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Abstract of the Dissertation
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Related to Solar Water Splitting with

Semiconductor Alloys

by

Li Li

Doctor of Philosophy

in

Physics

Stony Brook University

2011

The (Ga1−xZnx)(N1−xOx) solid solution (or, alloy) is a visible-light-
driven photo-catalyst for water splitting. Its reduced band gap is
a main advantage for harvesting solar energy. Because the syn-
thesized samples are in the powder form, the understanding of the
bulk structures and the surfaces are hindered. In this thesis, we
address both the bulk and the surfaces of this material through
simulations based on the density-functional theory (DFT) version
of quantum electronic structure theory.

The ordering of the atoms in the alloy is the key information to
understand the bulk properties, especially the band gap reduction
mechanism. Using the cluster expansion formalism, we construct
an accurate model from DFT calculations. The subsequent Monte
Carlo simulation reveals a phase diagram which has a wide misci-
bility gap and an x=0.5 ordered compound. The disordered phase
displays strong short-range order (SRO) at synthesis temperatures.
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To study the influences of SRO on the lattice and electronic prop-
erties, we conduct DFT calculations on snapshots from the Monte
Carlo simulation. Consistent with previous theoretical and exper-
imental findings, lattice parameters were found to deviate from
Vegard’s law with small upward bowing. Bond lengths depend
strongly on local environment, with a variation much larger than
the difference of bond length between ZnO and GaN. The down-
ward band gap bowing deviates from parabolic by having a more
rapid onset of bowing at low and high concentrations. An overall
bowing parameter of 3.3 eV is predicted from a quadratic fit to the
compositional dependence of the calculated band gap. Our results
indicate that SRO has significant influence over both structural
and electronic properties.

Recent experiments showed that the semi-polar (1011)/(1011) sur-
faces dominate the powder samples. To search for stable recon-
structions of these two surfaces, we use an evolutionary algorithm
to explore the surface structures. To simplify the study, we only
consider the pure GaN bulk with various numbers of Ga, N, and
O atoms allowed to bond to surfaces. A few stable reconstruc-
tions at different Ga, N, and O chemical potentials are found. The
consequences for the water splitting catalysis are discussed.

In this thesis, I also include a chapter on electron transfer during a
non-adiabatic process. The relevance to the water splitting project
is that a photo-excited hole must transfer across the semiconduc-
tor/water interface to initiate the oxidation of water. Similarly,
a photo-excited electron must transfer to the H+ in the liquid to
cause hydrogen reduction (H2 formation). The transfer process is
ignored in the next of the thesis. Since the Born-Oppenheimer ap-
proximation does not apply, it is a challenging problem for numer-
ical simulations. A few approximate methods have been proposed,
which greatly reduce the calculation complexity, but still take the
non-adiabaticity into account. To test these methods, we study
a simple model, in which the nuclei can be treated quantum me-
chanically. Numerically exact solutions are obtained and compared
with these popular approximations. We find that these methods
do produce correct trends in general. But caution must be taken
since they break down in some scenarios.
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Chapter 1

Background

1.1 Photo-catalytic Water Splitting

A way of storing renewable energy sources is to use sun light to split water
into oxygen and hydrogen. In this process, the solar energy is converted into
chemical energy directly, as shown in the following reaction

2H2O + 4hν → 2H2 + O2 (1.1)

In this reaction, the absorbed photons first create electron-hole pairs in the
dye or absorber (in our case, semiconductor),

4hν → 4h+ + 4e−. (1.2)

The electrons and holes then drive the two half reactions,

4H+ + 4e− → 2H2, (1.3)

2H2O + 4h+ → O2 + 4H+. (1.4)

Each half reaction requires a catalyst and a minimum energy, as shown in
fig. 1.1. To produce hydrogen, the conduction band minimum must lie higher
than the standard reduction potential of the proton reduction reaction. To
produce oxygen, the valence band maximum must lie lower than the standard
reduction potential of the water oxidation reaction. However, not all materials
that satisfy these two prerequisites are good photo-catalysts for water splitting.
Another constraint is the energy of solar photons. At sea level, most of the
solar energy lies in the visible range, from 1.65 eV to 3.1 eV. The desired
material must have a band gap in the visible range to utilize the solar energy
efficiently. There are also other prerequisites for a material to be a good photo-
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Figure 1.1: The schematic diagram for the photon absorption and the wa-
ter splitting process. CBM, conduction band minimum; VBM, valence band
maximum; H+/H2, hydrogen reduction potential; H2O/O2, water oxidation
potential.

catalyst for water splitting. For example, the material must be stable during
the reaction. The electron-hole pair must be able to separate and migrate to
the reaction sites before they recombine.

1.2 The (Ga1−xZnx)(N1−xOx) Solid Solution

The (Ga1−xZnx)(N1−xOx) solid solution was synthesized to produce a reduced
band gap photo-catalyst [3, 4]. The powder sample by Domen’s group, when
loaded with rhodium-chromium mixed oxide nano particles as a co-catalyst for
hydrogen production, splits water into hydrogen and oxygen under visible light
irradiation. The quantum efficiency, the percentage of irradiated photons that
participate in the reaction, is 2.5% for wavelength in the range of 420∼440
nm. The reaction is stable. The solid solution functions continuously for 35
hours without degradation during the experiment.

This solid solution is a good candidate because of its reduced band gap
[3, 4], which is crucial for improving solar photon absorption efficiency. Diffuse
reflectance spectroscopy measurements indicate a band gap bowing parameter
of 3∼4 eV [1, 2]. The band gap of the 50% alloy is around 2.4 eV [1], much
more efficient for solar applications than either GaN and ZnO, with Eg equal
to 3.4 and 3.2 eV, respectively.

There are theoretical discussions on the origin of the band gap reduction
[5–9]. It is accepted that the alloy adopts the wurtzite lattice, but the atom site
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occupacy is unknown. Lacking this information, previous studies used differ-
ent approaches including the dilute limits [5, 6], long-periodic superlattices [6],
special quasi-random structures [7] and/or structures based on intuition and
enumeration [8]. Wang et al designed a rather simple Hamiltonian for this sys-
tem [9]. They used snapshots from the Monte Carlo simulation based on this
Hamiltonian to suggest the solid solution has no miscibility gap at 1100K but
exhibit a strong short-range ordering (SRO). The SRO causes the highest oc-
cupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals
(LUMO) to locate at different regions of the material. The spatial separa-
tion of HOMO and LUMO reduces the overlap between their wave functions,
causing reduced efficiency for light absorption, and also, perhaps, reducing the
undesired radiative recombinations.

Lacking direct measurements on the surface structures, the alloy surfaces
have not been extensively studied by theorists. The X-ray photoelectron
spectroscopy measurements indicate that the surface region is dominated by
Ga, O, and N atoms, with virtually no Zn atoms, very different from the
bulk concentrations [2]. Recent unpublished transmission electron microscopy
measurements reveal that the dominant surfaces of the powder samples are
(1011)/(1011) surfaces. (Communication from Dr. James Ciston at BNL)
Until now, there is no systematic theoretical studies on these two surfaces of
the alloy.

1.3 Organization of this Thesis

Given the current studies on this material, a few important questions are left
unresolved. This thesis tries to answer the following questions. (1) what is
the atom site occupancy in the bulk of this alloy? (2) What is the properties
of this alloy and their dependence on the atom site occupancy? (3) Given the
recent experiments on the alloy, what might the surface look like?

The thesis is organized as follows. Chapter 2 introduces the density func-
tional theory, and the methods used in this study. Chapter 3 presents our
extensive studies on the bulk of this alloy. Chapter 4 presents our preliminary
studies on the surfaces. Chapter 5 is a more distantly related project about
electron transfers during non-adiabatic processes.
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Chapter 2

Methods

2.1 Density Functional Theory

The systems we are interested in contain many nuclei and electrons. Nuclear
motions can be treated classically (except for the lightest elements like H).
Although the nuclei and the electrons interact with each other, we can usually
separate their motion, because of the huge differences between their masses.
Therefore, the nuclei can be treated as fixed when we are solving the electrons.
This is the Born-Oppenheimer approximation [10].

Under the Born-Oppenheimer approximation, the electrons see an “exter-
nal” potential Vext(r) from the nuclei. The Hohenberg-Kohn theorems [11]
state that the ground state electron density n(r) is uniquely determined by
the external potential Vext(r). And the energy of the system E[n] is a func-
tional of the density n(r). The Hohenberg-Kohn theorems are exact, but we
do not know the form of the functional E[n]. The Kohn-Sham ansatz [12]
converts the many-body system of the interacting electrons, Ψ(r1, r2, ...), into
a set of non-interacting one-body wave functions, {ψi(r)}. The density of the
electrons is now the sum of the fictitious non-interacting electrons,

n(r) =
∑

f(ϵi − ϵf )|ψi(r)|2. (2.1)

The occupancy function f(ϵi − ϵf ) can be derived from a certain thermal
distribution, where ϵf is the fermi energy. And the energy of the system
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becomes

Etot =
∑
i

f(ϵi − ϵf )

∫
d3r ψ∗

i (r) (Ti + Vext)ψi(r)

+
1

2

∫
d3rd3r′

n(r)n(r′)

|r − r′|
+ Exc[n(r)]

+ Tnuclei + Vnuclei-nuclei. (2.2)

The first term is the kinetic energy of the non-interacting electrons and their
potential energy due to the external field. The second term is the Hartree
term. The third term is the exchange-correlation energy. We also included
the fourth and the fifth term, the kinetic energy and the Coulomb energy of
the nuclei. Each wave function ψi(r) and eigen energy ϵi is the solution to the
Schrödinger equation(

−∇2
i

2
+ Vext(r) +

∫
d3r′

n(r′)

|r − r′|
+ Vxc(r;n)

)
ψi(r) = ϵiψi(r). (2.3)

Here the exchange-correlation potential is defined as Vxc(r) = δEex[n]
δn(r)

. How-

ever, the exact form of the exchange-correlation functional, Exc[n], is unknown.
Approximate exchange-correlation energy densities have been proposed. Un-
der the Local Density Approximation (LDA), the exchange-correlation energy
density only depends on the local electron density. The representative one is
the Perdew-Zunger [13] (PZ) form. Later, more sophisticated functionals have
been proposed, which also depend on the gradient of the local electron den-
sity (the Generalized Gradient Approximations, or GGA). The popular ones
include Perdew-Burke-Ernzerhof [14] (PBE) and Becke-Lee-Yang-Parr [15–17]
(BLYP).

A very important idea for efficient implementation of DFT is the pseudo-
potential. In practice, electrons are usually separated into core and valence
electrons. The core electrons do not participate in chemical bonding. There
is no need to treat them explicitly. Therefore, the ion, a collection of the
nucleus and its core electrons, is treated as a single entity. Furthermore, the
ion potential can be simplified into a pseudo-potential according to the norm-
conserving condition [18]. The pseudo-potential Vi(r) from ion core i, is usually
angular-momentum dependent, written as

Vi(r) =
∑
l

Ui,l(r)P̂l, (2.4)

where P̂l is the projector operator for angular momentum l. The pseudo-

5



potential reproduces the true potential outside the core region, but is much
smoother inside the core. The oscillations of the electron wave function in-
side the core region are eliminated by the pseudo-potential. This is a great
advantage for numerical calculations. A further approximation, the ultra-soft
pseudo-potential [19], uses more than one projector for each momentum, and
further smooths the electron wave function. The projector-augmented wave
(PAW) used in this study is a more general form of the ultra-soft pseudo-
potential [20, 21].

