

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Packet Scheduling in Optical Switches and
Interconnects

A Dissertation Presented

by

Lin Liu

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

May 2011

Stony Brook University

The Graduate School

Lin Liu

We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby
recommend acceptance of this dissertation.

Yuanyuan Yang – Dissertation Advisor
Professor, Department of Electrical and Computer Engineering

Sangjin Hong – Chairperson of Defense
Associate Professor, Department of Electrical and Computer Engineering

Alex Doboli
Associate Professor, Department of Electrical and Computer Engineering

Esther M. Arkin
Professor, Department of Applied Mathematics & Statistics

This dissertation is accepted by the Graduate School.

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Packet Scheduling in Optical Switches and Interconnects

by

Lin Liu

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2011

Optical interconnects and switches are widely considered as a promising candi-

date to provide high and ultra-high speed interconnection. This thesis addresses

several important issues and proposes solutions in packet scheduling and perfor-

mance evaluation for various optical switching architectures, including: (1) op-

timal packet scheduling for output-buffered optical switches with limited-range

wavelength conversion capability; (2) admissible traffic and maximum through-

put for input-buffered optical switches; (3) packet scheduling in single-wavelength

and wavelength-division-multiplexed (WDM) OpCut switches, a low-latency optical-

electronic hybrid switch architecture; (4) energy-aware routing in hybrid optical

networks-on-chip (NoC).

In recent years, switches and interconnects draw increasingly more attention due to the

iii

fact that they tend to become a bottleneck at all levels: intra-chip, chip-to-chip, board

level, and computer networks. There are many requirements posed on an interconnect

network, such as low latency, high throughput, low error rate, low power consumption,

as well as scalability. Finding a solution that can satisfy all these needs is a non-trivial

task.

Due to the huge bandwidth and low error rate, optical interconnects and switches are

widely considered as a promising candidate for future high and ultra-high speed in-

terconnect networks. As key topics in the development of optical switching networks,

scheduling and performance evaluation have been attracting considerable research in-

terest. While there has been extensive research in these fields for electronic networks,

most of them cannot be directly leveraged for optical networks - on one hand, some

components are still missing in optical domain, for example optical random access

memory (RAM); on the other hand, the solutions for electronic networks do not take

into consideration unique characteristics of optics, such as the capability of wavelength

conversion.

This dissertation addresses several important issues and proposes solutions in packet

scheduling and performance evaluation for various optical switching architectures, in-

cluding (1) the Augment to Full packet scheduling algorithm that maximizes through-

put and minimizes average queuing delay simultaneously for output-buffered optical

switches, making use of limited-range wavelength conversion; (2) a new fiber-delay-

line (FDL) based input buffering fabric that is able to provide flexible buffering delay,

and a weight-based scheduling algorithm, named Most Packet Wavelength-Fiber Pair

First (MPWFPF), that delivers 100% throughput for input-buffered optical switches at

speedup 1; (3) a basic three-stage scheduling procedure for the OpCut switch, further-

iv

more, a pipeline mechanism for single-wavelength OpCut switches to relax time con-

straint and improve system throughput, and NP-hardness and inapproximability proof

for the optimal scheduling problem in WDM OpCut switches, as well as bounded ap-

proximation algorithms; (4) an energy-aware routing mechanism for hybrid optical

NoCs.

v

Contents

List of Figures x

List of Tables xvii

Acknowledgements xviii

1 Introduction 1

1.1 Basic Switch Architectures and Packet Scheduling Algorithms 1

1.2 Motivation for This Dissertation . 2

1.3 Contributions . 4

1.4 Dissertation Outline . 6

2 Optimal Packet Scheduling in Output-Buffered WDM Optical Switches 7

2.1 WDM Optical Switch Model . 8

2.1.1 Wavelength Conversion Model . 8

2.1.2 WDM Switch Architecture . 9

2.2 Network Flow Approach for Finding an Optimal Schedule 12

2.3 The New Scheduling Scheme . 15

2.3.1 Preliminaries . 15

vi

2.3.2 Schedule Construction Algorithm . 17

2.3.3 Augment to Full Algorithm . 19

2.4 Correctness Proof of the New Scheduling Scheme 26

2.4.1 Correctness of the Schedule Construction Algorithm 27

2.4.2 Correctness of the Augment to Full Algorithm 28

2.5 Implementation and Complexity Analysis . 30

2.6 Performance Evaluations . 32

2.7 Conclusions . 36

3 Achieving 100% Throughput in Input-Buffered WDM Optical Packet Switches 40

3.1 Background and Related Work . 41

3.2 Input-Buffered WDM Optical Packet switches . 44

3.2.1 Wavelength Conversion . 44

3.2.2 Controllable FDL Buffer . 45

3.2.3 Admissible Traffic for WDM Packet switches 47

3.3 Most-Packet Wavelength-Fiber Pair First Algorithm 49

3.4 WDM-iSLIP Algorithm . 57

3.5 Performance Evaluations . 62

3.5.1 Average Buffering Delay . 63

3.5.2 Packet Loss Probability . 64

3.6 Conclusions . 65

4 Packet Scheduling in the OpCut Switch - Single Wavelength Scenario 71

4.1 Related Work . 73

4.2 The OpCut Switch . 75

4.3 The Basic Packet Scheduler for the OpCut Switch 76

vii

4.3.1 Notations and Basics of the Scheduler . 77

4.3.2 Queueing Management . 78

4.3.3 The Basic Scheduling Algorithm . 79

4.4 Pipelining Packet Scheduling . 81

4.4.1 Background and Basic Idea . 82

4.4.2 Case of k = 2 . 83

4.4.3 Case of k > 2 . 91

4.4.4 Adaptive Pipelining . 93

4.5 Performance Evaluation . 95

4.5.1 Cut-Through Ratio . 96

4.5.2 Average Packet Delay . 99

4.5.3 Adaptive Pipelining . 100

4.6 Conclusions . 101

5 Packet Scheduling in the OpCut Switch - WDM Scenario 102

5.1 System Model . 103

5.1.1 Switch Architecture . 103

5.1.2 Notations . 105

5.1.3 Packet Queue Management . 106

5.2 Basics of the Scheduler . 108

5.3 Packet Scheduling Algorithms . 109

5.3.1 Problem Formalization . 111

5.3.2 NP-Hardness and Inapproximability Proof 116

5.3.3 The Longest-or-Heads (LOH) Approximation Algorithm 121

5.3.4 Implementation of the LOH Algorithm 123

viii

5.3.5 Variations of LOH . 125

5.4 Performance Evaluation . 125

5.4.1 Cut-Through Ratio . 126

5.4.2 Average Packet Delay . 127

5.5 Conclusions . 128

6 Energy-Aware Routing in Hybrid Optical Networks-on-Chip 130

6.1 Optical NoC . 132

6.2 Energy-Aware Routing in Optical NoCs . 134

6.2.1 Energy Consumption for Routing a Message 134

6.2.2 The Energy-Aware Routing Problems . 136

6.2.3 Energy-Aware Routing in Different Topologies 141

6.3 Some Extensions . 147

6.3.1 Optical Burst-Switched NoC . 147

6.3.2 Energy-Aware Adaptive Routing in Optical NoC 151

6.4 Conclusions . 152

7 Conclusions 153

Bibliography 155

ix

List of Figures

2.1 The wavelength conversion model for a switch with W = 6 and d = 2. 8

2.2 The output-buffered WDM optical switch. The output buffer at each output port is

implemented by B + 1 fiber delay lines. 10

2.3 The physical and abstract buffer for an output wavelength channel. At any time

all the physical buffer units in the same column can store no more than one packet

in total, otherwise collision would occur at the switch output. Thus, all physical

buffer units in the same column can be abstracted as a single logical buffer slot, and

the buffer slots of all columns form a queue. In each time slot, the head-of-queue

packet leaves the switch and more than one packet may join the queue. 11

2.4 (a) An example of the flow graph for d = 1,W = 4 and B = 2, where the number

of packets arriving in the current time slot on each wavelength is 2, 1, 1 and 2,

respectively. The number above each edge between s and I represents the capacity

of the edge. The capacity of edges between I and O and between Q and t is infinite,

while the capacity of edges between O and Q is 1. In the graph, all queue slots are

available on wavelength 2, while no queue slot is available on wavelength 4. (b)

The corresponding request graph. 14

x

2.5 An example of Join Shortest Queue. The number on an edge indicates the number

of assigned packets. (a) The request graph. (b) JSQ failing to find an optimal

schedule. (c) An optimal schedule. 17

2.6 Vectors I and O of a schedule. 18

2.7 A simple blocking scenario (a) The request graph of wavelength 1 and 2 (the rest

wavelengths are assumed of no interest hence not shown). (b) Iteration 0. Packets

are scheduled to queue slots with index 0 on both wavelengths. (c) Iteration 1.

Scheduling packets to queue slots with index 0 or 1. Queue slot with index 0 on

wavelength 2 is blocked by queue slot with index 1 on wavelength 1. 22

2.8 Applying the Augment to Full Algorithm to an example request graph. The number

on an edge indicates the number of packets assigned. 25

2.9 Packet loss probability versus buffer length with ρ = 0.8, N = 16,W = 16. (a)

Uniform Bernoulli traffic. (b) Non-uniform burst traffic with geometric distribution. 33

2.10 Packet loss probability versus buffer length with ρ = 0.8, N = 8,W = 4. (a)

Uniform Bernoulli traffic. (b) Non-uniform burst traffic with geometric distribution. 33

2.11 Average packet queuing delay versus buffer length with ρ = 0.8, N = 16,W = 16.

(a) Uniform Bernoulli traffic. (b) Non-uniform burst traffic. 35

2.12 Average packet queuing delay versus buffer length with ρ = 0.8, N = 8,W = 4.

(a) Uniform Bernoulli traffic. (b) Non-uniform burst traffic. 36

3.1 Architecture of the input-buffered WDM optical packet switch. 44

3.2 The basic architecture of conventional feed-forward FDL buffers. 45

3.3 A controllable FDL with multiple “exits.” . 46

xi

3.4 Formalizing the scheduling into a network flow problem. Node sets I , O and

W represent input fibers, output fibers and input wavelength channels, respec-

tively. For each edge between a node in W and an input of a switching block,

a weight is assigned which equals to the number of buffered packets belonging to

the corresponding input wavelength / output fiber pair. MPWFPF finds a maximum

weighted flow in the flow graph in each time slot. 54

3.5 Example of one iteration of WDM-iSLIP. (a) Request step. Each input wavelength

channel that is currently not idle sends 2 requests. (b) Grant step. Both y21 and

y12 grant the request from x11 since it is of the highest priority among all received

requests according to their IF and AW pointers. (c) Accept step. x11 accepts the

grant from y21 because y21 has higher priority than y12 based on the OF pointer

of x11. Then the OF pointer of x11 is updated to point to output fiber 1, which

triggers the update of the AW pointer of x11 to point to wavelength 2. (d) Round

robin pointers before the current iteration. (e) Updated round robin pointers after

the current iteration. 60

3.6 Buffering delay of MPWFPF and WDM-iSLIP with different number of iterations,

i. The number of fibers N = 8, the number of wavelengths per fiber k = 8,

conversion density d = 0.1 and FDL length L = 105. The delay (Y axis) is plotted

in logarithmic scale. 66

3.7 Buffering delay of MPWFPF and WDM-iSLIP with different number of iterations,

i. The number of fibers N = 32, the number of wavelengths per fiber k = 4,

conversion density d = 0.2 and FDL length L = 105. 67

3.8 Buffering delay of MPWFPF and WDM-4SLIP under different wavelength con-

version densities. N = 8, k = 8, offered load = 0.8, FDL length L = 105. 68

xii

3.9 Buffering delay under WDM-iSLIP with different l, and N = 8, k = 8, d =

0.1, L = 105. 69

3.10 Packet loss probability of MPWFPF and WDM-4SLIP under different FDL lengths.

N = 8, k = 8, offered load = 0.8 and wavelength conversion density d = 0.1. . . . 70

4.1 (a) A high level view of the OpCut switch. (b) A possible implementation of the

OpCut switch. 72

4.2 Timeline of calculating schedule St for time slot t. 83

4.3 An example of how an output makes the announcement. The information of all

packets that are in the buffer and destined for the output port is maintained for

each output port. Based on that information, an output can find the oldest and

second oldest flows, and where the head-of-flow packets are buffered. Then it can

make the announcement accordingly. 85

4.4 The pipelined scheduling procedure for k = 2. 87

4.5 Pipelined scheduling procedure for an arbitrary k. 92

4.6 A possible implementation of an FDL that can provide flexible delays to fit the

needs of pipeline with different number of sub-schedulers. There are ⌊logK⌋ + 1

stages. The ith stage is able to provide either zero delay or 2i time slot delay. 94

4.7 An example of sub-schedulers being turned on and off. 95

4.8 Packet cut-through ratio with non-pipelined and pipelined schedulers under differ-

ent traffic models and switch sizes. p-iSLIP: pipelined iSLIP with i sub-schedulers,

each executing 1SLIP. np-iSLIP: non-pipelined scheduler executing iSLIP in each

time slot. p-ki-2SLIP: pipelined scheduling that takes up to the ith oldest flows

into consideration, each sub-scheduler executing 2SLIP. 97

xiii

4.9 Packet delay with non-pipelined and pipelined schedulers under different traffic

models and switch sizes. The notations of schedulers are the same as in Fig. 4.8.

OQ: ideal output-queued switch. 98

4.10 An example of adaptive pipeline. (a) The traffic model under which the traffic

intensity changes with time. (b) Average packet delay over time under different

pipelining strategies. 100

5.1 A possible implementation of the WDM OpCut switch. 104

5.2 The relationship between the actual buffer status and the index queues, assuming

packet pλi arrived at the switch on wavelength λ in time slot i. The index queues

keep the timestamps and buffer indices of the packets being buffered. 107

5.3 An example of converting packet arrivals to sequences. Flow 1 contains packet

from input fiber 1 to output fiber 1. There are two packet arrivals for flow 1 on

wavelength 1 and 3, respectively. Therefore the sequence for flow 1 is ⟨1 → 3⟩.

Similarly, the sequence for flow 2 is ⟨1⟩, since its sole packet arrival in this time

slot is on wavelength 1. 112

5.4 The relationship between index queues and sequences. An index queue keeps the

timestamps and buffer indices of the packets being buffered. A sequence keeps the

buffer indices only. Both the index queues and sequences are grouped according

to the destined output fiber of the packets. 113

xiv

5.5 An example of converting sets to sequences. (a) The original sets. The sequences

are initially null. (b) Step 1: Set padding. w, x, y and z are the newly added

elements. (c) Step 2: Adding intersection indicators to sequences. A new element

i12 is added to both sequence 1 and sequence 2 as an indication of intersection of

set 1 and set 2. Similarly, i13 is added to sequence 1 and sequence 3. (d) Step3:

Appending expanded sets to sequences. Since two intersection indicators were

used in Step 2, each set is 3-time expanded then appended to the corresponding

sequence. 117

5.6 Packet cut-through ratio under different schedulers and traffic models. LOH: sched-

uler that executes the LOH algorithm. LOHV1: variation 1 of LOH. LOHV2:

variation 2 of LOH. 126

5.7 Average packet delay under different schedulers and traffic models. The notations

of schedulers are the same as in Fig. 4.8. WDM: the multi-wavelength scenario,

as opposite to single wavelength (SW). OQ: ideal output-queued switch. 127

6.1 A typical architecture of a NoC. 131

6.2 Basic operations of a microresonator. (a) Off state. The signal goes through with-

out turning. (b) On state. The signal is forced to change direction. 133

6.3 (a) The 4 × 4 router in [68] and its energy consumption graph. The numbers

denote the cost of the corresponding edges. (b) The OXY router in [74] and its

energy consumption graph. 138

6.4 One possible path by XY routing (solid line) and one possible path by Odd-Even

routing (dashed line). If the 4 × 4 optical router in [68] is used, the former turns

on only one microresonator, while the latter turns on three. 143

6.5 A Gaussian network of 3 + 4i with 25 nodes. 143

xv

6.6 Energy consumption in the 3 + 4i Gaussian network under minimum hop count

routing and energy-aware routing. σ varies between 0.1 and 10. 144

6.7 Average distances in the 3+ 4i Gaussian network under minimum hop count rout-

ing and energy-aware routing. 145

6.8 Energy saving by energy-aware routing in random topologies, compared to mini-

mum hop count routing. σ varies between 0.1 and 10. 147

6.9 Average distances between nodes in random topologies under minimum hop count

routing algorithm and energy-aware routing algorithm, respectively. 148

6.10 The timeline of (a) circuit-switching (b) OBS. OBS does one-way reservation thus

does not need a confirmation packet for path setup, nor does OBS require the path

tear-down process as the duration of the data burst is known to the routers when

the path is being established. 150

xvi

List of Tables

1 Schedule construction from vectors I and O . 38

2 The Augment to Full Algorithm . 39

1 Most-Packet Wavelength-Fiber Pair First Algorithm 52

xvii

Acknowledgements

I would like to thank my Ph.D. advisor, Dr. Yuanyuan Yang, for opening up the world of

interconnection networks for me with patience, guidance, and foresight. Without her advice and

support through the years of my Ph.D. study, I would not have been able to carry out this work.

Many thanks to the past and present members of the High Performance Computing and Net-

working Research Lab: Zhenghao Zhang, Ming Ma, Chi Ma, Deng Pan, Min Yang, Miao Zhao,

Xi Deng, Ji Li, Dawei Gong, Zhiyang Guo, and Zhemin Zhang, for their generous help over the

years. It was a privilege to work with them. Special thanks to Dr. Zhenghao Zhang, who gave me

tremendous help in my research.

My sincere gratitude goes to my wife Shuting Peng. Her constant support, encouragement

and patience throughout the duration of my graduate study have been an inspiration to keep me

moving forward. Through life’s ups and downs, she is my strongest supporter, closest companion,

and greatest motivation. I am forever grateful to my parents Xingqiu Liu and Tilin Wang, and

parents-in-law, Shijun Peng and Min Zhang, for their unconditional love. Also I would like to

thank my grandparents, uncles, aunts, and cousins, for their unfailing support at every step of the

way.

Sincere thanks to Dr. Wei Zhu, Dr. Yeming Ma, Dr. Sean Li, and Grace Tan, who are great

mentors and helpful friends of my wife and I, for all the favors they have bestowed on me and my

family.

Finally, I would like to thank to my committee members, Dr. Sangjin Hong, Dr. Alex Doboli,

and Dr. Esther M. Arkin, who have also served on the committee of my qualification exam, for

their guidance and support.

Chapter 1

Introduction

This chapter starts with a brief overview of basic switch architectures and packet scheduling

algorithms, followed by an explanation of the motivation and the contributions of this dissertation,

as well as the dissertation outline.

1.1 Basic Switch Architectures and Packet Scheduling Algo-

rithms

In this thesis, a switch, or an interconnect, refers to a switching network that interconnects

multiple components at any level - intra-chip, chip-to-chip, board level, and computer networks,

and transmits data from its input ports to its output ports. Based on where the packet buffering

takes place, switches can be classified into four basic architectures, input-queued (IQ), output-

queued (OQ), combined-input-and-output-queued (CIOQ), and combined input-crosspoint queue-

ing (CICQ, also known as buffered crossbar), each of which has its own advantages and disadvan-

tages. OQ switches always guarantee maximum throughput. However, it is achieved at the expense

of an up-to-N speedup, i.e. the memory has to run N times faster than the line card rate, where N

1

is the size of the interconnect. Switches with input buffer do not require such a high speedup, but

they used to suffer from the Head-of-Line (HOL) blocking problem. The HOL blocking occurs

when there is an output channel available but packets destined to it are blocked by other packets

ahead of them in the same input queue, which are waiting to be routed to a different output chan-

nel. It was shown in [1] that, if HOL exists, input-queued interconnects can achieve at most 58.6%

throughput under uniform i.i.d Bernoulli traffic. That is, only 58.6% of all the packets are success-

fully delivered to the switch output. HOL blocking can be removed by the virtual output queueing

(VOQ) technique, under which multiple queues are maintained at each input and packets destined

to different outputs are stored in different queues. IQ and CIOQ switches have better scalability

than OQ switches and are widely used in today’s networks.

Many scheduling algorithms have been proposed for electronic switches by formalizing the

scheduling problem into a matching problem. Existing scheduling algorithms can be roughly di-

vided into two categories: maximum weighted matching based optimal algorithms and maximal

sized matching based fast algorithms. The first category includes algorithms such as Longest

Queue First (LQF) and Oldest Cell First (OCF) [2]. These algorithms have impractically high

computing complexity, but are of theoretical importance as they deliver 100% throughput under

virtually any admissible traffic. The second category includes, for example, Round Robin Greedy

Scheduling (RRGS) [3], Parallel Iterative Matching (PIM) [4] and iSLIP [5]. These algorithms

only look for a maximal matching in each time slot hence have practical time complexity. They

are therefore preferred in real systems, although they can only give sub-optimal schedules.

1.2 Motivation for This Dissertation

In recent years, switches and interconnects draw increasingly more attention due to the fact

that they tend to become a bottleneck at all levels. There are many requirements posed on an

2

interconnect network, such as low latency, high throughput, low error rate, low power consumption,

as well as scalability. Finding a solution that can satisfy all these needs is a non-trivial task.

Due to the huge bandwidth and low error rate, optics is playing an increasingly important role

in switching networks. Many optical switch and interconnect architectures, have been proposed in

recent years, see, for example, [6, 7] [8] [13] [14] [15]. On one hand, the rapid growth of the op-

tical technologies, such as wavelength division multiplexing (WDM) and wavelength conversion,

provides a platform to exploit the huge capacity of optical fibers for switching networks. On the

other hand, there remain challenges to the deployment of optical switches, of which the lack of

optical random access memory (RAM) is a major one.

In a WDM switch, the multiplexing of multiple optical signals on a single fiber is achieved

by carrying each signal on a separate wavelength. Contention arises in a switch when more than

one packets request the same output port. Contention arises in a switch when more than one

packets request the same output port. While buffering is a primary method to resolve contention in

electronic networks, currently optical buffers are much less powerful and commonly implemented

by fiber delay lines (FDL), which are essentially segments of optical fibers. The buffering effect is

achieved by sending the optical data to be buffered to the FDL. Assume the length of the FDL is

L and the optical signal transmits in the FDL at a speed v, then the FDL can provide a fixed delay

of L/v to any incoming signal. The advantage of FDL is that it requires nothing but a regular

fiber, while the drawback is that it can only provide a fixed buffering time. To provide flexible

delays, FDL has to be combined with switches. Alternatively, there are emerging techniques to

provide optical buffering by slowing down the light [16, 17, 17, 19, 20]. While these works present

interesting results towards implementing all-optical buffers, it is still unclear whether this method

can provide sufficiently large bandwidth and buffering capacity for practical systems. As pointed

out in [21], slow-light optical buffers are constrained by some fundamental physical limitations.

Therefore, at least for the near future, efficient implementation of optical buffers will remain a

3

challenging issue.

Despite the lack of optical RAM, there is yet a unique approach to resolving contention in

WDM optical networks, which is the conversion in the wavelength domain. If wavelength conver-

sion is available, when two packets compete for one output wavelength channel, one of them can

be converted to another wavelength on which the output channel is idle. Buffering is not necessary

as long as such an alternative wavelength can be found. To maximize throughput while keeping

queuing delay under control, a well-designed optical switch needs to function in both the time do-

main and the wavelength domain. Given the fact that optical buffering is limited at current stage,

wavelength conversion is of particular importance to contention resolution in optical switches.

As key topics in the development of optical switching networks, scheduling and performance

evaluation have been attracting considerable research interest. While there has been extensive

research in these fields for electronic networks, most of them cannot be directly leveraged for

optical networks - on one hand, some components, such as RAM, are still missing in optical

domain; on the other hand, the solutions for electronic networks do not take into consideration

unique characteristics of optics. This dissertation tries to address these issues and tackles several

important questions in packet scheduling and performance evaluation for optical switches.

1.3 Contributions

The main contributions of this dissertation include:

• A optimal packet scheduling algorithm for output-buffered optical switches [22]. The

proposed Augment to Full algorithm, along with the schedule construction algorithm, simul-

taneously maximizes system throughput and minimizes average queuing delay, making use

of limited-range wavelength conversions. It is shown that the complexity of the proposed

scheme asymptotically matches the lower bound of the scheduling problem.

4

• A mechanism to achieving 100% throughput for input-buffered optical switches [23].

To show that an input-bufferd WDM switch is capable of delivering at its full capacity, we

first propose a novel fiber-delay-line based input buffering fabric with multiple “exits” that

is able to provide flexible buffering delay. Then we design a weight-based packet schedul-

ing algorithm, named Most Packet Wavelength-Fiber Pair First (MPWFPF), and present a

theoretical proof that the combination of the new buffer and scheduling algorithm deliver

100% throughput for WDM switches with input buffer under virtually any practical traffic,

without any requirement on speedup. To the best of our knowledge, this is the first work

that theoretically proves WDM packet switches are able to deliver 100% throughput with no

assumption on traffic or wavelength conversion patterns. Furthermore, we propose a more

practical, parallel iterative matching based scheduling algorithm, WDM-iSLIP, that can ef-

ficiently determine an approximate optimal scheduling with much lower time complexity.

• A basic scheduler and a pipeline algorithm for packet scheduling in single-wavelength

OpCut switch [24] [25]. OpCut switch is a recently proposed, optical-electronic hybrid

switching architecture that features low latency and minimum optical/electronic/optical (O/E/O)

conversions. We decompose the packet scheduling procedure in an Opcut switch into three

stages and propose possible implementation for each stage. To further relax time constraint

and improve throughput, we design a novel mechanism to pipeline the scheduling process,

which is further made adaptive to reduce pipeline overhead.

• NP-hardness, inapproximability proof of the optimal scheduling problem in a WDM

OpCut switch and a series of bounded approximation algorithms [26]. We theoretically

prove that an optimal scheduling problem in a WDM OpCut switch is not only NP-hard but

also inapproximable in polynomial time within any constant factor, by reducing it to the set

packing problem. We then propose an approximation algorithm, called “Longest-or-Heads”,

5

that approximates the original scheduling problem by a factor in line with the best known

approximation algorithm for set packing. The implementation of Longest-or-Head and its

variations is also discussed in details.

• An energy-aware packet routing mechanism for hybrid optical networks-on-chip (NoCs)

[27]. Using a detailed model of optical routers we reduce the energy-aware routing problem

into a shortest-path problem, which can then be solved using one of the many well known

techniques. By applying our approach to different popular topologies, we show that the

energy consumed in data communication in an optical NoC can be significantly reduced.

The research combines algorithm design, hardware design, analytical, and simulation tech-

niques to conduct comprehensive studies on above issues. We expect the research result to have a

significant impact on switch architecture design, scheduler implementation and performance eval-

uation for the development of future high and ultra high speed optical switching networks. The

outcome of this project is generally applicable to a wide range of interconnect networks, including

computer networks, inter-chip switching, intra-chip switching, and networks-on-chip.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2 proposes Augment to Full, an op-

timal packet scheduling algorithm in optical switches with output buffer and limited-range wave-

length conversion capability. Chapter 3 studies the problem of achieving maximum throughput

for input-buffered optical switches. Chapter 4 and 5 study packet scheduling problems in OpCut

switches and focus on the single-wavelength and WDM scenario, respectively. Chapter 6 presents

an energy-aware routing mechanism for hybrid optical NoCs. Finally Chapter 7 concludes the

dissertation.

6

Chapter 2

Optimal Packet Scheduling in

Output-Buffered WDM Optical Switches

All-optical packet switching is a promising candidate for future high-speed switching. How-

ever, due to the absence of optical random access memory, the traditional Virtual Output Queue

(VOQ) based input-queued switches are difficult to implement in the optical domain. In this chap-

ter we consider output-buffered optical packet switches. We focus on packet scheduling in an

output-buffered optical packet switch with limited-range wavelength conversion, aiming at max-

imizing throughput and minimizing average queuing delay simultaneously. We show that this

problem can be converted to a minimum cost maximum network flow problem. To cope with the

high complexity of general network flow algorithms, we present an algorithm that can efficiently

find an optimal schedule in O(min{NW,BW}) time, where N is the switch size, W is the number

of wavelength channels per fiber and B is the length of the longest FDL at the output of the switch.

The complexity of the new algorithm asymptotically matches the lower bound of the scheduling

problem. We also conduct extensive simulations to test the performance of the proposed scheduling

algorithm under different traffic models.

7

2

1

3

4

5

6

2

1

3

4

5

6

output wavelengthsinput wavelengths

Figure 2.1: The wavelength conversion model for a switch with W = 6 and d = 2.

The rest of the chapter is organized as follows. Section 2.1 introduces the switch model we

consider. Section 2.2 formalizes optimal packet scheduling in the switch into a network flow

problem. Section 2.3 presents the new algorithm for finding an optimal schedule. Section 2.4

gives the correctness proof of the new algorithm. Section 2.5 discusses the implementation details

and the complexity of the new algorithm. Section 2.6 gives the simulation results. Finally, Section

2.7 concludes the chapter.

2.1 WDM Optical Switch Model

In this section we introduce the WDM optical packet switch model considered in this chapter,

including the wavelength conversion model and the switch architecture.

2.1.1 Wavelength Conversion Model

As mentioned earlier, wavelength conversion is a unique approach to resolving contention in

WDM switches. Packet scheduling in WDM switches needs to take into consideration the wave-

length conversion capability of the switch, since each packet has more than one possible output

wavelength channel to choose from. In electronic networks, little scheduling needs to be done in

an output-queued switch unless extra requirements such as Quality of Service (QoS) must be met,

8

which is also the case in a WDM switch with no wavelength conversion. If full-range wavelength

conversion is available in a WDM switch, in which any wavelength can be converted to any other

wavelength in the optical system, the scheduling is also trivial since no matter which wavelength a

packet comes from, all the output wavelength channels are available for it. Thus, packets coming

from different wavelengths are identical in terms of scheduling, unless some extra requirements

such as QoS are imposed.

However, WDM switches without wavelength conversion ability cannot exploit the wavelength

domain when there is contention for channels, while it is expensive to implement full-range wave-

length conversion under current technology [28]. Therefore, we adopt limited-range wavelength

conversion in the switch we consider. With limited-range wavelength conversion, a wavelength

can only be converted to a fixed set of its adjacent wavelengths. Previous studies have shown that

with careful designs, limited-range wavelength conversion can achieve performance comparable

to that with full-range conversion [29] [30]. In this chapter, we consider a system with a total

of W different wavelengths, indexed from 1 to W . It is assumed that the convertibility between

two wavelengths is symmetric. That is, if wavelength i can be converted to wavelength j, then

wavelength j can also be converted to wavelength i. The conversion range of the ith wavelength

is given by [max{1, i− d},min{W, i+ d}], where d is a small integral constant and is called the

conversion degree. An example of this wavelength conversion model for W = 6 and d = 2 is

shown in Fig. 2.1. Note that some wavelengths at the top and the bottom of the figure have a

conversion range less than 2d+ 1.

2.1.2 WDM Switch Architecture

The WDM optical packet switch architecture considered in this chapter is shown in Fig. 2.2. In

this chapter, we follow the same assumptions as many other optical switch designs that the switch

9

output fiber NM

U
X

0

B

output fiber 1M

U
X

0

B

scheduler

splitter SOA gate

input fiber 1

input fiber N

B
N

wavelength
converter

D

01

0

X

B

B
N

B

B
N

M

U

0

1 0

D

X

01

0

M

B

B
N

U

B

01

0

Figure 2.2: The output-buffered WDM optical switch. The output buffer at each output port is
implemented by B + 1 fiber delay lines.

works in a time-slotted manner, and packets of a fixed length arrive at the switch at the beginning

of time slots. The length of a time slot is equal to the duration of a packet. In the rest of this

chapter, we use N to denote the number of fibers at the input/output of the switch, W to denote

the number of wavelength channels that each fiber contains, and d to denote the conversion degree.

Since the scheduling of packets destined to different output fibers is mutually independent, we only

consider the scheduling of packets destined to a particular output fiber. As we deal with a single

output fiber, “output wavelength channel” and “output wavelength” have the same meaning in the

rest of this chapter.

In this switch architecture, the demultiplexer at each input fiber demultiplexes the incoming

optical signal to W signals, one on each wavelength. A limited-range wavelength converter is

assigned to each incoming wavelength channel. After possible wavelength conversion, each signal

is split into N copies and sent to the SOA gate array. An SOA gate can be turned on or off

depending on which output and fiber delay line the packet needs to be scheduled to. For unicast

traffic, in each time slot at most one SOA gate is turned on out of all the SOA gates on each input

10

...

buffer state at time slot t+1buffer state at time slot t

...

empty FDL unit

...

...

...

occupied queue slot

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

occupied FDL unit

packet arrived in time slot t

empty queue slot

......

FDL 3

FDL 2

.........
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

...

FDL 0

FDL 1

FDL B

M
U
X

switch output

1 03 2B

M
U
X

queue 1 023B

Buffer on a single output wavelength channel

Column 0Column 1Column B

Figure 2.3: The physical and abstract buffer for an output wavelength channel. At any time all
the physical buffer units in the same column can store no more than one packet in total, otherwise
collision would occur at the switch output. Thus, all physical buffer units in the same column can
be abstracted as a single logical buffer slot, and the buffer slots of all columns form a queue. In
each time slot, the head-of-queue packet leaves the switch and more than one packet may join the
queue.

wavelength channel. For multicast traffic, more gates may be turned on so that a packet can be sent

to multiple outputs. All wavelength converters and SOA gates are managed by a central scheduler,

thus packet routing is well coordinated.

It should be pointed out that although this switch has an OQ architecture, it does not require any

speed-up. In other words, the output buffer and switching fabric do not have to run any faster than

the input. This is achieved by implementing the output buffer at each output fiber with B + 1 fiber

delay lines of lengths from 0 to B. Packets scheduled to the delay line of length i will leave the

switch i time slots later. If there are multiple packets that need to be sent to the same wavelength

channel of a particular output fiber, they can be transmitted to different delay lines of that fiber

simultaneously, through the internal switching fabric that has B ports for each output wavelength

channel. It can be considered as trading-off the space complexity to release the time constraint.

The delay lines are able to accept up to B+1 packets per wavelength in each time slot. At first

glance, it seems that up to B(B+1)/2 packets on each wavelength can be stored by the delay lines.

