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Abstract of the Dissertation

Power Analysis of the Likelihood Ratio Test for Logistic Regression Mixturg

by

Minyoung Lee

Doctor of Philosophy

Applied Mathematics and Statistics

Stony Brook University

2011

Finite mixture models emerge in many applications, particularlyiology, psychology
and genetics. This dissertation focused on detecting asisosi between a quantitative
explanatory variable and a dichotomous response variable in acsitwdiere the population
consists of a mixture. That is, there is a fraction of the popualdbr whom there is an
association between the quantitative predictor and the response andstleeriaction of

individuals for whom there is no association between the quantitative predictor anghtmsees

We developed the Likelihood Ratio Test (LRT) in the context of ordinagystic
regression models and logistic regression mixture models. Howkgaasssical theorem for the

null distribution of the LRT statistics can not be applied to fimigture alternatives. Thus, we



conjectured that the asymptotic null distribution of the LRT stiati held. We investigated how
the empirical and fitted null distribution of the LRT statisiotcenpared with our conjecture. We
found that the null distribution appears to be well approximated by a H8&0re of chi-
squared distributions, i.eQ5y7 + 05y with respect to the critical values. Based on this null

distribution, simulation studies were conducted to compare the powbe ardinary logistic

regression models to the logistic regression mixture modéis. |dgistic regression mixture
models resulted in the improvement in power to detect the assodiatiween the two variables,
compared with the ordinary logistic regression models. We fduadignificant factors in the
improvement of the power by modeling the odds ratio in the improvement (logmtkture

model vs. ordinary logistic regression model). Essentially, the ¢edyors that affected
improvement in power were slope and mixing proportion. In addition, we compared thsiprec
of these two approaches. This mixture model can be widely appllacge sample surveys with

non-response and in missing data problems.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

The switching regression model was originally pisgzb by Quandt (1972) and Ramsey
(1975). This model has two or more components pfabability density function that is the
mixture of normal densities. This dissertation ¢dess the logistic switching regression model.
That is, our attention is focused on a switchingdetavhich has two components in the context
of the logistic regression. The logistic switchinggression model can be said to be the
equivalent to the finite mixture model (PearsorQ4)8or the logistic regression relationship. In
that sense, we refer to this model as a logisticession mixture model. Particularly, it focuses
on the case that two logistic regression equatiiifsr only in their slopes and one of the slopes
is assumed to be zero. This model is motivated ibplderg et al. (1985) and it is written as
follows

|og(1ij = B, + fx  with probabilityz (1.1.1)
-p

|og(Lj - 4, with probabilityL— 7 . (1.1.2)



Here, p is the probability that the dichotomous responseiable Y equals 1 andk is a

guantitative explanatory variable. However, there @o explicit expressions for obtaining the
maximum likelihood estimates (MLE) of the paramstef interest under this model. The
Expectation Maximization (EM) algorithm (Dempsteaird, and Rubin, 1977) has been widely

used to obtain the MLESs in this kind of mixture rabd

This study involves a situation where one is cotidgahe likelihood ratio test (LRT) for
an association between a quantitative explanataraie and a dichotomous response variable.
The purpose is to compare the power of the LRhéndase of fitting the single ordinary logistic
regression model to the power of the LRT uponnifittihe logistic regression mixture model
defined in Equation (1.1.1) and (1.1.2). The poamalysis will be conducted using simulation
and the power will be assessed and compared imadalfferent scenarios by sample size, effect

size, intercept, and mixing proportion of obserwagture populations.

A comprehensive review of the literature is presdnh the following section. It includes
the theoretical background and the outline of theblem in this dissertation. Chapter 2 details
the EM algorithm that is used for finding MLEs oygistic regression mixture models, including
simulation results for the estimates of the paransetobtained.. We investigate the null
distribution of LRT statistics for power studies @hapter 3. Power analyses are discussed in
Chapter 4, based on two approaches: ordinary logesgression models and logistic regression
mixture models. In addition, we compare the precasif estimates in the context of these two

approaches. Chapter 5 contains the conclusionthemtirections for future study.



1.2 Literature Review

1.2.1 Finite Mixture Models

The finite mixture model was proposed to analyzerdogeneous data. The model allows
for combination of the samples from different patigns in a single sample. One of the first
major analyses involving the use of mixture modeds Pearsda study (1894). The study was
about the frequency distribution of measurementthefcarapace of 2,000 female shore crabs,
provided by Weldon (1893). Half of the samples waéained from crabs at Plymouth Sound,
and the remaining samples were from the Bay of &wmpMWeldon observed that the
measurements of the frontal breadth of the shaiescat the Bay of Naples were generated from
an asymmetric frequency distribution. Pearson destnated that a two component Gaussian
mixture density fit the data. After his study, tméture model-based approach has been widely
used in many fields in the biological, physicaldaocial sciences because of the flexibility of

the mixture model.

In general, the observations,A ,y, are said to arise from a finite mixture distrilout; if

the probability density functiorf (y) of this distribution has the following form:
F(Y10) =7 f,(y160)+ 7,1, (Y10,) +A + 7, (y[6,) (1.2.1)

Here, y=(y,,A ,Yy, J denotes the random vector ad=(¢,,A ,0,,;7,,A ,7,, dénotes the

vector of all parameters. The; denotes the relative proportion #f component density

function f;(y|6,): thatis,0< 7, <land) =, =1.

=1



Since these finite mixture models have multiple mmx in the mixture likelihood
function it is usually difficult to obtain the estates of the parameters using the maximum
likelihood method. A number of papers have dealhwhe problem of estimating the parameters
of the finite mixture models using the maximum likeod method. However, it was the paper
by Dempster, Laird, and Rubin (1977) that illustchthe application of the EM (Expectation-
Maximization) algorithm to the finite mixture model§he EM algorithm can be applied to
obtain the MLEs of the parameters of the finite tomi@ model. This algorithm is an efficient
iterative procedure to compute the MLE in the pneseof missing or hidden data. Section 1.2.4

discusses the EM algorithm in detail.

1.2.2 Switching Regression Models

The switching regression model is an exogenousckimg model proposed by Quandt
(1972). This model generalized a problem of mixtdrstributions (Day, 1969). If griori
information on how the sample is partitioned inte corresponding regime is provided, it is
called a switching regression model with known signggparation. Otherwise, it is a switching

regression model with unknown sample separation.

The simplest formulation of the switching regreasioodel consists of two regression

equations as follows:
y, = X' B, +&;, with probabilitys (1.2.2)

and y =x'p,+¢,, withprobabilityl—7, (1.2.3)



where ¢, ~N(0,6,°), ¢, ~N(0,0,°), and X" =(x,A ,x, )is a vector ofp independent

variables. The sample in this model is generateth fdistinct regression equations. In other

words, thei™ observed dependent variabjeis generated either from Equation (1.2.2) or from

Equation (1.2.3), but never both.

The traditional interest in the switching regreasmwodel involves the following issues: (1)
testing the null hypothesis that no switch in reggnexists against the alternative that the
observations were generated by two or more distiegtession equations, (2) estimating the
corresponding regression equations for each regame, (3) classifying the observations into
underlying regimes. Various special cases of tipeeblems have been treated in the literature.
When, under the alternative hypothesis, the inféionaon sample separation is given, the
problem of testing the null hypothesis was solvedcdy by a test (Chow, 1960). Each of the
equations can be estimated by standard methodsasuohndinary least squares. When sample
separation is unknown, Quandt (1958) derived thevaat likelihood ratio test statisti¢ to test

the null hypothesis that no switch occurred. Theeilts of the sampling experiment performed by
Quandt(1960) led to the rejection of the hypothdéis& — 2log A has they? distribution. The

maximum likelihood estimation methods were suggkdty Goldfeld and Quandt (1972),

Hartley (1978), and Kiefer (1980). Other estimatimethods based on moment generating
functions were investigated in Quandt and Rams8Y§)L In these cases, the estimation of the
switching regression is equivalent to the estinmatid the parameters of mixtures of normal
distribution since there is the assumption thataibgervations were generated from a mixture of
two normal densities. In other words, the switchiagression models are equivalent to the finite

mixture models of regression relationship.



In this dissertation, we consider the finite migumodels of logistic regression
relationships. This mixture model can be considdtesl switching regression models in the
context of logistic regression equations. Partidylave deal with the situation where some
subjects are unaffected by treatment. That is,gemerated data sets include the variable X of
zero. This situation can be related to the probt#ndetecting a treatment effect when the
treatment group contains non-responders which wasidered by Good (1979). Good used a
mixture to describe the distribution of the resganm treatment group and he represented the
distribution of the affected group with a shifttile mean of the distribution of the unaffected

group and used a mixture of the two componentth@distribution of the treatment group.

1.2.3 The Ordinary Logistic Regression and Parameter Estnation

Logistic Regression Model

This dissertation considers a two component mixtaoelel for binary variables in the
context of logistic regression. Logistic regressisra method that can be used for assessing
association between a categorical response varadgequantitative explanatory variables. The
fitted logistic regression model can also be usedofedicting the probability of occurrence of

an event. The general logistic regression model is
Iog(lij =a+) BX . )
-Pp i

Here,p denotes the probability of a particular outcoma aichotomous or polytomous response

variable, and théx, hre observed values corresponding to a set oheapiry variables. In the

case of two or more explanatory variables, thegdaeatory variables can be quantitative or



gualitative or both. In the case of a single exatary variable, logistic regression is used only

for a quantitative explanatory variable.

Parameter Estimation

Throughout this research parameter estimation sgedan the method of maximum
likelihood, introduced by Fisher (1921). It is thst popular technique for obtaining estimators
because of the desirable asymptotic properties IdE$/l consistency, invariance, normality and
efficiency. In general, ilk=(x,A X, )re a set of independent and identically distatui.i.d.)
values in a random sample of sizérom a population with parametér and probability density

function f (x| 8), the likelihood function is defined by
L@ =T]f(xP). (1.2.5)
i=1

Also, the log likelihood function is represented 4y | X) =logL(6 | x). The MLE 6 of @ can

be obtained by maximizing the likelihood, whichdaquivalent to maximizing log likelihood
since the logarithm is a continuous strictly insiag function over the range of the likelihood.

Therefore the MLE is,

6 = argmaxa(@ | x) . (1.2.6)
17

For purposes of simplicity, suppose that the logistodel has only a single quantitative

explanatory variable; i.e., the single logisticresgion model in this research is then



Iog(l_p—ip) —a+ fx =x'0, 1.2.7)

wherex, = (,x)" fori=1,..,n andé=(a,)". Since the response variabyes (y,,A ,y, )

has a Bernoulli distribution with probability, the likelihood is
L@y =]]r"@a-p)". (1.2.8)
i=1

From Equation (1.2.7p, is as follows:

o+ X XiTH
p=—"o - (1.2.9)
1+e™™ 118

Therefore, the log likelihood can be written as

HO1%y)= Y [y logp, + (- y)log- )]

:Zn: Y, Iog( ppj+|og(1 p,)}

>y (a+/;x)+|og[l+e%mﬂ. (1.2.10)

To obtain a MLEG = (&, 8)" of 6 =(a, )", the following equation should be solved.

MO| X, Y) Z( & ]
- 4 yl a+ %
aolxy) | 0 i 1+e _o. (1.2.11)
00 aw|x e ){ e/ H

1+ e



e, €™ 1_0 and e 0 1.2.12
|.e., i n an | T aibe = V. L.

Z‘ A e Z 1+ e ( )
However, since Equation (1.2.12) cannot be solwgdi@tly, it is solved numerically using the
Newton-Raphson method.

Newton-Raphson Method

The Newton-Raphson method is a general techniqudirfding roots of the equation

f(x) =0 in an iterative manner (McCulloch & Searle, 200mhis algorithm was described by

Jennrich and Schluchter (1986), Lindstorm and Bgit888), and Press et al. (1996) in detail.

Given some initial poink,, an updated value is obtained by solving
F(X)=0= (%) +(X=%)f'(X)
for x; or

F (%)
f'(%)

X=X, — 413)

This method suggests one approach for obtainingeaative solution of the MLE. Applying
Equation (1.2.13) to solve Equation (1.2.12)= oM@ | x,y)/ 06 andf'=0\*(6|x,y)!0°6. The

matrix of second derivative of the log likelihodde so-called Hessian matrik, , is



N (O|xy) N@|xY)

_a@lxy) _ar@lxy) | O badh (1.2.14)
0% 0adf | 32(01xy) R (OI%Y)
ofoa 0%p
Here, the components of the matkix are as follows:
8%2(9|x Y) _ N e” n
kel Nl B £ 4 =  (1- p),
,Zl:(1+e“+ﬁ’q)2 IZ:]; p|( p|)
N (0] %, y) _ N (0 X, Y) _ N e” n
p(l-p),
daof oo 21: @+ ey Zl‘pq P&-p)
N@Ixy) _ < g™
and ———-7~ 1-
75 Zl‘, TPy IZI:K p-p).
Therefore, the matri¥d can be written as
87»26' _Zpi(l_ pi) _inpi(l_ pi)
H :%: = = =-XTVX, (1.2.15)

—i)(, pi (1_ pi) _Zn:xizpi (1_ pi)

where X is the model matrix with," as itsi"” row andV is a diagonal matrix with diagonal

entries p, - p, ) Similarly, Equation (1.2.11) can be rewritten by

OMOIXY) _yTo,
9 =X"(y-p), (1.2.16)

wherey =(y,,A ,y,)" andp=(p,A ,p,)" .

