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Abstra
t of the ThesisWireless Indoor Lo
alization using Expe
tation-Maximization onGaussian Mixture ModelsbyAbhishek GoswamiMaster of S
ien
einComputer S
ien
eStony Brook University2011We 
onsider the problem of lo
alizing a wireless 
lient in an indoor environment basedon the signal strength of its transmitted pa
kets as re
eived on stationary sni�ers or a

esspoints.Current state-of-the art indoor lo
alization te
hniques have the drawba
k that theyrely extensively on a `training phase'. This `training' is a labor intensive pro
ess andmust be done for ea
h target-area under 
onsideration for various devi
e types. This
learly does not s
ale for large target areas. The introdu
tion of unmodeled hardwarewith heterogeneous power-levels et
 further redu
es the a

ura
y of these te
hniques.We propose a solution in whi
h we model the re
eived signal strength as a GaussianMixture Model (GMM). We use expe
tation maximization to �nd the parameters of ourGMM. We 
an now give a lo
ation �x for a transmitting devi
e based on the maximumlikelihood estimate. This way, we not only avoid the 
ostly `training phase' but also makeour lo
ation estimates mu
h more robust in the fa
e of various form of heterogeneity andtime varying phenomena. We present our results on two di�erent indoor testbeds (CEWITand Computer S
ien
e Buildings in Stony Brook University) with multiple WiFi devi
es(iphones, android, laptops, netbooks). We demonstrate that the a

ura
y is at par withstate-of-the-art te
hniques but without requiring any training.We also show an appli
ation of su
h lo
alization in extra
ting the hidden so
ial stru
-ture of the o

upants of the building based on their WiFi a
tivity. We show interestingobservations from the Computer S
ien
e building in Stony Brook University.iii
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Chapter 1Introdu
tionDevi
es with wireless 
ards e.g Laptops, PDAs et
 are in
reasingly be
oming immenselypopular. Infa
t many enterprises and o�
e lo
ations have adopted a `wire-free' modeland provide Wi-Fi a

ess to all employees / o

upants of the building. Wireless devi
esenable mobility for the user, whi
h in turn 
reates a need for lo
ation aware appli
ations.It is possible to extra
t the signal strength of 802.11 wireless frames being transmittedby a Wi-Fi devi
e ( both APs and 
lients ) This has motivated the use of observed signalstrength as a parameter for performing lo
alization of wireless devi
es.1.1 WLAN Lo
alization Ar
hite
tureThere are two ways of looking at the lo
alization problem: a 
lient-based approa
h anda server-based approa
h. In the 
lient-based model, the 
lient is the a
tive entity. Thelo
alization algorithm runs on the 
lient devi
e and lo
alization is typi
ally performedbased on the wireless LAN 
hara
teristi
s being seen by the 
lient at that lo
ation. Theneed for the wireless 
lient to download, install and run extra software 
an be a 
on
ern ina power-
onstrained environment. Client-based lo
alization te
hniques 
an be used onlywhen the wireless user is interested in being lo
alized.In a server-side model, the 
lient is a passive entity. The lo
alization algorithm isexe
uted on a ba
kend server. The server-side te
hniques typi
ally use other devi
es inthe network (e.g. APs/sni�ers et
) to 
apture pa
ket transmissions made by the 
lientdevi
e. Server-side te
hniques are parti
ularly interesting be
ause they do not requireany modi�
ation to the hardware or software of the 
lient being tra
ked. For se
urityand management appli
ations, a server-based approa
h is more suitable. This approa
hdoes however raise questions on lo
ation-priva
y be
ause a 
lient devi
e may be lo
alizedwithout the user being aware of it.This thesis presents a server-side te
hnique that gives a lo
ation-�x based on theRe
eived Signal Strength (RSS) information obtained from sni�er pa
ket 
aptures.
1



