
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



 
 

Power Analysis of the Likelihood Ratio Test for 

Logistic Regression Mixtures 
 

A Dissertation Presented 

by 

Minyoung Lee 

to 

The Graduate School 

in Partial Fulfillment of the  

Requirements 

for the Degree of 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

 

May 2011 

 

 



 ii

Stony Brook University 

The Graduate School 

 

Minyoung Lee 

 

We, the dissertation committee for the above candidate for the 

Doctor of Philosophy degree, hereby recommend 

acceptance of this dissertation 

 

 
Nancy R. Mendell – Dissertation Advisor 

Professor, Department of Applied Mathematics and Statistics 

 

Stephen J. Finch – Chairperson of Defense 

Professor, Department of Applied Mathematics and Statistics 

 

Hongshik Ahn 

Professor, Department of Applied Mathematics and Statistics 

 

Barbara Nemesure 

Associate Professor, Department of Preventive Medicine 

 
This dissertation is accepted by the Graduate School 

 

 
 
 

Lawrence Martin 
Dean of the Graduate School 



 iii  

Abstract of the Dissertation 

Power Analysis of the Likelihood Ratio Test for Logistic Regression Mixtures 

by 

Minyoung Lee 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2011 

 

Finite mixture models emerge in many applications, particularly in biology, psychology 

and genetics. This dissertation focused on detecting associations between a quantitative 

explanatory variable and a dichotomous response variable in a situation where the population 

consists of a mixture. That is, there is a fraction of the population for whom there is an 

association between the quantitative predictor and the response and there is a fraction of 

individuals for whom there is no association between the quantitative predictor and the response.  

We developed the Likelihood Ratio Test (LRT) in the context of ordinary logistic 

regression models and logistic regression mixture models. However, the classical theorem for the 

null distribution of the LRT statistics can not be applied to finite mixture alternatives. Thus, we 
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conjectured that the asymptotic null distribution of the LRT statistics held. We investigated how 

the empirical and fitted null distribution of the LRT statistics compared with our conjecture. We 

found that the null distribution appears to be well approximated by a 50:50 mixture of chi-

squared distributions, i.e., 2
2

2
1 5.05.0 χχ +  with respect to the critical values. Based on this null 

distribution, simulation studies were conducted to compare the power of the ordinary logistic 

regression models to the logistic regression mixture models. The logistic regression mixture 

models resulted in the improvement in power to detect the association between the two variables, 

compared with the ordinary logistic regression models. We found the significant factors in the 

improvement of the power by modeling the odds ratio in the improvement (logistic mixture 

model vs. ordinary logistic regression model). Essentially, the only factors that affected 

improvement in power were slope and mixing proportion. In addition, we compared the precision 

of these two approaches. This mixture model can be widely applied in large sample surveys with 

non-response and in missing data problems. 
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Chapter 1  

Introduction and Literature Review  

1.1 Introduction 
 
 

The switching regression model was originally proposed by Quandt (1972) and Ramsey 

(1975). This model has two or more components of a probability density function that is the 

mixture of normal densities. This dissertation considers the logistic switching regression model. 

That is, our attention is focused on a switching model which has two components in the context 

of the logistic regression. The logistic switching regression model can be said to be the 

equivalent to the finite mixture model (Pearson, 1894) for the logistic regression relationship. In 

that sense, we refer to this model as a logistic regression mixture model. Particularly, it focuses 

on the case that two logistic regression equations differ only in their slopes and one of the slopes 

is assumed to be zero. This model is motivated by Fienberg et al. (1985) and it is written as 

follows   

 x
p

p
101

log ββ +=








−
     with probability π                                 (1.1.1) 

                                  01
log β=









− p

p
                 with probability π−1 .                          (1.1.2) 
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Here, p is the probability that the dichotomous response variable Y equals 1 and x is a 

quantitative explanatory variable. However, there are no explicit expressions for obtaining the 

maximum likelihood estimates (MLE) of the parameters of interest under this model. The 

Expectation Maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977) has been widely 

used to obtain the MLEs in this kind of mixture model.  

This study involves a situation where one is conducting the likelihood ratio test (LRT) for 

an association between a quantitative explanatory variable and a dichotomous response variable. 

The purpose is to compare the power of the LRT in the case of fitting the single ordinary logistic 

regression model to the power of the LRT upon fitting the logistic regression mixture model 

defined in Equation (1.1.1) and (1.1.2). The power analysis will be conducted using simulation 

and the power will be assessed and compared in several different scenarios by sample size, effect 

size, intercept, and mixing proportion of observed mixture populations. 

 

A comprehensive review of the literature is presented in the following section. It includes 

the theoretical background and the outline of the problem in this dissertation. Chapter 2 details 

the EM algorithm that is used for finding MLEs in logistic regression mixture models, including 

simulation results for the estimates of the parameters obtained.. We investigate the null 

distribution of LRT statistics for power studies in Chapter 3. Power analyses are discussed in 

Chapter 4, based on two approaches: ordinary logistic regression models and logistic regression 

mixture models. In addition, we compare the precision of estimates in the context of these two 

approaches. Chapter 5 contains the conclusions and the directions for future study. 
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1.2 Literature Review 
 
1.2.1  Finite Mixture Models 

 
The finite mixture model was proposed to analyze heterogeneous data. The model allows 

for combination of the samples from different populations in a single sample. One of the first 

major analyses involving the use of mixture models was Pearson’s study (1894). The study was 

about the frequency distribution of measurements of the carapace of 2,000 female shore crabs, 

provided by Weldon (1893). Half of the samples were obtained from crabs at Plymouth Sound, 

and the remaining samples were from the Bay of Naples. Weldon observed that the 

measurements of the frontal breadth of the shore crabs at the Bay of Naples were generated from 

an asymmetric frequency distribution. Pearson demonstrated that a two component Gaussian 

mixture density fit the data. After his study, the mixture model-based approach has been widely 

used in many fields in the biological, physical, and social sciences because of the flexibility of 

the mixture model. 

In general, the observations nyy ,,1 Λ  are said to arise from a finite mixture distribution, if 

the probability density function )(yf  of this distribution has the following form:  

)|()|()|()|( 222111 mmm yfyfyfyf θπθπθπ +++=Θ Λ                          (1.2.1) 

Here, ),,( 1 ′= nyyy Λ  denotes the random vector and ),,;,,( 11 mm ππθθ ΛΛ=Θ  denotes the 

vector of all parameters. The jπ  denotes the relative proportion of jth component density 

function )|( jj yf θ : that is, 10 ≤≤ jπ  and 1
1

=∑
=

m

j
jπ .   
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Since these finite mixture models have multiple maxima in the mixture likelihood 

function it is usually difficult to obtain the estimates of the parameters using the maximum 

likelihood method. A number of papers have dealt with the problem of estimating the parameters 

of the finite mixture models using the maximum likelihood method. However, it was the paper 

by Dempster, Laird, and Rubin (1977) that illustrated the application of the EM (Expectation-

Maximization) algorithm to the finite mixture models. The EM algorithm can be applied to 

obtain the MLEs of the parameters of the finite mixture model. This algorithm is an efficient 

iterative procedure to compute the MLE in the presence of missing or hidden data. Section 1.2.4 

discusses the EM algorithm in detail. 

 

1.2.2 Switching Regression Models 

 
The switching regression model is an exogenous switching model proposed by Quandt 

(1972). This model generalized a problem of mixture distributions (Day, 1969). If a priori 

information on how the sample is partitioned into the corresponding regime is provided, it is 

called a switching regression model with known sample separation. Otherwise, it is a switching 

regression model with unknown sample separation. 

The simplest formulation of the switching regression model consists of two regression 

equations as follows: 

i
T

ii xy 11 εβ += ,   with probability π                                     (1.2.2) 

and   i
T

ii xy 22 εβ += ,   with probability π−1 ,                              (1.2.3) 
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where ),0(~ 2
11 σε Ni , ),0(~ 2

22 σε Ni , and ),,( 1 p
T xxx Λ=  is a vector of p independent 

variables. The sample in this model is generated from distinct regression equations. In other 

words, the ith observed dependent variable iy  is generated either from Equation (1.2.2) or from 

Equation (1.2.3), but never both.  

The traditional interest in the switching regression model involves the following issues: (1) 

testing the null hypothesis that no switch in regimes exists against the alternative that the 

observations were generated by two or more distinct regression equations, (2) estimating the 

corresponding regression equations for each regime, and (3) classifying the observations into 

underlying regimes. Various special cases of these problems have been treated in the literature. 

When, under the alternative hypothesis, the information on sample separation is given, the 

problem of testing the null hypothesis was solved exactly by a test (Chow, 1960). Each of the 

equations can be estimated by standard methods such as ordinary least squares. When sample 

separation is unknown, Quandt (1958) derived the relevant likelihood ratio test statistic λ  to test 

the null hypothesis that no switch occurred. The results of the sampling experiment performed by 

Quandt(1960) led to the rejection of the hypothesis that λlog2−  has the 2χ  distribution. The 

maximum likelihood estimation methods were suggested by Goldfeld and Quandt (1972), 

Hartley (1978), and Kiefer (1980). Other estimation methods based on moment generating 

functions were investigated in Quandt and Ramsey (1978). In these cases, the estimation of the 

switching regression is equivalent to the estimation of the parameters of mixtures of normal 

distribution since there is the assumption that the observations were generated from a mixture of 

two normal densities. In other words, the switching regression models are equivalent to the finite 

mixture models of regression relationship. 

 



 6

In this dissertation, we consider the finite mixture models of logistic regression 

relationships. This mixture model can be considered the switching regression models in the 

context of logistic regression equations. Particularly, we deal with the situation where some 

subjects are unaffected by treatment. That is, our generated data sets include the variable X of 

zero. This situation can be related to the problem of detecting a treatment effect when the 

treatment group contains non-responders which was considered by Good (1979). Good used a 

mixture to describe the distribution of the responses in treatment group and he represented the 

distribution of the affected group with a shift in the mean of the distribution of the unaffected 

group and used a mixture of the two components for the distribution of the treatment group.   

 

1.2.3 The Ordinary Logistic Regression and Parameter Estimation 
 

Logistic Regression Model 

This dissertation considers a two component mixture model for binary variables in the 

context of logistic regression. Logistic regression is a method that can be used for assessing 

association between a categorical response variable and quantitative explanatory variables. The 

fitted logistic regression model can also be used for predicting the probability of occurrence of 

an event. The general logistic regression model is 

∑+=








− i
ii xp

p
βα

1
log .                                             (1.2.4) 

Here, p denotes the probability of a particular outcome of a dichotomous or polytomous response 

variable, and the }{ ix  are observed values corresponding to a set of explanatory variables. In the 

case of two or more explanatory variables, these explanatory variables can be quantitative or 
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qualitative or both. In the case of a single explanatory variable, logistic regression is used only 

for a quantitative explanatory variable. 

 

Parameter Estimation  

Throughout this research parameter estimation is based on the method of maximum 

likelihood, introduced by Fisher (1921). It is the most popular technique for obtaining estimators 

because of the desirable asymptotic properties of MLEs; consistency, invariance, normality and 

efficiency. In general, if ),( 1 nxxx Λ=  are a set of independent and identically distributed (i.i.d.) 

values in a random sample of size n from a population with parameter θ  and probability density 

function )|( θxf , the likelihood function is defined by  

)|()|(
1

θθ ∏
=

=
n

i
ixfxL .                                                    (1.2.5) 

Also, the log likelihood function is represented by )|(log)|( xLx θθ =λ . The MLE θ̂  of θ  can 

be obtained by maximizing the likelihood, which is equivalent to maximizing log likelihood 

since the logarithm is a continuous strictly increasing function over the range of the likelihood. 

Therefore the MLE is, 

)|(maxargˆ xθθ
θ

λ= .                                                      (1.2.6) 

For purposes of simplicity, suppose that the logistic model has only a single quantitative 

explanatory variable; i.e., the single logistic regression model in this research is then 
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θβα T
i

i

i x
p

p
ix=+=

−
)

1
log( ,                                                 (1.2.7) 

 where T
ix ),1(=ix  for i = 1 , … , n  and T),( βαθ = . Since the response variable, ),,( 1 nyyy Λ=  

has a Bernoulli distribution with probabilityip , the likelihood is  

∏
=

−−=
n

i

y
i

y
i

ii ppyL
1

1)1()|(θ .                                        (1.2.8) 

From Equation (1.2.7) ip  is as follows: 

θ

θ

βα

βα

T

T

i

i

e

e

e

e
p

x

x

i
i

i

x

x

+
=

+
=

+

+

11
.                                          (1.2.9) 

Therefore, the log likelihood can be written as 

[ ]∑
=

−−+=
n

i
iiii pypyyx

1

)1log()1(log),|(θλ  

        ∑
=









−+









−
=

n

i
i

i

i
i p

p

p
y

1

)1log(
1

log  

        ∑
=

+ 















+

++=
n

i
xii ie

xy
1 1

1
log)( βαβα .                                     (1.2.10) 

To obtain a MLE T)ˆ,ˆ(ˆ βαθ =  of T),( βαθ = , the following equation should be solved. 

0=






































+
−










+
−

=





















∂
∂

∂
∂

=
∂

∂

∑

∑

=
+

+

=
+

+

n

i
x

x

ii

n

i
x

x

i

i

i

i

i

e

e
yx

e

e
y

yx

yx

yx

1

1

1

1

),|(

),|(

),|(

βα

βα

βα

βα

β
θ

α
θ

θ
θ

λ

λ

λ
,                       (1.2.11) 
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i.e., 0
11

=








+
−∑

=
+

+n

i
x

x

i i

i

e

e
y βα

βα

 and 0
11

=
















+
−∑

=
+

+n

i
x

x

ii i

i

e

e
yx βα

βα

.                         (1.2.12) 

However, since Equation (1.2.12) cannot be solved explicitly, it is solved numerically using the 

Newton-Raphson method. 

Newton-Raphson Method 

The Newton-Raphson method is a general technique for finding roots of the equation 

0)( =xf  in an iterative manner (McCulloch & Searle, 2001). This algorithm was described by 

Jennrich and Schluchter (1986), Lindstorm and Bates (1988), and Press et al. (1996) in detail.  

