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Abstract of the Thesis

Wireless Indoor Localization using Expectation-Maximization on

Gaussian Mixture Models
by
Abhishek Goswami
Master of Science
in
Computer Science
Stony Brook University

2011

We consider the problem of localizing a wireless client in an indoor environment based
on the signal strength of its transmitted packets as received on stationary sniffers or access
points.

Current state-of-the art indoor localization techniques have the drawback that they
rely extensively on a ‘training phase’. This ‘training’ is a labor intensive process and
must be done for each target-area under consideration for various device types. This
clearly does not scale for large target areas. The introduction of unmodeled hardware
with heterogeneous power-levels etc further reduces the accuracy of these techniques.

We propose a solution in which we model the received signal strength as a Gaussian
Mixture Model (GMM). We use expectation maximization to find the parameters of our
GMM. We can now give a location fix for a transmitting device based on the maximum
likelihood estimate. This way, we not only avoid the costly ‘training phase’ but also make
our location estimates much more robust in the face of various form of heterogeneity and
time varying phenomena. We present our results on two different indoor testbeds (CEWIT
and Computer Science Buildings in Stony Brook University) with multiple WiFi devices
(iphones, android, laptops, netbooks). We demonstrate that the accuracy is at par with
state-of-the-art techniques but without requiring any training.

We also show an application of such localization in extracting the hidden social struc-
ture of the occupants of the building based on their WiFi activity. We show interesting

observations from the Computer Science building in Stony Brook University.
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Chapter 1
Introduction

Devices with wireless cards e.g Laptops, PDAs etc are increasingly becoming immensely
popular. Infact many enterprises and office locations have adopted a ‘wire-free’ model
and provide Wi-Fi access to all employees / occupants of the building. Wireless devices
enable mobility for the user, which in turn creates a need for location aware applications.
It is possible to extract the signal strength of 802.11 wireless frames being transmitted
by a Wi-Fi device ( both APs and clients ) This has motivated the use of observed signal

strength as a parameter for performing localization of wireless devices.

1.1 WLAN Localization Architecture

There are two ways of looking at the localization problem: a client-based approach and
a server-based approach. In the client-based model, the client is the active entity. The
localization algorithm runs on the client device and localization is typically performed
based on the wireless LAN characteristics being seen by the client at that location. The
need for the wireless client to download, install and run extra software can be a concern in
a power-constrained environment. Client-based localization techniques can be used only
when the wireless user is interested in being localized.

In a server-side model, the client is a passive entity. The localization algorithm is
executed on a backend server. The server-side techniques typically use other devices in
the network (e.g. APs/sniffers etc) to capture packet transmissions made by the client
device. Server-side techniques are particularly interesting because they do not require
any modification to the hardware or software of the client being tracked. For security
and management applications, a server-based approach is more suitable. This approach
does however raise questions on location-privacy because a client device may be localized
without the user being aware of it.

This thesis presents a server-side technique that gives a location-fix based on the

Received Signal Strength (RSS) information obtained from sniffer packet captures.



1.2 Motivation of the Project Idea

We observe here that RF-based systems need to deal with the noisy characteristics of
the wireless channel. This has motivated the use of various localization techniques for
WLAN:-based location sensing. Such techniques usually work in two phases: an offifine
training phase and an online location determination phase.

RADAR [10] was one of the first RF-based indoor localization schemes. In RADAR,
the authors suggest two deterministic schemes for localization. The first scheme has an
offline training phase and uses the nearest neighbor in signal space (NNSS) as the metric
to compare the multiple locations on the map and pick the one that best matches the
observed signal strength vector. The second scheme does not rely on the offline training
phase and instead relies on a mathematical model of indoor signal propagation to generate
a set of theoretically-computed signal strength data for each location in the target space.
The NNSS metric is then used to estimate the location of the mobile user by matching
the observed RSS to the theoretically computed SS at these locations.

Recently, a number of probabilistic techniques have been used for WLAN-based lo-
cation sensing. In such techniques, the offline phase corresponds to the construction of
conditional probability distributions which map signal intensities to locations on a map.
Thus, we first build up a signal map database for the area being covered. During the
location determination phase, given a real-time RSS-signal vector of the target device, we
use a probabilistic inference algorithm to select the most likely location from all possible
locations in the target area.

