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Abstrat of the ThesisWireless Indoor Loalization using Expetation-Maximization onGaussian Mixture ModelsbyAbhishek GoswamiMaster of SieneinComputer SieneStony Brook University2011We onsider the problem of loalizing a wireless lient in an indoor environment basedon the signal strength of its transmitted pakets as reeived on stationary sni�ers or aesspoints.Current state-of-the art indoor loalization tehniques have the drawbak that theyrely extensively on a `training phase'. This `training' is a labor intensive proess andmust be done for eah target-area under onsideration for various devie types. Thislearly does not sale for large target areas. The introdution of unmodeled hardwarewith heterogeneous power-levels et further redues the auray of these tehniques.We propose a solution in whih we model the reeived signal strength as a GaussianMixture Model (GMM). We use expetation maximization to �nd the parameters of ourGMM. We an now give a loation �x for a transmitting devie based on the maximumlikelihood estimate. This way, we not only avoid the ostly `training phase' but also makeour loation estimates muh more robust in the fae of various form of heterogeneity andtime varying phenomena. We present our results on two di�erent indoor testbeds (CEWITand Computer Siene Buildings in Stony Brook University) with multiple WiFi devies(iphones, android, laptops, netbooks). We demonstrate that the auray is at par withstate-of-the-art tehniques but without requiring any training.We also show an appliation of suh loalization in extrating the hidden soial stru-ture of the oupants of the building based on their WiFi ativity. We show interestingobservations from the Computer Siene building in Stony Brook University.iii
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Chapter 1IntrodutionDevies with wireless ards e.g Laptops, PDAs et are inreasingly beoming immenselypopular. Infat many enterprises and o�e loations have adopted a `wire-free' modeland provide Wi-Fi aess to all employees / oupants of the building. Wireless deviesenable mobility for the user, whih in turn reates a need for loation aware appliations.It is possible to extrat the signal strength of 802.11 wireless frames being transmittedby a Wi-Fi devie ( both APs and lients ) This has motivated the use of observed signalstrength as a parameter for performing loalization of wireless devies.1.1 WLAN Loalization ArhitetureThere are two ways of looking at the loalization problem: a lient-based approah anda server-based approah. In the lient-based model, the lient is the ative entity. Theloalization algorithm runs on the lient devie and loalization is typially performedbased on the wireless LAN harateristis being seen by the lient at that loation. Theneed for the wireless lient to download, install and run extra software an be a onern ina power-onstrained environment. Client-based loalization tehniques an be used onlywhen the wireless user is interested in being loalized.In a server-side model, the lient is a passive entity. The loalization algorithm isexeuted on a bakend server. The server-side tehniques typially use other devies inthe network (e.g. APs/sni�ers et) to apture paket transmissions made by the lientdevie. Server-side tehniques are partiularly interesting beause they do not requireany modi�ation to the hardware or software of the lient being traked. For seurityand management appliations, a server-based approah is more suitable. This approahdoes however raise questions on loation-privay beause a lient devie may be loalizedwithout the user being aware of it.This thesis presents a server-side tehnique that gives a loation-�x based on theReeived Signal Strength (RSS) information obtained from sni�er paket aptures.
1



