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Abstract of the Dissertation

Content-based Access Control

by

Michael Andrew Hart

Doctor of Philosophy

in

Computer Science

Stony Brook University

2011

In many contexts, users are either unable or unwilling to specify their access control policies.  In 
Data Loss Prevention, for example, users cannot fully express what is secret in rule-based 
formats.  Many users are unwilling to use access controls, particularly in the Web 2.0, because 
they are too draconian, leading to disastrous consequences in terms of privacy.

To address both of these issues, we have introduced the concept of Content-Based Access 
Control (CBAC).  CBAC combines content recognition with policy acquisition and enforcement. 
A CBAC-enabled system can be trained to recognize policy violations by learning what is secret 
from examples.  This defense will discuss how CBAC can be successfully applied to Data Loss 
Prevention, Wikipedia Vandalism and the Web 2.0.  Usability is integral to providing better 
CBAC systems and privacy interfaces, and this defense demonstrates improvements in the 
usability of these systems.
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Chapter 1 Introduction

The reach of Web 2.0 applications has gone beyond most everyone's expectations. 

Facebook started as a social network confined to Harvard University [1] and now boasts over 

700 million users, 70% of them outside the United States [2].  Twitter, despite its inherent 

brevity, breaks news stories [3] and the word “tweet” has entered the lexicon of many Internet 

users [4].  Justin Bieber, an international pop sensation, got his start singing covers of other 

artist's songs on the video sharing community YouTube [5].

The cost to the privacy and welfare of individuals, however, has been great.  User privacy 

has been compromised by confusing and invasive practices [6] and Web 2.0 service providers 

have continuously moved to share more of their users' private information with third parties for 

financial gain. Users have been fired for what they have written on their social networks [7][8]

[9][10] and blogs [11][12].  Lawsuits and criminal cases have emerged from comments and blog 

postings online where authors believed they were within their first amendment rights [13].  More 

gravely, harassment on Facebook [14] and personal ads on Craigslist [15] have led to tragic 

outcomes.

A failure of access control is partly to blame for these dire events.  Because of the 

amorphous nature of personal information, users are often unable or simply unwilling to specify 

their privacy preferences.  In many situations, users are unable to translate their policy into 

machine readable terms because they cannot easily encode their preferences in the rule-based 
1



formats that underpin many access control systems, despite being able to articulate in simple 

language what is sensitive or not permitted.  Users are also unable to protect their privacy when 

it comes to phishing.  Many authentication systems require the user to be vigilant and therefore 

part of the authentication system.  Phishers exploit lapses in user vigilance to trick them into 

revealing their username and password for valuable online services, such as their banking 

account.  

Users are unwilling to use access controls that are tedious and require substantial effort to 

maintain.  The problem will only grow worse as more content is stored online, new channels of 

communication (e.g. social networks, email, tweeting) open, and agents, such as search engines, 

become more capable of processing and inferring facts from this information.

The rest of this chapter will provide the background and ramifications of access control 

on the Web 2.0.  Chapter 2  will take a closer look at why existing access controls are not 

capable of or simply unusable for protecting users' privacy.  Chapter 3  will detail our proposal: 

Content-based Access Control (CBAC) that addresses the shortcomings of current access 

controls.  Chapter 4  will describe Plog, a CBAC enabled system and policy language for blogs. 

iTag, our automatic tagger built for Plog, is described in Chapter 5 .  Situations where users are 

unable to express their privacy preferences in machine-readable form are discussed in the 

following chapters.  Chapter 6  will elaborate on our strategy for building text classifiers for Data 

Loss Prevention.  Chapter 7  will discuss our efforts to automatically identify vandalism on 

Wikipedia.  Chapter 8  will discuss how we can build better password-authentication systems 

that do not rely on user vigilance.  Chapter 9  will provide a conclusion.
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1.1 The Web 2.0

Before reviewing access control methodologies and consequences of popular web 

services, it is useful to define key concepts in the Web 2.0.  Active authors and developers 

disagree on what features actually characterize the Web 2.0 [16].  The term, which is attributed 

to Dale Dougherty, garners approximately 9.5 million Google citations [16].  The notion of 

"Web 2.0" was created to encompass several crucial changes that web services underwent during 

the early 2000s.  Tim O'Reilly, founder of O'Reilly Media and proponent of Web 2.0 services, 

enumerates key distinctions between Web 2.0 and the original conception of the Internet [16]:

 Web as a principal platform for users

 Harnessing collective intelligence

 Data as the key resource (as opposed to speed)

 End of the software release cycle

 Lightweight programming models (simple web services like RSS and Rest)

 Rich user experience

Blogs, a very popular Web 2.0 application, receive a lot of attention in the media and in 

research.  Blogs, known initially as Weblogs, are simple, web content publishing systems.  Most 

blog services, such as Blogger, Xanga, and LiveJournal are free.  Three main themes classify 

blog content: personal online journals, aggregators of commentary and content on other sites and 

knowledge logs [17].  The blogosphere is a vernacular term denoting the space in the Internet 

devoted to this activity.  Nardi et al has found the following common blogging practices [18]. 
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First, most blogs are discovered through reading other blogs.  They noted that despite their 

study's small sample size, there existed a great diversity in the themes and topics of blogs, 

ranging from the banal to the serious.  Another important observation is that blog readers do not 

simply view posts.  Rather, the authors found that blogging is a dynamic social activity that 

instigated conversations and creation of new blogs.  Three key aspects of this dynamism are 

personal updates, expressing opinions, and solicitation of feedback.

Another popular service in the Web 2.0 is social networking.  These sites, such as 

Facebook and MySpace, allow users to create profiles (much like home pages), search for others, 

leave comments and post multimedia.  Many users from different backgrounds populate these 

networks.  Business organizations are also active in these networks and use the sites for 

promotion and advertisements.  The importance and dynamics of virtual social networks are 

beginning to be understood.  The Pew Foundation released a report regarding social interaction 

across the Internet [19].  They found that web services do in fact support social networks and 

facilitate regular communication for large networks more efficiently than traditional technologies 

like telephones.  Two other interesting points from the study are that email does not replace out-

of-channel communication and users elicit these servers to collect responses from social 

networks to make important decisions.  Boyd took a poignant look at teenage use of a popular 

social network service amongst this demographic: MySpace [20].  Whereas other social-

networking sites have come and gone, Boyd speculates that the importance of profile creation 

and commentary as well as asynchronous communication comprised of profile to profile instant 

messaging sustains the popularity of MySpace.  Profile creation on these sites ties into the 

4



identity production that occurs during the teenage years.  Their profiles give teenage users the 

opportunity to discover and discern what is “popular” and how to project themselves.  Boyd also 

argues that MySpace has become a “digital public”.  Where social mores have changed such that 

teenagers are limited in where they may physically congregate, MySpace allows them to 

socialize freely.  The issue here is that MySpace is not always an age appropriate space for 

minors.  Rather, other users and agents (e.g. advertisers) regularly disseminate adult ideas and 

themes through these networks.  

Wikis and video-sharing websites are two other popular Web 2.0 applications that may 

not be as intimately intertwined with the personal lives of their members.  The rise of Wikis 

mark the culmination of the collective intelligence of the web.  Wikis are websites where visitors 

and authors can edit, delete, comment and add content to articles or pages.  Wikis focus on a 

particular purpose or theme.  Popular Wikis include Wikipedia, a freely editable encyclopedia, 

and wikiHow [21], a freely editable how-to manual.  Wikipedia is the most widely recognized 

Wiki and has made the news for it's factual accuracy [22], high profile individuals changing their 

entries [23], and editors with fabricated credentials [24].  

With increased network capacity, video-sharing networks have also become quite 

popular.  Services like YouTube and Yahoo! Video stream user-created and commercial videos. 

Users tag videos with words or phrases that provide categorical information.  The ramifications 

of on-demand video streaming are palpable.  Broadcast network CBS experienced a boost in its 

audience after making content available online [25]  A new art form of exclusive web video 
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drama captures the imagination of viewers, attention of news media outlets and the efforts of 

aspiring filmmakers [26].  Lastly, these channels are challenging copyright laws [27].

The discussion of these Web 2.0 services does not nearly encompass the entire sphere of 

technologies and applications available.  It should be noted, however, that many crucial 

observations can be made about how users interact with these systems.  First, an abundance of 

data is available online, especially personal.  We must also realize that many users extend their 

social lives to encompass Internet technologies.  The potential exists for search engines and other 

data harvesters to actively mine these systems for personal information.  This raises questions 

about privacy concerns in light of increased exposure online.

1.2 Consequences of the Web 2.0

Despite the new and exciting applications emerging in the Web 2.0, the ramifications for 

users are increased exposure and scrutiny.  Even in the relatively short lifetimes of popular sites, 

the consequences of insufficient access control are well-documented in the news media:

 Bloggers have lost their jobs when their employer discovered the employee's personal 

blog [11][28][29].

 Sexual predators use social networking sites to find victims [30].

 The opinions and personal information placed on victim's blog increase the possibility of 

stalking [31].

 Universities use photographs taken at student parties and posted on student social 

networks or blogs as evidence to reprimand the students involved [32].
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A didactic example of this privacy invasion resulting from using these services which 

received substantial media coverage highlights how users and outsiders view privacy 

expectations in this domain.  Stacy Snyder, a student who was working toward her teaching 

certificate, was denied certification on the basis of a photo she posted on MySpace.  The photo 

included the caption “Drunken Pirate”.  Because of the photo, she received unsatisfactory marks 

for professionalism in her evaluation.  This eventually prompted the university, in response to 

pressure from the school system where she student taught, to deny her an education diploma and 

granted her an English degree instead.  This prevented her from becoming a teacher, her intended 

occupation.  Reviewing the story on many different media outlets, reactions were quite varied 

and diverse.  Table 1 shows a particular set of comments juxtaposed on the Washington Posts 

Blog site that stand out.

These two comments symbolize the issues when it comes to defining privacy in these 

new social contexts.  The author of the first comment believes that the mores of the blogosphere 

should be respected and that this course of action by the university constitutes as an invasion of 

privacy.  The second comment takes quite an opposite view.  The author believes that since the 

7

We are approaching an age where privacy is  
an illusion. If the microscope turns to anyone 
you will ALWAYS find dirt.  Administrators  
and politicians will use our electronic footprint  
to build a case against anyone they want to. 

You have to be an idiot to put pictures out on 
the Internet like that, and then think that  
nobody is looking at them. Whenever we 
interview here at work, the first thing we do 
after the interview is check out their myspace 
or facebook pages. We've turned away a lot of  
candidates based on some of the stuff we see  
there.  This is why I don't have a myspace 
page.

Table 1: Two comments from the Washington Post's Blog that have diametric views of online 
privacy.



information is accessible, those who acquire the information may apply it in any offline context 

they choose.  

To compound matters further, the law is not necessarily clear on exactly if a policy 

violation has occurred.  An interesting parallel to this case that went under legal review where an 

employee's supervisor searched Google and found evidence of prior misconduct [33].  Ultimately 

the defendant was fired.  The defendant claimed that Google searches constituted ex parte 

communication.  The judge in this case ruled that ex parte communication did not occur 

considering there was already substantial evidence against the defendant.  We must be aware that 

this situation possibly occurred in Ms. Snyder and others' cases because Facebook and MySpace 

provide search engines to find users.  Legislation also is lacking for broad issues of privacy 

online.  There are notable laws for specific issues regarding online activity.  The Children's 

Online Privacy Protection Act ensures that children online do not submit personal information 

without the consent of parents [34].  Another prominent piece of legislation is the Digital 

Millennium Copyright Act that protects content owners from illegal distribution and prosecutors 

have applied it against prominent web services [35].  

One legal expert, Helen Nissenbaum, proposed new definitions of privacy despite new 

and pervasive channels of surveillance.  She advocates the idea of contextual integrity, where the 

norms of information flow in a particular context (social situation) are preserved regardless of 

the ability of modes of surveillance that are active simultaneously [36].  Bloggers and social-

network users conceive proper usage of their information through interaction, even if the spaces 

8



themselves are not tangible.  Therefore, the case of Stacy Snyder should have been considered a 

policy invasion.  

In light of the privacy and legal ambiguities that arise in the Web 2.0, what is the 

mandate of those providing these systems?  Perhaps one attitude is to let society and law 

determine what constitutes privacy in these domains and leave it to the courts to take appropriate 

action.  From a computer security standpoint, a different conclusion should be reached. 

Regardless of the numerous debates about online privacy expectations, the Snyder case is 

important from an end-user standpoint.  Ms. Snyder decided that the image was innocuous 

enough to be posted online and enjoyed by friends.  She would probably have expected that 

those who came across it (intentionally or unintentionally) would have viewed the image and 

moved along.  This was not the case: someone accessed the photo and introduced it into a new 

social situation, Ms. Snyder's performance evaluation.  Herein lies the flaw in access control in 

these systems: those who may fundamentally disagree with the expectations of privacy and use 

of the author may still gain access to the content.  In this case, the result was dramatic and costly. 

Therefore, this case can not only be viewed as a society grappling with new notions of 

privacy, but as a call to designers of these systems to devise better access controls such that users 

are able to express their privacy preferences easily and effectively.  Users cannot simply rely on 

what they expect viewers to do with their content, as presumably Ms. Synder did.  We advocate 

that the access control system needs to do more for the end user. We can inform the design and 

enforcement of access control systems with legal philosophies such as contextual integrity and 

mores established by users.  For instance, when a user posts any informal content that could be 

9



construed as questionable, then the system can help identify A) why it is potentially harmful and 

B) who should have access to it.  In Ms. Snyder's case, the access control system should have 

tried to help better identify which subset of users would be the most amenable to her expectation 

of use for the picture in question.  Society needs to debate and define the parameters for the 

expectation of privacy, but when it comes to the online realm, access controls should try to 

enforce these boundaries.

10



Chapter 2 Current Access Controls

This chapter will elaborate current access controls as well as access controls proposed in 

literature.  To better understand the limitations for current access control approaches to privacy, 

we must first examine what type of data is being collected and how users are able to

mediate access to it.

2.1 Introduction

Web 2.0 services collect personal data of many types and through a variety of channels. 

Bruce Schneier has proposed a taxonomy of social network information [37], which we 

reproduce below:

 Service data: Data you give to a social networking site in order to use it (e.g. your 

legal name, age).

 Disclosed data:  Data you post on your own pages: blog entries, photographs, and 

status updates.

 Entrusted data: Data you post on other people's  pages that you lose control over 

once you post it.

 Incidental data: Data people post about you (e.g. a paragraph  about you)

 Behavioral data: Data the site collects about your  habits via behavior on the service

11



 Derived data: Data about you that is derived from all the other data.

This taxonomy illustrates three sources for dissemination of personal information on the 

Web 2.0: the user himself, others, or from inference.  Therefore, privacy can be compromised 

from any one of these three sources.  For the purposes of this analysis, we consider behavioral 

data out of scope, although it is a great concern to user privacy with respect to third-party 

applications [38].  We also will note that some service data, particularly in social networks, is 

also disclosed data (e.g. name).  

How much control can a user exercise mediating this data to viewers?  We surveyed 

twenty three blogging and social networking sites to determine what access control and privacy 

features are currently available. Our survey included traditional blogging sites (e.g. Blogger and 

LiveJournal), social networking sites (e.g. MySpace and Facebook), photo-sharing sites (e.g. 

Flickr and SmugMug), and video sharing sites (e.g. YouTube).  The access control features 

implemented in these services fell into a few broad categories, with some sites offering minor 

extensions.

 Private/public: The simplest access control systems only supports private and public 

objects.  Private objects are only viewable by their owner. Public objects are readable by 

any human or computer, such as a search engine, in the world.

 Friends: Some sites augment the basic private/public scheme by letting users create a list 

of “friends.”  A user can restrict some of his or her content to be visible only to friends. 

The “friends” scheme may be bolstered by mechanisms to automate the process through 

invitations (Facebook) or manual specification (Windows Live Spaces). The Orkut social 
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network attempts to maintain some level of trust among its users by only registering new 

users that receive invitations from existing users.

 Other registered users: The Xanga blogging site lets users restrict posts to be visible 

only to other registered Xanga users. Since anyone can create a Xanga account for free, 

this feature may be primarily intended to prevent web search engines from indexing 

certain pages.

 Only registered users:  For certain valuable or sensitive articles, only registered users 

have the ability to edit an article [39].  

 Search engines: WordPress allows users to indicate that a post should not be visible to 

search engines.  The WordPress server includes the advisory robots.txt mechanism in the 

user's directory, which search engines are urged, but not forced, to follow.

 Password-protected Posts: SmugMug and WordPress allow users to create password-

protected posts. While this enables extremely flexible access control policies, it places the 

burden of managing the policy entirely on the user.

 Age restriction: MySpace does not allow anyone younger than thirteen register.  Those 

users between the ages of 14 and 15 may only display partial profiles to anonymous 

viewers except if they are a friend of the user.  Although this is a good first step to 

separate children and adults, the site has no way to actually verify if the registered user is 

the age he or she claims to be [40].
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 Network restrictions: Facebook allows users to choose different levels of privacy 

determined by which networks one belongs to.  These networks may either be regional or 

attribute based (e.g. place of employment).

Of the existing schemes, the “friends” model is the most successful because it strikes the 

best balance between ease-of-use and flexibility. However, it still has several flaws. First, it does 

not let users segregate their disparate social groups. Unfortunately, users cannot distinguish real-

world friends, who presumably already know the user's home address and other personal 

information, from online friends, who may be close, but do not need to know offline details 

about the user. More generally, a user may have legitimate reasons for keeping friends from 

different contexts separate. For example, a blogger might want to separate his or her work-

related friends from college friends, but currently the only way to do this is to maintain separate 

blogs.  Second, in terms of privacy, there are different degrees of intimacy between an individual 

and each one of his or her friends, but the “friends” notion is too coarse to capture these 

distinctions. We found that MySpace users had a median of 115 friends based on a random 

sample of 91660 MySpace users. Few people have 115 close confidants, so the friends 

relationship is obviously being strained to encompass many levels of intimacy. Making matters 

worse, using the friends relation for access control forces users to choose between protecting 

their privacy and appearing popular or gregarious. Many users of these systems perceive a sense 

of popularity resulting from having large number of friends. In fact, MySpace perpetuates this 

notion by a feature called “Top Friends” that showcases the eight best friends in the user's profile 
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above other friends. In all these cases, the role of “friend” becomes ambiguous. As the notion of 

“friend” loses its meaning, friends-based access control also becomes meaningless.

Surprisingly, only recently have services allowed users to use group-based access 

controls in their services. Facebook appears to offer the most extensive and customizable array 

of privacy features despite being lambasted in the news media before for their privacy control 

[41].  Facebook has taken steps to enable users to manage incidental information.  Users can 

limit access to photos of themselves, even if the photo was posted by someone else.  Also, 

Facebook allows users to control which friends can view content posted on their wall (a section 

of a user profile to which others can write messages).  The incidental information problem 

cannot be solved by just one service, though -- users still have no recourse when content is 

posted about them on sites over which they have no control. Facebook has also attempted to help 

users limit inference about themselves by controlling their visibility in Google and Facebook 

search results.

Although Facebook has made great strides to protect individual's privacy, users still 

experience privacy invasions.  Users are often unable to see the consequences of their actions. 

For example, several employees have lost their jobs after criticizing their employer on their blog 

or social networking profile [8][9][10][7]. Studies have shown that users do not understand or 

check for security mechanisms [42].  Therefore, it is quite possible that most users are not aware 

of the full ramifications of their actions.

Lastly, the sophistication and reach of search engines endanger individual's privacy and 

online reputation.  One particular instance that drew the attention of the news media concerned a 
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female law student at Yale University [43].  She was the subject of derogatory comments on the 

AutoAdmit law school discussion board. The law student only learned of the online discussion 

through a friend and after her job search resulted in no offers, despite having comparable 

credentials to other successful recent graduates.  Although she could not conclusively prove that 

the comments had prevented her from being hired, it is quite likely according to the Ponemon 

Institute [43] which found that half of U.S. hiring officials use search engines to investigate 

potential employees, with one third of searches yielding information that will deny the applicant 

a job.

Therefore, the following trends do not bode well for privacy online:

 Most sites offer draconian access controls that are largely unappealing to users.

 The ramifications of using Web 2.0 services is beyond the user's technical grasp of the 

software.

 These services do not provide any oversight or a safety net for users.

 Search engines enable searchers to collect information about individuals based on 

information from multiple web pages.

 Sensitive information about the user may be revealed through inference.

2.2 Other privacy and access control schemes

Although Web 2.0 services appear to prefer simple and draconian access control 

schemes, there do exist other access control schemes and paradigms that might be brought to 

bear on this privacy concerns in the Web 2.0.  The following subsections serve as a survey of 
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different schemes advanced in industry and literature that are designed either to A) improve 

access control or B) help mitigate damage from privacy loss by specifying expected usage.

The main drawback of deploying these proposals to address Web 2.0 privacy concerns is 

that they do not address two main issues: the acquisition and automated inference of privacy 

policies.  The XACML, EUFORBIA, and Policy-Aware Web systems provide access control for 

the Web 2.0 and distributed systems.  The main issue with these proposals is that they largely 

ignore the acquisition and automated enforcement of privacy policies.  As established in the 

previous section, it is dire that users can easily express their privacy preferences in a language 

that is familiar to them that will provide some degree of protection through automated policy 

inference from accidentally compromising their privacy.  We also examine three other proposals, 

P3P, Social Contract Core and the Accountability Perspective, that focus on empowering users 

by enabling them to either express or audit data usage policies.  These proposals do shed light on 

an important aspect of data usage: accountability.  By focusing on accountability, privacy 

invasions can be addressed through the law, which may help users recoup on losses they suffer. 

But the main issue is that policy exchanges simply cannot fully protect the user, particularly 

when the languages to express policies are confusing and circumventable.  If a privacy invasion 

occurs and the user is simply not aware, accountability has no value to them.  Therefore, users 

will still need a proactive means to express their privacy preferences and enforce them.

In the following sections, we will examine these systems, highlight what is useful to the 

Web 2.0 privacy problem, but argue why they will not ultimately be effective for the average 

user.
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2.2.1 eXtensible Access Control Markup Language (XACML)

XACML [44] is a message passing system that utilizes XML in order to stipulate policies 

and enforce them. Enforcement of policies are performed in tandem by the Policy Decision Point 

(PDP) as well as a Policy Enforcement Point (PEP). The PDP has access to attribute sources, 

which are the properties about subjects and users, and policies. The Policy Enforcement Point 

takes request from users and formats a corresponding XACML request with the subject 

attributes. An important point is that PDP and PEPs may be distributed and do not necessarily 

require one monolithic policy nor decision server. A key difference between EPAL [45] and 

XACML is the fact that there exists a standardized mechanism to define new datatypes and 

functions, hence the term Extensible in the title.

XACML policies consist of PolicySets, Policies, and Rules. PolicySets may contain other 

PolicySets, and Policies. When a request is made, XACML policies contain targets that 

determine the applicability of a Rule, Policy or PolicySet to the attributes of the requester. Once 

a policy is found to apply to a request, the rules are evaluated. The rules essentially stipulate a 

Condition, a logic function on attributes that returns true or false, that determine the access 

control decisions of permit or deny.  It is important to note that Conditions are arbitrarily 

complex and may contain non-boolean functions and attributes. XACML employs default types 

and functions to handle this complexity.

Lorch et al. [46] surveyed first adopters of the XACML standard. They investigated three 

diverse technologies: Shibboleth, Cardea and PRIMA. Shibboleth is a web-based authentication 

system that facilitate communication between higher education institutions.  Cardea is an access 
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control system for NASA's Information Power Grid.  What makes it different than Shibboleth is 

that characteristics of both the resource and requester determine access. Another interesting facet 

is that the subject can only provide credentials that he or she can demonstrate.  This implies an 

absence of an attribute source used by a PEP.  Cardea also uses SAML [47] in order to facilitate 

the XACML requests. The triumph of this system is that resource owners may stipulate 

arbitrarily complex policies and apply standardized policies on a heterogeneous collection of 

resources with external requesters. PRIMA provides distributed access control in a grid 

computing environment. It also allows multiple authorities and users to mediate access control 

on their own resources. Three type of access control information are stored on the system. The 

first is privilege attributes that are created to denote individual rights to data. Privilege 

Management Policies specify authorities of resources and how delegation and privilege 

management rules follow. Lastly, traditional access controls are supported as well. These early 

adopters have successfully incorporated a wide variety of access control methodologies in a 

standardized and distributed fashion. In fact, more than 50 companies now support the standard, 

including large software companies like Adobe [48].

The strengths of XACML  lie in its ability to be distributed and extensible.  The 

successful deployment of XACML suggests that a wide variety of privacy preferences could 

encoded in this language.  We do not believe that it will be successful in a large-scale 

deployment such as the Web 2.0 where the users are largely non-technical and services largely 

do not communicate users' privacy policies outside of the services' domain.  XACML systems 

inherently do not possess any policy acquisition features that will help protect users from privacy 
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invasions.  Rather, they may have tremendous difficulty expressing their privacy policies in this 

language, particularly where many disparate parties must agree to a common set of data types. 

Also, the enforcement of policies is largely left to the implementer.  There is no intrinsic quality 

about this language that would provide automated policy inference.

2.2.2 Platform for Privacy Preferences (P3P)

Arguably the first widespread policy platform and protocol, P3P was one of the first 

policy exchange protocols.  Policy exchange protocols help the requester decide if it is worth 

accessing the resource given the owner's policies.  In principle, policy invasions would be 

minimized because requesters would have to conform to the usage expectation of the user.  P3P 

was originally envisioned to be an exchange between a server and client in which the server 

would declare its data handling and usage policies.  These policies are related to the data 

collected from the client to the server and how it would be used subsequently.  At the present 

time, P3P development is now officially suspended.  It does serve, however, a useful pedagogical 

example that allows us to analyze the rise and fall of this technology, particularly with a renewed 

focus on use of personal data by advertisers in the US congress [49].

At the core of P3P is an XML language that encodes policies [50].  The important tags 

are entity, access, disputes, data, purpose, recipient, retention and consequence.  The entity 

tag contains contact information for the business, organization or individual providing the 

content.  The access tag specifies what information the application collects and how users may 

find information about themselves on the site.  If the user feels that their privacy has been 

infringed, the disputes tag allows them to find out whom to contact and how to reach them.  The 

20



data tag describes what data are collected from the user and the purpose states how data are 

used.  The recipient tag explains how data will be shared and the retention tag states the amount 

of time data will be kept.  Lastly, the consequence tag provides a human-readable explanation of 

the data handling practices.  Once a policy has been composed, the exchange of the policy and 

client is achieved by an HTTP request.  The location of the policy is put in a well known location 

on the server.  The policy is included in either a special HTTP header or in a link tag.  In most 

cases, the links provided are a compact policy that describes the usage of cookies on that site. 

Once the policy has been downloaded, the user can choose to opt-in or opt-out.  This means that 

the user either consents to the privacy policies of the site or decides to not participate.  Non-

participation results in no exchange of personal data, but also a denial of service.

Although P3P is now largely unused, Cranor et al. provides us a historical snapshot of 

early adopters of the technology.  Cranor's group created the AT&T Privacy Bird [51].  First, a 

user will install the tool into Internet Explorer and either provide their privacy preferences or 

select a general security level.  The tool resides in the browser plugin that displays a bird located 

in the bottom right of the window.  The bird changes colors and make different sounds 

depending on the compatibility of the site's policies with the users.  For example, the bird 

squawks and turns red if the site policy is incompatible with the user's privacy expectations.  A 

GUI resembling a “nutrition label” highlights the important parts of the policy.  This interface 

also presents personal preferences to the user.

The privacy tool experienced a relatively successful launch with twenty thousand 

downloads in the first six months.  In response, the authors conducted a survey of two thousand 
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users, of which three hundred thirty one completed the survey.  Of those who responded, ninety 

percent were at least somewhat concerned with their personal privacy online and ninety eight 

percent concerned with companies sharing information with third parties.  One frequent criticism 

that the authors received was that most sites elicited the yellow bird, which meant no P3P policy 

existed for that site.  This probably contributed to a sense of end users that P3P was not all that 

useful.  Users liked the tool and rated the policy summarization 3.3 out of 5 point scale.  Users 

also made it clear that they were interested in the reputation of the site, which is not available in 

the P3P protocol.  Interestingly, those who never or occasionally read site privacy policies 

dropped to fifty three percent from seventy eight percent after installing the privacy tool.  The 

authors concluded the fact that more people were reading site policies and a drop in those 

reading the policy on every site was an encouraging sign.  Overall, eighty eight percent of users 

changed their online behavior when using the AT&T privacy bird.  

Beyond lack of adoption, Internet users and services may have not adopted P3P for a 

variety of reasons.  Grimm points out that users' opting out of the service would result in a denial 

of service [52].  Cranor notes that many of the policies were formulated in a legal language that 

was beyond the immediate comprehension of average users.  Developers found developing GUIs 

for P3P difficult because the policy language was incredibly flexible and complex.  Also, some 

respondents to the Privacy Bird did not trust the privacy policies on the website.  This is 

compounded by the fact that there are no ways to audit a companies actions within the protocol. 

Therefore, P3P does not do much to allay user privacy concerns.  It also does not appear likely to 

be successful mediating access between a user's content and potential user.  The lack of adoption 
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experienced by the authors of P3P suggest that policy exchange is simply not enough to truly 

protect users on the Web 2.0.

2.2.3 Social Contract Core

An extension of the P3P architecture is the Social Contract Core (SCC).  The authors 

chose the name Social Contract Core to reflect trends witnessed in the evolution in society, but 

are not extended to our virtual communities.  The Social Contract [53] is a termed coined by the 

philosopher Jacques Rousseau to illuminate the agreement between individual and state.  As 

members of society and state, individuals sacrifice some autonomy for the “greater good”.  In 

return, the people should contribute and consent to the development and enforcement of norms.  

The Social Contract motivates technological adoption.  An example is the telephone 

system.  We would consider that someone calling at 4 A.M. to be outrageous.  The general 

acceptance of this and other mores regarding the telephone then stimulates adoption and sharing 

of these technologies.  A Social Contract also protects privacy.  When a client shares personal 

information with a third party, there are expectations of usage.  First, we expect that when a third 

party accesses personal information from this service, the transaction honors the agreement 

between the requester, service and owner for its acquisition.  The service should also honor 

obligations and resolve disputes regarding policies.  Lastly, the infrastructure that hosts the data 

should be secured to prevent malicious access.  The issue that exists with these policy schemes, 

particularly P3P, is that discrepancies between user preference and site policies result in denial of 

service.  There are no mechanisms in which the users can assert their preference to change the 

site's policy.  
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Therefore, in response to this impasse, Lorch et al [54] proposed an architecture called 

the Social Contract Core where users define their privacy preferences.  The architecture is 

comprised of three modules: the Client unit, the Site Owner unit and the SCC Conventions Site. 