11

However, as pointed out in [31], this is not true, since on each wavelength there should be no more

than one packet coming out of all the FDLs in each time slot. Otherwise collision would occur at

the output. Consider the output buffer on a single wavelength channel as shown in Fig. 2.3. Each

FDL can be divided into unit-length segments, each of which can delay one time slot and may

hold one packet. Among all the FDLs, B + 1− i of them have a segment that is i time slots away

from the switch output (i = 0, 1, . . . , B), which form column i in Fig. 2.3. To avoid collision, at

most one segment in column i can be occupied by a packet at any instant. Thus for scheduling

purpose, all segments in a column can be abstracted as a single logical buffer slot. Consequently,

the entire FDLs on a single output wavelength channel can be abstracted as B + 1 logical buffer

slots. As will be shown in Section 2.3.2.3.1, these B + 1 logical buffer slots for a single output

wavelength can be further modeled as a first-in-first-out (FIFO) queue with B + 1 slots indexed

from 0 to B. We refer to the queue on output wavelength channel i as Qi, and the jth slot (or slot

j) in Qi as ⟨i, j⟩. A packet at the switch input can be scheduled to Qi if it is on wavelength i, or

a wavelength convertible to wavelength i. Since the jth slot in Qi is j time slots away from the

switch output, when we schedule a packet to ⟨i, j⟩, we actually put it into the jth FDL of output

wavelength channel i so that the packet will reach the switch output after j time slots.

2.2 Network Flow Approach for Finding an Optimal Schedule

In the rest of the chapter, we will consider packet scheduling in the optical switch described in

the previous section. In such an optical switch, in each time slot there are packets arriving on each

input wavelength channel and each of them is destined to some output fiber. Packet scheduling is

to decide how to put these packets in the output buffer of the switch. We are interested in finding an

optimal schedule with the following properties: (1) It schedules the maximum number of packets,

or equivalently, drops the minimum number of packets among all schedules; (2) It introduces the

12

minimum total buffering delay among all schedules satisfying property (1). In other words, the

highest priority during the scheduling is to minimize packet loss, then to shorten the delay as much

as possible.

The first observation we can draw for packet scheduling in such a switch is that, there is no

need to distinguish one packet from another if they are from the same input wavelength channel

and destined to the same output. Therefore instead of scheduling those packets one by one, we can

schedule as many of them as possible in a bulk at a time, which leads to our idea of adopting the

network flow approach. Next we show how to formulate the optimal scheduling problem in the

WDM switch into a minimum cost maximum flow problem.

We first introduce three sets of nodes, I , O and Q. I = {ik | 1 ≤ k ≤ W}, with node ik

representing input wavelength k. O = {ok | 1 ≤ k ≤ W}, with node ok representing output

wavelength k. Q = {qj | 0 ≤ j ≤ B}, with node qj representing the jth slot of a queue. Node

ok and qj are connected by an edge with unit capacity and cost j, if the jth slot of the queue on

output wavelength channel k, Qk, is not occupied, i.e., if the length of Qk is smaller than j. There

are also two dummy nodes s and t. There is an edge between s and node ik with capacity equal

to the number of packets arriving at the input in the current time slot on wavelength k over all

input fibers of the switch . Node iu is connected to node ov if wavelengths u and v are mutually

convertible. Finally, all nodes in Q are directly connected to t. All other edges without specified

capacity and cost are assumed to have an infinity capacity and zero cost. We refer to the subgraph

of the flow graph containing nodes in sets I and O, and edges between the nodes in these two sets

as a request graph. A request graph also includes information on the number of packets on each

input wavelength channel and the queue length on each output wavelength channel. An example

of the flow graph and its corresponding request graph is shown in Fig. 2.4.

With the flow graph, we can convert the optimal scheduling problem into a network flow prob-

lem. Finding the maximum number of packets that can be scheduled to the output in the current

13

1

2

3

4

1

2

3

4

2

1

2

1

1

s t

input
wavelengths wavelengths

output

QI O

(a)

1

2

3

4

1

2

3

4

queue length
number of
packets

2

1

1

2

1

0

2

3

input
wavelengths

output
wavelengths

(b)

Figure 2.4: (a) An example of the flow graph for d = 1,W = 4 and B = 2, where the number
of packets arriving in the current time slot on each wavelength is 2, 1, 1 and 2, respectively. The
number above each edge between s and I represents the capacity of the edge. The capacity of
edges between I and O and between Q and t is infinite, while the capacity of edges between O and
Q is 1. In the graph, all queue slots are available on wavelength 2, while no queue slot is available
on wavelength 4. (b) The corresponding request graph.

time slot is equivalent to finding a maximum flow from s to t. To see this, note s is only connected

to the nodes in I , and the capacity of the edge between s and ik equals the number of packets

arrived on input wavelength k. Besides, t is only connected to the nodes in Q, and the maximum

flow the network can sustain is limited by the total capacity of the edges between nodes in O and

nodes in Q, which equals the total number of empty slots in all queues at this moment. In the

meanwhile, we also need to minimize the total queuing delay, which implies that queue slots with

a smaller index, or, edges between nodes in O and nodes in Q with a smaller cost, are preferred.

Combining these two aspects, it is clear that an optimal schedule corresponds to a maximum flow

with minimum cost in the flow graph. However, directly applying existing network flow algo-

rithms may lead to the time complexity that may be too high for an optical switch that requires

very fast switching. In fact, the best known algorithm for finding a minimum cost maximum flow

in an arbitrary graph requires O(nC(m+n log n)) time [32], where n is the total number of nodes

14

in the flow graph, m is the number of edges, and C is the largest cost of all edges. In our case,

n = O(W+B), m = O(WB) and C = max{N,B}, thus the time complexity of the network flow

algorithm is O(WB(W +B) ·max{N,B}). Next, based on the request graph and the flow graph,

we will design a new scheduling algorithm with lower time complexity by making use of some

nice properties of the wavelength conversion model and the output buffer model of the switch.

2.3 The New Scheduling Scheme

In this section, we first give some preliminaries for the proposed new scheduling scheme and

then present the new scheduling algorithm which includes the algorithm to construct a schedule

and the algorithm to find an optimal schedule.

2.3.1 Preliminaries

As discussed in Section 2.1.2.1.2, the entire FDLs on a single output wavelength can be ab-

stracted as B+1 logic buffer slots. In the rest of the chapter, we will simply call them buffer slots.

In the new scheduling algorithm, when we schedule a packet to an output wavelength channel,

we always schedule the packet to the empty buffer slot closest to the switch output (i.e., with the

shortest buffering delay) on that wavelength channel. It is a reasonable strategy since it leads to

a shorter buffering delay at no extra cost, which is always desirable. Next we will show that by

following this strategy, the buffer slots on an output wavelength form a FIFO queue.

Under this strategy, the output buffer has two useful properties. Consider any buffer slots i

and j (0 ≤ i < j ≤ B) on an output wavelength. Recall that buffer slot i is i time slots away

from the switch output. The first property comes directly from the strategy adopted: if buffer slot

i is empty in a time slot, then buffer slot j cannot be used in this time slot. By “used” we mean

a packet is sent to the buffer slot and occupies it according to the schedule. Conversely, if buffer

15

slot j is used in a time slot, then buffer slot i cannot be empty at the end of this time slot. The

second property, straightforwardly derivable from the first property, is that all empty buffer slots

on an output wavelength channel are consecutive at the beginning of any time slot. In other words,

when a time slot starts, if buffer slot j is occupied, then buffer slot i must be occupied. Conversely,

if buffer slot i is empty, then buffer slot j must be empty.

Combining these two properties, we can draw the following observation: the FDL buffer on

each output wavelength can be modeled as a queue. As a result, the buffering status on an output

wavelength channel can be represented by a single variable: the length of the queue. In each

time slot the head-of-queue packet leaves the switch. If there are packets assigned to this output

wavelength channel by the scheduler, these packets join the queue. It will be seen later that making

use of this fact greatly simplifies our optimal scheduling algorithm. Besides, it is also worth

pointing out that our algorithm works not only with the switch architecture introduced in Section

2.1, but also with all output-buffered WDM optical switches whose buffer can be modeled as

queues.

Before we go into the details of our algorithm, let us first look at a seemingly straightforward

approach. Intuitively, one may wonder whether an optimal schedule can be achieved by scheduling

packets one by one to the output wavelength channel with the shortest queue among all candidate

output wavelength channels. Let us call this approach “Join Shortest Queue,” or JSQ for short.

Note that while JSQ’s idea is simple, its complexity might not be as low as it appears - an accessible

output wavelength channel with the shortest queue must be determined before each packet can be

scheduled. Nevertheless, Fig. 2.5 shows a simple example in which JSQ leads to only a sub optimal

schedule. Assume there are three wavelengths. The conversion model is shown in Fig. 2.5(a),

along with the number of arrived packets on each input wavelength and the queue length on each

output wavelength. Following JSQ, the packet on input wavelength 1 and 2 will be scheduled to

output wavelength 1 and 2, respectively. Then two of the three packets on input wavelength 3 will

16

2

3

1 1

2

3

1

1

3

0

0

1

arrived packets queue length

2

3

1 1

2

3

1

1

3

1

3

2

arrived packets queue length

2

1

1

1

2

3

1 1

2

3

1

1

3

2

2

2

arrived packets queue length
1

2
1

1

(a) (b) (c)

Figure 2.5: An example of Join Shortest Queue. The number on an edge indicates the number
of assigned packets. (a) The request graph. (b) JSQ failing to find an optimal schedule. (c) An
optimal schedule.

be sent to output wavelength 2, and the rest sent to output wavelength 3. This schedule is shown in

Fig. 2.5(b) and results in a total delay of (1 + 1 + 2 + 3 + 2) = 9. However, as can be seen in Fig.

2.5(c), an optimal schedule introduces only a total delay of (1 + 2 + 1 + 2 + 2) = 8. The reason

why JSQ may not be able to find an optimal schedule lies in the fact that given the conversion

capability among wavelengths, the scheduling of packets on different wavelengths is dependent.

Then applying JSQ to packets on one wavelength can lead to packet loss or long delay of packets

on another wavelength, which may be avoided if the two wavelengths are coordinated better. What

our algorithm does, in some sense, is to ensure the best coordination among all wavelengths, so

that an overall optimal solution is achieved. Next we will describe our new algorithm.

2.3.2 Schedule Construction Algorithm

As mentioned earlier, packets at the switch input on the same wavelength and destined for the

same output wavelength channel can be considered to be identical. Thus, instead of determining

how each single packet should be scheduled, in a time slot the scheduler can simply calculate how

many packets on each wavelength switch-wide should be transmitted from the input side of the

switch, and how these packets should be distributed to the output buffers of the switch.

As shown in Fig. 2.6, let xi denote the number of packets on input wavelength i (over all input

fibers switch wide) to be transmitted to a particular output fiber in the current time slot according

17

x1
x2
x3

xW

.

y3

y2

y1

yW

input output

..

.
..
...

? ...

OIwavelengths

2
1

2
1

W

3

W

3

wavelengths

Figure 2.6: Vectors I and O of a schedule.

to some schedule, and yi denote the number of buffer slots on wavelength channel i of that output

fiber to be occupied by these packets, for 1 ≤ i ≤ W . Clearly
∑W

i=1 xi =
∑W

j=1 yj must hold. Let

vector I = ⟨x0, x1, . . . , xW ⟩, and O = ⟨y0, y1, . . . , yW ⟩. Note that I and O differ from the node

sets I and O in the flow graph and the request graph in Section 2.2. Generally speaking, knowing

vectors I and O of a schedule is not sufficient to determine the corresponding schedule, unless

the mapping from I to O is also known. Fortunately, in our case, once I and O are obtained,

a schedule with the minimum queuing delay among all schedules that satisfy I and O can be

constructed as follows.

Since our goals include minimizing the buffering delay, as previously discussed in Subsection

2.3.1, the output buffer works as queues. Then the task is to distribute the xi packets on each

input wavelength to the queues on the output wavelength channels, such that the queue on output

wavelength channel i receives yi packets, for 1 ≤ i ≤ W . Starting from wavelength 1, we schedule

as many as possible packets from input wavelength 1 to output wavelength channel 1. That is, we

schedule min{x1, y1} packets from input wavelength 1 to output wavelength channel 1. This is

equivalent to augmenting min{x1, y1} along edge (i1, o1) in the request graph. If x1 ≥ y1, we

schedule as many of the remaining x1 − y1 packets on input wavelength 1 as possible to output

wavelength channel 2. On the other hand, if x1 < y1, then y1−x1 queue slots on output wavelength

channel 1 are still not used, and yet to be occupied by packets from other wavelengths. Thus we

continue to schedule min{x2, y1 − x1} packets from input wavelength 2 to the remaining queue

slots on output wavelength channel 1. This process is carried on until all the
∑W

i=1 yi queue slots

18

are occupied. After that, the number of packets that should be sent from each input wavelength to

each output wavelength channel is known. Or, equivalently, a schedule is constructed from I and

O. The construction algorithm is formally described in Table 1.

The correctness proof of the schedule construction algorithm is postponed to Section 2.4. Note

that this algorithm does not guarantee to reconstruct a specific schedule. Instead, it efficiently finds

the schedule with the minimum total buffering delay among all schedules satisfying the given I

and O. In particular, such a schedule satisfying the I and O of an optimal schedule must be an

optimal schedule as well. Based on the schedule construction algorithm, next we give an algorithm,

called Augment to Full Algorithm, to efficiently determine an optimal schedule.

2.3.3 Augment to Full Algorithm

The Augment to Full Algorithm works on the request graph. It decomposes the task of finding

an optimal schedule into multiple iterations. At the end of each iteration, the algorithm obtains an

intermediate schedule that evolves toward an optimal schedule. During each iteration, the inter-

mediate schedule is determined in two steps: first finding a valid combination of I and O, then

applying the schedule construction algorithm to the I and O found.

The basic idea for the Augment to Full Algorithm to find a valid combination of I and O

is similar to that of the schedule construction algorithm. Starting from output wavelength 1, we

schedule as many as possible packets from input wavelength 1 to the empty queue slots on output

wavelength 1. By “empty” we mean the queue slot is not occupied by packets arriving in earlier

time slots. If all packets from input wavelength 1 can been scheduled, we say input wavelength 1

is full, or “filled” by output wavelength 1, and then we continue to schedule as many packets as

possible from input wavelength 2 to output wavelength 1. If the queue on wavelength 1 has no

more empty slots, we will turn to output wavelengths 2, 3, . . . , until input wavelength 2 is finally

19

“filled” by some output wavelength, or the largest wavelength that wavelength 2 can be converted

to is reached. Then input wavelength 3 is to be filled. The process continues until there are no

more available packets or queue slots. During this process we fill the input wavelengths one by

one using the output wavelengths, thus the process is called “filling process.” We also record the

number of packets scheduled on input wavelength i, xi, and the number of queue slots on output

wavelength j to be occupied by these packets, yj .

To ensure the final schedule is optimal, queue slots that introduce shorter delay should have

a higher priority to be used. It is exactly why the Augment to Full Algorithm is split into B + 1

iterations. In iteration i, only queue slots that are empty and with an index smaller or equal to i

are eligible for filling the input wavelengths. That is, we assign packets to the queues under the

constraint that the length of any queue can be augmented to at most i. If not all packets can be

assigned in iteration i, we continue to iteration i+1, taking into account slot i+1 of the queues, if

there are any empty slots, and so on. If a packet is assigned to a queue slot according to the result

at the end of an iteration, we say the slot is selected in this iteration. Note that a queue slot being

selected in an iteration does not mean that a packet has been physically scheduled to the slot and

occupied it. In fact, no packet is transmitted until the final optimal schedule is obtained. The real

implication that a queue slot is selected in iteration i is that, when packets are only allowed to be

sent to the first i slots of each queue, a packet should be sent to this particular slot, if the minimum

total delay is desired.

In fact, a critical idea of the Augment to Full Algorithm can be summarized into the following

two rules: (1) for slot i of any queue, if it is empty and selected in iteration i of the algorithm,

then it should be selected in all of the following iterations, and will be used in the final schedule.

Otherwise, (2) if it is not selected in iteration i, then it should not be selected in any of the following

iterations. Furthermore, since this queue slot will not be used in the final schedule, none of the

queue slots behind it on the same wavelength should be used in the final schedule, according to

20

the first property of the output buffer as stated in Subsection 2.3.1. We will soon show that by

following these rules, the Augment to Full Algorithm indeed finds an optimal schedule.

Note that the filling process itself incorporates neither rule. In particular, it does not guarantee

any priority for the queue slots selected in previous iterations to conform with the first rule. Instead,

starting from wavelength 1, the filling process merely assigns packets to queue slots in an ascending

order of wavelengths. Thus, it is possible that in iteration i, during the filling process, the place of

a queue slot that was selected in iteration i−1, say, q, is taken by another queue slot q′ that was not

among the selected queue slots of iteration i − 1. That is, during the filling process of iteration i,

by assigning a packet to q′, we end up with no packet to be assigned to q. We refer to this situation

as slot q being blocked by slot q′. Fig. 2.7 illustrates a simple blocking scenario. According to

the first rule, whenever such a blocking occurs, we should find the corresponding q′ and remove it

from the current result. Clearly, q′ cannot be a queue slot with an index smaller than or equal to

i− 1, since any slot not selected in iteration i− 1 is not even taken into consideration in iteration i

according to the second rule. Hence q′ must be the ith slot of some queue. Since the filling process

always accesses the wavelengths in an ascending order, q′ is on a smaller wavelength than q. To be

more specific, we can always choose q′ to be the queue slot closest to q and with index i to which

a packet is assigned during the filling process. To see this, assume that another packet is assigned

to the ith slot of the queue on a wavelength smaller than q′. Denote this queue slot as q′′. If by

removing q′ and restarting the filling process, we still cannot assign a packet to q, then we cannot

assign a packet to q even if we remove both q′ and q′′. The reason is that the packet assigned to q′′,

denoted as p′′, must be on a wavelength smaller than or equal to that of the packet (denoted as p′)

assigned to q′. This is because that the filling process always starts from wavelength 1 and works

towards wavelength W . In other words, the filling process works in a top-down manner. For the

same reason, the packet assigned to any of the queue slots between q′ and q is on a wavelength at

least as large as that of p′. If after the removal of q′ and the matching between p′ and q′, there is no

21

2

1 1

2

2

0

0

0

arrived packets queue length

2

1 1

2

2

0

1

1

arrived packets queue length
1

1

2

1 1

2

2

0

2

0

arrived packets queue length
2

(a) (b) (c)

Figure 2.7: A simple blocking scenario (a) The request graph of wavelength 1 and 2 (the rest
wavelengths are assumed of no interest hence not shown). (b) Iteration 0. Packets are scheduled
to queue slots with index 0 on both wavelengths. (c) Iteration 1. Scheduling packets to queue slots
with index 0 or 1. Queue slot with index 0 on wavelength 2 is blocked by queue slot with index 1
on wavelength 1.

augmenting path from p′ to q following which q can be added to the current result, then there is no

augmenting path from p′′ to q after the removal of q′′. Similarly, it can be shown that if q cannot be

selected after q′ is removed, then q cannot be selected even if all the queue slots with index i are

removed. This contradicts the fact that q was selected in previous iterations. Thus it must be true

that after the removal of q′, q can be selected.

The remaining issue is how to locate q′, which blocks the previously selected queue slot. This

can be done by maintaining an auxiliary stack that is reset at the beginning of each iteration. During

a filling process, whenever a packet is scheduled to the ith slot of a queue, the corresponding output

wavelength is pushed into the stack. Later, if a previously selected queue slot q is found blocked,

the top element of the stack is popped, on which the ith queue slot is the corresponding q′. We

then replace q′ with q in the current result. Since we are calculating I and O, if q and q′ are on

wavelengths wq and wq′ , respectively, we add 1 to ywq and deduct 1 from yw′
q

to reflect the change.

Note that although I and O can be forced to conform with the first rule when such a blocking

occurs as discussed above, how I is mapped to O is lost during the process. This is why we need

the second step in each iteration to recover the mapping with the schedule construction algorithm.

When the schedule construction is done, to enforce the second rule, we scan the output wavelengths

one more time. If slot i of the queue on an output wavelength is empty but not selected in this

iteration, the output wavelength is locked. Locking an output wavelength in iteration i means that

22

queue slot i and behind on that wavelength are permanently removed from the pool of queue slots

that are eligible to be selected. These slots will not be considered in the remaining iterations, even

if they are empty. That is, the “augmenting” of the queue on this output wavelength channel stops.

At the end of an iteration of the Augment to Full Algorithm, we can draw several interesting

observations. First, no crossing edges are generated in the schedule obtained. By crossing edges

we mean there are two edges (i1, o1) and (i2, o2) in the request graph, such that i1 < i2 and

o1 > o2, and there are packets scheduled both from i1 to o1 and from i2 to o2. This property is

straightforward since the Augment to Full Algorithm works in a top-down fashion. Second, at

the end of an iteration, if an output wavelength is locked, it implies that all input wavelengths

within the conversion range of that output wavelength have been filled. Conversely, if at the end

of an iteration there exists an eligible but unselected queue slot on an output wavelength, and an

unassigned packet on an input wavelength, then the two wavelengths are not convertible. Third, if

an output wavelength is locked in an iteration, then the distribution of its queue slots to the input

wavelengths is fixed hereafter. To see this, assume an output wavelength w is locked in iteration i

and the distribution changes in iteration i + 1. It can only occur after a packet is assigned to slot

i + 1 of some queue. Denote the packet as p and the queue slot as q. Then, if q is removed from

consideration, an augmenting path can be found from p to queue slot ⟨w, i⟩ (otherwise assigning

p to q should not have affected w). However, that means in iteration i, ⟨w, i⟩ should have been

selected, and w should have not been locked at all!

The above third observation implies that, after output wavelength w is locked, both w and the

packets assigned to w do not need to be considered in the remaining iterations, since these packets

are guaranteed to be assigned to w, and w cannot take any more packets. Therefore, we define the

following sets for each iteration of the Augment to Full Algorithm:

• Ni: the set of wavelengths whose buffer length was i at the beginning of the current time

23

slot. The Augment to Full Algorithm starts to take these wavelengths into consideration

from iteration i.

• Li: the set of wavelengths locked during iteration i.

• Ai: the set of “active” output wavelengths in iteration i, i.e., the output wavelengths that

have been taken into consideration by the Augment to Full Algorithm and are not locked

yet. Clearly, Ai =
∪i

0 Ni −
∪i−1

0 Li for 1 ≤ i ≤ B, and A0 = N0.

Before starting iteration i, we calculate Ai = Ai−1 ∪ Ni − Li−1. Similarly, before ending itera-

tion i, we check how many packets from each input wavelength are assigned to a newly locked

wavelength, and subtract them from the number of packets to be scheduled. In each iteration,

we only deal with output wavelengths that are in the set of active output wavelengths, and input

wavelengths that are not filled by locked output wavelengths yet.

The detailed Augment To Full Algorithm is given in Table 2. Note that the algorithm may

terminate early if after an iteration all output wavelengths are locked, or all input wavelengths are

filled by locked output wavelengths.

Fig. 2.8 gives an example to show how the algorithm works. The request graph of this example

is given in Fig. 2.8(a). The numbers of packets to be scheduled are 2, 0, 1 and 0, respectively. The

queues on output wavelengths 1, 3 and 4 are empty, while there is one packet being buffered on

wavelength 2. In iteration 0, we schedule packets to queue slots with index 0. As shown in Fig.

2.8(b), the only packet on wavelength 3 is assigned to ⟨3, 0⟩ (recall that ⟨i, j⟩ refers to the jth slot

of the queue on wavelength i), and there is no packet to be assigned to wavelength 4. Thus, ⟨4, 0⟩ is

not selected in iteration 0. Consequently, ⟨4, 0⟩ and any other queue slot behind it on wavelength 4

will not be used in the final schedule. Therefore, output wavelength 4 is locked. Since no packet is

assigned to output wavelength 4, no update on {x̂i | 0 ≤ i ≤ W} is needed, where x̂i is defined as

in Table 2. Besides, since in this iteration there exists an unscheduled packet on input wavelength

24

0

1

0

0

1

2

3

4

2

3

4

1

1

0

0

2
arrived packets queue length

(a) The request graph with
the number of packet ar-
rivals in current time slot
and the queue length on
each wavelength. The num-
ber under each node indi-
cates the wavelength it rep-
resents.

1

2

3

4

1

2

3

4

x̂j

locked

1

1
1

1

0

0

queue slot

1

2

0

0

selected

(b) Iteration 0:
Scheduling packets to
queue slot with index
0. ⟨4, 0⟩ is not selected,
thus wavelength 4 is
locked.

1

2

3

4

1

2

3

4

0

0

x̂j x̂j
2

0

0

2

1

2

0

1

0

1

2

1

2

3

4

1

1

2

3

4

2

0

1

0

2

0

queue slots queue slots
selected selected

(c) Iteration 1: Scheduling packets to queue slots
with index 1, or with index 0 and not locked. Al-
though ⟨3, 0⟩ was selected in iteration 0, during the
filling process of this iteration no packet is sched-
uled to it, as its place is taken by ⟨2, 1⟩. Thus ⟨2, 1⟩
is removed and ⟨3, 0⟩ re-selected. Since neither of
⟨2, 1⟩ and ⟨3, 1⟩ is selected in iteration 1, the two
wavelengths are locked. Output wavelength 1 will
also be locked in iteration 2. Then the algorithm
terminates.

Figure 2.8: Applying the Augment to Full Algorithm to an example request graph. The number on
an edge indicates the number of packets assigned.

25

1, the algorithm moves on to the next iteration.

In iteration 1, we reschedule all the packets to queue slots with index 0 and index 1 on output

wavelengths that are no locked. During the filling process, both packets on input wavelength 1

are assigned to output wavelength 1, whose queue has two available slots ⟨1, 0⟩ and ⟨1, 1⟩ in this

iteration. Then the packet on input wavelength 3 is assigned to ⟨2, 1⟩. Output wavelength 1 and

wavelength 2 are pushed into the stack due to the temporary selection of their queue slot 1. Now a

blocking occurs: there is no packet to be assigned to ⟨3, 0⟩, which was selected in iteration 0. By

popping one element from the stack, we find that it is ⟨2, 1⟩ that blocks ⟨3, 0⟩. As a result, ⟨2, 1⟩

is removed and ⟨3, 0⟩ on wavelength 3 is selected again. As step 2 of iteration 1, the schedule

construction algorithm calculates the intermediate schedule. Since neither of ⟨2, 1⟩ and ⟨3, 1⟩ is

selected in iteration 1, the two wavelengths are locked after this iteration. As a result of output

wavelength 3 being locked, x̂j needs to be updated for all wavelength j convertible to wavelength

3. Therefore x̂3 is reduced to 0. Similarly, in iteration 2 (not shown in Fig. 2.8) output wavelength

1 is locked, and x̂1 is set to 0. Since now x̂j = 0 for all j, in other words, each packet at the

input are now assigned to a queue slot, the algorithm terminates. From the buffer length of an

output wavelength at the beginning of the current time slot and the iteration at which this output

wavelength is locked, the number of queue slots on each wavelength to be used by the optimal

schedule in this time slot can be easily calculated. For instance, the number of queue slots to be

used is 1 − 0 = 1 for wavelength 3, that is, the index of iteration at which it is locked, minus that

at which the algorithm started to take this output wavelength into consideration.

2.4 Correctness Proof of the New Scheduling Scheme

In this section, we first show that the schedule construction algorithm works as expected. Then

based on it we prove the correctness of the Augment to Full Algorithm.

26

2.4.1 Correctness of the Schedule Construction Algorithm

The correctness of the schedule construction algorithm can be stated as follows: given I andO

of some schedule S, the schedule construction algorithm finds a schedule, such that (1) the I and

O of the constructed schedule are exactly the same as the given ones; (2) the constructed schedule

has the minimum total queuing delay among all schedules that satisfy condition (1).

Since the total number of packets assigned to each output wavelength channel is determined,

condition (2) is satisfied trivially as long as the output buffer on each output wavelength works

as a queue. Condition (1) can be proved by contradiction. Suppose the constructed schedule

does not satisfy condition (1), which means that we end up with some unscheduled packets and

queue slots that should have been scheduled, i.e., there exist some wavelengths i and j such that

x′
i < xi and y′j < yj , where x′

i (y′j) is the number of packets to be transmitted (queue slots to

be used) on wavelength i (j) in the constructed schedule. We choose the first such unscheduled

packet or queue slot, whichever occurs first, i.e., on a smaller wavelength. If it is an unscheduled

queue slot on wavelength i, since the construction algorithm works in a top-down fashion as the

filling process, any packet on a wavelength between wavelengths 1 and min{i+d,W} (the largest

wavelength that wavelength i can be converted to), is assigned to the queue on output wavelength

i or smaller in the constructed schedule. Even though, there is still a queue slot on wavelength i

that cannot be used in the constructed schedule. That is to say, among all the packets scheduled

by S, the maximum number of packets that can be assigned to output wavelengths [1, i] is smaller

than the number of queue slots used by S on these wavelengths, which is impossible. Similarly,

if an unscheduled packet occurs first and it is a packet on wavelength i, then in the constructed

schedule all the queue slots on wavelengths in the range of [1,min{i + d,W}] are occupied by

packets on wavelengths smaller or equal to i. Yet there is still a packet on wavelength i that cannot

be assigned. Consequently, the maximum possible number of queue slots that S uses for packets

27

on wavelengths [1, i] is smaller than the number of packets that are assigned to these wavelengths

by S, which is also impossible. Thus the correctness of the schedule construction algorithm is

proved.

2.4.2 Correctness of the Augment to Full Algorithm

Next we prove the correctness of the Augment to Full Algorithm. Let Saf denote the schedule

found by the Augment to Full Algorithm. Let cSi denote the number of queue slots with index at

most i that are used in schedule S, 0 ≤ i ≤ B. Then we have the following lemma.

Lemma 1. For any schedule S, cSaf

i ≥ cSi for 0 ≤ i ≤ B.

Proof. It can be proved by induction. First, cSaf

0 ≥ cSr
0 is clearly true, since in this case only slots

with index 0 are considered in the Augment to Full Algorithm, and as many of them as possible

will be used to fill the input wavelengths.

Now suppose it is true for 0 ≤ i ≤ k − 1. We prove by contradiction that it must be true for

i = k as follows. Assume there exists a schedule Sr such that cSaf

k < cSr
k . This implies 1) Saf

uses less queue slots with index k than Sr; 2) Saf schedules less packets to queue slots with index

smaller than or equal to k than Sr. Therefore, after iteration k of the Augment to Full Algorithm,

we must be able to find a list of packets (p0, p1, . . . , pn) and queue slots (q0, q1, . . . , qn)

q0 −→ p0 −→ q1 −→ p1 −→ q2 −→ p2 −→ · · · −→ qn −→ pn

such that q0 is of index k, and pi is assigned to qi in Sr, but is assigned to qi+1 at the kth iteration

of the Augment to Full Algorithm. In other words, at the end of the kth iteration of the Augment

to Full Algorithm, q0 is not selected, and pn is not assigned. Assume pi is on wavelength wpi and

qi on wavelength wqi . We claim that wpn ≥ wpi and wq0 ≥ wqi for 0 ≤ i ≤ n.

28

The claim can be justified as follows. First wpn ≥ wpn−1 must be true. Otherwise, pn, instead

of pn−1, should have been assigned to qn since the filling process works in a top-down manner.

Assume that wpn is not the maximum among all wpi , and wpm is the one such that m = max{i |

wpi > wpn , 0 ≤ i ≤ n}. That is, wpm+1 ≤ wpn < wpm holds. Clearly, m + 1 ≤ n − 1 since

wpn ≥ wpn−1 . In addition, pm and pm+1 are assigned to qm+1 in Saf and Sr, respectively, which

indicates that wqm+1 can be converted to both wpm and wpm+1 . Thus wqm+1 can be converted to wpn .

However, Saf should have assigned pn, instead of pm, to qm+1, since wpn < wpm and the algorithm

accesses the input wavelengths in an ascending order in each iteration. This is a contradiction.

Therefore, wpn ≥ wpi for 0 ≤ i ≤ n. Similarly, it can be shown that wq0 ≥ wqi for 0 ≤ i ≤ n. The

claim is proved.

According to the above claim, wp0 ≤ wpn and wq0 ≥ wqn . Meanwhile, since p0 and pn

are respectively scheduled to q0 and qn in Sr, wp0 and wq0 are convertible, and wpn and wqn are

convertible. Therefore wp0 ≤ wpn ≤ wqn + d ≤ wq0 + d, where d is the conversion degree.

It implies that wpn is within the conversion range of wq0 . Recall that as discussed in Section

2.3.2.3.3, the Augment to Full Algorithm has a property that if at the end of an iteration there

exists an eligible but unselected queue slot on an output wavelength and an unassigned packet on

an input wavelength, then the two wavelengths are not convertible. According to this property,

either pn is assigned, or q0 must be selected. This contradicts with the previous assumption that

both q0 and pn are not included after the kth iteration of the Augment to Full Algorithm. Thus,

such a list of packets and queue slots cannot be found, and c
Saf

k ≥ cSk must hold for any schedule

S. Therefore, cSaf

i ≥ cSi holds for 0 ≤ i ≤ B and any S.

Now by Lemma 1, we can obtain the following corollary.

Corollary 1. Saf is an optimal schedule.

Proof. Since c
Saf

B ≥ cSB for any schedule S, Saf schedules the most number of packets out of all

29

possible schedules. And the total delay Dtotal incurred by those packets can be expressed as

Dtotal =
B∑
i=1

i · (cSaf

i − c
Saf

i−1)

= B · cSaf

B −
B∑
i=0

c
Saf

i

As c
Saf

i ≥ cSi for 0 ≤ i ≤ B and any S, Saf achieves the smallest average delay among all

schedules that schedule c
Saf

B packets. Therefore Saf is an optimal schedule.

2.5 Implementation and Complexity Analysis

In this section we discuss the implementation of the new scheduling scheme, and analyze the

complexity of the proposed algorithm.

At the beginning of iteration i of the Augment to Full Algorithm, the set of active output

wavelengths, Ai, needs to be computed according to Ai = Ai−1 ∪ Ni − Li−1. As an implemen-

tation detail, elements in Ni, Li and Ai are kept in an ascending order. At the beginning of each

time slot, we scan the output wavelengths in an ascending order, and add each wavelength to the

corresponding set in {N1, N2, . . . , NB} according to the queue length on that wavelength. Thus

{N1, N2, . . . , NB} can be obtained in O(W) time. Keeping elements in order for Ni is trivial since

its elements, if any, are added to the set in an ascending order. Li is obtained by scanning Ai at the

end of the ith iteration. If the ith queue slot on a wavelength w ∈ Ai is not selected in this iteration,

w is added to Li. Clearly, elements of Li can be kept in order without extra cost if elements of Ai

are in order. In particular, we implement Ai as a linked list. As a result, Ai−1 ∪Ni can be done in

time linear to |Ai−1 ∪Ni| = O(|Ai|). Similarly, all the deletions of elements of Li−1 take O(|Ai|).

