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Abstract of the Dissertation

Hydrodynamics and transport in
low-dimensional interacting systems

by

Manas Kulkarni

Doctor of Philosophy

in

Physics

Stony Brook University

2011

Recent ground-breaking experiments have realized strongly inter-

acting quantum degenerate Fermi gas in a cold atomic system with

tunable interactions. This has provided a table-top system which is

extremely hydrodynamic in nature. This experimental realization

helps us to investigate several aspects such as the interplay between

nonlinearity, dissipation and dispersion. We �nd, for instance, that

the dynamics in such a system shows near perfect agreement with

a hydrodynamic theory. In collaboration with the group of John

Thomas at Duke we interpreted studies of collision of two strongly

interacting Fermi gases that led to shock waves which are a hall-

mark of nonlinear physics. Due to reasons such as the nature of

interactions, higher dimensionality, these cold atomic systems are

non-integrable and moreover the underlying �eld theory construc-

tion is mostly phenomenological in nature.

On the other hand there are certain one-dimensional systems which

are not only integrable but also facilitate more formal and rigorous
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ways of deriving the corresponding integrable �eld theories. One

such family of models is the family of Calogero models (and their

generalizations). They provide an extraordinary insight into the

�eld of strongly correlated systems and hydrodynamics. We study

the collective �eld theory of such models and address aspects of

nonlinear physics such as Spin-Charge Interaction, Emptiness For-

mation Probability, Solitons etc; We derive a two-component non-

linear, nonlocal, integrable �eld theory. We also show that the

Calogero family which is integrable even in an external harmonic

trap (usually unavoidable in cold atom setups) is relatively "short

ranged" thereby qualifying as a toy model for cold atom experi-

ments.

Transport in certain strongly correlated systems (impurity mod-

els) was studied using few low-dimensional techniques such as a

1/N diagrammatic expansion, Slave Boson Mean Field Theory and

the Bethe Ansatz. A mesoscopic setup such as parallel quantum

dots forms an ideal platform for such an investigation and com-

parison between di�erent low-dimensional techniques. We studied

transport, correlations and nature of the ground state of double

quantum dots. We probed several non-perturbative aspects of this

double-impurity model. For example, we showed that the RKKY

interaction in closely spaced dots can be non-ferromagnetic due to

its non-pertubative nature. This study helped us to point some

discrepancies between di�erent methods (such as the Numerical

Renormalization Group). We give possible reasons for these dis-

crepancies.
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Chapter 1

Introduction and Outlook of the

thesis work

In this chapter, we will provide a brief history and introduction to the topics

covered in the thesis. We will also present here the questions addressed in

this thesis, thereby elaborating the contents of the thesis. This thesis can be

broadly divided into two parts. The �rst part of the thesis studies hydrody-

namics or collective �eld theory of low dimensional interacting systems. The

second part of the thesis consists of the study of transport and correlations

in low dimensional strongly correlated electron systems. Chapter 2 is based

on the publications [II] and [X]. Chapter 3,4 and 5 are based on publications

[VIII], [VI] and [VII] respectively. Chapter 6 is based on publication [III]

and chapter 7 is based on publication [IX]. For the sake of brevity, the thesis

doesnot cover work done in publications [I], [IV] and [V].

1.1 Hydrodynamics of low-dimensional interact-

ing systems

Studying strong correlations in low-dimensional systems has been of increasing

experimental and theoretical interest. The very nature of low-dimensionality

facilitates strong interactions and this has been explored since the 1970's. Un-

derstanding the collective behaviour of strongly interacting systems has been

of increasing experimental and theoretical importance. Experimental setups
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in cold atoms are usually higher dimensional by setup but none-the-less tight

harmonic con�nement in two of the three dimensions helps us to understand

the physics with a dimensionally reduced quasi-1D theory. The construc-

tion of these quasi-1D theories is sometimes phenomenological in nature. On

the other hand there are certain families of models which are purely one-

dimensional models and which facilitate a more formal construction of a �eld

theory. Moreover, these models are integrable, thereby giving rise to very rich

integrable �eld theories.

1.1.1 Hydrodynamics in Cold Atomic systems

There have been several experiments which have realized and studied the col-

lective behaviour of a system of particles both bosonic (for example, [4�7])and

fermionic (for example, [8�12]). In this thesis, we study a system of very

strongly interacting fermionic atoms. This system (for example observed in

the group of John Thomas at Duke) shows an extremely hydrodynamic be-

haviour. This enables us to probe the physics of nonlinear hydrodynamics of

quantum matter. In Chapter 2 we present clear evidence of shock waves in

this system of strongly interacting Fermi gas. We study collisions between

two strongly interacting atomic Fermi gas clouds. We observe exotic nonlinear

hydrodynamic behavior, distinguished by the formation of a very sharp and

stable density peak as the clouds collide and subsequent evolution into a box-

like shape. We model the nonlinear dynamics of these collisions using quasi-1D

hydrodynamic equations. Our simulations of the time-dependent density pro-

�les agree very well with the data and we identify the time evolution of these

density �elds as shock waves in this universal hydrodynamic system.

We describe how to apply smoothed particle hydrodynamics [13, 14] to

cold atomic systems in general and to the experiment conducted at Duke

in particular. This technique involves mapping the original hydrodynamic

problem to a system of Lagrangian pseudo-particles. Molecular dynamics of

these pseudo-particles are studied and one can then, by mapping-back, obtain

the evolution of the original hydrodynamic density and velocity �elds. This

approach gives very good agreement between theory and experiment. We will

address the interplay between nonlinearity, dissipation and dispersion in cold

atomic systems.
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The hydrodynamic description employed in understanding these strongly

degenerate Fermi gases is not derived starting from a microscopic point of

view. This is of course due to the highly complicated nature of the problem,

some reasons for example being, nature of interactions, higher dimensionality

etc; In addition the hydrodynamic description is not integrable, thereby not

facilitating the use of the machinery for integrable models.

1.1.2 Collective Field Theory for Integrable Models

In order to understand the collective behaviour of interacting particles from a

more microscopic starting point one can study a certain family of integrable

one-dimensional models. This family of integrable models called the Calogero

family not only facilitates a more formal way to derive the collective �eld theory

but also gives rise to very rich integrable �eld theories. We are interested both

in deriving a collective �eld theory starting from the microscopic Hamiltonian

and in exploiting the nature of these integrable �eld theories.

In Chapter 3 the nonlinear dynamics of spin and charge in the spin-

Calogero model is studied [15]. This is an integrable one-dimensional model

of quantum spin-1/2 particles interacting through an inverse-square interac-

tion and exchange. Classical hydrodynamic equations of motion are written

for this model in the regime where gradient terms of the exact hydrodynamic

formulation of the theory may be neglected. In this approximation variables

separate in terms of dressed Fermi momenta of the model. Hydrodynamic

equations reduce to a set of decoupled Riemann-Hopf (a.k.a inviscid Burgers')

equations for the dressed Fermi momenta. We study the dynamics of some

non-equilibrium spin-charge con�gurations for times smaller than the time-

scale of the gradient catastrophe. We �nd an interesting interplay between

spin and charge degrees of freedom. In the limit of large coupling constant

the hydrodynamics reduces to the spin hydrodynamics of the Haldane-Shastry

model.

One speciality of the Calogero family is that it remains integrable even in

the presence of an external harmonic trap. To the best of our knowledge this

is the only example of this kind. This is very convenient as the presence of

an external harmonic trap is most often unavoidable in cold atomic experi-

ments. In Chapter 4 we study the spin-Calogero model in the presence of an
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external trap. We obtain analytic results for the statics and dynamics of the

system. For instance, we �nd how the equilibrium density pro�le changes as

a function of the interaction strength. The results we obtain for equilibrium

con�gurations are very similar to the ones obtained recently by Ma and Yang

[2] for a model of fermions with short ranged interactions. Our main approxi-

mation again is the neglect of the terms of higher order in spatial derivatives

in equations of motion, ie, gradientless approximation [15]. Within this ap-

proximation the hydrodynamic equations of motion can be written as a set of

decoupled forced Riemann-Hopf equations for the dressed Fermi momenta of

the model. This enables us to write analytical solutions for the dynamics of

spin and charge. We describe the time evolution of the charge density when

an initial non-equilibrium pro�le is created by cooling the gas with an addi-

tional potential in place and then suddenly removing the potential. We present

our results as a simple "single-particle" evolution in the phase-space reminis-

cent a similar description of the dynamics of non-interacting one-dimensional

fermions. Importantly, we �nd that this model is relatively "short-ranged"

and can serve as a toy model for cold atom experiments.

The spinless analog of the spin-Calogero model has been very well studied

and its fully nonlinear �eld theory is known. The integrable �eld theory of

the Calogero model facilitates one to study extremely nontrivial nonlinear

hydrodynamic aspects such as shock waves and solitons in Calogero model.

Solitons solutions of the Calogero model on a straight line were obtained by

Polychronakos [16] and Andric et. al. [17]. However, till recently the meaning

and the existence of solitons in presence of an external trap was not clear

despite the �eld theory being integrable even in the trap. In Ref [18] we provide

the answer to this question. In this paper [18] we consider here reductions of

the classical Calogero model which play a role of "soliton" solutions of the

model. We obtain these solutions both for the model with a �nite number

of particles and in the hydrodynamic limit. In the latter limit the model

is described by hydrodynamic equations on continuous density and velocity

�elds. Soliton solutions in this case are �nite dimensional reductions of the

hydrodynamic model and describe the propagation of lumps of density and

velocity in the nontrivial background.

The availability of the collective �eld theory also helps in computing certain
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correlation functions, such as the Emptiness Formation Probability (EFP) that

measures the probability P (R) that a region of length 2R is completely void

of particles. In Chapter 5 we calculate the EFP in the spin-Calogero Model

and Haldane-Shastry Model using their hydrodynamic description. We use

an instanton approach and consider the more general problem of an arbitrary

depletion of particles (DFP). In the limit of a large size of the depletion region

the probability is dominated by a classical con�guration in imaginary time that

satis�es a set of boundary conditions and the action calculated on such solution

gives the EFP/DFP with exponential accuracy. We show that the calculation

can be elegantly performed by representing the gradientless hydrodynamics

of spin particles as a sum of two spin-less Calogero collective �eld theories in

auxiliary variables. Interestingly, the result we �nd for the EFP can be cast

in a form reminiscent of spin-charge separation, which is suprising. We also

highlight the connections between sCM, HSM and λ = 2 spin-less Calogero

model from a EFP/DFP perspective.

In the above mentioned chapters we have, broadly speaking, studied col-

lective �eld theory or hydrodynamics of interacting particles. In each of these

cases we go beyond a quadratic �eld theory, ie, beyond what is known as a

Luttinger liquid or conventional Bosonization. A quadratic �eld theory would

not be able to capture nonlinear e�ects such as the interaction between spin

and charge sectors, steepening of density pro�les, shock waves, solitons etc;

This aspect of nonlinearity will be elaborated further in the context of each of

the mentioned topics in the respective introduction sections of the chapters.

1.2 Transport and Correlations in low dimen-

sional strongly correlated electrons

In the second part of the thesis we turn to transport properties. In particular,

we discuss transport and correlations in a low dimensional strongly correlated

system of quantum dots. The mesoscopic system of quantum dots forms an

ideal platform for using, studying and comparing a variety of low dimensional

techniques such as Bethe Ansatz, Diagrammatic Expansions, Mean Field The-

ories, Numerical Renormalization Group and Quantum Monte Carlo. As will

be elaborated in each of the subsequent chapters, the presence of multiple dots
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can lead to exotic nonperturbative e�ects.

1.2.1 RKKY interaction and nature of the ground state

of double quantum dots arranged in parallel: Slave

Boson Mean Field Theory and the Bethe Ansatz

In chapter 6 we argue, through a combination of slave boson mean �eld theory

and the Bethe ansatz, that the ground state of closely spaced double quantum

dots in parallel coupled to a single e�ective channel is a Fermi liquid. We do

so by studying the dots' conductance, impurity entropy, and spin correlation.

In particular, we �nd that the zero temperature conductance is characterized

by the Friedel sum rule, a hallmark of Fermi liquid physics, and that the

impurity entropy vanishes in the limit of zero temperature, indicating the

ground state is a singlet. This conclusion is in opposition to a number of

numerical renormalization group studies. We suggest a possible reason for the

discrepancy. This chapter describes the role of the e�ective Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction in parallel quantum dots. An important

message of chapter 6 is that RKKY interaction can induce non-ferromagnetic

like correlations due to their non-perturbative nature. The recent ability to

engineer these multi-dot systems have greatly enhanced the theoretical interest

in understanding transport and correlation in multiple quantum dot systems.

1.2.2 1/N diagrams for coupled parallel quantum dots:

Transport, Correlations and evidence of Fermi Liq-

uid

Chapter 7 is devoted to another technique called 1/N expansion. A large-N

diagrammatic approach is used to study coupled quantum dots in a parallel

geometry. We show that the Friedel Sum Rule holds perturbativly in 1/N for a

parallel double dot system, thereby, strongly suggesting that the ground state

is a Fermi liquid. We also extract fully the pole structure of its Green's function

matrix and obtain the partition function and dot occupancy via diagrams in

a 1/N expansion. Using the FSR, we calculate the conductance from the

dot occupancy. We �nd that the conductance vanishes at the particle-hole
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symmetric point. When applicable, we compare our results to a recent Bethe

ansatz and a slave boson mean �eld analysis of the same system. Our main

�nding from 1/N expansion about the ground state being a Fermi Liquid is

consistent with both Bethe Ansatz and slave boson mean �eld theory.
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Chapter 2

Shock waves in a strongly

interacting Fermi gas

2.1 Introduction

Many interesting Fermi systems such as quark-gluon plasmas[19], neutron

stars, and super-conducting electrons exhibit hydrodynamic �ow. Phenomena

such as high energy collisions, star core collapse, or vortex formation o�er the

rich and complex dynamics. Solutions of linearized hydrodynamic equations

often times cannot provide an adequate description of these exotic systems.

In those cases it becomes necessary to solve the full nonlinear hydrodynamic

equations to capture the essential physics.

Since the �rst observation of a strongly interacting degenerate Fermi gas

[20], hydrodynamic �ow has been observed in studies of collective dynamics

[21�23], sound velocity [24], and rotation dynamics [25]. For example, in Ref.

[24] a propagation of a small density perturbation over a background has been

observed and interpreted as a sound propagation described by linearized hydro-

dynamic equations. While, the formalism of linearized hydrodynamics gives

a good description of experiments where perturbations are small, it does not

capture such exotic �ngerprints of nonlinear hydrodynamics as shock waves.

In this chapter we discuss the �rst observation of this nonlinear e�ect and

describe it using nonlinear hydrodynamic equations.

We present here an observation of a collision between two clouds of cold

strongly interacting Fermi atoms in the unitary regime. This collision can
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be understood as essentially nonlinear hydrodynamic behavior of an atomic

gas/�uid. The false color absorption images of the atomic clouds at di�erent

times during the collision are shown in Fig. 2.1. We would like to focus on

two features clearly seen in this data: (i) the formation of a central peak

which is well-pronounced and robust (ii) the evolution of this peak into a box-

like shape with very sharp boundaries. We notice here that the �rst feature,

though mysterious at the �rst sight, is present already in solutions of linear

wave equations. One should just consider the process not as a collision of

atomic clouds but as of a splitting of a central dip in the cloud density into

two dips propagating to the left and to the right respectively. The second

feature is fundamentally nonlinear and we consider it as a strong evidence

of shock wave formation in this system. The sharp boundaries of the �box�

are identi�ed then as the shock wave fronts. By reducing the hydrodynamic

theory to one dimension and solving the hydrodynamic equations numerically

we �nd an evolution of the density of atoms which is in excellent agreement

with the experimental �ndings.

2.2 Experiment: colliding fermi-clouds

In this section we will brie�y describe the experimental setup [1] involved

in the collision of Fermi gas clouds at Duke. One of the main goals of this

chapter is to interpret the experiment described in this section which was

conducted at Duke. The Fermi-gas is comprised of a 50:50 mixture of the

two lowest hyper�ne states of 6Li. The gas is con�ned in a cigar-shaped CO2

laser trap, and bisected by a blue-detuned beam at 532 nm, which produces a

repulsive potential. The gas is then cooled via forced evaporation near a broad

Feshbach resonance at 834 G [26]. After evaporation, the trap is adiabatically

recompressed to 0.5% of the initial trap depth. This procedure produces two

spatially separated atomic clouds, containing a total of ' 105 atoms per spin

state. In the absence of the blue-detuned beam, the trapping potential is

cylindrically symmetric with a radial trap frequency of ωx = ωy = ω⊥ =

2π×437 Hz and an axial trap frequency of ωz =
√
ω2
Oz + ω2

Mz = 2π× 27.7 Hz,

where the axial frequency of the optical trap is ωOz = 2π × 18.7 Hz and

ωMz = 2π × 20.4 Hz arises from curvature in the bias magnetic �eld. When
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Figure 2.1: False color absorption (in situ) images of the atomic cloud at
di�erent time points during the collision[1]. Time evolution is from left to
right (0 ms, 2 ms, 4 ms, 6 ms, 8 ms). The atoms are divided into two clouds
then accelerate towards each other. As the two clouds collide a sharp rise in
density can be seen at the center of the trap. Over time the region of high
density evolves from a �peak-like� shape into a �box-like� shape. The central
zone in the last two coloumns exhibits �rst evidence of shock wave formation
in a unitary Fermi-gas. The length of the cigar is about 400 µm
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the repulsive potential is abruptly turned o�, the two clouds accelerate toward

each other and collide in the CO2 laser trap. After a chosen hold time, the

CO2 laser is turned o�, allowing the atomic cloud to expand for 1.5 ms, after

which it is destructively imaged with a 5 µs pulse of resonant light. The blue-

detuned beam produces a repulsive potential which varies only in the z (axial)

direction. The form it takes is

Vrep(z) = V0 exp
(
−(z − z0)2/σ2

z

)
(2.1)

The width was measured by the Duke group to be σz = 21.2µm. Using

the beam intensity and the ground state static polarizability of 6Li at 532 nm,

we �nd V0 = 12.7µK. This system is a three-dimensional hydrodynamic gas.

However, the reasonably tight con�nement in the radial direction facilitates

the possibility of a dimensional reduction. In the next section we will describe

the hydrodynamic theory that helps in understanding the results obtained in

the above mentioned experiment.

2.3 Theory: Nonlinear hydrodynamics of quan-

tum matter and dimensional reduction

We assume that the cloud is a strongly interacting Fermi-gas at zero temper-

ature. In addition we model the gas as a single �uid which is consistent with

sound velocity measurements [24] (which falls under the paradigm of linear

hydrodynamics) and was also shown to work very well for nonlinear hydrody-

namics [1]. In this case, the local chemical potential has the universal form

µ(n3D) = (1 + β)εF (n3D), where εF (n3D) = ~2
2m

(3π2n3D)2/3 is the ideal gas

local Fermi energy corresponding to the three-dimensional density n3D. Here,

β = −0.61 is a universal scaling factor [20, 27, 28]. Without including the

viscous nature of the system we can write the Hamiltonian to be

H = 2π

ˆ
rdrdzm

[
1

2
n3Dv

2
3D + Cn

5
3
3D +

1

8
n3D (∇ log n3D)2

]
(2.2)

Here C = ~2
2m

(3π2)2/3(1 + β) and m is the mass. Eq. 2.2 is a three di-
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mensional hydrodynamic theory. Upon assuming an equilibrium pro�le in the

r direction and slow dynamics in the z direction we can do a dimensional

reduction to obtain a quasi-1D �eld theory. The assumptions can be casted as

n3D(z, r, t) = F [n1D(z, t), r] (2.3)

v3D = v1D(z, t)ẑ (2.4)

where F is a function that relates the quasi-1D density to the 3D density.

A Thomas-Fermi approximation in 3D gives us

n3D(z, r) = n̄

(
1− r2

R2
⊥
− z2

R2
z

) 3
2

(2.5)

where ñ = [(2mµG/~2)/(1+β)]3/2/(3π2). In Eq. 2.5, Rz,⊥ =
√

2µG/(mω2
z,⊥)

and µG is the global chemical potential, which is determined by normalizing

the integral of the 3D density to the total number N of atoms in both spin

states. For N = 2×105, we �nd µG = 0.53µK, Rz = 220µm, and R⊥ = 14µm.

Integrating Eq. 2.5 in radial direction straightforwardly gives us the e�ective

1D density

n1D(z) =
2π

5
R2
⊥n̄

(
1− z2

R2
z

) 5
2

. (2.6)

From Eq. 2.5 and Eq. 2.6 it is easy to �nd the function F that relates the

quasi-1D density to the 3D density. We �nd

n3D(r, z) = n̄

[(
n1D(z)
2π
5
R2
⊥n̄

) 2
5

− r2

R2
⊥

] 3
2

(2.7)

The action is

S =

ˆ
Ldt

= 2π

ˆ
rdtdrdz m

{
φ3D

∂n3D

∂t
− 1

2
n3D(∇φ3D)2 − Cn

5
3
3D −

1

8
n3D (∇ log n3D)2

−1

2
n3D(ω2

zz
2 + ω2

rr
2)

}
(2.8)
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Using the variational method [29] one can arrive at the continuity equation

and the Euler equation. It turns out that the hydrodynamic velocity is given

by v = ∇φ. We will �rst do a dimensional reduction of Eq (2.8)

Plugging in Eq. 2.7 and Eq. 2.4 into the 3D action (Eq. 2.8) we get the

following quasi-1D action,

S =

ˆ
Ldt

= m

ˆ
dtdz

{
φ
∂n

∂t
− n

[(∇φ)2

2
+ An

2
5 +

Bn−
2
5 +

1

2
ω2
zz

2 +
9~2

40m2
n (∂z log n)2 ]} (2.9)

where A = 5
14
ω2
⊥l

2
⊥
(

15π
2
l⊥
)2/5

(1 + β)3/5 and l⊥ =
√

~
mω⊥

is the oscillator

length. It turns out that B = ~2
m2

1.06

(1+β)
3
5
l
− 12

5
⊥ . Note that in Eq. 2.9 we have

dropped the subscript "1D" for the sake of brevity (the subscript "z" in ω

will be dropped henceforth). In Eq. 2.9 the term proportional to B is much

smaller than the term proportional to A and therefore we can neglect it.

The Hamiltonian corresponding to the above dimensionally reduced action

(Eq. 2.9) is

H[n, v] = m

ˆ
dzn

[v2

2
+ An

2
5 +

1

2
ω2
zz

2 +
9~2

40m2
n (∂z log n)2 ]. (2.10)

The continuity and Euler equation1 can be obtained by taking the variation

[29] of the above action with respect to φ ( δS
δφ

) and n ( δS
δn

) respectively. They

read as

1The last term in Eq. 2.12 doesnot come via variational principle and is added phe-
nomenologically.
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∂tn = −∂z (nv) (2.11)

∂tv = −∂z

{
v2

2
+

7A

5
n

2
5 +

1

2
ω2z2

+
9~2

20m2

∂2
z

√
n√
n

}
+ν

∂z(n∂zv)

n
(2.12)

It is easy to check that Eq. (2.10) along with the Poisson relation {mn(x), v(y)} =

δ′(x−y) also gives the above quasi-1D continuity (Eq. 2.11) and quasi-1D Eu-

ler equation (Eq. 2.12).

In Eq. 2.12 we have added a �viscosity" term phenomenologically to de-

scribe dissipative e�ects. For the unitary 1D �uid, ν is the e�ective kinematic

viscosity, which has a natural scale ~/m. It is the only �tting parameter in

the theory 2.

Below, we will provide a derivation of the phenomenologically added vis-

cosity term as arising from a shear viscosity[31, 32] in 3D. The Euler equation

can be generally written as

∂

∂t
(n3Dvi) = −∂Πik

∂xk
(2.13)

where Πik = pδik + n3Dvivk − σ′ik, with p being the pressure term. For an

isotropic �uid, σ′ik takes the form

σ′ik = η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik
∂vl
∂xl

)
+ ζδik

∂vl
∂xl

(2.14)

where η is the coe�cient of shear viscosity and ζ is the coe�cient of bulk

viscosity (which is zero for a Unitary Fermi gas). Now, if we plug in Eq. 2.7

and Eq. 2.4 into Eq. 2.14 then we obtain

σ′zz =
4ν

3

∂v1D

∂z
(2.15)

2In a unitary Fermi gas, which is scale invariant, the bulk viscosity vanishes. We expect
that ν arises from shear viscosity, which has a natural scale η ∝ ~n, so that ν = η/(nm) ∝
~/m. See Ref. [30].
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and it is easy to check that σ′zr = 0. The equation of motion for a viscous

�uid is obtained by adding the term ∂σ′zz
∂z

to the right hand side of the Euler

equation. We de�ne here the kinematic viscosity as given by ν = η
n3D

. Plugging

this into Eq. 2.15 gives the following term in the Euler equation (we are writing

below only the viscous term).

∂

∂t
(

ˆ
d2r n3Dv1D) =

4ν

3

∂

∂z

[ˆ
d2r n3D

∂v1D

∂z

]
(2.16)

Integrating both sides of Eq. 2.16 precisely results in the previously phe-

nomenologically added viscosity term, ie, ν ∂z(n∂zv)
n

. We have thus shown here

that the 1D dimensionally reduced bulk viscosity term arises from a 3D shear

viscosity.

The last term in the curly brackets in Eq. 2.12 come from the dimensional

reduction of the Quantum Pressure term. There are several mechanisms at

work in Eq. 2.12. There is essentially a nonlinear term (ie, a term without

derivatives and just powers of n), one dissipative term (viscosity) and one

term which can induce oscillations (dispersive terms). We therefore see that

this system of strongly interacting fermions can be an ideal setup to study

the interplay and role of all these three mechanisms (nonlinearity, dissipation

and dispersion). However, we will show in the experiment described above

that the role of the dispersive term is negligible and viscosity (dissipative)

plays a dominant role. Nonlinear terms which appear in the Euler equation as

powers of n result in creating steep gradients and these are counter-balanced

by dissipative or dispersive terms. When steep gradients start getting counter-

balanced then we can call it an "onset" of shock waves (dissipative or dispersive

shock depending on which term plays a role). One could introduce arti�cial

tuning numerical coe�cients in front of the dissipative and dispersive terms

and modulate their e�ect.

Eq. 2.11 and Eq. 2.12 are fully nonlinear coupled partial di�erential equa-

tions and do not admit exact solutions. However, in certain limits, for instance

the sound wave experiments with a small pulse V0, one can linearize the di�er-

ential equations (2.11) and (2.12) around an equilibrium density con�guration

n0(z) in a harmonic trap. De�ning n(z, t) ≡ n0(z) + δn(z, t), the linearized
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evolution equation for δn(z, t) (neglecting viscosity) is

∂2
t δn = ∂z

[
n0∂z

(
14A

25m
n
− 3

5
0 δn

)]
. (2.17)

For a �at background density, i.e., constant n0, with µG = 7A
5
n

2/5
0 , Eq. 2.17

reduces to ∂2
t δn = c2∂2

zδn with the sound velocity c =
√

2µG/5m, in agreement

with previous theory [33, 34] and experiment [24].

Our aim is to study the fully nonlinear hydrodynamics of the system with

initial conditions from the experiment described in Sec 2.2. We do so in two

di�erent ways. First, we employ the method of a discretized grid and later

we will use another method known as smoothed-particle hydrodynamics. The

second method involves mapping the quasi-1D Hamiltonian (Eq. 2.10) and

the Continuity (2.11) and Euler equations (2.12) to a system of Lagrangian

pseudo-particles [13, 14].

2.4 Model and the grid method

We establish initial conditions of our model to match the experiment as closely

as possible. The one-dimensional integrated density equation which includes

the e�ect of the repulsive potential is given in Eq. (2.6). In our simulation

we use the measured experimental parameters for ω⊥ and ωz. We measure

the width σz = 21.2µm. The o�set z0 = 5µm of the focus from the center

in the long direction of the optical trap is determined by a �t to the �rst

density pro�le at 0 ms. Using the beam intensity and the ground state static

polarizability of 6Li at 532 nm, we �nd V0 = 12.7µK.

We use the average measured total number of atoms N = 2.1 × 105 to

determine the global chemical potential, µG. The black curve in the left top-

most panel of Fig. 2.2 represents the initial density of the trapped atoms after

expansion obtained using the above parameters.

For numerical simulation we create and load a density array as well as a

velocity array with grid spacing δz. The initial velocity is set to zero. The

simulation then updates the density and velocity �eld in discrete time steps

δt according to Eq. (2.11) and Eq. (2.12). The simulation provides a near

perfect representation of the observed density evolution (see Fig. 2.2). For the
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simulation curves shown in the �gure we use a grid of 50 points relating to a

δz = 4.2µm and a δt = 17.7µs, which minimizes the χ2. A χ2 �t to the data

is constant for smaller δz as long as the time step was set according to the

relation δt = δ2
z×106 for grids of 100 and 200 points. Therefore the simulation

converges for small δt. To check for numerical consistency we also used an

alternate approach of smoothed-particle-hydrodynamics [13] (see Sec 2.5) where

a �uid is described by discrete pseudo particles and the results obtained indeed

coincide with the previously mentioned discretized grid approach. As shown

in Fig. 2.2 we observe a dramatic evolution of the density of the gas. During

the collision, a distinct and stable density peak forms at the point of collision

in the center of the trap. At its apex, the peak density is nearly twice that of

the equilibrium integrated central density. This central peak appears early on

in the collision and grows in intensity. At a certain point the 2D images show

that the peak evolves into a box shape. In 1D this is seen as a �attop line

shape which expands in size as more atoms are present in the collision zone.

As the time evolution of the gas progresses the maximum density gradient

increases.

Upon careful inspection of the data we can �nd only small deviations from

the simulation. At the 4 ms time point the maximum density of the observed

central peak exceeds that of the simulation. This apart the simulation provides

a very good description of the evolution of the 1D density. Changing the

phenomenological parameter ν in Eq. 2.12 in simulations allows us to conclude

that numerics are compatible with the experiment in the range of e�ective bulk

viscosities ν ∼ 1− 10 ~/m.

2.5 Smoothed particle formulation of nonlinear

hydrodynamics

In this section we describe the mapping of the quasi-1D Hamiltonian (Eq.

2.10), the Continuity (2.11) and Euler equations (2.12) to a system of La-

grangian pseudo-particles [13, 14]. The pseudo-Hamiltonian in the continuum

limit reproduces all the hydrodynamic terms in the �eld theory. It turns out

that Eq. 2.10 can be mapped to a system of Np pseudo-particles obeying the

following microscopic Hamiltonian,
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H = m
N∑
j=1

v2
j + ω2x2

j

2
+

m

Np∑
j=1

UNL[xj+1, xj] + UQP [xj+2, xj+1, xj] (2.18)

Here UNL and UQP are pseudo-particle mapping 3 of the nonlinear (pres-

sure) term and the Quantum Pressure (dispersive) term respectively. They

are given by

UNL[xj+1, xj] =
A

[Np(xj+1 − xj)]
2
5

+
B

[Np(xj+1 − xj)]−
2
5

(2.19)

UQP [xj+2, xj+1, xj] =
1

8

(
1

xj+2 − xj+1

− 1

xj+1 − xj

)2

(2.20)

Now, one can use the Hamilton equations,

ẋj =
∂H

m∂vj
(2.21)

v̇j = − ∂H

m∂xj
(2.22)

to get the following Newtonian equations.