The Client Unit comprises an interface, the personal policies of the user, and a proxy to 

communicate preferences with others.  The proxy, typically a browser extension, does the typical 

P3P functions of reviewing policies, determining compliance, and allowing users to opt-in and 

opt-out.  The proxy can download online privacy profiles from SCC Convention sites that allow 

users to configure their settings to align with the norms and values of that group.  The proxy 

supports a voting mechanism.  The voting mechanism compiles the data handling practices of the 

site the user opted in or out of.  This will allow web sites and SCC Convention sites to collect 

anonymous statistics that describe trends and help compile emerging accepted standards of use in 

these domains.  The Site Owner is essentially the web site that hosts the desired service.  It will 

maintain its own SCC Proxy capable of receiving votes and collect statistics regarding user 

policy preferences.  The incentive for businesses is that the feedback from users may reveal 

marketing strategies acceptable to clients.  Therefore, users are less likely to opt out and perhaps 

engender a more viable revenue stream.  The authors also conceived a new web service called 

the SCC Conventions Site.  This service aggregates group social preferences and privacy policy 

standards in order to evaluate web service policies and disseminate privacy preferences.  These 

sites may also be proactive and contact popular sites that are in disagreement with their privacy 

policies.  
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The dynamic of this system is analogous to union representation.  Although there is a 

voting mechanism, users cast votes that do not necessarily change the sites policy.  In fact, it is 

the site owner's ultimate decision to decide whether or not to change the sites policy.  By creating 

these SCC convention services, powerful arbitrating bodies emerge on behalf of the users.  That 

is, if a significant percentage of a site's users enlist a particular SCC convention service's 

preference, it is compelling for the web site to change its policies to be compliant.  This may not 

be the case if the service is in demand and users are not willing to arbitrate or opt-out.  This type 

of system does reflect many relationships business and consumers have with each other in real 

life and how change is effected.

An SCC system will help users explicate the mores and privacy expectations of the 

services that they use.  As of right now, many of the most popular services do not have a simple 

means to specify terms of usage for the users, presumably it will be done in an ad-hoc fashion if 

at all.  An SCC system could help in resolving legal issues that arise, such as in the case of Stacy 

Snyder.  But this system only enables reactive means to dealing with privacy invasions, and not 

proactive.  Therefore, we believe that it is important for users to express their privacy 

preferences, particularly when considering the usage of advertisers of disclosed data.  But users 

need usable systems that will acquire access control policies and perform inference to minimize 

privacy invasions.

2.2.4 Policy-Aware Web

Another platform for policy exchange in the Internet is the Policy-Aware Web [55].  The 

authors of this project claim that the fundamental impasse for users to share information over the 
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web is that the proper mechanisms do not exist to enforce the user's policies.  The authors 

explain that the ultimate adoption of the Semantic Web relies on not only the technology, but the 

social conditions surrounding it.  There are several technologies that provide the basis for 

portable and machine readable data exchange, but are useless if the environment is not safe to do 

so.  The authors argue the web “has failed in equal measure at satisfying other critical policy 

requirements such as privacy protection, a balanced approach to intellectual property rights, and 

basic security and access control needs”.  And although it is tempting to allow law and society to 

determine what online privacy entails, it is up to developers to create the technical capacity to 

model and enforce privacy expectation and assurances for a wide array of social activity.  

Although many web services replicate social interactions online, it lacks important 

aspects that are crucial to physical meetings.  The authors give an example of an over-eager 

librarian to demonstrate the types of cues absent in online discourse.  If we are interested in a 

book, we may inquire its location on the shelves.  But if the librarian were to follow afterward 

and watch one intently, there are many ways to stop this behavior.  Such actions may be as 

simple as staring back, displaying displeasure or intervention of third parties with increasing 

authority.  Online transactions lack this type of response and feedback.  More worrisome is that 

certain insidious tracking behaviors such as usage of cookies may be not well understood or 

observable and thus not addressed by the client.  Tasks such as setting up a photo gallery online 

is much more onerous than in real life.  Currently, one would have to specify access for identities 

or IP addresses and make announcements which requires much manual labor.  This would be 

unacceptable if this were to be done for numerous photo albums.  The semantic web provides the 
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opportunity to address this disparity between real life and online social transactions. 

Technologies such as OWL ontologies are able to capture the complexity of relationships 

between individuals and communities.  

For the web to truly be policy aware, the Policy-Aware Web strives to meet three 

requirements.  The first is transparency.  This means that both end-users and machines need to 

easily access and understand the rules on privacy and exchange of data.  For example, the end-

user can identify the inherent intellectual property rights of the item (e.g. may it be publicly 

shared).  Some efforts have been made toward this goal with web policy languages such as 

XACML.  In order to determine if policies are adhered to, compliance models must be 

incorporated into the mechanisms that operate in the web (i.e. Web servers, browsers, etc.).  The 

goal of these systems is to enforce the formalism associated to the various technologies while not 

burdening the user experience.  Lastly, despite all efforts of privacy specification as well as 

compliance mechanisms, accountability is needed.  That is, malicious users will take advantage 

of seemingly well described rules or gain unauthorized usage of resources.  Auditing enables the 

appropriate response on the behalf of system administrators to protect content owners to 

maintain privacy constraints.

Although RBAC has been a popular way of providing access control, the Policy-Aware 

Web approaches the problem from a rule-based paradigm.  First, the project developers claim 

there is a move away from role and identity based access controls toward rule-based access 

controls.  A major issue with RBAC is that role engineering is difficult, especially with regards 

to changing needs.  The authors provide an amusing anecdote where an individual needed a 
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document but lacked the proper role to access it.  The complication arose that either the 

individual would have access to a class of documents that he should not have access to or the 

document would be released to a group that was not authorized to read it.  Another subtle issue 

arises that RBAC policies are difficult to set up since web servers receive requests that point to a 

node in a file-directory structure.  Therefore, it is more conducive to a rule-based approach since 

resources can be specified with URIs.  

Rule-based access control is a system where a set of rules are associated with a resource 

and a requester demonstrates it can satisfy these rules.  The system has been associated with 

Mandatory Access Control schemes since it is easy to formulate rules based on labels. 

Discretionary Access Control has not seen as much development of rule-based systems, but the 

authors believe that the Web is well suited for this task.  

Implementation of the Policy-Aware Web that utilizes discretionary rule-based access 

control and meets the aforementioned requirements needs a compliant rule language, a rule 

reasoner and protocol.  The authors choose a rule language based on RDF called Notation 3 

(N3).  The attractiveness of N3 is that N3 provides a human readable logic language 

experiencing considerable open-source development.  N3 satisfies the transparency requirement. 

The authors employ an open source software package called Cwm [56] to determine if rules are 

satisfied.  Cwm is an RDF-based reasoner that has been co-evolving with N3.  It is a forward-

chaining reasoner that supports a wide variety of functions including querying, transforming and 

filtering web content. Cwm also includes plugins that allow it to expand its functionality to 
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further evaluate rules.  It may evaluate mathematical functions, verify digital signatures or look 

up information on the web.  Cwm therefore ensures the aforementioned compliance requirement.

The protocol incorporating N3 and Cwm is built upon the standard HTTP protocol.  The 

user requests a resource using HTTP-GET.  If the user is not granted permission to the resource, 

the client receives an HTTP error code of 401.  The benefit of using this error code is that it 

allows the passing of tokens for new authentication schemes.  The N3 rules associated with the 

resource are sent in the body of the 401 response.  The client, using the Cwm, generates a proof 

demonstrating that it indeed may access this resource.  The structure of the proof is specified 

using a special OWL proof ontology.  The Policy-Aware Web developers cite several groups that 

are defining the syntax and semantics for proof ontologies.  One interesting aspect that arises is 

that a third party may be required for certain justification steps.  For example, to prove that a user 

is a student, the student includes a URI that the requested service uses to verify the student's 

enrollment at the university.  Such an “oracle” needs to be agreed upon and trusted by both 

parties.  Another point of consideration is that the user provides the justification for accessing the 

resource.  By pushing certain computations to other trusted sources, it reduces the size of the 

trusted computing base of the requesting server.  

The Policy-Aware Web certainly improves the transparency and formality in policy 

enforcement for the Web 2.0.  The system should work very well for business to business where 

entities will be well versed in the necessary requirements for a successful transaction that will 

meet all industry and legal guidelines.  But with respect to the myriad of popular Web 2.0, the 

Policy-Aware Web may be hard to deploy.  First, the user must determine the criteria for access 
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to a resource (which may not be immediately apparent) and then encode the policy in a language 

that, although usable for technical individuals, may be difficult for a large, non-technical user 

base.  The expertise to properly encode the user's privacy preferences satisfactorily enough for a 

court of law may be too great.   Another issue is the establishment of oracles.  By serving as an 

oracle in a transaction, there is a legal and ethical responsibility on part of this entity that may 

exceed the risk the oracle is willing to undertake.  Also, it is not clear how to establish the 

trustworthiness of these oracles without an out-of-bounds verification.  The focus of the Policy-

Aware Web truly rests on a providing transparent and formal policy enforcement, but does not 

address the larger issues of acquiring user's privacy preferences or providing them with policy 

inference to serve as a protective mechanism from unknowingly exposing their privacy.

2.2.5 EUFORBIA

EUFORBIA [57], which stands for “Experiments aboUt the Filtering of internet 

documents accORding to an unBIAsed and semantic-rich approach”, was a project financed by 

the European Commission to incorporate various advanced technologies to filter out 

questionable Internet resources.  These advanced technologies include knowledge representation, 

Semantic web and other computer science techniques.  The European Commission stated that 

they expected the project would produce practical technologies.  The result of this mandate is the 

creation of a filtering system known as the Milan Model and a knowledge representation 

language called Narrative Knowledge Representation Language.  Although the systems are 

multidisciplinary in design, an attribute-based access control system provides the core 

functionality of filtering system.  We will see that this system shares in common access based on 
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content (which is the basis for our proposal Content-based Access Control in Chapter 3 ) and 

specifying concepts using an ontology (much like our tag-based privacy policy language 

described in Section 4.2 ).  

The prototype built on their Milan Model was MaX, the Multistrategy Access Control 

System.  Administrators assign user credentials relevant to filtering content.  Credential values 

were assigned based on their Credential-Type.  Policy authors write rules that either apply to 

credentials or explicit individuals.  Content filters take credentials and identities and grant access 

to a document based on either its rating or meta-information.  Trusted third parties supply ratings 

to MaX deployments, although the EUFORBIA designers did not disclose the mechanism for 

ratings acquisitions.  Meta data sent along with the document corresponds to ontologies with 

pertinent vocabularies that are essential to identifying questionable content.  

The platform consists of three major components: the filtering module, database and the 

web interface.  The filtering module verifies the validity of each request given the policies in 

place.  To increase its functionality, the filtering module works on a variety of document labeling 

systems.  The EUFORBIA project has defined its own NKRL EUFORBIA label.  The filtering 

module also understands the W3C's Platform for Internet Content (PIC) label.  In fact, the 

filtering module may confer to the PIC labels generated by the Internet Content Rating 

Association as well as its RSACi rating services.  The database is the back end for the system 

and provides data to both the filtering module and web interface.  

The web interface provides system management and user sign on.  Management of the 

MaX system primarily consists of three parts: User, Credential-type and Filtering policies 
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management.  The User management module aides in the creation and assignment of credentials 

to users.  The Credential-type system allows system administrators to define relevant credentials 

and attributes for the needs of that deployment's filtering policies.  Lastly, the Filtering policies 

management bridges the organizational policies and actual enforcement.  These policies are 

generated by templates that apply the ratings and content label databases to specific credentials. 

Interoperability between software on client machines and actual policy enforcement is done 

through a proxy server.  That is, for each session the user must use browser-based authentication 

in order to access resources on the net.  By tying down a user to a client machine, the proxy 

filters successive requests.

EUFORBIA also produced another filtering prototype based on their NKRL language, 

which provides rule specification and ontologies.  This contribution extended ontologies by 

adding “ontologies of events”.  These events correlate to elementary events like the movement of 

objects, etc.  The following example clarifies the benefit of adding actions to ontologies.  It may 

be permissible for students to find websites about lions for a classroom project, but not 

acceptable to view a site that shows lion's mating or fighting.  Sites assign content and media 

with EUFORBIA labels that categorize the content on the site.  This label includes the aim of the 

site, the site's distinguishing features and an enumeration of subdomains.  All labels refer to 

concepts that belong to an ontology tailored for filtering.  Administrators author rules in NKRL 

with reference to NKRL-specific concepts and ontologies.  When requests are made, the site 

provides the relevant NKRL label and an inference engine decides which rules apply and either 
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permit the request to go through or stop the transaction.  The inference engine in this system uses 

“classical” backward-chaining techniques.

One last point of interest is the creation of pornography, violence, and racism ontologies. 

The methods to compile the ontologies included natural language resources like web based 

glossaries, printed dictionaries, medical sources, web sites, print media as well as focus groups. 

The authors found certain concepts very difficult to include in the ontologies.  Although there 

are specific concepts that are only applicable in overtly inappropriate domains like pornography, 

the authors found other concepts that are more prominently used in other domains, had been 

applied to either pornographic, violent or racist contexts through the use of double entendre.  The 

example of the lions demonstrate such an ambiguity in culminating the ontology.

The EUFORBIA system contains many pieces that would be relevant to improving 

access control on the Web 2.0.  The system designers realized that conceptualizing the access 

control language by categorizing content would facilitate the appropriate mediation of content to 

users.  The issue, however, is that the categorization must be submitted by the content owner. 

Self-policing is likely to be fallible.  The NKRL language is able to encode concept ontologies, 

but it may prove too confusing for users and not adapt well to their existing meta-data (e.g. tags). 

Lastly, the system is inherently a filtering system that is focused on blocking inappropriate 

content.  Therefore, EUFORBIA is not quite an access control system, but a policy language 

based on concepts may have some promise as a way for users to specify access control.
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2.2.6 The Accountability Perspective

This new philosophical approach, advocated by Kagal et al [58], to data usage and 

privacy preservation focuses on building services that encourage users to conform to policies 

rather than mediating access control to accessors.  Services that adhere to the accountability 

perspective will assist users in abiding to data usage policies by amply highlighting data usage 

restrictions as well as the ramifications of misuse and violations.  The authors state that these 

services should possess the three following properties:

 Give users due notice: Users are made aware of how their data is being used and have 

the opportunity to move their data to a service more conducive to their privacy 

expectations.

 Authorization and accountability: Authorization is not enough to limit data loss. 

Rather, the service should install the necessary architecture to ensure the proper usage of 

the data.  Such a system will require tracking the origination of data, machine-readable 

policies and the capabilities to reason over policy and transfers.

 Privacy-enabling interfaces:  Users should have a clear understanding of not only what 

the policy is with respect to a situation, but also what is the best behavior for users in a 

given situation (e.g. how I post these pictures of me in questionable circumstances in my 

news feed?).

The underpinnings of this approach do not lie in constructing an impregnable fortress 

around one's private data, but to give recourse for those individuals that have their privacy or 

data usage expectations violated.  The authors argue that considering our democratic society, that 
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problems of this nature (i.e. privacy invasion) are dealt through existing legal systems.  To 

illustrate from previous examples, Ms. Snyder would have instructed anyone viewing her photos 

that they were for personal use only.  Reporting these photos to her superiors would have put the 

person responsible for bringing it to their attention in violation and could be subject to litigation. 

The service provider would need to have the mechanisms in place to record that the viewers were 

properly informed of the data owner's data usage expectations as well as record all accessors, or 

similarly the service would be subject to possible litigation.  

One would be hard pressed to argue the merits of the approach because applying to a 

governing legal body is the fairest course of action.  The issue, however, is that the content 

owner is now primarily responsible for following up with any punitive damages incurred by a 

privacy invasion, if they are even aware that one took place!  Also, it is not unreasonable to 

expect that corporations and malicious users will find “loop holes” that may allow them to 

circumvent the data owner's own policies.  Web 2.0 services will also be disincentivized to 

provide rigorous accountability measures because the services are largely free and adding these 

technologies would require substantial infrastructure upgrades considering the volume of traffic 

that these sites generate. Considering the fact that users have expressed the desire for better 

access control and privacy protection [41], it is unlikely that users will simply accept a pure 

“accountability” approach.  Therefore, this proposal does not provide any suggestions on how we 

can improve policy acquisition and enforcement.  Lastly, will individual users have the financial 

means, time and energy to prosecute privacy infractions?  Perhaps it would be possible for users 

to create “privacy unions” or organizations that are expressly created for protecting user privacy. 

35



But this is a rather difficult and onerous undertaking for the individual user who simply wants to 

share photos or post updates about themselves.

2.3 Situations where policy enforcement is minimally useful

Despite the extensive efforts to build access control systems for the Web 2.0 and 

distributed systems, there are a growing number of situations where the system is unable to 

enforce privacy preferences of the user or organization.  Wikipedia, the online encyclopedia that 

anyone can edit [59], is a canonical example.  Wikipedia allows any visitor to the site to edit any 

of the articles, with the exception of certain articles that are locked by administrators.  This 

liberal editing policy has allowed Wikipedia to grow immensely, but has invited vandalism, the 

malicious revising of the text and layout of articles that harms the quality of the articles. 

Vandalism constitutes roughly 7% of Wikipedia edits [60].  Administrators of Wikipedia have 

formalized not only what guidelines that its authors should follow, but also what constitutes 

vandalism.  Below are two definitions of what administrators deem as vandalism:

General Policy: Vandalism is any addition, removal, or change of content made in a  

deliberate attempt to compromise the integrity of Wikipedia .

Silly Vandalism - Adding profanity, graffiti, or patent nonsense to pages; creating  

nonsensical and obviously unencyclopedic pages, etc.

These definitions are for the most part clear about what is considered vandalism on 

Wikipedia and are not written in a manner that is incomprehensible to most Wikipedia editors. 

But can we easily translate this policy into any of the existing, rule-based formats?  There are 

perhaps simple heuristics that can be employed that will provide good detection such as counting 
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the number of obscenities in a new revision.  These rules, unfortunately, are limited in their 

efficacy and require the intervention of human editors to revert vandalizing edits.  Wikipedia 

presents a compelling reason to look for new ways to address access control because of the 

requirements put upon the enforcement mechanism.

Another situation where existing access control does not fully protect its users is 

enterprise data loss.  Enterprises and organizations including governments generate sensitive 

material that needs to be protected from dissemination to outside parties.  The issue here is that 

not all these sensitive materials are easily described in rule-based formats.  This is not to say that 

all information defies description: Personally-Identifiable Information such as credit card 

numbers and social security numbers are identifiable by regular expressions.  There might also 

exist phrases or words that exist only within the knowledge domain of the enterprise, e.g., special 

code names for projects.  But limiting access control to this type of data will not sufficiently 

protect other unstructured data that is found in reports, memos and emails that also needs to be 

protected.  Our investigation of sensitive information in Chapter 6  shows that if such salient 

features as keywords existed in private documents, we would simply find these keywords, use 

them as features in our classification approach and provide immediate protection.  The main 

problem, which will be expounded further in Chapter 6 , is that what makes these documents 

sensitive is not the entities within the documents, which are largely known outside of the 

organization, but the fact that the enterprise combines them together in such a way that has 

significance to their operations.  For example, in our collection of secret documents from 

Dyncorp, many common words such as “policy”, “procedure”, and “Afghanistan” appear as the 
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most informative features.  The words themselves are not secretive, but when applied in the same 

context, the words are more meaningful and specific to the Dyncorp documents.

2.4 Synthesis

This chapter served as an overview of how privacy is protected through access controls 

across the Web 2.0 and distributed systems.  Current Web 2.0 access control across the majority 

of service providers is draconian and cannot simply model the privacy needs of most users. 

Although some services like Facebook have begun to introduce group-based access control, 

users are left largely to protect their own privacy without a safety net.  There also exist situations 

like Wikipedia where although the policy is easy to state, it cannot be encoded in simple rule-

based formats.

XACML, EUFORBIA and the Policy-Aware web may provide the essential framework 

to protect privacy, but these systems have a few drawbacks for usage in the Web 2.0.  First, they 

would require services to not only implement much of the necessary features, but users to 

become experts in these policy languages and tools.  The average user is averse to complicated 

access control schemes and these technologies would require expertise beyond the capacity of 

the average user.  Therefore, we do not suggest that the technology does not necessarily meet the 

need for comprehensive access control in many domains, but many protocols advanced in 

literature or used in industry may be too complex and do not target the main issue that users 

require a simple, intuitive policy acquisition and automated policy inference to provide a safety 

net.
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P3P, the Social Contract Core and the Accountability perspective move away from access 

control to compliance.  Rather than trying to mediate access, users are protected by other means, 

e.g., legal protections, because all participants are required to abide to a set of usage rules.  One 

issue is that the end-user could lose out if he is not as savvy as lawyers representing the interests 

of malicious agents.  Users simply may not be able to express their privacy preferences fully 

through these mechanisms.  It is our belief that although accountability and compliance is 

important, it is not an adequate solution for end users.  Accountability, for example, cannot 

defend against reproduction of content, particularly in different channels.  Therefore, we believe 

access control is still integral to privacy preservation because although it may not necessarily 

prevent all privacy invasions, it can surely limit the exposure of data.
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Chapter 3 Content-based Access Control (CBAC)

The threat to privacy for both individual users and enterprises and organizations can be 

addressed at the access control level.  Current systems, however, leave users unwilling or unable 

to employ them to the desired effect. 

We advocate that systems employ new paradigms for access control.  We introduce in 

this chapter Content-based Access Control (CBAC).  Content-based Access Control mediates 

access to objects based on the content of the system.  Therefore, CBAC integrates content 

recognition with access control.  To understand content in the system, CBAC will use categories 

or labels to annotate data and learn how to recognize which labels new content should have.  A 

CBAC system will allow users to specify a set of rules R on a set of categories C.  For example, 

with Wikipedia, the system can be specified with two simple rules:

{vandalism → reject, not-vandalism → accept} 

Therefore, it is the responsibility of the access control system to determine which category a new 

revision fits into.  The user of this type of system (in this case, the Wikipedian administrator) 

will provide examples of each category.  The system will label new contents with one or more 

categories of from C that will inform which subset of rules to apply from R.

CBAC is not intended to replace existing access control, but rather, enhance it.  By 

providing content-recognition, we can facilitate less cumbersome access control.  For example, 
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as a blogger writes a new post, the system can determine which categories apply to the new post, 

determine the applicable policy based on the rules of the system and present this to the user.  If 

the system performs the policy enforcement well, the user will have minimal additional work for 

policy enforcement.  For instances where content is difficult to describe, a CBAC system can be 

trained to differentiate between different categories of content and apply rules based on the user's 

privacy policy.  And since these categories will be inherently abstract, writing policies for them 

should not burden the user.

The rest of the chapter is structured as follows.  We will expand our definition of CBAC 

in Section 3.1 .  We will describe on a high level what an implementation of CBAC entails in 

Section 3.2 .  We will conclude the chapter in Section 3.3  with a discussion of applications of 

CBAC.

3.1 Definition of a CBAC system

A CBAC system is any access control system in which access to an object is partially or 

entirely based on the content of the objects in the system [61][62][63].  Note that the policy for 

one object can depend on the content of other objects in the system.  This allows policies that, for 

example, depend on the content of objects owned by the user requesting access.

There are essentially two requirements for such a system: usable policy specification and 

automatic policy application. There are already promising results in the design of usable policy 

interfaces that address the gap between users' mental models and actual policy. Most notably, 

Karat explored several intuitive user interfaces for policy acquisition, including natural language 

input, templates, and guides to create machine-readable policies [64]. The template approach 
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could allow users to succinctly specify natural polices, such as “Allow group College Friends to 

access entries on topic Parties.” Such policies are short, fit users' mental models, and can be 

applied broadly to many documents.  

Once the policy is specified, we need a mechanism for automatically applying it to 

existing and new documents based solely on their content, with minimal or no user guidance. 

The access control system can implement content-based policies by reducing the content to tags 

on documents and users. To compute these tags, we can exploit several light-weight techniques 

from machine learning and natural-language processing [65]. These methods extract document 

meta-information, named entities mentioned in the document, and other text phrases in the 

document that are statistically likely to summarize its content.  Based on these document 

features, we can infer the appropriate tags of a document by comparing it to other documents 

with similar features and known tags. Such a system will make occasional mistakes.  We 

therefore will also need a good, easy-to-use feedback mechanism for users to correct erroneous 

tags.

3.2 Implementation

A CBAC system will comprise of a pipeline that takes user input and will compute which 

other users will have access to it.  For the purposes of this Section, we will focus on blogs.  See 

Figure 1 for an outline of the general CBAC system.

We assume that the system will process a large of number of text objects a day and be 

limited  to lightweight natural language processing techniques.  The pipeline will have three 

general phases: preprocessing, labeling and categorization.  Preprocessing will comprise of 
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standard text processing techniques such as tokenization, lemmatization, part-of-speech tagging, 

stop word removal, emoticon identification, etc.  These steps facilitate named entity recognition, 

the discovery of people, locations, organizations, events and date/times. We hope to build a 

database of entities for individuals using information from their social networking accounts (e.g. 

Facebook) as well as lists for publicly known entities from knowledge bases like Wikipedia. The 

system uses coreference to identify different lexical representations of the same entity.  The last 

step of preprocessing is find the similarity between text objects.  This will allow us to identify 

groups of related documents, which presumably share the same content and topics.

Labeling assigns to preprocessed text objects a uniform set of features, called labels, that 

will be used for categorization.  The labels represent significant and diverse characteristics of the 

text objects:  document meta-information, important text phrases, named entities and 

membership in a group of similar documents.  These labels allow us to in turn assign categories 

to text objects by learning which labels correlate to certain categories.  Categories may be 

individual to the user or applicable across the system.  Standard machine learning techniques will 
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be used to learn and classify categories based on sets and frequencies of labels.  The categories 

are used to cluster text objects and base access decisions by the users.  Content authors can 

choose the categories using intuitive access control tools to grant other users permission to 

content objects [66].

Another facet of our implementation will be engendering interoperability among web 

services to provide richer access control.  It would be unreasonable to assume that all of a user's 

potential viewers belong to a particular service.  It may also not be expedient for someone to join 

a service such as a blogging site since it requires remembering another online identity. 

Therefore, to enrich access control, there is a desire to be able to identify web surfers by other 

accounts they own.  This would expand the ability of access control policies since content 

owners are able to include individuals that they desire to grant access to whom do not have 

accounts with the services.  This may also influence users from providing too lax of control to 

include desired viewers.  In turn, this provides a richer experience for both content providers and 

content readers since access is better mediated and more content is available.  There is also a 

wealth of semantic data that may be applicable to other domains.  For example, Facebook allows 

users to create online groups as well as determine membership to real life groups.  Importing this 

data to other services will create less burden on users such that they do not have to restructure 

their social groups each time they join a new service.

3.3 CBAC applications

We have successfully applied Content-based Access Control in three different domains: 

blogging, Data Loss Prevention and Wikipedia Vandalism.  For blogging, we developed a policy 
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language based on tags that we present in Chapter 4  and a policy inference engine in Chapter 5 . 

Enterprises are concerned more than ever with data loss prevention after high profile leaks, 

particularly after ones as large and having as great of impact as the State Department cables leak 

on WikiLeaks [67].  For organizations and government, much of what is confidential exists in 

unstructured text where categorizing it defies simple approaches such as regular expression 

matching, fingerprinting and keyword searching.  In Chapter 6  we discuss building text 

classifiers for Data Loss Prevention that help categorize outgoing messages as either secret or 

non-secret, enabling the access control system to handle these messages appropriately. 

Wikipedia states what constitutes as vandalism, but their definitions cannot be described simple 

rule-based formats.  Therefore, we show in Chapter 7  how a classifier can be trained to 

recognize vandalizing text.
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Chapter 4 Privacy/Policy-aware Blogging

Bloggers have been subject to serious consequences as result of their posts [12].  Many 

blogging services have attempted to solve address these privacy invasions producing a mish-

mash of incompatible privacy features.  With the exception of one blogging service, users are 

forced to either manage password-protected posts (i.e. distributing passwords to viewers) or limit 

their blog to be viewed by a select audience.

In this chapter, we demonstrate that tag-based privacy policies are a usable and flexible 

privacy control method for Web 2.0 applications.  We present tag-based privacy controls that (1) 

are easy for users to understand, (2) flexible enough to express users' privacy preferences, and 

(3) fit naturally into users' current work flow.  Content owners express their privacy policy in 

terms of the tags on content objects; the system then applies the policy to objects based on the 

tags assigned to them.  Data we have collected from real blogs show that tags correlate well with 

privacy preferences.  We have created a prototype implementation as a plugin to the WordPress 

blogging system, and conducted a user study to measure whether (1) users can efficiently 

implement privacy preferences using tag-based privacy controls, and (2) users would choose to 

use tag-based privacy controls over other available options. Participants in our study found our 

tag-based privacy controls easy to learn and use.  Despite limited time, training and familiarity 

with the blogging system, our results show:


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 Participants who wrote tag-based policies were just as accurate  as those who set per-post 

policies.

 Participants using tag-based policies finished tasks significantly faster than than those 

using the per-post policy tool.

 Participants wrote tag-based policies of nearly optimal size.

 A third of study participants chose tag-based controls, despite having only a few minutes 

of experience with tag rule authoring.

The chapter will begin with a brief overview of current approaches to access controls 

specifically for blogs.  Section 4.1  will then introduce the our policy language and its 

relationship to how users already tag their private posts in Section 4.2 .  Our implementation of 

PLOG for WordPress will be detailed in Section 4.3 .  We will describe our experiment in 

Section 4.4  and present the results in Section 4.5 .  A discussion follows in Section 4.6  with 

related work afterwards in Section 4.7 .  