1.2 Motivation of the Proje
t IdeaWe observe here that RF-based systems need to deal with the noisy 
hara
teristi
s ofthe wireless 
hannel. This has motivated the use of various lo
alization te
hniques forWLAN-based lo
ation sensing. Su
h te
hniques usually work in two phases: an o�inetraining phase and an online lo
ation determination phase.RADAR [10℄ was one of the �rst RF-based indoor lo
alization s
hemes. In RADAR,the authors suggest two deterministi
 s
hemes for lo
alization. The �rst s
heme has ano�ine training phase and uses the nearest neighbor in signal spa
e (NNSS) as the metri
to 
ompare the multiple lo
ations on the map and pi
k the one that best mat
hes theobserved signal strength ve
tor. The se
ond s
heme does not rely on the o�ine trainingphase and instead relies on a mathemati
al model of indoor signal propagation to generatea set of theoreti
ally-
omputed signal strength data for ea
h lo
ation in the target spa
e.The NNSS metri
 is then used to estimate the lo
ation of the mobile user by mat
hingthe observed RSS to the theoreti
ally 
omputed SS at these lo
ations.Re
ently, a number of probabilisti
 te
hniques have been used for WLAN-based lo-
ation sensing. In su
h te
hniques, the o�ine phase 
orresponds to the 
onstru
tion of
onditional probability distributions whi
h map signal intensities to lo
ations on a map.Thus, we �rst build up a signal map database for the area being 
overed. During thelo
ation determination phase, given a real-time RSS-signal ve
tor of the target devi
e, weuse a probabilisti
 inferen
e algorithm to sele
t the most likely lo
ation from all possiblelo
ations in the target area.There are a number of 
hallenges in existing probabilisti
 lo
alization te
hniques.One, there needs to be a trained point for ea
h possible target lo
ation on the map.Training requires a lot of time-
onsuming (usually manual) e�ort. Moreover, training atea
h dis
retized lo
ation on the map 
learly does not s
ale if the target area is large.Plus, there may be lo
ations where we may not have dire
t a

ess to - e.g. an o�
eroom with restri
ted a

ess et
. These points would not be 
overed during training andwould subsequently never show during lo
alization. Two, for �nal lo
ation estimation,probabilisti
 te
hniques depend heavily on the data 
olle
ted during the o�ine trainingphase. The parameters of the model are 
al
ulated from the data 
olle
ted during thetraining phase. These parameters are �xed for ea
h trained lo
ation. Not having dynami
parameters for the model 
an substantially redu
e the a

ura
y of the lo
ation estimatesin the presen
e of time varying phenomena like movement of people inside the building,other a
tive devi
es in the vi
inity et
. Third, wireless 
hara
teristi
s vary substantiallydepending on the hardware being used. Using a spe
i�
 wi-� 
ard for training e�e
tivelybinds us to that hardware. This redu
es the �exibility and robustness of lo
alizing 
lientdevi
es with unmodelled hardware, devi
es operating at varying power levels et
. Theseissues serve as the motivation for this thesis.In this proje
t, we present a server-side indoor lo
ation-sensing system using prob-2



abilisti
 te
hniques. The idea behind the proposed algorithm is to �rst initialize theparameters of the model using a naive indoor radio propagation model. We then updatethe parameters of the model based on data samples 
olle
ted during a sliding time-window.Thus we use the observed data itself to give us a better estimate of the parameters of ourmodel. We then use these optimized parameters to lo
alize 
lients observed during thetime-window. This way, we not only avoid the 
ostly training phase but also make ourlo
ation estimates mu
h more robust in the fa
e of time varying phenomena. Also, wehave e�e
tively removed the restri
tion of having a set of spe
i�
 hardware for training.This makes our algorithm mu
h more generi
 and we 
an now use it to lo
alize any devi
eequipped with a Wi-Fi interfa
e.1.3 Organization Of the Report.
• Chapter 2 dis
usses related work in the �eld of indoor Wi-Fi lo
alization.
• Chapter 3 we dis
uss some interesting 
hara
teristi
s of the wireless 
hannel thatwe in
orporate in our model to solve the lo
alization problem.
• Chapter 4 presents our problem formulation in terms of a Gaussian Mixture Model.
• Chapter 5 presents the EM algorithm from the perspe
tive of our problem formu-lation.
• Chapter 6 gives details on our testbed and dataset.
• Chapter 7 presents the results of our te
hnique and how they 
ompare with otherexisting te
hniques.