 

Given some initial point 0x , an updated value is obtained by solving 

)()()(0)( 000 xfxxxfxf ′−+≅=  

for x ; or 

)(

)(

0

0
0 xf

xf
xx

′
−≅ .                                               (1.2.13) 

This method suggests one approach for obtaining an iterative solution of the MLE. Applying 

Equation (1.2.13) to solve Equation (1.2.12), θθ ∂∂= /),|( yxf λ  and θθ 22 /),|( ∂∂=′ yxf λ . The 

matrix of second derivative of the log likelihood, the so-called Hessian matrix, H , is  
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



















∂

∂
∂∂

∂

∂∂
∂

∂

∂

=
∂∂

∂
=

∂

∂
=

β
θ

αβ
θ

βα
θ

α
θ

βα
θ

θ
θ

2

22

2

2

2

2

2

2

),|(),|(

),|(),|(

),|(),|(

yxyx

yxyx

yxyx

λλ

λλ

λλ
H .                  (1.2.14) 

Here, the components of the matrix H  are as follows: 

∑∑
==

+

+

−−=
+

−=
∂
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i
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n

i
x

x

pp
e
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α
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+

+

−−=
+

−=
∂∂

∂
=
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i
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n

i
x

x

i ppx
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i
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Therefore, the matrix H  can be written as  
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θ
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,                (1.2.15) 

where X  is the model matrix with T
ix  as its ith row and V  is a diagonal matrix with diagonal 

entries )1( ii pp − . Similarly, Equation (1.2.11) can be rewritten by  

)(
),|(

pyX T −=
∂

∂
θ

θ yxλ
,                                                  (1.2.16) 

where T
nyy ),,( 1 Λ=y  and T

npp ),,( 1 Λ=p . 
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Using the Newton-Raphson method, given a current estimate )(ˆ kθ  an updated estimate 

)1(ˆ +kθ  can be obtained as follows: 










∂
∂












∂
∂

−=
=

−

=

+

)()( ˆ

1

ˆ
2

2
)()1( ),|(),|(ˆˆ

kk

yxyxkk

θθθθ
θ

θ
θ

θ
θθ

λλ
 

     )()(ˆ )(1)()( kkk pyXXVX TT −+= −θ .                                                    (1.2.17) 

In the above Equation (1.2.17), )(kp is the vector of fitted probabilities from the kth iteration with 

the ith entry of which is  

)(

)(

ˆ

ˆ

,
1

kT

kT

e

e
p ki θ

θ

i

i

x

x

+
= , 

and )(kV  is a diagonal matrix with diagonal entries )1( ,, kiki pp − . 

The iteration continues until |ˆˆ| )()1( kk θθ −+  is sufficiently small to indicate convergence. 

Under reasonable assumptions concerning the likelihood function and a sufficiently accurate 

starting value )0(θ̂ , the sequence of iterated estimates }ˆ{ )(kθ  produced by the Newton-Raphson 

method result in quadratic convergence to a solution of Equation (1.2.11). If the log likelihood 

function is concave and unimodal, then the sequence of values }ˆ{ )(kθ  converge to the MLE of θ .  

 

1.2.4 The Expectation Maximization (EM) Algorithm 
 
 

The Expectation Maximization (EM) algorithm is a widely applicable approach for the 

iterative computation of maximum likelihood estimates when the calculations via the Newton-
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Raphson method do not converge to a global maximum. The formulation of the EM algorithm in 

its present generality was given by Dempster, Laird, and Rubin in 1977. In particular, this 

algorithm has become a popular tool in statistical estimation involving incomplete data or for 

problems which can be posed as a similar form, such as mixture models, since in these cases the 

likelihood functions are generally intractable. If some latent variables or hidden variables are 

included, the data is regarded as being incomplete since the values of the hidden variables are 

unknown. 

The main idea of the EM algorithm is to consider the original data as being incomplete 

and to add some latent or hidden variable since the complete data has a much simpler likelihood 

function for the purpose of finding a maximum. Then we can maximize the likelihood for the 

incomplete data through maximizing the expected log likelihood for the complete data. The 

expectation is taken over all possible values of the latent or hidden variable.  

Each iteration of the EM algorithm consists of two steps – the E (expectation) step and the 

M (maximization) step. First, one initializes all the parameters randomly or heuristically 

according to any prior knowledge about the optimal parameter value. Then, the updated 

estimates are iteratively obtained by repeating the E step and the M step. In the E step, one 

computes the expected log likelihood for the complete data. The expectation is taken with 

respect to the computed conditional distribution of the latent or hidden variables given the 

current settings of the parameters and the observed data. In the M step, all the parameters are re-

estimated by maximizing the expectation of the complete log likelihood. Once a set of parameter 

values is generated from the starting values of the parameters, the algorithm repeats the E step 

and M step to obtain the next updated estimates of the parameters. This process continues until 
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the value of the likelihood converges, i.e., reaching a global maximum. The derivation and the 

application of this EM algorithm in the presence of mixture are discussed in Chapter 2 in detail.  

The Convergence of the EM algorithm 

Dempster, Laird, and Rubin (1977) established fundamental properties of the EM 

algorithm. In particular these properties imply that typically in practice the sequence of EM 

estimates will converge to a local maximum of the log likelihood function. In general, if the log 

likelihood has several maxima, the convergence depends on the choice of starting point.  

Wu (1983) demonstrated the properties of the convergence of the EM algorithm in detail. 

Wu mentioned the problem that the convergence of the likelihood does not automatically imply 

the convergence of the updated parameter. On this same concern, Boyles (1983) gives an 

example of a generalized EM algorithm that converges to the circle of the unit radius and not to a 

single point. Lansky, Casella, McCulloch, and Lansky (1992) establish some invariance, 

convergence, and rates of convergence results. The convergence properties of the EM algorithm 

are discussed in detail by McLachlan and Krishnan (1996). 

 

1.2.5 The Likelihood Ratio Test and Bootstrap methods 
 
 
Likelihood Ratio Test 

The likelihood ratio test (LRT) proposed by Neyman and Pearson (1928) is a general 

statistical method for making a decision between two hypotheses. To construct the LRT, recall 

the likelihood function (1.2.5) as follows: 
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)|()|(
1

θθ ∏
=

=
n

i
ixfxL .  

The LRT statistic for testing 00 : Θ∈θH  vs. )(: 101 Θ=Θ∈ cH θ  is, 

)|(sup

)|(sup
)(

1

0

xL

xL
x

θ

θ
λ

Θ

Θ= .                                                     (1.2.18) 

This statistic is related to the MLE. The numerator and denominator of the above Equation 

(1.2.18) can be calculated by finding the MLE of θ  under the null and the alternative hypothesis, 

respectively, and then by substituting the MLE back into the corresponding likelihood functions.  

The LRT is any test that has a rejection region of the form })(:{ kxx ≤λ , where k  is any 

number satisfying 10 ≤≤ k . That is, the LRT compares the plausibility of the θ  values in the 

null hypothesis with that in the alternative. Small values of the LRT statistics are interpreted as 

being evidence against the null hypothesis. Hence, it leads to reject the null hypothesis. To define 

a level α  test, the constant k  must be chosen so that 

αλθ
θ

≤≤
Θ∈

))((sup
0

kxP .                                                  (1.2.19) 

The Neyman-Pearson lemma (Neyman & Pearson, 1933) demonstrates that the LRT is most 

efficient in the sense that it minimizes the probability of typeⅡerror rate among all level α  tests 

that have the same significance level α .  

If the distribution of the LRT statistics corresponding to the null and alternative 

hypothesis can be explicitly determined, then decision regions can be directly obtained from the 

distribution. In most cases, however, since the exact distribution is unknown, it is difficult to 
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determine decision regions exactly. Hence, to obtain the asymptotic decision regions, the 

following asymptotic distribution of the LRT (Cox and Hinkley, 1974) can be used. They state 

the following: 

Under the regularity conditions, if 0Θ∈θ ,  the distribution of the statistic )(log2 xλ−  

converges to a chi squared distribution as the sample size ∞→n , i.e., 

2)(log2 df
dx χλ  →−   as ∞→n .                                       (1.2.20) 

Here, the degrees of freedom of the chi squared distribution, df  equal to the difference between 

the number of free parameters in 0Θ  and the number of free parameters in 1Θ . Rejection of the 

null hypothesis for small values of )(xλ  is equivalent to rejection for large values of 

)(log2 xλ− . Therefore, 0H  can be rejected if 2
,)(log2 αχλ dfx ≥− . 

However, these conditions do not hold in the case where we test against mixture 

alternatives. Since there is generally a relationship between parameters under mixture alternative 

hypothesis, the asymptotic chi-square distribution cannot be directly used. It has been proposed 

that under these nonstandard conditions the null distribution of LRT statistics is a mixture of 

central chi-squared distributions. Important contributions to the understanding of this asymptotic 

behavior of the LRT statistics in this situation have been made by, for example, Self and Liang 

(1987) and Stram and Lee (1994). Self and Liang (1987) found the asymptotic distribution of 

LRT statistics using a projection of a normal variable onto a tangent cone of the parameter space. 

They considered the special case where one parameter is specified under the null hypothesis and 

it falls on the boundary. No other parameters are on the boundary. For this case they derived the 
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null distribution to be a 50:50 mixture of 20χ  and 2
1χ  distribution (Case 5 in Self and Liang, 

1987).  

Stram and Lee (1994) showed that the asymptotic null distribution of LRT statistics for 

testing when two parameters are on the boundary is a 50:50 mixture of a 2
1χ  and a 2

2χ  (Case 2 in 

Stram and Lee, 1994). By extension, in their Case 3 they proposed the asymptotic distribution of 

the statistics is a 50:50 mixture of 2 1−dχ  and 2
dχ  with d the number of parameters added by their 

mixture alternative. Our case is more like Stram and Lee’s case (1994) rather than Self and 

Liang’s (1987). 

Bootstrap Methods 

The bootstrap is a re-sampling technique for estimating the precision of a parameter 

estimate. This method was invented by Bradley Efron (1979) and further developed by Efron and 

Tibshirani (1993). The basic idea of this method is that the original sample represents the 

population from which it was drawn, so the replicated samples redrawn from this original sample 

represent what would get if we took many samples from the population. These replicated 

samples are generally called bootstrap samples in this procedure. For each bootstrap sample a 

statistic of interest is generated. The distribution of the statistic, based on many bootstrap 

samples, represents the sampling distribution of the statistic, based on many samples from the 

population. Particularly, it provides an alternative to large sample techniques when asymptotic 

properties are not met or when the standard error of the estimate has complicated mathematical 

characteristics. The power of the bootstrap lies in the fact that the method applies to almost any 

estimator, no matter how complicated. Also, in practice, it is a computer-intensive method for 

approximating the sampling distribution of any statistic derived from a random sample. 
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Therefore, the only requirement is a computer program to calculate the estimator from a sample 

and a method to redraw samples.  

In this dissertation, we used this bootstrap procedure to investigate the empirical null 

distribution of LRT statistics in Chapter 3. On the basis of many bootstrap samples from this 

procedure the LRT statistics were generated and the empirical distribution of the statistics was 

constructed. This method will be described in more detail in Section 3.2. 

1.3 Outline of the Dissertation 
 
1.3.1  The Problem 
 

This dissertation considers a situation where we are testing for an association between a 

quantitative explanatory variable X and a dichotomous response variable Y. Our concern is to 

compare the power of the test based on an ordinary logistic regression model with the test based 

on a logistic regression mixture model. Data are drawn from a two component logistic regression 

mixture model which has equal intercepts and unequal slopes. Specifically, we consider the case 

where one of the slopes equals zero. That is, the population consists of a fraction π  for which 

the response variable Y depends on X and a fraction  π−1  where it is independent. The logistic 

regression mixture model is as follows:  

x
p

p
101

log ββ +=








−
      with probability π                                      (1.3.1) 

         01
log β=









− p

p
                with probability π−1 .                              (1.3.2) 
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Here, p indicates the conditional probability that the binary response variable Y has the value 1 

in a sample with X = x and π  denotes a mixing proportion with a value lying between 0 and 1.  

We are interested in fitting the logistic regression mixture model to generated data sets 

and two main goals of this research are as follows: 

(1) To determine the power of detecting the relationship between Y and X upon 

estimating all of the parameters in this mixture model (Equation (1.3.1) and (1.3.2)).  

(2) To compare this power to the power one obtains using ordinary logistic regression 

(which implicitly assumes 1=π ).  

Two different alternatives are considered according to the corresponding fitted models. 

The first is based on the assumption that the data fits the ordinary logistic regression model (haH ) 

and the second is based on the logistic regression mixture model ( m
aH ) as follows: 

Alternative Ⅰ –  The ordinary logistic regression model. 

                         x
p

p
H h

a 101
log: ββ +=









−
                                                             (1.3.3) 

Alternative Ⅱ –  The logistic regression mixture model. 

x
p

p
H m

a 101
log: ββ +=









−
      with probability π                       (1.3.4) 

                       01
log β=









− p

p
                 with probability π−1                 (1.3.5) 

The common null hypothesis considered then is,  

00 1
log: β=









− p

p
H .                                                                      (1.3.6) 
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We used the above notation for the alternatives to indicate each alternative is based on the 

homogeneous (h) and mixture (m) population, respectively.  

Additionally, we will consider the relative precision of these two methods by comparing 

the bias of the estimates of the regression parameters and the mean squared error. 

1.3.2 Data Generation 

To generate the mixture data sets used in this dissertation we consider the case where we 

have data on the four different values of the quantitative explanatory variable X: 0, 1, 2, and 3, in 

equal proportion (25%). For example, when the total number of observations in the sample is one 

hundred (n = 100) the number of observations per X value is twenty five ( 25=xn ). That is, for 

the sample size of  n, the number of observations per X value is 4/n .  

Based on this data structure and given the parameters setting, first we generated random 

numbers of size n from uniform distribution U(0, 1). According to the value of the random 

number compared with the given mixing proportion, each observation was assigned to the first 

component (Equation 1.3.1) or the second component (Equation 1.3.2) in the logistic regression 

mixture model defined in Section 2.1. Then, the probability 1p  and 2p  were calculated for each 

component. The probability Pr(Y = 1) for each combination of the parameter 0β  and 1β  

simulated can be found in Appendix A. 

