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 This dissertation mainly addresses the problem of multi-robot motion coordination, 

including deployment algorithm and some other important issues in the deployment process, for 

example, localization and collision avoidance.  

 The first part of this dissertation is mainly about calibration and motion tests on the 

pioneer 3 DX mobile robot platform we are going to use. A pioneer 3 DX mobile robot has two 

driving wheels and one passive castor, and is a typical nonholonomic system. Due to 

nonholonomic constraint, the mobile robot has no nonzero side speed. In order to nicely control 

the robot and obtain its accurate running state, a motion calibration is necessary before serious 

experimental study. Three calibration parameters are adjusted manually until a well calibrated 

accuracy of motion is obtained. After calibration, a series of motion tests are conducted and the 

robot’s capability of following commands is verified. Linear, rotational tests and a mixture of 

both movements are conducted in order, and the results show that the robot follows commands 

satisfactorily. The tests also provide some guides for our further experiments. 
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 Though encoder reading from robot is very accurate once the robot is well calibrated, due 

to accumulative error in encoders, a global localization solution is desirable. In the second part, a 

localization algorithm based on single camera is proposed and followed by an error analysis. The 

algorithm is based on trilateration and pinhole camera model. Error analysis indicates that the 

algorithm has very high accuracy of localization. 

 In the next part, we discuss multi-robot deployment, which is a major of our work. A 

second order control method is proposed with our control frame work. This control framework 

belongs to the category of potential field methods. Compared with traditional deployment 

method that are based on position or velocity control, second order control is advantageous in 

making robots’ movements smooth and natural. Besides, it is naturally incorporated in our 

control frame, which is originated from Hamilton’s principle. By carefully designing the 

definition of artificial potential energy, the robots will move and be deployed automatically.  

 Another issue in robot deployment is collisions during the process. In order to address 

this issue, collision avoidance schemes are proposed. The first collision avoidance scheme firstly 

determines relative movement between two robots. If the distance is below the setting dangerous 

distance and moreover they are still moving closer, the collision avoidance scheme will be 

triggered. The method used in our collision avoidance is to increase resistant force acting on 

robots to slow them down immediately. The second collision avoidance scheme calculate each 

robot’s position in the whole team based on local neighbors’ information, and then spread out the 

robots layer by layer-outer robots move firstly and inner robot move once enough space is left 

out. This scheme aims to reduce collisions, eliminate unnecessary movements and save power. 



 iv

 The simulation results and experiments on Pioneer 3 DX mobile robots show that the 

deployment algorithm works well and the collision avoidance scheme can effectively reduce 

collisions during the deployment process. 

 The last part of our work is a collaboration work we have done with IBM, and the 

objective of the work is to provide moving power for their current Mobile Measurement 

Technology (MMT), which is used to scan and get thermal map of data centers for power 

management purpose. By using a PatrolBot mobile robot, a Bumblebee camera, a wireless router 

and a laptop, the upgraded system did a successfully scanning of IBM’s Southbury data center 

with an operator controlling MMT remotely. The new system saves labor and time, and is more 

convenient to operate compared with the old MMT.  

 In the future, more work is on the way for the above several topics. Firstly, a sensor 

fusion method based on encoder and vision is desirable to obtain more accurate localization 

performance. Secondly, a more advanced and detailed study of collision avoidance is required to 

get a comprehensive understanding of collision avoidance. Thirdly, for MMT, a better user 

interface and more reliable localization method is also to be developed. 
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Chapter 1 Introduction 

Robots have been employed more and more widely in various applications, for example, 

security surveillance, environment monitoring, space exploration, disaster rescue, and etc. They 

are replacing human beings doing boring, dirty and dangerous work.  

Traditionally, industrial applications focused more on single robot. In contrast, multi-

robot system is a relative new topic. However, due to multi robot system’s superior capabilities 

over single robot, it has shown greater and greater potential in a lot of applications.  

In this dissertation, we proposed a decentralized deployment algorithm for multi robot 

system, introduced a global localization method based on single camera and two collision 

avoidance schemes to eliminate collisions during deployment process. 

1.1 Motivation 

Robots have been taking over many work from human being in the past a few decades, 

this trend will keep going in future.  

As a matter of fact, traditional applications focused more on single robot. In contrast, 

multi-robot system is a relative new topic. However, multi robot system shows superior 

capabilities over single robot, for example, multi-robot system has wider environment probe 

capability, and it is more robust to external interruptions and internal failures, more importantly, 

with good coordination, multi-robot system is able to get job done more efficiently. As a result, it 
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has shown greater and greater potential in a lot of applications, such as planetary exploration, 

disaster rescue, environment surveillance, etc.  

In study of multi-robot system, multi-robot deployment is a fundamental problem. It is 

the starting point for more advance applications of multi robot system and not surprisingly has 

attracted a lot of industrial and academic attention. Our research aims to formulate a distributed 

method for multiple robots deployment and verify it using our Pioneer 3 DX robot platform. 

The first unique of our work is that it determines a robot’s motion merely based on 

limited information acquired from self-equipped devices and local neighbors, while centralized 

control method requires global information, which is not accessible in many real applications. 

Due to this characteristic, distributed systems rely more on collaboration between all members 

rather than putting all eggs in the same basketball and all commands come from a single leader. 

Equally importantly, it requires lower computation ability for each member, making system more 

cost-effective. The other point of our job is, compared with most traditional multi robot 

deployment algorithms based on position and velocity control, our method goes directly to 

second order control – acceleration control. Acceleration control makes implementation of 

algorithms in specific hardware platforms simple and straightforward, and it makes movement 

smooth and natural. In a word, decentralized second order control in multi robot deployment 

summarizes our major work. 

During deployment process, two issues need to be addressed: localization and collision 

avoidance. Usually, given initial positions and orientations, self-equipped encoders are able to 

calculate a robot’s positions and orientations based on history movements. However, 

accumulative errors limit encoders’ usability in demanding applications and a global localization 

method is desirable. In our work, using a single camera, a localization algorithm based on 



 3

trilateration is proposed to provide a more accurate global localization solution. The second issue, 

collision avoidance, is solved by two schemes we proposed. These two schemes fit our control 

frame in that they use local information and eliminate collisions via second order control.  

Another job of us is to upgrade IBM’s old MMT (Mobile Measurement Technology) and 

power it with a mobile robot. Their current MMT is used to monitor temperature and moisture in 

data centers. It doesn’t have moving capability and completely rely on human being. Our 

objective is to integrate their current measuring ability with mobile robot’s moving capability, 

therefore in the future operator can remotely control the new MMT and eventually it can move, 

measure and upload data totally on itself. This would save a lot of labor and reduce cost 

significantly. 

1.2 Related Works 

1.2.1 Localization Based on Trilateration 

The principle behind trilateration is to use distances from at least three different 

landmarks to determine object’s current position and orientation. This method, essentially, is 

equivalent to finding intersection points between three or more spheres. Manolakis[1][2] 

proposed closed-form solution to trilateration problems. Coope[3] further proposed two ways of 

solving trilateration problems, one is based on Gaussian elimination and the other applies 

orthogonal decomposition and transformation. A nonlinear least-square optimization method for 

obtaining approximate results is proposed in this chapter. Thomas and Ros[4] introduced a 

general formulation for the closed-form solution based on Cayley-Menger determinant defined 

by constructive geometric argument. Fang[5] proved that trilateration problem could be 

simplified by defining the problem according to a frame. 
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Many applications have been developed based on the principle of trilateration. The 

Global Positioning System (GPS) uses trilateration to locate a receiver based on the travel 

distances of radio frequency signals from the satellites [6]. It provides a powerful tool for 

outdoor mobile robot localization and navigation [7]. In indoor environments, some localization 

systems have been developed, such as SpotOn [8], Active Badge [9], Active bat [9], Cricket [11], 

based on radio frequency [7], infrared [8], and ultrasound [9, 10] signals respectively. Recently, 

Zhou et al. have also introduced a new indoor localization method for mobile robots based on the 

laser-activated RFID landmarks [12]. 

Triangulation, instead of using distance measurements, uses bearing measurements 

among references to locate an object. The basic idea of triangulation is that in a plane containing 

the references and object, the object is located at the intersection of the circles each of which is 

determined by two references and the bearing between them. Cohen compared four solution 

methods for triangulation, i.e. iterative search, geometric triangulation, geometric circle 

intersection and Newton-Raphson iterative method, and showed that geometric circle 

intersection is the most robust one among them [13]. Betke and Gurvits presented a position 

estimation algorithm using the complex numbers representation of the landmarks [14]. The main 

advantage of this algorithm is the linear time complexity with respect to the number of 

landmarks and the robustness to the noisy input. Shimshoni also presented an algebraic solution 

by applying several transformations to the linear system of equations which are defined by 

triangulation constraints [15]. He showed that these transformations indeed improved accuracy. 

