

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

A System for Invariant-Driven Transformations

A Dissertation Presented

by

Michael Gorbovitski

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

May 2011

Stony Brook University

The Graduate School

Michael Gorbovitski

We, the dissertation committee for the above candidate for
the degree of Doctor of Philosophy

hereby recommend the acceptance of this dissertation

Yanhong A. Liu — Dissertation Advisor
Professor, Computer Science, Stony Brook University

Scott Stoller — Chairperson of Defense
Professor, Computer Science, Stony Brook University

Rob Johnson — Committee Member
Assistant Professor, Computer Science, Stony Brook University

John Field — External Committee Member
IBM, Manager of the Advanced Programming Tools Group

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

A System for Invariant-Driven Transformations

by

Michael Gorbovitski

Doctor of Philosophy

in

Computer Science

Stony Brook University

2011

Transformation systems are important for program manipulations such
as optimization, instrumentation, and refactoring. Even though not always
stated explicitly, these transformations are always driven by invariants, such
as maintaining invariants for optimization, checking invariants for verification,
and so on.

This dissertation describes a system that allows coordinated transforma-
tions driven by invariants to be specified declaratively, as invariant rules, and
applied automatically. We specially describe our implementation for applying
invariant rules to Python and C programs, alias and type analyses developed
for applying invariant rules, and a method for composing and optimizing in-
variant rules. We also describe successful applications of the system in gen-
erating efficient implementations from clear and modular specifications, in in-
strumenting programs for runtime invariant checking, query-based debugging,
and profiling, and in code refactoring.

iii

Contents

1 Introduction 1
1.1 Invariant-driven program transformations 1
1.2 Invariant rules . 3

2 System for applying invariant rules 14
2.1 System architecture and overall algorithm 14
2.2 Parsing invariant rules and programs 16
2.3 Applying a single rule . 17

2.3.1 Metavariables . 19
2.3.2 Pattern matching for Python and C 20
2.3.3 Evaluation of conditions 23
2.3.4 Detecting updates to values that the query depends on 23
2.3.5 Instantiating patterns and inserting them into

Python and C programs 26
2.4 Incremental analysis for applying a set of rules 28

2.4.1 Data structure . 30
2.4.2 Experiments . 32

2.5 Related work . 32

3 Applications 34
3.1 Generating optimized implementations 34

3.1.1 Core RBAC . 36
3.1.2 Incrementalizing Core RBAC 40
3.1.3 Experiments . 42

3.2 Runtime invariant checking 45
3.2.1 Framework . 46
3.2.2 Generation of invariant rules 49
3.2.3 Experiments . 51

3.3 Query-based debugging . 59
3.3.1 Framework . 60
3.3.2 Experiments . 66

3.4 Other applications . 70

iv

3.5 Related work . 70

4 Alias analysis for update detection 74
4.1 Analysis . 78

4.1.1 Type and control flow analysis 78
4.1.2 Abstract interpretation 83
4.1.3 Alias analysis . 91

4.2 Experiments . 95
4.2.1 Effectiveness for optimization 95
4.2.2 Precision, memory usage, and running time 98
4.2.3 Effect of refinement on alias analysis 102
4.2.4 Prevalence of recursion, eval, and exec 106

4.3 Related work . 107

5 Composition of invariant rules 111
5.1 Extending InvTL for instrumentation 112
5.2 Instrumentation of BitTorrent 113
5.3 Decomposition and incrementalization 117
5.4 Composition . 119

5.4.1 Composition of rules 121
5.4.2 Optimization of composed invariant rules 122
5.4.3 Composing instrumentation rules with invariant rules . 126

5.5 Experiments . 128
5.5.1 BitTorrent . 128
5.5.2 NetFlow . 130
5.5.3 Constrained RBAC . 132

5.6 Related work . 135

6 Conclusion 139

Bibliography 141

v

Acknowledgments

First, I would like to thank my advisor, Prof. Annie Liu, for directing and
guiding me in the pursuit of my doctorate of philosophy, for giving me ideas,
helping with implementation, guiding and helping me with writing, and most
importantly, for letting me not give up.

I would further like to thank Prof. Scott Stoller, Prof. Rob Johnson, and
Dr. John Field for their interest in this work and for serving on my dissertation
committee, and to separately thank Prof. R. Sekar for his feedback on this
dissertation.

In addition, I would like to thank Prof. Stoller, a frequent collaborator
on the work that composes this dissertation, for the clarity of thoughts he
introduced during the process of publishing some results that this dissertation
consists of, which greatly helped me in the formulation of this entire work;
his comments on writing were a fundamental help in the presentation of this
work.

I would like to greatly thank the members of the DAR lab for helping
this work take its shape. Tom Rothamel, Tuncay Tekle, Katia Hristova, Yury
Puzis, Eugene Borodin, Jon Brandvein, and Bo Lin — thank you! You helped,
by collaborating with me outright on parts or all of this work, by offering
support, and by giving useful advice.

Chapter 1

Introduction

1.1 Invariant-driven program transformations

Transformation systems are important for program manipulations such as op-
timization, instrumentation, and refactoring. Even though not always stated
explicitly, these transformations are commonly driven by invariants, such as
maintaining them for optimization, checking them for verification, and so on.
Generally, we use the term invariant to refer to the equality of the results of
two expressions that holds during program execution.

For example, for optimization, to quickly return the size of a collection of
data, at all program points where elements are added or removed, we must
add code that updates the variable that holds the size of the collection; the
invariant is that the value of the variable equals the size of the collection.
For another example, for instrumentation, to check that memory is managed
correctly, at any program point where a reference is added to or removed from
an object, we can insert code that checks whether the variable that holds the
reference count of the object is incremented or decremented appropriately, and
if not, prints an error message and stops the program; the invariant is that
either the variable equals the number of references or the error message is
printed and the program is stopped. For yet another example, for refactoring,
for any code fragment that is the same as the body of a given method modulo
a substitution for the parameters of the method, we can replace the code
fragment with a call to the given method with arguments obtained from the
substitution; the invariant is that each call to the method is equivalent to the
corresponding replaced code fragment.

Maintaining or checking such invariants by hand is very tedious and error-
prone due to the fact that the statements that update the values the invariant
depends on are scattered throughout the program. This introduces two prob-
lems: (1) it increases the difficulty of maintaining the program by scattering
the code that maintains or checks the invariant throughout the program, and

1

(2) it makes it easy to miss an update to some value the invariant depends on.
A solution to the first problem is to use a program transformation system

so that the code that maintains or checks the invariant is written in one spot,
and then distributed to the appropriate scattered updates in the program au-
tomatically. There is a vast amount of research on program transformation
languages and a vast number of program transformation systems exist, as de-
scribed in a number of surveys, e.g., [81, 105], and collected on the web [101].
Eminent systems include, e.g., APTS [80], KIDS [93], CIP [13], and Strat-
ego [14].

Except for APTS, all these systems still suffer from the second problem:
the transformation writer still has to painstakingly make sure that he does not
miss a single type of update. APTS, unfortunately, only applies to a simple
language with set expressions and statements in straight-line code.

We solve both of these problems by creating a program transformation
system that detects all statements that potentially update a given invariant
and makes sure that the program transformation being applied to maintain
or check the invariant either handles all such updates, or is not applied at all
— we call this performing an invariant-driven program transformation in a
coordinated manner.

This dissertation describes:

• A program transformation language (InvTL) that allows for the declar-
ative specification of coordinated transformations driven by invariants,
called invariant rules. The language also allows explicit specification
of cost considerations. It was initially developed by us in [73], further
refined in [71], and almost reached its current state in [72].

• A program transformation system (InvTS) that automatically applies
invariant rules to Python and C programs in a coordinated manner.

• The static analyses required for applying an invariant rule in a coordi-
nated manner. This includes algorithms for control flow graph genera-
tion and type analysis of Python programs and flow- and trace-sensitive
alias analysis for dynamic languages. These were initially described in
[42, 43], and further developed in [41].

• Applications that use InvTS, including generating efficient implementa-
tions from clear and modular specifications [73, 71], runtime invariant
checking [42], query-based debugging [43], instrumentation for detection
of error-prone peers in BitTorrent, as well as code refactoring during
the implementation of InvTS. We describe experiments showing the ef-
ficiency and effectiveness of InvTS for these applications.

2

• A method for composing invariant rules that makes the overall effects
of the composed invariant rules clearer and easier to understand, allows
optimizations of the composed rules, and allows overall faster application
of composed invariant rules compared with applying smaller transforma-
tions rules separately. This method was developed in [40].

1.2 Invariant rules

An invariant rule declaratively specifies that an invariant holds if all updates
to the values that the invariant depends on are certain kinds of updates, and
the corresponding maintenance work is performed at each update. It can
also specify additional conditions on the query and updates, and additional
declarations needed for the maintenance.

For example, the rule in Figure 1.1 expresses that, to maintain the invariant
that r equals the size of set s when every update that may affect the size of s is
assigning s a new empty set, adding an element x to s, or removing an element
x from s, the respective maintenance is assigning r the value 0, incrementing
r by 1 if x is not in s before the addition, or decrementing r by 1 if x is in
s before the removal; the cost of the original query is linear in the size of s,
and the cost of each update and maintenance is asymptotically the same as
the cost of evaluating x, denoted cost(x), assuming that the set operations
used in the rule take constant time. Thus, the linear-time size query can be

inv r = s.size() O(|s|)

at s = new set() O(1)
do r = 0 O(1)

at s.add(x) O(cost(x))
do before

if not s.contains(x):
r = r+1

O(cost(x))

at s.del(x) O(cost(x))
do before

if s.contains(x):
r = r-1

O(cost(x))

Figure 1.1: An invariant rule for set size.

replaced by a constant-time retrieval from r at no extra asymptotic cost in
maintenance, regardless of the frequencies of queries and updates.

Expressing coordinated incremental maintenance of invariants using invari-
ant rules is high-level and declarative, making the transformations easier to

3

understand, use, extend, and verify. The semantics of the rules encapsulates
many low-level, procedural details. For example, all updates to the parameters
of a query must be detected, one way or another, even in the presence of object
aliasing, and maintenance must be performed at all updates. This contrasts
with traditional use of individual rewrite rules with programmed strategies for
tree walking, program analysis, and rule applications.

Invariant rules can be put in a library and reused from application to ap-
plication, as opposed to being re-discovered and manually embedded in scat-
tered places in each application program. While it may be extremely difficult
to manually maintain multiple scattered invariants under many scattered up-
dates correctly, doing so by automatically applying a library of invariant rules
is easy.

Core form of invariant rules. The core form of an invariant rule is:

inv r = query

(at update

do maint)+
(1.1)

where query , update , and maint are patterns for matching queries, updates,
and maintenance operations, respectively. The “+” indicates that there may
be one or more instances of the clause.

The semantics of an invariant rule is: if a query in a program matches the
query pattern, and every update to the parameters of the query in the program
matches at least one of the update patterns, then a fresh variable instantiating
r is declared in the program, occurrences of the query are replaced with uses
of that variable, and at every update to the parameters of the query, the
maintenance corresponding to the matching update patterns is inserted. Note
that if a rule does not handle some updates to the parameters of a query in
a program, then the rule does not apply to the query and its updates. We
say that a rule preserves the invariant r = query , if (1) r = query holds after
initialization of r and (2) for each pair of update and maint , if r = query

holds, then it still holds immediately after execution of update and maint , for
all instances of query , update , and maint . (We do not consider concurrency
here.) It is easy to see that preserving an invariant is a property that can be
checked individually for each rule.

In the core form above, the maintenance work corresponding to an update
can be done either before or after the update; this is correct if the maintenance
code does not use the values of the variables assigned to by the update. To
accommodate maintenance code that uses the values of those variables, the

4

do-clause may have the form:

do maint?
(before maint1)?
(after maint2)?

(1.2)

where maint can be done either before or after the update, maint1 must be
done before, and maint2 must be done after. A “?” after a clause indicates
that the clause may be omitted. We allow a do-clause to be omitted if no
maintenance needs to be done at an update.

To facilitate cost consideration, an invariant rule may specify the costs of
the query, updates, and maintenance, by including a cost annotation of the
following form after each of them:

cost cost (1.3)

We use asymptotic running time as the cost model, and we assume that stan-
dard hashing is used for set and map operations. Other cost models that
consider running time with constant factors, space usage, etc. could also be
used. For ease of reading, we omit the keyword cost and align the costs to
the right.

For example, the invariant rule in Figure 1.1 has the core form.

Metavariables and metafunctions. Variables in the rules in italic font
are metavariables.

An unbound metavariable in a query or update pattern may match any
program syntax element such that its value matches all further occurrences
of that metavariable in the pattern. How matching is performed is subject-
language specific, and is described in detail in Chapter 2, Section 2.3.1.

For example, in the rule for set size in Figure 1.1, s and x are metavari-
ables in the query and update patterns; s = new set() restricts s to match
an lvalue, and s.add(x) restricts x to match an expression. Other parts of
patterns that are displayed in teletype font match program text exactly.

The scope of a metavariable in the query pattern is the entire rule, called
query scope. The scope of a metavariable that appears in an update pattern
but not in the query pattern is the update clause and the corresponding main-
tenance clause, called update scope. When matching occurrences of a name in
the program, the scoping rules of the program being transformed are followed.
Our implementation of these scoping rules is described in Chapter 2, Section
2.3.1.

Metavariables not in the query and update patterns, including r, denote
distinct names not used for other purposes in the program being transformed
in the scopes of these names. Such a name can be introduced in any scope

5

that contains all uses of the name in maintenance, but for program clarity and
modularity, by default, it is introduced in the smallest of these scopes. In par-
ticular, if the query and all updates and maintenance are in the same method,
then r is instantiated with a new local variable of that method; otherwise, r
is instantiated with a new field of the class that contains the query.

Finally, functions may be used in rules to help specify application condi-
tions and form new program text, as discussed in the following subsections.
They are called metafunctions and are displayed in normal font.

For Python, we define, among others, the following metafunctions:

class(expr) returns the enclosing class
of expr

type(expr) returns the type of expr
isvar (expr) returns true iff expr is a

variable
cost (expr) returns an expression that

evaluates to the cost of
expr, if given freq data

update(expr) returns true if the current
at clause updates expr

alias(var1, var2) returns true if var1 is
aliased to var2

Conditions on query and updates. Conditions that must be satisfied by
a query or an update matched by the inv-clause or an at-clause of a rule
can be specified by an if-clause of the following form immediately after the
inv-clause or at-clause, respectively:

ifcondition+ (1.4)

where condition is a boolean Python expression that can involve metavariables
and metafunctions.

For example, a rule may maintain the size of a set only if elements of the set
are of a certain type, or if the query is in a certain class. This condition involves
only the matched query, and may be specified in an if-clause immediately after
the inv-clause. For another example, a rule may maintain the size of a set
only if all updates to the set appear in the same class as the query. This
condition involves also matched updates, and may be specified in an if-clause
immediately after each at-clause.

Conditions may use metavariables bound in the query and update patterns.
For convenience, the special metavariable query refers to the matched query,
and the special metavariable update under an at-clause refers to the matched
update.

6

Conditions may also use metafunctions that provide syntactic and se-
mantic information from program analysis; the metafunctions available are
subject-language specific. In particular, metafunction alias(x, y), which re-
turns whether x and y may alias each other, is used in detecting all updates
that may affect a query result. It may also be used explicitly in conditions. It
can be computed using the analysis in Chapter 4.

During rule application, the condition must evaluate to either true, false,
or a boolean subject language expression that depends on metavariables and
aliasing information about them, and that can be evaluated to true or false
at runtime.

The if clause affects rule application differently depending on whether it
is in query or update scope.

In query scope, i.e., guarding the inv clause, if the value of the if ex-
pression is either false or known only at runtime, the invariant rule is not
applied. The rule is not applied because we maintain the value of a query
in the face of all updates to the data it depends on, and if at some point at
runtime the if condition evaluates to false, this means that the query should
not be maintained at that point, even if the subject program updates the data
the it depends on. This makes the maintained query result inconsistent. Thus,
if we cannot determine at compile-time whether we maintain the query result
or not, we assume we do not maintain it.

In update scope, i.e., guarding a particular at clause, if the value of the
if expression is true or known only at runtime, we do apply the particular
de and do clauses associated with the at clause, and surround the code inserted
by the do clause with a guard that checks at runtime whether the if expression
is actually true. In the cases where the value of the if metaexpression can
be determined at compile-time to be true, the guard can be removed.

Declarations. An invariant rule may specify declarations needed for main-
tenance. Declarations used by maintenance under multiple at-clauses or a
single at-clause may be specified by a de-clause of the following form after the
inv-clause or the corresponding at-clause, respectively:

(de ((in scope :)? declaration+)+)∗ (1.5)

where scope is a scope expression, defined below, in the invariant rule lan-
guage that evaluates to a scope in the program being transformed, and each
declaration is a declaration in the language of the program being transformed
and may contain metavariables and metafunctions.

For example, a rule for maintaining set size may declare r to be a field in the
class that contains the set size query in a de-clause after the inv-clause. For
another example, a rule for maintaining the minimum of a set under element
addition and deletion may declare a heap data structure in a de-clause after

7

the inv-clause, and may use a de-clause after an at-clause to declare local
variables used only within the maintenance code under that at-clause.

A scope expression has the form (kind loc)+, or global, where kind is
function, method, class, package, or file, and loc is a Python expression
augmented with metavariables and metafunctions; loc must evaluate at com-
pile time to the name or unique identifier of a method, class, package, or file.
For transforming programs in a given language, only the kinds allowed in that
language may be used. An omitted kind uses as the default value the scope
of the query or update pattern in the inv- or at- clause preceding the de-
clause. For example, rules for transforming Python programs may use the
scope expression

class myset method add

to indicate that local variables should be declared in method add of class myset
of the default package. Specification of the scope for a list of declarations is
optional. Recall that, by default, the smallest suitable scope is used.

If the variable, field, function, method, class, or package name in a de-
clause is a metavariable not used in the query and update patterns, it denotes
a distinct name not used for other purposes in the given program. Variables
declared with global scope may be read and written from everywhere in the
program; the implementation depends on the language of the program being
transformed. Note that multiple maintenance clauses, and even multiple rules,
may refer to the same declarations simply by using program text without meta-
variables.

In examples, we assume the language being transformed uses declarations
of the form name : type . For example, to declare r of type int to be global,
one may specify

de in global : r: int

and to declare r of type int in the class that contains the set size query, one
may specify

de in class class(query) : r: int

where metafunction class(p) returns the enclosing class of the program syntax
element p.

General form of invariant rules. In general, work can also be done at the
query to help with incremental maintenance. Such work can be specified as a
do-clause below the inv-clause. For example, to incrementally maintain the
average of a set of numbers, one may incrementally maintain the sum and the
count, and do a division right before the query, instead of doing the division
immediately after the maintenance of sum and count.

We also allow the inv-clause to specify an equality between any two pro-
gram syntax elements, not just a variable and a query expression. This is

8

inv result = query

(if condition+)?
(de ((in scope :)? declaration+)+)∗
(do maint? (before maint)? (after maint)?)?
(at update

(if condition+)?
(de ((in scope :)? declaration+)+)∗
(do maint? (before maint)? (after maint)?

(instead maint)?)?)+

(1.6)

Figure 1.2: General form of an invariant rule.

convenient, for example, if a query result is stored in a part of a data structure
instead of a variable: the invariant may equate an expression that retrieves
the query result with the query.

Finally, in the do-clause after an at-clause, the keyword instead can be
used to indicate that an update matched by the update pattern should be
replaced with the maintenance. This is useful when the update needs to be
transformed. For example, the rule in Figure 1.1 has a problem: x can match
any expression, not only a variable, and that expression will be evaluated both
in the original call to add or del and in the maintenance; this is incorrect if
x has side-effects. We can fix this problem, and reduce the maintenance cost
to O(1), by either adding a condition restricting x to match only variables,
or replacing the do-clause under add with the following and changing the do-
clause under del similarly:

do instead
v = x
if not s.contains(v):

r = r+1
s.add(v)

In summary, the general form of an invariant rule is given in Figure 1.2,
where query , result , update , declaration, and maint are program text in the
language of the program being transformed, except that they may contain
metavariables and metafunctions; and condition and scope are a Boolean ex-
pression and a scope expression, respectively, in the invariant rule language.
Cost may be specified for query , result , and each update and maint . We
indicate metavariables with italic font, indicate metafunctions with normal
font, and indicate program text with teletype font. When using pure tele-
type font, we indicate metavariables and metafunctions with a preceding “$”,
and indicate program text, possibly containing metavariables and metafunc-
tions, with a pair of curly braces following a language indicator, for example

9

py{$s.size()} for program text in Python containing the metavariable $s.

When to apply invariant rules. An invariant rule applies if (1) a compu-
tation in the program matches the query pattern, and the conditions after the
inv-clause hold, (2) every update to the parameters of the query matches at
least one update pattern, and the conditions after that at-clause hold, and (3)
for optimization, the following cost condition holds for each matched update u,
where costq and freqq, costu and frequ, and mcostu are the cost and frequency
for the matched query q, the cost and frequency for update u, and the cost of
the maintenance associated with update u, respectively:

mcostu ≤ costu or
∑

u where mcostu>costu
mcostu × frequ ≤ costq × freqq

If frequency information is not available from analysis or profiling, the second
disjunct can safely be ignored. If cost cannot be computed due to the elements
of the cost expression being unknown, we assume the transformation will not
increase the actual cost.

Examples of invariant rules. We give examples that show different usages
of invariant rules and discuss developing and verifying invariant rules.

Incrementally maintaining join queries The rule in Figure 1.3 main-
tains the result of the query

{r: r in ROLES | (s,r) in SR, ((op,o),r) in PR}

under initialization and element addition and deletion for sets ROLES, SR, and
PR. Given these sets and the values of s, op, and o, the query includes a
role r from ROLES in the result set if the session-role pair (s,r) is in SR,
and the permission-role pair ((op,o),r), where an operation-object pair is
called a permission, is in PR. The query is used for the CheckAccess(s,op,o)
operation in RBAC [3]. Its incremental maintenance was presented in pieces
previously [71] without an expressive invariant rule language. CheckAccess is
the most frequently used and most time critical operation in RBAC.

The incremental maintenance uses a map MapSP2R that maps any given
values of s, op, and o to the desired set of roles. The inv-clause says to retrieve
the query result from the map using MapSP2R[(s,op,o]), and it takes O(1)
time. Two additional maps are maintained: SRMapR2S is the inverse map of
SR, and PRMapR2P is the inverse map of PR.

In the cost annotations, SR21 denotes the maximum number of elements in
the first component of SR for any element in the second component of SR, and
similarly for PR21. Applying this rule allows the query to be done in minimum
time, at the expense of more expensive updates.

10

inv MapSP2R[(s,op,o)] =
{r: r in ROLES | (s,r) in SR, ((op,o),r) in PR}

O(1)

O(|ROLES|)

at ROLES = new set() O(1)
do MapSP2R = new map() O(1)

at SR = new set() O(1)
do MapSP2R = new map()

SRMapR2S = new map()

O(1)

at PR = new set() O(1)
do MapSP2R = new map()

PRMapR2P = new map()

O(1)

at ROLES.add(r) O(1)
do for s in SRMapR2S[r]:

for (op,o) in PRMapR2P[r]:

if not MapSP2R[(s,op,o)].contains(r):

MapSP2R[(s,op,o)].add(r)

O(SR21*PR21)

at SR.add((s,r)) O(1)
do if ROLES.contains(r):

for (op,o) in PRMapR2P[r]:

if not MapSP2R[(s,op,o)].contains(r):

MapSP2R[(s,op,o)].add(r)

SRMapR2S[r].add(s)

O(PR21)

at PR.add(((op,o),r)) O(1)
do if ROLES.contains(r):

for s in SRMapR2S[r]:

if not MapSP2R[(s,op,o)].contains(r):

MapSP2R[(s,op,o)].add(r)

PRMapR2P[r].add((op,o))

O(SR21)

...//deletion is the same as addition, except
//without not in conditions and with add replaced by del

Figure 1.3: An invariant rule for a join query.

Profiling for frequency analysis. We describe how to automatically ex-
tend any invariant rule to generate instrumentation for profiling the frequencies
of queries and updates, which helps justify incremental maintenance of the in-
variant. The extension has three steps: (1) under the inv-clause, declare a
method inccount, from the package invtslog, that takes two parameters—
the location of the query and null when a query is matched, and the locations

11

of the corresponding query and the update when an update is matched—and
counts the number of executions of each query and of each update for each
query, (2) under the inv-clause, insert into the do-clause (creating the do-
clause first if it does not exist) the call invtslog.inccount(loc(query),
null), where metafunction loc(p) returns the unique location of the program
syntax element p, and (3) under each at-clause, insert into the do-clause (cre-
ating the do-clause first if it does not exist) the call invtslog.inccount(
loc(query), loc(update)).

For example, the invariant rule in Figure 1.1 is transformed into the rule
in Figure 1.4.

inv r = s.size() O(|s|)
de in package invtslog:

inccount(query,update):

... //increment count of query-update pair
do invtslog.inccount(loc(query), null)

at s = new set() O(1)
do ...//as before

invtslog.inccount(loc(query), loc(update))
O(1)

at s.add(x) O(cost(x))
do ...//as before

invtslog.inccount(loc(query), loc(update))
O(cost(x))

at s.del(x) O(cost(x))
do ...//as before

invtslog.inccount(loc(query), loc(update))
O(cost(x))

Figure 1.4: An invariant rule for profiling set size and updates.

Refactoring. As a small example of refactoring, the invariant rule in Fig-
ure 1.5 renames a variable from old to new if the declaration of old is at
a specified location, where metafunction decl(x) returns the program syntax
element that declares x. The renaming respects scoping rules automatically.
Conceptually, the rule matches all updates using update and does nothing at
all of them, since no update affects the invariant. An efficient implementation
simply omits matching updates.

inv new = old

if loc(decl(old)) = ...//some specific location
at update

Figure 1.5: An invariant rule for variable renaming.

12

The rest of the dissertation is structured as follows: Chapter 2 describes
how InvTS is implemented and how it applies invariant rules to subject pro-
grams. Chapter 3 describes various applications of InvTS, including generat-
ing efficient implementations from clear and modular specifications [73, 71],
runtime invariant checking [42], query-based debugging [43], as well as code
refactoring during the implementation of InvTS. Chapter 4 describes the type
and may-alias analyses required to find updates that effect a given invariant.
Chapter 5 describes a systematic method for composing invariant rules, and for
optimizing the composed rules. Each of these chapters includes descriptions of
relevant related work, and, if relevant, experiments showing the effectiveness
of the method described.

13

Chapter 2

System for applying invariant
rules

InvTS is a program transformation system that takes a transformation specifi-
cation, written as a set of invariant rules, and produces a transformed program
according to the transformation specification.

This chapter presents the architecture of InvTS, the overall algorithm of
how InvTS applies a set of invariant rules to the program to be transformed
— the subject program, how InvTS performs incremental analysis to more
efficiently apply a set of invariant rules, and experimental results. The chapter
concludes by discussing related work on program transformation systems.

Applying a set of invariant rules includes parsing the invariant rules and
programs, choosing which rules to apply when, and applying a single invariant
rule with pattern matching and replacement.

2.1 System architecture and overall algorithm

InvTS architecture. InvTS is written in Python, and consists of (1) a core
that provides subject-language independent services, including invariant rule
parsing, the algorithm that transforms the subject program according to the
parsed invariant rules, utilities, persistent storage, and (2) subject-language
dependent language modules, called LMs, that provide pattern-matching and
replacement, static analysis, subject language parsing, etc. The Python lan-
guage module is fully implemented — the only unsupported clause is cost —
and is written completely in Python. The C language module is experimental,
is mostly written in Python, but uses two C/C++ components: (1) the elsa

C++ [75] parser, and (2) the GCC plugin architecture developed by Callanan
et al. [15], and an InvTS-specific GCC plugin, developed by Callanan and Gor-
bovitski. These are used for performing pattern matching and abstract syntax
tree transformations of C programs.

14

The architecture of InvTS is shown in Figure 2.1.

InvTS core

Invariant rule

parser

Rule

application

engine

Tuple store
Disk-based

cache

Python LM

Extended Python parser

Python CFG generator

and type analyzer

Python alias analyzer

Python pattern matcher

Python AST manipulator

AST to Python converter

C LM

GCC plugin

Extended ELSA C parser

C pattern to

GIMPLE pattern compiler

GIMPLE pattern matcher

GIMPLE AST manipulator

GIMPLE AST to C converter

C alias analyzer

Figure 2.1: Architecture of InvTS.

The parsers, i.e., the invariant rule parser, the extended Python parser that
supports metavariables and metafunctions, and the extended C parser that
supports metavariables and metafunctions, are responsible for both loading
and parsing invariant rules and Python and C programs. They are described
in Section 2.2.

The rule application engine is responsible for applying a set of rules as
described in the overall algorithm in Figure 2.2. The algorithm it uses to
apply a single rule is described in Section 2.3.

The tuple store stores intermediate program analysis results in a manner
that allows for incremental program analysis when applying a set of rules. It
is described in Section 2.4.1.

The disk-based cache stores parsed rules, intermediate results of applying
rules, and alias analysis results. It is described in Section 2.4.

The control-flow graph generation, type analysis, and alias analysis for

15

Python, and the alias analysis for C are responsible for the corresponding
static analyses. They are described in Chapter 4.

The pattern matchers match query and update patterns, and are described
in Section 2.3.2; how the AST is manipulated in transforming the subject
program is described in Section 2.3.5.

1. Parse the given invariant rules and subject program:

(a) Parse the invariant rule file using the invariant rule parser, as de-
scribed in Section 2.2, and store the parsed rules in ruleset.

(b) Parse the subject program file using the standard parser for the
subject language, as described in Section 2.2, and store the parsed
program in P .

2. Apply ruleset to P :

(a) Initialize workset to ruleset.

(b) If workset is not empty, pick any rule R from workset, and:

i. remove R from workset,

ii. clone P to Pclone,

iii. apply R to P , as described in detail in Section 2.3; this succeeds
if R’s query pattern matches some query in P , all updates to
the query match some ofR’s update patterns, and the condition
specified in R’s if clause is satisfied;

iv. if step iii succeeds, go to step 2(a); otherwise, replace P with
Pclone and go to step 2(b).

3. Output P .

Figure 2.2: Overall rule application engine algorithm.

2.2 Parsing invariant rules and programs

Invariant rules are read in and parsed by the TPG parser generator [26] mod-
ified to handle patterns by using a custom lexer provided by the appropriate
LM. Instead of first lexing the entire input and then parsing it, we lex only
one token ahead of the parser. The custom lexer lexes the entire invariant rule
file in a standard manner, except when it encounters a language indicator (py
for Python, C for C) followed by an opening curly brace. In that case, starting

16

from after the opening curly brace, it consumes the longest string that is a
valid program string extended with metavariables and metafunctions in the
language indicated by the language indicator, and ends on the closing curly
brace. This consumed string, which is used as a pattern, is then returned to
the parser.

After the invariant rule file is parsed using TPG, all returned patterns are
parsed by a more sophisticated but slower parser that produces an internal rep-
resentation. This representation is used for either matching patterns against
the program to be transformed, or for instantiating patterns. In the Python
LM, this is a modified compiler module from the Python standard library. In
the C LM, this is a modified elsa C++ parser. In both cases, the modifica-
tions allow the parsing of the subject language extended with metavariables
and metafunctions.

For efficiency, after the rules are parsed into the internal representation,
they are reordered as follows: a rule r1 is placed before a rule r2 if applying r1
can make r2 applicable, i.e., the patterns of the de or do clauses in r1 contain
code that matches the query or update patterns in r2, and not vice versa.
Other than these heuristics, we preserve the order of the rules given to us.

Parsing programs. InvTS uses the built-in Python parser to load Python
programs and convert them to abstract syntax trees (ASTs).

InvTS uses the built-in GCC parser to parse C programs and convert them
to GIMPLE, an intermediate representation of C that GCC uses internally.
InvTS uses a GCC plugin to export the GIMPLE representation from GCC
to InvTS.

2.3 Applying a single rule

InvTS tries to apply, and applies, a single rule R to program P using the
following algorithm:

1. Find an AST node in P that matches R’s query pattern and has not
matched any patterns in R before; if no match is found, then R is
not applied. Pattern-matching is described in Section 2.3.2. As part
of pattern-matching, bind the metavariables in the inv clause to the
matched AST nodes, and bind the metavariable $query to the AST node
of the matched query. Metavariable scoping and binding are described
in Section 2.3.1.

2. Evaluate the condition in the if clause under the inv clause statically.
It does not evaluate to true, R is not applied. Evaluating conditions is
described in Section 2.3.3.

17

3. For each de clause under the inv clause, insert the clause’s instantiated
pattern into P in the scope specified in the de clause. If the pattern
cannot be instantiated or the specified scope cannot be found, then R is
not applied. Instantiating patterns is described in Section 2.3.5.

4. Insert the instantiated patterns in the do before, respectively do after,
clauses under the inv clause into P immediately before, respectively af-
ter, the match from step 1. If the pattern cannot be instantiated, then
R is not applied.

5. Using control-flow and may-alias analysis, determine all statements and
expressions in P that may update the variables that are in the matched
query from step 1. Section 2.3.4 describes how this is done.

6. For each update, u, determined in step 5, apply an at clause to u in the
following manner:

(a) Find an at clause, a, whose pattern is matched by u, and that InvTS
has not yet tried to apply to u. If no such clause is found, then R
is not applied. As part of the pattern-matching, bind all unbound
metavariables that occur in a to the AST nodes they matched, and
bind $update to the AST node of the update u.

(b) Evaluate the condition in the if clause under the at clause stati-
cally, making use of control-flow and may-alias information. If the
condition (including alias condition) evaluates to true, proceed to
step 6(c). If the alias condition cannot be evaluated precisely at
compile-time, insert code to check at runtime whether the alias
condition holds, and then proceed to step 6(c). Otherwise, find
another at clause to apply, i.e., go back to step 6(a).

(c) For each de clause under the at clause, insert the de-clause’s instan-
tiated pattern into P in the specified scope. If the pattern cannot
be instantiated or the specified scope cannot be found, find another
at clause to apply, i.e., go back to step 6(a).