1.2 Motivation of the Projet IdeaWe observe here that RF-based systems need to deal with the noisy harateristis ofthe wireless hannel. This has motivated the use of various loalization tehniques forWLAN-based loation sensing. Suh tehniques usually work in two phases: an o�inetraining phase and an online loation determination phase.RADAR [10℄ was one of the �rst RF-based indoor loalization shemes. In RADAR,the authors suggest two deterministi shemes for loalization. The �rst sheme has ano�ine training phase and uses the nearest neighbor in signal spae (NNSS) as the metrito ompare the multiple loations on the map and pik the one that best mathes theobserved signal strength vetor. The seond sheme does not rely on the o�ine trainingphase and instead relies on a mathematial model of indoor signal propagation to generatea set of theoretially-omputed signal strength data for eah loation in the target spae.The NNSS metri is then used to estimate the loation of the mobile user by mathingthe observed RSS to the theoretially omputed SS at these loations.Reently, a number of probabilisti tehniques have been used for WLAN-based lo-ation sensing. In suh tehniques, the o�ine phase orresponds to the onstrution ofonditional probability distributions whih map signal intensities to loations on a map.Thus, we �rst build up a signal map database for the area being overed. During theloation determination phase, given a real-time RSS-signal vetor of the target devie, weuse a probabilisti inferene algorithm to selet the most likely loation from all possibleloations in the target area.There are a number of hallenges in existing probabilisti loalization tehniques.One, there needs to be a trained point for eah possible target loation on the map.Training requires a lot of time-onsuming (usually manual) e�ort. Moreover, training ateah disretized loation on the map learly does not sale if the target area is large.Plus, there may be loations where we may not have diret aess to - e.g. an o�eroom with restrited aess et. These points would not be overed during training andwould subsequently never show during loalization. Two, for �nal loation estimation,probabilisti tehniques depend heavily on the data olleted during the o�ine trainingphase. The parameters of the model are alulated from the data olleted during thetraining phase. These parameters are �xed for eah trained loation. Not having dynamiparameters for the model an substantially redue the auray of the loation estimatesin the presene of time varying phenomena like movement of people inside the building,other ative devies in the viinity et. Third, wireless harateristis vary substantiallydepending on the hardware being used. Using a spei� wi-� ard for training e�etivelybinds us to that hardware. This redues the �exibility and robustness of loalizing lientdevies with unmodelled hardware, devies operating at varying power levels et. Theseissues serve as the motivation for this thesis.In this projet, we present a server-side indoor loation-sensing system using prob-2



abilisti tehniques. The idea behind the proposed algorithm is to �rst initialize theparameters of the model using a naive indoor radio propagation model. We then updatethe parameters of the model based on data samples olleted during a sliding time-window.Thus we use the observed data itself to give us a better estimate of the parameters of ourmodel. We then use these optimized parameters to loalize lients observed during thetime-window. This way, we not only avoid the ostly training phase but also make ourloation estimates muh more robust in the fae of time varying phenomena. Also, wehave e�etively removed the restrition of having a set of spei� hardware for training.This makes our algorithm muh more generi and we an now use it to loalize any devieequipped with a Wi-Fi interfae.1.3 Organization Of the Report.
• Chapter 2 disusses related work in the �eld of indoor Wi-Fi loalization.
• Chapter 3 we disuss some interesting harateristis of the wireless hannel thatwe inorporate in our model to solve the loalization problem.
• Chapter 4 presents our problem formulation in terms of a Gaussian Mixture Model.
• Chapter 5 presents the EM algorithm from the perspetive of our problem formu-lation.
• Chapter 6 gives details on our testbed and dataset.
• Chapter 7 presents the results of our tehnique and how they ompare with otherexisting tehniques.

3



Chapter 2Related WorkSome alibration-free tehniques have been proposed [5℄ [6℄ [18℄ et. The objetive ofsuh tehniques is to automate the e�et of wireless physial harateristis on RSS mea-surements and make them responsive to environmental dynamis like temperature andhumidity variations, furniture variation, human mobility et. This is usually done byhaving referene Aess Points (or sni�ers) deployed in the target spae and then mea-suring RSS between the 802.11 APs and also between a lient and its neighbouring APs(or sni�ers). In [5℄ Moares et al use an indoor signal propagation model to generate aradio propagation map (RPM) at eah sni�er. Thereafter they use RSS measurementsbetween the sni�ers and a referene Aess Point(AP) to reonstrut the RPM, eitherperiodially or when there are signi�ant variations of RSS values. In [18℄ Lim et al. usethe on-line RSS measurements to reate a mapping between the RSS measure and theatual geographial distane.Suh tehniques are essentially modelled to apture real-time hanges in the environ-mental dynamis of the target spae. But they do not model variations in lient hardwareand transmission power whih an signi�antly degrade the positional auray of RSSbased Wi-Fi loalization shemes.In [15℄ Tsui et al. also observe that hardware variane an signi�antly degrade thepositional auray of RSS-based Wi-Fi loalization systems. Infat they note that thehardware variane problem is not limited to di�erenes in the WiFi hipsets used bytraining and traking devies but also ours when the same Wi-Fi hipsets are onnetedto di�erent antenna types and/or pakaged in di�erent enapsulation materials. Theauthors stik to the online-training and o�ine loation-determination model but add anintermediate online-adjustment phase . In this intermediate phase they use unsupervisedlearning methods to onstrut a signal transformation funtion between the training devieand a new traked devie.In [16℄ Tao et al. have an interesting take on unmodelled-hardware and transmissionpower variations being e�eted by a transmitting lient. They also stik to the online-training and o�ine loation-determination model.However, they observe that RSS is lin-4



