1, 1

2
)
−t9(y + 1

y
)

Table J.3: Operators with δL = 0 in Ĉ0(0,0)

Being a nonchiral multipet, it contributes the same to the right index as well.

J.4 C`(0,0) multiplet, ` ≥ 1

This multiplet obeys the shortening condition F = C1 ∩ C2. The operator
content of C`(0,0) is displayed below.

∆

` + 2 0(0,0)

` + 5
2

1
2
(
1
2
,0
) 1

2
(
0, 1

2

)

` + 3 0(1,0) 1( 1
2
, 1
2

), 0( 1
2
, 1
2

) 0(0,1) , 1(0,0)

` + 7
2

1
2
(
1, 1

2

) 1
2
(
1
2
,1
) , 1

2
(
1
2
,0
), 3

2
(
1
2
,0
) 1

2
(
0, 1

2

)

` + 4 0(1,1), 1(1,0) 0( 1
2
, 1
2

) , 1( 1
2
, 1
2

) 0(0,0)

` + 9
2

1
2
(
1, 1

2

) 1
2
(
1
2
,0
)

` + 5 0(1,0)

r ` + 1 ` + 1
2

` `− 1
2

`− 1 `− 3
2

`− 2

The operators with δL = 0 are underlined as usual. Table J.4 lists their

contribution to IL. Summing the contribution to the left index from C`(0,0)

with ` ≥ 1 we get,

∞∑
`=1

ILC`(0,0)
= −t8v(1− vt2)(1− t

v
(y +

1

y
))− t10

v
. (J.6)
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∆ R(j,j̄) IL(t, y, v)

`+ 5
2

1
2 ( 1

2
,0)
−t6+2`v`

`+ 3 0(1,0) t8+2`v`+1

`+ 3 1( 1
2
, 1
2

) t7+2`v`−1(y + 1
y
)

`+ 7
2

1
2 (1, 1

2
)
−t9+2`v`(y + 1

y
)

`+ 7
2

3
2 ( 1

2
,0)
−t8+2`v`−2

`+ 4 1(1,0) t10+2`v`−1

Table J.4: Operators with δL = 0 in C`(0,0)

J.5 The Itwist of the orbifold and Inaive of SC-

QCD

The protected operators in the twisted sector of the orbifold are listed in Table

7.3. The conjugates, which contribute to IL, are of the type:

B̂1, E`(0,0) for ` ≥ 2 . (J.7)

So we get,

Itwist = IB̂1
+
∞∑
`=2

IE`(0,0)
(J.8)

=
t4 (1− t2v)

v (1− t3y) (1− t3y−1)
+

t4v2(1− t
vy

)(1− ty
v

)

(1− t2v) (1− t3y) (1− t3y−1)
(J.9)

=
t2v

1− t2v −
t3y

1− t3y −
t3y−1

1− t3y−1
− fV (t, y, v) . (J.10)

This precisely matches with (6.64), confirming the protected operators in the

twisted sector of the orbifold. Let us now compute the Inaive of SCQCD that

follows from the preliminary list 7.24 of protected operators. Their conjugates,

which contribute to IL, are of the type:

B̂1, E`+2(0,0), Ĉ0,0, C`+1(0,0) for ` ≥ 0 . (J.11)
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The Inaive then is

Inaive = IB̂1
+
∞∑
`=2

IE`(0,0)
+ IĈ0,0 +

∞∑
`=1

IC`(0,0)
(J.12)

=
−t6(1− t

v
(y + 1

y
))− t10

v
+

t4v2(1− t
vy

)(1− ty
v

)

1−t2v + t4

v
(1− t2v)

(1− t3y)(1− t3

y
)

(J.13)
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Appendix K

KK Reduction of the 6d Tensor

Multiplet on AdS5 × S1

In this appendix we discuss the Kaluza-Klein reduction of the 6d tensor multi-

plet on AdS5×S1, and its matching with the twisted spectrum of the orbifold

theory.

The tensor multiplet of maximal chiral supersymmetry in six dimensions

(we will refer to it as (2,0) susy) has the following field content

B−µν , λJα , Φ[JK] . (K.1)

The indices J,K are the USp(4) indices which is the R-symmetry group of

the chiral supergravity. The spinors λJα are in the 4 (complex) representation

of USp(4) and the scalars Φ[JK] in the 5 (real) representation. The λJα are

Weyl, symplectic Majorana spinors. The symplectic Majorana condition is a

psuedo-reality condition, λ̄I = ΩIKλ
K, where Ω is the symplectic form.

Consider now the background AdS5 × S1. The natural embedding of the

SU(2)R×U(1)r R-symmetry of the N = 4 AdS5 superalgebra (or equivalently
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of the N = 2 4d superconformal algebra) into USp(4) is
SU(2)R × U(1)r

SU(2)R × U(1)∗r

 (K.2)

The five scalars decompose as

Φ[JK] −→ Φi + Φ + Φ̄ (K.3)

5 −→ 30 + 1−1 + 1+1 ,

where the subscripts denote U(1)r charges. The spinors decompose as two

(conjugate) SU(2)R doublets, with opposite U(1)r charges r = ±1
2
.

We are interested in the Kaluza-Klein reduction of the tensor multiplet on

the S1. We borrow the results of [145] (see also [212]), where all the KK modes

with non-zero momentum were matched with the multiplets {Ē2+`(0,0) ` ≥ 0},
corresponding to the twisted primaries {Trφ2+`−Trφ̌`+2 } of the orbifold the-

ory. We will add the zero modes to the analysis of [145].

Let us indeed start with the zero modes on S1. The bosonic zero modes

comprise the following AdS5 fields [145]: a complex scalar Φ, with m2 = −3 (in

AdS units)1; a triplet of scalars Φi, with m2 = −4; a massless two form Bm̂n̂,

or equivalently a massless gauge field Am̂. The massless two-form Bm̂n̂ arises

from the 6d anti-selfdual two-form B−µν when both indices are taken to be along

AdS5, while the gauge field Am̂ arises from B−µν when one index is taken to be

along AdS5 and the other along S1. Because of the anti-selfduality of B−µν , the

two possibilities are not independent: Bm̂n̂ and Am̂ are dual to each other as

5d fields, and we must pick one or the other. This ambiguity translates into

two alternative ways to fit the zero modes into supermultiplets of the N = 2

4d superconformal algebra. Let us look at them in turn:

• Choosing Bm̂n̂.

The massless two-form Bm̂n̂ is dual to a boundary two-form operator F ′mn
1The complex scalar Φ corresponds to the k = −1 real scalar in Family 2 and the k = 1

real scalar in Family 3 of [145]. We have just relabeled them as n = 0 modes.
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of dimension ∆ = 2. We claim that the full supermultiplet of boundary

operators is {φ′ , λ′Iα , F ′mnD′i}, which is the the familiar off-shell N = 2

vector multiplet (or N = 2 “supersingleton” multiplet). Here φ′ is a

complex scalar with r = ±1 and ∆ = 1, dual to the bulk scalar Φ

of m2 = −3. The mass of Φ is in the range that allows both the ∆+

and the ∆− quantization schemes [213, 214], and supersymmetry forces

the choice of ∆− = 2 −
√
m2 + 4 = 1. Since φ′ saturates the unitarity

bound, it must be a free scalar field. We recognize F ′mn as the Maxwell

field strength and D′i, i = 1, 2, 3, which form SU(2)R triplet with ∆ = 2

and are dual to the bulk fields Φi, as the auxiliary fields. Finally λ
′I
α are

the free fermionic fields with ∆ = 3
2
. The AdS/CFT relation for spin 1

2

fields is usually quoted as ∆ = 2+ |m|, but this is evidently a case where

we must pick instead ∆− = 2 − |m|, with m = 1
2
. We are not aware of

an explicit discussion of the ∆± quantization ambiguity for spinors, but

it must be there because of supersymmetry. (Incidentally, similar issues

arise in the familiar IIB on AdS5×S5 background if one looks at the zero

modes, which can be organized in the N = 4 supersingleton multiplet.

