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Applied Mathematics and Statistics
Stony Brook University

2011

We study the origin of robustness of yeast cell cycle cellular network
through uncovering its underlying energy landscape. This is realized
from the information of the steady steady probabilities by solving a
discrete set of kinetic master equations for the network. We discovered
that the potential landscape of yeast cell cycle network is funnelled
towards the global minimum, G1 state. The ratio of the energy gap
between G1 and average versus roughness of the landscape termed as
robustness ratio (RR) becomes a quantitative measure of the robustness
and stability for the network. The funnelled landscape is quite robust
against random perturbations from the inherent wiring or connections
of the network. There exists a global phase transition between the more
sensitive response or less self degradation phase leading to underlying
funneled global landscape with large RR, and insensitive response or
more self degradation phase leading to shallower underlying landscape
of the network with small RR. Furthermore, we show the more ro-

bust landscape also leads to less dissipation cost of the network. We
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quantify the cost in terms of the dissipation or heat loss characterized
through the steady state properties: the underlying landscape and the
associated flux. We found that the dissipation cost is intimately related
to the stability and robustness of the network. With least dissipation
cost, the network becomes most stable and robust under mutations and
perturbations on sharpness of the response from input to output as well
as self degradations. The least dissipation cost may provide a general
design principle for the cellular network to survive from the evolution

and realize the biological function.

We explore the stochastic dynamics of self regulative genes from fluc-
tuations of molecular numbers and of on and off switching of gene
states due to regulatory protein binding/unbinding to the genes. We
found when the binding/unbinding is relatively fast (slow) compared
with the synthesis/degradation of proteins in adiabatic (non-adiabatic)
case, the self regulators can exhibit one or two peak (two peak) distri-
butions in protein concentrations. This phenomena can also be quan-
tified through Fano factors. This shows even with the same architec-
ture (topology of wiring), networks can have quite different functions
(phenotypes), consistent with recent single molecule single gene ex-
periments. We further found the inhibition and activation curves to be
consistent with previous results in adiabatic regime, but show signifi-
cantly different behaviors in non-adiabatic regimes with previous pre-
dictions with monomer binding. Such difference is due to the dimer ef-
fect and never reported before. We derive the non-equilibrium phase di-
agrams of mono-stability and bi-stability in adiabatic and non-adiabatic
regimes. We study the dynamical trajectories of the self regulating
genes on the underlying landscapes from non-adiabatic to adiabatic
limit, provide a global picture of understanding and show an analogy
to the electron transfer problem. We study the stability and robustness
of the systems through mean first passage time (MFPT) from one peak
(basin of attraction) to another and found both monotonic and non-
monotonic turnover behavior from adiabatic to non-adiabatic regimes.
For the first time, we explore global dissipation by entropy production

and the relation with binding/unbinding processes. Our theoretical pre-
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dictions for steady state peaks, fano factors, inhibition/activation curves

and MFPT can be probed and tested from experiments.

We established a landscape framework to explore the global stability
and robustness of the dynamical systems and networks. We explore in
particular a gene network motif appeared in the experimental synthetic
biology studies of two genes mutually repress and activate each other
with self activation and repression. We found that coherent limit cy-
cle oscillations emerge in two regimes: adiabatic and non-adiabatic
regimes, with two mechanisms of producing the stable oscillations:
nonlinear cooperative interactions in the adiabatic regime and time de-
lays due to the slow binding to the promoters in the non-adiabatic
regime. In both regimes, the landscape has a topological shape of
Mexican hat in protein concentrations. The shape of the Mexican hat
provides the quantitative description of the capability of the system to
communicate with each other in concentration space and time. There-
fore, the topology of the landscape quantitatively determines the global
stability and robustness of the dynamical systems and networks. The
coherence of the oscillations are shown to be correlated with the shape
of Mexican hat characterize by the height from the top to the ring of
the hat.
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Chapter 1

Quantifying Robustness of Yeast Cell
Cycle Network: The Funneled

Energy Landscape Perspectives

1.1 Energy Landscape and Cellular Network

To understand the biological function and robustness of the cellular network, it is
crucial to uncover the underlying global principle [16, 39, 48]. The natures of the
cellular network have been explored by the many experimental techniques [41]]. It
is found that the cellular networks are in general quite robust against genetic and
environmental perturbations. There are increasing number of studies on the global
topological structures of the networks recently [43,18,58,161]]. However, there are so
far very few studies of why the network should be robust and perform the biological
function from the physical point of view [89, 163, 188, 10, 76, 154} 3. [71}, [72, 136, 98|,
50, 130].

Theoretical models of the cellular networks have often been formulated with
a set of deterministic chemical rate equations. These dynamical descriptions are
inherently local. To probe the global properties, one often has to change the param-
eters. The parameter space is huge. The global robustness therefore is hard to see
from this approach.

Here we will explore the nature of the network from another angle: formulate
the problem in terms of the potential function or potential landscape. If the potential

landscape of the cellular network is known, the global properties can be explored



[88L 176,154, 13,171, 136,198,150, 30, 23]]. This is in analogy with the fact that the global
thermodynamic properties can be explored when knowing the inherent interaction
potentials in the system. In the cell, statistical fluctuations coming from the finite
number of molecules (typically on the order of 1-1000) provide the source of intrin-
sic internal noise and the fluctuations from highly dynamical and inhomogeneous
environments of the interior of the cell provide the source of the external noise for
the networks [59, 20} 183], 185, 92, 165]. Both the internal and external noise play
important roles in determining the properties of the network.

In general, one should study the chemical reaction network equations in the
noisy conditions to model more realistically the cellular environments. In other
words, instead of following the deterministic evolution of the concentrations of pro-
teins in the network by the normal chemical rate equations, one should describe the
dynamics of protein concentrations probabilistically. We can realize this through
the kinetic master equations. We can study the steady state probability distributions
of these chemical concentrations under noisy environments. The generalized po-
tential function for steady state of the network is closely associated with the steady
state probability [88, 76, 154, 13, [71} 136, 98, 50, 130, 98]]. Once the network problem
is formulated in terms of the generalized potential function or potential landscape,
the issue of the global stability or robustness is much easier to address. In fact,
an explicit illustration of energy landscape and robustness for MAP Kinase signal
transduction network has been given recently [98]].

It is the purpose of this chapter to study the global robustness problem directly
from the properties of the potential landscape for the budding yeast cell cycle net-
work. Furthermore, cellular network is an open non-equilibrium system due to the
interactions with the environments. There is often a dissipation cost associated with
the network. It will also be interesting to see for our model system how the dissi-
pation cost is related to the features of the landscape reflecting the stability and

robustness of the network.

1.2 Budding Yeast Cell Cycle

To explore the nature of the underlying potential landscape of the cellular network,
we will study budding yeast cell cycle network. One of the most important func-

tion of the cell is the reproduction and growth. It is therefore crucial to understand



the cell cycle and its underlying process. The cell cycles during the development
are usually divided in several phases: G1 phase in which cell starts to grow under
appropriate conditions; S phase in which DNA synthesis and chromosome replica-
tion occurs, G2 phase where the cell is in the stage of preparation for mitosis, and
M phase in which chromosome separation and cell division occurs. After passing
through the M phase, the cell enters back to G1 phase and thus completes a cell
cycle. In most of the eucaryotic cells, the elaborate control mechanisms over DNA
synthesis and mitosis make sure the crucial events in the cell cycle are carried out
properly and precisely. Physiologically, there are usually several check points (
where cells are in the quiescent phase waiting for the signal and suitable conditions
for further progress in the cell cycle ) for controlling and coordination: G1 before
the new round of division; G2 before the mitotic process begins; and M before
segregation.

Recently, many of the underlying controlling mechanisms are revealed by the
genetic techniques such as mutations or gene knock outs. It is found that control has
been centered around cyclin-dependent protein kinases (CDKs) which trigger the
major events of the eukaryotic cell cycle. For example, the activation of cyclin/CDK
dimer drives the cells at both G1 and G2 check points for further progress. During
other phases, check points CDK/cyclin are activated. Although molecular interac-
tions regulating the CDK activities are known, the mechanisms of the check point
controls are still uncertain [89, 163, 188, [10]].

The cell cycle process has been studied in details in the budding yeast Saccha-
romyces cerevisiae [40, 89,163, 188, [10, 54]. There are many genes involved in con-
trolling the cell cycle processes. But the number of the crucial regulators is much
less. A network wiring diagram based on the crucial regulators can be constructed
(89, 163|188, 10, 54]] as shown in Figure [3.1]

Under the rich nutrient conditions and when the cell size grows large enough,
a cyclin CIn3 will be turned on. Thus the cell-cycle sequence starts when the cell
commits to division through the activation of Cln3 (the START). The CIn3/Cdc28
will be activated. This in turn activates through phosphorylation a pair of transcrip-
tion factor groups, SBF and MBF, which activate the genes of the cyclins Clnl and
ClIn2 and CIb5 and CIb6, respectively. The subsequent activity of CIb5 drives the
cell into the S phase where DNA replication begins. The entry into the M phase for

segregation is controlled by the activation of CIb2 through the transcription factor



Figure 1.1: The yeast cell cycle network scheme: wiring diagram, the arrow
sing(—>) represent positive activating regulations(1); the inhibition sign(4) rep-
resents negative suppressing regulations(-1); and the loop sign(—|) represent self-
degradation.



MCMI1/SFF activation. The exit of the M phase is controlled by the inhibition and
degradation of Clb2 through the Sicl, Cdhl and Cdc20. CIb2 phosphorylates Swi5
to prevent its entry into the nucleus. After the M phase, the cell comes back to
the stationary G1 phase, waiting for the signal for another round of division. Thus
the cell-cycle process starts with the excitation from the stationary G1 state by the
cell-size signal and evolves back to the stationary G1 state through a well defined
sequence of states.

Mathematical models of the cell cycle controls have been formulated with a
set of ordinary first order ( in time ) differential equations mimicking the under-
lined biochemical processes [[89, 163} [88) |10} 54]. The models have been applied
to budding yeast cycle and explained many qualitative physiological behavior. The
check points can be viewed as the steady states or stationary fixed points. Since the
intracellular and intercellular signals are transduced into the changes in the regula-
tory networks, the cell cycle becomes the dynamics in and out of the fixed points.
Although detailed simulations give some insights towards the issues, due to the
limitation of the parameter space search, it is difficult to perceive the global or uni-
versal properties of the cycle networks ( for example, for different species ). It is
the purpose of the current study to address this issue.

We will study the global stability by exploring the underlying potential land-

scape for yeast cell cycle network.

1.3 Methods and Materials

The average dynamics of the network can be usually described by a set of chemical
rate equations for concentrations where both the concentrations and the links among
them through binding rates with typically quite different time scales are treated in
a continuous fashion. In the cycle cycle, most of the biological functions seem
to be from the on and off properties of the network components. Further more,
the global properties of the network might depend less sensitively on the details
of the model. Therefore, a simplified representation [54] can be proposed with
each node 1 has only two states S; = 1 and §; = 0, representing the active and
the inactive state of the protein, or high concentration and low concentration of
proteins, respectively. As illustrated in Figure [3.1] we have 11 protein nodes in the

network wiring diagram, we have all together 2!! states, each state represented by S



with a distinct combination of the on and off of the 11 protein nodes of Cln3, MBF,
SBF, CInl-2, Cdhl, Swi5, Cdc20, CIb5-6, Sicl, Clbl-2, Mcml represented by
{S1,52,53,...511} = S. Green arrows represent positive regulations or activations
(1). Red arrows represent negative regulations or repressions (-1). The yellow loop
represents self degradations to the nodes which are not regulated by others. We can
then define some rules to follow the subsequent dynamics of the network. Therefore
the evolution of the network is deterministic.

As mentioned, in the cell the average dynamics of the cellular network might
not give a good description of the system. This is due to the intrinsic fluctuations
from the limited number of the proteins in the cell and extrinsic fluctuations from
the environments in the interior of the cell. It is then more appropriate to approach
the network dynamics based on statistical description. In other words, we should
replace the deterministic or average description of the dynamics of states in cellular
network to a probabilistic description of the evolution of the cellular network dy-
namics. So instead of following the on and off state switching in the network, we
follow the probability of on and off of each state in the network.

In order to follow the evolution of the states in the cellular network, we need
to first figure out the transition probability from one state S, at present time to
another state S, at the next moment. This is difficult to solve and in general almost
impossible. We therefore will make some simplifications so that we can handle the
case without the loss of the generality by assuming that the transition probability T
from one state to another can be split into the product of the transition probability
for each individual flip (or no flip) of the on or off state from this moment to the
next moment. The transition probability from one state at current state to another at
next moment will be assumed not to depend on the earlier times (no memory). This
leads to the Markovian process [24} [18], [107]. The transition matrix T can thus be

written as:

_ 11
T(5,0).8 1) S 1@ 105205 1) = sy T(s,60)18 10,820, 1100} (1.1)

where t is the current time and t’ is the next moment. So the whole transition
probability from current state to the next is split into the product of the transition
probability of each individual flip (or no flip) of the node i. For each individual
flip, the transition probability for a particular node can be modeled as a nonlinear
switching function as shown in Fig. and Fig. from the input through the
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Figure 1.2: Nonlinear Response Function versus Inputs: (A) is fory = 1/2 +
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interactions to the output which is often used in neural science [33]:
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When the input Z}il a;;S j(t) > 0 is positive (activation), the transition probability
to the on state is higher (close to 1). When the input is negative (repression) the

transition probability to the on state is lower (close to zero). Furthermore

Ts,wyis10.5:0..5um = 1 — ¢ (1.3)

when there is no input of activation or repression (Z}l 1S j(1) = 0), ¢ is a small
number mimicking the effect of self degradation. Here g;; is the arrow or link rep-
resenting the activating (+1) or suppressing (-1) interactions between ith and jth
protein node in the network which is explicitly shown in the wiring diagram of
Fig[3.1] u is a parameter controlling the width of the switching function from the
input to the output. The physical meaning is clear. If the inputs through the interac-
tions among proteins to a specific protein node in the network is large enough, then
the state will flip, otherwise the state will stay without the flip. The positive (neg-
ative) sign in the T expression gives probability of flipping from 0(1) to 1(0) state.
If p is small (large), the transition width is large (small), the transition is smooth
(sharp or sensitive) from the original state to the output state. Therefore we have an

analytical expression of the transition probability.



With the transition probability among different states specified, finally we can

write down the master equation for each of the 2'! states as:
dPi/dt:_ZTijPi+ZTjin (14)
J J

where T;; (T';;) represents the transition probability from state i(j) to state j(i) speci-
fied in details above. Here i and j are from 1 to 2!! = 2048 states and ij” P;=1.

We solved the 2'! = 2048 master equations numerically of the yeast cell cycle
(by using iterative method) to follow the evolution of the probability distribution of
each state, with the initial condition of equal small probability of all the cell states
(P; = 1/2048). Both the time dependent evolution and the steady state probability
distribution for each state are obtained.

Let us focus on the steady state probability distribution. For each state, there is
a probability associate with it. One can write the probability distribution for a par-
ticular state as P; = exp[-U;,] (ij“ P; = 1) or U; = —InP;. One can immediately
see that U; acquires the meaning of generalized potential energy (from Boltzman
distribution). This is the key point: although there is no potential energy function
directly from the normal deterministic averaged chemical reaction rate equations
for the network, a generalized potential energy function does exist and can be con-
structed from the probabilistic description of the network instead of the determin-
istic averaged one. This generalized potential energy function is inversely related
to the steady state probability. When the probability is large, the potential energy is
lower and when probability is small, the potential energy is higher. The dynamics
of the cell cycle thus can be visualized as passing through mountains and ridges of
the energy landscape in state space of the cell cycle network to the final destiny. The
advantage of introducing the concept of energy is that once we have the potential
landscape, we can discuss the global stability of the protein cellular networks. Oth-
erwise, it is almost impossible to address the global issues without going through
the parameter space locally which is often cosmologically big.

The network is an open system in non-equilibrium state. Even at steady state,
the system is not necessarily in equilibrium. This is clear from the fact that al-
though we can obtain the steady state probability and can define an equilibrium like
quantity such as steady state probability, the flux is not necessarily equal to zero

(F = —TijPisicady-stare + TjiP; ). This is different from the equilib-

i] steady—state J steady—state



rium situation where the local flux is equal to zero (detailed balance condition). The
flux defines a generalized force for the non-equilibrium state along with the associ-
ated generalized chemical potential [75, [78]]. The non-equilibrium state dissipates
energy. In the steady state, the heat loss rate is equivalent to entropy production
rate, where entropy S is defined as Sy = — )}; P;[nP; and entropy production rate
(per unit time) S is given by:

TP
L

Entropy production rate is a characterization of the global properties of the net-
work. We can study how the entropy production rate or dissipation cost of the
network varies with the changes of internal and external perturbations. We can ex-
plore the global natures of the network such as stability, robustness and dissipation
cost and their interrelationships.

In each of the simulations, we study the robustness of the network by exploring
different values of switching and self degradation parameters u and c, as well as the

mutations of the links or interactions in the network.

1.4 Results and Discussions

Since the potential energy is a multidimensional function in protein states, it is
difficult to visualize U. So we directly look at the energy spectrum (Figure [I.3]) and
explore the nature of the underlying potential landscape U.

Figure shows the spectrum as well as the histogram of U. We can see that
the distribution is approximately Gaussian. The lowest potential U is the global
minimum of the potential landscape. It is important to notice this global minimum
of U is found to be the same state as the steady state or fixed point (the stationary
G1 state=(0; 0; 0; 0; 1; 0; 0; 0; 1; 0; 0) ) of the deterministic averaged chemical
reaction network equations for yeast cell cycle. It is clear that the global minimum
of the potential is significantly separated from the average of the potential spectrum
or distribution.

To quantify this, we define the robustness ratio RR for the network as the ratio of
the gap 60U, the difference between this global minimum of G1 state U giopai—minimum

and the average of U, < U > versus the spread or the half width of the distribution of
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(A) (B)

Figure 1.3: The global structures and properties of the underlying potential land-
scape of the yeast cell cycle network. (A) The spectrum and the histogram or the
distribution of the potential energy U. (B) An illustration of the funneled landscape
of the yeast cell cycle network. The global minimum of the energy is at G1 state.
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U, AU, RR = % as shown in Figure . oU is a measure of the bias or the slope
towards the global minimum (G1 state) of the potential landscape. AU is a measure
of the averaged roughness or the local trapping of the potential landscape. When
RR is significantly larger than 1, the gap is significantly larger than the roughness
or local trapping of the underlying landscape, then the global minimum (G1 state)
is well separated and distinct from the average of the network potential spectrum.
Since P; = exp{—U(x)}, the weight or population of the global minimum (G1 state)
will be dominated by the one with large RR. The populations of the other possible
states are much less significant. This leads to the global stability or robustness
discriminating against others. The RR value for the yeast cell cycle network is
RR = 3 (for £ = 5 and ¢ = 0.001) as shown in Figure[I.3JA, significantly larger than
1. This shows a funnel picture of energy going downhill towards G1 state in the
evolution of network states, as illustrated in Figure[I.3B. So RR gives a quantitative
measure of the property of the underlying landscape spectrum.

We found the typical values for random networks are close to 2 (RR can not be
less than 1). A typical random network with RR 2 is illustrated in Figure [[.3|C for
a random network. The ground state is not necessarily the G1 state any more. The
probability of G1 is smaller for random network compared with the biological one
and therefore less stable. Thus, only the cellular network landscape with large value
of RR will be able to form a stable global minimum G1 state, be robust, perform
biological function and survive the natural evolution.

We identified the preferential global pathway towards the global minimum G1
by following the most probable trajectory in each step of the kinetic moves from the
kinetic master equations towards G1. The protein can be either 1 or O representing
active or inactive. The 11 proteins are arranged in a vector form to represent the
state of the system as (Cln3; MBF; SBF; CInl,2; Cdhl; Swi5; Cdc20; CIb5, 6;
Sicl; Clbl,2; Mcml). The most probable global path follows the states 1—13
sequentially towards G1 from the start signal. Where start signal is in state sequence
1 given by: (1; 0; 0; 0; 1; 0; 0; 0; 1; 0; 0). Three excited G1 states are in sequence
2, 3, 4, given respectively by: (0; 1; 1; 0; 1; 0; 0; O; 1; 0; 0), (0; 1; 1; 1; 1; 0; 0; 0; 1;
0; 0), (0; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0). The S phase is in state with sequence 5 given
by: (0; 1; 1; 1; 0; 0; 0; 1; 0; 0; 0). The G2 phase is in state with sequence 6 given
by (0; 1; 1; 1; 0; 0; 0; 1; 0; 1; 1). The M phase is in states with sequence 7, 8, 9, 10,
11, given respectively by: (0; 0; 0; 1; 0; 0; 1; 1; 0; 1; 1), (0; 0; 0; 0; 0; 1; 1; 0; 0; 1;
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1), (0;0;0;0;0; 1; 1; 0; 1; 1; 1), (0; 0; 0; 0; 0; 15 1; 0; 1; 0; 1), (0; 0; 0; 0; 15 15 1;
0; 1; 0; 0). The another excited G1 state is with sequence 12 given by (0; 0; 0; 0; 1;
1; 0; 0; 1; 0; 0). Finally stationary G1 phase is in state sequence 13 given by (0; 0;
0; 0; 1; 0; 0; O; 1; 0; 0). The most probable path turns out to be the biological path
going through G1-S—-G2->M—GI.