Sutherland and Thompson discovered that the position error is influenced by both the input 

bearing error and the distribution of landmarks [16]. 
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Vision sensors are widely used to measure the bearings. The structured features, such as 

doors and wall corners, are extracted from images. The 2D bearings of landmarks can be 

recovered from vertical edges. Muñoz and Gonzalez developed a 2D landmark-based 

triangulation algorithm in which the bearings are derived from a single image [17]. Other 

systems utilizing the bearing measurements for localization can be found in [14, 18-20]. 

1.2.2 Multi Robot Deployment 

Due to advantages of second order control, it becomes basis of our deployment algorithm. 

The deployment algorithm works seamlessly with the collision avoidance under a global control 

frame we proposed, which is based on Hamilton’s principle. This principle applies to not only 

classic mechanics but also classic fields, like electromagnetic and gravitational fields. In our case, 

this principle states that dynamics of robots could be determined by a variational problem for a 

function based on its Lagrangian, which contains all physical information of the robot and the 

forces acting on it. By carefully defining artificial energy for the robot, which is considered part 

of the Lagrangian, the robots would move automatically to meet our deployment requirement.  

This second order and natural control algorithm also owns another advantage in that it is 

a distributed control law. Many traditional multiple robots deployment methods depend on a 

central command center, which collects data from robots and sends commands back after a 

calculation based on complex algorithms. This command center could be either one of the robots 

or a separate computing unit [21, 22]. Though effective in a stable environment, due to its high 

communication complexity, it is slow in response to abrupt changes in the system and 

environment. Moreover, it demands high processing power for the leader, and is vulnerable to 

failure of the leader. In contrast, decentralized control allows individual robots to behave 
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according to local information and achieves global goals by following distributed control laws, 

which can be highly adaptive to environment changes and individual failure. Recognizing its 

advantages, the research on multi-robot deployment has been largely leaning towards 

decentralized control. 

For the concept of artificial potential/force field, it has been widely adopted in 

decentralized deployment control. For multi-target observation, Parker defined a distributed 

control law in terms of force fields attractive for nearby targets and repulsive for nearby robots, 

weighted by the probability of target existence and not being observed [22,23]. For large system 

deployment, Reif and Wang proposed a “social potential field” method to reflect social behaviors 

such as clustering and escorting [24]. To deploy a mobile sensor network in an unknown 

environment from a compact initial configuration, Howard et al. defined a potential field in 

which each node is repelled by both obstacles and other nodes [25]. To maximize the sensor 

coverage while maintaining the number of connected neighbors, Poduri and Suktame used the 

repulsive forces among nodes to improve their coverage and the attractive forces to prevent the 

nodes from losing connectivity [26]. Popa et al. also defined an attractive force to maintain inter-

node connections [27]. Ji and Egerstedt presented an approach based on weighted graph 

Laplacians and the edge-tension function to control multi-agent rendezvous and formation while 

maintaining communication connections [28]. Moreover, for deploying mobile sensor networks 

to approach an isometric grid, Lam and Liu defined a force field based on the difference between 

current and ideal local configurations [29]. To cover a moving target, Jenkin and Dudek 

formulated the problem as a global energy minimization task over the entire collective in which 

each robot moves in the gradient descent direction of its local estimate of the global energy [30]. 

In addition, event-driven schemes were presented by Butler and Rus to deploy mobile sensors 
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toward the distribution of the sensed events [31]. With the intention to reduce the communication 

complexity, Tan defined the potential field for each robot based on only its one-hop neighbors of 

the Delaunay triangulation [32].  

Besides potential/force field methods, Cortes et al. showed that an optimal coverage of 

multiple mobile sensors is provided by the centroidal Voronoi partition where each sensor is 

located at the centroid of its Voronoi cell, and presented a gradient decent algorithm to move 

sensors towards the centroidal Voronoi configurations [33]. A similar method was adopted in 

[34], and a slightly different method based on the r-limited Voronoi partition was presented in 

[35]. Schwager et al. proposed an adaptive decentralized controller to drive a team of networked 

robots to the estimated centroids of their Voronoi regions while improving sensory distribution 

over time [36].  

Moreover, diffusion-based schemes were also proposed for dynamic coverage of 

bounded environments, including random diffusion [37], gas diffusion [38], and fluid diffusion 

[39]. In addition, Jung and Sukhatme presented a region-based method in which the robots are 

deployed according to a compromise between robot densities and target densities in all the 

regions with a consideration of robot travel distances, and robots are positioned inside a region 

optimally to cover all the targets [40].  

Although decentralized multi-robot deployment control has received a lot of attention, 

existing methods mostly focus on general schemes. Very limited consideration has been given to 

practical issues arising in realistic multi-robot deployment processes, such as the constraints in 

kinematics, dynamics and communications and the problem of collision avoidance. For instance, 

the nonholonomic constraint arising in wheeled robots has been largely ignored by assuming 

holonomic drive [25] or using the simple unicycle model [33,34]. This decoupling between the 
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high-level control law and the implementation layer may cause unexpected results or even 

failures in realistic multi-robot deployment processes. 

Targeting the robust implementation in realistic multi-robot systems, in a recent work 

[41], we proposed a decentralized deployment control framework, which integrates the concept 

of artificial potential field with Hamilton’s principle [42] of the classic mechanics to generate the 

control law for robot self-deployment motion. It naturally incorporates the nonholonomic 

constraints arising in wheeled robots. Built on our previous work, this chapter will present a 

control law for reliably establishing desired sensor coverage and maintain communication 

connections in an environment from a compact initial multi-robot gathering, and particularly 

address the issue of collision avoidance during the deployment process. This system depends 

heavily on this central commander, and is very vulnerable to environment interruptions. Once the 

central commander fails, the whole system is unable to work at all. Besides, since the robots’ 

movements totally depend on commands from central unit, it would don’t know their next step 

once they lose communications.  

1.3 Objectives 

This dissertation focuses on proposing a decentralized multi-robot deployment algorithm 

based on second order control and addressing collisions and localization issue in the deployment 

process. Our work is summarized as following: 

1) Calibrate robots and test their motion capability; 

2) Propose a global localization algorithm based on single camera; 

3) Propose a distributed multiple mobile robot deployment algorithm exclusively for 

nonholonomic robots; 

4) Address collisions among robots during multi robots deployment; 
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5) Collaborate with IBM and upgrade their current data center monitoring system to be mobile 

robot powered. 

1.4 Dissertation Structure 

Chapter 2 makes a brief introduction of the robots we are going to use and describes steps 

of motion calibration, which guarantees nice control of robots and accurate feedback of robots’ 

running state, like velocity. Besides, a series of motion tests are done to verify motion capability 

of the robot, to evaluate how well the velocity and acceleration read from encoders follow our 

settings. For a well calibrated robot, velocity read from encoders are very close to robot’s actual 

velocity, so to some extent that the tests reflect how accurately the robots execute commands. 

The results would give us a good guide for further serious experiments. 

In chapter 3, a localization method based on single camera is introduced and followed by 

an experiment to analyze its accuracy. The method depends on single camera feedback and use 

trilateration in calculation, which is the same mechanism used in GPS. 

Chapter 4 proposes a distributed algorithm for multiple robots deployment and further 

discusses collision avoidance in deployment process. The decentralized algorithm falls into 

category of potential field method and conducts second order control, which leads to natural and 

smooth movements of robots. For collision avoidance in deployment, two schemes are proposed.  

In Chapter 5, by cooperating with IBM Watson Research Center, a PartolBot mobile 

robot is integrated with their mobile measurement system, which is used to monitor temperature 

and other thermal data of data centers. Instead of depending on being pushed around the big data 

centers by human operators, the new system is able to be operated remotely and collects data in a 

more convenient way. 



 10

Chapter 6 gives the conclusions based on work we have done and list the work we are 

going to do in the future.  
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Chapter 2 Robot Motion Calibration and Motion Tests   

It has a long way to go from computer simulations to real experiments because real 

experiments have a lot of uncertainties that simulations are unable to forecast or follow. For 

example, in simulations, distance that the robot moves in a certain period of time is exactly equal 

to velocity multiplied by time interval, which is not the case in real experiment. Besides, delay of 

command execution is not taken into account in simulations. In fact, in real experiments, robots 

can’t even maintain absolute constant velocities, and slow response time of wheel motors 

sometimes undermines algorithm performance significantly. A lot of experiments have 

illustrated that even given the same initial settings, robots’ movements were still slightly 

different in the same environment. In a word, real experiment involves numerous hardware 

implementation details, which result in noises and uncertainties. Therefore, simulations can 

never replace real experiment and a successful algorithm should bear tests with real hardware in 

real environment, and this is an inevitable step to serious applications in real life.   