Again both the scalars in the 6 of SU(4) and the spinors in the 4 must

be quantized in the ∆− scheme.)

• Choosing Aµ̂.

The boundary dual to Am̂ is a conserved current Jm (∆ = 3). In this case

we claim that supersymmetry forces the usual ∆+ quantization scheme

for Φ and λJα. It is easy to check that the zero modes can be precisely

organized into the B̂1 multiplet (summarized in (J.2)).

The two possibilities have a nice physical interpretation. The first alternative

corresponds to keeping the U(1) degree of freedom in the twisted sector (this is

the “relative” U(1) in the product gauge recall the discussion after equ.(8.19))

– in other terms we should identify φ′ = Tr(φ − φ̂). The second possibility

corresponds instead to removing the relative U(1). Then clearly the multiplet

built on Tr(φ − φ̂) is lost, but as we have emphasized in section 6.4.1.2 and

appendix B, an additional protected multiplet appears, the B̂1 multiplet built

on the primary TrM3. The AdS/CFT dictionary handles this subtle ambi-

guity in a very elegant way. For our purposes, the second alternative is the
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Field Theory Gravity

Operator U(1)r ∆ Mass Field

Tr[φ̄n+1] − Tr[ ¯̌φn+1] n+ 1 n+ 1 (n+ 1)(n− 3) Φ̄

Tr[Fφ̄n] − Tr[F̌ ¯̌φn] n n+ 2 n2 Bm̂n̂

Tr[λλφ̄n−1] − Tr[λ̌λ̌ ¯̌φn−1] n n+ 2 n2 − 4 Φi

Tr[F 2φ̄n−1] − Tr[F̌ 2 ¯̌φn−1] n− 1 n+ 3 (n− 1)(n+ 3) Φ

Table K.1: Matching of the positive KK modes (n ≥ 1). The negative KK
modes (n ≤ −1) correspond to the conjugate operators.

relevant one, since we must remove the relative U(1) in order to have a truly

conformal field theory.

The matching of the higher Kaluza-Klein modes was discussed in [145], we

summarize the results in Table K.1.
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Appendix L

The Cigar Background and 7d

Gauged Sugra

This appendix collects some facts about the non-critical string theory obtained

in the double-scaling limit of two colliding NS branes [116, 117], namely IIB

on R5,1 × SL(2)2/U(1). We start by reviewing well-known results, see e.g.

[114, 115, 115–117, 123–125], and then make a new claim about a space-time

“effective action” description. We are going to argue that the “lighest” delta-

function normalizable modes in the continuum are described by a 7dmaximally

supersymmetric supergravity with non-standard gauging, recently constructed

in [160, 161].

L.1 Preliminaries and Worldsheet Symmetries

A class of “non-critical” supersymmetric string backgrounds can defined in

the RNS formalism by taking the tensor product of Rd−1,1 with the Kazama

Suzuki supercoset SL2(R)k/U(1). The Rd−1,1 part is described as usual by d

free bosons Xµ and d free fermions ψµ. The coset SL2(R)k/U(1) has a sigma-

model description with target space the “cigar” background (setting α′ = 2)

ds2 = dρ2 + tanh2(
Qρ

2
)dθ2 ρ ≥ 0 θ ∼ θ +

4π

Q
(L.1)
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with vanishing B field and dilaton varying as

Φ = − ln cosh(
Qρ

2
) . (L.2)

The level k of the coset is related to the parameter Q as k = 2/Q2. The central

charge is

ccig = 3 +
6

k
= 3 + 3Q2 . (L.3)

Adding the usual superconformal ghost system {b , c , β , γ} of central charge

-15 and requiring cancellation of the total conformal anomaly, one finds Q =√
1
2
(8− d). In the asymptotic region ρ → ∞ the cigar becomes a cylinder of

radius 2
Q

, with the dilaton varying linearly with ρ, and the theory is thus a

free CFT. We will soon restrict to the d = 6 case, implying ccig = 6, Q = 1

and k = 2.

For generic level k the Kazama-Susuki coset SL(2)k/U(1) has (2, 2) super-

symmetry. In the asymptotic linear-dilaton region the holomorphic currents

of N = 2 susy take the form

Tcig = −1

2
(∂ρ)2 − 1

2
(∂θ)2 − 1

2
(ψρ∂ψρ + ψθ∂ψθ)−

1

2
Q∂2ρ (L.4)

Jcig = −iψρψθ + iQ∂θ ≡ i∂H + iQ∂θ ≡ i∂φ (L.5)

G±cig =
i

2
(ψρ ± iψθ)∂(ρ∓ iθ) +

i

2
Q∂(ψρ ± iψθ) , (L.6)

with analogous expressions for the anti-holomorphic currents. For k = 2, which

is the case of interest for us, worldsheet supersymmetry is enhanced to (4, 4).

This is the generic enhancement of worldsheet susy from N = 2 to N = 4 that

takes place when c = 6. Indeed for this value of the central charge the currents

J icig = {e±
´
Jcig , Jcig}, i = ±, 3, generate a left-moving SU(2) current algebra,

the R subalgebra of the left-moving N = 4 worldsheet superconformal algebra.

The two extra odd currents Ĝ±cig are generated in the OPE of G±cig with J icig.

Similarly for the right-movers. In the full cigar background the wordsheet

superconformal currents have more complicated expressions but the theory

still has exact (2, 2) susy, enhanced to (4, 4) for k = 2.

In the free linear dilaton theory, i∂θ and i∂H defined in (L.5) are separately

holomorphic, but only their linear combination Jcig is holomorphic in the full

cigar background. This reflects the non-conservation of winding around the
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cigar (strings can unwrap at the tip). Momentum P θ around the cigar is still

conserved, and there is a corresponding Noether current with both holomor-

phic and anti-holomorphic components, which asymptotically takes the form
1
Q

(i∂θ , i∂̄θ). For k = 2, the field θ is asymptotically at the free fermion ra-

dius. Thus in the linear dilaton theory the left-moving susy U(1) generated by

(i∂θ , ψθ) is enhanced to a left-moving SU(2)2 current algebra, which can be

represented by three free fermions ψi, with ψ3 ≡ ψθ and ψ± ≡ e±iθ. To avoid

confusions with other SU(2) symmetries will refer to this algebra as SU(2)ψi .

Similarly in the right-moving sector we have the analogous SU(2)ψ̃i . In the

full cigar background the SU(2)ψi and SU(2)ψ̃i current algebras are not sym-

metries, and only a global diagonal SU(2) survives, whose Cartan generator is

the momentum P θ. This is interpreted as the SU(2)R spacetime R-symmetry.