We arranged the state space into the two dimensional grids with the constraints
of minimal overlapping or crossings of the state connectivity for clear visualization
purpose. Each point on the two dimensional grid represents a state (one of 2048
states). The energy landscape on the two dimensional grids is shown in Figure[1.4]
The lowest energy state corresponds to the stationary G1 state. The global biologi-
cal path is represented by the narrow green band on the projected two dimensional
state space plane. It is sequentially from state 1 to 13 as mentioned in the above text
(sequences 1—13). As we can see, the global biological path is in the low energy
valley of the landscape towards G1. In addition, we can also see some other off
pathway traps (states with low energies).

Figure E]A shows robustness ratio, RR of the cell cycle network versus the
steady state probability of the G1 (with £ = 5 and ¢ = 0.001) against various per-
turbations through deleting an interaction arrow, adding an activating or repressing
arrow between the nodes that are not yet connected in the network wiring diagram
in Figure 1, or switching an activating arrow to a repressing arrow or vice versa,
and deleting an individual node. There is a monotonic relationship between the G1
probability and robustness ratio RR. When RR is larger (smaller), the landscape is
more (less) robust, the network is more (less) stable with G1 state dominating (less
significant). Therefore RR is indeed a robustness measure for the network.

Figure [I.5B shows the robustness ratio RR versus steady state probability of
the global biological path with important biological states including G1 [54)]. We
see again that network with large RR characterizing the funneled landscape leads to
higher steady state probability and therefore more stable biological path. Random
networks typically have smaller RR and smaller probability of G1 compared with
the biological one. They are less stable. The biological functioning network is
quite different from the random ones in terms of the underlying energy landscape
and stability.

Figure [I.6/A shows the the robustness ratio of the underlying energy landscape

versus different switching parameters u (¢ = 0.001). We see that when y is large
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Figure 1.4: The potential energy landscape of the yeast cell cycle network and
biological path to stationary G1: The lowest energy state corresponds to stationary
G1 state. The green band with arrows corresponds to the biological path.
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Figure 1.5: Robustness against mutation perturbations. (A) Robustness ratio versus
steady-state probability of G1, Pg, for different mutations of the links. (B) Robust-
ness ratio RR versus steady-state probability of biological path, P, for different
mutations of the links.
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Figure 1.6: Robustness against the sharpness of the response or the inverse noise
level. (A) Robustness ratio versus sharpness of the response or inverse of noise
level . (B) Steady-state probability of stationary G1, Pg,; and biological path, P,
versus m.

(small) indicating a sharp (smooth) transition or response from input to output for
a single flip of the protein states, the robustness ratio increases with u increases.
This means, a sharper transition or response from input to output gives more robust
network compared with the smoother transition or response. u can also be seen
as a measure or characterization of the strengths of the noise from the intrinsic or
extrinsic statistical fluctuations in the cellular environments [[107]. The u could then
be related to the inverse of the “temperature” (temperature here is a measure of the
strength of the noise level). The energy U we defined in this chapter is in units of p.
So U is a dimensionless quantity. When y is not changing then the two definitions
of U (U = —ulogP and U = —logP) are only different by a constant. The RR is not
influenced by the above two definitions of U since it involves the ratio of the U’s.
When u is large, the transition is sharp. This corresponds to all or none deter-
ministic behavior for the response or transition (0 or 1). This is the situation when
the underlying statistical fluctuations are small. When y is small, the response or
the transition is no longer all or none (1 or 0) but a smooth function in between
0 and 1. This is due to the fact the statistical fluctuations lead to the states more
distributed and with less sharp response. Therefore, the associated probability of
distributed states has more chances being between 0 and 1. In other words, less
(more) statistical fluctuations or shaper response with larger u (less sensitive re-
sponse with smaller i) leads to more (less) robust network characterized by large

(small) RR. Then, there exist two phases for the network: a robust phase with RR
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is significantly larger than 2, where the network is stable and the underlying energy
landscape is funneled towards G1; and a fragile phase with RR drops to around or
below 2, where the network is less stable and the underlying energy landscape is
more shallower towards G1.

Figure shows probability of stationary G1 state as well as the probability
of the global path towards G1 versus . We can see a global transition phase tran-
sition at u ~ 1 below which Pg; and P, significantly drops. From Figure
and 6B, we see when Pg; and P, is small, RR is also small implying the system
is less stable. Therefore the network looses the stability below p ~ 1. Significantly
above u ~ 1, the network becomes stable. We can interpret this as the phase tran-
sition from the weak noise limit where the underlying landscape and the associated
global path are not influenced much by the noise level to the limit where underly-
ing landscape and associated global path are disturbed significantly or disrupted by
the strong noise. We can also interpret this as the transition from hyper sensitive
response leading to the robustness of the landscape and the associated global path,
to the inert or insensitive response leading to the fragile landscape and associated
global path to G1. We can see a sharper response or more sensitivity of the indi-
vidual protein nodes to the rest of the protein network through interactions usually
leads to more robustness of the network with stable G1 and biological path.

The low u corresponds to strong noise limit or insensitive response for the node
to the input. The landscape has low RR and is less stable or robust. The landscape is
more flat and less biased towards G1. When u increases, the noise level decreases,
the response to the input is more sensitive for each node. This results in a more
funneled towards G1 and more robust landscape. The maximal funnel is found
around pu = 2. There is a sharp change of the shape of the landscape near u = 2
from u < 2 side. When u > 2, the RR value is slightly lower and quickly approach
to a constant as u becomes larger corresponding to smaller noise, and more sensitive
response from a node to the input. The landscape becomes stabilized with a definite
robustness ratio and probability of Ps;. The peak value of the RR, Pg; as well as
P ,q, implies there might exist traps in the landscape (deep energy states other than
G1 and not on biological path). Large noise will destroy landscape which leads to
low RR, Pg; as well as P,,;. Zero noise leads to relatively stable network with
relatively large RR, Pg; as well as P,,;. In the presence of traps, adding a small

amount of noise helps the system to to reach the global minimum without getting
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Figure 1.7: Robustness against self-degradation. (A) Robustness ratio RR versus
degree of self-degradation, c. (B) Steady-state probability of stationary Pg; and
biological path P, versus c.

caught or trapped in the intermediate off pathway trapping states. This increases
the probability and enhances the stability of G1 and biological path. Therefore the
presence of the peak of RR, Pg as well as P4, 1s an indication of the existence of
traps in the landscape. We found 6 major off pathway traps responsible for the peak
in RR, Pg; as well as P, (Some are shown in Figure @

Figure shows the robustness ratio of the underlying energy landscape ver-
sus different self degradation parameters ¢ (at u = 5). We see that when c is large
(small) indicating a large (small) self degradation, the robustness ratio increases
with ¢ decreases. This means, a less degradation gives more robust network. Figure
1.7B shows the the probability of stationary G1 as well as biological path versus
different self degradation parameters ¢ (at u = 5). We see that when c is large
(small) indicating a large (small) self degradation, the probability of stationary G1
phase and biological path increases with ¢ decreases. This means, a less degrada-
tion gives more probable and stable stationary G1 phase and biological path and
therefore more robust network.

In Figure[I.8] we plotted the entropy production (per unit time) or the dissipation
cost of the network, S, versus RR for different u. We can see the entropy production
rate decreases as RR increases. This implies the more robust the network is, the less
entropy production or heat loss the network is. This can be very important for the
network design. The nature might evolves such that the network is robust against

internal (intrinsic) and environmental perturbations, and perform specific biological
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Figure 1.8: Dissipation Cost Versus Robustness of the Network: Entropy Produc-
tion Rate S versus Robustness Ratio RR.
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Figure 1.9: One Dimensional Projection of the Energy Landscape: Potential U
versus Fraction of Protein Nodes Consistent with the Stationary G1 Phase, Q

functions with minimum dissipation cost. The fact that robustness is linked with the
entropy production rate may reflect the fact that less fluctuations and perturbations
leads to more robust and stable network, also more energy saving, and therefore
less costs in the mean time. This might provide us a design principle of optimizing
the connections of the network with minimum dissipation cost for the network. In
our study here this is also equivalent of optimizing the robustness or stability of the
network.

In Figure we define an order parameter Q for this model, based on how
many nodes there are in the same state relative to the stationary G1 phase, normal-
ized to 1. So Q = 1 when the network is in stationary G1 phase, and Q = 0 when
the network is in a state which is completely uncorrelated with the stationary G1
phase. We plotted the projection of energy U to the order parameter Q. We can see

that there are two minimum or two basins of attractions. One is at Q=1. It is the
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global minimum corresponding to the global stationary G1 phase. The other is near
Q=0, corresponding to the G2 phase. The existence of different basins of attraction
is reasonable in the cell cycle network with several check points. One of the major
check points in the experiments turns out to be G2. So check points could be seen
as on pathway “trapping”. The robustness network will be able to pull out itself

from the on pathway “trapping” to proceed the normal cell cycle function to G1.

1.5 Conclusions

The energy landscape is a statistical based approach which is good in two folds: It
is a approach capturing the global properties. On the other hand, the statistical ap-
proach can be very useful and informative when the data are rapidly accumulating.
In this picture, there are many possible energy states of the network correspond-
ing to different patterns of combinations of activation and inhibition of the protein
states. Each check point can be viewed as basins of attractions of globally low en-
ergy states. The G1 phase states has the lowest global energy since it is the end of
the cycle. We think it might be possible to describe the cell cycle as the dynamic
motion in the energy landscape state space from one basin to another. This kinetic
search can not be entirely random but directed since the random search takes cos-
mological time. The direction or gradient of the landscape is provided from the bias
in terms of the energy gap towards the G1 phase. So the landscape picture becomes
that there is a funnel towards the G1 state ( the bottom of the funnel, we can call
that native state ). At the end of G1 phase, the network is pumped upon receiving
the new start signal or nutrition (with those, the system will stay at G1 and network
can not continue the cycling process) to high energy excited states at the top of the
funnel ( cycling ). Then the cell cycle follows as it cascades through the configu-
rational state space ( or energy landscape ) in a directed way passing several check
points ( basin of attractions ) and finally reach the bottom of the funnel-G1 phase
before being pumped again for another cycle (Figure[I.4).

We can see from the above discussions that maximizing the ratio of the potential
gap (or the slope ) versus the roughness of the underlying potential landscape is the
criterion for the global stability or robustness of the network. Only the cellular net-
work landscape satisfying this criterion will be able to form a thermodynamically
stable global steady state, be robust (Figure [1.7), perform the biological
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functions with minimal dissipation cost (Figure and survive the nature evolu-
tion. Similar to protein folding and binding problem [[108| 96], a funnelled potential
landscape of cellular network emerges. The landscape biases towards the global
minimum G1 state and dominates the fluctuations or wiggles in the configurational
space. From this picture, at the initial stage of the yeast cell cycle network process,
there could be multiple parallel paths leading towards the global minimum G1 state.
As the kinetic process progresses, the discrete paths might emerge and give domi-
nant contributions (biological path) when the roughness of the underlying landscape
becomes significant (Figure [I.4)).

The cellular network with too rough underlying potential landscape can neither
guarantee the global robustness nor perform specific biological function. They are
more likely to phase out from evolution. The funneled landscape therefore is a real-
ization of Darwinian principle of natural selection at the cellular network level. As
we see, the funneled landscape provides an optimal criterion to select the suitable
parameter subspace of cellular networks, guarantee the robustness and perform spe-
cific biological function with less dissipation cost. This will lead to an optimal way
for the network connections and is potentially useful for the network design.

It is worth pointing out that the approach described here is general and can
be applied to many cellular networks such as signaling transduction network [46]],

metabolic network [87], and gene regulatory network [76}71]].
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Chapter 2

Least Dissipation Cost as a Design
Principle for Robustness and

Function of the Cellular Networks

2.1 Introduction

Understanding the function and stability of the cellular network requires a global
characterization of the system. The natures of the network have been explored
through various experimental techniques [16, 39]. It is found that the cellular net-
works are often quite stable and robust against intrinsic and environmental pertur-
bations. There are increasing number of bioinformatic studies on the global topo-
logical structures of the networks [38], as well as some studies from the physical
perspectives through the underlying chemical reactions on the network robustness
[39, 189,154, 137, 153]. Recently, efforts have been made in understanding biological
function from the energy landscape perspectives [109] 96, (11374} 99,197, 31} 150].
The advantage of this approach is that both global and local properties of the net-
work can be explored in fluctuating environments [59, 92]]. In fact, explicit illus-
trations of the underlying energy landscape and robustness for MAP Kinase signal
transduction, yeast cell cycle and gene regulatory networks have been given recently
(98,197, 31, 150].

These studies provided us insights towards the understanding of the robustness
of the network with finite number of deep basins of attractions either through a

funnel (one basin of attraction, for MAPK or yeast cell cycle ) or multiple funnels
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(several basins of attractions, for gene regulatory network). The deep basins of at-
tractions of the landscape might be the result of the evolution selection to perform
the biological function and maintain the robustness. The question is then how the
networks realize that? Cellular networks are open non-equilibrium systems due
to the interactions and exchanges with the environments. At steady state, both the
steady state probability or the corresponding landscape and the local flux are needed
to characterize the non-equilibrium network. Contrary to the situation for the equi-
librium case where the steady state probability can characterize the whole system,
the local flux is not necessarily zero in the non-equilibrium case because the de-
tailed balance may not be satisfied. For open non-equilibrium network, there are
dissipation costs from the exchange with the environments which can be described
using the underlying landscape and the flux for the system. Here we provide a
possible evolution scenario: The network may have evolved to minimize the dis-
sipation cost to realize the biological function, robustness and structurally stability
against genetic and environmental perturbations. Minimizing the dissipation cost
might provide a design principle for evolution selection of biological function and

robust network.

2.2 Budding Yeast Cell Cycle

To explore the dissipation cost of the cellular network, we will use the budding
yeast cell cycle as an example. We will summarize the previous robustness and
landscape investigations [31] in Figure[2.2] to serve as a basis for the current study.
A network wiring diagram based on the crucial regulators was constructed 89, 54]
as shown on the in Figure [2.2A.

In Figure[2.2]A, each protein node [54] is assumed to have only two states S; = 1
and §; = 0, representing the active and the inactive state of the protein. There are
11 protein nodes in the network wiring diagram, and all together 2!! states. Each
state can be represented by S with a distinct combination of the on and off of the
11 protein nodes of Cln3, MBF, SBF, CInl-2, Cdhl, Swi5, Cdc20, Clb5-6, Sicl,
Clbl1-2, Mcml represented by {S,S52,953,...511} = §. — arrows represent positive
regulations or activations (1). 4 arrows represent negative regulations or repressions
(-1). The loop represents self degradations to the nodes which are not regulated by

others.

22



(B)

Figure 2.1: A: The Yeast Cell Cycle Network Scheme: Wiring Diagram, — arrow
represents positive activating regulations (1); 4 arrow represents negative suppress-
ing regulations (-1); loop represents self degradation. B: The spectrum and the
histogram or the distribution of the potential energy U. C: An illustration of the
funneled landscape of the yeast cell cycle network. The global minimum of the
energy is at G1 state.
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The significant intrinsic and extrinsic fluctuations within the cell imply that
we should follow the probability evolution rather than deterministic dynamics in
the network. The transition matrix T can be simplified by assuming the Marko-
vian process, [112, [31]. The Markovian approximations is introduced here for
simplicity. There can be time delays for example due to the presence of trans-
lation step in addition to transcription. This can be rendered by the introduction
of more variables such as mRNA. Therefore we introduce the transition matrix:
time and t’ is the next moment. The input-output switching response function has
a similar form often seen in neural science [34]. The form of the response func-
tion although similar to the neural science can actually approximate the nonlin-
ear increase of the protein number production upon regulations of others. It has
been widely used in the literature [39) [89)]. The transition matrix can be defined
as (with nonzero input): Ts,)s,1).520)...5 110} = % + %tanh[,u Z}il a;;S j(1)]. Further-
more Ts, s ,0.5,0..5,p = 1 — ¢ when there is no input of activation or repression
(Z}il a;;S j(t) = 0), ¢ is a small number mimicking the effect of self degradation.
Here a;; is the arrow or link representing the activating (+1) or suppressing (-1) in-
teractions between ith and jth protein node in the network which is explicitly shown
in the wiring diagram of Figure 2.2] u is a parameter controlling the sharpness or
sensitivity of the response from input to output. i can also be a measure of the
fluctuation strength (for example, mimicking the effects of temperature) [31]. The
fluctuation referred in this chapter is a measure of the environmental noise or exter-
nal noise, not directly the intrinsic noise from protein number fluctuations. When
the environmental noise is low, then the response will be sharper.

With the transition probability among different states specified, we can write
down the master equation for each of the 2!! states as: dP;/dt = -3, iTiPi +
2. T;iPj where T;; (T ;) represents the transition probability from state i(j) to state
j(i) specified in details above. Here i and j are from 1 to 2!' = 2048 states and
Y3 =1

The steady state probability distribution can be solved numerically [31]. One
can link the steady state probability distribution with the generalized potential en-
ergy as U; = —[nP;. [96, 11398, 97,131, 50]

Figure 2.2B shows the spectrum as well as the histogram or distribution of U

(U = =InPgeqdy-siae)- We can see that the distribution is approximately Gaussian.
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The global minimum of U was found to be the same state as the fixed point (the
stationary G1 state=(0; 0; 0; 0; 1; 0; 0; 0; 1; 0; 0) ) for yeast cell cycle [31]. In
quantifying the stability or robustness, we previously defined the robustness ratio
RR [98] 197, 31] for the network as the ratio of the gap U, the difference between
this global minimum of G1 state U,pai—minimum and the average of U (mimicking
the slope of the landscape), < U > versus the spread or the half width of the distri-
bution of U (mimicking the roughness or trapping of the landscape), When RR is
significantly larger than 1, the global minimum (G1 state) is well separated and dis-
tinct from the average of the network potential spectrum. Since P = exp{—U(x)},
the weight or population of the global minimum (G1 state) will be dominant. This
leads to the global stability or robustness discriminating against others. It shows a
funnel picture of energy going downhill towards G1 state in the evolution of net-
work states, as illustrated in Figure[2.2C. So RR gives a quantitative measure of the
shape or topography of the underlying landscape.

The network is an open system in non-equilibrium state. Although we can ob-
tain the steady state probability and can define an equilibrium like quantity, the

local flux from j to i (F = =TiPiseady-siare + TjiP; ) is not neces-

Jisteady—state J steady—state

sarily equal to zero (no detailed balance). The flux defines a generalized force for
the non-equilibrium state along with the associated generalized chemical potential
(fromjtoi) A; = ln(?:j
networks and electric circuits. The flux F;; corresponds to current I and chemical

[75, 78], 168]]. There is a mapping between the cellular

potential A;; corresponds to voltage V. The non-equilibrium cell network dissipates
energy just as the electric circuits. In the steady state, the heat loss rate is related
to the entropy production rate. The entropy production or dissipation character-
izes “time irreversibility” and provides a lower bound for the actual heat loss in
Boolean network. [75, 78, [74,168]]. The total entropy change is equal to the part
from the system or source plus the part from the bath or sink (dissipation). Since
in steady state the entropy change of the system is equal to zero, thus the total en-
tropy change (source) is equal to the entropy change of the sink (dissipation). The
total entropy change (source) = }) F;jA;j is the entropy production and the sink
term is dissipation. Therefore in steady state, knowing the entropy production, we

know the dissipation quantitatively. The entropy S from the system part is defined

as § = —); P;InP; and entropy production rate (per unit time) % (system plus
bath) is given by: L2 = ¥ F;A; = ¥, T;iPjin ?}fj ). Entropy production rate is a
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characterization of the global properties of the network.

2.3 Results and Discussions

Equipped with the quantification of landscape and flux from the previous work [31]]
as illustrated in Figure 2.2] we are now ready to explore the global nature of the
network and the interrelationships between the robustness and stability with the
dissipation cost in terms of entropy production under genetic and external perturba-
tions (under different responses p, self degradations C and mutations).

Figure shows the self degradation versus entropy production rate fl—f (at
u =135). In [31], we show a less degradation ¢ gives more robust network with large
RR. Here we see that less self degradation leads to less dissipation costs and less
dissipation cost i—f leads to more robust network with large RR and larger stability
of the biological path towards G1 phase.

Figure shows the robustness ratio RR of the underlying energy landscape
as well as the steady state probability of the biological path towards G1 phase versus
entropy production % with different self degradation parameters c (at u = 5).