Finally, another set of random numbers of size n was generated to assign the value of the 

binary response variable Y (0 or 1) for each observation. This data generation was done using a 

C++ program with some functions in the GNU Scientific Library (GSL) 1.14. The MT19937 
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generator of Makoto Matsumoto and Takuji Nishimura (described in the GSL reference manual) 

was used as a random number generator.  
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Chapter 2  

Likelihood Ratio Test in the Presence of Mixture 

2.1 The Likelihood Ratio Test (LRT) 
 
 

To test the hypotheses described in Chapter 1 we usually conduct the Likelihood Ratio 

Test (LRT). Based on our models, the likelihood function hL  under the alternative hypothesis 

h
aH  for the ordinary logistic regression model is 

∏
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 ,                                                              (2.1.1) 

and the likelihood function mL  under the alternative hypothesis maH  for the logistic regression 

mixture model is as follows: 
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Also, the likelihood function 0L  under the common null hypothesis 0H  is: 

∏
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=
n

i
ii xypL

1
00 );,( β  
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= +

=
n

i

yi

1 0

0

)exp(1

)}{exp(
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.                                                                            (2.1.3) 

Through these, the test statistic, Λ−= ln22G  is then calculated. Here, Λ  is the ratio of 

the maximum value of the likelihood function under the null hypothesis (Equation (2.1.3)) and 

the maximum value of the likelihood function under the alternative hypothesis (Equation (2.1.1) 

or Equation (2.1.2)) being considered. That is, 
max,

max,0

hL

L
=Λ  for the ordinary logistic regression 

model, and 
max,

max,0

mL

L
=Λ  for the logistic regression mixture model. Therefore, the LRT statistics 

are computed by using the maximum likelihood estimates to obtain the maximum value of the 

corresponding likelihood function. In the presence of mixture the maximum likelihood estimates 

obtained using the Expectation Maximization (EM) algorithm are used. 

 

2.2  Maximum Likelihood Estimation 
 
2.2.1 The Expectation Maximization (EM) Algorithm 
 

 

Suppose that },,{ 1 nxx Λ=X  is a sample data set consisting of n independent 

observations and );( θixp  is the probability density function. To obtain the Maximum 
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Likelihood Estimates (MLE) θ̂  of the parameter values, θ , maximizing the log likelihood is 

needed. However, if some latent variables exist, explicitly finding the MLE is not easy.  Let 

},,{ 1 nzz Λ=Z  denote the latent variable that indicates which component generates the 

corresponding observations and let Q  be some distribution over the latent variableZ .  Then the 

log likelihood for the original incomplete data is rewritten as follows: 

∫== ZZXX dpp );,(log);(log)( θθθλ  

Z
ZQ
ZX

Z d
p

Q∫=
)(

);,(
)(log

θ
 

∫≥ Z
ZQ
ZX

Z d
p

Q
)(

);,(
log)(

θ
                                                                 (2.2.1)   

ZZZZZXZ∫ ∫−= dQQdpQ )(log)();,(log)( θ .                               (2.2.2) 

Here, Equation (2.2.1) can be obtained by using Jensen’s inequality. From the above derivation, 

Equation (2.2.2) is the lower-bound of the value of the log likelihood for the complete data. 

Since )(ZQ  is an arbitrary distribution, it is independent of θ . Therefore, in order to maximize 

the lower-bound with respect to θ , it suffices to simply maximize the first term of Equation 

(2.2.2), i.e.,  

)];,(log[);,(log)( θθ ZXZZXZ pEdpQ Q∫ = .                                       (2.2.3) 

This expected log likelihood for the complete data is computed in the E step. Then we need to 

maximize the expected log likelihood for the complete data, where the expectation is taken with 

respect to )(ZQ . This is the M step of the EM algorithm. 
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On the other hand, for the computation of the expected complete log likelihood, )(ZQ  

should be chosen. If we set );|()( θXZZ pQ =  in Equation (2.2.1) to compute the expected log 

likelihood for the complete data, then the value of the lower-bound becomes the log likelihood 

for the incomplete data as follows: 
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∫= ZXXZ dpp );(log);|( θθ  

∫= ZXZX dpp );|();(log θθ  

);(log θXp= . 

Hence, when computing the expected complete log likelihood (2.2.3), the expectation should be 

taken with respect to the conditional distribution of the latent variable Z  given the observed data 

X , i.e.,  

);|()( θXZZ pQ = .                                                    (2.2.4) 

 

2.2.2 The MLE based on the EM Algorithm 
 
 

The maximum likelihood estimates were calculated under the alternative hypothesis in the 

logistic regression mixture model defined earlier in Section 1.3. These maximum likelihood 

estimates were in turn used to obtain the corresponding LRT statistic. The procedure used for the 
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customized EM algorithm is given in this section in the context of the logistic regression mixture 

model. 

 

�   E step  

Suppose that the latent variable Z  in the logistic regression mixture model consists of n 

two-dimensional vectors, i.e., ),( 21 iii zzz =  for i = 1, … , n. Here, each element of the vectors is 

1 or 0 to indicate the corresponding component that the ith observation comes from. That is, 

0) ,1(=iz  means the ith observation iy  is from the first component. In the same manner, 

1) ,0(=iz  indicates that iy  is from the second component. Also, let )ˆ,ˆ,ˆ(ˆ )0()0(
1

)0(
0

)0( πββθ =  

be the starting values of the parameters of the logistic regression mixture model. Then, with 

these starting values the log likelihood for the complete data, including the latent variable Z , can 

be computed as follows: 

∏
=

==
n

i
iiic zyxpp

1

)0()0()0( )ˆ;,,(log)ˆ;,,(log)ˆ( θθθ ZYXλ  

      ∏∏
= =

===
n

i m

z
imimii

imzpzxyp
1

2

1

)0( )]1()ˆ;1,|([log θ  

      ]ˆlog)ˆ;1,|(log[
1

)0()0(
2

1
∑∑
= =

+==
n

i
mim

m
imiiim zzxypz πθ .                 (2.2.5) 

Thus, the expected complete log likelihood is given by 

∑ ∑
= =

+==
n

i
mimQ

m
imiiimQcQ zEzxypzEE

1

)0()0()0(
2

1

)0()0( ]ˆlog)()ˆ;1,|(log)([)]ˆ([ πθθλ        (2.2.6)  

where );,|()( θYXZZ pQ =  as derived in Equation (2.2.4). 
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In Equation (2.2.6) the starting value of the expectation )0()( imQ zE  in the first iteration is 

computed in the following  
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for each observation and component (i = 1, … , n and m = 1, 2). This is the E step in the EM 

algorithm.  

 

�   M step  

The M step maximizes the expected complete log likelihood which was defined in 

Equation (2.2.6) with respect to the parameters that are to be estimated, i.e., ),,( 10 πββθ =  to 

obtain the updated estimates of the parameters. The updated estimate of 1β  can be computed by 

solving the equation, 0)]ˆ([ )0(

1

=
∂
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θ
β cQE λ . This equation can be rewritten as  
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In Equation (2.2.8), )1,|(log 1 =iii zxyp  can be considered as in the case of the ordinary 

logistic regression, since the information on the component 11 =iz  is already given. That is,  
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However, since the above Equation (2.2.9) does not have an explicit solution, it should be 

solved iteratively using the Newton-Raphson method. In other words, to obtain the MLE of 1β  

the Newton-Raphson method is used within each M step in the EM algorithm. The updated 

estimate is computed as: 
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In addition, the updated estimate of 0β  can be computed by solving the equation 
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0

=
∂
∂

θ
β cQE λ . In the same way the equation to be solved is given by  
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Similarly, the Newton-Raphson method can be used within each M step since Equation (2.2.12) 

also cannot be solved explicitly. That is, the updated estimate of 0β  can be calculated as: 
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Finally, to maximize the expected complete log likelihood with respect to mπ , the 

Lagrange multiplier λ  can be used since there is the constraint that ∑
=

=
2

1

1
m

mπ . Therefore, the 

following equation can be considered: 

)1()]ˆ([)ˆ(
2

1

)0()0( ∑
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−−=
m

mcQEG πλθθ λ .                                         (2.2.14) 

Then, by differentiating the above Equation (2.2.14), the equation to be solved is given by  
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The above Equation (2.2.15) is equivalent to 0)(
1

)0( =−∑
=

m

n

i
imQ zE λπ . Summing this equation 

over all m, the following result is obtained: 

0)(
2

1

2

11

)0( =−=−∑ ∑∑
= ==

λπλ nzE
m m

m

n

i
imQ                                 (2.2.16) 

Hence,  from Equation (2.2.15) and (2.2.16) the updated estimate of mπ  is 
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The stopping criteria that we choose for the Newton-Raphson method within the M step 

of the EM algorithm is based on the relative change of the parameter values in consecutive 

iterations, 5)1(
0

)(
0 10|ˆˆ| −− <− tt ββ  and 5)1(

1
)(

1 10|ˆˆ| −− <− tt ββ . As for the EM algorithm, once 

the updated estimates of the parameters )1(θ̂  are computed starting with the starting values of the 

parameters )0(θ̂ , the new updated estimates )2(θ̂  can be obtained by the same procedure with the 

previous updated estimates )1(θ̂ . This process continues until the log likelihood converges. 

However, since there is no guarantee of a unique stationary pair )ˆ,ˆ,ˆ(ˆ
10 πββθ =  to maximize 

the log likelihood, several random starting points are needed to find a global maximum value of 

the likelihood function. The method to select the starting values and the number of starting points 

for the EM algorithm are described in the following sections. 
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2.2.3 Selection of Starting Values for the EM Algorithm 
 

The main drawbacks of the EM algorithm are its slow convergence and the dependence 

on the choice of starting values for the unknown parameters used. The choice of starting values 

is important in the EM algorithm since it affects the speed of convergence and the ability to find 

the global maximum. The method of selecting the starting values has been dealt with in various 

studies. We are interested in choosing starting values ( )0(
1

)0(
0

)0( ˆ,ˆ,ˆ ββπ ) under the alternative 

hypothesis m
aH  in the context of the logistic regression mixture model. Recall the alternative 

hypothesis is as follows: 

Alternative Ⅱ - The logistic regression mixture model. 

x
p

p
H m

a 101
log: ββ +=
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





−
      with probability π  

                       01
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

− p

p
                 with probability π−1  

Two different methods were considered to select random starting values of the parameters. 

The two ways are both based on fitting the ordinary logistic regression model. Suppose that the 

fitted estimates in the context of the ordinary logistic regression model are 0
~
β  and 1

~
β . Method 

(1) involves using only the fitted estimate 1

~
β  for a starting value of 1β . Then, a starting value of 

the common intercept 0β  is selected using the observed conditional probability that the value of 

Y equals one given X = 0 in a sample. In Method (2), the fitted estimates 0
~
β  and 1

~
β  are used for 

selecting starting values of 0β  and 1β , respectively. The procedure of the first method is 

described as follows: 
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Method (1) 

· Step 1. Choose a starting value for the mixing proportion, )0(π̂ :  

 To find an optimal starting value for the mixing proportion )0(π̂ , a uniform (0,1) 

random number is generated.  

· Step 2. Calculate a starting value for the common intercept, )0(
0β̂ : 

 A starting value of the common intercept is selected using the conditional 

probability that the value of Y equals 1 given X=0 in the observed sample since the 

following equation holds when the value of X is 0: 
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· Step 3. Select a starting value for the nonzero slope, )0(
1β̂ :  

 We fit an ordinary logistic regression model to the overall data set 

)},(,),,{( 11 nn yxyx Λ . Let 1

~
β  be the estimate of the slope in the ordinary logistic 

regression model. According to the definition of the logistic regression mixture model, 

the starting estimate )0(
1β̂  for the nonzero slope 1β  can be obtained by using the 

starting value for the mixing proportion )0(π̂ . The value of the nonzero slope 1β  is 

affected by the corresponding mixing proportion starting from the estimate of the slope 

1

~
β  in the ordinary logistic regression model. The estimate of the slope 1

~
β  is 

represented in the following way: 
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111 0)1(
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From the above Equation (2.2.19), we expect that the value of the nonzero slope is 

calculated as 

)0(
1

1 ˆ

~

π
β

β = .                                                                 (2.2.20) 

 However, the above value obtained by Equation (2.2.20) can be unrealistically 

large whenever the starting value of the mixing proportion )0(π̂  is close to zero. In 

order to avoid this we adjusted the value by taking minimum with a certain number. In 

this dissertation, we take the starting value for the nonzero slope as follows:   

)
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1 π
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Method (2) 

· Step 1. Choose a starting value for the mixing proportion, )0(π̂  in the same way as Method (1). 

· Step 2. Fit an ordinary logistic regression model to the overall data set, and let 0

~
β  and 1

~
β  be 

the fitted estimates in the ordinary logistic regression model.  

· Step 3. Select starting values for the common intercept 0β  and the nonzero slope 1β : 

)0(
0β̂  = 0

~
β  and )

ˆ

~
,10min(ˆ

)0(
1)0(

1 π
β

β = . 
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When we used Method (1) to select the starting values for the EM algorithm, the 

algorithm did not reach a global maximum of the value of the likelihood, or it was confronted by 

a division-by-zero error within the Newton-Raphson method. Meanwhile, the EM algorithm 

found the global maximum using Method (2) as the way to select the starting values. Therefore, 

Method (2) is used for selecting the starting values throughout this study. 

 

2.3 Simulated Results of the Estimation 

 

2.3.1 The Number of Random Starting Points for the EM Algorithm 

 

Although iterations of the EM algorithm always lead to non-decreasing values of the 

likelihood, there is no proof of the uniqueness of a maximum likelihood value. The number of 

random starting points is important to assure that the observed maximum likelihood is a global 

one. To specify the number of random starting points required to get a global maximum, the 

maxima of the LRT statistics are compared at specified numbers of random starting points used 

in the EM algorithm. Since an observed negative maximum value of the LRT statistics indicates 

a local maximum we can investigate this condition as well as the convergence by comparing the 

values of the LRT statistics obtained using different starting values.  