L.2 Cigar Vertex Operators

To characterize the primary vertex operators of the cigar it is sufficient to

give their asymptotic form in the linear-dilaton region. While the exact ex-

pressions are more complicated, their quantum numbers (including conformal

dimensions) remain the same and can thus be evaluated in the asymptotic

region. Splitting the vertex operators in left-moving and right-moving parts,

we have the asymptotic left-moving expressions

V NS
j,m = eiQmθeQjρ

V R
j,m = e±

i
2
φeiQmθeQjρ (L.7)

and the asymptotic anti-holomorphic expressions

Ṽ NS
j,m̃ = e−iQm̃θ̄eQjρ̄

Ṽ R
j,m̃ = e±

i
2
φ̃e−iQm̃θ̄eQjρ̄ . (L.8)

Left-moving and right-moving terms can be glued together provided they have

the same value of the quantum number j. We will sometimes re-express j in

terms of p, the momentum in the radial direction, as

j = −Q
2

+ ip . (L.9)
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The quantum numbers m and m̃ are related to the integer winding w and the

integer momentum n in the angular direction of the cylinder as

m =
1

2
(n+ wk) m̃ = −1

2
(n− wk) . (L.10)

Recall however that winding is not a conserved quantum number in the cigar

background. Conformal dimensions of the primary operators (L.7,L.8) are

∆NS
j,m =

m2 − j(j + 1)

k

∆̄NS
j,m̃ =

m̃2 − j(j + 1)

k

∆R±
j,m =

1

8
+

(m± 1
2
)2 − j(j + 1)

k

∆̄R±
j,m̃ =

1

8
+

(m̃∓ 1
2
)2 − j(j + 1)

k

.

L.3 Spacetime Supersymmetry

From now on we restrict to the case of interest, d = 6. The RNS vertex

operators for R5,1 are familiar. To describe the Ramond sector, we bosonize

the fermions in the usual fashion,

±ψ0 + ψ1 = e±φ0

ψ2 ± iψ3 = e±iφ1

ψ4 ± iψ5 = e±iφ2

Spinors of R5,1 are then written

Vα = e
1
2

(ε0φ0+iε1φ1+iε2φ2) (L.11)
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with εa = ±1. With these notations at hand, the BRST invariant vertex

operators for the spacetime supercharges for the IIB theory read

Sα = e−ϕ/2e+ i
2
φV +

α S̄α = e−ϕ/2e−
i
2
φV +

α

S̃α = e−ϕ̃/2e+ i
2
φ̃Ṽ +

α
¯̃Sα = e−ϕ̃/2e−

i
2
φ̃Ṽ +

α

where ϕ is the usual chiral boson arising in the bosonization of the βγ sys-

tem. We use a bar to denote conjugation, and a tilde to distinguish the

right-movers. By V +
α we mean the positive chirality spinor, i.e. we impose

ε0ε1ε2 = 1. Choosing the same chirality in the left and right-moving sectors

is the statement of the type IIB GSO projection. The supercharges obey the

supersymmetry algebra

{Sα , S̄β} = 2γµαβPµ {S̃α , ¯̃Sβ} = 2γµαβPµ , (L.12)

where Pµ is the momentum in R5,1. Thus the theory has (2, 0) supersymmetry

in the six Minkowski directions. Note that

[P θ, Sα (S̃α)] =
1

2
Sα (S̃α) , [P θ, S̃α ( ¯̃Sα)] = −1

2
Sα ( ¯̃Sα) , (L.13)

confirming the interpretation of P θ as a spacetime R-symmetry.

Physical vertex operators are constrained to be local with the spacetime

supercharges. Locality implies the GSO condition

m+ FL ∈ 2Z + 1 (NS)

m+ FL ∈ 2Z (R)

where FL is the left-moving worldsheet fermion number. The analogous condi-

tion holds for the right-movers. In the asymptotic region we may fermionize the

field θ into ψ±. Then the quantum number m, instead of denoting left-moving

momentum in the θ direction, gets re-interpreted as ψ± fermion number. De-

noting by F ′L = FL + m the new total left-moving fermion number, the GSO
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projection becomes simply

F ′L ∈ 2Z + 1 (NS)

F ′L ∈ 2Z (R)

and analogously for the right-movers.

L.4 Spectrum: generalities

The physical spectrum of the theory comprises:

(i) A discrete set of truly normalizable states, localized at the tip of the

cigar.

(j < −Q/2)

(ii) A continuum of delta-function normalizable states, corresponding to in-

coming and outgoing waves in the ρ direction.

(j = −Q/2 + iR, i.e. p ∈ R)

(iii) Non-normalizable vertex operators, supported in the asymptotic large ρ

region.

(j > −Q/2)

States of type (i) live in R5,1 at ρ ∼ 0 and they fill in a massless tensor multiplet

of the 6d (2, 0) supersymmetry. More precisely they are:

NSNS: four scalars, in the 3 + 1 of SU(2)R;

RR: one scalar and one anti-selfdual antisymmetric tensor, both SU(2)R sin-

glets;

RNS: one left-handed Weyl spinor, which can be thought of an SU(2)R doublet

of left-handed Majorana-Weyl spinors;

NSR: same as RNS.

See [215] for a detailed analysis.

In the rest of this appendix we will focus on the states of type (ii). These

are the states relevant for the determination of a spacetime “effective action”
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for the non-critical string. Recall that our philosophy is to use the R5,1×
cigar background as an intermediate step towards the AdS background dual

to N = 2 SCQCD. Both backgrounds should arise as solutions of the same

non-critical string field theory. We would like to use the cigar background,

for which we have a solvable worldsheet CFT, to derive an “effective action”

description. The “effective action” is expected to be background independent

and should admit both the cigar background and the AdS background as

different classical solutions. We will restrict to the lowest level in a “Kaluza-

Klein expansion” on the cigar circle (to be defined more precisely below). The

states will then propagate in seven dimensions, R5,1 times the radial direction

ρ. Because of the linear dilaton, they obey massive field equations in 7d, but

they are in another sense “massless” – they are closely related to the massless

states of the critical IIB 10d theory and possess the gauge invariances expected

for massless 7d fields. We should emphasize from the outset that the linear

dilaton varies with a string-scale gradient, so there is no real separation of

scales between the “massless” level that we are keeping and the higher levels.

This is why we are using “effective action” in quotation marks. Nevertheless

the distinction between the lowest level obeying massless gauge-invariances and

the higher genuinely massive levels is a meaningful one, and we still expect

such an “effective action” to contain useful information. Remarkably, we will

see that it is a 7d gauged supergravity with non-standard gauging.

Finally we should mention the operators of type (iii). They have an in-

teresting holographic interpretation as “off-shell” observables of little string

theory, which “lives” on the R5,1 boundary at ρ = ∞. However we are not

interested in the cigar background per se and we are after a different incar-

nation of holography, so it is not immediately clear what the significance of

these operators is for our story. In analogy with c = 1 non-critical string, our

non-critical superstring background is expected to possess a rich spectrum of

“discrete states”, with Liouville dressing of type (iii). A closely related phe-

nomenon is the existence of a chiral ring, which has been demonstrated in

[216] (see also [217]). This infinite tower of discrete states may be related to

the exotic extra protected states of N = 2 SCQCD.
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L.5 Delta-function normalizable states: the low-

est mass level

We are now going to exhibit in detail the physical states of type (ii) at the

lowest mass level. We first organize the states according their symmetries in

the asymptotic linear dilaton region, and later discuss the symmetry breaking

induced by the cigar interaction. The asymptotic cylinder is at free-fermion

radius, and we wish to work covariantly in the enhanced SU(2)ψi × SU(2)ψ̃i
symmetry.

After fermionizing θ into ψ±, we have in total ten worldsheet fermions: ψµ,

µ = 0, . . . 5 associated with R5,1, ψρ associated to the radial direction and ψi,

i = 3,± associated to the stringy circle. It is then clear from outset that the

lowest mass level of our theory will be formally similar to the massless spectrum

of 10d critical IIB string theory, but of course the states will propagate only

in the seven dimensions xµ̂ = (xµ, ρ).