We observed in Figure[2.3B a relatively sharp decrease of the robustness through
the robustness ratio RR and path probability P, upon changing the self degrada-
tion rate ¢c. We noticed from previous studies that both RR and P, drops with
the increase of self degradation ¢ (Figure 7 in [31]). So the landscape changes
significantly with the self degradation. The entropy production rate is the accu-
mulated effects from the combination of both landscape and flux. Therefore the
entropy production rate is in general a nonlinear function of the accumulated ef-
fects of landscape and flux. The sharper transition of entropy production rate with
respect to the stability upon changing the self degradation might be from the more
sensitive dependence on the accumulated landscape and flux.

We identified the preferential global pathway towards the global minimum G1
by following the most probable trajectory in each step of the kinetic moves from
the deterministic equations of the corresponding to the master equations towards
G1. Therefore the global path is referring to the deterministic path without the
perturbations and noises. We explored the sum of the probabilities passing through
this path in various conditions. When the perturbation or noise is small we expect
this path is similar to the actual path. When the perturbation or noise is larger, we
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expect the actual path starts to deviate from this path. We expect to see less partition
of the probabilities on this path. Obtaining the actual most probable path under
various conditions is an important and challenging issue. We plan to investigate
that in the future study.

The protein can be either 1 or O representing active or inactive. The 11 proteins
are arranged in a vector form to represent the state of the system as (Cln3; MBF;
SBF; CIn1,2; Cdhl; Swi5; Cdc20; CIb5, 6; Sicl; Clbl1,2; Mcm1). The most prob-
able global path follows the states 1 — 13 sequentially towards G1 from the start
signal. Where start signal is in state sequence 1 given by: (1; 0; 0; O0; 1; 0; 0; O;
1; 0; 0). Three excited G1 states are in sequence 2, 3, 4, given respectively by: (0;
15150; 1; 0, 0, 0; 15,0, 0), (0; 1; 1; 15 15 0; 0; 05 15 05 0), (05 15 15 15 0; 0; 0; 0;
0; 0; 0). The S phase is in state with sequence 5 given by: (0; 1; 1; 1; 0; 0; 0; 1;
0; 0; 0). The G2 phase is in state with sequence 6 given by (0; 1; 1; 1; 0; 0; 0; 1;
0; 1; 1). The M phase is in states with sequence 7, 8, 9, 10, 11, given respectively
by: (0; 0; 05 1; 0; 0; 15 15 0; 15 1), (05 0 0; 05 0; 15 15 0; 05 1; 1), (0; 05 0; 0; 05 1;
1;0;1;1;1),(0;0;,0;,0;,0;,1; 1; 0; 1; 0; 1), (0; 0; 0; 0; 1; 1; 1; O; 1; 0; 0). The
another excited G1 state is with sequence 12 given by (0; 0; 0; 0; 1; 1; 0; 0; 1; 0; 0).
Finally stationary G1 phase is in state sequence 13 given by (0; 0; 0; O; 1; 0; O; O;
1; 0; 0). The most probable path turns out to be the biological path going through
Gl >SS ->G2-> M- GI1. [31].

The rational of considering not only the G1 phase but also the whole biological
path of the cell cycle is as follows: As the cell cycle progresses, cells have to visit
many different states on the biological path, not just stay in one state. The state of
G1 phase can be stable, but this may not imply other states of the cell cycle are also
stable. To create a robust cell cycle network all important states (local minimums
on the potential) have to be investigated not just a stationary G1 phase (the global
minimum). Therefore we include the probabilities of all the states on the biological
path. In [31], we show a less degradation leads to more weight or stability for
G1 phase. Here we see that less self degradation leads to less entropy cost and
when entropy production % decreases, the probability of the whole biological path
including the stationary G1 phase also increases. This means, a less dissipation cost
gives more probable and stable biological path to stationary G1 phase and therefore
more stable and robust network.

As mentioned before, robustness ratio RR here is a measure of the stability of
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Figure 2.2: Robustness and Stability versus Dissipation Cost of the Yeast Cell Cy-
cle Network for Various Protein Self Degradation Rate. A: Self Degradation Rate
versus Entropy Production Rate ‘Z—f. B: Robustness Ratio RR and Probability of the
Biological Path towards G1 phase versus Entropy Production ‘il—st for Various Protein
Self Degradation Rate.

the global minimum G1. If we consider the whole biological path, then the 13
local minimum states visited by the biological path should be grouped together.
We expect a positive correlation between the stability of the global minimum G1
measured by RR and that of 13 local minimum constituting the whole biological
path.

In Figure[2.3]A, we plotted the p versus entropy production (per unit time) or the
dissipation cost of the network, d—f. In [31], we show sharper response or less noise
(larger w) leads to more weight or stability for biological path including G1 phase.
Here we see that sharper response and less noise leads to less entropy cost, and
when entropy production ‘fl—f decreases, the probability of biological path including
stationary G1 phase also increases.

In Fiure , we plotted the robustness of the network, RR as well as the steady
state probability of the biological path towards G1 phase versus entropy production
(per unit time) or the dissipation cost of the network, [Z—f, for different u (fixed
¢ = 0.001). In [31], we show sharper response or less noise (larger ) in general
leads to more robust network with larger RR. We also show in that the presence of
the peak of RR is due to traps in the landscape [31]. On the right hand side of the
peak of RR and steady state probability of the biological path towards G1 phase
in Figure 2.3B, as the noise increases (u decreases in Figure 2.3A), the network
quickly becomes unstable (smaller RR below 2.5 and probability of the biological
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path is below 0.3) and dissipation cost increases significantly. Here, we can see
when the entropy production rate decreases, the robustness RR and probability of
the biological path towards G1 increases. The left hand side of the peak of RR
and steady state probability of the biological path towards G1 in Figure[2.3B corre-
sponds to a stable regime. The peak represents the most stable state. At zero noise
limit, there are no fluctuations, so the system can easily get trapped in the local
minimum of energy (local maximum of the steady state probability). Increasing
the noise level slightly from zero (larger u) can help to adjust the system by over-
coming the local traps to reach to the global minimum of energy [31]. Above all,
we can see, a sharper response or less noise environments normally leads to less
dissipation, the less dissipation cost gives more probable and stable biological path
and stationary G1 phase and therefore more stable and robust network in general.

We also in Figure [2.3B observed a relatively smooth decrease of the robustness
through the robustness ratio RR (from high values to be below 2) and path proba-
bility P (from high values to be below 0.2 upon changing the response u (from
high values to be below 1). We noticed from previous studies that both RR and
P ,a, drops sharply with the decrease of response u (Figure 6 in [31]]). So the land-
scape changes significantly with the response. As mentioned above, the entropy
production rate is the accumulated effects from the combination of both landscape
and flux. So the entropy production rate is in general a nonlinear function of the
accumulated effects of landscape and flux. The smoother transition of entropy pro-
duction rate with respect to the stability upon changing the response might be from
the less sensitive dependence on the the accumulated landscape and flux.

Figure shows the steady state probability of the G1 (with ¢ = 5 and
¢ = 0.001) versus dissipation cost of the network against various mutations or per-
turbations through deleting an interaction arrow, adding an activating or repressing
arrow between the nodes that are not yet connected in the network wiring diagram
in Figure or switching an activating arrow to a repressing arrow or vice versa,
and deleting an individual node. Upon mutations, when the entropy production is
smaller (larger), the G1 state tends to be more (less) stable and dominating. This
is the regime where the underlying energy landscape is a funnel. We noticed that
there are steady states with low entropy and low probability. Those are the out-
liers. They correspond to perturbed underlying energy landscape which are either

not very stable and unable to perform biological functions, or possibly become sig-
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Figure 2.3: Robustness and Stability versus Dissipation Cost of the Yeast Cell Cycle
Network for Different Responses or Noises. A: Response u versus Entropy Produc-
tion Rate %. B: Robustness Ratio RR as well as Steady State Probability of the
Biological Path Towards the G1 Phase versus Entropy Production % for Different
Response or Noise.

nificantly perturbed cell cycles (i.e. cycles without stable G1 phase as in wild type
fission yeast cells). This implies that dissipation cost and stability of the network
through G1 state might be more correlated in relatively high stability region while
less correlated in low stability region. In other words, since low stability region
often corresponds to more fluctuating region, the dissipation cost is a less reliable
measure of the network property. Therefore in this outlier regime, we may need to
use both dimensions to explore the network, one for stability and one for function
through dissipation cost.

Figure 2.3B shows the Pg; versus robustness ratio under various of mutations
mentioned above. We see that larger (smaller) RR corresponds to larger (smaller)
Pg,. Since less entropy production leads to more stable network (larger steady state
probability of G1, Pg, ), therefore less entropy dissipation also leads to larger RR
and therefore more robust network. Random networks typically have smaller RR
and smaller probability of G1 compared with the biological one, corresponding to
rough underlying energy landscape. They are less stable and robust. The biological
functioning network is quite different from the random ones in terms of the underly-
ing energy landscape and stability. In the low RR region, the robustness and entropy
dissipation is less correlated. These networks are less of biological relevance.

The exploration of the relationship among statistical fluctuations, stability, ro-
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Figure 2.4: Stability and Robustness versus Dissipation Cost of the Yeast Cell Cycle
Network for Different Perturbations through Mutations. A: Steady State Probability
of G1, Pg; versus Entropy Production Rate % for Different Mutations. B: Robust-
ness Ratio RR versus Steady State Probability of G1, Pg, for Different Mutations.

bustness and dissipation cost of the network here can be important for the network
design. The nature might evolves such that the network is robust against internal
(intrinsic) and environmental perturbations, and perform specific biological func-
tions with minimum dissipation cost. From evolution point of view, the fact that
robustness and stability are often correlated with the entropy production rate may
reflect the fact that more cost saving requires the system to have less fluctuations
and perturbations, leading to more robust and stable network. This may provide us
a design principle of optimizing the connections of the network with minimum dis-
sipation cost. In our study here this is also equivalent of optimizing the robustness
or stability of the network. The less dissipation cost or robust landscape therefore
might be a quantitative realization of Darwinian principle of natural selection at the
cellular network level. The nature might evolve such that the biological networks
become robust against perturbations, and perform specific biological functions with
minimum dissipation cost. The dissipation criterion was also used in the context of
constrained-based modeling of metabolic network.

Probing a non-equilibrium network is crucial for uncovering the mechanisms.
We believe the dissipation cost is a quantitative measure of non-equilibrium prop-
erty which can be used to effectively show the noise level of the inherent system as

seen in Figure 2.3A.

It is worthwhile to mention there is a difference between cellular networks and
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protein folding/binding problem [[109, 96]. In protein folding and binding, people
typically assume quasi-equilibrium condition and system obeys the usual detailed
balance conditions [[109, 96]. Therefore one can define the usual energy and po-
tential. On the contrary, cellular networks are in non-equilibrium state. There is
no apparent energy or potential to use. We pointed out that we could still define
the landscape as the —l0gPcaqy-siare, Ut we also need to take into account of the
flux in addition to characterize the whole non-equilibrium network. The entropy
production rate which combines both the information of steady state probability P
and local flux can be used to globally quantify the non-equilibrium networks. An
interesting and challenging question is to study the dissipation along the biological

path. We will address this in a separate study.
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Chapter 3

Funneled Flux Landscape
Determines the Stability and
Robustness of the Oscillation
Networks with an Example of
Budding Yeast Cell Cycle

3.1 Introduction

The global stability and robustness are crucial for uncovering underlying mech-
anisms of networks. However, it is very difficult to quantify them for dynamic
systems and networks. This presents a great challenge for the dynamical systems
and the field of systems biology. [42] [23] [109] [96] [29], [62] [76] [3] [S][69, [70]
(98,150,130, 132, 152} [101]].

In equilibrium systems, the global nature of the system is characterized by the
underlying potential landscape U which is usually known (the energy function) and
given a priori. The potential landscape U is directly linked with the probability
P through the Boltzmann equilibrium distribution law P ~ exp[—BU]. The local
dynamics is determined by the gradient of the potential landscape.

The dynamical systems however, does not typically have a gradient potential
as in the equilibrium case. Furthermore, it is not clear how the dynamics is de-

termined. So global natures are hard to address. The dynamic systems however
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are not in isolations. They constantly interact with the environments. The intrinsic
fluctuations also might emerge for mesoscopic systems [84]]. Stochastic description
is therefore more appropriate. Instead of following the deterministic dynamical tra-
jectories, one needs to follow the evolution of the probabilistic distributions, which
is inherently global. The probabilistic evolution is governed by master equations for
discrete space (more general) and Fokker-Planck equations for continuous space.

It turns out the steady state distribution of the probability evolution in long time
limit can give a global quantification of the dynamical systems . [23] [109] [96]
[29]162] [76] [3] [S1(69, [70] [98) 150, 30} 32, 152, [101]. This defines a probability
landscape for characterizing the system. On the other hand, the dynamics of the sys-
tems can be decomposed to gradient of the potential landscape related to the steady
state probability distribution and a curl probability flux. The existence of a non-
zero curl flux correlates with the breakdown of the detailed balance. It quantifies
the degree of the non-equilibriumness. [101]. While this decomposition is shown
explicitly in continuous space through Fokker-Planck equation description of the
stochastic dynamics, the corresponding decomposition of stochastic dynamics in
discrete space from the master equation still needs further explorations [73}26].

In this study, we study the more general stochastic dynamics in discrete space of
the non-equilibrium networks (Markov chains) governed by the probabilistic master
equations. We found the network dynamics and global properties are determined
by two features: the potential landscape and the probability flux landscape. While
potential landscape quantifies the probabilities of different states forming hills and
valleys, the probability flux landscape is composed of many flux loops, with each
loop going through some states and carrying a probability flux value going through
the loop. The flux landscape quantifies the probability fluxes of different loops
through states. These two landscapes can be quantitatively constructed through
the decomposition of the dynamics into the detailed balance part and non-detailed
balance part. These two landscapes can be quantitatively constructed through the
decomposition of the dynamics into the detailed balance part and non-detailed bal-
ance part.

We found that while funneled landscape [[109] [96] is crucial for the stability of
the single attractor networks, the funneled flux landscape is crucial for stable oscil-
lation networks. The stability and the robustness of the networks can be quantified

through a dimensionless ratio of the steepness against the averaged variations or

34



roughness of the landscape (which measures the degree of funnelness, we termed
as robustness ratio RR) versus the changes of the network topologies and stochastic
fluctuations.

This flux landscape picture may provide a new interpretation of the origin of the
limit cycle oscillations: There are always many cycles and loops forming the prob-
ability flux landscapes, each with a probability flux value going through the loop.
With the homogeneous landscape, each loop carries similar values of probability
flux. No global oscillations will be seen, because each loop carries equal and small
probability flux and no individual loops are highly probable. The global oscillation
only emerges when one specific loop stands out and carries much more probability
flux and therefore more probable than the rest of the others. This happens when the
nonlinearity of the inherent dynamical systems increases.

We specific studied the budding yeast cell cycle as an example to illustrate the
idea. We found the flux landscape of the budding yeast cell cycle oscillations fun-
neled, guarantees its stability and the robustness of the oscillations. This is quan-
tified by the robustness ratio RR of the flux funnel landscape with respect to the
changes in topology of the network (wirings) and stochastic fluctuations. The land-
scape analysis here allows us to identify the key factors and structure elements of
the networks in determining the global robustness and stability of the budding yeast

cell cycle oscillations.

Theory and Methodology

3.1.1 Decompositions of the dynamics into detailed balance part
with potential and non-detailed balance part with proba-
bility flux loops

The master equation describes the probability evolution of the stochastic dynamics

of non-equilibrium systems in discrete state space (Markov chains) [85}125]. So the

state variables take discrete instead of continuous values. The corresponding master

equation for the probability evolution is:

dP;
E = —Z TlJP, + Z TJZP]$ (31)
J J
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Figure 3.1: The yeast cell cycle network wiring diagram: wiring diagram, the arrow
sing(—) represent positive activating regulations(1); the inhibition sign(+) rep-
resents negative suppressing regulations(-1); and the loop sign(—|) represent self-
degradation.

36



Where P; represents the probability of state i, and T;; represents the transition prob-
ability from state i to state j. The physical meaning of the master equation is the
conservation law of probability: the local change of the probability of a particular
state 1 in time is equal to the probability flow (flux) from the other states to this state
i given by };; T;;P; subtracting the probability flow (flux) from the state i to other
states 3 ; T;;P;.

We define the steady state flux between state i and j as: Fj; dy—siae = —Li jP§”>+
le-PE.”), where Pl(.”) is the solution of [3.4{in the long time limit (when %). If for
any i, j, Fij,.. dy—state = 0, this Markov chain is called to be detail-balanced, and the
steady state of the system becomes the equilibrium state (no flux), since dp;/dt =
2 Fijren dy-state = 0. However, in general the steady state probability can be ob-
tained, but it does not have to satisfy the detailed balance condition(F; . dy—state T
0),and the system is in non-equilibrium steady state. In other words, the local steady
state probability flux is not necessarily zero. Although the steady-state distribution
is fixed and does not change in time, there can be an internal probability flow among
states.

In order to study the non-equilibrium steady states and characterize the global
properties, one can separate the dynamical process into two parts, a detailed bal-
ance part and a pure irreversible non-detailed balance flux part by decomposing
the transition probability matrix M [73]. The master equation can be rewritten
as dP/dt = MTP, where P is the vector of probability of all the discrete states,
M is the transition probability matrix (or rate matrix) with M;; = T;;,i # j and
M;; = (=1) X2; T;;. We define a matrix C such that the ith row and jth column of
it is C;j = max{T;P{"> = T;PY”,01/P™,i # jand C; = (-1)%;Cj;, and ma-
trix D whose ith row and jth column is D;; = min{Ting“), TﬁPS.‘”)}/PE”) J#E ]
and D; = (-1)X;D;;. It follows that M = C + D and D"P“Y = 0. Since
M'P = (C + D)'P9 = 0, CTP“Y = 0. By separating the transition prob-
ability matrix this way, two Markov processes are obtained [/3]. So the prob-
ability transition matrix (or rate matrix) M for characterizing the dynamics can
be decomposed into two terms: C and D. Both C and D have the same steady-
state(stationary) probability distribution, and one of the processes D satisfies de-
tailed balance(D;;P;** = Dj;P;*"), while the other C is non-detailed balanced and
irreversible (if C;;P;** > 0,C;;P;* = 0). In this way, the dynamics is decomposed to

detailed balance part and non-detailed balanced part.
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The non-equilibrium irreversible part is usually called circulation or flux part,
since it can be further decomposed into flux circles or loops with a flux value on
each circle [73]. The prove of the circulation also provides a way to obtain all the
circles and their corresponding flux values for the dynamic part. By definition of
flux, we have F;; = —CijPl(.S‘") + Cj,-PE.”) = —Fj;. Now define J;; = Cl‘jPESS),i +
JiJi = 0, we have }; J;; = >.;J;. Since Jii = 0, suppose Jyr, > 0, from the
summation equation just mentioned, we can find a k, # ko, k; such that Ji;, > 0.
We can keep on doing this, until a repeat is found: &, € {ko, ki, ..., k,—2}. Suppose
ky = kyy, let iy = kyy,ip = kyy + 1, ..., 0, = ky—y and i,,+1 = i;, We now construct a
circle or closed loop with iy, ..., i,,. Let ry = ming= 5 n,{J3., )}, define r; as the flux
value of this circle. Then subtract their flux value from the whole J matrix, J, thus

a1 _ Jij_rlaie{ila"'ainl},

i If J # 0 (all the elements of JV, repeat what we

Jij, otherwise.
did above to find another circle as well as its flux value, then subtract those fluxes

from JV to get J@. Since the number of non-zero elements in J@ is at least one
less than that in JD, there exit an integer N such that JN*D = 0 (all the elements
of the J matrix are zero). Therefore the non-detailed balanced part of the dynamics,
the flux can be decomposed of finite number of circles or closed loops, each with a
flux value, J = Y=V J' [73].

Therefore we have two quantitative features to characterize the system, one is
the steady state probability and the other is the non-zero flux which can be further
decomposed into loops. The steady state probability obeys the evolution equation
of the transition probability matrix (or rate matrix) with only the detailed balance
part. The detailed balance condition allows one to identify the path independent
probability measures [[114]. This naturally leads to the potential. We can see how
both potential and flux landscape influence the dynamics and stability of the system

through an example on budding yeast cell cycle.

3.1.2 The stochastic probabilistic model of budding yeast cell cy-

cle
The average dynamics of the biological network dynamics can be usually described
by a set of chemical rate equations for concentrations where both the concentra-

tions and the links among them through binding rates with typically quite differ-

ent timescales are treated in a continuous fashion. For some network systems (for
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example, some gene regulation networks), the biological functions can be approxi-
mately described by the on- and off-properties of the network components. Further
more, the global properties of the network might depend less sensitively on the
details of the model. Therefore, a simplified Boolean representation [44] can be
proposed with each node 1 having only two states, s; = 1 and s; = 0, representing
the active and the inactive state of the protein, or high concentration and low con-
centration of proteins, respectively. As illustrated in Fig. we have 11 protein
nodes in the network of budding yeast cell cycle wiring diagram [54]. Altogether,
we have 2!'! states. Each state S with a distinct combination of the on and off of
the 11 protein nodes (the key regulators for the underlying cell cycle process) of
CIn3, MBF, SBF, CIn1-2, Cdhl, Swi5, Cdc20, CIb5-6, Sicl, Clb1-2, and Mcm1 is

represented by {sy, 52, 53, ..., 511} = S. The arrows (—) represent positive regula-

tions or activations (1). Inhibition sign ( | ) represent negative regulations or
repressions (-1). The loop (— — |) represents self-degradations to the nodes which
are not regulated by others. We can then define some rules to follow the subsequent
dynamics of the network. Therefore, the evolution of the network is deterministic.