3



Chapter 2Related WorkSome 
alibration-free te
hniques have been proposed [5℄ [6℄ [18℄ et
. The obje
tive ofsu
h te
hniques is to automate the e�e
t of wireless physi
al 
hara
teristi
s on RSS mea-surements and make them responsive to environmental dynami
s like temperature andhumidity variations, furniture variation, human mobility et
. This is usually done byhaving referen
e A

ess Points (or sni�ers) deployed in the target spa
e and then mea-suring RSS between the 802.11 APs and also between a 
lient and its neighbouring APs(or sni�ers). In [5℄ Moares et al use an indoor signal propagation model to generate aradio propagation map (RPM) at ea
h sni�er. Thereafter they use RSS measurementsbetween the sni�ers and a referen
e A

ess Point(AP) to re
onstru
t the RPM, eitherperiodi
ally or when there are signi�
ant variations of RSS values. In [18℄ Lim et al. usethe on-line RSS measurements to 
reate a mapping between the RSS measure and thea
tual geographi
al distan
e.Su
h te
hniques are essentially modelled to 
apture real-time 
hanges in the environ-mental dynami
s of the target spa
e. But they do not model variations in 
lient hardwareand transmission power whi
h 
an signi�
antly degrade the positional a

ura
y of RSSbased Wi-Fi lo
alization s
hemes.In [15℄ Tsui et al. also observe that hardware varian
e 
an signi�
antly degrade thepositional a

ura
y of RSS-based Wi-Fi lo
alization systems. Infa
t they note that thehardware varian
e problem is not limited to di�eren
es in the WiFi 
hipsets used bytraining and tra
king devi
es but also o

urs when the same Wi-Fi 
hipsets are 
onne
tedto di�erent antenna types and/or pa
kaged in di�erent en
apsulation materials. Theauthors sti
k to the online-training and o�ine lo
ation-determination model but add anintermediate online-adjustment phase . In this intermediate phase they use unsupervisedlearning methods to 
onstru
t a signal transformation fun
tion between the training devi
eand a new tra
ked devi
e.In [16℄ Tao et al. have an interesting take on unmodelled-hardware and transmissionpower variations being e�e
ted by a transmitting 
lient. They also sti
k to the online-training and o�ine lo
ation-determination model.However, they observe that RSS is lin-4



early proportional to transmission power. Thus the di�eren
e in re
eived signal strengthsbetween a pair of sni�er devi
es would not vary dramati
ally as the transmission power ofa 
lient devi
e 
hanges. Based on the di�eren
e in signal strength between every pair ofsni�ers, they suggest a weighted heuristi
 to estimate a lo
ation-�x for a given target RSS�ngerprint. With su
h a `di�eren
e' based approa
h, we 
an no longer assume that thesni�ers are independent. Thus, we are restri
ted to the use of a heuristi
 in this model.However, the observation that RSS is linearly proportional to transmission power is veryinteresting. Infa
t, we use this observation in building our model.The major 
ontribution of this work is to develop an algorithm that does not rely ontraining data. Instead, the algorithm 
an learn the parameters of the model from real-timetransmissions being made by a Tx-
lient. Thus it 
an adapt to variations in transmit powera
ross heterogeneous devi
es whi
h makes it parti
ularly suitable for server-side lo
aliza-tion te
hniques. Plus this model 
an also fa
tor in real-time 
hanges in the environmentaldynami
s of the target spa
e.