We obtain the maximum log likelihood and the corresponding maximum likelihood 

estimates for each set of initial starting points in this simulation. Then the LRT statistic is 

computed, and I choose the largest value of the LRT statistics comparing all the values obtained 

from each set of starting points. If these largest values converge to a certain value, we conclude 
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that the EM algorithm with the specified number of random starting points has reached the 

global maximum.  

For simplicity, the intercept in the regression model is fixed to zero ( 00 =β ) and the 

slope is set to one ( 11 =β ). Under the alternative, the five mixing proportions π = 0.1, 0.3, 0.5, 

0.7, and 0.9 are considered for each sample size n = 100, 200, and 400. Since the stopping 

criteria in the EM algorithm that I choose to use is based on the relative change of the log 

likelihood function in consecutive iterations || )1()( −− tt λλ  < 510− , the number of random 

starting points needed to find the global maximum can be chosen at a certain point that the 

difference in consecutive maxima of LRT statistics becomes small enough in the same context.  

Table 2.1 reports a relationship between the relative change in the values of LRT statistics 

and the number of random starting points for the case where the data is generated under the null 

hypothesis ( 0H ) described in Section 1.3. The relative change in the values of LRT statistics 

with 45 or more starting points is less than 410− . Under the mixture alternative hypothesis (maH ), 

this value is less than 310−  after 45 or more starting points. Therefore, 45 random starting points 

are used in each sample for the EM algorithm with the tolerance 510− , and we choose the 

maximum of 45 maxima to obtain the global maximum of the log likelihood functions in this 

power study. 
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Table 2.1 – Maximum LRT statistics for selected numbers of Random Starting Points (RSPs) under the null alternative hypothesis in 
logistic regression mixture models with the difference between maximum LRT statistics (∆) 

Sample 
Size (n)¹ 

 Number 
of RSPs 

Under 0H  Under m
aH  

mixing prop. = 0.0 mixing prop. = 0.1 0.3 0.5 0.7 0.9 
 ∆  ∆  ∆  ∆  ∆  ∆ 

100 1 0.1505  0.1326  1.3601  7.2318  10.8034  18.8370  

 10 0.1505 0.0000 0.1326 0.0000 1.3804 0.0203 7.2318 0.0000 10.8034 0.0000 18.8370 0.0000 

 20 0.1505 0.0000 0.1331 0.0004 1.3804 0.0000 7.2318 0.0000 10.8034 0.0000 18.8370 0.0000 

 30 0.1505 0.0000 0.1331 0.0001 1.3804 0.0000 7.2318 0.0000 10.8034 0.0000 18.8370 0.0000 

 45 0.1511 0.0005 0.1332 0.0001 1.3839 0.0034 7.2318 0.0000 10.8034 0.0000 18.8381 0.0011 

 60 0.1511 0.0000 0.1333 0.0000 1.3839 0.0000 7.2318 0.0000 10.8034 0.0000 18.8381 0.0000 

 100 0.1511 0.0000 0.1333 0.0001 1.3839 0.0000 7.2329 0.0010 10.8034 0.0000 18.8381 0.0000 

 150 0.1511 0.0000 0.1333 0.0000 1.3840 0.0001 7.2330 0.0001 10.8039 0.0005 18.8385 0.0004 

 200 0.1511 0.0000 0.1333 0.0000 1.3840 0.0000 7.2330 0.0000 10.8039 0.0000 18.8385 0.0000 

              

200 1 0.0040  1.7395  4.1711  13.493  18.5709  37.0914  

 10 0.0040 0.0000 1.7725 0.0330 4.2023 0.0312 13.493 0.0000 18.5709 0.0000 37.0914 0.0000 

 20 0.0040 0.0000 1.7725 0.0000 4.2023 0.0000 13.493 0.0000 18.5709 0.0000 37.0914 0.0000 

 30 0.0040 0.0000 1.7725 0.0000 4.2023 0.0000 13.493 0.0000 18.5709 0.0000 37.0914 0.0000 

 45 0.0040 0.0000 1.7725 0.0000 4.2023 0.0000 13.493 0.0000 18.5709 0.0000 37.0914 0.0000 

 60 0.0040 0.0000 1.7725 0.0000 4.2023 0.0000 13.493 0.0000 18.5709 0.0000 37.0914 0.0000 

 100 0.0040 0.0000 1.7725 0.0000 4.2023 0.0000 13.493 0.0000 18.5709 0.0000 37.0914 0.0000 

 150 0.0040 0.0000 1.7725 0.0000 4.2023 0.0000 13.493 0.0000 18.5709 0.0000 37.0914 0.0000 

 200 0.0040 0.0000 1.7725 0.0001 4.2024 0.0001 13.493 0.0000 18.5721 0.0012 37.0914 0.0000 

Note 1. The number of observations per X values 4/nnx =  for each sample size n. 2. The cases with larger sample size (n > 200) are 

not shown because the results are consistent with the above results (45 starting points are needed).
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2.3.2 MLE in the Logistic Regression Mixture 

  

In order to verify that the customized EM algorithm works well in the logistic regression 

mixture model defined in this dissertation, I investigated the means and standard errors of the 

MLEs obtained by the EM algorithm with 45 random starting points, which are based on 1,000 

replicates. We considered the logistic regression mixture model where it has the value of zero as 

the common intercept (0β = 0) and the value of one as the nonzero slope (1β = 1). Also, four 

sample sizes n = 100, 200, 400, 1,000, and 2,000 were considered; i.e., the number of 

observations per X value is xn  = 25, 50, 100, 250, and 500, respectively. 

The parameters setting for this simulation study are shown in Table 2.2, and it contains 

the mean and standard error of the estimated values of the parameters. As one can see, the large 

sample theorems for the expected values of the MLE only hold for extremely large samples in 

the case of this likelihood. In a rough way, the EM algorithm seems to work well in estimating 

the value of 0β  regardless of sample size and true values. Meanwhile, as sample size increases 

the expected values of the estimates approach true values and the standard error of the estimates 

decreases, particularly in the estimated results of 1β . From the viewpoint of mixing proportions 

π , as the true value of π  increases, the bias of the estimated value decreases. For the estimate 

1β̂ , we can roughly compare the precision based on the expected bias of 1β̂  in ordinary logistic 

regression models. We can expect the bias (1β̂ ) in the context of ordinary logistic regression to 

be E( ββ −1
ˆ ) = E( 1β̂ ) – 1β  = 111 )1(0)1( βπβππβ −=−−+ . The bias of 1β̂  appears to be 

consistently smaller than the expected bias obtained by ordinary logistic regression for large 

samples (n > 400).  
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Table 2.2 – Simulated mean MLEs with the standard error (in parentheses) under the logistic 
regression mixture population based on 1,000 replicates in each case: four sample 
sizes n =100, 200, 400, 1,000, and 2,000 are considered and 45 random starting 
points are used 

     Mean MLEs (SE) 

Sample 
Size (n)¹ 

π  0β  1β  
Expected 
Bias( 1β̂ )²²²² 

π̂  0β̂  1β̂  

100 0.1 0 1 -0.9 0.54 (0.01) -0.01 (0.01) 0.40* (0.06) 
 0.3 0 1 -0.7 0.58 (0.01) -0.03 (0.01) 0.87 (0.06) 
 0.5 0 1 -0.5 0.66 (0.01) -0.07 (0.01) 1.26* (0.05) 
 0.7 0 1 -0.3 0.76 (0.01) -0.06 (0.01) 1.36 (0.04) 
 0.9 0 1 -0.1 0.89 (0.00) -0.06 (0.01) 1.34 (0.03) 
        

200 0.1 0 1 -0.9 0.54 (0.01) 0.00 (0.01) 0.40* (0.05) 

 0.3 0 1 -0.7   0.52 (0.01)  0.00 (0.01) 1.12* (0.06) 

 0.5 0 1 -0.5 0.61 (0.01) -0.04 (0.01) 1.35* (0.05) 

 0.7 0 1 -0.3 0.74 (0.01) -0.05 (0.01) 1.40 (0.04) 

 0.9 0 1 -0.1 0.89 (0.00) -0.05 (0.01) 1.29 (0.02) 
        

400 0.1 0 1 -0.9 0.49 (0.01) -0.01 (0.01) 0.47* (0.05) 

 0.3 0 1 -0.7 0.50 (0.01) -0.02 (0.01) 1.14* (0.05) 

 0.5 0 1 -0.5 0.60 (0.01) -0.02 (0.01) 1.27* (0.04) 

 0.7 0 1 -0.3 0.75 (0.00) -0.02 (0.01) 1.14* (0.02) 

 0.9 0 1 -0.1 0.90 (0.00) -0.03 (0.01) 1.12* (0.01) 
        

1,000 0.1 0 1 -0.9 0.47 (0.01)  0.00 (0.00) 0.43* (0.04) 

 0.3 0 1 -0.7 0.43 (0.01) -0.01 (0.00) 1.23* (0.05) 

 0.5 0 1 -0.5 0.56 (0.00) -0.01 (0.00) 1.10* (0.02) 

 0.7 0 1 -0.3 0.73 (0.00) -0.01 (0.00) 1.06* (0.01) 

 0.9 0 1 -0.1 0.90 (0.00) -0.01 (0.00) 1.05* (0.01) 

Note 1. The number of observations per X values 4/nnx =  for each sample size n 

         2. Bias( 1β̂ ) is the expected bias of the estimates 1β̂  in ordinary logistic regression:  

             Bias( 1β̂ ) = E( ββ −1
ˆ ) = E( 1β̂ ) – 1β  = 111 )1(0)1( βπβππβ −=−−+ . 

             * : Smaller bias compared with the expected bias of 1β̂  in ordinary logistic regression 
 



 38

Table 2.2 (Continued) – Simulated mean MLEs with the standard error (in parentheses) 
under the logistic regression mixture population based on 1,000 replicates in each 
case: four sample sizes n =100, 200, 400, and 1,000 are considered and 45 random 
starting points are used 

     Mean MLEs (SE) 

Sample 
Size (n)¹ 

π  0β  1β  
Expected 
Bias( 1β̂ )²²²² 

π̂  0β̂  1β̂  

2,000 0.1 0 1 -0.9 0.47 (0.01)  0.01 (0.00) 0.38* (0.04) 

 0.3 0 1 -0.7 0.41 (0.01) -0.00 (0.00) 1.12* (0.04) 

 0.5 0 1 -0.5 0.54 (0.00) -0.00 (0.00) 1.02* (0.01) 

 0.7 0 1 -0.3 0.72 (0.00) -0.00 (0.00) 1.01* (0.01) 

 0.9 0 1 -0.1 0.90 (0.00) -0.00 (0.00) 1.01* (0.01) 

Note 1. The number of observations per X values 4/nnx =  for each sample size n 

         2. Bias( 1β̂ ) is the expected bias of the estimates 1β̂  in ordinary logistic regression:  

             Bias( 1β̂ ) = E( ββ −1
ˆ ) = E( 1β̂ ) – 1β  = 111 )1(0)1( βπβππβ −=−−+ . 

             * : Smaller bias compared with the expected bias of 1β̂  in ordinary logistic regression 
 

We also investigated the MLEs in the similar way under the null hypothesis that there is 

no association between the quantitative explanatory variable and the response variable ( 0=π ). 

The simulation results are shown in Table 2.3. The means and standard errors of MLEs were 

obtained based on 1,000 replicates. In this case we also set 0β  equal zero and considered four 

sample sizes of  n = 100, 200, 400, 1,000, and 2,000 were considered ( xn = 25, 50, 100, 250, and 

500). Thus, the estimate of the intercept should equal zero (on average) and the estimated value 

of slope should also equal zero (on average) if the EM algorithm still works under the null 

hypothesis as well. Moreover, the estimates of the mixing proportion are expected to follow a 

uniform distribution with mean of 0.5.  
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Table 2.3 shows the mean and standard error of the estimates under the null hypothesis for 

each sample size. The mean estimates of the mixing proportion are 0.5 and the estimated 

intercept is always within standard error of 0.01 with any sample size. Meanwhile, the standard 

error of the slope estimate decreases as sample size increases. The distribution of the estimates of 

π̂  for sample size of 2,000 can be found in Appendix B. 

Table 2.3 – Simulated mean MLEs with the standard error (in parentheses) under the null 

hypothesis of no association (π  = 0, 0β  = 0) based on 1,000 replicates in each 

case: four sample sizes n =100, 200, 400, 1,000, and 2,000 are considered and 45 
random starting points are used 

   Mean MLEs (SE) 

Sample 
Size (n)¹ 

π  0β  π̂  0β̂  1β̂  

100 0 0 0.52 (0.01)  0.01 (0.01)  0.11 (0.10) 

200 0 0 0.51 (0.01) -0.02 (0.01)  0.03 (0.09) 

400 0 0 0.50 (0.01)  0.01 (0.01) -0.06 (0.06) 

1,000 0 0 0.50 (0.01)  0.00 (0.00) -0.01 (0.03) 

2,000 0 0 0.50 (0.01) -0.00 (0.00)   0.01 (0.00) 

 Note 1. The number of observations per X values 4/nnx =  for each sample size n 

Based on the results, we conclude that the EM algorithm works well for observed samples 

under both the alternative hypothesis and the null hypothesis considered in this dissertation. 

However, as sample size increases, the estimates obtained by the EM algorithm approach the true 

values of the corresponding parameters. Therefore, a sample size at least 400 is needed to obtain 

accurate estimates using this EM algorithm in the logistic regression mixture model. We will 

investigate the precision of the estimates obtained from this mixture model by comparing the 

bias and the mean squared error with the estimates in ordinary logistic regression in Chapter 4. 
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Chapter 3  

The Null Distribution    

of the Likelihood Ratio Test Statistics 
 

3.1 Asymptotic Null Distribution of LRT Statistics 
 

The usual test of the null hypothesis (0H ) against the alternative (h
aH  and m

aH ) described 

earlier is the likelihood ratio test (LRT). Based on the classical asymptotic theorem for the null 

distribution of LRT statistics, we would expect the asymptotic distribution of the LRT statistics 

to be chi-square distribution with 1 degree of freedom and with 2 degrees of freedom for our 

homogeneous alternative (h
aH ) and mixture alternative ( m

aH ), respectively. However, this 

classical asymptotic null distribution does not hold in the case where we test the common null 

hypothesis ( 0H ) against our mixture alternative (maH ) as we discussed in Chapter 1.  