Due to the intrinsic fluctuations from the limited number of the proteins in the
cell and extrinsic fluctuations from the environments in the interior of the cell [84],
it is then more appropriate to approach the network dynamics based on statistical
description. In other words, we should use a probabilistic description of the evo-
lution of the cellular network dynamics rather than the deterministic or average
description of the dynamics of states in cellular networks. Therefore, instead of
following the on- and off-state switching in the network, we follow the probability
of on and off for each state in the network [30, 32].

To follow the evolution of the states in the cellular network, we need to first fig-
ure out the transition probability from one state S at present time to another state S’
at the next moment. This is difficult to study and in general almost impossible. We
therefore will make some simplifications, so that we can handle the case without the
loss of the generality, by assuming that the transition probability 7 from one state
to another, can be split into the product of the transition probability for each indi-
vidual flip (or no flip) of the on- or off-state from this moment to the next moment.
The transition probability from one state at current state to another at next moment

will be assumed not to depend on the earlier times (no memory). This leads to the
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Markovian process [24, (30, 32]]. The transition matrix T can thus be written as

11
so)=]] T(si(t’)'S(t)), (3.2)

i=1

T(S() = {s1(t), $2(0), ey s11(1))

where ¢ is the current time and ¢’ is the next moment. So the whole transition
probability from current state to the next is split into the product of the transition
probability of each individual flip (or no flip) of the node i. For each individual
flip, the transition probability for a particular node can be modeled as a nonlinear
switching function, mapping the input through the interactions to the output, which
is often used in neural science[35]. The input is defined as I = )] jil a;;S j(t), where
a;j 1s the arrow or link representing the activating (+1) or suppressing (-1) interac-
tions between i and j™ protein node in the network, which is explicitly shown in

the wiring diagram of Fig.[3.1] The transition probability of a single node is:

L+ Ltanhlul], if1#0and s;(t) = 1,
, L Yeanh[ull, ifI# 0and s;(t') =0,
T(s(f') = s(DIS (@) =4 * 1 ? : ' G-
L, if S(r)y=Glandi =0,
1—-c, otherwise,

where c is is a small number mimicking the effect of self-degradations when the
total input to a node is zero and 7y is the number to control the positive feedback
or the excitation (finite transition probability) from the global checkpoint G1 to the
start signal of the cycle cIn3 when G1 is reached. This means we add specifically
a kinetic excitation once the global G1 check point is reached. The rational for
doing so is from the biology that if there is no nutrition supply constantly pumping
into the system, the cell cycle will stop and not continue. So the origin of finite
transition probability from G1 to the start of the cycle state of Cln3 mimicking the
excitation to maintain the cycle, is from nutrition supply. The value u is a parameter
controlling the width of the switching function from the input to the output. The
physical meaning is clear. If the inputs through the interactions among proteins
to a specific protein node in the network are large enough, then the state will flip,
otherwise the state will stay without the flip. If y is small (large), the transition
width is large (small), the transition is smooth and linear (sharp or sensitive and non-
linear) from the original state to the output state. Therefore, we have an analytical

expression of the transition probability.
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With the transition probability among different states specified, finally we can

write down the master equation for each of the 2'! states as

dP;
E = —ZT,‘J'PI"FZTJ‘,'P]‘, (34)
J J

where T;; represents the transition probability from state i to state j specified in
details above. Here i and j are from 1 to 2!' = 2048 states and Zﬁjn P, =1We
solved the 2!' = 2048 master equations numerically of the yeast cell cycle (by
using iterative method) to follow the evolution of the probability distribution of
each state, with the initial condition of equal small probability of all the cell states
(P; = 1/2048). Both the time-dependent evolution and the steady-state probability

distribution for each state are obtained.

3.1.3 Entropy Production and Dissipation

The network is an open system in non-equilibrium state. Although we can obtain
the steady state probability and can define an equilibrium like quantity, the local

flux from j to i (Fj; = ~TiiPisteady-stare + TjiPj ) 1S not necessar-

steady—state J steady—state

ily equal to zero (no detailed balance). The flux defines a generalized force for
the non-equilibrium state along with the associated generalized chemical potential
(fromjtoi) Aj; = ln(% ) [[75, 178l 169]. There is a mapping between the cellular
networks and electric circuits. The flux F;; corresponds to current I and chemical
potential A;; corresponds to voltage V. The non-equilibrium cell network dissipates
energy just as the electric circuits. In the steady state, the heat loss rate is related
to the entropy production rate. The entropy production or dissipation character-
izes “time irreversibility” and provides a lower bound for the actual heat loss in
Boolean network. [75, (78, [74,169]]. The total entropy change is equal to the part
from the system or source plus the part from the bath or sink (dissipation). Since
in steady state the entropy change of the system is equal to zero, thus the total en-
tropy change (source) is equal to the entropy change of the sink (dissipation). The
total entropy change (source) = ), F;jA;j is the entropy production and the sink
term is dissipation. Therefore in steady state, knowing the entropy production, we

know the dissipation quantitatively. The entropy S from the system part is defined

dsS o
dt

). Entropy production rate is a

as § = —); P;iInP; and entropy production rate (per unit time)

bath) is given by: £ = 3 FAj; = ¥, TP (77

dt T;jP;

(system plus
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Figure 3.2: Potential landscape spectrum E, of the 211 states, where u=5:c=0:
0001 and y = 10. The potential values of those 13 states of the biological pathway
are in green lines. They are lower than the rest of the states.

characterization of the global properties of the network.

3.2 Results and Discussions

Since the dynamics can be decomposed into the detailed balance part quantified
by the steady state probability and the non-detailed balanced part quantified by the
fluxes, we start the exploration of the underlying potential and flux landscapes of
the budding yeast cell cycle network.

3.2.1 Potential Landscape of Budding Yeast Cell Cycle

Fig.|3.2|shows the spectrum of the potential landscape U of the 2!! states as negative
logarithm of steady state probability U = —InPg;, where u = 5, ¢ = 0.0001 and
v = 10. 13 states are found to have distinct weights (steady state probability)
[30L 32]. They are identified as biological paths for the system. The potentials of
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the 13 states of the biological pathway are presented in green lines as shown in the
spectrum. They are lower than the rest of the states. Since lower potential means
higher probability, the dynamics tends to converge to the biological pathway. To
quantify the topology of underlying potential landscape, we define the Robustness
Ratio RR as the potential gap between the low potentials of the states (the 13 states
on the biological path) and the average potentials of the rest of the states, versus
the average variance of potentials ( RR = 6U/AU where 6U = |U,,— < U > | and
AU = V< U2 > - < U >2).

For our model of budding yeast cell cycle with excitation, we obtain RR =

2.36757. This shows that states along the biological path are separated from the rest.
If the states of the biological paths are not separated from the rest of the other states,
then the biological paths will be indistinguishable from the rest of the others. Yet,
biological paths (going through stages of the cycle G1, SG2, M etc) are required
to perform the biological function which is the cell cycle with high probability of
appearance. Therefore, the separation of biological path from the rest of the other
states guarantees the biological function of the cell cycle and stability of the system
(with biological path of higher probability).

In order to illustrate the feature of the potential landscape, the U is shown in
Fig.[3.3] 2048 states are projected into 2D square lattice, following the rule of min-
imizing the lengths of strongest connection. The vertical axis and color represent
the potential level of each state in both the potential surface (3d) and the contour
map (2d) laying on the bottom. We can see that the potential landscape shows a
distinct topology with Mexican hat like close ring valley shape. Outside of the ring
valley, the potential is high, and on the ring the potential is low. Therefore, the sys-
tem has a tendency to be attracted down to the ring. As seen, the close ring valley
has low potentials which corresponds to exactly the biological path. This can also
be seen more clearly on the contour map. The biological path completes the circle
or oscillation of the budding yeast cell cycle.

In our earlier study of this system without explicitly put in the excitations from
G1 ground state to the Cln3 start signal [30, |32]], we see quite different dynamics
and landscape. There the potential landscape has a funnel shape. The system has
one dominant basin of attraction pointing towards G1. The model can explain the
dynamical process of budding yeast cell cycle once the start signal kicks off. Since

the end state is always the G1 state (bottom of the funnel or basin of attraction), it
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Figure 3.3: Three dimensional potential landscape and two dimensional contour
in projected 2 dimensional state space. The vertical axis and color represent the
potential level of each state in both the three dimension and the contour map laying
on the bottom. The low potential valley of the potential is a circle or closed ring,
which is exactly the biological cycle path with low potential level, and this can also
be seen more clearly on the contour map.
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does not explain the cycle part. With the excitation explicitly put in, we now see
the potential landscape changes the shape from single attractor funnel which only
explains the check point G1 behavior to Mexican hat shape which naturally leads
to a oscillations dynamics. Clearly, the oscillation is maintained to be stable due
to two driving forces: the potential landscape which tends to drive the system to
the close ring valley and the flux flow part (which we will discuss in details below)
originated of from excitation of G1 back to start signal to maintain the cycle on the

close ring valley. Both are essential for the stability of the budding yeast cell cycle.

3.2.2 Robustness of potential landscape against parameter changes

To study how robust of the network is to the parameters, the RR is calculated with
different parameter sets. By fixing two out of three parameters and changing the
rest one, one can find out how the robustness ratio of the network or the potentials
of the biological cycle path changes. Fig. illustrated that large p with more
sharp switching rate of the transition probability or less fluctuation will lead to
higher probability of the biological cycle path and make it more stable. Fig.[3.4(b)|
shows the robustness ratio of the underlying potential landscape versus different
switching parameters u under fixed ¢ = 0.001 and y = 10. As we see the robustness
ratio increases with u increases, which means a sharper transition or response from
input to output gives more robust network compared with the smoother transition
or response. The value u can also be seen as a measure or characterization of
the strengths of the noise from the intrinsic or extrinsic statistical fluctuations in
the cellular environments [30]. The u could then be related to the inverse of the
temperature (temperature here is a measure of the strength of the noise level). The
slight turnover of RR for large u is caused by the existence of the other traps of
the landscapes. These traps with lower probabilities are not biological and are the
artifacts of the Bollean model. With slightly more fluctuations, the traps will be less
stable and have lower probability, leading RR to increase (gap larger and variance
smaller). Fig. and Fig. [3.4(d)| show the entropy production mimicking the
heat dissipation of the system versus u and RR. We can see that the sharper the
switching is, and therefore the more stable the oscillation is, the more dissipation
cost is. The stable oscillation needs dissipation costs or energy consumptions to
maintain it.

Fig. shows the probability of the biological circle versus different self-
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Figure 3.4: (a) Steady state probability of the biological cycle path versus the
changes of switching or fluctuation parameter . (b) Robustness ratio of the poten-
tial landscape relative to the biological cycle path versus the changes of switching
or fluctuation parameter u. (c) Dissipation costs of the network versus the changes
of switching or fluctuation parameter u. (d) Dissipation costs of the network versus
robustness ratio of the potential landscape relative to the biological cycle path when
changing . (¢ = 0.001 andy = 10)
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Figure 3.5: (a) Steady state probability of the biological cycle path versus the
changes of degradation parameter c. (b) Robustness ratio of the potential landscape
relative to the biological cycle path versus the changes of degradation parameter
c. (c) Dissipation costs of the network versus the changes of degradation parame-
ter c. (d) Dissipation costs of the network versus robustness ratio of the potential
landscape relative to the biological cycle path when changing c. (u = 5,y = 10)
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degradation parameters c (at u = 5,y = 10). We see that when c is large (small) in-
dicating a large (small) self-degradation, the probability of the biological cycle path
increases with decrease of ¢ parameters. This means less degradation gives a more
probable and stable biological cycle path of the budding yeast cell cycle phases (G1,
S, G2, M), and therefore a more robust network. Fig. gives the robustness
ratio RR of the landscape versus the self-fluctuation parameters ¢ (at u = 5, y = 10).
It is clear that the robustness ratio RR decreases with the increase of ¢ parameters,
which means that the landscape is less stable when the self-fluctuations become
large. As we also see Fig. and Fig. [3.5(d)| the dissipation increases as degra-
dation decreases and as the stability of the system increases. This again illustrates
that more stable oscillations requires more dissipations or costs to maintain it.

From the definition, the value of y is to mimic the excitation from the check
point G1 back to the start signal. The larger (less) v is, the faster (slower) or easier
(more difficult) the cell cycle passes from the stationary G1 phase to the excitation
of the next starting round of the budding yeast cell cycle.

Fig. shows the probability of the biological cycle path versus different G1
check point nutrition pumping quantified by parameters y (at u = 5, ¢ = 0.001).
We see that when vy is large (small) indicating a large (small) chance of nutrition
pumping to the start signal node cIn3 when the G1 stationary phase is reached, the
probability of the biological cycle increases with increases of y parameters. As we
know, the pumping of the nutrition to cIn3 in the G1 phase will excite the cell to be
back to the starting phase and trigger a new cycle. This can keep the cell goes in
cycles and therefore stabilize the biological cycle of four phases. Fig. [3.6(b)| gives
the robustness ratio RR of the landscape versus parameter y (at u = 5, ¢ = 0.001).
The robustness ratio RR increases with the increase of y parameters, which means
that the landscape is more stable with more nutrition pumping in. Fig. and
Fig. show that dissipations increase as the higher excitation or increase of
the nutrition pumping. Again to maintain a stable oscillation cycle requires more

dissipations or energy costs to maintain it.
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Figure 3.6: (a) Steady state probability of the biological cycle path versus the
changes of the excitation nutrition pumping parameter y. (b) Robustness ratio of
the potential landscape relative to the biological cycle path versus the changes of
the excitation nutrition pumping parameter y. (c) Dissipation costs of the network
versus the changes of the excitation nutrition pumping parameter y. (d) Dissipation
costs of the network versus robustness ratio of the potential landscape relative to
the biological cycle path when changing y. (u = 5, ¢ = 0.001)
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Figure 3.7: (a) The steady state probability of biological path versus robustness
ratio of the potential landscape relative to the biological path against perturbations
of network topology of wirings. (b) Dissipation cost versus robustness ratio of the
potential landscape relative to the biological path against perturbations of network
topology of wirings. (c) The steady state probability of biological path versus steady
state probability of G1 state against perturbations of network topology of wirings.
The perturbations are the ones from deleting an interaction arrow, adding an acti-
vating or repressing arrow between the nodes that are not yet connected, switching
an activating arrow to a repressing arrow or vice versa, and deleting an individual
node. (u =5, ¢ = 0.001 and y = 10).
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3.2.3 The key wirings or structure motifs of the network for
global stability and robustness from perturbation land-

scape analysis

Based on the original network wiring diagram in Fig. we can do perturba-
tions such as deleting an interaction arrow, adding an activating or repressing ar-
row between the nodes that are not yet connected, switching an activating arrow
to a repressing arrow or vice versa, and deleting an individual node. Take the per-
turbed network wiring diagram as the new input, we calculate the robustness ratio,
RR. Fig. shows robustness ratio, RR of the cell cycle network versus the
steady-state probability of the biological cycle path (with u = 5, ¢ = 0.001 and
v = 10) against various perturbations. There is a monotonic relationship between
the steady-state probability of biological cycle path and robustness ratio RR. When
the biological cycle path is more(less) stable with higher probability, the RR is larger
(smaller), the landscape is more (less) robust. For those points with extremely low
probability of the biological paths, no dominant states are preferred, therefore the
values of RR are not reliable due to the variances of the potential values of all the
states. Fig. ?? shows again that more stable oscillations requires more energy dis-
sipations (ignoring the points of low dissipations with large RR values where the
actual probability of the biological cycle path is low). Fig. shows the rela-
tionship between the probability of the stationary G1 state and the probability of
biological cycle path. Since stationary G1 state plays an important roll in the bio-
logical circle, the stable G1 state will result in a stable biological circle. However,
the biological circle can remain stable when Pg; is not significantly large.

With landscape topology quantified by the probability of biological cycle path,
the robustness ratio and the probability of G1 state, we can characterize the bud-
ding yeast cell cycle biological function globally. We can see how those features
are changed with the network topology of wirings. The network topologies can be
changed from the environmental influences, evolution and epigenetics etc. Fig. 8
identifies the most important links, mutating which will make the network unstable
and loose its functions (low probability of biological cycle path, low robustness ra-
tio, low probability of G1 state etc). Fig. [3.8(b)|indicate the most important links
to be added to the original wiring diagram, while Fig. indicate the most im-
portant links which cannot be deleted, and Fig. indicate the most important
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Figure 3.8: The most important links leading the network unstable and loosing
its functions. (a) indicates the most important links which cannot be deleted. (b)
indicates the most important links to be added to the original wiring diagram, and
(c) indicates the most important links which cannot be switched into the opposite
in activation and repression. (u = 5, ¢ = 0.001 and y = 10).
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Figure 3.9: Flux value of the biological cycle path versus changes of the switching
of the transition probability or fluctuation parameter u. (¢ = 0.001 and y = 10)

links which cannot be switched into the opposite in activation and repression. So
through the global analysis of the underlying landscape of the networks, one can
identify the key network structure elements or motifs (hot spots) responsible for
biological function. This is potentially useful for synthetic network design and net-

work drug design.

3.2.4 Funneled flux landscape leads to stable and robust oscilla-

tions

Here we illustrate how the flux landscape emerge, how that changes with system
parameters, and how the flux landscape is connected to the stability and robustness
of the network.

Fig. [3.9) shows the flux value along the biological cycle path after the decom-
position of fluxes into loops versus u. The monotonic relationship between them
shows that when the fluctuation is weak or sharper switching rate of the transition

probability, the cell will mostly stay on the biological cycle path when the steady-
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Figure 3.10: The flux landscape (U = —In(Flux)) spectrum: statistical distribution
of probability flux values of flux loops. The bottom line above 0 of the flux spectrum
is the biological cycle path with high flux values. (u =5, ¢ = 0.001 and y = 10)

state is reached. On the other hand, high fluctuation or shallower switching rate of
the transition probability will destroy the network from moving along the biological
cycle path.

We can explore the flux landscape through the flux spectrum (statistical collec-
tions of fluxes in individual loops) resulting from our decomposition of the non-
detailed balance part of the dynamics (the transition probability or rate matrix) into
individual flux loops. In Fig. we see clear separation between the domi-
nant probability flux of the biological cycle and the rest of the fluxes from other
loops. Notice that the flux spectrum is in log scale. This defines a funneled flux
landscape. The flux landscape can be defined as U sy, = —InFlux;,,, where Flux is
the probability flux value of the individual flux loop. We can also define robustness
ratio for the flux landscape as flux landscape gap between the biological cycle path
and the averaged fluxes from the other loops versus the variations of the flux values
RRpux = (U= < Upie >)/ \J< U3
quantifies the large separation of the biological path flux with the rest of the other

e >~ < Ufux >2. Large robustness ratio

fluxes. This means there are many flux loops and among them only biological path
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loop stands out to have distinctly larger values of flux (or low value of the flux land-
scape values in U ) compared with the flux values from the rest of the other loops.
This implies a funnel flux landscape which guarantees the stability of the biological
path and related biological function. In Fig. we see the flux landscapes
with dominant loop of the biological cycle path explicitly shown (we did not show
other loops for the purpose of clearness on the figure) and dominant flux flow direc-
tion between states. The thickness of the arrows represents the magnitude of flux
values. As we can see the other states converge to the stable biological cycle path.

The Robustness Ratio of the flux landscapes, RRy,, is calculated to illustrate
how separate the flux of the biological circle from the rest of the cycle loops. The
results are shown in Fig.

Fig. shows the relationship between the robustness ratio of the flux land-
scape versus probability of the biological cycle path as the switching rate of the tran-
sition probability or fluctuation strength i changes. We see an essential correlation
between the two. From unstable to stable oscillation, we can see that larger weights
of the biological cycle path often gives more funneled flux landscape with clear
separation between the biological path flux and the rest of the other flux loops. The
turnover behavior can again be explained by the presence of artificial traps of the
Bollean networks, which become unstable with non-zero fluctuations. This leads to
higher RR (or peak) value for flux landscape (larger gap and smaller variations) for
certain fluctuations (u).