5



Chapter 3Wireless Chara
teristi
sOur system is based on the 802.11 wireless networking proto
ol, whi
h is inexpensive andwidely deployed in enterprise o�
es and a
ademi
 
ampuses. 802.11 uses 11 
hannels inthe ISM band. Signal propagation in this band is 
omplex and in this se
tion, we identifythe di�erent 
auses of variation in the wireless 
hannel quality and how we fa
tor them intoour model. Our approa
h is server-based, where we 
apture 
lient pa
kets using sni�ers.As su
h, we are mainly 
on
erned with the variations that a�e
t the Re
eived SignalStrength (RSS) on the sni�er. In this se
tion, experimentally validate two observationsthat have been made previously in wireless-lo
alization literature. We model our problemaround these two observations.3.1 Distribution of Signal Strength
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We observe that the Signal Strength distribution is roughly Gaussian. In [16℄ et al alsomake similar observations. [8℄ [5℄ et
 also model signal intensity as a normal distribution.3.2 Transmission Power
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Chapter 4Problem FormulationThe Gaussian Mixture Model is a simple linear superposition of Gaussian 
omponents,aimed at providing a ri
her 
lass of density models than the single Gaussian. We nowformulate our problem as a Gaussian mixture in terms of dis
rete latent variables.
Figure 4.1: Gaussian Mixture Model4.1 Latent Variables for Target Lo
ations and PowerLevelsWe introdu
e a J-dimensional binary random variable x representing possible target lo-
ations. x has a 1-of-J representation in whi
h a parti
ular element xj is equal to oneand all other elements are equal to 0. The values of xj therefore satisfy xj ∈ {0,1} and

∑

j xj = 1. Thus we see that there are J possible states for the ve
tor xThe probability distribution over x 
an be spe
i�ed as a multinomial
p(xj = 1) = υjwhere the parameters {υj} must satisfy

0 ≤ υj ≤ 1 and

J
∑

j=0

υj = 18



Similarly, let us introdu
e a K-dimensional binary random variable z representingPower Levels. z has a 1-of-K representation in whi
h a parti
ular element zk is equal toone and all other elements are equal to 0. The values of zk therefore satisfy zk ∈ {0,1}and ∑

k zk = 1. Ve
tor z has K possible states.The distribution over z is spe
i�ed as a multinomial
p(zk = 1) = τkwhere the parameters {τk} must satisfy

0 ≤ τk ≤ 1 and

K
∑

k=0

τk = 14.2 Constru
ting the distribution over the observed sig-nal strengthsLet s be the N-dimensional ve
tor representing the signal strengths observed by the Nsni�ers pla
ed in the area.Using the 
hain rule of probability, we 
an now de�ne the joint distribution p(s,x, z) interms of the distribution p(x, z) and the 
onditional distribution p(s|x, z), 
orrespondingto the graphi
al model in Figure 4.1.
p(s,x, z) = p(x, z)p(s|x, z) (4.1)Moreover x and z are independent random variables. So we have

p(s,x, z) = p(x, z)p(s|x, z)

= p(x)p(z)p(s|x, z) (4.2)Equation 4.2 gives us the joint distribution as p(x)p(z)p(s|x, z). The marginal distri-bution of s is then obtained by summing the joint distribution over all possible states ofx and z to give the following probabilisti
 model :
p(s) =

∑

x

∑

z

p(x)p(z)p(s|x, z) (4.3)4.2.1 Independen
e of Sni�ersWe assume the sni�ers are independent. This assumption is justi�ed in our model be
auseour sni�ers are passive nodes responsible for 
apturing wireless pa
kets. They have nointera
tion with ea
h other. 9



Thus, the term p(s|x, z) in equation 4.3 
an be simpli�ed as
p(s|x, z) =

N
∏

i=1

p(si|x, z) (4.4)Moreover, from the observations made about Signal Strength variations in Se
tion 3.1above, the distribution of signal strength 
an be modelled as a Gaussian determined bythe (lo
ation, power-level) pair.That is
si|(xj , zk) ∼ gaussian(µi (j,k) , σi (j,k))This lends simpli
ity to our model sin
e the term p(s|x, z) in equation 4.4 
an befurther simpli�ed as

p(s|x, z) =

J
∑

j=1

K
∑

k=1

(

N
∏

i=1

N [si|µi (j,k) , σi (j,k)]) (4.5)4.3 Model ParametersPutting equation 4.3 and equation 4.5 together we get the distribution of s as
p(s) =

J
∑

j=1

K
∑

k=1

(υjτk

N
∏

i=1

N [si|µi (j,k) , σi (j,k)]) (4.6)Thus we have modelled the marginal distribution of s as a Gaussian mixture withtarget lo
ations and power levels as our latent variables. The parameters of our modelare
θ =

(

υj, τk, (µi (j,k), σi (j,k))
)where j ∈ {1, ...J}, k ∈ {1, ...K} and i ∈ {1, ...N}. We now use the Expe
tationMaximization(EM) algorithm to estimate the parameters of our model.