early proportional to transmission power. Thus the di�erene in reeived signal strengthsbetween a pair of sni�er devies would not vary dramatially as the transmission power ofa lient devie hanges. Based on the di�erene in signal strength between every pair ofsni�ers, they suggest a weighted heuristi to estimate a loation-�x for a given target RSS�ngerprint. With suh a `di�erene' based approah, we an no longer assume that thesni�ers are independent. Thus, we are restrited to the use of a heuristi in this model.However, the observation that RSS is linearly proportional to transmission power is veryinteresting. Infat, we use this observation in building our model.The major ontribution of this work is to develop an algorithm that does not rely ontraining data. Instead, the algorithm an learn the parameters of the model from real-timetransmissions being made by a Tx-lient. Thus it an adapt to variations in transmit poweraross heterogeneous devies whih makes it partiularly suitable for server-side loaliza-tion tehniques. Plus this model an also fator in real-time hanges in the environmentaldynamis of the target spae.

5



Chapter 3Wireless CharateristisOur system is based on the 802.11 wireless networking protool, whih is inexpensive andwidely deployed in enterprise o�es and aademi ampuses. 802.11 uses 11 hannels inthe ISM band. Signal propagation in this band is omplex and in this setion, we identifythe di�erent auses of variation in the wireless hannel quality and how we fator them intoour model. Our approah is server-based, where we apture lient pakets using sni�ers.As suh, we are mainly onerned with the variations that a�et the Reeived SignalStrength (RSS) on the sni�er. In this setion, experimentally validate two observationsthat have been made previously in wireless-loalization literature. We model our problemaround these two observations.3.1 Distribution of Signal Strength
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We observe that the Signal Strength distribution is roughly Gaussian. In [16℄ et al alsomake similar observations. [8℄ [5℄ et also model signal intensity as a normal distribution.3.2 Transmission Power
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Chapter 4Problem FormulationThe Gaussian Mixture Model is a simple linear superposition of Gaussian omponents,aimed at providing a riher lass of density models than the single Gaussian. We nowformulate our problem as a Gaussian mixture in terms of disrete latent variables.
Figure 4.1: Gaussian Mixture Model4.1 Latent Variables for Target Loations and PowerLevelsWe introdue a J-dimensional binary random variable x representing possible target lo-ations. x has a 1-of-J representation in whih a partiular element xj is equal to oneand all other elements are equal to 0. The values of xj therefore satisfy xj ∈ {0,1} and

∑

j xj = 1. Thus we see that there are J possible states for the vetor xThe probability distribution over x an be spei�ed as a multinomial
p(xj = 1) = υjwhere the parameters {υj} must satisfy

0 ≤ υj ≤ 1 and

J
∑

j=0

υj = 18



Similarly, let us introdue a K-dimensional binary random variable z representingPower Levels. z has a 1-of-K representation in whih a partiular element zk is equal toone and all other elements are equal to 0. The values of zk therefore satisfy zk ∈ {0,1}and ∑

k zk = 1. Vetor z has K possible states.The distribution over z is spei�ed as a multinomial
p(zk = 1) = τkwhere the parameters {τk} must satisfy

0 ≤ τk ≤ 1 and

K
∑

k=0

τk = 14.2 Construting the distribution over the observed sig-nal strengthsLet s be the N-dimensional vetor representing the signal strengths observed by the Nsni�ers plaed in the area.Using the hain rule of probability, we an now de�ne the joint distribution p(s,x, z) interms of the distribution p(x, z) and the onditional distribution p(s|x, z), orrespondingto the graphial model in Figure 4.1.
p(s,x, z) = p(x, z)p(s|x, z) (4.1)Moreover x and z are independent random variables. So we have

p(s,x, z) = p(x, z)p(s|x, z)