Fig.[3.11(b)|shows that the robustness ratio quantifying the degree of the funnel
of flux landscape ( or the separation of probability flux between biological path
and the rest of the other flux loops), correlates with the robustness ratio of the
potential landscape quantifying the separation of potentials between the biological
path and the rest of the other states, with respect to the changes of u. To guarantee
the stable biological function of cell cycle, the flux landscape must be funneled.
The corresponding potential landscape relative to the biological path (not just a
single G1 state) should also be funneled. Therefore the landscape from flux loop
perspective or from potential perspective (treating the oscillation as a continuous
attractor: limit cycle) are all consistent to lead to a funnel for stability.

Fig. shows the robustness ratio of flux landscape versus the switching
rate of the transition probability or fluctuation strengths. We see lower fluctua-

tions and sharper switch rate of transition provides a more funneled flux landscape,
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Figure 3.11: (a) Robustness ratio of flux landscape versus steady state probability
of biological cycle path against changes of switching or fluctuation parameter pu.
(b) Robustness ratio of flux landscape versus robustness ratio of the potential land-
scape relative to biological cycle path against changes of switching or fluctuation
parameter u. (c) Robustness ratio of flux landscape versus the changes of switching
or fluctuation parameter y. (d) Robustness ratio of flux landscape versus dissipa-
tion costs against changes of switching or fluctuation parameter u. (¢ = 0.001 and
y = 10)
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leading to more stable biological oscillation (ignoring the effects of turn over from
artificial traps of the Bollean model). Since the switching rate represents the proba-
bility of switching upon inputs from the other nodes, or response function. It reflects
the input-output relationship. As u is large the tanh[u/] is highly nonlinear, giving
sharp response. On the other hand, as u is small, the input-output relationship be-
comes linear (tanh[u/] ul). So as we can see a stable and robust oscillation requires
the needs the nonlinear input-output relationships between the network links or con-
nections. Therefore, nonlinearity significantly increase the chance of the dominant
flux loop emerging from the rest of others.

Fig. [3.11(d)| shows the robustness ratio of flux landscape versus the dissipation
of the system. It implies that funneled flux landscape giving more stability (larger
probability of biological cycle path, see Fig. 11a) needs dissipation costs and
energy nutrition supply to maintain. (Again ignoring the effects of turn over from

artificial traps of the Bollean model).

3.3 Conclusions

We explore the global natures of the networks. We found the network dynamics and
global properties are determined by two essential features: the potential landscape
and the flux landscape. While potential landscape quantifies the probabilities of dif-
ferent states forming hills and valleys, the flux landscape quantifies the probability
fluxes of different loops through states. These two landscapes can be quantitatively
constructed through the decomposition of the dynamics into the detailed balance
part and non-detailed balance part. While funneled landscape is crucial for the sta-
bility of the single attractor networks, the funneled flux landscape is crucial for
stable oscillation networks.

This may provide a new interpretation of the origin of the limit cycle oscilla-
tions: There are always many cycles and loops forming the flux landscapes, each
with a probability flux value going through the loop. The oscillation only emerges
when one specific loop stands out and carries much more flux than the rest of the
others. This happens when the nonlinearity of the inherent dynamical systems in-
creases.

We studied the budding yeast cell cycle as an example to illustrate the idea. We

found the flux landscape of the budding yeast cell cycle oscillations is funneled ,
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which guarantees the global stability. The stability and robustness of the oscillations
are quantified through a dimensionless ratio of the steepness versus the averaged
variations or roughness of the landscape (measuring funnelness as we termed as
robustness ratio RR). We explore how RR changes with respect to the changes in
topology of the network (wirings) and stochastic fluctuations. This allows us to
identify the key factors and structure elements of the networks in determining the

stability and robustness of the budding yeast cell cycle oscillations.
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Chapter 4

Adiabatic and Non-Adiabatic
Non-Equilibrium Stochastic

Dynamics of Single Regulating Genes

4.1 Introduction

Uncovering the global principle and underlying mechanisms of gene regulatory
networks is crucial for understanding the associated biological functions. In liv-
ing cells, gene expressions are regulated by a complex and diverse genetic net-
works,which involve an intricate set of biochemical reactions[67]. The large net-
works are often made of smaller modules or motifs [34} 2]. Therefore understanding
the motifs as the building blocks of the whole network is very important.

The simplest motifs are the self regulators: activator and repressor. “Activator”
is a regulatory motif protein that increases the level of transcription, and a “re-
pressor” is another motif protein which decreases the level of transcription. The
transcriptional process is suppressed when the promoter site of the DNA is occu-
pied by a repressor (gene is off) and enhanced when the repressor is dissociated
from DNA (gene is on). Therefore the states where gene is switched on and off
are important for the transcription process. The gene regulation process involves
at least two kinds of biochemical reactions: binding/unbinding reactions of regu-
latory proteins to the genes and synthesis/degradation reactions of the RNAs and
proteins (see Figure. and Figure. [5.2b). Conventionally, it was often assumed
that the binding/unbinding is significantly faster than the synthesis and degrada-
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Figure 4.1: A schematic representation of self-regulating gene circuit. The dimer
of the product protein binds in the promoter and controls the protein synthesis rate,
forming a negative feedback loop for self-repressors (a) and a positive feedback
loop for self-activators (b).

tion (adiabatic limit) [1]]. This leads to the expected single stable state for a self
repressor which could be measured in experiments [/]. While this condition may
hold in some of the prokaryotic cells (for example E. Coli) at certain conditions,
in general there is no guarantee it is true. In fact, one expects in eukaryotic cells
and some prokaryotic cells, binding/unbinding can be comparable or even slower
than the corresponding synthesis and degradation. This can lead nontrivial stable
states appearing as a result of new time scales introduced, [37, 79,145, |15] which is
confirmed by recent experiments [80, 11}, [110]].

Since most cells have a relatively small number of molecules (typically range
from 1 to 10?), the intrinsic statistical fluctuations can make large contributions to
gene expression and must be included in the studies of gene networks [[17, 38, 147]].
The underlying dynamics can not be described by the conventional deterministic
bulk chemical rate equations[7/7, 60, 66, 84, 86]. Instead, one should follow the
evolution of the probabilities which obey the probabilistic master equations. In
bulk kinetics, the deterministic equations usually give only information about local
stability and function. Global stability issue is hard to address. A probabilistic
description is essential for understanding the global biological function.

In this study, we explore the stochastic dynamics of self regulative genes due
to intrinsic fluctuations with finite number of molecules in the cell and the fluc-
tuations from switching of on and off gene states due to regulatory proteins bind-
ing/unbinding to the genes. This is quantified through steady state probability distri-
bution and Fano factors. We link this with recent experiments 80, [110]. We further

study the inhibition and promotion curves in adiabatic and non-adiabatic regime
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and compare with previous studies. We derive the non-equilibrium phase diagrams
of mono-stability and bi-stability in adiabatic and non-adiabatic regimes. We study
the dynamical trajectories of the self regulating genes on the underlying landscapes
from non-adiabatic to adiabatic limit [[/9] and show the analogy to the problem of
electron transfer between two energy wells [37, [/9]. We study the stability and
robustness of the systems through mean first passage time from one peak (basin of
attraction) to another. We also explore global dissipation by entropy production and

correlate with the stability through landscape topography and kinetics.

4.2 Model

Here is a brief discussion of the assumptions and methods used in this work for
self-regulators. The DNA can be bound by a dimer of regulatory protein with the
rate %haﬁn(n — 1) and the dimer can be dissociated from DNA with the rate f:

/’lR

Oy +quapM;, —3 O 4.1)
O 2B O+ guMg 4.2)

where O, stands for the unbound(bound) state of gene @ which will synthesize

protein @, Mz means the monomer regulatory protein of gene 8, and g is for
the multimer-type of proteins [77]. For example, if g4 = 2(4), dimer(tetramer)
proteins of gene S regulate the expression of gene a. Notice that the superscript
“1(0)” in (9}1(0) means the unbound(bound) state of the operator and does not mean
the bound state of regulatory protein. We will also say “gene is on(off)” when the
operator of the gene is active(inactive). Gene will be on when it is occupied by
activators or when repressors are dissociated from it.

Also, we combine transcription and translation into one step and ignore the roles

of mRNAs for simplicity. Therefore, the transcription step is:

0 £ M, for O} (4.3)
0 -8 M, for O° (4.4)
M, —*s 0 (4.5)

where 0 is used to denote a protein sink or source. g,1() is @ protein synthesis rate
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when the gene is unoccupied(occupied) and k, is a degradation rate of protein a.

So for a dimer self-regulator, the master equations will be as follows:

dP h
allt(n) = =5 [n(n = DIP\(n) + fPo(n = 2)
+k[(n+ D)Pi(n + 1) — nPi(n)] + g1[P1(n— 1) — Pi(n)] (+6)
dP h
c(i)t(n) = 5l +2)(n + DIP1(n +2) = fPo(n)

k[(n + DPo(n + 1) = nPy(n)] + go[Po(n = 1) — Po(n)] 4.7

where we ignore the decay of proteins bound on the gene. Also, for probability
P,(n), (@ = 1,0), the dimer (2 protein) bound on the gene is not counted for pro-
tein number n. Details of the solution of master equation is given in supporting

information.

4.3 Results

4.3.1 The steady-state distributions, phase diagrams and under-

lying landscape of self regulating gene

As discussed above, the network under stochastic fluctuations is best character-
ized by the probability distribution which gives a global quantitative measure of the
biological function (phenotypes). The fluctuations not only come from protein con-
centration changes but also the changes of gene states. The steady state distribution
has two contributions: one is from when gene is on and the other is from when gene
is off. P(n) = P,,(n) + P,¢¢(n) [94].

In order to take into account both gene state and protein states, we need to define
four critical parameters and three crucial ratios governing the dynamics: binding
rate constant /4, unbinding rate constant f, protein synthesis rate g,, when gene state
is on and protein synthesis rate g,s when gene state is off, and finally the protein
degradation rate k; the ratio w = f/k quantifies the unbinding relative to the speed
of degradation; the equilibrium constant X,, = f/h quantifies the relative balance
between unbinding and binding; the ratio X,; = (g1 + go)/2k quantifies the protein

production rate relative to the degradation. In all our calculations, we set go = 8 for
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Figure 4.2: Steady state distributions for the on state, off state and the sum as a
function of the number of proteins of, for self-repressors with X,, = 5000, X,; = 54
(a) and self-activators with X,, = 1400,X,, = 54 (b). Phase diagram respect to
different w and X,,; for for self-repressors with X,, = 5000 (c) and self-activators
with X,, = 1400 (d). Purple region represents monostability (single peak in P(n))
and yellow region represents bistability (double peak in P(n)).

self-repressors and g, = 8 for self-activators.

We solve the master equation and show the results. We see in Figure. {.2h
and [4.2p, in the nonadiabatic limit where binding/unbinding is significantly slower
compared with the corresponding synthesis and degradation, i.e., w = f/k = 0.001,
the steady-state distributions P(n) in protein concentration of self-repressors and
self-activators all have two peaks at around g,/k and go/k. These two peaks are
separately from the contributions of protein distributions when gene state is on with
high protein synthesis and when gene state is off with low protein synthesis. We
can think of the two gene states are distinct and there are almost no*“interactions”
between them in the non-adiabatic limit. Two peaks are therefore independent with

one another.
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Although both self repressor and self activator can have two peaks in protein
concentrations from on and off gene state in non-adiabatic limit. The origin and
trend are different. For self repressor (activator), at high protein concentration peak
when gene is on, more proteins will tend to suppress (promote) more, produce less
(more) and make the state less (more) stable and move towards less (more, bounded
by degradation) protein side. At low protein concentration peak when gene is off,
less proteins will tend to suppress (activate) less, produce more (less) and make
the state less (more) stable and move towards more (less, bounded by zero protein
number) protein side. So there is a tendency of merging two peaks into one for self
repressor and self stablization of two peaks for self activator.

When the binding/unbinding is fast compared to synthesis/degradation, the gene
state changes rapidly. Interactions and mixing become stronger between the two
gene states and therefore the two protein concentration peaks. For self repressor,
at a fixed equilibrium constant of unbinding versus binding of regulatory protein to
the gene, increasing the unbinding promotes production of proteins which in turn
represses more, leading the high concentration peak to move downward. Increasing
the binding represses production of proteins which in turn promotes more leading
the low concentration peak to move outward. As a result, the two peaks meet in
the adiabatic limit and merge to one for self repressor. At any moment, the protein
production has a single peak at an average of the on and off gene states (average
production rate of the on and off gene states). Adiabatic limit with one peak in
protein concentration has been studied before but the underlying mechanism is not
so clear as stated here. The non-adiabatic case with two peaks can also appear and
deserve further explorations [37, 79, 94, 45, [15].

For self activator, adiabatic fast binding leads to the shifts of the balance or
preference between the on and off peaks. As a result, we can have either one peak
in protein concentration at on state when we have large protein productions or one
peak at off state when we have small protein productions, reaching mono-stability.
For self activators, there is no tendency as in the self repressor case of merging the
two peaks together in adiabatic limit. Here either on or off peaks is preferred (not
merged).

For intermediate protein productions relative to the degradation at fixed equi-
librium constant, there is no preference for the system to be in either on or off

states. In fact the range of intermediate protein production scales with the equilib-
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rium constant. This guarantees that even for small or large unbinding rate there is
still a chance for co-existence of on and off peaks due to the balance of the corre-
sponding protein productions. Therefore bi-stability can emerge for self activators
in adiabatic limit.

Figure. and show the phase diagrams of self-repressors and self-
activators. Itis easy to notice the similarity between self-repressors and self-activators,
which is due to the symmetry of their master equations: in the non-adiabatic regime
with bistability (two peaks in protein concentrations) and mono-stability (one peak
in protein concentration) in some parts of the adiabatic regime although the origin
of bi-stability to mono-stability (merging versus one peak dominant the other) and
position of single peak (average versus on or off peak) are different. The self ac-
tivators can also have a regime with bistability in the adiabatic and non-adiabatic
limit.

From the steady-state distribution P(n), we can quantify the generalized poten-
tial function U(n) of the non-equilibrium network analogous to equilibrium Boltz-
mann relationship between potential and probability: U(n) = —In(P(n)). This will
map to the potential landscape [[77, 4} 73,198,197, 151, 31, 52,102, 1106, 103} 104].

This is analogous to electron transfer problem [57, /7], where two distinct po-
tential wells with each well labeled by the corresponding electronic state (here po-
tential well is labeled by corresponding gene state) emerge in non-adiabatic limit.
The adiabatic case gives the limit of mixing of two potential wells and leads to an
effective potential.

The adiabatic to non-adiabatic transformations under different conditions can be
tested from experiments [110, [80] through the single or multiple peaks in fluores-
cence intensity, which correspond to the phenotypes. By varying inducer concen-
trations and mutations, one can change either the binding/unbinding or degradation
and therefore effectively w to induce new phenotypes (additional peak compared to
the conventional fast equilibrium one peak case). Our model provides a theoretical
explanation of the recent experiments on self activators [[110} [80].

To understand the global stability, we need to quantify the degrees of fluctua-
tions [S3,49]]. This can be measured by Fano factor, defined as the variance/mean
of a specific distribution: F = o/u, where o and u are the standard deviations
and the mean of the probability distribution, F' = 1 if the distributions were exactly

Poisson, a purely independent random one. The o and i can be measured quantita-
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Figure 4.3: Total Fano factor F = o /u for self-repressors with X.q = 5000 (a)
and self-activators with X,, = 1400 (b) respect to different w and X,,. F = 1 for
Poisson like distributions. Large Fano factors implies large statistical fluctuations
deviating from Poisson distributions.

tively in the experiments [80, 11}, [110]. Large Fano factors implies large statistical
fluctuations deviating from Poisson. In Figure. , , the Fano factor F is
plotted as a function of adiabaticity parameter w and relative production parame-
ter X,4. Qualitatively, the Poisson distribution should be a good approximation for
on and off states separately in the nonadiabatic limit: w < 1, because each gene
state can produce proteins almost independently of gene switching. But the overall
Fano factor for the combined probability distribution is much larger than 1. Be-
cause the system is close to two Poisson distributions with different means added
together, producing large statistical fluctuations deviating from the single Poisson
distribution.

As w increases, effects from mixing between different gene states should pro-
duce larger fluctuations to the Poisson distributions leading to large Fano factors
in the intermediate region for w. The Poisson is poorly suited in these two gene
states and the distribution is spread out with “fatty” tails implying large statistical
fluctuations. In this regime, it is necessary to include the fluctuations from gene
switching.

While in the adiabatic limit w > 1, gene state is fluctuating so rapidly and the
probability distribution for “on” or “off”” or the combination are all Poisson like with
the two peaks in the same position for self repressor. The Fano factor approaches
1 and the the system becomes Poisson-like. For self activators, the Fano factors

are much bigger than 1 in the bistable region even in the adiabatic limit with large
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statistical fluctuations.

In the intermediate adiabaticity regime, for self-repressors and self activators,
the Fano factor increases with protein production X,,. For self-repressors, the dis-
tance between “on” peak and “off”” peak increases with X,,; and the tail for each
peak is caused by the mixing effect from the other peak. So larger peak distance
will lead to bigger tail for each peak and larger Fano factor. For self-activators, the
larger X,; will suppress the “off” state more. Thus the mixing effect from “off”” to
“on” state will be suppressed and the mixing effect from “on” to “off”” state will be
promoted, which causes smaller fluctuation in “on” state and larger fluctuation in
“off” state. Fano factor including both on and off states increases as X,; increases
for self activators. This is consistent with the phase diagrams.

Above all, we noticed that, for self regulators, fluctuations are not only from

intrinsic noise of protein numbers but also from the switching of gene states. The

intrinsic fluctuations are V< n?>—<n>2/ < n >= 1/ v/n for Poisson. When
protein number n (X,;) is large (small), intrinsic fluctuations are small (significant).
The control for fluctuations of switching gene states or adiabaticity is the relative
binding/unbinding to synthesis/unbinding w. If w is larger(smaller), the fluctuations
caused by gene state switching are in general smaller (larger). These adiabatic/non-
adiabatic fluctuations can be directly probed from the ongoing and future single
molecule single gene experiments [110, 80].

Another measure of the change of gene fluctuations with w can be made through
the efficiency of repressor and activator for gene regulations through the proba-
bility of inhibition for self-repressors and the probability of promotion for self-
activators: Pz = ¢( which can be quantitatively measured in the experiments [1].
In the approximation of Ackers er al[l]], large w limit is taken (equilibrium): Pg =
(n)?/((n)?* + 2X.,). While as we see in the moment equations , for self-repressors,
Py = co = ((n?) — (n)1)/((n?) — (n); + 2X,,) where (n); is the number of pro-
teins in unbound gene state. Only in the adiabatic limit, (n) = (n); and with Pois-
son assumption, these two expression will be the same. Figure. f.4p shows that
for self-repressors, the inhibition curves converge to equilibrium approximation in
large w limit. While for self-activators, as shown in Figure. , even in the adia-
batic region, if it is bistable, (n) # (n); and the promotion curves won’t converge to
Ackers’ approximation.

In addition, for different w, the order of inhibition curves for self-repressors and
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Figure 4.4: Total probability Pz of the DNA in the bound state as a function of
the average protein number (n): inhibition curves for self-repressors with X,, =
5000, X,z = 54 (a) and activation curves for self-activators with X, = 1400, X,; =
54 (b). As w increasing, P for both self-repressors and self-activators approach
Shea-Ackers approximation: Pg = n)?/(n)* + 2X,4). For small w, we can observe
new turn over behavior in inhibition curves for self-repressors.

promotion curves for self-activators are opposite. It is because unbound state is

on” state in self-repressors while “off” state in self-activators. For self-repressors,
the “on” state peak will decrease with w. This decreases the probability of inhibition
as adibaticity increases. While for self-activators, the “off” state peak will increase
with w. This increases the probability of promotion as adibaticity increases. The
inhibition and promotion curves will have opposite order in w.

Another interesting observation is that inhibition curves turn over for self-repressors
in non-adiabatic region giving two different trend of inhibition curve in the same
regime of average protein number. This is caused by the dimer formation for gene
regulations. In non-adiabatic region, (n;) = g;/k and (ng) = go/k. (n) = c(ny) +
colno) = Greas () + gt (o) = (o) + ZeGU. For fixed (no) = go/k, the
(n) vs {n;) curve is not monotonic while the inhibition rate is monotonic with {n;):

(n1)?
<nl >2+2X¢>q

binding/unbinding. But for monomer binding/unbinding, (n) = 7S5 (ny) which

co = which make the inhibition rate non-monotonic with (n) with dimer

leads to the monotonic inhibition curve.

We point out here that the adiabatic and non-adiabatic dynamics of gene net-
works can also be probed by the measurement of promotion and inhibition curves
in the experiments in addition to Fano factors.

From the trajectory of monte carlo simulations, we can see how the dynamics
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Figure 4.5: Underlying Landscapes U = —InP(n) and typical trajectories of protein
concentrations in transition from “off”” basin(the peak on P,s¢(n)) to “on” basin(the
peak on P,,(n)) for self-activators of X,, = 1400,X,; = 54 and (a) w = 0.001,
only one gene switch happenes; (b) w = 8.192, some gene switches form “eddy-
induced” diffusion; (¢) w = 1000, many binding-growth-unbinding-decay cycles
and it can be approximated by diffusions in protein concentrations. Blue (red) rep-
resents off (on) state of gene.

occurs and switches between two gene states from non-adiabatic to adiabatic regime
for self-repressors (bi-stability to mono-stability) and self-activators (bi-stability to
bi-stability and bi-stability to mono-stability). Some details are shown in Support-
ing Information.