10



Chapter 5EM AlgorithmAn elegant and powerful method for �nding maximum likelihood solutions for models withlatent variables is the Expe
tation Maximization(EM) algorithm. The EM algorithm isan iterative pro
ess through two steps: an expe
tation step(E-step) and a maximizationstep(M-step). During the iterations, a sequen
e of model parameters θ0 , θ1, ...., θ∗ isgenerated where θ0 is the initial parameter and θ∗ is the 
onverged parameter obtainedwhen the algorithm terminates.5.1 E-stepSuppose we have a data set of observations S = { s
0, s1, ....,sM}. The E-step 
orrespondsto �nding the expe
ted value of the hidden 
omponent (x and z) values given the observeddata S and the 
urrent parameter estimates.Using this observation set and the 
urrent parameter estimates, we �nd out the pos-terior probabilities (or responsibilities) as follows.For ea
h observation s

l

πl
(xj ,zk) ≡ p(xj = 1, zk = 1|sl) (5.1)

=
p(xj = 1)p(zk = 1)p(sl|xj = 1, zk = 1)

∑J

p=1

∑K

q=1 p(xp = 1)p(zq = 1)p(sl|xp = 1, zq = 1)
(5.2)

=
υj τkN(sl|µj,k, σj,k)

∑J

p=1

∑K

q=1 [υpτqN(sl|µp,q, σp,q)]
(5.3)The posterior probability value πl

(xj ,zk) 
an be viewed as the responsibility that 
omponent
(xj , zk) takes for explaining observation s

l. We �nd out this measure of responsibility forea
h observation in our data set S.
11



5.2 M-stepThe M-step of the algorithm 
orresponds to maximizing the likelihood of the observeddata. This leads us to re-estimating the parameters for the next iteration based on theposterior probabilities 
al
ulated in the expe
tation step of the algorithm.
υj =

∑M

l=1

∑

k πl
(xj ,zk)

M

τk =

∑M

l=1

∑

j πl
(xj ,zk)

M

µi (j,k) =

∑M

l=1 πl
(xj ,zk)s

l
i

Nj,kwhere we have de�ned
Nj,k =

M
∑

l=1

πl
(xj ,zk)The varian
e parameter 
an also be updated a

ordingly.5.3 Convergen
e of Log LikelihoodEa
h update of the parameters resulting from an E-step followed by an M-step is guaran-teed to in
rease the log likelihood fun
tion. The algorithm is deemed to have 
onvergedwhen the 
hange in the log likelihood fun
tion falls below a threshold.

ln p(S|θ) =

M
∑

l=1

ln

{

J
∑

j=1

K
∑

k=1

υjτkN (sl|µj,k, σj,k)

} (5.4)5.4 Handling Identi�ability in our ModelIn [21℄ Bishop et al dis
uss the problem of identi�ability asso
iated with assigning P sets ofparameters to P 
omponents. The problem o

urs be
ause there are P! ways of assigningP sets of parameters to P 
omponents.In our 
ase ea
h 
omponent 
an be represented as a (lo
ation, power-level ) pair. Wehandle the problem of identi�ability as follows :5.4.1 Indoor Radio Propagation ModelThe indoor radio propagation model is represented as
PRx = P0 − 10n log