L.5.1 NS sector

In the left-moving NS sector the lowest states are the three 7d scalars

V NS
i = ψie

−ϕejρeik·X , (L.14)

in a triplet of SU(2)ψi , and the 7d vector

V NS
µ̂ = ψµ̂e

−ϕejρeik·X , (L.15)

where µ̂ = µ , ρ. The mass-shell condition L0 = 1 gives, for both the scalar

and the vector,
1

2
k2 − 1

2
j(j + 1) = 0 , (L.16)

which using j = −1/2 + ip we may write as

− k2 − p2 = k2
0 − ~k2 − p2 =

1

4
. (L.17)

Because of the linear dilaton, the wave equations appear to be “massive” with

m2 = 1
4
. Introducing a polarization vector eµ̂ = (eµ eρ), the superconformal
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invariance condition G 1
2
eµ̂V NS

µ̂ = 0 gives a modified transversality equation for

the vector1

k · e−
√
−1(j + 1)eρ = 0 . (L.18)

A short calculation shows that the polarization

e = k and eρ = −
√
−1 j (L.19)

corresponds to a null state. Thus despite the mass term in the wave equation,

V NS
µ̂ the 7-2 = 5 physical degrees of freedom of a massless 7d vector.

The theory is super-Poincaré invariant in R5,1, and we may label the states

in terms of 6d quantum numbers. In assigning 6d Lorentz quantum numbers,

we may focus for convenience on the states with radial momentum p = 1
2
,

which obey a massless 6d wave-equation (see L.17). We can then label them

according to the 6d little group SO(4) = SU(2)×SU(2). It must kept in mind

that this is just a notational device, since the states are really part of a 7d

continuum with arbitrary real p. We use the notation |j1 , j2〉2I+1 for a state

with spins (j1, j2) under the 6d little group, and in the 2I + 1-dimensional

representation of SU(2)ψi . All in all, in this 6d notation we may summarize

the lowest NS states as

|1
2
,
1

2
〉1 ⊕ |0, 0〉1 ⊕ |0, 0〉3 . (L.20)

L.5.2 R sector

The construction of vertex operators in the Ramond sector proceeds just as

in to the familiar critical (10d) case, except of course that momenta are only

seven-dimensional,

V R = e−ϕ/2e
i
2

(ε0φ0+ε1φ1+ε2φ2εθθ+εHH)ejρeip·X , ε0ε1ε2εθεH = 1 , (L.21)

which we may write as

Ψα(pµ)e±
i
2

(θ+H) ejρ , Ψα̇(pµ)e±
i
2

(θ−H) ejρ . (L.22)

1Apologies for the
√
−1, but here the symbol i would look confusing next to the mo-

mentum j.
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Here Ψα and Ψα̇ are 6d pseudo-real (Majorana-Weyl) spinors, respectively left-

handed and right-handed. Choosing the 7d momentum as p = 1
2

the spinors

obey a massless 6d wave equation, but as above we should keep in mind that

they are really part of 7d continuum. For each chirality we have an SU(2)

doublet of 6d Majorana-Weyl spinors (equivalently, one complex Weyl spinor)

so in “massless 6d notation” we write the spectrum as

|1
2
, 0〉2 ⊕ |0, 1

2
〉2 . (L.23)

In 7d the wave-equation looks “massive”, but the counting of degrees of free-

dom is again the one for massless states.

L.5.3 Gluing

Table L.1–L.4 show the result of gluing the left- and right-moving sectors.

In the first column of each table we list the (m, m̃) quantum numbers, recall

(L.10). In the second and third columns the Lorentz quantum numbers are

specified in the the 6d “massless” notation, that is we label states by their

spins (j1, j2) of the little group SO(4) = SU(2)1 × SU(2)2. The superscripts

2I+ 1 and 2Ĩ+ 1 in the second column denote the dimensions of the represen-

tations under SU(2)ψi and SU(2)ψ̃i , respectively (the superscript is omitted

for singlets). Finally the superscript 2R + 1 in the third column denotes the

dimension of the SU(2)R representation, with SU(2)R defined as the diagonal

combination of SU(2)ψi and SU(2)ψ̃i which is preserved by the cigar interac-

tion.

It is interesting to organize the spectrum according to massless supermulti-

plets of 6d supersymmetry (again, we may pretend that the states are massless

in 6d by focussing on the value p = 1
2

of the momentum along ρ). Massless

supermultiplets are constructed by taking the direct product of a primary

|j1, j2〉2R+1 with a set R of raising operators. For (2, 0) susy in six dimensions,

R = (1, 0) + 2(
1

2
, 0)2 + (0, 0)3 + 2(0, 0) (L.24)

For example the graviton multiplet is obtained acting with R on the primary

|0, 1〉, while the tensor multiplet is obtained starting with the primary |0, 0〉.

258



({m}, {m̃}) |j1, j2〉2I+1 ⊗ |j1, j2〉2Ĩ+1 Decomposition: |j1, j2〉2R+1 6d Fields

({0}, {0}) |1
2
, 1

2
〉 ⊗ |1

2
, 1

2
〉 |1, 1〉 ⊕ |1, 0〉 ⊕ |0, 1〉 ⊕ |0, 0〉 Gµν , Bµν , φ

|1
2
, 1

2
〉 ⊗ |0, 0〉 |1

2
, 1

2
〉 Vµ

|0, 0〉 ⊗ |1
2
, 1

2
〉 |1

2
, 1

2
〉 Ṽµ

|0, 0〉 ⊗ |0, 0〉 |0, 0〉 ρ

({±1, 0}, {0}) |0, 0〉3 ⊗ |1
2
, 1

2
〉 |1

2
, 1

2
〉3 Ṽ 3

µ

|0, 0〉3 ⊗ |0, 0〉 |0, 0〉3 ρ3

({0}, {±1, 0}) |1
2
, 1

2
〉 ⊗ |0, 0〉3 |1

2
, 1

2
〉3 V 3

µ

|0, 0〉 ⊗ |0, 0〉3 |0, 0〉3 ρ̃3

({±1, 0}, {±1, 0}) |0, 0〉3 ⊗ |0, 0〉3 |0, 0〉5 ⊕ |0, 0〉3 ⊕ |0, 0〉 T 5, T 3, T

Table L.1: Field Content in NSNS sector.

({m}, {m̃}) |j1, j2〉2I+1 ⊗ |j1, j2〉2Ĩ+1 Decomposition: |j1, j2〉2R+1 6d Fields

({0}, {0}) |1
2
, 0〉2 ⊗ |1

2
, 0〉2 |1, 0〉3 ⊕ |1, 0〉 ⊕ |0, 0〉3 ⊕ |0, 0〉 A3+

µν , A
+
µν , A

3, A

({±1}, {0}) |0, 1
2
〉2 ⊗ |1

2
, 0〉2 |1

2
, 1

2
〉3 ⊕ |1

2
, 1

2
〉 A3

µ, Aµ

({0}, {±1}) |1
2
, 0〉2 ⊗ |0, 1

2
〉2 |1

2
, 1

2
〉3 ⊕ |1

2
, 1

2
〉 Ã3

µ, Ãµ

({±1}, {±1}) |0, 1
2
〉2 ⊗ |0, 1

2
〉2 |0, 1〉3 ⊕ |0, 1〉 ⊕ |0, 0〉3 ⊕ |0, 0〉 A3−

µν , A
−
µν , A

′3, A′

Table L.2: Field Content in RR sector

({m}, {m̃}) |j1, j2〉2I+1 ⊗ |j1, j2〉2Ĩ+1 Decomposition: |j1, j2〉2R+1 6d Fields

({0}, {0}) |1
2
, 1

2
〉 ⊗ |1

2
, 0〉2 |1, 1

2
〉2 ⊕ |0, 1

2
〉2 Ψ2

µα̇,Ψ
2
α̇

|0, 0〉 ⊗ |1
2
, 0〉2 |1

2
, 0〉2 Ψ2

α

({±1, 0}, {0}) |0, 0〉3 ⊗ |1
2
, 0〉2 |1

2
, 0〉4 ⊕ |1

2
, 0〉2 Ψ4

α,Ψ
2
α

({0}, {±1}) |1
2
, 1

2
〉 ⊗ |0, 1

2
〉2 |1

2
, 1〉2 ⊕ |1

2
, 0〉2 Ψ2

µα,Ψ
2
α

|0, 0〉 ⊗ |0, 1
2
〉2 |0, 1

2
〉2 Ψ2

α̇

({±1, 0}, {±1}) |0, 0〉3 ⊗ |0, 1
2
〉2 |0, 1

2
〉4 ⊕ |0, 1

2
〉2 Ψ4

α̇,Ψ
2
α̇

Table L.3: Field Content in NSR sector
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({m}, {m̃}) |j1, j2〉2I+1 ⊗ |j1, j2〉2Ĩ+1 Decomposition: |j1, j2〉2R+1 6d Fields