During the filling process, we traverse the linked list representing Ai, and use them one by

30

one to fill the input wavelengths. Recall that the conversion range of a wavelength is bounded by

2d + 1, which is also the maximum number of input wavelengths an output wavelength can fill in

each filling process. Thus Ai tries to fill at most (2d + 1)|Ai| = O(|Ai|) input wavelengths, since

d is a small constant. Besides, with the help of the auxiliary stack for blocking resolving, it takes

only constant time to resolve a blocking. However, we do need to push as many as |Ai| items into

the stack during the whole filling process. After the filling process along with blocking resolution,

the schedule construct algorithm is called and the remaining packets on an input wavelength may

need update. This also takes O(|Ai|) time. Suppose that the algorithm terminates at iteration s.

Then by adding up all the above, we have

Taf = O(W) +
s∑

i=0

O(|Ai|)

where Taf is the time complexity of the Augment to Full Algorithm.

In iteration i, |Ai| queue slots with index i are taken into consideration by the Augment to Full

Algorithm. |Li| of them will not be selected, and lead to the lock of the corresponding wavelength;

the remaining |Ai| − |Li| are selected in iteration i and will be used in the final schedule. Note

that the total number of queue slots is BW . On the other hand, in a single time slot there are up

to NW packet arrivals, hence at most NW queue slots are needed to schedule all the packets. In

other words, when the algorithm terminates at iteration s, it must be true that

s∑
i=0

|Ai| − |Li| ≤ min{NW,BW}

It is also clear that
s∑

i=0

|Li| ≤
s∑

i=0

|Ni| ≤ W

31

Thus

s∑
i=0

|Ai| ≤ min{NW,BW}+
s∑

i=0

|Li|

= O(min{NW,BW})

Therefore,

Taf = O(W) +
s∑

i=0

O(|Ai|)

= O(min{NW,BW})

On the other hand, since for each time slot, any algorithm has to determine whether each of the

packets should be transmitted, or whether each of the queue slots should be occupied, the lower

bound of the scheduling problem is O(min{NW,BW}). Thus the complexity of the Augment to

Full Algorithm asymptotically matches the lower bound of the problem. The low time complexity

of our algorithm is mainly due to the properties of the switch discussed earlier: the output buffer

can be treated as a FIFO queue on each output wavelength channel. As a result, available buffer

slots on an output wavelength channel are consecutive.

2.6 Performance Evaluations

We have conducted extensive simulations to evaluate the performance of the proposed schedul-

ing algorithm. The main performance criteria considered are packet loss probability and average

queuing delay. Two switches are simulated: one has 16 input fibers and 16 output fibers, with 16

wavelengths on each fiber, and the other has 8 input fibers and 8 output fibers, with 4 wavelengths

on each. By doing so we expect to rule out the possibility that certain performance measures are

32

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty

Buffer length

N = 16, W = 16; uniform Bernoulli traffic

d = 0
d = 1
d = 2
d = 4
d = 16

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty

Buffer length

N = 16, W = 16; non−uniform burst traffic

d = 0
d = 1
d = 2
d = 4
d = 16

(a) (b)

Figure 2.9: Packet loss probability versus buffer length with ρ = 0.8, N = 16,W = 16. (a)
Uniform Bernoulli traffic. (b) Non-uniform burst traffic with geometric distribution.

0 2 4 6 8 10

10
−4

10
−3

10
−2

10
−1

10
0

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty

Buffer length

N = 8, W = 4; uniform Bernoulli traffic

d = 0
d = 1
d = 2
d = 4

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty

Buffer length

N = 8, W = 4; non−uniform burst traffic

d = 0
d = 1
d = 2
d = 4

(a) (b)

Figure 2.10: Packet loss probability versus buffer length with ρ = 0.8, N = 8,W = 4. (a) Uniform
Bernoulli traffic. (b) Non-uniform burst traffic with geometric distribution.

33

dependent on any particular value of the switch size, the number of wavelength channels, or the

ratio of the two.

We conducted simulations under both Bernoulli uniform traffic and burst non-uniform traffic.

Bernoulli arrival assumes that at the beginning of each time slot the probability that there is a

packet arriving on any input wavelength is solely determined by the traffic intensity ρ. Under the

burst arrival model, the status of an input wavelength channel alternates between “on” and “off.”

At the beginning of each time slot there is always a packet arriving on input channels which are

“on,” and no packet will arrive during an “off” period. The length of a state may follow different

distributions. When it follows geometric distribution, the traffic is the ideal on-off traffic model

[33]. The average burst length is 10 in the simulations. Under the non-uniform traffic model, there

is a hotspot output fiber for each input wavelength channel. The possibility that a packet arriving

at an input wavelength channel is destined for the corresponding hotspot output fiber and any other

output fiber is p and (1 − p)/N , respectively. In the simulations p is set to 50%. The simulation

data were obtained by running each simulation for 106 time slots, and the results are plotted in Fig.

2.9 to Fig. 2.12.

It can be seen from Fig. 2.9 and Fig. 2.10 that when neither buffer nor wavelength conversion

are available (i.e., d = 0 and B = 0), in both simulated switches the packet loss probability is

almost the same regardless of the traffic models. Nevertheless, as shown in Fig. 2.9(a) and Fig.

2.10(a), under uniform Bernoulli traffic, FDLs that can store a few packets will suffice to bring

the loss probability to an acceptable level, even when only very limited wavelength conversion is

available. For example, d = 1 and B = 4 produces a loss probability smaller than 10−4 in both

Fig. 2.9(a) and Fig. 2.10(a). While under non-uniform bursty traffic, the packet loss probability

drops rather slowly with the increase of the buffer length. However, under both traffic models,

the improvement in packet loss probability is significant when wavelength conversion becomes

available. Especially under burst traffic where a small buffer can hardly help reduce the packet loss

34

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
ve

ra
ge

 q
ue

ue
in

g
de

la
y

Buffer length

N = 16, W = 16; uniform Bernoulli traffic

d = 0
d = 1
d = 2
d = 4
d = 16

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 q
ue

ue
in

g
de

la
y

Buffer length

N = 16, W = 16; non−uniform burst traffic

d = 0
d = 1
d = 2
d = 4
d = 16

(a) (b)

Figure 2.11: Average packet queuing delay versus buffer length with ρ = 0.8, N = 16,W = 16.
(a) Uniform Bernoulli traffic. (b) Non-uniform burst traffic.

probability, the increase in wavelength conversion degree from 0 to 1 is crucial as can be seen in

Fig. 2.9(b) and Fig. 2.10(b). Meanwhile, if we compare Fig. 2.10 with Fig. 2.9, it is not difficult to

see that, when W = 4, i.e., each fiber contains only 4 wavelength channels, the effect of increasing

the wavelength conversion capability is not as significant as that when W = 16.

Fig. 2.11 and Fig. 2.12 illustrate the average packet queuing delays under each traffic model.

Under uniform Bernoulli traffic, the average queuing delay converges very fast with the increase

of the buffer length as long as d > 0. In Fig. 2.11(a) and Fig. 2.12(a), when d > 0, the average

queuing delay becomes rather stable after B increases to 2. However, under burst traffic (Fig.

2.11(b) and Fig. 2.12(b)), it requires a larger buffer for such converge to occur. On the other hand,

the converged average queuing delay with full-range wavelength conversion is close to that with

a much smaller conversion degree, which implies that for an optical packet switch the ability of

wavelength conversion is critical, while it is not necessarily to be full-range conversion. A similar

observation can be drawn for packet loss probability.

In summary, wavelength conversion is a unique method for optical networks to resolve channel

contention. A scheduler can efficiently regulate the traffic at the switch input by making use of

35

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

A
ve

ra
ge

 q
ue

ue
in

g
de

la
y

Buffer length

N = 8, W = 4; uniform Bernoulli traffic

d = 0
d = 1
d = 2
d = 4

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 q
ue

ue
in

g
de

la
y

Buffer length

N = 8, W = 4; non−uniform burst traffic

d = 0
d = 1
d = 2
d = 4

(a) (b)

Figure 2.12: Average packet queuing delay versus buffer length with ρ = 0.8, N = 8,W = 4. (a)
Uniform Bernoulli traffic. (b) Non-uniform burst traffic.

wavelength conversion. As a result, system performance can greatly benefit from the reduction of

traffic burstness.

2.7 Conclusions

In this chapter we have studied packet scheduling in WDM optical packet switches with output

buffer and limited-range wavelength conversion. We have shown that the output buffer can be

viewed as a separate FIFO on each output wavelength channel. We have formalized the problem

of finding an optimal schedule in such a switch into a minimum cost maximum flow problem,

and presented a new scheduling scheme, called the Augment to Full Algorithm to find an optimal

schedule. The new scheduling algorithm is able to find an optimal schedule in O(min{NW,BW})

time, where N is the switch size, W is the number of wavelength channels per fiber and B is the

length of the longest FDL at the output of the switch. Compared to directly applying a generic

network flow algorithm, the Augment to Full Algorithm is much more efficient and asymptotically

matches the lower bound of the scheduling problem. This optimal scheduling algorithm can be

applied to any output-buffered WDM optical switches whose output buffer can be modeled as a

36

queue on each wavelength channel. Simulations were conducted to test the performance of the

proposed scheduling algorithm under different traffic models.

37

Table 1: Schedule construction from vectors I and O
Input: I = {xi|i = 1, 2, . . . ,W}, O = {yi|i = 1, 2, . . . ,W}
Output: a schedule with the given I, O and minimum delay
Notations:
in, out: pointers to input/output wavelengths currently being

worked with, respectively
pin: number of remaining packets on input wavelength in to

be scheduled
qout: number of remaining queue slots on output wavelength

channel out to be used
Algorithm:

for each wavelength i
pin ← xin, qout ← yout

end for
in← 1, out← 1
while in ≤ W and out ≤ W

if qout ≤ pin
/*schedule qout packets from in to out*/
pin ← pin − cout, out← out+ 1

else
/*schedule pin packets from in to out*/
qout ← qout − pin, in← in+ 1

end if
if in > min{W, out+ d}
out← out+ 1

end if
if out > min{W, in+ d}
in← in+ 1

end if
end while

38

Table 2: The Augment to Full Algorithm
Input: request graph
Output: an optimal schedule
Notations:
xj: number of assigned packets on input wavelength j in current iteration
yj: number of selected queue slots on output wavelength j in current iteration
x̂j: number of packets on input wavelength j not assigned to locked output wavelengths
lj: length of queue on output wavelength j at the beginning of current time slot
qj: number of queue slots on wavelength j that can still be selected in current iteration.
pj: number of packets to be assigned on input wavelength j
in, out: pointers to input/output wavelengths currently being filled or filling, respectively
sj: iteration at which output wavelength channel j is locked
f : number of blocked queue slots
Algorithm:

for i = 0 to B
exit if all output wavelengths locked, or all inputs filled by locked output wavelengths.
Ai ← Ai−1 ∪Ni − Li−1, Li ← ∅
/* i+ 1− lj is the total number of eligible queue slots on wavelength j in iteration i */
qj ← i+ 1− lj, yj ← 0 for all j ∈ Ai

out← the first active output wavelength, in← max{0, out− d}, xin ← 0, pin ← x̂in

while in ≤ W and out ≤ W
if qout ≤ pin
xin ← xin + qout, yout ← yout + qout, pin ← pin − qout
push out into the auxiliary stack
out← next active output wavelength

else
xin ← xin + pin, yout ← yout + pin, qout ← qout − pin
in← in+ 1, pin ← x̂in

end if
if in > min{W, out+ d}

/*f queue slots are blocked on out*/
f ← qout − 1, yout ← yout + f
pop the top f elements from the auxiliary stack, yw ← yw − 1 if w popped
out← next active output wavelength

end if
if out > min{W, in+ d}
in← out− d

end if
end while
construct intermediate schedule based on {yj | j ∈ Ai} and
{xj′ | wavelength j′ convertible to wavelength j ∈ Ai}

for each j ∈ Ai s.t. yj < i+ 1− lj
Li ← Li ∪ j, sj ← i
update x̂j′ for all wavelength j′ convertible to wavelength j

end for
end for

39

Chapter 3

Achieving 100% Throughput in

Input-Buffered WDM Optical Packet

Switches

In previous chapter, we have studied packet scheduling in output-buffered optical switches.

This chapter focuses on input-buffered switches and is organized around the maximum through-

put that can be achieved with such interconnect architecture. More specifically, packet scheduling

algorithms that deliver 100% throughput under various types of traffic enable a switch to achieve

its full capacity. While such algorithms have been proposed for electronic switches, they cannot

be directly applied to WDM optical switches due to the following reasons. First, the optical coun-

terpart of electronic random access memory (RAM) is absent; Second, the wavelength conversion

capability of WDM switches changes the conditions for admissible traffic. To address these issues,

in this chapter, we first introduce a new fiber-delay-line (FDL) based input buffering fabric that is

able to provide flexible buffering delay, followed by a discussion on the conditions that admissi-

ble traffic must satisfy in a WDM switch. We then propose a weight-based scheduling algorithm,

40

named Most-Packet Wavelength-Fiber Pair First (MPWFPF), and theoretically prove that given a

buffering fabric with flexible delay, MPWFPF delivers 100% throughput for input-buffered WDM

switches with no speedup required. Finally, we further propose the WDM-iSLIP algorithm, a

generalized version of the iSLIP algorithm, for WDM switches, which efficiently finds an approx-

imate optimal schedule with low time complexity. Extensive simulations have been conducted to

verify the theoretical results, and test the performance of the proposed scheduling algorithms in

input-buffered WDM switches.

The rest of the chapter is organized as follows. Section 3.1 presents some background and

related work. Section 3.2 presents the new FDL-based buffering fabric and gives the conditions

for admissible traffic in WDM switches. Section 3.3 presents the Most-Packet Wavelength-Fiber

Pair First scheduling algorithm and proves that it achieves 100% throughput. Section 3.4 describes

the WDM-iSLIP algorithm. Section 3.5 gives the simulation results. Section 3.6 concludes the

chapter.

3.1 Background and Related Work

Similar to many other works in the literature [2] [34] [35], packets at the switch input are

assumed to have a fixed size and arrive in a synchronized manner. Such packets are also referred

to as cells. In a system with variable-length packets, it can be realized by segmenting packets into

cells at the switch input and reassembling cells into packets at the output. Possible implementations

of synchronous arrival of packets in optical domain are discussed in, for example, [36].

For electronic switches, many scheduling algorithms have been proposed by formalizing the

scheduling problem into a matching problem. McKeown, etc. showed [2] that though maximum

size matching algorithms schedule the maximum number of packets in each time slot, such algo-

rithms may not guarantee optimum throughput if the traffic is admissible but non-uniform. Instead,

41

maximum weighted matching based algorithms have been proved to be able to achieve 100% max-

imum throughput when the incoming traffic is i.i.d. [2] [37]. It was further shown in [38] that the

Longest Queue First (LQF) algorithm proposed in [2] delivers 100% throughput as long as input

traffic is admissible and satisfies the strong law of large numbers (SLLN). To reduce the computing

complexity, parallel iterative matching based approximate algorithms, such as iSLIP [5], have been

proposed and implemented in commercial products. iSLIP finds a maximal matching by breaking

down the matching process into i iterations. During each iteration, each unmatched input sends a

request to all outputs it has a packet destined to, then each unmatched output chooses one to grant

among all requests it received in a round robin manner. Finally, each input selects one grant if

there is any, and updates its state. Tradeoff between implementation complexity and performance

can be achieved by adjusting the number of iterations, i.

However, WDM optical switches differ from electronic switches in at least two aspects. First,

as mentioned in 1.2, due to the absence of optical RAM, currently the most common optical buffer-

ing method is to use fiber delay lines and switches. It was proposed in [39] to use FDLs and a large

switching fabric to emulate a single input, single output optical priority queue. A switch with
√
K

input and output ports and FDLs of a total length K + O(
√
K) are required to emulate a priority

queue with length K. In [40] the switch size was reduced to 3
√
K. Recently, a construction of

an optical FIFO was presented in [41], which requires 2n 2 × 2 switches and a total fiber length

3 · 2n−1 − 2 for an optical FIFO queue with buffer size 2n − 1. From the above discussion, it can

be seen that while common in electronic switches, the implementation of a VOQ becomes rather

complex in optical domain. Besides, to implement VOQ for a WDM optical switch with M input

fibers and N output fibers where each fiber contains k wavelength channels, at least kMN queues

are needed, which is k times of that in an M ×N electronic switch. Hence the overall implemen-

tation complexity tends to be overwhelming. Thus a buffering fabric that is more practical than

VOQ is desired.

42

The second fundamental difference lies in the conditions for admissible traffic. Traditionally,

an arrival rate is defined between each pair of input and output ports. The traffic is considered

as “admissible” if and only if the sum of the arrival rates from one input to all outputs, as well

as that from all inputs to one output, is smaller than 1, in other words, no input or output port

is oversubscribed. However, most of WDM packet switches are equipped with wavelength con-

verters, which convert the wavelength of an optical signal to another wavelength to resolve output

contention. As we will see later, due to wavelength conversion, arrival rates between each pair

of input/output wavelength channels cannot be well defined in WDM switches. Because of these

differences between electronic and WDM optical switches, most existing analyses and conclusions

on the performance of electronic switches cannot be directly applied to WDM optical switches.

In this chapter, we propose practical solutions to solve the above problems. We will first in-

troduce a new FDL-based buffering fabric which enables flexible buffering delay. Then we will

discuss the conditions that admissible traffic must satisfy in a WDM optical switch. We will prove

that input-buffered WDM switches using a buffering fabric with flexible delay are theoretically

guaranteed to achieve 100% throughput under any admissible traffic with any wavelength conver-

sion model, when working with a weight-based scheduling algorithm, in particular, the proposed

Most-Packet Wavelength-Fiber Pair First scheduling algorithm. To the best of our knowledge, this

is the first work that theoretically proves WDM packet switches are able to deliver 100% through-

put with no assumption on traffic or wavelength conversion patterns. Furthermore, to reduce the

scheduling complexity, we propose a more practical, parallel iterative matching based scheduling

algorithm, WDM-iSLIP, that can efficiently determine an approximate optimal scheduling with

much lower time complexity.

43

wavelength
converterbuffer

D
M

U
X

D
M

U
X

M
U

X
M

U
X

output fiber N

output fiber 1input fiber 1

input fiber M

scheduler

Mk X Nk

Figure 3.1: Architecture of the input-buffered WDM optical packet switch.

3.2 Input-Buffered WDM Optical Packet switches

The basic architecture of the input-buffered WDM optical packet switch considered in this

chapter is shown in Fig. 3.1. In the switch, there is a demultiplexer at each input fiber that demul-

tiplexes the incoming optical signal to k signals, one on each wavelength. There are also a buffer

and a wavelength converter on each input wavelength channel that are controlled by the central

scheduler. Finally, there is a multiplexer on each output fiber that multiplexes the signals on wave-

length channels back into an output fiber at the output of the switch. In the next few subsections,

we discuss several specific issues in such a WDM optical packet switch, including wavelength

conversion, controllable FDL buffer and admissible traffic.

3.2.1 Wavelength Conversion

We define Cw as the set of accessible wavelengths of wavelength w, i.e. the wavelengths that

w can be converted to, plus itself. CS is similarly defined for a set of wavelengths, S. Taking

the limited-range conversion model in previous chapter as an example, in Fig. 2.1, wavelength 1

44

...
FDL

Figure 3.2: The basic architecture of conventional feed-forward FDL buffers.

can be converted to wavelengths 2 and 3, thus C1 = {1, 2, 3}. Similarly, C{1,2} = {1, 2, 3, 4} and

C{3,6} = C{2,4} = {1, 2, 3, 4, 5, 6}.

It is worth pointing out that we make no assumptions on wavelength conversion patterns in this

chapter. In other words, our theoretical analyses to be presented in the following sections do not

depend on any specific conversion patterns and are valid for the general case.

3.2.2 Controllable FDL Buffer

There has been some work considering adding FDLs to optical switches in the literature. In

[34, 42], fixed FDLs were considered, where a light signal is buffered for a fixed amount of time

by the FDLs. Controllable FDL buffers were considered by combining FDLs with switches in [43]

[44] [45]. The buffers in these works share the same basic architecture as shown in Fig. 3.2. A

packet may be delayed or not between each two consecutive switches depending on how the first

switch is configured. A potential problem with this architecture is that it has at most two “exits,”

both located at the end of the buffer. As a result, a packet has to traverse all of the switches once

entering the buffer, regardless how long it needs to be buffered. This may result in undesirable

power loss and crosstalk.

In this chapter, we propose to use a controllable FDL buffer with multiple exits. Its diagram is

shown in Fig. 3.3 and the functionalities can be explained as follows.

The controllable FDL buffer is composed of several cascaded FDLs connected by 1 × 2 all-

optical switches, whose implementation can be found in, for example, [46]. When a packet reaches

45

Combiner
Switch FDL

Figure 3.3: A controllable FDL with multiple “exits.”

the end of an FDL segment, by default it is sent to the next FDL through one output port of the

1 × 2 switch. The scheduler configures the switch and let a packet leave the buffer through the

other output of the switch only when the packet is ready to be transmitted to the output. To avoid

conflicts, at any time only one packet can exit from each buffer. Under this structure, once entered

the FDL buffer, a packet can leave the buffer through any of the exits, therefore the delay time is no

longer fixed and can be controlled by the packet scheduler. The number of exits is limited by the

size of the combiner, which can be implemented by a many-to-one optical coupler. With current

technology, such a coupler can have 128 or more inputs [11]. The number of inputs can be further

extended by coupler cascading if needed. Besides, having K exits does not mean that the FDL can

hold at most K packets. The FDL between two exits can be longer than the unit length (the length

needed to provide one time slot delay), hence can hold multiple packets.

It is interesting and important to see what kind of benefits can be achieved if controllable FDL

buffers are used as the input buffer for a WDM packet switch. Note that there are many flexibilities

in such a controllable FDL. For example, in each time slot we can let zero or one packet exit from

the buffer on each input wavelength and be transmitted to the output of the switch. Also, we can

select the wavelengths on which packets can be transmitted and choose which packets can leave

the FDL buffer, depending on their destination fiber and the availabilities of wavelength channels

on these fibers. Hence, an algorithm is required to schedule the packets to achieve goals such as

maximum throughput.

46

3.2.3 Admissible Traffic for WDM Packet switches

The next issue we will address is the conditions for admissible traffic for WDM packet switches.

In an M × N electronic switch, an arrival process at input i for output j at rate λi,j (normalized

to packet arrivals per time slot) can be denoted as Ai,j(·), where Ai,j(n) stands for the cumulative

number of packets destined for output j that have arrived at input i by the nth time slot. The set of

all arrival processes A(·), which is defined as A(·) = {Ai,j(·), i = 1, 2, . . . ,M, j = 1, 2, . . . , N},

is considered admissible if ∑
i

λi,j < 1 and
∑
j

λi,j < 1 (3.1)

It can be seen that traffic being admissible is equivalent to that no input or output is oversubscribed.

It is worth pointing out that {Ai,j(·), i = 1, 2, . . . ,M, j = 1, 2, . . . , N} are usually assumed

to be independent, or at least to be jointly stationary processes. A process is stationary if its sta-

tistical properties, such as the mean and variance, do not change over time. Two processes X(t)

and Y (t) are jointly stationary if both of them are stationary, and their cross-correlation function

RXY (t, t+ τ) = E[X(t)Y (t+ τ)] depends only on the time interval τ but not on the starting time

t. This assumption holds in electronic switches. For WDM switches that do not have wavelength

conversion capability, the assumption also holds. Consider a WDM packet switch with M input

fibers and N output fibers. There are k wavelengths multiplexed on each fiber, each of which oper-

ates at rate r. Without wavelength conversion, such a system can be simply considered as k M×N

traditional crossbar switches since packet scheduling on different wavelengths is independent, and

the rate of each input/output is the rate of a wavelength, r. However, since wavelength conversion

is an important method to resolve resource contention in WDM packet switches, in most of ex-

isting designs of WDM switches, wavelength conversion capability was considered [13, 35] [47]

[34] [14] [48] [49]. Now the problem is that with wavelength conversion, packet scheduling on

different wavelengths is dependent. In other words, if we define an arrival process for each pair

47

of input/output wavelength channel, these processes are no longer independent. Such processes

are not jointly stationary neither, since they depend on not only the arrival of packets but also the

scheduler. As a result, the previous assumption may no longer be valid.

From the above discussion, we can see that in WDM switches it may not be appropriate to

define an arrival process per input/output wavelength channel pair. Furthermore, it cannot work

well either if an arrival process is defined for each pair of input fiber/output fiber. The reason

is that even the sum of arrival rates is well bounded for each fiber, it never guarantees that no

wavelength channel is oversubscribed. In other words, traffic that seems admissible at fiber level

may be inadmissible at wavelength granularity. Therefore, for wavelength w on input fiber i, we

define Aw
i,j(n) as the cumulative number of packets destined for output fiber j that have arrived on

wavelength w at input fiber i by the nth time slot. It is easy to see that {Aw
i,j(·), i = 1, 2, . . . ,M, j =

1, 2, . . . , N, w = w1, w2, . . . , wk} are independent processes. We can then define the rate of each

arrival process Aw
i,j(·) as long as it satisfies the strong law of large numbers (SLLN), i.e., with

probability one, limn→∞ Aw
i,j(n)/n = λw

i,j , where λw
i,j is the arrival rate. As pointed out in [38], this

is true for almost all real traffic processes.

With the arrival rates defined, we now return to the question that what conditions admissible

traffic must satisfy in WDM packet switches. Apparently, we can no longer obtain equations as

neat as (3.1), although the basic rule is the same, i.e. no channel should be oversubscribed. First,

for each input fiber, the sum of arrival rates from one wavelength channel to all the output fibers

should be smaller than 1. Thus we have the following equation:

∑
j

λw
i,j < 1 (3.2)

for all i and w as defined above. At the same time, the sum of arrival rates on a particular wave-

length over all input fibers that are destined to the same output fiber cannot exceed the cardinality

48

of the set of accessible wavelengths of that wavelength, i.e.

∑
i

λw
i,j < |Cw| (3.3)

for all j and w. Note that |Cw| can be larger than 1, which makes the above condition looser than

its counterpart for electronic switches. For example, in a switch with the wavelength conversion

model given in Fig. 2.1, the sum of arrival rates on wavelength 1 over all input fibers and destined

to a particular output fiber can be as large as 3, since incoming packets on wavelength 1 can be

scheduled to wavelength channels 1, 2 or 3 of that output fiber. Furthermore, as explained earlier,

packet scheduling on convertible wavelengths is dependent. Thus, for any set of wavelengths, S,

the sum of arrival rates on these wavelengths that are destined to a particular output fiber over all

input fibers cannot exceed the cardinality of the accessible wavelength set of S. In other words,

∑
w∈S

∑
i

λw
i,j < |CS| (3.4)

must hold for all j and S. In fact, (3.3) is a special case of (3.4) when the set contains only one

wavelength. Thus the traffic is admissible if and only if the arrival rates satisfy (3.2) for every input

wavelength channel and (3.4) for every output fiber and combination of input wavelengths.

3.3 Most-Packet Wavelength-Fiber Pair First Algorithm

In this section we give an optimal packet scheduling algorithm for the WDM packet switches

described in the previous section, called the Most-Packet Wavelength-Fiber Pair First Algorithm

(MPWFPF), and prove that it is theoretically guaranteed to deliver 100% throughput under any

admissible traffic.

49

The basic idea of MPWFPF is to favor input wavelength channel/output fiber pairs that are

more congested than others. Let Zw
i,j(n) denote the number of packets destined to output fiber j

that are buffered on wavelength w of input fiber i at the beginning of time slot n, then we have

Zw
i,j(n) = Aw

i,j(n)−Dw
i,j(n) (3.5)

where Dw
i,j(n) is the cumulative number of departed packets that came from wavelength w of input

fiber i to output fiber j up to time slot n. Let Sw(n) be an M × N matrix, such that each of its

element Sw
i,j(n) is the service indicator and

Sw
i,j(n) =


1, if a packet on wavelength w of input i scheduled to output j in time slot n

0, otherwise
(3.6)

Note that there are a total of k such matrices Sw(n), one for each wavelength. To simplify our

proof later, we merge the k matrices into a single kM ×N “super” matrix π(n), such that π(n) =

[S1(n) S2(n) . . . Sk(n)], or equivalently, πi′,j(n) = Sw
i,j(n), where i′ = i + M(w − 1), for

1 ≤ w ≤ k, 1 ≤ i ≤M and 1 ≤ j ≤ N . We refer to π(n) as the schedule matrix in the following.

Similarly, we defineZ(n),R andD(n), which are the merged formats for Zw
i,j(n), λ

w
i,j and Dw

i,j(n),

respectively. Z(n),R and D(n) are called the weight matrix, rate matrix, and departure matrix,

respectively.

Note that with buffer at the switch input, packet scheduling for different output fibers is de-

pendent, since packets buffered on the same input wavelength channel destined to different output

fibers will compete for transmission. In Table 1, we show the function that MPWFPF performs

in a time slot, say, slot n, which is basically to find under certain constraints the optimal schedule

matrix π(n) (or equivalently the service indicator matrices Sw(n) for all w). In other words, each

50

pair of input wavelength/output fiber is assigned a weight, which equals the number of packets

that belong to this pair and are currently being buffered. The more packets buffered, the larger the

input wavelength channel/output fiber pair is weighted, and the higher priority the pair needs to be

served. As a result, it is unlikely that the number of packets on an input wavelength destined to an

output fiber goes to infinity. The constraints assure that π(n) is feasible. For instance, the value

of an element of π(n) can only be 0 or 1, since any element of π(n) is a service indicator. Also,

the sum of each column of π(n) must be smaller than or equal to 1 since there is no speedup and

each input wavelength channel can transmit at most one packet during each time slot. However,

this does not hold for each row of π(n), as an output fiber can receive as many as k packets in each

time slot. Nevertheless, in each time slot, the number of packets coming from a set of wavelengths,

W , for example, that an output fiber can receive is at most CW , because those packets can only

be converted and sent to CW out of all the wavelength channels on that output fiber. They cannot

access any of the remaining wavelength channels on that output fiber even those channels are free,

since they cannot be converted to those wavelengths.

An interesting observation is that the conditions π(n) must satisfy are exactly the conditions

admissible traffic must satisfy, given by the equations in Section 3.2.3, plus that πi,j(n) can only

be 0 or 1 for all i and j. It should not be surprising though, since the constrains are essentially the

same, i.e., no input or output wavelength channel should be oversubscribed.

Next we show that theoretically MPWFPF can deliver 100% throughput under any admissible

traffic. Similar to other works in the literature on the proof of 100% throughput, we adopt the

assumption that there is no packet loss due to buffer overflow at the input of the switch. It requires

that the controllable FDL buffer has sufficiently large capacity. Practically, this can be ensured

by adopting a large electronic or all-optical backup buffer for the controllable FDL, such as those

proposed in [48] [50], to store packets if the controllable FDL buffer is full. When the two buffers

are coordinated well, the minimum length of the controllable FDL on each input wavelength can

51

Table 1: Most-Packet Wavelength-Fiber Pair First Algorithm

Input – weight matrix Z(n)
Output – schedule matrix π(n)

Find π(n) that maximizes
⟨π(n),Z(n)⟩ =

∑
ij πi,j(n)Zi,j(n)

such that
πi+M(w−1),j(n) = Sw

i,j(n), and
Sw
i,j(n) = 0 or 1,∑
j S

w
i,j(n) < 1,∑

w∈W
∑

i S
w
i,j(n) < |CW |

for 1 ≤ w ≤ k, 1 ≤ i ≤M , 1 ≤ j ≤ N

and all possible sets of wavelengths, W .

be as small as the number of output fibers, so that at least one packet destined to each output fiber

can be buffered. As will be seen from the performance evaluations section, the above assumption is

quite reasonable and mild. Our simulation results reveal that under MPWFPF, the average buffering

time for a packet is within a practical range even when the switch is heavily loaded.

First of all, let Tπ(n) be the cumulative amount of time that schedule matrix π has been used

by time slot n. Then we have

Dw
i,j(n) =

n∑
l=1

Sw
i,j(l) · 1{Zw

i,j(l)>0}

=
∑
π

n∑
l=1

πi,j1{Zw
i,j(l)>0}(Tπ(l)− Tπ(l − 1)) (3.7)

where 1{Zw
i,j(l)>0} = 1 if Zw

i,j(l) > 0 is true, and 0 otherwise. By applying the fluid method [38]

and combining different wavelengths into the super matrix format, the continuous fluid version of

equations (3.5) and (3.7) can be written respectively as follows:

52

for t ≥ 0, 1 ≤ i ≤M , 1 ≤ j ≤ N ,

Zi,j(t) = Ri,j · t−Di,j(t) ≥ 0 (3.8)

dDi,j(t)

dt
=

∑
π

πi,j
dTπ(t)

dt
, if Zi,j(t) > 0 (3.9)

Next we prove an important lemma that will be used in the proof for 100% throughput:

Lemma 2. For any admissible traffic, the corresponding rate matrixR must satisfy

⟨R,Z(t)⟩ ≤ ⟨π0,Z(t)⟩ (3.10)

where ⟨X, Y ⟩ =
∑

ij XijYij and π0 is an optimal schedule matrix that maximizes ⟨π,Z(t)⟩ under

the conditions given in Table 1.

Proof. We formalize the scheduling problem into a network flow problem as illustrated in Fig.

3.4. Consider a WDM switch with M input fibers, N output fibers and k wavelength channels

on each fiber. First, we introduce three sets of nodes I , O and W , which have M , N and kM

nodes, respectively. I and O denote the input fibers and output fibers, respectively. Each node

in I is connected to k different nodes in W , representing its k wavelength channels. There are

N identical k × k switching blocks, each of which is responsible for the packet scheduling to a

particular output fiber. The connection pattern from the inputs to the outputs in a switching block

is solely determined by the wavelength conversion pattern in the original WDM switch. Each node

in W denoting wavelength i is connected to the ith input of each switching block. All outputs of

a switching block are connected to one node in O. We add two more dummy nodes, s and t, such

that s is connected to all nodes in I and t is connected to all nodes in O. Every edge between I and

W , as well as between the outputs of the switching blocks and O, has unit capacity. The rest of

the edges can be assumed to have a capacity of k, which is the upper bound of the edge capacity.

53

.

.

.
.
.
.

block
switching

block
switching...