Instead, based on the asymptotic results on the boundary of the parameter space, we 

conjectured that the asymptotic null distribution of the LRT statistics may be 2
2

2
1 5.05.0 χχ +  to 

test the mixture alternative hypothesis in our power study. We will verify this conjecture by 

using the empirical null distribution and the fitted null distribution in Section 3.2 and 3.3. 

Concurrently, we will see if the null distribution is invariant to generating models with the value 

of the parameter 0β  under the null hypothesis. 
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3.2 Empirical Null Distribution of the LRT Statistics 
 

We want to verify that an asymptotic chi-square distribution also holds true for the LRT 

test in the situation we are considering. Thus, the empirical null distribution of the LRT statistics 

was obtained through simulation. We compared the theoretical asymptotic distribution with the 

empirical null distribution found from the simulation. The 95th percentile of the empirical null 

distribution of the LRT statistics and corresponding 95% confidence intervals are computed.  

 

3.2.1 Data Simulation 

 
Five different values of the parameter 0β  were considered to generate the null 

distributions that there is no association between an explanatory variable and a response variable, 

that is, 0β = -2, -1, 0, 1, and 2. Also, we considered three different sample sizes per configuration 

to model both small and large samples, that is, three different sizes for each value of the 

explanatory variable x = 0, 1, 2, and 3 were considered; xn = 25, 50, and 100 (i.e., n = 100, 200, 

and 400).  The values of the parameter 1β  and π  were fixed ( 1β = 1 and π = 0.5) because the 

null distribution of LRT statistics is not affected by these values. For each configuration one 

hundred samples were generated and for each sample one hundred bootstrap samples were 

replicated under the null hypothesis. LRT statistics were calculated for each bootstrap sample 

against the corresponding generated sample for each configuration, and the 95th percentile values 

were obtained among the one hundred LRT statistics based on each generated sample. Figure 3.1 

shows this bootstrap procedure for the configuration with xn  = 25 and 0β = -2.  
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Figure 3.1 – The bootstrap procedure to construct the empirical null distribution of the LRT 
statistics for the configuration with xn = 25 and 0β = -2 :  100 generated samples are 

considered and 100 bootstrap samples are replicated under the null hypothesis for 
each sample.  

 
Note. This procedure is also applied for the other fourteen combinations of xn  and 0β  ( xn = 25, 

50, and 100; 0β  = -2, -1, 0, 1, and 2) 

 

3.2.2 Simulation Results of the Empirical Null Distribution 

For each configuration (xn = 25, 50, and 100;0β = -2, -1, 0, 1, and 2), we computed the 

mean and variance of the 95% percentile of the LRT statistics for each model under the null 

hypothesis based on 100 simulations per xn and 0β  combination. In addition, the 95% 

confidence intervals for the empirical 95th percentile of the LRT statistics were constructed. The 

95% confidence intervals for these five different models are displayed in Figures 3.2 for each 

sample size.  
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As one can see by looking at Figure 3.2, it appears that the majority of the 95% 

confidence intervals of the 95th percentile overlapped. That is, we observed apparent invariance 

to the generating model under the null hypothesis for the LRT statistics. Hence, we combined the 

50,000 LRT statistics obtained from the simulations to find a more precise estimate of the 95th 

percentile of the empirical null distribution for each sample size. 

 

Figure 3.2 – The 95% confidence intervals for the mean 95th percentile of the LRT statistics 
according to the values of 0β  : 0β = -2, -1, 0, 1, and 2 are considered and three 

sample sizes are also considered (n = 100, 200, and 400).  

4.00

4.20

4.40

4.60

4.80

5.00

5.20

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

100 100 100 100 100 200 200 200 200 200 400 400 400 400 400

LR
T

 S
ta

tis
tic

s

Observed mean 95th percentile Lower Limit Upper Limit
 

 Note. The observed mean of the bootstrap 95th percentile and 95% confidence intervals are 
based on 100 simulated samples per 0β  value ( BN =100 bootstrap samples under 0H  per 

simulated sample). 
 
 

 

 

n
0β

 



 44

We found the 95th percentile of the LRT statistics under the null hypothesis for sample 

size of 100 to be 5.1 and the 95% confidence interval for the empirical 95th percentile was [5.0, 

5.2]. In the similar manner, the 95th percentile of the LRT statistics for sample size of 200 was 

4.9 and the 95% confidence interval for the empirical 95th percentile was [4.9, 5.0]. We also 

found the 95th percentile of the LRT statistics for sample size of 400 to be 4.6. The 95% 

confidence interval for the empirical 95th percentile was [4.6, 4.7].  

Table 3.1 shows these empirical 95th percentile values of the LRT statistics and 

corresponding 95% confidence intervals obtained from the combined 50,000 LRT statistics for 

each sample size. These confidence limits were computed from non-parametric methods 

(Snedecor and Cochran, 1967). Table 3.2 contains the mean, variance, and selected percentiles 

from the simulated null distribution of the LRT statistics for sample size 100, 200, and 400. The 

means, variances and percentiles monotonically decrease. The table also reports the values for 

selected chi-squared distributions. The percentiles of the empirical null distributions lie between 

the values for the distribution of 2
2

2
1 5.05.0 χχ +  and 2

1χ . Thus, we expect that the simulated 

LRT statistics follow the mixture of chi-squared distributions with 1 degree of freedom and 2 

degrees of freedom, where the fraction of the chi-squared distribution with 1 degree of freedom 

would be between 0.5 and 1. 
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Table 3.1 – The empirical 95th percentile of the LRT statistics and corresponding 95% 
confidence interval based on the combined 50,000 LRT statistics 

 

Sample Size (n) 
Empirical 95th percentile 

of LRT statistics 

95% Confidence Interval 

Lower Limit Upper Limit 

100 5.1 5.0 5.2 

200 4.9 4.9 5.0 

400 4.6 4.6 4.7 

    Note 1. The number of observations per x values 4/nnx =  for each sample size n 

             2. The results are based on combined LRT statistics with BN  = 100 bootstrap 

samples, N = 100 replications, and five configurations (0β  = -2, -1, 0, 1, and 2) 

 

 

Table 3.2 – Summary of empirical null distribution of LRT statistics of the null hypothesis 
of ordinary logistic regression models versus the alternative of logistic 
regression mixture models 

 

    Percentiles of LRT statistics 

Null distribution Sample Size (n) Mean Variance 90% 95% 99% 

2
2χ   2 4 4.6 6.0 9.2 

2
2

2
1 5.05.0 χχ +   1.5 3.25 3.8 5.1 8.3 

2
1χ   1 2 2.7 3.8 6.6 

Empirical distribution 

100 1.35 2.94 3.7 5.1 9.0 

200 1.30 2.83 3.6 4.9 8.0 

400 1.22 2.63 3.3 4.6 7.9 

Note 1. The number of observations per x values 4/nnx =  for each sample size n 

2. Empirical null distribution is based on the 50,000 combined LRT statistics per line 
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3.3 Fitted Null Distribution of the LRT Statistics   
 

Wilson and Hilferty (1931) showed that the cube root of a chi-square distribution is 

approximately normal. Consequently, if the null distribution of a statistic were of the form 

2 2
0 (1 ) vp pχ χ+ − , then the distribution of the cube root of the statistic would be a mixture of a 

fraction of zero with a proportion of p and an approximately normal distribution. In the context 

of this fact and our conjecture on the asymptotic null distribution of the LRT statistics in Section 

3.1, we consider the form 2 2
1 (1 )v vp pχ χ− + −  as the null distribution of the LRT statistics and 

evaluate the fit of the distribution of the LRT statistics under the null hypothesis to this form. 

This approach also has a thread of connection with the expectation of empirical null distribution 

in Section 3.2.2.  

 

Based on the combined LRT statistics, let the null distribution of the statistics be the form 

of 2 2
1 (1 )v vp pχ χ− + − . Then we can obtain the estimate p̂  and v̂   of the parameters p and v using 

the mean and variance of the LRT statistics for each sample size as follows. 

LLRTSE =)(      

                 vpvp )1()1( −+−=             

                 pv −=                                                                                                        (3.3.1) 

2)( SLRTSVar =  

                    22 )]([)( LRTSELRTSE −=  

                         222 )()]2)(1(})1()1(2{[ pvvvpvvp −−+−+−+−=  

                         22 ppv −−=                                                                                        (3.3.2) 
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From Equation (3.3.1) and (3.3.2) the estimates of the mixing proportion p and the degrees of 

freedom v are computed in the form of 2 2
1 (1 )v vp pχ χ− + − .  That is,  

2

)2(411
ˆ

2SL
p

−+±
=                                                                                         (3.3.3) 

pLv ˆˆ +=                                                                                                                   (3.3.4) 

As a result, we estimate the empirical null distribution of the LRT statistics from the 

50,000 combined LRT statistics described above. The fitted null distributions of LRT statistics 

are 2
76.1

2
76.0 59.041.0 χχ + , 2

91.1
2

91.0 39.061.0 χχ + , and 2
95.1

2
95.0 26.074.0 χχ +  for sample size 100, 

200, and 400, respectively. The fraction of chi-square distribution with smaller value of the 

degrees of freedom increases and the values of the degrees of freedom also increase as sample 

size increases. That is, while we observed apparent invariance to the generating models under the 

null hypothesis, there is some dependence on sample size. 

In Table 3.3, we report the 90th, 95th, and 99th percentiles, and other relevant summary 

statistics for sample size. Q-Q plots are used to compare the observed null distribution with the 

fitted null distribution of the LRT statistics. Although the fitted null distribution does not work 

well in the upper quartiles when sample size is small, there mostly appears to be no difference in 

the null distribution when sample size is large (Figure 3.3).  
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Table 3.3 – The mean and variance of the LRT statistics for each sample size and 
corresponding estimated values of parameters p and v in the form of  

2 2
1 (1 )v vp pχ χ− + −  

 

   
Fitted parameters 
of null distribution 

Percentiles 

Sample Size (n) Mean Variance p̂  v̂  90% 95% 99% 

100 1.35 2.94 0.41 1.76 3.5 4.8 8.0 

200 1.30 2.83 0.61 1.91 3.4 4.7 7.8 

400 1.22 2.63 0.74 1.95 3.2 4.5 7.5 

    Note: The results are based on the 50,000 simulated LRT statistics per line 

 

Figure 3.3 – Q-Q plots of the null distribution of LRT statistics for sample size: comparing 
observed null distribution with fitted null distribution of LRT statistics 

 

 
 

 

Table 3.4 summarizes the 95th percentile values of LRT statistics in the following cases of 

the null distribution; (1) the asymptotic null distribution, 2
2

2
1 5.05.0 χχ + , (2) the empirical null 

distribution, and (3) the fitted null distribution with the form of 2
ˆ

2
1ˆ )ˆ1(ˆ vv pp χχ −+−  for specified 

sample size. 
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Table 3.4 – Summary of the 95th percentile selected for sample size. 
 

 The 95th percentile 

Sample Size (n) 
Asymptotic¹ 

null distribution 
Empirical ² 

null distribution 
Fitted ³ 

null distribution 

100 5.1 5.1 4.8 

200 5.1 4.9 4.7 

400 5.1 4.7 4.5 

  Note 1. For the asymptotic null distribution, 2
2

2
1 5.05.0 χχ +  is conjectured. 

  2. Empirical null distribution is based on the 50,000 combined LRT statistics per line: 
given in Table 3.2 

  3. Fitted null distribution is estimated as form of  2
ˆ

2
1ˆ )ˆ1(ˆ vv pp χχ −+−  based on the 

50,000 combined LRT statistics per line: given in Table 3.3 
  

Table 3.5 shows the Type I error rates of the LRT under each generating null model for 

each sample size. For each configuration one thousand replications were used to obtain the Type 

I error rates. The Type I error rates were estimated using three different null distributions of the 

LRT statistics described in this Chapter 3. The corresponding 95th percentile values of LRT 

statistics for each case are shown in Table 3.4. 
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Table 3.5 – Type I Error rates of the LRT under the generating null hypothesis using 
asymptotic, empirical, and fitted null distribution of LRT statistics (α = 0.05) 

 

  Type I Error rates of the LRT ⁴ 

Sample Size (n) 
Generating 
Model ( 0β ) 

Asymptotic¹ 
Null distribution 

Empirical ² 
null distribution 

Fitted ³ 
null distribution 

100 

-2 

-1 

0 

1 

2 

0.046 

0.044 

0.056 

0.048 

0.043 

0.057 

0.052 

0.056 

0.045 

0.052 

0.062 

0.067 

0.059 

0.057 

0.067 

 Average  0.047 0.052 0.062 

200 

-2 

-1 

0 

1 

2 

0.056 

0.051 

0.044 

0.043 

0.049 

0.060 

0.043 

0.048 

0.045 

0.052 

0.050 

0.053 

0.053 

0.046 

0.053 

 Average 0.049 0.050 0.051 

400 

-2 

-1 

0 

1 

2 

0.040 

0.041 

0.043 

0.044 

0.043 

0.036 

0.050 

0.051 

0.044 

0.043 

 

0.063 

0.052 

0.046 

0.045 

 Average 0.042 0.045 0.049 

Note  1. For the asymptotic null distribution, 2
2

2
1 5.05.0 χχ +  is conjectured. 

  2. Empirical null distribution is based on the 50,000 combined LRT statistics per line: 
given in Table 3.2 

  3. Fitted null distribution is estimated as form of  2
ˆ

2
1ˆ )ˆ1(ˆ vv pp χχ −+−  based on the 50,000 

combined LRT statistics per line: given in Table 3.3 
4. Simulation results are based on 1,000 replications per line and the 95% margin of error 

is ±0.01 for each configuration 
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As one can see in Table 3.5, the Type I error rates of the LRT seem close to the nominal 

value of 0.05 for each of 95th percentile value within a 95% margin of error (±0.01). However, 

when sample size is small (n = 100) the average Type I error rate (0.062) is slightly larger than 

the nominal value. It is because the modeled null distribution for n =100 does not fit well in the 

upper quartiles (Figure 3.3). Therefore, we use the asymptotic null distribution of 

2
2

2
1 5.05.0 χχ +  to calculate the power of the test with mixture alternative hypothesis ( m

aH ). 