2.2 Methods in this Study

Our first principles calculations use the VASP package [22]. We choose the
Perdew-Burke-Ernzerhof [14] (PBE) implementation for the exchange-correlation
functional and the projector-augmented wave [20, 21] (PAW) basis set for the
expansion of wave functions. The plane wave cutoff is 500 eV. An 8× 8× 6 k-
point mesh is used for the wurtzite GaN and ZnO primitive cell. For supercells,
the k-point meshes are adjusted to have as similar density to the primitive cell
k-mesh as possible. All self-consistent calculations are converged to 0.1 meV.
For structural relaxation, a conjugate gradient algorithm reduces the force on
each atom to less than 0.05 eV/Å. Gallium and zinc 3d electrons are treated
explicitly as valence electrons.

It is well known that DFT tends to underestimate the band gaps of semi-
conductors. This band gap problem is due to the incomplete cancellation of
the self-interaction energy in the Hartree term and the exchange-correlation
term in Eq. 2.2. The incomplete cancellation is more pronounced for systems
with very localized orbitals, e.g., gallium and zinc 3d orbitals. To partially
prevent the alloy from incorrectly becoming metallic in the DFT calculation,
we apply an on-site Coulomb interaction [23, 24] U to the 3d orbitals of gal-
lium and zinc. The values of U (from Ref. [7]) are 3.9 and 6.0 eV, respectively.
These values were shown [7] to be the best to reproduce lattice parameters
and band gaps. After the correction, the 3d band positions and the band gaps
of GaN and ZnO (2.4 and 1.6 eV, respectively) lie closer to the experimental
values (3.4 and 3.2 eV, respectively).
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Chapter 3

(Ga1−xZnx)(N1−xOx) Solid
Solution: Bulk

In this chapter, we first introduce our model for the bulk alloy. Our model
assumes the alloy is on a wurtzite lattice. With no information of atom site
occupancies on the lattice, we start our investigation with the enumeration of
possible 2×2×1 supercells and a few long-periodic superlattices. These results
show that the short-range order plays a key role in determining the properties
of the alloy. Motivated by this finding, we employ the cluster expansion for-
malism to build an accurate model. We use this model to predict the formation
energy for any atom site occupancy. Subsequent Monte Carlo simulations and
DFT calculations confirm the finding. Based on the simulation, we predict the
quantitative dependence of the alloy properties on synthesis temperature.

3.1 Model

We model the solid solution as a wurtzite lattice with equal composition
of Ga and N, and no atom exchange between cation and anion sublattices,
similar to the approach adopted in previous work [7]. Thus the formula is
(Ga1−xZnx)(N1−xOx). These assumptions are consistent with experimental
results [1, 25, 26]. In first-principles calculations, we assume the atoms reside
on this lattice with bond lengths and bond angles allowed to relax. Recent
diffraction data for a sample near x = 1/8 was best fitted with a split-site
anion model indicative of significant deviations from a uniform wurtzite struc-
ture [27]. In this study, we restrict the lattice sites for the anions to those
from the wurtzite structure, although this assumption may need to be re-
considered when more complete experimental information becomes available.
Point defects such as vacancies, interstitials, and cation/anion substitutions
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are also beyond the scope of this study. Our goal is to understand the atom
site occupancy of the crystalline alloy at thermal equilibrium as a function
of temperature, and its influence on the lattice parameters, bonds, and band
gaps.

The most important quantities in this study are the formation energy and
the band gap bowing. The formation energy E for a specific alloy structure is
defined as

E = Ealloy − xEZnO − (1− x)EGaN, (3.1)

where x is the ZnO concentration. It shows the energy required to form the
alloy from GaN and ZnO. The band gap Eg for a specific alloy structure,
usually deviates from the linear interpolation of the two end points (GaN and
ZnO). The band gap bowing parameter b describes this deviation in parabolic
approximation. It is defined as

Eg(σ) = (1− x)Eg(GaN) + xEg(ZnO)− bx(1− x). (3.2)

A positive bowing parameter corresponds to a band gap bowing downward.
We will introduce other quantities when they appear.

3.2 Preliminary Studies

3.2.1 2× 2× 1 Supercell

Formation energy, bandgap and volume

A complete enumeration of structures within a 2x2x1 supercell provides valu-
able estimate of the relationships between alloy properties and the atom site
occupancies. There are 376 symmetrically inequivalent structures in a 2×2×1
supercell, including pure GaN and ZnO. The calculated formation energies are
shown in fig. 3.1. Almost all the formation energies are positive, implying that
mixing must be driven by entropy at finite temperature. The average energy
at each concentration follows a parabolic relationship. A truly random alloy
should approximately follow this curve. The formation energy for a completely
random alloy with 50% ZnO is around 0.1 eV. Therefore we are expecting
the atom site occupancies to significantly deviate from random at synthesis
temperatures around 1000K. In fig. 3.1, there is one structure with negative
formation energy, suggesting that there might exist a stable compound in the
phase diagram. We will visit this later in our Monte Carlo simulations.

Bandgap bowings are shown in fig. 3.2. They are positively correlated with
the formation energy. If the formation energy for the 50% alloy is 0.1 eV/atom,
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Figure 3.1: Formation energies versus concentration for structures within
the 2 × 2 × 1 supercell. Also shown is the average formation energy at each
concentration.

the bowing parameter is predicted to be 6 eV from the figure, much higher
than the experimental values (around 3∼4 eV). Therefore, the synthesized
samples are more likely to be low energy structures, different from the random
structures.

Volumes of the relaxed structures are shown in fig. 3.3. They depend lin-
early on ZnO concentration and formation energy. High energy structures tend
to have larger volume. Structural relaxation, especially increasing volume, can
change the formation energy significantly. We calculated formation energy of
constrained structures for comparison. In these constrained structures, all
atoms are located at the ideal coordinates of the wurtzite lattice. All the lat-
tice parameters are linear interpolated between GaN and ZnO, according to
the ZnO concentration. The relaxation reduces the formation energy by 30%
(see fig 3.4). Therefore, in our following studies, we always let the atoms and
the lattice parameters to be fully relaxed.

Charge, bond length and electrostatic potential

We also calculate atomic properties within this supercell, including charge,
bond length and average electrostatic potential of the ion core. These quanti-
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ignored). The data points are clearly grouped by concentrations. Solid lines
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Figure 3.4: Formation energy of relaxed structures versus that of constrained
structures. The linear relationship is calculated by least square fitting.

ties show very strong dependence on the atoms’ first and second neighbors.
The Bader charge is shown in fig. 3.5. Oxygen and nitrogen charges are

inert with respect to their environment. Both gallium and zinc loose more
electrons when there are more oxygen neighbors. By comparing relaxed struc-
tures and unrelaxed structures, we find that the structural relaxation has very
little effect on the magnitude of the Bader charge on each ion. Therefore the
charge accumulation on each ion is decided primarily by species of, not dis-
tance from, the neighboring atoms. Since anion charge tends to be constant,
the change in cation charge must be accomplished by transferring electrons
within the cation sublattice. Compared to the cations in the GaN and ZnO
crystals, the Zn atom in the alloy has more electrons. Ga atom has less elec-
trons. Therefore, the Zn atom effectively drains electrons from nearby cations,
while the Ga atom donates electrons.

The bond length changes according to the charges of the constituent ions.
Atoms with more electrons tend to occupy more space, leading to longer bond
length. Since the charges on both constituent ions depend on their own neigh-
bors, the bond length therefore also depend on the neighbors. For example,
for the Zn-O bond, the Zn atom has 3 extra anion neighbors besides the O
atom. The O atom has 3 extra cation neighbors besides the Zn atom. All
types of bonds tend to decrease when the bond has more O or Zn neighbors
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Figure 3.5: Bader charges calculated from DFT, averaged over the same
species and the number of Zn (for N and O) or O (for Ga and Zn) nearest
neighbors. The standard deviation is small. The error bar is less than the size
of the symbol.

(fig. 3.6). The O neighbors reduce the charge on the cation and shrink the
bond length. A possible explanation for the effect of the Zn neighbors is as
following. The Zn atom in the alloy retains more charge than in ZnO crystal,
leading to greater volume, effectively pushing the nearby bonds shorter.

The average electrostatic potential of each ion core also shows a strong
dependence on its environment. For O and N atoms, the potential mainly
depends on the species of first and second neighbors (fig. 3.7 and fig. 3.8).
More Zn first neighbors increases the core potential. The second neighbors
influence the core potential by altering the charges on the first neighbors.
For Ga and Zn atoms, the first neighbors (anions) have the dominant effect
(fig. 3.9 and fig. 3.10), because the charges on the first neighbors are relatively
constant.

3.2.2 Long Periodic Superlattices

A computationally convenient way to study the long-range interactions, strain
and electrostatic energies, is to calculate long-periodic superlattices (LPSL).
These structures have alternating thick layers of GaN and thick layers of ZnO
at different orientations. They are easy to construct and relatively cheap to
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Figure 3.8: Average electrostatic potentials of O atoms.
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calculate using DFT. We can get the asymptotic formation energy by extrap-
olating finite size LPSL to infinity.

The strain energy reaches a maximum if GaN and ZnO form layered struc-
tures. The constituent strain energy is an estimated strain energy for these
types of structures. It is the minimum energy required to force GaN and ZnO
to have the same perpendicular lattice size at a specific orientation. There-
fore, it is angular dependent. We first estimate the strain energy of 50% ZnO
LPSL by harmonic elastic theory, using published elastic constants for GaN
and ZnO. Because of the small lattice mismatch between GaN and ZnO, this
energy is only 1∼3 meV/atom, as shown in fig. 3.11. This result is confirmed
by DFT calculations using deformations predicted from the harmonic elastic
theory. For more random structures, or other ZnO concentrations, the strain
energy is much smaller. Therefore, ignoring the strain energy will not cause
errors in the formation energy beyond 3 meV/atom.

To estimate the electrostatic contribution to the formation energy, we cal-
culate the Madelung energy using charges from the Bader analysis, on an ideal
wurtzite lattice. The absolute magnitude of the Madelung energy is on the or-
der of 10 eV/atom. However, by subtracting GaN and ZnO Madelung energy
from the alloy, the contribution to the formation energy is only on the order of
10 meV/atom. Therefore, it is very sensitive to the volume and charges used.
But it turns out to be of the same magnitude as the total DFT formation
energy (see fig. 3.12). In the non-polar direction (1010), the Madelung energy
approaches zero for a very thick LPSL. DFT will converge to the constituent
strain energy of this direction (∼2 meV/atom). However, for the polar (0001)
direction, the Madelung energy converges to 10∼20 meV/atom. It does not
approaches zero for infinitely thick slabs. This is due to the polar nature of
the wurtzite lattice in this orientation.

In conclusion, the dominant long-range interaction in this alloy is the
Coulomb interaction. The resulting Madelung energy can be as high as 10∼20
meV/atom in extreme cases. For alloys with no long-range ordering, it is safe
to ignore the long-range interactions.