(d) Insert the instantiated pattern in the do before, respectively do

after, clause under the at clause into P immediately before, re-
spectively after, u. For the do instead clause under the at clause,
replace u with do instead clause’s instantiated pattern. If the pat-
tern cannot be instantiated or the instantiated pattern cannot be
inserted into the subject program, find another at clause to apply,
i.e., go back to step 6(a).

18

2.3.1 Metavariables

Metavariables augment concrete syntax to match, move around, and construct
new AST nodes from existing AST nodes. In patterns, metavariables are
indicated with a preceding $ sign.

Scoping. The rules for scoping metavariables appearing in difference clauses
are (for brevity, we refer to any of do, do before, do instead, and do after as
do):

• The scope of a metavariable that first appears in the query pattern is
the entire rule, called query scope.

• The scope of a metavariable that first appears in any de clause of the
query is all de clauses of the query, and all following clauses of the rule.

• The scope of a metavariable that first appears in any do clause of the
query is all do clauses of the query, and all update clauses of the rule.

• The scope of a metavariable that first appears in an update pattern is
that update clause and the corresponding if, de, and do clauses, called
update scope.

• The scope of a metavariable that first appears in any de clause of the
update is all de and do clauses of that update.

• The scope of a metavariable that first appears in any do clause of the
update is all do clauses of the update.

Binding. A metavariable becomes bound in one of three ways:

1. If it is in a query or update pattern, in an inv or at clause, that matches
an AST node, then the metavariable is bound to the matched AST node.

2. If it is in a declaration or maintenance code pattern, in a de or do clause,
then a fresh variable is created, and the metavariable is bound to the
AST node for the variable. The fresh variable is created in the smallest
scope possible, i.e., if the do clause is to add code inside a function, the
fresh variable is local to that function; if the de clause is to add a field
to a class or a variable to the global namespace, respectively, the fresh
variable is a field in that class or a variable in the global namespace,
respectively.

3. Metavariables $query and $update are special, and are bound to the
AST nodes that match the query and update patterns, in enclosing
inv and at clauses, respectively.

19

Once bound, a metavariable can be used in any clause in which the variable
is in scope.

2.3.2 Pattern matching for Python and C

Python and C programs are matched against patterns in the inv and at clauses
of invariant rules.

The InvTS core does not define how pattern matching should be imple-
mented. It is the responsibility of the language module to implement pattern
matching for a subject language.

Matching Python patterns

A pattern is a sequence consisting of four kinds of elements: (1) Python code,
(2) bound metavariables, (3) unbound metavariables, and (4) metafunctions.

We restrict patterns used for matching Python code to patterns consist-
ing of (1), (2), and (3) — in the current implementation, metafunctions are
disallowed.

Literal Python code. Matching literal Python code is simple: convert the
literal Python code to an abstract syntax tree (AST), and compare this AST
with all subtrees of the subject program AST. We use the standard algorithm
by Yang [111] to do AST matching in O(n × k) time where n and k are the
sizes of the program AST and the pattern AST, respectively.

Unbound metavariables. What does it mean to match an unbound metavari-
able? Let us illustrate with an example: consider the pattern f($v) on the
left of Figure 2.3, and the Python program fragment f(x) g(y) on the right.

$v

params

f

f($v)

Pattern

x

params

f

y

params

g

module

f(x)

g(y)

(1) Textual

x

params

f

y

params

g

module

f(x)

g(y)

(2) Strict subtree

Figure 2.3: Textual vs. strict subtree pattern matching. Match is underlined.

20

It is clear that we want to match f(x), binding $v to x. This rules out
longest string matching, as it would bind $v to all the dark-grey parts of Fig-
ure 2.3(1), which is counter-intuitive. We may first consider that an unbound
metavariable is bound to only a complete subtree of the AST — strict subtree
matching. The results of strict subtree matching are shown in Figure 2.3(2):
$v is bound to the parameters of f, which is what we wanted to accomplish.

Unfortunately, strict subtree matching has a drawback. Assume that we
have the pattern f(a,$v) in Figure 2.4 on the left, and the Python expression
f(a,b,c) in Figure 2.4 on the right. We would like to bind $v to b,c. As can
be seen from Figure 2.4(1), there is no complete subtree that contains only
b,c, and thus the pattern would not match anything. We rectify the problem

a $v

params

f

f(a,$v)

Pattern

a b c

params

f

f(a, b,c)

(1) Strict subtree

a b c

params

f

f(a, b,c)

(2) Seq+subtree

Figure 2.4: Strict vs. seq+subtree pattern matching. Match is underlined.

by allowing a metavariable to bind to either a complete subtree or a set of
complete subtrees that is a consecutive sequence of children of an AST node.
We call this seq+subtree matching. Figure 2.4(2) shows the result.

Unfortunately, even seq+subtree matching is not sufficient. Figure 2.5
shows it cannot bind $v to b.c in matching the pattern a.$v with expression
a.b.c. To resolve this, we allow a metavariable to match not only a complete
subtree, but also a complete subtree with up to one leaf node excluded and
up to one node already matched by the non-metavariable part of the pattern.
We call this op+seq+subtree matching. Figure 2.5(2) shows the result, with
the light-shaded node (a) being excluded and the small dark-shaded node (.)
matched by both a. and $v.

An unbound metavariable matched by a complete subtree becomes bound
to the subtree. A metavariable matched to sequence of complete subtrees
that are all children of a single AST node becomes bound to the sequence. A
metavariable matched by a complete subtree with up to one leaf node excluded
and up to one node already matched by the non-metavariable part of the
pattern becomes bound to the complete subtree, with the excluded node tagged
as missing, and the double-matched node tagged as replacable.

21

a $v

.

a. $v

Pattern

a b

. c

.

a. b.c

(1) Seq+subtree

a b

. c

.

a. b.c

(2) Op+seq+subtree

Figure 2.5: Seq+subtree vs. op+seq+subtree pattern matching. Match is
underlined.

Bound metavariables. Pattern-matching a metavariable bound to a com-
plete subtree with no nodes tagged is straightforward: replace the metavariable
with the AST subtree it is bound to, reducing the match to a literal Python
code match. Pattern-matching a metavariable bound to a subtree with a node
tagged as missing or replaceable is done by treating that node as a phantom
unbound metavariable that can only be matched using subtree matching.

Pattern-matching algorithm. We use a subtree-pattern-matching algo-
rithm that supports wildcards, backreferences, and predicates [22]. It takes
expected time O(n2×k), where n and k are the number of nodes in the program
AST and pattern AST, respectively.

Matching C patterns

Literal C Code. Literal C code is matched by parsing the C code with
ELSA, compiling it to GIMPLE, and using the GCC plugin [15] to perform
subtree comparison on the GIMPLE representations of the pattern and of the
subject program.

Unbound metavariables. For C, we only allow metavariables to match
complete GIMPLE subtrees. For this task, the C LM uses the same subtree
method as the Python LM: metavariables are bound to the complete GIMPLE
subtree representing an expression or single statement in the subject program.
This is performed by the GCC plugin as a tree expression match, with the
unbound metavariable matched by any non-empty complete subtree.

Bound metavariables. Matching bound metavariables is done in the same
way as matching literal C code.

22

2.3.3 Evaluation of conditions

The condition in an if clause is a metaexpression — an expression consisting
of metavariables, metafunctions, and usual operators and functions expressed
in the implementation language, Python. During rule application, a metaex-
pression must evaluate to true, false, or a Boolean expression in the subject
language, to be evaluated to true or false at runtime.

The if clause affects rule application differently depending on whether it
is in a query or update scope.

In query scope, i.e., under the inv clause, there are two cases:

• true — then the inv clause is applied.

• otherwise, the inv clause can not be applied. Thus, the subject program
is not transformed by this rule application.

In update scope, i.e., under the at clause, there are three cases:

• true — then the do and de clauses are applied.

• false — then the at clause is not applied, and InvTS searches for an-
other at clause to apply; if none is found, the subject program is not
transformed by this rule application.

• known only at runtime, and depends solely on aliasing information —
then InvTS inserts code to guard instantiated patterns of the do and
de clauses so that they are only executed if the condition evaluates to
true at runtime.

2.3.4 Detecting updates to values that the query de-
pends on

Recall that at clauses are matched against all statements and expressions
that can potentially update the parameters of the query specified. To apply
a transformation rule, InvTS must detect all updates to the parameters of
the query, even under object aliasing. It is impossible to do this completely
at compile-time. Thus, when InvTS knows at compile-time that a statement
may update a parameter of the query, it guards the corresponding maintenance
code by a check that checks at runtime whether that statement updates that
parameter of the query. As such runtime checks can be expensive, InvTS
attempts to add as few of them as possible — it only introduces a runtime
check if InvTS can statically determine that the statement may update the
value of the parameter.

InvTS does the above in four steps:

23

1. For each parameter of each matched query, find all syntactic updates, i.e.,
syntactically determine all statements that may change that parameter.

2. For each syntactic update, derive the guard for checking at runtime
whether the syntactic update actually changes the query parameter.

3. Prune syntactic updates, i.e., for each syntactic update, use static anal-
ysis to evaluate its derived guard to determine whether the syntactic
update may change that parameter, and remove the update if it cannot.

4. Remove redundant guards, i.e., for each guard not removed in step 3, use
static analysis to determine whether the guard must evaluate to true.
If so, remove the guard.

Finding all syntactic updates. A syntactic update for a query parameter
p is a statement for which, based solely on the statement’s syntax, its type,
and the matched query, InvTS can say that the statement may change p.
Syntactic updates are solely determined by the containers that the matched
query iterates over, and by the conditions in the matched query.

If p is a container over which the matched query iterates, and its type is t,
then any statement that modifies a container of type t1 s.t. t1 is compatible
with t is a syntactic update. The assignment to p in the matched query is also
a syntactic update. If p is represented by v.f, where v is a variable and f is a
field, then all assignments to v are syntactic updates, and all assignments to
v1.f, where v1 is any other variable whose type is compatible with the type
of v, are syntactic updates. This is similarly extended to the case where a is
not a variable, but is itself a field access, the case where p is represented by
v[i], and combinations thereof.

If p is a variable v, and v is in the condition of the matched query, then
any statement that assigns to v is a static update. If the condition contains
an expression v.f, where v is a variable and f is a field, then all assignments
to v are syntactic updates, and all assignments to v1.f where v1 is any other
variable whose type is compatible with the type of v, are syntactic updates. As
before, this is similarly extended to nested field accesses, indexing operations,
and any combination thereof.

Finally, if p is an lvalue lv, i.e., a variable, a list element (a[1]), etc., then
any statement that assigns to lv is a syntactic update.

Deriving guards for a syntactic update. Given a syntactic update u to a
query parameter p, we derive the guard for u’s maintenance code with respect
to p as follows.

If u is a method call on an expression e, p is a variable v, and the type of
v is compatible with the type of e, then, if e and v are the same object, and u

24

updates the value of that object, this may change the query result. Hence, the
guard is if v is e; Similarly, if p is a field access v.f, where v is a variable
and f is a field name, and the type of v.f is compatible with the type of e,
the guard is if v.f is e. Such a guard is cheap, i.e., takes time O(1).

If u is an assignment to an lvalue lv and p is a field access v.f, where v

is a variable and f is a field name, and the type of lv is compatible with the
type of v, then the guard is if v is lv. Such a guard is cheap, i.e., takes
time O(1).

If u is an assignment to an lvalue of the form expr.f where expr is an
expression and f is a field name, and if p is either part of the inv if condition,
or is iterated over in the query, and is a nested field access of the form v.fs.f

where v is a variable, fs is a non-empty dot-separated sequence of field names,
and v is an iteration variable in the query, iterated over the container S, then
the guard is for v in S: if v.fs is expr:. This guard is equivalent to
asking: does there exist an element in S that is aliased to v.fs? This guard
has run-time complexity O(#S).

If u is an assignment to an lvalue of the form expr[expr2], we derive for
it the same guards as if u were an assignment to expr.expr2.

Pruning syntactic updates. A syntactic update may be pruned if: (1) the
syntactic update’s guard is never satisfied, or (2) the syntactic update can not
affect the query result.

The guard of the syntactic update may be satisfied only if at least one is
expression in it may evaluate to true at runtime. To verify this condition, we
generate a new guard expression from the guard by replacing every x is y

with x may-alias y, and replacing every x in S with X intersect A != {}
where X and A are the may-alias set of x and the union of the may-alias sets of
all element in S, respectively. If, after static evaluation, the guard expression
evaluates to false, the guard cannot be satisfied. Thus, this syntactic update
is pruned from the set of updates that may change that parameter of the query.

If the guard expression did not evaluate to false at compile-time, then
InvTS determines if the syntactic update can affect the query result. Given a
syntactic update u to the parameter p, u can update the query result if the
query that uses p is reachable from u following control flow. If that is not the
case, the syntactic update is pruned from the set of updates that may change
that parameter of the query.

Removing redundant guards. A guard is redundant if the static update
u to the query parameter p is guaranteed to be an update to p, i.e., all is
expressions in the guard evaluate to true at runtime.

To verify this, we generate a new guard expression from the guard by re-
placing x is y with (x may-alias y and type(x)==type(y) and

25

len(may-alias-set(x)) == 1 and len(may-alias-set(y)) == 1 and by re-
placing loops over a container with a conjunction over the union of the may-
alias sets of the contents of the container. If the guard expression evaluates
to true statically, the guard will always be satisfied at runtime, and thus is
removed.

Given control-flow, type, and may-alias information for the subject program,
it is easy to perform the above four steps. For C, there is a plethora of
algorithms for obtaining control-flow, type, and may-alias information; for
example, control-flow, type, and flow-insensitive may-alias information can be
directly obtained from GCC. For Python, our static analysis algorithms for
obtaining this information are presented in Chapter 4.

2.3.5 Instantiating patterns and inserting them into
Python and C programs

How to insert declarations and maintenance code (i.e., apply the de and
do clauses) are specified in each LM. For both Python and C, the overall
steps for inserting declarations or maintenance code are the same:

1. instantiate the pattern that specifies the code to be inserted, and

2. insert the instantiated pattern into the program.

Instantiating Python patterns. The de and do clauses contain not only
subject language code, but also metavariables and metafunctions. The pat-
terns must first be instantiated, i.e., converted to Python code. We describe
how bound and unbound metavariables are converted first:

• Unbound, i.e., the metavariable is unbound. (1) A fresh variable is cre-
ated in the smallest scope possible. (2) The pattern AST node that
represents the metavariable is replaced with the AST node representing
the variable name.

• Bound - strict pattern, i.e., the metavariable is bound to a complete
AST subtree. We replace the pattern AST node that represents the
metavariable with the AST subtree that the metavariable is bound to.

• Bound - seq pattern, i.e., the metavariable is bound to a sequence of
complete subtrees. If the metavariable in the pattern AST is bound to a
node that, when replaced with a list of AST nodes, forms legal Python
code, replace the pattern AST node with the bound sequence of AST
nodes. Otherwise, instantiation fails.

26

• Bound - op pattern, i.e., the metavariable is bound to a complete subtree
with up to one node tagged missing, and up to one node tagged replace-

able, called Mold and Rold, respectively. We do the following steps: (1)
based on the type of the node tagged as missing and the location of the
metavariable in the pattern AST, determine which node of the program
AST to use to replace Mold, denoted as Mnew; (2) replace Mold with
Mnew in the pattern AST, resulting in a complete AST subtree; if there
is a node tagged as replaceable in the pattern AST, perform the same,
substituting R for M .

Metafunctions are functions defined in the LM that take zero or more ASTs as
arguments and return an AST. As such, they are simply applied after metavari-
ables are handled, and the return values of the metafunctions replace the call
nodes in the pattern being instantiated.

Instantiating C patterns. Instantiating C patterns is similar to Python,
but simpler. This is because bound metavariables can only be bound to com-
plete subtrees, which are instantiated in the same way as Python metavariables
bound to complete subtrees. Metafunctions are handled the same way as for
instantiating Python patterns.

Inserting instantiated patterns. For do, do before, do instead, and
do after clauses, the instantiated pattern is inserted respectively immedi-
ately after, immediately before, instead of, or immediately after the AST node
that matched the pattern of the corresponding inv or at clause. In the case
when this is impossible due to the matched pattern being an expression inside
another expression, (1) the matched expression is factored out and assigned
to a fresh local variable, and (2) the instantiated pattern is inserted imme-
diately before or after the newly created assignment statement. If, due to a
do instead clause, InvTS tries to replace an expression inside another expres-
sion with a statement, the corresponding at or inv application is aborted: for
an at application, InvTS then searches for a different at clause to apply; for
an inv application, it reverts the subject program to the original, and tries to
find another inv rule to apply.

The de clause contains a scope specifier that is a metaexpression: an ex-
pression consisting of Python operators, metavariables, and metafunctions.
When the metaexpression is evaluated by InvTS, it must return an AST node
in the program AST. If it does so, the code specified in the de clause is inserted
immediately before that node; otherwise, behaviour is the same as for a failed
do instead clause.

27

2.4 Incremental analysis for applying a set of

rules

Applying invariant rules involves applying rules repeatedly to the subject pro-
gram until a fixed-point is reached. Before InvTS can apply any rule, it has to
perform costly static analysis on the subject program. If the subject program
and the rule being applied is not changed between different rule applications,
we could save a lot of time by just reusing the results of previous applications
of the rule to the program. We use a disk-based cache to store parsed rules,
intermediate programs transformed by rule application, and the corresponding
static analysis results.

Unfortunately, successfully applying an invariant rule most likely changes
the subject program. The cache does not help when the program is changed
by the rule application, or when the rules are changed. Thus, repeated costly
static analysis would be performed on the subject program by successive rule
applications. This section presents a method for reusing parts of the static
analysis results for a program P when performing the same static analysis on
a slightly modified version of P , called P ′.

We consider analysis algorithms that (1) are flow sensitive, i.e., they store
analysis results per CFG node, (2) can have their results represented as a per-
node set, with the algorithm adding analysis results to these sets as it goes, and
(3) are either monotonic, i.e., once an analysis added some analysis result to a
CFG node, it will never remove it from that CFG node, or correct in the face
of additions to the result set of previously removed elements from the result
set. The alias analysis algorithm from Chapter 4 satisfies these conditions
— it is monotonic. The type analysis algorithm without generalization is
also monotonic; while it is non-monotonic when generalization is added to it,
adding back removed types does not invalidate the correctness of the algorithm
— thus it still satisfies condition (3).

The transformation of P to P ′ can be represented by a change to the CFG
of P , G. The CFG of P ′, G′, can be obtained by addition and removal of
nodes and edges to or from G. Let R be the set of nodes pointed to by the
edges removed from G in order to obtain G′. For analyzing P ′, we reuse:

1. from the analysis of P , all analysis results of nodes not reachable from
any nodes in R, and

2. from the analysis of P , all analysis results added to any nodes in P by
the analysis algorithm before it added any analysis results to nodes in
R.

Determining R. Because InvTS transforms the program AST, it is easy to
find out whether a given AST edge is added or removed, and tag it as such.

28

We modify the CFG generation algorithm in Chapter 4 so that whenever it
emits a CFG node that is pointed to by a removed edge, the node is added to
R.

Reusing the analysis results of unreachable nodes. For any node that
is not reachable from R to the program, its analysis results remain trivially
correct. We can thus reuse all the analysis results of all nodes that are not
reachable from nodes in R. To do this, we modify the analysis algorithm to
add only the set of nodes reachable from R to the worklist. The set of nodes
reachable from R can be determined easily using a DFS in O(N) time, where
N is the size of G.

Reusing unaffected analysis results. We can reuse all analysis results
added to any nodes in P by the analysis algorithm before it added any results
to nodes in R. We find such results by (1) modifying the analysis algorithm so
that it associates a timestamp with any analysis result it adds to a CFG node,
(2) finding the earliest timestamp for any analysis result added to any node in
R, called tmin, and (3) reusing all analysis results with timestamps less than
tmin.

1. We modify the analysis algorithm to store a timestamp in addition to the
other analysis data it stores. We do so as follows:

1. we set the timestamp to 0 before the analysis of P starts,

2. we increment the timestamp by 1 after each operation by the analysis
that changes analysis results — we call the current timestamp now,

3. we do not reset the timestamp when the analysis of P ′ starts, and

4. when adding per-CFG-node analysis results, we store, for each analysis
result, all timestamps at which it was added.

2. We find the earliest timestamp of any analysis result added to any node in
R by iterating over all nodes in R, finding the smallest timestamp of any result
added to each node, and taking the minimum of the smallest timestamps.

3. Given two analysis runs: A on P and A′ on P ′, A and A′ start and end at
the timestamps Astart = 0, Aend and A′start = Aend + 1, A′end, respectively. We
replace the part of the analysis algorithm that checks whether a given result
is in the per-node analysis results with the following:

1. for A, we check whether the result being tested was added to the per-
node analysis results with a timestamp t such that 0 ≤ t ≤ now, and

29

2. for A′, we check whether the result being tested was added to the per-
node analysis results with a timestamp t such that 0 ≤ t < tmin or
A′start ≤ t ≤ now.

Generalizing reuse for k subsequent analyses. We generalize the above
reuse to k transformations (P1 transformed to P2 transformed to . . . transformed
to Pk) and k subsequent analyses (A1 to Ak) by:

1. computing the time ranges for reusing analysis results from the analy-
ses A1 . . . Ai of P1 . . . Pi for analyzing Ai+1 of Pi+1 as follows: after the
analysis Ai completes, we form Li, a list of tuples that are valid time
intervals to be reused for computing Ai+1, given Li−1:

Li =

{

Li−1 if tmin ≤ Astart
i

Li−1 :: (A
start
i , tmin) if Astart

i ≤ tmin ≤ Aend
i

where tmin is computed as follows:

tmin=now

for (start,end) in L1 .. Li−1:

for n in R:

t = timeoffirstadditionion(n,(start,end))

tmin=min(tmin,t)

where timeoffirstadditionion(n,(start,end)) is a function that re-
turns the timestamp of the first addition of any analysis result for the
node n during the time interval (start,end). The data structure used
to implement the algorithm efficiently is described in Section 2.4.1, and

2. for Aj, we determine whether the analysis result r is valid for node n by
checking whether there exists an addition of r to n with a timestamp t
such that either Astart

j ≤ t ≤ now, or t is in one of the intervals in Lj−1.

2.4.1 Data structure

The static analysis algorithms we use all store data in pairs (n,r), where n is
an AST or CFG node identifier, and r is some arbitrary data. To implement
the algorithm described above, we use a data structure that mimics a set of
pairs, and supports the following operations in an efficient manner:

The rest of this subsection describes the data structure, its space complex-
ity, how the operations are implemented, and their time complexity.

Each AST or CFG node n contains a map that maps the analysis result r
added to n to an ordered list of timestamps at which r was added to n. The
ordered list is represented as an array. We use the notation n[r] to denote
accessing the array for a particular n and r, an O(1) operation.

30

Operation Description

add((n,r)) add the pair (n,r) at now
set((start,end)) the set of pairs that have been

added into the set between the
times start and end

contains(pair,(start,end)) returns whether pair was
added during the time interval
(start,end)

timeoffirstaddition(n,(start,end)) the timestamp of the first addi-
tion of a pair with the first ele-
ment bound to n during the time
interval (start,end)

Figure 2.6: Required operations.

Addition. Adding the analysis result r to node n happens only at time now.
As now is monotonically increasing, we know that r has never been added to n
with a timestamp greater than now. Thus, we append now to the n[r] array.

It is clear that the time complexity of this operation is O(1), and the size
of the n[r] array is a — the total number of additions of r to n, i.e., at most
the number of steps taken by the algorithm.

Membership testing.

contains. To verify that the analysis result r has been added to node n
in a given time range, we perform a standard binary search on the n[r] array.
The time-complexity of contains is O(log(a)).

Aggregate operations.

set. Given a time range, generating the set of valid (n, r) tuples in that
range requires going over all analysis results, and for each result, performing a
contains call over the relevant range. The time complexity is O(t× (log(a))),
where t is the number of distinct analysis results inserted in that time range.

timeoffirstaddition(n,range). This returns the smallest timestamp
of any analysis result added to n in range. To efficiently evaluate this function,
in addition to maintaining a per-node map from each analysis result to the
array of timestamps, we also maintain a per-node array of timestamps of any
additions to the node. Thus, this function takes O(log(a)) time, adding an
O(1) factor to all additions.

31

Alias analysis Type and CFG Total
time (s) analysis time (s) time (s)

Non-incremental analysis 36 9 48
Incremental analysis 14 7 24

Table 2.1: Analysis and transformation time for applying 21 rules with 114
at clauses to Constrained RBAC.

2.4.2 Experiments

To show that using incremental analyses reduces the time taken by InvTS to
transform subject programs, we apply a set of invariant rules to an executable
specification of Constrained RBAC using incremental and non-incremental
analysis.

The executable specification of Constrained RBAC is written in 381 lines of
Python. Incrementalization is performed by 21 invariant rules containing 114
at clauses total, written in 1137 lines of InvTL. After incrementalization, the
transformed program is 2183 lines of Python. Table 2.1 shows that incremental
analysis reduces the time taken by InvTS to do the transformation. The
measurements were taken when running the analysis using Python 2.6.4 under
Windows 7 on a Core i7 860 2.8GHz with 12 GB of memory, of which around
8GB was free when running our programs.

2.5 Related work

There has been a great amount of research and development done on pro-
gram transformation systems [101, 39, 104, 24], but to our knowledge, there
were no previous transformation systems that support all of the features that
InvTL/InvTS supports: (1) coordination — the ability to apply a set of trans-
formations together or not at all, (2) identification of all program fragments
that may affect an invariant to make sure that the invariant is preserved, and
(3) pattern matching and concrete syntax — a must for ease of writing and
maintainability.

Coordination. Current state-of-the-art program transformation systems like
Stratego/XT [104] — a language and toolset for program transformation that
supports user-specified rewriting strategies that grew out of the need to add
custom rewriting strategies to ASF+SDF [29, 102], TXL [23] — a transfor-
mation system that supports rule application to arbitrary ASTs in a fully
automated manner, and Rhodium [68] — a source-to-source transformation
system for writing compiler optimization, include a dazzling array of capabil-

32

ities whose main purpose is to facilitate the easy writing of correct rules by
the programmer, but they all lack coordination [39]. For example, while both
Stratego/XT and TXL support multiple rules and support applying rules at
once, the only way to implement a coordinated transformation in them is to
manually write a strategy to do so. This is error-prone, as the rule writer may,
for example, miss an update, and thus perform only part of the transformation.

Pattern matching and concrete syntax. Support for pattern matching
and concrete syntax is widespread in program transformation languages. It
is supported in systems such as TXL, Stratego, and ASF+SDF, but not sup-
ported in AspectJ or Rhodium. While InvTL does not make contributions in
this arena, its syntax deviates as little as possible from the subject language,
allowing the programmer to leverage his knowledge of the subject language.

33

Chapter 3

Applications

We used InvTL and InvTS for a wide range of applications. Figure 3.1 sum-
marizes 24 examples grouped by whether the purpose is optimization, runtime
verification, debugging, other instrumentation, refactoring, or other transfor-
mations.

This rest of this chapter presents a representative subset from each group of
examples: Section 3.1 describes how we perform optimization by using InvTS
to generate efficient implementations from clear and modular specifications
of Core RBAC and various other smaller specifications [73, 71]; For runtime
verification, Section 3.2 describes how we use InvTS to perform runtime in-
variant checking [42]; Section 3.3 describes how we use InvTS for query-based
debugging [43]; Section 3.4 describes the use of InvTS for instrumentation and
other transformations [73, 72]. Finally, Section 3.5 discusses related work.

3.1 Generating optimized implementations

What programs do on data can be classified as, or decomposed into, two kinds
of operations: queries and updates, where queries compute results using data,
and updates change data. For a simple example, consider the LinkedList

class in Java 1.5. It has a query method size that returns the number of
elements in the list, 12 other query methods that return elements, element
indices, etc., and 15 update methods that add or remove elements.

How to implement the queries and updates can vary dramatically. In a
straightforward implementation, each method performs its respective query
or update. In the LinkedList example, size can iterate over the list, and
each update method can simply do its addition or removal. This is clear and
modular, but can have poor performance when such queries are performed
frequently. A sophisticated implementation can maintain the results of these
queries—i.e., maintain the invariants that the values retrieved from certain
variables equal the results of these queries—incrementally with respect to up-

34

Use Application Program Lang

O Core RBAC Core RBAC spec py
Constrained RBAC Constrained RBAC spec py
Graph Reachability test program py
Join Query test program py
Wireless Protocol test program py
Set Size Demo test program py

V SMB Valid Ticket pysmb py
SMB Repeated Auth pysmb py
BitTorrent Peer No Dup BitTorrent Peer py
BitTorrent Peer No Mod BitTorrent Peer py
BitTorrent No Mismatch BitTorrent Mainline py
InvTS No Shared Child InvTS py
InvTS Own Child InvTS py

D DOM Valid Parent lxml benchmarks py
DOM No Shared Child lxml benchmarks py
DOM Exception Cause lxml benchmarks py
FTP Client nftp py

I File Access Profiling test program py
Reference Counting test program py
Memory Coverage ViM 7.0 c

R InvTS Refactoring file Rule.py in InvTS py
Variable Renaming ViM 7.0 c

T InvTS/py Test Suite test program suite py
InvTS/c Test Suite test program suite c

O: optimization. V: runtime verification. D: debugging.
I: instrumentation. R: refactoring. T: other transformation.

Figure 3.1: Example applications.

dates to the query parameters—i.e., variables or fields on which the queries
depend. In the LinkedList example, the result of size may be maintained in
a field and simply be returned when queried. This is efficient, but no longer
clear and modular, because each of the 15 update methods must also update
this field appropriately.

This conflict between clarity and efficiency is much worse for complex sys-
tems with many queries and updates, where queries may involve objects from
different classes, and updates may be spread in many classes. A query can be
affected by many updates, and an update can affect many queries. It poses a
serious challenge to consider all the complex dependencies and trade-offs and
decide where and how to maintain what invariants. The resulting code can be

35

significantly more difficult to understand.
We resolve this conflict by automatically transforming straightforward yet

inefficient implementations into efficient yet sophisticated implementations.
We do this by expressing these transformations as invariant rules (written
in InvTL), and using InvTS to automatically apply them in a coordinated
manner.

3.1.1 Core RBAC

Role-based access control (RBAC) is a framework for controlling user access
to resources based on roles. It can significantly reduce the cost of security
policy administration, is an ANSI standard [3], and is increasingly widely
used in large organizations. Despite much research on RBAC, it is nontrivial
to develop efficient implementations, and it is even harder to develop efficient
implementations with precise complexity guarantees [71].

Core RBAC contains the following sets and relations, explained below, and
the operations on them summarized in Figure 3.2.

OBJS: set(Object) // an operation-object pair

OPS: set(Operation) // is called a permission.

USERS: set(User)

ROLES: set(Role)

PR: set(tuple(tuple(Operation,Object),Role))

UR: set(tuple(User,Role))

// PR subset (OBJS * OPS) * ROLES

// UR subset USERS * ROLES

SESSIONS: set(Session)

SU: set(tuple(Session,User))

SR: set(tuple(Session,Role))

// SU subset SESSIONS * USERS

// SR subset SESSIONS * ROLES

A system has sets of objects, operations, users, roles, and sessions; their ele-
ments are of types Object, Operation, User, Role, and Session, respectively.
A operation-object pair, called a permission, denotes an allowed operation on
an object. A permission-role pair in PR denotes a permission assigned to a
role. A user-role pair in UR denotes a user assigned to a role. A session-user
pair in SU denotes a session and the unique user of the session. A session-role
pair in SR denotes a session and a role active in the session.

Administrative commands. The following operations each adds an element
to a set or a relation.

AddUser(user):

pre-cond: user notin USERS;

USERS = USERS + {user}

36

administrative add/delete user/role, assign/deassign user,

commands grant/revoke permission

supporting create/delete session, add/drop active role,

system functions check access

review assigned users/roles

functions

advanced review role/user permissions, session roles/perms,

functions role/user ops on obj

Figure 3.2: Functionalities of Core RBAC by categories.

USERS add= user

AddRole(role):

pre-cond: role notin ROLES;

ROLES = ROLES + {role}

AssignUser(user,role):

pre-cond: user in USERS, role in ROLES, [user,role] notin UR;

UR = UR + {[user, role]}

GrantPermission(operation, object, role):

pre-cond: operation in OPS, object in OBJS, role in ROLES,

[[operation,object],role] notin PR;

PR = PR + {[[operation,object],role]}

Deleting an element is symmetric to adding an element, but possibly with two
kinds of additional updates. First, if an element is deleted from a set, then from
all relations defined using the set, all tuples that contain the deleted element
must be deleted. Second, DeleteUser, DeleteRole, and DeassignUser also
delete the associated sessions, to satisfy the constraint that a session can have
a role active only if the user of the session is assigned that role.

DeleteUser(user):

pre-cond: user in USERS;

UR = UR - {[user,r]: r in ROLES}

for s in SESSIONS | [s,user] in SU:

DeleteSession(user,s) // DeleteSession defined below

USERS = USERS - {user}

DeleteRole(role):

pre-cond: role in ROLES;

PR = PR - {[[op,o],role]: op in OPS, o in OBJS}

UR = UR - {[u,role]: u in USERS}

for s in SESSIONS, u in USERS | [s,u] in SU, [s,role] in SR:

37

DeleteSession(u,s)

ROLES = ROLES - {role}

DeassignUser(user, role):

pre-cond: user in USERS,role in ROLES,[user,role] in UR;

for s in SESSIONS | [s,user] in SU, [s,role] in SR:

DeleteSession(user,s)

UR = UR - {[user,role]}

RevokePermission(operation, object, role):

pre-cond: operation in OPS, object in OBJS, role in ROLES,

[[operation,object],role] in PR;

PR = PR - {[[operation,object],role]}

Supporting system functions. CreateSession creates a session for a user
with an initial set of active roles; it first checks that the user is assigned
those roles, and then adds the appropriate elements to SU, SR, and SESSIONS.
DeleteSession deletes all elements of SU, SR, and SESSIONS that are associated
with the session.