Figure 3.4 – 3.6 illustrate the Type I error rates of the LRT for the five different generating 

models for sample size.  

 

Figure 3.4 – Type I error rates of the LRT under the generating null hypothesis using 
asymptotic, empirical, and fitted null distribution of LRT statistics with sample 
size n = 100. 

Sample Size n = 100
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0.030

0.040

0.050

0.060

0.070

-2 -1 0 1 2

Beta0 (Intercept)

T
yp

e
 I 

E
rr

or

Asymptotic Empirical Fitted
 

 Note. Simulation results are based on 1,000 replications and the 95% margin of error is ±0.01 
for each configuration 
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Figure 3.5 – Type I error rates of the LRT under the generating null hypothesis using 
asymptotic, empirical, and fitted null distribution of LRT statistics with sample 
size n = 200. 
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Figure 3.6 – Type I error rates of the LRT under the generating null hypothesis using 
asymptotic, empirical, and fitted null distribution of LRT statistics with sample 
size n = 400. 

Sample Size n = 400
(100 per X value)
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 Note. Simulation results are based on 1,000 replications and the 95% margin of error is ±0.01 
for each configuration 
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Chapter 4  
 

Power Study    

of the Likelihood Ratio Test 
 

4.1 Data Simulation 

 
We evaluated the performance of the hypothesis tests about the association in the context 

of ordinary logistic regression and logistic regression mixture models defined in Section 1.3. 

Based on the simulation results in Chapter 3 we concluded the null distribution of LRT statistics 

is invariant to parameter setting of the generating models under the null hypothesis and verified 

our conjecture stated in Section 3.1 about the null distribution, 2
2

2
1 5.05.0 χχ + . Therefore, this 

asymptotic null distribution, 2
2

2
1 5.05.0 χχ + , was used to infer the critical values for the tests 

defined in this dissertation. For our power study, we considered the following parameter setting 

for sample size n = 200, 400, and 1,000: 

                                       0β  = -2, -1, and 0;  

1β  = 0.5, 1.0, and 1.5; 

π  = 0.1, 0.3, 0.5, 0.7, and 0.9. 
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For each configuration we simulated one thousand samples and found the power of the LRT. 

Each power was based on the 95th percentile of the asymptotic null distribution, 5.1, which was 

found in Chapter 3.  

 

Additionally, we investigated the precision of the estimates under mixture populations 

with two components logistic regression models. To compare the precision in the ordinary 

logistic regression models with logistic regression mixture models, mean squared errors (MSEs) 

were calculated from these two approaches based on one thousand replicates. For simplicity we 

set the true values of 0β  and 1β  equal zero and one, respectively. Five sample sizes (n = 100, 

200, 400, 1,000, and 2,000; i.e., xn = 25, 50, 100, 250, and 500) and five mixing proportions 

were also considered (π  = 0.1, 0.3, 0.5, 0.7, and 0.9).  

 

4.2 Power Study Based on Asymptotic Null Distribution of the 
LRT Statistics 
 

The purpose of this thesis is to compare the power of the two hypothesis tests which 

detect the effect of the quantitative explanatory variable X on the binary response variable Y. 

One test is conducted in terms of the ordinary logistic regression model and the other detects the 

effect in terms of a logistic regression mixture model having equal intercept and two unequal 

slopes as defined in Section 1.3. We compared the power of testing with these two different 

alternatives, h
aH  for the ordinary logistic regression model and m

aH  for the logistic regression 

mixture model.  
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In addition, we used McNemar’s test to determine whether there is a significant difference 

in the performance of the two LRT for each configuration and also carried out logistic regression 

on the findings for each case (1) to determine whether there is an overall increase in power 

associated with one method and (2) to identify the conditions affecting the power difference.  

The various configurations of parameters settings used to generate the data in this power 

study are shown in Table 4.1. This table contains the power of the test based on the simulated 

data for each configuration. The results of the McNemar’s test are also shown in this table with a 

significance level of 0.05 and 0.01. The power comparisons between two models according to 

the values of 0β ,  1β , and π  are shown in Figure 4.1 for sample size of 1,000. The patterns were 

almost identical for sample size of 200 and 400 (See Appendix C).  

The power of test, taken as a whole, increased as the value of 1β  increases or the mixing 

proportion π  increases. It also appears that the power of the logistic regression mixture model is 

slightly greater than the power of the ordinary logistic regression model, especially for smaller 

mixing proportion π .  

 

 

 

 

 



 56

Table 4.1 – Power of the LRT using the asymptotic 95th percentile, calculated from 1,000 
replicates: comparison the power of ordinary logistic regression models ( h

aH ) 

with logistic regression mixture models (maH ) 

   Power of the LRT 

   n = 200   n = 400 n = 1,000 

0β  1β  π  Ordinary¹ Mixture² Ordinary Mixture Ordinary Mixture 

-2.0 0.5 

0.1 
0.3 
0.5 
0.7 
0.9 

0.07 
0.18 
0.37 
0.61 
0.78 

0.07 
  0.21* 

    0.45** 
    0.67** 
    0.85** 

0.07 
0.30 
0.65 
0.90 
0.98 

0.07 
0.34 

    0.71** 
0.92 

 0.99* 

0.10 
0.62 
0.96 
1.00 
1.00 

    0.16** 
    0.74** 
  0.98* 
1.00 
1.00 

 1.0 

0.1 
0.3 
0.5 
0.7 
0.9 

0.13 
0.62 
0.95 
1.00 
1.00 

  0.17* 
    0.69** 
    0.98** 

1.00 
1.00 

0.20 
0.91 
1.00 
1.00 
1.00 

 0.25* 
 0.94* 
1.00 
1.00 
1.00 

0.45 
1.00 
1.00 
1.00 
1.00 

    0.55** 
1.00 
1.00 
1.00 
1.00 

 
1.5 

 

0.1 
0.3 
0.5 
0.7 
0.9 

0.21 
0.85 
1.00 
1.00 
1.00 

0.24 
0.87 
1.00 
1.00 
1.00 

0.33 
0.99 
1.00 
1.00 
1.00 

 0.38* 
0.99 
1.00 
1.00 
1.00 

0.69 
1.00 
1.00 
1.00 
1.00 

    0.77** 
1.00 
1.00 
1.00 
1.00 

-1 0.5 

0.1 
0.3 
0.5 
0.7 
0.9 

0.07 
0.17 
0.44 
0.71 
0.89 

0.07 
   0.23** 
   0.50** 
   0.77** 
   0.94** 

0.07 
0.34 
0.73 
0.95 
1.00 

    0.11** 
    0.40** 
    0.81** 

0.96 
1.00 

0.11 
0.68 
0.99 
1.00 
1.00 

    0.17** 
    0.78** 

0.99 
1.00 
1.00 

 1.0 

0.1 
0.3 
0.5 
0.7 
0.9 

0.09 
0.47 
0.91 
1.00 
1.00 

0.11 
    0.55** 

0.92 
1.00 
1.00 

0.14 
0.80 
1.00 
1.00 
1.00 

0.17 
0.83 
1.00 
1.00 
1.00 

0.29 
0.99 
1.00 
1.00 
1.00 

    0.37** 
0.99 
1.00 
1.00 
1.00 

 
1.5 

 

0.1 
0.3 
0.5 
0.7 
0.9 

0.11 
0.62 
0.97 
1.00 
1.00 

0.13 
0.65 
0.97 
1.00 
1.00 

0.19 
0.91 
1.00 
1.00 
1.00 

0.21 
0.90 
1.00 
1.00 
1.00 

0.39 
1.00 
1.00 
1.00 
1.00 

    0.45** 
1.00 
1.00 
1.00 
1.00 

     Note 1. Test in terms of the ordinary regression model, xOddsH h
a 10)log(: ββ +=  

              2. Test in terms of the logistic regression mixture model,  
      xOddsH m

a 10)log(: ββ +=  with probability of π ; 0)log( β=Odds  with π−1  

          3. The 95% margin of error is ±0.03 for each configuration. 
              4. Significantly different in power compared to ordinary logistic regression using 

McNemar’s Test (* 0.05; ** 0.01) 
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Table 4.1 (Continued) – Power of the LRT using the asymptotic 95th percentile, calculated 
from 1,000 replicates: comparison the power of ordinary logistic regression 
models ( h

aH ) with logistic regression mixture models (maH ) 

   Power of the LRT 

   n = 200 n = 400 n = 1,000 

0β  1β  π  Ordinary¹ Mixture² Ordinary Mixture Ordinary Mixture 

0.0 0.5 

0.1 
0.3 
0.5 
0.7 
0.9 

0.06 
0.13 
0.34 
0.62 
0.85 

  0.08* 
    0.19** 
    0.40** 
    0.68** 
    0.89** 

0.05 
0.25 
0.61 
0.91 
0.99 

    0.09** 
0.29 

    0.69** 
  0.94* 
1.00 

0.09 
0.53 
0.94 
1.00 
1.00 

  0.12* 
    0.61** 

0.96 
1.00 
1.00 

 1.0 

0.1 
0.3 
0.5 
0.7 
0.9 

0.06 
0.28 
0.67 
0.94 
1.00 

0.08 
0.31 

  0.71* 
0.96 
1.00 

0.08 
0.50 
0.93 
1.00 
1.00 

  0.11* 
0.54 
0.93 
1.00 
1.00 

0.14 
0.88 
1.00 
1.00 
1.00 

    0.20** 
0.90 
1.00 
1.00 
1.00 

 
1.5 

 

0.1 
0.3 
0.5 
0.7 
0.9 

0.07 
0.35 
0.79 
0.98 
1.00 

0.08 
0.34 
0.79 
0.98 
1.00 

0.10 
0.60 
0.97 
1.00 
1.00 

0.12 
0.59 
0.96 
1.00 
1.00 

0.17 
0.94 
1.00 
1.00 
1.00 

  0.21* 
0.94 
1.00 
1.00 
1.00 

     Note 1. Test in terms of the ordinary regression model, xH h
a 10)(Oddslog: ββ +=  

              2. Test in terms of the logistic regression mixture model,  
      xH m

a 10)Oddslog(: ββ +=  with probability of π ; 0)Oddslog( β=  with π−1  

          3. The 95% margin of error is ±0.03 for each configuration. 
              4. Significantly different in power compared to ordinary logistic regression using 

McNemar’s Test (* 0.05; ** 0.01) 
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Figure 4.1 – Comparison of the Power of ordinary logistic and logistic mixture models for various values of the intercept 0β , the slope 

1β  and mixing proportion π  for sample size of 1,000: 0β = -2, -1, and 0; 1β  = 0.5, 1.0, and 1.5; π  = 0.1, 0.3, 0.5, 0.7, 

and 0.9 

Power Comparison: Ordinary vs. Mixture
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Note 1. The power results are based on 1,000 replicates with sample size of 1,000.  
         2. The dotted arrows represent the patterns of the power by the parameter settings given the same value of 0β . 
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Additionally, to investigate if there is a relationship between the difference in power and 

various parameters, we computed the power ratio as the power of the logistic regression mixture 

model divided by the power of the ordinary logistic regression model for each configuration. 

Figure 4.2 illustrates this power ratio for various configurations of parameters with sample size 

of 1,000. We also computed the power ratio for sample size of 200 and 400 in the same way (See 

Appendix D). 

As one can see by looking at Figure 4.2, it appears that the power ratio decreases as the 

value of 1β  and the mixing proportion π  increase given equal values of 0β  for sample size of 

1,000. Since this power ratio is related to the improvement in power, we can expect the 

performance of the mixture models to detect the effect of the quantitative variable X on the 

response variable Y to be improved when both the value of 1β  and the mixing proportion π  are 

small. However, this reasonable trend is more marked indeed as sample size increases. We will 

verify our findings obtained from this simulation in the following section. 
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Figure 4.2 – Power Ratio of logistic regression mixture models compared with ordinary logistic regression models for various values 
of the intercept 0β , the slope 1β  and mixing proportion π  for sample size of 1,000: 0β = -2, -1, and 0; 1β  = 0.5, 1.0, and 

1.5; π  = 0.1, 0.3, 0.5, 0.7, and 0.9 

Power Ratio: Power(Mixture)/Power(Ordinary)
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0.8

1

1.2

1.4

1.6

1.8

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.30.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.70.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 

P
o

w
er

 R
at

io

 

                                     20 −=β                                                       10 −=β                                                        00 =β  

Note 1. The power results are based on 1,000 replicates with sample size of 1,000.  
         2. Power Ratio was calculated as the power of logistic regression mixture models divided by the power of ordinary logistic model  
         3. The dotted arrows represent the trend of the power ratio by the parameter settings given the same value of 0β .
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4.3 Modeling the Difference in Power 
 

Based on the visual examination in the previous section, we expected that the 1β  and π  

affect the difference in power of two approaches to detect the relationship between Y and X. In 

this section we find the model of the improvement including all possible factors by a general 

linear model. Our interest in this model is the difference in power between ordinary logistic 

regression models and logistic regression mixture models. Therefore, we considered the odds 

ratio of improvement as the response variable and all of the parameters in the logistic regression 

mixture model as factors in this model: 

                   Odds Ratio(improvement) = nψηπδβγβα ++++ 10 .                       (4.1.1) 

The interaction of the factors will be included in the above model if the above model (Equation 

4.1.1) does not fit.  

Since the improvement in power means the power in the context of the mixture model is 

greater than the ordinary logistic regression model, the odds ratio of improvement can be 

computed from the number of different decisions (12N  and 21N ) by the two models in the 

simulated N replicates as follows (See Table 4.2).  