ẋj = vj (2.23)

3This prescription of course is not unique. However, in the limit of large pseudo-particles
they are supposed to reproduce the original �eld theory upon taking the continuum limit.
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v̇j = − ∂

∂xj
U [xj]

− ∂

∂xj

(∑
j

[UNL[xj+1, xj] + UQP [xj+2, xj+1, xj]]

)

+ η

[
vj+1 − vj

(xj+1 − xj)2 −
vj − vj−1

(xj − xj−1)2

]
(2.24)

In Eq. 2.24, the term U [xj] is any external potential. In our case this is an

external Harmonic trap given by

U [xj] =
1

2
ω2x2

j (2.25)

The last term in Eq. 2.24 is the pseudo-particle representation of the viscos-

ity term. One can observe that in the pseudo-particle language the terms that

counter-balance steep gradients (dispersive or dissipative) necessarily involve

more that one nearest neighbor. A continuum limit of the pseudo-Hamiltonian

(Eq. 2.18) gives back the quasi-1D collective �eld theory (Eq. 2.10) with

some additional terms which are of order O( 1
Np
) or higher. Therefore for large

enough Np one could get back all the hydrodynamic properties of the real sys-

tem (Eq. 2.10) by solving the "molecular dynamics" ofNp pseudo-particles(Eq.

2.23 and Eq.2.24).

2.6 Results from smoothed particle hydrodynam-

ics

In this section, we study the nonlinear hydrodynamics via the method de-

scribed in previous section. The experiment involved cooling the system in

the presence of an additional blue-detuned laser beam which provides an ex-

ternal potential (Eq.2.1) in addition to the Harmonic trap. The quasi-1D

density in this case will read

n1D(z) =
2π

5
R2
⊥ñ

(
1− z2

R2
z

− Vrep(z)

µG

) 5
2

. (2.26)
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We put the pseudo-particles in initial positions such that they mimic the

above density. As the system is cooled the initial velocities of the pseudo

particles are zero4.

The blue-detuned laser is then switched o� which means we solve the molec-

ular dynamics of the particles whose initial positions imitate Eq. 2.26 and

which evolve according to Eq. 2.23 and Eq.2.245.

For the experimental conditions and initial pro�les described in this chapter

we �nd that there is an interplay between nonlinearity and dissipation, thereby

the phenomenon of dissipative shock waves. For these conditions we donot

see any signi�cant role of the quantum pressure (dispersive) term, however it

always exists.

We �nd near perfect agreement between the experiment and the method

of smoothed particle hydrodynamics. There is a dramatic evolution for the

density of the gas. During the collision we see a distinct and stable density

peak at the point of collision in the center of the trap. The absorption images

shown in Fig. 2.1 already suggest shock wave formation. Further analysis of

the simulation curves provides additional evidence for shock waves. Without

any dissipation, the numerical integration of the quasi-1D theory breaks down

due to a �gradient catastrophe." A gradient catastrophe is a situation where

hydrodynamic pro�les develop in�nite gradients. We �nd that the dissipative

force in Eq. 2.12, which is described by the kinematic viscosity coe�cient ν,

is required to attenuate the large density gradients and avoid gradient catas-

trophe. We �nd that the best �ts are obtained with the viscosity parameter

ν = 10 ~/m. This range is the same as described in the discretized grid

method. For smaller values of ν, the simulation produces qualitatively similar

4We could also put the pseudo particles at arbitrary places and solve the continuity and
Euler equations, with an additional damping term such as −γv in the Euler equation. This
will result in equilibrating the particles (See Fig. 2.3) and will produce the initial density
pro�le (Eq. 2.26).

5To compare the numerical solutions of Eq. 2.23 and Eq.2.24 with experiment, we note
that the images are taken after an additional free expansion for 1.5 ms, during which n1D
continues to slowly evolve in the axial potential of the bias magnetic �eld, i.e., ωz → ωMz =
2π × 20.4 Hz. We assume that during this expansion, the transverse density pro�les keep
the same form, but the radius increases with time. Then n3D(r, z) → n3D(r/b⊥, z)/b

2
⊥,

where b⊥(t) is a transverse scale factor, which obeys b̈⊥ = ω2
⊥ b
−7/3
⊥ , with b⊥(0) = 1 and

ḃ⊥(0) = 0 [20, 35, 36]. Since the 3D pressure scales as n
5/3
3D , the 1D pressure scales as b

−4/3
⊥ .

This leads to a simple modi�cation of Eq. 2.12: A→ A(t) = A/b
4/3
⊥ (t).
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results to those shown in the �gure, only with steeper density gradients at the

edges of the collision zone. The dissipative term ∝ ν has a relatively small

e�ect on the density pro�les, unless we are in a shock wave regime, where

the density gradients are large. Hence, the numerical model suggests that the

large density gradient observed at the edge of the collision zone is the leading

edge of a dissipative shock wave. A world-line diagram depicting trajectory

of pseudo-particles is shown in Fig 2.4. Although, this trajectory does not

bear any direct meaning as far as the original physical system of a Unitary

Fermi gas is concerned, it is none-the-less very useful in deriving certain con-

clusions. For instance, the "straight-line like visual image" suggests that the

shock waves reasonably maintains a constant speed throughout. In a similar

way one could also see di�erent visual patters for di�erent values of dynamic

viscosity.

2.7 Conclusion

We observed that the collision of two ultra-cold clouds of Fermi atoms in the

unitary regime was accompanied by the formation of shock waves. We consid-

ered nonlinear hydrodynamic equations of a super�uid reduced to a quasi-1D

hydrodynamics. We showed that numerical solutions of these hydrodynamic

equations (2.11,2.12) are in a very good agreement with the experimental data.

Shock waves are a hallmark of nonlinear physics and it is remarkable that the

oversimpli�ed hydrodynamic approach works so well under the considered ex-

perimental conditions. This happens, probably, because the interactions in

a unitary Fermi gas are very strong and a special feature of a unitary gas,

i.e., the dynamic properties are strongly constrained by an underlying scale

invariance. We introduced an e�ective bulk viscosity of one-dimensional hy-

drodynamics as a phenomenological �tting parameter. It is essentially the only

�tting parameter in hydrodynamics and the values of ν ∼ 1− 10 ~/m seem to

be consistent with the experimental data. This is the right order of magnitude

of the e�ective viscosity dictated by dimensional considerations. We showed

how the e�ective bulk viscosity in 1D arises from a shear viscosity in 3D.

Studies of nonlinear hydrodynamics can now be done over a wide range

of temperatures, in both the super�uid and normal �uid regimes and the
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magnetic �eld control of the interaction strength enables continuous tuning

from a dispersive BEC to a dissipative Fermi-gas. We showed that in this

experiment on a Unitary Fermi gas, dispersive terms do not cause any e�ect

such as those observed in BEC's [7, 37].

The method of smoothed particle hydrodynamics has several bene�ts over

traditional grid-based techniques. SPH (also known as meshless algorithm or

adjustable grid algorithm) guarantees conservation of mass without extra com-

putation since the particles themselves represent mass. The method of SPH

results in mapping coupled nonlinear partial di�erential equations for hydrody-

namic �elds into a set of ordinary di�erential equations (Newton's Equations)

for pseudo-particles. These resulting Newton's equations are easier to han-

dle. Dealing with pseudo-particles rather than �elds help us in avoiding to

worry about issues such as boundary conditions and possible in�nities result-

ing from regions where there are vanishing �elds. Once the pseudo-particles

are placed to mimic the hydrodynamic �eld we can just solve the Newton's

equations for particles. One drawback over grid-based techniques is the need

for large numbers of particles to produce simulations of equivalent resolution.

However, our results from SPH show near perfect agreement already with 500

pseuso-particles which is easy to handle as far as solving Newton's equations

are concerned.
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Figure 2.2: 1D density pro�les divided by the total number of atoms versus
time for two colliding unitary Fermi gas clouds. The normalized density is
in units of 10−2/µm per particle. Red dots show the measured 1D density
pro�les. Black curves show the simulation, which uses the measured trap
parameters and the number of atoms, with the kinetic viscosity as the only
�tting parameter.
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Figure 2.3: (Left) The process of equilibration by molecular dynamics of
pseudo-particles in presence of a "knife". The x-axis is time and the y-axis are
the positions of pseudo-particles. (Right) Red denotes the density obtained
from the position of the pseudo-particles and black denotes the analytical
formula.
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Figure 2.4: World-line diagram depicting trajectory of pseudo-particles after
removing the knife.
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Chapter 3

Nonlinear dynamics of spin and

charge in the spin-Calogero model

3.1 Introduction

One-dimensional models of many body systems have been a subject of intensive

research since the seventies. Due to the low dimensionality, standard pertur-

bative approaches developed in many body theory are often inapplicable. On

the other hand some techniques speci�c to one spacial dimension are available

and allow to treat systems of interacting particles non-perturbatively. The

Fermi Liquid paradigm is replaced by the Luttinger Liquid theory [38] in one

dimension. One of its most striking predictions is that at low energies spin and

charge degrees of freedom decouple. One can say that at low energies physical

electrons exist as separate spin and charge excitations. At higher energies it is

expected that spin and charge recombine into the original electrons. One can

see the traces of spin-charge interaction taking into account corrections to the

Luttinger liquid model arising from the �nite curvature of band dispersion at

Fermi energy [38]. The coupling between spin and charge in one-dimensional

systems was studied both perturbatively and using integrable models available

in one dimension [39].

In this chapter we study the interaction between spin and charge in an-

other integrable model � the spin-Calogero model (sCM). This model is a spin

generalization [40�42] of the well-known Calogero-Sutherland model [43].

Calogero-Sutherland type models occupy a special place in 1D quantum
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physics. They are exactly solvable (integrable) but are very special even in the

family of integrable models. In particular, they can be interpreted as systems

of �non-interacting� particles with fractional exclusion statistics [43�48].

The sCM model is given by the following Hamiltonian:

H ≡ −~2

2

N∑
j=1

∂2

∂x2
j

+
~2

2

∑
j 6=l

λ(λ±Pjl)

(xj − xl)2 (3.1)

where we took the mass of particles as a unity and Pjl is the operator that

exchanges the positions of particles j and l [40]. The ± sign in the exchange

term corresponds to the ferromagnetic and anti-ferromagnetic ground state

respectively if we are studying fermions. Similarly, it corresponds to the anti-

ferromagnetic and ferromagnetic ground state respectively if we are considering

bosonic particles. The four cases can be summarized as:

Bosons −→

{
+ ⇒ Anti-ferromagnetic ,

− ⇒ Ferromagnetic ,

Fermions −→

{
+ ⇒ Ferromagnetic ,

− ⇒ Anti-ferromagnetic .

The coupling parameter λ is positive and N is the total number of particles.

As it has been already noted above the sCM is a very special model. In

particular, in contrast to more generic integrable or non-integrable models the

spin and charge in sCM are not truly separated even at low energies [41]. Of

course, one can still describe the low-energy excitation spectrum of the sCM

by two independent harmonic �uid Hamiltonians, one for the charge and the

other for spin. However, it turns out that for the sCM the spin and charge

velocities are the same [41], i.e. spin and charge do not actually separate.

Here we study the spin-Calogero model in the limit of an in�nite number of

particles using the hydrodynamic approach. Even though the collective �eld

theory/quantum hydrodynamics of the spinless Calogero-Sutherland model

has been studied in great detail [16, 49�53], a complete understanding of its

spin generalization is still lacking although a considerable progress has been

done recently in Refs. [54, 55].

We study the nonlinear collective dynamics of the sCM in the semiclassical
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approximation, additionally neglecting gradient corrections to the equations

of motion. This limit is justi�ed as long as we consider con�gurations with

small gradients of density and velocity �elds. The gradientless approxima-

tion is commonly employed in studying nonlinear equations [56] and allows to

study the evolution for a �nite time while the �rst nonlinear contributions are

dominant. For longer times, the solution will inevitably evolve toward con�g-

urations with large �eld gradients (such as shock waves) and the gradientless

approximation becomes inapplicable. Nevertheless, in the initial stage of the

evolution, corrections due to gradient terms in the equations of motion can be

neglected (see further discussion in the Sec. 3.5.2). We derive the gradientless

hydrodynamics Hamiltonian from the Bethe Ansatz solution of the model.

The chapter is organized as follows. In Sec. 3.2 we start with the simplest

spinful integrable model � a system of free fermions with spin. We brie�y

review the Bethe Ansatz solution for spin-Calogero model in Sec. 3.3 and de-

duce the hydrodynamic Hamiltonian for the sCM from this solution in Sec. 3.4

neglecting gradient corrections. The corresponding classical equations of mo-

tion are given in Sec. 3.5. It is shown that variables separate and the system

of hydrodynamic equations is decoupled into four independent Riemann-Hopf

equations for a given special linear combinations of density and velocity �elds

� the dressed Fermi momenta. In Sec. 3.6 we illustrate that in the limit of

strong coupling the hydrodynamics of sCM is reduced to the hydrodynamics of

the Haldane-Shastry lattice spin model giving the hydrodynamic formulation

of the so-called freezing trick [57]. We present some particular solutions of the

hydrodynamic equations demonstrating nonlinear coupling between spin and

charge degrees of freedom in the sCM in Sec. 3.7 and conclude in Sec. 3.8.

To avoid interruptions in the main part of the chapter some important tech-

nical details are moved to the appendices and are organized as follows. In

Appendix A we use an asymptotic Bethe ansatz to derive the hydrodynamics

of the sCM and to explain why variables separate in this system. In Appendix

B we describe the notion of true hydrodynamic velocities. In Appendix C we

relate the hydrodynamics of sCM to two in�nite families of mutually commut-

ing conserved quantities and collect our results for the hydrodynamics in the

di�erent regimes of sCM. Finally, in Appendix D we derive a hydrodynamic

description of the Haldane-Shastry model from its Bethe Ansatz solution.
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3.2 Free fermions with spin

For one-dimensional free fermions without internal degrees of freedom the low-

est state with a given total number of particles and total momentum corre-

sponds to all single-particle plane wave states �lled if the corresponding mo-

mentum k satis�es kL < k < kR. Here kL,R are left and right Fermi momenta

respectively which are de�ned by the given number of particles and momentum

of the system:

N/L =

ˆ kR

kL

dk

2π
=
kR − kL

2π
= ρ , (3.2)

P/L =

ˆ kR

kL

dk

2π
~k = ~

k2
R − k2

L

4π
= ρv . (3.3)

Here we introduced the (overall) velocity of the system v which is given from

(3.2,3.3) by

v/~ =
kR + kL

2
. (3.4)

Inverting (3.2,3.4) we express the left and right Fermi points kL,R in terms of

the density ρ and velocity v as

kR,L = v/~± πρ. (3.5)

The energy of this state is given by

E/L =

ˆ kR

kL

dk

2π

~2k2

2
= ~2k

3
R − k3

L

12π
=
ρv2

2
+

~2π2

6
ρ3. (3.6)

Up to this moment ρ, v, kR,L are just numbers characterizing the chosen state

of free fermions (only two of them are independent). Assuming the locality

of the theory we promote these numbers to quantum �elds and write the

hydrodynamic Hamiltonian of free spinless fermions as

H =

ˆ
dx

[
ρ(x)v2(x)

2
+

~2π2

6
ρ3(x)

]
=

ˆ
dx ~2 [kR(x)]3 − [kL(x)]3

12π
. (3.7)

Here we consider ρ(x) and v(x) as quantum �eld operators of density and

velocity (and kR,L as given by (3.5)) having canonical commutation relations
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[32]

[ρ(x), v(y)] = −i~δ′(x− y) . (3.8)

Of course, gradient corrections to (3.7) are generically present and the above

�derivation� is just a heuristic argument (semiclassical in nature). It turns out

that (3.7) is, in fact, exact for free fermions.1 It can be derived rigorously

either using the method of collective �eld theory [58�60] or the conventional

bosonization technique (but without linearization at Fermi points)[38, 61, 62].

The two terms of (3.7) have a very clear physical interpretation. The �rst

term is the kinetic energy of a �uid moving as a whole � the only velocity

term allowed by Galilean invariance. The second one is the kinetic energy of

the internal motion of particles. This term is �nite due to the Pauli exclusion

principle. Within the hydrodynamic approach we have to think of this term

as of an internal energy of the �uid.

Commuting the Hamiltonian (3.7) with the density and velocity operators

one obtains the continuity and the Euler equations of quantum hydrodynam-

ics. Alternatively, using [kL(x), kL(y)] = − [kR(x), kR(y)] = 2πiδ′(x − y) the

equations of motion can also be written as a system of quantum Riemann-Hopf

equations

k̇R,L + ~ kR,L ∂xkR,L = 0 . (3.9)

For free fermions with spin, we simply add the Hamiltonians (3.7) written

for spin up and spin down fermions:

H =

ˆ
dx

{
1

2
ρ↑v

2
↑ +

1

2
ρ↓v

2
↓ +

π2~2

6

(
ρ3
↑ + ρ3

↓
)}

. (3.10)

Expanding (3.10) around the background density ρ0 = kF
π

and the back-

ground velocity v0 = 0 up to quadratic terms in vα and δρα = ρα − ρ0, we

obtain the harmonic �uid approximation

H ≈ ρ0

2

ˆ
dx
(
v2
↑ + π2~2δρ2

↑ + v2
↓ + π2~2δρ2

↓
)

≈ ρ0

4
~2
∑
α=↑,↓

ˆ
dx
[
(∂xφR,α)2 + (∂xφL,α)2

]
(3.11)

1It is exact if the nonlinear terms in (3.7) are properly normal ordered.
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with right and left bosonic �elds de�ned as ∂xφR(L),α = vα/~±πδρα. This pro-
cedure is equivalent to the conventional linear bosonization procedure where

the fermionic spectrum is linearized at the Fermi points.

In the spin-charge basis,

ρc,s ≡ ρ↑ ± ρ↓ and vc,s =
v↑ ± v↓

2
, (3.12)

the harmonic theory (3.11) is described by a sum of two independent harmonic

�uid Hamiltonians, one for charge and the other for spin degrees of freedom

H ≈ ρ0

4

ˆ
dx
(
4v2

c + π2~2δρ2
c + 4v2

s + π2~2δρ2
s

)
. (3.13)

After linearization, the quantum Riemann-Hopf Eq. (3.9) reduces to (where

± stands for χ = {R,L} respectively)

k̇α,χ ± ~πρ0 ∂xkα,χ = 0 , α = {↑, ↓} ; (3.14)

from which we identify that the quadratic excitations propagate like wave

equations with sound velocities ucharge = uspin = π~ρ0, equal for spin and

charge. Turning on interactions between fermions generally renormalizes spin

and charge sound velocities di�erently and results in genuine spin-charge sepa-

ration at the level of harmonic approximation. The spin-Calogero-Sutherland

model happens to be very special in this respect. Despite a non-trivial inter-

action for spin and charge, their sound velocities remain the same.

Although spin and charge are not truly separated for a free fermion system

(and for the sCM), the interaction between spin and charge is absent at the

level of the harmonic approximation (3.13). This interaction appears if non-

linear corrections to (3.13) are taken into account (e.g., by the fully nonlinear

Hamiltonian (3.10)) and due to gradient corrections to the hydrodynamics.

The latter are not considered in this chapter.

In the proper classical limit ~→ 0 all terms of (3.10) but the velocity terms

vanish (Fermi statistics does not exist for classical particles). Instead, we are

interested in a �semi-classical� limit in which ρ ∼ v/~. In this limit we rescale

time and velocity by ~ (t→ t/~ and v → ~v) and measure everything in length

units. This is equivalent to dropping all ~ from equations. For instance, the
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Hamiltonian (3.10) becomes

H =

ˆ
dx

{
1

2
ρ↑v

2
↑ +

1

2
ρ↓v

2
↓ +

π2

6

(
ρ3
↑ + ρ3

↓
)}

. (3.15)

We replace the commutation relations (3.8) by the corresponding classical

Poisson brackets (for up and down species)

{ρα(x), vβ(y)} = δαβδ
′ (x− y) (3.16)

and consider the classical equations of motion generated by the Hamiltonian

together with the Poisson brackets. In the remainder of the chapter all hydro-

dynamic equations are obtained in this semi-classical limit.

3.3 The spin-Calogero model

In this work we concentrate on the hydrodynamics of the sCM (3.1) for the

case of spin-1/2 fermions with an anti-ferromagnetic sign of interaction. It

is convenient to impose periodic boundary conditions, i.e. consider particles

living on a ring of the length L. This Hamiltonian is given by

H = −~2

2

N∑
j=1

∂2

∂x2
j

+
~2

2

(π
L

)2∑
j 6=l

λ(λ−Pjl)

sin2 π
L

(xj − xl)
(3.17)

and is known to be integrable[43]. All eigenstates of can be enumerated by

the distribution function

ν(κ) = ν↑(κ) + ν↓(κ). (3.18)

Here, κ are integer-valued quantum numbers identifying a given state in a

Bethe Ansatz description and ν↑,↓(κ) = 0, 1 depending on whether a given κ

is present in the solution of the Bethe Ansatz equations.

The total momentum P and energy E of the eigenstate are given in terms
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of the distribution function ν(κ) as[63, 64]:

P =

(
2π

L

) +∞∑
κ=−∞

κ ν(κ), (3.19)

E = E0 +

(
1

2

)(
2π

L

)2

ε, (3.20)

ε =
+∞∑

κ=−∞

κ2ν(κ) +
λ

2

∑
κ,κ′

|κ− κ′|ν(κ)ν(κ′), (3.21)

where E0 = π2λ2

6
N(N2−1) is the energy of a reference state[64]. The numbers

of particles with spin up and spin down are separately conserved in (5.1) and

are given by

N↑,↓ =
+∞∑

κ=−∞

ν↑,↓(κ). (3.22)

The ground state wave function for (5.1) is[41, 64]

ψGS =
∏
j<l

∣∣∣sin π
L

(xj − xl)
∣∣∣λ ∏

j<l

[
sin

π

L
(xj − xl)

]δ(σj ,σl)
exp

[
i
π

2
sgn (σj − σl)

]
(3.23)

and corresponds to the distributions 2

ν↑(κ) = θ(−N↑/2 < κ < N↑/2) ,

ν↓(κ) = θ(−N↓/2 < κ < N↓/2) . (3.24)

3.4 Gradientless hydrodynamics of the spin-Calogero

model

Following the example of free fermions, we consider a uniform state speci�ed

by the following distributions

ν↑(κ) = θ(κL↑ < κ < κR↑), (3.25)

ν↓(κ) = θ(κL↓ < κ < κR↓). (3.26)

2We neglect 1/N corrections and replace combinations like (N − 1)/2 simply by N/2.
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This state is the lowest energy state with given numbers of particles, momen-

tum, and total spin current. It is speci�ed by four integer numbers κL,R;↑,↓. All

physical quantities such as energy, momentum, and higher integrals of motion

of the state can be expressed in terms of these numbers using (4.23,3.19,3.20).

These conserved quantities written as integrals over constant quantities are:

Nα =

ˆ
dx ρα =

2π

L

ˆ
dx

[
κRα − κLα

2π

]
, α = {↑, ↓} (3.27)

P =

ˆ
dx jc =

(
2π

L

)2 ∑
α={↑,↓}

ˆ
dx

[
κ2
Rα − κ2

Lα

4π

]
. (3.28)

Comparison with (3.2,3.3) suggests the following hydrodynamic identi�cations:

v↑ ± πρ↑ ≡
2π

L
κ(R,L);↑ , (3.29)

v↓ ± πρ↓ ≡
2π

L
κ(R,L);↓ . (3.30)

In the main body of the chapter we use v↑,↓ and refer to them as to �veloc-

ities�. At this point they have been introduced �by analogy� with the case

of free fermions. In Appendices A,B,C we show that these velocities are in-

deed conjugated to the corresponding densities and explain their relations to

the true hydrodynamic velocities. In fact, in the most interesting case to us,

namely the CO regime (see below) these velocities coincide with the true hy-

drodynamic velocities de�ned in Appendix B. The total momentum (3.28) of

the system in terms of (3.29,3.30) is

P =

ˆ
dx
(
ρ↑v↑ + ρ↓v↓

)
. (3.31)

One can also express the energy (3.20) in terms of these hydrodynamic vari-

ables. Because of the non-analyticity (presence of an absolute value) in formula

(3.20) it is convenient to consider di�erent physical regimes. These regimes

are de�ned by the mutual arrangement of the supports of the distribution

functions (3.25,3.26). There are six di�erent regimes, that reduce to three

physically non-equivalent ones using the permutation ↑ ↔ ↓. The distribu-

tions corresponding to di�erent regimes are shown in Fig. 3.1:
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(a) � Complete Overlap (b) � Partial Overlap (c) � No Overlap

Figure 3.1: Distribution functions are shown for the three nonequivalent
regimes: Complete Overlap in (a), Partial Overlap in (b) and No Overlap
in (c). Three additional regimes exist, but are physically equivalent to the
ones considered in these pictures and can be obtained by exchanging ↑ ↔ ↓.

• Complete Overlap (CO) regime. The support of ν↓ is completely con-

tained in ν↑ (or vice versa). This is the regime considered in Ref. [41],

where its exact solution was given.

• Partial Overlap (PO) regime. The supports of ν↑ and of ν↓ only partially

overlap.

• No Overlap (NO) regime. The supports of ν↑ and of ν↓ do not overlap

at all.

Notice that the small �uctuations around the singlet ground state (with ρs = 0)

belong to the �rst two regimes.

In terms of the hydrodynamic variables the three regimes are summarized

in Fig. 3.2 and are de�ned by the following inequalities:

Complete Overlap → |vs| <
π

2
|ρs| , (3.32)

Partial Overlap → π

2
|ρs| < |vs| <

π

2
ρc , (3.33)

No Overlap → π

2
ρc < |vs| , (3.34)

where we switched to the spin and charge degrees of freedom de�ned by (3.12).

To simplify the presentation we give here formulas only for the CO regime

− πρs
2

< vs <
πρs
2

, (3.35)
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Figure 3.2: Diagram capturing all cases

where we also assumed that ρs > 0. The opposite case ρs < 0 can be obtained

exchanging up and down variables. The other regimes and formulae valid for

all regimes are considered in detail in Appendix C.

In the CO regime (3.35), the Hamiltonian can be written as

HCO =

ˆ
dx

{
1

2
ρ↑v

2
↑ +

1

2
ρ↓v

2
↓ +

λ

2
ρ↓
(
v↑ − v↓

)2

+
π2λ2

6
ρ3
c +

π2

6

(
ρ3
↑ + ρ3

↓
)

+
λπ2

6

(
2ρ3
↑ + 3ρ2

↑ρ↓ + 3ρ3
↓
)}

.(3.36)

It is obtained by expressing (3.20,3.21) in terms of the hydrodynamic vari-

ables (3.29,3.30) using (3.35). As in the case of free fermions (see Sec. 3.2)

we now consider ρ↑,↓(x, t) and v↑,↓(x, t) as space and time dependent classical

hydrodynamic �elds with Poisson brackets (3.16). Of course, going from the

energy of the uniform state (3.25,3.26) to the nonuniform hydrodynamic state

we neglected gradients of density and velocity �elds. We refer to this approx-

imation as to gradientless hydrodynamics. The equations of motion generated

by the Hamiltonian (3.36) with Poisson brackets (3.16) can be used only when

gradients can be neglected compared to the gradientless terms. This means

that one can use this gradientless hydrodynamics only at relatively small times

(compared to the time of the gradient catastrophe, see the discussion below).

Before analyzing the more general case let us consider some special limits

of (3.36).
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3.4.1 Spinless limit

In the fully polarized state ρ↓ = 0 we obtain from (3.36) the gradientless

Hamiltonian for the spinless Calogero-Sutherland model

Hspinless =

ˆ +∞

−∞
dx

{
1

2
ρv2 +

π2

6
(λ+ 1)2 ρ3

}
, (3.37)

where we dropped the subscript ↑. The hydrodynamics (3.37) was used in

[65] to calculate the leading term of an asymptotics of a particular correla-

tion function (Emptiness Formation Probability) for the Calogero-Sutherland

model. It can, of course be, obtained by dropping gradient terms in the exact

hydrodynamics derived using collective �eld theory [16, 51, 52].

3.4.2 λ = 0 � free fermions with spin

At the particular value λ = 0 the sCM reduces to free fermions with spin and

the Hamiltonian (3.36) becomes the collective Hamiltonian for free fermions

(3.15).

3.4.3 λ→∞ limit.

In the limit of a large coupling constant λ → ∞ the particles form a rigid

lattice and charge degrees of freedom essentially get frozen [57]. We expect to

arrive at an e�ective spin dynamics equivalent to the Haldane-Shastry model

[66, 67] (see Appendix D). This reduction to the Haldane-Shastry model is

usually referred to as freezing trick [57]. We analyze this reduction in more

detail in Sec. 3.6.

3.5 Equations of motion and separation of vari-

ables

3.5.1 Equations of motion

The classical gradientless hydrodynamics for the sCM is given by the Hamil-

tonian (3.36) with canonical Poisson's brackets (3.16). The classical evolution

36



equations generated by this Hamiltonian are

ρ̇↑ = −∂x {ρ↑v↑ + λρ↓ (v↑ − v↓)} ,

ρ̇↓ = −∂x {ρ↓v↓ − λρ↓ (v↑ − v↓)} ,

v̇↑ = −∂x

{
v2
↑

2
+
π2λ2

2
(ρ↑ + ρ↓)

2 + λπ2
(
ρ2
↑ + ρ↑ρ↓

)
+
π2

2
ρ2
↑

}
, (3.38)

v̇↓ = −∂x

{
v2
↓

2
+
λ

2
(v↑ − v↓)2 +

π2λ2

2
(ρ↑ + ρ↓)

2 +
λπ2

2

(
ρ2
↑ + 3ρ2

↓
)

+
π2

2
ρ2
↓

}
.

This is the system of continuity and Euler's equations for two coupled �uids

(with spin up and spin down). We can also rewrite it in terms of spin and

charge variables (3.12)

ρ̇c = −∂x {ρcvc + ρsvs} ,

ρ̇s = −∂x {ρs(vc − 2λvs) + (2λ+ 1)ρcvs} ,

v̇c = −∂x
{
v2
c

2
+ (2λ+ 1)

v2
s

2
+
π2

8

[
(2λ+ 1)2ρ2

c + (2λ+ 1)ρ2
s

]}
, (3.39)

v̇s = −∂x
{
vcvs − λv2

s +
π2

4
ρs [(2λ+ 1)ρc − λρs]

}
.

One can see that spin and charge are not decoupled. It turns out, however, that

the variables nevertheless separate and the system of four coupled equations

(3.38) can be written as four decoupled Riemann-Hopf equations (similar to

(3.9)) for a special linear combinations of density and velocity �elds. In the

following we study the interaction of spin and charge governed by the above

equations.

3.5.2 Free fermions (λ = 0) and Riemann-Hopf equation

At λ = 0 equations (3.38) become the hydrodynamic equations for free fermions.

Fluids corresponding to up and down spin are completely decoupled

ρ̇↑,↓ = −∂x {ρ↑,↓v↑,↓} , (3.40)

v̇↑,↓ = −∂x
{

1

2
v2
↑,↓ +

π2

2
ρ2
↑,↓

}
. (3.41)
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Let us introduce the following linear combinations of densities and velocities

kR↑,L↑ = v↑ ± πρ↑,

kR↓,L↓ = v↓ ± πρ↓. (3.42)

These combinations are nothing else but right and left Fermi momenta of free

fermions. All of them satisfy the so-called Riemann-Hopf equation

ut + uux = 0. (3.43)

The equation is the same for all four combinations u = kR,L;↑,↓ and the system

(3.40,3.41) is equivalent to four decoupled Riemann-Hopf equations.

The Riemann-Hopf equation (3.43) is easily solvable with the general so-

lution given implicitly by

u = u0(x− ut). (3.44)

Here u0(x) is an initial pro�le of u(x, t) at t = 0. One should solve (3.44) with

respect to u and �nd u(x, t) - the solution of (3.43) with u(x, t = 0) = u0(x).

The solution (3.44) can also be written in a parametric form

x = y + t u0(y),

u(x, t) = u0(y). (3.45)

This solution corresponds to the �Lagrangian picture� of �uid dynamics and

states that points in the x− u plane are just translated along x with velocity

u, i.e., (x, u0)→ (x+ t u0, u0). This picture is especially useful to solve (3.43)

numerically.