4.1 Privacy schemes in blogs and social-networks

Users clearly want control over the private information they publish on Web 2.0 

applications [68][69].  We surveyed the privacy features provided by seventeen blogging and 

social-networking sites. All the sites we surveyed offered some form of privacy control (please 

refer to Section 2.1  for a full list of access controls), indicating who has access to what content 

objects.  
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Current access control systems on the Web 2.0 make an implicit trade-off between 

simplicity and flexibility.  For example, friends-based privacy controls attempt to make it easier 

for the user to specify who can see private information by offering only three options: everyone, 

no-one, or all the user's friends.  Profile-based controls try to simplify the task of identifying 

what information of a given type (e.g. photos, status, contact information, etc.) is private.  These 

rigid policy models may be easier to use, but they cannot meet the needs of all users.  Rigid 

models may choose an inappropriate level of granularity (e.g. friends-based privacy controls) or 

may group objects or subjects in a way that does not correspond with the user's privacy 

preferences (e.g. with profile-based controls, photos from school and work may be grouped 

together, but have different intended audiences).

Users need a way to specify the privacy of objects that is both flexible and integrated into 

normal Web 2.0 activities.  Tag-based privacy tools use the multiple levels of granularity of tags 

to create flexible privacy policies without incurring the management costs of complex schemes, 

such as password-protected posts.  In the next section, we formally define tag-based policies and 

validate our decision to use tags as a basis for access control decisions by evaluating real-world 

data.

4.2 The Plog policy language

Tags are words or phrases that are paired with objects (e.g. blog posts, photos, videos). 

Content owners author their own tags; consequently, tag usage can be quite varied.  Tags often 

indicate content topic, enumerating topics both broad (i.e. “golf”) and narrow (i.e. “Tiger 

Woods”).  Tags can also indicate other content properties such as form (e.g. “poem” or “photo”), 
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type (e.g. “journal article”, “conference paper”), location (e.g. “Sri Lanka”), or origin (e.g. “from 

my window”, “from Sally”). Finally, tags may be used humorously or in other idiosyncratic 

ways. Because tags often correspond to topics, they are a promising basis for a privacy policy 

language.  However, not all tags are relevant to the user's privacy policy, and content owners can 

be inconsistent in their application of tags.  Consequently, owners should be able to over-ride the 

general privacy rules for some objects.

To formalize the Plog policy language, let O be the set of objects belonging to a content 

owner. In a blog, these objects would correspond to posts; in a social networking site, these 

objects could correspond to blog posts, photos, personal details, videos, etc. For each object o ∈ 

O, let To be the set of tags the user has assigned to that object. Let V be the set of all potential 

viewers, and let v0∉V  be a special “anonymous” viewer. Viewers may be identified by email 

address, user ID, or some other method – the details are irrelevant to the policy language. 

Visitors must authenticate to access restricted content. Unauthenticated viewers have the access 

rights of the anonymous viewer.

The user can specify a set of tag privacy rules R  ⊆ T × 2V, where an entry (t,V) indicates 

that viewers in set V can see objects assigned tag t. Given the tags, To, on an object, o, the set of 

applicable tag rules is R′o = {(t,V)|t  ∈ To}. In Plog, the content owner may disable some of these 

rules on a per-object basis, so access control decisions are actually made based on the owner-

specified set Ro  ⊆ R′o. By default, Ro = R′o, so owners only need to explicitly specify Ro in 

exceptional situations. The owner may also manually grant or deny access to a particular object. 
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For each, object, the user may specify a set Ao  ⊆ V of allowed viewers, and a set Do  ⊆ V of 

denied viewers. By default, Ao = Do = . ∅

The set of viewers allowed to see object o is:

V o={ ∪ t ,V ∈Ro

V ∪Ao∖Do if Ro∪Ao∪Do≠∅

V ∪{vo } otherwise

Because this algorithm takes the union over all tag rules, it grants access to any viewer 

who is a member of V for some tag rule (t,V)  ∈ Ro. An alternative implementation could choose 

to take intersections in this case, i.e. access would be granted only to viewers who are members 

of (t,V) for all tag rules (t,V)  ∈ Ro. We chose union because, in our system, the user can disable 

tag rules he does not want applied to a particular object.

When no policies apply to an object, i.e. Ro = Ao = Do = , then the object is world-∅

readable. In the context of blogs and social networks, this seems more appropriate than a default 

deny policy. This approach also ensures that, if an anonymous viewer can view an object, then so 

can all other viewers. It does not make sense to grant access to anonymous viewers but deny 

access to an authenticated viewer, because the denied viewer could circumvent the privacy 

controls by viewing the object anonymously. 

This privacy policy language is very flexible.  It also makes policy management simple in 

the common case.  Once the content owner has created a few tag rules, the system will apply the 
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privacy policy to new objects as they are created.  Only in a few exceptional cases will the owner 

wish to override the default policy. 

Rules in this language are evaluated at time-of-access.  This makes it easier to understand 

and reason about the policy language and for the content owner to retroactively adjust the policy 

on existing objects. 

In our implementation, content owners can also define groups of viewers and use these 

groups in tag rule authoring.  The name of the group is replaced with the list of its members for 

the purpose of policy evaluation.

4.2.1 Tag usage on existing private posts

A good privacy policy language should enable users to express their preferences with a 

few simple rules.  We evaluated the Plog policy language by translating privacy settings on 

existing blogs into our language and measuring the size of the resulting policies.

We begin by defining the “size” of a Plog policy. Recall that with Plog, the user defines a 

set of generic tag rules, R, and a set of per-object policy exceptions E={Ri , Ai , Di }i=1
n , where, 

by default, Ri = R′i and Ai = Di = . The user must explicitly add items to ∅ Ai and Di, and remove 

items from Ri. A user can easily disable multiple rules at once, so a natural measure for the size 

of a Plog policy is 

S R , E=∣R∣ ∑
 Ri , Ai , Di∈E

Ri
' ∖Ri∣Ai∣∣Di∣

where ϵ(X) is 1 if X !=  and 0 otherwise.∅
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We used a screen-scraper to download 377 blogs with private posts from the WordPress 

blogging service. The WordPress software hides the bodies of private posts, so our screen-

scraper could not collect that information. Curiously, WordPress does not hide the existence of 

private posts or the tags assigned to them. Thus, for each blog, our screen-scraper generated a set 

{ pi , t i}i=1
n , where pi is the privacy setting of the ith post (either “public” or “private”), and ti is 

the set of tags on that post. Since each post must be declared private separately, the size of a 

privacy policy for a WordPress blog with n private posts is simply n.

Our screen-scraper discarded private posts that had no associated tags.  We suspect that 

many users choose not to tag some private posts because, as mentioned before, WordPress does 

not hide the tags of private posts.  Since the tags themselves may reveal important details about a 

private post, in some cases the user has no choice but to leave the post untagged.  If it weren't for 

this quirk of the WordPress blogging system, we suspect users would exhibit the same tagging 

behavior on these posts as on their other private posts. Thus discarding them should not skew the 

results of our analysis. 

Given an output { pi , t i}i=1
n  from our screen-scraper, we constructed a Plog policy as 

follows. Let v1  ∈ V represent a viewer that should be able to see private posts. We implemented 

a policy solver that constructs a set of tag rules, R, and per-post exceptions E={Ri , Ai , Di }i=1
n  

such that each private post is visible only to v1, each public post is visible to v1 and v0, the 

anonymous viewer, and S(R,E) is minimized. Constructing such a policy is equivalent to the NP-

complete weighted hitting-set problem [70] so our solver uses a brute-force branch-and-bound 
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algorithm. The solver reduces the search space by removing tags that occur more often on public 

posts than private posts. If, after this reduction, the blog still contains more than 16 tags in 

consideration, the solver falls back to a greedy algorithm to approximate the optimal policy. 

Only three blogs in our dataset exceeded this bound.  

Figure 2 shows a histogram of the policy sizes generated by our solver.  Over half the 

bloggers could express their privacy policy in just 4 rules using Plog, and 75% could express 

their privacy policy using only 9 rules.  A small percentage of bloggers had huge tag-based 
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Figure 2: Histogram of optimal policy sizes for our WordPress private blog dataset.

Policy 1: private, relationships
Policy 2: parenting, tragedy, love, family
Policy 3: issues, melhoras, luv-issues

Figure 3: Three sets of tags for policies on real world data generated by our solver.



privacy policies.  These bloggers use tags so haphazardly that tag-based rules offer them no 

benefit.  Although these bloggers derive no benefit from tag-based policy rules, but they are no 

worse off, either.  Figure 3 shows three sets of tags for policies generated by our solver.

This analysis may overestimate or underestimate the size of policies in a deployed Plog 

system.  Bloggers using a Plog-enabled system would have an extra incentive to tag their content 

consistently, which would result in smaller Plog policies and a more organized blog.  On the 

other hand, we may have underestimated Plog policy sizes because the the solver generated 

policies that only distinguished public and private posts, whereas the actual policies may have 

granted different viewers access to different posts.  Unfortunately, WordPress only indicates 

whether a post is public or private, so we could not obtain the true policy.  

Despite the limitations of this analysis, the results suggest that tag-based privacy controls 

would dramatically reduce the effort required to maintain a blog privacy policy.  Since users 
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Figure 4: The Plog tag rule authoring interface.



already tag private posts, they could benefit from tag-based privacy policies immediately.  In 

fact, many users could express their privacy preferences in less than 5 Plog rules. 

4.3 Plog WordPress plugin

We have implemented Plog as a plugin to the WordPress blogging system [71].  The 

plugin consists of three main components: the tag rule authoring interface, the per-post policy 

editing interface, and the user and group management interface. 

4.3.1 Tag rule authoring interface

Content owners author tag privacy rules by filling in templates, as shown in Figure 4. 

While the owner is authoring or editing a tag rule, the interface provides a list of the posts that 

would be affected by the rule.  This helps owners write accurate rules and gives them an 

opportunity to add exceptions along with the new rule.  If the owner does not recall the content 

of an object, she can view it in a pop-up window.  The tag rule authoring interface is similar to 

the SPARCLE “structured authoring page”, although our implementation uses text fields with 

auto-completion instead of check-boxes or natural language [66]. 

4.3.2 Per-post policy editing interface

A content owner may create policy exceptions for an object while editing the object by 

using the policy editing interface as shown in Figure 5.  The Plog plugin displays the list of 

viewers that can see the current object next to the “Publish” button.  This encourages owners to 

consider the appropriate privacy policy for each object before publishing it, and gives the owner 

a chance to double-check the policy inference engine's results.  If the owner wishes to make an 
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exception to the policy for this object, she can click on the “Edit” link next to the viewer list. 

This produces the dialog in the center of Figure 5.

The dialog displays three meta-states that the owner can set for an object. The 

“Everyone” meta-state declares that any authenticated can see the object.  The “Friends” meta-

state declares that only viewers who have at least one credential proving they are friends with the 

owner can see the object.  The owner can exclude friends in this meta-state, which makes sense 

in a scenario where only a subset of friends should have access (for example, if the object is an 

invitation to a surprise birthday party for a friend).  Lastly, the “No-one but” meta-state permits 

the owner to create a list of authenticated viewers who alone will have access to the object.
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Figure 5: The Plog per-post policy editing interface.



Unless the user explicitly over-rides the tag-based policy for this post, this widget updates 

the post's privacy policy as the user edits the tags.  The user can click “Edit” to see an 

explanation of the inferred policy for the post and to over-ride it if necessary. 

A content owner's friend may not be not be a fellow user of the site, but the content 

owner still needs a way to identify the friend in his privacy policy.  With the Plog plugin, a 

content owner can identify viewers by their Plog user ID, OpenID URL, Gmail username, AOL 

instant messenger ID, MSN username or Facebook ID, among others. Collectively, these 

mechanisms cover a significant percentage of the Internet user population [72], and this 

percentage will only increase as OpenID and other single sign-on services become more 

common.  As an added convenience, Plog users may “import” lists of friends from these other 

services to organize their friends into groups that reflect their real-life social structure.  When a 

viewer visits a Plog user's blog, the viewer sees a link at the top of the page inviting him to 

identify himself.  Since a single viewer may be identified in multiple ways by different Plog 

users -- e.g. one Plog user refers to the reader by his Gmail address, another Plog user refers to 

the reader by his AOL IM name -- a viewer may login using multiple IDs.  The first time the 

viewer does this, he will have to authenticate for each ID.  Plog infers that all the given IDs 

correspond to the same viewer and, in the future, the viewer only needs to login using one of his 

ids.
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4.4 Evaluation

We performed a user study to (1) test whether users could leverage tag rules to enforce 

privacy constraints, and (2) test whether users naturally preferred tag rules over per-post policies. 

The experiment and results are discussed in the following sections.

4.4.1 Participants

Twenty-eight undergraduate and graduate students were recruited as participants for this 

study (Male = 18, Female = 10, Mean Age = 21.17). All participants were at least 18 years old, 

fluent English speakers, and registered students of the university. None were WordPress users.

4.4.2 Experimental design

Each participant completed five training tasks and thirteen experimental tasks in which 

they had to role play as Ted, a blogger. The experimental phase included both privacy-related 

tasks and “distractor” tasks that covered normal blogging activities. The distractor tasks provide 

a baseline for comparing performance between participants and enable us to compare the 

usability of Plog and the built-in WordPress features.

In order to add realism to our tasks, we used a real blog released under the Creative 

Commons license, which we anonymized by replacing person and place names. This blog 

contained posts written by a married couple with compelling life stories. Topics discussed 

included struggles with kidney disease, the death of a father, and photos of family, which 

motivate genuine privacy concerns. So that our participants could complete the experiment in a 

reasonable amount of time, we shortened each blog post to a maximum length of 400 words and 

reduced the total number of posts to thirty. We did not modify the tags on any posts.

58



We used two deceptions to reduce participant bias. First, the participants were told that 

they were evaluating the WordPress open-source blogging system for learnability and usability. 

Since the participants were led to believe that we had not designed any part of the WordPress 

system, they had less incentive to withhold criticism, try to “get the right answer”, or praise the 

system. Second, the distractor tasks obscured the privacy focus of our study. This reduced bias 

between participant performance on privacy versus non-privacy tasks.

4.4.3 Training

Participants in our study were not WordPress users, so each participant first completed 

five training tasks as an introduction to the WordPress system. Each participant read the entire 

blog (thirty posts), wrote a blog post, managed posts, used the per-post privacy control tool, and 

used the tag rule privacy control tool. The system randomized the order of the two privacy 

training tasks for each participant. This allowed us to detect whether participants were influenced 

towards the privacy control presented to them first.

To be confident in participants’ understanding of the software, we evaluated participant 

performance in the training phase. All participants successfully completed most of the training 

tasks. Nine participants did not successfully complete the training task that involved post 

authoring and setting a per-post privacy policy. Five of these participants failed to specify any 

privacy policy for this task, but were able to successfully use the per-post privacy policy tool in 

the first privacy-related experimental task. The other four were excluded from our experimental 

analyses.
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4.4.4 Tasks

Each participant completed thirteen experimental tasks. In the distractor tasks, listed in 

Figure 7, the participant performed activities unrelated to privacy control, such as modifying the 

blog design, commenting on a post, managing the blog posts, and reading other blogs on the site. 

In the privacy tasks, listed in Figure 8, the participant was asked to restrict readership of topically 
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As you have read, Ted has severe kidney problems that has caused him issues with his family,  
insurance and work. Ted realizes that he would like to make posts on his medical issues only  
readable to his family because he does not think it is wise to share his frustration and isolation  
with future employers and strangers. Determine which posts are about his medical and  
insurance issues and make them readable only by his family (Joe, James, Joanna, Justina and 
Jack Gilver). 

Figure 6: Text for Task 15.

Task Description

7 Visit Tanya's blog and leave a comment on a post

9 Change the links listed on the side of the blog

12 Import Ted's friends using his email account

16 Change the theme of the blog

17 Add the pages, calendar, links, and recent posts widgets to Ted's blog.

Figure 7: Distractor tasks and descriptions.

Task Privacy Concern Posts Total tags Minimal Tag-based Policy Optimal Policy

10 Church community posts 2 47 One tag rule, one exception Tag-based policy

11 Memorial to father 1 18 One tag rule Per-post policy

13 Work related posts 2 28 One tag rule Tag-based policy

14 Daughter sees author naked 6 21 One tag rule Per-post policy

15 Health problems 6 21 One tag rule Tag-based policy

18 Humor and opinions 4 48 Two tag rules Tag-based policy

Figure 8: Details on privacy tasks and their optimal solution.



related posts to a group of viewers (note that tasks 1-6 were training tasks and tasks 8 and 20 

were transitions). Each privacy task expressed privacy preferences as generally and plainly as 

possible to model realistic privacy concerns, and did not suggest a solution strategy. Participants 

were allowed to solve the tasks using either tag rules, per-post specifications or a combination of 

both. An example of a privacy task is shown in Figure 6. The intended viewers of the privacy 

preference model real life social groups including family, church friends, work friends and 

college friends.

For the privacy tasks, the level of difficulty in authoring tag rules varied greatly because 

of the usage of tags on the topically related posts. Tag rules were not always the optimal strategy 

for solving privacy tasks because there were instances where the minimal set of tag rules plus 

exceptions exceeded the amount of work done using the per-post tool. Figure 8 describes the 

optimal solution for each privacy task.

4.4.5 Procedure

The user study took place in computer teaching labs over the course of a week across 

multiple sessions. Participants were asked to give two hours of their time and were compensated 

with 20 dollars. Participants were allowed to ask questions; the experimenter performed 

troubleshooting if necessary. All participant interface actions (e.g. viewing a page, saving a 

policy, or using an auto-completion feature) were logged. Following the user study, each 

participant completed a fifteen-item questionnaire rating the effectiveness, learnability and ease 

of use of the major functions of the blogging system on a seven point Likert scale.
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4.5 Results

4.5.1 Tag rule usage

Eight of the twenty four participants (the tag-rule group) used tag rules to solve five of 

the seven privacy-related experimental tasks. The remaining sixteen participants (the per-post 

group) used the per-post tool to complete all of the privacy-related experimental tasks. Four 

participants in the tag-rule group and four participants in the per-post group completed the tag 

rule training task before the per-post training task. The other sixteen participants saw the tag rule 

training task after the per-post training task. We conclude that participants’ strategy choice was 

not dependent on the order in which participants were trained in the system’s privacy features 

(p=0.36, Fisher’s Exact Test).

4.5.2 Accuracy on privacy tasks

For each post o, let Vo be the set of viewers granted access by the participant, and V o
 be 

the correct set of viewers. A participant’s accuracy on a post o was computed as:

A o={ 0 if v0∈V o∧v0∉ V o

1− V o△ V o

∣V∣
otherwise

Each post is associated to a single task, so for each participant, we can divide posts into a 

tag-rule set and a per-post set, depending on how the participant attempted to solve the task. We 

then compute an overall accuracy for each method by averaging, across all participants and tasks, 

the accuracy on posts in each set. These overall accuracy scores were compared using 

independent two-tailed Welch’s t-tests. For all posts related to a privacy task, the accuracy on 
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posts where policies were set by tag rules (M =0.82, SD =0.12) were just as accurate as those 

posts where policies were set by the per-post policy tool (M =0.82, SD =0.13; t(350.10)=1.97, p 

> .97).

We also computed a per-task accuracy for each method in the same way, but only 

considering the posts relevant to each task. Accuracy scores were compared using two-tailed 

Welch’s t-tests. Results are shown in Table 2. We could not perform this comparison for tasks 11 

and 14 because too few participants used tag rules. For all posts related to tasks 10, 13, 15, 18, 

the accuracy of the tag-rule group was not significantly different from that of the per-post group. 

However, the per-post group achieved higher accuracy for task 21. This is because many of those 

who wrote tag rules for this task assumed the tags they choose, “photos” and “photography”, 

applied to all the posts in this category, but actually the posts were inconsistently tagged.

4.5.3 Accuracy on distractor tasks

We also computed accuracy for the six experimental distractor tasks. For each task, the 

participant received a score of 1 if the task was completed successfully, or 0 if it was not. As 

before, we compared these accuracy scores using two-tailed t-tests. We found that the tag-rule 
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Task Accuracy Time (Seconds)

Tag rules Per-post rules Significance Tag rules Per-post rules Significance

N Mean (SD) N Mean (SD) N Mean (SD) N Mean (SD)

10 7 98.10% (0.3) 17 84.51% (0.29) n.s. 7 153.14 (37.37) 18 205.71 (58.78) p < 0.05

13 8 87.10% (0.16) 16 83.13% (0.31) n.s. 8 87.88 (36.93) 16 157 (77.65) p < 0.01

15 8 88.10% (0.13) 16 87.32% (0.14) n.s. 8 189.0 (78.71) 16 303.44 (92.23) p < 0.01

18 8 96.25% (0.09) 16 84.10% (0.32) n.s. 8 129.75 (47.30) 16 249.5 (105.11) p < 0.001

21 6 39.33% (0.23) 18 70.37% (0.32) p < 0.01 6 173.67 (54.11) 18 348.39 (144.90) p < 0.001

Table 2: Accuracy and time completion for experimental privacy tasks.



group and the per-post group performed equally well on the distractor tasks overall. A detailed 

analysis is provided in Table 3.

4.5.4 Time to completion of privacy tasks

We computed time to completion (in seconds) for each group for all privacy-related 

experimental tasks. We compared these times using two-tailed Welch’s t-tests. When 

participants used tag rules, they completed the privacy tasks significantly faster than those using 

per-post policies. Results are shown in Table 2.

4.5.5 Time to completion of distractor tasks

We computed time to completion (in seconds) for each group for all distractor 

experimental tasks presented in Table 3. The data reveals a small subset of participants in both 

groups that took noticeably longer to complete these tasks. Since participants did not receive 

training to complete these tasks, it is likely that some participants had unusual difficulty due to 

non-task-related reasons, such as being unable to find a link in the interface. Therefore, outliers 

were removed for both the tag-rule and per-post groups by computing the interquartile range and 
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Task Accuracy Time (Seconds)

Tag rules Per-post rules Significance Tag rules Per-post rules Significance

N Mean (SD) N Mean (SD) N Mean (SD) N Mean (SD)

7 8 100.00% (0) 16 100.00% (0) n.s. 8 131.13 (40.10) 16 138.15 (29.76) n.s.

9 8 100.00% (0) 16 87.50% (0.34) n.s. 8 97.86 (12.97) 16 135.09 (26.58) p < 0.01

12 8 100.00% (0) 16 100.00% (0) n.s. 8 112.00 (34.77) 16 124.14 (32.38) n.s.

16 8 87.50% (0.35) 16 81.20% (0.25) n.s. 8 50.38 (15.93) 16 98.14 (38.13) p < 0.01

17 8 75.00% (0.46) 16 68.75% (0.48) n.s. 8 42.13 (20.10) 16 77.40 (55.37) n.s.

19 8 100% (0) 16 93.75% (0.25) n.s. 8 131.67 (64.05) 16 177.93 (73.45) n.s.

Table 3: Accuracy and time completion for experimental distractor tasks.



removing for each task those participant’s times either less than  or greater than  in their 

respective group.

We then compared task completion times using two-tailed t-tests. Participants in the tag-

rule group and the per-post group did not significantly differ in the time to complete distractor 

tasks 7, 12, 17 or 19. Participants in the tag-rule group completed task 9 and 16 significantly 

faster than those in the per-post group.

4.5.6 Subjective evaluation results

Participants rated fifteen blog features on a seven point Likert scale for three aspects of 

usability: effectiveness, efficiency and learnability [73].  Figure 9 reports the average scores. 

Eight participants failed to complete the entire questionnaire and were eliminated from this part 

of the analysis. 

We performed ANOVAs on each dimension of usability by comparing the averages of 

the Likert ratings for the four major blog features (reading, writing, privacy and design) and 
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Figure 9: Average participant ratings of the major Plog and WordPress features.



found no statistical differences (Effectiveness F(3,13) = 0.53, p = .66; Learnability F(3,13) = 

0.30, p = 0.82; Efficiency F(3,13) = 0.08, p = 0.97). 

We compared the scores for each usability dimension for the tag rule group and the per-

post group using two-tailed t-tests. We found no significant differences in the ratings for any 

dimension of usability.

4.5.7 Size of tag rule policies

 In this analysis, we only consider participant data for tasks that the participant completed 

with perfect accuracy and by using tag rules. On average, participants’ tag rule policies came 

within one tag of the optimal policy. Half of the perfectly accurate tag-based policies created by 

our participants were optimal. The mean difference in size between the optimal and participant 

policies was 0.92 with a standard deviation of 1.38 and Q3=1.

We also looked at all tag-based policies regardless of accuracy. Participants in general 

did not write redundant tag rules (those that if removed from the policy, would not reduce the 

number of posts covered). On average, the tag-based policies created by our participants 

contained 0.79 redundant tags (SD =1.28).

4.6 Discussion

Our evaluation results show that: 

• Participants in the tag-rule group wrote policies that were just as accurate as those written 

by participants in the per-post group. 
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• Participants in the tag-rule group were able to author privacy policies with minimal 

effort, significantly faster than those in the per-post group. 

• Participants wrote near-optimal tag-based privacy policies in terms of size. 

We conclude that content owners in Web 2.0 applications can benefit from tag-based 

privacy control. Unlike the participants in our user study, users of these applications are not 

novices, and are familiar with the content they own. Consequently, they should be able to write 

tag rules even more efficiently and accurately than our study participants. Since the resulting 

policies will be smaller than per-object privacy control policies, they will also be easier to review 

and maintain. In fact, our findings in Section 4.2.1  of this chapter indicate that real-world users 

could immediately see a reduction in the effort required to maintain their privacy online.

In our evaluation, we made a deliberate choice not to force study participants to use either 

tag-based or per-post privacy policy authoring. We did not advertise the benefits of tag rules. 

Nor did we provide any guidance or training in tag rule authoring, which requires the mental 

ability to abstract away from post content and reason from precondition to effect. Given that our 

participants were blogging novices, it is very promising that a third of them were able to use and 

prefer the abstraction of tag-based policy authoring in a short period of time. For the other two-

thirds of our participants, the distractor tasks do not indicate they were less skilled or slower at 

completing other blogging tasks than the tag-rule group. Therefore, we think that these 

participants in the per-post group would also prefer tag-based policies if the time and effort 

savings were made clear to them, and if tutorials and help were provided.
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We are also encouraged by the finding from our subjective evaluation that participants 

thought the privacy tools were as usable as the other functions of the blogging system. The most 

frequent recommendation to improve the system given by the participants was to include more 

themes. Therefore, privacy tools in blogs are not antithetical to usability nor do they require 

extensive training.

The results of this user study show two areas where we could improve our 

implementation. First, the Plog interface should provide automatic assistance to identify 

redundant rules to further help bloggers keep policies small. Second, sometimes tag rules are not 

the best solution if the tags are ambiguous or overloaded. Task 21 is an example of a situation 

where tag rules are not the optimal solution, because the target posts were not consistently 

tagged. Two members of the tag-rule group observed this and solved the task using the per-post 

tool. Plog could identify inconsistently-tagged posts and suggest alternative tags to make it easier 

to author tag rules.

4.7 Related work

In Role Based Access Control (RBAC), access to content is determined based on a user's 

roles in a particular system [74].  RBAC can be successfully used in highly structured contexts 

such as company intranets. 

In Attribute Based Access Control (ABAC), access to content is determined based on a 

user's attributes (e.g. age, home town) [75].  This approach is promising when all content viewers 

are authenticated viewers.  Plog policies may have some similarity to RBAC or ABAC policies, 
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but RBAC and ABAC systems must be administrated manually and usually by a security expert, 

which would be infeasible in large and dynamic Web 2.0 applications.  

Although much research has focused on aspects of access control such as policy 

enforcement [55], policy reasoning engines [76], and distributed access control systems [44], few 

comprehensively address the policy authoring problem.  IBM's SPARCLE project [66] 

developed several tools to help trained experts translate human-readable corporate privacy 

policies into machine-readable form.  Our user interface for specifying privacy preferences is 

similar to SPARCLE's structured policy authoring interface.  Expandable Grids is another 

notable system in policy authoring [77].  This system produces visualizations of access control 

policies in an interactive grid format.  This work has been successfully applied to managing file 

permissions and comprehending P3P privacy policies.  The Grey project [78] highlights the 

importance of modeling user's ideal policies and demonstrates that systems closely aligned with 

user preferences will result in less errors than other approaches where users must translate their 

constraints in unnatural terms

The Plog tag-based policy language is similar to Domain Specific Languages (DSL) [79]. 

DSLs are designed to provide a solution to a specific problem that takes advantage of the well 

defined and clear language of a particular domain, which can be mapped into a machine-readable 

form.  Tags are incredibly varied and individual in their usage and do not constitute the formal 

and universal language required of a DSL.

Systems that use the content and categorization of an object to render access control 

decisions like Plog exist in specialized capacities. Adult content filters are a special instance of a 
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topic-based access control system [80].  Most notable in this category is the “MaX” system of 

the EUFORBIA project [81], which uses content meta information to enforce an attribute-based 

access control.  Other researchers have investigated techniques for classifying objectionable 

images based on their content to prohibit  accepting their submission [82].  Some research 

projects  take advantage of the formal language and organized nature found in  business and legal 

documents to translate policies and rules into  machine readable form [83][84].

4.8 Conclusion

The Web 2.0 has given users unbelievable opportunities to create content and share with 

others. Unfortunately, the lack of privacy in most Web 2.0 applications has had significant 

impact on some users’ lives. Developers of these applications have a responsibility to give users 

the tools to manage their own privacy, but it is hard to create general tools that a wide variety of 

users can use effectively.

Our solution, Plog, is a tag-based privacy policy control that allows users to mediate their 

competing desires for privacy and publicity by specifying their privacy preferences in a language 

that is natural to them. Tag-based policy authoring produces policies that are short, precise, and 

easy to create and maintain. Our implementation of Plog includes several user-interface features 

designed to make privacy management as simple and non-intrusive as possible and could be 

easily integrated into current Web 2.0 applications.

Plog offers a starting point for more intelligent and interactive privacy control in the Web 

2.0. By utilizing OpenID and similar technologies, these policies could be made to “stick” 

through transportable policy data encodings and mechanisms since the privacy policies we create 
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are easily converted into machine readable form using technologies like [85]. We argue that 

systems like Plog can elucidate privacy policies from the user’s content and categorization which 

could engender better privacy control across the Web for personal content.
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Chapter 5 Policy Inference for PLOG

Choosing tags as the basis for our policy language has the additional benefit that we can 

provide policy inference by suggesting tags on newly created content.  We built iTag as a policy 

inference tool for PLOG.  To determine its predictive performance, we test our tag suggestion 

algorithm on real blogs to get a sense of how well it will perform in the general case.