...
...

s t

1

1

N
input fiber M

I

W

O

output fiber N

output fiber 1

k

input fiber 1

1 1

k k

1
1

Figure 3.4: Formalizing the scheduling into a network flow problem. Node sets I , O and W
represent input fibers, output fibers and input wavelength channels, respectively. For each edge
between a node in W and an input of a switching block, a weight is assigned which equals to the
number of buffered packets belonging to the corresponding input wavelength / output fiber pair.
MPWFPF finds a maximum weighted flow in the flow graph in each time slot.

For each unit flow passing it, an edge between a node of W and one of the inputs of the switching

blocks generates a fixed profit, which is its weight. Suppose x ∈ W is the node representing

wavelength i of input fiber j. Then the edge between x and the ith output of switching block l,

denoted as eij,l, has a weight Zi
j,l(t), which is the number of packets currently being buffered on

wavelength i at input fiber j that are destined to output fiber l. Such a weight indicates that at this

moment if a packet is transmitted on wavelength i of input fiber j to output fiber l, a profit of Zi
j,l(t)

is earned.

It can be seen that what MPWFPF performs is equivalent to finding a maximum weighted

(profit) flow in the flow graph. Let F be a kM × N matrix such that Fi+M(w−1),j equals the

amount of flow on edge ewi,j of a feasible (not necessarily integral) flow in the graph. Then the total

profit generated by the feasible flow is given by

P (F) = ⟨F ,Z(t)⟩ (3.11)

54

Since the maximum weighted flow problem is essentially a transshipment problem and the capac-

ities and weights of all edges are integral, it has an integral optimal solution [32]. In other words,

there is an integral flow that achieves the maximum profit among all feasible flows. As each inte-

gral flow in the flow graph corresponds to a scheduling in the original switch, let π0 be the schedule

matrix that corresponds to the integral optimal flow. Then for any F , we have

⟨F ,Z(t)⟩ ≤ ⟨π0,Z(t)⟩

Since any admissible traffic corresponds to a feasible flow in this graph, its rate matrix must satisfy

⟨R,Z(t)⟩ ≤ ⟨π0,Z(t)⟩

That proves the lemma.

From the above lemma, it follows that

⟨Z(t), dZ(t)
dt
⟩ = ⟨Z(t),R− dD(t)

dt
⟩

= ⟨Z(t),R⟩ − ⟨Z(t), dD(t)
dt
⟩

= ⟨Z(t),R⟩ − ⟨Z(t),
∑
π

πdTπ(t)

dt
⟩

= ⟨Z(t),R⟩ − ⟨Z(t), π0⟩

≤ 0

55

The second last step holds because π0 is the schedule matrix employed. In other words,

dTπ0(t)

dt
= 1, and

∑
π ̸=π0

dTπ(t)

dt
= 0 (3.12)

The above result can be interpreted as follows. WheneverZ(t) becomes larger than 0, dZ(t)/dt ≤

0 holds, i.e., Z starts to decrease. According to Lemma 1 in [38], it follows that Z(t) = 0 for al-

most every t ≥ 0. Thus the fluid model is weakly stable [38], which means that by using MPWFPF

the corresponding switch delivers 100% throughput. Note that in the above proof, no assumption

was made on the traffic pattern or wavelength conversion model, nor was there any requirement on

speedup. Therefore, by combining these results, we have the following theorem.

Theorem 1. At speedup 1, the MPWFPF algorithm achieves 100% throughput for an input-

buffered WDM packet switch which uses the controllable FDL as input buffer under any admissible

traffic that satisfies SLLN and any wavelength conversion pattern.

Note that although the above proof is based on the controllable FDL buffer, the conclusion

does not limited to it. For example, if in the future all-optical VOQs become available, the proof

is completely valid with VOQs implemented at the switch input.

Now let’s analyze the complexity of this approach. As we know, under MPWFPF a maximum

weighted flow needs to be computed in each time slot. In the flow graph in Fig. 3.4, finding a

maximum weighted flow with the state-of-the-art algorithms needs O((M+N)MNk2 log k logC)

time, where C is the upper bound of the edge weight, i.e., the maximum value of Zw
i,j(t) at a given

time t for all i, j and w. Thus while MPWFPF is important as it is theoretically proved to deliver

100% throughput, its complexity is relatively high. In the next section we will propose a fast

approximate scheduling algorithm that has much lower scheduling complexity.

56

3.4 WDM-iSLIP Algorithm

As discussed in the previous section, similar to the maximum weighted matching based schedul-

ing algorithms in electronic switches, the MPWFPF algorithm, while of theoretical importance

since it is guaranteed to delivery 100% throughput for WDM optical packet switches, requires a rel-

atively complex scheduler. In this section we give a fast scheduling algorithm for the WDM packet

switches, called WDM-iSLIP algorithm, which is able to find an approximate optimal schedule

with lower complexity.

As the name implies, WDM-iSLIP is essentially a generalized version of iSLIP algorithm for

WDM switches. The iSLIP algorithm is a variation of the basic round-robin matching algorithm

(RRM). Traditionally, RRM maintains a round-robin schedule and a pointer for each input port

and output port and performs matching in iterations. Each iteration consists of the following three

steps:

Request Step: Each unmatched input sends a request to every unmatched output that it has at

least one queued packet.

Grant Step: Each output, if receiving any requests, chooses the one that appears first in its

round-robin schedule from the current pointer, and sends a grant message to the corresponding

input. The pointer is updated to the next location of the granted input.

Accept Step: Each input, if receiving any grants, accepts the one that appears first in its round-

robin schedule from the current pointer, and updates the pointer to the next location of the accepted

output.

The iSLIP differs from RRM in the grant step. In iSLIP, the pointer of an output will not be

updated unless its grant message is accepted in the next step. By this modification, iSLIP largely

eliminates the pointer synchronization problem in RRM, i.e. many outputs have their round robin

pointers synchronized, thus all send the grant message to the same input in an iteration.

57

To extend the success of iSLIP to WDM packet switches, we propose the WDM-iSLIP algo-

rithm. However, WDM-iSLIP is not a simple transplant of iSLIP to the WDM case. In WDM-

iSLIP, each input wavelength channel maintains two round robin schedules. One is the output

fiber (OF) schedule, consisting of N output fibers, and the other is the accessible wavelength (AW)

schedule, consisting of its accessible wavelengths. Correspondingly, there are two pointers for

each input wavelength, pointing to the current highest priority element in the OF schedule and

the AW schedule, respectively. Each output wavelength channel also maintains two round robin

schedules, the input fiber (IF) schedule and the AW schedule. Similarly, two pointers are defined

for each output wavelength channel. Like iSLIP, WDM-iSLIP runs in i iterations, each of which

consists of three steps. As the iteration goes on, the output of the algorithm improves towards a

maximal matching between the input and output wavelength channels. Nevertheless, each step in

one iteration of WDM-iSLIP differs from its counterpart in iSLIP. The details of a single iteration

of WDM-iSLIP are described below, assuming the switch has M input fibers and N output fibers,

with k wavelengths multiplexed on each fiber.

Request Step: Each unmatched input wavelength channel selects l output wavelength channels

for which it has at least one queued packet, and sends a request to each of them. l is a parameter

whose value can be adjusted to meet different requirements as will be discussed in more detail

soon. The l wavelength channels are determined as follows. First, select the next l output fibers

from the OF pointer in the OF schedule of the input wavelength. Then select the wavelength

pointed by the AW pointer. If during the selection of the l fibers a new round begins (i.e. there is a

jump from output fiber N to output fiber 1), then the wavelength next to the current AW pointer in

the AW schedule should be selected for those output fibers belonging to the new round.

Grant Step: Each output wavelength channel, if receiving any requests, chooses the one from

the input fiber that appears first in its IF schedule from its IF pointer. If there are more than one

requests from that input fiber, choose the one from the wavelength that appears first in its AW

58

schedule from its AW pointer. A grant message is sent to the corresponding input wavelength

channel. If and only if the grant is accepted in the first iteration, the IF pointer and AW pointer

will be updated. In that case, the IF pointer moves to one location beyond the accepted input fiber

(modulo M) in the IF schedule, and the AW pointer of the output wavelength moves to the next

accessible wavelength if and only if the IF pointer begins a new round in the IF schedule.

Accept Step: Each input wavelength channels, if receiving any grants, accepts the one from

the output fiber that appears first in its OF schedule from the current OF pointer. If there are more

than one grants from that output fiber, accept the one from the wavelength that appears first in

its AW schedule from its AW pointer. The corresponding IF pointer and AW pointer are updated

only in the first iteration. In that case, the OF pointer moves to one location beyond the accepted

output fiber (modulo N). The AW pointer of the input wavelength moves to the next accessible

wavelength if and only if the OF pointer begins a new round.

In Fig. 3.5, we give an example to explain how WDM-iSLIP works. In the figure, the switch

has 2 input fibers and 2 output fibers, each containing 2 wavelengths that are mutually convertible.

The value of l is 2. Let xij and yij denote wavelength channel j of fiber i at the input and the

output, respectively. x11 and x22 have queued packets destined to both output fibers, and the rest

of the input wavelength channels are currently idle. The round robin pointers for each input and

output wavelength channel are shown in Fig 3.5(d) (those not shown have no impact on the result).

In the request step, x11 first sends a request to y21. The second request of x11 is sent to y12 instead

of y11, as there is a jump from output fiber 2 to output fiber 1. The requests of x22 are sent to y11

and y21 since there is no such jump. In the grant step, y11 and y12 both receive only one request

hence they simply grant it. y21 receives two requests. Since its IF pointer equals 1, requests from

input fiber 1 have higher priority, thus y21 grants the request from x11. Finally, during the accept

step, x22 accepts the only grant it receives, updates its OF pointer to 2, and keeps its AW pointer

unchanged. x11, who receives two grants, selects the one from y21 and updates its IF and AW

59

12

21

22

11

x
x

x
x

y

y

y

y

11

12

22

21

11x

y

y

y11

12

21

22x

11x

y

y11

21

22x
(a) (b) (c)

22x11x 12y

OF

IF

AW

2

−

1

1

−

1 2

1

−

22x11x 12y

OF

IF

AW

− −

1

−21

2

2

1

(d) (e)

Figure 3.5: Example of one iteration of WDM-iSLIP. (a) Request step. Each input wavelength
channel that is currently not idle sends 2 requests. (b) Grant step. Both y21 and y12 grant the request
from x11 since it is of the highest priority among all received requests according to their IF and
AW pointers. (c) Accept step. x11 accepts the grant from y21 because y21 has higher priority than
y12 based on the OF pointer of x11. Then the OF pointer of x11 is updated to point to output fiber
1, which triggers the update of the AW pointer of x11 to point to wavelength 2. (d) Round robin
pointers before the current iteration. (e) Updated round robin pointers after the current iteration.

pointers to 1 and 2, respectively. The update of the AW pointer of x11 is triggered because its IF

pointer jumps back to the beginning of the OF schedule.

WDM-iSLIP inherits some nice properties from iSLIP. For example, outputs are not likely to

have their pointers synchronized and thus the grant messages can be distributed to different inputs.

Also, because of the round robin fashion, it tends to have nice fairness property. Meanwhile, there

are some significant differences between WDM-iSLIP and iSLIP, which can be summarized as

“selective request” and “hierarchical round robin.” These changes lead to the following advantages

of WDM-iSLIP:

1. Reduced information exchange between the input and output in each iteration. In an M ×N

optical switch with k wavelength multiplexed on each fiber, if each input wavelength sends

requests to every output wavelength it has buffered packets destined to, the total number

60

of requests generated in one step is MN
∑

w |Cw|, which can be as large as MNk2 and

is k2 times of that in an electronic switch of the same size. Thus this may be too much

for the information exchanged between the input and the output in one single step of an

iteration. With WDM-iSLIP, the number of requests is reduced to Mkl, where the value of l

can be adjusted to trade-off between the system performance and the amount of information

exchanged between the switch input and output. For example, if the size of the switch is

large, or the scheduler executes only a small number of iterations of WDM-iSLIP in each

time slot, a larger l may be necessary to generate more requests per iteration, such that more

packets can be scheduled. On the other hand, if the switch of interest is small, or many

iterations of WDM-iSLIP are executed per time slot, then it is safe to keep l small.

2. Each input wavelength channel sends packets in a round robin manner to output fibers, in-

stead of to the output wavelength channels. By separating the fiber pointer and the wave-

length pointer, it becomes less likely that in successive time slots an input wavelength chan-

nel keeps transmitting packets to wavelengths on the same output fiber, or an output wave-

length channel keeps being occupied by wavelengths on the same input fiber. As a result, the

bandwidth (load) is distributed more fairly among different inputs (outputs).

The WDM-iSLIP algorithm can be implemented in a way similar to the iSLIP algorithm. For

example, each output wavelength channel may receive a binary vector representing the requests

sent by the input wavelength channels, and each input wavelength channel may receive a binary

vector representing the grants sent by the output wavelength channels. There is an arbiter for each

input/output wavelength channel which determines the highest priority element in the round-robin

schedule based on the round-robin pointers. The only extra cost of WDM-iSLIP over classic iSLIP

is that each arbiter needs to maintain a second pointer due to hierarchical round robin as explained

above.

61

3.5 Performance Evaluations

We have evaluated the performance of the proposed buffering fabric and scheduling algorithms

through simulations. To rule out the possibility that certain performance depends on any particular

value of the switch size, the number of wavelength channels, or the ratio of the two, we have

simulated two different switches. One has 8 input fibers and 8 output fibers, with 8 wavelengths

multiplexed on each fiber, and the other has 32 input/output fibers, with 4 wavelengths on each

fiber.

We have conducted simulations under three different traffic models: Bernoulli arrival, burst

arrival with geometric distribution and burst arrival with Pareto distribution. The first two traffic

patterns have been explained in details earlier in 2.6. When the length of states follows Pareto

distribution, the traffic simulates self-similar traffic [51]. For each traffic model, we further con-

sider two types of traffic patterns, uniform traffic and non-uniform traffic. Under uniform traffic,

a packet arriving at an input has the same probability to be destined to any of the output fibers.

Non-uniform traffic is implemented as hotspot traffic in our simulation, which means that packets

on an input wavelength channel have a higher probability ph to be destined to the corresponding

“hotspot” output fiber than to the rest. Here we set the hotspot of wavelength channels of input

fiber i to be output fiber i, and ph = 30%. The remaining 70% packets are uniformly distributed

to other output fibers. The wavelength conversion patterns are randomly generated with parameter

conversion density, denoted as d, in our simulation. d represents the probability of being convert-

ible between an input/output wavelength pair. Apparently, the larger d is, on average the more

output wavelengths an input wavelength can be converted to.

Next we present the simulation results. The main performance criteria considered here are

average input buffering delay and packet loss probability (due to the limited length of FDL). The

impact of some important parameters on system performance, including the FDL length at each

62

input wavelength, L, the conversion density, d, the number of iterations in WDM-iSLIP, i, and the

maximum number of requests an input wavelength channel can send in one iteration, l, will be

examined.

3.5.1 Average Buffering Delay

The buffering delay of a packet is the interval from the arrival of the packet to the time it is

being transmitted to the output of the switch. Since we are considering switches with input buffer

only, the buffering delay of a packet is also its transmission delay, i.e. the interval from its arrival

to its departure. To rule out the effect of packet loss caused by the limited FDL length on packet

delay, we set L = 105 for simulations on buffering delay. In the next subsection we will examine

packet loss by considering a much shorter FDL length.

Fig. 3.6 and Fig. 3.7 illustrate the average buffering delay of MPWFPF and WDM-iSLIP

with different number of iterations under two traffic patterns in the two simulated switches, respec-

tively. It can be seen that under all conditions, WDM-1SLIP has longer buffering delay, which

is reasonable since it runs only one iteration towards a maximal matching and can hardly achieve

very good performance. We also notice that in the first switch (N = 8, k = 8), WDM-2SLIP and

WDM-4SLIP provide close performance. This indicates that for this switch the average number

of convergence iterations, i.e., the number of iterations when the maximal matching is found, of

WDM-iSLIP is around 2. On the other hand, in the second switch, WDM-2SLIP has much longer

buffering delay than WDM-4SLIP when traffic load is over 0.8, which means that WDM-iSLIP

needs more iterations to converge in this switch due to its larger size. At the same time, although

MPWFPF performs close to WDM-2SLIP and WDM-4SLIP in terms of buffering delay when the

offered load is light, as the load approaches 1, MPWFPF shows its advantage. This is consistent

with the theoretical result that MPWFPF delivers 100% throughput while the maximal matching

63

based WDM-iSLIP cannot.

We are also interested in how the wavelength conversion capability of the switch affects the

buffering delay, which is given in Fig. 3.8. It can be seen that the system performance benefits

from the increase in wavelength conversion capability. The larger the conversion density d is, the

more wavelengths a wavelength can be converted to, hence the more flexibility of the scheduling.

Meanwhile, as can be observed, for both MPWFPF and WDM-4SLIP, the decrease of average

buffering delay becomes smaller and smaller with the increment of d. This conforms with the

observations in the literature that, while wavelength conversion is important to resolve contention

in WDM optical switches, it is not necessarily to be full-range conversion. Most of time limited-

range or even simpler conversion pattern will suffice.

Under WDM-iSLIP, another parameter that may affect the average buffering delay is l, the

maximum number of requests each input wavelength channel can send in an iteration. In our

simulations, l is set to 4 by default. To see the effect of l, we now change its value to 2 and

re-measure the average packet buffering delay under Bernoulli and burst traffic with geometrical

distribution, keeping all other parameters unchanged as in Fig. 3.6. The results are plotted in Fig.

3.9. It can be seen that while under WDM-1SLIP, more traffic can be handled with l = 4 than that

with l = 2, for WDM-2SLIP and WDM-4SLIP, the difference in average packet delay between the

two cases is not obvious. This implies that when the iSLIP algorithm runs multiple iterations, it is

possible to choose a small value of l to reduce information exchange between inputs and outputs

of the switch, without introducing significant extra buffering delay.

3.5.2 Packet Loss Probability

As mentioned earlier, the number of exits in the controllable FDL is limited in practice. Packet

loss may occur when a packet arrives at the head of an FDL but still cannot be scheduled (note

64

that there is no packet loss due to the arrival of new packets since the position at the tail of an FDL

is always available at the beginning of a time slot). We have evaluated the packet loss probability

for MPWFPF and WDM-4SLIP with FDL length L ranging from 0 to 100. The simulation results

are shown in Fig. 3.10. It can be seen that for Bernoulli traffic, FDL with length less than 10

can effectively reduce the packet loss probability to below 10−3. Burst traffic usually requires a

larger buffer, but it is still within a practical range (around 10 for MPWFPF and around 80 for

WDM-4SLIP).

3.6 Conclusions

In this chapter we have studied optimal and fast packet scheduling in input-buffered WDM

optical packet switches. We have proposed a controllable fiber delay line buffer that is able to

provide flexible buffering time and employed it as the input buffer of the switch. We showed

that the conditions for admissible traffic in WDM switches are different from that in electronic

switches. By formalizing the scheduling problem into a network flow problem, we proved that

a weight-based algorithm, in particular, the proposed Most-Packet Wavelength-Fiber Pair First

algorithm, delivers 100% throughput under any admissible traffic with any wavelength conversion

pattern for WDM packet switches. We have also presented a fast scheduling algorithm WDM-

iSLIP which can efficiently find an approximate optimal schedule with lower time complexity.

Simulations have been conducted to verify the theoretical analyses and test the performance of the

proposed scheduling algorithms in input-buffered WDM packet switches.

65

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 8, k = 8, d = 0.1, L = 105, Bernoulli uniform traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 8, k = 8, d = 0.1, L = 105, Bernoulli hotspot traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

(a) (b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 8, k = 8, d = 0.1, L = 105, burst uniform traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 8, k = 8, d = 0.1, L = 105, burst hotspot traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

(c) (d)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 8, k = 8, d = 0.1, L = 105, Pareto uniform traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 8, k = 8, d = 0.1, L = 105, Pareto hotspot traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

(e) (f)

Figure 3.6: Buffering delay of MPWFPF and WDM-iSLIP with different number of iterations,
i. The number of fibers N = 8, the number of wavelengths per fiber k = 8, conversion density
d = 0.1 and FDL length L = 105. The delay (Y axis) is plotted in logarithmic scale.

66

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 32, k = 4, d = 0.2, L = 105, Bernoulli uniform traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 32, k = 4, d = 0.2, L = 105, Bernoulli hotspot traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

(a) (b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 32, k = 4, d = 0.2, L = 105, burst uniform traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 32, k = 4, d = 0.2, L = 105, burst hotspot traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

(c) (d)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 32, k = 4, d = 0.1, L = 105, Pareto uniform traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 32, k = 4, d = 0.1, L = 105, Pareto hotspot traffic

MPWFPF
WDM−1SLIP
WDM−2SLIP
WDM−4SLIP

(e) (f)

Figure 3.7: Buffering delay of MPWFPF and WDM-iSLIP with different number of iterations, i.
The number of fibers N = 32, the number of wavelengths per fiber k = 4, conversion density
d = 0.2 and FDL length L = 105.

67

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Conversion Density d

offered load = 0.8, L = 105, Bernoulli uniform traffic

MPWFPF
WDM−4SLIP

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Conversion Density d

offered load = 0.8, L = 105, Bernoulli hotspot traffic

MPWFPF
WDM−4SLIP

(a) (b)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

4

6

8

10

12

14

16

18

20

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Conversion Density d

offered load = 0.8, L = 105, Burst uniform traffic

MPWFPF
WDM−4SLIP

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Conversion Density d

offered load = 0.8, L = 105, Burst hotspot traffic

MPWFPF
WDM−4SLIP

(c) (d)

Figure 3.8: Buffering delay of MPWFPF and WDM-4SLIP under different wavelength conversion
densities. N = 8, k = 8, offered load = 0.8, FDL length L = 105.

68

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 8, k = 8, d = 0.1, L = 105, Bernoulli uniform traffic

WDM−1SLIP(l=2)
WDM−1SLIP (l=4)
WDM−2SLIP(l=2)
WDM−2SLIP (l=4)
WDM−4SLIP(l=2)
WDM−4SLIP (l=4)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 8, k = 8, d = 0.1, L = 105, Bernoulli hotspot traffic

WDM−1SLIP(l=2)
WDM−1SLIP (l=4)
WDM−2SLIP(l=2)
WDM−2SLIP (l=4)
WDM−4SLIP(l=2)
WDM−4SLIP (l=4)

(a) (b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 8, k = 8, d = 0.1, L = 105, burst uniform traffic

WDM−1SLIP(l=2)
WDM−1SLIP (l=4)
WDM−2SLIP(l=2)
WDM−2SLIP (l=4)
WDM−4SLIP(l=2)
WDM−4SLIP (l=4)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 B
uf

fe
rin

g
D

el
ay

Offered Load

N = 8, k = 8, d = 0.1, L = 105, burst hotspot traffic

WDM−1SLIP(l=2)
WDM−1SLIP (l=4)
WDM−2SLIP(l=2)
WDM−2SLIP (l=4)
WDM−4SLIP(l=2)
WDM−4SLIP (l=4)

(c) (d)

Figure 3.9: Buffering delay under WDM-iSLIP with different l, and N = 8, k = 8, d = 0.1, L =
105.

69

0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

P
ac

ke
t L

os
s

P
ro

ba
bi

lit
y

FDL Length

d = 0.1, offered load = 0.8, Bernoulli traffic

MPWFPF, uniform traffic
WDM−4SLIP, uniform traffic
MPWFPF, non−uniform traffic
WDM−4SLIP, non−uniform traffic

0 10 20 30 40 50 60 70 80
10

−3

10
−2

10
−1

10
0

P
ac

ke
t L

os
s

P
ro

ba
bi

lit
y

FDL Length

d = 0.1, offered load = 0.8, burst traffic

MPWFPF, uniform traffic
WDM−4SLIP, uniform traffic
MPWFPF, non−uniform traffic
WDM−4SLIP, non−uniform traffic

(a) (b)

Figure 3.10: Packet loss probability of MPWFPF and WDM-4SLIP under different FDL lengths.
N = 8, k = 8, offered load = 0.8 and wavelength conversion density d = 0.1.

70

Chapter 4

Packet Scheduling in the OpCut Switch -

Single Wavelength Scenario

So far in this dissertation we have been focused on all-optical switches. While all-optical

architectures are widely recognized as the ultimate solution to future ultra-high speed interconnect

network due to electronic bottleneck and data transparency, currently they suffer from the lack of

optical RAMs and are constrained by the physical limit of fiber delay lines. To overcome these

challenges, optical interconnect architectures with electronic buffers have been proposed recently

[6][9][10][12] . Out of these architectures, the OpCut switch [6], combining optical switching

with recirculating electronic buffer, achieves low latency and minimizes optical-electronic-optical

(O/E/O) conversions by allowing packets to cut-through the switch. Fig. 4.1(a) shows a high-level

view of the switch. The key feature of the OpCut switch is that the arrived optical packets will

be routed to the output directly, or “cut through” the switch, whenever possible. Only those that

cannot cut through are sent to the receivers, converted to electronic signals and buffered, which

can be sent to the output ports later by the optical transmitters. Also, the OpCut switch does not

hold any packet at the input ports. It always sends packets to the switching fabric, because with

71

......

Packets
Optical

Packets
Optical

Fabric

Switching

Optical

Electronic
Buffer

Transmitters Receivers

...

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

...

: Splitter

: SOA gate

.

.

.

... ...

...

...

...

1 : Amplifier

: Coupler

: Receiver

: Transmitter

1

N N

1

N

(a) (b)

Figure 4.1: (a) A high level view of the OpCut switch. (b) A possible implementation of the OpCut
switch.

the number of receivers equal to the number of input ports, there can always be found a receiver to

“pick up” a packet that needs to be buffered. Hence, the OpCut architecture eliminates the round-

trip delay between the input ports and the scheduler. Due to these reasons, the OpCut switch

architecture holds the potential of achieving very low latency.

In this chapter, we study packet scheduling in the single-wavelength OpCut switch, aiming

to achieve overall low packet latency while maintaining packet order. We first decompose the

scheduling problem into three modules and present a basic scheduler with satisfactory perfor-

mance. To relax the time constraint on computing a schedule and further improve system through-

put, we propose a mechanism to pipeline packet scheduling in the OpCut switch by distributing

the scheduling task to multiple “sub-schedulers.” An adaptive pipelining scheme is also proposed

to minimize the extra delay introduced by pipelining. Our simulation results show that the OpCut

switch with the proposed scheduling algorithms achieve close performance to the ideal output-

queued (OQ) switch in terms of packet latency, and that the pipelined mechanism is effective in

reducing scheduler complexity and improving throughput.

72

The rest of this chapter is organized as follows. Section 4.1 contains a brief review of related

work. Section 4.2 introduces the OpCut switch architecture. Section 4.3 presents the basic packet

scheduler for the OpCut switch. Section 4.4 proposes a mechanism to pipeline the scheduling

procedure, including an adaptive pipelining scheme. Section 4.5 presents the simulation results.

Finally Section 4.6 concludes the chapter.

4.1 Related Work

Recently, IBM has built some prototypes of optical interconnects with tera bit switching ca-

pacity [8, 11]. The IBM PERCS project [12] adopts optical circuit switching on fixed routes to

transfer long-lived bulk data packets. If data at a capacity of a fraction of a wavelength’s granu-

larity is to be carried, some fiber capacity will be wasted. To overcome this problem, the PERCS

project uses electronic packet switching for short-lived data exchanges. Thus, in this sense, it may

be considered as an intermediate feasible solution before more efficient optical packet switching

becomes reality.

Similar to the OpCut switch, the prototype switch of the IBM OSMOSIS project [8, 11] also

uses electronic buffer to overcome the buffering problem in optical packet switching. The OS-

MOSIS switch adopts an input-buffered architecture. At the input ports, all packets are converted

from optical to electrical to be stored in electronic memory. The packets are then converted back

to optical before being switched. As a result, all packets experience the Optical-Electronic-Optical

(OEO) conversion delay. On the other hand, as the simulation results show, in the OpCut switch a

large percentage of the packets cut-through the switch and do not experience such delay.

The idea of recirculating buffer can be traced back to the the Starlite switch [52] and the Sun-

shine switch [53]. Both of them are electronic switches based on banyan networks, and rely on the

combination of a Batcher sorting network, a trap network and a concentrator to achieve internal

73

nonblocking. Their drawback is that the size of the sorting network and the concentrator needs to

be very large for the switch to achieve low packet loss when heavily loaded. In [54, 55], optical

switches with “recirculating buffer” were proposed and analyzed. These switches also allow the

packets that cannot be sent to the output port to be sent to a buffer inside the switch. However,

the buffer is optical and its size is limited by the size of the switching fabric. More importantly,

the problem of maintaining packet order was not addressed in [54, 55] and packets may be out of

order after exiting the switch.

The two-stage switch in [56] bears some interesting similarities to the OpCut switch. In a two-

stage switch with N inputs and N outputs, there are two N ×N switches with buffers sandwiched

in between. The two switches follow a fixed connection pattern to connect the inputs to the outputs:

at time slot t, input i is connected to output (i+t) mod N . Basically, the first stage switch spreads

the input packets evenly on the buffers and the second stage switch sends the packets out in a round-

robin manner. Like in the OpCut switch, maintaining packet order is challenging in the two-stage

switch. To solve this problem, the two-stage switch needs additional queueing management such

as the three-dimensional queue proposed in [57], or a sophisticated mechanism to feedback packet

departure times to the inputs [58]. A potential problem with the two-stage switch is that it results

in long packet delays because a packet may have to wait for N time slots before being sent out of

the switch, even when the traffic load is very light. On the other hand, as will be discussed, the

OpCut switch maintains packet order by simply scheduling head-of-flow packets only and achieves

very low latency by allowing packets to cut-through the switch. Furthermore, the OpCut switch

can adopt pipelined scheduling adaptively to achieve the best balance between performance and

scheduler complexity.

74

4.2 The OpCut Switch

In this section we briefly describe the architecture of the OpCut switch. The OpCut architecture

may adopt any switching fabric that provides non-blocking connections from the inputs to the

outputs. One possible switching fabric is shown in Fig. 4.1(b). It has N input fibers and N output

fibers, numbered from 1 to N , and there is one wavelength on each fiber. In the following, we

interchangeably use input (output) fiber, input (output) port, and input (output). Each input fiber

is sent to an amplifier. The amplified signal is broadcast to N output fibers under the control of

SOA gates. In addition, each signal is also broadcast to N receivers. An output fiber receives the

signal and routes it to the processor or the next stage switch. A receiver converts the optical packet

into electronic forms and stores it in its buffer. There is one transmitter per receiver buffer. A

transmitter can read the packets and broadcast the selected packet to the output fibers, also under

the control of SOA gates, such that the packets in the buffer may be sent out.

In this chapter, we follow the same assumptions as other optical switch designs that the switch

works in time slots, and packets of fixed length fit in exactly a time slot. The length of a time slot is

about 50 ns, similar to that in the OSMOSIS switch [8, 11]. Before receiving the packets, the switch

is informed about the destinations of the packets. This can be achieved, for example, by letting a

group of processors share an electronic connection to send the packet headers to the switch. The

headers are sent to the switch before the packet is sent to allow the switch to make routing decisions

and to configure the connections. Note that the cost associated with this electronic connection is

likely to be small, because the link is shared by multiple processors and the link speed can be much

lower than the data link. At the beginning of each time slot, up to one packet may arrive in optics at

each input port. We define a flow as the stream of packets from the same input port and destined for

the same output port. Unlike other optical switches with electronic buffers in which every packet

goes through the O/E/O conversions, in the OpCut switch packets are converted between optics

75

and electronics only when necessary. Whenever possible, arrived optical packets are directly sent

to their desired output port, or, cut-through the switch. A packet that cannot cut-through is picked

up by one of the receivers and sent to the electronic buffer. Later when its destined output port

is not busy, the packet can be fetched from the electronic buffer, converted back into optics, and

scheduled to the switch output.

In each time slot, a receiver picks up at most one packet, and a transmitter sends out at most

one packet. In other words, there is no speedup requirement. The cost of the OpCut switch is

mainly determined by the number of transmitters, the number of receivers, and the size of the

switching fabric. It can be seen that the OpCut switch needs N transmitters and N receivers. The

switch fabric is N × 2N + N × N , where the N × 2N part connects the inputs to the outputs

and receivers, while the N × N part connects the transmitters to the outputs. To connect more

processors, multiple OpCut switches can be connected according to a certain topologies, similar to

the Infiniband switch.

4.3 The Basic Packet Scheduler for the OpCut Switch

The key challenge to achieve low latency in a switch is the design of the packet scheduling

algorithm. Due to its feed-back buffer structure, existing scheduling algorithms cannot be directly

applied to the OpCut switch. Keeping packet order also becomes more challenging in the OpCut

switch. For example, in input-queued switches, packets belonging to the same flow are stored

in the same Virtual Output Queue (VOQ), thus packet order is preserved as long as each VOQ

works as a FIFO. In the OpCut switch, however, packets from the same flow may be picked up by

different receivers.

The scheduling algorithm for an OpCut switch should give answers to the following three

questions:

76

• Question 1. For the newly arrived packets, whether they may go to the output port directly

or they should be buffered.

• Question 2. For a packet that should be buffered, which receiver should be used to pick it

up.

• Question 3. For the output ports that are not receiving the new packets, which of the buffered

packets may be sent to the output port.

This section is organized around how the three questions can be answered. We start with the

notations and the basics of the scheduler.

4.3.1 Notations and Basics of the Scheduler

In an OpCut switch, input i is denoted as Ii, output j is denoted as Oj , and receiver r is denoted

as Rr. Flow ij is defined as the stream of packets arrived at Ii destined to Oj . We also refer to the

time slot in which a packet arrives at the switch input as the timestamp of that packet. Among all

packets of a flow currently at the switch input or in the buffer, the one with the oldest timestamp

is referred to as the head-of-flow packet. Maintaining packet order means that a packet must be a

head-of-flow packet at the instant it is being transmitted to the switch output.

The OpCut scheduler adopts round-robin scheduling when the scheduler has multiple choices

and has to choose one. Similar to [5], the round-robin scheduler takes a binary vector as input, and

maintains a pointer to make the decisions. Let [r1, r2, . . . , rN] be the input binary vector and let g

be the current round-robin pointer g where 1 ≤ g ≤ N . The scheduler picks the highest priority

element defined as the first ‘1’ encountered when searching the elements in the vector from rg in an

ascending order of the indices, while wrapping around back to r1 when reaching rN . Incrementing

the round-robin pointer g by one beyond x means that g ← x+ 1 if x < N and g ← 1 if x = N .