(

d

d0

)12



where P0 is the re
eived signal strength at a distan
e d0 from the emitter. PRx is thesignal strength(si) seen by re
eiver for a transmitter lo
ated at a distan
e d away from it.n is a parameter whi
h models the behaviour of the environment. This formula e�e
tivelyinitializes the 
omponents representing di�erent lo
ations on the map.To initialize k 
omponents (say) whi
h have a 
ommon lo
ation but vary in power-level, we make use of the observations made in Se
tion 3.2 whi
h show that the observedsignal strength is linearly proportional to the transmission power. Thus, on
e the formulaabove gives us the signal value for a spe
i�
 lo
ation, we extrapolate the value linearly toinitialize ea
h of the k 
omponents for that lo
ationIn our experiments, we set n = 2. The 
orresponding signal strength was used toinitialize the means (µj,k). The standard deviation (σj,k) was initialized to 5 (and kept�xed to redu
e 
omputation time). As subsequent results show, a value of k = 45 issu�
ient to hit a 
onstant average error distan
e.5.5 Final Lo
ation EstimateGiven a real-time re
eived signal ve
tor s
(obs), we 
an now �nd the lo
ation with thehighest probability. We do this by �rst �nding the probability for ea
h (lo
ation, power-level) pair and then marginalizing over the power-levels. Thus the estimated lo
ationindex is given by j∗ where

j∗ = maxj

∑

k

P (xj = 1, zk = 1|s(obs))

13



Chapter 6Testbed and DataSet DetailsWe begin with a des
ription of our system ar
hite
ture. We then des
ribe the two testbedswhere we 
ondu
ted our experiments. This is followed by a overview of the 
omponentsof our sni�er devi
es. We round up this se
tion by dis
ussing the data 
olle
tion pro
ess.6.1 System Ar
hite
tureAs mentioned brie�y in Se
tion 1.1 our work is based on a server-side ar
hite
ture forWLAN lo
alization. Our system 
onsists of a 
entralized server and a number of sni�erdevi
es. Sni�ers provide overlapping 
overage for the target area ( similar to how APs areusually deployed inside buildings ). The sni�ers are used to 
apture pa
ket transmissionsmade by the 
lient devi
e. The sni�ers are 
onne
ted to a ba
kend server using a power-line ethernet LAN. The sni�er pa
ket 
aptures are transmitted to the server. For ea
hpa
ket, the server re
ords the ma
-address of the Tx-
lient and the 
orresponding signalstrength for that pa
ket.In the future, our sni�er fun
tionality might be integrated dire
tly into the WLANAPs of a produ
tion network. Enterprise APs usually have a 
entralized 
ontroller whi
h
an serve as our lo
alization engine. This makes our ar
hite
ture parti
ularly interesting.Moreover, server-side ar
hite
tures have the added advantage of allowing us to lo
alize a
lient devi
e independent of any hardware or software on the laptop.6.2 Sni�er InformationOur sni�er devi
es are responsible for 
apturing wireless transmissions made by a Tx-
lient. We use soekris-net4801 boards as our sni�er devi
es with atheros-based 
m9 
ardsfor wireless 
aptures. Our sni�ers are running Pyramid Linux (version 2.6.16-metrix)and we use the default MadWiFi driver whi
h 
omes with this distribution (0.9.4.5 : svn1485).To 
apture pa
kets we use the T
pdump software (version 4.0.0 libp
ap version 0.9.8)14



To obtain signal strength information, the MadWiFi driver allows a monitor mode in-terfa
e to be 
reated and 
on�gured with RadioTap header support. From the radio-tapheader we 
an extra
t the Re
eived Signal strength of ea
h pa
ket re
eived by the sni�er.We veri�ed that the MadWi� driver had a �xed noise-�oor in ea
h of our 
m9 
ards (-95dbm). In fa
t the re
eived signal strength of a frame reported by the MadWiFi driveris a
tually the SNR value (in db) obtained after subtra
ting the noise-�oor from the rawsignal strength value. We work dire
tly with the RSSI value (in db) as reported by thedriver.6.3 Experimental TestbedWe use two di�erent testbeds to Experimentally validate our te
hnique. Figure 6.1 showsthe CEWIT building with a dimension of 50 x 65 meter square. Figure 6.2 shows theCS department building at SBU with dimensions 20 x 30 meter square. The red-dotdenotes the position of the sni�ers. The sni�ers are 
onne
ted to a ba
kend server usinga power-line ethernet LAN.