10



Using the Newton-Raphson method, given a curreithate 6% an updated estimate

6%V can be obtained as follows:

G _ oo _| 9(01%.Y)
0°0

-1
fumKw ]
9= 00 o

—o® +(XTVOX)IXT (y —p®). (2.2.17)

In the above Equation (1.2.19 is the vector of fitted probabilities from tk& iteration with

thei™ entry of which is

%7600

p|,k = XiTé(k) ’

1+e

andV® is a diagonal matrix with diagonal entrigs (L p, ).

The iteration continues unfip®? —9™® | is sufficiently small to indicate convergence.
Under reasonable assumptions concerning the ldatihnfunction and a sufficiently accurate
starting valued©@, the sequence of iterated estimd@¥’} produced by the Newton-Raphson
method result in quadratic convergence to a seluibEquation (1.2.11). If the log likelihood

function is concave and unimodal, then the sequehealues{#*’} converge to the MLE of.

1.2.4 The Expectation Maximization (EM) Algorithm

The Expectation Maximization (EM) algorithm is adely applicable approach for the

iterative computation of maximum likelihood estiestwhen the calculations via the Newton-

11



Raphson method do not converge to a global maxinfina.formulation of the EM algorithm in
its present generality was given by Dempster, Laamad Rubin in 1977. In particular, this
algorithm has become a popular tool in statistestimation involving incomplete data or for
problems which can be posed as a similar form, sisamixture models, since in these cases the
likelihood functions are generally intractable.stbme latent variables or hidden variables are
included, the data is regarded as being incompieiee the values of the hidden variables are

unknown.

The main idea of the EM algorithm is to consider triginal data as being incomplete
and to add some latent or hidden variable sincednhgplete data has a much simpler likelihood
function for the purpose of finding a maximum. Th&a can maximize the likelihood for the
incomplete data through maximizing the expected likglihood for the complete data. The

expectation is taken over all possible values efléittent or hidden variable.

Each iteration of the EM algorithm consists of tsteps — the E (expectation) step and the
M (maximization) step. First, one initializes ahet parameters randomly or heuristically
according to anyprior knowledge about the optimal parameter value. Thka, updated
estimates are iteratively obtained by repeatingBhstep and the M step. In the E step, one
computes the expected log likelihood for the conepléata. The expectation is taken with
respect to the computed conditional distributiontlod latent or hidden variables given the
current settings of the parameters and the obselatd In the M step, all the parameters are re-
estimated by maximizing the expectation of the cletepog likelihood. Once a set of parameter
values is generated from the starting values ofpmameters, the algorithm repeats the E step

and M step to obtain the next updated estimatébeoparameters. This process continues until

12



the value of the likelihood converges, i.e., reagha global maximum. The derivation and the

application of this EM algorithm in the presencerokture are discussed in Chapter 2 in detall.
The Convergence of the EM algorithm

Dempster, Laird, and Rubin (1977) established fometstal properties of the EM
algorithm. In particular these properties implyttiygpically in practice the sequence of EM
estimates will converge to a local maximum of theg likelihood function. In general, if the log

likelihood has several maxima, the convergence mtigpen the choice of starting point.

Wu (1983) demonstrated the properties of the cayerere of the EM algorithm in detail.
Wu mentioned the problem that the convergence efikielihood does not automatically imply
the convergence of the updated parameter. On Hnse sconcern, Boyles (1983) gives an
example of a generalized EM algorithm that convetgehe circle of the unit radius and not to a
single point. Lansky, Casella, McCulloch, and Langld992) establish some invariance,
convergence, and rates of convergence resultscdineergence properties of the EM algorithm

are discussed in detail by McLachlan and Krishri£296).

1.2.5The Likelihood Ratio Test and Bootstrap methods

Likelihood Ratio Test

The likelihood ratio test (LRT) proposed by Neymamd Pearson (1928) is a general
statistical method for making a decision betweea hypotheses. To construct the LRT, recall

the likelihood function (1.2.5) as follows:

13



LE=TTTxB).

The LRT statistic for testingd,: 0 e ®, vs. H,: 0 € ©,°(= 09, ) is,

supL(@ | x)
=2 (1.2.18)

~supL(@|x)°
0y
This statistic is related to the MLE. The numeraaod denominator of the above Equation
(1.2.18) can be calculated by finding the MLE@nder the null and the alternative hypothesis,

respectively, and then by substituting the MLE bit& the corresponding likelihood functions.

The LRT is any test that has a rejection regiothefform{x: 1(x) <k}, wherek is any

number satisfyindd<k <1. That is, the LRT compares the plausibility of #hevalues in the
null hypothesis with that in the alternative. Smatllues of the LRT statistics are interpreted as
being evidence against the null hypothesis. Hehteads to reject the null hypothesis. To define

a level ¢ test, the constark must be chosen so that

SupP,(1(x) <k)< . (1.2.19)

00,

The Neyman-Pearson lemma (Neyman & Pearson, 1938piistrates that the LRT is most
efficient in the sense that it minimizes the praligtof type Il error rate among all levet tests

that have the same significance lewel

If the distribution of the LRT statistics corresplomg to the null and alternative
hypothesis can be explicitly determined, then degisegions can be directly obtained from the

distribution. In most cases, however, since thecersstribution is unknown, it is difficult to
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determine decision regions exactly. Hence, to abthe asymptotic decision regions, the
following asymptotic distribution of the LRT (Coxd Hinkley, 1974) can be used. They state

the following:

Under theregularity conditions, if 8 € ®,, thedistribution of the statistic — 2 log A(x)

convergesto a chi squared distribution as the samplesize n — «, i.e,,
—2log A(x) —4— 42 asn—w. (1.2.20)

Here, the degrees of freedom of the chi squaradhditon, df equal to the difference between
the number of free parameters@ny and the number of free parameter®in Rejection of the
null hypothesis for small values of(x) is equivalent to rejection for large values of

— 2log A(x) . Therefore,H, can be rejected # 2 log A(x) > ;(jf’a :

However, these conditions do not hold in the caderes we test against mixture
alternatives. Since there is generally a relatignbbetween parameters under mixture alternative
hypothesis, the asymptotic chi-square distributannot be directly used. It has been proposed
that under these nonstandard conditions the nstliblution of LRT statistics is a mixture of
central chi-squared distributions. Important cdnitions to the understanding of this asymptotic
behavior of the LRT statistics in this situationvédeen made by, for example, Self and Liang
(1987) and Stram and Lee (1994). Self and Lian@7{19ound the asymptotic distribution of
LRT statistics using a projection of a normal vialgaonto a tangent cone of the parameter space.
They considered the special case where one panammeatgecified under the null hypothesis and

it falls on the boundary. No other parameters ar¢he boundary. For this case they derived the
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null distribution to be a 50:50 mixture gf; and y/ distribution (Case 5 in Self and Liang,

1987).

Stram and Lee (1994) showed that the asymptoticdistribution of LRT statistics for
testing when two parameters are on the boundarp®&50 mixture of gr7 and ay> (Case 2 in
Stram and Lee, 1994). By extension, in their Cadee$ proposed the asymptotic distribution of
the statistics is a 50:50 mixture @f , and yZ with d the number of parameters added by their

mixture alternative. Our case is more like Strand &ee’s case (1994) rather than Self and

Liang’s (1987).
Bootstrap Methods

The bootstrap is a re-sampling technique for egsimgathe precision of a parameter
estimate. This method was invented by Bradley E(i&®7Y9) and further developed by Efron and
Tibshirani (1993). The basic idea of this methodthat the original sample represents the
population from which it was drawn, so the replkchsamples redrawn from this original sample
represent what would get if we took many samplesnfithe population. These replicated
samples are generally called bootstrap samplekisnprocedure. For each bootstrap sample a
statistic of interest is generated. The distributiof the statistic, based on many bootstrap
samples, represents the sampling distribution efstiatistic, based on many samples from the
population. Particularly, it provides an alternatito large sample techniques when asymptotic
properties are not met or when the standard efrtivenestimate has complicated mathematical
characteristics. The power of the bootstrap liethenfact that the method applies to almost any
estimator, no matter how complicated. Also, in pcag it is a computer-intensive method for

approximating the sampling distribution of any istat derived from a random sample.
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Therefore, the only requirement is a computer @oygto calculate the estimator from a sample

and a method to redraw samples.

In this dissertation, we used this bootstrap prooedo investigate the empirical null
distribution of LRT statistics in Chapter 3. On thasis of many bootstrap samples from this
procedure the LRT statistics were generated ancbitin@rical distribution of the statistics was

constructed. This method will be described in ndetil in Section 3.2.

1.3 QOutline of the Dissertation

1.3.1 The Problem

This dissertation considers a situation where veetesting for an association between a
guantitative explanatory variable X and a dichotamoesponse variable Y. Our concern is to
compare the power of the test based on an ordlogrstic regression model with the test based
on a logistic regression mixture model. Data aeawdrfrom a two component logistic regression
mixture model which has equal intercepts and unlesjapes. Specifically, we consider the case
where one of the slopes equals zero. That is, dpeilption consists of a fractiom for which
the response variable Y depends on X and a fractienr where it is independent. The logistic

regression mixture model is as follows:

|og(1ij = B, + fXx  with probabilityz (1.3.1)

-p

|og(ij s with probability. — 7 . (1.3.2)
p
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Here,p indicates the conditional probability that the )neesponse variable Y has the value 1

in a sample with X = x and denotes a mixing proportion with a value lyingvibe¢n 0 and 1.

We are interested in fitting the logistic regressmixture model to generated data sets

and two main goals of this research are as follows:

(1) To determine the power of detecting the relatiom&i@tween Y and X upon

estimating all of the parameters in this mixturedeldEquation (1.3.1) and (1.3.2)).

(2) To compare this power to the power one obtainsgusidinary logistic regression

(which implicitly assumesr = 1).

Two different alternatives are considered accordiintpe corresponding fitted models.

The first is based on the assumption that thefitattne ordinary logistic regression modé [)

and the second is based on the logistic regressixture model ') as follows:

Alternative I — The ordinary logistic regression model.
H |og(LJ = B, + fix (1.3.3)
1-p
Alternative I — The logistic regression mixture model.

HT : Iog(lij = B, + Bx  with probabilitys (1.3.4)
-Pp
Iog( P J = B, with probabilitit — 7 (1.3.5)

1-p

The common null hypothesis considered then is,

H, log(ipj s (1.3.6)
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We used the above notation for the alternativesndlicate each alternative is based on the

homogeneoudhj and mixture i) population, respectively.

Additionally, we will consider the relative preasi of these two methods by comparing

the bias of the estimates of the regression passand the mean squared error.

1.3.2 Data Generation

To generate the mixture data sets used in thier&sn we consider the case where we
have data on the four different values of the gtetinte explanatory variable X: 0, 1, 2, and 3, in
equal proportion (25%). For example, when the totathber of observations in the sample is one

hundred & = 100) the number of observations per X valueventy five (n, = 25. That is, for

the sample size of, the number of observations per X valuais4 .

Based on this data structure and given the parame#dting, first we generated random
numbers of sizen from uniform distributionU(0, 1). According to the value of the random
number compared with the given mixing proportioacte observation was assigned to the first
component (Equation 1.3.1) or the second compofigqiation 1.3.2) in the logistic regression

mixture model defined in Section 2.1. Then, thebptulity p, and p, were calculated for each
component. The probabilityr(Y = 1) for each combination of the paramej@y and g,

simulated can be found in Appendix A.

Finally, another set of random numbers of sizgas generated to assign the value of the
binary response variable Y (0 or 1) for each obetgsm. This data generation was done using a

C++ program with some functions in the GNU Scieatlfibrary (GSL) 1.14. The MT19937
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generator of Makoto Matsumoto and Takuji Nishim(described in the GSL reference manual)

was used as a random number generator.
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Chapter 2

Likelihood Ratio Test in the Presence of Mixture

2.1 The Likelihood Ratio Test (LRT)

To test the hypotheses described in Chapter 1 wallysonduct the Likelihood Ratio

Test (LRT). Based on our models, the likelihoodction L, under the alternative hypothesis

H! for the ordinary logistic regression model is
I-h = H p(yi’ %5 ﬂO' ﬂl)
i=1

1 dexp(f + Six (2.1.1)
i1 1+ expB, + Bx)

and the likelihood functiorL,, under the alternative hypothesis!" for the logistic regression
mixture model is as follows:

n

Ly = [Tz p(yi. %5 Bos B) + W= 7) - P(Y;, % So)]

i=1

1+ exp(B, + %) 1+ exp(5,)

i=1

T {7[ GV R C (1) } (2.1.2)
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Also, the likelihood functiorl, under the common null hypothedik is:

L, = ‘” PCY: s %5 Bo)

H {exp(ﬂo }yI (213)

1+ exp(B,)
Through these, the test statist@? = —21In A is then calculated. Herd, is the ratio of
the maximum value of the likelihood function undlee null hypothesis (Equation (2.1.3)) and

the maximum value of the likelihood function undee alternative hypothesis (Equation (2.1.1)

0, max

or Equation (2.1.2)) being considered. ThatAs= for the ordinary logistic regression

h, max

0, max

model, andA = for the logistic regression mixture model. Therefdhe LRT statistics

m, max
are computed by using the maximum likelihood esimdo obtain the maximum value of the
corresponding likelihood function. In the presentenixture the maximum likelihood estimates

obtained using the Expectation Maximization (EM)aalthm are used.