({0}, {0}) |1
2
, 0〉2 ⊗ |1

2
, 1

2
〉 |1, 1

2
〉2 ⊕ |0, 1

2
〉2 Ψ2

µα̇,Ψ
2
α̇

|1
2
, 0〉2 ⊗ |0, 0〉 |1

2
, 0〉2 Ψ2

α

({±1}, {0}) |0, 1
2
〉2 ⊗ |1

2
, 1

2
〉 |1

2
, 1〉2 ⊕ |1

2
, 0〉2 Ψ2

µα,Ψ
2
α

({0}, {±1, 0}) |0, 1
2
〉2 ⊗ |0, 0〉 |0, 1

2
〉2 Ψ2

α̇

|1
2
, 0〉2 ⊗ |0, 0〉3 |1

2
, 0〉4 ⊕ |1

2
, 0〉2 Ψ4

α,Ψ
2
α

({±1}, {±1, 0}) |0, 1
2
〉2 ⊗ |0, 0〉3 |0, 1

2
〉4 ⊕ |0, 1

2
〉2 Ψ4

α̇,Ψ
2
α̇

Table L.4: Field Content in RNS sector

The complete field content of (the lowest level of) the cigar theory is obtained

by action of R on the set of primaries,

|0, 1〉+ 2|0, 1

2
〉2 + |0, 0〉3 + 2|0, 0〉 (L.25)

Comparison with (L.24) suggests us that there are two other hidden super-

charges at work, of opposite chirality, namely (0, 2), which relate the primaries

of all the (2, 0) supermultiplets. In other words, we might conclude that we

have obtained the maximally supersymmetric non-chiral (2, 2) supergravity in

six dimensions. This is correct as the counting of states with 7d momentum

p = 1
2

goes, but the right-handed supersymmetries are broken by interactions.

Nevertheless this is a useful hint: we should regard the effective theory for the

lowest level as a spontaneously broken version of a maximally supersymmetric

theory. And since the 7d momentum can be arbitrary, the candidate theory

before symmetry breaking is maximally supersymmetry seven-dimensional su-

pergravity.

L.6 Maximal 7d Supergravity with SO(4) Gaug-

ing

To pursue this hint, in Table L.5 we have organized the lowest level of the

linear-dilaton theory (before turning on the cigar interaction) according to 7d

quantum numbers. The little group in 7d is SO(5) ∼= USp(4) and we label

USp(4) representations by their dimension. In the linear dilaton theory the full
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Sector |USp(4)〉2I+1 ⊗ |USp(4)〉2Ĩ+1 Decomposition: |USp(4)〉(2I+1,2Ĩ+1) 7d Fields

NSNS |5〉 ⊗ |5〉 |14〉 ⊕ |10〉 ⊕ |1〉 Gµ̂ν̂ , Bµ̂ν̂ , φ

|5〉 ⊗ |1〉3 |5〉(3,1)⊕(1,3) V
(3,1)⊕(1,3)
µ̂

|1〉3 ⊗ |5〉
|1〉3 ⊗ |1〉3 |1〉(3,3) T (3,3)

RR |4〉2 ⊗ |4〉2 |10〉(2,2) ⊕ |5〉(2,2) ⊕ |1〉(2,2) C
(2,2)
µ̂ν̂ , C

(2,2)
µ̂ , C(2,2)

RNS |4〉2 ⊗ |5〉 |16〉(2,1)⊕(1,2) ⊕ |4〉(2,1)⊕(1,2) Ψ
(2,1)⊕(1,2)
µ̂ , Ψ(2,1)⊕(1,2)

NSR |5〉 ⊗ |4〉2
|4〉2 ⊗ |1〉3 |4〉(2,3)⊕(3,2) Ψ(2,3)⊕(3,2)

|1〉3 ⊗ |4〉2

Table L.5: Seven-dimensional labeling of the spectrum of the linear-dilaton
theory

SU(2)ψi⊗SU(2)ψ̃i
∼= SO(4) is unbroken and we label states with superscripts

(2I + 1, 2Ĩ + 1) indicating the representation dimensions of the two SU(2)s.

Remarkably, the resulting spectrum is precisely the field content of maximal

7d supergravity with SO(4) gauging, a theory that has been fully constructed

only quite recently [160, 161]. The massless vector V
(3,1)+(1,3)
µ̂ are the SO(4)

gauge fields. On the other hand the vectors C4
µ̂ are eaten by the two forms

C4
µ̂ν̂ , which become massive through a vectorial Higgs mechanism [160, 161].

Recall that the standard gauging of maximal 7d sugra is of the full SO(5)

R-symmetry – this is the famous supergravity that arises by consistent trun-

cation of 11d supergravity compactified on S4 and that admits a maximally

supersymmetric AdS7 vacuum. By contrast, the scalar potential of the SO(4)

theory does not allow for a stationary solution, but only for a domain wall

solution [160, 161], that is, our linear-dilaton background. A closely related

interpretation of the SO(4) gauged supergravity was given in [218] (before its

explicit construction!) as the effective 7d supergravity arising from a “warped

compactification” of IIB supergravity on the near-horizon NS5 brane back-

ground R5,1× linear dilaton ×S3.

The cigar background is obtained by further turning on a “tachyon” pertur-

bation, a profile for the NSNS scalar fields T (3,3) that decays for large ρ and acts

as a wall for ρ ∼ 0. Note that the scalars are in the symmetric traceless tensor
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of SO(4), and choosing a vev for them breaks SO(4)→ SO(3) ∼= SU(2)R, the

diagonal combination of SU(2)ψi × SU(2)ψ̃i , as expected. In the IIA set-up

of colliding NS5 branes, this breaking corresponds to choosing an angular di-

rection in the transverse S3 to the coincident NS5 brane – the direction along

which the branes are separated (we called it τ in Figure 6.4). Under the pre-

served diagonal SU(2)R, the nine NSNS scalars T (3,3) decompose as 5 + 3 + 1.

The 1 and the 3 are associated to moduli, corresponding respectively (in the

T-dual picture) to the radial and angular separations of the two NS5 branes;

together with an extra SU(2)R-singlet scalar from the RR sector they comprise

the five scalars of the 6d tensor multiplet localized at the tip of the cigar.