77

4.3.2 Queueing Management

For each output port, the scheduler of the OpCut switch keeps the information of the packets

that are in the buffer and are destined to the output port in a “virtual input queue” (VIQ) style.

Basically, for output Oj , the scheduler maintains N queues denoted as Fij for 1 ≤ i ≤ N . For each

packet arrived at Ii destined for Oj and are currently being buffered, Fij maintains its timestamp,

as well as the index of the buffer the packet is in. Note that Fij does not hold the actual packets.

Packets are stored at the receiver buffers. It would make the scheduling much easier if each

receiver maintains a dedicated queue for each flow. However, this will result in N3 queues over

all receivers and will lead to much higher cost which is unlikely to be practical when N is large.

Instead, no queue is maintained in any receiver buffer, and an auxiliary array is adopted in each

buffer to facilitate the locating of a specific packet. The auxiliary array is indexed by (partial)

timestamps to store the location of packets in the buffer. Since in each time slot a receiver picks up

at most one packet, it is able to locate a packet in constant time given the timestamp of the packet

and the auxiliary array. Note that some elements of the array may be empty but the packets can

always be stored continuously in the buffer.

As an implementation detail, the auxiliary array can be used in a wrap-around fashion thus

does not need to have very large capacity. For instance, if the index of the array is 8-bit long,

then the array stores the location of up to 256 packets. Consequently, only the lower 8 bits of the

timestamp is needed to locate a packet in the buffer. A conflict occurs only if a packet is routed to

a receiver, and another packet picked up by the same receiver at least 256 time-slots earlier is still

in the buffer. When this is the case, it usually indicates heavy congestion. Hence it is reasonable

to discard one of the packets.

78

4.3.3 The Basic Scheduling Algorithm

Next we describe a basic scheduling algorithm for the OpCut switch. To maintain packet order,

the basic algorithm adopts a simple strategy. Basically, it allows a packet to be sent to an output

only if this packet is a head-of-flow packet. The basic algorithm consists of three parts, each for

answering one of the three questions.

Part I – Answering Question 1

For Question 1, the basic scheduling algorithm consists of two steps.

• Step 1: Request. If a packet arrives at Ii destined to Oj , the scheduler checks Fij . If it is

empty, Ii sends a request to Oj; otherwise, Ii does not send any request.

• Step 2: Grant. If Oj receives any requests, it chooses one to grant in a round-robin manner.

That is, it will receive a binary vector representing the requests sent by the inputs. It picks

the highest priority element based on its round-robin pointer and grants the corresponding

input. Then it increments its round-robin pointer by one beyond the granted input.

In each time slot, since there is at most one packet arriving at each input, an input needs to send

a request to at most one output and will receive no more than one grant. Therefore, the input will

send the packet (or let the packet cut-through) as long as it receives a grant. The entire cut-through

operation can be done by a single iteration of any iterative matching algorithm.

Part II – Answering Question 2

For question 2, the basic scheduling algorithm simply connects the inputs to the receivers

according to the following schedule:

• At time slot t, the packet from Ii will be sent to Rr where r = [(i+ t) mod N] + 1.

79

Note that instead of a fixed one-to-one connection, the inputs are connected to the receivers in

a round-robin fashion for better load balancing. As an example, according to our simulation, in an

8 × 8 OpCut switch, when there is a fully-loaded input port, the maximum overall throughput is

around 0.85 if the inputs are connected to the receivers in the above way, versus 0.70 with fixed

connection.

Part III – Answering Question 3

For Question 3, the scheduler requires one decision making unit for each output and one de-

cision making unit for each buffer. It then runs the well-known iSLIP algorithm [5] between the

receivers and the outputs. Each iteration of the algorithm consists of three steps:

• Step 1: Request. Each unmatched output sends a request to every buffer that stores a head-

of-flow packet destined to this output.

• Step 2: Grant. If a buffer receives any requests, it chooses one to grant in a round-robin

manner. That is, it will receive a binary vector representing the requests sent by the outputs.

It picks the highest priority element based on its round-robin pointer and grants the corre-

sponding output. The pointer is incremented to one location beyond the granted, if and only

if the grant is accepted in Step 3.

• Step 3: Accept. If an output receives any grants, it chooses one to accept in a round-robin

manner. That is, it will receive a binary vector representing the grants sent by the buffers.

It picks the highest priority element based on its round-robin pointer and accepts the grant

from the corresponding buffer. Then it increments its round-robin pointer by one beyond the

granted buffer.

At the end of the algorithm, the scheduler informs each buffer which packet to transmit. It

does so by sending the portion of the packet’s timestamp that is needed for the buffer to locate the

80

packet. With that information, the targeted packet can be found in constant time and sent through

the transmitter. The switch is configured accordingly to route the packets to their destined output

port.

4.4 Pipelining Packet Scheduling

Our simulation results show that the basic scheduling algorithm introduced above can achieve

satisfactory average packet delay. However, in a high speed or ultra high speed environment, as

the length of a time slot shrinks with the increase in line card rate it may become difficult for

the scheduler to compute a schedule in each single time slot. In such a case, we can pipeline the

packet scheduling to relax the time constraint. Furthermore, by pipelining multiple low-complexity

schedulers, we may achieve performance comparable to a scheduler with much higher complexity.

In this section we present such a pipeline mechanism.

Pipelined scheduling in electronic switches has been studied in previous works. In [3], a

pipelined version of the RRGS algorithm was reported, in which each input port is assigned a

scheduler. The scheduler of an input port selects an idle output port, and passes the result to the

next input port. The process goes on until all input ports have been visited. However, this ap-

proach introduces an extra delay equal to the switch size. In [59] the pipelined maximal-sized

matching algorithm (PMM) was proposed, which employs multiple identical schedulers. Each of

these schedulers independently works towards a schedule for a future time slot. As pointed out in

[60], PMM is “more a parallelization than a pipeline” since there is no information exchange be-

tween schedulers. [60] further proposed to pipeline the iterations of iterative matching algorithms

such as PIM and iSLIP by adopting multiple sub-schedulers, each of which taking care of one

single iteration and passing the intermediate result to the next sub-scheduler in the pipeline. One

problem with this approach is that it may generate grants for transmission to an empty VOQ since

81

at any time a sub-scheduler has no idea about the progress at other sub-schedulers and may try to

schedule a packet that has already been scheduled by other sub-schedulers. As a result, the service

a VOQ receives may exceed its actual needs and is wasted.

4.4.1 Background and Basic Idea

With pipelining, the computing of a schedule is distributed to multiple sub-schedulers and the

computing of multiple schedules can be overlapped. Thus, the computing of a single schedule

can span more than one time slot and the time constraint can be relaxed. Another consideration

here is related to fairness. By adopting the iSLIP algorithm in the third step (i.e., determining the

matching between electronic buffers and switch outputs), the basic scheduling algorithm ensures

that no connection between buffers and outputs is starved. However, there is no such guarantee at

the flow level. In addition, as mentioned earlier, a packet that resides in the switch for too long

may lead to packet dropping. To address this problem and achieve better fairness, it is generally a

good idea to give certain priority to “older” packets during scheduling.

Combining the above two aspects, the basic idea of our pipelining mechanism can be described

as follows. We label each flow based on the oldness of its head-of-flow packet. Among all flows

destined to the same output, a flow whose head-of-flow packet has the oldest timestamp is called

the oldest flow of that output. Note that there may be more than one oldest flow for an output.

Similarly, the flows with the ith oldest head-of-flow packets are called the ith oldest flows. Instead

of taking all flows into consideration, we consider only up to the kth oldest flows for each output

when scheduling packets from the electronic buffer to the switch output. This may sound a little

surprising but later we will see that the system can achieve good performance even when k is as

small as 2. Then the procedure of determining a schedule is decomposed into k steps, with step

i handling the scheduling of the ith oldest flows. By employing k sub-schedulers, the k steps can

82

outputs announce

St is excecuted

calculates

calculates

buffer states

S1

S2

ss1

ss2

t

t
time slot t−1

time slot t−2

time slot t

time

cut through
new packets

FDL delay

Figure 4.2: Timeline of calculating schedule St for time slot t.

be pipelined. Like the basic scheduling algorithm, the pipelined algorithm maintains packet order

since only head-of-flow packets are qualified for being scheduled.

Next we will present the pipeline mechanism in more detail. Basically, like in prioritized-

iSLIP [5], the flows are classified into different priorities. In our case the prioritization criterion is

the oldness of a flow. By pipelining at the priority level, each sub-scheduler deals with only one

priority level and does not have to be aware of the prioritization. Furthermore, since each sub-

scheduler only works on a subset of all the scheduling requests, on average it converges faster than

a single central scheduler. To explain how the mechanism works, we will start with the simple case

of k = 2, that is, using only the oldest flows and second oldest flows when scheduling. We will also

show that when k = 2, a common problem in pipelined scheduling, called duplicate scheduling,

can be eliminated in our mechanism. Later we will extend the mechanism to allow an arbitrary k,

and discuss potential challenges and solutions.

4.4.2 Case of k = 2

With k = 2, two sub-schedulers, denoted as ss1 and ss2 are needed to pipeline the packet

scheduling. ss1 tries to match buffers with the oldest flows to the output ports, while ss2 deals

83

with buffers with the second oldest flows. The timeline of calculating the schedule to be executed

in time slot t, denoted as St, is shown in Fig. 4.2. The calculation takes two time slots to finish,

from the beginning of time slot t−2 to the end of time slot t−1. When time slot t starts, St is ready

and will be physically executed during this time slot. In time slot t− 2, the cut-through operation

for t is performed and the result is sent to the sub-schedulers, so that the sub-schedulers know

in advance which output ports will not be occupied by cut-through packets at time t. To provide

the delay necessary to realize pipelining, a fiber delay line with fixed delay of two time slots are

appended to each input port. As a result, newly arrived packets are attempted for cutting-through at

the beginning of time slot t− 2, but they do not physically cut-through and take up corresponding

output ports until time slot t. Later in Section 4.4.4 we will discuss how this extra delay introduced

by pipelining may be minimized. As mentioned in Section 4.3.3, since the calculation of cutting-

through is very simple and can be done by iSLIP with one iteration, or 1SLIP, there is no need to

pipeline this step.

At the same time of cutting-through operation, each output port checks the buffered packets

from all flows and finds its oldest and second oldest flows, as well as in which buffer these flows

are stored. The outputs then announce to each buffer its state. The state of a buffer consists of two

bits and has the following possible values: 0 if this buffer contains neither oldest nor second oldest

flow for the output; 2 if the buffer contains one second oldest flow but no oldest flow; 1 otherwise.

A buffer is said to contain an ith flow of an output if it contains the head-of-flow packet of that

flow. Note that the state being 1 actually includes two cases, i.e. the buffer has an oldest flow only,

or has both an oldest and a second oldest flow. The point here is that we do not need to distinguish

between these two cases. This is due to the fact that in a time slot at most one packet can be

transmitted from a buffer to the switch output. Then if a buffer has an oldest flow for an output

and a packet is scheduled from this buffer to the output, no more packets from other flows can be

scheduled in the same time slot; on the other hand, if no packet from the oldest flow is scheduled

84

to the output, no packet from the second oldest flows can be scheduled either since otherwise a

packet from the oldest flow should have been scheduled instead. Thus as long as a buffer contains

an oldest flow for an output, we do not need to know whether it contains a second oldest flow for

that output or not.

Fig. 4.3 provides a simple example with N = 3 that shows how the announcing of oldest

and second oldest flows works. In this example, we focus on one tagged output and three flows

associated with it. As shown in the figure, packets p1 and p2 arrive in the same time slot but from

different flows. p3 arrives following p2. A few time slots later, p4 belonging to flow 3 arrives.

We assume that some time later p1, p2 and p4 become the head-of-flow packet for the three flows,

respectively. It can be seen that flows 1 and 2 are the oldest flows, and flow 3 is the second oldest

flow. As shown in the figure, assume that p1 and p2 are stored in buffers 1 and 2, respectively,

and both p3 and p4 are in buffer 3. Then the tagged output will make the announcement as “1” to

buffers 1 and 2, and “2” to buffer 3, which informs the sub-schedulers that buffers 1 and 2 have an

oldest flow for this output , and buffer 3 has a second oldest flow but no oldest flow for this output.

2p
2p

p1

t

p
3

�
�
�

�
�
�

�
�
�

�
�
�

3p4p

�
�
�

�
�
�

1p

�
�
�

�
�
�

p
4

flow 1

flow 2

flow 3
2

1

1

buffer statuspacket arrivals announcement

Figure 4.3: An example of how an output makes the announcement. The information of all packets
that are in the buffer and destined for the output port is maintained for each output port. Based on
that information, an output can find the oldest and second oldest flows, and where the head-of-flow
packets are buffered. Then it can make the announcement accordingly.

After receiving the result of cutting-through operation, and the announcements from the out-

puts, sub-scheduler ss1 is now set to work. Note that while the sub-schedulers work directly with

buffers, they essentially work with flows, in particular, head-of-flow packets, since they are the

only packets eligible for transmission for the sake of maintaining packet order. Denote the set of

85

output ports that will not be occupied by cut-through packets at time slot t as Ot. What ss1 does is

to match the output ports in Ot to the buffers containing an oldest flow of these output ports. The-

oretically, this process can be done by any bipartite matching algorithm. For simplicity, the iSLIP

algorithm is adopted. In each iteration of the iSLIP algorithm, if there is more than one buffer

requesting the same output port, ss1 decides which of them the output should grant. Then, in case

a buffer is granted by multiple output ports, ss1 determines which grant the buffer should accept.

The decisions are made based on the round-robin pointers maintained for each output port and

buffer. The number of iterations to be executed depends on many factors, such as performance re-

quirement, switch size, traffic intensity, etc. Nevertheless, as mentioned earlier, it can be expected

that the result will converge faster than that of a single central scheduler since the sub-scheduler

handles only a subset of all the scheduling requests.

ss1 has one time slot to finish its job. At the beginning of time slot t − 1, ss1 sends its result

to the output ports so that the output ports can update the VIQs and announce the latest buffer

state. Meanwhile, ss1 relays the result to ss2. The functionality of ss2 is exactly the same as ss1,

i.e. matching output ports to buffers according to some pre-chosen algorithm. The difference is

that, ss2 only works on output ports that are in Ot and are not matched by ss1, and buffers that

are announced with state 2 by at least one of these output ports. When ss2 finishes the job at the

end of time slot t− 1, the matching based on which the switch will be configured in time slot t is

ready. Meanwhile the packets that arrived at the beginning of time slot t − 2 have gone through

the two-time-slot-delay FDLs and reached the switch input. In time slot t, the buffers are notified

which packet to send, and the switch is configured accordingly. Packets are then transmitted to the

switch output, either directly from the switch input or from the electronic buffer.

The complete picture of the pipeline packet scheduling for k = 2 is shown in Fig. 4.4. As

mentioned earlier, St is the schedule executed in time slot t. St
i denotes the part of St that is

computed by sub-scheduler ssi during time slot t− i.

86

S2
2

...

...

...

...

...

...

...

...2
S

S S

S

S

SS

time slot 0 1 2 3 t t+1 t+2

ss

ss 2

1 1S
2

1S
3

1S
4

1S
5

2S
4

2S
3

3
Sschedule

t+2
1S

t+3
1

t+4
1
t+3
2

t+2
2

t+1
S

t+2
S

t

t+1
2

Figure 4.4: The pipelined scheduling procedure for k = 2.

A potential problem with pipelined scheduling algorithms is that it is possible for a packet to

be included in multiple schedules, or, being scheduled for more than once. This is called duplicate

scheduling. It could occur under two different conditions: 1) in the same time slot, different

schedulers may try to include the same packet to their respective schedule, since a scheduler is not

aware of the progress at other schedulers in the same time slot; 2) with pipelining, there is usually

a delay between a packet being included in a schedule and the schedule being physically executed.

During such interval the packet may be accessed by another scheduler that works on the schedule

for a different time slot. In other words, a scheduler may try to schedule a packet that was already

scheduled by another scheduler but has not been physically transmitted yet.

Duplicate scheduling of a packet leads to waste of bandwidth resources, which consequently

causes underutilization of bandwidth and limits throughput. In an input-queued switch, when a

packet p is granted for transmission more than once by different sub-schedulers, extra grants may

be used to transmit the packets behind p in the same VOQ if the VOQ is backlogged. On the other

hand, if the VOQ is empty, all but one grants are wasted. With the OpCut switch architecture, the

consequence of duplicate scheduling is even more serious, in that extra grants for a packet cannot

be used to transmit packets behind it in the same buffer. This is due to the fact that in an OpCut

switch packets from the same flow may be distributed to different buffers, and a buffer may contain

packets from different flows.

Duplicate scheduling is apparently undesirable but is usually difficult to avoid in pipelined

87

algorithms. For example, the algorithms in [3] [59] [60] all suffer from this problem, even with

only two-step pipelining. It was proposed in [60] to use pre-filter and post-filter functions to reduce

duplicate scheduling. However, on one hand, these functions are quite complex, and on the other

hand, the problem cannot be eliminated even with those functions. The difficulty roots in the nature

of pipelining, that schedulers may have to work with dated information, and the progress at one

scheduler is not transparent to other schedulers. Fortunately, as will be seen next, when k = 2 our

mechanism manages to overcome this difficulty and completely eliminates duplicate scheduling.

First of all, it is worth noting that the “oldness” of a flow is solely determined by the timestamp

of its head-of-flow packet. Thus we have the following simple but important lemma.

Lemma 3. Unless its head-of-flow packet departs, a flow cannot become “younger.”

Next we deal with the first condition that may lead to duplicate scheduling. That is, we show

that in any time slot the two sub-schedulers will not include the same packet in their respective

schedule. In fact we have a even stronger result here, as shown by the following theorem:

Theorem 2. During any time slot, sub-scheduler ss1 and ss2 will not consider the same flow when

computing their schedule. In other words, if we denote F t
i as the set of flows that ssi takes into

consideration in time slot t, then F t
1 ∩ F t

2 = ∅ for any t ≥ 0.

Proof. First note that for t = 0 there is no second oldest flow, F t
2 = ∅, thus the theorem holds.

Now assume for some t > 0, the theorem held up to time slot t− 1 but not in time slot t. In other

words, there exists a flow f such that f ∈ F t
1 and f ∈ F t

2 . Note that f ∈ F t
2 indicates f was not

an oldest flow at time t− 1. Thus at t− 1 there existed at least one flow that was older than f and

destined to the same output as f . Denote such an flow as f ′, then f ′ ∈ F t−1
1 since it was an oldest

flow at that time. Besides, it can be derived that no packet from f ′ was scheduled by ss1 in time

slot t − 1. Otherwise, the corresponding output port should be matched, and at time t ss2 would

not consider any flow associated with that output, including f .

88

Furthermore, since f ′ ∈ F t−1
1 , it follows that f ′ /∈ F t−1

2 , given that the theorem held in time

slot t − 1. Then neither ss1 nor ss2 could schedule any packet belonging to f ′ in time slot t − 1.

According to Lemma 3, f ′ is still older than f at time slot t. Consequently, f is not an oldest flow

at t, and f ∈ F t
1 cannot hold, which contradicts the assumption. This implies that the theorem

must hold for time slot t if it held for time slot t− 1. That proves the theorem for t ≥ 0.

Next we consider condition 2. It is possible for condition 2 to occur between St
2 and St+1

2 due to

the existence of a time glitch: the buffer states based on which St+1
2 is calculated are announced at

the beginning of time slot t. At that time St
2 is not calculated yet. Thus it is possible that a packet

is included in both St
2 and St+1

2 . In contrast, St
2 and St+1

1 can never overlap, since the latter is

calculated based on the information announced after being updated with St
2. For the same reason,

sub-schedules St
i and St+x

j would never include the same packet for any t ≥ 0, i, j ∈ {1, 2}, as

long as x > 1. Thus the task of eliminating condition 2 reduces to making sure that St
2 and St+1

2

do not overlap, which can be achieved as follows.

When an output makes its announcement, instead of three possible states as introduced earlier

in this section, each buffer may be in a forth state denoted by value 3 (this is doable since the state

of a buffer is 2-bit long), which means that this buffer contains a third oldest flow and no oldest or

second oldest flow for this output. Furthermore, we call a flow a solo flow if it is the only ith oldest

flow, and a buffer a solo buffer for an output port if it contains a solo flow of that output port. Now

suppose ss2 matched an output port op to a buffer bf in St
2 based on the announcements in time

slot t− 2. Then when St+1
2 is being computed, bf is excluded from St+1

2 if op again announced bf

as a state-2 buffer. On one hand, if there exists at least one buffer other than bf that was announced

with state 2 by op in time slot t− 1, ss2 will work with these buffers. On the other hand, if bf was

a solo buffer for op based on the announcement at time slot t− 1, ss2 will work on state-3 buffers

instead. Consequently, we have the following theorem.

89

Theorem 3. The method introduced above ensures that St
2 and St+1

2 will not introduce duplicate

scheduling of a packet.

Proof. First, St
2 and St+1

2 may include the same packet only if ss2 matches a buffer to the same

output port in both St
2 and St+1

2 . Hence it is assumed that buffer bf is matched to output port op in

both time slots t−1 and t by ss2 (As a reminder, St
2 is calculated in time slot t−1 based on output

announcements made in time slot t − 2). For this to occur, the state of bf announced at time slot

t − 1 can only be 3 according to the above method. Besides, bf cannot be a state-1 buffer of op

for time slots t− 2 and t− 1, since otherwise bf should not be considered by ss2. Then the states

of bf announced by op at time slots t − 2 and t − 1, based on which St
2 and St+1

2 are calculated

respectively, have only two possible combinations: 2 at time slot t− 2 and 3 at time slot t− 1 ({2,

3}), or 3 at time slot t− 2 and 3 at time slot t− 1 ({3, 3}). We will show that under neither of the

combinations could duplicate scheduling occur.

• {2, 3}: In this case, by matching bf to op, St
2 actually schedules to op the head-of-flow

packet of some second oldest flow announced by op at time slot t − 2. The head-of-flow

packet is buffered in bf . Similarly, St+1
2 schedules to op the head-of-flow packet of a third

oldest flow announced at time slot t− 1. Denote the two head-of-flow packets as pa and pb,

and the two flows as fa and fb. On one hand, if flow fa and flow fb are different, packet pa

and packet pb must be different. On the other hand, if flow fa and flow fb are the same flow,

packet pa and packet pb are still different according to Lemma 3, since the flow becomes

“younger” (second oldest at time slot t− 2 and third oldest at time slot t− 1).

• {3, 3}: Given that the state of bf is announced as 3 at time slot t − 1 but ss2 takes it into

consideration when computing St+1
2 , it must be true that in St

2 ss2 grants a buffer with a

second oldest flow of op announced at time slot t − 2 and that buffer is a solo buffer of op,

90

which cannot be bf whose state announced at time slot t− 2 is 3. This contradicts with the

assumption that bf is matched to output port op in both time slots by ss2.

Combining the two cases, the theorem is proved.

By now, duplicate scheduling is completely ruled out in our mechanism.

4.4.3 Case of k > 2

We now extend our result for k = 2 to the case that k is an arbitrary integer between 3 and N .

The system performance can be improved at the cost of extra subschedulers. While the basic idea

remains the same as k = 2, there are a few implementation details that need to be addressed when

k becomes large. Duplicate scheduling can no longer be eliminated with an arbitrary k due to the

increased scheduling complexity. Nevertheless we will propose several approaches to reducing it.

The basic pipelined scheduling procedure is given in Fig. 4.5. An FDL of length k is attached

to each input port to provide the necessary delay for computing the schedules. k identical sub-

schedulers, ss1, ss2, . . ., ssk are employed, ssi dealing with buffers that contain an ith oldest flow

of some output port. Intermediate results are passed between adjacent sub-schedulers and used to

update the VIQ status. The computing of the schedule to be executed in time slot t spans k time

slots, from the beginning of time slot t − k to the end of time slot t − 1. The announcement of

buffer states from an output port to the sub-schedulers can be done exactly the same way as that

for k = 2, except that the state of a buffer for an output is now of length log(k + 1) bits.

We have addressed the solo buffer problem for k = 2 to eliminate duplicate scheduling.

Namely, if sub-scheduler ss2 matched a buffer bf to an output port op in St
2, it will not consider bf

as a state-2 buffer for op when computing St+1
2 even if it was announced so. In case bf is the solo

buffer of op, i.e. the buffer announced by op to contain the only second oldest flow of it, ss2 will

work on state-3 buffers for op trying to keep work conserving. For an arbitrary k, the rule is still

91

...

1S
k+2

S
k+1
2

1S

2S
k

k+1
1S
k

...
...

...
...

...
...

...

S

1S
t+k+1

2S
t+k

kS
t+2

t+1

...

S

1S
t+k

2S

kS
t+1

t

t+k−1

time slot 0 k tk−1 t+1

ss1

ss2

ssk

21

k+1

2k−1

S
k
kS

2S

1S
2k2k−1

2k−2

k

1S

2S

S
k

schedule

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure 4.5: Pipelined scheduling procedure for an arbitrary k.

kept, that if ssi matched a buffer bf to an output port op in St
i , it will not consider bf as a state-i

buffer for op when computing St+1
i . However, if bf is the solo buffer of op, ssi will not turn to

buffers with state i+1. The reason is that, while this method involves only ss2 when k = 2, it may

cause a chain effect when k > 2: if ssi sets to work on buffers with state i + 1 at some time, then

ssi+1 needs to work on buffers with state i + 2 for the same schedule. In case there is only a solo

buffer with state i+1 and is matched by ssi again, then in the next time slot, ssi may have to work

on buffers with state i+ 2 and ssi+1 has to work on buffers with state i+ 3. The process could go

on and become too complicated to implement. Therefore, if an output announced the same buffer

as the solo buffer in two consecutive time slots, say, t− 1 and t, and ssi matched this buffer to the

output in St+k−i
i , it will not try to match the output to any buffer in St+k+1−i

i . In other words, we

will let ssi be idle for the output in time slot t+ i in that case.

By allowing a sub-scheduler to be idle for some output port in certain time slot, we prevent the

possibility that the sub-scheduler schedules a packet that was already scheduled and blocks other

sub-schedulers behind it in the pipeline from scheduling a packet to that output port. Unfortunately,

the cost is that Theorem 2 does not hold for k > 2. To see this, first note that F t
i is essentially the

set of the ith oldest flows of every output port at the beginning of time slot t+ 1− i. For instance,

F t
1 is the set of the oldest flows at time slot t and F t

3 is the set of the third oldest flows at time slot

t − 2. If there is a flow f such that f ∈ F t
i , then it is one of the ith oldest flows for some output

port at time slot t+ 1− i. During the time interval, denoted as T , from time slot t+ 1− i to time

92

slot t − j for some j < i, at most i− j flows for that output can be scheduled. Therefore, at time

slot t+1− j, f is at least the i− (i− j) = jth oldest flow. If f is indeed the jth oldest flow, which

can occur if and only if i − j flows that are “younger” than f have been scheduled during T and

all of them are solo flows, f ∈ F t
j holds. In that case, f ∈ F t

i ∩ F t
j holds, and ssi and ssj may

schedule the same packet during time slot t. Nevertheless, as can be seen, the possibility that F t
i

overlaps with F t
j is rather small and should not significantly affect the overall system performance.

In fact, if we let Pr denote the probability that an output port op announces a buffer bf as the

buffer which contains the solo second oldest flow and bf is later matched to op by ss2 based on the

announcement, then according to our simulations for k = 4, when the traffic intensity is as high as

0.9, Pr is less than 2%. The probability for the case of multiple solo flows is roughly exponential

to Pr and thus is even smaller.

4.4.4 Adaptive Pipelining

We have discussed the mechanism to pipeline packet scheduling in the OpCut switch for any

fixed k. In the following we will enhance it by adding adaptivity. The motivation is that, in

our mechanism, the extra delay introduced by pipelining is equal to the number of active sub-

schedulers, or k. When traffic is light, a small number of sub-schedulers may be sufficient to

achieve satisfactory performance, or pipeline is not necessary at all. In this case, it is desirable to

keep k as small as possible to minimize the extra delay . On the other hand, when the traffic be-

comes heavy, more sub-schedulers are activated. Although the delay of pipelining increases, now

more packets can be scheduled to the switch output since more packets are taken into consideration

for scheduling due to the additional sub-schedulers.

The first step towards making the pipelined mechanism adaptive is to introduce flexibility to

the FDLs attached to the switch output ports. Since k sub-schedulers working in pipeline require

93

.
FDL

. .

Figure 4.6: A possible implementation of an FDL that can provide flexible delays to fit the needs
of pipeline with different number of sub-schedulers. There are ⌊logK⌋+1 stages. The ith stage is
able to provide either zero delay or 2i time slot delay.

a k time slot delay of the newly arrived packets, the FDL needs to be able to provide integral

delays between 0 and K time slots, where K is the maximum number of sub-schedulers that can

be activated. Clearly, K ≤ N .

A possible implementation of such an FDL is shown in Fig. 4.6. The implementation adopts

the logarithmic FDL structure [61] and consists of ⌊logK⌋ + 1 stages. A packet encounters no

delay or 2i time slot delay in stage i, depending on the input port it arrives at the switch of stage

i and the state of the switch. Through different configurations of the switches, any integral delay

between 0 and K can be provided.

The number of packet arrivals in each time slot is recorded, and the average over recent W time

slots is calculated and serves as the estimator of current traffic intensity. This average value can be

efficiently calculated in a sliding window fashion: let Ai denote the number of packet arrivals in

time slot i, then at the end of time slot t, A is updated according to A = A − (At−w+1 − At)/W .

An arbitrator decides whether a sub-scheduler needs to be turned on or off based on A. If during

certain consecutive time slots, A remains larger than a preset threshold for the current value of k,

an additional sub-scheduler will be put into use. Similarly, if A drops below some threshold and

does not bounce back in certain time interval, an active sub-scheduler can be turned off.

The value of W can be adjusted to trade-off between sensitivity and reliability: if W is large,

the averaging of traffic intensity is over a relatively long time period, and it is less likely that a small

jitter will trigger the activation of an additional sub-scheduler. However, more time is needed for

94

ss2

...

...

...

...

...

ss3

ss3 turned on

...

...

...

...

...

ss3 turned off

...

...

...

...

...

S

j
j+3

S1

j+1
S3

j

time slot

ss1

schedule

2

1S
i+3

S
i+2

2S
i+1

S
i+1

S
i

i i+1

i+5
S2

i+6
S1

i+3
S

i+3

i+4
S3

i+4
S2

i+5
S1

i+2
S

i+2

i+3
S

i+2
S1

3

2

1S
j+3

S
j+2 j+3

S2

j+4
S1

S
j+1 j+2

S

j+1 j+2

S
j−1

j−1

j+1
S2

j
S3

Figure 4.7: An example of sub-schedulers being turned on and off.

it to detect a substantial increase in traffic intensity, and vice versa.

An example of adaptive pipelining is given in Fig. 4.7. The basic idea is the same for any k

value, thus we only show the process from two sub-schedulers to three sub-schedulers and then

back to two to keep it neat. The “×” state in the figure indicates the sub-scheduler is off, and

a “∆” means the sub-scheduler is on but will be idle in the time slot. The arrows in the figure

illustrate how the intermediate results are relayed among sub-schedulers at transition points when

a sub-scheduler is being turned on or off.

4.5 Performance Evaluation

In this section, we evaluate the performance of the switch under two both the uniform Bernoulli

traffic and the non-uniform bursty traffic. Both models assume that the arrival at an input port is

independent of other input ports. See 2.6 for a more detailed description of the two models. For

non-uniform traffic, it is assumed that a packet arrived at Ii is destined to Oi with probability

µ+ (1− µ)/N , and to Oj with probability (1− µ)/N for j ̸= i, where µ is the “unbalance factor”

and is set to be 0.5 which is the value that results in the worst performance according to [62]. We

have evaluated OpCut switches of different sizes with both non-pipelined and pipelined schedulers.

Each simulation was run for 106 time slots.

We implemented two instances of the proposed pipelining mechanism, denoted as p-k2-2SLIP

95

and p-k4-2SLIP, respectively. Both of them are built on sub-schedulers executing two steps of

iSLIP in each time slot. p-k2-2SLIP runs two such sub-schedulers and covers up to the second

oldest flows of each input port, while p-k4-2SLIP runs four sub-schedulers and covers up to the

fourth oldest flows. For comparison purpose, we implemented the basic non-pipelined scheduler

running iSLIP as well, denoted as np-iSLIP. Also included in the simulations are the straightfor-

wardly pipelined iSLIP scheduler (denoted as p-iSLIP) - i sub-schedulers, each of which executes

one iteration of iSLIP in a time slot. Unlike the proposed pipelined schedulers, the straightforward

approach is not aware of the duplicate scheduling problem.

4.5.1 Cut-Through Ratio

First we investigate the packet cut-through ratio, which indicates how much portion of packets

can cut-through the switch without experiencing electronic buffering. Apparently, if only a tiny

portion of packets could cut-through, or packets could cut-through only when the traffic intensity

is light, the OpCut switch would not be very promising. From Fig. 4.8, we can see that when

the load is light, the cut-through ratio is high with all schedulers under both traffic models and

switch sizes. However, For p-iSLIP schedulers, the ratio drops sharply with the increment in

traffic intensity. For all the other simulated schedulers, the ratio decreases much slower, and stays

above 60% under Bernoulli uniform traffic and 30% under bursty non-uniform traffic even when

the load rises to 0.9.

We notice that under Bernoulli uniform traffic, there is a sharp drop in the cut-through ratio for

both pipelined schedulers. For the 16 × 16 switch, the drop occurs at 0.93 load for p-k2-2SLIP

and 0.95 load for p-k4-2SLIP. For the 64 × 64 switch it occurs at slightly higher loads. As will

be confirmed shortly by the average packet delay, these are the points at which the OpCut switch

is saturated with the respective pipelined scheduler. However, it is worth pointing out that higher

96

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ut

−
T

hr
ou

gh
 R

at
io

Traffic Intensity

N = 16; uniform Bernoulli traffic

p−2SLIP
p−4SLIP
np−2SLIP
np−4SLIP
p−k2−2SLIP
p−k4−2SLIP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ut

−
T

hr
ou

gh
 R

at
io

Traffic Intensity

N = 16; non−uniform bursty traffic

p−2SLIP
p−4SLIP
np−2SLIP
np−4SLIP
p−k2−2SLIP
p−k4−2SLIP

(a) 16× 16 switch

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ut

−
T

hr
ou

gh
 R

at
io

Traffic Intensity

N = 64; uniform Bernoulli traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ut

−
T

hr
ou

gh
 R

at
io

Traffic Intensity

N = 64; non−uniform bursty traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP

(b) 64× 64 switch

Figure 4.8: Packet cut-through ratio with non-pipelined and pipelined schedulers under different
traffic models and switch sizes. p-iSLIP: pipelined iSLIP with i sub-schedulers, each execut-
ing 1SLIP. np-iSLIP: non-pipelined scheduler executing iSLIP in each time slot. p-ki-2SLIP:
pipelined scheduling that takes up to the ith oldest flows into consideration, each sub-scheduler
executing 2SLIP.