= p(x)p(z)p(s|x, z) (4.2)Equation 4.2 gives us the joint distribution as p(x)p(z)p(s|x, z). The marginal distri-bution of s is then obtained by summing the joint distribution over all possible states ofx and z to give the following probabilisti model :
p(s) =

∑

x

∑

z

p(x)p(z)p(s|x, z) (4.3)4.2.1 Independene of Sni�ersWe assume the sni�ers are independent. This assumption is justi�ed in our model beauseour sni�ers are passive nodes responsible for apturing wireless pakets. They have nointeration with eah other. 9



Thus, the term p(s|x, z) in equation 4.3 an be simpli�ed as
p(s|x, z) =

N
∏

i=1

p(si|x, z) (4.4)Moreover, from the observations made about Signal Strength variations in Setion 3.1above, the distribution of signal strength an be modelled as a Gaussian determined bythe (loation, power-level) pair.That is
si|(xj , zk) ∼ gaussian(µi (j,k) , σi (j,k))This lends simpliity to our model sine the term p(s|x, z) in equation 4.4 an befurther simpli�ed as

p(s|x, z) =

J
∑

j=1

K
∑

k=1

(

N
∏

i=1

N [si|µi (j,k) , σi (j,k)]) (4.5)4.3 Model ParametersPutting equation 4.3 and equation 4.5 together we get the distribution of s as
p(s) =

J
∑

j=1

K
∑

k=1

(υjτk

N
∏

i=1

N [si|µi (j,k) , σi (j,k)]) (4.6)Thus we have modelled the marginal distribution of s as a Gaussian mixture withtarget loations and power levels as our latent variables. The parameters of our modelare
θ =

(

υj, τk, (µi (j,k), σi (j,k))
)where j ∈ {1, ...J}, k ∈ {1, ...K} and i ∈ {1, ...N}. We now use the ExpetationMaximization(EM) algorithm to estimate the parameters of our model.
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Chapter 5EM AlgorithmAn elegant and powerful method for �nding maximum likelihood solutions for models withlatent variables is the Expetation Maximization(EM) algorithm. The EM algorithm isan iterative proess through two steps: an expetation step(E-step) and a maximizationstep(M-step). During the iterations, a sequene of model parameters θ0 , θ1, ...., θ∗ isgenerated where θ0 is the initial parameter and θ∗ is the onverged parameter obtainedwhen the algorithm terminates.5.1 E-stepSuppose we have a data set of observations S = { s
0, s1, ....,sM}. The E-step orrespondsto �nding the expeted value of the hidden omponent (x and z) values given the observeddata S and the urrent parameter estimates.Using this observation set and the urrent parameter estimates, we �nd out the pos-terior probabilities (or responsibilities) as follows.For eah observation s

l

πl
(xj ,zk) ≡ p(xj = 1, zk = 1|sl) (5.1)

=
p(xj = 1)p(zk = 1)p(sl|xj = 1, zk = 1)

∑J

p=1

∑K

q=1 p(xp = 1)p(zq = 1)p(sl|xp = 1, zq = 1)
(5.2)

=
υj τkN(sl|µj,k, σj,k)

∑J

p=1

∑K

q=1 [υpτqN(sl|µp,q, σp,q)]
(5.3)The posterior probability value πl

(xj ,zk) an be viewed as the responsibility that omponent
(xj , zk) takes for explaining observation s

l. We �nd out this measure of responsibility foreah observation in our data set S.
11



5.2 M-stepThe M-step of the algorithm orresponds to maximizing the likelihood of the observeddata. This leads us to re-estimating the parameters for the next iteration based on theposterior probabilities alulated in the expetation step of the algorithm.
υj =

∑M

l=1

∑

k πl
(xj ,zk)

M

τk =

∑M

l=1

∑

j πl
(xj ,zk)

M

µi (j,k) =

∑M

l=1 πl
(xj ,zk)s

l
i

Nj,kwhere we have de�ned
Nj,k =

M
∑

l=1

πl
(xj ,zk)The variane parameter an also be updated aordingly.5.3 Convergene of Log LikelihoodEah update of the parameters resulting from an E-step followed by an M-step is guaran-teed to inrease the log likelihood funtion. The algorithm is deemed to have onvergedwhen the hange in the log likelihood funtion falls below a threshold.