5.1 Tag suggesters for blogs

Despite the popularity of blogs and prevalence of tagging, the most popular blogging 

services do not offer tag suggestion features. Researchers have developed tools for tag 

suggestion, but most of these tools focus on social tag prediction. Social tags are the most 

interesting or informative tags derived (via aggregation, scoring and filtering) from all tags 

assigned by users of an online community (e.g. del.icio.us, StumbleUpon, Digg) to a content 

item. Social tags allow members of the online community to share and interact more effectively 

tag [86]. They do not, however, accurately reflect the mental model of the content author. 

There are two general approaches used in tag suggestion tools for blog posts. The first 

extracts interesting terms from the post itself [87]. This approach is useful for post clustering, but 

often author-assigned tags consist of terms not in the post itself. Bloggers may label their posts 

with category tags (“Categories” in WordPress), topical tags, dates, and locations. For example, 

on the widely-read “Get Rich Slowly” blog [88], there are some category tags (e.g. 
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“Administration”, “Ask the Readers”), and some topical tags (e.g. “Cars”, “Credit Cards”). The 

second approach uses search and scoring over a large collection of posts not necessarily 

belonging to the blogger [89]. For example, the TagAssist tool tags a post by constructing a 

search query from the post content, searching a collection of blog posts using the query, 

extracting the author-assigned tags from the retrieved posts, and scoring and filtering those tags 

[90]. In a series of evaluations on blog data, TagAssist was shown to perform well. However, it 

is neither personalized nor localized: it weights tags preferentially if they occur on more popular 

posts or assigned to a larger number of posts, but it does not give preference to posts or tags by 

the same author, or to posts or tags that occur near each other in time.

In this work, we present a tag suggestion tool that focuses on personalized and localized 

tag recommendation. Our method suggests only tags previously used by this blogger. It also 

incorporates temporal information when selecting tags to suggest. Our experiments demonstrate 

that a personalized tagger can substantially outperform a non-personalized tagger. We compared 

the performance of iTag and TagAssist on a random subset of posts drawn from the “Growing 

Blogs” WordPress RSS feed. This feed includes blogs that have had a recent increase in 

popularity (compared to its average number of page views), and therefore tends to contain 

reasonably well-written posts and few “spam blogs” (i.e. blogs that are created to artificially 

boost search engine results or strictly advertise a product or company). On this data set, iTag 

achieved precision and recall scores over 60%, while TagAssist scored below 10% in these 

measures. 
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The rest of this chapter is structured as follows: in Section 5.2  we present what is to the 

best of our knowledge the first analysis of tag usage on a per-blogger basis. In Section 5.3  we 

describe a novel and lightweight machine learning technique for tag suggestion that uses blogger 

identity and temporal information as features. In Section 5.4  we describe an evaluation of our 

approach and compare its performance with that of TagAssist. We observe dramatic increases in 

both precision and recall on tagging posts, even when tags that only occur once are taken into 

consideration. This suggests that personalization must be incorporated into an auto-tagger to 

provide effective tag recommendations.

5.2 Tag usage on individual blogs

We investigated tag usage on individual blogs by downloading 1246 blogs from the 

WordPress “Growing Blogs” feed [91] between April 1 and April 25. We chose WordPress 

because it allows bloggers to separate tags into two types: tags and categories. Intuitively, 

bloggers may separate their tags so that the more frequent or taxonomic tags are designated as 

categories. 84.85% of the blogs in our data set utilized categories. The “Growing Blogs” feed 

[91] collects blogs that have experienced a relative surge in page views over the last 24 hours. 

We chose this feed because it rarely contains spam blogs, is generally well written, exhibited 

tremendous diversity in topic and content, and similar to other blogs in the long tail of 

popularity. 

We measured the frequency of use of each tag and category by individual bloggers, then 

aggregated across all the blogs we analyzed. The resulting distribution of tag frequencies is 

shown in Figure 10. As one would expect, bloggers reuse categories more frequently than tags. 
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We note that most tags occur only once per blog (58.82%). On the other hand, 51.2% of 

categories occur more than ten times per blog. On average, bloggers assign 10.2 tags to each 

post, but only 2.2 categories. Although most tags occur only once, most posts contain 9.37 

previously seen tags, i.e. all but one of the tags are re-used. Bloggers also reuse 2.03 categories 

on average, introducing a new category about once every 6 posts. 81.4% of posts use only pre-

existing categories, whereas 23.8% of posts use only pre-existing tags. 

We also measured individual bloggers’ consistency in tag use, as this is an indicator of 

how well a localized tag suggestion tool can perform. For each post, we determined the 

minimum number of previous posts such that the set of tags aggregated from these previous 

posts provides total recall for the tags that have occurred at least once before and are assigned to 

the target post. If bloggers use tags haphazardly, we would expect many posts to be required to 
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provide total recall. For this analysis, we selected a subset of 100 blogs that each contained 50 to 

150 posts. 

Finding the minimum number of posts to provide total recall is an instance of the set-

cover problem, and therefore we employed a linear programming solver. We investigated several 

different strategies for previous post set selection. First, we selected all previous posts regardless 

of order. Second, we selected the n most recent previous posts (by creation date order). Third, we 

selected the n most similar previous posts (based on the cosine similarity of the documents). 

Results are shown in Table 4. We see that for most bloggers use of tags is highly local, 

both with respect to topic and with respect to time.

Our analysis of tag usage on individual blogs suggests that a personalized and localized 

tag suggestion tool can be highly effective. First, more than 40% of tags and 85% of categories 

are reused by individual bloggers. In fact, the majority of tags and categories on each post have 

been used before. Our data suggests that a local approach can have good recall even though most 

tags are unique and it suggests only previously used tags. Second, a relatively small post history 

(10 posts) gives high recall for previously used tags, indicating that bloggers cluster related posts 

together temporally. At the same time, a high recall for previously used tags based solely on 
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Approach Average Number of Posts Recall
All previous posts 1.38 1.0

5 most similar posts 1.20 0.91
10 most similar posts 1.27 0.94
10 most recent posts 1.22 0.92
20 most recent posts 1.28 0.95

Table 4: Average number of posts required for maximal recall on previously seen tags.



similar posts by the same blogger indicates that document similarity can continue to be a useful 

feature for personalized tag suggestion

5.3 iTag description

iTag uses a modified form of the approach taken in TagAssist [90]. We start by 

summarizing TagAssist’s search and score strategy. We then highlight key differences in iTag. 

5.3.1 TagAssist

When TagAssist is presented with a target post, it selects tags to suggest using a search 

and score method on a large set of training data.

Training Data: TagAssist uses a corpus of blog posts and tags indexed with Lucene 

[92]. As part of indexing, TagAssist normalizes tags by trimming white space and punctuation, 

stemming each word in each tag, and ordering the words in multi-word tags alphabetically. It 

then clusters the normalized tags using tag co-occurrence information to find the minimal 

number of sets of semantically-related tags. 

Tag Retrieval: TagAssist generates a query of up to 30 unigrams and bigrams from the 

target post that have high TFIDF scores in its training corpus. It retrieves up to 35 result posts 

from its index for this query, and retrieves the tags for each result post. Tags that occur on only 

one result post are discarded.

Tag Scoring: TagAssist scores the retrieved tags using a weighted sum over the 

following features: frequency (in the bag of retrieved tags), text occurrence (in the target post), 

tag count (frequency in the training corpus), rank (popularity of the blog containing the retrieved 
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post labeled with the retrieved tag), and co-occurrence with other retrieved tags (in the training 

corpus).

Tag Selection: TagAssist suggests tags that score above the average of all tag scores.

5.3.2 iTag 

iTag also uses a search and score method, but significantly differs from TagAssist in each 

part of the system.

Training Data: iTag only considers the previous posts, and consequently only the tags, 

of the blogger.

Tag Retrieval: iTag generates a query in the same way that TagAssist does. However, 

iTag only retrieves the 10 most similar previous posts by this blogger (which achieved recall of 

0.94 in the analysis described previously). iTag does not remove any retrieved tags from 

consideration, regardless of their absolute frequency of occurrence.

Tag Scoring: iTag does not use the rank, tag count, or co-occurrence features used by 

TagAssist. Instead, it uses the following features which we have found provide the best 

information for tag suggestion with respect to previous posts:

• Count: the number of times the retrieved tag appears in the retrieved tag set.

• Highest rank: the rank of the retrieved post labeled with this retrieved tag that is most 

similar to the target post. 

• Contained: 1.0 if the retrieved tag appears in the target post, 0.0 otherwise.
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• Tag.IDF: a variation on tf-idf, this feature is computed as the number of times the 

retrieved tag appears in the retrieved tag set, multiplied by the blogger’s inverse 

document frequency for the tag.

• Last Recently Used: distance in number of posts since this tag was last used by this 

blogger. This feature draws on the work of Cattuto et al.[93] by rewarding tags that have 

occurred recently, and is motivated by the analysis in Section 5.2 . 

Tag Selection: We devised two methods for tag selection. Our first method, adaptive co-

occurrence tag selection, is a modification to the TagAssist tag selection method. Our second 

method, classification-based tag selection, uses a binary classifier trained on the features 

described above. 

Adaptive Co-occurrence Tag Selection: In this mode, iTag suggests any tag that scores 

above average. It also suggests any tag a that strongly co-occurs for this blogger with a tag b that 

scores above average, as long as 

co−occurrence a ,b
mincount a , count b

≥0.35

Our testing indicates that a co-occurrence threshold of 35% provides good tag 

suggestions. Every time a blogger makes a change in tag assignments, the co-occurrence 

frequencies for that blogger are updated.

Classification-Based Tag Selection We apply binary classifiers, using the above 

features, for tag suggestion using the C4.5 decision tree implementation provided by WEKA [94] 
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(decision trees outperformed SVMs, Naive Bayes, and nearest neighbor classification algorithms 

for our task). The label for each tag was 1 if the tag was applied on the post, and 0 otherwise. 

iTag takes two approaches to classification-based tag suggestion. In the pre-trained 

approach, we trained the classifier on 15,000 instances of tags from the tag retrieval step of our 

algorithm on posts from our WordPress data set, regardless of blogger of origin. Since the 

features of the instances are relate to the search set results and presence in the post and not to the 

tag or author specifically, we hypothesize that the behavior of applied tags behaves similarly 

across blogs.  In the locally-trained approach, by contrast, we train a separate classifier for each 

blog. The pre-trained approach is faster since the classifier only has to be trained once. The 

locally-trained approach must be retrained each time the blogger makes a change in tag 

assignments. Note that even when using the pre-trained classifier, iTag is still personalized since 

it only chooses tags from the blogger’s previous posts.

If the classification-based method produces no tag suggestions, iTag backs off to the 

adaptive co-occurrence method.

5.4 Evaluations and results

Our evaluation uses the same set of blogs described in Section 5.3 . We eliminated blogs 

that contained fewer than 30 posts, since these blogs were likely created by new bloggers not yet 

familiar with post authoring and tagging. We eliminated posts that contained fewer than 10 non-

stop words because they had little information or contained only photos or links. We did not 

distinguish between tags and categories, but included a tag only once if it was assigned as both a 

category and tag.
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We implemented TagAssist to compare with our approach. We trained our 

implementation using the ICWSM 2009 data set [95]. This data set consists of 6.9 million posts 

with 1.7 million unique tags and 1.4 million TagAssist normalized tags. We chose this data set 

because it is the only freely available data set we could find with the popularity information and 

size required by TagAssist.

We set aside 400 randomly-selected blogs for testing data. We used the remaining blogs 

to create the pre-trained classifier. When evaluating the locally-trained classifier on a post, we 

trained it on all the preceding posts in the same blog.

As testing data, we used the 400 blogs set aside earlier. We then sampled 1000 posts from 

the last 20% of posts in each blog (with respect to creation date), with no blog contributing more 

than 3 posts.

For tag suggestion, we report average per-post precision and recall across all 1000 testing 

posts. Precision and recall for each post are normalized using the number of tags applied to the 

post (for recall) and suggested (for precision). We report results separately for all tags, and for 

tags the blogger uses more than once. Our evaluation results are presented in Table 5. 
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Tag Frequency All Tags Adaptive Classification-based TagAssist

Co-occurrence Locally-trained Pre-trained

Every tag on the post 0.34 (0.77) 0.48 (0.57) 0.67 (0.59) 0.64 (0.56) 0.02 (0.07)

Occur more than once 0.41 (0.84) 0.52 (0.62) 0.67 (0.63) 0.66 (0.60) 0.02 (0.08)

Table 5: Precision and recall for tag suggestion method with respect to 1000 tagged WordPress 
posts from April 2009. “All Tags” refers to the entire set of tags returned by our localized search 
results.



5.5 Discussion

iTag achieves high precision and recall for posts, even when considering tags that occur 

only on the target post. This indicates that it is a useful method for tag suggestion which could be 

deployed almost immediately.

Both classification-based approaches outperform the adaptive co-occurrence method. 

Surprisingly, the pre-trained approach performs almost as well as the locally-trained approach. 

We note that precision and recall for tags that occur more than once when the classifier 

suggested at least one tag were 77.88% and 67.77% for the locally-trained approach and 79.17% 

and 63.36% for the pre-trained approach. This means that although the classification-based 

method gives higher precision, it may fail altogether, and the adaptive co-occurrence method 

gives some robustness.

iTag performs substantially better than our TagAssist implementation in terms of both 

precision and recall. However, the precision and recall scores of our TagAssist implementation 

are less than half those reported by the TagAssist creators. There are several possible 

explanations for this. First, many of the tags suggested by our TagAssist implementation were 

reasonable. However, as our tag usage analysis showed, tag assignment is highly personal. 

Second, in the original TagAssist evaluation, a set of contemporaneous blogs was used for 

training and testing, and some of the same blogs were used for training and testing. We did not 

include other posts by the same blogger or from the same time period in the training corpus for 

our TagAssist implementation. Third, the blogs used in the original TagAssist evaluation came 

from Technorati and appear to be news and technology oriented, while many of the blogs in our 
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data set were personal and had a wider variety of themes. Fourth, many normalized tags occurred 

relatively rarely in the ICWSM data set (63% of the tags on the test posts occurred on 10 posts or 

fewer in the ICWSM data set). Consequently, the removal of tags that occurred only once in the 

retrieved tag set may have adversely affected the precision and recall of TagAssist. Curiously, 

we also found that TagAssist’s tag normalization yielded clusters that where tags were not 

semantically related. For example, “Cheney”, “Cheetos”, “Chi” and “Children” all normalize to 

“ch”.

Both iTag and TagAssist may face problems of scale. For TagAssist, the problem is 

related to storing tag co-occurrence information. The 1.7 million tags in the ICWSM data set 

yielded 20 million instances of tag co-occurrence. Without aggressively caching this data, 

searching for co-occurrence data can be incredibly costly. For iTag, the problem is related to 

storing classifiers or adaptive co-occurrence features for each blog; however, the tag co-

occurrence problem is reduced when only local tag co-occurrences need to be stored.  Also, with 

the pre-trained approach, we can alleviate the necessity to store training data for each blog; 

however, the tag co-occurrence problem is reduced when only local tag co-occurrences need to 

be stored.

5.6 Future work

It is clear that although the purely local approach performed well, it is limited in two 

crucial ways. First, it suffers from the “cold start” problem where initial data is required to obtain 

any results. Secondly, an individual blog is a relatively small corpus containing at most a 

thousand entries. A local approach inevitably encounters sparsity of data when tagging new 
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posts. This experiment demonstrates that a purely global approach may not take advantage of the 

personal taxonomy and consistency in tagging behaviors of bloggers. Our goal is to combine 

global and local information to provide personalized suggestions that also anticipates new tags. 

Lastly, existing tag suggestion systems have not taken advantage of user interaction and 

feedback. It will be important to perform a user study to observe user interaction with auto-

taggers and how better suggestions can be crafted.

5.7 Conclusions

We have described iTag, a personalized and localized tag suggestion tool motivated by 

analysis of bloggers’ post tagging behavior. We have demonstrated that iTag outperforms 

taggers trained on large multi-blog, multi-tag data sets. We also demonstrated that incorporating 

machine learning leads to improved tag suggestion with minimal cost.
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Chapter 6 Data Loss Prevention

Modern enterprises increasingly depend on data sharing, both inside and outside their 

organizations. Increased sharing has led to an increasing number of data breaches, i.e., malicious 

or inadvertent disclosures of confidential and sensitive information, such as social security 

numbers (SSN), medical records, trade secrets, and enterprise financial information, to 

unintended parties. The consequences of data breach can also be severe: violation of customers’ 

privacy, loss of competitive advantage, loss of customers and reputation, punitive fines, and 

tangible monetary loss. The Ponemon Institute's 2009 Cost of a Data Breach Study found that a 

data breach costs an average of $6.6 million to an organization [96]. The Privacy Rights 

Clearinghouse lists almost 500 million records that have been leaked in data breaches since 2005 

[97]. 

Security vendors have begun to offer a raft of “Data Loss Prevention” (DLP) products 

designed to help businesses avoid data breaches [98][99][100][101][102]. DLP systems identify 

confidential data on network storage servers, monitor network traffic and output channels to 

peripheral devices such as USB ports, and either enforce data control policies or generate reports 

that administrators can use to investigate potential breaches. 

Although existing DLP solutions are quite sophisticated in detecting, capturing and 

assembling information flows, they are currently limited in their capability to recognize sensitive 

information. Many vendors offer solutions that rely on keywords, regular expressions and 
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fingerprinting, but these techniques alone cannot fully capture the organization’s secrets when it 

is re-phrased or re-formatted. More elaborate and comprehensive human annotations and access 

control will not solve the problem because they rely on users to encode in a machine-readable 

form the sensitive contents of the message. This is simply infeasible for certain types of data, too 

time consuming and too error prone. Security vendors now recognize the need for DLP systems 

to learn and automatically classify sensitive materials [99]. 

In this chapter we develop practical, accurate, and efficient machine learning algorithms 

to learn what is sensitive and classify both structured and unstructured enterprise documents as 

either public or private. Our scheme is practical because enterprise administrators need only 

provide an initial set of public and private documents. Our system trains a classifier using these 

documents, and then uses the resulting classifier to distinguish public and private documents. 

System administrators do not have to develop and maintain keyword lists, and our classifier can 

recognize private information, even in documents that do not have a substantial overlap with 

previously-observed private documents. 

We summarize the results of our classifier on 5 testing corpora in Section 6.4  and 

compare the results with a baseline off-the-shelf classifier (Section 6.2 ). Our classifier achieves 

an average false positive rate of 0.46% and an average false negative rate of 1.6% on our testing 

corpora. The classifier also achieves a much lower false discover rate (FDR), i.e., the percentage 

of false alarms raised by the classifier, than the baseline classifier. A low FDR is essential since 

users will ignore a system that frequently raises false alarms. If we assume a typical enterprise 

network (Section 6.4 ), then our classifier has an average FDR rate of 0.47% compared to the 
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baseline classifier’s average FDR rate of 16.65%. These results demonstrate that our classifier 

can meet the demanding needs of enterprise administrators. 

In summary, this chapter makes the following key contributions to the field of enterprise 

data loss prevention:

• We demonstrate that simply training a classifier combining enterprise data, both public 

and private, yields prohibitively high false positive rates on non-enterprise data, 

indicating that it will not perform well in real networks. 

• We present a new algorithm for classifying sensitive enterprise documents with low false 

negative rates and false positive rates. This algorithm employs a new training technique, 

supplement and adjust, to better distinguish between sensitive, public and non-enterprise 

documents. Our algorithm scales to real time enterprise network traffic and does not rely 

on any meta data. 

• We construct the first publicly available corpora for evaluating DLP systems.

The rest of the chapter is organized as follows. We briefly describe a typical DLP system 

in Section 6.1  and discuss how our classifier fits into a DLP system. We introduce our 

classification algorithms in Section 6.2  and describe our test corpora in Section 6.3 . We discuss 

our classification results in Sections 6.4  and 6.5 . In Section 6.6 , we compare our work with 

related work. We conclude with a summary and possible avenues of future work in Section 6.7 .
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6.1 Data Loss Prevention systems

In this section, we describe a typical DLP system’s building blocks and discuss how our 

proposed approach fits into the system. A DLP system aims to protect three types of data in an 

enterprise: data-at-rest, data-in-motion, and data-in-use. Data-at-rest is static data stored on 

enterprise devices such as document management systems, email servers, file servers, network 

address storage, personal computers, and storage area networks. Data-in-motion is enterprise 

data contained in outbound network traffic such as emails, IMs, and web traffic. Data-in-use is 

data being “used” by the enterprise’s employees on end point devices, e.g., a file being copied to 

a USB drive. 

Let us consider the definition of confidential for an organization. There certainly exists 

certain types of data such as Personally Identifiable Information, e.g., names, credit cards, social 

security numbers, that should be confidential regardless of the organization. The definition 

becomes more difficult to articulate, however, when we consider trade secrets and internal 

communications, which may be unstructured. Broadly, we define secret as information generated 

within the organization that is either not general known, e.g., facts that can be found in an 

encyclopedia or industry magazines, or contained in public materials from the company. A DLP 

system will include some functionality to identify sensitive information in one or more of the 

aforementioned data types. 

A DLP system performs three broad steps to prevent enterprise data loss. First, the 

system discovers the three types of enterprise data by scanning storage devices, by intercepting 

network traffic in real time, and by monitoring user actions on end point devices. Second, the 
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system identifies confidential enterprise data from the data discovered in the first step. Third, the 

system enforces enterprise policies on confidential data. For example, the system may encrypt 

confidential data-at-rest to prevent unauthorized use; the system may block confidential data-in-

motion from leaving the enterprise and may prevent confidential data from being copied to a 

USB device. 

A DLP system faces two operational challenges: performance and accuracy. In an 

enterprise setting, the system should scan terabytes of data-at-rest, monitor hundreds of 

megabytes of real time network traffic, and monitor user actions on thousands of end point 

devices. The system should identify confidential data accurately in a scalable manner without 

producing many false positives or false negatives. 

Current DLP products identify confidential data in three ways: regular expressions, 

keywords, and hashing. Regular expressions are used primarily to recognize data by type, e.g., 

social security numbers, telephone numbers, addresses, and other data that has a significant 

amount of structure. Keyword matching is appropriate when a small number of known keywords 

can identify private data. For example, medical or financial records may meet this criteria. For 

less structured data, DLP products use hash fingerprinting. The DLP system takes as input a set 

of private documents and computes a database of hashes of substrings of those documents. The 

system considers a new document private if it contains a substring with a matching hash in the 

database. Regular expressions are good for detecting well-structured data, but keyword lists can 

be difficult to maintain and fingerprint-based methods can miss confidential information if it is 

reformatted or rephrased for different contexts such as email or social networks. 
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It is also unlikely that more sophisticated access controls and additional user annotation 

will necessarily improve DLP products. First, it is likely that most sensitive materials contain a 

fair amount of public knowledge. Former analysts of the C.I.A. have noted that only 5% of 

intelligence was captured through covert actions, meaning that 95% of information in these 

reports is derived from public sources [103]. Therefore, assigning the privacy level to text copied 

and pasted from such a document is not guaranteed be the correct action. Relying on the users 

themselves to better identify and police sensitive materials poses several complications. Users 

may find encoding sensitive material to not be trivial. Even if the user has the ability to 

sufficiently define what is confidential in this system, it is possible for the user to forget or make 

a mistake. Lastly, it may not be feasible to expect that all users annotate their content 

consistently. 

In this chapter, we propose automatic document classification techniques to identify 

confidential data in a scalable and accurate manner. In our approach, the enterprise IT 

administrator provides a labeled training set of secret and non-secret documents to the DLP 

system instead of keywords and regular expression. We learn a classifier from the training set; 

the classifier can accurately label both structured and unstructured content as confidential and 

non-confidential. The DLP system will use the classifier to identify confidential data stored on 

the enterprise devices or sent through the network. 

Our approach builds on a well-studied machine learning technique, Support Vector 

Machines (SVMs), that scales well to large data sets [104]. The classifier can meet an 

enterprise’s needs ranging from a small collection of a user’s sensitive material to a large 
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enterprise-wide corpus of documents. We assume that the DLP system cannot access to meta 

data associated with documents, e.g., author, location, time of creation, and type. We also 

assume that administrators will only provide the document classifier with labeled training data. 

Employees and managers, therefore, can provide confidential documents directly to the 

classifier, alleviating the burden of collecting a training set on IT administrators and minimizing 

their exposure to confidential information. 

The major drawback of confidential data identification schemes used in DLP systems, 

including ours, is the inability of these systems to classify data they do not “understand.” 

Encrypted data and multimedia content are examples of such data. Loss of confidential data via 

encryption is relatively rare in practice: only 1 out of more than 200 data breaches use encryption 

[105]. Hence we leave the challenges of identifying confidential data in encrypted content and 

multimedia content as future work. 

6.2 Text classifiers for DLP

This section will discuss present our approach for building text classifiers for Data Loss 

Prevention. It will begin by discussing the types of data it will encounter with respect to 

prominence and privacy. We will then describe our baseline approach for performance 

comparison. We will conclude the section with our approach to building text classifiers for DLP. 

Enterprise networks and computers handle three types of data: public enterprise data, 

private enterprise data, and non-enterprise data. Public enterprise data (public) includes public 

web pages, emails to customers and other external entities, public relations blog posts, etc. 

Private enterprise data (secret) may include internal policy manuals, legal agreements, financial 
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records, private customer data, source code or other trade secrets. Non-enterprise data (NE) is 

everything else, and so it cannot be described succinctly, but is likely to include personal emails, 

Facebook pages, news articles, and web pages from other organizations, some of which may be 

topically related to the business of the enterprise. We consider private documents to be 

confidential and require protection whereas NE and public documents do not. From this high-

level description, we can draw several conclusions: 

• Enterprise public and private documents are likely to be relatively similar since they 

discuss different aspects of the same underlying topics. 

• Many non-enterprise documents will share almost no features with enterprise documents. 

• Some non-enterprise documents may be quite similar to enterprise public documents. For 

example, non-enterprise documents may include news articles about the enterprise or web 

pages from related organizations.

A DLP text classifier is thus faced with two contradictory requirements: it must be finely 

tuned to enterprise documents so that it can make the subtle distinction between public and 

private documents that discuss the same topic, but it must not overfit the data so that it can 

correctly mark non-enterprise documents as public. As explained below, our solution uses a two-

step classifier to solve this problem. The first step eliminates most non-enterprise documents that 

have little in common with enterprise documents, and the second step uses a classifier focused on 

documents related to the enterprise to make the finer distinction between enterprise public and 

private documents. 
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6.2.1 Baseline approach

We are not aware of any previously published results on text classification for DLP. We 

also could not test our solution against existing DLP solutions because we could not verify if the 

software adhered to the constraints our classifier abides to, i.e., no meta-data is associated with 

documents). We first developed a baseline classifier to provide a basis for comparison and to 

garner insight into the structure of the DLP text classification problem. 

We performed a brute search evaluating multiple machine learning algorithms and 

feature spaces known for their text classification performance for our baseline classifier, 

including SVMs [104], naive Bayesian classifiers [106], and Rocchio classifiers [106] from the 

the WEKA toolkit [107] to determine the best classifier across all the datasets. We found that a 

support vector machine with a linear kernel performed the best on our test corpora (described in 

Section 6.3 ). The best performing feature space across all corpora is unigrams, i.e. single words, 

with binary weights. We eliminated stop words, common words such as “is” and “the”, and 

limited the total number of features to 20,000. If a corpus contained more than 20,000 unique 

non-stop words, we choose the 20,000 most frequently-occurring non-stop words as our features. 

We use this configuration as our baseline classifier for all experiments reported in Section 6.4 . 

An SVM trained on enterprise documents achieves reasonable performance on enterprise 

documents, but has an unacceptably high false positive rate on non-enterprise (NE) documents. 

The poor performance can be explained by identifying weaknesses in the training approach. 

First, for two of our testing sets, the classifier was biased towards the secret class, e.g., its initial 

expectation was most documents to be secret. And since many NE documents share very few 
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features in common with secret documents, the classifier mislabeled these instances because it 

had too little information to contradict its a priori expectation. The second issue arose from 

overfitting of features. The public documents could not alone capture the behavior of these 

features for non-secret documents. It will, therefore, overweight certain features; we noticed 

common words like “policy” and “procedure” being instrumental in the misclassification of NE 

documents. 

A DLP text classifier is thus faced with two contradictory requirements: it must be finely 

tuned to enterprise documents so that it can make the subtle distinction between public (non-

secret enterprise documents like press releases) and secret documents that discuss the same 

topic, but it must not overfit the data so that it can correctly mark NE documents as non-secret. 

We address this problem using a two-step classifier. In the first step, we train a classifier on both 

enterprise and non-enterprise documents. This classifier better distinguishes secret documents 

from NE documents, but does increase the public false positive rate. We apply a second classifier 

that addresses mislabeled instances from the first step by checking to see if the instance is 

topically related to secret documents and comparing it to a classifier specialized to recognize 

public documents. 

6.2.2 Supplement and Adjust

To remedy overfitting and overweighting common features, we supplement the classifier 

by adding training data from non-enterprise collections such as Wikipedia [59], Reuters [108], or 

other public corpora. As we will show in Section 6.4 , our supplemental corpus does not need to 
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be comprehensive. The presence of supplementary data does not train the classifier to recognize 

NE documents, but prevents it from overfitting the enterprise data. 

We use 10,000 randomly-selected Wikipedia articles and a 1,100 document set featuring 

documents on finance, law and sport as our supplementary data set. We labeled the 

supplementary articles as public during training. The supplement classifier uses the same feature 

set as the baseline classifier and does not include features found in the supplemental data set. 

This prevents the classifier from using words from the supplemental data set to learn to 

distinguish secret and NE documents. 

Adding supplemental training data will likely introduce a new problem: class imbalance. 

Supplemental instances will bias the classifier towards public documents because the size of this 

class will overwhelm the size of secret documents. This will result in a high false-negative rate 

on secret documents. Therefore, we need to adjust the decision boundary towards public  

instances. This will reduce the false negative rate while increasing the false positive rate. For our 

classifier, we measure the distance between the decision boundary and the closest, correctly 

classified public instance (either NE or public) and move the boundary x% of the distance 

towards it, for some value of x. We chose x = 90%, although we show in 6.5  that our classifier is 

robust and performs well when 50% ≤ x ≤ 90%. 