97

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Traffic Intensity

N = 16; uniform Bernoulli traffic

p−2SLIP
p−4SLIP
np−2SLIP
np−4SLIP
p−k2−2SLIP
p−k4−2SLIP
OQ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Traffic Intensity

N = 16; non−uniform bursty traffic

p−2SLIP
p−4SLIP
np−2SLIP
np−4SLIP
p−k2−2SLIP
p−k4−2SLIP
OQ

(a) 16× 16 switch

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Traffic Intensity

N = 64; uniform Bernoulli traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP
OQ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Traffic Intensity

N = 64; non−uniform bursty traffic

p−2SLIP
p−8SLIP
np−2SLIP
np−8SLIP
p−k2−2SLIP
p−k4−2SLIP
OQ

(b) 64× 64 switch

Figure 4.9: Packet delay with non-pipelined and pipelined schedulers under different traffic models
and switch sizes. The notations of schedulers are the same as in Fig. 4.8. OQ: ideal output-queued
switch.

cut-through ratio does not necessarily imply better overall performance. In particular, throughput

is not directly related to cut-through ratio, as packets can always be transmitted from the buffers

to the switch output. Thus while non-pipelined scheduler np-2SLIP results in a higher cut-through

ratio than p-k2-2SLIP and p-k4-2SLIP under higher-than-0.93 uniform Bernoulli traffic, it can be

seen from Fig 4.9 that the pipelined schedulers actually achieve better delay and higher throughput

than np-2SLIP under that traffic model.

An interesting observation is that for bursty non-uniform traffic, such sharp drops in cut-

98

through ratio do not exist. This is likely due to the nature of non-uniform traffic that, except for

those hotspot flows, most flows contains much fewer packets. For those packets, cutting-through

becomes easier compared to the uniform-traffic scenario, since whether a packet can cut-through

is independent of packets from other flows.

4.5.2 Average Packet Delay

Fig. 4.9 shows the average packet delay of the OpCut switch under different schedulers, traffic

models and switch sizes. The ideal output-queued (OQ) switch is implemented to provide the lower

bound on average packet delay. It can be seen that the straightforward pipelining approach, p-

iSLIP, performs very poor due to underutilization of bandwidth caused by the duplicate scheduling

problem. On the other hand, as instances of the proposed pipelining mechanism, p-k2-2SLIP and

p-k4-2SLIP lead to substantially improved performance. The maximum throughput p-k2-2SLIP

can sustain is about 0.93 under uniform Bernoulli traffic and 0.9 under non-uniform bursty traffic,

which outperforms np-2SLIP by about 5% and 15%, respectively. In other words, using the same

2-SLIP scheduler, the system throughput can be improved through pipelining.

In fact, except for under light uniform Bernoulli traffic where the extra delay introduced by

pipelining is comparatively significant (for which we have proposed the adaptive pipelining scheme),

the performance of p-k4-2SLIP is very close to that of np-4SLIP when N = 8 and np-8SLIP when

N = 64, which is in turn very close to that of the OQ switch in terms of average packet delay.

That is, the performance of a non-pipelined scheduler that executes 8 iterations of iSLIP in each

time slot can be well emulated by four schedulers working in pipeline, each of which executes

2-iteration iSLIP only. The time constraint on computing a schedule is relaxed by four times

and the system performance is hardly affected, which illustrates the effectiveness of the proposed

pipelining mechanism in reducing scheduler complexity.

99

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

ffi
c

In
te

ns
ity

Time Slot

Traffic intensity versus time

0 1 2 3 4 5

x 10
4

0

5

10

15

20

25

30

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Time Slot

Sampling of average packet delay over time

adaptive pipeline
non−pipeline
2−scheduler pipeline
3−scheduler pipeline

(a) (b)

Figure 4.10: An example of adaptive pipeline. (a) The traffic model under which the traffic inten-
sity changes with time. (b) Average packet delay over time under different pipelining strategies.

4.5.3 Adaptive Pipelining

Next we examine the effectiveness of adaptive pipelining. To illustrate the point, we consider

a simple synthetic traffic model given in Fig. 4.10(a). The performance of adaptive pipelining

is obtained and compared with that of non-pipelining and pipelining with a fixed number of sub-

schedulers. All schedulers, pipelined or not, are assumed to run 1SLIP. The average packet delay

is sampled every 100 time slots and is plotted against time in Fig. 4.10(b). It can be seen that in the

first 2× 104 time slots, while non-pipelining and 2-subscheduler pipelining eventually lead to very

large delay, 3-subscheduler pipelining and adaptive pipelining successfully sustain the increase in

traffic intensity. Moreover, when traffic intensity drops back to around 0.5, adaptive pipelining

outperforms 3-subscheduler pipelining as it does not have a fixed 3 time-slot pipelining delay. In

fact, according to Fig. 4.10(b), adaptive pipelining always has the minimum delay among all of

these schedulers regardless of the change in traffic load. It achieves both high throughput under

heavy traffic and low pipelining delay under light traffic by adjusting the number of sub-schedulers

according to the traffic load.

100

4.6 Conclusions

In this chapter, we have considered pipelining the packet scheduling in the OpCut switch. The

key feature of the OpCut switch is that it allows packets to cut-through the switch whenever possi-

ble, such that packets experience minimum delay. Packets that cannot cut-through are received by

receivers and stored in the electronic buffer, and can be sent to the output ports by the transmitters.

We have presented a basic packet scheduler for the OpCut switch that is simple to implement and

achieves satisfactory performance. We then proposed a mechanism to pipeline packet scheduling

in the OpCut switch by employing k sub-schedulers. The ith sub-scheduler handles the schedul-

ing of the ith oldest flows of the output ports. We have respectively discussed the implementation

details for k = 2 and an arbitrary k. For the case of k = 2, we have shown that our mechanism

eliminates the duplicate scheduling problem. With arbitrary k, duplicate scheduling can no longer

be eliminated, but we have proposed approaches to reducing it. We have further proposed an adap-

tive pipelining scheme to minimize the extra delay introduced by pipelining. Our simulation results

show that the OpCut switch with the proposed scheduling algorithms achieve close performance to

the ideal output-queued (OQ) switch in terms of packet latency, and that the pipelined mechanism

is effective in reducing scheduler complexity and further improving switch throughput.

101

Chapter 5

Packet Scheduling in the OpCut Switch -

WDM Scenario

Previous chapter studied packet scheduling in single-wavelength OpCut switches, including the

basic scheduling algorithm and a pipelined scheduling mechanism. In this chapter, we consider

packet scheduling in this switch with wavelength division multiplexing (WDM). Our goal is to

maximize throughput and maintain packet order at the same time. While we prove that such

an optimal scheduling problem is NP-hard and inapproximable in polynomial time within any

constant factor by reducing it to the set packing problem, we present an approximation algorithm

that maintains packet order and approximates the optimal scheduling within a factor of
√
2Nk with

regard to the number of packets transmitted, where N is the switch size and k is the number of

wavelengths multiplexed on each fiber. This result is in line with the best known approximation

algorithm for set packing. Based on the approximation algorithm, we also give practical schedulers

that can be implemented in the fast optical switches. Simulation results show that the schedulers

achieve close performance to the ideal WDM output-queued switch in terms of packet delay under

various traffic models.

102

The rest of the chapter is organized as follows. Section 5.1 introduces the WDM OpCut switch,

as well as notations and queuing management in this switch. Section 5.2 describes the goal of

an optimal schedule and the basic scheduling procedure. Section 5.3 focuses on the scheduling

problem, including the problem formalization, NP-hardness and inapproximability proof, an ap-

proximate algorithm with performance ratio, and practical schedulers based on the approximation

algorithm. Section 5.4 presents simulation results. Section 5.5 concludes the chapter.

5.1 System Model

In this section we first describe the WDM OpCut switch architecture, then give the notations

as well as discussions of the specific queuing management in the OpCut switch for maintaining

packet order.

5.1.1 Switch Architecture

Like many other proposed switches in the literature [8, 11], the OpCut switch works in time

slots. Packets are of fixed length and fit in exactly one time slot, which is approximately 50 ns

and similar to that in the OSMOSIS switch [8, 11]. No speedup is assumed in the switch, i.e., the

components of the switch run at the external line rate.

One possible implementation of the WDM OpCut switch is shown in Fig. 5.1. The switch has

N input fibers and N output fibers. There are k wavelength channels multiplexed on each input or

output fiber. The signal on each input fiber first goes through an amplifier, then is demultiplexed

into k signals, one on each wavelength. Up to one packet may arrive in optical format on an input

wavelength channel in each time slot. A packet can be routed to an output fiber or a receiver if

the corresponding semiconductor optical amplifier (SOA) gate is closed. A newly arrived packet

may be directly sent to its desired output fiber, or cut-through the switch. A packet that does not

103

.

...

...

...

...

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

..

.

.

..

.

.

.

.

.

.

Demultiplexer

Input fiber

λ

λ

1

k

λ

λ

1

k

Combiner

Transmitter Receiver
Electronic

buffer

Splitter SOA gate

1

N

Amplifier

1

N

Output fiber

Figure 5.1: A possible implementation of the WDM OpCut switch.

cut-through is picked up by one of the receivers, converted to electronic form and sent to the buffer

connected to the receiver. The switch should have a sufficient number of receivers to avoid packet

loss. Since up to Nk packets may arrive in a single time slot, Nk is the upper bound of the number

of receivers. Each receiver buffer is connected to a transmitter. In each time slot, a transmitter can

fetch up to one packet from the buffer it is connected to. The transmitter is a fast tunable laser, and

may convert the packet back to optic forms on any of the k wavelengths. Under the control of the

SOA gates, the packet can be sent to the corresponding wavelength channel of its destined output

fiber. Unlike in other optical switches with electronic buffers where every packet goes through the

O/E/O conversions, in the OpCut switch, a large percentage of the packets cut-through the switch

directly and do not experience the O/E/O delay, as will be seen in the simulation results.

At the switch output, a combiner multiplexes multiple signals into a composite signal. There

is no buffer and packet queuing at the switch output. A packet arriving at an output fiber will be

104

picked up by its destined processor connected to the output fiber, or be routed to the next stage

switch.

5.1.2 Notations

In a WDM OpCut switch, input fiber i is denoted as Ii, and output fiber j is denoted as Oj .

Wavelength channel λ of input fiber i and output fiber j are further denoted as Iλi and Oλ
j , respec-

tively. A flow is defined as the sequence of packets from the same input fiber to the same output

fiber. The flow from Ii to Oj is denoted as fij . The flow is defined between an input fiber and an

output fiber instead of between an input channel and an output channel, because a packet arriving

on one wavelength may appear at the output fiber on another wavelength. There are N2 flows

in total. The time slot in which a packet arrives at the switch input is referred to as the packet’s

timestamp. Since multiple packets of the same flow can arrive at a switch in the same time slot on

different wavelengths, the timestamp alone does not completely define the order of packets. The

wavelength on which a packet arrives is used to solve the ambiguity. Namely, between two packets

of the same flow that arrive at the switch in the same time slot, the one on a smaller wavelength is

considered ahead of the other on a larger wavelength. Correspondingly, as will be seen later, our

algorithm maintains packet order by ensuring the following property: assume p1 and p2 are two

packets in the same flow, and p1 is ahead of p2 as defined above, then p1 leaves the switch either

earlier than p2, or in the same time slot as p2 but on a smaller wavelength channel. As a result, the

order of packets in a flow is preserved no matter how many intermediate switches the packets have

to travel through.

Among all packets of a flow that have arrived at the switch but have not been scheduled for

transmission to the switch output, the one with the oldest timestamp and arrived on the smallest

wavelength is referred to as the head-of-flow packet. Note that the head-of-flow packet is not

105

necessarily the oldest packet of the flow currently in the switch. A packet becomes the head-of-

flow packet once all packets in front of it in the same flow have been scheduled for transmission

(although they may not be physically transmitted yet).

5.1.3 Packet Queue Management

In an OpCut switch, an electronic buffer may contain packets from different flows. To manage

the packets, one possible way is to use a 3-Dimensional Queue [63], under which a dedicated

queue is maintained for each flow in each buffer. However, this approach requires N2 queues for

each buffer, and N3k queues for the switch, which is unlikely to be scalable. Instead, no queue

is maintained in any receiver buffer of the OpCut switch, and any specific packet is located by its

timestamp as follows.

Note that at any time slot, a receiver can pick up at most one packet. The receiver maintains

an array of length 2b to store the packets, where b is an integer. A packet arriving at the buffer at

time slot t is stored in the (t mod 2b)th element of the array. Consequently, a packet in the buffer

can be located in constant time given the lower b bits of its timestamp and its arrival wavelength.

Under this approach, the maximum size of the queue is bounded by 2b. A collision may occur

only if a packet is routed to a receiver, yet another packet picked up by the same receiver w2b time

slots earlier is still in the buffer, where w is a positive integer. When b is reasonably large, such

a collision actually indicates heavy congestion since the “older” packet has been buffered for w2b

time slots already. Hence when this occurs, it is fair to discard one of the packets.

For each output fiber, the scheduler of the OpCut switch keeps the information of the packets

that are destined for that output fiber and are being buffered in a “virtual input queue” (VIQ)

style. Basically, for output fiber Oj , the scheduler maintains N virtual queues denoted as Fij for

1 ≤ i ≤ N . For each packet belonging to flow fij and currently being buffered, Fij maintains

106

its timestamp as well as the index of the buffer the packet is in. These queues are referred to as

index queues in the following. Note that an index queue does not hold the actual packets. Also,

the wavelength on which a packet arrives is not included in the index queue, as it is only useful for

determining the order of packets, which is reflected by the order the packets appear in the queue.

Fig. 5.2 provides an example to illustrate the relationship between the actual buffering status

and the index queues. In this example, we assume that there are two buffers and two flows, and

packet pλi arrived at the switch on wavelength λ in time slot i. In addition, flow 1 and flow 2 are

destined for the same output fiber, while flow 3 is destined for a different output. In the example,

the index queue for flow 1 is [1, 1] → [3, 1] → [3, 2], indicating that the head-of-flow packet of

flow 1 has timestamp 1 and is stored in buffer 1, the next packet of flow 1 has timestamp 3 and is

in buffer 1, and the third has timestamp 3 and is in buffer 2. Note that in the figure there are two

p11. They both arrived in time slot 1 on wavelength channel 1, but of different input fibers (hence

belong to different flows).

��
��
��
��

Buffer 1

Index queues ([timestamp, buffer])flow 3

flow 1
flow 2)Buffering status(

���������
���������
���������
���������

Buffer 2

���
���
���

���
���
���

������

������
����
����
����

����
����
����

[4,1] [1,2]

[3,2] [3,1] [1,1]

[2,1] [2,2]

1p2 p1

1p2pp3

3p4p

112

212

Figure 5.2: The relationship between the actual buffer status and the index queues, assuming packet
pλi arrived at the switch on wavelength λ in time slot i. The index queues keep the timestamps and
buffer indices of the packets being buffered.

In the following sections we will see how the scheduler of the OpCut switch makes the schedul-

ing decision based on the information kept in the queues.

107

5.2 Basics of the Scheduler

In this section we introduce the basic packet scheduling process in the WDM OpCut switch.

The basic scheduling procedure for a WDM OpCut switch consists of three stages, namely, newly

arrived packets cutting-through, receivers picking up packets, and transmitters sending buffered

packets to the switch output. Ideally, we would like to send the maximum number of packets to

the switch output in each time slot while maintaining packet order. In this chapter, we define an

optimal schedule to be a schedule that satisfies the two conditions simultaneously.

Maintaining packet order is non-trivial in the OpCut switch, since packets from the same flow

may be picked up by different receivers. To deal with this problem, the scheduler adopts a simple

strategy: allow a packet to be scheduled for transmission to the switch output only if it is a head-

of-flow packet. That is, when all packets ahead of it in the same flow have been transmitted, or

scheduled for transmission, to the switch output.

While the basic idea is similar, the basic scheduling procedure in a WDM OpCut switch differs

significantly from the single-wavelength case due to dependence between wavelengths. The first

stage is to find a matching between the input wavelength channels and the output wavelength

channels for newly-arrived packet cut-through. As discussed above, a newly arrived packet of

flow fij is eligible to cut-through the switch only if it is the head-of-flow packet of fij . In this

case, queue Fij must be empty, and there should be no packet of the same flow that arrives on

a smaller wavelength channel in current time slot and has not been scheduled for cut-through.

The cut-through process is essentially a matching process between such newly arrived packets

(or equivalently, the input wavelength channels these packets are on) and the output wavelength

channels. To ensure the cost-effectiveness of the WDM OpCut switch, we assume no wavelength

converters at the switch input. As a result, a newly arrived packet on an input wavelength channel

can only be sent to the same wavelength channel of its destined output port.

108

After the cut-through process, packets that cannot cut through need to be picked up by the

receivers. This is done by connecting the receivers to the input wavelength channels in a round-

robin fashion. At time slot t, the packet from wavelength λ of input fiber i will be sent to receiver

r which is given by

r = [(i · k + λ+ t) mod Nk] + 1

Similar to the single-wavelength scenario, the inputs are connected to the receivers in a round-

robin fashion such that better load balancing among the receivers can be achieved. In fact, with

non-uniform incoming traffic, if the connection between the inputs and the receivers is fixed, the

average packet delay is typically more than 50% longer than that with round-robin connection,

according to our simulation.

The third stage of the scheduling process is to send packets from the electronic buffers to the

output wavelength channels that do not receive a cut-through packet. Again, to maintain packet

order, packets in a flow must be transmitted to the switch output in the same order as they arrived.

Note that while in each time slot a transmitter can send out up to one packet, an output fiber can

take up to k packets, as it has k wavelength channels. If multiple packets from the same flow are

scheduled from different buffers to their destined output fiber in the same time slot, they are sent

one by one, in the same order as they arrived, to the smallest wavelength that is still available, such

that the order is preserved when they arrive at next stage switch. Finding good matchings while

maintaining packet order is the main challenge of the scheduling problem, which will be discussed

in detail next.

5.3 Packet Scheduling Algorithms

As discussed in the previous section, the optimal schedule consists of two parts, namely, the

matching between the input wavelength channels and the output wavelength channels for newly-

109

arrived packet cut-through, and the matching between the transmitters and the output wavelength

channels for the transmission of buffered packets. Next we show that an optimal schedule can be

found by computing the two matchings sequentially, i.e., first finding an optimal matching between

input and output wavelength channels, then an optimal matching between transmitters and output

channels that are still available. In the following we denote such two maximum matchings as Mc

and Mb, respectively.

Theorem 4. Mc ∪Mb is an optimal schedule.

Proof. It is clear that Mc ∪Mb does not violate packet order since only head-of-flow packets are

considered. Thus it remains to prove that |Mc ∪Mb| is the maximum number of packets that can

be transmitted without violating packet order, where |M | is the cardinality of a matching M .

Assume M ′
c and M ′

b are the corresponding two matchings found with an arbitrary strategy

under the precondition that packet order is preserved. For an arbitrary output port, denote the total

number of wavelength channels as k, out of which oc is matched to a packet in Mc, o′c is matched

in M ′
c, ob is matched in Mb, and o′b in M ′

b. It is not difficult to see that the packet cut-through for

different output ports are independent. Therefore it must be true that oc ≥ o′c, given that Mc is an

optimal matching.

On the other hand, full wavelength conversion is available when transmitters send packets to

switch output. In other words, any two wavelength channels on an output port are equivalent when

Mb is being computed. Hence

o′b − ob ≤ (k − o′c)− (k − oc)

= oc − o′c

or, o′b + o′c ≤ ob + oc. This implies that, for any output port, Mc ∪Mb schedules more packets

to it than M ′
c ∪ M ′

b does. Since M ′
c and M ′

b are matchings obtained under an arbitrary strategy

110

that preserves packet order, this completes our proof that |Mc ∪Mb| is the maximum number of

packets that can be transmitted without violating packet order. As a result, Mc ∪Mb is an optimal

schedule.

In the following, we first show that finding Mc and finding Mb can be converted into the same

problem, which we refer to as the Maximum-Coverage Prefixes problem. We then prove that this

problem is NP-hard, and give an approximation algorithm with performance ratio. We also discuss

the implementations of the approximation algorithm in the high-speed switch, and other possible

variations of the algorithm to reduce the complexity.

5.3.1 Problem Formalization

In this section we present the problem formalization of finding Mc and Mb. We start with a

discussion on finding Mc.

Finding Mc

To compute Mc, what we have are the packet arrivals on each input wavelength channel in

current time slot. Recall that there is no wavelength conversion available at the input of the OpCut

switch, thus during the cut-through process a packet that arrives on wavelength channel λ can only

be sent to wavelength channel λ of its destined output fiber.

For each flow of packets from an input fiber to an output fiber, we can define a sequence of

wavelengths. The sequence contains in ascending order all the wavelengths on which there is a

packet arrival that belongs to the corresponding flow in current time slot. If there is no packet

arrival for a flow, the corresponding sequence is then empty. Moreover, each wavelength can

appear no more than once in a sequence, since in each time slot there is at most one packet arrival

on each wavelength channel.

111

32

31

2

1

����

����

Sequence for each flow

flow 3

flow 4���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Input fiber 1

Input fiber 2

Output fiber 1

Output fiber 2

flow 1

flow 2

���
���
���
���

Figure 5.3: An example of converting packet arrivals to sequences. Flow 1 contains packet from
input fiber 1 to output fiber 1. There are two packet arrivals for flow 1 on wavelength 1 and 3,
respectively. Therefore the sequence for flow 1 is ⟨1 → 3⟩. Similarly, the sequence for flow 2 is
⟨1⟩, since its sole packet arrival in this time slot is on wavelength 1.

In the simple example shown in Fig. 5.3, there are two input fibers and two output fibers,

each containing three wavelength channels. We assume flow 1 contains packet from input fiber

1 to output fiber 1. There are two packet arrivals for flow 1 on wavelength 1 and 3, respectively.

Therefore the sequence for flow 1 is ⟨1→ 3⟩. Similarly a sequence can be determined for each of

the rest three flows.

As mentioned earlier, the packet cut-through for different output fibers are independent. There-

fore in the following we focus on one output fiber and only consider packets destined for this

specific output fiber.

To find Mc, we need to let the maximum number of packets that arrive in current time slot to

cut through without violating the packet order. Recall that if two packets belong to the same flow

and arrive in the same time slot, then the one arrives on the smaller wavelength channel is defined

in front of the other in the flow. In other words, packets of the same flow must cut through in the

same order as their arrival wavelengths appear in the sequence. If a packet cannot cut through, then

all packets behind it should never cut through in current time slot. For example, for flow 1 in Fig.

5.3, if the packet on wavelength 1 cannot cut through, then the packet on wavelength 3 should not

cut through, even if wavelength 3 of output fiber 1 is available.

112

1 2

12

12

1

����

SequencesIndex queues ([timestamp, buffer])

����

��������
��������
��������
��������

[3,2] [3,1] [1,1]

[3,1] [2,2]

[4,1] [1,2]

Figure 5.4: The relationship between index queues and sequences. An index queue keeps the
timestamps and buffer indices of the packets being buffered. A sequence keeps the buffer indices
only. Both the index queues and sequences are grouped according to the destined output fiber of
the packets.

We define a prefix of a sequence as a (possibly null) segment of the sequence that starts from

the head of the sequence. Consequently, letting the maximum number of packets to cut through

without violating the packet order is equivalent to selecting a prefix from each sequence, such

that these prefixes contain the maximum number of elements (wavelengths). The restriction that

each wavelength channel of an output fiber can take at most one packet in a time slot means that

a wavelength can appear at most once in all these prefixes. To sum up, finding Mc for a specific

output fiber can be formalized into the following problem:

Input: A collection of sequences of elements. No element is repeated in a single sequence.

Output: A prefix from each sequence, such that the maximum number of elements is covered by

all the prefixes, and no element appears in more than one prefix.

We name it the Maximum-Coverage Prefixes (MCP) problem. As will be by the NP-hard proof

later, the fact that the elements in each sequence are sorted does not reduce the complexity of the

problem, hence is omitted.

Finding Mb

In this subsection we present the formalization of the problem of finding Mb. To compute Mb,

the information we have is an index queue for each flow that contains the timestamp and buffer

113

index of each packet being buffered. The timestamp of a packet is required to locate the packet

in a buffer. However, for the purpose of computing Mb, all we need to know is the order of the

packets being buffered, and in which buffer each of these packets can be located. Since the order of

packets is naturally reflected by the order of their appearance in the index queues, the timestamps

of packets are not needed to compute Mb. As a result, we can remove the timestamps from an index

queue and simplify it into a sequence of buffer indices. Fig. 5.4 continues the example in Fig. 5.2

and shows how the index queues are converted to sequences. For instance, the index queue for flow

1 is [1, 1] → [3, 1] → [3, 2], which stores both the timestamps and buffer indices of the packets of

flow 1 that are currently being buffered. However, to compute Mb, it is sufficient to know that the

head-of-flow packet of flow 1 is in buffer 1, the next packet of flow 1 is in buffer 1 as well, and the

third is in buffer 2. And that is exactly what the corresponding sequence ⟨1→ 1→ 2⟩ tells. In the

following, we interchangeably use index queue and sequence when there is no ambiguity.

Our goal is to send as many packets as possible from the buffers to the switch output. Mapped

to sequences, it is equivalent to select a portion from each sequence , such that the maximum

number of buffer indices is covered by the overall selection. For example, in Fig. 5.4, if buffer

indices 1 and 2 are selected from the sequence for flow 1 (⟨1 → 1 → 2⟩) and flow 2 (⟨2 → 1⟩),

respectively, it means that a packet of flow 1 currently in buffer 1, and a packet of flow 2 currently

in buffer 2, can be transmitted to the respective output fibers. The requirement on packet order

means that we can only select a prefix from each sequence. For instance, in the above example

it is not legal to select buffer 1 from the sequence for flow 2 without selecting buffer 2 from the

same sequence, since p3, the packet of flow 2 in buffer 1, cannot be scheduled before p2 in buffer

2, which also belongs to flow 2 and is older than p3. Besides, the fact that at most one packet can

be retrieved from a buffer and transmitted in a time slot implies that no buffer index can appear

more than once in the prefixes selected. It also indicates that, if a buffer index appears multiple

times in a single sequence, it is safe to consider only the segment of the sequence before the second

114

appearance of that buffer index. In terms of the example above, the first sequence, ⟨1 → 1 → 2⟩

can be shortened to ⟨1⟩, because at most one of p1 and p5 can be retrieved from buffer 1 in a

single time slot. Therefore the maximum length of a sequence is Nk, equal to the total number of

buffers. Also, considering the number of available wavelength channels, if we group the sequences

according to the destined output fiber of the corresponding index queues of flows, then it implies

that the prefixes of all the sequences in group j should cover at most cj buffer indices, where cj is

the number of available wavelength channels on output fiber j.

To sum up, the original problem of finding matching Mb can be formalized into the following

problem:

Input: N groups of sequences. Each sequence contains at most Nk elements and no duplicated

element. There are also N integers c1, c2, . . . , cN , all in the range of [0, k]. N and k are arbitrary

positive integers.

Output: A prefix from each sequence, such that the maximum number of elements is covered

by all the prefixes, and no element appears in more than one prefix. Plus, the prefixes of all the

sequences from group j should cover no more than cj elements.

We call this converted problem the “Constrained Prefix Coverage” (CPC) problem. This prob-

lem is more difficult than finding Mc, as the scheduling of packets from the buffers to different

output fibers are dependent. In fact, it can be shown that the MCP problem is a simple special case

of the CPC problem.

The special case of the CPC problem we consider is when c1 = k, c2 = c3 = · · · = cN = 0.

In terms of the original scheduling problem, this is the case when, for example, the cut-through

packets occupy all of the output wavelength channels except those on output fiber O1. In this case,

only group 1 of the sequences, i.e., those for flows destined for output fiber 1 needs to be taken

into consideration. As a result, the CPC problem is simplified into the MCP problem.

Next we will show that the MCP problem is not only NP-hard, but also inapproximable within

115

any constant factor in polynomial time.

5.3.2 NP-Hardness and Inapproximability Proof

The following theorem states the NP-hardness of the MCP problem.

Theorem 5. The MCP problem is NP-hard.

Proof. We show that the MCP problem is NP-hard by reducing the set packing problem [64] to

the MCP problem. An instance of the set packing problem can be expressed as follows. Given a

finite set U and n subsets of U , S = {Si | Si ⊆ U, i = 1, 2, . . . , n}, does there exist m pairwise

disjoint (that is, containing no common elements) sets in S? The set packing problem is NP-hard

when each subset of U in S contains as few as 3 elements. In this instance, without affecting the

correctness of the proof we assume the maximum cardinality of Si for i = 1, 2, . . . , n, denoted as

L, is no more than n.

We start the proof by converting each set in S into a sequence in the MCP problem. Initially

all sequences are empty. They are constructed in three steps:

• Step 1 - Set padding. We pad each of the sets in S such that all of them have cardinality

equal to L after padding. The newly added elements are all unique and are not in any of the

original sets.

• Step 2 - Adding intersection indicators to sequences. For each pair of sets in S , if their

intersection is non-empty, we add a new element to the heads of the corresponding pair of

sequences. The newly added element serves as an indicator of intersection. Similar to Step

1, the elements added to different pairs of sequences are unique, and are not in any of the

padded sets. Let x denote the total number of unique elements added to the sequences in this

step. Since there are n(n− 1)/2 pairs of sets, x ≤ n(n− 1)/2 must hold.

116

{a, b, c}

{c, a}

{b, d}

{e}

Sets Sequences
⟨⟩
⟨⟩
⟨⟩
⟨⟩

{a, b, c}

{c, a, z}

{b, d, y}

{e, x, w}

Sets Sequences
⟨⟩
⟨⟩
⟨⟩
⟨⟩

{a, b, c}

{c, a, z}

{b, d, y}

{e, x, w}

Sets Sequences
⟨i12 → i13⟩
⟨i12⟩
⟨i13⟩
⟨⟩

{a, b, c}

{c, a, z}

{b, d, y}

{e, x, w}

SequencesSets
⟨i12 → i13 → a1 → a2 → a3 → b1 → b2 → b3 → c1 → c2 → c3⟩
⟨i12 → c1 → c2 → c3 → a1 → a2 → a3 → z1 → z2 → z3⟩
⟨i13 → b1 → b2 → b3 → d1 → d2 → d3 → y1 → y2 → y3⟩
⟨e1 → e2 → e3 → x1 → x2 → x3 → w1 → w2 → w3⟩

(a) (b) (c) (d)

Figure 5.5: An example of converting sets to sequences. (a) The original sets. The sequences are
initially null. (b) Step 1: Set padding. w, x, y and z are the newly added elements. (c) Step 2:
Adding intersection indicators to sequences. A new element i12 is added to both sequence 1 and
sequence 2 as an indication of intersection of set 1 and set 2. Similarly, i13 is added to sequence
1 and sequence 3. (d) Step3: Appending expanded sets to sequences. Since two intersection
indicators were used in Step 2, each set is 3-time expanded then appended to the corresponding
sequence.

• Step 3 - Appending expanded sets to sequences. Now for each padded set, we do an (x+1)-

time-expansion. That is, we replace each element in the set with x+1 new, unique elements.

After that, all elements from each set are appended to the tail of the corresponding sequence.

The set-to-sequence conversion can be completed in polynomial time. Fig. 5.5 provides an

example of this conversion process, where, for convenience, the numbers of elements in the sets

are small, but the process can be applied to larger sets. Denote the sequence resulted from Si as Qi,

i = 1, 2, . . . , n. It can be seen that Qi consists of two parts. The first part contains the intersection

indicators and the second part contains the elements from the set after padding and expanding. The

minimum length of Qi is (x + 1)L, which occurs when Si does not intersect with any other set in

S and no intersection indicator has been added to Qi. It is also clear that Qi and Qj contain no

common element if and only if Si and Sj do not intersect.

Next we show that the original set packing problem has a solution if and only if the MCP

problem, given the resulted sequences as input, has a solution that covers at least (x + 1)Lm

elements.

First, assume that the set packing problem has a solution S∗. That is, S∗ ⊆ S contains m

pairwise disjoint sets. Denote the collection of the sequences corresponding to the subsets in S∗ as

117

Q∗. It must be true that the sequences inQ∗ are pairwise disjoint. As a result, the sequences inQ∗

cover at least (x+ 1)L|S∗| ≥ (x+ 1)Lm elements.

Next, denote a solution to the MCP problem as P = {P ∗
i | i = 1, 2, . . . , n}, where P ∗

i is a

prefix of Qi. Note that P ∗
i may be null for some i. We claim that for all i, either P ∗

i = Qi, or P ∗
i

ends before the second part of Qi. To see this, suppose that there exists some j such that P ∗
j ends

in the middle of part 2 of Qj , right before element b. Let Qj′ denote another sequence that also

contains b. The fact that b is in part 2 of both sequences implies that the original sets Sj and Sj′

intersect. Thus an intersection indicator, denoted as a′, must have been added to both Qj and Qj′ .

Since P ∗
j includes the entire part 1 of Qj , it contains a′. As a result, P ∗

j′ has to end somewhere in

Qj′ before b. Otherwise it must contain a′ and violate the “no repeat” condition, since a′ is ahead

of b in Qj′ . It follows that b is not included in any prefix in P . Hence, by extending P ∗
i to include

b, a better solution is obtained for the MCP problem. This contradicts with the assumption that P

is optimal, the claim justified.

Now assume that P covers (x + 1)Lm or more elements. Then in P there exist at least m

prefixes each of which spans the whole corresponding sequence. The reason is that, as proved

above, if a prefix P ∗
i in P is not equal to Qi, it must end before the second part of Qi. In other

words, it covers at most all the intersection indicators in Qi. Overall, all such prefixes can cover at

most x elements, the total number of intersection indicators. Hence if the number of prefixes in P

that cover the whole sequence is less than m, at most x+(x+1)L(m−1) ≤ (x+1)Lm−1 elements

can be covered. Therefore, given that P covers (x + 1)Lm or more elements, it must contain at

least m full sequences. Besides, these m sequences must not contain any common elements, which

implies that the corresponding m original sets in S form a solution to the set packing problem.