In our work, Pioneer 3 DX mobile robots (Figure 2.1) are chosen to be our experimental 

platform, which are commercially available from MobileRobots Inc.. This chapter is mainly 

about their motion capability test. 
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Figure 2.1: Pioneer 3 DX Mobile Robot 

 

This chapter is organized as followed. Firstly, in order to better control robot and obtain 

accurate motion state of robot, the robot needs to be calibrated. After that, a series of motion tests 

are conducted to verify its moving ability and accuracy. A linear, rotational movement test and 

mixture of both are conducted. As a result, in the end of this chapter, we illustrated that 

calibrated robots run accurately and follows commands well. The tests also provide some 

programming guides for our later experiments. 

2.1 Introduction of Pioneer 3 DX Mobile Robot 

 Pioneer 3 DX weights 9 kg (20 pounds with one battery) with height of 21.5 cm and 

width of 38cm [43], and it has two differential driving wheels and one passive castor. In front 

and rear body the robots are equipped with 8 sonar sensors respectively, (see Figure 2.2). Besides, 

the robot is upgradable for more powerful capabilities. For example, equipment of arms can help 

manipulate things, laser scanners are able to detect environment layout, camera’s feedback can 

be used to observe environment and helps robot make smarter moving decisions.  

Just like most of other commercially available robots, the robot uses client-server 

working mode. The microcontroller handles all low-level details and converts all high level 
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commands to low level executable commands, like driving wheels rotate and reading data from 

every sensor, encoders and sonar sensors, to name a few. An onboard computer is attached with 

Pioneer 3 DX mobile robot via RS 232. Program running on PC communicates with the robot 

constantly and tells it its next action.  

 

Figure 2.2: Physical components of Pioneer 3 DX 

 

The bridge between high level and low level control is ARIA, which stands for Advanced 

Robotics Interface for Application. It is a C++ based open source development library that 

insulates users from low level details and helps users to focus on high level algorithm 

development and verification. With hundreds of well designed functions, users could give simple 

commands directly to robot and read back usable data from sensors. It makes controlling of robot 

much easier and reliable. Moreover, ARIA also reserves necessary interfaces for potential 

extensional devices, like arms and cameras. 

2.2 Robot Calibration 

 In order to nicely control robot and obtain robot’s running state, a robot calibration is 

needed before being used in real experiments and applications. A robot needs a new calibration 
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once it is moved to a new environment, or the old environment has just experienced any kind of 

change. For example, the floor is just polished, or an air conditioner is just replaced. Changes of 

environment lead to changes of some physical parameters, including tire pressure of robots, 

which results in small change of tire’s diameter and friction coefficient with ground. Besides, for 

the same reason, regular inspection of robot’s tire pressure is necessary. However, calibration 

doesn’t guarantee absolute accuracy of robots’ motion, instead, it manages to improve robots’ 

performance as high as possible. 

Fortunately the calibration is not very hard for Pioneer 3 DX. Robot’s moving accuracy 

could be adjusted by three parameters stored in microcontroller’s flash memory. These 

parameters are DriftFactor, RevCount and Ticksmm.  

The first one, DriftFactor, controls robot’s drift in linear movements. Robots usually drift 

to right or left side after travelling a certain distance. DriftFactor controls moving consistency 

between two wheels and makes sure robot wouldn’t drift to either side. Since DriftFactor affects 

both RevCount and Ticksmm, it needs to be adjusted at first place. 

The way of adjusting DriftFactor is simple. We use a demo program to make robot move 

forward 1 meter straightly and observe which side the robot has drifted to. If it drifts to right side, 

reduce value of  DriftFactor and vice versa. The same principle of adjustment applies to 

RevCount and Ticksmm. 

RevCount is the differential number of encoder ticks for a 180-degree rotation, and 

apparently it is related to accuracy of rotational movement. Similarly, Ticksmm is number of 

encoder ticks for every millimeter the wheels rotate, and it is related to accuracy of translational 

movement.  

The calibration of RevCount and Ticksmm is very similar to that of DriftFactor . A demo 
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program is used to command robot move 1 meter forward and then its actual moving distance is 

measured. If the actual distance is less than meter, then we should decrease value of Ticksmm, 

otherwise, we increase it. Eventually, a proper Ticksmm is obtained. RevCount can be calibrated 

either before or after calibration of Ticksmm. With the demo program, and given initial direction 

of zero, robot is asked to rotate 180 degrees, and its actual rotation angle tells me to increase or 

decrease Ticksmm.  

After the calibration, our records indicate that linear motion error could be limited to less 

than 1cm per 3 meters, rotational error is less than 0.9 degree per 180 degree. To sum, with 

proper choose of the three values, the robot moves with very good accuracy, more importantly, 

velocity reading from encoder (via ARIA) is trustable and usable in our later experiments. 

2.3 Linear Motion Test 

 After robot calibration is done, a series of motion tests are conducted to further verify 

moving performance of robots. These tests are mainly used to evaluate robot’s moving capability 

and accuracy. In this section, linear motion tests try to verify robot’s capability of moving 

forward in high accuracy without drifting to either side,  

To do these tests, three programs are written. In the program, robot is commanded to do 5 

movements in sequence, each movement lasts 4 seconds. Firstly, robot accelerates from speed of 

0 to 40 mm/s in 4s (means acceleration is 10 2/ smm ), and then decelerates back to zero (at -10 

2/ smm ), then stays stationary for 8s before repeating the acceleration and deceleration process 

one more time.  

During the whole test, real velocities and setting velocities are recorded for later 

comparison. The real velocities of robot are based on constant reading using function getVel() 
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from ARIA (for a well calibrated robot, its actual velocity is very close to velocity that is read 

from encoders, and we assume that it is the actual velocity).  

Actual accelerations are calculated by deriving actual velocity over time. In our case, 

dividing velocity change by according time period leads to average acceleration during this small 

slice of time. These accelerations are also compared with setting accelerations.  

From Figure 2.3 and unsurprisingly, setting velocities and acceleration are very smooth 

since they are set manually, and actual velocities and accelerations fluctuate seriously mainly due 

to noises and response delay.  

In order to compare actual acceleration with setting acceleration in a more reasonable and 

clear way, a third variable named accumulated average acceleration is taken into account, which 

is calculated in this way.  

sc

sc
r tt

vva
−
−

=                                               (2.1) 

cv  is current actual velocity,  sv  is the actual velocity at beginning of this period,   ct  and  st   

record current moment and the beginning time of this period. A locally amplified image of 

accumulated acceleration and setting acceleration is displayed in Figure 2.4. As we can see that 

the accumulated acceleration approaches the setting acceleration closer and closer along with 

time. 
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Figure 2.3: Real velocity VS setting velocity, Real acceleration VS calculated acceleration and 
accumulated average acceleration. 

 

Figure 2.4: Setting acceleration VS accumulated average acceleration. 
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2.4 Rotational Motion Test 

 The second test mainly focuses on robot’s rotational performance. It is to verify how well 

the robot’s real rotation follows the command. The whole process consists of 7 stages and 

basically the same as the linear test. Each stage lasts 4 seconds. During the first period, robot 

rotates and accelerates to 40 deg/s (CCW in top-down view) in 4s, and decelerates from 40 deg/s 

to -40 deg/s (CW) in 4s, then accelerates again to a larger velocity of 80 deg/s(CCW) in 4s and 

slows down to 40 deg/s(CCW), then speeds to 80 deg/s and back to static, then decelerates to -40 

deg/s. The whole process lasts 28 seconds.  

Figure 2.5 shows how real rotational velocity follows setting velocity. As what we did in 

linear test, accumulated average angular acceleration is calculated and compared with setting 

acceleration. The results are shown in Figure 2.6. The results are not surprising as they are 

consistent with results we got in last section.  The actual rotation doesn’t follow the commands 

strictly, but on average, the two are matched in a good level. At beginning of the test, there is a 

lag between them and this phenomenon will be discussed later.  
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Figure 2.5: Setting rotational velocity and acceleration VS calculated velocity and acceleration. 

 

Figure 2.6: Setting acceleration VS accumulated average acceleration. 
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2.5 Mixed Test Involving both Linear and Angular Movements 

 The third test takes linear and angular movements together. The test consists of 6 stages. 