We notice here that the nonlinear dynamics (3.43) without dispersive (higher

gradient) terms is ill de�ned at large times. For any initial pro�le u0(x), at

large times t > tc in�nite gradients ux will develop - gradient catastrophe - and

solutions of (3.44) will become multi-valued. The classical equation (3.43) will

not have a meaning for t > tc. We refer to the time tc (function of the initial

pro�le) as to the gradient catastrophe time. The gradientless hydrodynamics

is applicable only for times smaller that tc.
3 We will discuss in more detail

3We notice here that for a free fermion system it is possible to assign the meaning even
to the multi-valued solution of (3.44) for t > tc. It is the boundary of the support of the
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Figure 3.3: Dynamics of density �eld ρ↑(x) (left panel) and of velocity �eld
v↑(x) (right panel) for free a fermion case (λ = 0). The initial density pro�le
at t = 0 is a Lorentzian (3.46) of height h = 0.25 and half-width a = 4. The
initial velocity is zero.

about validity of gradientless hydrodynamics in Sec. 3.7.

We present a simple illustration of the density and velocity dynamics for

free fermion system in Fig. 3.3. It is su�cient to consider only up-spin as the

evolution of up and down spins is decoupled. We chose the initial pro�le of

the density as Lorentzian with the half-width a and height h

ρ0↑(x) =
h

1 + (x/a)2
(3.46)

and an initial velocity zero. We �nd the initial pro�les of k↑;R,L using (3.42).

Then we solve the Riemann-Hopf equations (3.43) using (3.45) and �nd the

density and velocity at any time inverting (3.42). We remark that for an

arbitrary smooth bump of height h and width a the gradient catastrophe

time can be estimated as tc ≈ a
h
. For the evolution given by (3.43) with an

initial Lorentzian pro�le (u0(x) given by (3.46)) one can compute the gradient

catastrophe time exactly. An in�nite gradient ∂xu→∞ develops at the time

tc =
8

3
√

3

a

h
. (3.47)

For arbitrary initial conditions we compute the gradient catastrophe time nu-

merically.

Wigner distribution in the one-particle phase space. In this chapter we restrict ourselves to
times less than the time of gradient catastrophe and assume that (3.43) has a well-de�ned
single-valued solution.
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3.5.3 Riemann-Hopf Equations for the sCM

Although the system of equations (3.38) is a system of four coupled nonlin-

ear equations, it allows for a separation of variables. Introducing the linear

combinations of �elds

kR↑,L↑ = v↑ ± π [(λ+ 1)ρ↑ + λρ↓] = (v↑ ± πρ↑)± λπρc, (3.48)

kR↓,L↓ = (λ+ 1)v↓ − λv↑ ± π(2λ+ 1)ρ↓ = (v↓ ± πρ↓)

+ λ(−2vs ± 2πρ↓) (3.49)

we obtain the Riemann-Hopf equation (3.43) separately for all four u = kL,R,↑,↓.

This property of variable separation is shared with the free fermion case

Sec.3.5.2. We notice, however, that in the case of the sCM, variables separate

only in gradientless approximation. The gradient terms neglected in this chap-

ter will couple the hydrodynamic equations in an essentially non-separable4

way.

The separation of variables in terms of (3.48,3.49) is not so surprising.

One can recognize (3.48,3.49) as dressed (physical) �Fermi� momenta of (an

asymptotic) Bethe Ansatz. The integrals of motion of sCM are separated

in terms of these Fermi momenta and the same is true for the equations of

motion. We do not interrupt the presentation with this connection with the

Bethe Ansatz solution of the sCM but devote the Appendix A to this purpose.

It is convenient to summarize the gradientless hydrodynamics of sCM by

the picture in a �single-particle� phase space showing space-dependent Fermi

momenta. 5 We plot the space-dependent Fermi momenta in an x − k plane

as four smooth lines. In the CO regime considered here (see Appendix C for

other regimes) the Fermi momenta are ordered as

kL↑(x) < kL↓(x) < kR↓(x) < kR↑(x). (3.50)

We �ll the space between those lines with particles obeying the following rules

of particles with fractional exclusion statistics [48] (see Appendix A) (i) each

4At least one will not be able to separate variables considering simple linear combinations
of �elds. To the best of our knowledge variables in sCM do not separate or, at least, an
appropriate change of variables has not been found yet.

5We would like to thank A. Polychronakos who encouraged us to present this picture.
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Figure 3.4: Phase-space diagram of a hydrodynamic state characterized by
four space-dependent Fermi momenta.

particle occupies a phase space volume 2π(λ + 1) if there are no particles of

the other species in this volume, (ii) two particles with opposite spins occupy

a phase space volume 2π(2λ + 1) (or 2π(λ + 1/2) per particle). The velocity

v↑(x) is visualized as a center of a spin-up stripe on Figure 3.4 (see (B.5)).

The interpretation of v↓(x) is a bit less straightforward. It should be thought

of as a weighted average of positions of centers of both stripes (B.5).

3.6 Freezing trick and hydrodynamics of the Haldane-

Shastry model

Here we consider the limit of large coupling constant λ→∞. In this limit we

expect that particles form a one-dimensional lattice and only spin dynamics

is important at low energies. We refer to this limit as to a freezing of the

charge. We are interested in �uctuations around the uniform state with a given

charge density. It can be seen from Fig. 3.4 that particles occupy the volume

2π(λ+ 1/2) of the phase space when both species are present. Therefore, the

natural expansion parameter is µ = λ+1/2 instead of λ.6 We will see that the

leading in µ term of the dynamics results in charge freezing, while the next to

6Of course, �rst orders of the expansion are not sensitive to this shift.
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leading term gives the non-trivial spin dynamics of the lattice model known

as the Haldane-Shastry model [66, 67]

HHSM = 2
∑
j<l

Sj · Sl
(j − l)2 . (3.51)

This model is known to be integrable.[43] The freezing procedure described is

referred to as �freezing trick� and was introduced by Polychronakos [57]. Our

goal is to implement the procedure in a hydrodynamic description.

Before proceeding to a regular expansion of the equations of motion we

start with a heuristic argument. We rewrite the hydrodynamic Hamiltonian

(3.36) in terms of spin and charge variables (3.12) and consider �rst the two

leading terms in a 1/µ expansion

H =

ˆ
dx

{
1

2
ρcv

2
c + ρsvcvs + µρcv

2
s −

(
µ− 1

2

)
ρsv

2
s +

π2µ2

6
ρ3
c

+
π2

4
µρcρ

2
s −

π2

12

(
µ− 1

2

)
ρ3
s

}
(3.52)

=

ˆ
dx

{
π2

6
µ2ρ3

c + µ

[
ρcv

2
s − ρsv2

s +
π2ρcρ

2
s

4
− π2ρ3

s

12

]
+O(1)

}
.(3.53)

The �rst term proportional to µ2 comes from the energy of a static lattice

while the second term proportional to µ gives the Hamiltonian of the Haldane-

Shastry model in the hydrodynamic formulation (see Appendix D), i.e., de-

scribes the spin dynamics. Note that ρc here should be considered as a constant

equal to the inverse lattice spacing of the charge lattice.

To build a systematic expansion in 1/µ we go to the hydrodynamic evo-

lution equations given in (3.39). We introduce the following series in 1/µ =

1/(λ+ 1/2) for the space-time dependent �elds.

u = u(0) +
1

µ
u(1) +

1

µ2
u(2) + ...

u → ρc, vc, ρs, vs

and re-scale time t = τ/µ (or ∂t = µ∂τ ). We substitute these expansions into

(3.39) and compare order by order in µ. Let us consider few leading orders
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explicitly.

3.6.1 O(µ)

In this order the only non-trivial equation gives

0 = −∂x
[
ρ(0)2

c

]
(3.54)

and implies that ρ
(0)
c is constant in space.

3.6.2 O(1)

At this order we have

ρ̇(0)
c = 0, (3.55)

ρ̇(0)
s = −∂x

{
2ρ(0)

c v(0)
s − 2ρ(0)

s v(0)
s

}
, (3.56)

v̇(0)
c = −∂x

{
v(0)2

s + π2ρ(0)
c ρ(1)

c +
π2

4
ρ(0)2

s

}
, (3.57)

v̇(0)
s = −∂x

{
−v(0)2

s +
π2

2
ρ(0)
c ρ(0)

s −
π2

4
ρ(0)2

s

}
. (3.58)

Combining (3.54) and (3.55) we see that ρ
(0)
c is a constant independent of

space-time. The evolution equations (3.56) for spin density, ρ̇
(0)
s and (3.58)

for the spin velocity v̇
(0)
s do not depend on the dynamics of the charge and

are precisely the ones obtained for the Haldane-Shastry model (compare to

(D.17)). We refer the reader to the Appendix D for more details on the

hydrodynamics of the Haldane-Shastry model.

Equation (3.57) is important in resolving a well-known �paradox�. In the

original spin-Calogero model the momentum of the system is identical to the

total charge current since all particles in the model have the same charge. On

the other hand in the Haldane-Shastry model the momentum is carried by

spin excitations and super�cially no charge motion is involved. One can ask

how this is compatible with getting the Haldane-Shastry model in the limit

λ → ∞ from the spin Calogero model. Equation (3.57) is necessary to make

sure that the the current density j(x) = ρcvc + ρsvs is globally conserved at

a given order in 1/µ. Since ρ
(0)
c is a constant in space-time we expect from
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(3.56) and (3.58) that v
(0)
c evolves according to (3.57) to ensure that the current

density is conserved. As a result, there is a charge motion associated with the

momentum but in the large λ limit this �recoil� momentum is absorbed by the

whole charge lattice.

3.6.3 O(1/µ)

For the sake of brevity we do not write down the equations at this order but

make some comments instead. In the previous order, O(1) we noticed (see

eqs. (3.56) and (3.58) that spin degrees of freedom evolve as the charge is

essentially frozen and at that order there is no feedback of the charge de-

grees of freedom on the spin. However, in the order O(1/µ) we have feedback

terms in both evolution equations for ρs and vs. As an example we have ρ̇
(1)
s =

−∂x
{
...+ 2v

(0)
s ρ

(1)
c + v

(0)
c ρ

(0)
s + ...

}
and v̇

(1)
s = −∂x

{
...+ v

(0)
c v

(0)
s + π2

2
ρ

(1)
c ρ

(0)
s + ....

}
which clearly show that there is a charge feedback into the spin sector.

3.6.4 Evolution equations for the Haldane-Shastry model

from the freezing trick

The shortest way to evolution equations for Haldane-Shastry model is to take

the λ→∞ limit directly in the Riemann-Hopf equations (3.43). After rescal-

ing the time t = τ/µ we have

k̃τ + k̃k̃x = 0, (3.59)

where k̃ = k/µ = k/(λ + 1/2). In the large λ limit we have using (3.48,3.49)

k̃R↑,L↑ → ±πρc and k̃R↓,L↓ = −2vs ± 2πρ↓. Then the equation (3.59) gives

evolution equations for the Haldane-Shastry model with (D.12,D.15).

3.7 Illustrations

It is relatively simple to obtain the evolution of arbitrary (smooth) initial den-

sity and velocity pro�les solving equations of the gradientless hydrodynamics

(3.39) numerically. One can do it very e�ectively using the fact that the dy-

namics is separated into four Riemann-Hopf equations (3.43) and using their
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general solutions (3.45). In this section we give numerical results for charge

and spin dynamics corresponding to a relaxation of a (spin) polarized cen-

ter. These results show that due to the nonlinearity of the equations spin can

drag charge in the spin-Calogero model. We notice here that in the examples

considered in this section the dynamics belong to the CO regime. 7

3.7.1 Charge dynamics in a spin-singlet sector

As a �rst example we consider the initial conditions ρs, vs = 0 and some

arbitrary initial conditions for ρc and vc. It is easy to see from (3.39) that

the spin density and spin velocity remain zero at any time while the charge

degrees of freedom satisfy

ρ̇c = −∂x(ρcvc),

v̇c = −∂x

{
v2
c

2
+
π2
(
λ+ 1

2

)2
ρ2
c

2

}
. (3.60)

The hydrodynamics (3.60) are identical to the one of the Calogero-Sutherland

model with one species of particles (except for the change λ + 1 → λ + 1/2).

It can be written as a system of two Riemann-Hopf equations (3.43) for �elds

vc ± π(λ+ 1/2)ρc.

We conclude that the charge dynamics do not a�ect spin in a spin-singlet

state at least in the gradientless limit. It is interesting to see how spin dynamics

a�ect the charge one.

3.7.2 Dynamics of a polarized center

To see how spin drags charge we start with an initial con�guration with static

and uniform charge background. We assume that initially there is no spin

current but there is a non-zero polarization given by a Lorentzian pro�le:

t = 0 : ρc = 1, vc = 0, vs = 0, ρs =
h

1 + (x/a)2
, (3.61)

7In exotic cases involving boundaries between CO and PO regimes one notices singu-
larities developing at the boundary and we expect gradient corrections to correct these
singularities.
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i.e., there is an excess of particles with spin up over particles with spin down

near the origin. The maximal polarization is h and a half-width of the polarized

center is a. As an illustration of spin and charge dynamics we present a solution

of (3.39) with initial conditions (3.61) corresponding to h = 0.25 and a = 4.

Some important comments are in order.

3.7.2.1 Applicability of gradientless hydrodynamics

The hydrodynamic equations we use (3.39) neglect gradient corrections and,

therefore, are approximate. They can be applied only under the condition that

the neglected higher gradient terms are small compared to the terms taken into

account in (3.39). Of course, the exact criteria can be written only when the

form of the higher gradient terms are known explicitly. Here, we are going to

use a much simpler criterion. We require that all �elds change slowly at the

scale of the inter-particle spacing. The uniform background ρc = 1 de�nes the

inter-particle spacing and the characteristic scale for hydrodynamic �elds to

be 1 and we require ∂xf � 1 for all �elds at all x and t that we consider.

One can easily check that ∂xρs(x, t = 0) � 0.1 for all x with the initial

pro�le (3.61) (in fact, the maximal derivative is approximately 0.041). Because

of the gradient catastrophe this condition will be broken at some time and we

can trust the results obtained from (3.39) only up to that time. To be well

within this criterion all our �elds satisfy ∂xf < 0.3 at any given time.

Let us start with the solutions for the case of free fermions, i.e., λ = 0.

3.7.2.2 Free fermions with spin: λ = 0

We present the results for spin and charge dynamics of free fermions with

polarized center initial conditions (3.61) on left panels of Figures 3.5,3.6. The

pro�les ρs(x) and ρc(x)−1 are shown as functions of x for times τ = 0, 1, 3.5, 7

respectively. Here we use a rescaled time τ = (λ + 1/2)t = t/2 for future

convenience.

The dynamics is separated into four Riemann-Hopf equations for each

Fermi momentum. The initial conditions (3.61) can be written as Lorentzian

peaks for each of the four Fermi momenta of fermions and all four Fermi ve-

locities are di�erent. This results in a splitting of an initial Lorentzian peak

into four peaks at larger times which can be easily seen on the left panel of

46



Figure 3.5: Left panel : Spin dynamics of polarized center for free fermions.
The initial charge density pro�le is constant and the initial spin density pro�le
is a Lorentzian (3.61) of a height h = 0.25 and a half-width a = 4. Pro�les at
times τ = t/2 = 0, 1, 3.5, 7 are shown. Right panel : A snapshot of spin density
at time t = τ/(λ+ 1/2) for τ = 7 for λ = 0, 1,∞.

Fig. 3.5. In addition to this linear e�ect the nonlinear e�ects of steepening the

wave front can also be seen. The latter will render gradientless hydrodynamics

inapplicable at later times.

The drag of charge by spin clearly seen in Fig. 3.6 has an essentially nonlin-

ear nature. There is an excess (de�cit) of particles with spin up (down) at the

origin at the initial moment. The particles with spin up will move away from

the center while spin down particles will move towards the center. However,

the average velocity of spin up particles is larger than the average velocity

of spin down particles as it is proportional to the density of those particles.

Therefore, the initial motion of particles away from and towards the origin

creates a charge depletion in the center and charge density maxima away from

that depletion. This gives a qualitative explanation of the picture of charge

dragged by spin which is shown in the left panel of Fig. 3.6. Notice that in this

explanation we used the dependence of propagation velocity on the amplitude

of the wave � an essentially nonlinear e�ect.

3.7.2.3 λ-dependence of spin and charge dynamics

To see the e�ects of the interaction on spin and charge dynamics we show

the spin and charge density pro�les at a �xed time for di�erent values of the

coupling constant λ in the right panels of Figures 3.5,3.6 respectively. It is

convenient to use the scaling dictated by the λ→∞ limit considered in detail

47



Figure 3.6: Left panel : Charge dynamics of polarized center for free fermions.
The initial charge density pro�le is constant and the initial spin density pro�le
is a Lorentzian (3.61) of a height h = 0.25 and a half-width a = 4. Pro�les at
times τ = t/2 = 0, 1, 3.5, 7 are shown. Right panel : A snapshot of a rescaled
charge density (λ+1/2)(ρc−1) at time t = τ/(λ+1/2) for τ = 7 for λ = 0, 1,∞.

in Section 3.6. Namely, we use a rescaled time τ = (λ + 1/2)t and rescale

the deviation of the charge density from the uniform by background plotting

(λ+ 1/2)(ρc− 1) for the charge density. The charge and density pro�les found

at τ = 7 are remarkably close for λ ranging from the free fermion case λ = 0

to the limit of the Haldane-Shastry model λ→∞.

The results con�rm that the e�ect of spin dynamics on charge is suppressed

by 1/λ for large λ. For a given initial spin density pro�le the maximal ampli-

tude of charge deviation is of the order 1/(λ+ 1/2).

3.8 Conclusions

In this chapter we considered a classical two-�uid hydrodynamics derived as

a semiclassical limit of the quantum spin-Calogero model (sCM) de�ned in

(5.1). The model (5.1) is essentially quantum as it involves identical particles

and a particle permutation operator. There is an essential ambiguity in how

one takes a �semiclassical� limit. Here we considered a limit which is obtained

when the density of particles goes to in�nity so that ~ρ is kept �nite in the

limit ~ → 0. We have also neglected gradient corrections to hydrodynamic

equations assuming that �elds change very slowly on the scale of the inter-

particle spacing. With all these assumptions, hydrodynamic equations are

obtained from the Bethe ansatz solution of sCM. They have the simplest form

when written in terms of �elds corresponding to dressed Fermi momenta of
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Bethe ansatz. In terms of these �elds (3.48,3.49), the equations separate into

four independent Riemann-Hopf equations (3.43) which are trivially integrable.

We presented some particular solutions of the hydrodynamic equations

illustrating interactions between spin and charge. There is no true spin-charge

separation in the sCM. However, in the limit of large coupling constant λ→∞
the spin degrees of freedom do not a�ect the dynamics of charge degrees of

freedom. The spin dynamics then is described by the hydrodynamics of the

Haldane-Shastry spin model. We considered explicitly both this limit (λ→∞)

and the limit (λ = 0) of free fermions with spin.

The quantum scattering phase of particles interacting via 1/x2 potential

is momentum independent. Moreover, it is the same for particles of the same

species and for particles of di�erent species because of the SU(2) invariance of

(5.1). It is well known that this allows one to describe the sCM as a model of

free exclusons - i.e. , particles obeying an exclusion statistics [44�47]. We do

not keep the SU(2) invariance of the original quantum model (5.1) explicitly

when taking the classical limit. However, this invariance is responsible for

the variable separation that we observed in our hydrodynamics. We note

here that the sCM can be generalized to the �multi-species Calogero model�

[68]. Because of the absence of the SU(2) invariance for a more general two-

species Calogero model one does not have the separation of variables for the

corresponding hydrodynamics.

The classical gradientless hydrodynamics derived in this chapter captures

many of the features of sCM. It is straightforward to generalize our results

to the case of the SU(n) Calogero model and to use the gradientless hydro-

dynamic equations for problems where �eld gradients can be neglected. In

Chapter 5 and a separate publication [69] we use these equations in instanton

calculations for the computation of emptiness formation probability similar to

what was done in Refs [65, 70].

However, some important features of the hydrodynamic description do re-

quire an account of gradient corrections. First of all, the exact hydrodynamic

equations are expected not to have an exact separation of variables. The ob-

tained Riemann-Hopf equations (3.43) acquire gradient corrections and four

such equations written for (3.48,3.49) are expected to be coupled by those gra-

dient corrections similarly to the case of the one-species Calogero-Sutherland
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model [71]. Similarly, we expect that the equations with gradient corrections

will have soliton solutions corresponding to quasi-particle excitations of the

quantum model (5.1) [16, 43, 71].

The hydrodynamic description of quantum sCM has been addressed in

Refs.[54, 55] using the collective �eld theory approach. The comparison of our

results with results of those works is not straightforward. One should apply

the collective formulation of Refs.[54, 55] to the states from an appropriate

sector of coherent states and take a corresponding classical limit. It would

be especially interesting to see how the three hydrodynamic regimes discussed

here appear from Refs.[54, 55]. One can also recognize a lot of similar looking

terms in quantum hydrodynamics of Refs. [55] and in our classical gradientless

hydrodynamics. It would also be very important to understand the role of the

degeneracy due to the Yangian symmetry in the sCM on its hydrodynamics.

The latter degeneracy was neglected in the classical hydrodynamics in this

chapter.

As mentioned in the thesis introduction (chapter 1), one speciality of the

Calogero family is that it remains integrable even in the presence of an external

harmonic trap. To the best of our knowledge this is the only example of this

kind. The presence of an external harmonic trap is most often unavoidable in

cold atomic experiments. In the next chapter we will study the spin-Calogero

model in the presence of an external trap.
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Chapter 4

Cold Fermi-gas with inverse square

interaction in a harmonic trap

4.1 Introduction

The possibility of creating one and quasi-one-dimensional systems by con-

�ning cold atoms in cigar-shaped harmonic traps[8�12, 72] has raised inter-

est in one-dimensional models of many body systems. Standard perturba-

tive methods developed in many-body theory are often not applicable to one-

dimensional models because the low dimensionality e�ectively makes any in-

teraction strong. On the other hand there are some non-perturbative methods

which work speci�cally for particular (integrable) models in one dimension.

The Bethe Ansatz approach, for example, was successfully used in construct-

ing the complete thermodynamics of quantum integrable systems. However,

this approach is not very suitable for studying the dynamics and correlation

functions, due to the complexity of Bethe Ansatz solutions. To address dy-

namic questions the method of collective �eld theory[58�60] was developed.

It is essentially a hydrodynamic approach to many body systems. Many phe-

nomena such as spin-charge dynamics[15], solitons[16], shock waves[73], spin

density evolution [10, 11] and sound wave propagation[9] which have become

of increasing experimental interest[8�11, 74, 75] can be studied via the col-

lective �eld theory formalism. This formalism can be used both in combina-

tion with the Bethe Ansatz for integrable models where it can even produce

some exact results for dynamical problems or as a phenomenological approach

51



where exact microscopic derivations are too di�cult or even impossible. The

hydrodynamic approach allows to study truly nonlinear and nonperturbative

dynamic behavior[15] of many body systems. Linearized hydrodynamic equa-

tions are equivalent to the method of bosonization which was widely used

for treating interacting systems in one dimension[38, 76]. The well-known

phenomenon of spin-charge separation in the two-component fermions with

contact interactions was studied by such a Luttinger Liquid description[77�

79]. Similar studies of spin-charge separation and dynamics in two-component

Fermi-Hubbard model have been adressed using techniques of time-dependent

density matrix renormalization group[80] and time-dependent spin-density-

functional theory[81, 82].

In Refs. [15, 69] the collective �eld theory approach was applied to the

well-known spin-Calogero model [43, 83]to study the coupled nonlinear dy-

namics of spin and charge. The model has a long range 1/r2 interaction and

is not the easiest one to realize experimentally. On the other hand, the po-

tential 1/r2 should be considered as relatively short ranged in one dimension1.

Indeed, we will see that, e.g. , density and spin denssity pro�les for a model

with 1/r2 interaction are qualitatively similar to the ones for the model with

contact (short-ranged) interactions[2]. Therefore, although the interaction de-

cays as a power law, it is very closely linked to short-ranged interactions due

to one-dimensionality. The model has another advantage: it is integrable and

the integrability is not destroyed by the presence of an external harmonic

potential[84] V (x) = mω2

2
x2. In contrast, for, say, the quantum integrable

model of fermions with delta-interaction[85] the integrability is destroyed by

an external harmonic potential.

In this chapter, we explore the e�ects of the harmonic trap on the col-

lective behavior of the spin-Calogero model (sCM) at zero temperature. Its

1Notice that the solution to Laplace equation in 1D behaves as ∼ r, ie, it grows with
distance. Thus 1/r2 in 1D being three powers lower is de�nitely "shorter-ranged" than
1D Coulomb potential. Hence, although it is sometimes conventional to term power law
interactions as "long ranged" one should see this terminology in a relative sense and also
have speci�c quantities for comparison in mind. For instance the hydrodynamic quantities
we computed suggest that this is very similar to the model of short-ranged interactions.
Moreover, one of the conventional de�nitions of short-ranged models is one where force falls
o� quicker than r−d, where d is the dimension which is certainly satis�ed by the Calogero
family.

52



Hamiltonian is given by[40, 43, 83]

H = −1

2

N∑
i=1

∂2

∂x2
i

+
1

2

∑
i 6=j

λ(λ− Pij)
(xi − xj)2 +

1

2

N∑
i=1

x2
i . (4.1)

Here and throughout the chapter we take the mass of particles as unity and

measure distances in units of an oscillator length l =
√

~/mω and energy in

units of ~ω. The operator Pij exchanges the positions of particles i and j[40].
The coupling parameter λ is positive and N is the total number of particles.

The last term in (4.1) is the harmonic trap potential. It prevents particles

from escaping to in�nity and corresponds to e�ective optical potentials used

in experiments to keep particles. The above model (4.1) was shown to be

integrable[84]. The fully nonlinear hydrodynamics for the above model (4.1)

without an external trap has been investigated in Ref. [15].

The chapter is organized as follows. In Sec. 4.2 we present the collective

description of the microscopic model (4.1) in terms of collective �elds and

write equations of motion for these �elds. Then we obtain static solutions:

density and spin density pro�les in Sec. 4.3. We consider the dependence of

these equilibrium pro�les on coupling and �nd it to be very similar to the

recent predictions of Ma and Yang[2] for the model of fermions with contact

interaction in a harmonic trap. In Sec. 4.4 we show how hydrodynamic �elds

evolve when the system is perturbed from the equilibrium con�guration. We

model an initial non-equilibrium pro�le as the one obtained by cooling the

gas with an additional potential, i.e., keeping what is commonly referred to

in literature[9] as a �knife� - in place (for examples of experiments involving

�knife� see Refs [75] and [9]). In this section (4.4) we solve the hydrodynamic

equations of motion exactly. These equations written for dressed Fermi mo-

menta are reduced to forced Riemann-Hopf equations. The solutions of these

equations have a very simple form. It turns out that in the phase-space pic-

ture solutions are given just by a rotation by an angle t (ωt in physical units)

similar to a classical harmonic oscillator. We also study the density dynamics

and see how an initial density perturbation evolves. The exact solution of

the forced Riemann-Hopf equation is presented in Appendix E for the reader's

convenience.
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4.2 Collective Field theory

In this section we summarize the main results of the collective �eld theory

for the sCM[15, 54, 55] following notations of Ref. [15]. We also include an

external harmonic potential which is done in a straightforward way. The mi-

croscopic Hamiltonian (4.1) is rewritten in terms of hydrodynamic �elds: the

density of particles with spin up/down ρ1,2 and their respective velocity �elds

v1,2. Although, it is possible to study the exact quantum hydrodynamics of

sCM[54, 55], in this chapter we neglect hydrodynamic terms with higher order

of spatial gradients (gradientless approximation) and treat the equations of

motion classically following Ref. [15]. This description is referred to as a gra-

dientless hydrodynamics and is applicable for su�ciently smooth and slowly

evolving �eld con�gurations, where terms with derivatives of �elds can be ne-

glected. A fully nonlinear gradientless hydrodynamics can describe nonlinear

phenomena missed in conventional linear bosonization approach. In Ref. [15],

this theory was used to study the non-linear coupling between the spin and

charge degrees of freedom. 2 In Ref. [69] the Emptiness Formation probabil-

ity (a particular n-point correlation function) was calculated using instanton

approach to the collective �eld theory of sCM.

The collective �eld theory for sCM in the gradientless approximation is

remarkably simple and allows for separation of variables in terms of dressed

Fermi momenta[15]. Densities and velocities are expressed as linear combina-

tions of dressed Fermi momenta.

The aim of this chapter is to extend this �eld theory by including an exter-

nal potential, in particular, a harmonic potential. We �nd analytic solutions

for both static pro�les and dynamics of charge and spin densities of sCM in

the presence of harmonic trap. The non-equilibrium initial con�guration is

realized by cooling the gas with an appropriate knife in place and then sud-

denly removing the knife as done in experiments (details are in Sec. 4.3 and

Sec. 4.4). For simplicity, we focus here on a particular hydrodynamics sector

of the model, i.e., we assume that the following inequality is valid at any time

everywhere in space

|v1 − v2| < π(ρ1 − ρ2). (4.2)

2The sCM is a very special model and it does not exhibit true spin-charge separation
even in the linear approximation. In sCM the spin and charge velocities are the same.
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In addition, we assume throughout this chapter that �1� labels the majority

spin, i.e., M1 > M2, where M1,2 is the total number of particles with spin 1

and spin 2 respectively, i.e.,

M1,2 =

ˆ +∞

−∞
ρ1,2 dx. (4.3)

We introduce particular linear combinations of these �elds

kR1,L1 = v1 ± (λ+ 1)πρ1 ± λπρ2, (4.4)

kR2,L2 = (λ+ 1)v2 − λv1 ± (2λ+ 1)πρ2, (4.5)

referring to kR,L;1,2 as to dressed Fermi momenta (see Ref. [15] for details). For

future convenience we invert (4.4,5.12) to get

ρ1 =
(kR1 − kL1)

2π(λ+ 1)
− λ(kR2 − kL2)

2π(λ+ 1)(2λ+ 1)
, (4.6)

v1 =
kL1 + kR1

2
, (4.7)

ρ2 =
kR2 − kL2

2π(2λ+ 1)
, (4.8)

v2 =
kL2 + kR2 + λ(kL1 + kR1)

2(λ+ 1)
. (4.9)

In terms of dressed momenta in the sector (4.2) the hydrodynamic Hamiltonian

in harmonic trap in the gradientless approximation takes the form

H =
1

12π (λ+ 1)

ˆ +∞

−∞

{
k3
R1 − k3

L1 +
1

2λ+ 1

(
k3
R2 − k3

L2

)}
dx

+
1

2

ˆ +∞

−∞
x2

(
kR1 − kL1

2π(λ+ 1)
+

kR2 − kL2

2π(λ+ 1)(2λ+ 1)

)
dx. (4.10)

The �rst term in (4.10) was derived in Ref. [15] and the second term is due to

the presence of the external harmonic trap. Notice, that the second term in

(4.10) can be written as
´ +∞
−∞

x2

2
ρc dx where ρc = ρ1+ρ2 (4.6,4.8) and represents

the e�ect of the harmonic potential.

The Poisson brackets between hydrodynamic �elds are given by

{ρσ(x), vσ′(y)} = δσσ′δ
′(x− y), (4.11)
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where σ, σ′ = 1, 2 are spin labels.