3.3 Cluster Expansion (CE) Construction

Previous results suggest the importance of the atomic short-range order. To
get a quantitative understanding, we use the cluster expansion formalism to
build an accurate model to predict the formation energy for any atom site
occupancy.
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3.3.1 Method

The CE [28–32] is a standard tool in thermodynamic studies of alloys. Once
constructed, it only requires the site occupancy as input to predict the for-
mation energy of a specific configuration. Positional relaxation is implicitly
included in our CE parameters but does not appear explicitly. This method
uses an Ising-like model with spins σi on site i to represent occupation. If site
i is a cation site, then σ = 1 denotes Zn and σ = −1 denotes Ga. Similarly, if
site i is an anion site, then σ = 1 denotes O and σ = −1 denotes N. The total
energy per four-atom primitive cell is the sum of the relevant one-, two-, and
many-body interactions:

E =
∑
α

mαJα⟨
∏
i∈α′

σi⟩ (3.3)

The index α is used to enumerate symmetry-inequivalent clusters, with multi-
plicity mα per primitive unit cell. The angular bracket gives the average spin
product for all clusters which are symmetrically equivalent to each other. The
effective cluster interactions (ECI) Jα are obtained by fitting to a database of
DFT energies of fully relaxed structures. The initial database contains ran-
domly generated structures. It gives an initial CE model, which is then used
to generate new trial structures in the low- and medium-energy range, which
are then relaxed by DFT and added to the fitting database. This method has
been successfully applied to a wide range of systems including metals, semi-
conductors, oxides, etc. It has also been generalized to treat multisublattice
systems [33]. The (Ga1−xZnx)(N1−xOx) solid solution is a two-sublattice ex-
ample, which contains not only clusters belonging to a single (cation or anion)
sublattice, but also clusters containing both (see Fig. 3.13). The two-sublattice
cluster expansion, if all clusters are taken into account, gives a complete basis
set for the site occupancy space. The error of the cluster expansion construc-
tion is measured by the “leave-many-out” cross validation score (LMO-CV)
[34–38]. Following the procedure described in Ref. [38], we split the database
into construction data sets and validation data sets. The validation data set
contains 30% of the entire database. For a specific selection of clusters, we fit
the CE parameters using the construction data set, then calculate the mean
squared error of prediction (MSEP) for the validation data set. The final
LMO-CV is estimated by averaging the MSEP over 2N random splits of the
input database of size N . To select appropriate clusters, a range of basis set
cutoffs is examined to minimize the prediction error [39]. Routines in the
ATAT package [40–45] are used to do the cluster expansion construction and
the subsequent Monte Carlo simulation.
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Table 3.1: Values of ECI in meV. The indexing of the two-body clusters is
shown in Fig. 3.13. The zero-body term is normalized to one primitive cell.

One-body Two-body
Zero-body Cation Anion 1 2 3 4 5
495.69 −2.20 −2.20 −134.19 −112.95 29.29 29.82 31.24

Two-body
6 7 8 9 10 11 12 13 14

39.25 −6.89 −4.96 −4.19 −0.88 −1.55 −3.59 −5.24 −4.88

3.3.2 Constructed Model

Figure 3.13 and Table 3.1 show the selected clusters and calculated effective
cluster interactions for all the relevant clusters in the present paper. We con-
struct the cluster expansion using a database of 120 structures calculated by
DFT (up to a 4 × 4 × 3 supercell). The CE contains 1 zero-body cluster,
2 one-body clusters (cation site and anion site), and 14 pair clusters. The
ECIs for the 2 one-body clusters are degenerate due to the constraint of equal
number of Ga and N atoms. This selection of clusters gives the minimum
leave-many-out cross validation score of 3 meV/atom. Our tests show that
including longer-range pair clusters or many-body clusters does not further
reduce the LMO-CV. Like a well-behaved CE construction, the magnitude of
the effective cluster interactions Jα decreases as the separation between the
constituent atoms increases. Nearest-neighbor interactions (clusters 1,2 in Fig.
3.13) give the dominant contributions to the formation energy. The negative
sign indicates a strong clustering tendency, e.g., Ga prefers N neighbors rather
than O neighbors. This is due to the matching valence charge in Ga-N and
Zn-O bonds rather than Ga-O and Zn-N bonds in a tetrahedrally coordinated
environment. The difference between the ECIs of pair 1 and pair 2 shows that
the clustering tendency in the ab plane is stronger than along the c axis. All of
the second-neighbor interactions are positive, indicating an ordering tendency,
which represents a repulsion between the same species, e.g., Ga prefers Zn as
a second neighbor rather than Ga. These two competing tendencies determine
the short-range order we will discuss later.
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Figure 3.13: Numbering of clusters and calculated effective cluster interac-
tions (ECIs). Zero- and one-body clusters are not shown in the figure. The
ECIs are indexed by the separation of their constituent atoms. The distance
of pair 14 is 5 Å. (a) Cation-cation clusters. (b) Anion-anion clusters. (c)
Cation-anion clusters. (d) Effective cluster interactions. Inset: comparison of
formation energy between CE prediction (y) and DFT calculation (x), in units
of eV/atom.
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3.4 Monte Carlo Simulation

3.4.1 Method

Monte Carlo simulation is used to investigate the thermodynamic properties
and phase diagram. The simulation uses a 14× 14× 8 supercell with periodic
boundary conditions. We only allow MC moves that change the number of
Ga and N atoms by the same amount, so that the stoichiometric constraint is
satisfied. The equilibration of the structure and averaging of thermodynamic
quantities takes at least 50,000 steps/atom. Convergence tests suggest that
the accuracy of the energy averaging is better than 0.2 meV/atom.

3.4.2 Thermodynamics, Phase Diagram, and Short-Range
Order

Monte Carlo simulations are performed to investigate the equilibrium thermo-
dynamic properties. Figure 3.14(a) shows the formation energy averaged over
thermal ensembles of configurations as a function of temperature. At x = 0.5,
the alloy is predicted to undergo a first-order phase transition from an ordered
compound to the disordered phase as T increases above 870 K. At x = 0.25,
the disordered phase is predicted to exist above 760 K, and to become phase
separated at lower temperature. Actual samples have not been found with
these long-range orders, presumably because 870 K is too low for equilibration
to occur.

Based on the MC simulation, we propose a theoretical phase diagram
(Fig. 3.15) for the (Ga1−xZnx)(N1−xOx) solid solution. It has a wide miscibil-
ity gap and an x = 0.5 stable compound. The stable compound has layered
ordering in the (0001) direction as shown in Fig. 3.15(b), with the same pe-
riodicity as the wurtzite structure. The atoms are arranged so that, among
the four first neighbors of Ga, there are three N atoms and one O; among the
twelve second neighbors of Ga, there are six Zn and six Ga atoms. Zn, N, and
O atoms experience a similar environment. This structure is a delicate com-
promise between the clustering tendency for first neighbor and the ordering
tendency for second neighbor. Its formation energy is about −3 meV/atom,
barely stabilized against phase separation into GaN and ZnO.

In our simulations, the disordered phase displays strong short range clus-
tering [Fig. 3.14(c) and 3.14(e)]. This effect can be quantified by the Warren-
Cowley short range order (SRO) parameter αlmn, defined as

αlmn(x, T ) = 1− P
A(B)
lmn (x, T )

x
, (3.4)

22



500 1000
Temperature (K)

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Fo
rm

at
io

n 
en

er
gy

 (
eV

/a
to

m
) x=0.5

x=0.25

(a)

Figure 3.14: (a) Formation energies of the solid solution (Ga1−xZnx)(N1−xOx)
calculated from Monte Carlo simulation at concentrations x = 0.5 and x =
0.25. (b)(c)(d)(e) Snapshots from the Monte Carlo simulation. Only a 14×1×8
slice of the 14× 14× 8 simulation cell is shown. In the graph, the horizontal
direction is the wurtzite a lattice vector. The vertical direction is the c vector.
Small (red) balls, oxygen; large (blue) balls, zinc; gallium and nitrogen atoms
are hidden.
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where x is the concentration of ZnO, T is the equilibration temperature,
and P

A(B)
lmn is the conditional probability of finding a B atom in the lmn

shell, given that the center atom is A. There are three types of SRO in the
(Ga1−xZnx)(N1−xOx) solid solution. For a pair of cation sites, A is Ga and
B is Zn. For a pair of anion sites, A is N and B is O. For a pair of cation
and anion sites, A is Ga and B is O. Positive SRO indicates clustering and
negative indicates ordering. Figure 3.16 shows the calculated SRO at x = 0.2
and T = 1200 K. The SRO is positive for first- and second-neighbor shells;
it quickly decays to zero at and beyond the third neighbor. This clustering
tendency persists to very high temperatures (see inset in Fig. 3.16). Therefore,
the SRO is an inherent characteristic of the (Ga1−xZnx)(N1−xOx) solid solu-
tion. It remains relatively constant within the range of synthesis temperatures
and can not be removed.

25



3.4.3 Lattice Parameters, Bond Lengths, and Band Gaps

The Monte Carlo simulation based on the cluster expansion can only predict
site occupancies. It can not provide direct information about coordinate relax-
ation or electronic structure. However, we can obtain this information from
DFT. The investigation of lattice parameters, bond lengths and band gaps
contains two steps. First, we conduct Monte Carlo simulation and equilibrate
the structure at a specific temperature and concentration. Then, we randomly
draw snapshots from the simulation and use them to do DFT calculations.
Due to DFT’s limited capability of handling large structures, we restrict the
supercell to be 4 × 4 × 3, with 192 atoms. To average over the fluctuations
due to the finite size of the simulation cell, four snapshots are taken at each
temperature and concentration. We estimate the quantities of interest, e.g.,
the band gap, from DFT calculations of these snapshots.

Actual (Ga1−xZnx)(N1−xOx) samples at room temperature do not show
the ordered binary or phase-separated structures, because low atom mobil-
ity below 900 K inhibits equilibration. Since the temperature dependence of
SRO is relatively weak (see Fig. 3.16), we adopt 1200 K as a reasonable effec-
tive equilibration temperature characterizing actual samples at lower temper-
ature. Although the measurements of band gaps, etc., are conducted at room
temperature, it is appropriate to compare with theory at the higher effective
equilibration temperature.

Figure 3.17 shows the lattice parameters extracted from DFT calculations
of these snapshots. As comparisons, we also considered snapshots from a
MC temperature of 5000 K, which exhibits half as much SRO (see inset of
Fig.3.16). In reality, the sample would decompose at such a high temperature;
we use it here simply to study the influence of ordering. We find the upward
bowing predicted from snapshots at 5000 K to be approximately twice that
found at 1200 K. Greater disorder causes the lattice parameters to increase.
Experimentally, c bows more than a [1], whereas DFT gives equal bowing.
The overall agreement on the magnitude of upward bowing suggests that SRO
exists in the samples reported by Chen et al [1].