In the application of the SO(4)-gauged 7d supergravity to our problem

of finding the dual N = 2 SCQCD, we are not interested in turning on a

background for the NSNS scalars, but rather for the RR fields corresponding

to Nc D3 branes and Nf D5 branes. D3 branes are magnetically charged

unde the RR one-form C
(2,2)
µ and D5 branes are magnetically charged under

the RR zero-form C(2,2). As the superscripts indicate both of the RR one-

form and zero-form transform as vectors of SO(4). It is possible to choose

a common direction in SO(4) space for both forms, so that again we break

SO(4) → SO(3) ∼= SU(2)R. This is again consistent with the IIA Hanany-

Witten picture. Separating the NS5 branes in breaks SO(4) to SO(3), and it

is clear that both the compact and the non-compact D4-branes are extended

in the same direction along which the NS5 branes are separated, so that their

fluxes are oriented coherently in SO(4) space. The surviving SO(3) ∼= SU(2)R

is interpreted as the SU(2)R R-symmetry of the N = 2 gauge theory.
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Appendix M

Simplified computation of the

one-loop dilation operator

In this appendix we determine the one-loop spin-chain Hamiltonian by a sim-

ple shortcut. The interactions contributing to Hk,k+1 at one loop are listed

schematically in figure 7.1. The first and second interactions (self-energy

and gluon exchange) in figure 7.1 are proportional to the identity operator

in Vk⊗Vk+1, while the non-trivial tensorial structures are contributed only by

the third diagram (quartic interaction). The idea is to evaluate explicitly the

third diagram, and to fix the terms proportional to the identity by requiring

that the anomalous dimensions of a few protected operators vanish.

M.1 SCQCD

Let us recall our notations. The indices p, q = ± label the U(1)r charges of φ

and φ̄, in other terms we define φ− ≡ φ, φ+ ≡ φ̄, and gpq =

 0 1

1 0

. The
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(a) (b) (c) (d)

Figure M.1: The color/flavor structure of the quartic vertex. The solid black
line represents the flow of the color index while the dotted blue line show the
flow of the flavor index. Diagram (a) shows the φ4 interaction vertex, whose
contribution is proportional to Nc as compared to the tree level. In (b) the
Q2φ2 interaction vertex has a factor of Nf/Nc compared to (a) because of the
presence of one flavor loop. The Q4 vertex in (c) has an additional factor of
(Nf/Nc)

2 compared to (a) due to the presence of two flavor loops. Diagram
(d), however, does not carry any additional Nf/Nc factors.

elements of the Hamiltonian due to quartic vertices are:

〈φp′φq′ |H|φpφq〉φ4 = δpp′δ
q
q′ + gpqgp′q′ − 2δpq′δ

q
p′ (M.1)

〈φp′φq′|H|QIQ̄J 〉Q2φ2 =

√
Nf

Nc

gp′q′δ
J
I (M.2)

〈Q̄I′QJ ′|H|QIQ̄J 〉Q4 =
Nf

Nc

(2δI
′

I δ
J
J ′ − δJI δI

′

J ′) (M.3)

〈QJ ′Q̄I
′|H|Q̄JQI〉Q4 = 2δJI δ

I′
J ′ − δI

′

I δ
J
J ′ (M.4)

The factors of
Nf
Nc

are explained in figure M.1. Figures M.1a,M.1b,M.1c,M.1d

correspond to equations (M.1,M.2,M.3,M.4) respectively. This fixes the Hamil-
tonian up to the terms proportional to the identity,

Hk,k+1 =



φpφq QIQ̄
J Q̄KQL QIφ

p

φp′φq′ αδp
p′δ

q
q′ + gpqgp′q′ − 2δp

q′δ
q
p′

√
Nf

Nc
gp′q′δ

J
I 0 0

Q̄I
′
QJ ′

√
Nf

Nc
gpqδI

′
J ′ βδI

′
I δ
J
J ′ − δ

J
I δ
I′
J ′

Nf

Nc
0 0

QK′Q̄
L′ 0 0 γδKK′δ

L′
L + 2δKL δ

L′
K′ 0

Q̄I
′
φp′ 0 0 0 ηδI

′
I δ

p
p′



We can now find the coefficients α, β, γ and η from knowledge of the protected
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spectrum. Vanishing of the anomalous dimension of Trφk gives α = 2. Another

protected multiplet is the multiplet containing the stress-energy tensor. Its

superconformal primary, called TrT , has R, r = 0 and ∆ = 2. Hence, it is a

linear combination of Tr[QIQ̄
I ] and Tr[φφ̄]. The restriction of the Hamiltonian

to this subspace is

H =


Tr[φφ̄] Tr[M1]

Tr[φφ̄] 4 2
√

2Nf
N

Tr[M1] 2
√

2Nf
N

(β + γ)− 2(
Nf
Nc
− 2)

 (M.5)

This matrix must have a zero at the superconformal point Nf = 2Nc, yielding

β + γ = 4. Finally, the fact that TrTφ is also a protected operator gives

the relation β + 2η = 8. We started with four coefficients α, β, γ, η and

imposed three relations. The undetermined degrees of freedom corresponds

to the “gauge” freedom of adding to the nearest neighbor Hamiltonian terms

that vanish upon evaluating the full H on a closed chain. We may solve the

constraints by writing

α = 2 , β = 4 +
1

2
(1 + ξ) , γ = −1

2
(1 + ξ) , η =

1

4
(7− ξ) , (M.6)

where ξ is the arbitrary gauge parameter. The resulting Hamiltonian is in

perfect agreement (for Nf = 2Nc) with the answer (7.4) obtained by the

slightly lengthier route of explicit evaluating all relevant one-loop diagrams.

All in all, this confirms our understanding of the protected spectrum.
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M.2 Interpolating SCFT

We can repeat the same exercise for the interpolating SCFT. The quartic

vertices give

〈φp′φq′|φpφq〉φ4 = δpp′δ
q
q′ + gpqgp′q′ − 2δpq′δ

q
p′ (M.7)

〈φ̌p′φ̌q′ |φ̌pφ̌q〉φ̌4 = κ2(δpp′δ
q
q′ + gpqgp′q′ − 2δpq′δ

q
p′) (M.8)

〈Q̄L̂LQKK̂|QIÎQ̄Ĵ J 〉Q4 = 2 δĴÎ δ
J
K δ
L̂
K̂δ
L
I − δJI δĴÎ δ

L
Kδ
L̂
K̂

+ κ2(2 δĴK̂ δ
J
I δ
L̂
Î δ
L
K − δLI δL̂Î δ

J
K δ
Ĵ
K̂ ) (M.9)

〈QIÎQ̄Ĵ J |Q̄L̂LQKK̂〉Q4 = 2 δĴÎ δ
J
K δ
L̂
K̂δ
L
I − δJI δĴÎ δ

L
Kδ
L̂
K̂

+ κ2(2 δĴK̂ δ
J
I δ
L̂
Î δ
L
K − δLI δL̂Î δ

J
K δ
Ĵ
K̂ ) (M.10)

〈φp′φq′|QIÎQ̄Ĵ J 〉Q2φ2 = gp′q′δ
J
I δ
Ĵ
Î (M.11)

〈φ̌p′φ̌q′|Q̄Ĵ JQIÎ〉Q2φ̌2 = κ2gp′q′δ
J
I δ
Ĵ
Î (M.12)

〈Q̄Ĵ J φ̌q|φpQIÎ〉φQφ̌Q̄ = −2κδpqδ
J
I δ
Ĵ
Î (M.13)

〈φpQ̄Ĵ J |QIÎ φ̌q〉φQφ̌Q̄ = −2κδpqδ
J
I δ
Ĵ
Î (M.14)

The first four elements can have additional identity pieces. They are easily

determined by imposing the symmetry under g ↔ ǧ, Q ↔ Q̄ and φ ↔ φ̌ and

by requiring the Hamiltonian to reduce to that of SCQCD in the limit κ→ 0.