2.2 Maximum Likelihood Estimation

2.2.1 The Expectation Maximization (EM) Algorithm

Suppose thatX ={x,,A ,X, }is a sample data set consisting of independent

observations andp(x;; & )s the probability density function. To obtain thdaximum
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Likelihood Estimates (MLE)§ of the parameter valueg,, maximizing the log likelihood is
needed. However, if some latent variables exigplieidy finding the MLE is not easy. Let

Z ={z,A ,z} denote the latent variable that indicates whicimponent generates the
corresponding observations and @@tbe some distribution over the latent variable Then the

log likelihood for the original incomplete datareswritten as follows:

MN6) = log p(X; 6) = log j p(X,Z:0)dz

p(X,Z;0)
=log j Q(2) ) B s gz
p(X,Z;6)
>jQ(Z)|og oD dz (2.2.1)
= j Q(2)log p(X,Z;6)dZ — j Q(2)logQ(Z)dZ . (2.2.2)

Here, Equation (2.2.1) can be obtained by usingelga inequality. From the above derivation,
Equation (2.2.2) is the lower-bound of the valuetlod log likelihood for the complete data.
SinceQ(Z) is an arbitrary distribution, it is independentébf Therefore, in order to maximize
the lower-bound with respect #, it suffices to simply maximize the first term Bfjuation

(2.2.2), i.e.,
.[Q(Z)Iog p(X,Z;0)dZ = Ey[log p(X,Z;0)] . (2.2.3)

This expected log likelihood for the complete dat@omputed in the E step. Then we need to
maximize the expected log likelihood for the contpldata, where the expectation is taken with

respect toQ(Z) . This is the M step of the EM algorithm.
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On the other hand, for the computation of the etquecomplete log likelihoodQ(Z)
should be chosen. If we s&(Z) = p(Z | X;6) in Equation (2.2.1) to compute the expected log
likelihood for the complete data, then the valudhaf lower-bound becomes the log likelihood
for the incomplete data as follows:

p(X,Z;0) 4z

p(X,Z;0) .
jQ(Z)lo B s T gz = jp(z | X;6)log 2 IX0)

Q(2)

P(Z | X;0) p(X;0) 4z
p(Z | X;6)

= [ p(z|X;6)log

= [ Pz 1X;0)log p(X;6)dz
= log p(X;6) | p(Z | X;0)dZ

= log p(X;0).

Hence, when computing the expected complete Iagili&od (2.2.3), the expectation should be
taken with respect to the conditional distributa@irthe latent variable given the observed data

X, i.e.,

Q(Z2)=p(Z[X;0). (2.2.4)

2.2.2 The MLE based on the EM Algorithm

The maximum likelihood estimates were calculatedenrthe alternative hypothesis in the
logistic regression mixture model defined earlierSection 1.3. These maximum likelihood

estimates were in turn used to obtain the corredipgrLRT statistic. The procedure used for the
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customized EM algorithm is given in this sectiorthe context of the logistic regression mixture

model.

= E step

Suppose that the latent varialdein the logistic regression mixture model consts
two-dimensional vectors, i.ez =(z,,z, fori=1, ... ,n. Here, each element of the vectors is
1 or O to indicate the corresponding component thai™ observation comes from. That is,

z = (L0O) means the™ observationy, is from the first component. In the same manner,

z = (01) indicates thaty, is from the second component. Also, &P = (3,?, 32, 7@ )
be the starting values of the parameters of thestiogregression mixture model. Then, with
these starting values the log likelihood for thenptete data, including the latent varialdle can

be computed as follows:

2o (0®) =log p(X,Y,Z;6) =log[ | p(%,¥;,2:;0°)
i=1

n 2 ~
=log [TITIp(Y: | %, 2m = L69)p(z, = DI
i=1 m=1
n 2 A
= > > [2znlog p(Y; | Xz, = 10?) + 7, log 7,,”]. (2.2.5)
i=1 m=1

Thus, the expected complete log likelihood is gilsgn

~ 2 A~
EolA (0] = > D [Eg(z,)® log p(y; | %,z = 10?) + Eo(z,)? log 7,1  (2.2.6)

n
i=1 m=1

whereQ(Z) = p(Z | X,Y;8) as derived in Equation (2.2.4).
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In Equation (2.2.6) the starting value of the exataon EQ(zim)(O) in the first iteration is

computed in the following

E (Z|m)(0) p(z|m _1|X yl 0(0))

pOY, | %, Zym = L09)p(z, = D)
2 R
S oy | %,z =L09)p(z, =
k=1

p(y, | X,z =167 ©
3 . 7 (2.2.7)
z p(yi | X,Z, = 1 (9(0))7'sz(0)
k=1

for each observation and componeént (, ... ,nandm= 1, 2). This is the E step in the EM

algorithm.

= M step

The M step maximizes the expected complete loglii@ed which was defined in

Equation (2.2.6) with respect to the parametersdrato be estimated, i.&,= (f,, /. 7 tQ

obtain the updated estimates of the parametersuptiated estimate gf, can be computed by

solving the equationi EolA, (é(o))] = 0. This equation can be rewritten as

op,
0 50) 0 ¢ [ © _ 1. 50 © A <0)]
Eo[2.(07)] = —ZZ Eo(z,)" log p(y; | %, 2z, =167) + Ey(z,)" log 7,
6/Bl ﬂl i=1 m=1

n 2
= Z%Z [Ea(z0) 109 p(Y, | X, 20 = 1 69) + Eq(2,)® log 7,°]
i 1
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v 0
in1 Of,

[Eo(z)®@ log p(y; | X, 2, = L 69) + Eq(2,)® log 7,”

+ Eq(2,)® log p(y, | X, 2, = L 6?) + Eq(z,)® log 7, |

n 6 ~

= Z{Eq(al)“” glog p(Y; | %, 2, =1 0“’)} (2.2.8)
i=1 1
n eﬁO(O)‘*Bl(O)Xi

- ;{Eq(al)%(yi - mﬂ = 0. 12)

In Equation (2.2.8)Jog p(y; | X, z, = I)can be considered as in the case of the ordinary

logistic regression, since the information on tbmponentz, = 1is already given. That is,

(eﬂOJrﬁlXi ) Yi

W. (22)10

Iog p(yi | Xy 2y :1) =

However, since the above Equation (2.2.9) doedaet an explicit solution, it should be
solved iteratively using the Newton-Raphson methodther words, to obtain the MLE ¢f,

the Newton-Raphson method is used within each M stethe EM algorithm. The updated

estimate is computed as:

n @ n (0)(k+1)
ﬂl = ﬂl '

~ -1 R
_ jow _ | CELO7)] OEq[1,(6™)]
1 2
6'6 1 50 = @00 8181

(2.2.11)
1}1(0) =[31(0)(k)
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In addition, the updated estimate gf can be computed by solving the equation

% Eole ()] = 0. In the same way the equation to be solved isngbye

0

0 - : 0 -
— E 7\’c 9(0) — E - o _~ lo i 27, = 1 19(0) }
o7 oA (0] Zl{ o(Zm) o g p(Y; | %, 2 )
n o P A
= z EQ(ZIm) yi - W = O (2212)
i=1

Similarly, the Newton-Raphson method can be usdinveach M step since Equation (2.2.12)

also cannot be solved explicitly. That is, the updaestimate of3, can be calculated as:

n @ o (0)(k+1)
ﬂo = ﬂo :

1
_ pOow _ 82EQ[7MC(6’(()))]| OEy[1. (0] : (2.2.13)
0 _—
By P,

ﬁo(o) =ﬁ0(0)(k) /}0(0) =ﬁ0(0)(k)
Finally, to maximize the expected complete log llilk@od with respect tor,, , the
2
Lagrange multiplieri can be used since there is the constraint Eal;ﬂzl. Therefore, the

m=1
following equation can be considered:
~ ~ 2
G(0?) =Eg[A (0NN -2 7, -1). (2.2.14)

m=1

Then, by differentiating the above Equation (2.2.14e equation to be solved is given by
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n (0
G(Q(O))— 0 E [7\‘ (9(0))] 1= Z Q(Zlm)

m T i=1 T

A=0. (2.2.15)

The above Equation (2.2.15) is equivalentXoE(z,,)” — Az, =0. Summing this equation

i=1

over allm, the following result is obtained:

ZZZZHZEQ(ZW)“” —ﬂiﬂm =n-1=0 (2.2.16)
m=1 i=1 m=1

Hence, from Equation (2.2.15) and (2.2.16) theatgd estimate of-, is

S Eq(z,)®
7.0 = 17 . A7)

The stopping criteria that we choose for the NewRaphson method within the M step

of the EM algorithm is based on the relative chanfji¢he parameter values in consecutive
iterations,| 2, - 8,"” < 10°and| B° - A" k 10°. As for the EM algorithm, once
the updated estimates of the parameéé’t’sare computed starting with the starting valuethef
parameter®)®, the new updated estimaté® can be obtained by the same procedure with the
previous updated estimatés® . This process continues until the log likelihoodneerges.
However, since there is no guarantee of a unigatosary pairé = (,30, ,él, 7 )to maximize

the log likelihood, several random starting poiats needed to find a global maximum value of
the likelihood function. The method to select tteteng values and the number of starting points

for the EM algorithm are described in the followsggtions.
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2.2.3 Selection of Starting Values for the EM Algorithm

The main drawbacks of the EM algorithm are its stamavergence and the dependence
on the choice of starting values for the unknowrapeeters used. The choice of starting values
is important in the EM algorithm since it affectetspeed of convergence and the ability to find

the global maximum. The method of selecting thetistavalues has been dealt with in various

studies. We are interested in choosing startingesal(z®, /;’o(o), ,31(0)) under the alternative

hypothesisH " in the context of the logistic regression mixtunedel. Recall the alternative

hypothesis is as follows:

Alternative II - The logistic regression mixture model.

HM |og(ﬁj = B, + fx  with probabilityz

Iog(ﬁ} s with probabilit — 7

Two different methods were considered to selead@anstarting values of the parameters.

The two ways are both based on fitting the ordinagystic regression model. Suppose that the

fitted estimates in the context of the ordinaryidtig regression model aré0 and ﬁl. Method

(1) involves using only the fitted estima}.‘é for a starting value of,. Then, a starting value of
the common intercepg, is selected using the observed conditional prdipakinat the value of
Y equals one given X = 0 in a sample. In Method {22 fitted estimate;§0 and ,51 are used for

selecting starting values qgf, and g, , respectively. The procedure of the first methed i

described as follows:
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Method (1)

- Step 1. Choose a starting value for the mixingprtion, 7© :

To find an optimal starting value for the mixingportion 7 , a uniform (0,1)

random number is generated.

- Step 2. Calculate a starting value for the com'rntmcept,,@'o(o) :

A starting value of the common intercept is s@dcusing the conditional
probability that the value of Y equals 1 given X#0the observed sample since the

following equation holds when the value of X is O:

o P | <

Py (28)1

2 O
Po

- Step 3. Select a starting value for the nonzenpes|s,® :

We fit an ordinary logistic regression model toe tloverall data set
{(x, v A (X, Y,)} - Let [71 be the estimate of the slope in the ordinary logis
regression model. According to the definition of tbgistic regression mixture model,
the starting estimatgs,® for the nonzero slopg, can be obtained by using the
starting value for the mixing proportioh®® . The value of the nonzero slog® is
affected by the corresponding mixing proportiorrtgig from the estimate of the slope
El in the ordinary logistic regression model. Theineate of the slopeﬁ1 IS

represented in the following way:
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fo=n-p+@L-7) 0= 1B (2.2.19)

From the above Equation (2.2.19), we expect thatviddue of the nonzero slope is

calculated as

g, = L (2.2.20)

However, the above value obtained by Equation.ZR)2can be unrealistically
large whenever the starting value of the mixingpprtion 7© is close to zero. In
order to avoid this we adjusted the value by takmgimum with a certain number. In

this dissertation, we take the starting value i@ honzero slope as follows:

30 = min(10, ;f(g)). (2.2.21)

Method (2)
- Step 1. Choose a starting value for the mixingprtion, 7© in the same way as Method (1).