There are a number of challenges in existing probabilistic localization techniques.
One, there needs to be a trained point for each possible target location on the map.
Training requires a lot of time-consuming (usually manual) effort. Moreover, training at
each discretized location on the map clearly does not scale if the target area is large.
Plus, there may be locations where we may not have direct access to - e.g. an office
room with restricted access etc. These points would not be covered during training and
would subsequently never show during localization. Two, for final location estimation,
probabilistic techniques depend heavily on the data collected during the offline training
phase. The parameters of the model are calculated from the data collected during the
training phase. These parameters are fixed for each trained location. Not having dynamic
parameters for the model can substantially reduce the accuracy of the location estimates
in the presence of time varying phenomena like movement of people inside the building,
other active devices in the vicinity etc. Third, wireless characteristics vary substantially
depending on the hardware being used. Using a specific wi-fi card for training effectively
binds us to that hardware. This reduces the flexibility and robustness of localizing client
devices with unmodelled hardware, devices operating at varying power levels etc. These
issues serve as the motivation for this thesis.

In this project, we present a server-side indoor location-sensing system using prob-



abilistic techniques. The idea behind the proposed algorithm is to first initialize the
parameters of the model using a naive indoor radio propagation model. We then update
the parameters of the model based on data samples collected during a sliding time-window.
Thus we use the observed data itself to give us a better estimate of the parameters of our
model. We then use these optimized parameters to localize clients observed during the
time-window. This way, we not only avoid the costly training phase but also make our
location estimates much more robust in the face of time varying phenomena. Also, we
have effectively removed the restriction of having a set of specific hardware for training.
This makes our algorithm much more generic and we can now use it to localize any device

equipped with a Wi-Fi interface.

1.3 Organization Of the Report.

e Chapter 2 discusses related work in the field of indoor Wi-Fi localization.

e Chapter 3 we discuss some interesting characteristics of the wireless channel that

we incorporate in our model to solve the localization problem.
e Chapter 4 presents our problem formulation in terms of a Gaussian Mixture Model.

e Chapter 5 presents the EM algorithm from the perspective of our problem formu-

lation.
e Chapter 6 gives details on our testbed and dataset.

e Chapter 7 presents the results of our technique and how they compare with other

existing techniques.



Chapter 2

Related Work

Some calibration-free techniques have been proposed [5] [6] [18] etc. The objective of
such techniques is to automate the effect of wireless physical characteristics on RSS mea-
surements and make them responsive to environmental dynamics like temperature and
humidity variations, furniture variation, human mobility etc. This is usually done by
having reference Access Points (or sniffers) deployed in the target space and then mea-
suring RSS between the 802.11 APs and also between a client and its neighbouring APs
(or sniffers). In [5] Moares et al use an indoor signal propagation model to generate a
radio propagation map (RPM) at each sniffer. Thereafter they use RSS measurements
between the sniffers and a reference Access Point(AP) to reconstruct the RPM, either
periodically or when there are significant variations of RSS values. In [18] Lim et al. use
the on-line RSS measurements to create a mapping between the RSS measure and the
actual geographical distance.

Such techniques are essentially modelled to capture real-time changes in the environ-
mental dynamics of the target space. But they do not model variations in client hardware
and transmission power which can significantly degrade the positional accuracy of RSS
based Wi-F'i localization schemes.

In [15] Tsui et al. also observe that hardware variance can significantly degrade the
positional accuracy of RSS-based Wi-Fi localization systems. Infact they note that the
hardware variance problem is not limited to differences in the WiFi chipsets used by
training and tracking devices but also occurs when the same Wi-Fi chipsets are connected
to different antenna types and/or packaged in different encapsulation materials. The
authors stick to the online-training and offiine location-determination model but add an
intermediate online-adjustment phase . In this intermediate phase they use unsupervised
learning methods to construct a signal transformation function between the training device
and a new tracked device.