The one loop Hamiltonian (7.17) is precisely reproduced by this method.
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Appendix N

The Hamiltonian for SCQCD in

the Dimer Picture

In this appendix we rewrite the Hamiltonian for SCQCD as acting on adjoint

fields and dimers QIQ̄
J , regarded as basic objects. We define the singlet

combination M = 1√
2
M J
I δ

I
J and the triplet Mi = 1√

2
M J
I (σi)IJ , where σi

are three Pauli matrices. These can be rewritten in an SO(4) notation as

Mm = 1√
2
M J
I (σm)IJ , where m = 0, . . . , 3 and σ0 ≡ I2×2.

Consider the action of H on following sequence in the spin chain,

φp QI Q̄J φq

1
2
(3 + ξ

2
) (5− ξ

2
)IQQ − 2KQQ

1
2
(3 + ξ

2
)

↓ ↓ ↓
φp′ Q̄I

′
QJ ′ φq′

(N.1)

In the new picture, whereM is regarded as a basic impurity, the middle term
(5− ξ

2
)IQQ − 2KQQ is the “self energy” of M, and we split it evenly between

the φM and Mφ matrix elements. So we write

〈. . . φp′M̄I
′

J ′ . . . |H| . . . φpM J
I . . .〉 = [

1

2
(3 +

ξ

2
) +

1

2
(5− ξ

2
)]δpp′δ

I′
I δ
J
J ′ − δpp′δJI δI

′

J ′

= (4δI
′

I δ
J
J ′ − δJI δI

′

J ′)δ
p
p′

〈. . . φp′M̄m′ . . . |H| . . . φpMm . . .〉 = δpp′δ
mm′(4− 2δm0) .

Similarly, to find the action of H on two neighboring Ms, we consider the
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sequence

QI Q̄J QK Q̄L

(5− ξ
2 )IQQ − 2KQQ ( ξ2 − 1)IQQ + 2KQQ (5− ξ

2 )IQQ − 2KQQ
↓ ↓ ↓

Q̄I
′

QJ ′ Q̄K
′

QL′

(N.2)

This gives

〈. . .M̄m′M̄n′ . . . |H| . . .MmMn . . .〉 = δmm
′
δnn

′
(13− 4δm0 − 4δn0)

+δmnδm
′n′ − δmn′δnm′ + iεmnn

′m′ .
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Appendix O

Algebraic constraints on the

central charges

O.1 N = 4 super Yang-Mills

Let us review the logic used in [23] to constrain the central elements P and K.

The action of P on a state with K X -excitations with momenta p1, . . . pK is

P|X1X2 . . .XK〉 =
K∑
k=1

akbk

K∏
l=k+1

e−ipl |X1X2 . . .XKΦ+〉 (O.1)

On a physical state like the one above, the central charge must vanish. Since

in the N = 4 case all the X -excitations belong to the same (fundamental) rep-

resentation of SU(2|2), the central charge only depends upon the momentum

and not on the type of excitation, and the only possibility is for the sum in

(O.1) to telescope to zero on physical states,

aibi = α(e−ipi − 1) ≡ P (O.2)

with α being an undetermined constant. Here we use the fact that the total

momentum of a physical state is zero. A similar exercise for K gives

cidi = β(eipi − 1) ≡ K . (O.3)
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On a single-particle state,

P|X〉 = α(eip − 1)|XΦ+〉, K|X〉 = β(e−ip − 1)|XΦ−〉 . (O.4)

The hermiticity condition translates into α = β∗. Finally

C =
1

2

√
1 + 4PK =

1

2

√
1 + 16αβ sin2 p

2
. (O.5)

Comparing with the one loop dispersion relation one finds αβ = g2

2
+O(g4) ≡

g2

2
.

O.2 Z2 quiver

A physical state is constructed by having alternating Q and Q̄ type impurities
on a periodic spin chain. The central charge should vanish on such a state.
To determine the central charges P and K as functions of magnon mometum,
we follow same steps as before. The action of P and K is

P|Q1Q̄2 . . . QK−1Q̄K〉
= (a1b1(e−ip2 . . . e−ipK ) + ã2b̃2(e−ip3 . . . e−ipK ) + . . .+ ãK b̃K)|Q1Q̄2 . . . QK−1Q̄Kφ

+〉
K|Q1Q̄2 . . . QK−1Q̄K〉
= (c1d1(eip2 . . . eipK ) + c̃2d̃2(eip3 . . . eipK ) + . . .+ c̃K d̃K)|Q1Q̄2 . . . QK−1Q̄Kφ

−〉.

As before, let us define Pi ≡ aibi, Ki ≡ cidi and P̃i ≡ ãib̃i, K̃i ≡ c̃id̃i. Now we

impose

1. Physical state condition:

P and K should vanish when the total momentum of the state is zero.

2. BPS condition:

A BPS state of the interpolating theory is obtained from a BPS state

of the orbifold by the substitution (in the one-loop approximation) φ̌→
κφ̌, κ ≡ ǧ/g (see the last paragraph of appendix B in [2]). At higher

orders we may have a renormalized substitution φ̌→ κ′φ̌, k′ ≡ ǧ/g with

g(g, ǧ) and ǧ(g, ǧ) renormalized couplings. This means Q(Q̄) moving

with momentum i lnκ′ (−i lnκ′) is chiral and we expect that PiKi (P̃iK̃i)

should vanish on that state.
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3. Hermiticity:

K = P ∗ and K̃ = P̃ ∗.

From these condition it follows that

P = α(e−ip
1√
κ′
−
√
κ′), K = α∗(eip

1√
κ′
−
√
κ′),

P̃ = α(e−ip
√
κ′ − 1√

κ′
), K̃ = α∗(eip

√
κ′ − 1√

κ′
).

({P,K} ↔ {P̃ , K̃} is of course also a solution since the conditions above make

no intrinsic distinction between the Q and Q̄ impurities.) We then have

C =
1

2

√
1 + 4PK =

1

2

√
1 + 16|α|2

(
sin2 p

2
+

1

4
(
√
κ′ − 1√

κ′
)
)2

(O.6)

C̃ =
1

2

√
1 + 4P̃ K̃ =

1

2

√
1 + 16|α|2

(
sin2 p

2
+

1

4
(
√
κ′ − 1√

κ′
)
)2

. (O.7)

Comparing with the one-loop dispersion relation [4] one finds |α|2 ≡ g ǧ
2

=
gǧ
2

+ . . .. All in all,

C = C̃ =

√
1 + 2(g − ǧ)2 + 8gǧ sin2 p

2
. (O.8)
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Appendix P

Solving for the S-matrix

SU(2|1) subsector: Determining A, K, G, H, L

We first consider the SU(2α̇|1I) subsector, which is closed under scattering.

Consider the scattering of two bosonic magnons Q+ and Q̄+. Requiring in-

variance under the supercharge Qα̇+ we find

Qα̇+S12|Q+
1 Q̄

+
2 〉 = Qα̇+A12|Q+

2 Q̄
+
1 〉

= A12a2|ψα̇2 Q̄+
1 〉+ A12ã1|Q+

2 ψ̃
α̇
1 〉

S12Qα̇+|Q+
1 Q̄

+
2 〉 = S12(a1|ψα̇1 Q̄+

2 〉+ ã2|Q+
1 ψ̃

α̇
2 〉)

= (a1K12 + ã2G12)|ψα̇2 Q̄+
1 〉+ (a1L12 + ã2H12)|Q+

2 ψ̃
α̇
1 〉)

[Qα̇+, S] = 0 ⇒

A12 =
a1

a2

K12 +
ã2

a2

G12

A12 =
a1

ã1

L12 +
ã2

ã1

H12.