- Step 2. Fit an ordinary logistic regression mddehe overall data set, and Iﬁg and ﬁl be

the fitted estimates in the ordinary logistic resgien model.

- Step 3. Select starting values for the commondef#t 5, and the nonzero slop#, :

4.9 = B, and 3O = min@o, 1.

7O

32



When we used Method (1) to select the starting esmltor the EM algorithm, the
algorithm did not reach a global maximum of theueabf the likelihood, or it was confronted by
a division-by-zero error within the Newton-Raphsmethod. Meanwhile, the EM algorithm
found the global maximum using Method (2) as thg waselect the starting values. Therefore,

Method (2) is used for selecting the starting valiroughout this study.

2.3 Simulated Results of the Estimation

2.3.1 The Number of Random Starting Points for the EM Algaithm

Although iterations of the EM algorithm always letw non-decreasing values of the
likelihood, there is no proof of the uniqguenessaahaximum likelihood value. The number of
random starting points is important to assure thatobserved maximum likelihood is a global
one. To specify the number of random starting gonefquired to get a global maximum, the
maxima of the LRT statistics are compared at sggeciiumbers of random starting points used
in the EM algorithm. Since an observed negativeimam value of the LRT statistics indicates
a local maximum we can investigate this conditiewell as the convergence by comparing the

values of the LRT statistics obtained using différgtarting values.

We obtain the maximum log likelihood and the cqomesding maximum likelihood
estimates for each set of initial starting poimsthis simulation. Then the LRT statistic is
computed, and | choose the largest value of the &Riistics comparing all the values obtained

from each set of starting points. If these largedties converge to a certain value, we conclude
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that the EM algorithm with the specified numberrahdom starting points has reached the

global maximum.

For simplicity, the intercept in the regression mlos fixed to zero ff, = ®and the

slope is set to one4, = )l1Under the alternative, the five mixing proponisoz = 0.1, 0.3, 0.5,

0.7, and 0.9 are considered for each sample rsizel00, 200, and 400. Since the stopping

criteria in the EM algorithm that | choose to usebiased on the relative change of the log
likelihood function in consecutive iteration\’ — A'?  <|10°, the number of random

starting points needed to find the global maximuen be chosen at a certain point that the

difference in consecutive maxima of LRT statishesomes small enough in the same context.

Table 2.1 reports a relationship between the radathange in the values of LRT statistics
and the number of random starting points for theecaghere the data is generated under the null

hypothesis H,) described in Section 1.3. The relative changéhevalues of LRT statistics
with 45 or more starting points is less tHan®*. Under the mixture alternative hypothesisY),

this value is less thah0™® after 45 or more starting points. Therefore, 4&man starting points

are used in each sample for the EM algorithm witl tolerancel0®, and we choose the
maximum of 45 maxima to obtain the global maximufrthe log likelihood functions in this

power study.
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Table 2.1 — Maximum LRT statistics for selected bens of Random Starting Points (RSPs) under tHeahtalnative hypothesis in
logistic regression mixture models with the difiere between maximum LRT statistieg (

Sample Number UnderH, UnderH "
Size f)* of RSPs| Mixing prop. =0.0|  mixing prop. = 0.1 0.3 0.5 0.7 0.9
A A A A A A
100 1 0.1505 0.1326 1.3601 7.2318 10.8034 18.8370
10 0.1505 0.0000 0.1326 0.000( 1.3804 0.0203 7.2318 0.p000 10.8034 (.0000 18.8370
20 0.1505 0.0000 0.1331 0.0004 1.3804 0.0000 7.2318 0.0000 10.8034 (.0000 18.8370
30 0.1505 0.0000 0.1331 0.0001 1.3804 0.0000 7.2318 0.0000 10.8034 (.0000 18.8370
45 0.1511 0.0005 0.1332 0.0001 1.3839 0.0034 7.2318 0.0000 10.8034 (.0000 18.8381
60 0.1511 0.0000 0.1333 0.000( 1.3839 0.0000 7.2318 0.0000 10.8034 (.0000 18.8381
100 0.1511 0.000( 0.1333 0.0001 1.3839 0.0000 7.2329 0.p010 10.8034 0.0000 18.8381
150 0.1511 0.000( 0.1333 0.0000 1.3840 0.0001 7.2330 0.p001 10.8039 0.0005 18.8385
200 0.1511 0.000( 0.1333 0.0000 1.3840 0.0000 7.2330 0.p000 10.8039 0.0000 18.8385
200 1 0.0040 1.7395 4.1711 13.493 18.5709 37.0914
10 0.0040 0.0000 1.7725 0.033( 4.2023 0.0312 13.493 0.0000 18.5709 0.0000 37.0914
20 0.0040 0.000Q0 1.7725 0.000( 4.2023 0.0000 13.493 0.0000 18.5709 0.0000 37.0914
30 0.0040 0.0000 1.7725 0.000( 4.2023 0.0000 13.493 0.0000 18.5709 0.0000 37.0914
45 0.0040 0.0000 1.7725 0.000( 4.2023 0.0000 13.493 0.0000 18.5709 (.0000 37.0914
60 0.0040 0.000Q0 1.7725 0.000( 4.2023 0.0000 13.493 0.0000 18.5709 0.0000 37.0914
100 0.0040 0.000( 1.7725 0.0000 42023 0.0000 13493 0.p000 185709 (.0000 37.0914
150 0.0040 0.000( 1.7725 0.0000 42023 0.0000 13,493 0.0000 185709 0.0000 37.0914
200 0.0040 0.000( 1.7725 0.0001 42024 0.0001 13,493 0.0000 185721 0.0012 37.0914

Note 1. The number of observations per X valogs= n/

not shown because the results are consistent nathliove results (45 starting points are needed).
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2.3.2 MLE in the Logistic Regression Mixture

In order to verify that the customized EM algoritlworks well in the logistic regression
mixture model defined in this dissertation, | invgated the means and standard errors of the
MLEs obtained by the EM algorithm with 45 randorar8hg points, which are based on 1,000
replicates. We considered the logistic regressioture model where it has the value of zero as
the common intercept4,= 0) and the value of one as the nonzero slgfe (1). Also, four
sample sizesn = 100, 200, 400, 1,000, and 2,000 were considered; the number of

observations per X value ig, = 25, 50, 100, 250, and 500, respectively.

The parameters setting for this simulation study strown in Table 2.2, and it contains
the mean and standard error of the estimated valué® parameters. As one can see, the large
sample theorems for the expected values of the bl hold for extremely large samples in
the case of this likelihood. In a rough way, the Bigorithm seems to work well in estimating

the value off, regardless of sample size and true values. Medawds sample size increases

the expected values of the estimates approactvaiues and the standard error of the estimates

decreases, particularly in the estimated result§, ofFrom the viewpoint of mixing proportions
7, as the true value of increases, the bias of the estimated value dexse&®sr the estimate
,él, we can roughly compare the precision based omxpected bias oﬁl in ordinary logistic
regression models. We can expect the bfi?;s) (n the context of ordinary logistic regression to
be E(,bA’l - p)= E([?l) - p=7p, + QL-7)0- B, = (x —1p,. The bias of,éA’l appears to be
consistently smaller than the expected bias oldalme ordinary logistic regression for large

samplesif > 400).
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Table 2.2 — Simulated mean MLEs with the standenmat éin parentheses) under the logistic
regression mixture population based on 1,000 rafggcin each case: four sample
sizesn =100, 200, 400, 1,000, and 2,000 are considerédamandom starting
points are used

Mean MLEs (SE)

mpl Expected ~ - .
Sﬁje g)? Po A Biai(/?l)z 4 Po B

100 0.1 0 1 -0.9 0.54 (0.01) -0.01 (0.01) 0.40* (0.06)
0.3 0 1 -0.7 0.58 (0.01) -0.03 (0.01) 0.87 (0.06)

0.5 0 1 -0.5 0.66 (0.01) -0.07 (0.01) 1.26* (0.05)

0.7 0 1 -0.3 0.76 (0.01) -0.06 (0.01) 1.36 (0.04)

0.9 0 1 -0.1 0.89 (0.00) -0.06 (0.01) 1.34(0.03)

200 0.1 0 1 -0.9 0.54 (0.01) 0.00 (0.01)  0.40* (0.05)
0.3 0 1 -0.7 0.52 (0.01) 0.00 (0.01) 1.12*(0.06)

0.5 0 1 -0.5 0.61 (0.01) -0.04 (0.01) 1.35*(0.05)

0.7 0 1 -0.3 0.74 (0.01) -0.05 (0.01) 1.40(0.04)

0.9 0 1 -0.1 0.89 (0.00) -0.05 (0.01) 1.29(0.02)

400 0.1 0 1 -0.9 0.49 (0.01) -0.01 (0.01) 0.47*(0.05)
0.3 0 1 -0.7 0.50 (0.01) -0.02 (0.01) 1.14*(0.05)

0.5 0 1 -0.5 0.60 (0.01) -0.02 (0.01) 1.27*(0.04)

0.7 0 1 -0.3 0.75 (0.00) -0.02 (0.01) 1.14*(0.02)

0.9 0 1 -0.1 0.90 (0.00) -0.03 (0.01) 1.12*(0.01)

1,000 0.1 0 1 -0.9 0.47 (0.01) 0.00 (0.00) 0.43*(0.04)
0.3 0 1 -0.7 0.43 (0.01) -0.01 (0.00) 1.23*(0.05)

0.5 0 1 -0.5 0.56 (0.00) -0.01 (0.00) 1.10*(0.02)

0.7 0 1 -0.3 0.73 (0.00) -0.01 (0.00) 1.06* (0.01)

0.9 0 1 -0.1 0.90 (0.00) -0.01 (0.00)  1.05*(0.01)

Note 1. The number of observations per X valogs= n/

foreach sample size

2. Bias[fl) is theexpected bias of the estimate,él in ordinary logistic regression:

Bia6f) =E(f, - B)=EB) - f.=ah + A- )0 - B, = (7 - Df,.

*: Smaller bias compared with the ected bias ot@’l in ordinary logistic regression
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Table 2.2 (Continued) — Simulated mean MLEs withgtandard error (in parentheses)
under the logistic regression mixture populatiosdabon 1,000 replicates in each
case: four sample sizes=100, 200, 400, and 1,000 are considered andntiona
starting points are used

Mean MLEs (SE)

Sample Expected ~ - .
Size 8)1 Po B Biai(/?l)z z Po Py
2000 01 0 1  -09 0.47 (0.01) 0.01(0.00) 0.38* (0.04)
03 0 1  -07 0.41(001)  -0.00(0.00) 1.12* (0.04)
05 0 1  -05 0.54(0.00)  -0.00(0.00) 1.02* (0.01)
07 0 1  -03 0.72(0.00)  -0.00(0.00) 1.01* (0.01)
09 0 1  -01 0.90(0.00)  -0.00(0.00) 1.01* (0.01)

Note 1. The number of observations per X valnogs= n/ fordeach sample size

2. Bias[fl) is theexpected bias of the estimate,él in ordinary logistic regression:

Bia6f) =E(f, - B)=EB) - f.=ah + A- )0 - B, = (7 - Df,.

* . Smaller bias compared with the ected bias ot[i’l in ordinary logistic regression

We also investigated the MLEs in the similar waylemthe null hypothesis that there is
no association between the quantitative explanataryable and the response variabte € 0).
The simulation results are shown in Table 2.3. eans and standard errors of MLEs were

obtained based on 1,000 replicates. In this caselseesets, equal zero and considered four
sample sizes ofi = 100, 200, 400, 1,000, and 2,000 were consid@ngd 25, 50, 100, 250, and

500). Thus, the estimate of the intercept shoulthegero (on average) and the estimated value
of slope should also equal zero (on average) ifEMe algorithm still works under the null
hypothesis as well. Moreover, the estimates ofntlirang proportion are expected to follow a

uniform distribution with mean of 0.5.
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Table 2.3 shows the mean and standard error astmates under the null hypothesis for
each sample size. The mean estimates of the mpiogortion are 0.5 and the estimated
intercept is always within standard error of 0.01hvany sample size. Meanwhile, the standard
error of the slope estimate decreases as samplesizases. The distribution of the estimates of
7 for sample size of 2,000 can be found in Apperiix

Table 2.3 — Simulated mean MLEs with the standamt €éin parentheses) under the null

hypothesis of no associationr (= 0, 5, = 0) based on 1,000 replicates in each

case: four sample sizes=100, 200, 400, 1,000, and 2,000 are considergdtan
random starting points are used

Mean MLEs (SE)

PR ; A A
100 0 0 0.52 (0.01) 0.01 (0.01) 0.11 (0.10)
200 0 0 0.51 (0.01) -0.02 (0.01) 0.03 (0.09)
400 0 0 0.50 (0.01) 0.01(0.01)  -0.06 (0.06)
1,000 0 0 0.50 (0.01) 0.00 (0.00) -0.01 (0.03)
2,000 0 0 0.50 (0.01) -0.00 (0.00) 0.01 (0.00)

Note 1. The number of observations per X valngs= n/ fordeach sample size

Based on the results, we conclude that the EM digorworks well for observed samples
under both the alternative hypothesis and the hytliothesis considered in this dissertation.
However, as sample size increases, the estimatesmeth by the EM algorithm approach the true
values of the corresponding parameters. Therefosample size at least 400 is needed to obtain
accurate estimates using this EM algorithm in tigistic regression mixture model. We will
investigate the precision of the estimates obtainech this mixture model by comparing the

bias and the mean squared error with the estintataslinary logistic regression in Chapter 4.
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Chapter 3

The Null Distribution
of the Likelihood Ratio Test Statistics

3.1 Asymptotic Null Distribution of LRT Statistics

The usual test of the null hypothesid () against the alternativeH and H") described

earlier is the likelihood ratio test (LRT). Baseu the classical asymptotic theorem for the null
distribution of LRT statistics, we would expect thgymptotic distribution of the LRT statistics

to be chi-square distribution with 1 degree of fil@® and with 2 degrees of freedom for our
homogeneous alternativeH(" ) and mixture alternative H"), respectively. However, this
classical asymptotic null distribution does notchol the case where we test the common null

hypothesis H,) against our mixture alternativél(') as we discussed in Chapter 1.