Figure 3.18 shows the analysis of cation-anion (nearest neighbor) bond
lengths. Although the bond in the ZnO crystal is longer than that in GaN,
the difference becomes even larger in the alloy. The Ga-N bond shrinks further
and the Zn-O bond expands upon mixing. This unusual bond relaxation is a
consequence of the non-isovalent nature of the alloy. The ZnSe-GaAs system
shows similar behavior [46], in which the Zn-Se bond expands and the Ga-As
bond shrinks. However, the average bond length for all cation-anion bonds
follows approximately a linear relationship. This is due to the change in the
proportion of different types of bond, i.e., there are more Zn-O bonds in a

26



3.16

3.18

3.2

3.22

3.24

a 
(Å

)

snapshots from MC (T=1200K)
snapshots from MC (T=5000K)
Chen et al (expt)

0 0.2 0.4 0.6 0.8 1
Concentration (ZnO%)

5.14

5.16

5.18

5.2

c 
(Å

)
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ZnO-rich condition.
Figure 3.19 shows the comparison between calculated and measured band

gaps. To correct for the well-known errors in the band gap as calculated with
DFT, a composition-dependent adjustment is included. For any structure σ
with composition x(σ), the adjusted band gap is

Eg,adjusted(σ) = Eg,DFT(σ) + ∆(x), (3.5)

where

∆(x) = (1− x)(Eg,expt(GaN)− Eg,DFT(GaN))

+x(Eg,expt(ZnO)− Eg,DFT(ZnO)). (3.6)

A useful quantity in the analysis of alloy band gaps is the bowing parameter
b, defined as

Eg(σ) = (1− x)Eg(GaN) + xEg(ZnO)− bx(1− x), (3.7)

which, for any configuration σ, describes its deviation (in parabolic approxima-
tion) from linear interpolation between the two end points. The band gap from
snapshots of 1200 K MC simulation is symmetric but not perfectly parabolic.
The bowing is slightly greater at low and high ZnO concentrations. Compared
to 1200 K, the snapshots from 5000 K MC simulation have much larger bow-
ing parameters, indicating a red shift of the band gap, induced by disorder,
consistent with results of Wang et al. [9]. The asymmetric behavior is due
to the different band-gap-reducing mechanism at the dilute limit [6]. Using
Eq. (3.2), the fitted bowing parameter at 1200 K is 3.34 eV. Previous work,
which did not take the strong short-range order into account, predicted the
bowing parameter to be 4.05 eV [7]. Compared to experiments, the band gap
of 1200 K MC snapshots closely follows the value from the high-temperature
and high-pressure synthesized samples (Chen et al. [1]). It also agrees well
with the 22% ZnO sample from Maeda et al. [2]. In the regime of lower ZnO
concentration, the trend of our calculated data requires a bowing parameter
greater than 3.34 eV. Indeed, the theoretical investigation by Wang et al. [9].
predicted the bowing parameter for the 12.5% alloy to be 4.8 eV (at 1100 K).
The experimental results from Maeda et al. [2]. indicate that the bowing
parameter increases with decreasing ZnO concentration, from ∼4 eV at 22%,
to ∼12 eV at 5%. In summary, we find that both concentration and disorder
cause band gap bowing to deviate from a simple T -independent parabola.
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3.5 Conclusion

Our investigation of the 2 × 2 × 1 supercells show the cation charge strongly
dependent on its environment. The anion charge remain constant. The bond
length and the ion core potential change as the ion charge changes. To gain
quantitative understanding of the alloy site occupancies, we construct a cluster
expansion model for (Ga1−xZnx)(N1−xOx) solid solutions which accurately ex-
trapolates DFT energies. Monte Carlo simulation reveals a phase diagram with
a wide miscibility gap and an x = 0.5 stable compound below 870 K. At syn-
thesis temperatures, the solid solution is in the disordered phase. Strong short-
range order is an inherent property and remains relatively constant within the
likely range of equilibration temperatures. Based on snapshots from MC sim-
ulation, we investigate the structure and electronic properties by DFT. The
lattice parameters are found to deviate from Vegard’s law. The upward bow-
ing is increased by randomness. The relaxation of bond lengths is unusual and
can be attributed to the different valences of GaN and ZnO. Short-range order
also induces a blue shift in the band gap.
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Chapter 4

(Ga1−xZnx)(N1−xOx) Solid
Solution: Surfaces

Surfaces play a key role in the photo-catalytic water-spitting process. In this
chapter, we first introduce the fundamental theories and methods. We simulate
the surface with the slab model. Various aspects of the simulation, including
surface passivation, spontaneous polarization and chemical potentials are care-
fully discussed. Then, we study the reconstructions of the alloy surface. Only
the GaN bulk with Ga, N and O ad-atoms are considered. An evolutionary
algorithm is used to explore the surface structures. A few stable structures
are found at different chemical potentials.

4.1 Theories and Methods

In this section, we introduce the key theories and methods used in the simu-
lation of surfaces.

4.1.1 Slab Model

One way to simulate the surface within the 3D periodic boundary condition
is using the slab model, as shown in fig. 4.1 (a GaN (1011)/(1011) slab).
Vacuum is inserted to separate the slab from its images. The two exposed
surfaces are separated by a few layers of the bulk material. In practice, only
atoms near the surfaces are relaxed during the calculation. Atoms in the
middle of the slab are fixed to the 3D crystal coordinates. The slab must be
thick enough to prevent two surfaces from interacting with each other. For the
non-polar directions, e.g., a GaN (1010) slab, the exposed surfaces can often
be chosen to be equivalent. Otherwise, the exposed surfaces are different, e.g.,
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Figure 4.1: The slab model used in the first-principles simulations. The GaN
(1011) and (1011) are exposed. The black rectangle indicates the unit cell. it
is periodic in 3D. The vacuum is inserted to separate the slab (middle) with
its images (e.g., slabs on the left and right). Large balls, Ga atoms; Small
balls, N atoms.

a GaN (1011)/(1011) slab. If we are interested in studying a polar surface,
an inequivalent (and sometimes complementary) surface always exists at the
back of the slab. Care must be taken to make sure that the back surface does
not interfere with our study.

4.1.2 Macroscopic Averaging

We are usually interested in the behavior of a quantity along the direction
perpendicular to the surface (the z direction, from now on). For example, we
can average the electrostatic potential V (x, y, z) over the xy directions,

V (z) =
1

S

∫
S

V (x, y, z) dx dy, (4.1)

where S is the surface area of the unit cell. The planar averaged quantity, V (z),
gives the trend of the potential along the z direction. However, it contains
oscillations due to the microscopic structure of the slab (fig. 4.2). To further
eliminate these oscillations, we can perform the macroscopic averaging, or
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window-averaging [47],

V (z) =
1

d

∫ z+d/2

z−d/2
V (z′)dz′, (4.2)

where d is the periodicity of the 3d crystal along the z direction. The macro-

scopic electric field inside the slab is straight forward to extract from V (z).
Similarly, we can also calculate the macroscopic electron density ρe(z) from
ρe(z).

4.1.3 Dipole Correction

Even with the inserted vacuum layer, the artificial periodic images can still
interact with the slab through Coulomb interaction. Increasing the thickness
of the vacuum can reduce such interaction, at the price of more computational
costs. The dominant interaction between the slab and its images is the dipole-
dipole one. By inserting a fictitious dipole layer inside the vacuum, the dipole
interaction can be cancelled [48, 49]. The inserted dipole layer introduces a
jump in the electrostatic potential in the vacuum, as shown in fig. 4.3. The
amount of the inserted dipole is determined self-consistently to ensure zero E
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field in the vacuum region. With the correction, both the total energy and
the forces on the surface atoms converge more rapidly with respect to the
vacuum thickness (fig. 4.4). Therefore, in our surface calculations, we always
use the dipole correction. The discontinuity changes the electric field inside
the vacuum. It can also be used to generate an external E field applied on the
slab.

4.1.4 Electron Counting Rule and Passivation

The electron counting rule emerges from the study of semiconductor surfaces
[50]. This rule, although not exact, is very useful in comparing surface ener-
gies, estimating surface charges and guessing surface reconstructions. It states
that the surface structures with filled dangling bonds on the electronegative
elements and empty dangling bonds on the electropositive elements are the
lowest in energy. The surface then is likely to be semiconducting. Surfaces
not satisfying this rule will be metallic and higher in energy. The rule assumes
that the dangling bonds from the cations (the electropositive elements) are
higher in energy than those from the anions (the electronegative elements).
Redistributing electrons between these two can lower the surface energy. The
energy reduction is maximized if there is no net charge left.

The surface on the back of the slab can have partially filled cation dangling
bonds or partially empty anion dangling bonds. It can interact with the top
surface by transferring electrons. To prevent that, fractional hydrogen can be
used to passivate these dangling bonds, making sure that the electron counting
rule is satisfied [51]. For example, the GaN (0001) surface has one N dangling
bond for each surface unit cell. Since the N contributes 5/4 electrons to each
bond, this dangling bond needs 3/4 electron to become filled. A ficticious
hydrogen of Z = 3/4 with 3/4 electron can bond to this N, making the surface
semiconducting. In practice, the coordinates for the fractional hydrogen are
chosen so that the N−H surface state is filled and moved into the bulk valence
band, leaving no states in the fundamental band gap of the GaN crystal.

4.1.5 Spontaneous Polarization

For polar materials like GaN, the spontaneous polarization plays an important
role in the slab calculations. It alters the electrostatic potential inside the slab
along the polar direction. The spontaneous polarization is a bulk property.
Here I briefly introduce the theories.

The absolute polarization of a 3D infinite crystal is not easy to define. The
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intuitive approach is to sum the contribution from electrons and nuclei, as

P =
1

Ω

∑
i

ZiRi +

∫
Ω

rρe(r)dr, (4.3)

where Ω is the unit cell volume, Zi and Ri are the charges and coordinates of
the ions, ρe(r) is the electron charge density. This approach does not work,
since it depends on the choice of the unit cell boundary. The alternative
approach is to focus on the change of the polarization [52],

∆P =

∫ λ2

λ1

∂P

∂λ
dλ = P(λ2)−P(λ1), (4.4)

where λ is the parameter on a path to transform structure 1 into structure 2.
The change of the total polarization is the sum of changes of the ionic and the
electronic parts,

∆P = ∆Pnuc +∆Pe. (4.5)

The ionic part is trivial to calculate. The electronic part is well defined if the
transformation is adiabatic and the system remains insulating along the path
[52]. In fact, it has been shown that Pe follows

Pe(λ) = − ie

(2π)3

M∑
n=1

∫
BZ

dk⟨u(λ)nk |∇k|u(λ)nk ⟩, (4.6)

where M is the number of occupied bands, BZ stands for the Brillouin zone,
u
(λ)
nk is the cell periodic function defined as u

(λ)
nk = e−ikrψnk [53, 54]. The Pe(λ)

is only well-defined modulo a quantum feR/Ω, where f = 2 for the spin-
degenerated case. Since the result (Eq. 4.6) for the electronic polarization
does not depend on the path, only the initial and final states are needed in
the calculation. However, if the change of the polarization is greater than the
quantum, more structures are needed along a path to obtain the exact result.

Both the wurtzite GaN and ZnO crystals have spontaneous polarization.
To calculate the absolute magnitude, their metastable zinc blende structures,
which have no polarization as required by the symmetry, can be used as the ref-
erence structures. Our calculated results for GaN are shown in Table 4.1 along
with available experimental data and previous theories. The ion-clamped di-
electric constants ϵ∞ are calculated through finite difference using small electric
fields (by VASP) [60, 61]. It follows

P = P0 + χϵ0E, (4.7)
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Table 4.1: The GaN spontaneous polarization P0, static (ϵstatic) and ion-
clamped (ϵ∞) dielectric constants.