CreateSession(user, session, ars):

pre-cond: user in USERS, session notin SESSIONS,

ars subset AssignedRoles(user);

// AssignedRoles is defined below

SU = SU + {[session,user]}

SR = SR + {[session,r]: r in ars}

SESSIONS = SESSIONS + {session}

DeleteSession(user, session):

pre-cond: user in USERS, session in SESSIONS, [session,user] in SU;

SU = SU - {[session,user]}

SR = SR - {[session,r]: r in ROLES} // maintain SR

SESSIONS = SESSIONS - {session}

Adding and deleting active roles adds to and deletes from SR , respectively;
adding an active role also first checks that the user of the session is assigned
that role.

AddActiveRole(user, session, role):

pre-cond: user in USERS, session in SESSIONS, role in ROLES, [session,user]

in SU, [session,role] notin SR, role in AssignedRoles(user);

SR = SR + {[session,role]}

DropActiveRole(user, session, role):

pre-cond: user in USERS, session in SESSIONS, role in ROLES, [session,user]

in SU, [session,role] in SR;

SR = SR - {[session,role]}

38

CheckAccess checks whether an operation on an object is allowed in a session,
i.e., whether there is a role that is active in the session and is assigned the
operation-object pair as a permission.

CheckAccess(session, operation, object):

pre-cond: session in SESSIONS, operation in OPS, object in OBJS;

return {r in ROLES | [session,r] in SR, [[operation,object],r] in PR} != {}

Review functions and advanced review functions. These functions are
queries on the basic sets and relations. Some (AssignedUsers, Assigned-

Roles, RolePermissions, SessionRoles) are over one relation, i.e., given a
value for the left or right component of a relation, find all associated values
for the other component in the relation. For example, the first two are review
functions defined by:

AssignedUsers(role):

pre-cond: role in ROLES;

return {u: u in USERS | [u,role] in UR}

AssignedRoles(user):

pre-cond: user in USERS;

return {r: r in ROLES | [user,r] in UR}

Two functions (UserPermissions, SessionPermissions) are over two rela-
tions, i.e., given a value for one component of a relation, equate the other com-
ponent of the relation with one component of a second relation, and find all as-
sociated values for the other component of the second relation. Two other ad-
vanced review functions (RoleOperationsOnObject, UserOperationsOnObject)
require nested tuples but are otherwise similar to the above functions. All ad-
vanced review functions are defined below:

RolePermissions(role):

pre-cond: role in ROLES;

return {[op,o]: op in OPS, o in OBJS | [[op,o],role] in PR}

UserPermissions(user):

pre-cond: user in USERS;

return {[op,o]: r in ROLES, op in OPS, o in OBJS |

[user,r] in UR, [[op,o],r] in PR}

SessionRoles(session):

pre-cond: session in SESSIONS;

return {r: r in ROLES | [session,r] in SR}

SessionPermissions(session):

pre-cond: session in SESSIONS;

return {[op,o]: r in ROLES, op in OPS, o in OBJS |

39

[session,r] in SR, [[op,o],r] in PR}

RoleOperationsOnObject(role, object):

pre-cond: role in ROLES, object in OBJS;

return {op: op in OPS | [[op,object],role] in PR}

UserOperationsOnObject(user, object):

pre-cond: user in USERS, object in OBJS;

return {op: r in ROLES, op in OPS | [user,r] in UR, [[op,object],r] in PR}

3.1.2 Incrementalizing Core RBAC

Straightforward implementations of many operations in Core RBAC are in-
efficient because they involve iterating through sets from scratch. Efficient
implementations require that the results of such expensive computations be
stored, retrieved quickly when needed, and maintained incrementally when the
sets that these results depend on are updated.

Identifying and incrementalizing expensive computations. We con-
sider all operations that are not constant time expensive. These include set
comprehensions, loops over sets, a subset test, a set union, and set differences
in the Core RBAC specification. Once subset tests, set unions, and set differ-
ence operations are converted to loops over sets, the only remaining expensive
computations are set comprehensions. Figure 3.3 lists all 16 occurrences of
them, where the first column is the containing method, and last column clas-
sifies them into 9 different kinds of queries—1x for queries over one relation,
and 2x for queries over two relations.

We derive the incrementalization rules for each query for each kind of
update to a parameter of the query using the method from [71]. The method
accounts for two kinds of updates: updates to sets that the query depends on
(based parameters), and updates to parameters of the query that can be set to
any value. Maintenance code that incrementally maintains the result set when
based parameters change is generated; for non-based parameters, a map that
maps the values of those parameters to the results of the query is maintained.
Then, the generic code for maintaining the result set by iterating over both
the sets enumerated and the sets tested for membership in the subquery is
generated. The specialized maintenance clause for handling additions and
deletions to parameters of the query from the general maintenance clause is
generated via four steps: (1) eliminate the loop over the set that is being added
or deleted an element, because only the element being added or deleted needs
to be considered for this loop in the incremental maintenance, (2) replace each
loop whose loop variables are all bound with a test on the loop variables,
because bound variables are filters of the values, (3) use auxiliary maps in

40

containing method expensive query kind

DeleteUser {r: r in ROLES | [user,r] in UR} 1a

{s: s in SESSIONS | [s,user] in SU} 1b

DeleteRole {[op,o]: op in OPS, o in OBJS | [[op,o],role] in PR} 1c

{u: u in USERS | [u,role] in UR} 1b

{[s,u]: s in SESSIONS, u in USERS | [s,u] in SU, [s,role] in SR} 2e

DeassignUser {s: s in SESSIONS | [s,user] in SU, [s,role] in SR} 2d

DeleteSession {r: r in ROLES | [session,r] in SR} 1a

CheckAccess {r: r in ROLES | [session,r] in SR, [[operation,object],r] in PR} 2c

AssignedUsers {u: u in USERS | [u,role] in UR} 1b

AssignedRoles {r: r in ROLES | [user,r] in UR} 1a

RolePermissions {[op,o]: op in OPS, o in OBJS | [[op,o],role] in PR} 1c

UserPermissions {[op,o]: r in ROLES, op in OPS, o in OBJS | [user,r] in UR, [[op,o],r] in PR} 2a

SessionRoles {r: r in ROLES | [session,r] in SR} 1a

SessionPermissions {[op,o]: r in ROLES,op in OPS,o in OBJS | [session,r] in SR,[[op,o],r] in PR} 2a

RoleOperationsOnObject {op: op in OPS | [[op,object],role] in PR} 1d

UserOperationsOnObject {op: r in ROLES, op in OPS | [user,r] in UR, [[op,object],r] in PR} 2b

Figure 3.3: Expensive queries in Core RBAC.

41

loops that have both bound and unbound loop variables to iterate over only
the values of the unbound variables, (4) update an auxiliary map when its
corresponding set of tuples is updated.

The generated rule for maintaining the CheckAccess is given in Chapter 1,
Figure 1.3. As the rule is quite long, we do not reproduce it here.

3.1.3 Experiments

Core RBAC. To help confirm the correctness of the transformations and
the complexity analysis results presented above, we first developed a straight-
forward implementation of Core RBAC that precisely follows the specification;
we then applied our transformational method to it, both manually and auto-
matically, using a number of different combinations of incrementalization rules,
and we performed many experiments on the resulting implementations. All
experimental results confirmed our expectations.

We can get a sense of how much effort using InvTS saved us by comparing
the size of the straightforward program to the size of the incrementalized
ones. We report the number of interesting lines of code, defined as non-empty
and non-comment lines. The straightforward program consists of 125 lines of
interesting code, including 16 expensive queries that could be incrementally
maintained. When all 16 queries are incrementalized, the code more than
tripled in size to 486 lines.

We developed a program that lets us perform black-box testing on both
an original and an incrementalized implementations, to confirm that they pro-
duce the same output. It generates a sequence of random RBAC operations
that are applied to both implementations. When an operation produces a re-
sult, the results produced by both implementations are compared and verified
to be identical. This lets us automatically test the incrementalized program
against the original program it was generated from. All tested implementa-
tions produced identical results for a sequence of 50 million operations, giving
us confidence in the correctness of the incrementalized implementations.

We developed another program to generate data in a way that is governed
by one or more independent variables. We used this program to generate a
number of sets of input data, varying in some parameter, for each of which
we need to determine the running time of each program. For each particular
input and program, we compute the running time by running the program
repeatedly on the data until the standard deviation of the set of running times
is less than 10 percent of the mean of the set of running times. In all cases,
the test programs were run a minimum of 10 times.

Our test programs are single-threaded, and were run underWindows XP
SP2 on a dual-processor Athlon XP 2.8Ghz with 2 GB of memory, of which
around 750 MB was free when running our programs. All of the experiments,

42

written in Python, were run under ActivePython 2.4 Build 244. This system
was also used to run the incrementalizer, which took around 30 seconds to
complete the incrementalization of RBAC.

We compare the performance of the straightforward implementation and
the incrementalized implementations. We measure the time it takes each im-
plementation to complete 1000 repeats of a simple operation pattern. This
pattern consists of the creation of a session with 10 active roles, 1000 ran-
dom access checks, and the deletion of the session. The complexity analysis
predicts that the operations and parameters that dominate the asymptotic
running time differ between the straightforward and incrementalized imple-
mentations. In the straightforward implementation, the asymptotic time of
all functions should be linear in the number of roles, as access checks and
session creation and deletion are all linear in the number of roles. In the in-
crementalized implementation, CheckAccess should be constant time, and
the asymptotic time should be dominated by the cost of CreateSession and
DeleteSession, which is linear in the number of permissions assigned to the
roles activated in a session.

Figure 3.4(a) compares the performance of the implementations where the
number of permissions per session is fixed at 100 and number of roles varies. It
shows that the incrementalized implementation is unaffected by the increasing
number of roles in the system, which is in line with the cost annotations from
Figure 1.3. In contrast, the straightforward implementation of CheckAccess is
linear in the number of roles in the system; so are CreateSession and
DeleteSession, albeit with a much smaller slope, as they occur only once
per session, compared to the 1000 times of CheckAccess. The total running
time of the straightforward version is linear in the number of roles, while the
running time of the incrementalized version is constant. This improved asymp-
totic behavior leads to a practical speedup; with 100 roles, incrementalization
improves the total running time from 0.94 to 0.37 seconds.

Figure 3.4(b) shows the results of a second experiment, where the number
of roles in the system is fixed at 30 as the number of permissions per session
varies. Again, the results conform to our expectations. The asymptotic cost of
the incrementalized session creation and deletion increases with the number of
permissions per session, while the cost of CheckAccess remains constant. The
running time of all of the operations in the straightforward version are also
asymptotically constant, although the practical cost of the straightforward
version of CheckAccess is larger than that of the incrementalized version.
Again, the time complexity of the incrementalized CheckAccess agrees with
the results computed from the cost annotations from Figure 1.3.

Join. Our second example of generating efficient implementations from clear
and modular specifications is a join operation, which can be written as a

43

(a) 100 permissions per session (b) 30 roles

Figure 3.4: Running time of Core RBAC operations, 1000 repeats.

comprehension of the form:

{[x,y]: x in s, y in t | f(x)=g(y)}

Converting this to Python and adding some support code gives a program of
10 lines in length, corresponding to the following high-level program:

result = new set()

for x in s:

for y in {y in t | f(x)=g(y)}:

result.add([x,y])

This program contains a single expensive computation, the comprehension {y
in t | f(x)=g(y)}. When incrementalized over updates to the s and t sets,
the program expands to 24 lines in length.

We created two series of test data to evaluate the performance of the
straightforward and incrementalized versions of join. In both series, the size
of the two input sets was given as the independent variable N. The series differ
in the size of the output. One series produces output of size N2, while the
other produces no output at all, as would be the case with fully disjoint input.
These two series let us explore the full limits of possible running times.

We ran both programs on both series of inputs. Figure 3.5 shows the
running times. The straightforward program is always quadratic in running
time, while the incrementalized program is quadratic or linear, depending on
the size of the output. Thus, starting with a quadratic specification of join,
we automatically obtained an incrementalized implementation that runs in
time proportional to the size of the input and output; this is asymptotically
optimal [107, 45].

44

Figure 3.5: Running time of join.

3.2 Runtime invariant checking

Program safety, security, and general correctness properties depend on all kinds
of invariants holding during program execution. Even though static analysis
can verify many invariants, many important invariants are still too difficult
to verify automatically using static analysis. Therefore, it is critical to use
dynamic techniques to check during program execution that these invariants
hold. This is known as runtime invariant checking. It is challenging for at
least three reasons:

1. invariants that relate information at multiple program points are difficult
to specify and to verify at any one point in the execution,

2. the runtime overhead from invariant checking must be minimized, and

3. imminent violations of critical invariants must be detected before they
occur, and appropriate actions taken in response.

This section describes a general and powerful framework for efficient run-
time invariant checking. The framework supports (1) declarative specification
of arbitrary invariants using high-level queries, with easy use of information
from any data in the execution, (2) powerful analysis and transformations for
automatic generation of instrumentation for efficient incremental checking of
invariants, and (3) convenient mechanisms for reporting errors, debugging, and

45

taking preventive or remedial actions, as well as recording history data for use
in queries. The transformations use InvTS as the backend.

We also describe a number of case studies that demonstrate the advan-
tages of our framework and the effectiveness of our implementation. The
implementation is for Python. The experiments include checking invariants
about (1) abstract syntax tree (AST) transformations on programs of varying
sizes between 400 and 16000 AST nodes, (2) Kerberos authentication used by
a SMB client, and (3) a network protocol for distributing files in BitTorrent.
All the invariants of interest can be expressed easily in our framework, and
performance results show that our incremental checking scales well on large
applications and complex invariants.

Much research has been done on runtime invariant checking, including a
large variety of languages for specifying the invariants and methods for efficient
instrumentation, as discussed in Section 3.5. To the best of our knowledge,
no previous work both supports the generality of the kinds of invariants that
our framework supports and achieves the efficiency that our implementation
method achieves.

We now give an overview of our framework and describe the language for
specifying invariants and actions; describe the transformations for incremen-
tally checking the invariants; present our experiments; and discuss related
work.

3.2.1 Framework

Invariants are expressed as boolean conditions involving variables quantified
over collections. Violations of an invariant correspond to tuples containing
values of those variables for which the condition is false. We formulate runtime
invariant checking as evaluating queries that return sets of such tuples. The
basic form of an invariant checking rule in our framework is

foreach (v1 in S1, ... , vk in Sk: condition):
action

where S1 through Sk are collections (sets, dicts and other collections that
do not allow duplicates and that have constant-time membership tests). v1
through vk are quantified over sets S1 through Sk, respectively. The set of
tuples of values of v1 through vk such that condition holds is called the query

result. action is a sequence of statements to be executed for each violation of
the invariant, i.e., for each tuple in the query result.

For example, the following rule may be used to check that the usage count

field of each instance of the File class is non-negative:

foreach (o in extent(File): o.usage_count < 0):

report("Error: File ", o, " has negative",

46

" usage_count.")

stop()

For every class C, extent(C) is a special set defined by our framework to
contain the set of currently existing objects of type C. The report and stop

functions are two functions in the subject programming language (Python):
report takes any number of arguments and prints the concatenation of their
string representations; stop stops the program and drops into a debugger,
allowing the user to examine the state of the program at the point at which
the invariant was violated.

While it is easy to see how to efficiently check simple invariants like the
one above (by inserting checks at all assignments to the usage count field), it
becomes more difficult for even slightly more complex invariants. For example,
consider a program that manipulates ASTs. We want to check that no node
has an edge to itself. Assume that AST nodes are instances of the Node class,
which has a children field. The invariant can be checked using the rule:

foreach (o in extent(Node): o in o.children):

report("Error: ", o, " has a self-edge.")

stop()

Checking this invariant efficiently is difficult, because aliasing implies that it
can potentially be violated by any statement that adds an object to a collec-
tion, as in this scenario: x=o.children; ...; x.add(o). Manually writing
code to detect such bugs is tedious: one must intercept all calls to the add

method of all instances of set, determine whether the target object equals
the children field of some instance of Node, etc. In our framework, the user
writes the simple rule above, and our system takes care of the rest, generating
correct and efficient code for it.

Queries that involve multiple variables typically involve join conditions,
which relate the values of the variables. For example, suppose the ASTs in
the previous example should also satisfy the invariant that every node has at
most one incoming edge. This can be checked using the rule:

foreach (n in extent(Node), m in extent(Node),

c in extent(Node): c in n.children and

c in m.children and n!=m):

report("Error: ", c, "is a child of both ",

m, " and ", n, ".")

stop()

Again, it is easy to write this rule in our framework, but it is difficult to
manually write code that efficiently checks this invariant at runtime, since this
requires maintaining auxiliary data structures with information about edges,
in addition to dealing with the aliasing issue discussed above.

47

Some invariants cannot be expressed using queries over extents and existing
sets in the program. For example, consider a communication protocol. A query
cannot refer to the set of all packets sent by the program, unless the program
happens to maintain that set. It is not an extent, because packet objects are
removed from the extent by garbage collection. To support such queries, our
framework supports rules that add code throughout the program. This feature
is similar to aspect-oriented programming, and it can be used to insert code
that maintains additional sets.

foreach (query) :
action

(de (in scope (field |method)? declaration)∗)?
(at update

(if condition)?
(de (in scope (field |method)? declaration)∗)?
(do (before maint)? (instead maint)? (after maint)?)?

)∗

Figure 3.6: General form of an invariant checking rule.

The general form of an invariant checking rule is shown in Figure 3.6. The
syntax of the new clauses is taken from InvTL, where they are used in rules
that describe how to maintain invariants; this is why we use update and maint

as suggestive names for the code patterns in the at and do clauses, but they
are not limited to matching updates and specifying maintenance code. The
at clause contains a code pattern update, which may contain subject-language
code and metavariables. As in InvTL, names of metavariables start with $.
For each part of the code in the subject program that matches the update

pattern in the at clause, if the condition in the if clause is satisfied, then
the declarations in the de (mnemonic for “declaration”) clause are inserted
into the program in the specified scope (while the de clause is usually used
to declare and initialize variables, classes, or fields, it can be used to insert
arbitrary code at a specified location) and the maint code in the do clause is
inserted before or after the matched code, as specified, or, if instead is used
in the do clause, the matched code is replaced with the code in the do clause.
The condition in the if clause is built from standard logical connectives and
functions defined for the subject language. For example, class(expr) returns
the class in which expr appears, and type(expr) returns the type of expr. In
the de clause, scope can be global or the name of a class, method, or module.

Continuing the above example, the following rule could be used to check
an invariant about packets that is expressed in terms of a set $sent packets

containing all sent packets (a specific example appears in Section 3.2.3). The

48

metavariable $sent packets gets instantiated with a fresh program variable
when the program is transformed.

foreach (...: ... $sent_packets ...):

report("Error : ...")

stop()

de in global:

$sent_packets=set()

at $x.send($packet)

if extends(type($x),socket)

do before:

global $sent_packets

$sent_packets.add($packet)

3.2.2 Generation of invariant rules

The straightforward way to implement the framework described above is to
compute the result of every query from scratch at every program point. This is
clearly correct, yet very slow, especially if the query involves large collections.
A better way is to compute each query result at the program points that
can update the result of the query. This is faster, yet still requires repeated
evaluation of the query. A better approach is to efficiently maintain (i.e.,
update) the result of the query whenever a collection or object the query
depends on changes.

This requires two steps: (1) generating maintenance code that properly
maintains the query results in the face of updates to the data the query depends
on, and, (2) applying the maintenance code at all places where the query result
might change. The rest of the section uses “set” instead of “collection” as the
method applies (with very minor modifications) to any collection that contains
objects, does not allow duplicates, and has constant-time membership testing.

Step 1 is accomplished by compiling the query into an InvTS rule, which
then transforms the subject program so that it incrementally maintains the
query result.

Step 2 is performed by InvTS itself, as described in Chapter 2. To reiterate,
InvTS inserts the maintenance code from step 1 at every location that updates
the variables the query depends on. The straightforward way is to insert
maintenance code at every statement in the program, preceded by a runtime
check of whether the statement actually updates the data the query depends
on. This slows down the transformed program even when no such updates
occur, due to the evaluation of the runtime check at every statement. InvTS
uses control-flow, data-flow, type, and alias information to evaluate as many
of these checks as possible at compile time, to reduce the runtime overhead of
maintaining the query result.

49

Generating maintenance code. As InvTS alone cannot generate the code
to maintain a query result, we give a method that, for a class of queries,
generates maintenance code (in the form of InvTS at/if/de/do clauses) that
incrementally maintains the result of these queries.

We generate efficient maintenance code for queries of the form (v1 in S1,
..., vk in Sk: condition), where condition is a conjunction and each conjunct is
either (1) a join condition of the form e1 op e2, where op is ==, !=, in, or not
in, and ei is v or v.f , where v is a variable and f is a field, or (2) a boolean
expression whose value depends only on the objects bound to v1, . . . , vk, the
fields of these objects, and immutable objects.

Three kinds of updates can affect the result of a query: adding an object
to a set, removing an object from a set, and changing the value of a field on an
object. We decompose more complicated updates into these simple updates.
We further simplify the problem by replacing field updates (for both scalar and
set fields) with code that removes an object from all sets containing it, updates
the field, and re-adds it to all sets. This transformation requires maintaining
an auxiliary map from each object to the sets containing it.

With this simplification, the query result can increase only when an object
is added to any of the sets S1, . . . , Sk, and the query result can decrease
only when objects are removed from these sets. Since the action is executed
only when the result set increases, this means that we only need to handle
the addition case appropriately to update the query result. However, during
removal we may need to update auxiliary maps.

Handling element addition. To handle addition of an object to a set, we
run the query with the corresponding v variable bound to the object being
added. We then generate statements corresponding to each of the clauses
(enumeration, predicate, and join) in the query. The code is generated in the
following order:

1. For a predicate with all variables bound, an if-statement checking the
predicate is generated.

2. For an enumeration of the form v in S where v and S are both bound,
an if-statement that performs a membership test is generated.

3. For a join condition with both variables bound, an if-statement that
checks whether the join condition is satisfied is generated.

4. For an equality or set-membership join with exactly one variable bound,
a for-statement that iterates over the entry corresponding to the bound
variable in a hash-join map is generated.

50

5. For an enumeration where only S is unbound, a for-statement that iter-
ates over the elements of S is generated.

If a clause does not match one of the conditions in this list, then it cannot
be generated yet. Each generated for-statement binds a variable, which can
cause statements to become generable or to rise in priority. As all variables can
be bound through the for statement, eventually all clauses will be generated.
The generated InvTS code has the form of additional at, if, de, and do clauses
that, at each element addition, do the above-described maintenance.

Handling joins. For each join, we maintain a hashmap, which we call a
hash-join auxiliary map. For example, for the join v1.parent==v2.name, if
v1 is bound, and v2 iterates over S2, we introduce a hashmap with domain
S2 that maps o.name to o. Maintaining these mappings requires the gener-
ation of additional code which must be run in response to the addition and
removal of elements of S2 and changes to o.name. This code must be run
before the maintenance code that handles element addition. Thus, either new
at/if/de/do clauses are created, or existing ones are modified so that the new
maintenance code is prepended to the appropriate do clauses.

Auxiliary clauses. The at, if, de and do clauses have the same syntax
and meaning as in InvTS. Thus they are copied into the InvTS rule being
generated.

3.2.3 Experiments

To demonstrate that our technique can efficiently verify invariants, we have
applied it to invariants from multiple domains: abstract syntax tree transfor-
mations, authentication, and a file distribution protocol. For each invariant,
we compare the performance of the program without any invariant checking;
with invariants being checked incrementally using the method described in
this paper; and with invariants checked in a non-incremental manner by re-
evaluating the query from scratch each time an update occurs.

All experiments were performed using Python 2.5.1 on Windows Vista,
running on a Core 2 Duo (Q6600@3.0GHz) machine with 8GB of memory, of
which 6GB were free.

AST transformations

An abstract syntax tree (AST) should satisfy several invariants. For our first
two experiments, we check that no AST node is its own child, and that each
AST node is the child of at most one parent.

51

For these experiments, we apply InvTS to itself to create checked-InvTS,
a version of InvTS that checks to ensure that program transformations do not
violate the AST invariants. Checked-InvTS is then run with a rule-set that
transforms subject programs into static single-assignment (SSA) form. Note
that in this case, we are checking the correctness of checked-InvTS, rather
than the programs it is applied to.

Not own child. Recall from Section 3.2.1 that the following rule detects
violations of the invariant “a node is not a child of itself”.

foreach (o in extent(Node): o in o.children):

report("Error: ", o, " has a self-edge.")

stop()

Figure 3.7 shows that checking this invariant causes a constant factor slow-
down. The overhead is close to 70%. About half of this overhead is the cost of
maintaining extents, while the other half is the cost of maintaining invariants.

We do not give the running time of the non-incremental instrumentation,
as not even the smallest experiment was able to complete in the time limit of 20
minutes. Since the query is run each time an AST node is created or updated,
the non-incremental version incurs an asymptotic slowdown. Incremental in-
strumentation eliminates this asymptotic penalty, rendering invariant checking
practical.

No shared child. In an AST, no two parents may refer to the same child.
The following rule checks for violations of this invariant:

foreach (n in extent(Node), m in extent(Node),

c in extent(Node): c in n.children and

c in m.children and n!=m):

report("Error: ", c, "is a child of both ",

m, " and ", n, ".")

stop()

As this invariant contains multiple join conditions (c in m.children, c in

n.children, n!=m), hash-join maps are used to evaluate it efficiently.
Figure 3.7 shows that incrementally checking this invariant increases the

running time by less than 95%. In contrast, the non-incremental instrumen-
tation would be cubic in the number of nodes currently alive in the program,
as it iterates over three extents of nodes. This leads us to the estimate that,
in the best case, the non-incrementally instrumented program is O(#node3)
worse than the uninstrumented one. It is not a surprise that all experiments

52

chunk
493

weakref
1021

bdb
2026

pickled
4239

tarfile
7877

Fortran2003
15955

Program, number of AST nodes

0.0

0.5

1.0

1.5

2.0

R
u
n
n
in

g
 t

im
e
 r

a
ti

o
 t

o
 "

N
o
 c

h
e
ck

"

No shared child
No own child
No check

Figure 3.7: Running times of InvTS normalized to the running time of the
non-instrumented version.

with non-incremental instrumentation timed out. When we manually intro-
duced a bug that assigned the same child to multiple parents, checked-InvTS
detected the violation.

Overall, these experiments show that verifying invariants at runtime can
be efficient (with overhead smaller than 95%) for even complex queries that
involve multiple joins and membership tests. We also see that when joins
used by the query have a high selectivity, as these do, the running time of the
instrumented program is not very dependent on the query, but more so on the
number of classes for which we maintain extents.

Authentication

We performed two experiments involving the Kerberos authentication used by
pysmb, a SMB client written in Python. The first checks that all packets sent
are authenticated; the second checks that authentication does not occur more
frequently than necessary.

Require valid ticket. Our first experiment checks that we do not send
packets to hosts that have an invalid Kerberos ticket associated with them.

53

This invariant needs to remain true until the packet is actually sent. To find
violations of it, we keep a set of packets being sent, and report an error if a
packet in the set is associated with an invalid ticket.

foreach (sp in $sending_packets,

kt in extent(KerberosTicket):

kt.invalid and kt.ip==sp.target_ip):

report("Sending ", sp, " with invalid ticket!")

stop()

de in global:

$sending_packets=set()

at $x.send($p):

if subclass(type($x),asyncore.dispatcher):

de in class type($x) in function handle_write($arg):

if $arg in $sending_packets:

$sending_packets.remove($arg)

do after:

if $p not in $sending_packets:

$sending_packets.append($p)

This rule tracks all sends of data over asynchronous sockets, and stops the
program when a packet was sent to a server with an invalid Kerberos ticket.
The de and do clauses work in the following manner: When a send method
call is encountered, the packet being sent is added to the $sending packets

queue. It is removed from there once the packet is actually sent, which may not
be necessarily immediate. This is detected by intercepting the handle write

callback in the class subclassing asyncore.dispatcher. This callback is called
by Python when a packet is actually sent out over the given socket.

When we ran this on pysmb, while transferring a 10GB file over a 100Mbit
connection, the average CPU load increased from 3.6% to 11.7%. The through-
put remained the same, because the program was IO-bound in both cases. The
increase is due to the join and the fact that many Kerberos tickets may match
an IP address. A straightforward implementation increased CPU usage to
97%, and reduced the throughput of the program by 73%, as pysmb became
CPU-bound. The times taken by the program to transfer the file were 1302
seconds for the uninstrumented version, 1351 seconds for the incrementally in-
strumented version, and 6321 seconds for the non-incrementally instrumented
version.

Repeated authentication. It is inefficient for a program to request tickets
from the Kerberos server long before the currently valid ticket times out. Thus,
a useful invariant to check is that a successful authentication is not repeated
until the resultant ticket is about to time out. A ticket times out when there
was no activity relating to that ticket for 300 seconds, i.e., no data was sent

54

No check Incremental No type anal. No alias anal. Non-incr.

pysmb - Require valid ticket 3.6% (1302s) 11.7% (1351s) 19.7% (1819s) 14.1% (1601s) 97.3% (6321s)
pysmb - Repeated authentication 3.6% (1302s) 17.9% (1535s) 31.7% (2011s) 23.3% (1943s) 96.9% (8750s)
BitTorrent - No duplicate data 28.3% (1771s) 36.1% (1779s) 63.8% (1790s) 36.3% (1830s) 99.8% (3210s)
BitTorrent - No packet modification 2.7% (1783s) 3.3% (1687s) 3.9% (1763s) 3.4% (1805s) 93.1% (1801s)
InvTS - No shared child 13s 25s 349s 25s >1200s
InvTS - No own child 13s 21s 312s 26s >1200s

Table 3.1: CPU utilization (if IO-bound) and wall time taken for experiments under differing optimizations.

55

to the host the ticket was issued for the last 300 seconds. Thus the invariant
is: there are no two valid tickets such that they are both referring to the
same host, are both valid, and are much less than timeout (i.e., 300 seconds)
apart. We define much less as 10 seconds less, as the MIT Kerberos client
requests a new ticket 10 seconds before the current one times out. To verify
this invariant, we need to keep track of Kerberos tickets and of SMB activity.

The invariant is expressed using a nested query, with the inner query com-
puting the latest packet sent to a given host, and the outer query doing a
join on all pairs of currently existing Kerberos tickets. The max aggregate is
maintained using a heap.

foreach (k_old in extent(KerberosTicket) ,

k_new in extent(KerberosTicket):

k_old.valid and k_new.valid and

k_old.issue_time<k_new.issue_time and

k_old.ip==k_new.ip and

k_new.issue_time-max([p.time

for p in $sent_packets

if p.target_ip==k_new.ip and

p.time < k_new.issue_time])

< 300-10):

report ("Reauthenticated to host ", k_new.ip)

stop()

de in global:

$sent_packets=set()

at $x.send($p)

if type($x)==asyncore.dispatcher

do after:

$sent_packets.add($p)

When run on pysmb, while transferring a 10GB file over a 100Mbit connec-
tion, the average CPU load increased from 3.6% to 17.9%, mainly due to the
need to maintain a heap per IP address, and an additional join over the pre-
vious example. Using specific domain knowledge, the heap could be avoided:
we could just keep track of the latest packet sent to each IP address. This
works because time is monotonic. A rule modified in such a way is less easily
adapted towards other uses, though. Note that even with the maintenance
of the heap, the instrumented program is still IO bound, not CPU bound.
Checking invariants in a non-incremental manner makes it CPU bound: it re-
sults in a 96.9% CPU load, and the running time increases from 1302 to 8750
seconds.

The pysmb examples show that instrumenting complex programs in ways
not anticipated by their creators is easily done with our framework due to the
ability to specify complex program transformations, such as maintaining the

56

set of sent packets, or the set of packets waiting to be sent. It also demon-
strates that complex conditions, including nested queries, are supported by
this framework, and their use does not cause excessive overhead.

File distribution protocol

BitTorrent (http://download.bittorrent.com/dl/) is a peer-to-peer file distri-
bution protocol. When multiple peers download the same file concurrently,
they can relay data to each other, making it possible for the file source to
support very large numbers of downloaders with only a modest increase in its
load. Each peer downloads chunks of a file from (likely different) peers, and
then reassembles the original file from the chunks. The BitTorrent protocol
is relatively complex, so we use our method to instrument an implementation
and check it for potential errors.

No duplicate data. Receiving the same piece of data from two sources too
often may mean that the client is using bandwidth inefficiently. We check
for this using a rule that detects when the same data is received from two or
more distinct sources (identified by IP address), and logs the event without
stopping the program. The log could be analyzed later to determine whether
the duplication is due to a bug or misconfiguration.

foreach (p1 in $in_queue, p2 in $in_queue:

p1.source_ip!=p2.source_ip and

p1.payload==p2.payload):

report("Receiving same data from peers ",

p1.source_ip, " and ", p2.source_ip)

de in global:

A queue of incoming packets.

It supports O(1) membership tests,

holding at most 100000 packets

$in_queue=queue(max_length=100000)

at $x.type=$s

if $s=="incoming" and type($x)==Packet

do after:

if $x not in $in_queue:

$in_queue.append($x)

Experiments involved receiving a 10GB file from 30 peers, over a 100Mbit
connection. We measured CPU load to determine the impact of the runtime
checking. The average CPU load increased from 28.3% for the original program
to 36.1% for the instrumented program. The small increase is due to the high
selectivity of the p1.payload==p2.payload join condition. Just like with
pysmb, both versions of the program are IO-bound.

57

No packet modification in transit. To verify that the correct data is
being sent between peers, we check the following invariant: a packet sent from
one peer must be received by another peer without a change in the payload.

We check this invariant by creating a server to which peers send summaries
of the packets they send and receive. These packets are put into a set on the
server. We write a query that detects when packets of the same chunk have a
different payload, by comparing the MD5 hashes of the payloads.