Instead, based on the asymptotic results on thedaoy of the parameter space, we
conjectured that thasymptotic null distribution of the LRT statistics may {5y + 0572 to

test the mixture alternative hypothesis in our posteidy. We will verify this conjecture by
using the empirical null distribution and the fidteull distribution in Section 3.2 and 3.3.
Concurrently, we will see if the null distributias invariant to generating models with the value

of the parameteg, under the null hypothesis.
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3.2 Empirical Null Distribution of the LRT Statistics

We want to verify that an asymptotic chi-squardrthisation also holds true for the LRT
test in the situation we are considering. Thus etimpirical null distribution of the LRT statistics
was obtained through simulation. We compared tkergtical asymptotic distribution with the
empirical null distribution found from the simulati. The o8 percentile of the empirical null

distribution of the LRT statistics and correspomgd®b% confidence intervals are computed.

3.2.1 Data Simulation

Five different values of the parametgt were considered to generate the null

distributions that there is no association betwaseexplanatory variable and a response variable,

that is, 5,= -2, -1, 0, 1, and 2. Also, we considered thrékedint sample sizes per configuration

to model both small and large samples, that isethdifferent sizes for each value of the

explanatory variable = 0, 1, 2, and 3 were considerag= 25, 50, and 100 (i.en, = 100, 200,

and 400). The values of the parameferand 7 were fixed (5,= 1 andz = 0.5) because the
null distribution of LRT statistics is not affectdry these values. For each configuration one
hundred samples were generated and for each samplehundred bootstrap samples were
replicated under the null hypothesis. LRT statssticere calculated for each bootstrap sample
against the corresponding generated sample for@adiguration, and the 85percentile values
were obtained among the one hundred LRT statisased on each generated sample. Figure 3.1

shows this bootstrap procedure for the configuratith n, = 25 andg,= -2.
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Figure 3.1 — The bootstrap procedure to consthecempirical null distribution of the LRT
statistics for the configuration with, = 25 and 5,= -2 : 100 generated samples are

considered and 100 bootstrap samples are replicael the null hypothesis for

each sample.

. Generated Replicated Calculate 95% percentiles
Configurations Samples Bootstrap samples LRTS of 100 LRTS
C ati > > r*» LRTS_1 )

onfiguration 1 N, N,
n, = 25 (n = 100)

X 5% percentile af
LRT atatistics

By = -2

---» LRTS_100 |

-

--—-+ LRTS 1

N
J.'II\;;-DD ]

L 95% percentile of
LRT statistics

---+ LRTS_100 |

Note. This procedure is also applied for the otbarteen combinations af, and g, (n,= 25,
50, and 1003, =-2, -1, 0, 1, and 2)

3.2.2 Simulation Results of the Empirical Null Distribution

For each configurationn( = 25, 50, and 10¢3,= -2, -1, 0, 1, and 2), we computed the
mean and variance of the 95% percentile of the ISRifistics for each model under the null
hypothesis based on 100 simulations perand g, combination. In addition, the 95%
confidence intervals for the empirical®percentile of the LRT statistics were construciite

95% confidence intervals for these five differemddels are displayed in Figures 3.2 for each

sample size.
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As one can see by looking at Figure 3.2, it appehes the majority of the 95%
confidence intervals of the 85ercentile overlapped. That is, we observed appaneariance
to the generating model under the null hypothesisife LRT statistics. Hence, we combined the
50,000 LRT statistics obtained from the simulatitmgind a more precise estimate of thé"95

percentile of the empirical null distribution faaeh sample size.

Figure 3.2 — The 95% confidence intervals for tream98' percentile of the LRT statistics
according to the values ¢, : f,=-2, -1, 0, 1, and 2 are considered and three

sample sizes are also considened (L00, 200, and 400).
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Note. The observed mean of the bootstraly P&rcentile and 95% confidence intervals are
based on 100 simulated samples fgvalue (N;=100 bootstrap samples undey, per

simulated sample).
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We found the 98 percentile of the LRT statistics under the nulpbthesis for sample
size of 100 to be 5.1 and the 95% confidence iateior the empirical 95 percentile was [5.0,
5.2]. In the similar manner, the ©percentile of the LRT statistics for sample si£2@0 was
4.9 and the 95% confidence interval for the emapir@5" percentile was [4.9, 5.0]. We also
found the 95 percentile of the LRT statistics for sample siZe460 to be 4.6. The 95%
confidence interval for the empirical ©percentile was [4.6, 4.7].

Table 3.1 shows these empirical "9%ercentile values of the LRT statistics and
corresponding 95% confidence intervals obtainedhftbe combined 50,000 LRT statistics for
each sample size. These confidence limits were atedpfrom non-parametric methods
(Snedecor and Cochran, 1967). Table 3.2 contamsniéan, variance, and selected percentiles
from the simulated null distribution of the LRT &$#ics for sample size 100, 200, and 400. The
means, variances and percentiles monotonicallyedser The table also reports the values for

selected chi-squared distributions. The percentifabe empirical null distributions lie between
the values for the distribution di5y + 05y andy/. Thus, we expect that the simulated

LRT statistics follow the mixture of chi-squaredstibutions with 1 degree of freedom and 2
degrees of freedom, where the fraction of the gniased distribution with 1 degree of freedom

would be between 0.5 and 1.
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Table 3.1 — The empirical #5percentile of the LRT statistics and correspond®sgs
confidence interval based on the combined 50,000 &fatistics

.. . 95% Confidence Interval
Empirical 98" percentile

100 5.1 5.0 5.2
200 4.9 4.9 5.0
400 4.6 4.6 4.7

Note 1. The number of observations yealuesn, = n/ 4for each sample size
2. The results are based on combinBd Istatistics withN, = 100 bootstrap
samplesN = 100 replications, and five configurations,(= -2, -1, 0, 1, and 2)

Table 3.2 — Summary of empirical null distributiohLRT statistics of the null hypothesis
of ordinary logistic regression models versus theermative of logistic
regression mixture models

Percentiles of LRT statistics

Null distribution Sample Sizen] Mean Variance 90% 95% 99%

72 2 4 4.6 6.0 9.2
057 + 05y2 1.5 3.25 3.8 5.1 8.3
17 1 2 2.7 3.8 6.6
100 1.35 2.94 3.7 5.1 9.0
Empirical distribution 200 1.30 2.83 3.6 4.9 8.0
400 1.22 2.63 3.3 4.6 7.9

Note 1. The number of observations pealuesn, = n/ 4for each sample size
2. Empirical null distribution is based on the 3@ombined LRT statistics per line
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3.3 Fitted Null Distribution of the LRT Statistics

Wilson and Hilferty (1931) showed that the cubetrob a chi-square distribution is
approximately normal. Consequently, if the nulltdimition of a statistic were of the form
Py +(@1- p)y?Z, then the distribution of the cube root of thetist would be a mixture of a
fraction of zero with a proportion @f and an approximately normal distribution. In tloatext
of this fact and our conjecture on the asymptotit distribution of the LRT statistics in Section
3.1, we consider the formpy’, +(1- p)x> as the null distribution of the LRT statistics and
evaluate the fit of the distribution of the LRT tstcs under the null hypothesis to this form.
This approach also has a thread of connection thétexpectation of empirical null distribution

in Section 3.2.2.

Based on the combined LRT statistics, let the disliribution of the statistics be the form
of py’2,+(@-p)xZ. Then we can obtain the estimgieandV of the parameters andv using
the mean and variance of the LRT statistics fohesmmple size as follows.

L
p(v-1)+ @d- pVv
V—p (3.3.1)

E(LRTS)

Var (LRTS) = S?

E(LRTS?) — [E(LRTS)]?

[p{2(v—1) +(v-1)*} + (L~ p)(2v+V*)] - (v~ p)*

V- p-p° (3.3.2)
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From Equation (3.3.1) and (3.3.2) the estimatethefmixing proportiorp and the degrees of

freedomv are computed in the form qfy?, +(1- p)y>. Thatis,

1441+ 4L - S?)

; (3.3.3)

o))

—T+p (3.3.4)

<>

As a result, we estimate the empirical null digttibn of the LRT statistics from the

50,000 combined LRT statistics described above. fiitegl null distributions of LRT statistics
are 041y2.. + 059y2 ., 061y2,, + 039y7%,,, and 074y2, + 0267, for sample size 100,

200, and 400, respectively. The fraction of chieggudistribution with smaller value of the
degrees of freedom increases and the values addbeees of freedom also increase as sample
size increases. That is, while we observed appareatiance to the generating models under the
null hypothesis, there is some dependence on sasizge

In Table 3.3, we report the 9095", and 99' percentiles, and other relevant summary
statistics for sample size. Q-Q plots are usedtopare the observed null distribution with the
fitted null distribution of the LRT statistics. Albugh the fitted null distribution does not work
well in the upper quartiles when sample size islisiieere mostly appears to be no difference in

the null distribution when sample size is largey(ffe 3.3).
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Table 3.3 — The mean and variance of the LRT s$tdidor each sample size and
corresponding estimated values of parameterand v in the form of

pri.+@-p)xl

Fitted parameters

of null distribution Percentiles
Sample Sizer) Mean Variance P v 90% 95% 99%
100 1.35 2.94 0.41 1.76 3.5 4.8 8.0
200 1.30 2.83 0.61 1.91 3.4 4.7 7.8
400 1.22 2.63 0.74 1.95 3.2 4.5 7.5

Note: The results are based on the 50,000 sintulRd statistics per line

Figure 3.3 — Q-Q plots of the null distribution ldRT statistics for sample size: comparing
observed null distribution with fitted null distibon of LRT statistics

QQ-plot: Observed vs. Fitted
Sample Size n =100 (25 per X value)

10

Fitted Quantiles

Observed Quantiles

Fitted Quantiles

10

QQ-plot: Observed vs. Fitted
Sample Size n =200 (50 per X value)

Fitted Quantiles

QQ-plot: Observed vs. Fitted
Sample Size n =400 (100 per X value)

Observed Quantiles

Observed Quantiles

Table 3.4 summarizes the™®percentile values of LRT statistics in the follogicases of

the null distribution; (1) the asymptotic null dibution, 057> + 0542, (2) the empirical null

distribution, and (3) the fitted null distributiavith the form of py; , + (L - p) . for specified

sample size.
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Table 3.4 — Summary of the ®Bercentile selected for sample size.

The 94" percentile

. Asymptotic? Empirical 2 Fitted 3
Sample Sizer) null distribution null distribution null distribution
100 51 51 4.8
200 5.1 49 4.7
400 51 4.7 45

Note 1. For the asymptotic null distributiod5y? + 054> is conjectured.