In [16] Tao et al. have an interesting take on unmodelled-hardware and transmission
power variations being effected by a transmitting client. They also stick to the online-

training and offline location-determination model.However, they observe that RSS is lin-



early proportional to transmission power. Thus the difference in received signal strengths
between a pair of sniffer devices would not vary dramatically as the transmission power of
a client device changes. Based on the difference in signal strength between every pair of
sniffers, they suggest a weighted heuristic to estimate a location-fix for a given target RSS
fingerprint. With such a ‘difference’ based approach, we can no longer assume that the
sniffers are independent. Thus, we are restricted to the use of a heuristic in this model.
However, the observation that RSS is linearly proportional to transmission power is very
interesting. Infact, we use this observation in building our model.

The major contribution of this work is to develop an algorithm that does not rely on
training data. Instead, the algorithm can learn the parameters of the model from real-time
transmissions being made by a Tx-client. Thus it can adapt to variations in transmit power
across heterogeneous devices which makes it particularly suitable for server-side localiza-
tion techniques. Plus this model can also factor in real-time changes in the environmental

dynamics of the target space.



Chapter 3
Wireless Characteristics

Our system is based on the 802.11 wireless networking protocol, which is inexpensive and
widely deployed in enterprise offices and academic campuses. 802.11 uses 11 channels in
the ISM band. Signal propagation in this band is complex and in this section, we identify
the different causes of variation in the wireless channel quality and how we factor them into
our model. Our approach is server-based, where we capture client packets using sniffers.
As such, we are mainly concerned with the variations that affect the Received Signal
Strength (RSS) on the sniffer. In this section, experimentally validate two observations
that have been made previously in wireless-localization literature. We model our problem

around these two observations.

3.1 Distribution of Signal Strength

Distribution of Received Signal Strength
0.2

0.1

Probability

35 40 45 50 55 60
Received Signal Strength

Figure 3.1: Received Signal Strength at a sniffer from a laptop operating at a fixed power-
level

Figure 3.1 shows the distribution of Received Signal Strength values observed by a
sniffer located a fixed distance apart from a transmitting client. The Tx-client is a Dell
laptop having a Ubiquiti XR2 wireless card and is using a fixed power-level for wireless

transmissions.



We observe that the Signal Strength distribution is roughly Gaussian. In [16] et al also

make similar observations. [8] [5] etc also model signal intensity as a normal distribution.

3.2 Transmission Power

Tx_PowerLevels vs RSS

40

35

30

25

Received Signal Strength (db)
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Sniffer-1 —a—

Sniffer-2

Sniﬂer‘—z —

2 4 6 8 10 12 14 16 18
Power Levels on Tx Client

15

Figure 3.2: Signal strength readings from three different receivers of a signal from a signal
transmitter, with the transmitter varying its Tx-Power

Figure 3.2 shows how the observed signal strength changes as the transmission power
is varied. Our experiments validate the observations made in [16] by Tao et al in that the

observed signal strength is linearly proportional to the transmission power.



Chapter 4
Problem Formulation

The Gaussian Mixture Model is a simple linear superposition of Gaussian components,
aimed at providing a richer class of density models than the single Gaussian. We now

formulate our problem as a Gaussian mixture in terms of discrete latent variables.

LOCATIONS 1,2..... POWER-LEVELS 1,2 ..... K

/%%\

o & @

SNIFFER SIGNALS 1,2..... N

Figure 4.1: Gaussian Mixture Model

4.1 Latent Variables for Target Locations and Power

Levels

We introduce a J-dimensional binary random variable x representing possible target lo-
cations. x has a 1-of-J representation in which a particular element z; is equal to one
and all other elements are equal to 0. The values of x; therefore satisfy z; € {0,1} and

Z]. xj = 1. Thus we see that there are J possible states for the vector x

The probability distribution over x can be specified as a multinomial

where the parameters {v;} must satisfy

J
0<wv; <1and Zvjzl
j=0



Similarly, let us introduce a K-dimensional binary random variable z representing
Power Levels. z has a 1-of-K representation in which a particular element z; is equal to
one and all other elements are equal to 0. The values of z, therefore satisfy z, € {0,1}
and ), z;, = 1. Vector z has K possible states.