Then (4.11) along with (4.4,5.12) give the following brackets for k′s, (here

α, β take values R1, L1, R2, L2)

{kα(x), kβ(y)} = 2πsαδαβδ
′(x− y) (4.12)

with

sR1 = −sL1 = λ+ 1, (4.13)

sR2 = −sL2 = (λ+ 1)(2λ+ 1). (4.14)

The collective Hamiltonian (4.10) with Poisson brackets (4.12) generate

equations of motion for �elds kt = {H, k} which turn out to be the forced

Riemann-Hopf equations. Namely, for any k = k1R, k1L, k2R, k2L we have

kt + kkx = −x. (4.15)

For the case of a more general external potential V (x) the right hand side of

(4.15) should be replaced by −∂xV . One would expect to arrive at Riemann-

Hopf equations [15] modi�ed by a force term due to the external potential

V (x). It is remarkable, though, that the coupling constant λ does not enter

(4.15) at all.

4.3 Static solutions

In this section we consider static density and velocity pro�les of the sCM in

a harmonic trap in the gradientless approximation. We give simple analytical

expressions for these pro�les for a system with an arbitrary spin polarization

having a �xed number M1 of spin-up and M2 of spin-down particles. We de-

scribe static pro�les in the form of phase-space diagrams. This description is

very simple and gives a direct way to studying the dynamics of the sCM (see

Sec. 4.4). Although these results are obtained for a particular 1D model with

long range interaction (sCM) the static pro�les look very similar to the ones

recently obtained by Ma and Yang for a fermionic model with contact inter-

action in harmonic trap[2]. As mentioned earlier this similarity is, probably,
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due to the fact that the potential 1/r2 can be considered in one dimension as

relatively short ranged.

To obtain equilibrium (static) density and velocity pro�les we assume no

time dependence in (4.15) and obtain,

∂x(k
2 + x2) = 0 (4.16)

which is the equation of a �circle� in the phase space (x− k) plane

k2 + x2 = const. (4.17)

The constant in (4.17) depends on λ, M1 and M2 and can be easily de-

termined using (4.6,4.8) along with (4.3). We �nd that the dressed-momenta

for spin-up (kR1,L1 ≡ k1) and spin-down (kR2,L2 ≡ k2) particles satisfy the

equations of two circles respectively.

k2
1 + x2 = 2(λ+ 1)M1 + 2λM2, (4.18)

k2
2 + x2 = 2(2λ+ 1)M2. (4.19)

The equation (4.18) de�nes a double-valued function k1(x). The positive value

is identi�ed with kR1(x) while the negative one gives kL1(x). The values of

kR2,L2(x) are obtained in a similar manner from the second equation (4.19).

In order to write the expressions for charge-density (ρc = ρ1 + ρ2) and

spin-density (ρs = ρ1− ρ2) it is convenient to use a re-scaled coordinate η and

re-scaled charge and spin densities ρ̃c,s given by

η =
x√

(2λ+ 1)N
, (4.20)

ρ̃c,s =

√
(2λ+ 1)

N
ρc,s. (4.21)

Here the total spin M , the total number of particles (charge) N and the
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magnetization ν are de�ned respectively as

M = M1 −M2, (4.22)

N = M1 +M2, (4.23)

ν =
M

N
. (4.24)

From (4.22-C.24) we have

M1,2 =
N

2
(1± ν). (4.25)

With these de�nitions we have from (4.18,4.19) and (4.6,4.8)

ρ̃c =
(2λ+ 1)

π(λ+ 1)

√
1 +

ν

2λ+ 1
− η2 +

1

π(λ+ 1)

√
1− ν − η2, (4.26)

ρ̃s =
(2λ+ 1)

π(λ+ 1)

(√
1 +

ν

2λ+ 1
− η2 −

√
1− ν − η2

)
. (4.27)

One could also notice as a cross-check that

ˆ +∞

−∞
ρ̃c dη =

1

N

ˆ +∞

−∞
ρc dx = 1, (4.28)

ˆ +∞

−∞
ρ̃s dη =

1

N

ˆ +∞

−∞
ρs dx = ν. (4.29)

The analytical expressions for momenta (4.18,4.19) and the analytical ex-

pressions for the charge density (4.26) and the spin density (4.27) are the main

results of this section. We see that in terms of phase space (Fig. 4.1) the sys-

tem can be described by two circles of di�erent radii. The radii depend on the

coupling strength λ and the numbers of particles M1 and M2 as can be seen

from (4.18,4.19). This is consistent with an exclusion statistics picture[15] so

that the particle with spin up occupies the area 2π(λ+ 1) in the phase space

while in the domain where both spin up and spin down particles are present

the area is 2π(2λ + 1) per 2 particles. In the limit λ = 0 (free fermions) the

inner circle in Fig. 4.1 is �lled with double density compared to the annulus

region between the inner and outer circles. This is re�ected as a bump feature

for the charge density (see Fig. 4.2). In the limit of a very strong repulsion

λ → +∞ the particles are mutually exclusive with the phase-space area ap-
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Figure 4.1: Phase-space picture for sCM with λ = 2 in equilibrium with
an overall magnetization ν = 0.8. The radii of circles are given by√
N(2λ+ 1)(1− ν) and

√
N(2λ+ 1 + ν) for inner and outer circles respec-

tively. Particles �ll the phase space uniformly with the density of two particles
(up and down) per the area 2π(2λ+ 1) in the inner circle and of one particle
(up) per the area 2π(λ+1) in the annulus area between inner and outer circles.
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proximately 2πλ per particle and the charge density does not show any bump

(see Fig. 4.2). For an arbitrary λ the bump feature interpolates between these

two limits as shown in Fig. 4.2 with an explicit formula for the static charge

density pro�le given in Eq. (4.26). We notice here that the size of the cloud

Lcigar = 2
√
N(2λ+ 1 + ν) given by the support of (4.26) grows with λ (1D

gas expands when λ increases). We have taken this main dependence into

account by plotting the density as a function of the re-scaled coordinate η.

It is interesting to note that although the bump in the charge density pro�le

disappears in the limit of a very strong repulsion, the analogous feature in the

spin-density pro�le is present for any λ. It is practically intact when plotted

in terms of re-scaled variables (see Fig. 4.3) and is given explicitly by (4.27).

One should expect qualitatively similar pro�les for the fermions with short

range repulsion in a harmonic trap. Indeed, the physical origin of the bump

feature is transparent for noninteracting fermions. It comes just from a super-

position of densities of clouds of di�erent size. We expect that the repulsive

interaction smears out the bump feature making sure that the particles of

di�erent species avoid each other similarly to the Pauli exclusion of particles

of the same species. Indeed, recent calculations of charge and spin density

pro�les for fermions with contact interactions by Ma and Yang [2] give results

very similar (qualitatively) to the ones shown in Fig. 4.2 and Fig. 4.3.

The following comment is in order. As the origin of the bump feature

in the equilibrium charge density pro�le can be traced to the model of non-

interacting fermions, this feature is generic and should be observed also in

three-dimensional harmonic traps which are widely used in cold atom exper-

iments. Indeed, the superposition of two ellipsoid-like clouds of spin-up and

spin-down particles will give the bump in the overall number density of atoms.

The repulsive interaction will smear out the feature while the attractive one

will amplify it.

To manipulate cold atom systems experimentally, additional external po-

tentials are often used. The gas is cooled in the presence of a harmonic trap

and an additional external potential. The latter is usually created by optical

means and referred to as �knife�. It is possible to create an external potential

di�erent for di�erent particle species (spin up and spin down here). In the

following we concentrate on the potential acting only on �charge� degrees of
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Figure 4.2: Equilibrium charge density pro�le for various values of coupling
constant λ for �xed magnetization ν = 0.8 is shown in re-scaled variables
(4.20,4.21). λ = 0 corresponds to noninteracting fermions. Upon increasing
the interaction strength λ the equilibrium pro�le eventually loses its bump
feature. This prediction for the sCM is very similar to recent predictions of
Ma and Yang for fermions with contact interaction[2].

freedom.

We choose a knife potential of the form Vknife = −V0e
−x2/a2 . Then the

static equation (4.16) is modi�ed as

∂x

(
k2

2
+
x2

2
+ Vknife

)
= 0. (4.30)

Due to the inclusion of the knife (4.30) the circles in phase-space acquire

peaks (attractive knife V0 > 0) or dips (repulsive knife V0 < 0). There is also

a peak or dip in the corresponding charge density pro�le. The knife shape,

the corresponding phase-space and the charge density pro�les are shown in

Fig. 4.4. After using the knife to create an initial density pro�le with a peak

(dip) one can remove the knife potential and study the evolution of density

(or velocity) pro�les as a function of time. The initial con�guration is a non-

equilibrium con�guration. Its dynamics is governed by (4.15,4.4,5.12). We

study the corresponding evolution in the next section Sec. 4.4.

4.4 Dynamics

Once the knife potential (Fig. 4.4) is suddenly removed we expect the system

to evolve. In this section we study this dynamical behavior. Usually, the

hydrodynamic equations are coupled partial di�erential equations. For the

sCM in the gradientless approximation, it is possible to separate variables using
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Figure 4.3: Equilibrium spin density pro�le for various values of coupling
constant λ for the �xed magnetization ν = 0.8. In re-scaled variables the
dip in the spin density pro�le depends weakly on the interaction strength λ.
Compare with the charge density pro�le of Fig. 4.2.

Figure 4.4: (left to right) a) Attractive knife potential in the presence of which
the fermi gas is cooled. b) The distortion of phase space circles due to the
knife. c) The corresponding charge density pro�le. The values of ν and λ are
ν = 0.5 and λ = 2.
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dressed Fermi momenta instead of charge and spin densities and velocities [15].

The dressed momenta are related to hydrodynamic densities and velocities by

(4.4,5.12) and satisfy the simple forced Riemann-Hopf equation (4.15). We

reproduce it in this section for the reader's convenience.

kt + kkx = −x, (4.31)

where k = k1R, k1L, k2R, k2L.

It is remarkable that the force term (right hand side) is the same for all

dressed momenta. This is just another manifestation of the noninteracting

nature of Calogero-type models (free particles with exclusion statistics). Of

course, physical quantities of interest such as densities and velocities are some

λ-dependent linear combinations of k′s (4.6,4.7,4.8,4.9) and hence do depend

on the coupling strength λ.

As explained in Appendix E the forced Riemann-Hopf equation (4.31) can

be easily solved in parametric form. Given an initial pro�le k0(x) = k(x, t = 0)

(specifying the curve in a phase space picture) we can write a pro�le k(x, t) at

time t in a parametric form

x(s; t) = R(s) sin [t+ α(s)] , (4.32)

k(s; t) = R(s) cos [t+ α(s)] . (4.33)

Here the parameter is s and the functions R(s) and α(s) are determined by

an initial pro�le k0(x) as

α(s) = tan−1

(
s

k0(s)

)
, (4.34)

R(s) =
√
s2 + k0(s)2 (4.35)

consistent with (4.32,4.33) at t = 0.

We immediately notice that the evolution (4.32,4.33) is just a rotation of

the curve k(x) in the x− k phase space with constant angular velocity 1 (ω in

dimensionfull variables).

In this section we take the initial pro�le k0(x) as the one obtained as

an equilibrium pro�le in phase space in the presence of the knife potential

(Fig. 4.4b). When the knife is removed suddenly this pro�le serves as an
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Figure 4.5: Top Row: (left to right) Evolution of phase space for time t=0,0.08
and 0.23 respectively. We see that this is merely a rotation by angle t. Bottow
Row: Corresponding charge density evolution for times t=0,0.08,0.23. The
additional peak created by the attractive knife �attens and eventually splits
into two peaks. The values of ν and λ are ν = 0.5 and λ = 2.

initial non-equilibrium pro�le. The time evolution in the phase-space is just a

rotation of an initial pro�le by an angle θ = t as shown in Fig. 4.5. From the

phase space picture at time t obtained by this rotation of an initial pro�le it is

straightforward to compute the charge density evolution using (4.6-4.9) (and

similarly for spin and velocities evolutions).

The top row of Fig. 4.5 shows the phase space rotation at various times.

The bottom row is the extracted charge density. Since we are dealing with a

gradientless theory, we can study the pro�le evolution only at times for which

the �eld pro�les are smooth. This gradientless approximation is commonly

employed in studying nonlinear equations [56] and allows to study the evolu-

tion for a �nite time when the nonlinear terms dominate over the terms with

higher order in spatial gradients (dispersive terms). Of course, this is possible

only if an initial pro�le is su�ciently smooth. For longer times, the solution

inevitably evolves towards con�gurations with large �eld gradients (such as

shock waves[73, 74]) and the gradientless approximation becomes inapplica-
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ble. Choosing a su�ciently broad pro�le of the knife potential we make sure

that during the initial stage of the evolution, corrections due to gradient terms

in equations of motion are small. We emphasize that this evolution obtained

in the gradientless approximation already shows some interesting features.

We see that the central peak (created by cooling with attractive knife) in

the charge density pro�le slowly �attens and eventually splits into two peaks

(see the bottom row of Fig. 4.5). Due to nonlinear e�ects these two split peaks

start to steepen and we expect that at that point, gradient corrections will play

a role and the pro�le would develop dispersive shock waves.

Although the solution of (4.31) is not well de�ned beyond some time (gra-

dient catastrophe time) the parametric solution (4.32,4.33) can be formally

extended beyond that time and produces multiply-valued solutions. These

multiply-valued solutions should not be used as the equation (4.31) has cor-

rections with higher power of gradients which will signi�cantly change the

solution beyond the gradient catastrophe time. It is interesting however that

in time t = 2π the solution should reproduce an initial pro�le and this is an

exact feature of the spin-Calogero model. Of course, any corrections to the

sCM model destroying integrability will lead to equilibration of the system and

the time-periodicity will be lost. Probing the charge dynamics in Fermi gases

at large times is indeed possible experimentally[9] and it would be interesting

to see this equilibration experimentally.

Another interesting perturbation is the sudden shift of the minimum of an

external harmonic potential. This is a standard technique for determining trap

frequencies in cold atom experiments. The dynamics of the system after this

sudden shift can be easily understood within the present formalism. Indeed

the dynamics is just a rotation of the curve k(x) in the x − k phase space

with constant angular velocity. Thus, we obtain the centre-of-mass oscillation

with oscillation frequency ω. Notice that such a study is not trivial with-

out the phase-space picture, thereby, highlighting the use of the phase-space

description.

While our analytical expressions (4.32-4.33) are correct for free fermions

and the sCM (long ranged interactions) we expect qualitatively similar dynam-

ics at small times for systems with short range interaction. The corresponding

dynamics studies for fermions with contact interaction (short ranged) could
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be an interesting extension to the recent work of Ma and Yang[2]. To the best

of our knowledge there are no such nonlinear dynamic studies for fermions

with contact interaction in external harmonic trap. However, recently very

similar qualitative features of nonlinearity have been observed in the spin and

charge density dynamics of the Fermi-Hubbard model[82]. We would also like

to remark that although our predictions for dynamics are for pure 1D systems

we do expect a qualitatively similar behavior for the more familiar quasi 1D

(cigars) experimental setups[9�11]. Indeed, using nonlinear hydrodynamic ap-

proach we found quantitative agreement with recent experiments on quasi 1D

unitary Fermi-gas[1].

4.5 Conclusions

In this chapter we addressed statics and dynamics of a model of one-dimensional

spin 1/2 fermions interacting through a long range inverse square interac-

tion in an external harmonic trap (4.1). While one-dimensional systems with

long range interactions are yet to be realized there has been a great progress

in experimental studies[9�11] of quasi-one-dimensional fermionic models with

contact-like interactions in an external harmonic trap.

Inclusion of an external harmonic trap potential is known to break the

integrability of most models (for example models of bosons or fermions with

delta interaction). On the contrary, the sCM (4.1) remains integrable even in

the presence of an external harmonic potential [84]. Similarly, the collective

�eld theory of sCM with harmonic trap retains a rather simple structure with

dynamics analogous to the one of non-interacting fermions in a harmonic po-

tential. In this chapter we used the spin-Calogero model as a toy model of

more realistic systems of cold Fermi atoms in quasi-one-dimensional harmonic

traps.

Using the collective �eld theory reviewed in Sec. 4.2 we studied static den-

sity pro�les in Sec. 4.3 as well as dynamics of the model (see Sec. 4.4).

The obtained static solutions are found to be qualitatively similar to the

static solutions for fermions with contact interaction in harmonic trap[2]. This

similarity with short range interactions, probably, can be attributed to low-

dimensionality where 1/r2 can be considered as relatively short ranged. The
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obtained density pro�les are given in (4.26,4.27) and are shown in Figures

4.1, 4.2 and 4.3. The solution of a similar problem for fermions with contact

interactions requires numerical solution of Bethe Ansatz equations in combi-

nation with the Thomas-Fermi approximation[2]. An interesting feature of

an equilibrium solution is the �bump� in the charge density pro�le present

for a system with non-zero polarization. The reason for this feature is rela-

tively straightforward as it is already present in the system of non-interacting

fermions. It is interesting, however, that the smearing of this bump with an

increase of the interaction is qualitatively very similar for both fermions with

contact interaction[2] and for sCM model (Fig. 4.2). We also notice that while

the bump feature in charge density (Fig. 4.2) eventually disappears at strong

coupling the spin density pro�le remains robust (Fig. 4.3). This spin den-

sity pro�le is qualitatively similar to that for the contact interaction model

considered in Ref. [2].

To study the dynamics of the cold gas in harmonic trap we create an

initial non-equilibrium density pro�le by �cooling� the gas in an additional

attractive potential (�knife�). We choose the form of the attractive knife po-

tential Vknife = −V0e
−x2/a2 similar to the one used in experiments[9]. When

the knife is suddenly removed the density pro�le shown in Fig. 4.4 serves as an

initial non-equilibrium pro�le which is expected to evolve in time. We show

in Sec. 4.4 that the central peak in the charge density pro�le (created by the

knife) slowly �attens/broadens and eventually splits into two peaks (see the

bottom row of Fig. 4.5). Due to nonlinear e�ects these two split peaks start

to steepen and we expect that at that point, gradient corrections will play a

role and the pro�le would develop dispersive shock waves[73, 74].

In conclusion, we studied equilibrium con�gurations as well as dynamics of

the spin-Calogero model in a harmonic trap. We argued that the model can

serve as a toy model for cold Fermi atoms in one dimensional traps due to the

relatively short range nature of an inverse square potential in one dimension.

The integrability of spin-Calogero model is not destroyed by the presence of

harmonic potential and simple analytic solutions of hydrodynamic equations of

motion for this model in the gradientless approximation are readily available.

In this chapter and in chapter 3 we studied collective �eld theory and

investigated several aspects of nonlinear hydrodynamics of this very special
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integrable model. A hydrodynamic description also helps in computing certain

correlation functions, such as the Emptiness Formation Probability (EFP) that

measures the probability P (R) that a region of length 2R is completely void

of particles. In Chapter 5 we study the EFP in the spin-Calogero Model and

Haldane-Shastry Model using their hydrodynamic description.
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Chapter 5

Emptiness and Depletion

Formation Probability in spin

models with inverse square

interaction

5.1 Introduction

One-dimensional integrable models have an important role in the study of

strongly correlated systems. When the reduced dimensionality makes interac-

tion unavoidable, perturbative techniques can quickly loose applicability and

over the years more sophisticated tools have been developed to tackle these

problems. These tools clearly involve certain approximations and the existence

of an exact solution for some models can allow to check their validity.

The conventional approach in solving quantum integrable model is known

as the Bethe Ansatz (and its generalization). It is very successful in con-

structing the thermodynamics of a system, but not very suitable to study

its dynamics and the correlation functions, due to the increasing complexity

of its solutions. However, a very elegant formalism was developed using the

Quantum Inverse Scattering Method (QISM) [86] to express correlation func-

tions as determinants of certain integral operators (Fredholm determinants).

In this formalism, the simplest correlation function one can write is known

as the Emptiness Formation Probability (EFP) and measures the probability
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P (R) that a region of length 2R is completely void of particles. For lattice

models, one is interested in P (n), the probability that n consecutive lattice

sites are empty. In a spin chain, taking advantage of the Jordan-Wigner map-

ping between particles and spins, the same quantity can be thought of as the

Probability of Formation of Ferromagnetic Strings (PFFS), i.e. the probability

that n consecutive spins are aligned in the same direction.

One should notice that the EFP is an n-point correlator and is, therefore,

a much more complicated object compared to the usual two-point correlation

functions one normally studies in condensed matter physics. However, due to

the strongly interacting nature of the 1-D model, the QISM tells us that it is

in fact no worse than other correlators between two points a length n apart

and even somewhat simpler and more natural. Moreover, the EFP is one of

those extended objects like the Von Neumann Entropy, or the Renyi Entropy,

that in recent years have attracted a lot of interest because of their ability

to capture global properties that were not observed before from the study of

2-point correlation functions. The latter quantities are of course motivated

by studies of entanglement and quantum computation, while the EFP arises

naturally in the contest of integrable theories.

Despite the claimed simplicity, the calculation of the EFP is by no means an

easy task. For some models, the speci�c structure of the solution has allowed

to �nd the asymptotic behavior of the EFP as n→∞. For instance, the EFP

in the whole of the phase-diagram of the XY model was calculated in [65, 87�

89] using the theory of Toeplitz determinants, while for the critical phase of

theXXZ spin chain the solution was found in [90�92] using a multiple-integral

representation. The EFP has been considered also for the 6-vertex model [93�

95], for higher spins XXZ [96] and for dimer models [97]. We also remark

that high temperature expansions of the EFP for Heisenberg chains have been

studied in [98�100]. A recent review of the EFP can be found in [88] or [65].

Field theory approaches are normally most suited for the calculation of

large distance asymptotics of correlation functions, but conventional tech-

niques like those inspired by the Luttinger Liquid paradigm (i.e. bosoniza-

tion) are not appropriate for extended objects like the EFP and only capture

its qualitative behavior, while being quantitatively unreliable, as it was shown

in [101]. The reason for this failure is that Luttinger Liquid theory is applica-
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ble only to low-energy excitations around the Fermi points, where the linear

spectrum approximation is valid, while correlators like the EFP involve de-

grees of freedom very deep in the Fermi sea, where the whole spectrum with

its curvature is important.

For this reason, the �eld theory calculation of the EFP requires a non-linear

generalization of conventional bosonization, i.e. a true hydrodynamic descrip-

tion of the system. In [65] it was shown that, with such a non-linear collective

description available, the calculation of the EFP is possible by employing, for

instance, an instanton approach.

In this chapter, we will extend the machinery developed in [65] and ap-

ply it to the spin-Calogero Model (sCM), for which a (gradientless) hydrody-

namic description was recently constructed from its Bethe Ansatz solution [15].

The sCM is the spin−1/2 generalization [40�42] of the well-known Calogero-

Sutherland model [43] and is de�ned by the Hamiltonian

H = −~2

2

N∑
j=1

∂2

∂x2
j

+
~2

2

(π
L

)2∑
j 6=l

λ(λ−Pjl)

sin2 π
L

(xj − xl)
, (5.1)

where Pjl is the operator that exchanges the positions of particles j and l.

We chose to analyze this Hamiltonian assuming it acts on fermionic particles,

which means that the exchange term selects an anti-ferromagnetic ground

state [15]. The coupling parameter λ is taken to be positive and N is the total

number of particles.

In Ref. [15], a collective description of the model was derived using four

hydrodynamic �elds: the density of particles with spin up/down ρ↑,↓ and their

velocities v↑,↓. The Hamiltonian in terms of these �elds is valid only for slowly

evolving con�gurations, where terms with derivatives of the density �elds can

be neglected. This description is referred to as a gradientless hydrodynamics.

In Ref. [15], this theory was used to show the non-linear coupling between

the spin and charge degrees of freedom beyond the Luttinger Liquid paradigm

and it was shown that, while a charge excitation can evolve without a�ecting

the spin sector (for instance for a spin singlet con�guration), a spin excitation

carries also some charge with it, in a non-trivial way.

The EFP for the sCM has not been considered in the literature yet. For the

splinless case of the Calogero-Sutherland interaction, the asymptotic behavior
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of the EFP was obtained using the form of the ground state wavefunction

and thermodynamical arguments [102] (see [65, 88] for details). It should be

noted that for certain special values of the coupling parameter λ, the splinless

theory is tightly linked with Random Matrix Theory (RMT) and the EFP is

the probability of having no energy eigenvalues in a given interval. For these

values of λ the EFP can be calculated with much greater accuracy due to the

additional structure provided by RMT [103, 104].

If we write the ground state of the system as ΨG(x1, x2, . . . , xN), the Empti-

ness Formation Probability is de�ned as

P (R) ≡ 1

〈ΨG|ΨG〉

ˆ
|xj |>R

dx1 . . . dxN |ΨG(x1, . . . , xN)|2 , (5.2)

or, following [86]

P (R) = lim
α→∞
〈ΨG|e−α

´R
−R ρc(x)dx|ΨG〉 , (5.3)

where ρc(x) is the total particle density operator

ρc(x) ≡
N∑
j=1

δ(x− xj) . (5.4)

For a model like the sCM, we can also introduce the EFPs for particles

with spin up or down separately

P↑,↓(R) = lim
α→∞
〈ΨG|e−α

´R
−R ρ↑,↓(x)dx|ΨG〉 , (5.5)

which will allow us to discuss the EFP as well as the PFFS.

The approach we use to calculate the EFPs (5.5) in this work is similar to

what was explained in [65]. The idea is to consider the system as a quantum

�uid evolving in imaginary time (Euclidean space). Then the EFP can be

considered as the probability of a rare �uctuation that will deplete the region

−R < x < R of particle at a given imaginary time (say τ = 0). With

exponential accuracy, the leading contribution to this probability comes from

the action calculated on the saddle point solution (instanton) satisfying the

EFP boundary condition.

In section 5.2 we will �rst review the results of [15] and transform them into
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an intriguing form where the dynamics can be decoupled into two independent

�uids of splinless Calogero-Sutherland particles. This two-�uid description is

one of the interesting observations of this chapter. In section 5.3 we will explain

the instanton approach and formulate the problem in this language. In section

5.4 we will concentrate on a generalization of the EFP, the Depletion Formation

Probability (DFP) which was introduced in [101]. This correlator will allow us

to calculate the di�erent EFPs very e�ciently by taking its di�erent limits in

section 5.5. Most noticeably, we will derive the PFFS for the Haldane-Shastry

model as the freezing limit of the sCM. In section 5.6 and 5.7 we will consider

two additional DFP problems. Instead of specifying boundary conditions for

both the spin and charge sectors of the �uid as we did in the previous sections,

we will now relax these conditions and constrain only one component at a

time: this analysis suggests that an e�ective spin-charge separation can be

conjectured for the EFP/DFP of the sCM. In section 5.8 we combine all these

results and suggest a physical interpretation of them. The �nal section contains

some concluding remarks. To avoid interruptions in the exposition, certain

technical formalities are moved to the appendices and are organized as follows.

In appendix F we will revise and adapt the calculation of [65] to calculate the

instanton action for our cases. In appendix G we will repeat this calculation

in the linearized hydrodynamics approximation or bosonization, to aid the

discussions in section 5.8.

5.2 Two-�uid description

In [15] the gradientless hydrodynamic description for the sCM (5.1) was derived

in terms of densities and velocities of spin up and down particles: ρ↑,↓(t, x),

v↑,↓(t, x). Here, we prefer to use densities and velocities of the majority and

minority spin: ρ1,2(t, x), v1,2(t, x), i.e. the subscript 1 (2) takes the value ↑ or
↓ which ever is most (least) abundant species:

ρ1 ≡
ρ↑ + ρ↓ + |ρ↑ − ρ↓|

2
=
ρc + ρs

2
, (5.6)

ρ2 ≡
ρ↑ + ρ↓ − |ρ↑ − ρ↓|

2
=
ρc − ρs

2
, (5.7)
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where we introduced the charge and spin density

ρc(t, x) = ρ↑ + ρ↓ = ρ1 + ρ2 , (5.8)

ρs(t, x) = |ρ↑ − ρ↓| = ρ1 − ρ2 . (5.9)

Please note that whatever species is majority or minority is decided dynami-

cally in each point in space and time.

Under the condition [15]

|v1 − v2| < πρs , (5.10)

the Hamiltonian is

H =
1

12π (λ+ 1)

ˆ +∞

−∞
dx

{
k3
R1 − k3

L1 +
1

2λ+ 1

(
k3
R2 − k3

L2

)}
, (5.11)

where

kR1,L1 ≡ v1 ± (λ+ 1)πρ1 ± λπρ2 ,

kR2,L2 = (λ+ 1)v2 − λv1 ± (2λ+ 1)πρ2 (5.12)

are the four dressed Fermi momenta.

It turns out that an auxiliary set of hydrodynamic variables decouples

the Hamiltonian (5.11) into the sum of two independent splinless Calogero-

Sutherland �uids a and b:

H = Ha +Hb =
∑
α=a,b

ˆ
dx

[
1

2
ραv

2
α +

π2λ2
α

6
ρ3
α

]
, (5.13)
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where

ρa ≡
kR1 − kL1

2πλa
= ρ1 +

λ

λ+ 1
ρ2 , (5.14)

ρb ≡
kR2 − kL2

2πλb
=

1

λ+ 1
ρ2 , (5.15)

va ≡
kR1 + kL1

2
= v1 , (5.16)

vb ≡
kR2 + kL2

2
= (λ+ 1) v2 − λv1 , (5.17)

λa ≡ λ+ 1 , (5.18)

λb ≡ (λ+ 1) (2λ+ 1) . (5.19)

We remark that both the auxiliary variables and the real variables satisfy

the canonical commutation relations, i.e.

[ρα(x), vβ(y)] = −i~δα,βδ′(x− y) , α, β = {1, 2}; {a, b} . (5.20)

The form of the Hamiltonian (5.13) is one of the interesting observations of

this chapter, since it allows us to reduce the spin Calogero-Sutherland model

into a sum of two splinless theories. Each of the terms in square brackets in

(5.13) is the gradientless Hamiltonian of a splinless CS system with coupling

constants λa,b given by (5.18, 5.19). In [65] the gradientless hydrodynamics of

splinless particles, like the ones in (5.13) was used to calculate the EFP from

the asymptotics of an instanton solution. In the next section we review this

approach and we leave the mathematical details to appendix F.

5.3 The instantonic action

Let us perform a Wick's rotation to work in imaginary time τ ≡ it. Note that

this makes the velocities in (5.12) imaginary (v → iv) and the k's complex

numbers. The x − t plane is mapped into the complex plane spanned by

z ≡ x+ iτ .

Following [65], we will calculate the EFP as an instanton con�guration (i.e.

a classical solution in Euclidean space) that satis�es the boundary condition

ρα(τ = 0;−R < x < R) = 0 , α = 1, 2, c , (5.21)
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in the limit R → ∞, i.e. R much bigger than any other length scale in the

system. This limit guarantees that the gradient-less hydrodynamics (5.13) is

valid in the bulk of the space-time. Once we have the classical solution of the

equation of motion φEFP that satis�es (5.21), a saddle-point calculation gives

the EFP with exponential accuracy as the action S calculated on this optimal

con�guration [65]:

P (R) ' e−S[φEFP] . (5.22)

Of course, to uniquely specify the problem, the boundary conditions at in�nity

have to be provided as well and we will take them to be those of an equilibrium

con�guration:

ρ1(τ, x)
x,τ→∞→ ρ01 , v1(τ, x)

x,τ→∞→ 0 ,

ρ2(τ, x)
x,τ→∞→ ρ02 , v2(τ, x)

x,τ→∞→ 0 . (5.23)

When ρ01 = ρ02 we have an asymptotic singlet state (the AFM in zero mag-

netic �eld). The condition ρ01 6= ρ02 can be achieved via a constant external

magnetic �eld which would result in a �nite equilibrium magnetization. It

is easy to implement these boundary conditions in our two-�uid description

using (5.14-5.17).

The key point for the calculation is that we can represent the hydrody-

namic �elds in terms of the dressed Fermi momenta kR1, kR2 (which in Eu-

clidean space become complex and complex conjugated to kL1, kL2 respec-

tively) through (5.12):

kR1 = λaπρa + iva , kR2 = λbπρb + ivb . (5.24)

In [15], it was shown that these k-�elds propagate independently according to

4 decoupled Riemann-Hopf equations

∂τw − iw∂xw = 0 , w = kR,L;1,2 . (5.25)

These equations have the general (implicit) solution

w = F (x+ iwτ) (5.26)
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where F (z) is an analytic function to be chosen to satisfy the boundary con-

ditions.