2. Empirical null distribution is based on the @D combined LRT statistics per line:
given in Table 3.2

3. Fitted null distribution is estimated as fooh py;, + (L - p)yZ based on the
50,000 combined LRT statistics per line: given able 3.3

Table 3.5 shows the Type | error rates of the LR@lan each generating null model for
each sample size. For each configuration one timousaplications were used to obtain the Type
| error rates. The Type | error rates were estichatgng three different null distributions of the
LRT statistics described in this Chapter 3. Theresponding 98 percentile values of LRT

statistics for each case are shown in Table 3.4.
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Table 3.5 — Type | Error rates of the LRT under generating null hypothesis using
asymptotic, empirical, and fitted null distributiohLRT statistics & = 0.05)

Type | Error rates of the LRT

Sample Sizen) |\C/|5 enerating i ASympfotic | Empirical 2 Fitted 2
odel (4,) 1 Nulldistribution;  null distribution  null distribution
2 0046 0.057 0.062
1 L0044 0.052 0.067
100 0 0056 0.056 0.059
0048 0.045 0.057
2 0043 0.052 0.067
Average i 0.047 i 0.052 0.062
2 i 0056 ! 0.060 0.050
-1 i 0051 0.043 0.053
200 0 L 0.044 0.048 0.053
0043 0.045 0.046
2 0.049 0.052 0.053
Average i 0.049 i 0.050 0.051
2 0.040 0.036
-1 0041 0.050 0.063
400 0 | 0043 | 0.051 0.052
0044 ! 0.044 0.046
2 0.043 0.043 0.045
Average i 0.042 i 0.045 0.049

Note 1. For the asymptotic null distributiod5y> + 05y is conjectured.
2. Empirical null distribution is based on the, @ combined LRT statistics per line:
given in Table 3.2
3. Fitted null distribution is estimated as foofn py;, + (L - p)y; based on the 50,000
combined LRT statistics per line: given in Tabld 3.
4. Simulation results are based on 1,000 replinatmer line and the 95% margin of error
is £0.01 for each configuration
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As one can see in Table 3.5, the Type | error ratése LRT seem close to the nominal
value of 0.05 for each of 5percentile value within a 95% margin of errdr)(01). However,
when sample size is smatl € 100) the average Type | error rate (0.062)ighdl larger than
the nominal value. It is because the modeled nsttidution forn =100 does not fit well in the
upper quartiles (Figure 3.3). Therefore, we use #mwymptotic null distribution of
05y + 05y2 to calculate the power of the test with mixtureemdative hypothesisH.").
Figure 3.4 — 3.6 illustrate the Type | error ratdsthe LRT for the five different generating

models for sample size.

Figure 3.4 — Type | error rates of the LRT undez tenerating null hypothesis using
asymptotic, empirical, and fitted null distributiofh LRT statistics with sample
size n = 100.

Sample Size n = 100
(25 per X value)

0.070
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Type | Error
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-2 -1 0 1 2
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—&— Asymptotic —#i— Empirical Fitted

Note. Simulation results are based on 1,000 rafohics and the 95% margin of errord€.01
for each configuration
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Figure 3.5 — Type | error rates of the LRT undez tenerating null hypothesis using
asymptotic, empirical, and fitted null distributiof LRT statistics with sample

sizen = 200.

Sample Size n = 200
(50 per X value)
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Figure 3.6 — Type | error rates of the LRT undez tfenerating null hypothesis using
asymptotic, empirical, and fitted null distributiof LRT statistics with sample

sizen = 400.

Sample Size n = 400
(100 per X value)
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Note. Simulation results are based on 1,000 rafohics and the 95% margin of errord€.01
for each configuration
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Chapter 4

Power Study

of the Likelihood Ratio Test

4.1 Data Simulation

We evaluated the performance of the hypothesis &®tut the association in the context
of ordinary logistic regression and logistic regiea mixture models defined in Section 1.3.
Based on the simulation results in Chapter 3 welooled the null distribution of LRT statistics

is invariant to parameter setting of the generatimaglels under the null hypothesis and verified

our conjecture stated in Section 3.1 about the distribution, 057 + 05y7. Therefore, this

asymptotic null distribution0.5y7 + 05y7, was used to infer the critical values for theges

defined in this dissertation. For our power studg, considered the following parameter setting

for sample size = 200, 400, and 1,000:

S, =-2,-1,and 0;
£, =0.5,1.0,and 1.5;

7 =0.1,0.3,0.5,0.7, and 0.9.
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For each configuration we simulated one thousamspkss and found the power of the LRT.
Each power was based on thé"q&rcentile of the asymptotic null distribution15which was

found in Chapter 3.

Additionally, we investigated the precision of thstimates under mixture populations
with two components logistic regression models. cbonpare the precision in the ordinary
logistic regression models with logistic regressmomture models, mean squared errors (MSES)
were calculated from these two approaches basemherthousand replicates. For simplicity we

set the true values ¢f, and g, equal zero and one, respectively. Five samples gize 100,
200, 400, 1,000, and 2,000; i.e,= 25, 50, 100, 250, and 500) and five mixing preipos

were also considereds(= 0.1, 0.3, 0.5, 0.7, and 0.9).

4.2 Power Study Based on Asymptotic Null Distribution of tle
LRT Statistics

The purpose of this thesis is to compare the pafdhe two hypothesis tests which
detect the effect of the quantitative explanatoayiable X on the binary response variable Y.
One test is conducted in terms of the ordinarydtigiregression model and the other detects the
effect in terms of a logistic regression mixturedabhaving equal intercept and two unequal
slopes as defined in Section 1.3. We compared t¢heep of testing with these two different

alternatives,H for the ordinary logistic regression model add' for the logistic regression

mixture model.
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In addition, we used McNeniartest to determine whether there is a significéifeérence
in the performance of the two LRT for each confagion and also carried out logistic regression
on the findings for each case (1) to determine ldrethere is an overall increase in power

associated with one method and (2) to identifyaeditions affecting the power difference.

The various configurations of parameters settirggduo generate the data in this power
study are shown in Table 4.1. This table contdmespower of the test based on the simulated
data for each configuration. The results of the Migfdfs test are also shown in this table with a
significance level of 0.05 and 0.01. The power carigons between two models according to

the values off,, f,, andz are shown in Figure 4.1 for sample size of 1,00 patterns were

almost identical for sample size of 200 and 40@ (Sependix C).

The power of test, taken as a whole, increasetieasalue off, increases or the mixing

proportion z increases. It also appears that the power ofastic regression mixture model is
slightly greater than the power of the ordinaryistig regression model, especially for smaller

mixing proportionr.
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Table 4.1- Power of the LRT using the asymptoti¢"9ercentile, calculated from 1,000
replicates: comparison the power of ordinary lagistgression modelsH")

with logistic regression mixture modelsi (")

Power of the LRT

n =200 n =400 n=1,000
By B 7~ Ordinary Mixture? Ordinary Mixture Ordinary  Mixture
0.1 0.07 0.07 0.07 0.07 0.10 0.16**
0.3 0.18 0.21* 0.30 0.34 0.62 0.74*
20 05 05 0.37 0.45** 0.65 0.71* 0.96 0.98*
0.7 0.61 0.67** 0.90 0.92 1.00 1.00
0.9 0.78 0.85** 0.98 0.99* 1.00 1.00
0.1 0.13 0.17* 0.20 0.25* 0.45 0.55*
0.3 0.62 0.69** 0.91 0.94* 1.00 1.00
1.0 0.5 0.95 0.98** 1.00 1.00 1.00 1.00
0.7 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.21 0.24 0.33 0.38* 0.69 0.77**
15 0.3 0.85 0.87 0.99 0.99 1.00 1.00
) 0.5 1.00 1.00 1.00 1.00 1.00 1.00
0.7 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.07 0.07 0.07 0.11** 0.11 0.17**
0.3 0.17 0.23** 0.34 0.40** 0.68 0.78**
-1 0.5 05 0.44 0.50** 0.73 0.81** 0.99 0.99
0.7 0.71 0.77** 0.95 0.96 1.00 1.00
0.9 0.89 0.94** 1.00 1.00 1.00 1.00
0.1 0.09 0.11 0.14 0.17 0.29 0.37*
0.3 0.47 0.55** 0.80 0.83 0.99 0.99
1.0 0.5 0.91 0.92 1.00 1.00 1.00 1.00
0.7 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.11 0.13 0.19 0.21 0.39 0.45**
15 0.3 0.62 0.65 0.91 0.90 1.00 1.00
' 0.5 0.97 0.97 1.00 1.00 1.00 1.00
0.7 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00

Note 1. Test in terms of the ordinary regmassnodel,H! : log(Odds) = £, + fB,X
2. Test in terms of the logistic reggion mixture model,
H. : log(Odds) = g, + £,x with probability of 7 ; log(Odds) = g, with1 - =

3. The 95% margin of errort8.03 for each configuration.

4. Significantly different in poweompared to ordinary logistic regression using

McNemarfs Test (* 0.05; ** 0.01)
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Table 4.1 (Continued) Power of the LRT using the asymptotic"gsercentile, calculated
from 1,000 replicates: comparison the power ofrady logistic regression

models H) with logistic regression mixture models! [*)

Power of the LRT

n =200 n =400 n=1,000
By P, 7 Ordinary Mixture? Ordinary Mixture Ordinary  Mixture
0.1 0.06 0.08* 0.05 0.09** 0.09 0.12*
0.3 0.13 0.19** 0.25 0.29 0.53 0.61**
0.0 05 05 0.34 0.40** 0.61 0.69** 0.94 0.96
0.7 0.62 0.68** 0.91 0.94* 1.00 1.00
0.9 0.85 0.89** 0.99 1.00 1.00 1.00
0.1 0.06 0.08 0.08 0.11* 0.14 0.20**
0.3 0.28 0.31 0.50 0.54 0.88 0.90
1.0 05 0.67 0.71* 0.93 0.93 1.00 1.00
0.7 0.94 0.96 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00
0.1 0.07 0.08 0.10 0.12 0.17 0.21*
15 0.3 0.35 0.34 0.60 0.59 0.94 0.94
' 0.5 0.79 0.79 0.97 0.96 1.00 1.00
0.7 0.98 0.98 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00

Note 1. Test in terms of the ordinary regmssnodel,H! : log(Oddg = S, + B,x
2. Test in terms of the logistic reggion mixture model,
H. : log(Oddg = g, + £,x with probability of z; log(Oddg = g, with1 - =

3. The 95% margin of error48.03 for each configuration.

4. Significantly different in poweompared to ordinary logistic regression using

McNemars Test (* 0.05; ** 0.01)
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Figure 4.1- Comparison of the Power of ordinary logistic angistic mixture models for various values of theernept 5,, the slope
S, and mixing proportionz for sample size of 1,00Q3,= -2, -1, and 0,4, = 0.5, 1.0, and 1.5¢ = 0.1, 0.3, 0.5, 0.7,

and 0.9
Power Comparison: Ordinary vs. Mixture
with Sample Size of 1,000
1.00
0.80
— 0.60
]
=
o
o
0.40
0.20
0.00
T
131 0505050505101.01.01.01.0151.511%1505050505051.01.01.01.01%151515150505050.50.51.0101010151515151]
—— Ordinary Logistic—#— Logistic Mixture

Bo=- 2 By = -1 By =0
Note 1. The power results are based on 1,000 ezplavith sample size of 1,000.
2. The dotted arrows represent the pattefthe power by the parameter settings giversénee value ofj, .
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Additionally, to investigate if there is a relat&mnp between the difference in power and
various parameters, we computed the power rattheapower of the logistic regression mixture
model divided by the power of the ordinary logistegression model for each configuration.
Figure 4.2 illustrates this power ratio for variceenfigurations of parameters with sample size
of 1,000. We also computed the power ratio for daraze of 200 and 400 in the same way (See

Appendix D).

As one can see by looking at Figure 4.2, it apptasthe power ratio decreases as the
value of g, and the mixing proportior increase given equal values gf for sample size of
1,000. Since this power ratio is related to the rompment in power, we can expect the
performance of the mixture models to detect theatfbf the quantitative variable X on the
response variable Y to be improved when both tteevaf £, and the mixing proportior are

small. However, this reasonable trend is more nthrkdeed as sample size increases. We will

verify our findings obtained from this simulatiamthe following section.
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Figure 4.2- Power Ratio of logistic regression mixture mod&impared with ordinary logistic regression modetsvarious values
of the intercepts,, the slopes; and mixing proportionz for sample size of 1,00Q3,= -2, -1, and 0,4, = 0.5, 1.0, and

15,7 =0.1,0.3,0.5,0.7,and 0.9

Power Ratio: Power(Mixture)/Power(Ordinary)
with Sample Size of 1,000

18 r
16
14
1.2

©

0.8 -
P s 0.1030507090103050.7090.103050.70.90.1063.7090103050.7090.103050.7090.103 09®0.103050.70.90.10.30.50.7 09
P

Power Ratio

05050505051010101010151511%1.505050505051.01.01.010190P1515151505050505051.01.010110151515151%

Po=— 2 By = -1 Bo =0

Note 1. The power results are based on 1,000 e¢psavith sample size of 1,000.
2. Power Ratio was calculated as the paivirgistic regression mixture models divided bg power of ordinary logistic model

3. The dotted arrows represent the trérideopower ratio by the parameter settings givensame value of,.
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4.3 Modeling the Difference in Power

Based on the visual examination in the previousi@ecwe expected that thg and z

affect the difference in power of two approachesddtect the relationship between Y and X. In
this section we find the model of the improvemerdiuding all possible factors by a general
linear model. Our interest in this model is thefadiénce in power between ordinary logistic
regression models and logistic regression mixtucelets. Therefore, we considered the odds
ratio of improvement as the response variable #raf the parameters in the logistic regression

mixture model as factors in this model:
Odds Ratio(improvement) =« + 8, + of, + nx + yn. (4.1.1)

The interaction of the factors will be includedtie above model if the above model (Equation

4.1.1) does not fit.