As we can see from Figure 2.7 and Figure 2.8 that the robot firstly moves forward and reach 

velocity of 80 mm/s in 4s and then slows down to static in the following 4s. Then, it keeps 

position and accelerates to rotational velocity of 40 deg/s and slows down to static. After this, 

another round of translational movement is repeated. 
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Figure 2.7: Linear velocity and acceleration comparison 
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Figure 2.8: Angular velocity and acceleration comparison 

 

Figure 2.9 displays two trajectories of the robot, one trajectory is the actual trajectory, 

which based on reading via ARIA function (we actually measured the real trajectory and it is 

almost the same as the trajectory read from encoders). The other is trajectory calculated based on 

real time velocity integration over time. Distance travelled at every command cycle is: 

2
)( cyclees

c
tvv

d
+

=                                    (2.2) 

where sv  and ev   are actual velocities of robot at beginning and end of the running cycle,   

cyclet  represents time interval of the cycle. 

Figure 2.9 shows that real trajectory is very different from ideal trajectory, which we 

believe is caused by accumulated velocity error due to response delay and noises. Actually, from 

Pioneer 3 DX’s design philosophy, the movement of robot is more based on position and 
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direction control, and robot keep adjusting moving velocities based on encoder reading feedback. 

From our other tests, the robot is much better at positioning control, which is based on 

continuous reading from encoder and makes robots’ movement very accurate. To sum up, if we 

control robot by controlling its velocity or acceleration, position and direction information 

calculated from integration of velocity is not reliable, and reading from encoders is more 

accurate and trustable. 
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Figure 2.9: Trajectory comparison in mixed test 
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2.6 Delay of Response in Beginning of Movements 

As we have noticed earlier from the three tests that there was always a delay of response 

in the beginning of movement. In Figure 2.3, Figure 2.5 and Figure 2.7, we can clearly see the 

delays, whose lasting time varies every time. In the first test, it lasts around 480ms, in the second 

test, it lasts around 1.8s, and 2.1s for the third tests. The delays are amplified and displayed in 

Figure 2.10. The delays, in our mind, are due to a variety of factors. Firstly, the initializations of 

programs, including high level program we wrote and the low level firmware, make part of the 

delays. Secondly, initialization of hardware also takes time. Thirdly, the design philosophy of 

Pioneer 3 DX robots doesn’t promise to give extremely high accurate velocity output, instead, its 

philosophy puts high accuracy of position and orientation displacement at its highest priority and 

this is understandable since so far most robot experiments are based on position and angle 

control. 

The experiments illustrate the existence of the delay at beginning of experiments and the 

solution, as we found out, is to give an empty standing command. The command leaves some 

time for the robots to release the delays. 
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Figure 2.10: Response delay at beginning of movements 

 

2.7 Conclusion 

In order to obtain a robot with accurate moving capability, a Pioneer 3 DX mobile robot 

is carefully calibrated and the calibrated robot achieves very good level of moving accuracy 

thereafter. The position and orientation of a calibrated robot based on encoder reading is 

trustable in later experiments that last short period of time. 
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After the calibration, a sequence of three tests is conducted to verify robot’s linear and 

rotational moving capability and accuracy. The results show that robot’s actual velocity and 

acceleration follow setting parameters satisfactorily.  

Besides, delay of response exists and varies from time to time and the solution is to give 

an empty motion command at beginning of movements. Partial cause of the delays is that 

commands take time to reach low level microcontroller and wheel motors based on PID control 

always have a delay of response.  

The work we have done in this chapter provides some guides for our further experiments. 

For application of algorithm in Pioneer 3 DX, our second order control calculates desired 

accelerations other than velocities or positions. However, in Pioneer 3’s design philosophy, 

setting acceleration doesn’t make robot move, it is just a value stored in microcontroller’s flash 

memory to control how fast velocity increases. In order to make robot follow desired 

acceleration, command velocity (which is either bigger or less than current velocity) need to be 

set and sent to motor controller continuously. This applies to both angular and linear acceleration 

control. 

Finally, accuracy of position and orientation of a well calibrated robot doesn’t last very 

long time due to encoders’ accumulative error. To solve this problem a global localization 

method is desirable. Actually, a method based on single camera will be introduced and discussed 

in next chapter. 
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Chapter 3  Single Camera Localization Algorithm Using 

Trilateration and Its Experimental Study 

 Localization is a fundamental problem in robotics, especially in robot navigation field. It 

takes advantages of various kinds of sensory devices and algorithms to calculate and improve 

accuracy of robot’s current position and orientations. A lot of work has been done in this field, 

and generally they can be divided into several categories. In the first category, encoders of 

wheels could be used to calculate distance offset that each wheel has travelled and calculate 

robot’s current position and orientation from robot’s initial positions and orientations. However, 

this method can’t avoid accumulative error and can’t be used in position accuracy demanding 

areas. The second one is use artificial landmarks for references, for example, for mobile robots, 

some magnetic lanes is embedded in the floor and robot can detect magnetic field and thus 

determine its current position. Recently, methods based on camera feedback are attracting more 

and more people’s attention due to its enriched information of environment. Our lab proposed a 

method based on trilateration that calculate robot’s position and orientation based on single 

image of identified landmarks which is equipped on top of the robot. 

 The main benefits of using single camera over stereo vision system are as following. 

Firstly, from cost perspective, stereo vision system doubles the budget compared with single 

camera. It is a lot of money if dozens of robots to be equipped. Secondly, for location based on 

landmarks, stereo vision system always requires landmark matching before calculating 
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localizations. Thirdly, stereo vision system usually requires more computing power since it has 

much more image processing compared with algorithm based on single camera.  

This chapter is organized as followed. In the first part, the trilateration algorithm is 

described in details. After that, an experiment is described and conducted under different 

circumstances to verify accuracy of the algorithm. Experimental results are listed in tables and 

drawn in figures. The conclusions are on the last section. 

3.1 Localization Algorithm 

 The localization algorithm is to be introduced in this section. The visual angle between 

two landmarks can be calculated from their projections in the same image. By using perspective 

geography, the constraints could be written into a group of equations, distances from optical 

center to landmarks could be calculated thereafter and eventually position of optical center could 

be calculated using trilateration. The robot’s orientation is then computed based on the camera 

model and landmark positions.  

 

Figure 3.1: Pinhole camera model 
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3.1.1 Visual Angle Estimation  

Based on the pinhole camera model (Figure 3.1), P represents the optical center, xyz 

denotes the camera frame, UV denotes the image plane, and C denotes the image center of UV. 

In principle, the optical axis PC is perpendicular to the plane UV, and the length of PC is the 

focal length f . In addition, Li, where  )3,2,1(=i , denotes the ith landmark with a known 

position defined in the world frame XYZ, and li denotes the projection of Li in UV. 

The camera model follows the principle of perspective projection. A detailed description 

of camera parameters and estimation algorithms can be found in a computer vision book such as 

[44]. A standard calibration toolbox can also be found at 

“http://www.vision.caltech.edu/bouguetj/calib_doc/”. 

Assuming that the camera is fixed on the mobile robot, robot positioning is equivalent to 

finding the position of the optical center )',,( zyxP =  . Besides, the optical axis PC (Figure 3.1) is 

chosen to represent the robot orientation in our method. We assume that the image center C and 

focal length f  are known (in practice they can be obtained from camera calibration), and:  

fPC =|||| , )'( vu ccC −= , )',( 111 vu lll = , )',( 222 vu lll = , )',( 333 vu lll = , )',,( 1111 zyxL = ,

)',,( 2222 zyxL = , )',,( 3333 zyxL =  

In the image frame, all the lengths are measured in the unit of pixel. Since PC is 

perpendicular to the image plane  UV, 

22

222

)()(||||

)()(||||

jvivjuiuji

vivuiui

llllll

clclfPl

−+−=

−+−+=
                                                         (3.1) 

where )3,2,1(=i , )3,2,1(=j  and ji ≠ . 

Applying the law of cosine to the triangle i jl Pl  , we obtain 
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Moreover, in the pinhole camera model, the visual angle between landmarks i and j, 

ji PLL∠  , is the same angle between their projections, ji Pll∠  . For the convenience of expression, 

we define  212112 PllPLL ∠=∠=φ  as the visual angle between landmarks 1 and 2. Visual angles 13φ  

and 23φ  are defined similarly. 