The supplement and adjustment technique can be applied to train classifiers tailored to 

both public and secret documents, with the supplemental instances in both cases drawing from 

the same source, e.g., Wikipedia. Therefore, we denote a supplement and adjust classifier as 

SAclass where class is either public or secret. When training an SAsecret classifier, we combine 
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public and NE documents and adjust the boundary to the closest, correctly classified public or 

NE. An SApublic classifier is constructed by combining secret and NE documents and adjust the 

boundary to the closest, correctly classified secret or NE document. We employ an SAsecret 

classifier as the first stage of our DLP text classification system. 

6.2.3 Meta-space classification

The first-level classifier significantly reduces the number of false positives generated by 

NE documents, but not completely. These documents tend to contain salient features of the 

secret class, but upon further inspection, clearly unrelated topically to confidential documents. 

Also, the number of false positives for public documents increases. Therefore, we apply a second 

step to eliminate false positives from documents labeled secret by the first step. 

We address these remaining false positives in three different ways. First, for a target 

document, we will measure how similar it is to either the secret or public set of documents. 

Second, we build classifiers specifically tailored for the public class. Secret and public  

documents will likely overlap in content since they are topically related and may even discuss 

the same entities employing similar language. Therefore, our system will attempt to learn what 

combination of features make these documents public rather than secret. We can use the output 

of this classifier in conjunction with the first step to better gauge if a document should be labeled 

secret or not. Lastly, we classify the target document based on the output of the similarity 

measures and classifiers (hence why we refer to this classifier as a “meta-space” classifier). We 

use three classes (public, NE, secret) instead of two classes (secret,¬secret) for this step. Three 

classes assist the classification of secret documents because NE false positives exhibit different 
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behaviors than public false positives for these features, making classification much more difficult 

if we group NE and public together. 

To address the problem of topically unrelated documents being labeled as secret, we 

created two attributes, xtra.infosecret and xtra.infopublic, that measure the percentage of words in a 

document that do not appear in any document from the secret and public training corpora, 

respectively. These features are intended to measure the overall dissimilarity of a document, d, to 

documents in the public and secret corpora. For example, if d has a large value for xtra.infopublic, 

then it is very different from documents in the public training corpus. We can improve the 

xtra.info features by ignoring words that occur commonly in English and hence convey little 

contextual information. We compute for each word w an estimate, dfw of how often w occurs in 

“general” English documents. We can then ignore all words that have a high dfw value. We used 

400,000 randomly-selected Wikipedia articles to estimate dfw for all words across all our training 

sets. If a word in our training set never occurred in our sample of Wikipedia, we assigned it a 

frequency of 1
400,000 . We then computed 

xtra.infoc d =
d df ∖∪d ' ∈c d '

∣d df∣

where ddf = {w  ∈ d| dfw≤ df}. In our experiments, we used df = 0.5%. 

The xtra.infosecret attribute aides the classifier by giving some context information about 

the document being classified. If the test document is truly secret, than we expect it to be similar 
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to existing secret documents with respect to non-trivial language (enforced by the df threshold). 

Table 10 shows that for NE examples from the Wikipedia Test corpus, the xtra.infosecret is quite 

high and enables a second classifier to easily separate these documents from true secret 

documents. 

To better differentiate between public and secret documents, we train a SApublic classifier. 

By combining secret and NE documents, the classifier will better recognize which features 

correlate with public documents. On its own, the output of the classifier will not necessarily 

exceed the performance of the SAsecret classifier. But when combined with the output of SAsecret, 

xtra.infopublic and xtra.infosecret, the meta-space classifier better discriminates between public  

and secret enterprise documents. 

The usage of this meta-space classification is improved by using three classes instead two 

(i.e. secret or ¬secret). Combining public and NE is not optimal because we expect much 

different behavior for each of the attributes. NE documents will most likely have higher 

xtra.infoprivate and xtra.infopublic scores than public documents and be classified ¬public by 

SApublic. This will negatively affect classification for these attributes because the separability of 

these values is diminished by grouping them together. Our SVM uses Hastie et al. [109] pairwise 

coupling algorithm for multiclass classification. 

In summary, our meta-space classifier is trained four features: the outputs of SApublic and 

SAsecret classifiers, xtra.infopublic and xtra.infosecret. We train the classifier on the NE, public, and 
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secret documents that were misclassified by SApublic. NE and public documents are not combined 

together as in the SAprivate classifier, but rather, assigned to one of three classes (NE, public and 

secret) based on its prominence. To classify a new document, d, we first compute SAsecret(d). If 

this classifier indicates that d is not secret, we mark d as public. Otherwise, we compute 

SApublic(d) and xtra.infopublic and xtra.infosecret for d and apply the meta-space classifier to 

obtain a final decision.

6.3 DLP corpora

We have created five corpora for training and evaluating DLP classification algorithms. 

Table 6 gives a brief description of each corpus. To our knowledge, these are the first publicly-

available corpora for evaluating DLP systems. Constructing DLP corpora is challenging because 

they should contain private information from some enterprise, but private information is, by 

definition, difficult to obtain.

Three of our corpora – DynCorp, TM, and Mormon – contain private documents leaked 

from these organizations to Wikileaks and public documents taken from the organizations’ 

public web sites. DynCorp is a military contractor that has drawn substantial controversy for its 

actions in Bosnia, Iraq, and Afghanistan. The private document set includes their field manual 

for operatives. The Transcendental Meditation movement is a quasi-religious organization that 

operates clinics and workshops and has been declared a cult in France and Israel. The private 

documents obtained from Wikileaks include workshop instructions written by high-ranking 

members of the organization. The Mormon corpus includes a Mormon handbook that is not to be 
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distributed outside of its members. We split the handbook into 1000 character-long pieces and 

added other smaller supplemental organizational documents from the church available through 

WikiLeaks. Note that our inclusion of texts from religious organizations is not intended to 
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Dataset 
Source of Sensitive 

Documents 
Source of Public Documents Comment 

DynCorp WikiLeaks www.dyncorp.com 
23 private documents leaked from 
the military contractor Dyncorp 

TM WikiLeaks 
www.alltm.org 
www.tmscotland.org 

102 documents from high ranking 
officials in the Transcendental 
Meditation movement/cult 

Mormon WikiLeaks www.lds.org 
Private Mormon handbook split 
into 1000 word chunks 

Enron Enron Email 
Enron website via Internet 
Archive’s WayBack Machine

399 emails labeled by Hearst et al. 
as business-related [110] 

Google 
Google Product 
Blogs 

Google Public Relation Blogs 
Label product-related posts as 
private and public relations posts 
as public 

Wikipedia NE 
datasets 

- Wikipedia 
10K randomly selected articles for 
false positive detection 

Brown Corpus - 
A variety of sources including 
press releases, reviews and 
books 

500 texts selected to represent 
modern American English 

Reuters-21578 - Reuters News Service 
10788 news items published by 
the news service 

Table 6: Corpora used in our evaluation.



denigrate these faiths – we include these texts solely because they are documents that these 

organizations tried to keep secret.

The Enron corpus contains emails released during the Federal Energy Regulatory 

Commission investigation of Enron, Inc. The archive contains emails from 150 users, including 

management. A small subset of the emails have been labeled by Hearst et al. [110]. Our data set 

only includes “business-related” emails. Since Enron is now defunct, we used the Internet 

Archive [111] to obtain documents from its public website.

The Google private document dataset consists of posts by Google employees to software-

development blogs. Google collaborates with many open-source software projects, so much of its 

software development discussions take place in public. If these same projects were conducted as 

closed source development, then these blog posts would be private, internal documents, so we 

treat them as such in our dataset. Public documents were taken from PR-related blogs.

Finally, we include several corpora that are intended to represent non-enterprise 

documents. In addition to sampling 10K randomly selected Wikipedia articles, we also test the 

robustness of our classifier on the Brown [112] and Reuters [108] corpora.

6.4 Evaluation

A successful DLP classifier must meet several evaluation criteria. It must have a low 

false negative rate (i.e. misclassifying secret documents) and low false positive rate for any non-

secret document. It should also achieve a low false discovery rate. Furthermore, we need to show 

that our classifier is robust with respect to its training parameters, in particular: the choice of the 
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supplemental corpus, the size of the supplemental corpus, and the degree of adjustment used in 

the supplement and adjust classifier.

We present the results of our training strategy against a baseline classifier. For all our 

classifiers, we tokenize all our datasets and use unigrams for features. For a baseline classifier, 

we only train the classifier on enterprise documents using the binary weighting scheme. For the 

results presented in Table 7 and Table 8, we supplement the classifiers with 10000 Wikipedia 
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DynCorp TM Enron Mormon Google
Classifier FP FN FP FN FP FN FP FN FP FN
Baseline 0.0% 0.0% 2.5% 0.98% 0.87% 0.0% 0.72% 1.4% 1.8% 1.9%

Supplement 0.0% 8.0% 0.0% 11.0% 0.0% 5.0% 0.0% 0.3% 0.0% 3.7%

Supplement 
and Adjust

2.0% 0.0% 28.3% 0.0% 4.1% 1.2% 4.6% 0.0% 15.9% 0.3%

Two-step 0.0% 0.0% 0.0% 0.98% 0.87% 3.0% 0.36% 1.4% 1.0% 2.1%

Table 7: The false positive (FP) and false negative (FN) rates on the enterprise corpora for each 
of our classification strategies. 11,100 instances and an adjustment of 90% are used.

Non-enterprise False Positive Rate
Classifier DynCorp Enron Mormon Google TM
Baseline 4.7% 87.2% 0.16% 7.9% 25.1%

Supplement 0.0% 0.01% 0.06% 0.0% 0.0%
Supplement and Adjust 0.26% 2.5% 0.1% 2.8% 0.93%

Two-step 0.0% 0.05% 0.0% 0.06% 0.01%
Table 8: The false positive rates on our Wikipedia Test corpus for each of the classification 
strategies.

Dataset Baseline FDR Our classifier FDR
DynCorp 4.49% 0.00%
Enron 47.05% 0.92%
Google 8.99% 1.06%
Mormon 0.88% 0.36%
TM 22.06% 0.01%
Average 16.69% 0.47%
Table 9: The False Discovery Rate of the baseline approach far exceeds our classifier, implying 
that the baseline approach would fare poorly in real world networks whereas ours would not 
raise much fewer alarms.



articles and 1100 topical articles and adjust the classifier to move the decision boundary 90% of 

the distance between the decision boundary and the closest correctly labeled public instance. We 

use a document frequency of 0.5% to compute xtra.infosecret and xtra.infopublic. We compute the 

false negative and false positive rates by performing a 10-fold cross validation on each of the 

corpora, and then determine the false positive rate for NE documents by training the classifier on 

the entire enterprise dataset and then classifying our Wikipedia false positive corpus. 

The results of our classification tests show that our training strategy maintains low false 

negative and false positive rates on enterprise documents while dramatically improving the false 

positive rate on NE documents. The baseline approach would be unusable in practice because of 

its high false positive rate on NE documents.

In our results shown in Table 9, we assume the following traffic composition in a typical 

enterprise network: 25% enterprise secret documents, 25% enterprise public documents, and 

50% non-enterprise documents. We believe that our approach will not engender “alarm fatigue”, 

whereas the baseline approach is likely to overwhelm operators with false alarms. 

The supplement and adjust classifier achieves a low false positive rate on NE documents 

for several reasons. The supplement and adjustment classifier did not rely on finding features 

that were strongly indicative of the public class. This is a crucial benefit because the NE 

document set’s size is so large that it would be impossible to create a set of features that were 

strongly indicative of all possible public documents. In addition to relying less on features that 

were indicative of public documents, the supplement and adjustment classifier moves the 

expectation further towards the public class, which is in line with our expectation of the problem 
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outlined in the problem description. And by performing an adjustment to the decision boundary, 

the classifier reduces the false negative rate without increasing the false positive rate, when 

combined with the second level classifier.

6.4.1 Effective training parameters

Table 7 demonstrates that our classifier is robust with respect to the choice of the 

supplemental corpus. Our supplemental corpus consisted solely of Wikipedia documents but, as 

Figure 11 shows, the resulting two-step classifier has a low false positive rate on NE documents 

drawn from drastically different corpora, such as the Brown or Reuters news corpora. Thus, we 

can build a standard non-enterprise corpus that is used by all enterprises to train their DLP 

systems. The corpus will not need to be customized for each enterprise or for each new form of 

Internet traffic. 
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False Positive Rate – Brown False Positive Rate - Reuters

Figure 11: The false positive rates for each classification strategy. The two-step classifier is able 
to maintain a low false positive rate across all the different corpora for each non-enterprise 
corpora.



As expected, a larger supplemental corpus decreases the false positive rate but increases 

the false negative rate as the classifier becomes more biased towards public documents (see 

Figures 12 and 13 for details). Note that Google is a clear outlier in this evaluation. We suspect 

that this may be because the Google corpus is the only artificial corpus in our data set. Recall 

that all the Google documents, including the “private” ones, are in reality public documents, 

unlike our other corpora which contain genuine private enterprise documents. The second step of 
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Figure 12: The effect on the false negative and false positive rates for our corpora when 
supplementing the training instances with Wikipedia examples. For the Mormon corpus, the 
effect of adding any supplemental instances seems to affect the classification of the same 
documents.

Figure 13: The false positive and false negative rates on enterprise documents after applying the 
supplement and adjust classifier.



our approach remedies the errors made on public enterprise documents. We also conclude that 

the supplemental corpus does not need to be too large – about 10,000 documents suffice. 

We also investigated the effect of the adjustment value on the classifier. According to the 

graphs in Figure 11 an adjustment value of 0.5 provides a good trade-off between increased false 

positives and false negatives in the supplement and adjust classifier. However, since we added a 

second-level classifier that can filter out many false positives, we chose an adjustment value of 

0.9 in order to achieve a slightly lower false negative rate. 

6.5 Discussion

The algorithm presented in this chapter should prevent accidental leakages of 

information, but how will it fare against intentional leakages? According to ProofPoint [113], 

most data leakages are accidental. The most common intentional leakage occurs when employees 

download sensitive information upon termination of employment. Our method coupled with the 

DLP system’s ability to recognize data flow from a trusted to an untrusted device should prevent 

these type of leakages. If the data were encrypted or re-encoded, this would exceed the capability 

of our classifier. These more sophisticated attacks, fortunately, only account for 1 in 200 data 

breaches [105]. 

It is instructive to highlight key differences between our solution and existing semi-

supervised and class imbalance solutions. Our algorithm is a supervised learning approach: all 

examples are labeled. During training, the classifier will know if the enterprise document is 

confidential or not. Since supplemental training instances do not come from the enterprise, these 

instances are labeled opposite from the class we wish to train on, e.g., for the SAprivate classifier, 
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these supplemental instances are labeled as public. For the purposes of our algorithm, we focus 

on recognizing sensitive information that either it has either seen before or is similar to an 

existing confidential document. In the future, we hope to explore how the system can infer if a 

document is sensitive if it has zero training data to support this decision (possibly relying on 

meta data). 

Our study demonstrates that DLP systems face an inherent class imbalance issue: nearly 

all documents that exist are outside the organization and are not sensitive. To train a classifier on 

this class is simply infeasible because of its size. Our key insight into this problem is recognizing 

that the classifiers needed to be trained to effectively learn what is secret, and not rely too 

heavily upon features that were correlated with non-secret documents. The problem of class 

imbalance has been extensively studied before and work in this area is discussed in Section 6.6  

Once we recognized that class imbalance would be an issue for achieving maximal performance, 

we tried many of the approaches listed in the Section 6.6 , but found that they were ineffectual on 

this specific problem. 

Our approach is unique from other class imbalance techniques because we attempt to 

better determine which features correlate with sensitive information by adding additional 

samples that express a diverse usage of language and better capture the general usage of the n-

gram. We cannot say how well this technique will extrapolate to other machine learning 

problems, but it is applicable to our specific problem of generating a classifier robust enough to 

perform well in the presence of many unrelated documents. To the best of our knowledge, using 
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supplemental data (not synthetically generated) to generate negative examples has not been 

applied to the class imbalance for text classification. 

An important design decision in this algorithm was to restrict the vector space to features 

included only in secret and public documents. The reasoning behind this decision is related to the 

class imbalance aspect of this problem. Since the number of non-secret documents is so large, 

adding additional features to the vector space would have resulted in overfitting because those 

features would factor prominently into classifying NE documents in the training step. The 

classifier may not accurately reweight features that secret documents share with non-secret  

documents. And since it would be impossible to provide the classifier with training 

representative of everything that is NE, the classifier would be more likely to generate false 

positives. 

The xtra.info attribute performs exceedingly well in maximizing separability between NE 

and secret documents, as shown in Table 10. Contextual information is quite important because 

we have limited our vector space to only enterprise documents, which these terms are assumed to 

be related to the knowledge domain of the enterprise. Using a unigram vector space, we lose 

contextual information that may help counteract the effect of polysemy that contributes to the 

misclassification of NE documents. Our xtra.info attribute is effective in the second level of 
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Mean Dyncorp Enron Google Mormon TM
Secret documents 0.54 (0.10) 0.83 (0.09) 0.70 (0.15) 0.49 (0.15) 0.66 (0.11)

NE documents 0.96 (0.03) 0.99 (0.02) 0.98 (0.04) 0.95 (0.08) 0.99 (0.02)
Table 10: This table presents the means for the xtra.infosecret attribute for each of our private 
corpora and the document classes  secret and NE.  The significant differences between the means 
for these classes suggest that this attribute will aide the  classifier in distinguishing NE 
documents from secret.



classification in providing contextual information to disambiguate between secret and NE classes 

and is easily computable. 

The techniques of our algorithm performed well for many different different types of 

media and organizations. One limitation in creating our DLP corpora is that it the documents for 

each organization do not represent the entirety of its operations. It was not feasible to either find 

or build a corpus of this nature because of the risk for corporations assembling and releasing this 

data. We believe, however, that since our algorithm performed well in many different instances, 

it will perform well enterprise wide. Depending on the size and structure of the organization, 

multiple classifiers can be built for each of the different departments and group. Text clustering 

can also assist in building cogent collections of documents to train and build classifiers. And 

since the classification techniques we use are not computationally expensive, the penalty for 

evaluating multiple classifiers is not prohibitively greater. 

The system described in this chapter will most likely be part of a larger enforcement 

framework that will defend the network from intrusions and malware. Administrators will need 

to provide instances of secret and public documents because the training of our system is 

supervised. This collection of samples, however, should not be difficult to obtain because it can 

be automated and does not require further annotations. Employees can designate folders on 

storage devices that contain either secret or public documents or manually submit examples 

through a collection facility (e.g. email or web-based system). Depending on the enterprise 

policy enforcement guidelines, messages that the classifier suspects to be secret may prompt the 
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sender to reconsider, queue the message for an administrator to review, or simply block the 

transaction. The toolkit we implemented will be made available from the authors' website. 

6.6 Related work

Automated document classification is a well studied research area. Research in the 

document classification field dates back to 1960s [114][115]. The use of machine learning in text 

classification, however, became popular in the last two decades. Sebastiani provides an excellent 

overview of the area: he describes various text categorization algorithms, approaches to evaluate 

the algorithms, and various application of automated text categorization [116]. The proliferation 

of digital documents and the explosion of the web has given rise to many applications of 

document classification, e.g., automatic document indexing for information retrieval systems 

[117], classification of news stories [118], email filtering to classify emails into categories [119], 

spam filtering to identify spam from legitimate email messages [120], automatic categorization 

of web pages [121][122], and product review classification [123]. The research community has 

explored many different machine learning approaches for text categorization, e.g., Bayesian 

classifiers [120][124], decision trees [125], k-nearest neighbors [126], neural networks [127], 

regression models [128], and support vector machines [129]. Researchers have also 

experimented with the idea of combining multiple classifiers to increase efficacy, most notable 

being Schapire et al.’s boosting approach [130]. 

We utilize Support Vector Machines, a powerful margin-based classification and 

regression technique introduced by Cortes and Vapnik, in our classifier [131]. Joachims applied 

SVMs to the text classification task [104] and identified properties of text categorization that 
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makes SVMs suitable for the task. For example, text categorization has to deal with large 

numbers of features, as words present in a document are considered the document’s features. 

Feature selection is a traditional approach to select a few relevant features from many. In the 

case of text, however, most features are relevant. Hence a good text classifier should be able to 

handle many features. SVMs can handle large numbers of features due to overfitting protection. 

Also, SVMs are good linear classifiers and many text categorization tasks are linearly separable. 

Text classification for DLP presents difficulties that standard classifiers cannot solve 

because of the lack of a proper training set. It is difficult to supply the classifier with an adequate 

representation of what should be public (i.e., not secret). Therefore, this chapter addresses the 

precise problem of an unrepresentative dataset for text classification with the techniques of 

supplement and adjust, xtra.info, and utilizing a two-step classifier. Other research has focused 

on related topics. 

Accurate text classification in the case of limited training examples is a challenging task. 

Joachims used a transductive approach to handle the problem [132]; his approach focuses on 

improving the classification accuracy of SVMs for a given test set. Blum and Mitchell 

introduced a co-training approach to categorize web pages [133]. They improved classification 

accuracy by adding a larger number of unlabeled examples to a smaller set of labeled examples. 

Toutanova et al. demonstrated the use of hierarchical mixture models in the presence of many 

text categories [134]. 

Researchers have also investigated mitigating the effect of class imbalance on 

classification performance [135]. Both oversampling and undersampling classes in the training 
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instances has been widely investigated. The sampling can be random or directed. Synthetic 

generation of examples for underrepresented classes has also been explored and combined with 

under and over-sampling [136]. One class learning classifiers have been proposed to improve 

classification for target classes where examples are relatively scarce compared to other classes 

[137]. An instance is compared with training examples in terms of similarity to determine 

whether the instance is a member of the target class. Lastly, feature selection techniques can 

improve classification of underrepresented classes because high dimensional data may overfit or 

be biased towards the majority classes [138]. 

Several projects have used Wikipedia to enhance text classification, particularly where 

context is unavailable due to the brevity of the text to be classified [139][140][141][142]. 

Gabrilovich et al. [139] first proposed transforming a document into its representation in 

Wikipedia topic space. Others have modified this basic idea by including topic hyponomy and 

synonymy [141] or performing LSA on this topic space [142]. Others have investigated using 

Wikipedia to determine relatedness between texts, particularly short texts [143]. To our 

knowledge, no one has investigated using Wikipedia explicitly to augment their training corpus. 

6.7 Conclusion and future work

This chapter presents a simple, efficient, and effective way to train classifiers and 

perform classification for Data Loss Prevention. In doing so, it presents the first corpora for the 

DLP task. Our results indicate a naive approach to training a classifier, solely on documents from 

the enterprise, will lead to a high false positive rate on unrelated documents, indicating poor real 
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world performance. The chapter presents a novel technique, supplement and adjust, which 

reduced the false positive rate for documents unrelated to the core business function. 

We plan to further study the efficacy of our text classification approach by deploying it 

on existing private, enterprise and governmental networks. We will also look to expand our 

approach to include encrypted and multimedia content. In this work, we only consider the 

content of a document to render a decision. We would like to investigate what meta data 

associated with the content could be used to improve classification. 

Lastly, not all secret documents in the world are written in English. We will hope to 

expand our private corpus in the future to include non-English sources. Our intuition is that many 

language processing techniques developed to handle language specific obstacles should be 

applied to the processing of these documents. We will also have to adjust our supplemental 

corpus accordingly to provide realistic behavior for NE feature behavior. 
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Chapter 7 Wikipedia Vandalism

Wikipedia, the “free encyclopedia” [59], ranks among the top 200 most visited websites 

worldwide [144]. This editable encyclopedia has amassed over 15 million articles across 

hundreds of languages. The English language encyclopedia alone has over 3.5 million articles 

and receives over 1.25 million edits (and sometimes upwards of 3 million) daily [145]. But 

allowing anonymous edits is a double-edged sword: nearly 7% [60] of edits are vandalism, i.e. 

revisions to articles that undermine the quality and veracity of the content. As Wikipedia 

continues to grow, it will become increasingly infeasible for Wikipedia users and administrators 

to manually police articles. This pressing issue has spawned recent research activities to 

understand and counteract vandalism [146]. Much of previous work relies on hand-picked rules 

such as lexical cues (e.g., vulgar words) and metadata (e.g., anonymity, edit frequency) to 

automatically detect vandalism in Wikipedia (e.g., [147][148]). Although some recent work has 

started exploring the use of natural language processing, most work to date is based on shallow 

lexico-syntactic patterns (e.g., [149][150][151]).

This chapter presents a machine-learning-based vandalism detector that uses several 

features to classify vandalism and achieves 79% precision and 60% recall on vandalism and an 

AUC score of over 94%. Our results significantly outperform a baseline classifier based on a 

previous approach [152]. Our classifier uses several simple features as well as Natural Language 
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Processing (NLP) motivated features to catch different forms of vandalism, such as inserting 

obscenities or long, repeating patterns of text.

We explore more linguistically motivated approaches to detect vandalism in this chapter. 

There are many avenues that seem quite germane to the vandalism detection problem: sentiment 

analysis, word sense disambiguation and stylometric analysis.  Our hypothesis is that textual 

vandalism constitutes a unique genre where a group of people share similar linguistic behavior 

that can be measured through stylometric analysis. Some obvious hallmarks of this style include 

usage of obscenities, misspellings, and slang usage, but we aim to automatically uncover stylistic 

cues to effectively discriminate between vandalizing and normal text. Experimental results 

suggest that (1) statistical models give evidence to unique language styles in vandalism, and that 

(2) deep syntactic patterns based on probabilistic context free grammar (PCFG) discriminate 

vandalism more effectively than shallow lexico-syntactic patterns based on n-grams and (3) we 

can employ co-training corpora from the Internet to improve our NLP approaches and (4) 

character level language models are incredibly effective in distinguishing between language 

appropriate and inappropriate for Wikipedia.

The rest of this chapter is organized as follows.  We introduce our training corpus and 

features in Section 7.1 .  A detailed description of how we processed the text will be discussed in 

Section 7.2 .  Section 7.3  discusses the classifier that will label revisions as either regular or 

vandalism.  We detail our evaluation in Section 7.4 .  Results are presented in Section 7.5  with a 

discussion following in Section 7.6 .  The chapter will conclude with a survey of related work in 

Section 7.7  and a conclusion in Section 7.8 .
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7.1 Training corpus and feature extraction

The training corpus for the classification was provided by the organizers of the PAN 

workshop [153][154]. The corpus consisted of 32444 edits coupled with the previous revisions. 

Along with the training corpus in WikiMarkup format, we were also provided with meta-data 

including the edit id, the old revision id, the new revision id, the user name or IP of the author 

who performed the edit, the comment of the author, and whether the edit vandalized the article.

7.1.1 Shallow features

After analyzing samples of vandalized and regular edits and reviewing early work on 

automated vandalism detection [147], we observed that certain shallow features of the edits 

distinguished vandalism from regular edits.  Before investigating more sophisticated features, we 

attempted to identify “shallow” or superficial attributes that could be supplied to the classifier for 

identification.  This includes observing changes in the text, who submitted the edit, and if the 

edit contained vulgar language.  We used the following shallow features of the edits for 

classification:

Edit Distance: Our classifier calculates the Damerau-Levenstein Distance using the 

LingPipe API [155] to determine the number of changes required to convert the old revision of 

an article to its new revision.

Edit Type: Our classifier determines whether the edit inserted, deleted and/or modified 

text or a combination of these actions.

Text Changes: Our classifier determines the edit length, word count, words inserted, 

words deleted, and words changed using java-diff [156]. It also uses LingPipe’s English 
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Sentence chunker to tokenize an article into sentences and calculate exact changes sentence-by-

sentence using java-diff.

Spelling Errors: Our classifier counts the number of apparent spelling mistakes in the 

edit and the ratio of spelling errors to correctly spelled words. Our spell-checking [157] software 

contained 200K English words, including named entities such as proper names and geographic 

places.

Obscene Words: Our classifier enumerates the total number of obscene words in the edit 

and the ratio of obscene words to benign words. We started with a dictionary of obscene words 

[158] and manually added other obscene words that we observed frequently in the vandalized 

articles of our training set.

Repeated Patterns: “Silly” vandalism often employs repeated patterns like upper case 

words, exclamation marks, and repetition of words/letters (e.g. “heyyyyyy”, “oh! ! ! ! ! ”, “wow 

wow wow”, “hahahaha”, “WIKIPEDIAAA”). Our classifier counts these patterns using the 

regular expressions. 

Grammatical errors: Wikipedia editors strive for good grammar, but vandals do not 

generally follow these rules. They may insert words or phrases into the middle of existing 

sentences or write ungrammatical sentences deliberately or unintentionally. Our classifier parses 

the edits into sentences that had been inserted or changed by using java-diff and LingPipe’s 

sentence tokenizer and counts the grammatical errors in them using CMU’s Link Grammar 

Parser [159].
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Sum of metrics: This simple but effective meta-feature is the sum of the number of 

Repeated Letters, Repeated Words, Capitalized Words and Multiple Exclamation Marks.

Article History: Vandals do not necessarily target articles at random to vandalize. 

Rather, some articles receive a disproportionate amount of vandalism than others (e.g. Michael 

Jackson). This feature is the number of times an article was vandalized in the previous 5000 edits 

on the article. We denote vandalism as a comment left by an editor that contains “reverted”, 

“user” and “vandalism” in this order. We count also how many times an article was reverted, 

regardless if it was explicitly vandalism or not.

Editor information: Knowing who contributed an edit can give us some expectation of 

the quality of the change. For example, we expect an active and registered Wikipedia editor with 

several thousand edits to be more trustworthy compared to an unregistered editor that is only 

identifiable from an IP address and who has not contributed before. Our classifier uses several 

editor-based features: whether the editor is registered or unregistered, how long the editor has 

been registered, the total number of contributions made to Wikipedia during the period that 

training data was collected, the total number of edits made to Wikipedia by the editor up to the 

date the training data was finalized, the number of reverts on previous revisions by the author 

deemed to be vandalism (using the same heuristic as for article history) and the total number of 

previous modifications made by the editor on the article they are revising. We were careful to 

make sure for edit totals to not include future modifications. If the user is not registered, the 

classifier uses their IP address as a proxy for their identity.
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7.1.2 Employing Natural Language Processing

During the PAN 2010 workshop [153], it became evident that many of the participants 

converged on the same sets of meta and shallow features.  The issue, however, is how effective 

these features ultimately can be for more subtle types of vandalism.  For example, a vandal does 

not need to employ obscenities or insert first or second pronouns to add opinionated text into an 

article.  Also, new ways of conveying opinions in terms of memes and signs are being constantly 

generated by Internet users such that there exist websites to keep track of them [160].  Therefore, 

there is a need to go beyond features driven by heuristics to truly understand the content and 

effect of an edit.