P0(C/m
2) ϵstatic ∥ c ϵstatic ⊥ c ϵ∞ ∥ c ϵ∞ ⊥ c

Expt (Ref. [55]) 10.04 9.5 5.35
Expt (Ref. [56]) 5.70
Theory (Ref. [57]) -0.029
Theory (Ref. [58]) 10.28 5.69

Theory (Ref. [59])
-0.032 (LDA)
-0.034 (GGA)

This study -0.038 5.45 5.28

where E is the macroscopic electric field, χ is the susceptibility with χ = ϵ−1.
This equation ignores higher order terms in the E field. The spontaneous
polarization is defined under the zero field condition (E = 0). Our calculated
spontaneous polarization is greater than that in Ref. [57, 59]. The discrep-
ancy may caused by the different exchange-correlation functional, our on-site
Coulomb interactions, or different lattice parameters and atom coordinates.
The calculated ion-clamped dielectric constants reproduce fairly well previous
experiments and theories.

4.1.6 Slabs with Spontaneous Polarization

Slabs with spontaneous polarization are slightly more complicated in the sim-
ulation than those without. Since the zinc blende GaN has no spontaneous
polarization, we use it as a comparison to study the wurtzite GaN slab. The
zinc blende (111)/(111) slab is very similar to the wurtzite (0001)/(0001) slab.
Their surface structures are the same, only the stacking of atoms in the bulk
is different (see fig. 4.5). To study the effects of the surfaces and external E
fields, four slabs (wurtzite versus zinc blende, semiconducting versus metallic
surfaces) are calculated under three external E fields.

Figure 4.5 shows the slab model used in the DFT calculation. We construct
the slab by cleaving the bulk crystal. Both the wurtzite (0001)/(0001) slab
and the zinc blende (111)/(111) slab contain 5 layers of Ga and N. These two
have similar surface structures. Both top surfaces are terminated by Ga atoms,
while both bottom surfaces are terminated by N atoms.

The cleaved surfaces are metallic due to the partially filled dangling bonds.
To create semiconducting surfaces, we use fractional hydrogen to passivate the
dangling bonds as describe before. A Z = 5/4 hydrogen atom is placed 1.55
Å on top of the Ga to compensate its one dangling bond, and a Z = 3/4

39



Figure 4.5: The wurtzite (0001)/(0001) and the zinc blende (111)/(111) slabs
constructed by cleaving their bulk crystal.

hydrogen atom is placed 1.05 Å on top of each N to compensate its dangling
bond. All surface bands are either filled or empty, creating a band gap (around
2 eV) close to the DFT+U value of the fundamental band gap of the GaN
crystal. Therefore, without free electrons or holes, the passivated surfaces are
semiconducting.

In our DFT calculation, the slab and its images are separated by at least
10 Å vacuum. To simplify the calculation and its interpretation, all ions are
fixed at their ideal coordinates. To realize the predefined external E field, a
dipole layer is introduced in the vacuum region self-consistently, to achieve the
desired external E field. The DFT calculation uses the VASP package, with
the PBE functional and the PAW basis set. The plane wave cutoff is 400 eV.
An on-site Coulomb interaction U = 3.9 eV is applied to the Ga 3d orbital.

The internal E fields are extracted from the macroscopic electrostatic po-
tential. The surface charge density is obtained by integrating the macroscopic
charge density of both electrons and nuclei. The slabs with semiconducting
or metallic surfaces display very different behaviors. Here I will study them
separately.
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Slabs with two metallic surfaces

For the GaN slab with metallic surfaces, the internal E field does not change
significantly with the external E field. This internal E field is related to the
transferring of the free charge between the two metallic surfaces. Further tests
show that it mainly depends on the thickness of the slab and the properties of
the specific surface structures. The following equation describes the behavior,

Einternal =
∆V

L
, (4.8)

where L is the thickness of the slab. The potential difference ∆V is the
property of the two surfaces. Because both surfaces are metallic, if they have
different abilities to attract electrons, electrons will transfer between the two,
generating a potential difference ∆V across the slab. The transfer will stop
when the energy cost to overcome ∆V offsets the gain due to the transfer. The
value of Einternal for both wurtzite and zinc blende slab is -0.27 V/Å, despite of
their different bulk structures. This shows that ∆V is mostly determined by
the surfaces being exposed. Our further tests show that the surface energies
and structures converge very fast with thickness. Because in thicker slabs
less charge transfer is needed to generate the same ∆V , hence there is less
disruption to the electronic structures of the surface.

The surface charge is the sum of free charge and bound charge,

σ = σ0 + σ′. (4.9)

The free charge is the divergence of the electric displacement,

σ0 = ∇ ·D. (4.10)

The bound charge is the negative of the divergence of the polarization,

σ′ = −∇ ·P. (4.11)

For slabs with metallic surfaces, the free charge responds to the external E
field, keeping ∆V constant.

Slabs with two semiconducting surfaces

For the GaN slabs with semiconducting surfaces (i.e. passivated), if there is no
free charge in the system, the bound charge equals the total charge. Therefore,
we have

σ′ = σ = ϵ0(Eexternal − Einternal), (4.12)
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And
σ′ = P · n̂ = P0 · n̂+ (ϵ− 1)ϵ0Einternal. (4.13)

Therefore, the internal E field approximately follows the equation

Einternal =
Eexternal

ϵ
− P0 · n̂

ϵϵ0
, (4.14)

In these calculations, the dielectric constant ϵ is the high frequency one (ϵ∞)
since all of the ions are fixed, where n̂ is the normal direction of the surface.
The quantity P0 is the spontaneous polarization under the E = 0 condition.

Under zero external E field, the Zinc Blende (111) passivated slab has
zero internal E field, because it has zero spontaneous polarization. However,
wurtzite GaN has finite polarization along the (0001) direction. Our bulk
calculation yields P0 = −0.038C/m2 and ϵ∞ = 5.45 (Table 4.1). According
to Eq. 4.14, these gives Einternal = 0.08 V/Å, exactly the same as we observed
in fig. 4.6.

For the semiconducting slab, the potential drop across the slab is caused
by the polarization and the external E field. When the drop is greater than
the band gap, breakdown happens. Electrons transfer from the VBM of one
surface to the CBM of another, lowering the system’s total energy. In this
case, the two surfaces become metallic. The accumulated surface charge now
contains the free charge and the bound charge. The potential drop across the
slab is pinned to the band gap. The semiconducting slab then behaves like a
metallic one after breakdown.

Discussion

In the DFT studies of a specific surface, the slab usually has a passivated
(semiconducting) bottom surface, and a metallic or semiconducting top sur-
face. If both surfaces are semiconducting, the above mentioned discussions
apply. If one surface is semiconducting and another one is metallic, further
calculations indicate that its behavior is closer to the semiconducting slab sce-
nario, if the breakdown does not happen. This is the most favored situation,
because transfer of free charge between the two surfaces causes slow conver-
gence in DFT calculations. It also causes the total energy to converge much
slower with respect to the thickness of the slab.

4.1.7 Surface Energy and Chemical Potential

It is easy to compute surface energy only in the case where the slab is termi-
nated by two identical surfaces. This is natural only in special cases such

43



as wurtzite (1010) and zinc blende (110). For the simple polar surfaces,
i.e., wurtzite (0001)/(0001), zinc blende (111)/(111), the natural cleavage
yields two “conjugate” surfaces, one cation-terminated and the other anion-
terminated. The surface energy for each one of the two conjugate surfaces can
not be calculated through the slab model. Only the cleavage energy, which is
the total energy of the two conjugate surfaces, can be calculated this way. The
energy for zinc blende polar surfaces are uniquely defined because of its sym-
metry [62]. In fact, by constructing wedge-shaped geometries, the energy of
the zinc blende polar surfaces, i.e., (111) and (111), can be calculated [63]. The
wurtzite polar surfaces, i.e., (0001) and (0001), do not have absolute energies.
Adding a function,

C0 cos(θ), (4.15)

to the energy of all surfaces at the same time, does not affect physically ob-
servable properties [62]. Here θ is the angle between the surface and the c
direction. C0 is an arbitrary constant.

For the slab model, the sum of the energies for the two exposed surfaces is
well defined,

Esurf1 + Esurf2 = Etotal −
∑
i

Niµi, (4.16)

where Esurf1 and Esurf2 are surface energies, Etotal is the total energy of the slab,
Ni and µi are the number and chemical potential for each species, respectively.
Therefore, the absolute energy differences can be calculated for different recon-
structions on one surface, as long as another surface is kept unchanged during
the comparison.

The chemical potential is the energy to add or decrease one atom from the
system, assuming there is a reservoir for each species to equilibrate with. If two
surface reconstructions on the same surface have different number of atoms,
their relative energy difference depends on the chemical potential of those
species. The chemical potentials must follow some constraints. For example,
the chemical potential of Ga is bounded above by the chemical potential of
Ga metal,

µ(Ga) ≤ E(Ga metal). (4.17)

The chemical potential of N is bounded above by the chemical potential of the
N2 molecule,

µ(N) ≤ 1

2
E(N2). (4.18)

Also, if the bulk of the slab is GaN, the Ga and N atoms must be in equilibrium
with it,

µ(Ga) + µ(N) = E(GaN). (4.19)
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These conditions lead to the range of the Ga chemical potential to be

E(GaN)− 1

2
E(N2) ≤ µ(Ga) ≤ E(Ga metal). (4.20)

The range for the N chemical potential is

E(GaN)− E(Ga metal) ≤ µ(N) ≤ 1

2
E(N2). (4.21)

In our following studies, we also introduce O atoms into the system. Besides
the constraint on oxygen chemical potential from the O2 molecule,

µ(O) ≤ 1

2
E(O2), (4.22)

we must also considered possible compounds like Ga2O3 as the boundary,

2µ(Ga) + 3µ(O) ≤ E(Ga2O3). (4.23)

These two conditions combined, lead to

µ(O) ≤ 1

2
E(Ga2O3)−

3

2
µ(Ga). (4.24)

There is no lower bound for the O chemical potential; µ(O) = −∞ means no
O presence.

Eq. 4.19, Eq. 4.20, Eq. 4.21 and Eq. 4.24 are the conditions we considered
in our following studies of the GaN surface reconstructions with Ga, N and O
ad-atoms.

4.2 Reconstructions

4.2.1 Background

According to the X-ray photoelectron spectroscopy measurement, the surface
composition of the alloy is very different from the bulk [2]. The Zn content is
reduced while O content enhanced (see Table. 4.2). The Zn atom is volatile
under the nitridation condition. The presence of O atoms on GaN surfaces
has been studied for the (1010) surface. The high binding energy is caused by
the strong Ga-O bond and the electron counting rule [64].

From the transmission electron microscopy measurements, the (1011) and
(1011) surfaces dominate the sample. (Communication from Dr. James Ciston
at BNL) These semi-polar surfaces have many equivalents such as (1101),
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Table 4.2: The measurements of bulk and surface composition from Ref. [2].
In the experiment, the nitridation process is to improve the crystal quality.
This process also decreases the ZnO composition in the bulk.

nitridation bulk Zn/Ga surface atomic ratio
time (hours) (O/N) ratio Zn/Ga O/Ga N/Ga

5 0.28 0.19 0.43 0.54
10 0.17 0.18 0.38 0.44
15 0.13 0.11 0.41 0.59
20 0.10 0.05 0.51 0.53
30 0.05 0.02 0.56 0.48

(1101), etc. The alloy particle tends to form a polyhedron with three to six
(1011)-equivalent facets covering half of the particle and three to six (1011)-
equivalent facets covering another half.

Based on this information, we focus on the reconstructions of these two
surfaces with only Ga, N and O ad-atoms, using wurtzite GaN as the bulk
instead of the alloy. As an ongoing investigation, I only present our results
on the (1011) surface. These results are based on the calculations from our
collaborators Prof. Artem R. Oganov and Qiang Zhu.