3.1.2 Position Estimation 

Applying the law of cosine to the triangles  21PLL , 31PLL  ,and  32PLL  respectively, we 

have 
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where  |||| ji LL  denotes the known distance between landmarks i and j, 

222 )()()(|||| jijijiji zzyyxxLL −+−+−=  , and |||| iPL   denotes the unknown distance between P and 

Li. 

Newton’s method [46] is used to compute |||| iPL  in Equ.3. Once the distances   |||| iPL  are 

obtained, the optical center can be located by solving a trilateration problem, 
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Both closed and iterative form solutions are available [1-4]. 

To sum up, the distances between the optical center and the landmarks are calculated 

from the visual angles and landmark positions using the law of cosine, and the robot position is 
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estimated by trilateration. During this procedure, only the landmark positions and projections are 

used as input. No direct distance measurement is required. 

A further inspection on (3-3) and (3-4) reveals the geometric meaning of this problem. 

Substituting (3-4) into (3-3), we can formulate a system of equations. 
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                          (3.5) 

3.1.3 Orientation Estimation  

In a 3D environment, an orientation can be represented by a directional vector. Since the 

camera is fixed on the mobile robot, finding the robot orientation is equivalent to finding the 

camera orientation. Therefore, the optical axis is chosen to represent the robot orientation. 

In the world frame XYZ ,  The lines  PC  and iPL   can be expressed as following 
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where ( ), ,p p px y z ′  is the estimated robot position P  (the position of the camera optical center), 

( ), ,i i ix y z ′  is the global position of landmark iL  , and ( ), ,x y zp p p ′  is the directional vector of  

PC  which needs to be determined. 

Corresponding to (3-6) and (3-7), the angle between PC and PLi satisfies the following 

relationship: 
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By normalizing the directional vector  PC , we have 2 2 2 1x y zp p p+ + =   , and (3-8) can 

be rewritten as: 
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On the other hand, we can calculate  icφ  in camera’s frame: 
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where we have used the facts that  222 )()(|||| vivuiui clclfPL −+−+= , fPC =||||  , and 

22 )()(|||| vivuiui clclcL −+−=  . The quantities liu, liv, cu and cv can be obtained directly from the 

image while f can be obtained from camera calibration. 

According to (3-9) and (3-10), we have 
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The solution of (3-11), with )3,2,1(=i , can be written in the following matrix form: 
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which gives the direction of the optical axis PC (equivalent to the robot orientation). 
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3.2 Error Analysis 

 In order to verify real experimental error of the algorithm, an experiment is carried out. 

The general objective of this experiment is to verify algorithm accuracy under different 

circumstances, for example, how accuracy changes with different distances from robot to 

landmarks, how distribution of landmarks affects overall accuracy is also studied.  

The most difficult part in most experiments is that it is impossible to get true values that 

the data generated from algorithm can be compared with. In most cases, instead, an experiment is 

designed to obtain the data that is mostly equal to the true values. 

 In our experiment, a check board pattern, which is commonly used in camera calibration, 

is used to obtain robot’s ideal position and orientation with respect to the pattern coordinate 

system (which the world frame is attached with). 

  

 

Figure 3.2: Check board pattern printed together with three circles  
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Another objective of the experiment is to test accuracy with robot placed at different 

directions of those landmarks but with absolute the same distance from the pattern, only in this 

way do the results really reflect accuracy changes with different directions. The intuitive way of 

doing this is to manually place robot to different directions of the pattern. However, once robot is 

moved, it is impossible to keep the robot the same distance from the pattern. Therefore, another 

experiment design came into our mind, that is, is it possible that we rotate the pattern instead of 

moving robot? A second thought reminds us that this scheme also has a problem, that is, it is 

very hard to make pattern rotate absolutely with respect to its center. Eventually, we designed 

our current experiment. Three concentric circles are drawn in the same board with check board 

pattern, and each circle has 12 landmarks on it (Figure 3.2). Instead of moving robot after every 

test, different groups of landmarks are used every time. Moreover, by using different groups of 

landmarks, the board doesn’t need to rotate itself. For example, in the first test, landmark 1, 5, 

and 9 are used, and the first group of results are obtained. Then the second group of landmarks 

with 2, 6 and 10 is taken into calculation to mimic the situation that the board has just rotate 30 

degrees. Therefore, without moving robot or board, the whole tests could be done smoothly and 

with high reliability. 

 To sum up, the experiment is conducted in this order. Firstly, 40 pictures from different 

angles are taken for camera calibration using Matlab camera calibration toolbox. Camera’s 

intrinsic parameters, which include camera’s focal length, principal points, are obtained. 

Secondly, pictures of the check board pattern are taken when robot is placed at different 

distances. Thirdly, based on previously obtained intrinsic parameters and with help of Matlab’s 

calibration toolbox, robot’s position and orientation can be calculated and they are assumed to be 
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true. Finally, robot (optical center of the camera)’s position and orientation is calculated from our 

localization algorithm based on landmarks. The two groups of data are compared. 

3.2.1 Camera Calibration Using Matlab Toolbox 

From Figure 3.3, 40 pictures are taken from different angles. By manually marking four 

corners of the pattern, the Matlab calibration toolbox is able to calculate camera’s intrinsic 

parameters. The more pictures are used, the more accurate the results are. In our case, 40 pictures 

are taken and used. The calibration parameters are listed as following: 

 

Figure 3.3: Pictures used in camera calibration 

 

Focal length: fc=[1627.6, 1629.9], 

Principal point: cc=[333.9088, 246.3799], 

Skew coefficient,  0=cα  
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Distortion coefficients, kc= [-0.3350, -0.2882, 0.0007, -0.0012, 0], 

Focal length uncertainty, errorcf ,  = [1.1486, 1.1069], 

Principal point uncertainty,  errorcc , =[ 1.9374, 1.5782], 

Skew coefficient uncertainty, 0, =errorcα  , 

Distortion coefficients uncertainty,  =[ 0.0084,0.1936,0.0002,0.0002,0], 

Image size: 640×480. 

3.2.2 Pictures Taken From Different Distances 

As we know that on each circle there are 12 evenly distributed points (Figure 3.2). The 

basic idea behind this experiment is to use check board pattern for calculation of transform 

matrix between pattern frame and camera frame, therefore we can obtain robot’s ideal position 

and orientation. The results are then compared with what is obtained using our localization 

algorithm based on landmarks. By using different groups of landmarks (each group has 3 

landmarks from the same circle), images of the pattern are taken with robot placed at different 

distances from the pattern, algorithm errors from different distances with different groups of 

landmarks can be obtained and compared. 

Design radiuses of circles are 250mm, 300mm and 350mm (Figure 3.4). However, due to 

print error, the real radiuses are 244mm, 292.8mm and 341.6mm. Since length error is evenly 

distributed and each check board grid is still exactly the same size (48.8mm×48.8mm), it doesn’t 

affect our algorithm if we take the real values in our calculation.  
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Figure 3.4: Radiuses of three circles 

Initial vertical distance from the board to floor is approximately 2200mm, the camera is 

around 700mm above the ground. 

It is noted that when pictures are being taken, pixel of the center of circles should be 

located in the principal point, only in this way can we assume that the pattern’s center remain the 

same distance to camera’s optical center, no matter which group of landmarks is used. This 

requirement is satisfied by marking principle points in images and make sure center of the 

pattern match that point.  

 

Figure 3.5: Four photos of the pattern are taken from five different distances 
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3.2.3 True Positions and Orientations of Robot  

As we mentioned earlier that true positions and orientations of the robot at different 

distances are calculated by using Matlab camera calibration toolbox.  