Natural Language Processing is the study of the intersection of computer interaction and 

natural language.  This field strives to derive meaning from streams of natural language by 

statistical and rule-based modeling.  This includes tasks such as sentence parsing to sentiment 

extraction.  Many of the problems addressed by NLP may be brought to bear on the vandalism 

problem.  For instance, Wikipedia mandates that articles maintain objectivity and factuality. 

Vandals do insert irrelevant and opinionated text into articles.  

The following subsections will explore how NLP can be applied to the vandalism 

problem.  The next section will describe four corpora that we collected for co-training with our 

articles. We identified three potential areas of NLP that can be applied to this problem.  First, we 

will use sentiment analysis to identify if a vandal has inserted opinionated or subjective text. 

Second, we will perform semantic modeling using language modeling to determine if the 

language used more closely resembles normal or vandalizing edits.  Lastly, we will employ 
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stylometric analysis to analyze the editor's style to glean if the intention was to enhance or 

vandalize an edit.

7.1.3 NLP co-training

One issue that we have is that despite the monumental efforts of Potthast to collect 

samples of vandalizing edits to Wikipedia, there are still less than 2500 samples in the training 

set to work from.  We set out to discover sources for examples of text that are highly likely to be 

unsuitable for Wikipedia, i.e., if we were to insert the text into an article – even if topically 

related – would likely be rejected for being vandalism or not stylistically appropriate.  To find 

examples of this text, we look for websites that exemplify the type of language deemed 

inappropriate for Wikipedia, but representative of the web in general.  We choose the following 

four websites to sample text from: 4chan [161], YouTube [162], MySpace [163] and Twitter 

[164].  4chan is an image-board website that has been active since 2003.  A compelling reason to 

sample text from this site is the comments posted to the site have the qualities we typically 

ascribe to “silly vandalism” (the Guardian described the comments as “lunatic” and “juvenile” 

[165]).   Another source of candidate text comes from YouTube comments.  A good majority of 

these comments are crude, capture Internet style and syntax, and/or not written well, e.g., 

misspellings.  To sample text, we scraped comments from the most popular videos, which tend to 

solicit a substantial amount of feedback.  MySpace, the popular social network, allows users to 

post messages to other user's profiles.  We found that if we retrieved the “browse people” 

interface from MySpace's website, we could retrieve a random sample of users.  From here, we 

scraped comments from the user's profile and use them for training.  Lastly, we used tweets from 
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Twitter to generate training data.  Twitter has become the world's most popular micro-blogging 

platform.  This reach allows us to potentially sample from a large number of individuals with 

diverse backgrounds, education levels and language (and indeed we sampled text in languages 

other than English including Spanish).  Therefore, we hypothesize that Twitter represents 

Internet speech well considering its pervasiveness and popularity.  We sampled tweets by finding 

messages posted to Trending Topics [166] (those topics identified by tags that are currently 

experiencing a surge in traffic).

To generate these co-training corpora, we sampled these sites every 15 minutes over the 

course of three days.  We extracted 278463, 55234, 768361, and 612916 samples from 4chan, 

MySpace, YouTube and Twitter respectively for over 1.7 million text samples with on average 

92 characters and roughly 16.4 words per sample.

7.1.4 Sentiment analysis

Statements expressing opinions are common features of vandalism. We perform 

sentiment analysis on the revision to uncover subjective or opinionated (positive or negative) 

text. We use LingPipe’s Sentiment Analysis Tool trained on movie review data. The classifier 

counts objective or opinionated sentences and measures the change in total number of positive or 

subjective sentences.

7.1.5 Semantic modeling

One goal in NLP is to learn the meaning of text.  Although perhaps machine 

understanding will not parallel human intelligence for quite some time, there are still some ways 

in which shallow machine processing techniques can glean semantic information from text to 
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differentiate contexts.  In fact, [149] investigated shallow language modeling of syntax and 

semantics in order to determine relevance of edits to new text.  The authors of the “Got You!” 

system built two language models on a per-article basis: N-tag and Syntactic N-Gram.  The N-

tag language model is a trigram language model trained on a composite part-of-speech tag and 

word feature, rather than the word alone.  Combining the part-of-speech provides some 

contextual information for semantic disambiguation.  The training for this model is generated by 

performing a combination Yahoo! and Bing search on the article title and collecting the top 100 

results from Yahoo! and Bing.  The second language model, Syntactic N-Gram, is trained on 

only part-of-speech tags.  The intuition is Wikipedia articles will not share similar syntactic 

behaviors of vandals, such as using multiple punctuation marks.  

For the purposes of this dissertation, we do not compare our results with this work for 

two reasons.  First, the semantic model is computationally expensive and requires much storage 

because for each article it requires generating the language model.  This computation could be 

optimized for real world deployment by perhaps limiting the number of searches or building 

language models that are applicable to multiple articles.  Also, the authors present results on a 

balanced corpus, which is not representative of real world vandalism rates.  Therefore, we will 

evaluate our techniques on an unbalanced dataset similar to what we expect in the real world.

We do, however, train two trigram language model (LM) with Good-Turing discounting 

and Katz backoff for smoothing of vandalizing edits (based on the text difference between the 

vandalizing and previous revision) and good edits (based on the text difference between the new 
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and previous revision).  Admittedly, these language models will not have the ability to anticipate 

the inclusion of semantically relevant words.

7.1.6 Stylometric features

Stylometric features attempt to recognize patterns of style in text. These techniques have 

been traditionally applied to authorship attribution [167][168], opinion mining [169], and 

forensic linguistics [170]. For our purposes, we hypothesize that different stylistic features 

differentiate the voices of regular and vandalizing edits. For regular edits, honest editors will 

strive to follow the stylistic guidelines set forth by Wikipedia (e.g. objectivity, neutrality and 

factuality). For edits that vandalize articles, these users may converge on common ways of 

vandalizing articles.

This subsection will cover several different stylometric analyses to identify vandalism. 

We analyze sentence structure, stop word analysis, spelling mistakes, and readability.

Probabilistic Context-free Grammars 

In identifying differences in style, one feature of style to examine is sentence structure. 

Sentence structure has been a source of author identification in literary analysis [168].  If we 

consider that vandalism constitutes its own genre of writing, we expect to see differences in the 

construction of sentences.  One anecdotal example from an instance of vandalism in our test set 

is the following: “One day rodrigo was in the school and he saw a girl and she love her now and 

they are happy together.”  This sentence demonstrates an excessive use of the conjunction “and”. 

We would expect that well written articles in Wikipedia to only employ conjunctions when it is 

expedient to do so and to separate related ideas using semi-colons or start new sentences.  This 
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example, however, uses “and” successive times to string multiple ideas together, implying that 

the writer does not conform to the style and quality of writing required by Wikipedia.  Therefore, 

we can employ syntax parsing to build parse trees to analyze the stylistic differences between 

vandalism and non-vandalizing sentences.

To assist in discovering of different styles in the writing of sentences, we employ 

probabilistic context-free grammars (PCFG). [171] reported for the first time that PCFG models 

are effective in learning stylometric signature of authorship at deep syntactic levels. We explore 

the use of PCFG models for vandalism detection, by viewing the task as a genre detection 

problem, where a group of authors share similar linguistic behavior. We give a concise 

description of the use of PCFG models below, referring the reader to [171] for more details.

1. Given a training corpus D for vandalism detection and a generic PCFG parser trained on 

a manually tree-banked corpus such as WSJ or Brown, tree-bank each training document 

using the generic PCFG parser . 

2. Learn vandalism language by training a new PCFG parser Pvandalism using only those tree-

banked documents in D that correspond to vandalism. Likewise, learn regular Wikipedia 

language by training a new PCFG parser Pregular using only those tree-banked documents 

in D that correspond to regular Wikipedia edits. 

3. For each test document, compare the probability of the edit determined by Pvandalism and 

Pregular, where the parser with the higher score determines the class of the edit. 
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We employ many different strategies for collecting the documents D to create treebanks 

and train parsers.  As a first cut, we take train two parsers on regular edits (Dregular) and 

vandalizing edits (Dvandalism.).  We also construct separate tree-banked documents for each of our 

co-training copora (Dtwitter, Dmyspace, D4chan,, DYouTube) .  We hypothesize that having these additional 

tree-banked documents could potentially anticipate styles of vandalism that stylistically transfer 

from different domains that simply have not been observed in Dvandalism.

In addition to constructing tree banks from the above sources, we also investigated if it 

were possible to improve modeling of non-vandalizing edits by training separate parsers on 

sentences from different categories.  This idea is motivated by the observation that articles from 

different knowledge domains will use different sentence constructions to convey ideas.  For 

example, mathematical articles will contain sentence structures to describe theorems that may 

not be well represented in biographical articles.  Therefore, for each of category M that is a main 

category in Wikipedia [172], we first find the set of categories Mc that are children of M in the 

Wikipedia taxonomy.  From here, we then extract all articles from the Wikipedia November 

2008 article dump [173] that contain at least one tag from M∪M c .  We then sampled 10000 

sentences from each of these articles by randomly selecting an article and then selecting a 

sentence from the article.  In addition, we combined all the sentences from each M into a 

“master” treebank.  This experiment in total generated treebanks for the following main 

categories: Arts, Belief, Computing, Culture, Education, Environment, Geography, Health, 

History, Humanities, Language, Law, Master, Mathematics, Nature, People, Politics, Science, 

Society, Technology.
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We also attempted to improve the quality of the Dvandalism by clustering the trees into 

separate treebanks.  The motivation is to cluster sentence parses that have similar construction 

internally to build a more precise parser for a particular type of sentence structure.  To do so, for 

each parse tree in Dvandalism, we generate the binarized tree representation by first converting it to 

Chomsky's Normal Form.  From here, for each internal node P in the parse tree, we extract each 

child node C and represent the tree as a bag consisting of each P → C .  We do not consider 

terminals for this evaluation, therefore there does not exist any C that is a terminal.  We perform 

clustering by mapping the bag into a vector space where each dimension is corresponds to a rule 

derivation P→C.  We used K-Means clustering [174] for the following set of K values: 

{2,4,8,16}.  We found that the majority of sentences mapped into 5 distinct clusters (from 

analysis of the clusters generated by K-Means for K equal to 8 or 16).   We then mapped the 

documents from D{Twitter,MySpace,YouTube,4chan} into these 5 clusters by mapping each sentence into the 

vector space generated by P → C using the procedure described above and assigning the 

sentence to the cluster whose centroid was closest to the sentence's representation in the feature 

space.  We then generated 5 treebanks D{cluster10, cluster13, cluster4, cluster2, cluster6} and built corresponding 

parsers from these clusters on the original, non-binarized sentence parse.  

We generated the following features.  For each revision R and parser P, we collect the log 

probability of the sentence parse for each modified sentence (defined below in Section 7.2 ) of R. 

We calculate the minimum (min), maximum (max), standard deviation or 0 if only one modified 

sentence (stdev), mean and sum of the log probabilities for the modified sentences of R and 

create a feature for each parser and measure.  We then compute difference for each of the 
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measures (min,max,stdev,mean,sum) between Pvandalism and Pregular.  In addition, we calculate 

composite features that take the difference between the best scores, i.e. best probability, for each 

of the measures across a set of parsers.  Our “best.regular” feature takes the best score for each of 

measure across the regular, master and categorically trained parsers.  Our “best.vandalism” 

parser takes the best score for each of the measures across the vandalism, YouTube and Twitter 

parsers.  Our “cluster.vandalism” takes the best parse from the set of parsers generated by 

clustering vandalism and Internet co-training sentences.  We then computed the difference for 

each measure for the following pairs: (regular, vandalism), (regular, best.vandalism), 

(best.regular,vandalism), (best.regular,  best.vandalism), (regular, cluster.vandalism), 

(best.regular, cluster.vandalism).  We found that the pair (regular, best.vandalism) had the most 

information gain (InfoGain) among the different measures.

Stop word Analysis

Stop words, such as “is”, “and”, and “I”, are words that belong to a set of candidate 

words that are generally filtered out before or after processing text.  For many tasks, these words 

do not generally add substantial value to the analysis, despite the fact these words constitute over 

half the words in an English language [175].  There has been growing research that in fact, these 

common words can be successfully applied to various NLP tasks.  Recent results indicate the 

utility of stop word analysis for authorship attribution [176] and sentiment classification [177]. 

Therefore, our hypothesis is that vandals employ different usages of stop words.  Our first 

test is to use language models for modeling stop word utilization.  The intuition is that certain 

types of vandalism exhibit peculiar patterns of stop words, including the over usage of 
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conjunctions like “and” or seemingly irrelevant words to Wikipedia like “hi”.  We trained a 

trigram language model using the LingPipe toolkit on 5000 articles selected randomly from 

Wikipedia that was categorized with one of the main categories of Wikipedia [172] with all non-

stop words removed. For each edits' inserted text, we remove all non-stop words and calculate 

the log probability of the edit according to this language model. 

We perform a second analysis of stop words in the inserted text by treating each stop 

word as a feature and training a classifier to discriminate between vandalizing and non-

vandalizing usages of stop words.  For this task, we only consider the inserted text rather than the 

modified sentences.  We first construct a feature vector space where the dimensions are stop 

words.  For each stop word s in the inserted text, and n the total number of stop words in the 

inserted text, we weight the corresponding dimension as 
count  s

n .

An interesting question that arises is which classifier should we employ for analysis?  We 

experimented with three classifiers.  First, recent results from a student project in CSE628 (Stony 

Brook University) this past fall suggest that SVMs are well suited for this task.  In addition, we 

experimented with Naive Bayesian classifier and Bayesian Networks.  One issue that we 

observed from an initial examination of training data generation was that a substantial number of 

instances (7544) were empty.  

We attempt to remedy the numerous empty instances with two approaches.  We generate 

a non-empty version of the dataset by simply eliminating empty instances.  The classifier will 

generally handle this case by appealing to the class that constitutes the majority.  Second, we 

apply a meta-classification on top of each of our classification approaches.  With a cost-sensitive 
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approach [178], we can bias our classifier to be more intolerant of false positives and false 

negatives.  In our preliminary analysis, the false negative rate for SVMs exceeded 90%. 

Conversely, the false positive rate was extraordinarily high for the Naive Bayesian classifier. 

Therefore, in addition to the raw classifier scores, we apply a cost-sensitive approach to each of 

the classifiers to decrease specific error rates (although potentially at the expense of other error 

rates).

Readability

Readability is crucial for maintaining the integrity of Wikipedia articles.  We expect that 

articles that have low readability are not appropriate for Wikipedia because it will not achieve its 

goal  “... to empower and engage people around the world to collect and develop educational 

content under a free license or in the public domain, and to disseminate it effectively and 

globally” [179].  A recent study of articles for the top 50 most proscribed drugs by volume found 

that the average Flesch Kincaid Grade Level [180] is 15.4, which correlates to requiring a high 

level of readability.

For our analysis, we used the Fathom library [181] to compute the Flesch Kincaid score 

of modified sentences.  We did not consider only inserted text because the editor possibly did not 

insert enough text to qualify as a full sentence.  

Common misspellings

Another hallmark of poor style (which we assume Wikipedia aims to avoid) is poor 

editing.  We found that the grammar analysis is difficult because of Wikipedia article features 

129



such as lists and templates where it is not uncommon for ungrammatical text to be inserted, but 

be perfectly appropriate.  Therefore, honest editors who desire to meet Wikipedia's guidelines 

will most likely edit their revisions.  We will assume that honest editors will also take some pains 

to ensure that there are no spelling mistakes.  We use lists of common misspellings compiled 

from Wikipedia [182] and Oxford University Press [183].

In addition to actual spell checking, we identify words that are commonly misspelled. 

We hypothesize the existence of these misspellings indicate that the user is not as concerned with 

the integrity of the article and therefore the revision is more likely to be vandalism.  We generate 

a feature that counts misspelled words where one of the top three suggestions from our spell 

checker contains a commonly misspelled word.

7.1.7 Character level Analysis

One common observation about vandalism is the vandal's disregard for properly written 

English.  We address many aspects of these “silly vandalism” edits with features such as longest 

repeated pattern.  But writing these features requires time and effort to identify interesting 

patterns and then write heuristics to recognize them which provide minimal false positives.  In 

addition, edits that have been marked as vandalism (in our case, less than 2500) cannot simply 

capture the diversity in the expression of vandalism.

To address these two concerns, we hypothesize that character level language models 

(CLMs) can be trained from existing sources without intervention to learn many aspects of silly 

vandalism. CLMs build language models on characters and not words.  One immediate benefit is 

space reduction, a trigram model has to account for less states than if we consider all potential 
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words.  Therefore, it is more likely that a character level language model will not suffer from the 

same degree of sparseness as a normal word language model.

Our intuition is that CLMs can account for many different types of behavior that many of 

our existing features are designed to individually detect.  In the work of  [149], the authors use 

language models to capture the behavior of part of speech tags.  This will presumably identify 

salient text like “!!!” or “:))” as vandalism.  With CLMs, it is very likely that these examples will 

exist on any of our four co-training corpora and be identified as vandalism.  We also hypothesize 

that garbage insertions (nonsense textual insertions) will also be identified as vandalism because 

the log probability generated by a character-level language model for regular edits will be quite 

low compared to the probability generated by one of our Internet corpora since the insertion does 

not conform to normal written English (the same may be true for insertions that contain non-

English languages).  Table 11 provides examples of the output for two CLMs trained on 

YouTube comments and Wikipedia articles respectively.

We trained several different CLMs.  First, we trained a “regular” CLM based on 900K 

sentences from articles that contained one of the main categories of Wikipedia.  In addition, we 

trained two other CLMs on non-vandalizing revisions with and without markup.  We then trained 

131

Text YouTube CLM Wiki CLM

p.s. i love you -2.99 -5.23

and tony is awesome!!! remember that... all of 
you... teehee

-3.09 -4.45

Farnham Pottery, Wrecclesham, Surrey with the 
preserved bottle kiln on the right of photo

-3.89 -3.65

Table 11: Comparison of log probability on CLMs trained on YouTube comments and one on 
inserted text from Wikipedia revisions.  The first two examples are vandalism and the last is not.



individual CLMs for each of our Internet co-training corpora (e.g. YouTube).  We also trained 

one CLM sampling half the instances of the co-training at random.  We also trained a special 

instance of the CLM based on the co-training samples called “internet.interesting”.  We found 

that the regular CLM on Wikipedia articles had an average log probability per character of -4.0 

with a standard deviation of 0.75.  We trained the “internet.interesting” CLM on only those 

samples from the co-training that had average character log probability of less than -6.25 (less 

than 3 standard deviations from the mean).

One other important aspect of the CLM computation is that we generate the probabilities 

for both inserted and deleted text.  It is quite likely that in addition to inserting new text, an 

honest contributor will eliminate vandalism.  We do not want to inadvertently suggest reverting 

an edit that does a service to Wikipedia by eliminating vandalizing text.  Also, analysis of 

comments indicates that there exist several instances in our own training set where a user 

indicates that he is reverting vandalism.

Lastly, in addition to features that record the log probability for each of the CLMs, we 

have four nominal features.  Two features record the name of the CLM that best models the 

inserted and deleted text, i.e., the CLM with the highest log probability.  For revisions where the 

delete or inserted text is too short for measuring with the CLM, we then assign the instance with 

the nominal value of “None”.  The other features record the name of the Internet trained CLM 

that best models the inserted and deleted text respectively.  Our last feature takes the difference 

between the best score from one of the Wikipedia trained CLMs and the best score from one of 

the Internet trained CLMs.
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7.2 Handling of training corpus

It is didactic to explain the differences in the evolution of processing the Wikipedia 

markup from our previous work [184][185].  One main issue in feature extraction for 

WikiMarkup is what exactly to extract because the markup allows both visual and non-visual 

modifications.  Another issue that is not addressed in much of the previous work on Wikipedia 

vandalism detection is what to do with templates.  Templates allow markup reuse; they are an 

entity that takes a template name and arguments (either key-value pairs or ordered arguments) in 

the following format:

{template-name | arg1 | key1=value1 | arg2 | key2|value2 }

The Wikipedia rendering engine MediaWiki will look up the template name and apply 

the parameters to the markup.  One difficulty is that it is not clear how the arguments are 

transformed visually.  Determining this is non-trivial because we would need both the source of 

the template at the time of the revision plus analyzing the rendering of the attributes (for 

example, is the attribute transformed into a different representation).  Being sensitive to the 

processing of the markup is important for the new features that we have computed beyond our 

original detector [185].  It is also important because we must clearly delineate what is a visible or 

invisible change and where content block boundaries exist.  We fear that in some of the previous 

work that content boundaries were not taken into account.  Therefore, this section will take the 

opportunity to describe our extraction process in great detail.

We first extracted templates from the source and computed the edit difference (diff) for 

these separately.  Only the value of key arguments and un-typed arguments (e.g. arg1 above) 
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were considered “visual”.  We wrote a link transformer that took Wikipedia link syntax (see 

[186] for a full description) that computed what text would actually be visible to the user from 

this transformation.  We left a crumb in the transformed text to indicate the presence of a link. 

We then converted the markup without template data using the Bliki engine [187] to HTML. 

This allowed us to determine the boundary of content blocks so that we could determine the 

correct sentence boundaries (either terminated with punctuation or at the boundary of a content 

block).  The three main content blocks rendered from the WikiMarkup are paragraphs, list items 

and table cells.  In addition, code blocks were considered separate content blocks.  Once the 

blocks were discovered, we then performed sentence splitting with LingPipe.  We then computed 

the diff using Google diff-patch-match [188].  This allowed us to do word level diffing to 

construct which segments of text were inserted, deleted or unmodified.  We then tagged 

sentences with which parts were inserted, deleted and unmodified.  We denote modified 

sentences having either A) part of the sentence deleted or B) part-of or the entire sentence was 

inserted (including link text) or C) the sentence had a link inserted.

Stylometric features were computed in the following way.  Stop word analysis was 

performed on all inserted text regardless if it was visual.  Readability and PCFG scores were 

computed on modified sentences.  The CLM log probability computations were computed for 

both the deleted and the inserted text segments.  The segments for each insert/delete block were 

not concatenated together and all blocks of whitespace were converted to a single space.
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7.3 Classifier choice

As more research is conducted on the application of machine learning  to vandalism 

detection, researchers typically choose from two types of classifiers: boosting and random trees. 

As Velasco points out in his PAN 2010 Lab Report [189], classifiers must be able to cope with 

the severe class imbalance, require little or no processing of the data, perform implicit feature 

selection and require little parameter adjustment.   We agree that these features must factor into 

classifier selection.  Our experimentation has also concluded that discretization [190] of the 

features actually improves the performance for certain classification strategies. 

From analyzing the PAN 2010 competition results, two classifiers appear to work well 

for this problem: RandomTrees and LogitBoost.  We experimented with RandomTrees and did 

not observe similar performance relative to boosting as reported in [189].  We have found that 

LogitBoost still performs the best for our features with the base classifier set to a Decision Stump 

and iterated 500 times.

7.4 Evaluation

This section we will detail our evaluation set.  In our evaluation, we use an unbalanced 

dataset similar to the ratio of vandalizing and regular edits that Wikipedia receives.  We also 

focus on those modifications that either introduce new text or modify existing text.  This 

evaluation will not evaluate the efficacy of the classifier on edits where only text is deleted 

because it only accounts for 0.43% of vandalism.  Similarly, we will not attempt to classify 

purely template changes because these modifications only account for 8.79% of vandalism and 

our features are optimized for the most offensive type of vandalism, which is generally visible.
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We will evaluate the classifier against many different metrics.  We will first determine 

the precision, recall and the F1 measure (the harmonic mean of the precision and recall) of the 

classifier.  We will also evaluate our classifier with respect to the area under the ROC curve 

(AUC).  This metric was used for the PAN 2010 Wikipedia vandalism competition.  This 

measure denotes the probability that a randomly chosen positive instance, e.g., vandalism, will 

rank higher than a randomly chosen negative instance.  The metric has spurred some debate to its 

value [191], but we will use it as a means for comparison to our previous work.

We use the 2010 PAN Wikipedia vandalism corpus pan-overview to quantify the benefit 

of stylometric analysis to vandalism detection. This corpus comprises of 32444 edits on 28468 

articles, with 2391 of the edits identified as vandalism by human annotators.  Among the 

different types of vandalism (e.g. deletions, template changes), we focus only on those edits that 

inserted or modified text since stylometric features are not relevant to deletes and template 

modifications. Note that insertions and modifications are the main source for vandalism.

We randomly separated 15000 edits for training of Cregular and Cvandalism, and 17444 edits 

for testing, preserving the ratio of vandalism to non-vandalism revisions. We eliminated 7721 of 

the testing edits to remove revisions that were exclusively template modifications or deletions 

and maintain an imbalanced ratio of vandalism and regular edits for a total of 9723 edits, of 

which 8548 are regular and 1175 are vandalism. For each edit in the test set, we compute the 

probability of each modified sentence for  Cregular and Cvandalism  and generate the statistics for the 

features described in Section 7.1 . We compare the performance of the stylometric features 
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against a baseline classifier that is trained on meta data, lexical, sentiment and language 

modeling features using 10 fold stratified cross validation on the test set.

For the evaluation features for PCFG, we use the values of the scores computed in  [185]. 

Surprisingly, although InfoGain indicates that the differences on the measures between the parser 

trained on regular edits and the composite feature that takes the best scores from the parsers 

trained on D{vandalism, twitter, YouTube}, the combination of these features with the LogitBoost classifier 

actually performed worse than the originally computed features.  This will be discussed further 

in Section 7.6.3 .

7.5 Results

Table 12 presents the results of stratified 10 fold cross validation on our testing set.  We 

present the baseline results, with the addition of the CLM features (denoted +CLM), PCFG 

features (denoted +PCFG), stop word features (denoted +SW) and all the features combined. 

Table 13 presents the most informative features according to InfoGain.
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Features Precision Recall F1 AUC

Baseline 74.2% 43.0% 54.4% 91.7%

+SW 75.9% 48.9% 59.5% 92.5%

+PCFG 74.3% 48.9% 59.0% 93.0%

+CLM 76.7% 57.0% 65.4% 93.5%

+SW+PCFG+CLM 78.5% 59.8% 67.9% 94.5%
Table 12:  Results on an unbalanced test data.



7.6 Discussion

7.6.1 Evaluation results

We observe, for the first time, features that we have computed on the text difference of 

the revisions that are more informative than editor meta data including if the editor is registered, 

how long they have been registered and how frequently they revised articles in Wikipedia in the 

sampling period.

Our features improve the baseline performance.  Stop words improve both the recall 

(48.9%), precision (75.9%) and F1 measure (59.5%) over the baseline classification.  Similarly, 

adding only the PCFG features increases recall (48.9%), precision just slightly (74.3%) and F1 

measure (59.0%).  The improvements over the baseline suggest that stylometric analysis does 

provide us with a means to differentiate regular and vandalizing language.  The most impressive 

gains of a single set of features is the CLM features.  Adding the CLM features increases the 

recall (57.0%), precision (76.7%) and F1 measure (65.4%).  Combining all the stylometric 
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Feature Value

Total number of author contributions 0.107

Difference between the best CLM score from the Wiki trained CLMs and the best CLM score from 
the Internet trained CLMs

0.102

Which CLM best modeled the inserted text 0.101

How long the author has been registered 0.099

How frequently the author contributed in the training set 0.097

If the author is registered 0.089

Stop word Classifier feature: trained with non-empty instances, cost-sensitive SVM 0.049

Stop word Classifier feature: trained with empty instances, cost-sensitive SVM 0.048

Which Internet trained CLM best modeled the inserted text 0.039

Difference in the maximum PCFG score s 0.038

Table 13: Top 10 ranked features on the unbalanced test data by InfoGain.



features, we improve in all the measures over the addition of CLM features: roughly 2% for 

recall, precision and F-measure.  From these results, we draw the following conclusions:

• There are indeed unique language styles in vandalism that can be detected with 

stylometric analysis .

• Rather unexpectedly, deep syntax oriented features based on PCFG bring a much more 

substantial improvement than language models that capture only shallow lexico-syntactic 

patterns.

• Stop words provide another stylometric analysis that differentiates between vandalism 

and regular edits.  Training a cost-sensitive SVM classifier on the training data, we 

observe an increase in both precision and recall.

• CLMs appear to substantially increase the performance of our baseline classifier.  This 

improvement appears to support our hypothesis that the authors of vandalism employ a 

language that is shared across different contexts in the Internet.  Interestingly, we do not 

need to train a CLM specifically on vandalized text to achieve these gains in 

performance.

7.6.2 Stop words

Table 14 lists the InfoGain values for different combinations of classifiers (SVMs, 

BayesNet and NB), training set (with empty instances or no non-empty instances) and if the 

classifier was adjusted with a cost sensitive classifier.  We choose only to apply the cost-

sensitive approach to the SVM approach.
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From Table 14, we see a 7 fold improvement when applying a cost-sensitive classifier. 

The difference in InfoGain also correlates with the increase of the F-measure for the classifier on 

the non-empty training data. 

The amount to weight mistakes for the cost sensitive classifier is not trivial.  For certain 

classification schemes live Naive Bayes, the cost-sensitive approach will work better if the 

penalties for false positives are weighted more severely than the penalties for false negatives. 

Conversely, support vector machines are quite precise for this task, but have low sensitivity. 

140

Training set Classifier Cost sensitive 
adjusted?

InfoGain

Non-empty SVM Yes 0.049

With empty SVM Yes 0.048

Non-empty BayesNet No 0.036

With empty Naive Bayes No 0.261

Non-empty Naive Bayes No 0.260

Non-empty SVM No 0.007

Table 14: InfoGain for various settings of our stop word classifier on our test set.

you 
ever 
hi 
so 

like 
really 
why 
thats 
shes 
know

0.023096
0.0156
0.008947
0.008482
0.008251
0.007831
0.007755
0.007651
0.007372
0.007235

Is
you

a
he
hi
I

like
ever

of
so

Top ranked features correlated with vandalism 
according to a linear SVM

Top 10 features according to InfoGain for our 
stop word feature space

Table 15: Salient features for stop word author identification.