The distribution over z is specified as a multinomial
plar=1) =
where the parameters {7} must satisfy

K
0< 7 <1and ZTk:1
k=0

4.2 Constructing the distribution over the observed sig-

nal strengths

Let s be the N-dimensional vector representing the signal strengths observed by the N
sniffers placed in the area.

Using the chain rule of probability, we can now define the joint distribution p(s,x, z) in
terms of the distribution p(x,z) and the conditional distribution p(s|x, z), corresponding

to the graphical model in Figure 4.1.
p(S7X7 Z) :p(X7 Z)p(S|X7 Z) (41)
Moreover x and z are independent random variables. So we have

p(s,x,2z) = p(x,z)p(s|x, z)
= p(x)p(z)p(s[x, z) (4.2)

Equation 4.2 gives us the joint distribution as p(x)p(z)p(s|x,z). The marginal distri-
bution of s is then obtained by summing the joint distribution over all possible states of

x and z to give the following probabilistic model :
p(s) =Y > p(x)p(z)p(s|x,2) (4.3)

4.2.1 Independence of Sniffers

We assume the sniffers are independent. This assumption is justified in our model because
our sniffers are passive nodes responsible for capturing wireless packets. They have no

interaction with each other.



Thus, the term p(s|x,z) in equation 4.3 can be simplified as

N

p(slx,z) = [ p(silx. 2) (4.4)

i=1

Moreover, from the observations made about Signal Strength variations in Section 3.1
above, the distribution of signal strength can be modelled as a Gaussian determined by

the (location, power-level) pair.
That is

sil(wj, zi) ~ gaussian(p; (xy ;i (k)

This lends simplicity to our model since the term p(s|x,z) in equation 4.4 can be

further simplified as

p(s|x,z) = Z Z(HN[Si|Mi Gk) » Ti (k) (4.5)

4.3 Model Parameters

Putting equation 4.3 and equation 4.5 together we get the distribution of s as

K N
p(s) =Y Y (ym [ [Nsilwa Gy 06 i) (4.6)
j=1 k=1 i=1

Thus we have modelled the marginal distribution of s as a Gaussian mixture with
target locations and power levels as our latent variables. The parameters of our model

are
0 = (vj, 7k, (1t Gik)> O (G.6)))
where j € {1,..J}, k € {1,..K} and ¢ € {1,...N}. We now use the Expectation

Maximization(EM) algorithm to estimate the parameters of our model.
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Chapter 5

EM Algorithm

An elegant and powerful method for finding maximum likelihood solutions for models with
latent variables is the Expectation Maximization(EM) algorithm. The EM algorithm is
an iterative process through two steps: an expectation step(E-step) and a maximization
step(M-step). During the iterations, a sequence of model parameters §° , 61, ..., 0* is
generated where 69 is the initial parameter and 6* is the converged parameter obtained

when the algorithm terminates.

5.1 E-step

Suppose we have a data set of observations S = { s°, s!, ....,s™}. The E-step corresponds
to finding the expected value of the hidden component (x and z) values given the observed
data S and the current parameter estimates.

Using this observation set and the current parameter estimates, we find out the pos-
terior probabilities (or responsibilities) as follows.

For each observation s'
=p(r; = 1,2, = 1|s") (5.1)
_ p(z; = 1)p(ze = Dp(s'z; = 1,2, = 1) (5.2)

25:1 2511 p(rp, = 1)p(zg = p(st|z, = 1,2, = 1)
_ vy N (8|1, 0jk)

25:1 Zf:l [VpTy N (8 tp.g5 Tp.g)]

Tr(zjvzk)

(5.3)

The posterior probability value ﬂézj ., Can be viewed as the responsibility that component
(2, z1,) takes for explaining observation s'. We find out this measure of responsibility for

each observation in our data set S.

11



5.2 M-step

The M-step of the algorithm corresponds to maximizing the likelihood of the observed
data. This leads us to re-estimating the parameters for the next iteration based on the

posterior probabilities calculated in the expectation step of the algorithm.