The server maintains a set rec set containing all packets sent and received
by BitTorrent peers. The following rule checks the invariant:

foreach ($from in self.rec_set, $to in self.rec_set:

$from!=$to and $from.source!=None and

$from.target!=None and

$from.source==$to.source and

$from.target==$to.target and

$from.chunk==$to.chunk and

$from.chunk!=None and

$from.sent and $to.received and

$from.md5!=$to.md5 and $from.md5!=None):

report ("Packet sent from ", $from.source,

" to ", $from.target, " changed in transit!")

stop()

We use two InvTS rules to modify the BitTorrent program to send the
information needed for invariant verification to the server. The rules state
that a socket should be opened to the server once per program, and that
anytime a packet is written to any socket, or read from any socket, the packet
(minus the body) should be sent to the server. The rule for handling send is
the same as the rule below for handling receive, with receive replaced with
send.

at $x.receive($p)

if type($x)==asyncore.dispatcher

de in global:

import socket

#Open a socket to server on 192.168.17.46:636

$check_socket=socket.open_udp(192.168.17.46,636)

in global in function(myreceive(socket,packet)):

global $check_socket

For efficiency, do not sent the payload

$body=packet.body

$arg.body=None

$check_socket.send(packet)

packet.body=$body

58

do instead:

myreceive($x, $p)

After applying the query and rules to the BitTorrent client and our server,
we benchmarked the CPU utilization of the clients and the server (which were
running on the same computer). With 5 BitTorrent clients and the server
running, the CPU utilization increased from 73 to 78 percent. When the
clients were measured in isolation, the CPU utilization of a single client (with
the other 4 clients and the server running on another system) was 11%, vs.
10% for the untransformed client. The server, when run on the test machine
(with the 5 clients running on a different machine) utilized 3.3% of the CPU
with the instrumentation enabled, versus 2.7% with no instrumentation.

On a reliable connection we found no problems. When we simulated a
bad connection by randomly injecting changes into some packets, we found
the errors, before the BitTorrent error detection algorithm, which operates on
bigger chunks.

Effect of optimizations. Table 3.1 shows the CPU utilizations and running
times of the pysmb and BitTorrent examples under different implementation
options. It is easy to see that the non-incremental implementation is far worse
than any other version. Disabling type or alias analysis also produces a no-
ticeable slowdown.

3.3 Query-based debugging

Debugging is the process of determining the source of an error given the symp-
toms of the error. While it is about program executions on particular inputs,
it is necessarily also a process that requires significant effort analyzing the
source code and often manipulating the code, manually, even with the help
of good debugging tools. Methods and tools that can help reduce the effort
needed are greatly desired.

Query-based debugging is a framework that allows powerful queries to be
used in debugging. Unlike techniques that allow only values in a single scope
to be used, it allows the use of all values in the program state, and even in the
history of states. The results of these queries are used to watch conditions and
trigger actions as the program executes. Although powerful queries can help
make debugging much easier, they are also much more expensive to compute,
and the values that the queries depend on change continuously as the program
executes. These powerful queries are far from being supported in debugging
tools, because of the significant overhead in computing the query results from
scratch and the sheer difficulty in manually writing code that computes the
query results incrementally as the program executes.

59

We describe a framework that allows powerful queries to be used in debug-
ging tools, and describes in particular the transformations, alias analysis, and
type analysis used to make the queries efficient. The framework allows queries
over the states of all objects at any point in the execution as well as over the
history of states. The transformations are based on incrementally maintaining
the results of expensive queries.

We also describe an implementation and experiments that show the power
of the framework and the effectiveness of the alias analysis and type analysis.
Case studies in the experiments include finding when certain properties of
XML DOM representations are violated, determining sources of out of bounds
exceptions for array indices, and finding out-of-order commands sent by an
FTP client. We were able to easily determine the sources of all injected bugs,
and we also found the cause of a previously noticed non-injected bug in the
FTP client.

Query-based debugging has been studied for at least a decade [66] and has
received increased attention in recent years [67, 82, 74, 109]. To the best of
our knowledge, no previous work supports the general forms of queries that
our framework allows and achieves the level of efficiency that our methods do.

3.3.1 Framework

The premise of query-based debugging is that allowing users to easily write
expressive queries about the program execution helps them find and diagnose
bugs.

In this section, we describe the query language, its features, and three
classes of errors, as well as queries that help to find the bugs that cause the
errors. Then, we discuss the efficient implementation of the language.

Debugging rules and queries. The general form of a debugging rule is
shown in Figure 3.8.

foreach(query) :
action

(de (in scope (field |method)+)+)?
(at update

(if condition)?
(de (in scope (field |method)+)+)?
do (before maint (after maint)?) |

(instead maint)
)∗

Figure 3.8: General form of a debugging rule.

60

A query has the form (v1 in S1, . . . , vk in Sk: condition); condition is
a conjunction where each conjunct has the form e1 op e2, op is ==, !=, in,
or not in, ei being v or v.f, with v a variable and f a field; or a boolean
expression whose value depends on only the objects in the containers (S1, . . . ,
Sk) iterated over by the query , the fields of these objects, and any immutable
objects. The set of tuples of values of v1, ..., vk, such that condition holds is
called the query result. action is a sequence of statements to be executed for
each tuple in the query result. The de, at, if, and do clauses have the same
semantics as in InvTL.

Violation of invariants. Detecting violations of data structure invariants
as soon as they occur, instead of waiting until incorrect output is produced,
can make it much easier to find and diagnose bugs.

For example, tree data structures in the Python XML DOM implemen-
tation have the invariant that when node a is in the children set of node
b, a.parent must refer to b. Finding the node that the child was added to
using standard debugging techniques is difficult, due in part to aliasing. For
example, the following code aliases x to parent.children, and then updates
the set through x, without accessing the children field:

x=parent.children

x.add(child)

The debugging rule in Figure 3.9 says to stop the DOM implementation when
a child and parent are inconsistent. For simplicity, consistency is checked at
every program point. To check consistency only at specified program points
(e.g., method return points), we could extend the action with an if statement
that checks whether we are at such a point.

foreach (n in extent(Node),

m in extent(Node) :

m in n.children and

m.parent != n):

report("Child ", m, "is a child of ",

n, ", but ", n, " is not the",

" parent of ",m)

stop()

Figure 3.9: A child’s parent field must point to its parent.

As before, for every class T , extent(T) is a special set defined by our
framework to contain all currently existing objects of type T. report and stop

are functions in the subject programming language: report takes any number
of arguments and prints the concatenation of their string representations; stop

61

stops the program and drops into a debugger. The query condition in this case
is m in n.children and m.parent != n. It is a conjunction of relational
joins (because each conjunct contains multiple variables).

It is easy to write this rule in our framework, but it is difficult to manually
write code that would compute the value of the query efficiently for the follow-
ing reasons: (1) The result of the query may be changed by any statement that
adds an object to a collection, such as the following statements that form a
cycle: x=o.children; ...; o.add(x). It is tedious and error-prone to write
code to intercept all calls to add and determine whether the target object
equals the children field of some instance of Node. (2) Efficiently maintain-
ing the result of a join over two changing sets is non-trivial, and involves the
maintenance of additional information, etc. In our framework, the user writes
the rule, and our system does the rest, generating correct and efficient code
for it and inserting that code properly in the program to be debugged.

Violations of temporal properties. Bugs often manifest themselves as vi-
olations of temporal properties. Detecting these violations immediately, which
may be well before incorrect output is visible, can make it much easier to pin-
point the source of the error. Our framework allows users to write queries that
express temporal properties using debugging rules that transform the program
to maintain information about past events. This is similar to aspect-oriented
programming [56]. We illustrate such a query with a case study involving nftp,
an FTP synchronization tool.

Nftp did not copy some directories that it should copy. Inspection of the
logs on the FTP server reveals that after changing directories, nftp is trying
to copy files from the old directory, not the one it changed into. Since nftp is
multi threaded, we guess it does not wait until the cwd command completes
before enumerating the files and starting to copy them. This bug is not obvious
from inspection of the nftp code, because the commands appear in the correct
order in the code; to realize the error, one needs to think about the use of
multiple threads and how they are synchronized. It is also difficult to verify
this hypothesis using standard debugging techniques, as there is no easy way to
find out to which commands the tool has not yet received a reply, as the ftplib
module that is used by nftp does not create an object per sent command and
does not internally maintain the set of outstanding commands.

The rule in Figure 3.10 stops the program when a new ls command is
sent to a host while a cwd command to that host is still outstanding. The
rule maintains (and queries) $exec commands, a set of outstanding FTP com-
mands. At all places in the program where the cwd command is executed by
an ftplib.FTP object (at and if clauses), it is added to $exec commands

immediately beforehand (do before clause). It is removed from the set im-

62

foreach (c1 in $exec_commands, c2 in $exec_commands :

c1.cmd == ’ls’ and c2.cmd == ’cwd’ and c1.host == c2.host):

report(’ls and cwd being executed’,

’ at the same time.!’)

stop()

de in global:

$exec_commands=set()

at $x.cwd($dir):

if type($x) == ftplib.FTP:

do before:

$c=Command($x,’cwd’)

$exec_commands.add($c)

do after:

$exec_commands.remove($c)

at $x.list():

if type($x) == ftplib.FTP:

do before:

$c=Command($x,’ls’)

...

Figure 3.10: A rule that makes sure no new FTP ls commands are sent while
there are outstanding cwd commands.

mediately after (do after clause) the cwd call returns. The same is done for
ls and other FTP commands. $exec commands is a metavariable; it will be
instantiated with a fresh program variable, whose value will be set to a new
empty set (de clause). Command is a class we define, with fields cmd and host

to store the command and the host nftp is connected to, respectively.

Causes of uncaught exceptions. Many bugs manifest themselves as un-
caught exceptions. For example, in Python, an expression $L[$R] throws an
IndexError if the index $R is out of bounds for the ordered collection (e.g.,
a list) $L. To debug such an error, the user would like to know which assign-
ment led to it. The query in Figure 3.11 finds the earliest update after which
the error became “inevitable”, i.e., $L[$R] would still throw IndexError after
every subsequent update to $L or $R. This is difficult to do with standard
debugging techniques for two reasons: we do not know the list object involved
in the IndexError until it occurs, and there might be multiple ways to update
the index if the index is inside an object, via aliasing of that object. After
determining that the exception occurs at line 12 in the file t.py, the program
needs to be executed again, after instrumentation with this query, to find the
updates.

The rule works by replacing $L[$R] with a function call that returns the

63

result of the lookup if successful; otherwise it prints the location at which the
IndexError became inevitable. To accomplish this, the rule uses a query to
maintain a map $bad from objects which may be aliased to $L, and variables
(e.g. fields) that could be aliased to $R to locations after which the error
becomes inevitable. The query is over $C (Collection) and $I (Index), sets
that contain the last place where variables and objects that $L[$R] depends
on were last updated. Computing bad using a query allows us to write what
bad is declaratively, instead of manually incrementally computing changes to
it whenever $C or $I are updated. outOfRange(a,b) returns whether a[b]

will throw an exception. $LOCATION is a special metavariable that expands
to an object that identifies the statement being transformed. Update stores

foreach (c in $C, i in $I: i.value != None and c.value != None) :

if outOfRange(c.value, i.value):

if (c.value,i.locId) not in $bad:

$bad[c.value,i.locId]=$LOCATION

else:

if (c.value,i.locId) in $bad:

del $bad[c.value,i.locId]

de in global:

$bad={}

$C=set()

$I=set()

def wrapper(L,R,locIdR):

try: return L[R]

except IndexError, error:

report ("Became inevitable at: ",

bad[L,locIdR])

stop()

var $L, $R

at $L[$R]:

if line(12) and file(’t.py’):

do instead:

wrapper($L,$R,locId(’$R’))

at $e:

if part($e,’$x’,’alias($x,$L)

and update($x)’):

do before:

$obj=Update(locId=locId(’$x’),value=$x)

$C.discard($obj)

$C.add($obj)

Figure 3.11: A rule that helps determine the cause of an uncaught exception.

64

two fields: locId and value store an object identifying an lvalue and an
arbitrary value, respectively. Only locId is used for comparing instances of
Update. Thus, $C.discard($obj) removes the entry with the same locId

as $obj from $C, and $C.add($obj) adds to it $obj with the new value.
locId is a also function that generates an identifier that uniquely identifies
an lvalue. Updates to $R are handled in the same way as updates to $L,
under the substitutions $L⇒$R, $C⇒$I (This part of the rule is not shown).
part($e,’$var’,cond) is a special function that finds a set M of minimal
subexpressions of $e such that cond is true for each such subexpression, and,
for each elemement of M , binds $var to that element. Note that if there are
no updates to either $L or $R, then code to maintain $C or $I is not inserted.

This rule can be reused by changing line(12) and file(’t.py’) to in-
dicate the file and line at which the IndexError occurred. Similar rules can
identify causes of other kinds of exceptions and other invariants.

Implementation. The straightforward way to implement this language is to
evaluate every query at every program point. This is very inefficient, especially
if the size of the collections queried over is large. Evaluating each query only at
program points that affect its result is more efficient, yet still requires repeated
reevaluation of the query. For all queries specified by the programmer, our
implementation incrementally maintains their results whenever a set or object
the queries depend on changes, using the transformations described in the
previous section. There are two steps involved in this approach: (1) generating
maintenance code, and, (2) applying the maintenance code at the appropriate
places.

In step 1, we generate maintenance code that properly maintains the query
results in the face of all possible updates to the data the query depends on.
This is accomplished by compiling the query into an InvTS rule, which then
transforms the subject program so that it incrementally maintains the query
result. The resulting rule looks like a rule in Figure 3.8, except that it only
consists of at, if, de, and do clauses, and says “at a given update if a
condition holds do maintenance code”.

In step 2, we apply the maintenance code at all places where the query
result might change. This involves determining all locations that update the
variables the query might depend on. InvTS uses control-flow, data-flow, type,
and alias information to determine which updates do not affect the query
result, eliminating the need to insert maintenance code guarded by runtime
checks (of aliasing, etc.) at such updates. Also, it is often possible to statically
evaluate the if clauses, especially if the condition consists of only comparisons
of type expressions. This has the effect of reducing the number of needed
runtime checks, thus reducing the overhead of maintaining the query result,
as shown in Section 3.3.2 (especially Figure 3.12).

65

3.3.2 Experiments

Overhead of debugging has two components: the slowdown incurred due to
running the program in qbdPy, and the time it takes for qbdPy to instrument
the program to be debugged. To show that our technique does not introduce
excessive overhead, we perform two sets of experiments. The first set of ex-
periments measures the slowdown due to the program running in qbdPy; the
second measures the time to instrument the program.

All experiments were performed on Windows Vista, running on a Core 2
Duo (Q6600@3.0GHz) machine with 8GB of memory, of which 6GB were free.
For all examples, Python 2.5.1 was used.

Slowdown due to running program in qbdPy

We demonstrate that qbdPy does not introduce excessive slowdown due to
the program running in it, by using qbdPy to find different bugs in programs
from multiple domains: violations of data structure invariants in XML DOM
transformations, violation of specifications in an FTP client, and uncaught ex-
ceptions in an XML DOM transformation benchmark program due to injected
bugs. For each program, we report the performance of the program outside of
qbdPy; the program’s performance in qbdPy when it uses incremental check-
ing and maintenance; the program’s performance when static analyses are
individually disabled; and the program’s performance when it does not use
incremental checking and maintenance.

XML DOM transformations. For a program that uses an XML DOM
tree to be correct, there are a number of properties that must not be violated
for the tree to avoid bugs. Usually, such bugs will manifest themselves in a
further stage in the program after a property has been violated. We take the
lxml Python XML library, and, for its benchmark programs detect violations
of the following properties of the XML DOM tree: (1) if an element is a child of
another element, then its parent field must reference the element whose child
it is; (2) no two elements may have the same element as their child, nor may
an element have itself as a child. As the lxml benchmark code does not itself
contain these bugs, we have injected the appropriate bug for each experiment.

Parent field must be valid. In an XML tree, all non-root nodes must
have a valid parent field, i.e., element e has a child c iff c.parent is e. The
rule in Figure 3.9 stops the program when an element that violates that prop-
erty is found. Figure 3.12 shows that the overhead of running the incremen-
tally instrumented program in qbdPy is 68%. It also shows that type and
alias analysis decrease overhead from 109%-176% to 67%. In contrast, non-
incremental instrumentation is quadratic in the number of elements alive in

66

the program as it iterates over two extents of elements. The benchmark times
out after 20 minutes with the non-incremental instrumentation, since it does
O(#element2) additional work per update, and the benchmarked document
has 10 million XML elements.

No shared child and not own child. In an XML document, an element
may be either a root, or a child of at most one element. Also, an element
cannot be a child of itself. We omit the actual rule, as it is very similar to the
previous rule. Figure 3.12 shows that the overhead of running the program in
qbdPy, with all analyses enabled, is 85%. It also shows that type and alias
analysis both provide a significant reduction of overhead, just like the previous
example. The non-incremental version times out after 20 minutes because it
iterates over three extents of elements, doing O(#element3) extra operations
per update, and the benchmarked document has 10 million XML elements.

These experiments show three things: query-based debugging that incre-
mentally maintains its results can be efficient even for complex queries that
involve multiple joins and membership tests. We also see that when joins
used by the query have a high selectivity, as these do, the running time of
the instrumented program is not very dependent on the query, but more so on
the number of objects (and classes) for which we maintain extents. Finally,
these experiments show that maintaining the query results non-incrementally
is infeasible, as the experiments time out whenever query results are computed
non-incrementally.

A Python FTP client. We found the cause of a previously noticed bug in
a program that downloads directories from multiple machines [54]. This bug
involves directories being omitted from synchronization. The bug is due to the
FTP client issuing commands before receiving the reply for those commands.
The query in Figure 3.10 finds the location at which a command of ls is
executed when a cwd is pending.

We ran the program with 10 threads, with 30 directories totaling 20GB
over a 1GBit connection, ensuring that the program would be CPU bound.
Figure 3.12 shows that the overhead introduced by the query is 73%. It also
shows that type and alias analysis both provide a significant improvement,
reducing overhead from 173% to 73%. The non-incremental version is consid-
erably slower, as there are many threads running, and $executing commands

contains many elements. This accounts for it timing out after 20 minutes.
Precise time taken by all versions of the program can be seen in Table 3.2.

The FTP client example shows that querying a complex program over
a view that has to be created (i.e., in ways not assumed by the program’s
creator) is easily done with our framework by specifying complex program
transformations, such as maintaining the set of outstanding commands.

67

Running time Instrumentation + running time
No debug. All anal. No type No alias No anal. All anal. No anal.

lxml - Valid Parent 21s 35s 49s 44s 58s 70s 78s
lxml - No shared child & no self child 21s 39s 53s 43s 61s 77s 83s
nftp - Wait until commands complete 326s 563s 790s 690s 891s 594s 912s
lxml - Exception cause detection 21s 39s 85s 103s 190s 92s 215s

Table 3.2: Time taken for experiments under differing optimizations.

68

XML DOM
Valid parent

XML DOM
No shared child

FTP XML DOM
Exception Detection

0

1

2

3

4

5

6

7

8

9

10

R
u
n
n
in

g
 t

im
e
 r

a
ti

o
 t

o
 "

N
o
 d

e
b
u
g
g
in

g
"

No debugging
Efficient debugging
Type analysis off
Alias analysis off
All analysis off

Figure 3.12: Running times of applications in qbdPy, normalized to the run-
ning times of the applications outside of qbdPy.

Automated determination of causes of exceptions. In the final case
study in Section 3.3.1, Figure 3.11, we presented a query that, given an Index-
Error caused by an expression of type A[B], and the line and file it occurred
on, will tell the programmer where all variables in the expression were modi-
fied when it became inevitable that the exception would occur. We injected a
bug that would cause an IndexError into lxml, and ran it after applying this
debugging rule to it. The result, as can be seen in Figure 3.12 and Table 3.2,
is that the slowdown incurred by such a query is 85%, which is surprisingly
low given the low selectivity of the join condition. The drastic increase of the
overhead when type and alias analyses are turned off (from 85% to 805%), as
seen from Figure 3.12, explains the high performance of the query.

Running time of the qbdPy

To verify that the running time of qbdPy instrumentation is not prohibitive,
for each of the programs in the previous section we perform the following
experiments: measure time taken by qbdPy instrumentation with all static
analysis turned on, with all static analysis turned off, and with type and alias
analysis turned on individually. Table 3.2 presents the results. None of the

69

programs take longer than 1 minute to instrument with all analyses turned on,
and none took less than 20 seconds with all analyses turned off. This indicates
qbdPy is fast enough to be used as part of the edit-compile-debug cycle, and
that all available analyses should be performed due to the great increase in
runtime performance.

3.4 Other applications

Instrumentation. File Access Profiling looks for a specific file access pat-
tern. It demonstrates that one can easily express access patterns of interest
in InvTL, much like in an aspect-oriented programming system. Reference
Counting emulates a reference-counting garbage collector, by incrementally
maintaining reference counts. It uses static analysis in InvTS to avoid keeping
reference counts for values of primitive types, and thus avoid severe perfor-
mance degradation usually associated with explicit reference counting. Mem-
ory Coverage instruments ViM, a text editor, to intercept all calls to malloc

in order to monitor memory access patterns. It is challenging because malloc
may be called indirectly through function pointers aliased to malloc.

Refactoring. InvTS Refactoring was a real experience in the implementation
of InvTS. The goal was to rewrite InvTS, factoring out the Python language
module from InvTS core to form InvTS/py. The rules mainly did variable and
class renaming and method extraction, and turned a tedious manual task into
an easy one. Variable Renaming is for C and involves small rules that rename
only local, only global, only static, or only global static variables. These
rules are easy to write because InvTL takes scope of variables into account.
Implementing such renaming using, say, Perl scripts, would be significantly
harder and very error-prone.

Other transformations. InvTS/py and InvTS/c Test Suites consist of mis-
cellaneous transformations where transformed programs are checked automat-
ically against known results for testing purposes. The transformations insert
code that prints certain strings when certain code patterns are matched. These
strings are then counted for simple tests.

3.5 Related work

This section touches four areas: specification and implementation of Core
RBAC, runtime invariant verification [21], incremental query result mainte-
nance, and query-based debugging.

70

Core RBAC. RBAC has been specified formally and precisely in a set-based
specification language, Z [52, 97], in the ANSI standard [3, 33]. The standard
defined and maintained incrementally several additional maps, in addition to
or in place of, the relations defined in Section 3.1.1, which appears to be caused
by efficiency concerns but complicates the specification unnecessarily. That
specification was debugged and simplified in [70], resulting in the specification
used in this work. There are many implementations of RBAC (e.g., [113]), but
we are not aware of any that provides precise complexity guarantees.

Runtime invariant checking. There are several systems for runtime check-
ing of temporal properties. These include Java-MaC [58], JPAX [49], JNuke [6],
and EAGLE [11]. These systems express the properties in a linear temporal
logic (LTL) or related rule languages.

Our system does not support writing invariants in LTL, although, as our
system supports comprehensions, extents, and joins, a subset of LTL can be
emulated. The pysmb example does so by maintaining history and specify-
ing queries over it. While this may incur a performance penalty compared
to systems specifically designed to test LTL-based invariants, it is not a very
significant performance penalty (As seen in Section 3.2.3, the overhead is con-
sistently under 100%).

The category into which our system fits best is tools that use a side-effect
free subset of their subject language, extended with various operators such as
quantifiers or set operations, to specify invariants. Such invariant specification
languages include JML [64], Spec# [10], and Jahob [61]. For JML and Spec#,
there are tools that allow the user to combine/compile an invariant and a
subject program into a compiled program that, at runtime, checks whether
the specified invariant holds. These tools include Boogie [9] for Spec# and
jmlc [17], jass [12], jmle [60], and DITTO [91] for JML. A runtime verifier for
Jahob is under development [112].

Spec# does not support comprehensions[112] or extents. As such, it can-
not easily encode the invariants we wish to verify. JML supports set com-
prehensions, quantifiers, and other features. It does not natively support ex-
tents [65]. Jahob supports both comprehensions and extents (as a subset of
the AliveVariables set). The language presented in this paper supports both
set comprehensions and extents. It is worth noting that support for extents
is difficult to emulate without support for liveness testing, because garbage
collection must be taken into account.

The JML compilers jmlc, jmle, and jass all support a large subset of JML,
including comprehensions. But, they evaluate comprehensions in a straight-
forward manner, by recomputing them whenever they are encountered. In
contrast, our system incrementally maintains the value of set comprehensions.
DITTO provides incremental maintenance of some JML expressions, but it

71

does not incrementally maintain set comprehensions [91].

Incremental query result maintenance. JQL [109] extends Java to sup-
port both comprehensions and extents, to support querying over collections.
Recent work on JQL adds incremental maintenance of JQL queries in the face
of updates to the data they depend on. The fact that our system is designed
with only invariant verification in mind allows us to more efficiently maintain
invariants. For example, it is easier for us to handle removal of elements from
the sets that the query depends on. We support a marginally larger set of
conditions on queries: we can incrementally maintain query results for queries
that contain a condition of the form a in b.f. Also, the at and de clauses al-
low us to do program transformations that maintain datastructures that would
be unavailable to a pure query language, such as a set of all previously sent
packets.

Potanin et al. [82] query snapshots of object graphs, but perform the queries
non-incrementally. PQL [74] queries over past states of the program, but not
over extents. It uses BDDs to compute query results, but not incrementally.

Acar et al. [47, 1] perform self-adjusting computation which is a combi-
nation of change propagation and memoization, for ML and C, which works
quite well for recursive algorithms. Unfortunately, their method (1) does not
supports automatically incrementalizing any set comprehensions, and (2) suf-
fers from significant overhead — factors of up 100 for ML, and of around 6-10
for C [1].

Query-based debugging. Query-based debugging has recently received a
great deal of attention [67, 82, 74, 109], mostly in the form of query languages
that query over a given program state. These languages allow one to spec-
ify an assertion for a bug, and then stop execution when the assertion holds.
These systems primarily differ in the range of specification, and the time com-
plexity. Our language is an extension of the query-based debugging language
by Lencivicius et al. [67]. The method in [67] allows non-nested comprehen-
sions over extents, with the condition being a join or a side-effect free function
over a single variable of the comprehension, and recomputes the entire query
whenever sets that the query depends on are updated. Our method avoids
recomputing the query when the sets it depends on are updated, while in-
creasing the expressive power of the allowed queries by including predicates
over multiple variables and joins of membership tests. We also add features
that allow arbitrary program transformations, e.g., to maintain history.

Potanin et al. [82] allows querying snapshots of object graphs, and also
performs these queries non-incrementally. PQL [74] allows queries over past
states of the program, but not over extents. It uses BDDs to efficiently com-
pute the query results. PTQL/PARTIQLE [37] allows queries over sequences

72

of past actions (such as variable assignment) of the program, but not over
sets/extents in the program. It uses join ordering to efficiently evaluate these
queries at run-time, but does so non-incrementally. JQL [109] extends Java
to support both comprehensions and extents, with expressive power similar to
our system, for introducing comprehensions as a first-class construct into Java,
rather than debugging. Recent work on JQL [108] adds incremental mainte-
nance of JQL queries for updates to the data they depend on. We support a
larger set of conditions on queries: we can incrementally maintain query re-
sults for queries that contain a condition of the form a in b.f. The at and de

clauses allow us to do program transformations that maintain data structures
that would be unavailable to a query language, such as a set of outstanding
FTP commands.

Aspect-oriented programming. An important feature of an aspect-orien-
ted programming language is its language for defining pointcuts. The pointcut
language of AspectJ[56] is somewhat limited; other proposals [2, 85] are more
expressive. In particular, these proposals allow advice to execute based on the
history of program execution.

The goals qbdPy are similar to the goals of languages for specifying point-
cuts. The similarities are between at/do clauses and pointcuts/advices. The
differences come from the inability of AOP to derive how to maintain query
results; reasonable performance requiring the currently lacking consideration
of the same problems as our system (type and alias analysis of dynamic lan-
guages).

73

Chapter 4

Alias analysis for update
detection

Update detection. To apply an invariant rule in a coordinated fashion,
InvTS must detect all updates to the parameters of a query, even under object
aliasing. It is generally impossible to do this precisely at compile-time. Thus,
when InvTS knows at compile-time that a statement may update a parameter
of the query, it inserts code that checks at runtime whether that statement
updates that parameter of the query. As such runtime checks are expensive,
InvTS attempts to introduce as few of these checks as possible — it only
introduces a runtime check at a statement if it can say, after static analysis,
that the statement may update the value of the parameter but not that the
statement must update the value of the parameter.

Thus, update detection boils down to answering two questions:
(1) Given a parameter p and an update u to a variable v, may u update

the value of p? The answer is yes if:

1. the query that uses p is reachable from u, and

2. v and p may be aliased to one another.

(2) On the other hand, must u update the value of p? The answer is yes if:

1. u may update the value of p, and

2. v may not be aliased to any variable other than p.

Given control-flow, type, and may-alias information for the program be-
ing transformed, it is trivial to answer these questions. For C, there exist a
plethora of algorithms for computing control-flow, type, and may-alias infor-
mation; unfortunately, this is not the case for programs written in a dynamic
language such as Python, a language that InvTS supports.

74

To overcome this shortcoming, this chapter describes the development and
experimental evaluation of a may-alias analysis for a full dynamic object-
oriented language. As the may-alias analysis algorithm requires control-flow
and type information about the program being analyzed, this chapter also
presents an algorithm for obtaining this information. These analyses allow us
to perform update detection for Python programs, as described above.

Alias analysis. Alias analysis aims to compute pairs of variables and fields
that are aliases of each other, i.e., that refer to the same object. Determin-
ing exact alias pairs is uncomputable [83]. We use alias analysis to refer
to may-alias analysis, which computes pairs that may be aliases, an over-
approximation of exact alias pairs. An alias analysis is interprocedural if it
propagates information between procedures, and intraprocedural otherwise;
flow-sensitive if it computes alias pairs for each program node, and flow-
insensitive otherwise; context-sensitive if it computes alias pairs for each call-
ing context, and context-insensitive otherwise; type-sensitive if alias pairs only
include variables that have compatible data types, and type-insensitive other-
wise.

Making alias analysis precise and scalable is already difficult for statically
typed languages, and even more difficult for dynamic languages. This is due
to extensive use of features such as first-class functions, dynamic creation and
rebinding of fields, methods, and even classes, and reassignment of variables
to objects of different types. These features make even the construction of
control flow graphs difficult. At the same time, powerful optimizations like
incrementalization and specialization for dynamic languages need precise alias
information at every program node and its context. Can one make alias anal-
ysis sufficiently precise and scalable for such optimizations to be effective?

This chapter describes the development and experimental evaluation of a
may-alias analysis for a full dynamic object-oriented language, for program
optimization by incrementalization and specialization. The analysis has the
following features:

• It is flow-sensitive. This is necessary for optimization of dynamic lan-
guages, because a variable or field may have different aliases and even
different types at different program nodes, and optimizations are applied
to specific program nodes. The analysis is designed by extending an
optimal-time intraprocedural flow-sensitive analysis for C [44] to handle
dynamic and object-oriented features.

• It uses precise type analysis to increase the precision of the analysis
results. Precise type analysis infers not only basic types as in typed
languages, but also types expressing known primitive values and ranges,
and collections of known contents and lengths. These precise types are

75

critical for handling dynamic features for constructing and refining con-
trol flow graphs in the first place. Our type analysis uses an iterative
algorithm based on abstract interpretation.

• It uses a powerful form of context sensitivity, called trace sensitivity,
to further improve analysis precision. It inlines all calls repeatedly ex-
cept only once for recursive calls, but then merges analysis results back
into the original program flow graph. This improves over flow-sensitive
analysis results without needing large storage for keeping all clones, as in
standard context-sensitive analysis, that help little for the optimizations.

• It uses a compressed representation for the aliases analyzed, to signifi-
cantly reduce the memory used by flow-sensitive analysis. The idea is
to represent aliases at a program node as differences from aliases at its
control flow predecessor node if there is only one such predecessor. This
is natural and simple for flow-sensitive analysis, and drastically reduces
space usage.

We implemented this analysis, plus five main variations of it, for Python.
The variations are:

• two flow-insensitive analyses: one that is context-insensitive, and one
that is context-sensitive;

• two flow-sensitive analyses: one that is context-insensitive, and one that
is context-sensitive; and

• a flow-sensitive, trace-sensitive analysis that also creates extra clones.

Each of these six alias analyses is also coupled with no type analysis, basic
type analysis, and precise type analysis, resulting in a total of 18 variants of
alias analysis.

We evaluate the effectiveness of these variants for incrementalization and
specialization of Python programs, through applications that use InvTS and
applications that use Psyco, a just-in-time compiler that does specialization [84].
We also evaluate the precision, memory usage, and running time of these anal-
yses on programs of diverse sizes. In addition, we evaluate the effect of refining
control flow graphs using precise type analysis, and we examine uses of pro-
gram constructs that are most challenging for precise type and alias analyses.
The results show that our analysis, which is flow-sensitive and trace-sensitive
and uses precise type analysis, has acceptable precision, memory usage, and
running time, and represents the best trade-off between precision and effi-
ciency for effective optimizations. For example, the analysis takes 20 minutes
on BitTorrent with over 20K LOC and less than an hour on Python standard
library with over 50K LOC.

76

A significant amount of work has been done on alias analysis, as discussed
in Section 4.3. Our work is the first implementation and experimental evalua-
tion of an optimal-time flow-sensitive analysis algorithm, extended to handle
a full dynamic object-oriented language with precise type analysis and further
improved with trace sensitivity. In contrast, almost all prior works are for
statically typed languages such as C and Java. There are many uses of alias
analysis for other analyses and verification, and for optimizations including
specialization. Our work is the first use of alias analysis for effective incre-
mentalization, and the first thorough evaluation of alias analysis variants for
incrementalization and specialization.

Need for flow-sensitivity and type-sensitivity. We show that flow-sen-
sitivity and type-sensitivity are essential for optimization of dynamic languages
by showing that they are essential for the analysis required by InvTS. Consider
the following simple example that contains updates to collections and is typical
in dynamic languages:

#removes all instances of O from collection C

def removeObject(C,O):

if isinstance(C,set):

#a set contains O at most once,

#thus remove it once

if O in C:

C.remove(O)

if isinstance(C,list):

#a list may contain O multiple times.

#count the number of O’s in C

#and remove O that many times from C

for n in range(C.count(O)):

C.remove(O)

Incrementalization of a query over a collection, say S, typically requires
insertion of maintenance code, to update the result of the query, before the
removal of an element from S. At any statement that removes an element from
any collection C that may alias S, InvTS inserts the corresponding maintenance
code guarded by a runtime check that C is aliased to S. As mentioned before,
InvTS uses alias analysis to statically remove the check if C may be aliased to
only S.