Results from an experiment conducted on different penalties indicate that penalizing false 

negative five times more than true positives yielded the highest F-measure.  Interestingly, the 

effect of increasing the false positive rate did not diminish the information gained by the 

attribute, but rather, increased it.  We hypothesize that classifiers can tolerate this increase in 

false positives because other features such as the editor's total contributions can prevent 

misclassification since the classifier can rely on the sensitivity of these features.

One last observation that explains the effectiveness of our stop word classification 

attribute is which features were most informative.  Recall that the stop word classifier is trained 

on a feature space that entirely consists of stop words.  Table 15 presents the ranking of the 

features according to the utility to an SVM and InfoGain.  The rankings shed some insight into 

why this approach can improve vandalism detection.  The words that correspond with the 

vandalism according to the SVM clearly do not belong in Wikipedia articles.  Second person 

pronouns like “you” and seemingly informal words such as “hi”, “really” are more appropriate 

for colloquial conversations, not for educational purposes.  Many of the words in themselves are 

not offensive, and thus, do not immediately raise any obvious alarm in previous systems.

7.6.3 PCFG results

We found that the most informative features derived from PCFGs were computed taking 

by taking the difference between the probability scores generated by sentences from Dregular and 

the best score from “best.vandalism” (Dvandalism, DYouTube or Dtwitter).  Including the parser 

predictions trained from MySpace and 4chan did not improve the InfoGain scores in our 

evaluation.  We found that employing multiple parsers from treebanks that were built from 

141



Min Max Stdev Sum Mean 

Diff between Dregular and 
best.vandalism

5.20% 4.80% 1.50% 4.00% 5.60%

Diff between Dregular and Dvandalism 4.70% 4.60% 1.30% 5.40% 5.40%

Original computation 2.50% 3.80% 1.60% 3.20% 3.80%
Table 16: InfoGain for diffs for different parsers across all our measures.

sentences deriving from the same category, i.e., categorical treebanks, was not as informative as 

simply comparing our “vandalizing” parsers with the parser trained from Cregular.  Lastly, we did 

not gain any benefit from clustering and combining sentences from Internet sources with 

sentences from vandalizing edits.

The InfoGain presented in Table 16 shows an increase of at most 2.7% over our previous 

results.  We hypothesize that the reason for this increase in the InfoGain is attributable to a new 

processing pipeline coupled with the Internet co-training.  The original work computed the diff 

on the line level, not the word level.  Manual inspection of these diffs show the introduction of 

sentences that were unaffected.  Since our features represent a computation performed on all 

modified sentences, this may have adversely affected the features.  For example, if the longest 

sentence in the line diff was not one that was modified, the score of the min feature would likely 

be the difference in  probabilities of this sentence with respect to the parsers.  We also 

recognized that the original software to do the WikiMarkup conversion to plain text appears to 

have computed the plain text incorrectly by misplacing the words.  In particular, it had 

tremendous difficulty parsing templates and hence, why we went to great lengths to accurately 

pre-process the text and uncover the modified sentences.
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We note in Section 7.4  that in fact, our original PCFG scores performed better than the 

best ones ranked by InfoGain when used by the LogitBoost classifier.  The impact of higher 

InfoGain values generally imply improved performance in classification, but not always.  For the 

LogitBoost classifier, it was unable to perform significantly better using the most informative 

feature for each measure according to InfoGain ranking from the new processing pipeline 

compared with our original scores.  For other classifiers, such as the RandomForest classifier, we 

see an improvement (see Table 17) if we use the PCFG features for each measure with the best 

InfoGain instead of the values originally computed.

7.6.4 Character-level language models

The best new features for vandalism detection presented in this chapter are the CLM 

generated features.  Error: Reference source not found shows the InfoGain values for the top 5 

CLM features.  This is the first set of features we produced that is more informative than if the 

editor is registered or not.  The best performing features were the nominal feature of the model 

that best represented the inserted text and the feature that is the difference between the best 

probability parse from a CLM trained on Wikipedia articles and a CLM trained on Internet 

sources.  The third most informative feature was which Internet trained CLM had best modeled 

the inserted text.  Interestingly, 
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Features Recall Precision F1

“Best” PCFG features 35.40% 70.90% 47.20%

Original computed features 34.20% 71.00% 46.20%
Table 17: With the RandomForest classifier, we observe an improvement using the "best" PCFG 
features as ranked by InfoGain compared to the orginally computed features



although the top feature is derived from inserted text, the following most informative features 

focus on deleted text.  The next two are specifically the features representing the log probability 

for the CLMs trained on Wikipedia and YouTube on deleted text.

Figure 14 shows the distributions for the nominal feature based on which CLM best 

modeled the inserted text performed.  As we observe, only 14% of non-vandalizing edits were 

best modeled by Internet trained CLMs.  Conversely, we see the Internet trained CLMs provided 

the best prediction for 61% of the vandalizing edits.  Therefore, the classifier is able to 

effectively use the information gleaned from this attribute to better discriminate between the two 

classes.

Closer inspection of the distribution of values across the third most informative attribute 

(which Internet trained CLM best modeled the inserted text) are shown in Figure 15, the CLM 

trained on 4chan provided the best modeling for regular edits, whereas for the vandalizing edits, 

they are more evenly distributed across the different Internet trained CLMs.  Although 4chan 

does not require its contributors to adhere to the strict guidelines of Wikipedia editors, after 

manually inspecting small samples from 4chan, YouTube and Twitter, 4chan comments tend to 

be better written (although the quality is much more crass and crude than what we expect from 

Wikipedia articles).  With this observation, it is not surprising that the CLM trained from the 
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Difference between the Wiki and Internet/Vandalism trained CLMs 
Which Wiki or Internet CLM best modeled the inserted text 
Which Internet trained CLM best modeled the inserted text 
The log probability of the Wiki trained CLM on deleted text 
The log probability of the YouTube trained CLM on deleted text

0.103
0.102
0.039
0.026
0.026

Table 18: Top 5 InfoGain ranked attributes derived from CLMs.



4chan comments better model Wikipedia articles and provides some utility, although it is in 

essence a subset of the more informative nominal feature that is the name of the CLM  that 

modeled the inserted text best.
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The small gain in adding the log probability from the CLMs for the deleted text is 

surprising since the best feature is derived from the diff of the CLMs for the inserted text.  One 

possible explanation is that honest contributors who are contributing edits to Wikipedia will 

eliminate “silly vandalism”.  For vandalizing contributions, we observe that the proportion of 

edits that are best explained by Internet trained CLMs drops from 61% to 11%.  This seems 

plausible because a vandal will not go out of his way to clean up articles only to vandalize them 

further.  Rather, what he is deleting is probably “good” text that he wants to dispose of.  Another 

explanation is that the correlation is spurious and honest editors simply delete more text.  This 

observation is supported by our earlier work [184] where we observed 12.62% of non-

vandalizing edits involve deletion.   The distribution of CLM scores on deleted text will likely 

exhibit a more uniform distribution than vandals who are less apt to delete text unless they are 
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intent on “blanking” (removing all the contents of) the page.  Figure 16 shows an the distribution 

of probabilities for the CLM trained on articles from main categories.

For the purposes of this evaluation, we did not train any CLM on the vandalizing text in 

our training set.  The rationale for this decision came from the limited samples that we had in 

terms of character diversity.  Rather, it appears that our hypothesis that A) vandals employ 

language that is expressed in many different places across the Internet and B) we can accurately 

model the character-level trigrams of articles from Wikipedia is suggested by our results.

7.6.5 Features and techniques that did not work well

This section will discuss different techniques and features that did not yield substantial 

value for the benefit of readers who may pursue similar ideas.

Certain hallmarks of style did not provide substantial benefit for classification.  These 

include spelling errors, counting common misspelling mistakes and readability scores such as 

Flesch-Kincaid.  Spelling errors are difficult to detect because building a comprehensive 

dictionary for Wikipedia is quite an undertaking considering how many words are simply not 

contained in standard dictionaries.  In addition, the English language Wikipedia does contain 

articles with foreign language text, which is appropriate for the article.  Common misspellings 

are not a hallmark of vandalism as is obscenities and slang speech.  Also, readability scores like 

Flesch-Kincaid provide little benefit as well.  We suspect this is due to the following features of 

revised edits.  First, all inserted text is not necessarily sentences, but could be list or bulleted 

items.  Second, vandalism that inserts long tracts of repeated letters may increase the syllable 

count artificially.  Lastly, it is likely only looking at one sentence is simply not large enough for 
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a proper sampling.  Not all non-vandalizing sentences are required to be of significant readability 

in order to be a worthy contribution.

Lastly, we experimented with different ways of structuring the classifier.  We note that 

the primary profile of a vandal is an unregistered user or a newly registered user with little 

history.  Cluebot [192] is an automated bot on Wikipedia that employs many different heuristics 

to identify and revert vandalism.  It will score an edit and if it deems it to be vandalism, it will 

not revert a revision if either of the following two conditions apply: if the user is registered and 

has at least 50 edits or if the user is not registered but the IP address has logged over 250 edits. 

Presumably, the rational behind these rules is that if the person at the IP address or the registered 

user has vandalized Wikipedia regularly before, he would have been blocked by this point of 

time.  We expanded on this heuristic in two ways motivated by analysis of our data.  First, if the 

user was very active during our sampling period, we did not classify the edit as vandalism. 

Second, if the user or IP has contributed to the article 10 or more times, we did not label the 

revision as vandalism.

We applied the technique in two ways to our dataset.  First, we applied the heuristic 

solely to our classifier decision: only labeling revisions as vandalism if it did not satisfy any of 

our four criteria.  Secondly, we eliminated both testing and training examples from our dataset 

that satisfied at least one of the four criteria.  The motivation here was that the population our 

classifier should focus on are the examples that do not meet any of our “Cluebot-esque” criteria. 

On average, this eliminated 68% of the training data.  We found that for the baseline features, 

this yielded a 29% improvement in overall accuracy for the Naive Bayesian classifier.  The 
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performance suffered, however, when we applied this technique with the LogitBoost classifier 

and the additional stylometric features.  The LogitBoost classifier can leverage the new features 

and perform its own feature selection that it negates any utility provided by these simple 

heuristics and training methods.

7.7 Related work

[149] presents the first approach that is linguistically motivated. Their approach was 

based on shallow syntactic patterns, while ours explores the use of deep syntactic patterns, and 

performs a comparative evaluation across different stylometry analysis techniques. It is 

worthwhile to note that the approach of [149] is not as practical and scalable as ours in as it 

requires crawling a substantial number (150) of web pages to detect each vandalism edit. From 

our pilot study based on 1600 edits (50% of which is vandalism), we found that the topic-specific 

language models built from web search do not produce stronger result than PCFG based features. 

The standard approach to Wikipedia vandalism detection is to develop a feature based on 

either the content or meta data and train a classifier to recognize it. A comprehensive overview 

of what types of features have been employed for this task can be found in [193]. Other 

approaches to vandalism detection include WikiTrust, a reputation system for Wikipedia authors, 

that focuses on determining the likely quality of a contribution, which is useful in identifying 

vandalism [194].

7.8 Conclusion and future work

This chapter presents new features that increase the performance of Wikipedia vandalism 

detection.  The application of character-level language models trained from Wikipedia articles 
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and Internet sources had a substantial impact on the improvement of classification performance. 

What is encouraging about this particular set of features is that the training does not rely on 

examples of vandalism, but can be bootstrapped from existing Internet sources and article 

revisions from trustworthy editors.  The models require significantly less space than language 

models trained on words and does not require per-article searches of [149].  We were also able to 

enhance the informative value of our PCFG features by training additional parsers on Internet 

sources.  We were also able to create a salient feature based on stop word analysis, a technique 

used in author identification.

Where the “Got You!” project [149] was the first work to use Internet sources to enhance 

models for detecting what should be inserted into text, this work is the first to use Internet 

sources to identify what should not be inserted into Wikipedia articles.  This work suggests that 

the language employed by vandals is also expressed across the Internet in different forums.  The 

character-level language models successfully allow us to sample this text and learn from it.  The 

usage of Internet co-training allowed us to also build syntax parsers that provide greater InfoGain 

than simply training on the vandalizing and non-vandalizing text.  The main conclusion we draw 

is that with careful selection of Internet co-training, we can potentially anticipate vandalism.  

The stop word analysis sheds some light into the language expressed by vandals.  We 

observe that clearly some of the more salient stop words like “hi” and “obviously” are not 

particularly appropriate for Wikipedia, regardless of which article is being revised.  This is not to 

say that previous approaches would not be able to identify such vandalism: for example, the “Got 

You!” system would likely assign low probabilities to these words.  The evidence suggests that 
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there do exist words that vandals employ which are non-offensive but simply not appropriate for 

Wikipedia's stylistic guidelines.  The question is how do we effectively identify these types of 

words?  One approach could be to sample various sources to get an idea of the frequency of the 

word (optionally taking into account the part of speech for additional information).  If the 

observed rate of the word is significantly higher in other sources than it is in Wikipedia, then this 

may suggest this word is not thematically appropriate for Wikipedia.  Another technique may be 

to find the non-content bearing words that appear significantly more frequently in Wikipedia 

than in other contexts.  We can then score revisions on how many “good” encyclopedic terms it 

contains.  Like the Internet co-training, there may exist text sources that will provide adequate 

contrast to what is expected in Wikipedia.
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Chapter 8 PhorceField

Passwords are by far the most common form of authentication in use today. Almost all 

online services, including social networking, email, e-commerce, and online banking, use 

passwords as their only authentication factor. Users often re-use passwords across multiple sites, 

so the exposure of a single password could compromise a user’s entire financial identity, 

including bank account, credit card, e-commerce accounts, and investment accounts. Therefore, 

it is paramount to protect the secrecy of user passwords.  The issue, however, is that nearly all 

password authentication schemes require user vigilance, something that users are largely unable 

to do [42].

Phishing attacks steal user passwords by tricking victims into entering their password into 

a prompt that the phisher controls [195]. A phisher lures victims to his web page, which mimics 

another web page trusted by the victims, and asks the victims to enter their personal information 

and login credentials for other web sites. Over 3.6 million people in the U.S. lost money to 

phishing attacks in 2007, losing over 3 billion USD [196].

Phishing attacks exploit users’ inability to distinguish legitimate websites from fraudulent 

ones [197][42]. Researchers have proposed several “trusted password prompts” and usability 

aids to help users make this distinction, including secure attention keys [198], security indicators 

[42], and security skins [199]. None of these solutions is effective, though, because they all 

require users to take active measures, such as checking for the presence of a security indicator. 
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Even with these aids, the vast majority of users are not able to avoid phishing attacks [42]. 

Many factors impede the user’s ability to recognize fraudulent websites: users expect 

software to be buggy and error-prone, they do not expect to be phished, and they are conditioned 

to only superficially observe browser security mechanisms [200]. As Karlof et al. summarized: 

“These tendencies suggest that we cannot rely on users’ abilities to detect social engineering 

attacks and respond appropriately, and we must design defenses accordingly” [200].

This chapter presents PhorceField, a phishing-resistant password ceremony that relies on 

user laziness rather than vigilance. With PhorceField, a legitimate password prompt has access to 

a secret set of images that enables it to create an easy-to-use password prompt. Phishers do not 

have access to the secret images and hence must present victims with a fundamentally different 

and more difficult interface. Users cannot ignore the differences, as with previous schemes such 

as SiteKey, and hence cannot slip into dangerous click-whirr behaviors [200]. Even if users do 

attempt to interact with the phisher’s page, though, the phishing page requires so much effort that 

the victims give up in frustration before they can reveal their password.

PhorceField exploits well-known strengths and weaknesses of human memory [201]

[202]. During a normal PhorceField login, users must perform an image recognition task, e.g. 

discriminating the user's password images from a small set of candidate images, which is 

relatively easy for humans. During a phishing attack, though, victims must perform an image 

recall task, e.g. remember all images from the password without visual cues, which is 

substantially harder. Furthermore, PhorceField is designed so that victims will experience 

memory interference during a phishing attack, causing additional frustration and error. To our 
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knowledge, PhorceField is the first password ceremony to take advantage of these properties of 

human memory.

PhorceField is easy to use. The PhorceField user experience is identical to a cognometric 

graphical password [203], which have been shown to have high usability and good password 

memorability. Thus, this chapter focuses only on PhorceField’s security against phishing attacks.

We have conducted a user study to evaluate the security of PhorceField against phishing 

attacks.  Participants used PhorceField for one week and were then presented with a simulated 

phishing page that attempted to steal their PhorceField password. We made special effort to 

ensure the ecological validity of our study and to avoid participant bias. For example, 

participants worked on their own computers in their normal environments, and we told 

participants that the study was focused on “usability” instead of security.

As the user study results summarized in Table 19 show, PhorceField users presented with 

a phishing attack give up before they are able to reveal their entire password. Participants in our 

study revealed, on average, only 13.8 bits of information (out of 70 bits of entropy) about their 

password, and no participant revealed his entire password. This is a substantial improvement 
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Metric SiteKey Phorcefield

Percent users revealing their entire password 92% 0%

Average amount of password revealed 92% 20%
Table 19: Success rate of phishing attacks on PhorceField and SiteKey.  The SiteKey statistics 
are derived from Schechter, et al..  Since SiteKey users reveal all-or-nothing of their password, 
the average amount of password entropy revealed is the same as the percentage of subjects who 
revealed their password.  In our PhorceField study, all users were assigned passwords with 70 
bits of entropy, and they revealed an average of 13.8 bits of information about their password.



over recent results on SiteKey, the current industry standard for preventing password phishing, 

that show that 92% of SiteKey users will reveal their password to a phisher [42].

PhorceField combines two existing technologies – client-side secrets (e.g. secure HTTP 

cookies) and graphical passwords – in a novel way to achieve a level of phishing-resistance that 

neither technology achieves on its own. Our results demonstrate that previous schemes based on 

client-side secrets, such as SiteKey [204] and Dynamic Security Skins [199], are not extracting 

the full benefit of the client-side secret. PhorceField could serve as a drop-in replacement for the 

login ceremony of either of these schemes, providing substantial improvement to their phishing-

resistance.

Our study also offers upper-bounds on the amount of time and effort phishing victims 

will devote to a phishing web page. Since our phishing “attack” lacked all the cues of a normal 

phishing attack, and since we designed the experiment to give participants an incentive to 

cooperate, our results are quite conservative, but may still serve as guides for phishing defense 

designers. Participants in our study spent an average of 11.5 minutes on our phishing page, 

including some participants who spent over 25 minutes. Several participants visited the page 

more than once. These observations suggest that future phishing defenses should assume users 

will cooperate with a phisher for several minutes and execute several non-trivial tasks.

In summary, PhorceField demonstrates three new techniques for designing phishing-

resistant password ceremonies: 
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• It forces phishers to present a fundamentally different interface to their victims. This 

gives users a better chance to detect the attack. With previous schemes, a phisher can 

present an interface that differs only superficially from a legitimate one. 

• It forces phishers to present a much more difficult-to-use interface. Even if a victim is 

fooled by the phishers' attack, she is unlikely to succeed in communicating her password 

to the phisher. 

• It exploits strengths and weaknesses of human memory to make phishing attacks difficult 

for their victims. Victims of a phishing attack experience memory interference while 

looking through hundreds of similar images, causing frustration and error. 

We make the following additional contributions: 

• We present results from a user study demonstrating that PhorceField successfully 

protected all participants against our simulated phishing attack. 

• Our study also provides guideline parameters for designing future defense mechanisms 

based on user frustration. For example, users will devote an average of about 10 minutes, 

and up to 30 minutes, on a phishing page. 

• We show how PhorceField can easily integrate into existing anti-phishing mechanisms, 

such as SiteKey and DSS, without introducing any new hardware or software 

requirements. 
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8.1 Background

Phishers steal user credentials by tricking victims into revealing private information, such 

as passwords. In this section, we review (1) why phishing is not solved by existing technologies, 

such as SSL or malware defenses, (2) that some proposed phishing solutions offer some 

protection but do not address the core problem of password disclosure, and (3) that previous 

solutions targeted specifically at preventing password disclosure are not effective.

8.1.1 Non-solutions

Phishing is a separate problem from malware (such as key-loggers), click-jacking, and 

other techniques that attackers may use to steal user secrets. Even if a user’s computer is free of 

malware and has effective defenses against click-jacking, a phisher may still trick the user into 

divulging his password. Therefore, we need separate defense mechanisms to help users avoid 

phishing attacks.

Phishing cannot be solved solely with cryptography. SSL and PAKE protocols [205] 

cannot protect the user’s password when she types it into a phisher’s website. Therefore, we need 

separate defenses to help users avoid entering passwords into malicious prompts.

Password managers and one-time passwords do not prevent phishing, either. A phisher 

can defeat a password manager by convincing victims to disable it and type in their master 

password. Given the fallibility of users [42] and the usability problems with password managers 

[206], the ruse is likely to succeed. One-time password generators, whether implemented as a 

special-purpose token, software on a cell-phone, or delivered to the user’s phone via SMS, all 

require users to manually copy the one-time password from the device to their computer. 
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Phishers can trick users into entering the password into their page instead of the user’s intended 

website, as was done in a real phishing attack against Citibank [207].

Two-factor authentication can mitigate the damage of a stolen password, but it does 

nothing to protect the password itself. However, banks and other financial institutions clearly 

consider passwords worthy of protection in their own right, and for good reason. For example, 

SiteKey establishes a shared secret that subsequently acts as a second authentication factor, but 

SiteKey also contains a visual cue to help users avoid entering their passwords into malicious 

prompts, demonstrating that banks are invested in password security, too. Passwords are worth 

protecting primarily because a password stolen in one context can often be used in another. For 

example, most users share passwords across multiple sites, so a phisher that steals a user’s 

password on one site can often log into several of the user’s accounts. Phishers may also be able 

to use a stolen password to boot-strap social engineering attacks. For example, a phisher can use 

a stolen password to pose as the bank when attempting to extract more personal information 

from a victim. Finally, the same institution may allow users to log in using the same password in 

several different contexts, some of which do not require the user to present their stored secret. 

For example, adaptive authentication schemes grant users different levels of access depending on 

the number and nature of authentication factors presented [208]. For all these reasons, it is 

important to give web service providers and users tools to help them prevent accidental password 

disclosures.

Anti-phishing toolbars [209], spam detectors [210], phishing site blacklists and white-

lists [211], and other reactionary mechanisms for fighting phishing offer some protection, but 
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phishers have developed many techniques for evading these defenses [212], so millions of users 

fall victim to phishing each year [196].

The solutions above fail to prevent phishing because they do not address the core 

weakness exploited by phishers: users cannot determine whether a password prompt is legitimate 

or malicious.

8.1.2 Prior phishing solutions

Researchers have made several attempts to create password schemes that will help users 

distinguish legitimate prompts from malicious ones.
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Figure 17: A generalized variant of the SiteKey and Dynamic Security Skins login ceremony. 
The user’s secret image, s is stored securely on her machine and is only accessible to legitimate 
password prompts, i.e. prompts from “Server” in the case of SiteKey, or prompts presented by 
the DSS plug-in in the case of Dynamic Security Skins. Users are supposed to verify that s is 
displayed in the prompt before entering their password. Once the user has entered her password, 
p, any password-based authentication protocol can be used to authenticate the user to the remote 
server.



Secure attention keys allow users to summon a trusted password prompt by pressing a 

special sequence of keys – typically Ctrl-Alt-Del. Secure attention keys will not prevent phishing 

since phishers can easily convince users to skip the special key sequence. 

Dynamic Security Skins (DSS) [199] and SiteKey [204] are conceptually similar schemes 

that use a client-side secret to help users recognize legitimate password prompts. In these 

schemes, a secret image known to the user is stored on the user’s device. This image is presented 

to the user as part of the standard password prompt. The user is supposed to verify the image is 

present before entering her password. Figure 17 shows the protocol for logging in using these 

schemes. SiteKey and DSS differ in the location of the image: SiteKey displays it above the 

password entry field, DSS displays it behind the field.

Unfortunately, 92% of SiteKey users will ignore a missing image and enter their 

password anyway [42]. We could find no published user study evaluating phishing attacks 

against Dynamic Security Skins, but it also depends on user vigilance for security and so is likely 

to offer little protection against phishing.

8.1.3 Client-side secrets.

SiteKey and DSS also differ in their machine registration ceremonies, i.e. in the protocols 

they use to establish the client-side secret. When a SiteKey user attempts to login from a device 

without the secret, she is asked to answer a “security question”, such as “What is your mother’s 

maiden name? ” Upon successfully answering the question, the remote website stores the secret 

cookie on the new device. Thus, the remote website and all of a user’s devices share the same 

secret. In DSS, the secret background image is chosen randomly each time the DSS software is 
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installed on a new device. Thus devices do not share secrets with each-other or with any remote 

website.

SiteKey’s machine registration ceremony is vulnerable to phishing attacks. Karlof, et al., 

found that over 92% of users would tell a phisher the answers to their security questions [200]. 

Even worse, phishers can often simply guess the answers to the security questions [213]. The 

answers to some questions can be guessed with over a 50% success rate [213].

Despite these problems, SiteKey and DSS suggest a strategy for solving the phishing 

problem: (1) Develop secure ceremonies for establishing a client-side secret, and (2) Create login 

ceremonies that prevent password phishing by leveraging the secret established during a machine 

registration ceremony.

Researchers have already begun to develop better machine registration ceremonies [200] 

[214]. Karlof, et al., proposed an email-based secure machine registration ceremony [200] that 

reduced the success of phishing attacks to about 47%.  Parno, et al., proposed to use a trusted 

auxiliary device, such as a Bluetooth enabled cell phone, to establish a secure channel between 

the user’s computer and the bank’s servers [214]. After establishing the secure channel, the bank 

can store a cookie on the client computer to avoid the need for the auxiliary device during future 

logins. This machine registration scheme would be virtually immune to phishing attacks, but 

requires both additional hardware and software support. One could also create secure machine 

registration schemes based on USB tokens or biometrics and fuzzy extractors [215], although we 

are not aware of any specific proposal along those lines.
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These results demonstrate that secure machine registration is acceptable to users, is an 

active area of research, and is likely to improve in the future. PhorceField provides the other half 

of the solution: a phishing-resistant password ceremony.

8.2 PhorceField

Our goal is to create a password ceremony such that attackers cannot present a usable 

password prompt to their victims. Therefore, legitimate prompts must have access to some secret 

that is not known to attackers. Furthermore, passwords cannot consist of letters, numbers, etc., 

since phishers can present easy interfaces for inputting those symbols. PhorceField satisfies the 

above two requirements by using a cognometric graphical password scheme and by storing the 

graphical password images securely on the user’s device.  Figure 18 shows the PhorceField login 

ceremony and Figure 19 shows an instance of a PhorceField password prompt.

Cognometric graphical passwords present users with a set, , of images and users log in 

by clicking on the images in a certain sequence or by clicking on a certain subset of images. We 
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Figure 18: The PhorceField ceremony. The user’s secret image set, σ, is stored on her device and 
inaccessible to phishers.



refer to the user’s password as . In PhorceField, the set  must be drawn from a much larger set, 

. Thus, the user’s password is a word in the language * but, since the prompt already has 

access to , the user only needs to communicate |, which may only constitute 10-20 bits of 

information. A phisher that does not know , though, must trick the user into revealing , which 

may require the user to communicate hundreds of bits of information, making the task much 

harder.

For security,  should be as large as possible and, for usability,  should be small. An 

implementation could use random art images [216] generated using ℓ-bit seeds, in which case |Σ| 

= 2ℓ. The Déjà Vu graphical password uses random art images and has good usability [203]. 
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Figure 19: An example PhorceField password prompt using Creative Commons licensed images 
from the Flickr photo-sharing site.



Alternatively,  could consist of a large collection of photos or icons, similar to those used in 

SiteKey [204].  These photos could be drawn from a homogeneous set, such as pictures of faces 

or landscapes, or could be more diverse, such as pictures of everyday objects.  The Passfaces 

scheme uses only pictures of faces  and also has good usability [217], but research has shown 

that users do not pick good Passfaces passwords – they must be assigned to users to ensure they 

are random [218]. The choice of images in  will affect the usability and security of a 

PhorceField deployment. This chapter evaluates a PhorceField implementation using photos of 

everyday objects.

For our prototype implementation, we chose ||=12, since this makes it easy to enter 

passwords on cell phones and other mobile devices with the standard phone keys 0-9, “*”, and 

“#”, and  consisted of 188218 creative-commons licensed images collected from the Flickr 

photo service [219]. There are over 100 million such images on Flickr, so our prototype could be 

easily scaled up for real-world deployment [220]. We collected images by searching for 193 

different concrete nouns, such as “cow”, “flowers”, “sky”, and “tree”. We constructed each 

participant’s  by selecting 12 concrete nouns and then selecting an image from each noun’s 

image set. Passwords in our implementation consist of a sequence of 4 distinct images (order 

matters). Our system randomly generated passwords for participants. This yields an entropy of 

181 bits for , 70.0 bits for , and 13.5 bits for |. Our scraper also downloaded the description, 

tags and titles for each image, which we use later to develop the phishing attack interface in our 

user study. 
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The exact details of passwords are orthogonal to the basic design of PhorceField. For 

example, the user’s password could consist of a subset of the displayed images, and the user 

would log in by clicking on the images in her subset in any order, as in Déjà Vu [203]. 

Alternatively, the password could consist of an arbitrary word in . The password system could 

impose constraints, such as a minimum length, or a minimum number of distinct images, in order 

to help users avoid bad passwords. The service could also choose  for the user, which would 

guarantee passwords are chosen randomly, albeit at a potential cost in memorability.

Each user’s  must be stored on her device. As described in Section 8.1 , there are 

multiple ways to do this, each with their own advantages and disadvantages. For the purposes of 

our analysis and user study, we assume that  has been securely stored on the user’s computer.

8.3 Phishing attacks against PhorceField

We argue in this section that phisher’s only have two possible strategies for extracting  

from their victims: brute force attacks and search attacks.