ln p(S|θ) =

M
∑

l=1

ln

{

J
∑

j=1

K
∑

k=1

υjτkN (sl|µj,k, σj,k)

} (5.4)5.4 Handling Identi�ability in our ModelIn [21℄ Bishop et al disuss the problem of identi�ability assoiated with assigning P sets ofparameters to P omponents. The problem ours beause there are P! ways of assigningP sets of parameters to P omponents.In our ase eah omponent an be represented as a (loation, power-level ) pair. Wehandle the problem of identi�ability as follows :5.4.1 Indoor Radio Propagation ModelThe indoor radio propagation model is represented as
PRx = P0 − 10n log

(

d

d0

)12



where P0 is the reeived signal strength at a distane d0 from the emitter. PRx is thesignal strength(si) seen by reeiver for a transmitter loated at a distane d away from it.n is a parameter whih models the behaviour of the environment. This formula e�etivelyinitializes the omponents representing di�erent loations on the map.To initialize k omponents (say) whih have a ommon loation but vary in power-level, we make use of the observations made in Setion 3.2 whih show that the observedsignal strength is linearly proportional to the transmission power. Thus, one the formulaabove gives us the signal value for a spei� loation, we extrapolate the value linearly toinitialize eah of the k omponents for that loationIn our experiments, we set n = 2. The orresponding signal strength was used toinitialize the means (µj,k). The standard deviation (σj,k) was initialized to 5 (and kept�xed to redue omputation time). As subsequent results show, a value of k = 45 issu�ient to hit a onstant average error distane.5.5 Final Loation EstimateGiven a real-time reeived signal vetor s
(obs), we an now �nd the loation with thehighest probability. We do this by �rst �nding the probability for eah (loation, power-level) pair and then marginalizing over the power-levels. Thus the estimated loationindex is given by j∗ where

j∗ = maxj

∑

k

P (xj = 1, zk = 1|s(obs))
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Chapter 6Testbed and DataSet DetailsWe begin with a desription of our system arhiteture. We then desribe the two testbedswhere we onduted our experiments. This is followed by a overview of the omponentsof our sni�er devies. We round up this setion by disussing the data olletion proess.6.1 System ArhitetureAs mentioned brie�y in Setion 1.1 our work is based on a server-side arhiteture forWLAN loalization. Our system onsists of a entralized server and a number of sni�erdevies. Sni�ers provide overlapping overage for the target area ( similar to how APs areusually deployed inside buildings ). The sni�ers are used to apture paket transmissionsmade by the lient devie. The sni�ers are onneted to a bakend server using a power-line ethernet LAN. The sni�er paket aptures are transmitted to the server. For eahpaket, the server reords the ma-address of the Tx-lient and the orresponding signalstrength for that paket.In the future, our sni�er funtionality might be integrated diretly into the WLANAPs of a prodution network. Enterprise APs usually have a entralized ontroller whihan serve as our loalization engine. This makes our arhiteture partiularly interesting.Moreover, server-side arhitetures have the added advantage of allowing us to loalize alient devie independent of any hardware or software on the laptop.6.2 Sni�er InformationOur sni�er devies are responsible for apturing wireless transmissions made by a Tx-lient. We use soekris-net4801 boards as our sni�er devies with atheros-based m9 ardsfor wireless aptures. Our sni�ers are running Pyramid Linux (version 2.6.16-metrix)and we use the default MadWiFi driver whih omes with this distribution (0.9.4.5 : svn1485).To apture pakets we use the Tpdump software (version 4.0.0 libpap version 0.9.8)14



To obtain signal strength information, the MadWiFi driver allows a monitor mode in-terfae to be reated and on�gured with RadioTap header support. From the radio-tapheader we an extrat the Reeived Signal strength of eah paket reeived by the sni�er.We veri�ed that the MadWi� driver had a �xed noise-�oor in eah of our m9 ards (-95dbm). In fat the reeived signal strength of a frame reported by the MadWiFi driveris atually the SNR value (in db) obtained after subtrating the noise-�oor from the rawsignal strength value. We work diretly with the RSSI value (in db) as reported by thedriver.6.3 Experimental TestbedWe use two di�erent testbeds to Experimentally validate our tehnique. Figure 6.1 showsthe CEWIT building with a dimension of 50 x 65 meter square. Figure 6.2 shows theCS department building at SBU with dimensions 20 x 30 meter square. The red-dotdenotes the position of the sni�ers. The sni�ers are onneted to a bakend server usinga power-line ethernet LAN.