Suppose the alias set of C is {L,S}, where L is a list, at the start of the
body of removeObject. Then, our analysis yields two different alias sets of C—
{S} and {L}—at the two remove statements. This is because flow-sensitivity
allows different alias sets at different nodes in the same function, and type-
sensitivity uses conditions from isinstance. At the first remove statement,
because C is aliased to only S, the runtime aliasing check is removed. At the

77

second remove statement, because C may not be aliased to S, the maintenance
code and runtime check are never inserted.

Note that for a flow-insensitive analysis of the above code, in both the
original and SSA forms, the alias set of C is {L,S}. This leaves both the main-
tenance code and runtime check at both remove statements. Note also that
a flow-sensitive but type-insensitive analysis would yield the same undesirable
result.

4.1 Analysis

Our analysis takes an input program and produces information about alias
pairs, as well as data types and control flows. It first handles dynamic features
by analyzing types and control flows using an abstract interpretation, and then
performs a flow-sensitive trace-sensitive alias analysis, or a variation of it.

The first step has two main tasks: (1) parse a program file and construct an
abstract syntax tree (AST), which is easy, and (2) analyze types and construct
a control flow graph (CFG) on the ASTs from all files read so far; since the
code in a file may import modules from other files, analyzing a file recursively
performs (1) followed by (2) at the import nodes. The output of this step is an
interprocedural CFG of the entire program, annotated with type information.

The second step has two main tasks: (1) construct a sparse evaluation
graph (SEG) from the CFG by removing CFG nodes that do not affect aliases
or control flows and connecting edges to pass the removed nodes, and (2) do an
alias analysis that extends an optimal-time flow-sensitive intraprocedural alias
analysis to handle procedures, methods, and fields and to be trace-sensitive.
We also describe a compressed representation, implementation issues, and
analysis variants.

In this chapter, program node refers to AST node. As common in lan-
guages like C and Python, function refers to both functions and procedures;
functions are just procedures that can return values. For complexity analysis,
N denotes the size of the input program, V denotes the number of variables
in the program, and S denotes the maximum number of variables in scope at
any program node.

4.1.1 Type and control flow analysis

The key challenge posed by dynamic language features is construction of a suf-
ficiently precise CFG. Dynamic language features are: first-class functions and
methods, including lambdas, inner functions, and methods in inner classes; dy-
namic creation and rebinding of fields, methods, and classes; reassignment of
variables to objects of different types, where objects may be anything, includ-
ing methods and classes; type-based dispatch, including polymorphic functions

78

and explicit type comparison, e.g., for elements of heterogeneous collections;
exceptions; and eval, which evaluates a string as code. These features all
make it difficult to statically determine control flows.

To address this challenge, we use a precise type analysis to infer the types
of variables and expressions at all program nodes, and use types to statically
determine control flows as precisely as possible. In particular, dynamic features
make it especially difficult to determine interprocedural control flows. Thus,
we use the types of arguments and returns to help determine interprocedural
control flows. We say that two types are compatible if their sets of possible
values intersect. We add interprocedural CFG call and return edges between
a call and a procedure or method only if the type signature of the call is
compatible with that of the procedure or method.

Our type analysis and CFG construction is done by an abstract interpre-
tation over a domain of precise types. It infers the types of all variables in
scope at each program node, and the type of the expression at each expression
node. It also constructs CFG nodes and edges as it visits program nodes fol-
lowing the control flows determined, easily for most intraprocedural flows, and
using types for interprocedural flows and exceptions. Similarly, we use types
to determine control flows involving exceptions.

Basic types and precise types. Our domain of precise types extends our
domain of basic types. A precise type is a subtype of a basic type. Precise
types are used in type inference and CFG construction. Basic types are used
afterwards for generating specialized procedures and methods. Basic types in
our type system are:

• none, for the special undefined value, needed in dynamic languages;

• primitive types int, float, and bool;

• collection types string, list, tuple, set, and dict (map);

• module (similar to package in Java), with, if known, module name, a list
of names and their types exported by the module, and the AST node id
of the module definition;

• class, with, if known, class name, a list of parent classes, a list of static
field (including method) names and their types, and the AST node id of
the class definition;

• instance, with, if known, type of the class of the instance, and a list of
instance field names and their types;

• function, with, if known, function name or special name lambda (for
unnamed functions), a list of parameters and their types, a list of free
variables and their types (for closures), the return type, and the AST
node id of the function definition;

79

• method, with, if known, everything as in function type plus the type of
the instance on which the method is invoked;

• union, with a list of any types other than union types; union types are
needed for dynamic languages, since an expression can evaluate to values
of different types at different times it is evaluated; and

• bot and top, the type of no values and the type of all values, respectively;
bot is a subtype of all types, and all types are subtypes of top.

Precise types extend basic types to include additional subtypes. There are
three kinds of extensions:

• for primitive types, add subtypes for known values or ranges: for int,
add intval(n) for integer constant n, intnon neg for nonnegative integers,
and intran(n1, n2) for integers from n1 to n2, where the first of these
types is also a subtype of the latter two when n is not negative or is in
the range of n1 to n2, respectively; for float, add similar types; for bool,
add boolval(true) and boolval(false).

• for collection types, add subtypes for known element types or lengths:
for list, add listall[t1, ..., tn] for lists of known length n and element types
t1 through tn that are not all top, listlen(n) for lists of known length n
but all top element types, and listelem(t) for lists of unknown length
but known same non-top element type t, where the first of these types
is also a subtype of the latter two when ns have the same value or t1
through tn are of the same type, respectively; for tuple and set, add
similar types; for dict, add similar types plus dictsize key[n, t] for maps of
known size n, known same non-top key type t, but all top value types,
and dictsize val[n, t] symmetrically with key and value switched, where
dictall[(kt1, vt1), ..., (ktn, vtn)] is a subtype of both, and both are subtypes
of dictsize(n), when ns have the same value. string is treated as a tuple
whose element types are character types.

• for each module, class, instance, function, and method type, add sub-
types whose component types may use also the subtypes above, where a
type t1 is a subtype of a type t2 iff all components of t1 are subtypes of
the corresponding components of t2.

Any set {t1, . . . , tn} of types has a minimum supertype: top if any ti is top;
otherwise union of the maximal types in all ti if ti’s are union types, and
otherwise first turn any ti that is not a union type into a union type of itself.

We bound the set of precise types considered during type analysis to be
finite, by generalizing a type to a supertype of a smaller size when the size of
the type exceeds a constant. Generalization yields a minimal supertype of a

80

smaller size; when there are multiple such types, we choose the one that merges
the lowest ranges for range types, and the one with most information about
element types for collection types. For example, union(intval(2), intval(4),
intval(8)) is generalized to union(intran(2, 4), intval(8)) instead of union(intval(2),
intran(4, 8)), and listall[int, int, int, int, int] is generalized to listelem(int) in-
stead of listlen(5). The precise limit we use is for the size of each type descrip-
tion to be no more than 60 type names (int, float, etc.), except that the size
of a range type is the number of times it has been generalized.

Analysis and refinement. Our algorithm does the Analysis step below
to infer types and construct a CFG, and then does the Refinement step to
specialize the program constructed based on the types inferred; the resulting
program is then analyzed again to yield more precise types and more refined
control flows, and is analyzed incrementally. Our overall algorithm repeats the
two steps until either a fixed-point is reached, so the resulting program cannot
be further specialized, or a bound on the number of iterations is reached.
The bound is set to be 30, but for all examples we have experimented with,
the fixed-point was reached after 1 to 19 refinement steps, except that for
Python standard library, the bound 30 had to be imposed to stop the analysis.
Section 4.2.3 experimentally evaluates the effectiveness vs. cost of refinement.

Analysis. Start at the program entry point, and visit and interpret each
program node according to its semantics in the domain of precise types. The
types for all variables and expressions at all program nodes are assigned to
bot initially, and go up until a fixed-point is reached. A total of 312 kinds of
program nodes are handled. Most of them are for built-in functions and are
obvious. We explain how the dynamic features are handled.

First-class functions and methods. At calls to first-class functions, the func-
tion type is used to determine which functions may be called. Returning,
passing, or assigning a function is handled by the type analysis algorithm
propagating the function type to the type of the corresponding return
expression, argument expression, or the left side of the assignment, re-
spectively. The same holds for methods.

Lambdas, inner functions, and methods in inner classes all have function
types. The function type contains a list of the free variables and their
types. The type is propagated by the type analysis algorithm as for
other functions, and the types of the free variables are looked up when
an application of the function is analyzed.

Dynamic creation and rebinding. All dynamic creation and rebinding of
fields, methods, and classes are reduced to field creation and field as-
signment of the form x.f=y. Just as for normal field creation and as-
signment, the type analysis algorithm creates a new instance type tnew

81

for x from the current type tcur for x, where f is added to the list of fields
in tnew if f is not in the list, and the type of f is assigned the type of y;
the algorithm then assigns x the minimum supertype of tnew and tcur.

Variables may be reassigned objects of different types, where objects may
be anything, including methods and classes. This is handled by the type
analysis algorithm propagating by reference, not by copying, the type of
the right side of the assignment to that of the left side. Propagating the
type by reference ensures that types of aliased variables change together
at dynamic rebindings.

Type-based dispatch, including polymorphic functions and type comparison
of elements of heterogeneous collections. At a call to a polymorphic func-
tion or method, the analysis algorithm constructs a CFG edge to each
function or method with a compatible type signature for the parameters
and return.

Type comparison of elements of heterogeneous collections is handled by
the analysis algorithm as a normal comparison, yielding boolval(true) or
boolval(false) if the types of the collection’s elements are known, and are
equal or not equal, respectively, and bool otherwise.

Exceptions. Exceptions are objects. Because try blocks can be nested, our
analysis maintains a stack of exception handlers. When analysis enters
a try block, it pushes on this stack the first CFG node of each except

(similar to catch in Java) block together with the class types of excep-
tions that the except block handles; these stack entries are popped when
analysis leaves the try block.

When analyzing a try block, including functions and methods called
during it, from each CFG node n that may throw an exception, the
analysis adds an edge from n to each CFG node in the stack where one
of the corresponding exception class types is compatible with the type of
the thrown exception, and adds an edge from n to the program exit node;
to improve precision, if an exception thrown by n is definitely caught by
one of the except clauses on the stack, edges from n to except clauses
lower on the stack and to the program exit node are omitted. CFG edges
involving finally blocks are added in a standard way.

Evals. The analysis distinguishes two cases. If the type of the argument of
eval is a union of constant strings, then create a set of inner functions,
one for each string in the union; create a CFG edge from the eval

node to the entry node of each of these inner functions, and create a
CFG edge from each exit node of these inner functions to the CFG node
immediately following the eval node. The return type of the eval is the
minimum supertype of the return types of the inner functions.

82

Otherwise, we use top as the return type. Even in this case, the behavior
of eval of an unknown string may still be limited by the language defi-
nition; e.g., Python allows programmers to specify the sets of local and
global variables that an eval may update. In the worst case, if an eval

may update anything, we set the types of all variables in scope to top
at this eval node; this is generally bad for precise control flow analysis,
but our experiments in Section 4.2.4 show that this rarely occurs.

Note that imprecision caused by reflection features for accessing fields,
through setattr and getattr, is limited to related objects and fields,
and thus is much less problematic than eval.

Refinement. Refine and simplify the program using specialization and
inlining as follows:

1. Clone procedures and methods so that there is one clone for each differ-
ent combination of basic types of arguments a procedure or method is
called with, and replace original calls with calls to the clones with the
corresponding argument types.

2. Eliminate code in the clones that becomes dead for the argument types
of the clone; this results in procedures and methods that are specialized
for each combination of argument types.

3. Inline all procedure and method calls where inlining does not increase
the number of program nodes; this eliminates the overhead of analyzing
calls and returns without increasing program size.

Type and control flow analysis takes time O(N ×S) because we bound the
set of types considered and the number of refinements by constants.

4.1.2 Abstract interpretation

In abstract interpretation, the collecting semantics of a program is expressed
as a least fixed-point of a set of equations. The equations are solved over an
abstract domain chosen based on desired precision and cost. The equations
are solved iteratively; that is, successive approximations of the solution are
computed until they converge to a least fixed-point [38]. We describe both the
abstract domain, and how we interpret the various language constructs.

While performing abstract interpretation, we generate the CFG for the
entire program. Unless specified otherwise, we add an edge from the last
node we interpreted to the node we are interpreting currently; exceptions are
described explicitly. We use AST nodes as CFG nodes, and thus sometimes
omit the AST or CFG qualifier for brevity.

83

t := Int | F loat | Bool | String | List | Tuple |
Set | Dict | Module | Class | Instance | Func |
Method | Union | none | bot | top

Int := int | intval(n) | intnon neg | intran(n, n)
F loat := float | floatval(f) | floatran(f, f)
Bool := bool | boolval(true) | boolval(false)
Char := char | charval(c) |

union((char | charval(c)) (, (char | charval(c)))∗)
String := string | stringall[(Char (, Char) ∗)?] |

stringlen(n) | stringelem(Char)
List := list | listall[(t (, t) ∗)?] | listlen(n) | listelem(t)

Tuple := tuple | tupleall[(t (, t) ∗)?] | tuplelen(n) | tupleelem(t)
Set := set | setall[(t (, t) ∗)?] | setlen(n) | setelem(t)
Key := t

V alue := t
Dict := dict | dictsize key[n, Key] | dictsize val[n, V alue] |

dictall[((Key, V alue)(, (Key, V alue))∗)?] |
dictlen(n) | dictelem(Key, V alue) |

Fields := [((name, t) (, (name, t)) ∗)?]
Module := module(name?, F ields?, ASTid?)
Parents := [(Class (, Class) ∗)?]

Class := class(name?, Parents?, F ields?, ASTid?)
Instance := instance(Class?, F ields?)
Params := [((name, t) (, (name, t)) ∗)?]

Freevars := [((name, t) (, (name, t)) ∗)?]
Return := t
Func := function(name?, Params?, F reevars?, Return?, ASTid?)

Method := method(Instance, Func?)
Union := union(t (, t) ∗)

Figure 4.1: Grammar for precise type t. Abstract interpretation domain is t.
n: integer; f: floating-point; c: character ; name: identifier; ASTid: AST node
identifier; suffix ? indicates that the clause may be omitted; suffix ∗ denotes
that the clause may appear zero or more times.

Abstract domain. The abstract domain is the precise types described in
Section 4.1.1. A grammar for the precise types is given in Figure 4.1.

Join. We define the join operator, ⊔, such that t1 ⊔ t2 is the minimal su-
pertype of types t1 and t2. The minimal supertype of two types is defined in
Section 4.1.1.

84

Widening. In abstract interpretation, successive approximations of the so-
lution are computed until they converge to a least fixed-point. However, if
in a particular abstract domains (such as intervals) such chains of approxima-
tions can be very long or infinite, abstract interpretation uses an extrapolation
technique called widening [25].

Widening attempts to predict the fixed-point based on the sequence of ap-
proximations computed on earlier iterations of the analysis. Typically, widen-
ing degrades the precision of the analysis, i.e., the obtained solution is a fixed-
point, but not necessarily the least fixed-point [38].

We introduce an operation on a type called “generalization” that is equiv-
alent to applying a widening operator to that type, in that it returns a more
general type of the given type: generalization takes a type t, and outputs an-
other type t′, such that t′ is a supertype of t, t 6= t′, and the size of t′ is smaller
than the size of t, where size is as defined in Section 4.1.1.

Abstract interpretation of Python constructs. We describe how we
analyze all Python constructs. We use type(expr) to denote the type of expr,
and node(expr) to denote the AST/CFG node representing expr.

Constant. We consider nodes that contain literal integers, floats, true or
false, and strings to be constants. When interpreting a constant, we set
the type of the node to the corresponding precise type, such as intval(n),
where n is the integer literal represented by the node.

Variable. We look up the type of the variable.

Field access expr.fieldname. We first determine type(expr), then, if type(expr)
is a Union, for each element t of the union, if t is a Class, Instance, or
Module type, we look up the type of the field fieldname in t, and set
the type of the field access expression to the join of the resulting types
from all elements of the union. If type(expr) is not a Union, we treat it
as if it were a union(type(expr)).

list and dict special forms. A list special form is [e1, e2, ..., ek]. This
creates a list of k elements, with the values of the expressions e1, . . . ,
ek being the elements of the list. A dict special form is {e1:e2, e3:e4,

..., ek−1:ek}. This creates a dict (a map) that maps e1 to e2, e3
to e4, etc. We interpret the node n representing the special form by
first interpreting e1, e2, . . . , ek, and determining their types. Once the
types are determined, the type of the list or dict special form is, respec-
tively, listall[t1, t2, . . . , tk] and dictall[(t1, t2), (t3, t4), . . . , (tk−1, tk)], where
ti is type(ei). We construct the CFG by first connecting the predeces-
sor nodes of n to node(e1), then connecting node(e1) to node(e2), . . . ,
node(ek). Finally, we connect node(ek) to n.

85

Assignment. Assignment has three forms: basic assignment, field assignment,
and setitem assignment.

Basic assignment var=expr assigns the value of expr to variable var.
Basic assignments are strong updates. Thus, we create a new vari-
able with the fully qualified variable name augmented by the ASTid

of node(var=expr), and the type of the newly created variable set to
type(expr). Consequently, if node(var=expr) is in function F, module
M, and has ASTid id, then variable var has the full name M::F::varid.
Further uses of var in F, until another basic assignment to var is en-
countered, will refer to (and update the type of, if necessary) the vari-
able that has the full name M::F::varid. We also set type(var=expr) to
type(expr).

Field assignment expr1.f=expr2 assigns the value of expr2 to either the
class, class instance, or module referred to by expr1. If type(expr1) is a
union type, then, for each type t in the union, we perform the following:

• if t is a Module, we replace t with tnew, where tnew is derived from
t by, if f is in Fields, replacing the type of f from Fields with
type(f)⊔type(expr2), or if it is not in Fields, adding f to Fields
and setting its type to type(expr2);

• if t is a Class, we replace t with tnew, where tnew is derived from t
by looking up type(f) first in t, then in the types in Parents of t, in
order of inheritance. If type(f) was successfully looked up, we add f

to Fields of t, and set type(f) to type(f)⊔type(expr2). Otherwise,
we add f to Fields, and set type(f) to type(expr2);

• if t is an Instance, we do the same as for Class, except we first
look up the type of f in the Fields of t, then in the Class of t, and
only then in the Parents of the Class.

If type(expr1) is not a Union, but a Module, Class, or Instance, we
perform as if type(expr2) was the only element of the Union, but instead
of doing weak updates by setting the type of f to type(f) ⊔ type(expr2),
we perform a strong update and set the type of f to type(expr2). Finally,
if type(expr1) is bot, we replace it with union(C, I,M), where C, I, and
M are Class, Instance, and Module types with unknown names, AST
ids, etc., but with f added to Fields, and f’s type set to type(expr2).

setitem assignment expr1[expr2]=expr3 is equivalent to a method call
of the form expr1. setitem (expr2,expr3). It is treated as method
call on expr1, but with the optimization that when type(expr1) is either
a List, Dict, or one of their subtypes, it is treated as field assignment
expr1.expr2=expr3. This lets us avoid interpreting the function call for
these very common operations.

86

Overloadable operator. In Python, most operators, including augmented as-
signments (+=, *=, etc.), are overloadable. Notable exceptions include
the = (assignment) and . (field access) operators. For the built-in types
(Int, List, String, . . .) we provide special functions that specify the
behaviour of applicable operators in terms of type behaviour based on
their operands. For the rest of the classes in the standard library, we
infer types based on analysis of Python code that provides a minimal
implementation of the operators for the respective classes, provided by
us. When an operator is encountered, based on the types of its argu-
ments, we determine which functions provide its implementation, and for
each of them, either a call to that function is performed (as described
in function and method calls) if the function is a reference or complete
Python implementation, or a special function is executed that returns
the type of the result of the operator.

Branching and looping constructs: if, for, while, and list comprehensions.
For if, the condition is interpreted first to obtain its type, and then,
unless its type is boolval(true) or boolval(false), the entry points of the
true and false branches are added to the worklist of nodes to be inter-
preted. The true branch is first interpreted, and then the false branch,
if it exists, is interpreted. CFG edges are added from the condition to
the first nodes of the true and false blocks, and from the last nodes
of the true and false blocks to the node immediately following the if

statement. for and while statements are handled in a similar manner,
except the body and condition are interpreted in a loop until a fixed-
point of the condition’s type and the types of all variables inside the loop
body is reached. We treat list comprehensions as a (potentially nested)
combination of if and for statements that accumulates the result of the
comprehension in a temporary variable, and returns the variable.

Function, constructor, and method calls. In Python, function calls and con-
structor calls are the same syntactically: expr(params), where params

is optionally a comma-separated list of parameters, optionally followed
by list and keyword arguments. To determine what call to make, we first
compute the type of expr. Assuming type(expr) is a Union type, then
for every element t of it, we perform the following:

• If t is a Func or Method type, we perform the function or method
call. As calls can be nested, we maintain a stack of current call sites.
The Func or Method type is used to determine the parameters to
the function, the free and default parameters, and the AST node of
the function. Once done, the analysis pushes the call site node onto
the stack, assigns the types of the formal parameters of the function

87

to their local names, and starts analyzing the function body from its
entry point. All return statements encountered in the function are
treated as weak assignments to the special return variable, whose
type is returned when the analysis reaches the function end. Then,
the call site node is popped from the stack, and, if applicable, the
return type of the function is assigned to the appropriate variable.

All of the above happens if a function with the same name and same
types of all parameters and globals has not been analyzed before.
Otherwise, the call site node is not pushed onto the stack, and the
function is not analyzed again, and instead, the return type of the
previous call is looked up, and is returned by the function. Method
calls are analyzed similarly except that we set the type of their first
formal parameter to their Instance type. CFG edges are created
appropriately: from the call site to the entry point of the function,
throughout the function as usual, from the return statements to
the assignment of the return variable, and from all assignments of
the return variable to the node following the call site.

• If t is a Class type, then the call is a constructor call. We first
determine the class of the object being constructed. This involves
checking whether the Class being constructed uses a metaclass: we
look up whether the Class has static field metaclass . If it does,
and the type of that field, say called m, is an Instance, and m con-
tains a static field new whose type is aMethod, then we interpret
the call to m. new , and if its return type is a Class type, we in-
voke the constructor of that return type. Otherwise, we invoke the
constructor of t. Next, we create an Instance type t2 based on the
Class type obtained above, with an empty Fields parameter. Then
we interpret the call to the method init (params) on t2, which
potentially fills in the Fields parameter with member variables. Fi-
nally, we set type(expr) to type(expr)⊔t2 type. CFG construction
is handled in the same way as for function and method calls.

• If t is the type of an object with a defined call operator, i.e.,
is an Instance type, and that Instance, or its Class, contains a
field called call whose type is a Method, then, per Python
semantics, the call is treated as a call to the call method of
that instance.

• For all other types, we perform no action.

If type(expr) is not a Union, we treat it as if it were a union(type(expr)).

import statement. These are treated as special function calls that parse and
interpret the appropriate module body, return a Module type, and then

88

set the type of a freshly created variable named after the module name
to the returned Module type, unless the import statement is of the form
from a import b. Then, a fresh variable b is created, and type(b) is set
to type(a.b).

Exceptions try-except-finally (similar to try-catch-finally in Java),
raise, and with statements. Because try blocks can be nested, our
analysis maintains a stack of exception handlers. When analysis enters
a try block, it first pushes onto the stack the finally block, if it exists,
and then, from the last except block to the first, it pushes onto the stack
a tuple consisting of that except block and the class types of exceptions
that it handles; if a finally block exists, for each except block, an edge
is added from each CFG node that exists the except block to the first
CFG node of the finally block; if no finally block exists, then, for
each except block, an edge is added from its last node to the first node
following the last except block; when the analysis leaves the try block,
the pushed entries are popped from the stack.

When analyzing a try block, including functions and methods called
during it, from each CFG node n that may throw an exception e, if
type(e) is a Union, then for each member t of the Union, we do the
following:

We iterate over the stack of exception handlers from the top down, main-
taining a set C of exception handlers that have possibly caught e, and a
list, l, consisting of CFG nodes that are possible entry points for finally
blocks that can be visited while handling e, initialized to the list con-
taining only n. During the traversal, for each entry s of the stack:

• If s is an except handler that handles exceptions of type ts, and
ts is compatible with t, C does not contain any exception handler
that handles either ts or its supertype, and both t and ts are either
a Class type with a known body or a union of such types, first add
an edge from each element of l to s’s entry point, then add s to C,
and add all exit points of s to l. Finally, if ts is equal to t or is its
supertype, and ts is either a Class type with a known body or a
union of such types, stop traversing the stack.

• If s is a finally block, first add an edge from each element of l to
s’s entry point, and then set l to the list of s’s exit points.

Finally, once we have iterated over the entire stack, we add an edge from
each element of l to the exit point in the program.

If the type of the exception thrown is not a Union, we treat it as if it
were a Union consisting of just the type of the exception thrown.

89

A raise statement that is encountered outside of a try block has an
edge added from it to the exit point of the program.

with statements in Python allow for a syntactically clean way to always
execute cleanup code without writing try-finally statements. The
with statement looks like

with expression [as variable]:

with-block

and Python will always execute expression.__enter__() when en-
tering the with block, and expression.__exit__() when exiting it.
Python will also set the value of variable to the value of expression
immediately before calling expression.__enter__(). We convert the
with statement to a try - finally statement, with appropriate local
variables introduced in case as variable is specified.

Evals. Evals are evaluated as described in Section 4.1.1.

Definition of function, lambda, inner function, method, or inner method. Fol-
lowing Python semantics, definitions of the above are interpreted when-
ever they are encountered; the appropriate type is returned after inter-
pretation; and, in all cases except lambda, the returned type is assigned
to a freshly created variable with the name of the function or method,
respectively. We interpret, in left-to-right order, the values of default
parameters, and store their names and types in the Freevars parameter
of the type. We then build up the Func type that contains the function
or method name, the parameter types (usually bot), and the return type,
which is derived by interpreting the function body assuming the top type
for each non-default parameter, and the id of the AST node; for inner
functions and methods, we add to Freevars the names and types of
the free variables, thus forming closures. When encountering a function
definition, Python executes the expressions that are assigned to default
parameters, but does not execute the function body. Thus, we generate
CFG edges as usual when interpreting the values of default parameters,
but we do not generate any CFG edges during the interpretation of the
function body for obtaining the return type.

Definition of class. We compute a new Class type where name and ASTid

are derived from the class name and its root AST node, respectively;
Parents is derived from the inheritance specification of the class we are
analyzing. We then interpret the body of the class, adding static fields
and methods and their types to Fields as we encounter them. Finally,
we create a fresh variable named name in the same scope where the class
definition is, and set its type to the newly computed Class type.

90

Definition of module. We interpret its body to obtain the variables (including
functions, methods, and classes) the module contains, and store their
names and types in Fields; we set name to the name of the module, and
set ASTid to the root AST node of the module. We then return the
newly created Module type that represents the module.

Generator and generator expression. In Python, a function containing a
yield statement is always a generator—calling the function returns a
generator object that can be iterated over. We treat each generator
function as a special class that inherits from a Generator superclass
written by us, where the next method is derived from the generator
function body. We convert any invocation of the generator into con-
struction of the appropriate special class, for which the analysis returns
the appropriate Instance type. Generator expressions are treated in a
similar manner, and are represented as inner generator functions.

4.1.3 Alias analysis

Flow-sensitive alias analysis. We use the intraprocedural flow-sensitive
alias analysis originally studied by Choi et al. [18], by extending the optimal-
time algorithm for it by Goyal [44] to handle procedures, methods, and fields.
The extensions are standard: treating parameter passing and result returns
as assignments, and making methods into procedures that take an additional
parameter for the object on which the method is invoked. We treat field
dereferences as variables except that aliasing of the variable through which
the field is accessed is taken into account: an assignment of the form x.f =

y is treated as a normal update plus a weak update to r.f with y for each
alias r of x; and an assignment of the form x = y.f is treated as a normal
update plus a weak update to x with r.f for each alias r of y. The algorithm
maintains a workset for each SEG node and iterates until all worksets become
empty.

These extensions do not change the optimality of the time complexity. The
time complexity of Goyal’s algorithm is optimal because it is in the order of
the size of input plus output; it is O(N×V 2) because the output is in the worst
case alias pairs between all variables at each program point. The extensions do
not change the order of the program size, or the number of variables; the latter
is because programs in general have a constant number of lexically mentioned
fields.

Using types to improve alias analysis precision. We modify the algo-
rithm to only allow alias pairs that have compatible types. This applies to
languages that do not allow arbitrary type casting, such as Python, Ruby, and
JavaScript.

91

Our experiments show that using precise types significantly increases alias
analysis precision compared with using basic types, with little or no penalty
in running time.

Trace sensitivity. Precise alias analysis needs to distinguish between dif-
ferent calling contexts of a SEG node. We describe a new form of context
sensitivity, called trace sensitivity, and compare it with traditional context-
sensitive analysis.

There are two major obstacles to context-sensitive analysis. The first is
recursion: the number of contexts in a recursive program may be unbounded.
A standard approach to this problem is (1) representing a context as a se-
quence of calls or call sites, and (2) distinguishing contexts by a fixed-length
subsequence of such sequences. For example, inlining n levels of function calls
of the program is equivalent to (1) representing the context as a sequence of
call sites, and (2) distinguishing contexts by the first n entries of the sequence
— information for all contexts with the same first n call sites is merged. We
refer to analysis that does 1 level of inlining as context-sensitive. Similarly,
n-CFA [92, 106] distinguishes contexts by the last n calls — information for
all contexts with the same last n calls is merged. For typical small values for
n, such approaches give imprecise results for dynamic languages that routinely
use double dispatch and implicit nesting of calls, such as in the case of field
access in Python; larger values of n make such analyses consume an unac-
ceptable amount of space. The second problem is that, even in non-recursive
programs, the number of contexts in a program is worst-case exponential in
the depth of the nested procedure calls, hence storing alias information for
each context is infeasible for analyzing large programs.

We address the first problem by inlining all non-recursive calls, and by
inlining calls to recursive procedures only once along a call path. We address
the second problem by returning alias pairs for only nodes in the given SEG.
We merge alias pairs for nodes of the inlined procedures into alias pairs for the
corresponding nodes in the given SEG. We remove nodes of inlined procedures
when alias pairs for them are no longer needed for the rest of the computation,
reducing memory consumption.

We say that this analysis is trace-sensitive, because the output of the anal-
ysis depends on execution traces, but does not store information per context.
Precisely, the analysis does the following:

• When encountering a call node n of a procedure f , if a clone of f is not
in the current calling context of n, create a clone of f , with cloned local
variables; otherwise, do analysis on the existing clone of f in the calling
context.

• When adding the alias pair (xclone, yclone) to the alias pairs for a cloned

92

node nclone, also add the alias pair (x, y) to the alias pairs for n.

• At the end of each iteration in which an alias pair in the workset of a node
n is processed, for each clone f ′ that is reachable from n, if the worksets
of all SEG nodes that can reach the entry node of f ′ are empty, then
f ′ and the alias pairs of all nodes of f ′ are removed to reduce memory
usage.

• Perform all other operations as in the flow-sensitive algorithm described
previously.

• At the end, return alias pairs for only nodes in the given SEG.

Our trace-sensitive analysis is always at least as precise as, and in our
experiments always more precise than, context-insensitive analyses. The in-
creased precision is because our algorithm distinguishes aliasing information in
different contexts during analysis, even though it subsequently merges infor-
mation for different contexts. Our applications in optimization do not exploit
different aliasing information for different contexts.

For programs without recursion, trace-sensitive analysis is always at least
as precise as, and often more precise than, an analysis that distinguishes con-
texts by a subsequence of the context with length n. The increased precision
is because trace-sensitive analysis distinguishes aliasing information in every
calling context during analysis of non-recursive programs, while an analysis
that distinguishes contexts based on a subsequence of the context with length
n merges aliasing information for contexts whose length is greater than n.

For programs with recursion, trace-sensitive analysis may be less precise
than an analysis that distinguishes contexts based on context subsequences of
length n, n > 1, for contexts involving recursive calls. However, in experiments
we have done, an analysis that inlines n calls with n > 1 runs out of memory
for several examples. Our experiments in Section 4.2.4 also show that recursion
is rarely used.

We define a natural extension of trace sensitivity to allow more than one
clone of a procedure in the same calling context, in essence allowing extra
levels of inlining for recursive procedures. We say that an analysis is trace-

sensitive with e extra clones if it allows e+1 clones of a procedure in a calling
context. We observed that for e > 1, the analysis runs out of memory for
larger examples. We show experiments with e = 1 in Sections 4.2.1 and 4.2.2.

Overall, our experiments show that removing cloned procedures that can
be determined to no longer alter the alias pairs is quite effective in reducing
the memory usage, allowing analysis of large Python programs. Thus, trace
sensitivity increases precision while remaining feasible for large programs.

Let p be the maximum size of a procedure, c be the maximum number of
call nodes to a procedure, d be the maximum depth of calls to non-recursive

93

procedures, and e be the number of extra clones allowed for each procedure.
The analysis takes O((N +(p× c)d×(e+1))× (V + (p× c)d×(e+1))2) time. If one
assumes that p, c, d, and e are bounded by constants, then the time complexity
of the trace-sensitive analysis is still O(N × V 2).

Compressed representation. To reduce space usage, we introduce a sim-
ple but important optimization. The alias pairs for each node that has only
one control flow predecessor node are not stored explicitly, but are stored as
changes to the alias pairs of the predecessor node, which themselves may be
stored as changes to the alias pairs of the predecessor node of the predecessor
node, all the way up to a node that has multiple predecessor nodes. A mem-
bership test against the alias pairs of a node may involve as many lookups as
the length of the chain of predecessors. We bound the length of such a chain
to be no more than 30. Our experiments show that this optimization reduces
memory consumption for flow-sensitive analysis variants by up to a factor of
10.

Implementation issues. To implement the analyses, two additional prob-
lems must be solved.