(a) Fine-grained dis
retization (b) Coarse-grained dis
retizationFigure 6.1: Map of the CEWIT Building where experiments were 
ondu
tedFigure 6.1(a) and 6.2(a) shows the dis
retized target spa
e that we use in our algo-rithm. Our te
hnique does not use training, whi
h allows �ne grained dis
retization ofthe target spa
e. Figure 6.1(b) and 6.2(b) shows the 
orresponding dis
retized spa
e thatwe use when we present our results in 7.4 when we 
ompare our te
hnique with otherte
hniques that use training data from spe
i�
 lo
ations of the target spa
e. The 
oarsegranularity of 6.1(b) and 6.2(b) serves to highlight the fa
t that training is a huge bottle-ne
k in su
h `training-based' models. It is usually a manual e�ort where we have to go toea
h dis
rete lo
ation on the map and transmit a spe
i�ed number of pa
kets from thatlo
ation to 
onstru
t the signal map of the area being 
overed. Thus we invariably haveto resort to 
oarse dis
retization when the target spa
e is large.15



(a) Fine-grained dis
retization (b) Coarse-grained dis
retizationFigure 6.2: Map of the CS Dept Building where experiments were 
ondu
ted6.4 Data Colle
tionWe perform our experiments with 4 di�erent wireless 
lients - an android phone, an iphone,a dell laptop and a dell netbook. We sele
t 50 lo
ations from the CEWIT testbed (Fig 6.1)and 30 lo
ations from the CS Dept testbed (Fig 6.2) and transmit 200 ping pa
kets fromea
h lo
ation for ea
h of the above four devi
es. Ea
h ping 
arries a sequen
e number andthe pings are spa
ed apart uniformly, at a rate of 1 per se
ond. The sequen
e number isused to form the ve
tor of RSS values from ea
h transmission. Thus for ea
h lo
ation onthe map and for ea
h devi
e, we have a set of 200 RSS tuples to experimentally validateour algorithm.

16



Chapter 7EvaluationWe implement our algorithm based on the EM algorithm and 
olle
t a

ura
y estimateson the data sets 
olle
ted from both testbeds.We generate plots for the following experiments:1. Number of power-levels used for EM:This experiment serves to give us the value of k (the number of power-levels) thatwe should use in our algorithm.2. Size of the learning set:This experiment shows how the average error distan
e varies as a fun
tion of thelearning set size.3. Baseline Comparisons:This set of experiments is used to 
ompare our te
hnique with a baseline Model-based s
heme, both of whi
h be applied on the �ne-grained dis
retized target spa
e.4. Comparisons with s
hemes that build RF signal maps:Here we 
ompare our te
hnique with two s
hemes that use an o�ine phase to �rstbuild an RF signal map of the target spa
e.5. Mobility-related experiments:These experiments show how the mobility of the Tx-
lient e�e
ts the a

ura
y ofour algorithm.

17



7.1 Avg. error distan
e v/s Number of power-levelsused for EM
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(b) CSDFigure 7.1: Number of power levels v/s Avg Error distan
eWe see that the avg. error distan
e does not vary mu
h after we use k=45 in our EMalgorithm. The subsequent plots shown here have been generated using k = 45 in thealgorithm.7.2 Learning Set Size
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Figure 7.2: Learning Set Size v/s Error distan
e on CEWIT DatasetAs mentioned in Se
tion 6.4 for every devi
e, we have 200 RSS ve
tors for ea
h lo
ationon the map. Figure 7.2 shows how the Average Error varies for di�erent sizes of thelearning set i.e if we use m samples to learn the parameters of the model whi
h wesubsequently use to lo
alize the remaining (200 - m) samples for ea
h lo
ation. Wesee that the average error rea
hes almost hits a plateau after 50 learning samples. Thesubsequent plots shown here have been generated using 50 RSS samples to learn the model18