In the nonadiabatic limit case with small w, as shown in Figure. @]a, only a few
binding/unbinding processes happened. The system stays mostly in a protein num-
ber basin (specific gene state) fluctuating around until occasionally the gene state
is changed through binding/unbinding event of regulatory proteins to the genes, the
system will then be switched from one basin to the other potential surface quickly
and moves on the switched potential surface towards the new basin of attraction
(due to the slow binding/unbinding process) before turning back.

In the intermediate w region, as in Figure. 4.5, there are more binding/unbinding
processes happened. The system stays first in a protein number basin fluctuating
around until the gene state is changed through binding/unbinding event, and will
then be switched from one basin to the other potential surface quickly and stays on
the switched potential surface for a while. Then it will turn back to the original
potential surface through unbinding/binding event. This forms a cycle. The pro-
cesses continues, with each cycle of binding-growth-unbinding-decay, and even-
tually reaches the other basin of attraction, resembling of the eddy current in the
“eddy-induced” diffusion[93].
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Figure 4.6: Mean transition rate k ~ 1/MF PT, from “off” basin to “on” basin, from
“on” basin to “off” basin and sum of them, for self-repressors of X,, = 5000, X, =
54 (a) and self-activators of X,, = 1400,X,, = 54 (b). It is monotonic for self-
repressors but non-monotonic for self-activators.

In typical adiabatic limit as in Figure. 4.5k, there are many binding/unbinding
events at very small intervals of protein concentration changes. The system switches
the gene state rapidly through binding/unbinding event from one potential surface
to the other, moves on the switched potential surface slightly and quickly turns
back to the original potential surface, moves on that surface slightly before the next
binding/unbinding event to bring the system back to the other potential surface to
start another cycle. There are many such cycles of binding-growth-unbinding-decay
with small incremental changes of protein concentrations. The system can be ap-
proximated as an diffusion in protein concentration space with an effective barrier
by averaging over many binding/unbinding events. This analysis is analogous to

electron transfer problem in complex systems [S7].

4.3.2 Mean Transition Rate

In an attractor landscape, the lifetime of an attractor reflects its stability, which can
be measured by the Mean First Passage Time (MFPT). MFPT is the average tran-
sition time induced by noise between attractors on a landscape, since the traversing
time represents how easy to communicate from one place to another. Here we cal-
culated mean transition rate k ~ 1/MFPT from the attractors of gene on (off) to
gene off (on) state as well as the combined time for both self-repressors and self-

activators.

70



In Figure. we found that for self repressor the mean transition rate k ~
1/MFPT increases from non-adiabatic to adiabatic case. This can be understood
as follows: In the non-adiabatic regime, the rate limiting step is the change of the
gene state, increasing the binding/unbinding versus synthesis/degradation increases
the chance of changing gene state and therefore will boost the kinetic rate. This can
also be seen from the fact that the distance between the two peaks becomes smaller
as w increases and off peaks decrease the amplitude significantly while on peaks
increases the amplitude steadily. For adiabatic regime, the position of the on and
off peak tends to be the same, so transition is fast. Similar behavior is seen for the
transition of self activator from mono-stable to mono-stable regime (more details
see Supporting Information).

While for self-activators with bi-stability in both non-adiabatic and adiabatic
case (Figure. [4.6b), there are turn overs for k ~ 1/MFPT both from “on” state to
“off” state and “off” state to “on” state. In non-adiabatic limit, the rate limiting step
is again the binding/unbinding events. Therefore, increasing w will accelerate the
kinetics. On the other hand, as w increases, faster binding/unbinding events and
relatively slower protein number fluctuations will lead to the rate limiting step de-
termined more by the effective barrier in protein numbers separating the two basins
of attraction (slow time step). As a result, the transitions will be more difficult with
the increasing effects from the protein number barrier and « will be smaller. Com-
bining these two mechanisms together , the mean transition rate « will first increase,
then decrease. Once w reaches the adiabatic limit, the transition will totally depend
on the effective barrier in protein number, which will not change with w any more,
and the « will reach a plateau, which agree with [93].

We point out here that by measuring the MFPT in the experiment in different
conditions, one can also probe the the stability and adiabatic/non-adiabatic dynam-

ics of the gene network.

4.3.3 Entropy Production Rate

In Figure 4. 7h, 4.7b, we show the Entropy Production Rate(EPR) for self-repressors
and self-activators with different parameters. In the non-adiabatic regime, for both
self-repressors and self-activators [68]]. EPR increases monotonically with the in-
crease of w. It is easy to understand here because the distribution is bistable and

larger w leads to more binding/unbinding reactions between two gene states (two
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Figure 4.7: Entropy Product Rate(EPR) respecting to different w and X, for self-
repressors with X,, = 5000 (a) self-activators with X,, = 1400 (b). EPR measures
the energy consuming rate for keeping the steady state.

peaks), which will consume more energy. As w reaches the adiabatic limit, EPR
also reaches a limit and won’t increase with w any more. It is because when w is
big enough, the binding/unbinding processes reach equilibrium and even larger w
won’t consume more energy. In the intermediate region of w from bistable in non-
adiabatic case to monostable in adiabatic case, EPR of the self-activator increases to
a maximum value then decreases, because increasing w will also suppress the peak
either in the unbinding state(off state) or in the binding state(on state) depending on
the value of equilibrium constant so that larger w won’t consume more energy in
binding/unbinding reactions. But for self-activators with bi-stability in both adia-
batic and non-adiabatic conditions, such suppression is much weaker, which leads
to a monotonically increases EPR with w.

On the other hand, in the nonadiabatic limit, EPR for both self-repressors and
self-activators increase monotonically as X,; increases. This is because in the nona-
diabatic limit there are two peaks and the distance between two peaks(or wells in
potential) increases with X,;, which makes system consume more energy for com-
munications between two peaks and thus have higher EPR. In the adiabatic limit,
the two peaks of self-repressors in binding and unbinding status overlaps. As X4
increases, the location of both peaks increases, which leads to higher binding rate
gn(n — 1), more binding/unbinging processes and eventually consume more en-
ergy. While for self-activators, EPR reaches the maxim value for same w when it is
bistable, because the communication between two peaks will consume more energy.

Away from this bistable region, the unbinding states are more and more suppressed
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with the increase of X,; while the binding states are more and more suppressed with
the decrease of X,; , which means the binding/unbinding reactions are less and less

likely to happen and EPR gets lower and lower.

4.4 Discussion

We explore the stochastic dynamics of self regulative genes. We found when the
binding/unbinding are relatively fast (slow) compared with the synthesis/degradation
of proteins in adiabatic (non-adiabatic) case, the self regulators can exhibit one or
two peak (two peak) distributions or basins of attractions in protein concentrations.
It shows even with the same architecture (topology of wiring), networks can have
quite different functions (phenotypes), consistent with recent single molecule sin-
gle gene experiments [80, [110]. We further found the inhibition and promotion
curves consistent with previous results in adiabatic regime but show significantly
different behaviors in non-adiabatic regime due to gene fluctuations. We study the
dynamical trajectories of the self regulating genes on the underlying landscapes
from non-adiabatic to adiabatic limit, provide a global picture of understanding and
show the analogy to the problem of electron transfer between two energy wells.
We study the stability and robustness of the systems through mean first passage
time from one peak (basin of attraction) to another and found both monotonic and
non-monotonic turnover behavior from adiabatic to non-adiabatic regimes. We also
explore global dissipation by entropy production and correlate with the stability
through landscape topography and kinetics. This study suggests many theoretical

predictions for experiments to verify.

4.5 materials

For a dimer self-regulator, the master equations will be as follows:

dP(n)
dt

= k[(n+ DP(n+ 1) —nPy(n)] + g [Pi(n - 1) = Py(n)]

h
~5[n(n = DIPy(n) + fPo(n = 2) “4.8)
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@ = K{(n+ DPo(n + 1) — nPo(n)] + gol Po(n — 1) — Po(n)]

+g[(n +2)(n+ 1)]P(n+2)— fPy(n) 4.9)

where we ignore the decay of proteins bound on the gene. Also, for probability
P,(n), (a = 1,0), the dimer (2 protein) bound on the gene is not counted.
The m™ moment is defined as[96]]:

ity = > n"Po(n) (4.10)

n

To get m" order moment equations, multiply »” and then sum over n on both sides
of equ. (#.8) and (#.9). In principle, moment equations are equivalent to original
master equations if we can include all moment equations to infinite order. For mo-
ment equations up to second order, which is accurate enough for most conditions,
we assume the Gaussian distribution for protein numbers. The moment equations

up to the second moment is

d 1 1
% = —EI’ZC1<H%>+ 5]’1C1<I’l1>+f€0 (411)
d 1 1
=2 = Sha@d) - sheyn) - feo (4.12)
W _ %hcl«nﬂ 3y + 2(m YY)
+fco({no) +2) + gic1 — kyei(ny) (4.13)
w _ %hc1<—3<n%> +2m) + 30 N2) - 2(m YY)
—feolng) + goco — kpcolng) (4.14)
d 2 1
w = —5hei3@d) = 2m)* = 3 + 2m)?)
+feo(d + 4ng) + (n2))
+91¢1(2(ny) + 1) + kyey((n) — 2(n3)) (4.15)
d z 1
—(6055;0» = Shei GOy = 2m)* = 15(m)ni) + 10(n)° + 8¢n) = 4m))

—feolngy + goco(2(ne) + 1) + kpco({ng) — 2(ng)) (4.16)

In above equations, the zero moments, ¢; and ¢y measure the possibility that the

gene is unbound and bound; (n;) and (ny) measure the average protein number
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when the gene is unbound and bound; (n}) — (n;)* and (n}) — (ny)* measure the
lowest order of protein number flustration when the gene is unbound and bound.
The master equations and moment equations are basically the same for self-
repressors and self-activators, except g; > go for self repressors while g; < gy for
self activators. The bound state is a “off” state for the self-repressor while an “on”
state for the self-activator. So this observation tells us the existing symmetry be-
tween them. But there is a big difference between self-repressors and self-activators
when the synthesis rate of the off state (g, for self-repressors, g; for self-activators)
goes to zero. Consider the steady-state solution for them by setting 42 "(") = 0. For

(4.8), when n = 0 and n = 1, there are two equations:

dP(0) = kpPi(1) — g1 P1(0) =0 — Pi(1) = —Pl(()) 4.17)
dt kp

dP,(1
c]n( ) _ kp[2P(2) — Pi(1)] + g1[P1(0) — P1(1)] =0

- Pi(2) = —(—)2P1(0) (4.18)
When g, — 0 for self-activators, P;(1) — 0 and P;(2) — 0. Then, for n = 2,

P12 = 3kpPy(3) — 2kpP1(2) + g1(P1(1) — P1(2)) — hP1(2) + fPy(0) = 0
— 3kpP1(3) + fPy(0) =0 4.19)

because P(1) — 0 and P{(2) — 0. For both P;(3) > 0 and Py(0) > 0, P;(3) —» 0
and Py(0) — 0. Checking equations by equations, we find all Py(n) — 0 and
Po(n) — 0 except P;(0). While for self-repressors, the steady state is not such a
trivial solution when gy — 0. Because of the term — f P,(0) in

dPy(0)
dt

= kpPo(1) = goPo(0) + hP1(2) = fPy(0) =0 (4.20)

even gy — 0, we can’t have any similar conclusion as the self-activator case. So, for
self-activators, the off-state is unbound state, once the cell enter state Py(0), it can’t
leave anymore because neither binding/unbinding process can happen nor synthe-
sis/degradation can happen if g; = O; but for self-repressors, off-state is bound state,

the cell can leave the state P,(0) through unbinding process.
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4.6 Exact solution of Steady State

In general, the stochastic model been used to describe biochemical systems with

considering the intrinsic noise can be described by master equations:

d
d_tP(t) = P()QO(1) (4.21)

where P;(¢) is the probability of the state i at time ¢t and Q(¢) is the rate matrix.

For most of the stochastic systems, the distribution will eventually become sta-
tionary when they reach steady-state. If a steady-state distribution m(¢) exists, then
it necessarily follows that the rate of change of n(7) at steady-state is zero, i.e.,
dn(t)/dt = 0, which leads to

Q=0 (4.22)

For a general Markov chain, the Q matrix can be decomposed into the sum of
three matrixes such as an upper triangular matrix U, a lower triangular matrix L
and a diagonal matrix D, i.e. Q = L + U + D. There are a variety ways to find the
numerical exact solution for (4.22). One is the Jacobi method, expressed as:

%D = —p (L + U)x® (4.23)

where £ is the iteration count. The other one is GaussCSeidel iteration:
Y =D+ L)y ' (-U)a? (4.24)
And a more general and efficient method is called Successive over-relaxation(SOR).
7Y = (D + wL)'[-wU + (1 — w)D]n™ (4.25)

Here we will show the steady state distributions from the exact solutions both for
self-repressors and self-activators. Though theoretically the protein number can
reach any large number due to the fluctuation in the system, in reality this number
is finite and usually within the range under the common parameters. So, one can al-
ways choose a large n as a boundary(n = 400 here), beyond which the probabilities
of the protein number states are as small as possible, because the states are barely
reached. On the boundary, the zero flux boundary condition is provided here in case

there is an overflow. This means no synthesis/decay or binding/unbinding happens
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at the state across the boundary.

The steady state distributions for self-repressors and self-activators are shown in

Fig. 4.8(a)} [4.8(b)} #.8(c)|and [A.8(d)| For self-repressors in Fig. interactions

increase as w increasing and peaks for the “on” state and “off” state approaches

to each other and eventually merge together. For self-activators with X,, = 50 in
Fig. [4.8(b)l there are two strong peaks in both “on” state and “oft” state in the
non-adiabatic limit when w is small; the “oft” peak will be suppressed as as w
increasing and finally the system will reach mono-stability(“on” state side) in the
adiabatic(large w) limit. For self-activators with X,, = 1400 in Fig. for
small w, there are also two peaks in both “on” state(week) and “off” state(strong);
the “off” peak will be suppressed as as w increasing and finally the system will reach
bi-stability in the adiabatic(large w) limit. For self-activators with X,, = 1400 in
Fig. 4.8(d)} for small w, there are also two peaks in both “on” state(week) and “off”
state(strong); the “off” peak is hard to be suppressed as as w increasing and the

system will reach mono-stability(“off” state side) in the adiabatic(large w) limit.

(a) Self-repressors for X,, = 5000. (b) Self-activators for X,, = 50.

(c) Self-activators for X,, = 1400. (d) Self-activators for X,, = 3000.

Figure 4.8: The steady state distributions for self-regulators.

Phase diagrams for monostable and bistable are shown in Fig. 4.9(b)
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4.9(c)land4.9(d)} For self-repressors in Fig. the bi-stability appears in small
w region and the mono-stability appears in large w region. For self-activators in

Fig. #.9(b)} [4.9(c)| and [4.9(d) the bi-stabilities show not only in in small w region

but also in large w region for proper X ,(there is no bi-stability region for large w

in Fig. 4.9(b) because the corresponding X, is too small).

6 6
4 4
g2 g2
8o So
-2 2
-4 -4
-6 L L L _6 L L L
50 100 150 200 50 100 150 200
Xad Xad
(a) Self-repressors for X,, = 5000. (b) Self-activators for X,, = 50.

6 6
4 4
g2 g2
go 2o
-2 -2
-4 -4
-6 . . . -6 . . .
50 100 150 200 50 100 150 200
Xad Xad
(c) Self-activators for X,, = 1400. (d) Self-activators for X,, = 3000.

Figure 4.9: Phase diagrams for self-regulators. Blue represents monostable and
yellow represents bistable.

4.6.1 Fano Factor

Fano factor is defined as the variance/mean of a specific distribution: F = o2/u,
where o and u are the standard deviations and the mean of the probability distribu-
tion, and would be equal to 1 for Poisson distribution.

In Fig. A.10(a)} @.T0(b)} E.10(c), [@.TO(D)} A.T0(e), E.T0(H)} E.10(g) .10
100, @.10(), [#.10(k)| and 4. TO(D)], for self-repressors and self-activators with dif-
ferent X,,, the Fano factor F vs w and X, are plotted. Fig. 4.10(a), 4.10(d), 4.10(g)|

and [4.10())| are the Fano factors of “on” states, Fig. {.10(b)} [4.10(e)} .10(h)] and
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4.10(k)| are the Fano factors of “off” states, Fig. Fig. |4.10(c)} 4.10(f), 4.10(1)| and

4.10(1)| are the total Fano factors. The Poisson distribution is a good approximation

for the on and off states separately in the nonadiabatic limit: w < 1, where the
interaction of different gene state is weak and the birth-death term is dominant. But
the total Fano factor for the combined probability distribution is much larger than
1, since the summation of two Poisson distributions are not a Poisson distribution.
As w increases, effects from mixing between different gene states produce larger
fluctuations into the Poisson distributions and large Fano factors in the intermediate
region for w. It means that the Poisson distribution very poorly suited in these two
individual states and the distribution is spread out much, likely with “fatty” tails im-
plying large statistical fluctuations. In this region, stochastic treatment is necessary
for taking care of the fluctuations caused by the gene switch. In the adiabatic limit
w > 1, for self-repressors and self-activators in the mono-stable region, the Fano
factor approaches 1 and the the system becomes Poisson-like again for “on” states,
“off” states and total distributions. In this limit, gene state fluctuates rapidly and
the system can be considered as the single birth-death one again with an effective
synthesis rate from the averaging “on” and “off”” states. So the probability distri-
bution for “on” or “off”” or the combination are all Poisson like with the two peaks
in the same position. For self-activators in the bi-stable region, Fano factors for
“on” states, “off”” states and total distributions are still much larger than 1 because
there are two peaks with “fatty” tails because of strong interactions between “on”
and “off” states. It is easy to notice that for self-activators with different X,,, Fano
factor diagrams are very similar except some shift in X,,.

On the other hand, in the intermediate adiabatic region, for self-repressors, the
Fano factor increases with X, for “on” state (Fig. and “oft” state (Fig.
M.10(b)), while for self-activators, the Fano factor increases with X, for “off” state
(Fig. Fig. 4.10(h)} Fig. @.10(k)) but decreases with X, for “on” state (Fig.
Fig. 4.10(g)} Fig. 4.10(j)). The reason of this happening is as follows: For
self-repressors, the distance between “on” peak and “off” peak increases with X,

and the tail for each peak is caused by the mixing effect from the other peak. So
larger peak distance will lead to bigger tail for each peak and larger Fano factor. For
self-activators, the larger X,; will suppress the “off”” state more. Thus the mixing
effect from “oft” to “on” state will be suppressed and the mixing effect from “on”

to “off” state will be promoted, which causes smaller fluctuation in “on” state and
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larger fluctuation in “off” state.

4.6.2 Inhibition Curve

The change of gene fluctuations can also be made through the efficiency of repressor
and activator: the probability of inhibition for self-repressors and the probability of
promotion for self-activators: Pz = c¢p. In the approximation of Ackers et al[l]
for large w: Pg = n)?/(n)* + 2X.,). While as we see in the moment equations
~ (@8.16), for self-repressors, Py = co = ((n*)1 — (n)1)/((n*)1 — (n)1 + 2X.,)
where (n); is the number of proteins in unbound gene state. Only in the limit of

(n) = (n); and with Poisson assumption, these two expression will be the same. Fig.

“.11(a) and 4.11(b) show that for self-repressors, the inhibition curves converge to

the equilibrium approximation in the limit of large w. Also, inhibition curves turn
over for self-repressors in non-adiabatic region. For the same number of proteins,
one can have a solution with unbound protein increase and bound protein decrease
as well as a solution with bound protein increase and unbound protein decrease,
giving two different trend of inhibition curve in the same regime of average protein
number. This is caused by the dimer formation and binding/unbinding for gene
regulations. In non-adiabatic region, (n,) = g/k and {ng) = go/k

(n)

ci{ny) + conp)

2Xeq <711>2
i+ 2%, G + 2,
<I’l > n 2Xeq(<nl> - <n0>)
0 <n1>2 + 2Xeq

(no)

(4.26)

For fixed (ny) = go/k, the (n) vs (n;) curve is not monotonic while the inhibition

rate is monotonic with {(n;):

(n >2

P L A 4.27
O )+ 2X,, (*427)

which make the inhibition rate non-monotonic with (n) with dimer binding/unbinding.