 

 

 

 

 

 

 

 

Table 3.1: Real relative position and orientation of robot when 2 meters away 

Landmarks used x (mm) y (mm) z (mm) θ (Direction Vector) 

1,5,9 -132.8737 -1493.7066 1549.2967 [0.0604,0.6932,-0.7182] 

2,6,10 -861.9253 -1227.151 1549.2967 [0.3989,0.5701,-0.7182] 

3,7,11 -1360.0247 -631.7813 1549.2967 [0.6305,0.2943,-0.7182] 

4,8,12 -1493.7066 132.8737 1549.2967 [0.6932,-0.0604,-0.7182] 

5,9,1 -1227.151 861.9253 1549.2967 [0.5701,-0.3989,-0.7182] 

6,10,2 -631.7813 1360.0247 1549.2967 [0.2943,-0.6305,-0.7182] 

7,11,3 132.8737 1493.7066 1549.2967 [-0.0604,-0.6932,-0.7182] 

8,12,4 861.9253 1227.151 1549.2967 [-0.3989,-0.5701,-0.7182] 

9,1,5 1360.0247 631.7813 1549.2967 [-0.6305,-0.2943,-0.7182] 

10,2,6 1493.7066 -132.8737 1549.2967 [-0.6932,0.0604,-0.7182] 

11,3,7 1227.151 -861.9253 1549.2967 [-0.5701,0.3989,-0.7182] 

12,4,8 631.7813 -1360.0247 1549.2967 [-0.2943,0.6305,-0.7182] 

 



 38

Table 3.2: Real relative position and orientation of robot when 2.5 meters away 

Landmarks used x (mm) y (mm) z (mm) θ (Direction Vector) 

1,5,9 -236.0603 -2240.5663 1519.9805 [0.0859,0.825,-0.5586] 

2,6,10 -1324.7174 -1822.3572 1519.9805 [0.4869,0.6716,-0.5586] 

3,7,11 -2058.4175 -915.8489 1519.9805 [0.7574,0.3382,-0.5586] 

4,8,12 -2240.5663 236.0603 1519.9805 [0.825,-0.0859,-0.5586] 

5,9,1 -1822.3572 1324.7174 1519.9805 [0.6716,-0.4869,-0.5586] 

6,10,2 -915.8489 2058.4175 1519.9805 [0.3382,-0.7574,-0.5586] 

7,11,3 236.0603 2240.5663 1519.9805 [-0.0859,-0.825,-0.5586] 

8,12,4 1324.7174 1822.3572 1519.9805 [-0.4869,-0.6716,-0.5586] 

9,1,5 2058.4175 915.8489 1519.9805 [-0.7574,-0.3382,-0.5586] 

10,2,6 2240.5663 -236.0603 1519.9805 [-0.825,0.0859,-0.5586] 

11,3,7 1822.3572 -1324.7174 1519.9805 [-0.6716,0.4869,-0.5586] 

12,4,8 915.8489 -2058.4175 1519.9805 [-0.3382,0.7574,-0.5586] 

 

Table 3.3: Real relative position and orientation of robot when 3 meters away 

Landmarks used x (mm) y (mm) z (mm) θ (Direction Vector) 

1,5,9 -255.7185 -2771.846 1506.1401 [0.0794,0.876,-0.4757] 

2,6,10 -1607.3817 -2272.6298 1506.1401 [0.5068,0.7189,-0.4757] 

3,7,11 -2528.3483 -1164.4643 1506.1401 [0.7984,0.3692,-0.4757] 

4,8,12 -2771.846 255.7185 1506.1401 [0.876,-0.0794,-0.4757] 

5,9,1 -2272.6298 1607.3817 1506.1401 [0.7189,-0.5068,-0.4757] 

6,10,2 -1164.4643 2528.3483 1506.1401 [0.3692,-0.7984,-0.4757] 

7,11,3 255.7185 2771.846 1506.1401 [-0.0794,-0.876,-0.4757] 

8,12,4 1607.3817 2272.6298 1506.1401 [-0.5068,-0.7189,-0.4757] 

9,1,5 2528.3483 1164.4643 1506.1401 [-0.7984,-0.3692,-0.4757] 

10,2,6 2771.846 -255.7185 1506.1401 [-0.876,0.0794,-0.4757] 

11,3,7 2272.6298 -1607.3817 1506.1401 [-0.7189,0.5068,-0.4757] 

12,4,8 1164.4643 -2528.3483 1506.1401 [-0.3692,0.7984,-0.4757] 
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Table 3.4:  Real relative position and orientation of robot when 3.5 meters away 

Landmarks used x (mm) y (mm) z (mm) θ (Direction Vector) 

1,5,9 -222.962 -3319.2174 1502.1583 [0.0601,0.9099,-0.4105] 

2,6,10 -1852.6995 -2763.0456 1502.1583 [0.507,0.7579,-0.4105] 

3,7,11 -2986.0076 -1466.518 1502.1583 [0.818,0.4029,-0.4105] 

4,8,12 -3319.2174 222.962 1502.1583 [0.9099,-0.0601,-0.4105] 

5,9,1 -2763.0456 1852.6995 1502.1583 [0.7579,-0.507,-0.4105] 

6,10,2 -1466.518 2986.0076 1502.1583 [0.4029,-0.818,-0.4105] 

7,11,3 222.962 3319.2174 1502.1583 [-0.0601,-0.9099,-0.4105] 

8,12,4 1852.6995 2763.0456 1502.1583 [-0.507,-0.7579,-0.4105] 

9,1,5 2986.0076 1466.518 1502.1583 [-0.818,-0.4029,-0.4105] 

10,2,6 3319.2174 -222.962 1502.1583 [-0.9099,0.0601,-0.4105] 

11,3,7 2763.0456 -1852.6995 1502.1583 [-0.7579,0.507,-0.4105] 

12,4,8 1466.518 -2986.0076 1502.1583 [-0.4029,0.818,-0.4105] 

 

Table 3.5: Real relative position and orientation of robot when 4 meters away 

Landmarks used x (mm) y (mm) z (mm) θ (Direction Vector) 

1,5,9 -223.0791 -3899.0654 1472.9688 [0.0519,0.9351,-0.3505] 

2,6,10 -2142.7249 -3265.1501 1472.9688 [0.5125,0.7839,-0.3505] 

3,7,11 -3488.2292 -1756.3405 1472.9688 [0.8358,0.4227,-0.3505] 

4,8,12 -3899.0654 223.0791 1472.9688 [0.9351,-0.0519,-0.3505] 

5,9,1 -3265.1501 2142.7249 1472.9688 [0.7839,-0.5125,-0.3505] 

6,10,2 -1756.3405 3488.2292 1472.9688 [0.4227,-0.8358,-0.3505] 

7,11,3 223.0791 3899.0654 1472.9688 [-0.0519,-0.9351,-0.3505] 

8,12,4 2142.7249 3265.1501 1472.9688 [-0.5125,-0.7839,-0.3505] 

9,1,5 3488.2292 1756.3405 1472.9688 [-0.8358,-0.4227,-0.3505] 

10,2,6 3899.0654 -223.0791 1472.9688 [-0.9351,0.0519,-0.3505] 

11,3,7 3265.1501 -2142.7249 1472.9688 [-0.7839,0.5125,-0.3505] 

12,4,8 1756.3405 -3488.2292 1472.9688 [-0.4227,0.8358,-0.3505] 
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3.2.4 Robot’s Estimated Position and Orientation Using Our Localization 

Algorithm  

Camera calibration parameters are imported to our program and rectified images are 

input. The positions and orientations of the robot are calculated with robot placed at different 

distances and different groups of landmarks are used. It doesn’t have enough space to list all data 

here, the comparison results, which refers to inconsistency at x, y z axis and angle, are listed 

from Table 3.6 to 3.10. Standard deviations of these errors are also listed in Table 3.11 and draw 

in Figure 3.6. Experimental study using 4 landmarks are also conducted and the results are 

shown in from Table 3.12 to Table 3.17, Figure 3.7 draws the standard deviations.  

Table 3.6: 2 meters way 
Circle 1 2 3 

Error 
xE  

(mm) 

yE  

(mm) 

zE  

(mm) 

θE  

(degree) 

xE  

(mm) 

yE  

(mm) 

zE  

(mm) 

θE  

(degree) 

xE  

(mm) 

yE  

(mm) 

zE  

(mm) 

θE  

(degree) 

1,5,9 2.3589 0.5639 2.3523 0.12095 16.123 1.8182 -1.072 0.50949 10.916 -6.5477 -11.831 0.48561 

2,6,10 5.4365 1.6032 1.3473 0.20598 2.8041 -5.8212 -2.3867 0.21998 7.7278 -2.3149 2.1165 0.25956 

3,7,11 1.6336 14.138 2.14 0.39564 -6.9758 5.1213 -8.5319 0.27524 -15.995 -6.0953 -18.167 0.69636 

4,8,12 -8.2808 0.55243 -11.255 0.34783 -4.0289 1.6254 -9.0608 0.20948 -7.8789 -1.6559 -15.071 0.44005 

5,9,1 -0.6911 -2.3248 2.3523 0.12095 -6.4868 -14.872 -1.072 0.50949 -11.129 -6.18 -11.831 0.48561 

6,10,2 -1.3298 -5.5097 1.3473 0.20598 -6.4433 0.48212 -2.3867 0.21998 -5.8687 -5.5351 2.1165 0.25956 

7,11,3 11.427 -8.4838 2.14 0.39564 7.9231 3.4806 -8.5319 0.27524 2.7186 16.899 -18.167 0.69636 

8,12,4 4.6188 6.8952 -11.255 0.34783 3.4221 2.6764 -9.0608 0.20948 2.5054 7.6513 -15.071 0.44005 