parameters. We then use these parameters to lo
alize the remaining 150 samples for ea
hlo
ation.
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7.3 Baseline ComparisonHere we 
ompare our te
hnique with a baseline Model-based te
hnique that 
an be appliedon the �ne-grained dis
retized target spa
e shown in �g 6.1 (a) and 6.2 (a) . The log-distan
e path loss (LDPL) mentioned in Se
tion is used to predi
t the RSS at ea
h squarevertex that lies inside the target-spa
e. The baseline uses dire
tly uses these values withNNSS as the metri
 to 
ompare the multiple lo
ations on the map and pi
k the one thatbest mat
hes the observed signal strength ve
tor. Our algorithm instead uses these valuesto initialize our algorithm. For ea
h devi
e, our algorithm uses 50 RSS samples from ea
hlo
ation to update the parameters of our model. The new parameters are then used tolo
alize the remaining 150 RSS samples from ea
h lo
ation.7.3.1 CEWIT-Dataset
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7.3.2 CSD-Dataset
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learly see that we s
ore over the baseline algorithm for all four devi
es a
rossboth the testbeds.
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7.4 Comparisons with s
hemes that build RF signalmapsWe next 
ompare our te
hnique with two s
hemes that need to have a training phase tobuild an RF signal map �rst. Se
tion explains why we use a 
oarser granularity as shownin Figure 6.1 (b) and 6.2 (b) to build our signal map.One of our 
omparison s
hemes is deterministi
 and is based on RADAR [10℄. Weuse NNSS as the metri
 to identify the lo
ation whi
h best mat
hes the observed signalstrength ve
tor. The other is a probabilisti
 s
heme on the lines of [8℄. Given a lo
ationand a sni�er, signal intensity is modelled as a Gaussian distribution based on the trainingdata. We then use a MLE approa
h to give a lo
ation �x for a target RSS �ngerprint.7.4.1 CEWIT-DatasetTrainer-Dell LaptopTest-Dell Laptop, Dell Netbook, Android, Iphone
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7.4.2 CSD-DatasetTrainer-AndroidTest-Android, Iphone, Laptop, Netbook
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Probabilistic(b) Dell netbookFigure 7.10: Comparison - Dell Laptop , Dell netbookWe see that our algorithm performs at-par with state-of-the-art RF-signal-map basedte
hniques espe
ially in 
ased where the target devi
e is di�erent from the trained devi
e.That is what makes our te
hnique parti
ularly suitable for server-based lo
alization wherewe do not know the devi
e type of the 
lient being lo
alized.
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7.5 MobilityThis se
tion shows how the mobility of a 
lient 
an e�e
t the lo
ation estimates made byour algorithm.In our �rst experiment, the 
lient makes 2 random walks through the building (i.e arandom walk through 50 lo
ations on the CEWIT testbed / 30 lo
ations on the CS Depttestbed) transmitting just a single pa
ket from ea
h lo
ation.In the se
ond experiment, the 
lient makes 10 random walk through the building againtransmitting just a single pa
ket from ea
h lo
ation.In the last experiment, the 
lient makes 50 random walk through the building againtransmitting just a single pa
ket from ea
h lo
ation.7.5.1 CEWIT-Dataset
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7.5.2 CSD-Dataset
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alization a

ura
y of our te
hnique.More importantly, in 10 random walks itself we get pretty 
lose to the a

ura
y estimatesobtained from 50 random walks.
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Chapter 8Con
lusionIn this work, we have developed a server-side te
hnique to lo
alize a wireless 
lient in anindoor environment based on the signal strength parameter of its transmitted pa
kets.We developed a learning-based algorithm that 
an learn the parameters of the modeldynami
ally from pa
kets 
aptured by the stationary sni�ers / APs inside the building.By using dynami
 pa
ket 
aptures for parameter estimation, we 
an provide lo
ation esti-mates whi
h are mu
h more robust in the fa
e of time varying phenomena like movementof people inside the building, opening 
losing of doors et
. Moreover, this te
hnique 
anbe used on a host of heterogeneous devi
es operating at di�erent power levels.We do not have an expli
it training phase in our te
hnique. Infa
t, we showed that we
an a
hieve a

ura
y that is at par with state-of-the-art te
hniques that use training tobuild RF-signal maps �rst. Thus, our te
hnique not only eliminates the intensive time-
onsuming (often manual) training phase but also makes our te
hnique s
alable for largetarget spa
es.
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