Since the improvement in power means the powehencbntext of the mixture model is
greater than the ordinary logistic regression motiee odds ratio of improvement can be
computed from the number of different decisior¥,(and N,,) by the two models in the

simulatedN replicates as follows (See Table 4.2).

Odds Ratio(improvement) =N,,/ N,,. (4.1.2)

We cannot obtain the odds ratio in the casé&gf = N,, = or®,, # N,, = 0, thus these

cases were excluded in our model. Table 4.3 reploet®dds ratio for each configuration. If this
odds ratio is greater than one, we conclude thleattls an improvement in power of the test by

using logistic mixture models.
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Table 4.2- Matched Pairs Data Structure

Mixture
Ordinary AcceptH, RejectH, Total
AcceptH, N, N, N,,
RejectH, N,, N,, N,,
Total N,, N,, N

Note. The total numberNfis the number of replicates per configuration

We first conducted the ANOVA (analysis of variance)uding all three main factors and
all two-way interactions in order. The results oated that the interactions were not significant
and the value of3, and the mixing proportiomr were significant for each sample size. In

addition, the sample sizewas not significant for the overall observed saapThese results are
consistent with the findings in the previous sattidbhe significance level of 0.05 was used for

these conclusions. Detailed SAS output can be fauAgppendix E.

Next, we fit a general linear model with only thesgnificant factors- the value of slope
£, and mixing proportionr — to the odds ratio for each sample size. The rsgresoefficients

of the corresponding values for each factor arensanzed in Table 4.4.
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Table 4.3- Summary of the Odds Ratio of the power with ordyragistic and logistic
regression mixture models for each configuration:200, 400, and 1,000

Odds Ratid Odds Ratio
,6’0 ﬁl T n=200 n=400 n=1,000 ﬂo ﬁl T n=200 n=400 n=1,000

0.1 1.13 1.05 1.75 0.1 1.43 1.66 1.46

0.3 1.26 1.17 1.73 0.3 1.47 1.20 1.39

-2 05 05 141 1.30 1.89 0 05 05 131 1.43 1.38
0.7 1.29 1.24 3.00 0.7 1.27 1.42 -
0.9 1.51 2.30 - 0.9 141 2.67 -

0.1 131 1.30 151 0.1 1.32 1.40 1.48

0.3 1.37 1.46 0.00 0.3 1.18 1.17 1.28

1.0 05 2.09 - - 1.0 05 1.21 1.00 0.00
0.7 - - - 0.7 1.29 0.00 -
0.9 - - - 0.9 2.00 - -

0.1 1.19 1.24 1.54 0.1 1.27 1.26 1.34

0.3 1.23 1.43 - 0.3 0.96 0.95 0.89
15 05 - - - 15 05 0.99 0.66 -
0.7 - - - 0.7 1.11 - -
0.9 - - - 0.9 - - -

0.1 1.02 1.58 1.55
0.3 1.41 1.30 1.62
-1 05 05 1.28 151 1.30
0.7 1.38 1.48 -
0.9 1.73 1.33 -

0.1 1.23 1.19 1.39
0.3 1.36 1.25 1.11
10 05 1.17 0.25 -
0.7 1.33 - -
0.9 - - -

0.1 1.15 1.13 1.30
0.3 1.17 0.87 -
15 05 0.87 - -
0.7 - - -
0.9 - - -

Note 1. The odds ratio is computed Ny, / N,,, where
(1) N ,represents the number of cases that the null hgpistivas rejected based on the
mixture model and not rejected based on the ordilogistic regression model.
(2)N,, represents the number of cases that the null hgp® was not rejected based on

the regression mixture model and rejected basdteoardinary logistic regression
model. (See Table 4.2)

2. The missing value of odds ratio ocavnen N,, = N,, = Oor N, # N,, = 0.
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Table 4.4- Estimates of Regression Coefficients in the fitBeaheral Linear Models of the
Odds Ratio for sample size

Estimates of Coefficients

Parameter nt =200 n =400 n=1,000
Intercept 0.3297 0.3759 0.1262
oA 0.5 0.1561 0.3241 0.2808
1.0 0.2097 0.0151 0.1048
1.2 0.0000 0.0000 0.0000
V4 0.1 -0.2509 -0.2274 0.1338
0.3 -0.2216 -0.3192 -0.0358
0.5 -0.2424 -0.6713 0.0000
0.7 -0.2344 -0.3808 -3
0.9 0.0000 0.0000 -3

Note 1. The number of observations per x values- n/ 4 for each sample size.

2. The Baseline of the fact@y set to be 1.5 and the baseline of the fagtas 0.9.

3. For sample size of 1,000 the cagbemixing proportionz of 0.7 and 0.9 are not
included in the fitted model.

By using the fitted general linear models we cataiobthe fitted values for the odds ratio
of improvement. Then we can compare the observeld oatio and the fitted odds ratio. The
results are illustrated in Figure 4.3. Based onrdmilts of these analyses, we see that these

models mostly fit and the fitted models are fardgsonable within our expectation.

Figure 4.3- Scatter plots of Observed Odds Ratio of improvednasnFitted Odds Ratio of
improvement obtained by using the fitted modeldach sample size

Sample Size of 200 Sample Size of 400 Sample Size of 1,000
25 25

15 15

Fitted Odds Ratio of Improvement
Fitted Odds Ratio of Improvement
Fitted Odds Ratio of Improvement

0.5 L L L 0.5 L
0.5 1 15 2 25 0.5 1 15 2 25 0.5 1 15 2 25

Observed Odds Ratio of Improvement Observed Odds Ratio of Improvement Observed Odds Ratio of Improvement

Note. The blue line is a diagonal line for eachecas
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4.4 The Precision of Estimates

As a measure of the accuracy of the estimates weé e MSE of the estimates taken
about the true population values and compared tB&dMobtained by two different models,

ordinary logistic regression models and logistigression mixture modelsthe MSE of an

estimated with respect to the parametéris defined as

MSE ()

Elé - 0)?]
Var(0) + (Bias(d))>.

The bias term measures how far the mean estinmftesm the true value and the variance term
measures how far each estimator is from the metamass. Since the MSE decomposes into a
sum of the bias and variance of the estimator, lpotmtities are important and need to be as
small as possible to achieve good estimation padoce. It is common to have a situation
where (1) for simple models, the bias increaseg garckly, while (2) for complex models, the
variance increases very quickly. This basic traflaokes in a wide variety of settings, as it
seems to be fundamental to the various nature oérgézation of any data that involve an

unknown mixture of regular and random elements.

From the previous simulation results in Section2.%e can expect that the MSE of the
estimate,él decreases as sample size increases in logistiessagn mixture models because the
variance and the expected bias of the estimategawsd as sample size increases (Table 2.2).
The MSE, the variance, and the bias ,[Ebf and [31 based on one thousand replicates are

summarized in Table 4.5 and Table 4.6, respectively
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Comparing the precision of ordinary logistic regiea and logistic regression mixture
model, in particular, the variance of the estima%gsi;s larger in logistic mixture models than
ordinary models. It is because the variance dependbe estimate of in the mixture models.
In the same context of this dependence, the vwiaﬁgﬁl is larger as the corresponding mixing

proportion z is smaller. Meanwhile, the estimates in mixturedele have smaller biases for
each sample size. Thus, we can conclude that tge MSE in the mixture models is mainly
caused by the variance instead of the bias of astgrfor most of the configuration considered.
However, we can see the mixture models have smMBE values than ordinary logistic
regression models when sample size is sufficidatlye i > 400) and the mixing proportion is

greater than 0.3. The bold lines in Table 4.6 shmat there is any improvement in terms of the
MSE of ,él under the mixture models in these configuratians @00 andz > 0.3). As well,
Figure 4.4 illustrates the precision ﬁ{ (MSE, variance, and bias) according to the geadrat

population given mixing proportions for each sanmgie. From these results, we conducted our

power studies based on the relatively large sasipks ( = 200, 400, and 1,000y, = 50, 100,

250).
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Table 4.5- Summary of the MSE oﬁ’o with the standard error (in parentheses) of eséma

under the logistic regression mixture populatioeach case: five sample sizes
and five mixing proportions are considerad=(100, 200, 400, 1,000, and 2,000;

7 =0.1,0.3,0.5,0.7,and 0.9), = 0
MSE (SE) of 3, Var(4,) Bias(,)
SSi;ng)I? V4 Ordinary’ Mixture?  Ordinary  Mixture Ordinary  Mixture
100 0.1 0.11(0.01) 0.18(0.01) 0.11 0.18 0.00 1-0.0
0.3 0.12(0.01) 0.17(0.01) 0.12 0.17 0.04 -0.03
0.5 0.12(0.01) 0.17(0.01) 0.12 0.17 0.06 -0.07
0.7 0.13(0.01) 0.16(0.01) 0.13 0.16 0.06 -0.06
0.9 0.14(0.01) 0.16(0.01)  0.14 0.15 0.03 -0.06
200 0.1 0.06(0.00) 0.07 (0.00) 0.06 0.07 0.01 0.00
0.3 0.06 (0.00) 0.07 (0.00) 0.06 0.07 0.04 0.00
0.5 0.06(0.00) 0.07 (0.00) 0.06 0.07 0.07 -0.04
0.7 0.07 (0.00) 0.08 (0.00) 0.06 0.07 0.07 -0.05
0.9 0.07 (0.00) 0.08 (0.00) 0.06 0.07 0.04 -0.05
400 0.1 0.03(0.00) 0.04 (0.00) 0.03 0.04 0.02 1-0.0
0.3 0.03(0.00) 0.04 (0.00) 0.03 0.04 0.05 -0.02
0.5 0.03(0.00) 0.04 (0.00) 0.03 0.04 0.07 -0.02
0.7 0.04 (0.00) 0.04 (0.00) 0.03 0.04 0.08 -0.02
0.9 0.03(0.00) 0.04 (0.00) 0.03 0.04 0.05 -0.03

Note 1. The results of the column are obtaineéithgg ordinary logistic regression models
2. The results of the column are ol#dihy fitting logistic regression mixture models

3. The number of observations per xi@ah,

= n/ 4for each sample size.

4. Simulation results are based on@ @plicates per line.
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Table 4.5 (Continued Summary of the MSE oﬁ’o with the standard error (in parentheses)

of estimates under the logistic regression mixpapulation in each case: five
sample sizes and five mixing proportions are carsd ( = 100, 200, 400, 1,000,

and 2,000;z =0.1,0.3,0.5,0.7, and 0.8, = 0
MSE (SE) of 3, Var(4,) Bias(,)
SSi;ng)I? Ordinary’ Mixture?  Ordinary  Mixture Ordinary  Mixture
1,000 0.1 0.01(0.00) 0.01(0.00) 0.01 0.01 0.01 000.
0.3 0.01(0.00) 0.02(0.00) 0.01 0.01 0.04 -0.01
0.5 0.02(0.00) 0.01(0.00) 0.01 0.01 0.07 -0.01
0.7 0.02 (0.00) 0.01(0.00) 0.01 0.01 0.07 -0.01
0.9 0.01(0.00) 0.01(0.00) 0.01 0.01 0.04 -0.01
2,000 0.1 0.01(0.00) 0.01(0.00) 0.01 0.01 0.02 010.
0.3 0.01(0.00) 0.01(0.00) 0.01 0.01 0.04 0.00
0.5 0.01(0.00) 0.01(0.00) 0.01 0.01 0.07 0.00
0.7 0.01(0.00) 0.01(0.00) 0.01 0.01 0.07 0.00
0.9 0.01(0.00) 0.01(0.00) 0.01 0.01 0.04 -0.01

Note 1. The results of the column are obtainedthynd ordinary logistic regression models
2. The results of the column are obtaioeditting logistic regression mixture models
3. The number of observations per x \v@alue = n/ 4 for each sample size.