Guided by [65], the solution for an EFP problem is

kR1 = Fa(x+ ikR1τ) , kR2 = Fb(x+ ikR2τ) , (5.27)

with

Fa(z) ≡ λaπρ0a + λaπηa

(
z√

z2 −R2
− 1

)
, (5.28)

Fb(z) ≡ λbπρ0b + λbπηb

(
z√

z2 −R2
− 1

)
, (5.29)

which automatically satisfy the conditions at in�nity (5.23):

ρa(τ, x→∞) → ρ01 +
λ

λ+ 1
ρ02 ≡ ρ0a ,

ρb(τ, x→∞) → 1

λ+ 1
ρ02 ,≡ ρ0b ,

va,b(τ, x→∞) → 0 , (5.30)

while ηa,b are two, possibly complex, constants that allow to satisfy the EFP

boundary conditions (5.21).

In appendix F we show that the instanton action can be expressed as a

contour integral where only the behaviors of the solutions (5.27) at in�nity

and close to the depletion region are needed, saving us the complication of

solving the implicit equations in generality. Using the two-�uid description,

the action can be written as the sum of two splinless Calogero-Sutherland

�uids: from (F.23) we have

SEFP =
1

2
π2R2

∑
α=a,b

λα ηα η̄α . (5.31)

Before we proceed further, we should mention that the two-�uid description

we employ is valid as long as the inequality (5.10) is satis�ed. In fact, the

solution (5.27) could violate the inequality in a small region around the points

(τ, x) = (0,±R). However, close to these points the hydrodynamic description

is expected to be somewhat pathological, because gradient corrections (which
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we neglect) become important. As it was argued in [65, 101], the contributions

that would come to the EFP from these small regions are subleading and

negligible, in the asymptotic limit R → ∞ we consider. Therefore, we do

not need to worry about what happens near the points (τ, x) = (0,±R).

However, a consequence of the �singular� nature of these points is that, in

our solution, the species that constitutes the majority (minority) spin in the

region of depletion −R < x < R at τ = 0, could switch and become minority

(majority) at in�nity. This could be important to keep in mind in interpreting

our formulae, but our formalism already takes that into account naturally.

5.4 Depletion Formation Probability

It is more convenient to consider a generalization of the EFP problem, called

Depletion Formation Probability (DFP) which was introduced in [101]. In

hydrodynamic language the DFP boundary conditions for the majority and

minority spins are

ρ1(τ = 0;−R < x < R) = ρ̃1 ,

ρ2(τ = 0;−R < x < R) = ρ̃2 . (5.32)

The DFP is a natural generalization of the EFP (5.21) and it reduces to it for

ρ̃1,2 = 0. Of course, there is some ambiguity on the microscopic de�nition of

the DFP (see [65, 101]). One can, for instance, consider it as the macroscopic

version of the s-EFP introduced in [105]. We will �rst calculate the DFP as

the most general case and later take the appropriate interesting limits.

In terms of the auxiliary �elds we introduced in (5.14-5.17) to achieve the

two-�uids description (5.13), the DFP boundary conditions are

ρa(τ = 0,−R < x < R) = ρ̃1 +
λ

λ+ 1
ρ̃2 ≡ ρ̃a ,

ρb(τ = 0,−R < x < R) =
1

λ+ 1
ρ̃2 ≡ ρ̃b . (5.33)

We specify the parameters η1,2 in (5.28,5.29) by expressing the boundary
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conditions (5.33) in terms of the dressed momenta using

ρ1 =
1

π(λ+ 1)

[
Re kR1 −

λ

2λ+ 1
Re kR2

]
,

ρ2 =
1

π(2λ+ 1)
Re kR2 ,

v1 = Im kR1 ,

v2 =
1

λ+ 1

[
Im kR2 + λ Im kR1

]
. (5.34)

This leads to

λaηa = λa (ρ0a − ρ̃a)

= (λ+ 1)(ρ01 − ρ̃1) + λ(ρ02 − ρ̃2) ,

λbηb = λb (ρ0b − ρ̃b)

= (2λ+ 1) (ρ02 − ρ̃2) . (5.35)

It is now straightforward to obtain the DFP by substituting (5.35) into

(5.31). After some simple algebra we get

PDFP (R) = exp

{
−π

2

2

[
λ (ρ0c − ρ̃c)2 + (ρ01 − ρ̃1)2 + (ρ02 − ρ̃2)2]R2

}

= exp

{
−π

2

2

[
(λ+

1

2
) (ρ0c − ρ̃c)2 +

1

2
(ρ0s − ρ̃s)2

]
R2

}
, (5.36)

where we introduced a notation in terms of the charge �eld (ρ0c = ρ01 + ρ02,

ρ̃c = ρ̃1 + ρ̃2) and of the spin �eld (ρ0s = ρ01 − ρ02, ρ̃s = ρ̃1 − ρ̃2). Equation

(5.36) is the main result of this work. To understand it better, we will consider

several interesting limits.

5.4.1 Asymptotic singlet state

If no external magnetic �eld is applied, the equilibrium con�guration of an anti-

ferromagnetic system like the one we consider is in a singlet state. This means

that in the boundary conditions at in�nity (5.23) we should set ρ01 = ρ02 = ρ0.
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In this limit (5.36) reduces to

P
singlet
DFP (R) = exp

{
−π

2

2

[
λ (2ρ0 − ρ̃c)2 + (ρ0 − ρ̃1)2 + (ρ0 − ρ̃2)2]R2

}

= exp

{
−π

2

2

[
(λ+

1

2
) (2ρ0 − ρ̃c)2 +

1

2
ρ̃2
s

]
R2

}
. (5.37)

5.5 Emptiness Formation Probability

By taking the limit ρ̃1,2 = 0 we can use (5.36) to calculate the di�erent EFPs.

The probability to �nd the region −R < x < R at τ = 0 completely empty of

particles is therefore

PEFP (R) = exp

{
−π

2

2

[
λ (ρ01 + ρ02)2 + ρ2

01 + ρ2
02

]
R2

}

= exp

{
−π

2

2

[
(λ+

1

2
)ρ2

0c +
1

2
ρ2

0s

]
R2

}
, (5.38)

which becomes

P
singlet
EFP (R) = exp

{
−π

2

2
(λ+

1

2
)(2ρ0)2R2

}
(5.39)

for the asymptotic singlet state. This is equivalent to the EFP of a splinless

Calogero-Sutherland system with coupling constant λ′ = λ + 1/2, see (5.43).

This is consistent with the phase-space picture provided in [15], in which it is

explained that for a singlet state each particle occupies an area of π(λ+ 1/2)

due to the exclusion statistics, while it would occupy an area π(λ + 1) if it

were alone. Therefore, in this context, the charge �eld can be thought of as

describing a splinless Calogero system with coupling constant λ′ = λ+ 1/2.
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5.5.1 Free fermions with spin

Setting the coupling parameter λ = 0 corresponds to non-interacting (free)

fermions with spins and this reduces (5.36) to

P free fermions
DFP (R) = exp

{
−1

4
[π (ρ0c − ρ̃c)R]2 − 1

4
[π (ρ0s − ρ̃s)R]2

}

= exp

{
−1

2
[π (ρ01 − ρ̃1)R]2 − 1

2
[π (ρ02 − ρ̃2)R]2

}
.

(5.40)

This result is the same as the one obtained in [65]. The EFP is then

P free fermions
EFP (R) = exp

{
−1

2
(πρ01R)2 − 1

2
(πρ02R)2

}
, (5.41)

which agrees with the results obtained in the context of Random Matrix The-

ory [102�104], where the subleading corrections were also found.

5.5.2 Splinless Calogero-Sutherland model

Of course, the prime check to our formula for the DFP/EFP of the sCM is to

take its splinless limit ρ̃2 = ρ02 = 0, which gives

P
splinless
DFP (R) = exp

{
−(λ+ 1)

2
π2 (ρ01 − ρ̃1)2R2

}
, (5.42)

P
splinless
EFP (R) = exp

{
−(λ+ 1)

2
π2ρ2

01R
2

}
, (5.43)

in perfect agreement with [65, 102] for a splinless Calogero-Sutherland system

with coupling λ′ = λ+ 1.

5.5.3 Probability of Formation of Ferromagnetic Strings

If we require the minority spin particles to completely empty the region −R <

x < R at τ = 0, we are left only with the majority spin and we created

a (partially) polarized state. We can refer to this case as the Probability
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of Formation of Partially Ferromagnetic Strings (PFPFS) [65, 101]. Setting

ρ̃2 = 0 in (5.36) and leaving ρ̃1 �nite we have

PPFPFS(R) = exp

{
−π

2

2

[
λ (ρ01 − ρ̃1 + ρ02)2 + (ρ01 − ρ̃1)2 + ρ2

02

]
R2

}
.

(5.44)

The above is the probability of formation of ferromagnetic strings accompanied

by a partial depletion of particles, since in the region of depletion we have

ρ̃c = ρ̃1. We can impose that the average density of particles is constant

everywhere by setting ρ̃1 = ρ01 + ρ02 = ρ0c, while still requiring all particles

in the region −R < x < R at τ = 0 to be completely polarized (maximal

magnetization: PFFS)

PPFFS(R) = exp

{
− [πρ02R]2

}
. (5.45)

Note that (5.45) is independent of λ and exactly corresponds to the Emptiness

Formation Probability of a λ′ = λ + 1 = 2 splinless Calogero model with

background density given by ρ02 (5.43). Interestingly the same result (5.52)

will be derived in the next sections as the EFP of minority spins, i.e. ρ̃2 = 0,

in the Haldane-Shastry model (5.46). This is just another aspect of the well-

known relation between spin-Calogero, Haldane-Shastry and λ′ = 2 splinless

Calogero models [15, 66] as it will be shown in the next section.

5.5.4 The freezing limit

If we take the λ → ∞ limit in the spin-Calogero model (5.1), the charge

dynamics freezes (the particles become pinned to a lattice) and only the spin

dynamics survives. This freezing limit was shown by Polychronakos [57] to be

equivalent to the Haldane-Shastry model (HSM) [66, 67]:

HHSM = 2
π2

N2

∑
j<l

Sj · Sl
sin2 π

N
(j − l)

, (5.46)

an integrable Heisenberg chain with long range interaction. In [15] the freezing

limit was studied through a systematic expansion of the hydrodynamic �elds
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in inverse powers of µ ≡ λ+ 1/2:

Ω = Ω(0) +
1

µ
Ω(1) +

1

µ2
Ω(2) + . . . , ρc, vc, ρs, vs → Ω . (5.47)

With an additional rescaling of time t → µt, the equations of motion were

separated order by order in powers of µ.

It was shown that the charge sector is frozen, in that charge dynamics

appears only at orders O(µ−1) and higher, while the spin sector already has

non-trivial dynamics at order O(1). This dynamics is the same as the one

derived independently for the HSM, over a background density of particles

ρ0c = N/L. As a consequence of charge freezing, this background density

is kept �xed and constant up to order O(1) and �uctuations are suppressed

as 1/µ. Therefore, as µ = λ + 1/2 → ∞, charge conservation is imposed

dynamically everywhere, including in the region of depletion:

ρ̃(0)
c = ρ̃

(0)
1 + ρ̃

(0)
2 = ρ01 + ρ02 = ρ0c . (5.48)

The above (5.48) along with the usual depletion boundary conditions (5.32)

reduces (5.36) to

P µ→∞
DFP (R) = exp

{
−π

2

2

[
1

2

(
ρ0s − ρ̃(0)

s

)2
+

1

µ
ρ̃(1)
c + O(µ−2)

]
R2

}
(5.49)

' exp

{
−
[
π
(
ρ01 − ρ̃(0)

1

)
R
]2
}

= exp

{
−
[
π
(
ρ02 − ρ̃(0)

2

)
R
]2
}
,

where corrections for a �nite λ are of the order 1/µ. Eq. (5.49) coincides with

(5.45), where condition (5.48) was imposed as a boundary condition, and not

dynamically from the equations of motion.

5.5.5 Haldane-Shastry model

The hydrodynamic description of the HSM (5.46) was constructed in [15],

resulting in the following Hamiltonian for the minority spins (remember that

the HSM is a lattice model and therefore there is no charge dynamics)

HHSM =

ˆ
dx

[
1

2
ρ2 v

2
2 +

2

3
π2 ρ3

2

]
, (5.50)
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which is the hydrodynamic Hamiltonian for a splinless Calogero system with

coupling constant λ′ = 2, see (5.13). It is in fact known that the spectrum of

the HSM is equivalent to that of a splinless Calogero-Sutherland model with

exclusion parameter λ′ = 2, but with a high degeneracy due to the underlying

Yangian symmetry [66].

The connection between the HSM (D.13) and the sCM in the freezing limit

is to express the minority spin �elds in (D.13) in terms of spin �elds [15]:

ρ2 =
ρ0c − ρs

2
, v2 = −2vs . (5.51)

It is straightforward, using (5.42) with λ′ = 2, to see that the PFPFS for

the HSM model is exactly (5.49):

PHSM
PFPFS(R) = exp

{
− [π (ρ02 − ρ̃2)R]2

}
. (5.52)

The equivalence between (5.45), (5.49) and (5.52) is a strong check of the

consistency of our methods and shows from a novel perspective the well-known

relations between the sCM in the large λ limit, the HSM and the splinless

Calogero-Sutherland model with λ′ = 2.

5.6 Spin Depletion Probability

So far, we considered a DFP problem speci�ed by the boundary conditions

(5.32), i.e. by �xing the density of both species of particles on the segment

τ = 0, −R < x < R. However, our formalism allows for a more general

and natural question. We can, for instance, demand a given magnetization

(i.e. spin density) on the segment, without constraining the charge sector, i.e.

imposing the boundary condition:

ρs(τ = 0;−R < x < R) = ρ̃s , (5.53)

instead of (5.32).

From (5.34) we have

ρs =
1

π(λ+ 1)
Re [kR1 − kR2] , (5.54)
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substituting in (5.27,5.28,5.29) we �nd that (5.53) is satis�ed if

λaηa − λbηb = λaρ0a − λbρ0b − (λ+ 1)ρ̃s . (5.55)

This equation leaves undetermined a complex constant ξ = ξ1 + iξ2: for later

convenience we parametrize the solution as

λaηa = λaρ0a −
1

2
ρ̃s −

(
λ+

1

2

)
ξ

=

(
λ+

1

2

)
(ρ0c − ξ) +

1

2
(ρ0s − ρ̃s) ,

λbηb = λbρ0b +

(
λ+

1

2

)
(ρ̃s − ξ)

=

(
λ+

1

2

)
(ρ0c − ξ − ρ0s + ρ̃s) . (5.56)

We have constructed the solution that realizes a constant spin density in the

depletion region, while leaving the densities for the individual species free

to vary. Please note that a �nite imaginary part of ξ is necessary to have

∂xρ1,2(τ = 0;−R < x < R) 6= 0.

We can now substitute (5.56) in (5.31) to �nd:

PSDP (R; ξ) = exp

{
−π

2

2

[(
λ+

1

2

)[
(ρ0c − ξ1)2 + ξ2

2

]
+

1

2
(ρ0s − ρ̃s)2

]
R2

}
.

(5.57)

This probability depends on two, yet undetermined, parameters: ξ1,2. If we

choose ξ1 = ρ̃c and ξ2 = 0 we recover exactly (5.36), as we expected. This

would correspond to forcing a given charge density at the depletion region,

together with (5.53).

We also note that the con�guration that maximizes the probability (5.57)

is given by ξ = ρ0c:

PMax
SDP (R) = PSDP (R; ξ = ρ0c) = exp

{
−π

2

4
(ρ0s − ρ̃s)2R2

}
. (5.58)

One cannot help but noticing the similarity between (5.58) and (5.49) or (5.52).

Since the parametrization we choose in (5.56) allowed us to express the

probability (5.57) as a Gaussian for ξ1,2, we would get the same result by
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performing an integral over the free parameters:

P opt
SDP (R) =

ˆ ∞
−∞

dξ1

ˆ ∞
−∞

dξ2 PSDP (R; ξ) = PMax
SDP (R). (5.59)

where the prefactor coming from the Gaussian integration is beyond our accu-

racy anyway (note, however, that it does not depend on the charge density).

The integration over ξ corresponds to summing over all con�gurations of the

form (5.27, 5.28, 5.29).

The probability of realizing the magnetization set by (5.53) is given by a

sum over all con�gurations that satisfy the given boundary conditions. To

perform this sum correctly, we would need to consider all possible charge den-

sity pro�les ρ̃c(x) at the depletion region and therefore consider more general

solutions than (5.28, 5.29). These general solutions are of the form

Fa(z) ≡ π

[
λaρ0a −

1

2
ρ̃s

]
z√

z2 −R2
+
π

2
ρ̃s + π

(
λ+

1

2

)
ξ(z) , (5.60)

Fb(z) ≡ π

[
λbρ0b +

(
λ+

1

2

)
ρ̃s

]
z√

z2 −R2
+ π

(
λ+

1

2

)
[−ρ̃s + ξ(z)] ,

where ξ(z) is an analytic function such that Re ξ(x) = ρ̃c(x) and ξ(z →∞)→
0. The sum over all con�gurations satisfying (5.53) can be formulated as a

functional integral over all functions ξ(z). However, it is easy to convince

oneself that the con�gurations that minimize the action are of the form (5.28,

5.29), with ξ = ρ0c.

5.7 Charge Depletion Probability

The last problem we will address is conjugated to the one considered in the

previous section, i.e. the probability of realizing a given depletion of the charge

ρc(τ = 0;−R < x < R) = ρ̃c , (5.61)

without constraining the spin density. Using (5.34) we have

ρc = Re

[
kR1

πλa
+
kR2

πλb

]
, (5.62)
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which means that (5.27,5.28,5.29) ful�ll (5.61) if

ηa + ηb = ρ0a + ρ0b − ρ̃c . (5.63)

Once again, we are left with the freedom of introducing a complex number

ξ = ξ1 + iξ2 to parametrize the solution:

ηa = ρ0a −
2λ+ 1

2(λ+ 1)
ρ̃c −

1

2(λ+ 1)
ξ

=
2λ+ 1

2(λ+ 1)
(ρ0c − ρ̃c) +

1

2(λ+ 1)
(ρ0s − ξ) ,

ηb = ρ0b −
1

2(λ+ 1)
ρ̃c +

1

2(λ+ 1)
ξ

=
1

2(λ+ 1)
(ρ0c − ρ̃c − ρ0s + ξ) . (5.64)

Inserting this into (5.31) we obtain:

PCDP (R; ξ) = exp

{
−π

2

2

[(
λ+

1

2

)
(ρ0c − ρ̃c)2 +

1

2

[
(ρ0s − ξ1)2 + ξ2

2

]]
R2

}
.

(5.65)

Setting ξ1 = ρ̃s and ξ2 = 0 correctly reproduces (5.36), while the maximal

probability is achieved for ξ = ρ0s:

PMax
CDP (R) = PCDP (R; ξ = ρ0s) = exp

{
−π

2

2

[(
λ+

1

2

)
(ρ0c − ρ̃c)2

]
R2

}
.

(5.66)

As before, since (5.65) is Gaussian in ξ1,2, we would obtain the same result by

integrating over these variables

P opt
CDP (R) =

ˆ ∞
−∞

dξ1

ˆ ∞
−∞

dξ2 PCDP (R; ξ) = PMax
CDP (R) , (5.67)

where we neglected the coe�cient coming from the Gaussian integration be-

cause its beyond the accuracy of our methodology. This integration corre-

sponds to summing over all con�gurations given by (5.28, 5.29). Again, we

notice a striking similarity between (5.66, 5.67) and (5.36). We will comment

in the next section on how to interpret these results.
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5.8 Discussion of the results

Eq. (5.36) looks like the product of the two independent depletion probabilities

for the spin and charge sector. This interpretation is supported by the results

of the two previous sections, see (5.58) and (5.66), but it is quite surprising in

a sense. In fact, it would indicate a sort of an e�ective spin-charge separation,

as if the spin and charge degrees of freedom could be depleted independently.

This is contrary to intuition, since spin-charge separation is realized only for

low-energy excitations close to the Fermi points, while the EFP involves de-

grees of freedom deep within the Fermi sea (and requires a full non-linear hy-

drodynamic description beyond the usual bosonization approach). However,

it seems that from a EFP perspective spin-charge separation survives beyond

the linearization of the spectrum, at least at leading order for the sCM.

In fact, quite surprisingly, for the Calogero-type interaction (as well as for

free fermions), the DFP result obtained for small depletions using a linearized

hydrodynamics (conventional bosonization) can be extended up to a complete

emptiness and remain quantitatively correct [65]. This is due to the fact that

the gradientless hydrodynamic for this interaction is purely cubic, see (5.11).

This fact has two important consequences: the �rst one is that the equations of

motion can be written as Riemann-Hopf equations (5.25), which are trivially

integrable with the implicit solution given by (5.26). This is important to

connect the boundary conditions at in�nity with those due to the DFP. The

second fact is connected to the form of the parameters u and κ of the linearized

theory, which in Hamiltonian formalism can be written in general as

H =

ˆ
dx
[ u

2κ
Π2 +

uκ

2
(∇φ)2

]
, (5.68)

where Π(x) and φ(x) are conjugated �elds. In terms of hydrodynamic variables

(5.20) they are

v(x) ≡ Π(x) , ρ(x) ≡ ρ0 +∇φ(x) , (5.69)

where ρ0 is the background value over which we are linearizing the theory.

Note that κ = 1
πK

, where K is the conventional Luttinger parameter [106].

For Calogero-type models, the sound velocity u depends linearly on the
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density, while the interaction parameter κ does not depend on the point around

which we are linearizing. In appendix G we show that the sound velocity

can be rescaled out of the DFP calculation (at zero temperature) and κ is

the relevant factor encoding the interaction, which determines the coe�cient

of the Gaussian behavior of the DFP. All these peculiarities of the Calogero

interaction conspire in a way that extending the small depletion result to higher

depletion is �trivial� and, in fact, gives the correct result. Let us remark in this

respect, that any non-linear theory can be seen as the integration of successive

linear approximation, where the coe�cients are adjusted at each point. In this

light and from what we pointed out above, it is clear that the simplicity of the

Calogero interaction allows a simple integration of successive linear theories

for the DFP calculation and this is the reason for which the linearized result

can be trivially extended from a small DFP to a complete EFP.

In appendix G we calculate the DFP in the linearized approximation (guided

by [65]). The result is (G.9)

Slinear
DFP =

π

2
κ (ρ0 − ρ̃)2R2 , (5.70)

where we used η = η̄ = ρ0 − ρ̃.
If we substitute (5.12) in (5.11) we can write the hydrodynamic Hamilto-

nian in terms of spin and charge �elds as

H =

ˆ
dx

{
1

2
ρcv

2
c +

π2

6

(
λ+

1

2

)2

ρ3
c + ρsvcvs (5.71)

+

[(
λ+

1

2

)
ρc − λρs

]
v2
s +

π2

4

(
λ+

1

2

)
ρcρ

2
s −

π2

12
λ ρ3

s

}
.

By linearizing this Hamiltonian, i.e. by expanding the �elds as ρc,s = ρ0;c,s +

δρc,s and looking at the coe�cients in front of the quadratic part, we �nd the

following parameters:

uc(ρ0c) = π

(
λ+

1

2

)
ρ0c , κc(ρ0c) = π

(
λ+

1

2

)
, (5.72)

us(ρ0s) = π

(
λ+

1

2

)
ρ0c − πλρ0s , κs(ρ0s) =

π

2
. (5.73)

We see that substituting these values in (5.70) correctly reproduce (5.58, 5.66)
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and therefore (5.36) as well. This means that not only the linearized theory is

su�cient to calculate the correct coe�cients of the EFP, but also that the spin-

charge separation survives as if the linear theory was valid for high depletions

as well.

To conclude, we can suggest a simple physical interpretation of (5.70). In

a Calogero-Sutherland system, the interaction parameter κ = πλ′ has a simple

semiclassical interpretation in terms of the phase-space area occupied by a

single particle, see [48] and [15]. We can then see that (5.70) represent a

volume in the x − τ − k space: the phase-space area at a given τ is of the

order of κ(ρ0− ρ̃)R, see, for instance, (5.24). This has to be multiplied by the

number of particles involved in the depletion over time, which is of the order

(ρ0 − ρ̃)R.

5.9 Conclusions

We calculated the Emptiness and Depletion Formation Probability for the spin

Calogero-Model (5.1) and for the Haldane-Shastry Model (5.46). The EFP

is one of the fundamental correlators in the theory of integrable models and,

despite its being non-local, is considered to be one of the simplest. Nonetheless

its asymptotic behavior is known only for a few systems and in this chapter

we calculated it for the sCM and the HSM for the �rst time, at the leading

order.

The DFP is a natural generalization of the EFP in the hydrodynamics

formalism we employ. By calculating the DFP in its most generality (5.36), we

can achieve the di�erent EFPs by taking its appropriate limit. The calculation

is done in an instanton picture, where the DFP is viewed as the probability

of formation of a rare �uctuation in imaginary time that realizes the required

depletion at a given moment.

The long distance asymptotics in 1-D models are normally calculated in a

�eld theory approach using bosonization. However, as this approach is valid

only for low-energy excitations close to the Fermi points where the linearization

of the spectrum is a reasonable approximation, it is not su�cient for the EFP,

which involves degrees of freedom deep in the Fermi sea. For this reason we

used a non-linear version of bosonization, i.e. the hydrodynamic description
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developed in [15].

All our formulae show a characteristic Gaussian behavior as a function of

the depletion radius R. This is to be expected for a gapless one-dimensional

system, as it was �rst argued in [101]. This is because in the asymptotic limit

we consider, R is the biggest length scale in the system and therefore the

instanton con�guration will have a characteristic area of R2, where the second

power comes from the dimensionality of the space-time. In [65, 101] it was

also shown that for small depletion, the linearized bosonization approach is

su�cient to calculate the DFP, while in general it deviates from the correct

results for progressively bigger depletion and, eventually, emptiness.

However, the Calogero-Sutherland kind of models (as well as non-interacting

fermions) are special and the linearized result happen to coincide with the

correct, non-linear one. We argued on the origin of this observation in the pre-

vious section. Moreover, we noticed that (5.36) and the analysis of section 5.6

and 5.7 indicates that, from a EFP perspective, spin-charge separation seems

to survive beyond the linear approximation, in disagreement with what one

naïvely would expect. This resurgence of linear results in a non-linear problem

is a very surprising result, peculiar of the sCM.

The coe�cients in front of R2 are novel of this work. In section 5.8 we

interpreted them from a bosonization point of view and via a simple semi-

classical argument and throughout the chapter we have checked them against

known results in certain limits where possible. In particular, we showed agree-

ment with the free fermionic limit (5.40) and the splinless Calogero-Sutherland

model (5.42). For both of these models, the EFP has a particular interest com-

ing from Random Matrix Theory, as it is known that for certain rational values

of the coupling parameter λ the CSM describes the RMT ensembles. It would

be interesting if the sCM would also have an interpretation in terms of some

generalized random matrix model, but we are not aware of such connection

yet.

In section 5.5.4 we used the fact that the Haldane-Shastry model can be

achieved as the freezing limit (λ→∞) of the sCM to calculate the Probabil-

ity of Formation of (Partially) Ferromagnetic Strings in the HSM. In section

5.5.5, the same quantity was derived independently from the hydrodynamic

description of the HSM. Section 5.5.4 and 5.5.5 highlight the correspondence
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between large-λ sCM, HSM and λ′ = λ+ 1 = 2 splinless Calogero model from

a EFP/DFP perspective.

In Chapters 3 ,4 and 5, we have studied the �eld theory aspects of the very

special Calogero integrable family. This integrable system facilitates a more

formal way of obtaining collective physics compared to those systems of Fermi

gases studied in Chapter 2.
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Chapter 6

The RKKY Interaction and the

Nature of the Ground State of

Double Dots in Parallel

6.1 Introduction

In the following two chapters of the thesis we study electron transport and

correlations in a system of two quantum dots arranged in parallel. The main

techniques used in this chapter are Slave Boson Mean Field Theory (SBMFT)

and the Bethe Ansatz (BA). Quantum dots provide a means to realize strongly

correlated physics in a controlled setting. Because of the ability to adjust gate

voltages which control both the tunnelling amplitudes between the dots and

the connecting leads and the dots' chemical potential, quantum dots can be

tuned to particular physical regimes. One celebrated example of said tuning

was the �rst realization of Kondo physics in a single quantum dot [107�110]

obtained by adjusting the chemical potential of the dot such that the dot was

occupied by one electron.

More generally, engineered multi-dot systems o�er the ability to realize

more exotic forms of Kondo physics. This was seen, for example, in the real-

ization of the unstable �xed point of two-channel overscreened Kondo physics

in a multi-dot system[111]. There has thus been considerable theoretical inter-

est in double dots systems in di�erent geometries, both in series (for example

Refs. [112�117]) and in parallel (for example Refs. [3, 118�130]). In this chap-
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ter we focus on the strongly correlated physics present on the latter geometry,

in particular when there is no direct tunneling between the dots and the dots

are not capacitively coupled. Such dot systems have been experimentally real-

ized in numerous instances [131�133] (for other realizations of double dots in

parallel see Refs. [134, 135]). Although the dots are not directly coupled, they

are coupled through an e�ective Ruderman-Kittel-Kasuya-Yosida (RKKY) in-

teraction. It is aim of this work to explore the nature of the RKKY interaction

in parallel double quantum dots.

A straightforward application of the RKKY interaction as typically under-

stood would lead one to believe that in a closely spaced double quantum dot

with two electrons present, one on each dot, the RKKY interaction should lead

to an e�ective ferromagnetic coupling between the dots. How should this cou-

pling reveal itself in a transport experiment, the typical probe of a quantum

dot system? If a ferromagnetic coupling is present, one expects the electrons

on the two dots to bind into a spin-1 impurity. If the dots are coupled to a

single e�ective lead, we obtain, in e�ect, an underscreened Kondo e�ect. As

the temperature is lowered, the single e�ective lead will partially screen the

spin-1 impurity to an e�ectively uncoupled spin-1/2 impurity. The ground

state of the system will then be a non-Fermi liquid doublet. In particular

at small temperatures and voltages, the conductance through the dot will be

characterized by logarithms[136]. This scenario has been put forth in a num-

ber of NRG studies [119, 120, 122, 123] and is implicit in a number slave boson

studies [124�126] of double dots in parallel.

We present contrary evidence here that this scenario is not in fact applicable

at least for temperatures below the Kondo temperature. We argue that the

ground state of closely spaced double dots is instead a Fermi liquid singlet.

These �ndings are consistent with those of Ref. [113]. We do so using both

the Bethe ansatz and slave boson mean �eld theory. It has been shown [3, 118]

that under certain conditions double dots in parallel admit an exact solution

using the Bethe ansatz. This exact solution, following the approach introduced

in Ref. [137], can be exploited to compute transport properties. In particular,

the zero temperature linear response conductance can be computed exactly.

Double quantum dots, however, only admit an exact solution provided their

parameters satisfy certain constraints. To ensure that our �nding of Fermi
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liquid behaviour is not an artifact of these constraints, we also study the

parallel dot system using slave boson mean �eld theory. This allows one to

study the sensitivity of our results to adding a second weakly coupled channel

and to compute such quantities as the spin-spin correlation function, an object

not directly computable in the Bethe ansatz.