4.2.2 Method

The slab model for the GaN (1011) surface simulation is shown in fig. 4.7. Our
DFT calculation uses the same parameters as our bulk alloy calculations in
the previous chapter, except that the plane wave cutoff is 400 eV and the k
point mesh is 8×4×1 for the surface unit cell. We use the dipole correction on
the electrostatic potentials to partly cancel the interactions between the slab
and its images. The bottom surface is passivated by fractional hydrogens. The
passivated surface is semiconducting, with no surface states in the fundamental
band gap of GaN. For trial calculations, the slab contains 5 layers of GaN,
with the top 2 layers being relaxed. To obtain accurate surface energies, we
use a slab containing 10 layers with top 5 layers being relaxed. Our testing
calculations suggest that the surface energy is converged to better than 0.05
eV per surface cell. Our surface calculations are restricted to within the 2× 2
surface cell.

We employ an evolutionary algorithm to explore the surface structures,
with the collaboration of Prof. Artem R. Oganov and his student Qiang Zhu.
The USPEX package developed by our collaborators has been successfully
applied to various bulk materials [65, 66]. It can find low energy structures
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Figure 4.7: (Upper) The slab model used for the GaN (1011) surface. The
bottom (1011) surface is passivated by fractional hydrogens. (Lower) Top view
of the simple cleaved surface, showing the primitive 1× 1 unit cell.
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efficiently. The evolutionary algorithm initially generates random structures as
the first generations (e.g. 20 structures). These initial structures are relaxed
by DFT. They are then ranked by a fitness function, based on the energy.
Structures with better fitness are more likely to be selected to generate new
structures (off-springs). For our surface searches, we considered two ways to
produce off-springs. (1) Heredity. Two structures are chosen from the previous
generation. They are randomly sliced at the same place. Then pieces from each
of the two structures are combined to generate the off-spring. (2) Mutation.
One structure is chosen. The atom coordinates are randomly moved by finite
amounts, or one atom is randomly added, or one atom is deleted. These
off-springs, combined with a few best structures from the previous generation,
produces the next generation. This process is repeated until no new low energy
structures can be found.

The calculations for searching stable reconstructions are conducted by our
collaborators Prof. Artem R. Oganov and Qiang Zhu. For our surface searches,
the fitness function is defined as the energy of the structure relative to the con-
vex hull (see fig. 4.8). From the convex hull, we can build the phase diagram.

4.2.3 GaN (1011)

For the GaN (1011) surface, the evolutionary algorithm explores approximately
500 structures (see fig. 4.8). The stable structures found during our search are
shown in fig. 4.9. Compared to the cleaved surface (fig. 4.7), structure (a)
has two Ga adlayers. Structure (b) has one Ga adlayer. Structure (c) has
the top N and half of the second N removed. Structure (d) has only the top
N removed. Structure (e) has an additional N at the bridging position of
the two top N atoms. The first 4 structures have been found by Akiyama
et al [67]. Structure (e), however, is non-intuitive. This demonstrates the
power of the automated searching by the evolutionary algorithm. All of the
stable structures are simple to construct. Compared to the cleaved surface,
the stable structures can be constructed through either vacancies or ad-atoms.
No complicated reconstructions have been found. For the Ga rich condition,
there are many intermediate structures between structure (a) and (b), lying
very close to the convex hull (see fig. 4.8). These structures can appear under
finite temperatures. For the N rich condition, however, most structures are
much higher in energy than the convex hull. None of the stable reconstructions
satisfies the electron counting rule (EC). Large reconstructions may satisfy the
EC rule. But the charge separation at long distance causes a penalty through
the Coulomb interaction, making large reconstructions less stable compared to
small reconstructions. From the convex hull, we construct the phase diagram
(fig. 4.10).
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Figure 4.8: Energies of structures explored by the evolutionary algorithm.
The vertices of the convex hull are the stable structures appearing in the phase
diagram. The slope of each section of the convex hull is where stable structures
can coexist. The zeros of the horizontal and vertical axes correspond to the
simple cleaved surface with relaxation. The chemical potentials are arbitrarily
chosen so the graph appears symmetrical.
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Figure 4.9: Side view and top view of the stable reconstructions. Large balls,
gallium; small balls, nitrogen.
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Figure 4.10: Zero temperature phase stability diagram of the GaN (1011)
surface. Each stable (minimum energy) section (i.e. (a), (b), ...) corresponds
to a stable structure shown in fig. 4.9.
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4.2.4 GaN (1011) with Oxygen

We employ the same method to search for reconstructions with O atoms. The
oxygen chemical potential is a new degree of freedom. Therefore, the phase
diagram is two-dimensional (fig. 4.11). The two major reconstructions are
structure (f) and (g). Compared to the cleaved surface, structure (f) has half
of the top N removed, half of the top N and all of the second N replaced by
O. Structure (g) has the top two N replaced by O. Similar reconstructions
for the (1010) surface have been reported [64]. These reconstructions are
favored because of the strong Ga-O bond and the electron counting rule. For
example, the simple cleaved surface has 3 nitrogen dangling bonds per surface
cell. Because each N dangling bond needs 3/4 electron to become filled, the
surface needs 9/4 electrons to satisfy the electron counting rule. For structure
(g), substituting 2 N with 2 O introduces 2 extra electrons. Therefore, it only
needs 1/4 electron to satisfy the electron counting rule.

More properties of this surface are still under investigation. Previous study
proposed a possible reaction mechanism for the water oxidation process on the
GaN (1010) surface [68]. Given these reconstructions, we are interested to test
if this mechanism works for the (1011) surface.
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Figure 4.11: (Upper) Phase diagram of the GaN (1011) surface with oxygen
present. Important reconstructions are labelled from (a) to (g). Structures
(a) to (e) are the reconstructions shown in fig. 4.9. (Lower) Side view and top
view of structure (f) and (g). Large balls, gallium; small gray balls, nitrogen;
small red balls, oxygen.
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Chapter 5

A Toy Model for Charge
Transfer

5.1 Introduction

When two atoms or molecules collide with each other, electrons might be
transfered from one to another. Sometimes the electron transfer means the
electronic state changes from one potential energy surface (PES) to another, as
shown in fig.5.1. If initially the electron comes from the nucleus with higher
binding energy, after the collision, there should be some probability for the
electron to be transfered to another nucleus, as long as the kinetic energy
permits. In this situation, non-adiabatic effects play an important role. Within
the adiabatic approximation, the system will always stay on one PES, no
electron transfer will happen.

The whole problem is too complicated to solve exactly. There are quite a
few approximation methods proposed, which are computationally affordable.
The key points are how to separate the system into a classical part and a
quantum part, and how these two subsystems interact with each other. Usu-
ally, the actions of the classical nuclei on the electrons are simple, while how
the electrons act on the nuclei are not clear. In this project, two methods
are investigated. In the Ehrenfest method, the nuclei evolve under an single
effective potential. In the Surface Hopping method, a stochastic method is
used to describe the nuclear motion.

To compare these approximate methods, we proposed a very simple model,
and treat the nuclei by exact quantum mechanics. Then the problem becomes
solving a time-independent Schrodinger equation. The scattering state we get
will give the electron transfer probability. We can compare the results with
various approximate methods.
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Figure 5.1: The schematic potential energy surfaces of the collision process.
The lower curve is the bound state. The upper curve is the antibonding state.
The two nuclei have slightly different binding energies. At large separation, the
adiabatic states are localized atomic orbitals. Thus, electron transfer means
change of the potential energy surface.
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Figure 5.2: Schematic illustration of the collision process. (a) For the initial
state, an electron comes with the nucleus from the right. (b) For one compo-
nent of the final state, the electron is reflected. (c) For the other component
of the final state, the electron is transferred to the other nucleus.

5.2 Description of the Model

This one-dimensional toy model has an electron transfer probability during a
collision, as shown in the fig. 5.2. In this model, there are two inequivalent
nuclei. The spin is completely ignored. Initially, the electron is coming with
one nucleus; after the collision, there is a possibility for the electron to be
transfered to the other nucleus. Assuming the potentials between the electron
and nuclei are V1 and V2 , and the potential between the two nuclei is U , the
Hamiltonian can be written as :

H =
p2

2m
+

P 2
1

2M1

+
P 2
2

2M2

+ V1(r −R1) + V2(r −R2) + U(R1 −R2). (5.1)

The nuclear repulsion U is chosen large enough at short range that both nuclei
reverse their velocities after colliding. Their probability to tunnel through each
other is very small. The potentials V1 and V2 are chosen so that only one bound
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state is relevant. Their bound states can be written as ϕ1 and ϕ2:(
p2

2m
+ V1(r −R1)

)
ϕ1(r −R1) = ϵ1ϕ(r −R1), (5.2)(

p2

2m
+ V2(r −R2)

)
ϕ2(r −R2) = ϵ2ϕ(r −R2). (5.3)

To simplify the problem, the initial kinetic energy of the system is small
enough, so that electron must bind to one or the other nucleus. That is,
there is not enough kinetic energy to ionize the system. Assuming that the
electron comes with the left nucleus, after the collision, there are two possi-
bilities: the electron can either go to the right, or go to the left, if the kinetic
energy permits. There are a few parameters we can change: the initial ki-
netic energy, the repulsion distance between the two nuclei, and the binding
potential of the electron.

5.3 Computational Methods

5.3.1 Full Quantum Mechanical Method

We only want to calculate the scattering eigenstate for this Hamiltonian. The
scattering state should have only one incoming component and two outgoing
components. The asymptotic form for the scattering solution of the Hamilto-
nian(Eq. 5.1) at R1 −R2 → ∞ is :

ψ = ψ1 + r(E) · ψ2 + t(E) · ψ3. (5.4)

The asymptotic form (R1 − R2 → ∞) for the incoming and outgoing compo-
nents are

ψ1 = ϕ1(r −R1) exp

[
−ikmr +M1R1

m+M1

]
exp [ikR2] , (5.5)

ψ2 = ϕ1(r −R1) exp

[
ik
mr +M1R1

m+M1

]
exp [−ikR2] , (5.6)

ψ3 = ϕ2(r −R2) exp [ik′R1] exp

[
−ik′mr +M2R2

m+M2

]
. (5.7)
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Here

~k =

√
(E − ϵ1)

/(
1

2(m+M1)
+

1

2M2

)
, (5.8)

~k′ =

√
(E − ϵ2)

/(
1

2(m+M2)
+

1

2M1

)
. (5.9)

The coefficients r(E) and t(E) are for reflection and transmission. According
to the definition of the probability flux (note: this is the definition of single
particle probability flux, in our case, there are three particles)

j =
~

2mi
(ψ∗∆ψ − ψ∆ψ∗) . (5.10)

The reflection and transmisson probabilities R(E) and T (E), and conservation
of probability flux relation, are

R(E) = |r(E)|2, (5.11)

T (E) = |t(E)|2 · k
′

k
, (5.12)

R(E) + T (E) = 1, (5.13)

respectively.

5.3.2 Ehrenfest Method

We prefer to call this method “the average classical trajectory method.” We
assume that a single Newtonian trajectory R(t) describes the nuclei. The clas-
sical nuclei move on a single effective potential. The effective potential is a
self-consistently weighted average of different adiabatic potential energy sur-
faces. This approach has limitations, especially when the adiabatic potential
surfaces are very different. Then the nuclear motion can never be described
by a single trajectory. But still it might provide some useful results.