M
_ El:l Ek ﬂ-é:vj,zk)

Uj Vi
M
- ZlZI Z_] Tréxj,zk)
" M
1 . Zl]\il Tréa:j,zk)sli
i Gk =
(4,k) Nj,k

where we have defined .
_ !
Njx = Zw(rgﬂk)
=1

The variance parameter can also be updated accordingly.

5.3 Convergence of Log Likelihood

Each update of the parameters resulting from an E-step followed by an M-step is guaran-
teed to increase the log likelihood function. The algorithm is deemed to have converged

when the change in the log likelihood function falls below a threshold.

J

Inp(S|0) = Z In {Z ZUkaN(Sl|Mj,ka crjvk)} (5.4)
I=1

j=1 k=1

5.4 Handling Identifiability in our Model

In [21] Bishop et al discuss the problem of identifiability associated with assigning P sets of
parameters to P components. The problem occurs because there are P! ways of assigning
P sets of parameters to P components.

In our case each component can be represented as a (location, power-level ) pair. We

handle the problem of identifiability as follows :

5.4.1 Indoor Radio Propagation Model

The indoor radio propagation model is represented as

d
Pr, = Py — 10nlog <d_>
0

12



where P, is the received signal strength at a distance dy from the emitter. Pg, is the
signal strength(s;) seen by receiver for a transmitter located at a distance d away from it.
n is a parameter which models the behaviour of the environment. This formula effectively
initializes the components representing different locations on the map.

To initialize k components (say) which have a common location but vary in power-
level, we make use of the observations made in Section 3.2 which show that the observed
signal strength is linearly proportional to the transmission power. Thus, once the formula
above gives us the signal value for a specific location, we extrapolate the value linearly to
initialize each of the k components for that location

In our experiments, we set n = 2. The corresponding signal strength was used to
initialize the means (p;x). The standard deviation (o) was initialized to 5 (and kept
fixed to reduce computation time). As subsequent results show, a value of k = 45 is

sufficient to hit a constant average error distance.

5.5 Final Location Estimate

(©03) " we can now find the location with the

Given a real-time received signal vector s
highest probability. We do this by first finding the probability for each (location, power-
level) pair and then marginalizing over the power-levels. Thus the estimated location

index is given by j* where

J* = max; ZP(ZL‘j =1, 2, = 1[s®*¥)
k

13



Chapter 6

Testbed and DataSet Details

We begin with a description of our system architecture. We then describe the two testbeds
where we conducted our experiments. This is followed by a overview of the components

of our sniffer devices. We round up this section by discussing the data collection process.

6.1 System Architecture

As mentioned briefly in Section 1.1 our work is based on a server-side architecture for
WLAN localization. Our system consists of a centralized server and a number of sniffer
devices. Sniffers provide overlapping coverage for the target area ( similar to how APs are
usually deployed inside buildings ). The sniffers are used to capture packet transmissions
made by the client device. The sniffers are connected to a backend server using a power-
line ethernet LAN. The sniffer packet captures are transmitted to the server. For each
packet, the server records the mac-address of the Tx-client and the corresponding signal
strength for that packet.

In the future, our sniffer functionality might be integrated directly into the WLAN
APs of a production network. Enterprise APs usually have a centralized controller which
can serve as our localization engine. This makes our architecture particularly interesting.
Moreover, server-side architectures have the added advantage of allowing us to localize a

client device independent of any hardware or software on the laptop.

6.2 Sniffer Information

Our sniffer devices are responsible for capturing wireless transmissions made by a Tx-
client. We use soekris-net4801 boards as our sniffer devices with atheros-based cm9 cards
for wireless captures. Our sniffers are running Pyramid Linux (version 2.6.16-metrix)
and we use the default MadWiF1i driver which comes with this distribution (0.9.4.5 : svn
1485).

To capture packets we use the Tepdump software (version 4.0.0 libpcap version 0.9.8)

14



To obtain signal strength information, the MadWiFi driver allows a monitor mode in-
terface to be created and configured with RadioTap header support. From the radio-tap
header we can extract the Received Signal strength of each packet received by the sniffer.
We verified that the MadWifi driver had a fixed noise-floor in each of our cm9 cards (-95
dbm). In fact the received signal strength of a frame reported by the MadWiFi driver
is actually the SNR value (in db) obtained after subtracting the noise-floor from the raw
signal strength value. We work directly with the RSSI value (in db) as reported by the

driver.