                                         Odds Ratio(improvement) = 12N / 21N .                                         (4.1.2)    

We cannot obtain the odds ratio in the case of 02112 == NN  or 02112 =≠ NN , thus these 

cases were excluded in our model. Table 4.3 reports the odds ratio for each configuration. If this 

odds ratio is greater than one, we conclude that there is an improvement in power of the test by 

using logistic mixture models.  
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Table 4.2 – Matched Pairs Data Structure 

 Mixture  

Ordinary Accept 0H  Reject 0H  Total 

Accept 0H  11N  12N  +1N  

Reject 0H  21N  22N  +2N  

Total 1+N  2+N  N  

             Note. The total number of N is the number of replicates per configuration 

We first conducted the ANOVA (analysis of variance) including all three main factors and 

all two-way interactions in order. The results indicated that the interactions were not significant 

and the value of 1β  and the mixing proportion π  were significant for each sample size. In 

addition, the sample size n was not significant for the overall observed samples. These results are 

consistent with the findings in the previous section. The significance level of 0.05 was used for 

these conclusions. Detailed SAS output can be found in Appendix E. 

Next, we fit a general linear model with only these significant factors – the value of slope 

1β  and mixing proportion π  – to the odds ratio for each sample size. The regression coefficients 

of the corresponding values for each factor are summarized in Table 4.4.  
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Table 4.3 – Summary of the Odds Ratio of the power with ordinary logistic and logistic 
regression mixture models for each configuration: n = 200, 400, and 1,000 

   Odds Ratio¹    Odds Ratio 

0β  1β  π  n=200 n=400 n=1,000 0β  1β  π  n=200 n=400 n=1,000 

-2 0.5 

0.1 
0.3 
0.5 
0.7 
0.9 

1.13 
1.26 
1.41 
1.29 
1.51 

1.05 
1.17 
1.30 
1.24 
2.30 

1.75 
1.73 
1.89 
3.00 

- 

0 0.5 

0.1 
0.3 
0.5 
0.7 
0.9 

1.43 
1.47 
1.31 
1.27 
1.41 

1.66 
1.20 
1.43 
1.42 
2.67 

1.46 
1.39 
1.38 

- 
- 

 1.0 

0.1 
0.3 
0.5 
0.7 
0.9 

1.31 
1.37 
2.09 

- 
- 

1.30 
1.46 

- 
- 
- 

1.51 
0.00 

- 
- 
- 

 1.0 

0.1 
0.3 
0.5 
0.7 
0.9 

1.32 
1.18 
1.21 
1.29 
2.00 

1.40 
1.17 
1.00 
0.00 

- 

1.48 
1.28 
0.00 

- 
- 

 1.5 

0.1 
0.3 
0.5 
0.7 
0.9 

1.19 
1.23 

- 
- 
- 

1.24 
1.43 

- 
- 
- 

1.54 
- 
- 
- 
- 

 1.5 

0.1 
0.3 
0.5 
0.7 
0.9 

1.27 
0.96 
0.99 
1.11 

- 

1.26 
0.95 
0.66 

- 
- 

1.34 
0.89 

- 
- 
- 

-1 0.5 

0.1 
0.3 
0.5 
0.7 
0.9 

1.02 
1.41 
1.28 
1.38 
1.73 

1.58 
1.30 
1.51 
1.48 
1.33 

1.55 
1.62 
1.30 

- 
- 

      

 1.0 

0.1 
0.3 
0.5 
0.7 
0.9 

1.23 
1.36 
1.17 
1.33 

- 

1.19 
1.25 
0.25 

- 
- 

1.39 
1.11 

- 
- 
- 

      

 1.5 

0.1 
0.3 
0.5 
0.7 
0.9 

1.15 
1.17 
0.87 

- 
- 

1.13 
0.87 

- 
- 
- 

1.30 
- 
- 
- 
- 

      

Note 1. The odds ratio is computed by 2112 / NN , where  

(1) 12N represents the number of cases that the null hypothesis was rejected based on the 
mixture model and not rejected based on the ordinary logistic regression model. 

           (2) 21N  represents the number of cases that the null hypothesis was not rejected based on 
the regression mixture model and rejected based on the ordinary logistic regression 
model. (See Table 4.2) 

         2. The missing value of odds ratio occurs when 02112 == NN  or 02112 =≠ NN . 
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Table 4.4 – Estimates of Regression Coefficients in the fitted General Linear Models of the 
Odds Ratio for sample size 

  Estimates of Coefficients 

Parameter  n¹ = 200 n = 400 n = 1,000 

Intercept   0.3297  0.3759  0.1262 

1β  0.5  0.1561  0.3241  0.2808 

 1.0  0.2097  0.0151  0.1048 

 1.5²  0.0000  0.0000  0.0000 

π  0.1 -0.2509 -0.2274  0.1338 

 0.3 -0.2216 -0.3192 -0.0358 

 0.5 -0.2424 -0.6713  0.0000 

 0.7 -0.2344 -0.3808 -³ 

 0.9²  0.0000  0.0000 -³ 

   Note 1. The number of observations per x values 4/nnx =  for each sample size. 

2. The Baseline of the factor1β  set to be 1.5 and the baseline of the factor π  is 0.9. 
           3. For sample size of 1,000 the case of the mixing proportion π  of 0.7 and 0.9 are not 

included in the fitted model. 
 

By using the fitted general linear models we can obtain the fitted values for the odds ratio 

of improvement. Then we can compare the observed odds ratio and the fitted odds ratio. The 

results are illustrated in Figure 4.3. Based on the results of these analyses, we see that these 

models mostly fit and the fitted models are fairly reasonable within our expectation.  

Figure 4.3 – Scatter plots of Observed Odds Ratio of improvement vs. Fitted Odds Ratio of 
improvement obtained by using the fitted model for each sample size  
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Note. The blue line is a diagonal line for each case. 
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4.4 The Precision of Estimates  
 

As a measure of the accuracy of the estimates we used the MSE of the estimates taken 

about the true population values and compared the MSEs obtained by two different models, 

ordinary logistic regression models and logistic regression mixture models. The MSE of an 

estimate θ̂  with respect to the parameter θ  is defined as  

[ ]
.))ˆ(()ˆ(

)ˆ()ˆ(
2

2

θθ

θθθ

BiasVar

EMSE

+=

−=
 

The bias term measures how far the mean estimates is from the true value and the variance term 

measures how far each estimator is from the mean estimates. Since the MSE decomposes into a 

sum of the bias and variance of the estimator, both quantities are important and need to be as 

small as possible to achieve good estimation performance. It is common to have a situation 

where (1) for simple models, the bias increases very quickly, while (2) for complex models, the 

variance increases very quickly. This basic tradeoff arises in a wide variety of settings, as it 

seems to be fundamental to the various nature of generalization of any data that involve an 

unknown mixture of regular and random elements. 

From the previous simulation results in Section 2.3.2, we can expect that the MSE of the 

estimate 1β̂  decreases as sample size increases in logistic regression mixture models because the 

variance and the expected bias of the estimates decreased as sample size increases (Table 2.2). 

The MSE, the variance, and the bias of 0β̂  and 1β̂  based on one thousand replicates are 

summarized in Table 4.5 and Table 4.6, respectively.  
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Comparing the precision of ordinary logistic regression and logistic regression mixture 

model, in particular, the variance of the estimates 1β̂  is larger in logistic mixture models than 

ordinary models. It is because the variance depends on the estimate of π  in the mixture models. 

In the same context of this dependence, the variance of 1β̂  is larger as the corresponding mixing 

proportion π  is smaller. Meanwhile, the estimates in mixture models have smaller biases for 

each sample size. Thus, we can conclude that the large MSE in the mixture models is mainly 

caused by the variance instead of the bias of estimates for most of the configuration considered. 

However, we can see the mixture models have smaller MSE values than ordinary logistic 

regression models when sample size is sufficiently large (n > 400) and the mixing proportion is 

greater than 0.3. The bold lines in Table 4.6 show that there is any improvement in terms of the 

MSE of 1β̂  under the mixture models in these configurations (n > 400 and π  > 0.3). As well, 

Figure 4.4 illustrates the precision of 1β̂  (MSE, variance, and bias) according to the generated 

population given mixing proportions for each sample size. From these results, we conducted our 

power studies based on the relatively large sample sizes (n = 200, 400, and 1,000; xn = 50, 100, 

250). 
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Table 4.5 – Summary of the MSE of 0β̂  with the standard error (in parentheses) of estimates 

under the logistic regression mixture population in each case: five sample sizes 
and five mixing proportions are considered (n = 100, 200, 400, 1,000, and 2,000; 

π  = 0.1, 0.3, 0.5, 0.7, and 0.9), 00 =β  

  MSE (SE) of 0β̂  Var( 0β̂ ) Bias( 0β̂ ) 

Sample 
Size (n)³ 

π  Ordinary ¹ Mixture ² Ordinary Mixture Ordinary Mixture 

100 0.1 0.11 (0.01) 0.18 (0.01) 0.11 0.18 0.00 -0.01 

 0.3 0.12 (0.01) 0.17 (0.01) 0.12 0.17 0.04 -0.03 

 0.5 0.12 (0.01) 0.17 (0.01) 0.12 0.17 0.06 -0.07 

 0.7 0.13 (0.01) 0.16 (0.01) 0.13 0.16 0.06 -0.06 

 0.9 0.14 (0.01) 0.16 (0.01) 0.14 0.15 0.03 -0.06 

        

200 0.1 0.06 (0.00) 0.07 (0.00) 0.06 0.07 0.01 0.00 

 0.3 0.06 (0.00) 0.07 (0.00) 0.06 0.07 0.04 0.00 

 0.5 0.06 (0.00) 0.07 (0.00) 0.06 0.07 0.07 -0.04 

 0.7 0.07 (0.00) 0.08 (0.00) 0.06 0.07 0.07 -0.05 

 0.9 0.07 (0.00) 0.08 (0.00) 0.06 0.07 0.04 -0.05 

        

400 0.1 0.03 (0.00) 0.04 (0.00) 0.03 0.04 0.02 -0.01 

 0.3 0.03 (0.00) 0.04 (0.00) 0.03 0.04 0.05 -0.02 

 0.5 0.03 (0.00) 0.04 (0.00) 0.03 0.04 0.07 -0.02 

 0.7 0.04 (0.00) 0.04 (0.00) 0.03 0.04 0.08 -0.02 

 0.9 0.03 (0.00) 0.04 (0.00) 0.03 0.04 0.05 -0.03 

 Note 1. The results of the column are obtained by fitting ordinary logistic regression models 
            2. The results of the column are obtained by fitting logistic regression mixture models 
            3. The number of observations per x values 4/nnx =  for each sample size. 

            4. Simulation results are based on 1,000 replicates per line. 
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Table 4.5 (Continued) – Summary of the MSE of 0β̂  with the standard error (in parentheses) 

of estimates under the logistic regression mixture population in each case: five 
sample sizes and five mixing proportions are considered (n = 100, 200, 400, 1,000, 

and 2,000; π  = 0.1, 0.3, 0.5, 0.7, and 0.9), 00 =β  

  MSE (SE) of 0β̂  Var( 0β̂ ) Bias( 0β̂ ) 

Sample 
Size (n)³ 

π  Ordinary ¹ Mixture ² Ordinary Mixture Ordinary Mixture 

1,000 0.1 0.01 (0.00) 0.01 (0.00) 0.01 0.01 0.01 0.00 

 0.3 0.01 (0.00) 0.02 (0.00) 0.01 0.01 0.04 -0.01 

 0.5 0.02 (0.00) 0.01 (0.00) 0.01 0.01 0.07 -0.01 

 0.7 0.02 (0.00) 0.01 (0.00) 0.01 0.01 0.07 -0.01 

 0.9 0.01 (0.00) 0.01 (0.00) 0.01 0.01 0.04 -0.01 

        

2,000 0.1 0.01 (0.00) 0.01 (0.00) 0.01 0.01 0.02 0.01 

 0.3 0.01 (0.00) 0.01 (0.00) 0.01 0.01 0.04 0.00 

 0.5 0.01 (0.00) 0.01 (0.00) 0.01 0.01 0.07 0.00 

 0.7 0.01 (0.00) 0.01 (0.00) 0.01 0.01 0.07 0.00 

 0.9 0.01 (0.00) 0.01 (0.00) 0.01 0.01 0.04 -0.01 

Note 1. The results of the column are obtained by fitting ordinary logistic regression models 
          2. The results of the column are obtained by fitting logistic regression mixture models 
          3. The number of observations per x values 4/nnx =  for each sample size. 

          4. Simulation results are based on 1,000 replicates per line. 
 

 

 

 

 

 



 69

Table 4.6 – Summary of the MSE of 1β̂  with the standard error (in parentheses) of estimates 

under the logistic regression mixture population in each case: five sample sizes 
and five mixing proportions are considered (n = 100, 200, 400, 1,000, and 2,000; 

π  = 0.1, 0.3, 0.5, 0.7, and 0.9), 11 =β  

  MSE (SE) of 1β̂  Var( 1β̂ ) Bias( 1β̂ ) 

Sample 
Size (n)³ 

π  Ordinary ¹ Mixture ² Ordinary Mixture Ordinary Mixture 

100 0.1 0.90 (0.01) 3.47 (0.39) 0.03 3.11 -0.93 -0.60 

 0.3 0.68 (0.01) 3.19 (0.39) 0.04 3.18 -0.80 -0.13 

 0.5 0.47 (0.01) 2.93 (0.35) 0.04 2.86 -0.65 0.26 

 0.7 0.26 (0.01) 2.01 (0.30) 0.05 1.88 -0.46 0.36 

 0.9 0.11 (0.00) 1.08 (0.17) 0.08 0.96 -0.17 0.34 

        

200 0.1 0.89 (0.01) 2.47 (0.28) 0.02 2.12 -0.94 -0.60 

 0.3 0.68 (0.01) 3.42 (0.37) 0.02 3.40 -0.81 0.12 

 0.5 0.47 (0.01) 2.48 (0.31) 0.02 2.35 -0.67 0.35 

 0.7 0.25 (0.00) 1.83 (0.27) 0.02 1.67 -0.48 0.40 

 0.9 0.07 (0.00) 0.56 (0.09) 0.02 0.48 -0.20 0.29 

        

400 0.1 0.89 (0.01) 2.54 (0.31) 0.01 2.26 -0.94 -0.53 

 0.3 0.67 (0.00) 3.66 (0.32) 0.01 2.64 -0.82 0.14 

 0.5 0.46 (0.00) 1.83 (0.27) 0.01 1.76 -0.67 0.27 

 0.7 0.25 (0.00) 0.59 (0.12) 0.01 0.57 -0.49 0.14 

 0.9 0.06 (0.00) 0.15 (0.01) 0.02 0.14 -0.21 0.12 

 Note 1. The results of the column are obtained by fitting ordinary logistic regression models 
          2. The results of the column are obtained by fitting logistic regression mixture models 
          3. The number of observations per x values 4/nnx =  for each sample size. 