The chapter is organized as follows. In Section 6.2 we detail the double dot

model that we are interested in studying together with the approaches (Bethe

ansatz and slave boson mean �eld theory) that we employ in studying this

system. In Section 6.3 we present results on the linear response conductance

through the dots both at zero temperature and �nite temperature. We show

the zero temperature conductance obeys the Friedel sum rule, a hall mark of

Fermi liquid physics. We also study the impurity entropy at �nite temperature

showing that it vanishes in the zero temperature limit indicating the presence

of a singlet. Finally in this section, we present results (using slave boson mean

�eld theory alone) of the spin-spin correlation function. Lastly, in Section 6.4,

we discuss the implications of our results 1 and suggest a way they can be

reconciled with the con�icting NRG studies.

6.2 Model Studied

We study a set of two dots arranged in parallel with two leads. The Hamilto-

nian for this system is given by

H = −i
∑
lσ

ˆ ∞
−∞

dxc†lσ∂xclσ +
∑
σα

Vlα(c†lσαdσα + h.c)

+
∑
σα

εdαnσα +
∑
α

Uαn↑αn↓α. (6.1)

The clσ specify electrons with spin σ living on the two leads, l = 1, 2. The

dασ specify electrons found on the two dots α = 1, 2. Electrons can hop from

the leads to dots with tunneling strength Vlα. The strength of the Coulomb

repulsion on the two dots is given by Uα. We suppose that there is no interdot

Coulomb repulsion and that tunneling between the two dots is negligible. A

1We also investigate questions of this nature via the 1/N expansion method (See Chapter
7).
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Figure 6.1: A schematic of the double dot system.

schematic of this Hamiltonian for the two dots is given in Fig. 6.1.

6.2.1 Bethe Ansatz

The above Hamiltonian can be solved exactly via Bethe ansatz under certain

conditions. The set of constraints that we will be particularly interested in are

as follows:

V1α/V2α = V1α′/V2α′ ;

UαΓα = Uα′Γα′ ;
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Uα + 2εdα = Uα′ + 2εdα′ . (6.2)

The �rst of these conditions results in only a single e�ective channel coupling

to the two leads. This occurs automatically when the dot hoppings are chosen

to be symmetric and so is commonly found in the literature[119, 120, 124, 126�

128, 138]. The second condition tells us that with U1,2 �xed, εd1 − εd2, is also

�xed. We thus must move εd1,2 in unison in order to maintain integrability. The

�nal condition tells us that
√
UiΓi, the bare scale governing charge �uctuations

on the dots must be the same on both dots.

To solve this Hamiltonian we implement a map to even and odd channels,

ce/o = (V1/2,αc1 ± V2/1,αc2)/
√

2Γα where Γα = (V 2
1α + V 2

2α)/2. Under the map,

the Hamiltonian factorizes into even and odd sectors:

He = −i
∑
lσ

ˆ ∞
−∞

dx c†eσ∂xceσ +
∑
σα

√
2Γα(c†eσαdσα + h.c)

+
∑
σα

εdαnσα +
∑
α

Uαn↑αn↓α;

Ho = −i
∑
lσ

ˆ ∞
−∞

dx c†oσ∂xcoσ, (6.3)

where, as can be seen, the odd sector decouples from the double dot. Using

the Bethe ansatz [3, 118] one can construct N-particle wave functions in the

non-trivial even sector. These wavefunctions are characterized by N-momenta

{qi}Ni=1 and M quantum numbers {λα}Mα=1. The number of λα's mark the spin

quantum number of the wave function: Sz = N − 2M . Together the λα's and

qi's satisfy the following set of constraints:

eiqjL+iδ(qj) =
M∏
α=1

g(qj)− λα + i/2

g(qj)− λα − i/2
;

N∏
j=1

λα − g(qj) + i/2

λα − g(qj)− i/2
= −

M∏
β=1

λα − λβ + i

λα − λβ − i
, (6.4)

where g(q) = (p−εdα−Uα/2)2

2ΓαUα
. These equations are identical to the set of con-

straints for a single dot [139, 140] but for the form of the scattering phase
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δ(q):

δ(q) = −2 tan−1(
∑
α

Γα
q − εdα

). (6.5)

We will focus in this chapter on computing transport properties in linear

response. At zero temperature we can use the Bethe ansatz to access such

transport quantities exactly[3, 137]. We will also use the Bethe ansatz to

obtain an excellent quantitatively accurate prediction (in comparison with

NRG) for the �nite temperature linear response conductance (see Refs. [3, 137]

for the Bethe ansatz computation of the �nite temperature linear response

conductance for a single dot and for the comparable NRG, Ref. [141]).

The Bethe ansatz can be exploited to develop certain approximations that

allow one to compute certain non-equilibrium quantities, in particular, the

out-of-equilibrium conductance [137] and the noise [142] in the presence of a

magnetic �eld. In order to obtain at least qualitatively accuracy, the presence

of a magnetic �eld is a necessity. With a magnetic �eld the Bethe ansatz for

a single dot correctly predicts such features as the positioning of the peak in

the di�erential magnetoconductance [142] as say measured in carbon nanotube

quantum dots[143]. In the absence of a magnetic �eld, the Bethe ansatz in-

spired approximation breaks down however[142]. We will, again, not consider

the double dots out-of-equilibrium in this work.

6.2.2 Slave Boson Mean Field Theory

We also study the Hamiltonian (6.1) using a slave-boson mean �eld theory,

a well-known technique, applicable at su�ciently low temperatures[144]. The

starting point is the same Hamiltonian (6.1) and we will study here the Uα =∞
case. The constraint of preventing double-occupancy on the dots is ful�lled by

introducing two Lagrange multipliers λ1 and λ2. The slave boson formalism

consists of writing the impurity fermionic operator on each dot as a combi-

nation of a pseudofermion and a boson operator: dσα = b†αfσα. Here fσα is

the pseudofermion which annihilates one �occupied state� on dot α and b†α is

a bosonic operator which creates an empty state on dot α. The mean �eld

approximation consists of replacing the bosonic operator by its expectation

value: b†α →
〈
b†α
〉

= rα. Thus rα and λα together form four parameters which

need to be determined using mean �eld equations. Under the slave boson
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formalism combined with the mean �eld approximation, Eq. (6.1) reads

HSBMFT = −i
∑
lσ

ˆ +∞

−∞
dxc†lσ∂xclσ +

∑
lασ

Ṽlα

(
c†lσfσα + h.c

)
+

∑
σα

ε̃dαf
†
σmfσm + i

∑
α

λα(r2
α − 1) (6.6)

with Ṽlα = rαVlα and ε̃dα = εdα + iλα. The mean �eld equations are the

constraints for the dot α = 1, 2,∑
σ

< f †ασ(t)fασ(t) > +r2
α = 1, (6.7)

and the equation of motion (EOM) of the boson �elds,

Re

[∑
l,k,σ

Ṽ ∗lα

〈
c†klσ(t)fσα(t)

〉]
+ iλαr

2
α = 0. (6.8)

The above equations can be understood as arising from the conditions

∂ 〈HSBMFT 〉
∂λα

= 0;

∂ 〈HSBMFT 〉
∂rα

= 0. (6.9)

Thus the reality condition on Eqn. 2.8 arises from the reality of the hopping

term in the Hamiltonian[145]. For any given set of bare parameters (εdασ, Vlα)

we can compute the renormalized energy (ε̃dασ) and renormalized hybridization

(Ṽlα) by solving the four equations, Eqns. 6.7 and 6.8. While these results

are mean �eld, they allow one to span a wide parameter space not constrained

by the requirements of integrability. For instance, we study asymmetrically

coupled dots where two channels couple to the dot, a case not solvable by the

Bethe Ansatz. SBMFT allows one also, unlike the Bethe ansatz, to readily

study such quantities as the spin-spin correlation function.
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6.3 Results

In this section we present a number of measures as computed using both the

Bethe ansatz and slave boson mean �eld theory that are indicative of the

ground state of the double dot plus lead system. We will argue that these are

consistent with the ground state of the dot being a singlet state, not a doublet.

6.3.1 Zero Temperature Conductance

The �rst measure we examine is the zero temperature linear response con-

ductance, G. For the BA, G is computed as is discussed in great detail in

Refs. [137] and [3]. For the SBMFT, G is computed by �rst solving for

the variational parameters, rα, and ε̃dα, α = 1, 2, and then determining the

corresponding transmission amplitude via solving a one-particle Schrödinger

equation. This procedure is detailed in Appendix B.

If the double dot is in a singlet state, we expect G to vanish as εd1,2 are

lowered, moving the dot into the Kondo regime. This is consistent with un-

derstanding the singlet state as a Fermi liquid state. If a Fermi liquid, G will

obey the Friedel sum rule:[146]

G =
∑
σ=↑,↓

e2

h
sin2(πndσ), (6.10)

where ndσ is the number of electrons of spin species σ displaced by the dot.

Deep in the Kondo regime, there will be two electrons sitting on the two dots,

one of each spin species, i.e. ndσ = 1, and so G correspondingly vanishes.

Plotted in Fig. 6.2 is the zero temperature conductance as computed with

BA and SBMFT as a function of εd1 and with εd1 − εd2 �xed. For each com-

putational methodology we present results for both εd1 − εd2 � Γ1,2 and

εd1 − εd2 � Γ1,2. We see that in all cases that as εd1,2 is lowered, the con-

ductance vanishes. We do note however that the overall structure of the con-

ductance di�ers as computed between the BA and SBMFT, that is to say,

the SBMFT fails in general to describe the correct behaviour. In particular it

fails to describe the intermediate valence regime when the distance separating

the chemical potential of the two dots is large, i.e εd1 − εd2 � Γ1,2 . In the

intermediate valence regime the conductance of the double dot as computed
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Figure 6.2: The zero temperature conductance of a symmetrically coupled
double dot computed using slave boson mean �eld theory and the Bethe ansatz.
For slave bosons we assume the symmetric case Vij = 1.
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Figure 6.3: The number of electrons displaced by the dots, nd of a symmetri-
cally coupled double dot computed both using SBMFT and the Bethe ansatz.
In the case of SBMFT, nd is simply the dot occupation, ndot =

∑
iσ〈d

†
iσdiσ〉.

In the case of the Bethe ansatz, the quantity plotted is equal to the dot oc-
cupation plus the 1/L correction to the electron density in the leads induced
by coupling the dots to the leads. For slave bosons we assume the symmetric
case Vij = 1.
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with the BA undergoes rapid changes, a consequence of interference between

electrons tunneling o� and on the dot (see Ref. [3]). This is not mirrored in

the SBMFT computations which remain comparatively structureless.

The failure of SBMFT to accurately capture the physics in the intermediate

valence regime is seen in a related quantity, the number of electrons displaced

by the dot. nd is the sum of two terms:

nd =
∑
σi

〈d†σidσi〉+
∑
σl

ˆ
dx

[
〈c†σlcσl〉 − ρσbulk

]
. (6.11)

The �rst term is simply the occupancy of the double dots while the second

term measures the deviation of electron density in the leads due to coupling

the dots and the leads. In SBMFT this term is zero due to the mean �eld

nature of its approximation. However in BA this term is non-zero. While

we cannot compute it directly, the BA gives us the ability to compute nd.

And as plotted on the r.h.s. of Fig. 6.3, we see that nd can be negative. As∑
σi〈d

†
σidσi〉 is manifestly a positive quantity, we know that as computed by

the BA, the second term in Eq.(6.11) is non-zero and in fact is negative (at

least in the case εd1 − εd2 � Γ1,2). From Fig. 6.3 we see however that nd for

both SBMFT and BA tends to two as the system enters the Kondo regime

(where two electrons sit on the two dots).

One advantage the SBMFT does o�er over the BA is that it allows us to

compute transport quantities beyond the integrable parameter regime delin-

eated in Eq. (6.2). It was argued in Ref.[3] that small deviations away from

this parameter space should not qualitatively change transport properties. In

Fig. 6.4 we test this in the Kondo regime (where we expect SBMFT to be

at its most accurate) computing the conductance while adjusting the dot-lead

hopping parameters in such a way that we move from a case where only one

e�ective channel couples to the quantum dot (i.e. Vij = 1) to a case where

two channels couple to the dot (V11 > 1 and V12 = V21 = V22 = 1). We see

when the second channel is only weakly coupled to the dot, the conductance

remains near its one-channel value, i.e. G = 0e2/h. Only once V11 appreciably

deviates from 1 do we see a corresponding deviation in G. We note that this

continuous behaviour is also consistent with the one-channel dot-lead ground

state being a singlet. If it were instead a doublet, coupling a second channel
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Figure 6.4: The zero temperature conductance of asymmetrically coupled dou-
ble dot computed using slave boson mean �eld theory. The conductance is
plotted as a function of V11. The remaining dot-lead hopping strengths are all
set to 1 while εd1 = −4.7 and εd2 = −4.6. The system is in the Kondo regime.
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into the system would lead to a discontinuous change as the second channel,

no matter how weakly coupled, would immediately screen the free e�ective

spin-1/2.

Finally in this section we consider the behaviour of the conductance and

displaced electrons when εd1 = εd2. We see from Fig. 6.5 that the same

qualitative behaviour in both quantities is found using the Bethe ansatz and

using SBMFT. Namely, the displaced electron number nd tends to 2 while the

conductanceG tends to zero as εd1 = εd2 goes to zero. While these measures are

the same in the two computational methods, there is a quantity that sharply

distinguishes the two (and so shows a failure of SBMFT even in the Kondo

regime at zero temperature). This quantity is the low lying density of states

on the dots, ρd(ω). For the case of εd1 = εd2, the BA shows that ρd(ω) for ω

on the order of the Kondo temperature, TK vanishes.[3] However the SBMFT

shows that at this energy scale there exists non-negligible spectral weight. In

Fig. 6.6, we plot ρd(ω) as de�ned by

ρd(ω) =
∑
iσ

Im〈d†iσdiσ〉retarded.

The agreement on the qualitative features of nd and G between the two

methodologies is then a coincidence (to a degree). In both cases the ground

state is Fermi liquid like and so G follows the Friedel sum rule which necessar-

ily mandates that the conductance vanish with two electrons on the two dots.

But the nature of the Fermi liquid in each case as predicted by the methodolo-

gies is much di�erent. SBMFT predicts the scale of the low lying excitations is

TK while the BA �nds that for the special case of εd1 = εd2 (and only for this

case[3]) that the fundamental energy scale corresponds to the bare energies

scales in the problem, i.e. U and Γ.

6.3.2 Finite Temperature Conductance

We now consider the �nite temperature conductance. Plotted in Fig. 6.7 are

traces forG(T ) for double dots with both |εd1−εd2| � Γ1,2 and |εd1−εd2| � Γ1,2

as computed with both the Bethe ansatz as well as SBMFT. For a Fermi liquid

ground state we expect that at low temperatures the conductance deviate

from its zero temperature value by T 2 and we see that behaviour in both
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Figure 6.5: The conductance and the number of displaced electrons as a func-
tion of εd1(=εd2) as computed using SBMFT and the Bethe ansatz. For slave
bosons we assume the symmetric case Vij = 1.
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Figure 6.6: A plot of the low energy density of states, ρ(ω) for εd1 = εd2 =
−4.45Γ1,2 in the Kondo regime as computed using SBMFT. As we are argue
in the text, this is an artifact of SBMFT (the BA shows that in this case ρd(ω)
vanishes[3]).

cases. From Fig. 6.7 we see that in both treatments, the �nite temperature

conductance for the double dots initially rises with increasing temperature to

an appreciable fraction of the unitary maximum and thereafter decreases in

an uniform manner (regardless of the bare level separation). (For SBMFT

we have de�ned the Kondo temperature as where this peak in G(T ) occurs

while for the BA the Kondo temperature we employ the analytic expression

for TK of the double dots derived in Ref. [3].) We however also see that there

are qualitative di�erences between SBMFT and the Bethe ansatz. The peak

in the conductance computed using SBMFT peaks at a value far closer to

the unitary maximum than does the Bethe ansatz. And we also see that the

conductance as computed in the SBMFT drops o� far more rapidly than it

does in the BA (particularly at large level separation). We however believe

this is unphysical and akin to the pathologies that SBMFT is known to exhibit

at higher temperatures and energy scales.[145, 147�152]

As was demonstrated in Ref. [3], the conductance at �nite but small T

is quadratic in T while at large T the conductance is logarithmic (going as

1/ log2(T/TK)). The peak in conductance at �nite T is then a result of the

conductance vanishing in the low and high temperature limits. These conduc-
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Figure 6.7: The linear response conductance as a function of temperature of a
symmetrically coupled double dot computed using both slave boson mean �eld
theory and the Bethe ansatz. For small separation in slave boson approach
we had ε1 − ε2 = 0.05Γ1,2 and ε1 = −4.1Γ1,2. For large separation in slave
boson approach we had ε1 − ε2 = 5Γ1,2 and ε1 = −9.4Γ1,2. In slave bosons we
consider the symmetric case Vij = 1.
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tance pro�les are similar to the those predicted in Ref. [153] for multi-dots

coupled to two electron channels. However the physics there is much di�erent:

the non-monotonicity in G(T ) predicted in Ref. [153] is due to the presence of

the two channels and because they couple to the dots with di�erent strengths,

they screen a S > 1/2 state in stages.

6.3.3 Spin-Spin Correlation Function

We present the static spin-spin correlation function as a function of εd1 and

as computed using SBMFT in Fig. 6.8. With two electrons on the dot the

value of 〈S1 · S2〉 can vary between −3/4 (if these two electrons are bound in

a singlet state) to 1/4 (if the two electrons �nd themselves in a triplet state).

We see in Fig. 6.8 that generically the value of the correlation function in the

Kondo regime (for the relevant values of εd1 see Fig. 6.2) that 〈S1 · S2〉 tends
to 0. This however should not necessarily be interpreted as the dots being

closer to a triplet state than a singlet state. In determining the overall state

of the system, 〈S1 · S2〉, is not necessarily a good measure. We can see this by

considering a simple toy example.

Imagine a system of four spins, two associated with the dots, | ↑〉d1 and

| ↑〉d2, and two associated with leads | ↑〉l1 and | ↑〉l2. And �rst suppose the

system is in a singlet state. Two ways that this singlet state can be formed

are

|singlet 1〉 =
1

2
(| ↑〉d1| ↓〉d2 − | ↓〉d1| ↑〉d2)⊗ (| ↑〉l1| ↓〉l2 − | ↓〉l1| ↑〉l2);

|singlet 2〉 =
1

2
(| ↑〉l1| ↓〉d1 − | ↓〉l1| ↑〉d1)⊗ (| ↑〉l2| ↓〉d2 − | ↓〉l2| ↑〉d2).(6.12)

We see that the expectation value, 〈S1 ·S2〉, of these two states is considerably
di�erent:

〈singlet 1|S1 · S2|singlet 1〉 = −3/4

〈singlet 2|S1 · S2|singlet 2〉 = 0. (6.13)

Now suppose the system is in a triplet state and suppose its Sz projection
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is 1. Again there are two inequivalent ways this state can be formed:

|triplet 1〉 =
1√
2
| ↑〉d1| ↑〉d2 ⊗ (| ↑〉l1| ↓〉l2 − | ↓〉l1| ↑〉l2);

|triplet 2〉 =
1√
2
| ↑〉l1| ↑〉d1 ⊗ (| ↑〉l2| ↓〉d2 − | ↓〉l2| ↑〉d2). (6.14)

The expectation of these two values is

〈triplet 1|S1 · S2|triplet 1〉 = 1/4

〈triplet 2|S1 · S2|triplet 2〉 = 0. (6.15)

We thus see that when the system's state is such that 〈S1 · S2〉 = 0, it can be

either a singlet or a triplet equally. We thus end with a more reliable measure

of the dot's internal degrees of freedom: the impurity entropy.

6.3.4 Impurity Entropy

The �nal set of computations we present in this section are of the impurity

entropy of the double dots. In Fig. 6.9 we plot results coming from SBMFT

and the BA for both large and small level separation. (The derivation of the

impurity entropy in the context of the BA is found in Appendix H.) We see

that in all cases the impurity entropy vanishes as T → 0. This then implies

the ground state of the double dot system is a singlet. If it were a triplet state,

the T → 0 limit would lead to Simp = log(2).

6.4 Discussion and Conclusions

We have presented a number of arguments that the ground state of a double

dot near the particle-hole symmetric point (i.e. when there are nearly two

electrons on the dots) is in a singlet Fermi liquid state. In particular we have

shown that the conductance in this limit vanishes, in accordance with the

Friedel sum rule and that the impurity entropy also vanishes, in agreement

with the ground state being a singlet.

These conclusions however disagree with a number of NRG studies. In Refs.
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[119] and [120] it is found that a double quantum dot (with the dots closely

spaced) carrying two electrons is in a spin-triplet state, has a conductance

corresponding to the unitary maximum, and is correspondingly a non-Fermi

liquid. Similar conclusions are reached in Refs. [122, 123]. The basic rationale

invoked for observing this physics is that with dots closely spaced, a ferromag-

netic RKKY interaction is present which binds the two electrons on the dot

into a spin triplet. Consequently the ground state of the double dot is that of

an underscreened spin-1 Kondo impurity.

We o�er a possible reason for the discrepancy that we �nd with these

studies. The Anderson Hamiltonian typically considered in these studies is of

the form:

H = Hlead +Hdot +Hlead−dot;

Hlead = D

ˆ 1

−1

kdka†kσakσ;

Hdot =
∑
i=1,2;σ

εdid
†
iσdiσ +

∑
i

Uini↑ni↓;

Hdot−lead = D1/2
∑
iσ

ˆ 1

−1

dk Vi(d
†
iσakσ + a†kσdiσ) (6.16)

where we are using the conventions of Ref. [154] in writing down the NRG

Hamiltonian. Before implementing the NRG algorithm, one adopts a logarith-

mic basis for the lead electrons,

akσ =
∑
np

anpσψ
+
np(k) + bnpσψ

−
np(k), (6.17)

where

ψ±np(k) =

 Λn/2

(1−Λ−1)1/2
e±iωnpk if Λ−(n+1) < ±k < Λ−n,

0 if k is not within the above interval,
(6.18)

and wn is given by

wn =
2πΛn

1− Λ−1
. (6.19)

Here Λ is a parameter less than one. This change of basis transforms Hlead
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and Hlead−dot into

Hlead =
D

2
(1 + Λ−1)

∑
np

Λ−n(a†npσanpσ − b†npσbnpσ)

+
D(1− Λ−1)

2πi

∑
n

∑
p 6=p′

exp(
2πi(p′ − p)

1− Λ−1
)(a†npσanp′σ − b†npσbnp′σ)

Λ−n

p′ − p
;

Hlead−dot = D1/2(1− Λ−1)1/2
∑
inσ

Λ−n/2Vi((a
†
n0σ + b†n0σ)di + h.c.). (6.20)

Typically the approximation that is now made in most NRG treatments (and

seems to have been made in the above references) is that the p 6= 0 modes of the

logarithmic basis are dropped, not least because these modes do not directly

couple to the dot. In the single dot case, where this approximation was �rst

made,[154, 155] this was found to be a reasonable approximation. However

in the double dot case it is not a priori obvious that this is the case. In

particular if one �nds an underscreened Kondo e�ect one might ask whether

that additional modes (p 6= 0) might serve to provide additional screening

channels.

Let us then consider the NRG Hamiltonian that would arise if both the

p = 0 and p = ±1 modes were kept. Hlead can then be trivially diagonalized

using the combination

rn0σ =
1

3

(
2an1σ − eθan0σ + 2e2θan−1σ

)
;

rn±σ =
1

3
√

10

[
5an1σ + (2∓ 6i)eθan0σ − (4± 3i)e2θan−1σ

]
,

with θ = − 2πi
1−Λ−1 . Note that the corresponding transformation {s ↔ b} is

omitted for brevity. This yields

Hlead = D
∑
nσ

Λ−n

{
1 + Λ−1

2
r†n0σrn0σ +

2π(1 + Λ) + 3(1− Λ)

4πΛ
r†n+σrn+σ

+
2π(1 + Λ)− 3(1− Λ)

4πΛ
r†n−σrn−σ − {r → s}

}
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The corresponding transformation of the dot-lead Hamiltonian is

Hdot−lead =
∑
inσ

Vni

[√
2

5

(
1

3
− i
)
r†n+σdiσ +

√
2

5

(
1

3
+ i

)
r†n−σdiσ −

1

3
r†n0σdiσ + {r → s}+ h.c

]
,

(6.21)

with Vni = D
1
2 (1− Λ−1)

1
2 Λ−

n
2 eθVi.

We see upon this diagonalization that three channels of electrons, rn{0,±},σ

and sn{0,±}σ, couple to the dot. And because of the nature of the logarithmic

basis, we see that +, − and 0 variables can be arbitrarily close to the Fermi

surface (due to the presence of the Λ−n factor) and so should all contribute to

Kondo screening.

This analysis suggests that in a situation with two electrons on the double

dots which are bound into a triplet by a putative RKKY coupling, there are

nonetheless (at least) three available screening channels, at least in the NRG

reduction of the Anderson Hamiltonian. And so the problem would seem to

be not one of an underscreened Kondo e�ect but an exactly screened Kondo

e�ect. We do however note that while viewing the double dot system with

two dot electrons as an exactly screened Kondo e�ect is consistent with our

Fermi liquid �ndings, it is not clear under what conditions it would be correct

to think of the two electron on the dots as ever forming a triplet. While any

perturbatively generated RKKY interaction will generically be larger than

the exponentially small Kondo screening scale, there is a question of whether

the zero temperature perturbation theory underlying any RKKY estimate is

convergent because the system is gapless.[156]

While we have focused here on NRG treatments of double dots close to

their particle-hole symmetric point, similar analyses of any multi-dot system

might suggest that whenever the dot degrees of freedom exceed S = 1/2, it is

not possible to ignore the p 6= 0 modes of the logarithmic basis.

In the next chapter we will show that a completely di�erent technique

known as the 1/N expansion also favors the prediction that the ground state

of closely spaced double quantum dots are Fermi liquids.
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Chapter 7

1/N diagrammatic expansion for

coupled parallel quantum dots

7.1 Introduction

Strong correlations in impurity problems have been of tremendous theoreti-

cal and experimental interest. The physics of strongly correlated systems can

be systematically studied via a system of quantum dots. This mesoscopic

setup of dots forms an ideal platform for studying and comparing various

low-dimensional techinques. As mentioned in the previous chapter, the exper-

imental ability to adjust the gate voltages which control both the tunneling

amplitudes between the dots and the connecting leads and the dots' chemical

potential makes this a very preferable system for probing strongly correlated

physics (for example, see realization of Kondo physics in a single quantum dot

in Refs. [107�110]).

With the ability to engineer multi-quantum dot systems one can now re-

alize more exotic forms of Kondo physics and e�ects of the Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction. There has been experimental and theo-

retical progress in studying quantum dots both in series and in parallel. De-

spite considerable literature on the subject much is left to be understood.

In this chapter we focus on the system of quantum dots in parallel without

direct tunneling or interaction between the dots. Although the dots are not

directly coupled, they are coupled through an e�ective RKKY interaction.

Our calculations will help us explore the nature of the RKKY interaction in
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parallel double quantum dots. We will argue that the RKKY interaction is

non-ferromagnetic due to its non-perturbative nature. The method we are

going to use is a systematic diagrammatic expanion in 1/N where N is the

degeneracy of the dot level. When applicable we will compare it with a recent

Bethe ansatz and a slave boson mean �eld analysis for the same geometry (also

see chapter 6). The method of 1/N expansion helps us to compute quantities

such as zero temperature conductance and dot-occupancy. We �nd that the

conductance vanishes at the particle-hole symmetric point and we can argue

that the ground state is a Fermi-liquid.

The chapter is organized as follows. In Secion 7.2 we describe the double-

dot model we are interested in studying and we will brie�y describe the method

we used. In Section 7.3 we will write down our results for the Green's function

matrix, partition function, dot occupancy and conductance. In this section

we will also show that the Friedel Sum Rule holds perturbatively in 1/N and

we will use this fact to compute the conductance from the dot-occupancy.

Lastly, in Section 7.4 we will discuss the implications of our results and make

a comparision with other low-dimensional techniques on the same geometry.

7.2 Model studied and method used

The model we are interested in is given in Fig. 6.1. The Hamiltonian for this

system is given by

H = −i
∑
lσ

ˆ +∞

−∞
dxc†lσ∂xclσ +

∑
σα

Vlα

(
c†lσαdσα + h.c

)
+
∑
σα

εdαnσα

+
∑
α

Uαn↑αn↓α (7.1)

The clσ specify electrons with spin σ living on the two leads, l = 1, 2.

The dασ specify electrons found on the two dots α = 1, 2. Electrons can

hop from the leads to dots with tunneling strength Vlα. The strength of the

Coulomb repulsion on the two dots is given by Uα. We suppose that there

is no interdot Coulomb repulsion and that tunneling between the two dots is

negligible. The starting point is the Hamiltonian (7.1) and we will study here
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the Uα =∞ case. The constraint of preventing double-occupancy on the dots

is ful�lled by introducing two Lagrange multipliers λ1 and λ2. The slave boson

formalism consists of writing the impurity fermionic operator on each dot as a

combination of a pseudofermion and a boson operator: dσα = b†αfσα. Here fσα

is the pseudofermion which annihilates one �occupied state� on dot α and b†α
is a bosonic operator which creates an empty state on dot α. Instead of doing

a mean �eld approximation we will instead do a systematic diagrammatic

expansion in 1/N where N is the degeneracy of each dot. Under the slave

boson formalism the double dot Hamiltonian (7.1) reads,

H = −i
∑
lσ

ˆ +∞

−∞
dxc†lσ∂xclσ+

∑
σα

Vlα

(
c†lσαb

†
αfσα + h.c

)
+
∑
σα

εdαnσα+
∑
α

iλα(b†αbα+
∑

f †σαfσα−1)

and we will introduce,

Hmix =
∑
σα

Vlα

(
c†lσαb

†
αfσα + h.c

)
To make Feynman diagrams we use the most general de�nition for Green's

function,

Gα,β =
< b†α(τ)fσα(τ)f †σβ(0)bβ(0)e−

´ β
0 Hmix(τ)dτ >0

< e−
´ β
0 Hmix(τ)dτ >0

(7.2)

From (7.2) we see that Gαβ is a matrix in the dot-space. All the diagrams

(connected and disconnected) are constructed by the basic principle and the

constraint was imposed on numerator and denominator separately. The sub-

script 0 in (7.2) denotes the ground state of the non-interacting system.

In this chapter we deal with arbitrary couplings Vlα however respecting the

following ratio condition,

V1α

V2α

=
V1α′

V2α′
= λ (7.3)

This ratio condition helps us to map this Hamiltonian to even and odd

channels, ce/o = (V1/2,αc1 ± V2/1,αc2)/
√

2Γα where Γα = (V 2
1α + V 2

2α)/2. Under
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the map, the Hamiltonian factorizes into even and odd sectors:

He = −i
∑
lσ

ˆ ∞
−∞

dx c†eσ∂xceσ +
∑
σα

√
2Γα(c†eσαdσα + h.c)

+
∑
σα

εdαnσα +
∑
α

Uαn↑αn↓α;

Ho = −i
∑
lσ

ˆ ∞
−∞

dx c†oσ∂xcoσ, (7.4)

where, as can be seen, the odd sector decouples from the double dot. For

convenience we will make the replacement
√

2Γ1,2 →
√

Γ1,2.

7.3 Results

7.3.1 Greens Function Matrix

In this section we �rst start with the results for the Green's function matrix.

We are interested in those terms of the matrix that will be further used to

show that Friedel Sum Rule holds perturbatively in 1/N.

The Green's function takes the form

G =

 G
O(1)+O( 1

N
)

11 G
O( 1

N
)+O( 1

N2 )

12

G
O( 1

N
)+O( 1

N2 )

21 G
O(1)+O( 1

N
)

22


We will introduce the following notations.

Σ1,2(z) = NΓ1,2

∑
k

fk
z + εk − εd1,2

(7.5)

Z1,2[E01,02] =

[
1− ∂Σ1,2

∂z

]−1

|z=E01,02

The entries of the matrix are then as follows.