6.3 Experimental Testbed

We use two different testbeds to Experimentally validate our technique. Figure 6.1 shows
the CEWIT building with a dimension of 50 x 65 meter square. Figure 6.2 shows the
CS department building at SBU with dimensions 20 x 30 meter square. The red-dot
denotes the position of the sniffers. The sniffers are connected to a backend server using

a power-line ethernet LAN.
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(a) Fine-grained discretization (b) Coarse-grained discretization

Figure 6.1: Map of the CEWIT Building where experiments were conducted

Figure 6.1(a) and 6.2(a) shows the discretized target space that we use in our algo-
rithm. Our technique does not use training, which allows fine grained discretization of
the target space. Figure 6.1(b) and 6.2(b) shows the corresponding discretized space that
we use when we present our results in 7.4 when we compare our technique with other
techniques that use training data from specific locations of the target space. The coarse
granularity of 6.1(b) and 6.2(b) serves to highlight the fact that training is a huge bottle-
neck in such ‘training-based’ models. It is usually a manual effort where we have to go to
each discrete location on the map and transmit a specified number of packets from that
location to construct the signal map of the area being covered. Thus we invariably have

to resort to coarse discretization when the target space is large.

15



(a) Fine-grained discretization (b) Coarse-grained discretization

Figure 6.2: Map of the CS Dept Building where experiments were conducted

6.4 Data Collection

We perform our experiments with 4 different wireless clients - an android phone, an iphone,
a dell laptop and a dell netbook. We select 50 locations from the CEWIT testbed (Fig 6.1)
and 30 locations from the CS Dept testbed (Fig 6.2) and transmit 200 ping packets from
each location for each of the above four devices. Each ping carries a sequence number and
the pings are spaced apart uniformly, at a rate of 1 per second. The sequence number is
used to form the vector of RSS values from each transmission. Thus for each location on
the map and for each device, we have a set of 200 RSS tuples to experimentally validate

our algorithm.
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Chapter 7
Evaluation

We implement our algorithm based on the EM algorithm and collect accuracy estimates
on the data sets collected from both testbeds.

We generate plots for the following experiments:

1. Number of power-levels used for EM:
This experiment serves to give us the value of k (the number of power-levels) that

we should use in our algorithm.

2. Size of the learning set:
This experiment shows how the average error distance varies as a function of the

learning set size.

3. Baseline Comparisons:
This set of experiments is used to compare our technique with a baseline Model-

based scheme, both of which be applied on the fine-grained discretized target space.

4. Comparisons with schemes that build RF signal maps:
Here we compare our technique with two schemes that use an offline phase to first

build an RF signal map of the target space.

5. Mobility-related experiments:
These experiments show how the mobility of the Tx-client effects the accuracy of

our algorithm.
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7.1 Avg. error distance v/s Number of power-levels
used for EM

Power Levels v/s Error Distance Power Levels v/s Error Distance
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R
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——
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0 10 20 30 40 50 0 10 20 30 40 50
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(a) CEWIT (b) CSD

Figure 7.1: Number of power levels v/s Avg Error distance
We see that the avg. error distance does not vary much after we use k=45 in our EM

algorithm. The subsequent plots shown here have been generated using k = 45 in the

algorithm.

7.2 Learning Set Size

| Learning Set | vis Error Distance
15

Laptop —=—
Android

14

iPhone —— |
Netbook ——

13

12

ce (meters)

11

10

Average Error Distan
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Learning Set Size

Figure 7.2: Learning Set Size v/s Error distance on CEWIT Dataset

As mentioned in Section 6.4 for every device, we have 200 RSS vectors for each location
on the map. Figure 7.2 shows how the Average Error varies for different sizes of the
learning set i.e if we use m samples to learn the parameters of the model which we
subsequently use to localize the remaining (200 - m) samples for each location. We
see that the average error reaches almost hits a plateau after 50 learning samples. The

subsequent plots shown here have been generated using 50 RSS samples to learn the model
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parameters. We then use these parameters to localize the remaining 150 samples for each

location.
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7.3 Baseline Comparison