272



More constraints are obtained by imposing invariance under conformal super-

symmetries S. In this subsector it is sufficient to focus on S−α̇ ,

S−α̇S12|Q+
1 Q̄

+
2 〉 = A12(−c2εα̇β̇|ψβ̇2 φ̌−Q̄+

1 〉 − c̃1εα̇β̇|Q+
2 ψ̃

β̇
1φ
−〉)

= A12(−c2εα̇β̇
x−2
x+

2

|φ−ψβ̇2 Q̄+
1 〉 − c̃1εα̇β̇

x−2 x̃
−
1

x+
2 x̃

+
1

|φ−Q+
2 ψ̃

β̇
1 〉)

S12S+
α̇|Q+

1 Q̄
+
2 〉 = S12(−c1εα̇β̇

x−1
x+

1

|φ−ψβ̇1 Q̄+
2 〉 − c̃2εα̇β̇

x̃−2 x
−
1

x̃+
2 x

+
1

|φ−Q+
1 ψ̃

β̇
2 〉)

= −εα̇β̇(c1
x−1
x+

1

K12 + c̃2
x̃−2 x

−
1

x̃+
2 x

+
1

G12)|φ−ψβ̇2 Q̄+
1 〉

− εα̇β̇(c1
x−1
x+

1

L12 + c̃2
x̃−2 x

−
1

x̃+
2 x

+
1

H12)|φ−Q+
1 ψ̃

β̇
2 〉 .

This gives another pair of constraints on the coefficients,

A12 =
c1

c2

x+
2

x−2

x−1
x+

1

K12 +
c̃2

c2

x+
2

x−2

x̃−2 x
−
1

x̃+
2 x

+
1

G12 (P.1)

A12 =
c1

c̃1

x+
2

x−2

x̃+
1

x̃−1

x−1
x+

1

L12 +
c̃2

c̃1

x+
2

x−2

x̃+
1

x̃−1

x̃−2 x
−
1

x̃+
2 x

+
1

H12 (P.2)

Bosonic singlet: Determining B, C

To evaluate the B and C matrix elements, we have to study the scattering of

two bosons of opposite spins. Requiring [Q+
+, S] = 0 is sufficient to determine

them. From

Q+
+S12|Q+

1 Q̄
−
2 〉 = Q+

+[(
1

2
A12 +

1

2
B12)|Q+

2 Q̄
−
1 〉+ (

1

2
A12 −

1

2
B12)|Q−2 Q̄+

1 〉

+
1

2
C12(|ψ+

2 ψ̃
−
1 φ
−〉 − |ψ−2 ψ̃+

1 φ
−〉)]

= a2(
1

2
A12 +

1

2
B12)|ψ+

2 Q̄
−
1 〉+ ã1(

1

2
A12 −

1

2
B12)|Q−2 ψ̃+

1 〉

− b̃1
1

2
C12|ψ+

2 Q̄
−
1 φ

+φ−〉 − b2
1

2
C12|Q−2 φ̌+ψ̃+

1 φ
−〉

= a2(
1

2
A12 +

1

2
B12)|ψ+

2 Q̄
−
1 〉+ ã1(

1

2
A12 −

1

2
B12)|Q−2 ψ̃+

1 〉

− b̃1
1

2
C12|ψ+

2 Q̄
−
1 〉 − b2

1

2
C12

x̃−1
x̃+

1

|Q−2 ψ̃+
1 〉

S12Q+
+|Q+

1 Q̄
−
2 〉 = S12a1|ψ+

1 Q̄
−
2 〉

= a1[K12|ψ+
2 Q̄
−
1 〉+ L12|Q−2 ψ̃+

1 〉]
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we find

a2
A12 +B12

2
− b̃1

C12

2
= a1K12 (P.3)

ã1
A12 −B12

2
− b2

x̃−1
x̃+

1

C12

2
= a1L12 . (P.4)

We now turn to the scattering of fermions.

SU(1|2) Subsector: Determining D

As before, we first focus on the SU(1α̇|2I) sector and consider the scattering of

two fermions in the triplet of SU(2)α̇. This sector will enable us to determine

D. We look at the condition [SI+, S] = 0. From

SI+S12|ψ+
1 ψ̃

+
2 〉 = SI+D12|ψ+

2 ψ̃
+
1 〉

= D12d2|QI
2ψ̃

+
1 〉 −D12d̃1|ψ+

2 Q̄
I
1〉

S12SI+|ψ+
1 ψ

+
2 〉 = S12(d1|QI

1ψ̃
+
2 〉 − d̃2|ψ+

1 Q̄
I
2〉)

= (d1H12 − d̃2L12)|QI
2ψ̃

+
1 〉+ (d1G12 − d̃2K12)|ψ+

2 Q̄
I
1〉

we find

D12 =
d1

d2

H12 −
d̃2

d2

L12 (P.5)

D12 = −d1

d̃1

G12 +
d̃2

d̃1

K12. (P.6)

A consistent solution needs to satisfy both equations.
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Fermionic singlet: Determining E,F

To determine the remaining coefficients E and F , we scatter two fermions of

opposite spins. It is sufficient to require [S+
+ , S] = 0. From

S+
+S12|ψ+

1 ψ̃
−
2 〉 = S+

+ [(
1

2
D12 +

1

2
E12)|ψ+

2 ψ̃
−
1 〉+ (

1

2
D12 −

1

2
E12)|ψ−2 ψ̃+

1 〉

+
1

2
F12(|Q+

2 Q̄
−
1 φ

+〉 − |Q−2 Q̄+
1 φ

+〉)]

= d2(
1

2
D12 +

1

2
E12)|Q+

2 ψ̃
−
1 〉 − d̃1(

1

2
D12 −

1

2
E12)|ψ−2 Q̄+

1 〉

+
1

2
F12(c̃1|Q+

2 ψ̃
−
1 φ
−φ+〉 − c2|ψ−2 φ̌−Q̄+

1 φ
+〉)

=
1

2
(d2D12 + d2E12 + c̃1F12)|Q+

2 ψ̃
−
1 〉

+
1

2
(−d̃1D12 + d̃1E12 − c2

x̃+
1

x̃−1
F12)|ψ−2 Q̄+

1 〉

S12S+
+ |ψ+

1 ψ̃
−
2 〉 = S12d1|Q+

1 ψ̃
−
2 〉

= d1(G12|ψ−2 Q̄+
1 〉+H12|Q+

2 ψ̃
−
1 〉)

we find

d2
D12 + E12

2
+ c̃1

F12

2
= d1H12 (P.7)

−d̃1
D12 − E12

2
− c2

x̃+
1

x̃−1

F12

2
= d1G12. (P.8)

In summary, a sufficient set of linear equations that determine all the co-

efficients is:
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A12 =
a1

a2

K12 +
ã2

a2

G12 (P.9)

A12 =
a1

ã1

L12 +
ã2

ã1

H12.

A12 =
c1

c2

x+
2

x−2

x−1
x+

1

K12 +
c̃2

c2

x+
2

x−2

x̃−2 x
−
1

x̃+
2 x

+
1

G12

A12 =
c1

c̃1

x+
2

x−2

x̃+
1

x̃−1

x−1
x+

1

L12 +
c̃2

c̃1

x+
2

x−2

x̃+
1

x̃−1

x̃−2 x
−
1

x̃+
2 x

+
1

H12

a1K12 =
1

2
a2(A12 +B12)− 1

2
b̃1C12

a1L12 =
1

2
ã1(A12 −B12)− 1

2
b2
x̃−1
x̃+

1

C12

D12 =
d1

d2

H12 −
d̃2

d2

L12

D12 = −d1

d̃1

G12 +
d̃2

d̃1

K12

d1H12 =
1

2
d2(D12 + E12) +

1

2
c̃1F12

d1G12 = −1

2
d̃1(D12 − E12)− 1

2
c2
x̃+

1

x̃−1
F12 .
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