G
O(1)
11 (iωn) =

Z1(E01)

iωn − TA1

(7.6)
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G
0( 1
N

)

12 (iωn) =
Z1(E01)

iωn − TA1

· [−i (V11V12 + V21V22)] · Z2(E02)

iωn − TA2

(7.7)

In Eq (7.6 and 7.7) one can swap the subscript 1 ↔ 2 to get the corre-

sponding expressions for G
O(1)
22 (iωn) and G

O( 1
N

)

21 (iωn). Notice that Eq (7.6 and

7.7) are the lowest order diagrams in 1/N for the matrix entries.

Here εk denotes the energy of the conduction state and fk denotes the

fermi-function, ie, fk = 1
eβk+1

.One can easily notice from (7.5) that

ReΣ1,2(ω) =
N
(
V 2

11,12 + V 2
21,22

)
π

Log

∣∣∣∣εd1,2 − ωD

∣∣∣∣
and we can also easily see that, ImΣ1,2(ω) = 0 if ω < εd1,2 and ImΣ1,2(ω) =

−N
(
V 2

11,12 + V 2
21,22

)
otherwise. It is to be noted that E01,2 is the most negative

solution of ω −ReΣ1,2(ω) = 0 and,

TA1,2 = εd1,2 − E01,2

We write down results for next-to-leading order here.

Im
[
G
O(1/N)
11

]
= − Z2Γ1

(ω − TA1)
2−πθ(−ω−TA1)R(ω)−πθ(ω−TA1) [S(ω) + T (ω)]

(7.8)

The de�nitions of S(ω) , R(ω)and T (ω) used in (7.8) are as follows

R(ω) =
Z1(E01)

N

[
NΓ1

π

]2 ˆ −ω
TA1

dk

(ω + εk − TA1)
2

1(
εk −

(
NΓ1

π

)
log( εk

TA1
− 1)

)2

+ (NΓ)2

(7.9)

S(ω) =
Z1(E01)

N

[
NΓ1

π

]2
1

(ω − TA1)
2

ˆ ω

TA1

dk(
εk −

(
NΓ1

π

)
log( εk

TA1
− 1)

)2

+ (NΓ1)2

(7.10)
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T (ω) =
Z1(E01)

N

[
NΓ1

π

]2 [
1

TA1

− 1

ω

]
1[

ω − TA1 +
(
NΓ1

π

)
log( ω

TA1
)
]2 (7.11)

As has been pointed out before G
O(1/N)
22 is obtained by just interchanging

the species index 1↔ 2. It is important to notice for future that

Im
[
G
O(1/N)
11 (ω = 0)

]
= −Z1(E01)2Γ1

(ω − TA1)
2 (7.12)

and we also have from Eq. (7.7) that

Im[G
0( 1
N

)

12 (ω = 0)] = −Z1(E01)

ω − TA1

· [(V11V12 + V21V22)] · Z2(E02)

ω − TA2

(7.13)

For the sake of brevity we donot presents expressions for those parts of

the Green's function matrix that are extraneous to the main goal which is to

provide strong evidence of a Fermi-Liquid by perturbatively showing that the

Friedel Sum Rule holds.

7.3.2 Partition function and dot-occupancy

We present here results of the partition function from diagrams from which

one can also extract the dot occupancy. The partition function and the dot

occupancy obey the simple relation

nd1,2 = − 1

β

∂ logZ

∂εd1,2

(7.14)

It turns out that the partition function is given by

Z = e−βE01 · e−βE02 (7.15)

From this its trivial to see that nd1,2 = ∂E01,2

∂εd1,2
. After some algebra one �nds

nd1,2 =
µ1,2

1 + µ1,2

(7.16)

where
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µ1,2 =
NΓ1,2

πTA1,2

(7.17)

It should be again noted that while Greens function was computed upto

O(1/N) it su�ces (as far as proving FSR perturbatively is concerned) to com-

pute dot occupancy upto O(1). Higher order corrections to the dot occupancy

are extraneous to the main goal of the chapter.

7.3.3 Friedel Sum Rule (FSR) for double quantum dots

7.3.3.1 Friedel Sum Rule.

FSR states for N-fold degeneracy that

δ(0) =
πnf
N

(7.18)

Another and more convenient way of writing the FSR is through linear

conductance

σ(ω = 0) = 2
e2

h

4λ2

(1 + λ2)2
sin2

(πnf
N

)
(7.19)

Also following Meir and Wingreen [157]we have the most general expression

for linear conductance as

σ(ω = 0) = −2
e2

h

2

(1 + λ2)
Im[Tr {ΓLGr}] (7.20)

where Gr is the full retarded Green's function matrix in dot-space and ΓL

is the bare hybridization matrix both de�ned as

Gr =

[
Gr

11 Gr
12

Gr
21 Gr

22

]
(7.21)

ΓL =

[
V 2

11 V11V12

V11V12 V 2
12

]
(7.22)

Thus to show that FSR holds we need to show that a perturbative expan-

sion in (7.19) is equal to a perturbative expansion in (7.20) ,ie, we have to

show that perturbatively
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2
e2

h

4λ2

(1 + λ2)2
sin2

(πnf
N

)
= −2

e2

h

2

(1 + λ2)
Im[Tr {ΓLGr}] (7.23)

7.3.3.2 Proof that FSR is satis�ed perturbatively for double quan-

tum dots

The left hand side of (7.23) to O( 1
N2 ) is equal to

4λ2

(1 + λ2)2
sin2

(πnf
N

)
=

4λ2

(1 + λ2)2
sin2

(
π (nf1 + nf2)

N

)
≈ 4λ2

(1 + λ2)2

π2

N2

{
n2O(1)
f1 + n2O(1)

f2

+ 2n
O(1)
f1 n

O(1)
f2

}
(7.24)

The right hand side of (7.23) to the same order, ie , O( 1
N2 )

gives

2

(1 + λ2)
-Im[Tr {ΓLGr}] ≈ − 2

(1 + λ2)
Im

{
V 2

11G
O(1/N)
11 + V11V12G

O(1/N)
21

+ V11V12G
O(1/N)
12 + V 2

12G
O(1/N)
22

}
(7.25)

where all the Greens's functions were evaluated by diagrammatic approach.

We indeed �nd that the FSR (7.23) holds for double-dots perturbatively.

7.3.3.3 Evaluation of conductance using FSR and 1/N diagrams

Since we showed that FSR holds perturbatively in 1/N we will use Eq(7.19)

to compute the linear conductance, ie,

σ(ω = 0) = 2
e2

h

4λ2

(1 + λ2)2
sin2

(
π [nd1 + nd2 ]

N

)
(7.26)

where nd1 and nd2 are calculated from diagrams of partition function z, ie,

nd1,2 = − 1

β

∂ log z

∂εf1,2
(7.27)
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7.4 Discussions and Conclusions

In this chapter we have studied a double-impurity model using the well-known

technique of 1/N expansion where N is the degeneracy of each dot level. We

computed the entries of the Green's function matrix. We also computed the

dot occupancy after evaluating the diagrams of the partition function. With

the knowledge that FSR is satis�ed for this system of closely spaced dots we

compute the linear conductance from the dot occupancy. We �nd that the

conductance vanishes at the particle-hole symmetric point and the results are

in agreement with a slave boson mean �eld theory of the same system. Thus

we �nd evidence that the ground state of a system of double dots is a Fermi-

liquid singlet. The RKKY interaction in this case is clearly non-ferromagnetic

in nature and this is due to the non-perturbative nature of the problem. These

�ndings are consistent with a Bethe-Ansatz and slave boson mean �eld analy-

sis of the same system. However, we note that there are discrepancies between

our results and the results stemming from the method of the Numerical Renor-

malization Group. Possible reasons for these discrepancies were mentioned in

Chapter 6.
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Appendix A

Asymptotic Bethe Ansatz solution

of the spin Calogero Model and

separation of variables in

hydrodynamics

The spin Calogero model is solvable by an asymptotic Bethe Ansatz (ABA)[43,

63, 158]. This solution turns out to be the most convenient for our purposes.

The most important ingredient of the ABA is the scattering phase which

is given by

θ(k) = πλ sgn(k) (A.1)

for sCM. Here k is the relative momentum of two particles and the scattering

phase does not depend on the species of particles. The expression for the

dressed (true physical) momentum of the particle is given by

k(κ) =
2π

L

[
κ+

λ

2

ˆ ∞
−∞

sgn(κ− κ′)ν(κ′) dκ′
]
, (A.2)

where κ is an integer-valued non-interacting momentum of the particle (quan-

tum number) and ν(κ) is the number of particles with quantum number κ (see

(3.18)). Here we replaced in the scattering phase sgn (k−k′) by sgn (κ−κ′)1.

1The function k(κ) is monotonic and, therefore, sgn (k − k′) = sgn (κ− κ′). This trick
is speci�c for Calogero-type models with scattering phase given by sgn (k − k′) and works
for Haldane-Shastry model in the absence of umklapps.
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We immediately obtain from (A.2)

L
dk

2π
= [1 + λν(κ)] dκ (A.3)

and

ν↑(↓)(κ) dκ = L
ν↑(↓)(k)

1 + λν(k)

dk

2π
. (A.4)

We can see that the picture corresponding to (A.4) in a single-particle phase

space requires that the number of particles in the phase space volume is given

by dx dk
2π(λ+1)

if only one species is present and dx dk
2π(λ+1/2)

when both species are

present. This justi�es the picture we used (see Figs. 3.4 and C.1).

It is easy to write down the expressions for the conserved quantities using

(A.4).

N↑(↓) = L

ˆ +∞

−∞

dk

2π

ν↑(↓)(k)

1 + λν(k)
(A.5)

P = L

ˆ +∞

−∞

dk

2π

ν(k)

1 + λν(k)
k (A.6)

Ps = L

ˆ +∞

−∞

dk

2π

νs(k)

1 + λν(k)
k (A.7)

E = L

ˆ +∞

−∞

dk

2π

ν(k)

1 + λν(k)

k2

2
. (A.8)

Here Ps is a conserved quantity proportional to Lz
1 introduced in [159]:

P̂s ≡ −i
N∑
j=1

σzj
∂

∂xj
− i

λ

2

π

L

∑
j 6=l

cot
π

L
(xj − xl)

[
σzj − σzl

]
Pjl . (A.9)

One can think of, e.g., P↑ = (P + Ps)/2 as of a sum of asymptotic values

of momenta of spin-up particles. We have replaced summations by integra-

tions as we need only continuous versions of these formulae. It can be shown

that (A.5,A.6,A.8) are equivalent to (4.23,3.19,3.20) with the relation between

physical and non-interacting momenta given by (A.2). Moreover, because the

measure of integration dk
2π

ν↑(↓)(k)

1+λν(k)
is a piece-wise constant for the two-step dis-

tribution (3.24), one naturally obtains integrals of motion in a form which

is completely separated in terms of Fermi momenta. Indeed for a two-step
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distribution (3.24)

να =

{
1, if kLα < k < kRα

0, otherwise
(A.10)

where α =↑, ↓. In the CO regime (3.50) we have

ˆ ∞
−∞

dk

2π

ν↑(k)

1 + λν(k)
f(k) =

ˆ kL↓

kL↑

dk

2π

1

1 + λ
f(k) +

ˆ kR↓

kL↓

dk

2π

1

1 + 2λ
f(k) +

ˆ kR↑

kR↓

dk

2π

1

1 + λ
f(k),

ˆ ∞
−∞

dk

2π

ν↓(k)

1 + λν(k)
f(k) =

ˆ kR↓

kL↓

dk

2π

1

1 + 2λ
f(k), (A.11)

where f(k) is an arbitrary function. In particular, we obtain for the densities

2π(λ+ 1)
N

L
= kR↑ − kL↑ +

1

2λ+ 1
(kR↓ − kL↓), (A.12)

2π(λ+ 1)
Ns

L
= kR↑ − kL↑ − (kR↓ − kL↓), (A.13)

4π(λ+ 1)
P

L
= k2

R↑ − k2
L↑ +

1

2λ+ 1
(k2
R↓ − k2

L↓), (A.14)

4π(λ+ 1)
Ps
L

= k2
R↑ − k2

L↑ − (k2
R↓ − k2

L↓), (A.15)

12π(λ+ 1)
E

L
= k3

R↑ − k3
L↑ +

1

2λ+ 1
(k3
R↓ − k3

L↓). (A.16)

So far we presented the values of the conserved quantities for the sCM in

terms of dressed Fermi momenta. They are given by linear combinations of

Fermi momenta raised to the same power. There are in�nitely many integrals

of motion of this type and they are all in involution (commute with each other).

The latter is a pretty stringent requirement and we assume that the only way

to satisfy it is to require that the corresponding classical hydrodynamic �elds

have the following Poisson's brackets

{kα(x), kβ(y)} = 2πsαδαβδ
′(x− y), (A.17)

where α runs over all Fermi points and sα are some numbers to be determined.

We can determine these numbers, e.g., in the following way. The density of
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current j (momentum per unit length) from (A.14) by

j(x) =
1

4π(λ+ 1)

[
k2
R↑ − k2

L↑ +
1

2λ+ 1
(k2
R↓ − k2

L↓)

]
. (A.18)

The total momentum of the system is a generator of the translation algebra

{P, q(y)} = ∂yq(y), where q(y) is any �eld. For the current density we should

have

{j(x), q(y)} = q(x)δ′(x− y). (A.19)

Taking q(y) to be kα(y) and combining (A.19) with (A.17) we �x the unknown

coe�cients sα

sR↑ = −sL↑ = λ+ 1,

sR↓ = −sL↓ = (λ+ 1)(2λ+ 1). (A.20)

Computing Poisson's bracket of the hydrodynamic Hamiltonian (obtained from

(A.16)

H =
1

12π(λ+ 1)

ˆ
dx

[
k3
R↑ − k3

L↑ +
1

2λ+ 1
(k3
R↓ − k3

L↓)

]
(A.21)

with kα(x) we obtain Riemann-Hopf equation (3.43) for every Fermi momen-

tum �eld kα(x, t).
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Appendix B

Hydrodynamic velocities

In appendix A we did not use the notion of hydrodynamic velocity. Instead,

our hydrodynamic equations were written directly in terms of dressed Fermi

momentum �elds kα(x, t). We also know how to express other quantities like

density, momentum, energy, etc in terms of these variables. Let us now �nd

the expressions for the velocity �elds v↑,↓. We focus on the CO regime here

and consider other regimes in appendix C.

First of all we, give the expressions for the conserved densities and con-

served current densities which can be found from (A.12,A.13,A.14,A.15) as

ρ↑ =
ρ+ ρs

2
=

1

2π(λ+ 1)

[
kR↑ − kL↑ −

λ

2λ+ 1
(kR↓ − kL↓)

]
,

ρ↓ =
ρ− ρs

2
=

1

2π(2λ+ 1)
(kR↓ − kL↓), (B.1)

j↑ =
j + js

2
=

1

4π(λ+ 1)

[
k2
R↑ − k2

L↑ −
λ

2λ+ 1
(k2
R↓ − k2

L↓)

]
,

j↓ =
j − js

2
=

1

2π(2λ+ 1)
(k2
R↓ − k2

L↓). (B.2)

In hydrodynamics, the velocities are de�ned as variables conjugated to the

conserved momenta. Namely, the di�erential of the energy density de�nes

chemical potentials and velocities as

dε = µ↑dρ↑ + µ↓dρ↓ + vh↑dj↑ + vh↓dj↓. (B.3)
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Using the energy density obtained from (A.21) we have

dε =
1

4π(λ+ 1)

[
k2
R↑ dkR↑ − k2

L↑ dkL↑ +
1

2λ+ 1

(
k2
R↓ dkR↓ − k2

L↓ dkL↓
)]
(B.4)

and using (B.1,B.2) one can determine µ↑,↓ and v↑,↓. The hydrodynamic ve-

locities are given by linear combinations of Fermi momenta 1

vh↑ =
1

2
(kR↑ + kL↑),

vh↓ =
1

2(λ+ 1)
[λ(kR↑ + kL↑) + (kR↓ + kL↓)] . (B.5)

Using (A.17,A.20) one can check that the velocities (B.5) have canonical Pois-

son's brackets with densities (B.1)2

{ρα(x), vβ(y)} = δαβδ
′(x− y), (B.6)

where α, β =↑, ↓. The other Poisson's brackets vanish.
The hydrodynamic velocities (B.5) are precisely the ones used in the main

body of this chapter for CO regime v↑,↓ = vh↑,↓. Equations (3.48,3.49) are

the inverse to (B.1,B.5). Interestingly, in the CO regime the velocities and

densities of di�erent species can be naturally (simply) written in terms of bare

non-interacting momenta (3.29,3.30).

The current density in terms of densities and velocities follows from (A.18)

(compare with (3.31))

j(x) = ρ↑v↑ + ρ↓v↓. (B.7)

The density of �spin-current� which follows from (A.15) has a �correction�

proportional to λ compared to the case of free fermions

js(x) = ρ↑v↑ − ρ↓v↓ + 2λρ↓(v↑ − v↓). (B.8)

In this appendix we focused on CO regime. Of course, the formalism

reviewed here is applicable to all three hydrodynamic regimes (CO, PO, and

1This is a peculiar property of the spin-Calogero model and, moreover of CO regime. In
PO regime this property does not hold, see appendix C for details.

2This is a peculiar property of the spin-Calogero model and, moreover of CO regime. In
PO regime this property does not hold, see appendix C for details.
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NO). We collect appropriate results in Appendix C.
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Appendix C

Hydrodynamic regimes for the

spin-Calogero model

Depending on the relative order of four quantum numbers κR,L;↑,↓ we distin-

guish six di�erent hydrodynamic regimes of the sCM. These regimes can be

reduced to three essentially di�erent ones exchanging ↑ ↔ ↓. In this appendix

we consider these three regimes and then combine all six cases.

Before we proceed, let us remark that the function k(κ) de�ned in (A.2) is

monotonic and the order of the quantum numbers κR,L;↑,↓ is the same as the

one of the physical dressed momenta kR,↑ = k(κR,↑) etc. Therefore, we can use

the latter to de�ne hydrodynamic regimes instead of the bare momenta κ.

C.1 Conserved densities and dressed Fermi mo-

menta

Let us consider generally some integrable system which has two in�nite families

of mutually commuting conserved quantities. We assume further that the

densities of these quantities are given in terms of four dressed Fermi momenta
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kα(x) with α = 1, 2, 3, 4 as

jn(x) =
1

n

4∑
α=1

aα(kα(x))n,

jsn(x) =
1

n

4∑
α=1

aαbα(kα(x))n. (C.1)

Here n = 1, 2, 3, . . . and aα, bα are constant coe�cients. We assumed that

the conserved densities can be expressed locally in terms of kα and neglected

gradient corrections.

We identify the �rst several integrals with densities, currents, and the en-

ergy as

j1(x) = ρ(x),

js1(x) = ρs(x),

j2(x) = j(x),

js2(x) = js(x),

j3(x) = 2ε(x). (C.2)

We notice here that due to (A.5-A.8) the identi�cations (C.2) (with (C.1)) are

valid for sCM model in all its regimes. The higher order conserved densities

(C.1) correspond to conserved quantities of sCM introduced in Ref.[159].

The requirement of vanishing Poisson's brackets between conserved quan-

tities is very restrictive. It can be resolved by requiring canonical Poisson's

brackets between Fermi momenta (A.17). If (A.17) is valid, it is easy to check

that {
´
dx jn(x),

´
dy jsm(y)} = 0 etc. Using the fact that the total current is

the generator of translations (A.19) we can �x the coe�cients sα in (A.17) as

2πsα = 1/aα and obtain

{kα(x), kβ(y)} =
1

aα
δαβδ

′(x− y). (C.3)

Using the Poisson's brackets (C.3) and the Hamiltonian H =
´
dx ε(x) with

(C.2,C.1) it is easy to obtain the Riemann-Hopf evolution equations for the
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Table C.1: Summary of three regimes.
α L ↑ R ↑ L ↓ R ↓

CO
2π(λ+ 1) aα −1 1 − 1

2λ+1
1

2λ+1 kL↑ < kL↓ < kR↓ < kR↑
bα 1 1 −(2λ+ 1) 2λ+ 1

PO
2π(λ+ 1) aα −1 1

2λ+1
− 1

2λ+1
1

kL↓ < kL↑ < kR↓ < kR↑
bα 1 2λ+ 1 −(2λ+ 1) −1

NO
2π(λ+ 1) aα −1 1 −1 1

kL↓ < kR↓ < kL↑ < kR↑bα 1 1 −1 −1

dressed Fermi momenta

∂tkα + kα∂xkα = 0, for α = 1, 2, 3, 4 (C.4)

and the evolution equations for all conserved densities as

∂tjn + ∂xjn+1 = 0,

∂tj
s
n + ∂xj

s
n+1 = 0. (C.5)

In the hydrodynamic regime only four of the densities are algebraically inde-

pendent (as there are only four dressed Fermi momenta). Therefore, one can

�nd constitutive relations, i.e., express the energy density in terms of ρ, ρs, j

and js. Alternatively, one can use hydrodynamic velocities vh and vhs de�ned

by (B.3) instead of currents j, js.

We can see that the hydrodynamics (C.1,C.2,C.3) is fully de�ned by coe�-

cients aα, bα. In fact, these coe�cients are not totally independent. Requiring

that densities ρ and ρs have vanishing Poisson's brackets with themselves and

with each other gives three relations between the coe�cients∑
α

aα = 0,∑
α

bαaα = 0,∑
α

b2
αaα = 0. (C.6)

For CO, PO, and NO regimes of sCM these coe�cients are summarized in the

Table C.1. These coe�cients do satisfy relations (C.6).

The matrix of Poisson's brackets of the dressed Fermi momenta kα (C.3)

is diagonal but not proportional to the unit matrix. It is interesting that the

149



Poisson's brackets of bare momenta κα satisfy

{κα(x), κβ(y)} = (−1)α
L2

2π
δαβδ

′(x− y). (C.7)

One then obtains that the �velocities� introduced in (3.29,3.30) are canoni-

cally conjugate to the corresponding densities and can be written as linear

combinations of κα (and of kα). The velocities (3.29,3.30) are de�ned just as

conjugate variables to the densities. This de�nition is not unique. One can

always shift v↑ → v↑+2πγρ↓ and v↓ → v↓−2πγρ↑ with any number γ without

changing Poisson's brackets. The particular choice of variables (3.29,3.30) is

convenient because it de�nes velocities continuously across all hydrodynamic

regimes. Moreover, we have

v↑,↓ = vh↑,↓, for CO,

v↑,↓ = vh↑,↓ ± πλρ↓,↑, for NO. (C.8)

In PO regime the hydrodynamic velocities are not linear combinations of kα

and their relations to the conjugated variables v↑,↓ used in this chapter are

more complicated.

C.2 Complete Overlap Regime (CO)

The Complete Overlap regime corresponds to the case when

− π

2
|ρs| < vs <

π

2
|ρs| . (C.9)

In this case the support of ν↓ is a subset of the support of ν↑ (or vice versa).

In the main body of the chapter we mostly concentrated on this case, but for

convenience we recap the main formulae in this appendix as well. The dressed

momenta (A.2) in the CO regime for ρs > 0, i.e., for the ordering

kL↑ < kL↓ < kR↓ < kR↑ , (C.10)
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are

kR↑,L↑ = v↑ ± π [(λ+ 1)ρ↑ + λρ↓] = v↑ ± πρ↑ ± λπρc,

kR↓,L↓ = (λ+ 1)v↓ − λv↑ ± π(2λ+ 1)ρ↓

= v↓ ± πρ↓ + λ(−2vs ± 2πρ↓). (C.11)

Poisson's brackets of kα are given by (C.3) with coe�cients from the Table

C.1. One can express all conserved densities (C.1) in terms of dressed Fermi

momenta using the Table C.1. For example, the Hamiltonian (see (C.2)) reads

HCO =
1

12π(λ+ 1)

ˆ
dx

[
k3
R↑ − k3

L↑ +
1

2λ+ 1

(
k3
R↓ − k3

L↓
)]

(C.12)

=

ˆ
dx

{
1

2
ρ↑v

2
↑ +

1

2
ρ↓v

2
↓ +

λ

2
ρ↓
(
v↑ − v↓

)2

+
π2λ2

6
ρ3
c +

π2

6

(
ρ3
↑ + ρ3

↓
)

+
λπ2

6

(
2ρ3
↑ + 3ρ2

↑ρ↓ + 3ρ3
↓
)}
. (C.13)

The evolution equations are given by (C.4) and can also be recast in terms

of equations for densities and velocities (3.38,3.39).

C.3 Partial Overlap Regime (PO)

There are two regimes when the supports of ν↑ and ν↓ only partially overlap.

Here we concentrate on the case for which

π

2
|ρs| < vs <

π

2
ρc , (C.14)

corresponding to the ordering

kL↓ < kL↑ < kR↓ < kR↑ . (C.15)
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The other PO regime can be obtained by exchanging up and down particles,

i.e. by changing vs → −vs. In this case the dressed momenta (A.2) are

kL↓ = v↓ − π(λ+ 1)ρ↓ − πλρ↑ = v↓ − πρ↓ − λπρc,

kL↑ = v↑ + λ(v↑ − v↓)− π(2λ+ 1)ρ↑ = v↑ − πρ↑ + λ(2vs − 2πρ↑),

kR↓ = v↓ − λ(v↑ − v↓) + π(2λ+ 1)ρ↓ = v↓ + πρ↓ − λ(2vs − 2πρ↓),

kR↑ = v↑ + π(λ+ 1)ρ↑ + πλρ↓ = v↑ + πρ↑ + λπρc (C.16)

and the Hamiltonian becomes (see Table C.1 and (C.1,C.2))

HPO =
1

12π(λ+ 1)

ˆ
dx

[
k3
R↓ − k3

L↑ +
1

2λ+ 1

(
k3
R↑ − k3

L↓
)]

(C.17)

=

ˆ
dx

{
1

2
ρ↑v

2
↑ +

1

2
ρ↓v

2
↓ + λπρ↑ρ↓ (v↓ − v↑)−

λ

12π
[v↑ − v↓ − π (ρ↑ + ρ↓)]

3

+
π2λ2

6
(ρ↑ + ρ↓)

3 +
π2

6
(1 + 2λ)

(
ρ3
↑ + ρ3

↓
)}
. (C.18)

Poisson's brackets of kα are given by (C.3) with coe�cients from the Table

C.1 and evolution equations are given by (C.4).

C.4 No Overlap Regime (NO)

In this case, the supports of ν↑ and ν↓ do not overlap at all. For vs > 0 the

ordering of dressed Fermi momenta is

kL↓ < kR↓ < kL↑ < kR↑ (C.19)

and momenta themselves are

kR↑,L↑ = v↑ + πλρ↓ ± π(λ+ 1)ρ↑ = v↑ ± πρ↑ ± λπρc,s,

kR↓,L↓ = v↓ − πλρ↑ ± π(λ+ 1)ρ↓ = v↓ ± πρ↓ − λπρs,c. (C.20)
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Figure C.1: Phase-space diagrams of a hydrodynamic states characterized
by four space-dependent Fermi momenta in three regimes CO, PO, and NO
respectively.

and the Hamiltonian becomes (see Table C.1 and (C.1,C.2))

HNO =
1

12π(λ+ 1)

ˆ
dx
[
k3
R↑ − k3

L↑ + k3
R↓ − k3

L↓
]

(C.21)

=

ˆ
dx

{
1

2
ρ↑v

2
↑ +

1

2
ρ↓v

2
↓ + λπρ↑ρ↓ (v↑ − v↓)

+
π2

6
(λ+ 1)2 (ρ↑ + ρ↓)

3

− π2

2
(1 + 2λ) ρ↑ρ↓ (ρ↑ + ρ↓)

}
. (C.22)

Poisson's brackets of kα are given by (C.3) with coe�cients from the Table

C.1 and evolution equations are given by (C.4).

C.5 All cases combined

It is possible to combine all hydrodynamic regimes into relatively compact

expressions introducing absolute values of hydrodynamic �elds. A general

Hamiltonian valid for all regimes takes a form

H =

ˆ
dx

{
1

2
ρ↑v

2
↑ +

1

2
ρ↓v

2
↓ +

π2

6

(
ρ3
↑ + ρ3

↓
)

+
π2

6
λ2ρ3

c +
π2

3
2λ(ρ3

↑ + ρ3
↓)

+λ ρcξ1ξ2 −
λ

3π

(
|ξ1|3 + |ξ2|3

)
+

λ

3π

[
|χ1|3 − χ3

1 + |χ2|3 + χ3
2

]}
, (C.23)
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k inequality vs ρs ξ1 = vs + π
2
ρs ξ2 = vs − π

2
ρs χ1 = vs + π

2
ρc χ2 = vs − π

2
ρc vs inequality Regime

kL↑ < kR↑ < kL↓ < kR↓ − − − − − vs < −π
2
ρc NO

kL↑ < kL↓ < kR↑ < kR↓ − − − + − −π
2
ρc < vs < −π

2
|ρs| PO

kL↓ < kL↑ < kR↑ < kR↓ − − + + − π
2
ρs < vs < −π

2
ρs CO

kL↑ < kL↓ < kR↓ < kR↑ + + − + − −π
2
ρs < vs <

π
2
ρs CO

kL↓ < kL↑ < kR↓ < kR↑ + + + + − π
2
|ρs| < vs <

π
2
ρc PO

kL↓ < kR↓ < kL↑ < kR↑ + + + + + π
2
ρc < vs NO

Table C.2: Classi�cation of di�erent regimes: + indicates that the �eld takes
positive values, − that it is negative. A blank means that its sign is arbitrary.

where we introduced the following notations

ξ1,2 ≡ vs ±
π

2
ρs , (C.24)

χ1,2 ≡ vs ±
π

2
ρc . (C.25)

The Hamiltonian (C.23) can be obtained from (3.20,3.21) for the general case

of a two-step distribution function ν↑,↓(κ). We collect in the Table C.2 the

information necessary to go quickly from the general expression (C.23) to the

particular ones valid in separate regimes (CO, PO or NO).

We can combine the evolution equations following from (C.23) in the

spin/charge basis (3.12) as

ρ̇c = −∂x
{
ρcvc + ρsvs

}
, (C.26)

ρ̇s = −∂x

{
ρcvs + ρsvc −

λ

π

[
ξ1|ξ1|+ ξ2|ξ2| − χ1|χ1| − χ2|χ2|

]}
,(C.27)

v̇c = −∂x

{
v2
c + v2

s

2
+
π2

8

[(
4λ2 + 2λ+ 1

)
ρ2
c + (2λ+ 1) ρ2

s

]
+

λ

2

[
χ1|χ1| − χ2|χ2|

]}
, (C.28)

v̇s = −∂x

{
vcvs +

π2

4
(2λ+ 1) ρcρs −

λ

2

[
ξ1|ξ1| − ξ2|ξ2|

]}
. (C.29)

For CO and PO regimes the Hamiltonian (C.23) takes an especially simple
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form in terms of dressed momenta

HCO & PO =
1

12π (2λ+ 1)

ˆ
dx

{
k3
R↑ − k3

L↑ + k3
R↓ − k3

L↓ +
λ

(λ+ 1)

[∣∣k3
L↑ − k3

L↓
∣∣

+
∣∣k3
R↑ − k3

R↓
∣∣]} , (C.30)

which are related to density and velocity �elds as

kR↑,L↑ = v↑ ± π(λ+ 1)ρ↑ + λχ1,2 ∓ λ|ξ1,2| ,

kR↓,L↓ = v↓ ± π(1 + λ)ρ↓ − λχ2,1 ∓ λ|ξ1,2| . (C.31)

As in the separate cases considered before, these momenta have canonical

Poisson's brackets (A.17) with

sR↑,R↓ = (λ+ 1) [λ+ 1± λ sgn (ξ1)]

sL↑,L↓ = −(λ+ 1) [λ+ 1∓ λ sgn (ξ2)] (C.32)

and evolve independently according to the Riemann-Hopf equations (C.4).
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Appendix D

Hydrodynamic description of

Haldane-Shastry model from its

Bethe Ansatz solution

The Haldane-Shastry model (HSM) is a Heisenberg spin chain with long-

ranged interaction de�ned by the Hamiltonian:

HHSM =
1

2

∑
j<l

Kjl

d (j − l)2 , (D.1)

where we Kjl is the spin-exchange operator
1:

Kjl =
~σj · ~σl + 1

2
, (D.2)

and d(j) ≡ (N/π) |sin (πj/N)| is the chord distance between two points on

a lattice with N sites and periodic boundary conditions. The model (D.1)

has been introduced independently at the same time by Haldane[66] and by

Shastry[67] and has been shown to be integrable. The energy spectrum of the

HSM is equivalent to that of the Calogero-Sutherland model at λ = 2, but

with a high degeneracy due to the Yangian symmetry [160, 161].