4. Simulation results are based on 1r@fplcates per line.
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Table 4.6- Summary of the MSE oﬁ’l with the standard error (in parentheses) of eséma

under the logistic regression mixture populatioeach case: five sample sizes
and five mixing proportions are considerad=(100, 200, 400, 1,000, and 2,000;

7 =01,03,0507,and 0.9, = 1
MSE (SE) of 3, Var(5,) Bias(3,)
SSijéng)lae V4 Ordinary’ Mixture?  Ordinary  Mixture Ordinary  Mixture
100 0.1 0.90(0.01) 3.47(0.39) 0.03 3.11 -0.93 600.
0.3 0.68(0.01) 3.19(0.39) 0.04 3.18 -0.80 -0.13
0.5 0.47(0.01) 2.93(0.35) 0.04 2.86 -0.65 0.26
0.7 0.26(0.01) 2.01(0.30) 0.05 1.88 -0.46 0.36
0.9 0.11(0.00) 1.08(0.17) 0.08 0.96 -0.17 0.34
200 0.1 0.89(0.01) 2.47(0.28)  0.02 2.12 -0.94  600.
0.3 0.68(0.01) 3.42(0.37) 0.02 3.40 -0.81 0.12
0.5 047(0.01) 2.48(0.31) 0.02 2.35 -0.67 0.35
0.7 0.25(0.00) 1.83(0.27)  0.02 1.67 -0.48 0.40
0.9 0.07(0.00) 0.56 (0.09) 0.02 0.48 -0.20 0.29
400 0.1 0.89(0.01) 2.54(0.31) 0.01 2.26 -0.94 530.
0.3 0.67(0.00) 3.66(0.32) 0.01 2.64 -0.82 0.14
0.5 0.46(0.00) 1.83(0.27) 0.01 1.76 -0.67 0.27
0.7 0.25(0.00) 0.59(0.12) 0.01 0.57 -0.49 0.14
0.9 0.06(0.00) 0.15(0.01) 0.02 0.14 -0.21 0.12

Note 1. The results of the column are obtaineéltbgg ordinary logistic regression models

2. The results of the column are obtaiogeditting logistic regression mixture models

3. The number of observations per x \v@alue = n/ 4 for each sample size.

4. Simulation results are based on 1r@Plcates per line.
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Table 4.6 (Continued) Summary of the MSE oﬁ’l with the standard error (in parentheses)

of estimates under the logistic regression mixpapulation in each case: five
sample sizes and five mixing proportions are carsd (0 = 100, 200, 400, 1,000,

and 2,000,z =0.1,0.3,0.5,0.7,and 0.9, = 1
MSE (SE) of 3, Var(5,) Bias(3,)
SSijéng)lae V4 Ordinary’ Mixture?  Ordinary  Mixture Ordinary  Mixture
1,000 0.1 0.88(0.00) 1.60(0.19) 0.00 1.28 -0.94 0.5¢
0.3 0.66 (0.00) 2.15(0.29) 0.00 2.10 -0.81 0.23
0.5 0.45(0.00) 0.41(0.05) 0.00 0.40 -0.67 0.10
0.7 0.24(0.00) 0.15(0.01) 0.00 0.15 -0.48 0.06
0.9 0.05(0.00) 0.06 (0.00) 0.01 0.06 -0.21 0.05
2,000 0.1 0.88(0.00) 1.22(0.15) 0.00 0.78 -0.94 0.66
0.3 0.66(0.00) 0.96 (0.16) 0.00 0.96 -0.81 0.06
0.5 045(0.00) 0.17(0.01) 0.00 0.17 -0.67 0.02
0.7 0.24 (0.00) 0.07 (0.00) 0.00 0.07 -0.49 0.01
0.9 0.05(0.00) 0.03(0.00) 0.00 0.03 -0.21 0.02

Note 1. The results of the column are obtaineéithgg ordinary logistic regression models
2. The results of the column are obtaimgditting logistic regression mixture models
3. The number of observations per x \v@alue = n/ 4 for each sample size.

4. Simulation results are based on 1replcates per line.
5. Bold lines represent the cases haamgmprovement in fitting mixture models.
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Figure 4.4- The MSE, Variance, and Bias of the estim,é;ecompared in the context of

ordinary logistic regression models and logistigression mixture models
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Chapter 5

Discussion and Conclusions

In this dissertation two approaches were used topeoe the performance of the LRT to
evaluate an association between a quantitativagioecnd a dichotomous response. One is the
ordinary logistic regression model, and the otkehe logistic regression mixture model defined
in Section 1.3. We developed the LRT to detect thlationship between a quantitative
explanatory variable and a dichotomous responsahlarbased on these two methods. The EM

algorithm was utilized to find the MLEs of the pameters in the mixture model.

Before we conducted our power analyses, we invegstijthe null distribution of LRT
statistics to infer the critical value for the teBb verify the conjecture that the asymptotic null
distribution reduces t®5y? + 05y, we obtained the empirical null distribution aie fitted
null distribution of the statistics by simulatiotudies. Based on the simulation results, we found
that our conjecture was correct and concluded &otlis asymptotic null distribution for power

study.

From the power study we simulated a situation witeeepopulation consists of a mixture
for whom there is an association and a fractiomdividuals for whom there is no association
between the quantitative predictor and the binagponse. We thus evaluated the power to

detect the association in the ordinary logisticresgion and the logistic regression mixture
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models. The mixture model resulted in the improveinod approximately 20% (on average) in
power over ordinary logistic models. The improvemgrmreases as the value gf and the
mixing proportionz decrease, especially for sample size of 1,000 fifay due to the fact that
a bigger value ofg, and a larger mixing proportion resulted in a greater power in both
approaches, In the context of this, one would exjet the performance of the test will be good
enough even in the ordinary logistic regression ehechen the value ofs, is large and/or the
mixing proportion of the population for whom thesean association is large. Additionally, we
obtained the fitted model for the difference in povbetween ordinary logistic regression and
logistic regression mixture models. As we expectkd,slopes, and the mixing proportionr
were significant in terms of the relative differencf the performance (i.e., the odds ratio of

improvement in terms of power).

From the view of precision of the estimates uskmng lbgistic regression mixture models,
we found that a very large sample size is needebt&@in a substantial improvement in precision
of estimation under heterogeneous populations &éwvamgh these estimates had less bias under
the mixture models. Therefore, we could apply thgidtic regression mixture model on the
larger sample size than we used in this dissentatiobtaining precise estimates of the slope is

the objective.

There are several limitations of this research somehich could be seen as interesting
directions for future research. The first is thetféhat we consider here only a special case of
switching regression, namely a situation wherestbpe is 0.0 in one component and non zero in

the other.
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|og{—pj = B, + Ax withprobabilig 7
p
H, : Iog(ﬁj = f, + /X Vs.H, :

Iog{—ppJ = B, + B,x withprobabilig 1- 7

A second point is that we consider only a samptiegign where we have fixed values of the
predictor. This would be the case in a dose respsengly. However, we could instead have an
observational study where the predictor variablésX3 random variable. This would be the case
perhaps in a study where disease susceptibiligyfisction of some quantitative variables in a
subset of the population and unrelated to thisofaict the remainder of the population. Both of
these above limitations require straightforwardeastons of our methodology that we used in

this dissertation.

In addition, the improvement in fit obtained usthg@ mixture model could be evaluated
through the following null and alternative hypotbesThis is equivalent to the test of

Hy 7 =1vs.H 17 <1

|o{1—p) = f, + X withprobabilig 7
H, : Iog(ﬁj = f, + /X Vvs. H,: g

m{l—pj = 4, withprobabilig 1- 7
-p

One would expect that the null distribution of thRT statistics would bed5y> + 05y, .

However, upon investigating this, we noted that thdl distribution was not invariant to

generating models under the null hypothesis, the. values of, and g,. Thus, we need to use

a bootstrap sampling method to obtain P-valuessfmh simulated sample. This is indeed an

interesting but different problem that could be blasis of a future research.
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Appendices

Appendix A. Summary of the probabilities of Y = 1 given X values for each
configuration

Table A.1- Summary of the probability of Y = 1 given the walof the quantitative
explanatory variable X for each parameter settifig= -2, -1, and 0;5,= 0.0,

0.5,1.0,1.5,and 2.0

The Values of X

By yix X =0 X=1 X =2 X=3
0.0 0.12 0.12 0.12 0.12
0.5 0.12 0.18 0.27 0.38
-2 1.0 0.12 0.27 0.50 0.73
1.5 0.12 0.38 0.73 0.92
2.0 0.12 0.50 0.88 0.98
0.0 0.27 0.27 0.27 0.27
0.5 0.27 0.38 0.50 0.62
1 1.0 0.27 0.50 0.73 0.88
1.5 0.27 0.62 0.88 0.97
2.0 0.27 0.73 0.95 0.99
0.0 0.50 0.50 0.50 0.50
0.5 0.50 0.62 0.73 0.82
0 1.0 0.50 0.73 0.88 0.95
1.5 0.50 0.82 0.95 0.99
2.0 0.50 0.88 0.98 1.00

Note 1. The cases of5,= 0.0 represent the null hypothesis defined in plaiger, i.e., there
IS no association between the explanatory variglded the response variable Y
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Appendix B. The distribution of the estimates of mixing proporions

Figure B.1 — The distribution of the estimatesnating proportion according to the true value
of the mixing proportion £ = 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9) with the maaa
median (in parenthesis) for sample size of 2,000

Histogram of the estimates of mixing proportion
: under the null (mixing proportion = 0.0)
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Histogram of the estimates of mixing proportion
: when mixing proportion = 0.9
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Note 1. The distributions are based on 1,000 rafgdgcfor each case.
2. As the true value of the mixing propmrtincreases the estimate approaches the true

value, while the distribution of the estimates axmately follows a uniform distribution
under the null hypothesis or small mixing proparidz = 0.0 and 0.1).
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Appendix C. Comparison of Power for Sample Size of 200 and 400

Figure C.1- Comparison of the Power of ordinary logistic angistic mixture models for various values of theernept 5, and the
slope g, and mixing proportionz for sample size of 200.

Power Comparison: Ordinary vs. Mixture
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Note. The power results are based on 1,000 repsicaith sample size of 200.
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Appendix C (Continued). Comparison of Power for Sample Sizef 200 and 400

Figure C.2- Comparison of the Power of ordinary logistic angistic mixture models for various values of theernept 5, and the
slope g, and mixing proportionz for sample size of 400.
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Note. The power results are based on 1,08Icates with sample size of 400.
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Appendix D. Power Ratio of the Improvement in Power for Sample i8e of 200 and 400

Figure D.1- Power Ratio between logistic regression mixturele®and ordinary logistic regression models forouar values of the
intercept 5, and the slopgs, and mixing proportion for sample size of 200 a0@ 4
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Note 1. The power results are based on 1,q8cates with sample size of 400.

2. Power Ratio was calculated as thvegp of logistic regression mixture models dividsdthe power of ordinary logistic model
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Appendix E. ANOVA output from SAS

--------------------------------------- Sample Size = 200 ---------------mmmoo oo
The ANOVA Procedure

Dependent Variable: odds_ratio

Sum of

Source DF Squares Mean Square F Value Pr > F
Model 19 1.48769611 0.07829980 2.10 0.0694
Error 16 0.59593444 0.03724590
Corrected Total 35 2.08363056

R-Square Coeff Var Root MSE odds Mean

0.713992 14.74785 0.192992 1.308611
Source DF Anova SS Mean Square F Value Pr > F
beta0 2 0.08060246 0.04030123 1.08 0.3625
betai 2 0.51754833 0.25877417 6.95 0.0067
prop 4 0.58267361 0.14566840 3.91 0.0212
betaO*betat 4 0.13086310 0.03271577 0.88 0.4986
betat*prop 7 0.17600861 0.02514409 0.68 0.6908

--------------------------------------- Sample Size = 400 -----------m o
The ANOVA Procedure
Dependent Variable: odds_ratio
Sum of

Source DF Squares Mean Square F Value Pr > F
Model 16 4.22868619 0.26429289 3.17 0.0208
Error 13 1.08418048 0.08339850
Corrected Total 29 5.31286667

R-Square Coeff Var Root MSE odds Mean

0.795933 22.10112 0.288788 1.306667
Source DF Anova SS Mean Square F Value Pr > F
betal 2 0.21580293 0.10790146 1.29 0.3073
betai 2 1.24168048 0.62084024 7.44 0.0070
prop 4 2.48296111 0.62074028 7.44 0.0024
betaO*betat 4 0.48199993 0.12049998 1.44 0.2747
betat*prop 4 0.00000000 0.00000000 0.00 1.0000
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Dependent Variable: odds_ratio

Sample Size = 1,000

The ANOVA Procedure

Appendix E (Continued). ANOVA output from SAS

Sum of

Source DF Squares Mean Square F Value Pr > F
Model 6 0.81834214 0.13639036 12.45 0.0002
Error 11 0.12055230 0.01095930
Corrected Total 17 0.93889444

R-Square Coeff Var Root MSE odds Mean

0.871602 7.272714 0.104687 1.439444
Source DF Anova SS Mean Square F Value Pr > F
beta0 2 0.42614825 0.21307413 19.44 0.0002
betai 2 0.29289944 0.14644972 13.36 0.0011
prop 2 0.09929444 0.04964722 4.53 0.0367

————————————————————————————————————— Overall Sample SizeS --------------mmmmmm oo
The ANOVA Procedure
Dependent Variable: odds_ratio
Sum of

Source DF Squares Mean Square F Value Pr > F
Model 21 4.59716490 0.21891261 3.41 <.0001
Error 62 3.98365891 0.06425256
Corrected Total 83 8.58082381

R-Square Coeff Var Root MSE odds Mean

0.535749 18.97380 0.253481 1.335952
Source DF Anova SS Mean Square F Value Pr > F
sample_size 2 0.24543214 0.12271607 1.91 0.1567
beta0 2 0.46186726 0.23093363 3.59 0.0334
betai 2 1.51161291 0.75580646 11.76 <.0001
prop 4 2.15752536 0.53938134 8.39 <.0001
betaO*betat 4 0.33454740 0.08363685 1.30 0.2793
betat*prop 7 0.00000000 0.00000000 0.00 1.0000
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