9,1,5 -1.6678 1.7609 2.3523 0.12095 -9.6361 13.054 -1.072 0.50949 0.2122 12.728 -11.831 0.48561 

10,2,6 -4.1066 3.9065 1.3473 0.20598 3.6392 5.339 -2.3867 0.21998 -1.8592 7.8499 2.1165 0.25956 

11,3,7 -13.061 -5.6543 2.14 0.39564 -0.94726 -8.6019 -8.5319 0.27524 13.276 -10.804 -18.167 0.69636 

12,4,8 3.662 -7.4476 -11.255 0.34783 0.60681 -4.3018 -9.0608 0.20948 5.3735 -5.9953 -15.071 0.44005 

 
Table 3.7: 2.5 meters way 

Circle 1 2 3 

Error xE  yE  zE  θE  xE  yE  zE  θE  xE  yE  zE  θE  
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1,5,9 -8.0787 5.7478 9.3783 0.30631 0.21915 2.7175 -6.8621 0.06908 9.7288 2.1814 -2.4295 0.21974 

2,6,10 7.2372 2.8902 -1.0217 0.1396 3.3917 0.52986 -8.5322 0.15313 0.6158 -2.6668 0.93699 0.06668 

3,7,11 12.063 -6.958 -6.5385 0.29515 -1.9442 13.985 -2.4959 0.28204 -8.2195 13.626 -11.423 0.42614 

4,8,12 2.5461 8.111 3.9832 0.20101 1.3882 -2.2092 -6.6392 0.10511 -1.4439 6.6614 -11.635 0.26146 

5,9,1 9.0171 4.1225 9.3783 0.30631 2.2438 -1.5485 -6.8621 0.06908 -2.9752 -9.5161 -2.4295 0.21974 

6,10,2 -1.1156 -7.7128 -1.0217 0.1396 -1.237 -3.2023 -8.5322 0.15313 -2.6175 0.80003 0.93699 0.06668 

7,11,3 -12.057 -6.9676 -6.5385 0.29515 13.083 -5.3087 -2.4959 0.28204 15.91 0.30537 -11.423 0.42614 

8,12,4 5.7513 -6.2605 3.9832 0.20101 -2.6073 -0.0976 -6.6393 0.10511 6.4909 -2.0802 -11.635 0.26146 

9,1,5 0.93837 -9.8703 9.3783 0.30631 -2.463 -1.1689 -6.8621 0.06908 -6.7536 7.3347 -2.4295 0.21974 

10,2,6 -6.1216 4.8225 -1.0217 0.1396 -2.1547 2.6724 -8.5322 0.15313 2.0016 1.8668 0.93698 0.06668 

11,3,7 0.00553 13.926 -6.5385 0.29515 -11.139 -8.6761 -2.4959 0.28204 -7.6906 -13.931 -11.423 0.42614 

12,4,8 -8.2973 -1.8505 3.9832 0.20101 1.2191 2.3068 -6.6393 0.10511 -5.047 -4.5812 -11.635 0.26146 

 

 

 

Table 3.8: 3 meters way 

Circle 1 2 3 

Error xE  yE  zE  θE  xE  yE  zE  θE  xE  yE  zE  θE  

1,5,9 8.2371 17.013 -4.5953 0.19698 12.778 6.3152 -6.9821 0.28376 29.126 9.0809 -20.716 0.6598 

2,6,10 -6.1736 10.969 0.11138 0.23224 13.422 9.9015 -8.8295 0.15535 10.572 -3.2921 -3.4803 0.22778 

3,7,11 19.159 10.081 -1.4253 0.22004 18.467 -0.3134 0.79374 0.29121 10.072 3.1388 -23.418 0.29212 

4,8,12 4.2165 -0.3756 -14.214 0.18638 11.798 -9.6742 -22.481 0.30452 10.552 -13.581 -38.6 0.5902 

5,9,1 10.615 -15.64 -4.5953 0.19698 -0.92003 -14.224 -6.9821 0.28376 -6.6989 -29.765 -20.716 0.6598 

6,10,2 12.586 -0.13777 0.11138 0.23224 1.8642 -16.574 -8.8295 0.15535 -8.1371 -7.5098 -3.4803 0.22778 

7,11,3 0.84885 -21.633 -1.4253 0.22004 -9.505 -15.836 0.79374 0.29121 -2.3179 -10.292 -23.418 0.29212 

8,12,4 -2.4335 -3.4638 -14.214 0.18638 -14.277 -5.3802 -22.481 0.30452 -17.037 -2.3484 -38.6 0.5902 

9,1,5 -18.852 -1.373 -4.5953 0.19698 -11.858 7.9087 -6.9821 0.28376 -22.427 20.684 -20.716 0.6598 

10,2,6 -6.4122 -10.831 0.11138 0.23224 -15.286 6.6727 -8.8295 0.15535 -2.4351 10.802 -3.4803 0.22778 

11,3,7 -18.31 11.552 -1.4253 0.22004 -8.9622 16.15 0.79374 0.29121 -7.7544 7.1535 -23.418 0.29212 

12,4,8 -1.7829 3.8394 -14.214 0.18638 2.4792 15.054 -22.481 0.30452 6.4849 15.929 -38.6 0.5902 

 

Table 3.9: 3.5 meters way 

Circle 1 2 3 
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Error xE  yE  zE  θE  xE  yE  zE  θE  xE  yE  zE  θE  

1,5,9 -15.657 35.633 8.0942 0.49878 -15.125 12.533 1.522 0.30135 11.026 19.234 -12.48 0.17405 

2,6,10 0.98953 7.8926 -11.697 0.13627 7.1639 23.291 0.87403 0.23166 -11.823 28.841 5.8916 0.48857 

3,7,11 23.753 32.36 16.289 0.60536 12.79 37.184 -4.6346 0.4921 11.939 16.611 -29.687 0.35372 

4,8,12 12.252 3.5262 -11.335 0.11326 20.426 4.9037 -15.578 0.1209 26.624 -9.8499 -7.997 0.16266 

5,9,1 38.687 -4.2573 8.0942 0.49878 18.417 6.8317 1.522 0.30135 11.144 -19.166 -12.48 0.17405 

6,10,2 6.3405 -4.8033 -11.697 0.13627 16.588 -17.849 0.87402 0.23165 30.889 -4.1812 5.8916 0.48857 

7,11,3 16.149 -36.751 16.289 0.60536 25.807 -29.668 -4.6346 0.4921 8.4162 -18.645 -29.687 0.35372 

8,12,4 -3.0724 -12.374 -11.335 0.11326 -5.9665 -20.142 -15.578 0.1209 -21.842 -18.132 -7.997 0.16266 

9,1,5 -23.031 -31.375 8.0942 0.49878 -3.2919 -19.365 1.522 0.30135 -22.17 -0.0685 -12.48 0.17405 

10,2,6 -7.33 -3.0894 -11.697 0.13627 -23.752 -5.4411 0.87402 0.23166 -19.066 -24.66 5.8916 0.48857 

11,3,7 -39.901 4.3902 16.289 0.60536 -38.597 -7.5157 -4.6346 0.4921 -20.355 2.034 -29.687 0.35372 

12,4,8 -9.1799 8.8478 -11.335 0.11326 -14.46 15.238 -15.578 0.1209 -4.7818 27.982 -7.997 0.16266 

 

 

Table 3.10: 4 meters way 

Circle 1 2 3 

Error xE  yE  zE  θE  xE  yE  zE  θE  xE  yE  zE  θE  

1,5,9 35.073 -17.65 7.132 0.51387 44.934 -6.2662 1.0455 0.65838 8.3944 5.0895 -1.5009 0.12583 

2,6,10 20.153 -23.231 1.1207 0.4291 -34.588 -10.785 37.562 0.46747 2.7996 -28.096 10.936 0.28589 

3,7,11 2.5609 -19.555 11.884 0.31389 14.556 13.667 -17.75 0.16439 -32.19 23.335 -17.126 0.59922 

4,8,12 -7.7941 -27.202 4.5052 0.42811 -23.244 20.012 63.927 0.77213 -24.828 -35.116 -1.3092 0.57307 

5,9,1 -32.822 -21.549 7.132 0.51387 -27.893 -35.78 1.0455 0.65838 0.2105 -9.8145 -1.5009 0.12583 

6,10,2 -30.195 -5.8377 1.1207 0.4291 7.954 35.346 37.562 0.46747 -25.732 11.623 10.936 0.28589 

7,11,3 -18.216 7.5599 11.884 0.31389 4.5576 -19.439 -17.75 0.16439 36.304 16.21 -17.126 0.59922 