Here is a simplified derivation. The classical nuclear coordinate is R. The
total Hamiltonian is

H = TN +H0(r, R). (5.14)

TN is the kinetic energy of nuclei. H0 contains all the electronic part Hel and
the nuclear potential energy UN(R). The nuclei evolve as a single trajectory
R(t) on an effective potential H0.
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First we construct the electronic wave function. Suppose we have an adi-
abatic basis {ψj(r;R)}, and H0 is diagonal on this basis. We assume the
existence of an electronic wavefunction ψ(r;R). In full generality, it can be
expanded as

ψ(r,R(t), t) =
∑

ci(t) · ψj(r;R(t)). (5.15)

Put it into i~ ∂
∂t
ψ = H0ψ, and project onto ψk. We get

i~ ċk + i~
∑
j

cj

⟨
ψk

∣∣∣∣ ∂∂t
∣∣∣∣ψj⟩ =

∑
j

cj ⟨ψk |H0|ψj⟩. (5.16)

After making the substitutions:⟨
ψk

∣∣∣∣ ∂∂t
∣∣∣∣ψj⟩ =

⟨
ψk

∣∣∣∣ ∂∂R
∣∣∣∣ψj⟩ · Ṙ = dkj · Ṙ (5.17)

⟨ψk |H0|ψj⟩ = Vkj, (5.18)

we get

i~ ċk =
∑
j

(
Vkj − i~Ṙ · dkj

)
cj. (5.19)

Note that in the adiabatic representation {ψj(r;R)}, the matrix element Vkj(R)
is diagonal,

Vkj = δkjEj, (5.20)

where Ej is the PES for the ground state (j = 1) and the excited states (j > 1).
The non-adiabatic coupling dkj(R) is anti-symmetric,

dkj(R) = −djk(R). (5.21)

The “Coupling” matrix dkj plays the role of the leading term in the non-
adiabatic coupling. The second order term, which involves the second deriva-
tive of R, does not appear here. Usually this is enough.

The trajectory R(t) is still unknown. To calculate the nuclear trajectory,
one way is to use the weighted “effective” potential:

V (R) = ⟨ψel |H0|ψel⟩ . (5.22)
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In the adiabatic representation,

V (R) =
∑
j

|cj|2 · Ej(R). (5.23)

Then, Newtonian evolution is used,

R̈ =
1

Meff

(
−∂V
∂R

)
. (5.24)

Equation 5.19 and 5.24 can be integrated together, giving the time dependence
of the probabilities |cj(t)|2 on different surfaces.

5.3.3 Surface Hopping Method

The surface hopping method has a few variants, here we only considered the
Fewest Switches Algorithm proposed by Tully et al. [69] The argument is that,
it is too expensive to treat the nuclei quantum mechanically, but it is over
simplified to just considered a single effective potential. Since the dynamics
of the nuclei on different potential energy surfaces may be very different, they
need to be treated accordingly. The energy and momentum for each branch
must be conserved separately, not just the total energy and momentum.

The surface hopping method achieves this requirement by considering a
swarm of trajectories instead of only one trajectory. In this method, the tra-
jectory evolves on only one PES at any particular time, interrupted by random
switches to another PES. It is essentially a stochastic method. The nuclear
wave function is replaced by a distribution of trajectories; the phase of the
nuclear wave function is completely ignored. This might cause some problem
when the coherence of nuclei is important. The surface hopping method should
provide better results than the Ehrenfest method. But, it is very expensive,
since a large number of trajectories is calculated instead of only one; and turns
out not to be always better.

For each trajectory, the electronic wave functions are treated the same way
as in the Ehrenfest method. But the nuclear motions are governed by only
one PES at a each time. For each time step ∆t, the trajectory has a certain
probability gkj to hop from its current PES k to another PES j. The gkj must
ensure that, for a large number of trajectories, the state population of nuclei
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approximates the correct one. For the fewest switches algorithm,

gkj =
∆tbjk
akk

, (5.25)

where bkj =
2

~
Im
(
a∗kj · Vkj

)
− 2Re

(
a∗kjṘ · dkj

)
, (5.26)

and akj = ck · c∗j . (5.27)

In the numerical calculation, at each time step, a random number generator is
used to decide if a surface hopping will happen. And if the hopping happened,
the kinetic energy of the nuclei is adjusted to conserve the energy and momen-
tum. Thus, in this algorithm, for each branch, the energy and momentum are
guaranteed to be conserved.

After running a lot of trajectories, the transfer probability is given by
counting how many trajectories are on the excited potential energy surface.

5.4 Numerical Results and Discussion

5.4.1 the Approximate Adiabatic Representation

To proceed, we must first calculate the PES and relevant non-adiabatic cou-
pling term. The ideal way is to solve the 1d Schrodinger equation exactly.
However, for large nuclear separation, it is hard to solve exactly. Also, it is
even harder to calculate the non-adiabatic coupling term, because it involves
the derivative of the nuclear coordinates.

Thus, we contruct the approximate adiabatic eigenstates by the linear com-
bination of the atomic eigenstates. In this project, the mass of the nuclei
is chosen to be 30 electron masses. The binding potentials for the nuclei
are V1 = −0.9e−|x| and V2 = −1.0e−|x|. The binding energies are −0.3513,
−0.4043a.u., respectively. The repulsion between the two nuclei is 1

(R/R0)6
. The

calculated PES (Ej, Eq. 5.20) and non-adiabaic coupling term (dkj, Eq. 5.17)
are shown in fig. 5.3.

To evaluate the accuracy of this approximation, the exact eigenstates are
calculated at R = 2.0a.u. for Hel = Tel + V1(r − R/2) + V2(r + R/2) (the
nuclear repulsion potential UN(R) is excluded). The exact eigenenergy for
ground and excited states are −0.653 and −0.255, the approximate energies
are −0.639 and −0.243, the error is about 2% and 5%, respectively. The
projection ⟨ψexact|ψapproxi⟩ = 0.99. For most calculations in this project, the
area of interest is R > 2.0a.u., so it is an acceptable approximation. The only
problem is that, I don’t know the accuracy of the non-adiabatic coupling term.
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Figure 5.3: The calculated PES (Ej, Eq. 5.20) and non-adiabaic coupling term
(dkj, Eq. 5.17). The binding potential for the nuclei are V1 = −0.9e−|x| and
V2 = −1.0e−|x|. The binding energies are −0.3513, −0.4043a.u., respectively.
The repulsion between these two nuclei is 1 /(R/R0)

6 , with the repulsion pa-
rameter R0 = 1.5a.u.. the mass of the nuclei is chosen to be 30 electron masses.
The coupling is the strongest around R = 5a.u..

In fig. 5.3, the coupling term is small for very small nuclear separation, I don’t
know if this is due to the approximation or if it is the correct behavior.

For the Ehrenfest and surface hopping method, only the matrix elements
and coupling terms are needed. Details of the electronic wave function are
unimportant.

5.4.2 Full Quantum Mechanical Method

If two nuclei have different binding potentials, as long as the kinetic energy
permits, the electron transfer is permitted, even if the final state has higher
energy than the initial state. In the following, we study the case where the
electron starts from the lower PES.

A typical exact scattering solution is shown in fig. 5.4. The exact solution
correctly reproduced the plane-wave behavior of each component: electron
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Figure 5.4: The absolute value and the real part of an exact solution. The
y-axis is the distance between these two nuclei. The x-axis is the distance
from the electron to the center of these two nuclei. On the right side, the
incoming and out going components interfere with each other, causing the
oscillation of the of absolute value. Because these components have different
kinetic energies, the periods of the left and right sides are different (illustrated
as white lines in the second graph). The parameters here are the same as
fig. 5.3, except that the repulsion parameter R0 = 1.6a.u.. The total initial
kinetic energy T0 is 0.10a.u., while the binding energies to these two nuclei are
−0.3513, −0.4043a.u., respectively.
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Figure 5.5: The electron transfer probability as a function of initial kinetic
energy T0(a.u.). The repulsion parameter for this graph is R0 = 4.0(a.u.).
Other parameters are the same as fig. 5.3. Generally, both Ehrenfest and
surface hopping methods agree with the exact solution. Note the cutoff around
T0 = 0.5(a.u.), which is the gap between the binding energies of these two
nuclei. The Ehrenfest method gives non-zero transfer probability below this
energy, where the transfer is forbidden by energy conservation.

coming in, reflected, and transferred, as shown in Eq. 5.5 to Eq. 5.7. The
electron transfer probabilities are calculated for different repulsion parame-
ters(fig. 5.6), and different initial kinetic energies(fig. 5.5). These results are
used to compare the various approximate method.

5.4.3 Ehrenfest Method

In the Ehrenfest Method, when integrating the equation, we can get the time
dependence of the population distribution and the effective potential(fig. 5.7).
Nuclei evolve on this single effective potential. The two physically distinct
branches are replaced by a single trajectory with a single value of nuclear
kinetic energy which is an average of the actual kinetic energies of the two
physical branches.

The comparison with the full quantum mechanical solution is shown in
fig. 5.5 and fig. 5.6. Generally, it agrees well. But for small kinetic energy,
it gives non-zero transfer probability, even when the transfer is forbidden by
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Figure 5.6: The electron transfer probability as a function of repulsion pa-
rameter R0. The total initial kinetic energy for this graph is T0 = 0.10a.u..
Other parameters are the same as fig. 5.3. For Ehrenfest and surface hopping
method, it is hard to tell which one is better.

energy conservation. This is because it only conserves average energy and
momentum.

The oscillation in fig. 5.6 is shown in detail in fig. 5.8. For smaller R0, the
system will spend more time in the strong coupling region, the population will
oscillate between these two states in time.

5.4.4 Surface Hopping Method

The surface hopping method is very expensive. A large number of trajectories
is needed to get a statistically significant results. The convergence is very slow,
as shown in fig. 5.9. In this calculation, 10000 trajectories are calculated, giving
the transfer probability to be 0.057±0.003. Thus, if the number of trajectories
is not large enough, the results are really not that accurate.

Consistency is also a problem for the surface hopping method. We use a
swarm of trajectories to describe the nuclei, and a wave function to describe
the electron. There are two ways to get the population distribution. One
way is to calculate the ratio of trajectories that are on the upper PES. The
other way is to average the probabilities on the upper PES from the electronic
wave function for all trajectories. Consistency requires that the population
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Figure 5.7: The effective potential relative to the ground and the excited PES.
It is calculated self-consistently. The two physically distinct branches (the
ground and the excited PES) are replaced by a single trajectory (the effective
potential). The effective potential depends on the evolution of the electronic
wave function. Therefore the inbound and the outbound parts do not overlap.
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Figure 5.8: The time dependence of the population of the excited state. Num-
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the ground and excited states.
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Figure 5.9: The transfer probability calculated from the collection of trajecto-
ries. KE= 0.10(a.u.), R0 = 4.0(a.u.). It converges slowly.
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Figure 5.10: The state population of the trajectories and the electrons on the
excited PES. ( KE = 0.10, R0 = 1.5(a.u.)). They are different, which causes
the consistency problem.

distribution of the trajectory must equal the average state population of the
electron. This is not accurately obeyed, as shown in fig. 5.10. Surprisingly, we
found that the consistancy is not related to the accuracy of the results.