Brute force attacks. A phisher that does not know  may attempt to learn  by 

presenting the user with an invalid password prompt. If the invalid prompt contains some images 

from the user’s set, , then the user may click on them. Note that in many cases, the user may 

refuse to interact with a prompt unless it contains exactly the images in her  but, for this 

analysis, we pessimistically assume that the user will select all the images in her , even for a 

badly malformed prompt. By performing this attack repeatedly with different images each time, 

the attacker may eventually recover all of . The attacker can reduce the number of repetitions 
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required to complete the attack by placing more images into each prompt. However, if the 

number of pictures in the invalid prompt is too large, then users will give up in frustration, and 

the attacker will learn nothing. If we assume that users will give up if asked to examine more 

than m pictures in one prompt, then the probability that a phisher can recover  after repeating 

the attack r times is 
mr∣∣
∣∣∣∣ . For example, our user study described in the next section used |σ| = 

12 and |Σ| ≈ 2*105. From the results of our study, where we were able to observe how many 

images a victim will look at and how many times he will return to the attack page. we can 

estimate that m ≤ 3500 and r ≤ 10. With these parameters, the probability a phisher can recover σ 

with this attack is less than 2-30. 

Search attacks. Since brute force attacks will not work, a phisher must trick a user into 

communicating the images in her  to the phisher. This is a search problem: the phisher can 

iteratively make adaptive oracle queries to the victim in order to narrow down the search space 

for . The phisher’s oracle queries can contain text, pictures, video, sound, etc., and the phisher 

may request user input in the form of text, selections, images, audio, or video. For example, the 

phisher could ask the user to provide a textual description of an image in , as is commonly done 

with current search engines. He could also provide a set of words or phrases from which the user 

can select the most descriptive, leading to either a tag-oriented search tool or a hierarchical 

search tool. The phisher could also provide an image-similarity search tool, in which users are 

repeatedly presented with a set of images and must click on the image most similar to their target 

image. The phisher could ask users to sketch an approximation of their target image. Naturally, 
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phishers could provide multiple search modalities to help their victims communicate as much as 

possible about their password.

We designed PhorceField to resist search attacks in several ways.  PhorceField forces 

attackers to present victims with an interface that is substantially different from a legitimate 

PhorceField password prompt. Victims of phishing attacks therefore cannot slip into a “click-

whirr” response mode [200]; they must actively evaluate the situation, giving them a much better 

chance of detecting the attack. This benefit will grow as more users become educated about 

phishing. With SSL, SiteKey, and DSS security indicators, even an educated user may forget to 

check for an indicator before entering her password. This cannot happen with PhorceField.

PhorceField trains users to distinguish their password images from a small set of 

distractor images – they do not need to remember every detail of their password images. A 

phisher, however, must coax enough information out of his victims in order to identify their 

images within a set of thousands or even millions of candidate images. In many cases, users will 

be unable to provide more than the most prominent features of their password images, leaving 

the phisher with potentially thousands of possible matches. He can try to get the victim to sift 

through the matches, but our user study shows that victims will often give up before finding their 

password images.

We constructed the database of images used in our PhorceField prototype so that logging 

in is easy but cooperating with a phisher is difficult. Recall that  contains 188218 images 

representing 193 different concrete nouns, or about 975 images per noun. Constructing the 

database in this way causes users to suffer from memory interference while looking through 
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candidate matches for their password images [202][201]. As the phisher presents the user with 

more and more candidate images that are similar to the victim’s target image, the victim loses 

her ability to precisely identify her target image because it becomes blurred together with the 

candidates. This leads to errors, as victims may accidentally select a wrong image, and 

frustration within the victims, causing them to quit cooperating with the phisher before they 

succeed in finding their password images.

We can also derive conservative lower bounds on the security of PhorceField by 

analyzing the amount of information a victim must communicate to a phisher. Table 20 shows 

the entropy of  in three different PhorceField instantiations: our prototype implementation, an 

expanded version that uses 134 million pictures and passwords of length 6, and a version using 

random art images and passwords of length 6. From these entropy values, we can derive lower 

bounds on the effort users must make to reveal their password. For example, using the standard 

upper bound of 1.5 bits/character for English text [221], we can estimate that a phisher would 

have to convince his victims to type over 500 characters of text to fully describe their passwords 

in a random-art instance of PhorceField. If the phisher provided his victims with a hierarchical 
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PhorceField parameters Bits 
Text 

(letters) 
Hierarchical 

(steps) 
Iterative (steps) 

Prototype (|Σ| = 2 × 105,|ρ| = 4) 48 32 12 10 

Large, Pictures (|Σ| = 227,|ρ| = 6) 162 108 41 33 

Random Art (|Σ| = 2128,|ρ| = 6) 768 512 192 154 
Table 20: The amount of information a user must communicate to a phisher, and the theoretical 
minimum amount of effort required to do so through a textual description, through a hierarchical 
search interface in which the user is offered 16 choices at each step, and through an iterative 
search interface where the user is shown 32 images at each step and clicks on the image most 
similar to her target image.



search interface, i.e. in which users navigate a taxonomic tree of the images in , with a 

branching factor of 16, it would still take users dozens of steps to find all their images. Similarly, 

if the phisher developed an image-similarity based search in which users are repeatedly shown 

32 images and click on the image most similar to their target image, users would have to click on 

dozens of images and would end up looking at hundreds or even thousands of images. These 

figures assume the phisher is able to build a perfect search interface that extracts the maximum 

amount of information from each user input, and hence these numbers are very conservative 

lower bounds. Given that users will not likely write the perfect description of their password 

images, given the difficulty in building a perfect hierarchy of images in , and given that 

building effective image-similarity search mechanisms is still an open problem, the actual work 

factor required is likely several times higher than estimated here.

For large image collections, e.g. with , building the search database required for a 

phishing attack may be prohibitively expensive. Although we used pre-tagged photos from Flickr 

in our prototype implementation, a real implementation could collect photos from a variety of 

sources that did not provide tags or titles for each image, since PhorceField does not use the tag 

information. In this case, the phisher would have to tag the photos or construct an image 

similarity index himself.  As mentioned before, image similarity search schemes have yet to be 

shown effective, so a phisher is not likely to pursue that approach. For a textual or hierarchical 

search interface, the phisher cannot tag (or taxonomize) the images automatically, since this 

would require image recognition software that simply does not exist, so he would have to farm 

out the task to humans. Currently, this kind of work costs about 0.01 USD/image on Amazon’s 
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Mechanical Turk, giving an overall cost of over 106 USD [222]. By increasing the up-front costs 

and lowering the yield of phishing attacks, PhorceField can render them unprofitable.

The preceding arguments show that brute force attacks are impractical and that search 

attacks, no matter how clever, will require significantly more time and mental effort from victims 

than is required to log in. However, we cannot analytically determine how users will react when 

presented with a search attack on their password; for that, we need a user study.

8.4 User study

The purpose of our user study is to measure the success rate of phishing attacks against 

PhorceField passwords. This study does not attempt to measure the usability of the PhorceField 

prompt or the memorability of graphical passwords – those topics have been explored elsewhere 

[203]. Our study includes numerous conservative design decisions, so we believe the results of 

this study represent an upper bound on the success probability a phisher can achieve with this 

attack.

Participants in our study were told that we were conducting an experiment to evaluate the 

usability of graphical passwords. After consenting to the study, participants were shown their set 

 and password  and required to practice entering their password five times. They then 

downloaded a Firefox plug-in that randomly prompted them to enter their PhorceField password 

up to 4 times per day. We chose to prompt participants randomly because it was the simplest way 

to ensure participants logged in often enough to become familiar with their passwords. We 

needed participants to be familiar with their passwords in order to get meaningful data during the 

subsequent phishing attack.
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Participants were told that the study would last two weeks and that they would receive 

$20 if they entered their password at least 14 times over the entire study period, $10 if they 

entered their password between 7 and 13 times, and no compensation if they entered their 

password fewer than 7 times. After about one week, they received an email from us indicating 

that we had lost their password and requesting them to visit the study website to help us recover 

it.  We then measured how much time they spent at the site and how much information they were 

able to divulge about their  and . Participants were then presented with a debriefing 

questionnaire.

We were careful to avoid priming the participants about security or phishing in particular. 

Subjects were told that the study was about usability, not security. All study materials used the 

name “ForceField” instead of “PhorceField”. The attack email clearly came from us and directed 

the users to the same website that they visited to sign up for the study. Thus our attack was 

missing all the cues of a real phishing attack and hence we believe that our results are an upper 

bound on the success rate a real attacker would experience with this attack.

Although usability is not the subject of our user-study, we followed usability best-

practices when designing our password prompt. We based our implementation on the results of 

Moncur et al. [223] Our password prompt requires users to complete a cognometric task, not a 

drawmetric [224]or locimetric [225] task.  Cognometric tasks are generally easier than the 

alternatives. Furthermore, a phishing attack against PhorceField would require users to select 

their images from thousands of similar images and is therefore closer to an image recall task than 
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an image recognition task. We designed the PhorceField prompt so that users would be trained to 

recognize, but not recall, their images.

Figure 20 shows a screen-shot of the password recovery page. Participants could use the 

search box to enter queries and could click on words in the tag cloud on the right-hand side of 

the page. As is demonstrated in the screen-shot, the search results were quite good because the 

Flickr photos were so well tagged.  The interface defaulted to showing participants 25 images in 
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Figure 20: Our phishing attack website. Users could search for images using the search box at 
the top of the page and could click on tags in the tag cloud on the right-hand side.



a 55 grid because previous research has shown that users can search most efficiently with such 

an interface [226]. However, the success of a phishing attack depends on keeping users on the 

phishing page as long as possible, so participants were able to choose a different presentation 

that suited them. The interface never indicated the number of images that participants had to 

search through, since we felt that would only discourage them. The pagination buttons along the 

bottom behaved analogously to Google’s image search interface [227]: when the user was on 

results page n>5, the interface provided links to pages n5 through n+5.

The attack page recorded every user action, so we could tell how long they spent on each 

page, the search terms they entered, and which images they clicked on. Users could also navigate 

away from the page and return later. In that case, their exact state would be restored.

We conducted a pilot study to determine the number of participants needed to estimate 

the mean number of  images revealed by a user. During our pilot study, thirteen subjects used 

our graphical password prompt for seven days and received the phishing attack page under the 

guise that the experimenters lost their password. The subjects revealed on average 0.35 images in 

their  (SD =0.60). Therefore, we require 20.7 subjects to determine the average number of  

images revealed in a phishing attack with a 99% confidence interval 0.34 images [228].

8.5 Results

We conducted our user-study over the course of three weeks. We recruited 45 

participants from a Craigslist posting. To ensure that subjects had sufficient exposure to their 

password, we only considered subjects that successfully logged in at least 4 times and at least 
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once in the two days prior to receiving the attack email. 23 subjects met this criteria. This 

retention rate is comparable to other graphical password user studies [223]. We also eliminated 

from the analysis two subjects who thought our attack email was a real phishing attack. 

Participants ranged in age from 18 to 39 years and were varied in race (including Asian, African-

American, Caucasian and Hispanic) and profession (including students, actors, IT professionals 

and HR representatives).

We evaluate both the explicit and implicit password information revealed by participants. 

Participants explicitly revealed part of their password if they found a password image and 

clicked on it. They revealed information implicitly by searching for images on the phishing site, 

even if their search was unsuccessful. For example, if a user spends a long time looking through 

pictures of dogs on the phishing site, then the phisher can infer that one of the user’s password 

images is of a dog.

Explicitly-revealed information about  . Figure 21 shows the number of  images our 

participants were able to find and click on. On average, participants clicked on 0.3 images of 

their . No participant clicked on an image that was in their  but not in their . Furthermore, as 

Figure 21 shows, 76% participants did not click on any of their  images, and the others were 

only able to find at most three of their  images, implying that PhorceField offers strong 

protection for almost everyone. During the attack, several participants clicked on random images 

out of frustration, but doing so provides no useful information to a phisher.
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Implicitly-revealed information about  . Even if users fail to find one of the images in 

their , they may still reveal information about that image through their search activities. For 

example, if a victim searched for the term “flowers” during a phishing attack on our system, then 

the phisher could reduce the search space for one image from 188218 to 3117 images. 

Furthermore, if that user looks at 10 pages of results without clicking on any of them, 

then the phisher can conclude that the user’s image is not amongst those images. If the user 

performs a second search on the term “plant”, the phisher can intersect the two results sets to 

further narrow the candidate set.  

Users may also click on images that are not in their  but are visually or semantically 

similar to images that are in their . We used the tags on the images users clicked in order to 

approximate this information, since the tags assigned by Flickr users cover both visual and 
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The number of σ images clicked by 
participants in our study. No user clicked on an 
image in σ \ ρ.

The cumulative distribution function of entropy 
loss for σ from participants in our study.

Figure 21: Explicit and implicit information revealed about σ.



semantic aspects of the images. Therefore, we took the tags on each clicked image and added 

them as search queries during the analysis described below. However, we discovered that many 

of the tags conveyed contextual information, such as the type of camera used to create the 

photograph, that would not be apparent to a phishing victim and therefore would not contribute 

useful information to a phisher. A real phisher could clean the image tags to avoid this problem, 

but we took a shortcut: For each image a participant clicked on, we computed the set of tags on 

that image that also occur on an image in the participant’s  and treat those tags as additional 

search queries performed by that participant. In reality, a phisher would not know which tags 

occur in the user’s , so this simplification grossly over-estimates the information gained by a 

phisher.

Given the set of search queries performed by a participant, we upper bound the 

information gained by the phisher as follows. For each search query, q, let Sq be the set of 

images in the search result set, and let Uq  ⊆ Sq be the set of images in Sq that the user never 

looked at. For search queries derived from tags on clicked images, Uq = Sq. For each image ι ∈ 

σ, let  

C ={
{} if user clicked on 
∑ if   is not in any S q

∩
q :∈U q

U q  ∩ ∩
q :∈S q∖U q

Sq otherwise

In other words, for each image  in  , we take all the search results that contained that 

image and intersect them. We also remove any images the user looked at in that search set, 
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unless the user overlooked , in which case we take the whole result set. We then used the values 

to bound the entropy loss for each user’s  (see Section 8.9  for details). Note this estimate is 

conservative because it assumes the phisher knows which search queries contained each image 

and whether the user overlooked an image in each results set.

Figure 22 presents the cumulative distribution function of entropy loss experienced by 

participants in our study. No participant revealed more than 62 bits of information about their , 

giving them a residual security of at least 119 bits. Furthermore, more than 80% of participants 

lost less than 25 bits of  security.

Implicitly-revealed information about  . To estimate the amount of information a 

phisher can gain about a user’s password, we compute  as above for each , and compute an 
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The cumulative distribution function of 
entropy loss for ρ from participants in our 
study.

The number of password images implicitly 
revealed by participants in our study.

Figure 22: The implicitly-revealed information about ρ. In (b), we assume the attacker steals σ 
after interacting with the victim. Even in that case, he is not able to learn the victim’s entire 
password.



upper bound on the entropy loss as described in Section 8.9 . Note that this analysis is 

conservative for the same reasons as before, plus it conservatively assumes the phisher can infer 

which candidate sets,  correspond to images in , and the position of each image in .  Figure 22 

shows the CDF of bits lost on . On average, participants revealed only 13.8 bits of information 

about their password. No participant revealed more than 52.6 bits of information (out of 70 bits) 

about her password, and 90% of our participants revealed less than 30 bits of information. 

PhorceField provided strong protection for all our participants’ passwords.

Implicitly-revealed information about  | . Finally, to demonstrate the resiliency of 

PhorceField, we assume the attacker gains access to  after conducting the phishing attack. 

Although a real attacker could attempt to conduct a second phishing attack in this case, the 

analysis below is intended to show that phishing attacks without  against PhorceField reveal 

very little information about user passwords. In this case, we consider an image  to be 

completely revealed if the attacker gained any information about it during the phishing attack, 

i.e. if C ≠∑ . Note this assumes the attacker can tell which images are in  versus ∖. Figure

22 shows the distribution of the number of password images that would be revealed in this 

scenario. Over 75% of the participants revealed fewer than 2 of their password images, and no 

one revealed all 4 of their password images. If we assume the phisher knows the location of each 

revealed image within the user’s password, then our participants revealed, on average, 3.52 bits 

of information about |.

Phishing suspicion. The pre-debriefing questionnaire asked participants, “What was 

your reaction when you received the lost password email? ” Of the 23 original participants, only 
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5 gave answers that mentioned ‘‘‘not safe”, “protected”, “scam”, “hoax” or other phrases related 

to security and phishing. As mentioned above, we ruled out 2 of these 5 participants because they 

refused to visit the attack page. Therefore, of the 21 participants whose data are reported here, 18 

made no indication before the debriefing that they suspected a phishing attack. As a double-

check, we asked participants after the debriefing, “At any point during the study, did you suspect 

that the study was about phishing? ”, to which 4 subjects answered “Yes”. Of the 21 participants, 

13 answered “Yes” to the question, “Were you familiar with the concept of phishing before 

participating in this study? ” Based on these results, we believe that the attack success observed 

in our study is a good upper bound on the success a phisher would experience with this attack in 

the real world because participants primarily believed the deception given to them in the email. 

 Table 21 summarizes the results of our post-debriefing questionnaire.

Pre-debriefing   test. Before reading the debriefing statement, we presented the user 

with 24 images, including their entire , and asked them to recall as many images possible from 

their graphical password prompt. On average, users were able to recall 3.9 images in their  (all 

but one subject remembered all 4) and only 1.1 images from ∖. This demonstrates that our 

participants knew their passwords but were unable to reveal them to our simulated phishing 

attack.
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Suspected Phishing
Yes No

Familiar with Phishing Yes 4 13
No 0 4

Table 21: Responses to the questions, “Were you familiar with the concept of phishing before 
participating in this study?” and “At any point during the study, did you suspect that the study 
was about phishing?”.



Time spent on attack page. Figure 23 shows how long participants spent on the attack 

page, including revisits. Thirteen participants gave up in under 10 minutes, but five tried for over 

20 minutes to find their password. From these data, we conclude that anti-phishing schemes 

should make users work for at least half an hour to divulge their private information. 

Other observations. Before and after reading the debriefing statement, subjects filled out 

a questionnaire. The questionnaire asked the participants to explain why they left the attack page. 

Subjects grasped that there were indeed thousands of images (one subject suggested there must 

be at least 400000) and that it would take them a long time to search them. Subjects mentioned 

that they were confused by similar images or could not precisely recall the details (e.g. color) in 

their  images. Subjects could formulate search queries based on their images (particularly those 
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Figure 23: The amount of time participants spent on the phishing page.



in ), but the search results were too numerous to find the specific image. Put succinctly by one 

subject, it was “too much of a hassle”.

The median value for the subjects’ belief that we had actually lost their password was 

three on a five point Likert scale, suggesting that some users truly believed us and some were 

very skeptical. During the course of the study, we received five emails from subjects after 

closing the attack page concerned about how to continue despite not being able to retrieve their 

password. Several subjects also mentioned that they did not attempt to “write down” or 

otherwise save their password.

8.6 Discussion

The results of our user study imply that PhorceField will prevent most password phishing 

attacks from succeeding. 76% of our participants failed to find even a single image in their 

password, and no participant found his entire password. Even assuming the phisher later gained 

access to , no participant entirely compromised his password. This compares quite favorably to 

passive phishing defenses such as SiteKey [204]. Previous studies have shown that 92% of users 

will reveal their entire text password to a phisher, even if their SiteKey is missing. In our study, 

0% of participants revealed their entire password despite the extra information gathered during 

the attack.

Our results suggest reasonable security parameters for a real-world PhorceField 

deployment. Our choice of  was sufficiently large to make searching for images difficult. 

Likewise, selecting about a thousand images for each concrete noun made examining search 

results a tedious task, improving phishing-resistance. Future deployments can increase security 
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without harming usability by choosing a larger . For example, there are over 100 million 

Creative Commons licensed photos on Flickr [220], so it would be straightforward to construct a 

 with over 100 million images representing over 10000 concrete nouns. Given that some 

participants revealed 3 of their password images, || should be at least 6 and possibly higher. 

Passwords should not allow repeated images, since this forces users to find the maximum 

possible number of images during a phishing attack.

Ours is the first study to estimate bounds on how much time and effort users will spend 

on a phishing page. These measurements should guide researchers designing future phishing 

defenses. Participants spent an average of 11.4 minutes on the attack page, and one participant 

spent 26 minutes on the attack page. Participants looked through an average of 3500 images, and 

one participant looked at 13875 images. Participants entered 6 search terms on average, and one 

participant conducted 25 searches. Several participants visited the attack page twice, and one 

participant visited 5 times. Security researchers should create defenses for the most vulnerable 

users, so they should design for the upper bounds presented here.

Most users gave up after trying to find 1 or 2 images, so their search queries only 

revealed information about 1.33 images in their  on average. Phishers could design attacks to 

avoid this bottleneck, but the success rate may or may not improve. For example, a phisher could 

present victims with 12 text boxes and ask the victim to describe each of the images in their . 

By forcing victims to describe their entire  instead of allowing them to focus on one image at a 

time, the attacker may gain information about more images in . However, the information 

gained about each image would probably be less specific, e.g. the victim might simply enter 
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“bird” instead of performing several searches such as “bird”, “flying”, and “flock”, which 

together reveal much more information about the given image. We could render this attack 

ineffective by using images, such as random art images, that admit no easy description.

PhorceField has two limitations that we should note.  First, PhorceField is ineffectual in 

preventing phishers from soliciting personal information from victims such as Social Security 

numbers or credit card information.  This work focuses exclusively on authentication.  We 

believe that a two prong approach may be useful in defeating this social networking.   First, 

services must try to minimize the collection of these personal identifiers so that the request for 

them is the exception not the rule.  This may assist users in detecting these attacks, but 

ultimately, it will require user vigilance.  Another potential avenue to aide users in detecting 

malicious intent is for the browsers themselves to identify when this type of information is being 

input into a form.  DLP systems, as discussed in Chapter 6 , do successfully identify these types 

of Personally Identifiable Information.  

The second limitation is that PhorceField does require the installation of client-side 

secrets.  We do not see this as an impediment to deployment since many anti-phishing strategies 

employ client-side secrets in their defenses including Phoolproof [214] and Dynamic Security 

Skins [199].  In fact, there are many methods available to install client-side secrets such as 

Dynamic Security Skins where the secret is installed on the client-side or Phoolproof where the 

secret is installed onto a device that the user owns and presumably will not loose, e.g., their 

cellular telephone.
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8.7 Related work

PhorceField touches upon several areas of research: secure password prompts, password-

based authentication protocols, anti-phishing tools, graphical passwords, and secure machine 

registration protocols. We now discuss related work that hasn’t already been covered in Section 

8.1 .

Password-Authenticated Key Exchange protocols. PAKE protocols enable computers 

to perform mutual authentication and establish a session key based on a password provided by a 

user [229][205]. PAKE protocols protect passwords once they are entered into a secure password 

prompt, they do not prevent users from entering passwords into malicious prompts.

Anti-phishing tools. In general, anti-phishing tools identify phishing attempts either in 

email or when a user loads a web page. Most phishing attempts are instigated by spam emails in 

which an attacker uses social engineering to encourage the victim to navigate to a phishing page 

[230]. Much research has been focused on spam detection. The main thrust of this research 

focuses on statistical methods and machine learning techniques to identify spam messages. There 

have been successful applications of Bayesian classifiers [210] and support vector machines 

[231]. Many solutions based on these techniques are widely available [232][233].

Commercial anti-phishing tools use heuristics, community ratings, black-lists and white-

lists [234]. Many simplistic phishing attacks can be detected using heuristic evaluation. Criteria 

for rejection include the geographical origin of the website, the owner, the age of the website and 

possible URL obfuscation. These programs, usually in the form of tool bars or plug-ins, indicate 

to the user the level of confidence that the current website is indeed genuine. The SpoofGuard 
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project [235] takes this one step further by also evaluating the images on the web page. Other 

commercial products maintain community ratings of websites where votes determine if the site is 

legitimate or fraudulent [236]. These ratings may also be used to construct black-lists, or 

dynamically changing lists of sites that contain phishing or malware. White-lists are the opposite: 

these are genuine websites that do not attempt to steal credentials from users. Some attempts 

have been made to construct user-generated white-lists [211].

Machine learning has also been employed to detect phishing websites [237]. These 

techniques use classifiers based on the features of the email or website to determine whether it as 

a phishing attempt. Several different machine learning classifiers have been used, the most 

successful being support vector machines and random forests. In addition, researchers have 

utilized Fuzzy Sets on similar features of websites to determine if they should be included in the 

set of authentic or phishing sites [238].

Graphical passwords. Suo, et al., provide an extensive review of graphical password 

systems and group them into three categories [239]. Cognometric graphical password systems 

are the most prevalent. The Déjà Vu system [203] asks users to select a subset of images from a 

collection of random art images. Weinshall, et al., have an interface that shows users 100-200 

sets of image where the user password consists of selecting a predetermined image from each of 

the sets [240]. Systems like Passfaces take advantage of users’ innate ability to recall faces to 

improve recall [217]. Some systems use thumbnails generated from a single image rather than 

utilizing image sets [241]. Shoulder resistant schemes for graphical password systems have been 

developed as well. One such interface asks users to click within a convex hull formed by the 
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objects consisting of their passwords [242]. Another shoulder-surfing resistant strategy includes 

using an eye tracker to determine the sequence of images the user looked upon [243]. 

Drawmetric graphical password systems require users to reproduce a shared secret to 

authenticate. One such technique has the user draw a secret on a 2-D grid and reproduce it for 

authentication. Other similar techniques include presenting a signature provided by either a 

stylus [244] or mouse [245]. Locimetric graphical passwords have users repeat a sequence of 

actions. These systems have users click on a series of interesting and meaningful points in an 

image in a predetermined sequence [246][247]. Builders of these systems argue that a large 

password space can be constructed from a single image since images can contain hundreds of 

memorable points.

8.8 Conclusion

In this chapter, we presented PhorceField, a password ceremony designed to depend on 

human laziness rather than vigilance. PhorceField uses a client-side secret and graphical 

password scheme to make it effectively impossible for a user to provide her password to a 

phisher. As long as the phisher does not know the client-side secret, he can only present the user 

with a non-standard and difficult-to-use password interface. We also designed PhorceField to 

exploit weaknesses of human memory to make phishing attacks even less likely to succeed.

We conducted a user study to verify that users will be unable to comply with a phisher’s 

requests. No participant in our study successfully entered his password into our phishing web 

page, even though some participants spent several minutes trying to do so.
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Our user study also suggests conservative bounds for the amount of time and effort users 

will spend cooperating with a phisher. Participants executed several searches and looked through 

thousands of images in their attempts to help the phisher. Several of our participants visited the 

phishing page more than once. Researchers should keep these facts in mind when designing 

future phishing defenses.

8.9 Computing Entropy Loss

Given Cι for each ι  ∈ σ, we wish to compute the entropy loss experienced by each 

participant in our study or, equivalently, the residual entropy of σ given the Cι values. If each 

image in σ were chosen independently, the entropy would be ∑i∈
∣C ∣−log212! . However, the 

images in σ were chosen so that each represents a distinct concrete noun, so they are not 

independent.

procedure enumerate-sigmas(C1,…,Ck,F,i,(ι1,…,ιi-1)) 
if i = k + 1
  output (ι1,…,ιk)
for ι  ∈ Ci \ F
  enumerate-sigmas( C1,…,Ck, F  N(ι), ∪ i+1, (ι1,…,ιi-1,ι))

Figure 24: Pseudo-code for enumerating all possible values for σ given C1 , . . . , Ck . In this 
code, k is the number of images in σ, i.e. 12, and N(ι) is the set of images derived the same 
concrete noun as ι.

To derive a lower bound on the number of possible values for σ given the Cι sets, we 

analyze the pseudo-code in Figure 24 for enumerating all possible σ values. In this code, we 

order the sets Cι from smallest to largest and define N(ι) as the set of images in Σ that represent 

the same concrete noun as the image ι. In our implementation, |N(ι)| ≈ 975 for all ι. Thus, in the 
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pseudo code presented in Figure 24, |F| ≈ 975i, so the for-loop in the ith recursive call will 

execute at least |Ci|- 975i times. Thus this code will generate output at least ∏i=1
k ∣C i∣−975 i

times. The same σ value may occur more than once, though. However, each σ value can occur at 

most k! times, giving us the lower bound:

 
∏i=1

k ∣C i∣−975 i

k !

The only wrinkle in this analysis is that, if Ci is small, |Ci |- 975i may be zero or negative. 

However, we know from construction that there is at least one σ consistent with the sets Ci, so in 

this case we replace |Ci |- 975i with 1 in the first few terms: 

∏i=k 01
k ∣C i∣−975 i

 k−k0!

where k0 is the smallest integer such that |Ci|- 975i > 0 for all i > k0. In this case, we can also 

reduce the degree of symmetry among the solutions to (k - k0)! since we’re only counting 

solutions that have a common prefix of length k0.

We count possible values for ρ in the same way, except that order matters in passwords, 

so we don’t divide by (k - k0)!. 
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Chapter 9 Conclusion

This dissertation has presented Content-based Access Control (CBAC): a paradigm for 

access control where access to an object is contingent on the content of objects in the system. 

CBAC is designed to address to grave concerns with respect to privacy in a networked world: 

users are either unable or unwilling to use existing access controls.  By integrating content 

recognition into policy enforcement, designing more usable interfaces and expediting policy 

acquisition, we are able to make access control easier and more intuitive as well as provide users 

protection where little was afforded before.  We present three different systems that employ 

CBAC: Privacy/Policy-aware blogging (PLOG), text classification for DLP and Wikipedia 

vandalism detection.  

CBAC is not intended to replace existing access controls but to enhance it.  We also 

cannot guarantee that it will arrive at the correct policy.  Therefore, privacy in a CBAC cannot be 

analyzed in terms of a zero-sum analysis, but rather as a probabilistic assessment of the 

likelihood of a policy infraction.  For example, in Data Loss Prevention, the risk of an accidental 

disclosure is correlated with the false negative rate.  Therefore, for certain situations where any 

intrusion or infraction cannot be tolerated, CBAC will not be appropriate.  But for many 

domains, such as the enterprise and the Web, a CBAC system can provide a great utility even if 

it is not perfect.
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In addition to our CBAC, we presented PhorceField, a phishing resistant password 

system that addresses a major issue in existing authentication schemes: the fallibility of user 

vigilance.  A PhorceField-based system imbues passwords with inherent phishing resistance.  By 

making the device and not the user responsible for the password alphabet, users cannot 

mistakenly input their password into a phishing prompt.  Phishers then must engage victims in a 

laborious task of searching for the images in their password from a set of hundreds of thousands. 

PhorceField can be deployed in a single or multi-factor authentication scheme and serve as a 

drop in replacement to many existing systems such as SiteKey or Dynamic Security Skins.
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