In conclusion, since set packing is NP-hard and is reducible to the MCP problem, the MCP

problem is also NP-hard.

118

It can be further proved that MCP cannot be approximated in polynomial time within any

constant factor. We prove it by showing that MCP is as difficult to approximate as maximum set

packing, the optimization version of the set packing problem.

Theorem 6. The MCP problem cannot be approximated within any constant factor in polynomial

time unless P = NP.

Proof. Let S = {S1, S2, . . . , Sn} be an instance of the maximum set packing problem. That

is, S is a collection of finite sets, and we wish to determine the maximum number of pairwise

disjoint sets in S. Assume that there is a polynomial time approximation algorithm with a constant

approximation ratio ρ for MCP. We convert each set in C into a sequence of the MCP problem as

we have done in the proof of Theorem 5. However, instead of expanding the padded sets x + 1

times, they are expanded t ≥ n(n−1)/(ρL) times. Then by applying this algorithm to the resulted

sequences, we have

APXMCP ≥ ρ ·OPTMCP

where APXMCP is the number of elements covered by the approximation algorithm, and OPTMCP

is that of an optimal solution. Note that as previously discussed, a solution to the MCP problem,

optimal or approximate, can be divided into two parts: the part that covers the intersection indica-

tors, and the other part that covers the elements in the sets after padding and expanding. Suppose

that the approximate solution covers N1 intersection indicators and N2 set elements. Immediately

we have 0 ≤ N1 ≤ x. Besides, if an optimal solution of the maximum set packing problem con-

tains OPTSP sets, then the corresponding OPTSP sequences in MCP are pairwise disjoint. Hence

an optimal solution of MCP will contain OPTSP full sequences, each of length at least Lt. That

is,

OPTMCP ≥ L · t ·OPTSP

119

Therefore, from APXMCP = N1 +N2 ≥ ρOPTMCP it can be derived that

N2 ≥ ρOPTMCP −N1

≥ ρLt ·OPTSP − x

≥ ρLt ·OPTSP −
n(n− 1)

2

L and n are known once the instance is given, and ρ is a constant. Then

N2

Lt
≥ ρ ·OPTSP −

n(n− 1)

2Lt

≥ ρ ·OPTSP −
ρ

2
(since we choose t ≥ n(n− 1)/(ρL))

≥ ρ

2
·OPTSP

The last step holds since OPTSP ≥ 1 is always true as long as S ̸= ∅.

The approximate solution contains a prefix of each sequence, some of which may be null. Let

ñ denote the number of sequences whose prefix in the approximate solution contains at least one

element of the second part of the sequence. Then ñ ≥ N2/(Lt) holds since each sequence has

Lt part-2 elements , and N2 is the total number of part-2 elements covered by the approximation

algorithm. In addition, any two among the ñ sequences do not contain any common element, since

the whole part 1 of all these sequences is included in the solution. Therefore, the corresponding ñ

sets in S are pairwise disjoint. If we select these ñ sets, we have found an approximate solution to

the original maximum set packing problem such that

APXSP = ñ ≥ N2

Lt
≥ ρ

2
·OPTSP

This contradicts the fact that maximum set packing has no constant factor polynomial time ap-

120

proximation algorithm [64]. Putting all of these together, MCP cannot be approximated within any

constant factor in polynomial time.

That completes our proof of the NP-hardness and inapproximability of the MCP problem,

which leads to the NP-hardness and inapproximability of the CPC problem and the original schedul-

ing problem. In the following we will propose an approximation algorithm with approximation

ratio
√
2Nk. We call this algorithm the Longest-Or-Heads (LOH) algorithm.

5.3.3 The Longest-or-Heads (LOH) Approximation Algorithm

We first introduce the concept of effective length of a sequence. Recall that the maximum

number of packets that can be transmitted from the buffers to output fiber Oj , or in terms of the

CPC problem, the maximum number of elements that can be covered by the sequences in group

j, is limited by cj , the number of available wavelength channels on Oj . Hence here we define

the effective length of a sequence in group j to be the minimum of its actual length and cj . For

simplicity, in the following we abuse the phrase “longest sequence” a bit and use it to refer to

the sequence with the maximum effective length. Also we say a packet is on a sequence if the

information of the packet is being kept in the corresponding index queue.

The basic idea of the LOH Algorithm is simple and exactly as its name suggests: in each time

slot, depending on which ends up with more packets scheduled, we either schedule all the packets

on the longest sequence, or consider only packets at the head of the sequences and schedule as

many of them as possible.

Next we derive the approximation ratio of the LOH algorithm. Denote the length of the longest

sequence as nl. Denote the size of a maximal matching between the transmitters and the output

wavelengths as nh, when only head-of-sequence packets are considered. Note that we consider a

maximal matching, not a maximum matching here, because a maximal matching is much easier

121

to find in practice than a maximum matching. Also, using a maximal matching changes the per-

formance ratio by a constant factor comparing to using a maximum matching. Let C∗ denote an

optimal solution and let |C∗| denote the number of packets scheduled according to C∗. As nh is the

size of a maximal matching, the size of a maximum matching with the same input can be at most

2nh [65]. Since an arbitrary solution can contain packets from at most 2nh sequences when only

the heads of sequences are considered, it can contain packets from at most 2nh sequences when the

full sequences are considered. Moreover, the number of packets on a single sequence contained

in any solution, including C∗, is no more than nl, which is the maximum length of all sequences.

Thus

|C∗| ≤ nl · 2nh ≤ 2C2
L

where CL = max{nl, nh} is the number of packets scheduled by the LOH algorithm. Conse-

quently

√
|C∗|
2
≤ CL ≤ |C∗|

Back to our original packet scheduling problem, |C∗| can be at most Nk, the total number of output

wavelength channels. Thus

max

{
CL

|C∗|
,
|C∗|
CL

}
≤
√
2Nk

which is the approximation ratio of the LOH algorithm. It may be of some interest to note that

the result is consistent with the fact that the best known algorithm approximates the maximum set

packing problem within a factor of O(
√
|U |), where U is the underlying base set [64].

Now consider the optimal scheduling problem as a whole. We will adopt a scheduler that first

lets as many as possible newly arrived packets cut-through, i.e., finds Mc. Then the scheduler runs

the LOH algorithm with the output wavelength channels that are still available to approximate Mb.

122

The number of packets scheduled overall is at least

|Mc|√
2Nk

+
|Mb|√
2Nk

≥ |Mc ∪Mb|√
2Nk

By definition Mc ∪Mb is an optimal schedule. Thus we have

Theorem 7. The LOH algorithm approximates the optimal scheduling problem within a factor of
√
2Nk.

5.3.4 Implementation of the LOH Algorithm

The LOH algorithm is implementable in hardware. The overall longest sequence can be deter-

mined by a linear scan over all sequences. However, to make it more practical we will parallelize

the process in a way similar to the Prioritized iSLIP [5]. An arbiter is assigned to each output fiber,

as well as to each buffer. An output first determines the longest sequence within its group. Then it

sends a request to a buffer if the buffer appears in the sequence. The priority level of a request is

the length of the corresponding sequence. If a buffer receives any requests, it selects the one with

the highest priority to grant. If there are multiple requests with the same priority level, an even

break is needed. This is handled by maintaining a pointer to a round-robin schedule at each buffer.

These pointers are synchronized initially and shift one position in each time slot, such that they al-

ways point to the same location of the round-robin schedule. By doing so, it is ensured that in case

there are two sequences of the same length, all buffers that receive requests from both sequences

will select the same sequence to grant. Therefore, at least for one of the longest sequences, all of

its requests will be granted. Note that a sequence cannot be the (elected) global longest sequence

if it misses a single grant. Thus if all requests from a sequence are granted, the sequence accepts

all of the grants. Otherwise it accepts no grant. Strictly speaking, packets on a sequence can be

sent as long as a prefix of a sequence is granted. However, to keep the scheduler simple we do not

123

distinguish between whether it is a prefix of a sequence that has been granted or not. When the

iteration ends, the number of accepted grants is recorded as nl.

Next, the scheduler tries the second option to schedule the packets at the head of sequences

only by finding a maximal matching through the iSLIP algorithm.

• Step 1 - Request. Each output fiber, if still having available wavelength channels, sends a

request to every buffer that appears at the head of some sequence in the group of sequences

destined for this output.

• Step 2 - Grant. Besides the longest sequence pointer, buffer i maintains a second round robin

pointer pi. When it receives any requests, buffer i selects the one that appears next in the

round robin schedule from the position pointed to by pi. pi is updated to one position beyond

the granted output if and only if the grant is accepted in Step 3.

• Step 3 - Accept. If an output fiber with c available wavelength channels receives c′ grants, it

chooses

min{c, c′} to accept. That is, by maintaining a round-robin pointer, the output picks the first

min{c, c′} elements that appear next in the round robin schedule from the position pointed

by the pointer, and accepts the grants from the corresponding buffers. Then it increments its

round-robin pointer by one beyond the first granted buffer.

Steps 1 and 3 differ from the original iSLIP algorithm in that each output fiber can take multi-

ple grants in a single iteration. On average, within log(Nk) iterations, the result converges to a

maximal matching, and nh is the total number of accepted grants.

When both nl and nh are obtained, the scheduler simply chooses the better one as the final

schedule to execute.

124

5.3.5 Variations of LOH

In this subsection we discuss some possible variations of the LOH algorithm. The first possible

improvement is to take more packets into consideration, instead of only the packets that were at

the head of the sequences when the scheduling process began. Note that it is safe to schedule a

packet if all the packets ahead of it in the same sequence have been scheduled and it becomes the

head-of-flow packet.

To incorporate this idea into the original LOH algorithm, the first and the third step of each

iteration of the LOH algorithm are modified as follows.

• Step 1 - Request. Each output fiber, if still having available wavelength channels, sends a

request to every buffer that has a head-of-flow packet destined for this output fiber.

• Step 3 - Accept. Whenever a grant is accepted, the head of the corresponding sequence is

removed, and the next packet in the sequence becomes the new head-of-flow packet.

This modified version is referred to as variation 1 of LOH later in the simulation section. Sec-

ond, note that making the longest sequence as an option for scheduling has its importance, espe-

cially theoretically, since it is necessary in terms of achieving the approximate ratio. Nevertheless,

it has potential drawbacks because it increases the complexity of the scheduler. Therefore, another

possible variation is to eliminate the “longest sequence” option, which leads to a simpler sched-

uler. It is referred to as variation 2 of LOH in the following. The performance of these variations

is compared with that of the original LOH algorithm through simulations.

5.4 Performance Evaluation

In this section we present the simulation results. The basic simulation setup such as traffic

models are similar to that in 4.5. The WDM OpCut switch is simulated with N = 64 and k = 8.

125

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ut

−
T

hr
ou

gh
 R

at
io

Traffic Intensity

N = 64, k = 8; Bernoulli uniform traffic

LOH

LOHV1

LOHV2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ut

−
T

hr
ou

gh
 R

at
io

Traffic Intensity

N = 64, k = 8; burst non−uniform traffic

LOH

LOHV1

LOHV2

(a) (b)

Figure 5.6: Packet cut-through ratio under different schedulers and traffic models. LOH: scheduler
that executes the LOH algorithm. LOHV1: variation 1 of LOH. LOHV2: variation 2 of LOH.

The LOH algorithm, as well as its variations as discussed in Section 5.3.5, is implemented with

8-iteration iSLIP. Each simulation was run for 106 time slots. The main performance criteria

considered include the packet cut-through ratio and the average packet delay.

5.4.1 Cut-Through Ratio

The packet cut-through ratio is an important criterion of the WDM OpCut switch. The higher

the ratio, the more packets are sent directly to the switch output and avoid the O/E/O conversion.

Fig. 4.8 plots the cut-through ratio under different schedulers and traffic models. It can be seen

that under Bernoulli uniform traffic, the three schedulers lead to almost identical cut-through ratio.

The ratio is as high as 0.9 when the load is around 0.2, and remains above 0.6 when the load

is increased to 1 for LOH and LOHV1 . Under burst non-uniform traffic, the cut-through ratio

drops faster with the increase in load. Nevertheless, still more than 30% of the packets can cut-

through even when the switch is fully loaded. Besides, LOHV1 results in higher cut-through ratio

than other two schedulers under burst non-uniform traffic, which shows the effect of taking more

packets into consideration besides the sequence heads when scheduling.

126

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Traffic Intensity

N = 64; Bernoulli uniform traffic

WDM, LOH

WDM, LOHV1

WDM, LOHV2

SW

WDM, OQ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 P
ac

ke
t D

el
ay

Traffic Intensity

N = 64; burst non−uniform traffic

WDM, LOH

WDM, LOHV1

WDM, LOHV2

SW

WDM, OQ

(a) (b)

Figure 5.7: Average packet delay under different schedulers and traffic models. The notations of
schedulers are the same as in Fig. 4.8. WDM: the multi-wavelength scenario, as opposite to single
wavelength (SW). OQ: ideal output-queued switch.

We notice that under Bernoulli uniform traffic, there is a sharp drop in the cut-through ratio for

LOHV2, which occurs around 0.95 load. As will be confirmed shortly by the average packet delay,

these are the points at which the OpCut switch is saturated when LOHV2 is used as the scheduler.

5.4.2 Average Packet Delay

The average packet delay in a WDM OpCut switch is simulated and compared with the single-

wavelength case and the ideal WDM output-queued (OQ) switch. Single wavelength can be con-

sidered as a special case of WDM with k = 1. In a single-wavelength OpCut switch, at most

one packet can be transmitted to an output port in each time slot, hence it is sufficient to consider

only the sequence heads for scheduling. For the WDM OQ switch, full wavelength conversion

capability on each input wavelength channel and N -speedup output memory are assumed, such

that a newly arrived packet can be directly sent to an arbitrary wavelength channel of its destined

output fiber, and the buffer on each output wavelength channel can receive as many as N packets

in a single time slot. Note that the WDM OQ switch architecture is impractical; we take it into

127

consideration merely because its average packet delay serves as the lower bound for other switches

and schedulers.

It can be seen from Fig. 3.6 that the packet delay in the WDM OpCut switch is significantly

shorter than that of the single wavelength case. In other words, WDM not only multiplies the

bandwidth but is also able to reduce packet delay. This is due to the fact that a packet sent to the

electronic buffer in a WDM OpCut switch can choose from multiple candidate output wavelength

channels. Similar to the cut-through ratio, under Bernoulli uniform traffic the three schedulers for

the WDM OpCut switch achieve almost the same average packet delay when the load is below 0.95

, which is also very close to that of the ideal WDM OQ switch. Under burst non-uniform traffic,

LOHV1 outperforms the other two schedulers. This shows that considering only the sequence

heads for scheduling is sufficient under Bernoulli uniform traffic, but leaves room for improvement

under burst non-uniform traffic. There is no significant difference between the performance of

LOH and LOHV2 when the load is below 0.95, On the other hand, the performance of LOH

and LOHV2 is indistinguishable in all scenarios, which implies that in practice the scheduler can

be effectively simplified without affecting the system performance by not looking for the longest

sequence.

5.5 Conclusions

In this chapter, we have studied packet scheduling in the low-latency OpCut switch with Wave-

length Division Multiplexing. Our goal of optimal scheduling is to maximize the throughput in

each time slot while maintaining packet order. We formalized this problem as the Maximum-

Coverage Prefixes (MCP) problem and proved its NP-hardness and inapproximability by reducing

the set packing problem to it. We designed an approximation algorithm for the MCP problem

which approximates the optimal scheduling algorithm with a factor of
√
2Nk with regard to the

128

number of packets transmitted, which is in line with the best known approximation algorithm for

set packing. Based on the approximation algorithm, we proposed practical schedulers and dis-

cussed hardware implementations. Simulation results show that these schedulers achieve very

good performance under various traffic models.

129

Chapter 6

Energy-Aware Routing in Hybrid Optical

Networks-on-Chip

In this chapter, we will study a special type of interconnect networks, the Network-on-Chip. In

recent years, with the development of Multi-Processor System-on-Chip (MPSoC), the intra-chip

communication is becoming more and more important to the performance of the entire system

[66]. The NoC approach has been proposed to overcome this bottleneck.

A NoC example is shown in Figure 6.1. The fundamental idea of NoC, as summarized by

[67], is to “route packets, not wires.” Each processing core is connected to a local router. All the

routers and the links interconnecting the routers, form the NoC. The communication between two

processing cores in a NoC is very similar to that between two nodes in a computer network. As

a result, a lot of existing research in computer networks has been leveraged for NoCs. However,

due to the tight constraints in space, time and power, NoCs significantly differ from traditional off-

chip networks. In particular, given the power consumption budget, it is unclear whether traditional

electronic interconnects will be sufficient for NoC communications as the demand on bandwidth

and latency keeps increasing [68] [69] [70].

130

processing core
router

Figure 6.1: A typical architecture of a NoC.

In this chapter, we study the routing problem in optical NoCs with arbitrary topologies. To be

more specific, we will consider the energy-aware routing problem in such networks. Currently,

minimum hop count routing schemes are dominant in both electronic and optical NoCs. However,

while the minimum-hop-count path is likely to be the most energy-efficient path in electronic

NoCs, the situation is different in the optical domain, as will be shown later. We will investigate

the trade-off between energy consumption and the average path length in optical NoCs, as well as

how to reduce energy consumption without introducing extra transmission latency.

The rest of the chapter is organized as follows. Section 6.1 briefly describes the basic architec-

ture of existing optical NoCs, and a key characteristic of optical routers proposed for optical NoCs.

Section 6.2 discusses the energy-aware routing problem in optical NoCs and two approaches to ad-

dressing this problem, as well as its effectiveness in various topologies. Section 6.3 proposes possi-

ble extensions to current hybrid optical NoCs, including the application of optical burst switching

(OBS), and energy-aware adaptive routing in optical NoCs. Finally, Section 6.4 concludes the

chapter.

131

6.1 Optical NoC

In this section we briefly describe the architecture of optical NoCs considered in this chapter.

Due to the fact that buffering and packet header processing are currently difficult to implement

in optical domain, especially at on-chip level, most existing optical NoCs are based on a hybrid

approach consisting of two layers [68] [71]. The control layer is in electronic domain, which is used

to exchange control information and other short messages. An optical interconnection network

layer, comprised of optical routers interconnected by waveguides, is responsible for transmitting

the actual data.

Similar to the wavelength-routed networks, a light-path must be set up before any data can be

transmitted in the optical layer. This is done by a control packet in the electronic layer, which

traverses along the path to be established and makes reservations. In case that some reservation

cannot be satisfied, the control packet is dropped and a corresponding path-blocked packet is gen-

erated. The path-blocked packet is backtracked along the path to release the reservations already

made, and to notify the potential sender that a path cannot be established at this moment. If the

path is ready, the message is transmitted in optics without being buffered at any intermediate node.

When the transmission is completed, a packet is sent to tear down the path. In the rest of this

chapter we will focus on this type of NoC and refer to it as the hybrid optical NoC.

A major advantage of using the light-path mechanism, as pointed out in [68], is the bit-rate

transparency property [72]. Traditional electronic routers switch every bit of the data, thus the

power dissipation scales with the bit rate. On the other hand, optical routers switch at the message

level, hence the energy dissipation is unrelated to the bit rate. This nice property makes it possible

in optical domain to achieve very high-bandwidth at a relatively low power budget.

Currently, most of the proposed optical NoC architectures use microresonators as the basic

building block for optical routers, which can work at a very high speed as a 30ps switching time

132

(a) (b)

Figure 6.2: Basic operations of a microresonator. (a) Off state. The signal goes through without
turning. (b) On state. The signal is forced to change direction.

has been demonstrated in [73]. The basic operations of a microresonator is illustrated in Figure 6.2.

When a microresonator is not turned on, its off-state resonance wavelength, which is determined

by the material and the internal structure, is different from that of the optical signal. As a result,

the signal passes through uninterrupted. When the microresonator is powered on, the resonance

wavelength is shifted to that of the optical signal and forces the turning of the signal. The key point

here is that the microresonator only consumes energy when it needs to be turned on to change the

direction of the incoming signal.

Different optical router architectures have been proposed based on microresonators, such as the

4× 4 switch in [68], the OXY router in [74], and the optical turnaround router in [71]. While these

architectures differ in the number of input/output ports, the number of microresonators used, and

the way the microresonators are organized, they do share one common characteristic: the energy

required to switch a message is determined by the number of “on” microresonators, which is in

turn determined by the incoming and outgoing ports of the message. If no microresonator needs to

be turned on to switch a message, then there is no energy consumption by the router ; otherwise,

the energy consumption is proportional to the number of microresonators that are on. For example,

the 4×4 switch in [68] does not consume any energy when switching a message between east port

and west port, or between south and north, but needs to turn on at least one microresonator in all

other cases.

133

6.2 Energy-Aware Routing in Optical NoCs

In this section, we discuss the energy-aware routing problem in hybrid optical NoCs. We first

quantify the energy required to route a message in both an electronic NoC and a hybrid optical

NoC, then discuss how the energy-aware routing problem can be addressed in optical NoCs.

6.2.1 Energy Consumption for Routing a Message

In a network where the components are built in electronics, shortest path routing is usually

adopted, because both the latency and the energy consumption of routing a packet from the source

to the destination is proportional to the distance that the packet traverses. Similarly, since it is

usually assumed that the distances between neighbor nodes in a NoC are identical, a minimum hop

count routing policy is usually employed in NoCs. However, as discussed above, due to the special

architecture of current optical on-chip routers, such a minimum-hop path may not be energy-wise

optimal. To put it more formally, let’s first consider the energy that will be needed in an electronic

NoC to route a packet from the source to the destination:

Ee = E0
e · h

where E0
e is the energy consumed by the packet at a single router and h is the hop count of the path

from the source to the destination. E0
e includes, for example, the energy required to transmit the

packet across the internal crossbar and the inter-router link, to temporarily buffer the packet, and

to make routing decisions. It is roughly proportional to the size of the packet [68]. On the other

hand, for hybrid optical NoCs, the energy consumption consists of two parts, namely, the control

134

packets in electronics and the actual data in optics. That is,

Eo = Ectrl + Edata

There is no significant difference in the way of being routed between an electronic control packet

in a hybrid optical NoC and a regular packet in an electronic NoC. The only difference is that the

former , which contains no payload, is of a fixed size and is much shorter than the latter on average.

Thus, if we denote the energy consumed by a control packet at an intermediate router as E0
ctrl, then

E0
ctrl is fixed and typically much smaller than E0

e , and

Ectrl = E0
ctrl · 2h

The factor 2 in front of h is due to the fact that typically there will be two control packets ac-

companying each optical message. The most dramatic difference between energy consumption of

electronic NoCs and hybrid optical NoCs, however, lies in Edata, which can be expressed as

Edata = Non · E0
mr + Ei

= Non · P 0
mr ·

d

c
+ Ei

where Ei is the energy consumed by the E/O and O/E interfaces and is linear to the data size, Non

is the total number of microresonators that need to be turned on along the path in all intermediate

optical routers, E0
mr and P 0

mr are respectively the energy and power consumed by a single “on”

microresonator, d is the distance the data need to traverse inside a router, and c is the speed of light

in silicon optical waveguide. It can be seen that the Edata has nothing to do with the hop count. In

an extreme case, Edata can be zero for a long path, as long as there is no microresonator turned on.

135

If we further let σ = E0
ctrl/E

0
mr, then we have

Eo = E0
ctrl · 2h+Non · E0

mr + Ei (6.1)

= (2σh+Non)E
0
mr + Ei (6.2)

According to the data in [71] and [68], E0
ctrl and E0

mr are roughly comparable, while they

change rapidly with the technique development. In the rest of this paper we focus on the cases of

0.1 ≤ σ ≤ 10.

Furthermore, for a given data message, Ei usually can be modeled as a constant and is not

directly affected by the routing policy. Therefore, in a hybrid optical NoC, an energy-wise optimal

path to route a message is the path that minimizes 2σh + Non. Such a path is not necessarily a

path with minimum hop count. Next we will dig more into this problem and discuss how it can be

converted into a shortest path problem.

6.2.2 The Energy-Aware Routing Problems

Given Equation (6.2), it is straightforward to address energy-aware routing in a hybrid optical

NoC as the following problem:

• Problem 1. Find a path between two processing cores that is the most energy-efficient, that

is, with σh+Non minimized.

A potential problem with the above formalization is that a resulted path may be very long. On

one hand, in an extreme case, the assumption that Ei is constant for a given data message may no

longer hold, since higher laser power may be required to compensate for the higher loss. On the

other hand, a hop-constrained shortest path problem is NP-hard. Therefore, in the cases where the

loss may become a problem, we can try to address the energy-aware routing problem in another

136

way:

• Problem 2. Find a path between two processing cores that has the minimum Non among all

paths that have the minimum hop count.

This formalization also makes sense for latency-sensitive data, such that the energy consump-

tion can be reduced without introducing any extra latency. The two problems are closely related

and can be solved in a similar way. In the following we will mainly focus on Problem 1, and will

show how Problem 2 can be solved at the end of this section.

Solving Problem 1

As has been shown in Section 6.1, for a microresonator-based optical router, the number of

microresonators that need to be turned on for routing a packet is solely determined by the in-

coming port and outgoing port of the message. As a result, any existing microresonator-based

optical router, no matter how many ports it has, or what its internal fabric is, can be modeled as an

undirected, complete graph in terms of power consumption.

To be more specific, since all transmissions are completely bidirectional, we will assume all

the ports of an optical router are fully duplex, which is true for all existing architectures. In other

words, each port is used as both an input port and an output port at the same time. Assuming an

optical router contains N ports, then it can be modeled by a complete graph with N nodes, each

denoting a port of the router. There is an edge between any pair of nodes. The cost of the edge

equals the minimum number of microresonators that need to be turned on to route a packet from

one node of the pair to the other. We refer to this graph as the energy consumption graph of the

corresponding optical router in the rest of the chapter.

Figure 6.3 shows some existing optical router architectures proposed for optical NoCs and

their corresponding energy consumption graphs. As mentioned earlier, in the 4 × 4 router [68],

137

N

E

S

W

W E

N

S

1 1

1 1

0

0

(a)

W

S

E

N

Injection

Ejection

W

N

1 1

1

Ejection
Injection/

1

1

10
0

S

E

1

1

(b)

Figure 6.3: (a) The 4× 4 router in [68] and its energy consumption graph. The numbers denote the
cost of the corresponding edges. (b) The OXY router in [74] and its energy consumption graph.

no microresonator needs to be in “on” state to route packets between east port and west port, or

between north port and south port, i.e. the energy cost is 0. However, one microresonator has to be

turned on for any of other cases. The energy consumption graph of OXY router is similar to that

of the 4 × 4 router, except that there is an additional port for injecting / ejecting local packets. The

cost of transmitting packets between this port and any other port is 1.

Having illustrated how to convert an optical router into an energy consumption graph, now

solving the energy-efficient problem takes only one step further. In the graph that represents an op-

tical NoC, we replace each node that denotes an optical router with the energy consumption graph

138

of the router. A link between two adjacent routers is represented by an edge between the corre-

sponding ports of the two routers. We assume that the cost of all such edges is identical in terms

of energy consumption, i.e., 2σ. As a result, the problem of finding a path between two processing

cores that minimizes energy consumption is equivalent to finding a shortest path in the converted

graph, between the two nodes representing the local ports of the corresponding processing cores.

This problem can then be solved by any existing shortest-path algorithms, for example, Bellman-

Ford algorithm, or, since all costs are positive, Dijkstra’s algorithm [65]. Similarly, algorithms

such as Floyd-Warshall algorithm can be used to solve the all-pair version of the problem.

As a shortest path problem, the time complexity of the energy-aware routing problem is de-

termined by the number of nodes and edges in the converted graph. Assume an arbitrary NoC

contains R optical routers and L inter-router links, with the ith router containing pi ports, i =

0, 1, 2, . . . , R− 1. Then the total number of nodes in the converted graph is given by

V =
R−1∑
i=0

pi

and the total number of edges is given by

E = L+
R−1∑
i=0

pi(pi − 1)

2

since the ith router is replaced by a complete graph with pi nodes in the converted graph.

If Dijkstra’s algorithm is used, and is implemented with a Fibonacci heap [65], then the time

complexity of finding an energy-wise optimal path between a single pair of processing cores is

Ts = O(E + V log V)

= O(L+
R−1∑
i=0

pi
2)

139

To find an energy-wise optimal path between all pairs of processing cores, the time complexity is

Ta = O(V 3)

= O((
R−1∑
i=0

pi)
3)

As a comparison, a minimum-hop path on such a NoC (with R optical routers and L inter-

router links) can be found by the breath first search or depth first search algorithm, which takes

O(R + L) for a single pair of processing cores and at most O(R(R + L)) for all pairs. It can be

seen that the time complexity of energy-aware routing is higher than that of minimum-hop routing.

However, since the computation can be performed off-line and needs to be done only once (instead

of being required by each message), such increase in complexity is unlikely to become an issue.

Solving Problem 2

As mentioned earlier, theoretically, a path that minimizes energy consumption in optical NoC

could be very long. This is especially the case when σ is small and the overall energy consumption

for routing a message is dominated by Edata, which is independent of the hop count. In this case,

the minimization of energy consumption is at the cost of introducing extra delay to the messages.

When this is undesirable, we can try to solve Problem 2 instead. For Problem 2, the energy

consumption is minimized only under the precondition that the hop count is minimized.

Next we show how to solve Problem 2 by converting it to a shortest path problem. For an

arbitrary optical NoC, let Nm denote the total number of microresonators inside all routers in the

NoC. We set the cost of all the inter-router links to σ′ such that σ′ > Nm, then run any shortest path

algorithm in the converted graph. It can be shown that the path found is then a path that satisfies

the requirement of Problem 2.

Lemma 4. A path found according to the above procedure requires the minimum energy among

140

all paths with the minimum hop count.

Proof. Denote the path returned by the shortest path algorithm as P and its hop count as hP , and

denote the number of “on” microresonators along P as Non,P . First we prove that P is a path

with the minimum hop count. Assume that there is another path P ′ with a smaller hop count, i.e.,

hP ′ < hP . Then

CP = σ′hP +Non,P

≥ σ′hP

≥ σ′(hP ′ + 1)

> σ′hP ′ +Nm

≥ CP ′

where CP and CP ′ are the cost of P and P ′, respectively. Since CP > CP ′ contradicts the fact that

P is a shortest path, such P ′ does not exist. Hence hP is minimum.

It is straightforward to prove that Non,P is the minimum among all paths that have the minimum

hop count, since otherwise P cannot be a shortest path. That completes the proof.

Therefore, similar to Problem 1, Problem 2 can be solved by running shortest path algorithms

on the converted graph. Since the only difference is the cost of inter-router links, the time complex-

ity of solving Problem 2 is identical to that of Problem 1 as analyzed in the previous subsection.

6.2.3 Energy-Aware Routing in Different Topologies

In this section we apply the idea of energy-aware routing discussed above to different optical

NoC topologies and investigate its effectiveness.

141

Mesh / Torus Networks

Mesh / Torus are popular topologies for NoC networks due to their regularity and simplicity.

The simplest routing algorithms for these topologies are based on dimension order, for example,

the XY routing. With XY routing, a packet is first routed in the horizontal direction, then in the

vertical direction, until the destination is reached. It is interesting to note that, for an optical mesh /

torus NoC, XY routing is optimal in terms of energy consumption. The optimality consists of two

aspects: (1) Being an oblivious algorithm, XY routing requires minimal logic hence may simplify

the router architecture. (2) The path found by XY routing has the minimum hop count and turns

on the minimum number of microresonators. It is true because XY routing makes at most one turn

from the source to the destination.

As a contrast, other routing algorithms, for example, the Odd-Even routing algorithm [75], may

make multiple turns to route a packet, hence is not optimal in terms of energy consumption.

As a simple example, Figure 6.4 shows two paths between two nodes in a torus network that

may be used according to XY routing and Odd-Even routing, respectively. We can observe that

while both paths are minimum hop-count paths, the XY routing path makes only one turn, while

the other algorithm makes three turns. If we assume the 4 × 4 optical router in [68] is used, then

the former turns on only one microresonator, whereas the latter turns on three.

Gaussian Networks

Gaussian networks [76] [77] are another type of topology of interest to optical NoCs. A Gaus-

sian network corresponds to a Gaussian integer a+ bi, where a and b are both integral. Figure 6.5

illustrates a Gaussian network of 3 + 4i, where there are 25 nodes in total, each labeled by its real

and imaginary coordinates.

Similar to that in torus networks, each node in a Gaussian network has a degree of 4. However,

142

Figure 6.4: One possible path by XY routing (solid line) and one possible path by Odd-Even
routing (dashed line). If the 4 × 4 optical router in [68] is used, the former turns on only one
microresonator, while the latter turns on three.

A

BD
2

real

imaginary

2 4 61 53

3

1

O

C

Figure 6.5: A Gaussian network of 3 + 4i with 25 nodes.

the wraparound edges are defined differently. A Gaussian network of a+ bi contains the following

edges [76]:

• x is connected to (x+ a) + (b− 1)i if 0 ≤ x ≤ b− 1;

• x is connected to (x− b) + (a− 1)i if b ≤ x ≤ a+ b− 1;

• yi is connected to (a+ b− 1) + (y + b− a)i if 0 ≤ y ≤ a− 1; and

• a+ yi is connected to (a+ b− 1) + (y − a)i if a ≤ y ≤ b− 1.

143

Gaussian networks attract increasing attentions in recent years as they outperform mesh / torus

networks in terms of diameter when the network size is sufficiently large. For example, the diam-

eter of the Gaussian Network 30 + 40i is 40, while for a torus network with the same number of

nodes (50 × 50), the diameter is 50.

Now consider using the Gaussian network as the underlying topology for optical NoCs. Due

to the way the wraparound edges are defined in the Gaussian network, a node may be directly

connected to another node that is in a different row and different column, which is not possible

in a torus network. For example, in Figure 6.5, there is an edge between node i and node 6 + 2i.

An interesting consequence is that, for some Gaussian networks (for example, the one in Figure

6.5), there is a path between any two nodes that does not make any “turns,” in other words, does

not require any microresonator to be turned on in any intermediate router to route messages. For

example, in Figure 6.5, there is a three-hop path from node A (3 + 3i) to D (1 + 2i) through B

(3+ 2i), which needs to turn on a microresonator at B. Meanwhile, there is also another path from

A to D through C (6 + 3i), which is one hop longer but does not require any microresonator to be

turned on.

0.1 0.5 1 5 10
0

5

10

15

20

25

30

E
ne

rg
y

C
on

su
m

pt
io

n

σ

Energy Consumption in 3 + 4i Gaussian Network

minimum−hop−count
energy−aware

Figure 6.6: Energy consumption in the 3+4i Gaussian network under minimum hop count routing
and energy-aware routing. σ varies between 0.1 and 10.