Actually, because of the “frustrated” hops (hopping forbidden by the en-
ergy conservation), the consistency is not guaranteed. Also, there are issues
about the decoherence effect. Thus, it is really hard to tell when surface
hopping method is better than the Ehrenfest method(see fig. 5.5 and fig. 5.6).

5.5 Conclusion

In this project, a simple toy model is investigated. The results from various
approximate methods are compared with the exact solution. Generally, the
surface hopping method guarantees the energy and momentum conservation.
The Ehrenfest method is easy to calculate. In our model, for small kinetic
energy and weak coupling, the surface hopping method gives much better
results. But for general cases, we don’t know which one is better.
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5.6 Appendix: Full QuantumMechanical Method

The general process is as follows: first, by setting up a coordinate transforma-
tion, this problem can be reduced to a 2D partial differential equation. With
the known asymptotic form of the solution, proper boundary conditions can
be constructed. By using a standard finite element method, I can calculate
the solution of this equation, then extract the coefficients r(E) and t(E).

5.6.1 Coordinate Transformation

A coordinate transformation will separate the center of mass coordinate of the
system, reducing the problem into a 2D equation.

x =

√
2m(M1 +M2)

m+M1 +M2

(
r − M1R1 +M2R2

M1 +M2

)
, (5.28)

y =

√
2M1M2

M1 +M2

(R1 −R2) , (5.29)

z =
√
2(m+M1 +M2)

(
mr +M1R1 +M2R2

m+M1 +M2

)
. (5.30)

Note that the x coordinate is proportional to the distance between the electron
and center of the two nuclei, the y coordinate is proportional to the distance
between the two nuclei, the z coordinate is proportional to the center of mass
coordinate of the whole system. The scaling factors in x, y, z make the kinetic
energy operator a Laplacian operator. The unit for x, y, z is

√
mass ·distance.

Under this transformation, the Hamiltonian becomes

H = − ~2
(
∂2

∂2x
+

∂2

∂2y
+

∂2

∂2z

)
+ V (

√
m+M1 +M2

2m(M1 +M2)
x−

√
M2

2M1(M1 +M2)
y)

+ V (

√
m+M1 +M2

2m(M1 +M2)
x+

√
M1

2M2(M1 +M2)
y)

+ U(

√
M1 +M2

2M2M2

y). (5.31)

The asymptotic form of the solution becomes

ψ = ψ1 + r(E) · ψ2 + t(E) · ψ3. (5.32)
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Where

ψ1 = ϕ1

(√
m+M1 +M2

2m(M1 +M2)
x−

√
M2

2M1(M1 +M2)
y

)

× exp

−ik × √
(m+M1 +M2)m

2(M1 +M2)

1

m+M1

×

x+√(m+M1 +M2)M1

mM2

y


= ϕ1

(√
m+M1 +M2

2m(M1 +M2)
x−

√
M2

2M1(M1 +M2)
y

)
× exp [ −i−→q · −→r ] ,

(5.33)

ψ2 = ϕ1

(√
m+M1 +M2

2m(M1 +M2)
x−

√
M2

2M1(M1 +M2)
y

)

× exp

ik × √
(m+M1 +M2)m

2(M1 +M2)

1

m+M1

×

x+√(m+M1 +M2)M1

mM2

y


= ϕ1

(√
m+M1 +M2

2m(M1 +M2)
x−

√
M2

2M1(M1 +M2)
y

)
× exp [ i−→q · −→r ] ,

(5.34)

ψ3 = ϕ2

(√
m+M1 +M2

2m(M1 +M2)
x+

√
M1

2M2(M1 +M2)
y

)

× exp

−ik′ × √
(m+M1 +M2)m

2(M1 +M2)

1

m+M2

×

x−√(m+M1 +M2)M2

mM1

y


= ϕ2

(√
m+M1 +M2

2m(M1 +M2)
x+

√
M1

2M2(M1 +M2)
y

)
× exp

[
−i

−→
q ′ · −→r

]
.

(5.35)

The −→q and
−→
q′ are just wave vectors in the new coordinates.
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Figure 5.11: The boundary is marked as ABCDE. The parameters a and b
should be large enough that the asymptotic form is accurately obtained

5.6.2 Construction of the Boundary Conditions

In the asymptotic form ψ = ψ1+r(E) ·ψ2+ t(E) ·ψ3, there are two unknowns.
However, the boundary conditions can be constructed in a way that these two
unknowns do not appear.

Considered the region shown in figure. 5.11. On boundary AE, y → 0,
the two nuclei overlap with each other. If the repulsion between them is huge,
then ψ → 0. On boundaries AB and DE, if parameter a is large enough,
which means the electron is far away from the nuclei, we also get ψ → 0.

On boundary CD, as shown on fig. 5.2(a) and fig. 5.2(b), the electron is
far away from the left nucleus, r−R2 is large, so ϕ3(r−R2) → 0, which means

ψ3 → 0. If we choose CD as y = −
√

mM2

(m+M1+M2)M1
x + b, then, on CD, ψ

becomes

ψ|CD → ψ1 + r(E)ψ2 (5.36)

= ϕ1(

√
m+M1 +M2

2m(M1 +M2)
x−

√
M2

2M1(M1 +M2)
y)×

(
e−iqyb + r(E)eiqyb

)
(5.37)

= ϕ1(...x− ...y)× C(b, E). (5.38)
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The coefficient C(b, E) is a constant depending on b and E, it can be assigned
as 1, because the wave function can be scaled by an arbitrary constant. Thus,
on CD, the boundary values are known.

On boundary BC, similar to CD, the electron is far away from the right
nucleus, ϕ1(r −R1) → 0. This leads to ψ1 → 0, ψ2 → 0, and ψ becomes

ψ|BC → t(E) · ψ3. (5.39)

Choose BC as y =
√

mM1

(m+M1+M2)M2
x+ b , then, on BC

∂ψ

∂−→n
→ t(E)

∂ψ3

∂−→n
(5.40)

= t(E)ψ3 × (ik′)

(
m+M1 +M2

m+M2

√
M2

2(M1 +M2)M1

)
(5.41)

= ψ × (ik′)

(
m+M1 +M2

m+M2

√
M2

2(M1 +M2)M1

)
(5.42)

= D(E)× ψ. (5.43)

So, on BC, the value of the normal logarithmic derivitive (∂ψ/∂−→n ) /ψ is
known.

In conclusion, on AB,DE,AE, ψ → 0 , on BC, ∂ψ
∂−→n → D(E)×ψ, on CD,

ψ = ϕ1(...x − ...y) × C(b, E). For a definite energy E, D(E) is fixed, only
C(b, E) is unknown, but it can be set to any constant like 1.

5.6.3 Discretization of the Differential Equation

The partial differential equation is discretized by a standard finite element
method. Here are some details in the discretization process. First, the domain
is decomposed into triangles shown in fig. 5.12. Each triangle has six nodes.
The nodes are shared by the adjacent triangles. (Normally, 3-nodes triangle is
used. But in this calculation, 6-nodes triangle is much better.) The values of
ψ(r) on each node form an unknown vector ψi, where i is used to label each
node on the entire domain. By choosing a proper set of basis function {vi(r)},
ψ(r) can be written as

ψ(r) ≈
∑
i

ψi · vi(r). (5.44)
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Figure 5.12: An example of decomposition of the domain. In our case the
domain shown in fig. 5.11 is a little more irregular, but it can be decomposed
into triangles in a similar way. Each triangle is a 6-nodes quadratic element,
with half of its nodes located at the center of the edges.

Apparently, vi(r) satisfy

vi(rj) = δij. (5.45)

In our calculation, the basis function vi(r) is quadratic on each triangles. By
Eq. 5.45, they can be uniquely decided. Thus,

∑
i ψi · vi(r) is unique, contin-

uous and piecewise-quadratic throughout the domain.
The differential equation is discretized by projecting on to each basis func-

tion. Starting from

∇2 ψ(r) + u(r) ψ(r) = 0, (5.46)

project on to vi(r), ∫∫
vi ∇2 ψ +

∫∫
vi u ψ = 0, (5.47)

apply the Gauss divergence theorem,∮
vi

∂ψ

∂−→n
−
∫∫

∇vi · ∇ψ +

∫∫
vi u ψ = 0, (5.48)

and put in the discretized form of ψ(r) =
∑

j ψj · vj(r),∮
vi

∂ψ

∂−→n
−
(∫∫

∇vi · ∇vj
)
· ψj +

(∫∫
vi u vj

)
· ψj = 0 (sum over j).

(5.49)

The exact form of all vi(r) are known. By putting in the boundary conditions,

73



finally we get ∑
j

Aij · ψj = bi. (5.50)

This is the discretization process.

5.6.4 Numerical Solution and Calculation of R(E) and
T (E)

In our calculation, typically, the linear equation (Eq. 5.50) contains a half
million unknowns, the sparse matrix Aij contains ten million non-zeros. This
equation is solved by direct LU decomposition method using PETSC and
SuperLU on Seawulf Cluster.

Figure 5.13 is a typical solution of this equation, with the potential between
the nucleus and the electron as −e−|x|. and the potential between the nuclei
as 1

(r/R0)6
. Both nuclei have the same mass, 30 atomic unit. The total kinetic

energy is 0.1 Hartree, which is much lower than the gap between the ground
state and excited state.

When the solution is ready, coefficients r(E) and t(E) can be calculated
by fitting the solution to the asymtotic form as shown in fig.

ψ =
ψ1 + r(E) · ψ2 + t(E) · ψ3

e−iqyb + r(E)eiqyb
. (5.51)

In the top right area in fig. 5.11, the solution is

ψasymptotic =
ψ1 + r(E) · ψ2

e−iqyb + r(E)eiqyb

= ϕ1(...x− ...y)× exp [−i−→q · −→r ] + r(E) exp [i−→q · −→r ]
exp [−iqyb] + r(E) exp [iqyb]

. (5.52)

The only parameter that needs to be fitted is r(E). (I also fit/relax the −→q . It is
proportional to the momentum, because −→q is related to the phase in Eq. 5.52.
A very small difference will result in huge error. It turns out that if I relax
−→q a little, usually less than 1% , the results can be improved a lot). The
fitting is done by minimizing the sum

∑
i |ψasymptotic − ψcalculated|2 in the top

right area in fig. 5.11. The minimization is done by using the multidimensional
minimization function in the GSL library. The transfer amplitude t(E) can be
calculated in a similar way.

Typically, the differences between the calculated solution and the asymp-
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Figure 5.13: A typical solution, shown as abs(ψ) and real(ψ), respectively.
Note that the coordinates are the transformed ones (Eq. 5.30). The potential
between the nucleus and the electron is −e−|x|. The potential between the
nuclei is 1

(r/R0)6
. Both nuclei have the same mass, 30 electron masses. The

total kinetic energy is 0.1 Hartree, which is a little higher than the gap between
the ground state and excited state(0.05 Hartree).
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totic form can be kept under 1%, namely

max(|ψcalculated(r)− ψasymptotic(r)|) / max(|ψcalculated(r)|) < 1%. (5.53)

Both the magnitude and phase of r(E) and t(E) can be calculated. However,
the magnitude is more stable, while the phase is less stable.

When r(E) and t(E) are known, the calculation of reflection and transmis-
sion probability R(E) and T (E) is straightforwad using Eq. 5.11 and Eq. 5.12.
Then the conservation law R + T = 1 can be tested.
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