First, non-trivial applications may use a large number of functions and
classes for which the source code is not available. These functions and classes
may be built into the language, be written in a different language such as
assembly, or be available only in compiled form. For example, Python has
over 400 special functions and classes implemented in C, either as part of the
interpreter or separate C modules. The programs we analyzed contain 165 of
these plus a special module. For the ten most commonly used built-in classes
(int, float, bool, string, list, set, dict, class, module, type) and the
special module (builtins), we laboriously hand-coded their behavior in
terms of their parameter and return types, side effects, CFG effects, and effects
on alias pairs, in the abstract interpreter; this took 3100 lines of Python. For
all remaining 155 cases, which are the vast majority, we just duplicated the
functionality of the C code in Python code without regard for time and space
efficiency; this makes the implementation much easier and took only about
8000 lines of Python.

Second, the analysis on larger programs may take hours. We developed a
persistence layer for the analysis framework that allows efficient storage and
lookup of alias pairs on disk for further analysis. The persistence layer supports
not only fast membership test against alias pairs computed by the analysis at
any node, but also efficient lookup of the set of variables that a given variable
aliases at a given SEG node and all of the subsequent SEG nodes in the same
basic block.

94

Analysis variants. For evaluation and comparison, we have implemented
the flow-sensitive trace-sensitive analysis, plus five main variations of it, for
Python. The variations are:

• two flow-insensitive analyses: one that is context-insensitive, by ex-
tending Andersen’s analysis [4] to handle dynamic and object-oriented
features in a similar way as described above, and one that is context-
sensitive, by taking the flow-sensitive and context-sensitive variant below
and merging the analysis results for all program nodes together.

• two flow-sensitive analyses: one that is context-insensitive, and one that
is context-sensitive, both by extending Goyal’s analysis as described.

• a flow-sensitive, trace-sensitive analysis that also creates extra clones.

Each of these six alias analyses is also coupled with (1) no type analysis, i.e.,
type-insensitive, (2) type analysis using basic types, called basic-type-sensitive,
and (3) type analysis using precise types, called precise-type-sensitive, result-
ing in a total of 18 variants.

4.2 Experiments

We performed experiments that show the effectiveness of our analysis. Our
first set of experiments shows that our analysis can be effectively used to in-
crementalize and specialize Python programs. For the trace-sensitive analysis
with extra clones, we allow one extra clone. We then evaluate the precision,
memory usage, and running time of analysis variants. We also evaluate the
effect of refinement on alias analysis. Finally, we consider recursion, eval, and
exec — constructs that can hurt our analysis precision — and show that these
are rare in Python programs.

Unless otherwise specified, all experiments were performed running Python
2.6.4 on Windows 7 64bit, running on a Core 2 Duo (Q9750 at 3.8GHz) CPU
with 16 GB of memory.

4.2.1 Effectiveness for optimization

Effectiveness for incrementalization. InvTS experiments are conducted
by transforming Python programs using transformation rules and different
variants of alias analysis. The programs transformed are lxml, an XML library,
and nftp, an FTP client. The transformation rules incrementally maintain
properties that must hold during execution. For each analysis variant, we
report the analysis time, runtime overhead (defined as timet−timeo

timeo
, where timet

and timeo are the running times of the transformed and original programs
respectively), and the number of alias conditions for which runtime checks are
eliminated.

95

Lxml. Lxml (http://codespeak.net/lxml/) is a Python library to cre-
ate and transform XML DOM trees. We applied InvTS to the test suite of the
lxml library to check the following properties:

• Valid parent field: In an XML document, all non-root elements have a
valid parent field, i.e., element e’s parent field equals p iff element p has
e as a child.

• No shared child and not self child: In an XML document, an element
may be a child of at most one element, and an element cannot be a child
of itself.

• Cause of indexing out of range: For an expression of the form A[B],
the value of B must be a valid index of A. If this property is violated,
report the files and lines where the index out of bounds exception
became unavoidable, i.e., the location at which each variable that was
in the expression that eventually caused the exception was last modified
during execution so as to cause the exception.

The test suite processed 10 million XML records.
Table 4.3 shows that the overhead of maintaining these properties, when the

transformation uses a flow- and context-sensitive but type-insensitive analysis,
is 83%, 93%, and 310%, respectively. Precise type sensitivity decreases these to
73%, 89%, and 192%. Adding trace sensitivity further decreases the overhead
to 14%, 85%, and 85%, but increases the analysis time by up to 41% (from 61
to 86 seconds).

Nftp. Using InvTS, we found the cause of a previously encountered bug
in nftp (http://inamidst.com/proj/nftp), an FTP client that downloads
directories from multiple machines. This bug occurs when a directory listing
command is issued before a change directory command completes. We wrote a
transformation rule that maintains a set of outstanding FTP commands, and
uses it to determine where this error occurs. We ran nftp with 10 threads,
with 30 directories totaling 20GB over a 1GBit connection, ensuring that the
program is CPU bound. Table 4.3 shows that the runtime overhead when
using flow- and context-sensitive but type-insensitive analysis is 91%. Adding
precise type sensitivity reduces it to 81%, and adding trace sensitivity further
reduces it to 73%.

General observations. Table 4.3 summarizes our InvTS experiments.
Figure 4.2 shows the overhead for the six precise-type-sensitive variants of alias
analysis. Flow-insensitive analysis performs poorly, whether context-sensitive
or not. For flow-sensitive analysis variants, the context-sensitive analysis per-
forms only slightly better than the context-insensitive analysis. A reason for

96

this is, in Python, field assignments are usually two nested calls (setattr

and setitem ; setattr is a method of the object being updated, which
usually then calls the setitem method of the dict class object that rep-
resents fields of an object as key-value pairs).

In general, n levels of inlining with the typical small values for n give
imprecise results for dynamic languages that routinely use double dispatch and
implicit nesting of calls, such as in the above case of field access in Python;
larger values of nmake the analyses consume an unacceptable amount of space.

We conclude that the best trade-off between precision and analysis time is
the flow-, trace- and precise-type-sensitive analysis. While adding extra clones
slightly increases precision, it takes several times as long to run.

Figure 4.2: Runtime overhead of transformed programs, using precise-type-
sensitive alias analysis, varying flow and context sensitivity.

97

Effectiveness for specialization. Psyco [84] is a specializing just-in-time
compiler for Python. At startup, it compiles all the bytecode it can to ma-
chine code. The remaining bytecode needs more information to be compiled,
including alias information. After collecting more information at runtime,
Psyco compiles the remaining code to machine code. In our experiments, we
augmented Psyco to be able to use alias information provided to it externally,
enabling Psyco to compile functions at startup that otherwise it would have
to compile at runtime after collecting more information. We ran Psyco on
its largest included benchmark, which consists of 397 lines of code, and per-
forms assignments, class construction, function and method calls, and list and
dictionary operations. For this benchmark, Psyco, with no additional alias
information passed to it, compiles only 43 out of 73 procedures at startup,
speeding the program up 44%. We provided the results of each alias analy-
sis variant to Psyco, and measured the number of non-compiled procedures
and the speedup compared to Psyco run without this information. We do not
include analysis time when computing speedup, because analysis information
can be computed once per program.

Table 4.1 shows that the number of procedures compiled at startup, and the
resulting speedup, increases with the precision of the alias analysis and type
sensitivity. Flow-, trace- and precise-type-sensitive analysis with extra clones
yields the best results, a speedup of nearly 16% compared to the original Psyco,
which is 53% when compared to Python without Psyco, computed as 1− (1−
0.44)× (1− 0.16). Eliminating the use of extra clones reduces the speedup by
0.4% (15.9% - 15.5%) and the analysis time by 84% (339.3−52.6

339.3
). Even though

the analysis time is significant, doing the analysis is worthwhile because after
performing the analysis just once, every future run of the program can use the
analysis results without performing the analysis again, thus amortizing the
cost of one analysis over a potentially very large number of runs.

4.2.2 Precision, memory usage, and running time

We evaluated the precision, maximum memory usage, and running time of
the analysis variants by running them on seven Python programs of diverse
sizes. The programs include the standard Python (http://www.python.org)
modules chunk, bdb, pickle, and tarfile; Fortran2003, a module of SciPy
(http://www.scipy.org/); bitTorrent (http://www.bittorrent.com/); and
std. lib., the set of Python standard libraries used by the programs we an-
alyzed. We recorded the output, running time, and maximum memory con-
sumption.

98

0

>300

context-sensitive

precise-type-sensitive

P
ro

g
ra

m
 C

F
G

 n
o
d
e

in
 o

rd
er

 o
f

vi
si

t

A
li

a
s

S
et

 S
iz

e

Variables in order of increasing average alias set size

trace-sensitive

precise-type-sensitive

trace-sensitive with extra clones

basic-type-sensitive

 trace-sensitive with extra clones

precise-type-sensitive

context-insensitive

precise-type-sensitive

150

300

Figure 4.3: Alias set size for each variable (shown horizontally) for each CFG
node (shown vertically) for flow-sensitive analysis variants for tarfile. Vari-
ables are ordered by increasing average alias set size in the context-insensitive
precise-type-sensitive analysis.

Precision of alias analysis variants. Figure 4.3 shows a visual comparison
of the results of the alias analysis of tarfile, for four flow- and precise-type-
sensitive analysis variants, plus, for comparison, the trace- and basic-type-
sensitive analysis with extra clones. Columns represent the variables in the
program; rows represent the CFG nodes. The shading represents the size of the
alias set of a variable at a CFG node, where the alias set of a variable is the set
of variables it may alias; lighter colors represent higher precision, and darker
colors represent lower precision. This graph makes it clear that as we add
context- and trace-sensitivity, the precision of the analysis increases. Adding
extra clones also improves precision, but not by as great an extent. Type
insensitivity reduces the precision of the analysis. Trace-sensitive analysis
with extra clones takes far more time than trace-sensitive analysis without
extra clones, while providing only slightly higher precision. We conclude that
the most practical alias analysis is the flow-, trace-, and precise-type-sensitive
analysis.

Memory usage.

Figure 4.4 shows the memory usage of the four flow- and precise-type-
sensitive analysis variants, with and without compressed representation, and
of the two uncompressed trace-sensitive variants without trace optimization

99

flow context type program uncompiled analysis
sensitive sensitivity sensitivity speedup procedures time

no no
no 3.8% 27 1.8

basic 4.8% 26 1.9
precise 6.7% 23 2.2

no yes
no 7.2% 24 26.6

basic 7.7% 23 26.9
precise 10.9% 21 27.0

yes no
no 7.2% 25 4.0

basic 7.2% 23 4.1
precise 11.3% 20 4.2

yes yes
no 6.7% 24 23.1

basic 7.7% 23 24.1
precise 13.4% 18 23.8

yes trace
no 8.2% 24 51.1

basic 10.0% 22 51.4
precise 15.5% 16 52.6

yes trace extra
no 9.9% 22 331.1

basic 11.3% 20 335.7
precise 15.9% 15 339.3

Table 4.1: Program speedup, number of procedures left uncompiled at compile-
time, and analysis time (in seconds) in Psyco experiments. Program speedup is
timeo−timea

timeo
, where timea is the running time using Psyco with alias information,

and timeo is the time using the original Psyco, which leaves 30 procedures
uncompiled.

(removal of no longer needed procedure clones). Due to the large spread of
values, both axes are drawn in log-scale.

Despite being a smaller program, the memory usage for several variants of
the analysis of tarfile is larger than for Fortran2003 because the average
size of alias graphs in tarfile is significantly larger when analyzed by a flow-
sensitive analysis. The memory usage for flow-insensitive analysis variants are
not shown because they are much smaller.

From Table 4.4, it is clear that for trace-sensitive analysis of large programs,
both trace optimization and compressed representation are required, otherwise
memory usage is prohibitively large on even medium-sized programs such as
tarfile. Analyzing tarfile without the optimizations consumes over 4 GB
of memory. Trace optimization alone reduces this to a still large 1.75 GB,
while increasing running time by 46%, from 31.36 seconds to 45.90 seconds.
Combining trace optimization and compressed representation further reduces
the memory usage to 0.69 GB, while increasing the running time by only
14%, from 45.90 seconds to 52.38 seconds. Combining these two optimizations

100

Figure 4.4: Maximum memory usage for flow- and precise-type-sensitive alias
analysis variants, varying context sensitivity using uncompressed or com-
pressed representations; “unoptimized” means that trace optimization and
compression are both disabled; trace optimization is enabled for all other trace-
sensitive variants; data points are missing for cases where the analysis ran out
of memory or time (limited to 4 hours). Both axes are log scale.

makes it feasible for trace-sensitive analysis to analyze bitTorrent and std.

lib.

Running time.

Figure 4.5 and Table 4.4 show the running time of the four flow- and
precise-type-sensitive analysis variants, using compressed representation, and
where applicable, trace optimization. For example, on BitTorrent with over
20K LOC, our flow-sensitive, precise-type-sensitive, and trace-sensitive analy-
sis that uses compressed representation takes 20 minutes and 12 seconds.

Here again, the trace-sensitive analysis is the most precise feasible vari-
ant, as the trace-sensitive variant with extra clones takes almost 1 hour to
complete on Fortran2003, and times out (exceeds 4 hours) on bitTorrent

101

Figure 4.5: Running times for flow- and precise-type-sensitive alias analysis
variants using compressed representation, varying context sensitivity. Both
axes are log scale.

and std. lib. Without extra clones, the trace-sensitive analysis takes less
than an hour to analyze std. lib. of over 50K LOC. Running times of type-
insensitive and basic-type-sensitive alias analysis variants are not presented
because in our experience, increasing type sensitivity does not significantly in-
crease alias analysis time, especially when compared to the benefits of precise
type sensitivity. Table 4.3 shows this: the largest slowdown caused by precise
type sensitivity is eleven seconds (lxml - Indexing, trace- and precise-type-
sensitive vs. trace- and basic-type-sensitive variant), and there are cases where
precise type sensitivity actually speeds alias analysis up.

Table 4.4 presents the data used to generate Figures 4.4 and 4.5.

4.2.3 Effect of refinement on alias analysis

In this section, we determine the effect of refinement on alias analysis, and
show that refinement is worthwhile. To do this, we perform the following
experiments on a subset of programs from Section 4.2.1:

• We measure the effect of refinement on the precision of alias analysis

102

without with
refinement refinement

MAASS, all variables 15.3 15.1
MAASS, locals and parameters 4.7 2.8
number of AST nodes 5021 5619

Table 4.2: Precision of alias analysis of lxml - Indexing, with and without
refinement. 12 refinement steps are performed before a fixed-point is reached.
MAASS is the mean average alias set size of variables in specialized functions,
computed as described in text.

results.

• We measure how the program size varies as a function of the bound on
the number of iterations of analysis and refinement.

• We measure how the overhead of the programs transformed by InvTS
varies as a function of the bound on the number of iterations of analysis
and refinement.

• We measure how the time taken to transform these programs varies as
a function of the bound on the number of iterations of analysis and
refinement.

Effect of refinement on precision of alias analysis. To demonstrate how
the precision of alias analysis results changes due to refinement, we performed
alias analysis on lxml - Indexing program, without refinement, and then
with refinement until a fixed point was reached. This resulted in 7 functions
being specialized into 19 functions. We compute an average alias set size for
each variable used in these functions, by averaging the alias set size for that
variable at all of the AST nodes in the functions. We then compute the mean
average alias set size (MAASS) by taking the mean of the average alias set size
for a set of variables. We compute the MAASS first over all variables, then
over a subset consisting of only local variables and formal parameters.

Table 4.2 presents the results of this experiment. Using refinement intro-
duced 598 new AST nodes. Adding these nodes allowed the refined functions
to be analyzed more precisely, with the MAASS decreasing from 15.3 to 15.1.
When only local variables and parameters are considered, the MAASS was
reduced more substantially, from 4.7 to 2.8. This shows that refinement is
effective at decreasing the alias set size of local variables and parameters.

103

Effect of refinement on program size. Refinement specializes functions
before alias analysis is performed, so it may increase the size of the program
that the alias analysis has to analyze. We quantify this increase by measuring
the number of AST nodes after refinement as a function of the bound on the
number of iterations of analysis and refinement. Figure 4.6 shows that for
all programs from Section 4.2.1, the program size never increases more than
11%. For programs from Section 4.2.2, refinement increased the number of
AST nodes of the analyzed program by an average of 13.6%; the maximum
increase was 28.6%, for Python standard library.

Figure 4.6: Number of AST nodes, as a function of the bound on the number
of iterations of analysis and refinement.

Effect of refinement on optimization. The increase in program size
due to refinement potentially increases the alias analysis time. To determine
whether the cost of refinement is worthwhile, we measured (1) how the over-
head of the programs transformed by InvTS in Section 4.2.1 varies as a function
of the bound on the number of iterations of analysis and refinement, and (2)
how the total transformation time (including analysis time) for these programs

104

varies as a function of that bound. The experiments were performed using the
same setup as the experiments in Section 4.2.1.

Figure 4.7 presents the results. For each program, overhead decreases as
the bound increases, up to the point where a fixed-point is reached, i.e., further
iterations of analysis and refinement do not specialize any more functions. For
lxml - Indexing and nftp, this happens when the bound is higher than 12
and 7, respectively. The overhead reduction is in some cases quite significant,
such as the almost 20% reduction for lxml - Indexing; the extra transfor-
mation time due to refinement never exceeds 10 seconds, i.e. 12% of the total
transformation time. Thus, for InvTS, refinement is clearly worthwhile, espe-
cially since the relatively minor refinement cost is incurred just once, but the
benefits of lower overhead are reaped every time the transformed program is
executed.

Figure 4.7: Runtime overhead of transformed programs and total program
transformation time, using precise-type-sensitive alias analysis, as a function
of the bound on the number of iterations of analysis and refinement.

105

4.2.4 Prevalence of recursion, eval, and exec

Recursion. Trace sensitivity is a good fit for programs where deeply nested
function calls are common, and recursion is not prevalent. To determine how
common recursion is in Python programs, we looked at all Python programs
(.py files) on an Ubuntu 8.10 system, a total of 7,740 programs, including
Python 2.4 and 2.5 standard libraries, the zope framework, and many other
utilities and libraries.

We statically analyzed these programs to detect the presence of recursion
that involves only calls to functions and calls to methods through self, anal-
ogous to this in Java. Specifically, we parsed the program and constructed
a call graph whose nodes are fully qualified function or method names, and
with call edges induced by function calls and method calls through self, i.e.,
calls of the form self.m(. . .) (this is a call to the method C.m, where C

is the enclosing class). The call graph was searched for strongly connected
components (SCCs), which indicate recursion.

This analysis detected recursion in 461 out of 7,740 programs analyzed.
Specifically, 738 out of a total of 264,080 functions are in strongly connected
components.

Since this analysis may miss some recursions, and it may report recursions
that rarely (or never) occur during execution, we also performed runtime de-
tection of recursion on a subset of the programs. Specifically, we ran the
program in a way that recorded the call history, and detected cycles in the call
history; these cycles indicate recursion. Out of the 7,740 programs, we selected
ones with a history of more than 50 calls when run without arguments. This
eliminated programs that trivially terminate, and left 974 programs.

Analysis of the call histories detected recursion in 66 of these 974 programs.
Our static analysis detected recursion in 64 of these 66 programs; this is an
encouraging level of agreement. If the programs surveyed are representative,
our results show that the use of recursion in Python programs is limited.

Eval and exec. Uses of eval functions and exec statements (which are
similar to eval functions, but do not return values) cause the type of all
accessible variables to become top. This can be detrimental to the precision
of the type analysis unless the calls to eval or exec contain a scope argument
that restricts the set of accessible variables.

We found that 237 out of the 7,740 programs use eval or exec, and only
39 of them do not restrict the set of accessible variables.

To determine how frequently eval or exec are called, we performed an
experiment similar to the one for runtime recursion detection, except that we

106

searched the call histories for calls to eval or exec. Out of the 974 programs
analyzed, only 101 use these constructs outside of the Python libraries we
reimplemented. Our reimplementations do not use eval or exec. Thus, for
the purposes of our type analysis, calls to eval or exec occurred in approx.
10% of the programs surveyed.

Using our type analysis to determine all possible targets at function call
sites and method call sites, we statically detected all direct and indirect uses
of eval and exec in the programs from Sections 4.2.1 and 4.2.2. We manually
inspected uses of these constructs to determine whether the set of accessible
variables is restricted. We found that only bdb uses eval without restricting
the set of accessible variables; Fortran2003, InvTS, and std. lib. use eval

but restrict the set of accessible variables; chunk, pickle, tarfile, all lxml
programs, nftp, and bitTorrent do not use these constructs at all. This
confirms that use of eval or exec with no restriction on the set of accessible
variables is rare in Python programs.

4.3 Related work

Alias analysis and the related problem of points-to analysis have been studied
extensively [50], mostly in the context of statically typed languages, such as C
and Java. Many positions on the spectrum of trade-offs between precision and
scalability have been explored: flow-insensitive, context-insensitive analyses,
such as [4, 99]; context-sensitive, flow-insensitive analyses, such as [35, 32,
76]; context-insensitive, flow-sensitive analyses, such as [18, 44]; and context-
sensitive, flow-sensitive analyses [106, 31].

There have been some studies on these trade-offs in the context of stati-
cally typed languages. For example, flow sensitivity in analysis of C programs
provides little improvement in precision for some applications [51, 77] but is
important in others [48]; similarly, context sensitivity provided little precision
benefit in analysis of some C programs [88] but was significant for some Java
applications [69].

Our analysis is trace-sensitive, a form of context sensitivity based on cloning
of functions. Guyer and Lin’s client-driven pointer analysis for C also uses
cloning in providing a customizable level of context sensitivity to client anal-
yses [46]. Significant differences between their work and ours are the target
language (C vs. Python) and the client analyses considered (error detection vs.
optimization). Lattner et al. use a form of context sensitivity that collapses
strongly connected components and then inlines everything [63]. Their analy-
sis is for C and is flow-insensitive, hence not appropriate for the optimizations
we consider as clients.

Our work is the first to assess the impact of flow sensitivity, context sen-
sitivity, and type sensitivity on precision, memory usage, and running time of

107

alias analysis for a dynamic object-oriented language, and evaluate the effec-
tiveness of these analyses for program transformations and optimizations.

Previous work on alias analysis for dynamic object-oriented languages does
not handle the breadth of dynamic features that we handle. For example, the
work on alias analysis for PHP in [53, 8] does not handle first-class functions
(which PHP does not support) or eval statements, and does not compare
different variants of the analysis.

Type analysis for dynamic languages is well known to be difficult. Star-
killer [89], a static type inference engine for Python, has several limitations
compared to our work: it is flow-insensitive (i.e., does not allow variables
to have different types at different program nodes), does not support union
types, and does not track the contents of collections. The type system and type
inference algorithm for a subset of JavaScript in [5] also has these limitations;
in addition, it does not support field and method names as strings, functions
as expressions, or eval. Localized Type Inference [16] for Python cannot
infer types of method and procedure arguments automatically, and does not
support single-value types, range types, or union types. DiamondBack [36], a
static type inference system for Ruby, supports intersection types, union types,
single-value types, and parametric polymorphism, but it does not support
analysis of eval or method calls when the target object’s type is unknown.

Our static type analysis plays two important roles. First, the type in-
formation is used to statically determine dynamic dispatch, which is crucial
to obtain a precise control flow graph [7, 98]. Second, the type information
is used to eliminate alias pairs that are impossible due to type mismatches.
Type information has been used for the latter purpose in alias analysis for
statically typed languages, e.g., Modula-3 [30], but it does not significantly
help in that context, because most statements that would create such alias
pairs are illegal (rejected by the type checker). In contrast, our experiments
show that static inference of precise types provides significant benefits for alias
analysis for dynamic languages.

Storing all of the alias sets for a program can consume a lot of memory,
especially for flow-sensitive, context-sensitive analyses. We reduce the mem-
ory requirements using a compressed alias set representation that exploits the
similarity between alias sets at adjacent nodes in the CFG. Another approach
is to represent alias sets (or points-to sets) symbolically, e.g., using BDDs [62].
Unfortunately, BDDs are less effective for flow-sensitive analyses, because of
the large number of strong updates to pointer information [48]. Hardekopf
et al. overcome this in a partially symbolic, semi-sparse context-insensitive
pointer analysis for C [48]. Adapting and evaluating those ideas in the setting
of context-sensitive analysis for dynamic languages is a direction for future
work.

108

lxml - Valid Parent lxml - No Shared Child lxml - Indexing nftp

97 alias checks 81 alias checks 1451 alias checks 31 alias checks
flow context type runtime checks analysis runtime checks analysis runtime checks analysis runtime checks analysis

sensitive sensitivity sensitivity overhead removed time overhead removed time overhead removed time overhead removed time

no no
no 92% 12 36 95% 12 39 440% 35 49 119% 7 19

basic 93% 12 36 95% 13 38 429% 35 50 119% 7 19
precise 91% 14 36 95% 13 39 381% 41 49 112% 9 19

no yes
no 88% 16 60 94% 15 62 364% 55 97 110% 9 83

basic 88% 17 64 93% 17 62 350% 61 97 96% 11 82
precise 74% 26 61 90% 23 61 323% 89 99 91% 13 84

yes no
no 87% 17 42 93% 19 42 340% 79 62 93% 12 30

basic 86% 17 43 91% 20 43 331% 81 61 89% 13 30
precise 73% 28 43 90% 28 46 219% 122 61 89% 13 30

yes yes
no 83% 18 59 93% 20 57 310% 103 98 91% 13 80

basic 82% 18 61 90% 23 63 303% 112 95 86% 14 82
precise 73% 30 61 89% 29 61 192% 199 98 81% 14 81

yes trace
no 82% 20 81 91% 19 85 160% 246 103 90% 12 63

basic 75% 28 82 88% 28 85 133% 344 109 77% 14 62
precise 14% 68 82 85% 40 86 85% 836 104 73% 16 63

yes trace extra
no 67% 37 308 85% 37 312 124% 455 783 78% 14 119

basic 19% 61 308 85% 38 310 99% 603 780 74% 15 119
precise 14% 72 310 83% 41 311 83% 892 791 70% 17 118

Table 4.3: Runtime overhead, number of alias checks removed, and analysis time (in seconds) in InvTS experiments.
Runtime overhead is timet−timeo

timeo
, where timet and timeo are running times of the transformed and original programs,

respectively.

109

context-insensitive context-sensitive
AST unoptimized uncompressed compressed unoptimized uncompressed compressed

Program LOC Nodes time memory time memory time memory time memory time memory time memory
chunk 172 493

not applicable

1.01 31.06 1.28 31.04

not applicable

2.58 39.07 3.10 39.07
bdb 609 2026 1.20 33.25 1.48 32.03 4.52 41.71 5.07 40.85

pickle 1392 4239 1.65 76.20 1.98 36.51 10.04 121.43 10.11 49.48
tarfile 1796 7877 3.23 1964.09 4.16 267.70 20.69 2384.95 23.11 341.45

Fortran 6503 15955 11.94 928.16 12.77 157.25 77.71 1142.45 80.97 188.16
bitTorrent 22423 102930 63.01 8134.75 90.01 1198.93 298.86 11555.96 330.44 1574.81

std. lib. 51654 420654 out of memory 317.44 2434.01 out of memory 1519.68 3726.77

trace-sensitive trace-sensitive with extra clones
AST unoptimized uncompressed compressed unoptimized uncompressed compressed

Program LOC Nodes time memory time memory time memory time memory time memory time memory
chunk 172 493 4.09 41.74 4.97 39.16 5.65 39.13 7.10 42.26 8.89 39.26 10.37 39.15
bdb 609 2026 7.60 43.76 7.61 41.40 8.76 40.18 12.90 49.46 13.91 46.15 16.08 40.85

pickle 1392 4239 11.12 291.61 13.94 88.60 15.97 59.74 21.11 812.11 34.69 294.06 43.13 162.91
tarfile 1796 7877 31.36 4203.29 45.90 1751.84 52.38 688.53 out of memory 236.76 8631.85 283.45 2570.28

Fortran 6503 15955 123.65 3018.57 262.93 1202.04 298.23 627.41 out of memory 2687.26 8645.29 3389.17 3602.21
bitTorrent 22423 102930 out of memory 1068.36 10618.39 1211.87 2909.11 out of memory out of time out of time

std. lib. 51654 420654 out of memory out of memory 3401.69 13124.52 out of memory out of time out of time

Table 4.4: Running time (in seconds) and maximum memory usage (in MBytes) for flow- and precise-type-sensitive alias
analysis variants; “unoptimized” means that trace optimization and compression are both disabled; trace optimization
is enabled for all other trace-sensitive variants; “not applicable” means that trace optimization is not applicable to
trace-insensitive variants; “out of memory” means that the memory usage of the analysis exceeded 16 GB; “out of time”
means that its running time exceeded 4 hours.

110

Chapter 5

Composition of invariant rules

When improving programs, two common tasks are instrumentation and incre-
mentalization. Instrumentation is the addition of code to monitor program
behavior at runtime, to ensure that the program satisfies correctness and per-
formance requirements. Incrementalization improves program performance by
incrementally maintaining the result of an expensive computation when the
values that the computation depends on are updated, rather than recomput-
ing the result from scratch. Both improvements come at the cost of increased
program complexity.

Program transformation allows us to limit this complexity, by using multi-
ple simple, small transforms to instrument and incrementalize programs. Such
simple transformations can be specified more easily as separate transformation
rules, and these rules can be applied to programs one at a time to achieve the
overall effects desired. Composing these simple transformation rules before
applying them provides three benefits:

1. making the overall effects of the transformations clearer and easier to
understand through the composed rule, without having to observe the
overall effects only through the transformed subject program. Given
that transformation rules are typically much smaller than subject pro-
grams, this provides a significant advantage when the rule writer desires
to manually verify that the transformation rules do what he intended,

2. allowing optimizations of the composed rules, which lead to optimiza-
tions of the transformed programs that may be more difficult or im-
possible to realize if smaller transformation rules are applied separately.
Again, this is due to the fact that transformation rules are significantly
smaller than subject programs; consequently expensive — sometimes ex-
ponentially so — optimizations can be feasibly applied to them, but not
to the subject programs, and

111

3. allowing overall faster application of transformation rules, compared with
applying smaller transformations rules separately, significantly reducing
the turnaround time in the edit-transform-debug cycle.

This chapter describes powerful transformations for instrumenting and in-
crementalizing real applications, and a method for composing transformations
by composing transformation rules and optimizing the composed rules. The
transformations are specified using InvTL extended for instrumentaion. The
transformations are powerful because they perform sophisticated instrumen-
tations and optimizations, especially when high-level queries over sets and
objects are used. The example transformations for instrumentation are for
ranking peers in BitTorrent, a peer-to-peer distributed file sharing program.
The example transformations for incrementalization are for optimizing the in-
strumentation of BitTorrent; for efficiently computing the quality of hosts’
network connections using NetFlow, a Cisco network protocol for collecting
IP traffic information; and for generating efficient implementations from for-
mal specifications for Constrained RBAC, advanced components in the ANSI
standard for Role-Based Access Control (RBAC).

As in prior chapters, we specify transformations that perform incremen-
talization as invariant rules. Additionally, we describe minor extensions to
InvTL that allow us to easily specify instrumentation rules; we then describe
a method for composing transformations by composing invariant and instru-
mentation rules and optimizing the composed rules. We use BitTorrent to
illustrate transformations for instrumentation, incrementalization, and com-
position. We present queries for both BitTorrent and Constrained RBAC to
show that the method of composition and optimization is applicable to very
different queries. We present experimental results for BitTorrent, NetFlow
queries, and Constrained RBAC, and show the benefits and effectiveness of
the method.

The rest of the chapter is organized as follows. Section 5.1 describes how
we extended InvTL to be more suitable for specifying instrumentation rules,
and introduces the running example. Sections 5.2, 5.3, and 5.4 describe instru-
mentation, incrementalization, and composition, respectively, for BitTorrent.
Section 5.5 presents experimental results. Section 5.5.3 discusses related work.

5.1 Extending InvTL for instrumentation

We extend InvTL slightly to support instrumentation using instrumentation
rules. An instrumentation rule is of the same form as an invariant rule (Chap-
ter 1, Figure 1.2), with two exceptions:

First, the inv clause inv result = computation is replaced with the key-
word instrumentation optionally preceded by the modifier pure. This

112

indicates that the rule is for instrumentation, not for maintaining an
invariant result = computation.

Second, in pure instrumentation rules, do instead clauses cannot be used.
This means that all maintenance code must be for insertion before or
after existing code, not replacement of existing code, to help ensure that
pure instrumentation rules do not change program semantics.

The semantics of applying an instrumentation rule is different from ap-
plying an invariant rule in two aspects. First, for all instrumentation rules,
the do clause under the instrumentation or pure instrumentation clause
inserts code before or after the entire program, instead of before or after the
computation as for an invariant rule. Second, for pure instrumentation rules,
instead of automatically detecting all possible updates to the values on which
a computation depends, we automatically check that all inserted code updates
only new variables and fields, not existing variables and fields, using conser-
vative static analysis first and dynamic checking for the remaining updates.
This ensures that pure instrumentation rules do not change the execution of
the given program except for the extra time and space for running the inserted
code. This helps preserve invariants in the given program.

Finally, an instrumentation rule is applied once and only once to the given
program, rather than possibly repeatedly applied as for invariant rules.

Running example. We use instrumentation and incrementalization of Bit-
Torrent as a running example.

BitTorrent (http://download.bittorrent.com/dl/) is a peer-to-peer dis-
tributed file sharing protocol. When multiple peers download the same file
concurrently, they can relay data to each other, making it possible for the file
source to support large numbers of downloaders with only a modest increase
in its load. Each peer downloads chunks of a file from other peers, and then
reassembles the original file from the chunks. The set of peers that a peer
communicates with is called its peer horizon.

Each chunk is sent from one peer to another as a sequence of packets, and
once a chunk is completely received, the peer verifies that the chunk arrived
without errors, by using an SHA1 checksum sent in a bootstrapping file that
contains the checksum of each chunk of the file being distributed. If the chunk
contains errors, the peer marks the sender of the chunk as untrustworthy, and
attempts to retrieve the chunk from another peer.