But for monomer binding/unbinding,

_ 2Xeq + <n0>

(n) = m(’h) (4.28)
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which leads to the monotonic inhibition curve.
While for self-activators, as shown in Fig. 4.11(c)), 4.11(d), 4.11(e), 4.11(f),
A.11(g) and A.11(h), even in the adiabatic region, if it is bistable, (n) # (n); and

the promotion curves won’t converge to Ackers’ approximation. Only in the mono-

stable region of adiabatic limit, (n) = (n); and the promotion curves converge to
Ackers’ approximation. Not liking self-repressors, the promotion curves don’t have
turn over behavior in non-adiabatic w. For self-activators, (n;) = g;/k = 8 is a
constant. According to equ. (4.26)), the (n) vs (ny) curve is monotonic and equ.
, the promotion rate is also monotonic with (n), which make the promotion
rate monotonic with {(n).

For different w, the order of inhibition curves for self-repressors and promotion
curves for self-activators are opposite. It is because unbound state is “on” state in
self-repressors while “off” state in self-activators. When w increase, the interaction
between “on” state and “off” state becomes stronger, which will push two peaks
of “on” state and “off” state towards each other. For self-repressors, the “on” state
peak will decrease with w, while for self-activators, the “off”” state peak will in-
crease with w. For self repressor, the unbound state corresponds to gene on state,
therefore decreases as binding/unbinding increases. This decreases the probability
of inhibition as adibaticity increases. For self activator, the unbound state corre-
sponds to gene off state, therefore increases as binding/unbinding increases. This
increases the probability of promotion as adibaticity increases. According to equ.

(4.27), their inhibition(promotion) curves will have opposite order in w.

4.6.3 Mean First Passage Time

We plot the transition rate k (inverse of mean first passage time: MFPT) from “on”
peak to “off” peak (k,,) and vice versa (k,rr) as well as the combined (ky, =
Kon + Korf)in order to explore the kinetics of traversing from one state to another
on the landscape. This is essential in characterizing the stability of the system. We
found that for self repressor Fig. k increases from non-adiabatic to adia-
batic case. This can be understood as follows: in the non-adiabatic regime, the rate
limiting step is the change of the gene state, increasing the binding/unbinding ver-
sus synthesis/degradation increases the chance of changing gene state and therefore
will boost the kinetic rate. Also, as the binding/unbinding increases, the distance

between the two peaks becomes smaller, “off”” peaks decrease significantly while
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“on” peaks increases steadily, which also make the transition easier. For adiabatic

regime, the position of the on and off peak tends to be the same, so transition is fast.

For self-activators: Fig. {.12(b)| @.12(c) and @d.12(d), we have several different
cases: In Fig. 4.12(c), we observe non-monotonic turn over behavior of «,,, K,f¢

and «,, with respect to w from bistable non-adiabatic case to bistable adiabatic

case for X,, = 1400. The understand is as following: When w is small and system
is in the non-adiabatic limit, the transition between attractors is more dependent on
the rare gene binding/unbinding processes since the binding/unbinding event is the
rate limiting step of the whole kinetics. Once the transition is made from one gene
state to another (from one potential surface to another), the rest is a fast downhill
process towards the potential basin of the other gene state. So increasing w will lead
to faster binding transition and smaller MFPT. On the other hand, as w increases,
faster binding/unbinding events and relatively slower protein number fluctuations
will lead to the rate limiting step determined more by the effective barrier in protein
numbers separating the two basins of attraction (slow time step). As a result, the
transitions over the increasing effects from the protein number barrier will be more
difficult and MFPT will be longer. Combining these two mechanisms together , the
MFPT will first decrease, then increase. Once w reaches the adiabatic limit, the
transition will totally depend on the effective barrier in protein number, which will
not change with w any more, and the MFPT will reach a plateau.

Fig. shows monotonic increase of K,,, K¢ and Ky, versus w, from
bistable non-adiabatic case to mono-stable adiabatic case for Xeq = 3000. While
Fig. 4.12(b)| shows monotonic increase of ,, and k,,, versus w but there is a week
turn over for «,ss, from bistable non-adiabatic case to mono-stable adiabatic case
for Xeq = 50. Though the basic mechanisms are same for self-activators, here
the disappearance of turn overs for k,,, ks and kg, in Fig. @ and «,,, and
Ksum 1n Fig. is cause by the disappearance of bistabilities in the adiabatic
region, i.e., the landscapes become mono-stable before the kappas reach the turn

over point.

4.6.4 Entropy Production Rate

Entropy Production Rate(EPR) measures the energy consumed and converted into

heat in a unit time by the system to keep the system in a steady state. It measures
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the nonequilibrium level for the whole system and is generally defined as:

Mi;P,
EPR = Z(M,-.,-P‘,- — M;;P;)In 7,7, (4.29)
i,

where M;; is the transition rate from state j to state i and P; is the possibility distri-
bution of state i. EPR of self-regulators are shown in Fig. [4.13(a), 4.13(b)l 4.13(c)|

and

In the non-adiabatic region, for both self-repressors and self-activators. EPR

increase monotonically with the increase of w. It is because the distribution is
bistable and larger w leads to more binding/unbinding reactions between two gene
states, which will consume more energy and product larger EPR. As w reaches
the adiabatic limit, EPR also reaches a limit and won’t increase with w any more
because the binding/unbinding processes reach equilibrium and even larger w won’t
consume more energy.

For self-activators, in the intermediate region of w from bistable in non-adiabatic
case to monostable in adiabatic case, EPR of the self-activator increases to a max-
imum value then decreases, as in Fig. 4.13(b), 4.13(c) and 4.13(d), because in-

creasing w will also suppress the peak either in the unbinding state(off state) or in

the binding state(on state) so that larger w won’t consume more energy in bind-
ing/unbinding reactions. But for self-repressors and self-activators with bi-stability
in both adiabatic and non-adiabatic conditions, such suppression is much weaker
and EPR monotonically increases with w.

From Fig. 4.13(a), 4.13(b)}, 4.13(c)|and |4.13(d)} in the nonadiabatic limit, EPR

for both self-repressors and self-activators increase monotonically as X,; increas-

ing because the distance between two peaks increase with X,;, which makes system
consume more energy for two-peak communications and thus have higher EPR.
While in the adiabatic limit, the two peaks of self-repressors in binding and un-
binding status overlaps. As X,, increases, the location of both peaks increase,
which leads to higher binding rate gn(n — 1), more binding/unbinging processes
and eventually consume more energy (larger EPR), as shown in Fig. For
self-activators in adiabatic limit, Fig. @.13(b)} 4.13(c) and §.13(d), EPR reach the

maxim value for same w when it is bistable, because the communication between

two peaks will consume more energy. Away from this bistable region, the unbind-

ing states are more and more suppressed with the increase of X, while the binding
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states are more and more suppressed with the decrease of X,,; , which means the
binding/unbinding reactions are less and less to happen and EPR gets lower and
lower. Again, we observed the similarity for EPR diagrams of Fig. d.13(b), i.13(c))|
and for self-activators with different X,,s.
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Figure 4.11: Inhibition(promotion) Curve for self-regulators.
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Figure 4.12: Transition rate « for self-regulators.
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Figure 4.13: Entropy Production Rate (EPR) for self-regulators.
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Chapter 5

Dominant Kinetic Paths of Complex

Systems: Gene Networks

5.1 Introduction

Identifying the dominant paths from one state to another is crucial in understand-
ing the underlying kinetic mechanisms for complex systems [22]. In living cells,
biological functions are regulated by gene networks formed through the interac-
tions among genes and associated proteins [[17]. Due to the relatively small number
of molecules (typically less than 1000) in the cell, the stochastic nature of bio-
chemical reactions can be very important in determining the behaviors in gene
expression and gene network patterns[17/]. Such stochastic processes can be de-
scribed mathematically by Markov chains with master equations[23]]. Epigenetic
states as the inherited gene expression patterns are very stable because spontaneous
switching events in most genetic systems are rare[/7, 33]. Several approaches
have been proposed to identify the most dominant paths for stochastic processes
between arbitrary states and between stable states to uncover the underlying ki-
netic mechanisms. One formalism applied to complex systems, protein dynam-
ics and folding is to convert master equations into Fokker-Planck diffusion equa-
tions in the continues and adiabatic approximations and quantify the dominant
paths through the functional variations of the path integral actions in continuous
space [64, (100, 56, 16l 105, 91, 190, [19]. Another way is to study the dominant
paths for master equations in discrete space after Laplace transformation[ 100, 82]].

Unfortunately, the short microscopic single jumping time scale in gene networks

89



(10~ ~ 10725) makes computations extremely challenging for macroscopic tran-
sition time scales from basin to basin (10 ~ 1000s). In this chapter, we present a
new formalism to calculate the weight of a path with a relatively large time scale of
a single step and a new way to find the dominant paths for general Markov chains.
In particular, when the time scale of each step is not so small, the method will give
coarse grained dominant paths which can be compared with the Monte Carlo Gille-
spie simulations [27] or experimental observations. As an example, here we study
the dominant paths for gene network motif: self-activators from the basin of “oft”
state when gene is turned off to the “on” state when gene is switched on. We will
also compare dominant paths with the transition trajectories from Gillespie simula-
tions. Finally, we apply our method to calculate the transition rates and transition

time scales between basins.

5.2 Method and Material

Consider the master equations in general:

dP(i,1) )
== Z M;:P(j. 1) (5.1)

where P(i, t) is the possibility of state i at time 7 and the M ; is from state j to i. The
off diagonal term M ; is the probability rate jumping from state j to state i, while
the diagonal term M; is the escape rate from state i. The steady state distribution
Pgg(n) satisfies as ),; M;;Pss(j) = 0, which can give the underlying potential
landscape U(n) = —In(Pgg(n)). With an initial distribution P(i, t = 0), we separate
time O to 7 into N intervals, 6t = T'/N, the solution of master equations @ can be
written in the form of P(i,T) = ), j[]_[f;’:1 Mo iiP(j,0), N — oo with M,, represents
the transition matrix at the time #, = ndét. When matrix M is independent on ¢,
P, T) = 3,;[eM 1P (), 0).

Particularly, choosing initial condition P(i’,0) = 6, @ gives the transition
probability from state i at = O to j at t = T, with the formal solution: P(i,0|j,T) =
SITTY, e84, N — oo. So to the first order of small 6z, we can define
U(i, j,6t) = P(i,01j,60) = YileM6r; = (I + M61);;, with U(, j, 61) = M6t for
i # jand U(,i,6t) = 1 + M;0t = €M, Tt is equivalent to say: with a N-step
specific path from t = O tot = T: (iy,0;...; iy, ndt; ...;iy, T), the weight or the
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transition probability is

N-1
P(iy, 0; ... 0, n6t; ...00in, T) = ﬂ Uiy, iye1,81), N — oo (5.2)
n=0
Here, if i, # iny1, Uip, ine1,0t) = M; ; 6t and if i, = ipy1, Uiy, ine1, 0t) = e Ko

where K; is the total escape rate from state i: —M;;.

nvin+]

However, the formal solution in [5.2]is valid only when the time interval 6t — 0
or equivalently N — oo, which means that the number of steps will be huge if
we want calculate the transition probability as in The computation cost for N
time intervals will be m" where m is the number of nonzero transitions between
two states. For typical gene networks, the average time scale for single jump is
1073 ~ 10725 and the systems need at least thousands of steps to finish the tran-

sition. To find the most dominant path among ~ m!'%%®

paths can be a tremendous
computational challenge. Another disadvantage of using[5.2]directly for the domi-
nant path identification is that the resulting dominant path can be unrepresentative
because the number of total possible paths will be very big and the weight of each
single path will be very small. As N — oo, even the weight of the most dominant
path will be 0.

Here, instead of we provide another way to calculate the weight of paths:
coarse graining. Mathematically,[5.2]is correct only when 6 — 0. So when the time
intervals ot are finite, U(i, j, 6t) should be replaced by the the transition possibility
n(i, j,0t) = P(i,0]j,6t) from state i to state j between two neighbor times, which
can be solved from[5.1] For each i, set the initial distribution P(i’, t = 0) = 6, then
the numerical solution P(j, §t) of [5.1| represents the transition possibility from state
iatt = 0 to state j at r = 0t, i.e., P(i, 0|}, 6¢). Thus, the transition probability from

state i at ¢ = 0 to state j at ¢ = T can be written as

N-1

PGi,01;,T) = Y (| [ 7w iner, 601 (5.3)

paths n=0

Then, the weight (or transition possibility) for a single path (iy, i1, ..., iy) 1s the prod-

uct part
N-1

W(io, Olin, T) = | | #Cins ine, 6) (54)

n=0
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The dominant path is a path which maximizes the product in which can be
realized through simulations. We have to point that[5.4] gives the absolute weight for
a particular path and the relative weight can also be computed from: w(iy, Oliy, T') =
Wi, Olin, T)/ P(i, 015, T).

The advantage of is that now we can use a few finite steps, 50 steps for
instance, to explore the dominant paths. The result can be called “coarse grained
dominant paths”. When N — co, the expression in[5.2]is equivalent with[5.3] From
we can find not only the most dominant path among all possible paths, but also
the relative weight for that path. One interesting result is that the weight for a single
dominant path will become smaller and smaller as number of intermediate steps N
get bigger and bigger. It is because as N increases, one step will split into multiple
steps, the single path for that step will split into multiple paths and only one of them
is more dominant than others.

Then, our new algorithm for quantifying the dominant paths between initial

state and final state for Markov chains can be summarize as following:

e For all is, solve n(i, j,6t) = P(i,0|},6tr) from with initial condition
P(l.,, t= 0) = 6,'1’1'.

e Starting with an existing path with equal time interval 6 = T'/N for each step,
(i, 05 ...; 1y, not; ...; iy, T), randomly select two states along the path i, at n,ot
and i,, at ngdt, calculate the weight of this path W(i,,, n,61li,,, ngor) following

e For each simulation, randomly choose a new path between i,, at n,6f and i,,

at ngot, calculate the weight for the new path W’(i,,, n,0tli,,;, ngér) following
5.4

o If the weight W’ of the new path bigger than the old path W, replace the old
path by the new path. Return to the second step.

As a example. we computed the dominant path from the basin of “off” state
when gene is turned off to the basin of “on” state when gene is switched on for
self-activators. The circuit is shown as in On the DNA, the promotor region
can be bound by a dimer of regulatory protein with the rate %haﬁn(n — 1) and the
dimer can be dissociated from there with the rate f. We use subindex “1” for the
DNA bound state and “0” for DNA unbound state. The synthesis rate for the bound
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Promoter gene

Figure 5.1: Model of self-activators. The dimer of the product protein promotes
the protein synthesis rate, forming a positive feedback loop.

state g, is bigger than the synthesis rate for the unbound state go: g; > go (activator,
gene is activated when regulatory proteins are bound), and the protein degradation

rate is k. Then the master equations can be written as

dpc}t(”) — K+ Py + 1) = nPy(n)] - g[n(n Py
FfPo(n—2) + gi[Py(n = 1) = P (m)] 5.5)
dP()(n) h
o = k[(n+ D)Py(n+ 1) — nPy(n)] + 5[(11 +2)n+ D]Pi(n+2)

—fPo(n) + go[Po(n — 1) = Po(n)] (5.6)

where P,(n) is the possibility for n proteins with the promotor region occupied
when @ = 1 and unoccupied when @ = 0. Here we ignore the decay of proteins
bound on the gene. Also, for probability P,(n), (@ = 1,0), the dimer (2 protein)
bound on the gene is not counted. In this chapter, we won’t specify the unit of time
tand setk =1, g, = 100, go = 8, scaled parameters w = f/k, X, = f/h = 1400.
In principle, the dimension of transition matrix of self-activators is almost in-
finity because the protein number can reach any large number due to the statistical
fluctuations. In reality, this number is finite and usually within the range under nor-
mal parameters. So, we can always choose a large n as a boundary. Beyond this
boundary, the probabilities are zero, because these states rarely can be reached. On
the boundary, the zero flux boundary condition is provided here in case there is an
overflow. This means no synthesis, decays, binding and unbinding happens passing

the state on the boundary. Then, with a finite transition matrix, we can numerically
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solve and eventually find the dominant path.

The simulation results of the dominant paths for 7 = 15 and N = 50 steps per-
formed for different w are shown in [5.2] (a), [5.2] (b) and [5.2] (c) as well as typical
trajectories from Gillespie simulations [27]. It is easy to notice that dominant paths
from are quite similar with the typical paths from Gillespie algorithm. When
w = 0.1, the system is in the non-adiabatic region where the binding/unbinding rate
is much slower than synthesis/degradation rate. For the dominant path in[5.2](a), we
can observe that the system will stay on the initial state for a long time with gene
state unchanged. Once the gene state is changed, the protein number will increase
sharply from the “off”” state basin to the “on” state basin. It is easy to be understood
from the mechanism of self-activators. When the binding/unbinding rate is much
slower than synthesis/degradation rate, the chance of gene state switch is really rare
and protein number will wait in the “off”” state until the gene state is changed. Once
the gene state is changed, the protein number will increase from 8 to 97 very fast
and jump to the other basin, during which the gene state rarely has chances to switch
back. While for the adiabatic region w = 1000, where the binding/unbinding rate is
much faster than synthesis/degradation rate, the protein number increases smoothly
from “off” basin to “on” basin. In this case, the binding/unbinding processes happen
so frequently that the the average occupancy of DNA determines the average local
rate of protein synthesis and degradation. Then, the system acts as if it is diffusing
% — kn and the DNA occupied proba-
bility will be determined locally as ¢, = J% From the dominant paths in
(c), we can see that the protein number slowly goes through the one dimensional

along an effective potential V(n) =

barrier of V(n) by diffusions, then reaches the bottom relatively fast. Also, the gene
state switches from “off” to “on” at n,, = 53.4 which satisfy f ~ %hneq(neq - 1. It
doesn’t mean that gene state won’t change before this point. On the contrary, the
gene state switch on and off all the times. The “off” state is more dominant (fre-
quently appearing) when n < n,, and the “on” state is more dominant (frequently
appearing) when n > n,,. For the intermediate w = 50 in @ (b), the trend of dom-
inant path is between the adiabatic and non-adiabatic path, as expected. It agrees
with the previous classification of dynamics for self-activators as non-adiabatic,
adiabatic, and eddy cycles [93]]. For all three paths, the system will stay around the
most stable state on the path (initial state here) all the time except the necessary

transition time. It is very reasonable because otherwise the stable state can’t be
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Figure 5.2: The paths from “off”” basin to “on” basin and potential landscape U(n)
for self-activators of three different w: thick step lines for the dominant path; thin
fuzzy lines for typical trajectories. Gene state is represented by color: red for “on”
state and green for “off” state.
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stable.

In Monte Carlo simulations, we can see many fluctuations in protein number for
non-adiabatic w , binding/unbinding processes for adiabatic w and eddy cycles for
intermediate w, which do not show up in dominant paths. Because the time interval
we use here is ¢ = 0.3s which is much longer than the average time for a single
binding/unbinding or synthesis/degradation jump, the typical paths fluctuate around
the dominant path. So the dominant paths represent the most important group or
tube of transition paths. The dominant paths also provide an rough approximate
standard to relative weights for paths appeared in simulations or real experiments.
Trajectories close to the dominant paths often have higher weights than trajectories
far away from the dominant paths.

Total transition time 7" play an important role for the transition paths. Dif-
ferent 7' gives different dominant paths with the same initial and end positions.
We can look at the rate of transition probability from 7' — AT to T, defined as
R@, j, T,AT) = ﬁ[P(i, 05, T)— P(,0|j, T — AT)]. R(i, j, T, AT) can be found from
the solution P(i, 0| j, T') of [5.1] For the self-activators, the transition probability rate
from “off”” basin to “on” basin with transition time 7 is shown in[3.3l for different w.
When T is shorter than the necessary transition time 7 as in[5.2] (a), (b) and
(c), the system should go straightly from initial state to final state and the transition
probability rate is pretty low. As T increases, the system will have more and more
chance reaching final state and R(T") increases with T first. When T is longer than
7, the system has to spend a long period of time by repeatedly visiting certain set of
states (the initial state here as in[5.2](a),[5.2](b) and[5.2](c) to arrive the final state on
time 7. So the longer T, the lower the R(T') is, which leads to the exponential de-
crease o« exp(—«T') as observed in[5.3] The time scale 1/« measures relative stability
of the attractor and in[5.4] the rate x vs w is plotted. In non-adiabatic regime, the
rate limiting step for jumping from one basin to another is the binding/unbinding
event. k increases with w due to the increase of the binding/unbinding rate. Further
increases of w creates an effective barrier in the adiabatic limit which slows the
transitions down. So we see the turnover behavior in kinetics of basin to basin tran-
sitions from non-adiabatic to non-adiabatic regimes which is important for future

experiments [95]].
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5.3 Discussion

As a summary, in this chapter we calculated the dominant paths in discrete space for
gene networks. The definition of the weight of a single path provides the possibility
of finding other subdominant paths whose weights are of certain percentage, for in-
stance 50%, of the most dominant path. Furthermore, we can split any intermediate
step ot into multiple shorter steps to study detail dominant paths within this time
interval o¢. All formalisms in this chapter can be universally extended to stochas-
tic processes of equilibrium (with detailed balance) and non-equilibrium (without

detailed balance) complex systems which can be described by Markov chains.
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Chapter 6

Landscape and global stability of
Non-adiabatic and adiabatic

oscillations in gene networks

6.1 Introduction

The dynamical systems and networks are everywhere, ranging from biological and
non-biological systems, such as cells, organisms, living creatures, evolution, eco-
logical, social, and economical, atmosphere weather, chemical reactions, energy
and information transport, stars and planets, galaxies and the universe. The global
stability of these systems is essential for the function. However, it is still a great
challenge nowadays to explore the global natures for the complex dynamical sys-
tems.