          4. Simulation results are based on 1,000 replicates per line. 
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Table 4.6 (Continued) – Summary of the MSE of 1β̂  with the standard error (in parentheses) 

of estimates under the logistic regression mixture population in each case: five 
sample sizes and five mixing proportions are considered (n = 100, 200, 400, 1,000, 

and 2,000; π  = 0.1, 0.3, 0.5, 0.7, and 0.9), 11 =β  

  MSE (SE) of 1β̂  Var( 1β̂ ) Bias( 1β̂ ) 

Sample 
Size (n)³ 

π  Ordinary ¹ Mixture ² Ordinary Mixture Ordinary Mixture 

1,000 0.1 0.88 (0.00) 1.60 (0.19) 0.00 1.28 -0.94 -0.57 

 0.3 0.66 (0.00) 2.15 (0.29) 0.00 2.10 -0.81  0.23 

 0.5 0.45 (0.00) 0.41 (0.05) 0.00 0.40 -0.67  0.10 

 0.7 0.24 (0.00) 0.15 (0.01) 0.00 0.15 -0.48  0.06 

 0.9 0.05 (0.00) 0.06 (0.00) 0.01 0.06 -0.21  0.05 

        

2,000 0.1 0.88 (0.00) 1.22 (0.15) 0.00 0.78 -0.94 -0.66 

 0.3 0.66 (0.00) 0.96 (0.16) 0.00 0.96 -0.81  0.06 

 0.5 0.45 (0.00) 0.17 (0.01) 0.00 0.17 -0.67  0.02 

 0.7 0.24 (0.00) 0.07 (0.00) 0.00 0.07 -0.49  0.01 

 0.9 0.05 (0.00) 0.03 (0.00) 0.00 0.03 -0.21  0.02 

 Note 1. The results of the column are obtained by fitting ordinary logistic regression models 
          2. The results of the column are obtained by fitting logistic regression mixture models 
          3. The number of observations per x values 4/nnx =  for each sample size. 

          4. Simulation results are based on 1,000 replicates per line. 
          5. Bold lines represent the cases having an improvement in fitting mixture models. 
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Figure 4.4 – The MSE, Variance, and Bias of the estimate 1β̂ : compared in the context of 

ordinary logistic regression models and logistic regression mixture models 
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Chapter 5  
 

Discussion and Conclusions 

 

In this dissertation two approaches were used to compare the performance of the LRT to 

evaluate an association between a quantitative predictor and a dichotomous response. One is the 

ordinary logistic regression model, and the other is the logistic regression mixture model defined 

in Section 1.3. We developed the LRT to detect the relationship between a quantitative 

explanatory variable and a dichotomous response variable based on these two methods. The EM 

algorithm was utilized to find the MLEs of the parameters in the mixture model. 

Before we conducted our power analyses, we investigated the null distribution of LRT 

statistics to infer the critical value for the test. To verify the conjecture that the asymptotic null 

distribution reduces to 2
2

2
1 5.05.0 χχ + , we obtained the empirical null distribution and the fitted 

null distribution of the statistics by simulation studies. Based on the simulation results, we found 

that our conjecture was correct and concluded to use the asymptotic null distribution for power 

study.     

From the power study we simulated a situation where the population consists of a mixture 

for whom there is an association and a fraction of individuals for whom there is no association 

between the quantitative predictor and the binary response. We thus evaluated the power to 

detect the association in the ordinary logistic regression and the logistic regression mixture 
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models. The mixture model resulted in the improvement of approximately 20% (on average) in 

power over ordinary logistic models. The improvement increases as the value of 1β  and the 

mixing proportion π  decrease, especially for sample size of 1,000. This may due to the fact that 

a bigger value of 1β  and a larger mixing proportion π  resulted in a greater power in both 

approaches, In the context of this, one would expect that the performance of the test will be good 

enough even in the ordinary logistic regression model when the value of 1β  is large and/or the 

mixing proportion of the population for whom there is an association is large. Additionally, we 

obtained the fitted model for the difference in power between ordinary logistic regression and 

logistic regression mixture models. As we expected, the slope 1β  and the mixing proportion π  

were significant in terms of the relative difference of the performance (i.e., the odds ratio of 

improvement in terms of power). 

From the view of precision of the estimates using the logistic regression mixture models, 

we found that a very large sample size is needed to obtain a substantial improvement in precision 

of estimation under heterogeneous populations even though these estimates had less bias under 

the mixture models. Therefore, we could apply the logistic regression mixture model on the 

larger sample size than we used in this dissertation if obtaining precise estimates of the slope is 

the objective.  

 

There are several limitations of this research some of which could be seen as interesting 

directions for future research. The first is the fact that we consider here only a special case of 

switching regression, namely a situation where the slope is 0.0 in one component and non zero in 

the other.      
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A second point is that we consider only a sampling design where we have fixed values of the 

predictor. This would be the case in a dose response study. However, we could instead have an 

observational study where the predictor variable X, is a random variable. This would be the case 

perhaps in a study where disease susceptibility is a function of some quantitative variables in a 

subset of the population and unrelated to this factor in the remainder of the population. Both of 

these above limitations require straightforward extensions of our methodology that we used in 

this dissertation. 

In addition, the improvement in fit obtained using the mixture model could be evaluated 

through the following null and alternative hypotheses. This is equivalent to the test of 

1:0 =πH   vs. 1:1 <πH . 
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One would expect that the null distribution of the LRT statistics would be 2
1

2
0 5.05.0 χχ + . 

However, upon investigating this, we noted that the null distribution was not invariant to 

generating models under the null hypothesis, i.e., the values of 0β  and 1β . Thus, we need to use 

a bootstrap sampling method to obtain P-values for each simulated sample. This is indeed an 

interesting but different problem that could be the basis of a future research.    
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Appendices 

Appendix A. Summary of the probabilities of Y = 1 given X values for each 
configuration  

 
Table A.1 – Summary of the probability of Y = 1 given the value of the quantitative 

explanatory variable X for each parameter setting: 0β = -2, -1, and 0; 1β = 0.0, 

0.5, 1.0, 1.5, and 2.0 

  The Values of X 

0β  1β  X = 0 X = 1 X = 2 X = 3 

-2 

 0.0¹ 

0.5 

1.0 

1.5 

2.0 

0.12 

0.12 

0.12 

0.12 

0.12 

0.12 

0.18 

0.27 

0.38 

0.50 

0.12 

0.27 

0.50 

0.73 

0.88 

0.12 

0.38 

0.73 

0.92 

0.98 

      

-1 

 0.0¹ 

0.5 

1.0 

1.5 

2.0 

0.27 

0.27 

0.27 

0.27 

0.27 

0.27 

0.38 

0.50 

0.62 

0.73 

0.27 

0.50 

0.73 

0.88 

0.95 

0.27 

0.62 

0.88 

0.97 

0.99 

      

0 

 0.0¹ 

0.5 

1.0 

1.5 

2.0 

0.50 

0.50 

0.50 

0.50 

0.50 

0.50 

0.62 

0.73 

0.82 

0.88 

0.50 

0.73 

0.88 

0.95 

0.98 

0.50 

0.82 

0.95 

0.99 

1.00 

Note 1. The cases of  1β = 0.0 represent the null hypothesis defined in this paper, i.e., there 
is no association between the explanatory variable X and the response variable Y 
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Appendix B. The distribution of the estimates of mixing proportions 

 

Figure B.1 –  The distribution of the estimates of mixing proportion according to the true value 
of the mixing proportion (π  = 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9) with the mean and 
median (in parenthesis) for sample size of 2,000 

 

      

Note 1. The distributions are based on 1,000 replicates for each case. 
         2. As the true value of the mixing proportion increases the estimate approaches the true 

value, while the distribution of the estimates approximately follows a uniform distribution 
under the null hypothesis or small mixing proportions (π  = 0.0 and 0.1). 

 

  Mean = 0.494 
(Median = 0.489) 

  Mean = 0.465 
(Median = 0.478) 

  Mean = 0.411 
(Median = 0.344) 

  Mean = 0.543 
(Median = 0.516) 

  Mean = 0.723 
(Median = 0.707) 

  Mean = 0.895 
(Median = 0.901) 
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Appendix C. Comparison of Power for Sample Size of 200 and 400  

Figure C.1 – Comparison of the Power of ordinary logistic and logistic mixture models for various values of the intercept 0β  and the 

slope 1β  and mixing proportion π  for sample size of 200. 

Power Comparison: Ordinary vs. Mixture
with Sample Size of 200
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Note. The power results are based on 1,000 replicates with sample size of 200. 
 
 
 
 
 

1β
π

 



 81

Appendix C (Continued). Comparison of Power for Sample Size of 200 and 400  

Figure C.2 – Comparison of the Power of ordinary logistic and logistic mixture models for various values of the intercept 0β  and the 

slope 1β  and mixing proportion π  for sample size of 400. 
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      Note. The power results are based on 1,000 replicates with sample size of 400.  
 
 

 

1β
π
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Appendix D. Power Ratio of the Improvement in Power for Sample Size of 200 and 400  

Figure D.1 – Power Ratio between logistic regression mixture models and ordinary logistic regression models for various values of the 
intercept 0β  and the slope 1β  and mixing proportion for sample size of 200 and 400 
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with Sample Size of 200
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Power Ratio: Power(Mixture)/Power(Ordinary)
with Sample Size of 400
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                                            20 −=β                                                      10 −=β                                                     00 =β  

    Note 1. The power results are based on 1,000 replicates with sample size of 400.  
             2. Power Ratio was calculated as the power of logistic regression mixture models divided by the power of ordinary logistic model      

1β
π
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Appendix E. ANOVA output from SAS  

--------------------------------------- Sample Size = 200 --------------------------------------- 

 

The ANOVA Procedure 

 

Dependent Variable: odds_ratio 

 

                                               Sum of 

       Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

       Model                       19      1.48769611      0.07829980       2.10    0.0694 

       Error                       16      0.59593444      0.03724590 

       Corrected Total             35      2.08363056 

 

 

                        R-Square     Coeff Var      Root MSE     odds Mean 

                        0.713992      14.74785      0.192992      1.308611 

 

       Source                      DF        Anova SS     Mean Square    F Value    Pr > F 

 

       beta0                        2      0.08060246      0.04030123       1.08    0.3625 

       beta1                        2      0.51754833      0.25877417       6.95    0.0067 

       prop                         4      0.58267361      0.14566840       3.91    0.0212 

       beta0*beta1                  4      0.13086310      0.03271577       0.88    0.4986 

       beta1*prop                   7      0.17600861      0.02514409       0.68    0.6908 

 

 

--------------------------------------- Sample Size = 400 --------------------------------------- 

 

The ANOVA Procedure 

 

Dependent Variable: odds_ratio 

 

                                               Sum of 

       Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

       Model                       16      4.22868619      0.26429289       3.17    0.0208 

       Error                       13      1.08418048      0.08339850 

       Corrected Total             29      5.31286667 

 

 

                        R-Square     Coeff Var      Root MSE     odds Mean 

                        0.795933      22.10112      0.288788      1.306667 

 

       Source                      DF        Anova SS     Mean Square    F Value    Pr > F 

 

       beta0                        2      0.21580293      0.10790146       1.29    0.3073 

       beta1                        2      1.24168048      0.62084024       7.44    0.0070 

       prop                         4      2.48296111      0.62074028       7.44    0.0024 

       beta0*beta1                  4      0.48199993      0.12049998       1.44    0.2747 

       beta1*prop                   4      0.00000000      0.00000000       0.00    1.0000 
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Appendix E (Continued). ANOVA output from SAS   

-------------------------------------- Sample Size = 1,000 -------------------------------------- 

 

The ANOVA Procedure 

 

Dependent Variable: odds_ratio 

 

                                               Sum of 

       Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

       Model                        6      0.81834214      0.13639036      12.45    0.0002 

       Error                       11      0.12055230      0.01095930 

       Corrected Total             17      0.93889444 

 

 

                        R-Square     Coeff Var      Root MSE     odds Mean 

                        0.871602      7.272714      0.104687      1.439444 

 

       Source                      DF        Anova SS     Mean Square    F Value    Pr > F 

 

       beta0                        2      0.42614825      0.21307413      19.44    0.0002 

       beta1                        2      0.29289944      0.14644972      13.36    0.0011 

       prop                         2      0.09929444      0.04964722       4.53    0.0367 

 

------------------------------------- Overall Sample Sizes -------------------------------------- 

 

The ANOVA Procedure 

 

Dependent Variable: odds_ratio 

 

                                               Sum of 

       Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

       Model                       21      4.59716490      0.21891261       3.41    <.0001 

       Error                       62      3.98365891      0.06425256 

       Corrected Total             83      8.58082381 

 

 

                        R-Square     Coeff Var      Root MSE     odds Mean 

                        0.535749      18.97380      0.253481      1.335952 

 

       Source                      DF        Anova SS     Mean Square    F Value    Pr > F 

 

       sample_size                  2      0.24543214      0.12271607       1.91    0.1567 

       beta0                        2      0.46186726      0.23093363       3.59    0.0334 

       beta1                        2      1.51161291      0.75580646      11.76    <.0001 

       prop                         4      2.15752536      0.53938134       8.39    <.0001 

       beta0*beta1                  4      0.33454740      0.08363685       1.30    0.2793 

       beta1*prop                   7      0.00000000      0.00000000       0.00    1.0000 

 

 