5.2 Instrumentation of BitTorrent

Using InvTS, we instrument the BitTorrent peer to rank peers, giving lower
ranks to senders and receivers with mismatches between the data packets sent

113

and received. Doing this efficiently allows us to quickly detect bad peers or
peers connected by bad links. In BitTorrent without instrumentation, such
detection requires the peer to receive at least one complete chunk from another
peer and thus has a delay, because checking is done at the chunk level, rather
than the packet level.

An instrumented BitTorrent peer: (1) records history, i.e. sends a notifi-
cation packet to all peers in its peer horizon when it receives or sends a data
packet and record the notification packets received, (2) analyzes recorded his-
tory, i.e., computes the ranks of all peers in the peer horizon to reflect matches
between the data packets sent and received, and (3) acts on the analysis result,
i.e., prints out the list of peers in order of high to low ranks for every 1000
notification packets received. Figures 5.1 and 5.2 together show the complete
instrumentation rule, explained below.

Recording history. When the BitTorrent peer receives or sends a data
packet, it (1) encodes information about the sending or receiving in a byte
string, containing an event type character indicating whether the peer was
receiving or sending the data packet, the source and target of the data packet,
and a hash of the payload of the data packet, (2) creates a notification packet
containing this byte string as payload, and (3) sends the notification packet
to all peers in its peer horizon. These are done by defining method send no-

tification packet in Figure 5.1, to be called by method send to horizon

in Figure 5.2, and calling send to horizon in process in Figure 5.2 when
BitTorrent sends or receives a data packet.

When the BitTorrent peer receives a notification packet, it (1) decodes the
packet into the components described above, and (2) stores the decoded infor-
mation in $sent or $recv based on the event type. These are done by declar-
ing $sent and $recv and defining method receive notification packet

in Figure 5.1, and calling it in process when the BitTorrent peer receives a
notification packet.

Analyzing recorded history. Method compute rank in Figure 5.2 uses
$sent and $recv to compute the rank of each peer in the peer horizon. For
each peer, uniquely identified by its address ip, it computes match, the number
of data packets sent by or received by the peer and whose sending and receiving
match, i.e.,

match = |{p : p ∈ $sent ∩ $recv, p.src = ip ∨ p.dst = ip}|

and it computes total, the number of all data packets sent by or received by
the peer, i.e.,

total = |{p : p ∈ $sent ∪ $recv, p.src = ip ∨ p.dst = ip}|

114

pure instrumentation

de in global py{

import scapy #socket module from http://www.secdev.org

#called whenever a data packet is sent

def send_notification_packet(peer, type, p):

... #send event type and info about packet p to

#target peer using scapy over UDP on port 555

$sent = set() # set of all data packets sent

$recv = set() # set of all data packets received

#called whenever a notification packet is received

def receive_notification_packet(bytestring):

... #receive a bytestring, decode it, and insert

#result in $sent or $recv, respectively

}

Figure 5.1: Instrumentation rule clauses for sending and receiving notification
packets.

The peer’s rank is computed as match divided by total, i.e.,

rank = match/total

Higher ranks indicate better peers. When all data packets sent by and received
by a peer match, i.e., no packet is sent but not received, received but not sent,
or modified in transit, the peer’s rank is 1.

Acting on analysis results. For every 1000 notification packets received,
we sort peers in order of high to low ranks and print out the sorted list. Method
sort and print in Figure 5.2 does this.

Overhead caused by instrumentation. The overhead caused by instru-
mentation is the cost of sending notification packets to all peers in the peer
horizon, whenever the BitTorrent peer sends or receives a data packet, and the
cost of executing the queries that compute match and total for all peers in
the peer horizon, whenever the BitTorrent peer receives a notification packet.
This is O((S+R)2 ×H) expected time, where S and R are the sizes of $sent
and $recv, respectively, and H is the number of peers in the peer horizon.
This is because there are a total of O(S + R) data packets and notification
packets sent and received by each peer; there is a cost factor of O(H) for

115

each packet sent or received; and computing match and total can be done in
O(S + R) expected time using hashing. The space used by the added code is
O(S + R) for storing $sent and $recv. The time spent and space used are
shown on the first line in Table 5.1.

de in global py{

import hashlib #standard library

from collections import defaultdict #standard library

}

de in class bitTorrent py{

#insert instrumentation at the start of method __init__

def __init__(self):

#start sniffing for packets sent/recv’d by current proc.

#when a packet is sniffed, self.process is called on it

scapy.sniff(prn = self.process)

self.rank = defaultdict(float) #rank for each peer

self.packet_count = 0 #num. notif. packets received

def process(self, packet):

#if packet is UDP or TCP packet

if UDP in packet or TCP in packet:

#decode packet as a UDP or TCP packet, into p

p = packet[UDP] if UDP in packet else packet[TCP]

#if p’s port is in the range of ports specified

#by the BitTorrent peer, p is a data packet

if p.port in self.portrange:

if p.src==self.ip_addr: #sending p

self.send_to_horizon("s", p)

if p.dst==self.ip_addr: #receiving p

self.send_to_horizon("r", p))

#if p’s port is 555, p is a notification packet

if p.port==555:

if p.dst==self.ip_addr: #receiving p

receive_notification_packet(p.payload)

self.compute_rank()

self.sort_and_print()

#otherwise, we sniffed an unknown packet; do nothing

def send_to_horizon(self, type, p):

for peer in self.peers:

send_notification_packet(peer, type, p)

def compute_rank(self):

for peer in self.peers:

match = len(set(p for p in intersect($sent,$recv) if

p.src==peer.ip_addr or p.dst==peer.ip_addr))

total = len(set(p for p in union($sent,$recv) if

p.src==peer.ip_addr or p.dst==peer.ip_addr))

self.rank[peer] = 1.0 if total==0 else 1.0*match/total

def sort_and_print(self):

self.packet_count += 1

if self.packet_count % 1000 == 0:

for (peer,rank) in self.rank.items().sorted(

lambda rank1,rank2: rank1[1]-rank2[1]):

print "peer: ", peer.ip_addr, "rank: ", rank

}

Figure 5.2: Clauses to instrument BitTorrent peer to process packets received,
compute ranks, and print sorted peers.

116

5.3 Decomposition and incrementalization

Non-trivial queries are usually expensive. When such queries need to be per-
formed repeatedly and the values they depend on change constantly, efficient
computations of the queries rely on maintaining the results of the queries in-
crementally as the values depended on change.

In the instrumentation for BitTorrent, the queries for computing match

and total are expensive. They take expected time proportional to the size
of $sent plus the size of $recv, and this cost is incurred for each notification
packet received. To make the queries efficient, we maintain their results incre-
mentally as data packets are sent and received, i.e. as $sent and $recv are
updated. We do this for each peer in the peer horizon.

We could use a previously studied method [73, 71] to incrementalize ex-
pensive queries. It incrementalizes each query in a basic form using a set of
coordinated transformations specified in an invariant rule; the transformations
replace the query with a retrieval of the query result from a variable, and in-
sert code to maintain the query result at all places that update the values the
query depends on. For nested queries, the effect is that the innermost query
in a basic form is incrementalized first; after this the query is replaced by a
retrieval of its result from a variable, and then the outer query is in a basic
form and is incrementalized next; this continues until the outermost query is
incrementalized.

This previous method of repeatedly applying invariant rules has three draw-
backs: (1) the overall result of incrementalizing a nested query is difficult to
understand because it is scattered in many places in the final transformed pro-
gram, (2) optimizations enabled by incrementalization are hard to perform on
the often large and complex transformed program, and (3) repeatedly applying
invariant rules is expensive because update analysis and other analyses of the
entire program are required before applying each rule.

To overcome these drawbacks of the previous method, we will:

1. decompose nested queries into subqueries in basic forms,

2. derive invariant rules for the subqueries using the previously studied
method

3. compose and optimize rules derived in step 2 - described in Section 5.4.

We will then use InvTS to apply the composed and optimized rules obtained
in step 3.

We describe below the decomposition into subqueries and the derivation
of invariant rules for subqueries. We describe composition and optimization
in the next section.

117

Decomposing nested queries. The parameters of a query are the variables
used in the query excluding variables introduced in the query. To decompose
nested queries, we do three steps. Step 1 follows the dependency order of com-
putation, extracts subqueries in innermost, leftmost-first order. That is, if a
subquery is contained inside another subquery, then the inner one is extracted
first; if neither of two subqueries is contained inside the other, then the left
one is extracted first. Then, step 2, for each subquery, introduces a map from
tuples of values of the subquery parameters to subquery results, and finally
step 3 rewrites the original query to use this map in place of the subquery.

For the query for computing match in Figure 5.2, step 1 extracts from

len(set(p for p in intersect($sent,$recv)

if p.src==peer.ip_addr or p.dst==peer.ip_addr))

the inner subquery intersect($sent,$recv), step 2 introduces a new map
$I to store the query’s results, and step 3 replaces intersect($sent,$recv)
in the outer query with I[($sent,$recv)]. We thus obtain

$I[($sent,$recv)] = intersect($sent,$recv)

match = len(set(p for p in $I[($sent,$recv)]

if (p.src==$ip or p.dst==$ip))

Repeating this procedure until we reach the outermost query, we end up
introducing maps $I, $P, and $M storing the intersection, the selected set for
each peer, and the results of the entire query for match, respectively; we also
replace the original query by$M[($sent,$recv,peer.ip addr)].

$I[($sent,$recv)] = intersect($sent,$recv)

$P[($sent,$recv,$ip)] = set(p for p in $I[($sent,$recv)]

if (p.src==$ip or p.dst==$ip))

$M[($sent,$recv,$ip)] = len($P[($sent,$recv,$ip)])

Parameters that throughout the lifetime of the program are bound to just
one object — $sent and $recv in this example — are unnecessary and thus
removed, yielding the following forms of subqueries. The original query for
computing match is then replaced by $M[peer.ip addr].

$I = intersect($sent,$recv)

$P[$ip] = set(p for p in $I if p.src==$ip or p.dst==$ip)

$M[$ip] = len($P[$ip])

For the query for computing total, we do the same, yielding three subqueries
also, one for the union, one for the selection, and one for the result.

118

instrumented time space
BitTorrent variant
use no inv. rules O((S +R)2 ×H) S +R
use separate inv. rules O((S +R)×H) 5(S +R)
use composed inv. rules O((S +R)×H) 5(S +R)
use opt. composed inv. rules O((S +R)×H) S +R

Table 5.1: Time and space overhead caused by instrumentation. S and R are
the sizes of $sent and $recv, respectively. H is the maximal number of peers
in the horizon of any given peer.

Deriving invariant rules for subqueries. We derive invariant rules for
each query for each kind of update to a parameter of the query using a pre-
viously studied method [73, 71, 87]. The method works for a large class of
queries and updates. Figure 5.3 shows the resulting invariant rules for incre-
mentalizing $I, $P, and $M, respectively. Rules for incrementalizing the query
for total are similar.

Overhead caused by instrumentation using separate invariant rules.
The overhead caused by instrumentation after incrementalization using sepa-
rate invariant rules is shown on the second line in Table 5.1. The time com-
plexity is O((S + R) × H), because each piece of maintenance code inserted
takes constant time, and retrieving query results from all three maps also
takes constant time, and thus the overhead is constant for each peer in the
peer horizon for each packet sent or received. The space complexity is bounded
by (S +R)× 5 because, besides storing $sent and $recv, we also store I and
P for computing the query for match and two similar variables for computing
the query for total, and the space for each of these four maps is bounded by
S + R; the result map M for the query for match and the result map for the
query for total take significantly less space and thus are omitted.

5.4 Composition

This section presents how we perform:

1. composition of rules applicable to the subqueries obtained from decom-
posing a nested query, and

2. optimization of composed invariant rules from step 1.

119

inv py{ $I } = py{

intersect($sent,$recv)

}

de in class bitTorrent py{

def __init__(self):

$I = set()

}

at py{ $sent.add($p) }

do before py{

if $p in $recv:

if $p not in $I:

$I.add($p)

}

at py{ $recv.add($p) }

do before py{

if $p in $sent:

if $p not in $I:

$I.add($p)

}

inv py{ $P[$ip] } = py{

set(p for p in $I if

p.src==$ip or p.dst==$ip)

}

de in class bitTorrent py{

def __init__(self):

$P = defaultdict(set)

}

at py{ $I.add($p) }

do before py{

if $p not in $P[$p.src]:

$P[$p.src].add($p)

if $p not in $P[$p.dst]:

$P[$p.dst].add($p)

}

at py{ $I.remove($p) }

do before py{

if $p not in $P[$p.src]:

$P[$p.src].remove($p)

if $p not in $P[$p.dst]:

$P[$p.dst].remove($p)

}

inv py{ $M[$ip] } = py{

len($P[$ip])

}

de in class bitTorrent py{

def __init__(self):

$M = defaultdict(int)

}

at py{ $P[$ip].add($p) }

do before py{

$M[$ip] += 1

}

at py{ $P[$ip].remove($p) }

do before py{

$M[$ip] -= 1

}

Figure 5.3: Invariant rules for maintaining the results of subqueries in $I, $P, and $M. Clauses for handling removals
from $sent and $recv are symmetric to clauses for handling addition and are omitted for brevity.

120

5.4.1 Composition of rules

The transformations we use for composition respect language semantics so
that applying the composed rule yields programs that have the same seman-
tics as programs obtained by applying individual rules, except that the former
programs can be more efficient due to optimizations performed during compo-
sition.

As described in Section 5.3, a nested query q gets decomposed into a se-
quence of invariants r1 = q1, r2 = q2, . . . , rn = qn, where the result rn of the last
invariant, with its parameters instantiated by an appropriate substitution σ,
equals the original query q. For example, for the incrementalization of match,
the query is decomposed into three invariants, and the value of the original
query is obtained by instantiating the parameter $ip of the result $M[$ip] of
the third invariant with peer.ip addr. For each of these invariants ri = qi,
there is a corresponding invariant rule Ri of the form inv ri = qi Bi, where
Bi is the body of the rule. For simplicity, we assume that Bi does not contain
if clauses; otherwise static analysis may be used to evaluate or simplify the if
clauses in applying the transformations. Composition produces a single rule
whose invariant is rn = q′n such that q′n instantiated with σ is syntactically
identical to the original query q.

Our composition algorithm builds this rule up starting from the first rule,
which is for the innermost subquery of the original query. The algorithm
succeeds for rules that obey the following: (1) every update introduced by
the maintenance code of the rule for an inner query is handled by the update
pattern of the rule for the enclosing query, (2) every update pattern in the
rule for an outer query updates the query result from the rule for the enclosed
query, and (3) the maintenance code in a rule does not create aliases to fresh
variables introduced by the rule. The construction produces a sequence of
rules R′

1, R
′

2, . . . , R
′

n, where R′

i is the result of composing the first i invariant
rules, namely, R1 to Ri. As the base case, R′

1 is identical to R1. At the end,
R′

n is the desired rule characterized above.
The algorithm is as follows, where t1[v 7→ t2] denotes t1 with each occur-

rence of v replaced with t2.

q′1 = q1;B
′

1 = B1;R
′

1 = R1 (1)
for i = 1 to n− 1 (2)

q′i+1 = qi+1[ri 7→ q′i] (3)
B′

i+1 = transform(B′

i, Bi+1) (4)
R′

i+1 = inv ri+1 = q′i+1 B
′

i+1 (5)

Intuitively, applying the substitution [ri 7→ q′i] to qi+1 in line (3) reconstructs
part of the structure of the original nested query, because this substitution is
the “opposite” of the replacement of qi with ri performed during decomposi-
tion of the query. This substitution is valid because R′

i ensures its invariant

121

ri = q′i. To ensure that R′

i+1 also maintains this invariant, the body B′

i of R
′

i

is used in line (4) as the basis for the body B′

i+1 of R′

i+1. To ensure that R′

i+1

also maintains the invariant of Ri+1, the transformation specified by Bi+1 is
applied to the maintenance code in B′

i. Specifically, transform(B′

i, Bi+1) in
line (4) returns the result of that application. Following the semantics for rules
in Section 5.1, transform first checks whether every update to parameters of
qi+1 in B′

i matches at least one update pattern in Bi+1. If so, declarations
and maintenance code in Bi+1 are inserted in B′

i as specified by the de and
do clauses in Bi+1. If not, transform aborts; this causes the composition
algorithm to abort.

Note that the transformation defined by Bi+1 is applied only to code in B′

i.
Normally—i.e., if we did not use rule composition—it would be applied to the
entire subject program. To ensure that applying it only to B′

i gives the same
result as applying it to the entire subject program, transform(B′

i, Bi+1) checks
that every update pattern in Bi+1 updates the query result ri introduced by R′

i

and hence does not match any update in the subject program. If this condition
is not satisfied, transform aborts.

transform needs may-alias information to identify possible updates to
query parameters. transform(B′

i, Bi+1) checks whether fresh variables in-
troduced by B′

i, namely, variables represented by metavariables that do not
appear in the query in the inv clause, may become aliased by assignments
in B′

i+1. If so, the call to transform aborts; otherwise, it proceeds knowing
that those variables have no aliases. transform makes no assumptions about
possible aliases of other variables.

Figure 5.4 shows the composition of the three rules in Figure 5.3.

5.4.2 Optimization of composed invariant rules

Performing optimizations on the maintenance code in invariant rules (before
applying the rules) conveniently allows the invariants associated with the rules
to be exploited during optimization. While these invariants could, in princi-
ple, be made available to an optimizer running on the transformed program,
it is more efficient to optimize the rules than the transformed program, which
is typically much larger. Optimization of maintenance code is especially use-
ful for rules generated by composition, because composition may introduce
redundant or unreachable computations.

We introduce three optimizations: (1) membership test simplification, (2)
dead branch elimination, and (3) dead variable elimination. We repeatedly
apply these optimizations to the rules until none are applicable.

(1) Membership test simplification. The combination of decomposing
nested queries, incrementalizing them, and finally composing them produces,

122

at py{ $sent.add($p) }

do before py{

if $p in $recv:

if $p not in $I:

if $p not in $P[$p.src]:

$M[$p.src] += 1

$P[$p.src].add($p)

if $p not in $P[$p.dst]:

$M[$p.dst] += 1

$P[$p.dst].add($p)

$I.add($p)

}

at py{ $recv.add($p) }

do before py{

if $p in $sent:

if $p not in $I:

if $p not in $P[$p.src]:

$M[$p.src] += 1

$P[$p.src].add($p)

if $p not in $P[$p.dst]:

$M[$p.dst] += 1

$P[$p.dst].add($p)

$I.add($p)

}

at py{ $sent.remove($p) }

do before py{

if $p in $recv:

if $p in $I:

if $p in $P[$p.src]:

$M[$p.src] -= 1

$P[$p.src].remove($p)

if $p in $P[$p.dst]:

$M[$p.dst] -= 1

$P[$p.dst].remove($p)

$I.remove($p)

}

at py{ $recv.remove($p) }

do before py{

if $p in $sent:

if $p in $I:

if $p in $P[$p.src]:

$M[$p.src] -= 1

$P[$p.src].remove($p)

if $p in $P[$p.dst]:

$M[$p.dst] -= 1

$P[$p.dst].remove($p)

$I.remove($p)

}

Figure 5.4: Result of composing the rules for incrementalization of match in Figure 5.3. The inv clauses and de clauses
are not shown; they are the same as in the optimized rule for incrementalizing match on the left in Figure 5.5, except that,
in the de clause, the definition of init also contains the initializations $P = defaultdict(set) and $I = set().

123

in the composed maintenance code, membership tests that are redundant,
i.e., membership tests that can be statically evaluated to true or false. We
illustrate how to statically evaluate (in two steps) a membership test by doing
so to code from the third column of Figure 5.4:

if $p in $I:

if $p in $P[$p.dst]:

$M[$p.dst] -= 1

In step i, using the invariant, derived during decomposition, that:

$P[$ip] = set(p for p in $I if p.src==$ip or p.dst==$ip)

we rewrite the above to:

if $p in $I:

if $p in set(p for p in $I if p.src==$p.dst or p.dst==$p.dst):

$M[$p.dst] -= 1

which is equivalent to:

if $p in $I:

if $p in $I and ($p.src==$p.dst or $p.dst==$p.dst):

$M[$p.dst] -= 1

In step ii, we simplify the above using simplification of Boolean-valued
expressions in context:

if $p in $I:

if true and ($p.src==$p.dst or $p.dst==$p.dst):

$M[$p.dst] -= 1

and then, using simplification of equality, to:

if $p in $I:

if true and ($p.src==$p.dst or true):

$M[$p.dst] -= 1

and again, using simplification of Boolean expressions, to:

if $p in $I:

if true:

$M[$p.dst] -= 1

In general, membership test simplification simplifies, in two steps, mem-
bership tests of the form v in r such that r = q is an invariant generated
during query decomposition and q has the form set(x for x in S if c).

124

In step i we replace a membership test v in r with the equivalent v in S
and c[x 7→ v], where c[x 7→ v] denotes c with all occurrences of x replaced with
v.

In step ii, we simplify the conjuncts from step i by repeatedly applying,
until we reach a fixed-point, (a) simplification of Boolean-valued expressions
in context, (b) simplification of equality, and (c) simplification of Boolean
expressions.

ii(a) — simplification of Boolean-valued expression in context — if any
conjunct simplifies to either an expression that appears as the condition of an
enclosing if statement or the negation of such an expression, and if the vari-
ables on which the conjunct depends are not updated before the membership
test in the branch in which it appears (checking this relies on alias analysis,
which is handled the same way as when transforming maintenance code), then
the conjunct is replaced with true or false, as appropriate;

ii(b) — simplification of equality — if two expressions without side ef-
fects are compared, and they are the same expression, then the comparison is
replaced with true (e.g., x==x simplifies to true);

ii(c) — simplification of Boolean expressions — standard Boolean simplifi-
cations are applied to the resulting conjunction (e.g., cond and true simplifies
to cond).

If either ii(a), ii(b), or ii(c) replaces any conjunct with a Boolean constant,
then the original membership test is replaced with the result of simplifying the
conjunction; otherwise, the membership test is left unchanged.

It would be difficult to perform this optimization based purely on analysis
of the transformed program because step i would require re-discovering the
invariant from the invariant rule.

(2) Dead branch elimination. If the condition in an if statement is a
boolean constant (typically as a result of membership test simplification), then
the entire if statement is replaced with the reachable branch. Continuing the
above example, this optimization replaces

if true:

$M[$p.dst] -= 1

with

$M[$p.dst] -= 1

(3) Dead variable elimination. If the value of a variable that is intro-
duced by a transformation rule is not used in the rule’s result (on the left side
of its inv clause) or in the rule’s maintenance code (in its do clauses), and
there are no aliases of the variable, then the variable and all updates to it

125

can be eliminated. For example, after repeatedly applying membership test
simplification to the rules in Figure 5.4, these conditions hold for $I and $P,
so these variables and updates to them are eliminated.

Applying these optimizations to the composed rule for match in Figure 5.4
and the similar composed rule for total, we obtain the optimized composed
rules in Figure 5.5. Note how much easier the at clauses in these rules are to
understand than those in Figure 5.4.

Overhead caused by instrumentation using optimized composed rules.
The optimized composed invariant rule for computing match does not intro-
duce $I and $P. Similarly, the optimized composed invariant rule for comput-
ing total does not introduce maps maintaining the union and peer selection.
Thus, the optimizations eliminate four maps, each of size O(S + R). This is
reflected in the improved space complexity in the last line in Table 5.1.

5.4.3 Composing instrumentation rules with invariant

rules

Our system composes instrumentation rules with invariant rules by applying
invariant rules, including composed invariant rules, to the code in instrumen-
tation rules, before applying the instrumentation rules to a subject program.
This allows expensive queries in instrumentation code to be incrementalized
before the instrumentation code is inserted in a subject program. When ap-
plying an invariant rule to the code in an instrumentation rule, alias analysis,
etc., are done in the same way as when composing invariant rules.

This technique is not essential, but it reduces the overall transformation
time, for the following reason. Before applying a transformation rule, InvTS
analyzes the code being transformed. Thus, applying an invariant rule to an
instrumentation rule and applying the resulting rule to the subject program,
instead of sequentially applying the instrumentation rule and then the invari-
ant rule to the subject program, trades two analyses of the subject program
for one analysis of the code in the instrumentation rule and one analysis of
the subject program. This increases performance, because the code in an in-
strumentation rule is typically much smaller than the subject program, and
because the alias analysis used to analyze code in instrumentation rules is
less sophisticated, and hence cheaper, than the alias analysis used to analyze
subject programs.

126

inv py{ $M[$ip] } = py{

len(set(p for p in intersect($sent,$recv)

if p.src==$ip or p.dst==$ip))

}

de in class bitTorrent py{

def __init__(self):

$M = defaultdict(int)

}

at py{ $sent.add($p) }

do before py{

if $p in $recv:

if not ($p in $sent):

$M[$p.src] += 1

$M[$p.dst] += 1

}

at py{ $recv.add($p) }

do before py{

if $p in $sent:

if not ($p in $recv):

$M[$p.src] += 1

$M[$p.dst] += 1

}

inv py{ $T[$ip] } = py{

len(set(p for p in union($sent,$recv)

if p.src==$ip or p.dst==$ip))

}

de in class bitTorrent py{

def __init__(self):

$T = defaultdict(int)

}

at py{ $sent.add($p) }

do before py{

if $p not in $recv:

if not ($p in $sent):

$T[$p.src] += 1

$T[$p.dst] += 1

}

at py{ $recv.add($p) }

do before py{

if $p not in $sent:

if not ($p in $recv):

$T[$p.src] += 1

$T[$p.dst] += 1

}

Figure 5.5: Optimized composed rules for maintaining match and total.

127

5.5 Experiments

To confirm that composing and optimizing invariant rules and instrumentation
rules can increase the efficiency of the transformed program and reduce trans-
formation time, as predicted, we performed experiments on three applications:
BitTorrent, a NetFlow query tool, and Constrained RBAC. We developed an
automated tool that transformed each application using three transformation
variants:

• Application of separate rules, in dependency order.

• Composition of rules, followed by application of the composed rule.

• Composition and optimization of rules, followed by application of the
optimized rule.

For each variant, we measured the size of the application before and after
the transformation, the time it took to compose the rules, the time it took
to optimize the composed rules, the time it took InvTS to apply the rules,
and quantities about the transformed programs. All programs were written in
Python and run using Python 2.6.1.

We also perform experiments that show the correctness and performance
of Constrained RBAC incrementalized in several ways.

5.5.1 BitTorrent

We wrote rules that modify the BitTorrent peer to send notifications to all
peers in its peer horizon and to receive and efficiently analyze notifications
sent by its peers. The analysis determines and reports, for each peer in the
peer’s horizon, how good that peer’s connection is. When the six rules totaling
171 lines are separately applied to the BitTorrent peer, the BitTorrent peer
increases from 41,162 to 41,374 lines of code, a difference of 212 lines.

Optimization of composed rules. To measure the effect of different meth-
ods of rule composition on the CPU and memory overhead of the instru-
mentation, we performed experiments on BitTorrent peers transformed by (1)
separate rule application, (2) composed rule application, and (3) optimized
composed rule application. In each experiment, we measure the number of
notifications stored by the instrumentation, the number of set operations per-
formed by the instrumentation, and the CPU and network usage.

During each experiment, we transferred a 1GB file from a BitTorrent peer
to 29 other BitTorrent peers over a 100 MBit link. Each peer was on a virtual
machine running Ubuntu 9.04 with 1GB of RAM and a single core of a Xeon

128

L5430 @ 2.66GHz provisioned to it. As the peers were never CPU-bound, CPU
under-provisioning was not an issue.

Table 5.2 presents the experimental results. Without optimization, the Bit-
Torrent peers store 93 million notifications, and perform 190 million additional
set operations. Optimizing the composed rules eliminates storage of interme-
diate query results and thereby eliminates about two thirds of this overhead,
reducing the number of stored notifications to 25 million, and the number of
additional set operations to 59 million.

The CPU usage of the original BitTorrent peer and the BitTorrent peer
obtained by optimized composed rule application are nearly indistinguishable.
The additional 7% of CPU use by the other two variants is due to the mainte-
nance of intermediate query results. As none of the BitTorrent variants were
CPU bound, the additional CPU usage did not affect the total time it took for
the file to be transferred to 29 peers, which was approximately 220 seconds.

Rule application time. Table 5.2 shows that separate rule application
takes the longest time: 2,998 seconds. Composed rule application takes 2,320
seconds, after taking less than 3 seconds to compose the rules, a net savings
of 675 seconds. Optimizing the composed rule takes under 4 seconds, and
reduces rule application time to 2,261 seconds, a further gain of 55 seconds.

Effects of instrumentation on free-riding clients. There are non-spe-
cification-adhering modifications to BitTorrent clients that attempt to get
around the BitTorrent choking feature that prevents specification-adhering
clients from sending data to free-riding clients [78]. One such modification
has the peer start sending out chunks of the torrent before the peer has fully
downloaded them. This self-promotion causes no harm when there are few
or no network errors, but it makes the swarm susceptible to swarm poisoning
— wide propagation of chunks corrupted by network errors — when network
errors increase. To measure the effect of swarm poisoning, we transferred a
1GB file from a BitTorrent peer to 29 other BitTorrent peers over a 100 MBit
link, with 3 of 29 peers having a 10% error rate. This took 438 seconds and
a total bandwidth of 93.1GB. This is over 2 times as long, and a factor of 3
increase in total bandwidth used, compared to the specification-adhering Bit-
Torrent swarm. Note that this is 10% error rate in 10% of the peers, so only
1% overall error rate.

To combat swarm poisoning, we modify our BitTorrent instrumentation
rule to use the computed ranking to let the peer avoid connecting to peers with
low ranks. We do so by modifying the BitTorrent metric for selecting peers,
stored in field goodness of each peer, to prefer peers with better ranks. This
is a change to the existing code in BitTorrent, so we remove pure from pure

instrumentation. We measure the effect of this instrumentation by perform-

129

ing the same experiment as above, but using the clients transformed using the
impure instrumentation rule. The experiment shows that the swarm took 227
seconds and a total bandwidth of 34.2GB to transfer the same 1GB file over
a 100 MBit link, which is comparable to the performance of a specification-
adhering swarm.

5.5.2 NetFlow

NetFlow is an IETF-standardized [20] network protocol used for analyzing
network traffic. In NetFlow, source hosts collect information about their net-
work activity, including information about packets received and sent. They
then transmit this information using the NetFlow protocol to a target host,
called a NetFlow collector. The collector may analyze the received information
on-the-fly, store it for further analysis, or discard it if it cannot cope with the
volume of the incoming information.

We created a NetFlow query tool based on the collector from the flow-

tools package [86]. Pseudocode for this tool is given in Figure 5.6. This
tool allows the execution of a user-specified query function over the sets SENT,
RECV, and HOSTS — the set of packets sent by the hosts, the set of packets
received by the hosts, and the set of hosts, respectively. A NetFlow query is a
Python function that is executed every time a packet is received.

Queries can be written easily and implemented efficient using our NetFlow
query tool. Figure 5.7 shows an example query similar to the query for BitTor-
rent instrumentation for ease of explanation. It computes, for each host, the
quality of its network connection, defined as the fraction of packets sent to or
received by the host that arrive unchanged. This is computed as match/total,
where match is the number of packets that were sent to the host, received by
the host, and not modified in transit, and total is the total number of packets
sent to the host, including packets that were lost or changed.

To determine the effect of incrementalization on this NetFlow query, we
ran the non-incrementalized and the variously incrementalized variants of the
query on a set of 10 million packets recorded over the course of approx. 20
seconds from a saturated Gigabit network with 5 hosts on it. We set the time
limit for the query program to 600 seconds. The query was run on an Intel i7
920@3.1GHz with 12GB of RAM, running Ubuntu 9.04.

Incrementalization and rule composition. As shown in Table 5.2, “Orig-
inal query” row, the query program generated from the NetFlow query from
Figure 5.7 exceeds the time limit of 600 seconds while processing an average
of only 81 packets per second. This is because the total and match set com-
prehensions iterate over the entire SENT and RECV sets every time the NetFlow
query is called.

130

HOSTS = set()

RECV = set()

SENT = set()

for p in generate_netflow_packets():

if p.is_received:

RECV.add(p)

else:

SENT.add(p)

HOSTS.add(p.dst)

query()

Figure 5.6: Pseudocode for the NetFlow query tool.

def query():

for host in HOSTS:

match = len(set(p for p in intersect(SENT,RECV)

if p.dst==host))

total = len(set(p for p in union(SENT,RECV)

if p.dst==host))

quality[host] = 1.0*match/total

Figure 5.7: The NetFlow query function.

It is clear that for reasonable performance, the results of both set com-
prehensions should be incrementally maintained. We do so by applying five
invariant rules to the query program. These rules are very similar to the rules
in Figure 5.3, the rules used to incrementalize the instrumentation of BitTor-
rent. As with BitTorrent, we transformed the query program by separate rule
application, by composed rule application, and by optimized composed rule
application. For each transformed query program, we measured how long it
takes to analyze 10 million packets.

The last three rows of Table 5.2 present the results of the experiments.
The query programs transformed by separate application or composed appli-
cation took approximately 33 seconds to process 10 million packets. The query
program transformed by optimized composed application took 19.9 seconds to
process the same data. As the packets were recorded over the course of 20 sec-
onds and there is non-negligible overhead in reading the packets from disk, we
can infer that the query program transformed by optimized composed appli-
cation is capable of running the query in real-time without the need to store

131

the packets to disk. These experiments show that application of optimized
and composed invariant rules provides very tangible benefits over separate
application of rules.

Rule application time. Table 5.2 shows that separate application of rules
takes the longest time: 21 seconds. Applying the composed and the optimized
composed rules takes 15 seconds each, with composition taking an additional
1 second, and optimization taking another 0.5 seconds.

5.5.3 Constrained RBAC

RBAC is an ANSI-standardized [3] framework for controlling user access to
resources based on roles. It can significantly reduce the cost of security policy
administration and is increasingly widely used in large organizations. Core
RBAC controls access based on relations between permissions, users, sessions,
and roles. Core RBAC and its incrementalization is described in Chapter 3.
Constrained RBAC adds to Core RBAC:

• Static separation of duty (SSD) constraints — a user can be assigned to
at most c roles from rs, a set of roles.

• Dynamic separation of duty (DSD) constraints — a session can have at
most c roles from a set rs of roles active at the same time.