144

0.1 0.5 1 5 10
0

2

4

6

8

10

12

14

A
ve

ra
ge

 H
op

 C
ou

nt

σ

Average Distance in 3 + 4i Gaussian Network

energy−aware
minimum−hop−count

Figure 6.7: Average distances in the 3 + 4i Gaussian network under minimum hop count routing
and energy-aware routing.

Figure 6.6 shows the energy consumption in the Gaussian network in Figure 6.5 under both

minimum hop count routing and energy-aware routing. The results are based on synthetic traces,

similar to other studies carried out in this field [68] [74]. While real traces are highly desirable,

synthetic traces provide a convenient way to gain some insight into the problem. In addition, we

follow the common assumption that the traffic is uniform. That is, the destinations of data messages

from a processor are uniformly distributed over all other processors. It can be seen that when σ is

smaller than 1, the percentage of energy saved by selecting a minimum-energy path instead of a

shortest path is significant. As σ becomes larger, unsurprisingly, minimum-energy paths gradually

converge to shortest paths as Ectrl becomes dominating.

The average path lengths under energy-aware routing and minimum hop count routing are

compared in Figure 6.7. It can be seen that when σ = 0.1, the paths that are most energy efficient

tend to be rather long. In fact, in this case the control overhead contributes to all the energy

consumption. It can be considered as a trade-off between the latency and the energy consumption.

For the rest of the cases, however, the average distance under energy-aware routing is very close

to that under minimum hop count routing. In other words, some energy can be saved without

145

introducing noticeable extra delay to the messages.

Arbitrary Topologies

Most existing research on optical NoCs assumes a regular network topology. However, as

pointed out in [78], there are reasons why customization is also desired. The processing cores may

have different sizes and communication requirements, which calls for a heterogeneous network

topology. The NoC may be application-specific hence the workload is known beforehand, which

makes a full customization of the network topology possible.

In this section we investigate the effectiveness of applying the idea of energy-aware routing

to arbitrary topologies. We consider connected graphs generated randomly. The number of mi-

croresonators that need to be turned on to connect two ports in an optical router is assumed to be a

random integer between 0 and 4, and σ varies between 0.1 and 10. We have conducted simulations

on different random networks. The results are shown in Figure 6.8 and Figure 6.9.

Two random networks are simulated. Network 1 contains 10 processing cores, while network

2 has 100 processing cores. From Figure 6.8, it can be seen that when σ is small (= 0.1), the

energy consumed on switching a packet can be reduced by as much as about 40% if energy-aware

routing is adopted instead of minimum hop count routing. As σ increases, the energy saving effect

becomes less significant. This is similar to that in the Gaussian network, that when the control

overhead dominates the energy consumption, the paths with overall minimum energy consumption

converge to the minimum hop count paths. Figure 6.8 also shows that the energy saving effect is

more obvious in network 2 compared to that in network 1, indicating that the energy-aware routing

algorithm is more effective in large networks.

Figure 6.9 compares the average distance between nodes under energy-aware routing and min-

imum hop count routing. When σ is small, it is possible that an energy-wise optimal path may

travel many extra hops to avoid turning on microresonators, thus the average distance is longer

146

0.1 0.5 1 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
er

ce
nt

ag
e

σ

Energy Saving By Energy−Aware Routing

Network 1
Network 2

Figure 6.8: Energy saving by energy-aware routing in random topologies, compared to minimum
hop count routing. σ varies between 0.1 and 10.

than that of minimum hop count routing by a clear margin. When σ becomes large, as discussed

earlier, minimum hop count paths also become minimum-energy-consumption paths, hence the

difference in hop count diminishes.

6.3 Some Extensions

In this section we discuss some possible extensions beyond current hybrid optical NoCs and

the routing algorithms. The basic requirement is that these extensions should be easy to implement

and have the potential to significantly improve the system performance.

6.3.1 Optical Burst-Switched NoC

As mentioned earlier, currently most proposed optical NoCs are based on circuit switching.

To send information from one node to another, a light path has to be established. Apparently,

the disadvantage of circuit-switching is that it cannot well adapt to dynamic traffic, because the

147

0.1 0.5 1 5 10
0

1

2

3

4

5

6

7

H
op

 C
ou

nt

σ

Average Distance

Network 1, minimum−hop−count

Network 1, energy−aware

Network 2, minimum−hop−count

Network 2, energy−aware

Figure 6.9: Average distances between nodes in random topologies under minimum hop count
routing algorithm and energy-aware routing algorithm, respectively.

entire bandwidth on the light path is reserved by the source-destination pair and cannot be used by

others even when there is no traffic between the pair, leading to low resource utilization. Similar

situation has occurred in off-chip networks. To overcome this problem, two other techniques have

been proposed for optical networks, namely, the Optical Packet Switched (OPS) network and the

Optical Burst Switched (OBS) network.

An OPS network is like the electronic packet switched network and can better adapt to dynamic

traffic. There has been some attempt to implement OPS NoC [79]. However, currently OPS is

difficult to implement because it needs optical memories at the switches, given that fiber-delay-

line based buffers are limited, yet slow light is still in its laboratory stage 1.2.

Given all the conditions, optical burst switching (OBS) [80] [81] appears to be a more viable

choice for data transmission in optical NoCs. It has higher bandwidth utilization compared to

circuit-switching, and it does not need a large optical buffer in the routers compared to OPS. While

there are different OBS schemes, the basic idea is the same: using one-way reservation instead of

two-way. With OBS, data are first assembled into bursts at the source node. A control packet is still

148

necessary for light path setup, which traverses the path to be established in an electronic control

plane, or in a dedicated control wavelength. The control packet makes reservation along the path.

No confirmation packet is sent back to the source node. Instead, after the control packet is sent, the

source node waits for a certain amount of time and sends out the message, or data burst. The burst

does not have to be buffered at intermediate routers and cuts through the routers without delay.

Moreover, no control packet is required to tear down the light path. The bandwidth is released as

soon as the burst leaves a router.

Note that typical OBS will not try to inform the source node if a bandwidth reservation re-

quest cannot be satisfied. In other words, the data burst will be sent out without any knowledge of

whether the control packet has successfully reserved the needed bandwidth along the path or not,

and may have to be dropped at any intermediate node. Therefore, effective contention resolution

techniques are critical to OBS networks to prevent excessive bandwidth wasting. Various tech-

niques have been proposed for such a purpose. For example, in the context of optical NoCs, data

bursts can be temporarily buffered by FDLs, or deflected to another output port at intermediate

nodes when contention arises. Yet there is a unique contention resolution approach in optical do-

main – wavelength conversion. In a WDM environment, a burst can be converted and transmitted

on a different wavelength channel of its desired output port without being deflected.

Figure 6.10 compares the timeline of circuit-switching and OBS. Depending on the relative

size of a control packet and a burst, the saving by OBS in path setup time overhead could be

significant compared to circuit-switching. Energy-wise, OBS also has its advantage as it requires

fewer control packets than circuit-switching does.

Two of the most important parameters of OBS are the burst size and the interval between

a control packet and the corresponding burst. The former affects the assembly time at the source

node hence the latency of the data. The latter affects the burst blocking probability and QoS support

[82]. In the context of an optical NoC, the burst size cannot be too large since the requirement on

149

source

control packet

path tear−down

path confirmation

data

dest

data

source

control packet

dest

(a) (b)

Figure 6.10: The timeline of (a) circuit-switching (b) OBS. OBS does one-way reservation thus
does not need a confirmation packet for path setup, nor does OBS require the path tear-down
process as the duration of the data burst is known to the routers when the path is being established.

latency is stringent and the data cannot wait for too long at the source node, hence any fancy

assembly algorithm may not be viable.

On the other hand, compared to Internet routers, the routers in NoC have very limited elec-

tronic buffer due to space restriction. For example, a popular electronic NoC router architecture

based on input-queued crossbar is equipped with about 1k bit buffer at each input port [83]. While

the buffer size is obviously too small to leverage any sophisticated scheduling algorithm for tradi-

tional crossbar switches, it does provide some room for the scheduling of control packets at each

intermediate router. To be more specific, the control packets can be temporarily buffered at an

intermediate router for a certain amount of time. Then, instead of making a scheduling decision

for each control packet as soon as it arrives, the decision can be made based on the information of

all control packets that arrive during this time interval. Since more information is available, it can

be expected that a schedule that leads to better resource utilization can be achieved. Meanwhile,

the per-hop delay of a control packet cannot be too long, otherwise, either the offset between a

control packet and its corresponding data burst must be made very large, or the burst may become

150

ahead of the control packet and has to be dropped.

6.3.2 Energy-Aware Adaptive Routing in Optical NoC

Opposite to static routing, adaptive routing describes the capability of the system to dynami-

cally adjust the path from the source to the destination in response to some condition change. There

have been efforts to incorporate adaptive routing into NoC routers, for example, [84] [85]. Com-

bining that with the idea of energy-aware routing, the following energy-aware adaptive routing

scheme can be adopted for optical NoCs.

For each destination node, multiple candidate output ports are maintained. All of these candi-

date ports belong to some path with minimum hop count from the current node to the destination,

and they are sorted by their power consumption. When a control packet needs to be scheduled, the

candidate output ports are checked in the sorted order until the first available one is found. Then

the control packet and the corresponding data message will both be routed through that output port.

If none such output port is available, the router either buffers the control packet for a longer time

and tries to schedule it later, or simply drops it, depending on the specific policy adopted.

By allowing alternate paths at each router, above adaptive routing algorithm has the potential

to reduce energy consumption without introducing additional delay in communication. Instead,

since a control packet can be re-routed if the best candidate output port is currently unavailable, it

is possible that the buffering delay for a control packet at intermediate routers will be shortened.

Consequently, the path setup overhead in circuit-switched or OBS optical NoCs can be reduced.

Another potential benefit of the adaptive routing is to balance the workload and eliminate hotspots.

151

6.4 Conclusions

Network-on-Chip (NoC) has been proposed as a promising technique to support the ever-

increasing intra-chip communication load for Multi-Processor System-on-Chip (MPSoC). To over-

come the power consumption problem in electronic NoCs, optics based architectures have been

proposed. In this chapter, we have studied the routing problem in optical NoCs with arbitrary net-

work topologies. Currently, minimum hop count routing schemes are dominant in both electronic

and optical NoCs. However, while the minimum-hop-count path is likely to be the most energy-

efficient path in electronic NoCs, we have showed that it is not the case in the optical domain. We

studied the architecture of different optical NoC routers proposed recently, and discussed how to

model an optical router into an energy consumption graph. By converting the energy-aware routing

problem into a shortest-path problem and applying our approach to different NoC topologies, we

showed that the energy consumed in data communication in an optical NoC can be significantly

reduced. We also proposed several extensions to current optical NoCs, including the use of OBS

in optical NoCs to reduce control overhead, and an adaptive routing mechanism to reduce energy

consumption without introducing extra latency. The simulation results showed the effectiveness of

the proposed algorithms.

152

Chapter 7

Conclusions

This dissertation studied the packet scheduling and performance evaluation problem in optical

switches and interconnects. A suite of algorithms and schemes for packet scheduling in optical

switches were presented. For output-buffered optical switches, the proposed Augment to Full and

schedule construction algorithms find a schedule that simultaneously maximizes throughput and

minimizes packet delay in each time slot. And the complexity of the proposed algorithms asymp-

totically matches the lower bound of the original scheduling problem. For input-buffered optical

switches, we established the requirements on admissible traffic, and proposed a novel fiber de-

lay line based optical input buffering structure with flexible delay. By combining the new buffer

with a weight-based packet scheduling algorithm, named Most-Packet Wavelength-Fiber Pair First

(MPWFPF), we were able to theoretically prove that an input-buffered optical switch can deliver

at its maximum capacity as long as input traffic is admissible and satisfies the strong law of large

numbers. We further proposed fast scheduling algorithm, WDM-iSLIP that can efficiently deter-

mine an approximate optimal scheduling with much lower time complexity. Also, the disserta-

tion systematically studied the packet scheduling problem in the OpCut Switch, a hybrid optical

switching architecture with recirculating electronic buffer. We designed a basic scheduler for Op-

153

Cut switches, which decomposes the scheduling process into three stages. For single-wavelength

OpCut switch, we proposed a mechanism to (adaptively) pipeline the scheduling procedure to

reduce scheduler complexity and improve system throughput. For the WDM scenario, we first

proved that the optimal scheduling problem is NP-hard and inapproximable in polynomial time

within any constant factor, then presented a bounded practical approximating algorithm as well as

its variations to further improve performance or reduce implementation complexity. In addition,

we studied energy-aware routing in hybrid optical NoCs, and presented approaches to efficiently

achieve that.

The research contained in this dissertation combines algorithm design, hardware design, ana-

lytical, and simulation techniques. We expect the research result to have a significant impact on

switch architecture design, scheduler implementation and performance evaluation for the develop-

ment of future high and ultra high speed optical switching networks. The outcome of this project

is generally applicable to a wide range of interconnect networks, including computer networks,

inter-chip switching, intra-chip switching, and networks-on-chip.

154

Bibliography

[1] M. Karol, M. Hluchyj and S. Morgan, “Input versus output queueing on a space-division

packet switch,” IEEE Transactions on Communications, vol. 35, pp. 1347-1356, Dec. 1987.

[2] N. McKeown, A. Mekkittikul, V. Anantharam and J. Walrand, “Achieving 100% throughput

in an input-queued switch,” IEEE Transactions on Communications, vol. 47, no. 8, pp. 1260-

1267, Aug. 1999.

[3] A. Smiljanic, R. Fan and G. Ramamurthy, “RRGS-round-robin greedy scheduling for elec-

tronic/optical terabitswitches,” GLOBECOM 1999, pp. 1244-1250, 1999.

[4] T. Anderson, S. Owicki, J. Saxe and C. Thacker, “High speed switch scheduling for local area

networks,” ACM Trans. Computer Systems, pp. 319-352, Nov. 1993.

[5] N. McKeown, “The iSLIP scheduling algorithm for input-queued switches,” IEEE/ACM

Trans. Networking, vol. 7, no. 2, pp. 188-201, 1999.

[6] Z. Zhang and Y. Yang, “Performance analysis of optical packet switches enhanced with elec-

tronic buffering,” Proc. of the 23th IEEE International Parallel and Distributed Processing

Symposium (IPDPS ’09), Rome, Italy, May 2009.

[7] H. Ngo, D. Pan and Y. Yang, “Optical switching networks with minimum number of limited

155

range wavelength converters,” IEEE/ACM Transactions on Networking, vol. 15, no. 4, pp.

969-979, August 2007.

[8] I. Iliadis and C. Minkenberg, “Performance of a speculative transmission scheme for

scheduling-latency reduction,” IEEE/ACM Transactions on Networking, vol. 16, no. 1, pp.

182-195, Feb. 2008.

[9] R.R. Grzybowski, B.R. Hemenway, M. Sauer, C. Minkenberg, F. Abel, P. Muller and R.

Luijten “The OSMOSIS optical packet switch for supercomputers: Enabling technologies

and measured performance,” Proc. Photonics in Switching 2007, pp. 21-22, Aug. 2007.

[10] C. Minkenberg, et. al, “Designing a crossbar scheduler for HPC applications,” IEEE Micro,

vol. 26, pp. 58-71, May 2006.

[11] R. Hemenway, R.R. Grzybowski, C. Minkenberg and R. Luijten, “Optical-packet-switched

interconnect for supercomputer applications,” Journal of Optical Networking, vol. 3, no. 12,

pp. 900-913, Dec. 2004.

[12] K.J. Barker, A. Benner, R. Hoare, A. Hoisie, A.K. Jones, D.J. Kerbyson, D. Li, R. Melhem,

R. Rajamony, E. Schenfeld, S. Shao, C. Stunkel and P. Walker, “On the feasibility of optical

circuit switching for high performance computing systems,” Proc. ACM/IEEE Conference on

Supercomputing (SC ’05), Seattle, WA, Nov. 2005.

[13] Y. Yang and J. Wang, “Designing WDM optical interconnects with full connectivity by using

limited wavelength conversion,” IEEE Transactions on Computers, vol. 53, no. 12, pp. 1547-

1556, Dec. 2004.

[14] H. Yang and S.J.B. Yoo,“All-optical variable buffering strategies and switch fabric archi-

156

tectures for future all-optical data routers,” Journal of Lightwave Technology, vol. 23, pp.

3321-3330, Oct. 2005.

[15] W.D. Zhong and R.S. Tucker, “A new wavelength-routed photonic packet buffer combining

traveling delay lines with delay-line loops,” Journal of Lightwave Technology, vol. 19, No. 8,

Aug. 2001.

[16] J.B. Khurgin, “Light slowing down in moire fiber gratings and its implication for nonlinear

optics,” Physics Review A., vol. 62, July 2000.

[17] Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W.

Boyd and A.L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,”

Phys. Rev. Lett., 94, 153902, 2005.

[18] C.J. Chang-Hasnain, P.C. Ku, J. Kim and S.L. Chuang, “Variable optical buffer using slow

light in semiconductor nanostructures,” Proceedings of the IEEE, vol. 91, pp. 1884-1897,

November 2003.

[19] F. Xia, L. Sekaric and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,”, Nature

Photonics 1, pp. 65-71, 2007.

[20] R.M. Camacho, C.J. Broadbent, I.Ali-Khan and J.C. Howell, “All-optical delay of images

using slow light,” Physics Review Letter, 98, 043902 (2007).

[21] R.S. Tucker, P.-C Ku and C.J. Chang-Hasnain, “Fundamental limitations of slow-light optical

buffers,” Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC,

vol. 3, Mar. 2005.

[22] L. Liu and Y. Yang, “Optimal packet scheduling in output-buffered optical switches with

157

limited-range wavelength conversion,” accepted for publication in IEEE/OSA Journal of

LightWave Technology.

[23] L. Liu and Y. Yang, “Achieving 100% throughput in input-buffered WDM optical packet

interconnects,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp. 237-286,

February 2011.

[24] L. Liu, Z. Zhang and Y. Yang, “Packet scheduling in a low latency optical packet switch,”

Proceedings of the 11th International Conference on High Performance Switching and Rout-

ing (HPSR 2010), Texas, June 2010.

[25] L. Liu, Z. Zhang and Y. Yang, “Packet scheduling in a low-latency optical interconnect with

electronic buffers, ” IEEE INFOCOM 2011, Shanghai, China, April 2011.

[26] L. Liu, Z. Zhang and Y. Yang, “Packet scheduling in a low-latency optical switch with wave-

length division multiplexing and electronic buffer, ” IEEE INFOCOM 2011, Shanghai, China,

April 2011.

[27] L. Liu and Y. Yang, “Energy-aware routing in hybrid optical network-on-chip for future

multi-Processor system-on-chip, ” Proceedings of the 6th ACM/IEEE Symposium on Archi-

tectures for Networking and Communications Systems (ANCS’10), La Jolla, CA, October

2010.

[28] S. Shimizu, Y. Arakawa and N. Yamanaka, “Wavelength assignment scheme for WDM net-

works with limited-range wavelength converters,” Journal of Optical Networking, vol. 5,

issue 5, pp. 410-421, 2006.

[29] T. Tripathi and K.N. Sivarajan, “Computing approximate blocking probabilities in wave-

158

length routed all-optical networks with limited-range wavelength conversion,” IEEE Journal

of Selected Areas in Comm., vol. 18, pp. 2123-2129, 2000.

[30] X. Qin and Y. Yang, “Nonblocking WDM switching networks with full and limited wave-

length conversion,” IEEE Transactions on Communications, vol. 50, no. 12, pp. 2032-2041,

2002.

[31] Z. Zhang and Y. Yang,“Optimal scheduling in buffered WDM interconnects with limited

range wavelength conversion capability,” IEEE Transactions on Computers, vol. 55, no. 1,

pp. 71-82, Jan. 2006.

[32] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms, and Appli-

cations, Prentice Hall, 1993.

[33] T. Hou and A. Wong, “Queueing analysis for ATM switching of mixed continuous-bit-rate

and bursty traffic,” Proc. INFOCOM’90, pp. 660-667.

[34] S.L. Danielsen, C. Joergensen, B. Mikkelsen and K.E. Stubkjaer, “Analysis of a WDM packet

switch with improved performance under bursty traffic conditions due to tunable wavelength

converters,” Journal of Lightwave Technology, vol. 16, no. 5, pp. 729-735, May 1998.

[35] Z. Zhang and Y. Yang, “Optimal scheduling in buffered WDM packet switching networks

with arbitrary wavelength conversion capability,” IEEE Transactions on Computers, vol. 55,

no. 1, pp. 71-82, January 2006.

[36] L. Zuchelli, M. Burzio, and P. Gambini, “New solutions for optical packet delineation and

synchronization in optical packet switched networks,” Proc. ECOC’96, vol. 3, pp. 3.301-

3.304, Oslo, Norway, 1996.

159

[37] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and

scheduling policies for maximum throughput in multihop radio networks,” IEEE Transac-

tions on Automatic Control, vol. 37, no. 12, pp. 1936-1948, 1992.

[38] J.G. Dai and B. Prabhakar, “The throughput of data switches with and without speedup,”

Proc. IEEE INFOCOM 2000, pp. 556-564, Mar. 2000.

[39] A.D. Sarwate and V. Anantharam, “Exact emulation of a priority queue with a switch and

delay lines,” Queueing Systems: Theory and Applications, vol. 53, pp. 115-125, Jul. 2006.

[40] H.-C. Chiu, C.-S. Chang, J. Cheng and D.-S. Lee, “Using a single switch with O(M) in-

puts/outputs for the construction of an optical priority queue with O(M3) buffer,” Proc. IEEE

INFOCOM 2007, pp. 2501-2505, May 2007.

[41] C.-S. Chang, Y.-T. Chen and D.-S. Lee, “Constructions of optical FIFO queues,” IEEE/ACM

Transactions on Networking, vol. 14, pp. 2838-2843, 2006.

[42] G. Shen, et al., “Performance study on a WDM packet switch with limited-range wavelength

converters,” IEEE Communications Letters, vol. 5, no. 10, pp. 432-434, Oct. 2001.

[43] R. S. Tucker and W. Zhong,“Photonic packet switching: An overview,” IEICE Transactions

on Communications, vol. E82-B, pp. 254-264, Feb. 1999.

[44] I. Chlamtac, A. Fumagalli and Chang-Jin Suh,“Multibuffer delay line architectures for effi-

cient contention resolution in optical switching nodes” IEEE Transactions on Communica-

tions, vol. 48, no. 12, pp. 2089-2098, 2000.

[45] “http://www.fiber-span.com/pdf/Fiber-Span FS 1123-PDL.pdf.”

160

[46] H. Le Minh, Z. Ghassemlooy, and W.P. Ng,“An ultrafast with high contrast ratio 1x2 all-

optical switch based on tri-arm Mach-Zehnder employing All-optical flip-flop,” IEEE Inter-

national Conference on Communications 2007 (ICC 2007), Glasgow, UK, pp. 2257-2262,

Jun. 2007.

[47] S. Danielsen, B. Mikkelsen, C. Joergensen, T. Durhuus and K. Stubkjaer, “WDM packet

switch architecture and analysis of the influence of turnable wavelength converters on the

performance,” Journal of Lightwave Technology, vol. 15, pp. 219-227, Feb. 1997.

[48] W.D. Zhong and R.S. Tucker, “Wavelength routing-based photonic packet buffers and their

applications in photonic packet switching systems,” Journal of Lightwave Technology, vol.

16, no. 10, pp. 1737-1745, Oct. 1998.

[49] L. Li, S.D. Scott and J.S. Deogun, “A novel fiber delay line buffering architecture for optical

packet switching,” Proc. IEEE GLOBECOM 2003, vol. 5, pp. 2809-2813, 2003.

[50] T. Zhang, K. Lu and J.P. Jue, “Shared fiber delay line buffers in asynchronous optical packet

switches,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 4, pp. 118-127,

April 2006.

[51] M. Garrett and W. Willinger, “Analysis, modeling, and generation of self-similar VBR video

traffic,” Proc. SIGCOMM’94, pp. 269-280.

[52] A. Huang and S. Knauer, “Starlite: A wideband digital switch,” Proc. GOLBECOM ’84, Nov.

1984.

[53] J.N. Giacopelli, J.J Hickey, W.S. Marcus, W.D. Sincoskie and M. Littlewood, “Sunshine:

A high-performance self-routing broadband packet switch architecture,” IEEE Journal on

Selected Areas in Communications, vol. 9, no. 8, pp. 1289-1298, Oct. 1991.

161

[54] C. Develder, M. Pickavet and P. Demeester, “Assessment of packet loss for an optical packet

router with recirculating buffer,” Optical Network Design and Modeling (ONDM) 2002, pp.

247-261, Torino, Italy, 2002.

[55] Z. Zhang and Y. Yang, “WDM optical interconnects with recirculating buffering and limited

range wavelength conversion,” IEEE Transactions on Parallel and Distributed Systems, vol.

17, no. 5, pp. 466-480, May 2006.

[56] C.S. Chang, D.S. Lee, and Y.S. Jou, “Load balanced Birkhoff-von Neumann switches, part I:

one-stage buffering,” Computer Communications, vol. 25, pp. 611-622, Apr. 2002.

[57] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage switches,” IEEE IN-

FOCOM ’02, New York, June 2002.

[58] C.-S. Chang, D.-S. Lee, Y.-J. Shih and C.-L Yu, “Mailbox switch: a scalable two-stage switch

architecture for conflict resolution of ordered packets,”IEEE Trans. Communications, vol. 56,

no. 1, pp. 136-149, Jan. 2008.

[59] E. Oki, R. Rojas-Cessa and H. Chao, “A pipeline-based approach for maximal-sized matching

scheduling in input-buffered switches,” IEEE Communication Letters, vol. 5, pp. 263-265,

Jun. 2001.

[60] C. Minkenberg, I. Iliadis and F. Abel, “Low-latency pipelined crossbar arbitration,” Proc.

IEEE GLOBECOM 2004, vol. 2, pp. 1174-1179, 2004.

[61] D.K. Hunter, D. Cotter, R.B. Ahmad, W.D. Cornwell, T.H. Gilfedder, P.J. Legg, and I. An-

donovic, “Buffered switch fabrics for traffic routing, merging, and shaping in photonic cell

networks,” Journal of Lightwave Technology, vol. 15, pp. 86-101, Jan. 1997.

162

[62] R. Rojas-Cessa, E. Oki, Z. Jing and H. Chao, “CIXB-1: Combined input-one-cell-crosspoint

buffered switch,” In Proc. 2001 IEEE Workshop on High-Performance Switching and Routing

(HPSR 2001), pp. 324-329, Dallas, TX, May 2001.

[63] I. Keslassy and N. McKeown, “Maintaining Packet Order in Two-Stage Switches,” IEEE

INFOCOM 2002, vol. 2, pp. 1032-1041, Jun. 2002.

[64] Viggo Kann, “Maximum Set Packing,”A compendium of NP optimization problems.

www.nada.kth.se/ viggo/wwwcompendium/node144.html.

[65] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms, 2nd

edition, The MIT Press, Sep. 2001.

[66] J.D. Owens, W.J. Dally, R. Ho, D.N. Jayasimha, S.W. Keckler and L.-S. Peh, “Research

challenges for on-chip interconnection networks,” IEEE Micro, vol. 27, no. 5, pp. 96-108,

September 2007.

[67] W.J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection networks,”

DAC 2001, pp. 684-689.

[68] A. Shacham, K. Bergman, L.P. Carloni, “Photonic networks-on-chip for future generations

of chip multiprocessors,” IEEE Transactions on Computers, vol. 57, no. 9, pp. 1246-1260,

September 2008.

[69] J. Fujikata, K. Nishi, A. Gomyo, et al, “LSI on-chip optical interconnection with Si Nano-

Opticals,” IEICE Transactions on Electronics, vol. 91-C, no. 2, pp. 131-137, 2008.

[70] A. Driessen, D.H. Geuzebroek and E.J. Klein, ”Optical network components based on mi-

croring resonators,” Proceedings. of the 8th International Conference on Transparent Optical

Networks, pp. 210-215, 2006.

163

[71] H. Gu, J. Xu and W. Zhang, “A low-power fat tree-based optical network-on-chip for multi-

processor system-on-chip,” IEEE Computer Society Annual Symposium on VLSI, pp. 19-24,

May 2009.

[72] R. Ramaswami and K.N. Sivarajan, Optical networks: a practical perspective, second edi-

tion, Morgan Kaufmann, 2002.

[73] Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro-optic mod-

ulator,” Nature, vol. 435, no. 7040, pp. 325-327, 2005.

[74] H. Gu, J. Xu and Z. Wang, “A novel optical mesh network-on-chip for gigascale systems-

on-chip,” IEEE Asia Pacific Conference on Circuits and Systems, pp. 1728-1731, November

2008.

[75] G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE Transactions on Parallel

and Distributed Systems, vol. 11, no. 7, pp. 729-738, July 2000.

[76] C. Mart́inez, R. Beivide, E. Stafford, M. Moretó, and E.M. Gabidulin, “Modeling toroidal

networks with the Gaussian integers,” IEEE Transactions on Computers, vol. 57, no. 8, pp.

1046-1056, August 2008.

[77] M. Flahive and B. Bose, “The topology of Gaussian and Eisenstein-Jacobi interconnection

networks,” IEEE Transactions on Parallel and Distributed Systems, August 2009.

[78] R. Marculescu, U.Y. Ogras, L.-S. Peh, N.E. Jerger and Y. Hoskote, “Outstanding research

problems in NoC design: system, microarchitecture, and circuit perspectives,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 1, pp.

3-21, January 2009.

164

[79] S. Koohi, S. Hessabi, “Contention-free on-chip routing of optical packets,” Proceedings of

the 3rd ACM/IEEE International Symposium on Networks-on-Chip, pp. 134-143, 2009.

[80] C. Qiao and M. Yoo, “Optical burst switching (OBS) - a new paradigm for an optical Internet,”

Journal of High Speed Networks, vol. 8, no. 1, pp. 69-84, 1999.

[81] S. J. Ben Yoo, “Optical packet and burst switching technologies for the future photonic inter-

net,” Journal of Lightwave Technology, vol. 24, no. 12, December 2006.

[82] M. Yoo and C. Qiao, “A new optical burst switching protocol for supporting quality of ser-

vice,” SPIE Proceedings of Conference on All-optical Networking, vol. 3531, pp.396-405,

1998.

[83] T.M. Pinkston and J. Shin, “Trends toward on-chip networked microsystems,” International

Journal of High Performance Computing and Networking, vol. 3, no. 1, pp. 3-18, 2001.

[84] E. Nilsson, M. Millberg, J. Oberg and A. Jantsch, “Load distribution with the proximity

congestion awareness in a network on chip,” Proceedings of the conference on Design, Au-

tomation and Test in Europe, pp. 1126-1127, March 2003.

[85] J. Hu and R. Marculescu, “DyAD - Smart routing for networks-on-chip,” Proceedings of the

41st annual Design Automation Conference, pp. 260-263, June 2004.

165

	 List of Figures
	 List of Tables
	 Acknowledgements
	1 Introduction
	1.1 Basic Switch Architectures and Packet Scheduling Algorithms
	1.2 Motivation for This Dissertation
	1.3 Contributions
	1.4 Dissertation Outline

	2 Optimal Packet Scheduling in Output-Buffered WDM Optical Switches
	2.1 WDM Optical Switch Model
	2.1.1 Wavelength Conversion Model
	2.1.2 WDM Switch Architecture

	2.2 Network Flow Approach for Finding an Optimal Schedule
	2.3 The New Scheduling Scheme
	2.3.1 Preliminaries
	2.3.2 Schedule Construction Algorithm
	2.3.3 Augment to Full Algorithm

	2.4 Correctness Proof of the New Scheduling Scheme
	2.4.1 Correctness of the Schedule Construction Algorithm
	2.4.2 Correctness of the Augment to Full Algorithm

	2.5 Implementation and Complexity Analysis
	2.6 Performance Evaluations
	2.7 Conclusions

	3 Achieving 100% Throughput in Input-Buffered WDM Optical Packet Switches
	3.1 Background and Related Work
	3.2 Input-Buffered WDM Optical Packet switches
	3.2.1 Wavelength Conversion
	3.2.2 Controllable FDL Buffer
	3.2.3 Admissible Traffic for WDM Packet switches

	3.3 Most-Packet Wavelength-Fiber Pair First Algorithm
	3.4 WDM-iSLIP Algorithm
	3.5 Performance Evaluations
	3.5.1 Average Buffering Delay
	3.5.2 Packet Loss Probability

	3.6 Conclusions

	4 Packet Scheduling in the OpCut Switch - Single Wavelength Scenario
	4.1 Related Work
	4.2 The OpCut Switch
	4.3 The Basic Packet Scheduler for the OpCut Switch
	4.3.1 Notations and Basics of the Scheduler
	4.3.2 Queueing Management
	4.3.3 The Basic Scheduling Algorithm

	4.4 Pipelining Packet Scheduling
	4.4.1 Background and Basic Idea
	4.4.2 Case of k = 2
	4.4.3 Case of k > 2
	4.4.4 Adaptive Pipelining

	4.5 Performance Evaluation
	4.5.1 Cut-Through Ratio
	4.5.2 Average Packet Delay
	4.5.3 Adaptive Pipelining

	4.6 Conclusions

	5 Packet Scheduling in the OpCut Switch - WDM Scenario
	5.1 System Model
	5.1.1 Switch Architecture
	5.1.2 Notations
	5.1.3 Packet Queue Management

	5.2 Basics of the Scheduler
	5.3 Packet Scheduling Algorithms
	5.3.1 Problem Formalization
	5.3.2 NP-Hardness and Inapproximability Proof
	5.3.3 The Longest-or-Heads (LOH) Approximation Algorithm
	5.3.4 Implementation of the LOH Algorithm
	5.3.5 Variations of LOH

	5.4 Performance Evaluation
	5.4.1 Cut-Through Ratio
	5.4.2 Average Packet Delay

	5.5 Conclusions

	6 Energy-Aware Routing in Hybrid Optical Networks-on-Chip
	6.1 Optical NoC
	6.2 Energy-Aware Routing in Optical NoCs
	6.2.1 Energy Consumption for Routing a Message
	6.2.2 The Energy-Aware Routing Problems
	6.2.3 Energy-Aware Routing in Different Topologies

	6.3 Some Extensions
	6.3.1 Optical Burst-Switched NoC
	6.3.2 Energy-Aware Adaptive Routing in Optical NoC

	6.4 Conclusions

	7 Conclusions
	Bibliography