(a) Fine-grained disretization (b) Coarse-grained disretizationFigure 6.1: Map of the CEWIT Building where experiments were ondutedFigure 6.1(a) and 6.2(a) shows the disretized target spae that we use in our algo-rithm. Our tehnique does not use training, whih allows �ne grained disretization ofthe target spae. Figure 6.1(b) and 6.2(b) shows the orresponding disretized spae thatwe use when we present our results in 7.4 when we ompare our tehnique with othertehniques that use training data from spei� loations of the target spae. The oarsegranularity of 6.1(b) and 6.2(b) serves to highlight the fat that training is a huge bottle-nek in suh `training-based' models. It is usually a manual e�ort where we have to go toeah disrete loation on the map and transmit a spei�ed number of pakets from thatloation to onstrut the signal map of the area being overed. Thus we invariably haveto resort to oarse disretization when the target spae is large.15



(a) Fine-grained disretization (b) Coarse-grained disretizationFigure 6.2: Map of the CS Dept Building where experiments were onduted6.4 Data ColletionWe perform our experiments with 4 di�erent wireless lients - an android phone, an iphone,a dell laptop and a dell netbook. We selet 50 loations from the CEWIT testbed (Fig 6.1)and 30 loations from the CS Dept testbed (Fig 6.2) and transmit 200 ping pakets fromeah loation for eah of the above four devies. Eah ping arries a sequene number andthe pings are spaed apart uniformly, at a rate of 1 per seond. The sequene number isused to form the vetor of RSS values from eah transmission. Thus for eah loation onthe map and for eah devie, we have a set of 200 RSS tuples to experimentally validateour algorithm.
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Chapter 7EvaluationWe implement our algorithm based on the EM algorithm and ollet auray estimateson the data sets olleted from both testbeds.We generate plots for the following experiments:1. Number of power-levels used for EM:This experiment serves to give us the value of k (the number of power-levels) thatwe should use in our algorithm.2. Size of the learning set:This experiment shows how the average error distane varies as a funtion of thelearning set size.3. Baseline Comparisons:This set of experiments is used to ompare our tehnique with a baseline Model-based sheme, both of whih be applied on the �ne-grained disretized target spae.4. Comparisons with shemes that build RF signal maps:Here we ompare our tehnique with two shemes that use an o�ine phase to �rstbuild an RF signal map of the target spae.5. Mobility-related experiments:These experiments show how the mobility of the Tx-lient e�ets the auray ofour algorithm.
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7.1 Avg. error distane v/s Number of power-levelsused for EM
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(b) CSDFigure 7.1: Number of power levels v/s Avg Error distaneWe see that the avg. error distane does not vary muh after we use k=45 in our EMalgorithm. The subsequent plots shown here have been generated using k = 45 in thealgorithm.7.2 Learning Set Size
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Figure 7.2: Learning Set Size v/s Error distane on CEWIT DatasetAs mentioned in Setion 6.4 for every devie, we have 200 RSS vetors for eah loationon the map. Figure 7.2 shows how the Average Error varies for di�erent sizes of thelearning set i.e if we use m samples to learn the parameters of the model whih wesubsequently use to loalize the remaining (200 - m) samples for eah loation. Wesee that the average error reahes almost hits a plateau after 50 learning samples. Thesubsequent plots shown here have been generated using 50 RSS samples to learn the model18



parameters. We then use these parameters to loalize the remaining 150 samples for eahloation.
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7.3 Baseline ComparisonHere we ompare our tehnique with a baseline Model-based tehnique that an be appliedon the �ne-grained disretized target spae shown in �g 6.1 (a) and 6.2 (a) . The log-distane path loss (LDPL) mentioned in Setion is used to predit the RSS at eah squarevertex that lies inside the target-spae. The baseline uses diretly uses these values withNNSS as the metri to ompare the multiple loations on the map and pik the one thatbest mathes the observed signal strength vetor. Our algorithm instead uses these valuesto initialize our algorithm. For eah devie, our algorithm uses 50 RSS samples from eahloation to update the parameters of our model. The new parameters are then used toloalize the remaining 150 RSS samples from eah loation.7.3.1 CEWIT-Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Error Distance (meters)