All commands are inherited from CoreRBAC except that AssignUser is
redefined to also check that the current state of Constrained RBAC satis-
fies the SSD and DSD constraints. New administrative commands, Create-
/DeleteSsd/DsdSet, Add/DeleteSsd/DsdRoleMember, and SetSsd/DsdSet-

Cardinality are added to create, modify, and delete SSD and DSD con-
straints; the non-deletion commands check that the new or updated SSD and
DSD constraint would be satisfied, and that the cardinality would be in the
required range. New review functions, Ssd/DsdRoleSets, Ssd/DsdRoleSet-
Roles, and Ssd/DsdRoleSetCardinality are introduced to query SSD/DSD
constraints. Supporting system functions and advanced review functions are
simply inherited.

The SSD constraint, defined in method CheckSSD(), says that assignment
of roles to users must satisfy:

forall u in USERS, [name,c] in SsdNC |

#{r: r in AssignedRoles(u) | [name,r] in SsdNR } <= c

Mirroring the Z specification, we extended the 125-line straightforward
implementation of Core RBAC [71] into a 381 line straightforward implemen-
tation of Constrained RBAC. Unfortunately, such a specification is grossly
inefficient when evaluating CheckAccess, the main query of RBAC.

132

To rectify this, we applied 21 invariant rules to the straightforward imple-
mentation, incrementalizing all queries in it. Out of the 21 rules, only 7 are
unique to Constrained RBAC; the other 14 are the same as the rules used
to incrementalize Core RBAC. When the straightforward Constrained RBAC
program is incrementalized, it becomes 2183 lines of code, a more than 5-fold
increase in size. In contrast, when Core RBAC was incrementalized in [71],
it tripled in size to a bit over 400 lines. Incrementalization of queries speeds
them up asymptotically: for example, CheckAccess goes from O(roles) to
O(1), which in our experiments with 100 roles manifests itself as an almost
50-fold speedup.

Rule application time. We verify that it is faster to apply composed invari-
ant rules than to separately apply non-composed invariant rules by measuring
how long it took to incrementalize Constrained RBAC using both methods.
No dead code is eliminated by the optimizations, so the optimized composed
rules are identical to the composed rules.

Table 5.2 shows that applying the composed rules is much faster than
separately applying the non-composed rules, taking 44 rather than 257 seconds.
The reason is evident from the “# inv clauses applied” column, which shows
that when InvTS applies the composed rules, it tries to apply fewer inv clauses
than when applying the non-composed rules. After every rule application
that transforms the program, InvTS must reanalyze the transformed program.
Thus, many applications of small rules are slower than a single application of
one big rule, even when both produce the same result.

Correctness. We experimentally checked that the incrementalization pre-
served program semantics, using the same approach as in [71]. Our testing
suite randomly generates a sequence of 50 million RBAC operations. It then
verifies that the straightforward and incremental implementations produce the
same output for these operations.

Performance testing of Constrained RBAC. For performance testing,
we used a tool that generates random instructions based on potentially mul-
tiple dependent and independent variables. We then measured the time it
takes to process these instructions. We performed two sets of experiments:
One to show and contrast the effects of fully and partially incrementalizing
often-called functions such as CreateSession and AddActiveRole; the other
to verify that we do not degrade the performance of Core RBAC without
constraints, and to show that the most-often called function, CheckAccess, is
O(1) when incrementalized. Partially incrementalized refers to Constrained
RBAC incrementalized by only the rules that we used in the past to incre-
mentalize Core RBAC. Fully incrementalized refers to Constrained RBAC in-

133

crementalized by the entire library of 21 rules, including the 7 rules developed
for incrementalizing Constrained RBAC.

10 20 30 40 50 60 70 80 90 100
Number of Sessions

0

5

10

15

20

25

30

35

40

45

T
im

e
 (

S
)

Unincrementalized CreateSession
Incrementalized CreateSession
Unincrementalized AddActiveRoles
Incrementalized AddActiveRoles

(a) Original vs Complete

10 20 30 40 50 60 70 80 90 100
Number of Sessions

0

2

4

6

8

10

12

14

16

T
im

e
 (

S
)

Partially Incrementalized CreateSession
Fully Incrementalized CreateSession
Partially Incrementalized AddActiveRole
Fully Incrementalized AddActiveRole

(b) Partial vs Complete

Figure 5.8: For Constrained RBAC, running times of CreateSession and
AddActiveRole, 100000 repeats, 1 user/role.

When talking about the time and space complexity of Constrained RBAC,
we use the following for sizes of the respective sets:

set: OBJS OPS OPS*OBJS USERS ROLES SESSIONS SsdNAME C

size: O A P U R S N C

where A for operation is adopted from the initial letter of “access” or “action”,
and P equals A*O and is the initial letter of “permission”; set C is the set of
different cardinalities that appear in SsdNC. We use x/y to denote the number
of x’s per y, where x and y are the letters for the above sets but in lower
case. For example, r/u denotes the number of roles per user. For Constrained
RBAC, c/n is 1 because, as per ANSI specification each name has one and
only one constraint associated with it.

Table 5.3 shows the time complexities of CreateSession, AddActiveRole,
and CheckAccess, computed using the method from [71]. To verify that our
analyses of running time for CreateSession and AddActiveRole are correct,
we performed two experiments. We vary the number of sessions that have a
given role. We chose this variable as completely incrementalizing CheckDSD

affects both CreateSession and AddActiveRole. Figure 5.8(a) shows that
is indeed the case. The experiment varies the number of sessions from 10 to
100, with a step size of 10. The number of roles is fixed at 100. The experi-
mental results confirm that the running time of the incrementalized version of
AddActiveRole is constant in the number of sessions, and the running time of
CreateSession decreases as the number of sessions increases. This contrasts
with the straightforward versions, which are proportional to the number of
sessions.

134

We then show the difference between partially and completely incremental-
izing Constrained RBAC. Figure 5.8(b) shows that, as expected, the partially
incrementalized versions of AddActiveRole and CreateSession are almost
linear in the number of sessions. This is in stark contrast to the fully incre-
mentalized versions, which are constant or better. This corresponds to the
results obtained by complexity analysis.

We also verify that the invariant rules introduced to handle CheckSSD,
CheckDSD, and other Constrained RBAC methods do not degrade the perfor-
mance of the incrementalized program more than they have to. For this, we
performed a subset of the same experiments performed in [71]. Specifically,
we vary the number of Roles between 10 and 100, inclusive. We compare the
performance of the most common function CheckAccess. The results confirm
that the straightforward version does behave linearly in the number of roles,
while the incrementalized version takes a constant amount of time.

5.6 Related work

We discuss existing work related to composition of invariant rules, BitTor-
rent, NetFlow, and Constrained RBAC.
Aspect-oriented programming. Aspect-oriented programming (AOP) [57,
55] also allows code for cross-cutting concerns, such as debugging, to be
specified separately and inserted automatically at a set of matched program
points. Connections between AOP and invariants are studied specially [95, 94].
Compared with existing AOP languages, InvTL has an explicit definition of
invariant-preserving rules, to facilitate formal verification; it provides powerful
static analysis, especially for automatically detecting updates, to coordinate
transformations at queries and updates and minimize runtime overhead; fi-
nally, AOP does not help the programmer write code to efficiently maintain
the match and total queries — he has to figure that out on his own.

Composition of program transformations. There are two approaches
to sequential composition of program transformation specifications. In the
extensional approach, the specifications are simply concatenated, separated
by a sequential composition operator; applying the resulting specification to
a program involves applying the original transformations, one at a time, in
the specified order. In the intensional approach, the specifications are com-
posed (merged) into a single transformation specification that can be applied
in one shot. The extensional approach is used in StrategoXL and TXL. The
intensional approach is used in J& [79], but is limited to specifications that
do not depend on static analysis results. Our previous work [71, 42] also uses
an extensional approach, but, unlike StrategoXL and TXL, it automatically

135

determines the order for applying transformation rules. This chapter presents
a method for intensional composition without the limitations of J&: we al-
low the invariant rules to depend on static analysis results; we also perform
optimizations of the composed rule.

BitTorrent. While there are many sophisticated approaches that make Bit-
Torrent more resilient to both network errors and outright malicious behavior,
e.g. [19, 110, 59], these require either extensive manual modifications to a Bit-
Torrent client, thus necessitating in-depth knowledge of the particular client,
or significant expertise in network engineering. Our approach based on instru-
mentation rules and invariant rules allows us to modify a BitTorrent client
to detect error-prone peers with only a passing familiarity with both the Bit-
Torrent protocol and the implementation of the BitTorrent client. It is not
difficult to extend our instrumentation rule for BitTorrent to modify the client
to make it more resilient.

NetFlow. Design and implementation of NetFlow probes and collectors /
analyzers that operate at line speeds on Gigabit links (100,000+ packets/sec)
is challenging [28, 90]. On the collector / analyzer side, the challenge comes
from the classic tension between clarity and efficiency, i.e., the desire to let
the network administrator write analysis scripts in a declarative manner vs.
the desire to have these scripts process hundreds of thousands of packets per
second. Some systems allow a degree of customization of the queries they
efficiently execute [27, 96]. Our technique potentially allows such systems to
execute even more general queries efficiently by applying invariant rules to such
queries, and performing automated composition and optimization of complex
invariant rules.

Constrained RBAC. Various implementations of Constrained RBAC ex-
ist, such as [103, 100, 34]. We are aware of only one incrementalized im-
plementation — Strembeck’s, and it was incrementalized manually, with the
associated difficulties of verifying its correctness.

136

BitTorrent

LOC # LOC #rules composition optimization application notifications extra set CPU total
before after time (s) time (s) time (s) stored (mil) ops. (mil) usage network

Original 41,162 41,162 - - - - - - 48.6% 32.1GB
Separate appl. 41,162 41,374 6 - - 2998 96.3 193.3 56.1% 33.1GB

Composed appl. 41,162 41,374 6 2.9 - 2320 93.1 189.6 56.9% 32.7GB
Optimized comp. 41,162 41,331 6 2.8 3.5 2261 25.0 58.8 49.1% 33.3GB

NetFlow query tool

LOC # LOC #rules composition optimization application total proc. throughput
before after time (s) time (s) time (s) time (s) (packets/s)

Original query 64 64 - - - - >600 81
Separate appl. 64 105 5 - - 21.1 33.1 302,114

Composed appl. 64 105 5 1.0 - 15.3 32.8 304,878
Optimized comp. 64 75 5 1.0 0.4 15.4 19.9 502,512

Constrained RBAC

LOC # LOC #rules composition optimization application # inv clauses
before after time (s) time (s) time (s) applied

Separate appl. 381 2,183 21 - - 257.4 38
Composed appl. 381 2,183 21 1.1 - 44.2 27
Optimized comp. 381 2,183 21 1.1 0.5 44.8 27

Table 5.2: Summary of rule composition experiments. For each experiment, we give the size before and after rule
application, the number of rules, and the time InvTS took to compose, optimize, and apply the rules. For BitTorrent,
we give the number of notifications stored, the number of additional set operations performed, the CPU usage, and the
total network usage. For NetFlow, we give the time to process 10 million packets, and the number of packets processed
per second. For Constrained RBAC, we give the number of InvTS inv clauses applied.

137

functionalties straightforward inc Core RBAC queries inc all queries
CreateSession(u,s,ars) ars+R+S*N*R p/r*(ars+r/s)+S*N*s/r p/r*(ars*n/r+r/s)+N
AddActiveRole(u,s,r) R*S*N*R p/r*S*N*r/s p/r+n/r
CheckAccess(s,op,o) R 1 1

Table 5.3: Time complexities of selected Constrained RBAC functionalities.

138

Chapter 6

Conclusion

This dissertation presents a system that allows coordinated transformations
driven by invariants to be specified declaratively, as invariant rules, and ap-
plied automatically. It describes the system’s implementation for efficiently
applying invariant rules to Python and C programs; it also describes the type,
control flow, and alias analyses developed for applying the invariant rules in a
coordinated manner, and in a way that does not introduce excessive overhead
to the transformed program. To illustrate the use of the transformation sys-
tem, we describe successful applications of this system in generating efficient
implementations from clear and modular specifications, in instrumenting pro-
grams for runtime invariant checking, query-based debugging, profiling, and
refactoring. We also describe a method for composing and optimizing invariant
and instrumentation rules that enables a large class of rules to both be more
efficiently applied, and result in faster transformed programs; applying this
method to transformations for instrumentation of BitTorrent and a NetFlow
query tool, and to incrementalization of Constrained RBAC shows reduced
transformation time and significantly decreased running time and memory
overhead of the instrumentation.

Future work. Manually creating correct incrementalization rules is chal-
lenging. To combat this, future work in the direction of automated incre-
mentalization could be the integration of InvTS and a method developed by
Rothamel [87] that can, for a large class of queries, automatically generate
invariant rules; another approach would be the development of methods and
tools for verification of invariant rules.

On the implementation side, there are two clear directions for future work:
(1) the static analyses required by InvTS are expensive, and (2) the cost clause
is not implemented in the Python LM. Future work would include further
refinement and optimization of static analyses, and the implementation of the
cost clause.

139

Another promising direction is to extend the runtime invariant checking
framework that we presented in this dissertation to not just check a given
invariant at runtime, but to detect possible invariants by instantiating all
possible invariants that match a given pattern and detecting which ones hold
at runtime.

140

Bibliography

[1] U.A. Acar. Self-adjusting computation:(an overview). In Proc. of the

2009 ACM SIGPLAN Workshop on Partial Evaluation and Program

Manipulation, pages 1–6. ACM, 2009.
[2] C. Allan, J. Tibble, P. Avgustinov, A.S. Christensen, L. Hendren,

S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, and G. Sittampalam.
Adding trace matching with free variables to AspectJ. In Proc. of the

20th Annual ACM SIGPLAN Conf. on Object Oriented Programming,

Systems, Languages, and Applications, pages 345–364, 2005.
[3] American National Standards Institute, Inc. Role-Based Access Control.

ANSI INCITS 359-2004, 2004. Approved Feb. 3, 2004.
[4] L. O. Andersen. Program Analysis and Specialization for the C Program-

ming Language. PhD thesis, DIKU, University of Copenhagen, 1994.
[5] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference

for JavaScript. In Proc. of the 19th European Conf. on Object-Oriented

Programming, pages 428–452, 2005.
[6] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and

B. Zweimüller. JNuke: efficient dynamic analysis for Java. Lecture

Notes in Computer Science, 3114:462–465, 2004.
[7] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual

function calls. In Proc. of the 1996 ACM SIGPLAN Conf. on Object-

Oriented Programming Systems, Languages, and Applications, pages
324–341, 1996.

[8] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: composing static and dynamic anal-
ysis to validate sanitization in web applications. In Proc. of the 2008

IEEE Symp. on Security and Privacy, pages 387–401, 2008.
[9] M. Barnett, B.Y.E. Chang, R. DeLine, B. Jacobs, and K.R.M. Leino.

Boogie: a modular reusable verifier for object-oriented programs. In
Proc. of the 4th Intl. Symp. on Formal Methods for Components and

Objects, pages 364–387, 2006.
[10] M. Barnett, R. DeLine, M. Fahndrich, K.R.M. Leino, and W. Schulte.

Verification of object-oriented programs with invariants. Journal of Ob-

ject Technology, 3(6):27–56, 2004.

141

[11] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based run-
time verification. In Proc. of the 5th Intl. Conf. on Verification, Model

Checking and Abstract Interpretation, pages 44–57, 2004.
[12] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass Java with

assertions. Electronic Notes in Theoretical Computer Science, 55(2):103–
117, 2001.

[13] F.L. Bauer, B. Möller, H. Partsch, and P. Pepper. Formal program con-
struction by transformations — computer-aided, intuition-guided pro-
gramming. IEEE Transactions on Software Engineering, 15(2):165–180,
1989.

[14] M. Bravenboer, K.T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT
0.17. A language and toolset for program transformation. Science of

Computer Programming, 72(1-2):52–70, 2008.
[15] S. Callanan, D. J. Dean, and E. Zadok. Extending GCC with modular

GIMPLE optimizations. In Proc. of the 2007 GCC Developers’ Summit,
pages 31–38, 2007.

[16] B. Cannon. Localized Type Inference of Atomic Types in Python. PhD
thesis, California Polytechnic State University, 2005.

[17] Y. Cheon. A Runtime Assertion Checker for the Java Modeling Lan-

guage. PhD thesis, Iowa State University, 2003.
[18] J.D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interproce-

dural computation of pointer-induced aliases and side effects. In Proc. of

the 20th ACM SIGPLAN-SIGACT Symp. on Principles of Programming

Languages, pages 232–245, 1993.
[19] A.L. Chow, L. Golubchik, and V. Misra. Improving BitTorrent: a simple

approach. In Proc. of the 7th Intl. Workshop on Peer-to-Peer Systems,
2008.

[20] B. Claise. Cisco Systems NetFlow services export version 9. RFC 3954,
Internet Engineering Task Force, Oct. 2004.

[21] L.A. Clarke and D.S. Rosenblum. A historical perspective on runtime
assertion checking in software development. ACM SIGSOFT Software

Engineering Notes, 31(3):25–37, 2006.
[22] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset

matching in deterministic O(n log3n)-time. In Proc. of the 10th ACM-

SIAM Symp. on Discrete Algorithms, pages 245–254, 1999.
[23] J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider. Software

engineering by source transformation-experience with TXL. In Proc. of

the 1st IEEE Intl. Working Conf. on Source Code Analysis and Manip-

ulation, pages 170–180, 2001.
[24] J.R. Cordy. TXL-a language for programming language tools and ap-

plications. Electronic Notes in Theoretical Computer Science, 110:3–31,
2004.

142

[25] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Proc. of the 4th ACM SIGACT-SIGPLAN Symp. on

Principles of Programming Languages, pages 238–252, 1977.
[26] C. Delord. TPG: a Python Toy Parser Generator.
[27] L. Deri. Passively monitoring networks at Gigabit speeds using com-

modity hardware and open source software. In Proc. of the Passive and

Active Measurement Conf., pages 13–21, 2003.
[28] L. Deri and V. Matteucci. nProbe: an open source netflow probe for

gigabit networks. In Proc. of the 2003 TERENA Networking Conf.,
pages 1–4, 2003.

[29] Arie Van Deursen, Jan Heering, and Paul Klint, editors. Language Pro-

totyping: An Algebraic Specification Approach: Vol. V. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 1996.

[30] A. Diwan, K.S. McKinley, and J.E.B. Moss. Type-based alias analysis.
In Proc. of the 1998 ACM SIGPLAN Conf. on Programming Language

Design and Implementation, pages 106–117, 1998.
[31] M. Emami, R. Ghiya, and L.J. Hendren. Context-sensitive interproce-

dural points-to analysis in the presence of function pointers. In Proc. of

the 1994 ACM SIGPLAN Conf. on Programming Language Design and

Implementation, pages 242–256, 1994.
[32] M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive flow

analysis using instantiation constraints. In Proc. of the 2000 ACM SIG-

PLAN Conf. on Programming Language Design and Implementation,
pages 253–263, 2000.

[33] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli. Proposed NIST standard for role-based access control. ACM
Transactions on Information and System Security, 4(3):224–274, 2001.

[34] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and
B. Thuraisingham. R OWL BAC: representing role-based access control
in OWL. In Proc. of the 13th ACM Symp. on Access Control Models

and Technologies, pages 73–82, 2008.
[35] J.S. Foster, M. Fähndrich, and A. Aiken. Polymorphic versus monomor-

phic flow-insensitive points-to analysis for C. In Proc. of the 7th Intl.

Symp. on Static Analysis, pages 175–198, 2000.
[36] M. Furr, J. D. An, J. S. Foster, and M. W. Hicks. Static type inference

for Ruby. In Proc. of the 2009 ACM Symp. on Applied Computing, pages
1859–1866, 2009.

[37] S. F. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over
program traces. In Proc. of the 20th Annual ACM SIGPLAN Conf. on

Object Oriented Programming, Systems, Languages, and Applications,
pages 385–402, 2005.

143

[38] D. Gopan and T. Reps. Lookahead Widening. In Proc. of 18th Conf. on

Computer-Aided Verification, pages 452–466, 2006.
[39] M. Gorbovitski. A survey of program transformation languages and

systems. http://public.zavulon.com/publications/RPE.pdf.
[40] M. Gorbovitski, Y. A. Liu, S. D. Stoller, and T. Rothamel. Composing

transformations for instrumentation and incrementalization of real ap-
plications. Preliminary technical report, Computer Science Department,
SUNY Stony Brook, 2010.

[41] M. Gorbovitski, Y. A. Liu, S. D. Stoller, K. T. Tekle, and T. Rothamel.
Alias analysis for optimization of dynamic languages. In Proc. of the

2010 Dynamic Languages Symp., pages 12–20, 2010.
[42] M. Gorbovitski, T. Rothamel, Y. A. Liu, and S. D. Stoller. Efficient

runtime invariant checking: A framework and case study. In Proc. of the

6th Intl. Workshop on Dynamic Analysis, pages 43–49, 2008.
[43] M. Gorbovitski, K.T. Tekle, T. Rothamel, S.D. Stoller, and Y.A. Liu.

Analysis and transformations for efficient query-based debugging. In
Proc. of the 8th IEEE Intl. Working Conf. on Source Code Analysis and

Manipulation, pages 174–183, 2008.
[44] D. Goyal. Transformational derivation of an improved alias analysis al-

gorithm. Higher-Order and Symbolic Computation, 18(1-2):15–49, 2005.
[45] D. Goyal and R. Paige. The formal reconstruction and improvement of

the linear time fragment of willard’s relational calculus subset. In Proc.

of the 1997 IFIP TC2 Working Conference on Algorithmic Languages

and Calculi, pages 382–414, 1997.
[46] S. Z. Guyer and C Lin. Error checking with client-driven pointer analysis.

Science of Computer Programming, 58(1-2):83–114, 2005.
[47] Matthew A. Hammer, Umut A. Acar, and Yan Chen. Ceal: a c-based

language for self-adjusting computation. In Proceedings of the 2009 ACM

SIGPLAN conference on Programming language design and implemen-

tation, PLDI ’09, pages 25–37, New York, NY, USA, 2009. ACM.
[48] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer analysis.

In Proc. of the 36th ACM SIGPLAN-SIGACT Symp. on Principles of

Programming Languages, pages 226–238, 2009.
[49] K. Havelund and G. Rosu. An Overview of the runtime verification tool

Java PathExplorer. Formal Methods in System Design, 24(2):189–215,
2004.

[50] M. Hind. Pointer analysis: haven’t we solved this problem yet? In Proc.

of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering, pages 54–61, 2001.
[51] M. Hind and A. Pioli. Evaluating the effectiveness of pointer alias anal-

yses. Science of Computer Programming, 39(1):31–55, 2001.
[52] International Organization for Standardization. Z formal specification

144

notation — Syntax, type system and semantics. ISO/IEC 13568:2002.
[53] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias analysis for static

detection of web application vulnerabilities. In Proc. of the 2006 ACM

SIGPLAN Workshop on Programming Languages and Analysis for Se-

curity, pages 27–36, 2006.
[54] Rajesh Kazhankodathed. http://tinyurl.com/5b9qfe.
[55] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.

Griswold. An overview of AspectJ. In J. L. Knudsen, editor, Proc.

ECOOP 2001, LNCS 2072, pages 327–353, Berlin, June 2001. Springer-
Verlag.

[56] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G.
Griswold. An overview of AspectJ. Lecture Notes in Computer Science,
2072:327–355, 2001.

[57] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Mehmet Aksit and Satoshi Matsuoka, editors, Proceed-
ings of the 11th Europeen Conference on Object-Oriented Programming,
volume 1241 of LNCS, pages 220–242. Springer Verlag, 1997.

[58] M.Z. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-
MaC: a run-time assurance approach for Java programs. Formal Methods

in System Design, 24(2):129–155, 2004.
[59] M. A. Konrath, M. P. Barcellos, and R. B. Mansilha. Attacking a swarm

with a band of liars: evaluating the impact of attacks on BitTorrent. In
Proc. of the 7th IEEE Intl. Conf. on Peer-to-Peer Computing, pages
37–44, 2007.

[60] B. Krause and T. Wahls. jmle: a tool for executing JML specifications via
constraint programming. Lecture Notes in Computer Science, 4346:293–
296, 2007.

[61] V. Kuncak and M. Rinard. An overview of the Jahob analysis system:
project goals and current status. In Proc. of the 20th Intl. Parallel and

Distributed Processing Symp., pages 8–16, 2006.
[62] M.S. Lam, J. Whaley, V.B. Livshits, M.C. Martin, D. Avots, M. Carbin,

and C. Unkel. Context-sensitive program analysis as database queries.
In Proc. of the 24th ACM SIGMOD-SIGACT-SIGART Symp. on Prin-

ciples of Database Systems, pages 1–12, 2005.
[63] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive points-

to analysis with heap cloning practical for the real world. In Proc. of

the 2007 ACM SIGPLAN Conf. on Programming Language Design and

Implementation, pages 278–289, 2007.
[64] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How

the design of JML accommodates both runtime assertion checking and
formal verification. Science of Computer Programming, 55(1-3):185–208,

145

2005.
[65] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML:

a behavioral interface specification language for Java. ACM SIGSOFT

Software Engineering Notes, 31(3):1–38, 2006.
[66] R. Lencevicius and U. Hölzle. Dynamic query-based debugging. Lecture

Notes in Computer Science, 1628:135–149, 1999.
[67] R. Lencevicius, U. Hölzle, and A.K. Singh. Dynamic query-based de-

bugging of OO programs. Automated Software Engineering, 10(1):39–74,
2003.

[68] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated sound-
ness proofs for dataflow analyses and transformations via local rules.
In Proc. of the 32nd ACM SIGPLAN-SIGACT Symp. on Principles of

Programming Languages, pages 364–377, 2005.
[69] O. Lhoták and L. Hendren. Context-sensitive points-to analysis: is it

worth it? In Proc. of the 15th Intl. Conf. on Compiler Construction,
pages 47–64, 2006.

[70] Y. A. Liu and S. D. Stoller. Role-based access control: A simplified spec-
ification. Technical Report DAR 05-24, Computer Science Department,
SUNY Stony Brook, Aug. 2005 (Revised Jan. 2006).

[71] Y. A. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng, Y. Zhao,
and J. Zhang. Core role-based access control: Efficient implementations
by transformations. In Proc. of the 2006 ACM SIGPLAN Workshop on

Partial Evaluation and Program Manipulation, pages 112–120, 2006.
[72] Y.A. Liu, M. Gorbovitski, and S.D. Stoller. A language and frame-

work for invariant-driven transformations. In Proc. of the 8th Intl. Conf.

on Generative Programming and Component Engineering, pages 55–64,
2009.

[73] Y.A. Liu, S.D. Stoller, M. Gorbovitski, T. Rothamel, and Y.E. Liu. In-
crementalization across object abstraction. In Proc. of the 20th Annual

ACM SIGPLAN Conf. on Object Oriented Programming, Systems, Lan-

guages, and Applications, pages 473–486, 2005.
[74] M. Martin, B. Livshits, and M.S. Lam. Finding application errors and

security flaws using PQL: a program query language. ACM SIGPLAN

Notices, 40(10):365–383, 2005.
[75] S. McPeak. Elsa C++ Frontend, 2008.
[76] A. Milanova, A. Rountev, and B.G. Ryder. Parameterized object sen-

sitivity for points-to analysis for Java. ACM Trans. on Software Engi-

neering and Methodology, 14(1):1–41, 2005.
[77] M. Mock, D.C. Atkinson, C. Chambers, and S.J. Eggers. Improving

program slicing with dynamic points-to data. ACM SIGSOFT Software

Engineering Notes, 27(6):71–80, 2002.
[78] P. Moor. Free Riding in BitTorrent and Countermeasures. Master’s The-

146

sis, Distributed Computing Group, Computer Engineering and Networks

Laboratory, Swiss Federal Institute of Technology Zurich, Summer, 2006.
[79] N. Nystrom, X. Qi, and A.C. Myers. J&: Nested intersection for scalable

software composition. In Proc. of the 21st Annual ACM SIGPLAN Conf.

on Object Oriented Programming Systems, Languages, and Applications,
pages 21–36, 2006.

[80] R. Paige. Viewing a program transformation system at work. In Proc.

of the 6th Intl. Symp. on Programming Language Implementation and

Logic Programming, pages 5–24, 1994.
[81] H. Partsch and R. Steinbrüggen. Program transformation systems. ACM

Comput. Surv., 15(3):199–236, 1983.
[82] A. Potanin, J. Noble, and R. Biddle. Snapshot query-based debugging.

Proc. of Australian Software Engineering Conf., pages 251–259, 2004.
[83] G. Ramalingam. The undecidability of aliasing. ACM Trans. on Pro-

gramming Languages and Systems, 16(5):1467–1471, 1994.
[84] A. Rigo. Representation-based just-in-time specialization and the Psyco

prototype for Python. In Proc. of the 2004 ACM SIGPLAN Symp. on

Partial Evaluation and Semantics-Based Program Manipulation, pages
15–26, 2004.

[85] J.W. Robert and K. Viggers. Implementing protocols via declarative
event patterns. ACM SIGSOFT Software Engineering Notes, 29(6):1–
21, 2004.

[86] S. Romig. The OSU flow-tools package and Cisco NetFlow logs. In Proc.

of the 14th USENIX Conf. on System Administration, page 304, 2000.
[87] T. Rothamel. Automatic Incrementalization of Quries in Object-

Oriented Programs. PhD thesis, Computer Science Department, SUNY
Stony Brook, 2008.

[88] E. Ruf. Context-insensitive alias analysis reconsidered. In Proc. of the

1995 ACM SIGPLAN Conf. on Programming Language Design and Im-

plementation, pages 13–22, 1995.
[89] M. Salib. Faster than C: Static type inference with Starkiller. In Proc.

of PyCon 04, pages 2–26, 2004.
[90] F Schneider. Performance evaluation of packet capturing systems for

high-speed networks. PhD thesis, Munich Technical University, 2005.
[91] A. Shankar and R. Bod́ık. DITTO: automatic incrementalization of data

structure invariant checks (in Java). In Proc. of the 2007 ACM SIG-

PLAN Conf. on Programming Language Design and Implementation,
pages 310–319, 2007.

[92] O. Shivers. Control-flow analysis in Scheme. In Proc. of the SIG-

PLAN 1988 Conf. on Programming Language Design and Implemen-

tation, pages 164–174, 1988.
[93] D. R. Smith. KIDS: A semiautomatic program development system.

147

IEEE Transactions on Software Engineering, 16(9):1024–1043, Sept.
1990.

[94] D. R. Smith. Requirement enforcement by transformation automata.
In Proc. of the 6th Workshop on Foundations of Aspect-Oriented Lan-

guages, pages 5–14, 2007.
[95] D. R. Smith. Aspects as invariants. Automatic Program Development:

A Tribute to Robert Paige, pages 270–286, 2008.
[96] SolarWinds. Orion NetFlow Traffic Analyzer, June 2009.
[97] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd

edition, 1992.
[98] V.C. Sreedhar, M. Burke, and J.D. Choi. A framework for interproce-

dural optimization in the presence of dynamic class loading. In Proc. of

the 2000 ACM SIGPLAN Conf. on Programming Language Design and

Implementation, pages 196–207, 2000.
[99] B. Steensgaard. Points-to analysis in almost linear time. In Proc. of the

23rd ACM SIGPLAN-SIGACT Symp. on Principles of Programming

Languages, pages 32–41, 1996.
[100] M. Strembeck. Conflict checking of separation of duty constraints in

RBAC — implementation experiences. In Proc. of the 2004 Intl. Conf.

on Software Engineering, pages 224–229, 2004.
[101] Program-Transformation.org Team. Program-transformation.org - the

program transformation wiki. http://www.program-transformation.
org/.

[102] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Ef-
ficient annotated terms. Software, Practice and Experience, 30(3):259–
291, 2000. citeseer.ist.psu.edu/vandenbrand00efficient.html.

[103] M. Ventuneac, T. Coffey, and I. Salomie. A policy-based security frame-
work for web-enabled applications. In Proc. of the 1st Intl. Symp. on

Information and Communication Technologies, pages 487–492, 2003.
[104] E. Visser. Program transformation with Stratego/XT: Rules, strate-

gies, tools, and systems in StrategoXT-0.9. Lecture Notes in Computer

Science, 3016:216–238, 2004.
[105] E. Visser. A survey of strategies in rule-based program transformation

systems. Journal of Symbolic Computation, 40(1):831–873, 2005.
[106] J. Vitek, R. N. Horspool, and J. S. Uhl. Compile-time analysis of object-

oriented programs. In Proc. of the 4th Intl. Conf. on Compiler Construc-

tion, pages 236–250, 1992.
[107] D. E. Willard. Quasilinear algorithms for processing relational calculus

expressions (preliminary report). In Proc. of the 9th ACM SIGACT-

SIGMOD-SIGART Symp. on Principles of Database Systems, pages
243–257, 1990.

[108] D. Willis, D. J. Pearce, and J. Noble. Caching and incrementalisation in

148

the java query language. In Proc. of the 23rd Annual ACM SIGPLAN

Conf. on Object Oriented Programming, Systems, Languages, and Ap-

plications, pages 1–18, 2008.
[109] D. Willis, D.J. Pearce, and J. Noble. Efficient object querying for Java.

In Proc. of the European Conf. on Object-Oriented Programming, pages
28–49, 2006.

[110] K. Y. Wong, K. H. Yeung, and Y. M. Choi. Solutions to swamp poisoning
attacks in BitTorrent networks. In Proc. of the 2009 Intl. MultiConf. of

Engineers and Computer Scientists, pages 360–363, 2009.
[111] Wuu Yang. Identifying syntactic differences between two programs. Soft-

ware - Practice and Experience, 21:739–755, 1991.
[112] K. Zee, V. Kuncak, M. Taylor, and M. Rinard. Runtime checking for

program verification. In Proc. of the 7th Intl. Workshop on Runtime

Verification, pages 202–213, 2007.
[113] C. Zhao, Y. Chen, D. Xu, N. Heilili, and Z. Lin. Integrative security

management for web-based enterprise applications. In Proc. of the 6th

Intl. Conf. on Web-Age Information Management, pages 618–625, 2005.

149