The hint comes from the fact that in equilibrium systems. The dynamics of the
system is determined by the gradient of the interaction potential energy. The global
stability of complex systems can be quantitatively studied once the underlying inter-
action energy is known or in other words, the potential energy landscape is known.
However, most of the dynamical systems are not integrable non-equilibrium sys-
tems. It implies that the dynamics of the system can not be written as a gradient
of the potential energy as the equilibrium system. Since the potential landscape
is not known, the global stability can not be easily studied. But, analogous to the
equilibrium case where the interaction potential energy is related to the equilibrium

probability distribution, we can define the underlying potential landscape for dy-
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namical non-equilibrium system as logarithmically related to the steady state prob-
ability distribution of the system. The non-equilibrium potential landscape defined
this way cover the entire state space of the system and can be used to probe the
global stability, especially for the oscillatory dynamics as in this study.

In a living cell, dynamic biological behaviors are regulated by complex and di-
verse genetic networks. The oscillatory behavior as the “biological clocks” is one
of the most interesting enigmatic phenomena. Such rhythms exist at many levels
in living organisms, from the cell proliferation cycle to the circadian sleep-wake
cycle of higher organisms [9, 111} 21} 154} [14]]. Recently, many timing mechanisms
accompanied with periodic behaviors are intensely studied experimentally and theo-
retically, including three-gene repressilators [S3]], self-repressors with explicit time
delays [81,[12]], circadian clock networks [96] and engineered two component motif
from synthetic biology with the interplay of positive feedback and negative feed-
back(activated repression) [81]].

On the other hand, intrinsic fluctuations of gene networks, arise from the num-
ber of proteins available in the cell. Furthermore, another type of fluctuations arise
from the the biochemical reactions of protein binding/unbinding to the genes, can
be significant for oscillatory dynamics. It will be crucial to study of oscillatory
behavior in an integrated and coherent way. Conventionally, it was often assumed
that the binding/unbinding is significantly faster than the synthesis and degradation
(adiabatic limit) [[1]. This leads to the expected single stable state for a self repres-
sor which could be measured in experiments [7]. While this condition may hold in
some of the prokaryotic cells at certain conditions, in general there is no guarantee
it is true. In fact, one expects in eukaryotic cells and some prokaryotic cells, bind-
ing/unbinding can be comparable or even slower than the corresponding synthesis
and degradation. This can lead nontrivial stable states appearing as a result of new
time scales introduced, [37, [79} 45, [15]] which is confirmed by recent experiments
(80, 11} [110].

In this study, we will establish a spatial landscape framework to explore the
global stability and robustness of the dynamical systems and networks. We explore
in particular a gene network motif appeared in the experimental synthetic biology
studies of two genes mutually repress and activate each other with self activation
and repression (activated repression). This network has been engineering in the ex-

periment from synthetic biology and generated robust oscillations in Escherichia
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coli [81]. In this designed system, as shown in Fig. (a), the hybrid promoter
(Piacjara—1) 1s composed of the activation operator site from the araBAD promoter
placed in its normal location relative to the transcription start site, and repression
operator sites from the lacZYA promoter placed both upstream and immediately
downstream of the transcription start site. It is activated by the AraC protein (A)
and repressed by the Lacl protein (R). The araC, Lacl genes are under the control
of Piacjara-1 to form co-regulated transcription modules. It was found that if two
identical promoters Pjyc/qq-1 control the transcription of AraC and Lacl proteins,
the network can generate robust oscillations when the binding/unbinding speed is
fast [81]. However, we found with the circuit wiring, if the two hybrid promoters
controlling AraC and Lacl proteins are not identical, robust oscillations can be gen-
erated even when the binding/unbinding speed is very slow (non-adiabatic). When
the binding/unbinding speed is very slow (non-adiabatic), the gene network pro-
vides another level of complexity for the dynamical process. Instead of looking
only different proteins, we need also to monitor simultaneously the states of genes.
The transcriptional process is suppressed (activated) when the promoter site of the
DNA is occupied by a repressor (activator) and enhanced (repressed) when the re-
pressor (activator) is dissociated from DNA. Therefore, the gene state of the pro-
moter is switched on(activated) or off(repressed) is important for the transcription
process and the production of functional proteins. So, gene regulation processes
involve at least two kinds of biochemical reactions: binding/unbinding reactions of
regulatory proteins to the promoters and synthesis/degradation reactions of proteins.
Stochastic noise generated by protein binding/unbinding processes was studies in
single gene regulation circuits [13} 28], toggle switches [13] and competence cycles
in Bacillus subtilis [14]]. Here, we found that it can be a possible mechanism for
robust oscillation or limit cycles.

In addition to the conventional deterministic chemical rate equations, we will
explore the underlying master equations describing intrinsic fluctuations. The solu-
tion of the master equations will result in a global probability landscape which can
address the stability or robustness of oscillations. We found that coherent limit cycle
oscillations emerge in two regimes, adiabatic and non-adiabatic regimes. In both
regimes, the spatial landscape has a topological shape of Mexican hat in protein
concentrations. The shape of the Mexican hat changes from one spatial location to

the other. The shape of the Mexican hat provides the quantitative description of the
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capability of the system to communicate with each other. Therefore, the topology
of the landscape quantitatively determines the global stability and robustness of the
dynamical systems and networks. The coherence of the oscillations are shown to
be correlated with the shape of Mexican hat characterize by the height from the top
to the ring of the hat.

In the adiabatic regime, the binding/unbinding of regulatory proteins to the pro-
moters are fast compared with the synthesis and degradation rate of the proteins.
Mexican hat shape topology of the landscape is mostly determined by the averaged
(over the fast binding and unbinding) nature of protein synthesis and decay. The
oscillations are more stable as the binding is faster compared with the synthesis.
In the non-adiabatic regime, the binding and unbinding of regulatory proteins to
the promoter are slow compared with the synthesis and decay rate of the proteins.
Mexican hat shape topology of the landscape is mostly determined by the binding-
unbinding of regulatory proteins to the genes. The oscillations are more stable as
the binding is slower compared with the synthesis. The two regimes give the two
mechanisms of producing the spatial temple oscillations: from the adiabatic regime
with nonlinear cooperative interactions and from the non-adiabatic regime with time
delays due to the slow binding to the gene. Such oscillations are robust in the large
range of parameter. With change the binding/unbinding rate, the oscillation period
can be easily tuned without change the amplitude much. Such design is suitable
for biological rhythms like heartbeats and cell cycles which require a near constant
output over a range of frequencies [54/]. We also generated robust oscillation both
in deterministic and stochastic sense with single 2-step negative feedback loop with
suitable time delay due to the slow binding/unbinding process. It means positive
feedback is not necessary for oscillations but can make oscillations more robust.

Our landscape framework is general and can be applied to the other dynamical

systems and networks to explore the global stability and function.

6.2 Methods and Materials

In a gene regulating network, the hybrid promoter « can be bound by the regulatory
protein S with the binding rate /4,5 and dissociation rate f,z (both h.z and f,z can
be depend on protein number ng). The synthesis of protein a is controlled by the

gene state of promoter a. For a system with activated repression, there is two types
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of genes A and R to be translated into activators A and repressors R respectively.
The activators A can bind to the promoter of gene A(R) to activate the synthesis rate
of A(R); repressors R can be can bind to gene A(R) to repress the synthesis rate of
A(R). Then each gene has 4 state and total system has 16 gene states. Then, with
the degradation of proteins and taking transcription and translation as an one-step
process (ignore the roles of mRNAs), this model can be expressed by the following

chemical reactions:

Oy +2My = Y (6.1)
O +2My 2 oY (6.2)
O + 4My ;jg: 910 (6.3)
OY +4Mz 2= OF (6.4)
M SV (6.5)
M, 5 0 (6.6)

where @ = A for activators and @ = R for repressors. For the gene state 0, the
first index i = 1(0) stands for the activator protein A unbound(bound) on promoter
a; the second index j = 1(0) stands for the repressor protein R unbound(bound) on
promoter a. g,, is the synthesis rate of protein @ when the gene « in state y. k, is
a degradation rate of proteins a. My indicates the monomer regulatory protein .
The distribution of the microstate is indicated as P, g, ,, (14, ng) where index a,(a,)
present gene G4 occupation state by protein A(R) and index r,(r,) present gene Gg
occupation state by protein A(R). Here activators A bind on gene A and R as a dimer
with binding rate %hAAnA (ng—1)and %hRAnA (ny — 1) respectively; activators R bind
on gene A and R as a tetrimor with binding rate ﬁhARnR(nR — 1D(ng —2)(ng —3) and
ﬁhRRnR(nR = D(ng = 2)(ng — 3).

Then, there will be 16 Master equations but we will list them in the supporting
information. In the adiabatic limit, the binding/unbinding processes are much faster
than the synthesis/degradation. Then the gene states can be averaged out and the

system can be simplified into a 2 dimensional birth/death precess with effective
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synthesis rate:

£ +m—A £ +mx—§

[1 + iX_A][l + 4—X—§q]
[f;z_l le ;ﬁ f_ 41v XR
8err = K (6.8)
[1 + 5;_?][1 + 5 1 XR]
The steady state distribution satisfies
dpP f;f,f(nA, ng)
——— =0 (6.9)

dt

for all i, j,I,k. Then the total probability distribution is PSS = ¥, P\, One
ij
direct way to find the steady state PSS is through Gillespie kinetic simulations.
Also, it is helpful to study deterministic moment equations [[12]]. The m” moment

1s defined as:

(n")y = ) n"Py(n) (6.10)

n
where y indicate the general gene state for the whole cell, 1111, 1100, 0001, etc. In
principle, moment equations are equivalent to original master equations if we can
include all moment equations to infinite order. However, the Hartree-type approxi-
mation, an approximations for electron wave functions in multielectron atoms, will
be useful. It considers the probability distribution for each type of protein separate
from that of the other and only has a mean-field type of effect on the other. With
the simplest Poisson assumption, moment equations only involve 16 equations.
From the steady-state distribution PS5, we can quantify the generalized po-
tential function U of the non-equilibrium network analogous to equilibrium Boltz-
mann relationship between potential and probability: U(ny,ng) = —In(P$5)(n)).

This will map to the potential landscape.
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6.3 Deterministic trajectories and Stochastic Trajec-

tories

The parameters are set as following. The protein degradation rate k4, = 0.2 for the
activator A and kg = 0.005 for the repressor R. Both genes have maximum protein
synthesis rate when they are occupied by the activator A and unoccupied by the
repressor R: g, = ka = 48X, = 4kg. Here, in gus, the first index indicates the state
of the promoter site for A and the second index for R. Also, we set the activation
factor f, = 100 and repression factor f, = 100000: g5, = fugt, = fr& = fafr&los
g8 = f.8% = f.88, = fuf:g%,- The binding/unbinding precesses are asymmetric

between gene A and gene R:

hra # haa = ha,  hag = hgg = hg (6.11)
Jra # faa = far Jar = Jre = Jr (6.12)

We fix wy = fa/ka = wr = fr/kg = 1000, same derivative parameter: equilibrium
constant X5, = fra/hgra = faa/haa = 450, X5 = far/har = fre/hrg = 33750
in all binding/unbinding processes. The parameter wgs = fra/ka indicate the bind-
ing/unbinding speed of activator A to the gene R. Solutions of deterministic moment
equations for different binding/unbinding rate wg4 of the activator A on gene R are
shown in Fig.

From the deterministic solutions, we found the system can keep robust oscilla-
tions and limit cycles in a large range of parameters, as shown in phase diagram
of Fig. (c), which are also demonstrated by experiments [81]. However, it
is noticed that the oscillation mechanism changes from the adiabatic region (fast
binding/unbinding rate wga) to the non-adiabatic region (slow binding/unbinding
rate wga). In adiabatic region, oscillations come from with nonlinear cooperative
interactions of negative feedbacks in gene circuits. The trajectories of the activators
A are relatively smooth, as shown in Fig. [6.2](e). While in the non-adiabatic region,
activators(A) behaviors like sparking in periods, as shown in Fig. [6.2](a). Such os-
cillations are due to the non-adiabatic binding/unbinding processes, whose kinetic
mechanism is very different with oscillations in adiabatic region.

In addition, stochastic trajectories from Gillespie simulations for different wgss
are given in Fig. (c), (f) and (i) for different wg,4. In the small wg4 non-adiabatic
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region, since the binding rate of A on gene R is small, system will waiting long
time in states with small n4 until A is dissociated from gene R. Then the oscilla-
tion is initiated by the dissociation and the concentration of the repressor R will
decrease without the activation from A. The low concentration of repressor R will
have less repressions on activator A and a spark happens which make n,4 rocket to a
large value. With a large concentration of A, the hybrid promoter on gene R will be
higher chance to be bound by the activator A because the binding rate is ~ ’%nf‘
Once gene R is occupied by the activator A, ng will increase and repress ny to a
small value for a long time (because unbinding rate fz4 is small in non-adiabatiic
limit) until next dissociation of activator A from gene R happens, which starts the
the next spark and another round of oscillation (limit cycle). In this process, fluctua-
tions arising from the the biochemical reactions of protein binding/unbinding to the
promoters are significant for oscillatory dynamics. While in the large wg, adiabatic
region, the state of gene R switches all the time and the effective protein synthesis
rates g.rr(na,ng) are determined by the average weight of each gene state which
depend on the molecular concentration of A and R. The oscillation process in nona-
diabatic region is controlled by the time delay of the negative feedback because of
the slow binding/unbinding of activator A. It means the period of the oscillation or
limit cycle is more controlled by the binding/unbinding rate of the activator A on
gene R. In Fig. we demonstrated the changing of oscillation period and am-
plitude with the changing of wg4. We noticed that the oscillation period decrease
monotonically with the increasing of wg4. So it can be tuned in a large range by ad-
justing the binding/unbinding rate wgs without changing the oscillation amplitudes
very much, which is verified in experiments [81]. Such gene expression design is
important for biological rhythms like heartbeats and cell cycles which require a near
constant output (amplitude) over a range of frequencies [54]]. However, in the adia-
batic region, because of the different oscillation mechanism (nonlinear cooperative
interactions), the oscillation period won’ t change any more with the change of the

binding/unbinding rate.

6.4 Distributions and Landscapes

The robustness of oscillations can also be shown by probability distributions or po-

tential landscapes. For a stable oscillation, the landscape in A-R plane will be a

107



clear Mexican hat shape, because the stochastic trajectories fluctuates around the
limit cycle and lead a higher probability on the ring than the center. Mexican hat
shape landscape is a typical landscape for robust limit cycles (closed loop 2 dimen-
sional oscillation) [96]].

By Gillespie simulations, we observed sharp Mexican hat landscapes in both
the adiabatic region (large wg4) and nonadiabatic region (small wg,), but blurred
in the intermediate region between them, as shown in Fig. In the adiabatic
region, the oscillation mechanism is the nonlinear cooperative interactions of neg-
ative feedbacks which works only in large wga limit. In the non-adiabatic region,
the oscillation mechanism is the time delay of the negative feedbacks which need
the condition of small wgy4 rate. It is noticed that in the adiabatic region (large wg,),
the ring of the limit cycle in the landscape is relative smooth. However, in the non-
adiabatic region, there is disconnected gaps on the right side of the ring and left side
of the ring, which is due to the gene state jumping.

Barrier height is a good quantity to measure how sharp the landscape is a
Mexican-hat like. It is defined as the potential(U = —[nP55) height different be-
tween the peak inside the limit cycle and the peak on the limit cycle loop. Barrier
heights for different wg, are shown in Fig. @] (a). With the increase of wgy4, the
barrier height first decrease then increase. Such turn over behavior confirmed our
observation that there are robust oscillation(sharp Mexican hat) in both the adiabatic
region (large wg4) and nonadiabatic region (small wg,) but only week oscillation
(blurred Mexican hat) in the between. It also confirms our previous conclusions
from deterministic analysis.

In addition, we calculated the degree of coherence in oscillation measured by

9 ¢

“phase coherence”. “phase coherence” is defined as [S3]:

¢ = 2EH0000)
0]

(6.13)

where 6 is a step function and phase angle ¢(¢) is the angle between N(#) and N(z+7).
¢ ~ 0 when the trajectory move randomly without any coherence. £ increases when
the regularity of the oscillation increases. & approaches 1 when the oscillation is co-
herent. The phase coherence for different binding/unbinding rate with 7 = 0.01/kg
is shown in Fig. [6.5] (b). We noticed that strong coherent oscillation happened

in adiabatic and non-adiabatic region. It correlates with the shape of Mexican hat
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characterize by the barrier heights: the height from the top to the ring of the hat.
Both the barrier heights and phase coherence indicate two mechanisms oscil-
lations. In the adiabatic regime (fast binding and unbinding), Mexican hat shape
topology of the landscape is mostly determined by the averaged (over the fast bind-
ing and unbinding) nature of protein synthesis and decay. The oscillations emerge
from nonlinear cooperative interactions and are more stable as the binding is faster
compared with the synthesis. In the non-adiabatic regime (slow binding and un-
binding), Mexican hat shape topology of the landscape is mostly determined by
the binding-unbinding of regulatory proteins to the genes (averaged over the fast
synthesis and degradation of proteins). The oscillations emerge from time delays
due to the slow binding to the gene and are more stable as the binding is slower

compared with the synthesis.

6.5 Oscillation with only Negative Feedback Loops

In addition, we discovered another region in parameter space that would support
oscillatory behavior controlled by a time delayed negative feedback loop, with the

network circuit shown as in Fig. (b) and chemical reactions:

Oy +4Mz =8 0 (6.14)
O +2M, = 0O (6.15)
O S Y JUNG L. S VS (6.16)
M, s 0 (6.17)

The time delay effect is from the intermedia step that R can bind on gene A and
repress the synthesis of A, A can bind on gene R and enhance the synthesis of
R, which forms a two-step negative feedback loop. Thus, the time delay effect
strongly depends on the binding/unbinding rate. With suitable time delay and pa-
rameters: k4 = 0.2, kg = 0.05, g = 4gf = « = 80, f4 = 100, fr = 100000,
wa = falka,wr = fr/kr = 1000, X?q = 450, qu = 33750, robust oscillations can
be generated from this negative only feedback loop, as shown in Fig. [6.6] Because
of the relatively slow binding/unbinding speed w, of the activator A, the dynam-
ics is quite similar to the nonadiabatic oscillation case in the dual-feedback loops.

According to the deterministic trajectories in Fig. [6.6](a), (c) and stochastic trajec-
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tories in Fig. [6.6] (b), the activator A still oscillates like sharp sparking, just as the
case with positive feedback. The oscillation is initiated by the dissociation of the
activator A from promoter site of gene R. Then the concentration of R decreases
to a level that a sparking of the concentration A is triggered and the activator A
rebinds to gene R which promotes the concentration of R and a limit cycle fin-
ishes. It also gives a sharp Mexican hat shape landscape as shown in Fig. [6.6] (d).
It was discovered that with multiple intermedia steps such as transcription, trans-
lation, monomers to dimers, dimers to tetrimors, tetrimors binding on promoters,
oscillations can be generated [12, [81]. Here we found that with the non-adiabatic
binding/unbinding, robust oscillations can be generated by a 2-step negative only
feedback loop. So the positive feedback is not necessary for a stable oscillation,
but it will make the oscillation more robust. However, the positive feedback can
make the oscillation more robust as shown in phase diagrams Fig. [6.1] (c) and (d).
With positive feedback, the oscillations robustly exist from small wgy to large wga,
while without positive feedback, oscillations are not robust and exist only in a nar-
row range of relatively small wgs. When the binding/unbinding rate is too slow or
too fast, the oscillation and limit cycle will perish and the system will return to the
monostable steady state. The barrier heights for different wg,4 as in Fig. [6.5] (a)
show that in the robust oscillation region there are sharp Mexican hat landscapes
and the central barrier of the limit cycle is high, which means that the trajectories
are kept on the path on the ring and has little chance of crossing the centre barrier.
The phase coherence results (for 7 = 0.01/kg) as in Fig. [6.5] (b) also agree with
the barrier heights which characterize the shape of Mexican hat: the higher central

barrier height, the more robust and coherent oscillations.
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Figure 6.1: (a) Network diagram of the dual-feedback network: two genes mutu-
ally repress and activate each other with self activation and repression. (b) Network
diagram of single loop negative feedback with one intermedia steps. (c) Phase
diagram of dual-feedback network (black: oscillation region; white: monostable
region). (d) Phase diagram of single loop negative feedback network (black: oscil-
lation region; white: monostable region).
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