GMM
Model-Based(a) Android  0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Error Distance (meters)

GMM
Model-Based(b) IphoneFigure 7.3: Baseline Comparison - Android , Iphone

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Error Distance (meters)

GMM
Model-Based(a) Dell Laptop  0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Error Distance (meters)

GMM
Model-Based(b) Dell netbookFigure 7.4: Baseline Comparison - Dell Laptop , Dell netbook20



7.3.2 CSD-Dataset
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7.4 Comparisons with shemes that build RF signalmapsWe next ompare our tehnique with two shemes that need to have a training phase tobuild an RF signal map �rst. Setion explains why we use a oarser granularity as shownin Figure 6.1 (b) and 6.2 (b) to build our signal map.One of our omparison shemes is deterministi and is based on RADAR [10℄. Weuse NNSS as the metri to identify the loation whih best mathes the observed signalstrength vetor. The other is a probabilisti sheme on the lines of [8℄. Given a loationand a sni�er, signal intensity is modelled as a Gaussian distribution based on the trainingdata. We then use a MLE approah to give a loation �x for a target RSS �ngerprint.7.4.1 CEWIT-DatasetTrainer-Dell LaptopTest-Dell Laptop, Dell Netbook, Android, Iphone
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7.4.2 CSD-DatasetTrainer-AndroidTest-Android, Iphone, Laptop, Netbook
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Probabilistic(b) Dell netbookFigure 7.10: Comparison - Dell Laptop , Dell netbookWe see that our algorithm performs at-par with state-of-the-art RF-signal-map basedtehniques espeially in ased where the target devie is di�erent from the trained devie.That is what makes our tehnique partiularly suitable for server-based loalization wherewe do not know the devie type of the lient being loalized.
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7.5 MobilityThis setion shows how the mobility of a lient an e�et the loation estimates made byour algorithm.In our �rst experiment, the lient makes 2 random walks through the building (i.e arandom walk through 50 loations on the CEWIT testbed / 30 loations on the CS Depttestbed) transmitting just a single paket from eah loation.In the seond experiment, the lient makes 10 random walk through the building againtransmitting just a single paket from eah loation.In the last experiment, the lient makes 50 random walk through the building againtransmitting just a single paket from eah loation.7.5.1 CEWIT-Dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Error Distance (meters)

Mobility-Laptop

2 RW
10 RW

100 RW(a) Dell Laptop  0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Error Distance (meters)

Mobility-netbook

2 RW
10 RW

100 RW(b) Dell netbookFigure 7.11: Mobility - Dell Laptop , Dell netbook

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Error Distance (meters)

Mobility-Android

2 RW
10 RW

100 RW(a) Android  0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Error Distance (meters)

Mobility-iphone

2 RW
10 RW

100 RW(b) IphoneFigure 7.12: Mobility - Android , Iphone
24



7.5.2 CSD-Dataset
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100 RW(b) IphoneFigure 7.14: Mobility - Android , IphoneWe see that mobility progressively improves the loalization auray of our tehnique.More importantly, in 10 random walks itself we get pretty lose to the auray estimatesobtained from 50 random walks.
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Chapter 8ConlusionIn this work, we have developed a server-side tehnique to loalize a wireless lient in anindoor environment based on the signal strength parameter of its transmitted pakets.We developed a learning-based algorithm that an learn the parameters of the modeldynamially from pakets aptured by the stationary sni�ers / APs inside the building.By using dynami paket aptures for parameter estimation, we an provide loation esti-mates whih are muh more robust in the fae of time varying phenomena like movementof people inside the building, opening losing of doors et. Moreover, this tehnique anbe used on a host of heterogeneous devies operating at di�erent power levels.We do not have an expliit training phase in our tehnique. Infat, we showed that wean ahieve auray that is at par with state-of-the-art tehniques that use training tobuild RF-signal maps �rst. Thus, our tehnique not only eliminates the intensive time-onsuming (often manual) training phase but also makes our tehnique salable for largetarget spaes.
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