Here we compare our technique with a baseline Model-based technique that can be applied

on the fine-grained discretized target space shown in fig 6.1 (a) and 6.2 (a)

vertex that lies inside the target-space. The baseline uses directly uses these values with
NNSS as the metric to compare the multiple locations on the map and pick the one that
best matches the observed signal strength vector. Our algorithm instead uses these values
to initialize our algorithm. For each device, our algorithm uses 50 RSS samples from each

location to update the parameters of our model. The new parameters are then used to

localize the remaining 150 RSS samples from each location.

7.3.1 CEWIT-Dataset
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Figure 7.3: Baseline Comparison - Android , Iphone
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Figure 7.4: Baseline Comparison - Dell Laptop , Dell netbook
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7.3.2 CSD-Dataset
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Figure 7.5: Baseline Comparison - Android , Iphone
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Figure 7.6: Baseline Comparison - Dell Laptop , Dell netbook

We clearly see that we score over the baseline algorithm for all four devices across
both the testbeds.
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7.4 Comparisons with schemes that build RF signal
maps

We next compare our technique with two schemes that need to have a training phase to
build an RF signal map first. Section explains why we use a coarser granularity as shown
in Figure 6.1 (b) and 6.2 (b) to build our signal map.

One of our comparison schemes is deterministic and is based on RADAR [10]. We
use NNSS as the metric to identify the location which best matches the observed signal
strength vector. The other is a probabilistic scheme on the lines of [8]. Given a location
and a sniffer, signal intensity is modelled as a Gaussian distribution based on the training

data. We then use a MLE approach to give a location fix for a target RSS fingerprint.

7.4.1 CEWIT-Dataset
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Figure 7.7: Comparison - Dell Laptop , Dell netbook
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Figure 7.8: Comparison - Android , Iphone
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7.4.2 CSD-Dataset
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Figure 7.10: Comparison - Dell Laptop , Dell netbook

We see that our algorithm performs at-par with state-of-the-art RF-signal-map based

techniques especially in cased where the target device is different from the trained device.

That is what makes our technique particularly suitable for server-based localization where

we do not know the device type of the client being localized.
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7.5 Mobility

This section shows how the mobility of a client can effect the location estimates made by

our algorithm.

In our first experiment, the client makes 2 random walks through the building (i.e a
random walk through 50 locations on the CEWIT testbed / 30 locations on the CS Dept

testbed) transmitting just a single packet from each location.

In the second experiment, the client makes 10 random walk through the building again

transmitting just a single packet from each location.

In the last experiment, the client makes 50 random walk through the building again

transmitting just a single packet from each location.

7.5.1 CEWIT-Dataset
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Figure 7.11: Mobility - Dell Laptop , Dell netbook
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7.5.2 CSD-Dataset
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Figure 7.13: Mobility - Dell Laptop , Dell netbook
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Figure 7.14: Mobility - Android , Iphone

We see that mobility progressively improves the localization accuracy of our technique.
More importantly, in 10 random walks itself we get pretty close to the accuracy estimates

obtained from 50 random walks.
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Chapter 8
Conclusion

In this work, we have developed a server-side technique to localize a wireless client in an
indoor environment based on the signal strength parameter of its transmitted packets.
We developed a learning-based algorithm that can learn the parameters of the model
dynamically from packets captured by the stationary sniffers / APs inside the building.
By using dynamic packet captures for parameter estimation, we can provide location esti-
mates which are much more robust in the face of time varying phenomena like movement
of people inside the building, opening closing of doors etc. Moreover, this technique can
be used on a host of heterogeneous devices operating at different power levels.

We do not have an explicit training phase in our technique. Infact, we showed that we
can achieve accuracy that is at par with state-of-the-art techniques that use training to
build RF-signal maps first. Thus, our technique not only eliminates the intensive time-
consuming (often manual) training phase but also makes our technique scalable for large

target spaces.
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