In this appendix we used the Bethe Ansatz solution [66, 162, 163] to con-

struct a gradientless hydrodynamic description for the HSM similarly to what

we have done for the sCM model in section 3.4 and appendix A. To this

1Note that for fermions Pjl Kjl = −1.
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end, we consider a state with M overturned spins over an initial ferromag-

netic con�guration (say from up to down and M < N/2) and introduce M

integer quantum numbers κ's to characterize the state in the Bethe Ansatz

formalism. As before such state can be described by a distribution function

ν(κ) = 0, 1, depending on whether that quantum number is present or not in

the BA solution. Following [66] we impose a condition on the integer numbers:

|κ| < (N −M − 1)/2. 2

The scattering phase for the HSM is

θ(k) = π sgn(k) , (D.3)

which corresponds to setting λ = 1 into (A.1)3. Please note that since we

are considering a lattice model, the momentum is de�ned within the Brillouin

zone: −π < k < π, where we took the lattice spacing as unity.

At this point, all the derivations of appendix A can be repeated step by

step for the HSM just by setting everywhere λ = 1, and remembering that the

momentum is always de�ned modulo 2π. In particular, the dressed momentum

is

k(κ) =
2π

L

[
κ+

1

2

ˆ
sgn (κ− κ′)ν̃(κ′)dκ′

]
, (D.4)

where again we replaced sgn (k − k′) by sgn (κ− κ′)4 and the distribution of

the physical momenta is given by

ν(κ)dκ =
N

4π
ν(k)dk . (D.5)

In terms of this distribution function, the conserved quantities can be writ-

2This corresponds to having a single compact support of ν within a single Brillouin zone.
Other regimes will require an analysis of umklapp processes[158] and will not be considered
here.

3This scattering phase is identical to the one in λ = 2 bosonic Calogero-Sutherland
model [66].

4The function k(κ) is monotonic and, therefore, sgn (k − k′) = sgn (κ− κ′). This trick
is speci�c for Calogero-type models with scattering phase given by sgn (k − k′) and works
for Haldane-Shastry model in the absence of umklapps.
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ten as

M = N

ˆ
dk

4π
ν(k), (D.6)

P = N

ˆ
dk

4π
ν(k) k, (D.7)

E = E0 +N

ˆ
dk

4π
ν(k)

k2

2
, (D.8)

where the momentum is de�ned only modulo 2π. From now on, we will drop

the constant energy shift E0.

In a hydrodynamic description we assume a distribution of the uniform

type

ν(k) =

{
1, if − π < kL < k < kR < π,

0, otherwise,
(D.9)

where kR,L are some numbers. Using (D.9) and introducing space dependent

�elds instead of constants we write (D.6,D.7) as

M =

ˆ
dx

kR − kL
4π

=

ˆ
dx ρ, (D.10)

P =

ˆ
dx

k2
R − k2

L

8π
=

ˆ
dx ρ v, (D.11)

which suggests the identi�cation

kR,L = v ± 2πρ . (D.12)

Then the hydrodynamic Hamiltonian follows from (D.8):

HHSM =

ˆ
dx

k3
R − k3

L

24π
=

ˆ
dx

[
1

2
ρ v2 +

2

3
π2 ρ3

]
, (D.13)

which corresponds, as expected, to the (gradientless) hydrodynamic of a λ = 1

spin-less Calogero-Sutherland model (3.37).

We think of slowly varying �elds ρ(x, t) and v(x, t) as of classical �elds

obeying the Poisson relation {ρ(x), v(y)} = δ′(x − y). Then (D.13) generates
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the evolutions equations

ρ̇ = −∂x (ρv) ,

v̇ = −∂x
(
v2

2
+
π2

2
4ρ2

)
. (D.14)

One can easily recognize in (D.14) the hydrodynamics of spinless Calogero-

Sutherland model (3.37) for λ = 1. The correspondence between eigenstates

and eigenenergies of Haldane-Shastry model with λ = 2 spinless Calogero-

Sutherland model has been noticed in the original paper [66]. The degeneracy

of the states due to the SU(2) invariance and Yangian symmetry is lost in our

classical hydrodynamics model.

For comparisons with the derivations from freezing trick [57] in section 3.6

we express (D.13,D.17) in terms of ρs and vs used in the main body of the

chapter. We identify the density ρ = M/N = ρ↓ as the density of spin-down

particles and the velocity v as a velocity of spin-down particles relative to

the static background of spin-up particles, i.e., v = v↑ − v↓ = −2vs. The

charge density corresponding to the lattice with spacing one is just ρ0 = 1.

We summarize

ρ = ρ↓ =
ρ0 − ρs

2
, v = −2vs , ρ0 = 1. (D.15)

Using (D.15) we rewrite (D.13) as

HHSM =

ˆ
dx

{
ρ0v

2
s − ρsv2

s +
π2ρ0ρ

2
s

4
− π2ρ3

s

12

}
, (D.16)

where we neglected a constant and a term linear in ρs, which amounts to a

shift in the chemical potential. The evolution equations for the spin density

and spin velocity follow from (D.14,D.15)

ρ̇s = −∂x {2vsρ0 − 2vsρs} ,

v̇s = −∂x
{
−v2

s +
π2

2
ρ0ρs −

π2

4
ρ2
s

}
. (D.17)

We notice that the above (D.16, D.17) is nothing but the strong interaction

limit of the sCM (3.53,3.56,3.58).
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Finally, we remark that it is easy to check that the distribution function

(D.9) implies that −πρs
2
≤ vs ≤ πρs

2
and therefore corresponds to the CO

regime of spin-Calogero model.

Both in this appendix and in writing classical hydrodynamics for sCM we

neglected the degeneracy of the corresponding quantum models due to the

Yangian symmetry [160, 161]. We assumed that during the evolution string

states are not excited. Of course, the degeneracy plays a very important role

for perturbed integrable systems and for the hydrodynamics at �nite temper-

atures.
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Appendix E

Exact solution for Riemann-Hopf

equation in arbitrary potential

In this appendix we �nd an exact solution k(x, t) of the forced Riemann-Hopf

equation,

kt + ε′(k)kx = −V ′(x). (E.1)

Here ε(k) is some function referred to as �dispersion� and the prime means

the derivative with respect to the independent variable (e.g., ε′(k) = ∂ε/∂k).

The problem is to solve (E.1) with an initial condition k = k0(x) at t = 0.

This problem can be easily solved using the general method of characteristics

[164]. In this appendix we solve the Euler-type Eq. (E.1) rewriting it in the

Lagrange formulation. Namely, we notice that the left hand side of (E.1) can

be interpreted as the time derivative in the reference frame of the moving

particle. In other words (E.1) is equivalent to

ẋ = ε′(k), (E.2)

k̇ = −V ′(x). (E.3)

Here dot means time derivative and k̇(x(t), t) = ∂tk+ ẋ ∂xk is nothing else but

the left hand side of (E.1).

The system of equations (E.2,E.3) has a �rst integral of motion (energy)

ε(k) + V (x) = E, (E.4)
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where E is a time-independent constant determined by an initial condition. We

invert (E.4) and use it and (E.2) to �nd a solution of (E.2,E.3) and, therefore,

of (E.1)

k(x) = ε−1(E − V (x)), (E.5)

t =

ˆ x

s

dy

ε′(k(y))
, (E.6)

E = ε(k0(s)) + V (s), (E.7)

where the last equation gives the value of the energy E in terms of initial data

parametrically given as x = s and k = k0(s).

The system (E.5-E.7) de�nes the solution k(x, t) of (E.1) for a given initial

pro�le k0(x).

Let us now assume that there is no external potential V (x) = 0 and the

dispersion is quadratic ε(k) = k2/2. Excluding E and s from (E.5-E.7) we

have

k = k0(x− kt), (E.8)

which is being solved with respect to k gives a well-known exact solution k(x, t)

of (E.1). The solution (E.8) was extensively used in Ref. [15] for studies of

the dynamics of sCM in the absence of an external potential.

In the presence of an external harmonic potential V (x) = ω2x2/2 (and

ε(k) = k2/2) we have from (E.5-E.7)

k(x) =
√

2E − ω2x2, (E.9)

t =

ˆ x

s

dy√
2E − ω2y2

, (E.10)

E =
1

2

[
k0(s)2 + ω2s2

]
. (E.11)

Calculating the integral (E.10) and excluding E from the system (E.9-E.11)

we obtain after straightforward manipulations

ω x = R(s) sin [ωt+ α(s)] , (E.12)

k = R(s) cos [ωt+ α(s)] , (E.13)
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where we introduced

α(s) = tan−1

(
ωs

k0(s)

)
, (E.14)

R(s) =
√
ω2s2 + k0(s)2. (E.15)

The equations (E.12,E.13) together with de�nitions (E.14,E.15) give a

parametric (s is the running parameter) solution of (E.1) for the case of

quadratic dispersion and harmonic external potential. Putting ω → 1 in (E.12-

E.15) we reproduce (4.32-4.35) used in the main body of the chapter.
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Appendix F

Action for the DFP solution

In this appendix, we will revise the calculation presented in [65] and adapt it

to our case. We want to �nd the value of the hydrodynamic action calculated

on a given solution satisfying the DFP boundary conditions.

The gradientless hydrodynamic action in imaginary time τ ≡ it can, in

general, be written as

S =

ˆ
d2x L[v, ρ] =

ˆ
dx dτ ρ

{
v2

2
+ ε(ρ)− µ

}
, (F.1)

where

ε(ρ) =
λ2π2

6
ρ2 (F.2)

is the internal energy per particle of a Calogero system and

µ ≡ ∂ρ [ρε(ρ)]ρ=ρ0
=
λ2π2

2
ρ2

0 (F.3)

is the chemical potential. The action (F.1) has to be supplemented with the

continuity equation

∂τρ+ ∂x (ρv) = 0 , (F.4)

which can be considered as a constraint relating the two conjugated �elds ρ

and v. This constraint can be resolved by introducing the displacement �eld

φ(x, τ):

ρ = ρ0 + ∂xφ , j = ρv = −∂τφ . (F.5)

Physically, the displacement �eld counts the number of particles to the left
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of a point. We can use (F.5) to write the Lagrangian as a functional of φ:

L[ρ, v] = L[φ]. Its variation then gives the Euler equation for the �uid, which

can be written more simply as

∂τv + v∂xv = ∂x∂ρ [ρε(ρ)] = λ2π2ρ∂xρ . (F.6)

For the particular choice of internal energy (F.2), corresponding to the

Calogero-Sutherland interaction or exclusion statistics, the Euler equation and

the continuity equation can be combined into a single complex Riemann-Hopf

equation:

∂τk − ik∂xk = 0 , k(τ, x) ≡ λπρ(τ, x) + iv(τ, x) . (F.7)

This equation has a simple, implicit, solution of the form

k = F (x+ ikτ) . (F.8)

In the body of the chapter, we argued that a solution satisfying the DFP

boundary conditions is of the form

F (z) ≡ F (z; ρ0, η) = λπρ0 + λπη

(
z√

z2 −R2
− 1

)
. (F.9)

Here, ρ0 is the background (equilibrium) density at in�nity (where moreover

v = 0), and η is a, possibly complex, constant specifying the DFP.

To calculate the Depletion Formation Probability, we need to compare the

action (F.1) calculated on the solution (F.8,F.9) to the action of an equilibrium

con�guration:

S− S0 =

ˆ
dx dτ

{
ρ
v2

2
+ ρε(ρ)− ρ0ε(ρ0)− µ(ρ− ρ0)

}
. (F.10)

To take advantage of the fact that (F.8) is a solution of the equations of

motion, we �rst take the variation of (F.10) with respect to the parameters of

the solution. In this way, we will reduce a two-dimensional integration to a

contour integral over the boundaries, since the bulk terms are proportional to
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the Euler-Lagrange equations and vanish:

d (S− S0) = ∂ρ0 (S− S0) dρ0 + ∂η (S− S0) dη + ∂η̄ (S− S0) dη̄ . (F.11)

We have:

∂η (S− S0) =

ˆ
d2x

{
−v∂τφη −

[
v2

2
− ∂ρ (ρε) + µ

]
∂xφη

}
=

ˆ
d2x

{
−∂τ [v φη]− ∂x

[(
v2

2
− ∂ρ (ρε) + µ

)
φη

]
+
[
∂τv + v∂xv − ∂x∂ρ (ρε)

]
φη

}
= −

˛ {
[v φη] dx+

[(
v2

2
− ∂ρ (ρε) + µ

)
φη

]
dt

}
, (F.12)

where φη ≡ ∂ηφ.

The boundaries over which the contour integral is taken are, by Stoke's

theorem, the points where the integrand has a discontinuity. It is easy to check

that this contour comprises only two paths: one at in�nity (C0 ≡ {|x+ ikτ | =
∞}) and one around the branch cut of (F.9), which we take along the real axis

(C1 = {τ = 0±,−R < x < R}).
From (F.8,F.9), at in�nity we have

ρ(|z0| → ∞) ' ρ0 +
R2

4

(
η

z2
0

+
η̄

z̄2
0

)
+ . . . , (F.13)

v(|z0| → ∞) ' −iλπ
R2

4

(
η

z2
0

− η̄

z̄2
0

)
+ . . . , (F.14)

φ(|z0| → ∞) ' −R
2

4

(
η

z0

+
η̄

z̄0

)
+ . . . , (F.15)

and we see that the integrand in (F.12) along C0 vanishes too fast and the

contour integral gives no contribution.
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Close to the cut on the real axis we have

ρ(τ = 0±;−R < x < R) = ρ0 −
η + η̄

2
∓ i

η − η̄
2

x√
R2 − x2

, (F.16)

v(τ = 0±;−R < x < R) = iλπ
η − η̄

2
∓ λπη + η̄

2

x√
R2 − x2

, (F.17)

φ(τ = 0±;−R < x < R) = −η + η̄

2
x± i

η − η̄
2

√
R2 − x2 . (F.18)

Therefore

∂η (S− S0) =

ˆ R

−R

[
v(x, 0+)φη(x, 0

+)− v(x, 0−)φη(x, 0
−)
]

dx

=
λπ2R2

2
η̄ . (F.19)

Similarly, we have

∂η̄ (S− S0) = −
˛ {

[v φη̄] dx+

[(
v2

2
− ∂ρ (ρε) + µ

)
φη̄

]
dt

}
=

λπ2R2

2
η . (F.20)

The derivative with respect to ρ0 is a bit more complicated as it involves

more terms. After a bit of algebra and an additional integration by parts we

obtain:

∂ρ0 (S− S0) = −
˛ {[

v (φρ0 − x)
]
dx

+

[(
v2

2
− ∂ρ (ρε) + µ

)
(φρ0 + x) + (∂ρ0µ)φ

]
dt

}
(F.21)

where φρ0 ≡ ∂ρ0φ. Substituting the behaviors (F.13-F.15) and (F.16-F.18), the

integrals around the two contours gives equal but opposite results (±1
2
λπ2(η+

η̄)R2), which means

∂ρ0 (S− S0) = 0 , (F.22)

as one could have expected.

We can now integrate (F.11) using (F.19,F.20,F.22) to �nd

SDFP = S− S0 =
1

2
λπ2 η η̄ R2 . (F.23)
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Appendix G

Linearized Hydrodynamics and

DFP

Let us linearize the hydrodynamic equations, by expanding the theory and

retaining only the quadratic part of the Lagrangian. This linearized hydro-

dynamics is usually referred in the literature on one-dimensional models as

bosonization.

From the previous section, we have that the gradientless hydrodynamic

Lagrangian for a one-component system is

L[j, ρ] =
j2

2ρ
+ ρ
[
ε(ρ)− µ

]
, (G.1)

where j = ρv. We expand the �elds around a background value and we

parametrize the �uctuations around this background through the displace-

ment �eld φ as in (F.5), so that the constraint (F.4) is automatically satis�ed.

Keeping terms up to the quadratic order we have

L[φ] =
1

2ρ0

(∂τφ)2 +
1

2
∂2
ρ (ρε)ρ=ρ0

(∂xφ)2 + ρ0

[
ε(ρ0)− µ

]
. . .

=
κ

2u
(∂τφ)2 +

κu

2
(∂xφ)2 + L[0, ρ0] + . . . , (G.2)

where in the last line we introduce the standard parameters of bosonization:

the interaction parameter κ = κ(ρ0) and the sound velocity u = u(ρ0). The
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displacement �eld evolves according to a linear wave equation:

∂2
τφ+ u2∂2

xφ = 0 . (G.3)

The linearized treatment is valid for small �uctuations around the back-

ground ρ0, i.e. as long as the gradients of φ are small and only low energy

excitations are involved. For this reason, it is not possible to calculate the

EFP through standard bosonization, but we can consider a DFP with very

small depletion.

It is simple to see [65] that the solution that satis�es the DFP boundary

conditions is of the form:

φ(τ, x) = Re

[
η

(√
z2

0 −R2 − z0

)]
, (G.4)

where z0 ≡ x+ iu(ρ0)τ . For this solution to be compatible with the linearized

approximation we need |η|/ρ0 � 1.

It is easy to calculate the DFP by evaluating the linearized action

S− S0 '
ˆ

dxdτ
{ κ

2u
(∂τφ)2 +

κu

2
(∂xφ)2

}
(G.5)

on the solution (G.4). One immediately observes that, at zero temperature,

this action does not depend on the sound velocity, as we can rescale the time

as y ≡ uτ :

S− S0 '
κ

2

ˆ
dxdy

{
(∂yφ)2 + (∂xφ)2} . (G.6)

We can further rescale the lengths by R and substituting (G.4) in (G.6) we

get

S− S0 '
κ

2
ηη̄R2

ˆ
dx̃dỹ

∣∣∣φ̃′(x̃+ iỹ)
∣∣∣2 , (G.7)

where

φ̃(z) =
√
z2 − 1− z . (G.8)

Now all the physical parameters have been explicitly extracted and one has

just to perform an integral that contributes only with a numerical factor. The

result is

S− S0 '
π

2
κ η η̄R2 . (G.9)
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Since for a Calogero-Sutherland system κ = λπ, we notice that (G.9) exactly

coincide with (F.23). This is quite surprising, since, as we argued above, the

linearized result should be trusted to be approximately correct only for small

depletions. However, the Calogero kind of interaction is very special and we

can extend (G.9) to higher depletion, without loosing accuracy. In section 5.8

we discuss the meaning of this observation. Let us remark that this result is

speci�c for the EFP and it is not to say that for Calogero-Sutherland systems

the e�ects of non-linearity are in general not important. For instance, e�ects

of non-linear spin-charge interactions were observed and discussed in [15].

This DFP calculation can also be performed using the line integral tech-

nique explained in the previous section. In this case, the variation of the action

(G.5) gives simply:

∂η (S− S0) '
˛ {

κ

u
(∂τφ)φη dx+ κu (∂xφ)φη dτ

}
= κ

˛ {
(∂yφ)φη dx+ (∂xφ)φη dy

}
. (G.10)

One can then proceed as we showed in the previous section to easily recover

(G.9).
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Appendix H

Analysis of the Ground State

Entropy via the TBA Equations

Here it is demonstrated that the ground state entropy of the double dot sys-

tem at zero temperature is zero and thus the ground state is a singlet. The

procedure outlined below can be found for a single dot in Section 8.3.3 of Ref.

[139].

We start with the observation that the free energy of the system can be

expressed as sums over all excitations in the system, that is, over all possible

solutions of the Bethe ansatz equations (see Eqn. 10 of Ref. [3]). Speci�cally

it takes the form

Ω = E − TS, (H.1)

where the energy of the system equals

E =

ˆ
dkρ(k)k +

∞∑
n=1

ˆ
dλσ′n(λ)ε0n(λ), (H.2)

where

ε0n(λ) = −n(2εd1 + U1/2) + 2

ˆ ∞
−∞

an(λ− g(k))g(k)dk;

an(x) =
2

π

1

n2 + 4x2
;
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g(k) =
(k − εd1 − U1

2
)2

2U1Γ1

, (H.3)

and the entropy, S, is given by

S =

ˆ
dk

[
(ρ(k) + ρ̃(k)) log(ρ(k) + ρ̃(k))− ρ(k) log ρ(k)− ρ̃(k) log(ρ(k))

]
+
∞∑
n=0

[
(σn(λ) + σ̃n(λ)) log(σn(λ) + σ̃n(λ))− σn(λ) log σn(λ)− σ̃n(λ) log(σn(λ))

]
+
∞∑
n=0

[
(σ′n(λ) + σ̃′n(λ)) log(σ′n(λ)

+ σ̃′n(λ))− σn(λ) log σ′n(λ)− σ̃′n(λ) log(σ′n(λ))

]
. (H.4)

Here ρ(k), σn(λ), and σ′n(λ) are the particle densities while ρ̃(k), σ̃n(λ), and

σ̃′n(λ) are the hole densities of the various excitations (i.e. solutions of the

Bethe ansatz equations). The particle and hole densities can be shown to

obey the following equations:

ρ̃(k) + ρ(k) = ρ0(k)− g′(k)

ˆ
dλs(λ− g(k))(σ̃1(λ) + σ̃′1(λ)), (H.5)

where

ρ0(k) =
1

2π
+

1

L
∆(k) + g′(k)

ˆ
dλs(λ− g(k))(− 1

2π
ε′01(λ) +

1

L
∆̃1(λ));

∆(k) =
1

2π
∂kδ(k);

∆̃n(λ) = − 1

π
Re∆(

√
2U1Γ1(λ+

in

2
));

s(x) =
1

2 cosh(πx)
, (H.6)

and

σ̃n(λ) + σn(λ) =

ˆ
dλ′s(λ− λ′))(σ̃n+1(λ′) + σ̃n−1(λ′)) + δn1

ˆ
dkρ(k)s(λ− g(k));

σ̃′n(λ) + σ′n(λ) =

ˆ
dλ′s(λ− λ′))(σ̃′n+1(λ′) + σ̃′n−1(λ′)) +Dn(λ), (H.7)
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where

Dn(λ) = δn1

ˆ
dkρ(k)s(λ− g(k))

−
ˆ
dλ′s(λ− λ′))(∆̃n+1(λ′) + ∆̃n−1(λ′)); (H.8)

One sees that the density equations have source terms that involve a bulk piece

and a piece scaling as 1/L, where L is the system size.

One de�nes the energies of the excitations at �nite temperature via the

relations,

ε(k) = T log(
ρ̃(k)

ρ(k)
); εn(λ) = T log(

σ̃n(λ)

σn(λ)
); ε′n(λ) = T log(

σ̃′n(λ)

σ′n(λ)
). (H.9)

These energies are given by the relations ε(k), εn(λ), and ε′n(λ) which are gov-

erned by the equations,

ε(k) = k +

ˆ
dλε01(λ)s(λ− g(k)) + T

ˆ
dλs(λ− g(k)) log

(
n(ε1(λ))

n(ε′1(λ))

)
;

εn(λ) = δn1T

ˆ
dkg′(k)s(λ− g(k)) log(n(−ε(k)))

−T
ˆ
dλ′s(λ− λ′) log(n(ε′n−1(λ))n(ε′n+1(λ)));

ε′n(λ) = δn1T

ˆ
dkg′(k)s(λ− g(k)) log(n(ε(k)))

−T
ˆ
dλ′s(λ− λ′) log(n(ε′n−1(λ))n(ε′n+1(λ))), (H.10)

where n(x) = (1 + exp(x/T ))−1 is the Fermi function. The equations for the

ε's and the bulk pieces of the densities (i.e. the pieces not scaling as 1/L)

are the same as for a single level dot. As noted in the manuscript, the Bethe

ansatz equations for the double dots in parallel are identical to the single level

dot up to the impurity scattering phase.

Substituting the energies and densities in the expression for the free energy,
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one can rewrite it in a much more simple fashion:

Ω = Egs + T

ˆ
dkρ0(k) log(n(−ε(k))) + T

ˆ
dλ

∞∑
n=0

ρngs(λ) log(n(ε′n(λ)));

Egs =
∞∑
n=0

ˆ
dλε0n(λ)ρngs(λ);

ρngs(λ) = δn1

ˆ
dk

2π
s(λ− g(k)) +

1

L
Dn(λ). (H.11)

Here Egs is the ground state energy of the system.

One now wants to consider how Ω behaves at T → 0. If one can show that

the leading order correction in Ω at low temperatures is T 2 then as S = −∂TΩ

one will have shown that the entropy vanishes as T → 0, and so the ground

state of the system is a singlet.

In order to see that Ω has no term linear in T , it is su�cient to consider the

zero temperature values of the energies, ε(k) and ε′n(λ). At the particle-hole

symmetric point, one has

ε(k, T = 0) > 0 , for all k;

ε′1(λ, T = 0) < 0 , for all λ;

ε′n(λ, T = 0) = 0 , n > 1, for all λ. (H.12)

If one substitutes these expressions into the expression for Ω and uses the fact

that
´
dλρngs(λ) = 0, n > 1, one sees that Ω = Egs + O(T 2).

Now if one is away from the particle-hole symmetric point, one has instead

ε(k, T = 0) > 0 , for all k;

ε′n(λ, T = 0) = n(
U1

2
+ ε1) , for all λ. (H.13)

Now while ε′1(λ) is neither solely positive nor solely negative at zero temper-

ature, its leading order �nite temperature correction is (see Section 8.3.7 of

Ref. [139]),

ε′1(λ, T ) = ε′1(λ, T = 0) + O(T 2). (H.14)
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Substituting these forms of the energies into the expression for the free energy,

one again sees that there is no term in Ω that is linear in T.
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Appendix I

Derivation of the Conductance in

SBMFT

Here we present a derivation of the conductance in the general case of asymmet-

rically coupled dots. To determine the conductance we solve the one-particle

Schrödinger equation of the SBMFT Hamiltonian, HSBMFT |ψ〉 = E|ψ〉 where
|ψ〉 equals

|ψ > =

ˆ +∞

−∞
dxg1(x)c†1(x)|0 > +

ˆ +∞

−∞
dxg2(x)c†2(x)|0 >

+ε1d
†
1|0 > +ε2d

†
2|0 > . (I.1)

This gives the following four equations:

− i∂xg1(x) + ε1Ṽ11δ(x) + ε2Ṽ12δ(x) = Eg1(x); (I.2)

−i∂xg2(x) + ε1Ṽ21δ(x) + ε2Ṽ22δ(x) = Eg2(x); (I.3)

(ε̃d1 − E) ε1 + Ṽ11g1(0) + Ṽ21g2(0) = 0; (I.4)

(ε̃d2 − E) ε2 + Ṽ22g2(0) + Ṽ12g1(0) = 0. (I.5)

We then take the functions g1,2(x) found in the one particle wavefunction |ψ〉
to be of the following form:

g1(x) = eiEx (θ(−x) +R11θ(x)) ; (I.6)

g2(x) = eiExθ(x)T12. (I.7)
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Substituting the ansatz (Eqns. I.6 and Eq. I.7) into the above four equations,

we obtain four equations from which one can solve for T12. The conductance

G, equal to G = 2e2

h
T12T

∗
12, is then

G =
2e2

h

N

D

N = 16
[
Ṽ12Ṽ22ε̃d1 + Ṽ11Ṽ21ε̃d2

]2

D = 8
[
Ṽ11Ṽ12 + Ṽ21Ṽ22

]2

ε̃d1 ε̃d2 + 16ε̃2d1 ε̃
2
d2

+
[
Ṽ12Ṽ21 − Ṽ11Ṽ22

]4

+4ε̃2d1

[
Ṽ 2

12 + Ṽ 2
22

]2

+ 4ε̃2d2

[
Ṽ 2

11 + Ṽ 2
21

]2

. (I.8)

We have also computed the transmission amplitude using Ref. [157]:

T = Tr
{
GaΓ̃RG

rΓ̃L

}
, (I.9)

where Ga/r are advanced and retarded Green's function matrix and Γ̃R and

Γ̃L are de�ned by

Γ̃R =

[
Ṽ 2

21 Ṽ21Ṽ22

Ṽ21Ṽ22 Ṽ 2
22

]
, Γ̃L =

[
Ṽ 2

11 Ṽ11Ṽ12

Ṽ11Ṽ12 Ṽ 2
12

]
. (I.10)

We �nd that this trace formula (Eq. I.9) gives exactly the same result.
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Appendix J

SBMFT for double dots in the

symmetric case

In this appendix we review the SBMFT approach for the symmetric case (εd1 =

εd2 ≡ εd). In this limit, the mean �eld equations (Eq. 6.7 and Eq. 6.8) reduce

to

∑
σ

< f †σ(t)fσ(t) > +r2 = 1 (J.1)

√
2Ṽ Re

[∑
k,σ

〈
c†keσ(t)fσ(t)

〉]
+ iλr2 = 0. (J.2)

The above equations can be equivalently written as

1

2π

∑
σ

ˆ
dω < f †σ(ω)fσ(ω) > +r2 = 1

√
2Ṽ

2π
Re

[∑
σ

ˆ
dω
〈
c†keσ(ω)fσ(ω)

〉]
+ iλr2 = 0

The correlation functions turn out to be

< f †σ(ω)fσ(ω) >=
2∆̃

(k − ε̃d)2 + 4∆̃2
F (ω) (J.3)

〈
c†keσ(ω)fσ(ω)

〉
=

√
2Ṽ

k − ε̃d − 2iṼ 2
F (ω) (J.4)
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where F (ω)is a Fermi-function.

Upon substituting these expressions for correlation functions the mean �eld

equations read

∆̃

∆
− 1 +

1

π
arctan[

2 · ∆̃
ε̃d

] = 0 (J.5)

ε̃d − εd
∆

+
1

π
log[

(ε̃2d + 4 · ∆̃2)

D2
] = 0 (J.6)

Notice that the SBMFT equations (Eq. J.5 and Eq. J.6) for double dots

are strikingly similar to the single-dot case which di�er from the above just

by di�erent coe�cents (for single dot/impurity see Ref. [144]). However, it

is this slight di�erence in coe�cients that gives rise to completely di�erent

physics in the Kondo regime for the double dots. To ellaborate this point

we will compute the conductance which is given by G = 2 e
2

h
sin2

(
δ(k=0)

2

)
where δ(k) = −2 tan−1

(
2∆̃
k−ε̃d

)
. In the Kondo limit, Γ̃→ 0 and hence Eq. J.5

becomes tan−1
(

2Γ̃
ε̃d

)
= π. Since we know that the conductance is given by G =

2e2

h
sin2

[
tan−1

(
2Γ̃
ε̃d

)]
this immediately tells us that linear conductance vanishes

in the Kondo limit. One should bear in mind that the three results in the

Kondo limit, namely, Γ̃ → 0, ε̃d → 0 and tan−1
(

2Γ̃
ε̃d

)
= π are consistent with

each other as long as one takes the correct branch-cut for arctangent, namely,

the branch, tan−1 x = π+PV [tan−1 x] where PV denotes the principle value of

arctangent which belongs to domain [−π
2
, π

2
]. The vanishing of conductance in

the double dot case is a result of ∆̃ falling o� to zero faster than the magnitude

of the renormalized energy level does.
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