8,12,4 -19.661 20.351 4.5052 0.42811 28.953 10.124 63.927 0.77213 -17.998 39.06 -1.3092 0.57307 

9,1,5 -2.2513 39.2 7.132 0.51387 -17.04 42.047 1.0455 0.65838 -8.6048 4.725 -1.5009 0.12583 

10,2,6 10.042 29.068 1.1207 0.4291 26.634 -24.561 37.562 0.46747 22.932 16.472 10.936 0.28589 

11,3,7 15.655 11.996 11.884 0.31389 -19.114 5.7726 -17.75 0.16439 -4.1135 -39.545 -17.126 0.59922 

12,4,8 27.455 6.8512 4.5052 0.42811 -5.7084 -30.136 63.927 0.77213 42.825 -3.9433 -1.3092 0.57307 

 

Table 3.11: Summary of standard deviations 

Circle 1 2 3 
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Error 
xE  

(mm) 

yE  

(mm) 

zE  

(mm) 

θE  

(degree) 

xE  

(mm) 

yE  

(mm) 

zE  

(mm) 

θE  

(degree) 

xE  

(mm) 

yE  

(mm) 

zE  

(mm) 

θE  

(degree) 

2 9.5183 9.5183 4.8343 0.35139 11.302 11.302 9.2476 0.44897 4.5412 4.5412 8.2613 0.25596 

2.5 13.937 13.937 6.8697 0.35906 13.378 13.378 12.712 0.24136 9.8258 9.8258 13.506 0.29804 

3 11.825 11.825 17.319 0.41932 15.921 15.921 17.774 0.26521 11.991 11.991 18.029 0.33762 

3.5 12.681 12.681 16.877 0.35495 16.419 16.419 21.316 0.33417 18.942 18.942 21.47 0.46989 

4 25.944 25.944 25.902 0.5624 31.528 31.528 27.579 0.55922 31.721 31.721 17.936 0.67912 
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(a) With landmarks on circle 1 
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(b) With landmarks on circle 2 
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(c) With landmarks on circle 3 

Figure 3.6: Standard deviations 
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Besides 3 landmarks, error analysis with 4 landmarks is conducted and the results are 

listed in the following tables.  

 

 

 

 

 

 

 

Table 3.12: 2 meters away  

Circle 1 2 3 

Error xE  yE  zE  θE  xE  yE  zE  θE  xE  yE  zE  θE  

1,5,9 -1.758 10.3451 -7.8924 0.1053 -5.1218 5.7323 0.502 0.1962 -2.7477 1.1181 -2.613 0.0819 

2,6,10 -9.4911 13.5189 0.3281 0.4289 0.2328 14.244 3.6386 0.3753 -8.0938 0.1095 -3.0529 0.3532 

3,7,11 -2.4012 16.2551 4.0071 0.472 0.2533 12.0821 -9.0388 0.2681 2.0772 2.4702 10.4478 0.2675 

4,8,12 10.3451 1.7581 -7.8926 0.1053 5.732 5.1222 0.5006 0.1962 1.1181 2.7479 -2.6131 0.0819 

5,9,1 13.5189 9.4918 0.3272 0.4289 14.2384 -0.244 3.6427 0.3753 0.1072 8.1008 13.0681 0.3536 

6,10,2 16.2551 2.401 4.0074 0.472 12.0798 -0.252 -9.046 0.2681 2.4712 -2.0762 10.4475 0.2675 

7,11,3 1.7581 -10.3451 -7.8926 0.1053 5.1219 -5.7324 0.502 0.1962 2.7481 -1.1178 -2.6144 0.0819 

8,12,4 9.4904 -13.519 0.3295 0.4289 -0.2494 -14.2533 3.681 0.3762 8.0849 -0.1129 -3.0299 0.3526 

9,1,5 2.4009 -16.2551 4.0074 0.472 -0.2529 -12.0825 -9.0388 0.2681 -2.0767 -2.4709 10.4497 0.2675 

10,2,6 -0.3451 -1.7582 -7.8927 0.1053 -5.7322 -5.1218 0.5018 0.1962 -1.118 -2.7477 -2.6132 0.0819 

11,3,7 -3.5185 -9.4914 0.3268 0.4289 -14.2432 0.2396 3.6443 0.3754 -0.1077 -8.1016 -3.0645 0.3535 

12,4,8 -6.2549 -2.4013 4.0063 0.472 -12.08 0.2499 -9.0489 0.2681 -2.4697 2.077 10.4487 0.2675 

 

Table 3.13: 2.5 meters away  

Circle 1 2 3 
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Error xE  yE  zE  θE  xE  yE  zE  θE  xE  yE  zE  θE  

1,5,9 4.7172 16.6581 2.3244 0.2588 0.7631 12.1048 -8.5656 0.0146 -5.6797 10.8691 -0.5018 0.1695 

2,6,10 -1.301 25.1231 4.9753 0.4822 10.0576 18.8214 -3.0027 0.0846 -3.1164 8.1503 -8.3763 0.2903 

3,7,11 9.6413 11.98 1.6002 0.2117 18.2163 -0.7453 -7.6984 0.1924 9.9699 -6.061 -1.4574 0.2248 

4,8,12 16.6582 -4.7172 2.3237 0.2588 12.1049 -0.7625 -8.5656 0.0146 10.867 5.6754 -0.4945 0.1695 

5,9,1 25.1228 1.3013 4.9743 0.4822 18.8236 -10.0465 -13.045 0.0843 8.1539 3.1143 -8.3216 0.2895 

6,10,2 11.9605 -9.6463 1.5584 0.2109 -0.7491 -18.217 -7.7151 0.1924 -6.082 -9.9782 -1.5015 0.2256 

7,11,3 -4.7172 -16.6581 2.3243 0.2588 -0.7622 -12.1039 -8.5686 0.0145 5.6757 -0.8673 -0.4963 0.1695 

8,12,4 1.301 -25.1231 4.9753 0.4822 -10.0576 -18.8214 -3.0027 0.0846 3.1164 -8.1503 -8.3763 0.2903 

9,1,5 -9.6468 -11.9596 1.5551 0.2108 -18.2167 0.747 -7.7051 0.1924 -9.9695 6.077 -1.5085 0.2255 

10,2,6 -6.6582 4.717 2.3245 0.2588 -12.105 0.7628 -8.568 0.0145 -10.867 -5.6754 -0.4944 0.1695 

11,3,7 -25.122 -1.3011 4.9741 0.4822 -18.8222 10.0505 -3.0264 0.0844 -8.1514 -3.1167 -8.3723 0.2903 

12,4,8 -1.9448 9.6506 1.5305 0.2103 0.7496 18.2166 -7.7218 0.1924 6.0728 9.9725 -1.4829 0.2252 

 

 

 

Table 3.14: 3 meters away  

Circle 1 2 3 

Error xE  yE  zE  θE  xE  yE  zE  θE  xE  yE  zE  θE  

1,5,9 9.2554 16.6739 21.5476 0.5057 6.4364 8.0622 -0.4032 0.1263 -6.536 12.3671 20.8448 0.4657 

2,6,10 7.632 15.7263 14.4388 0.3729 21.8249 23.846 -5.6884 0.0856 -0.7341 24.901 -9.0946 0.2923 

3,7,11 2.8173 11.4115 -1.6223 0.1747 12.4404 12.5993 -21.953 0.2278 7.0791 -2.9651 -1.5461 0.155 

4,8,12 16.6736 -9.2552 21.5474 0.5057 8.0622 -6.4361 -0.4038 0.1263 12.369 6.5313 20.8488 0.4657 

5,9,1 15.7184 -7.6352 14.4698 0.3733 23.8453 -21.8246 -15.681 0.0856 24.905 0.7406 -9.1654 0.2929 

6,10,2 11.4128 -2.8143 -1.604 0.1748 12.5917 -12.4507 -1.9659 0.2278 -2.9675 -7.0874 -1.5112 0.1545 

7,11,3 -9.2555 -16.674 21.5478 0.5057 -6.4363 -8.0623 -0.4039 0.1263 6.5365 -2.3686 20.8391 0.4656 

8,12,4 -7.633 -15.7195 14.4235 0.3726 -21.827 -23.8448 -5.6891 0.0856 0.7441 -4.9073 -9.1508 0.2929 

9,1,5 -2.816 -11.4117 -1.6135 0.1748 -12.4423 -12.5982 -1.9542 0.2278 -7.0791 2.9651 -1.5463 0.155 

10,2,6 -16.674 9.2554 21.5477 0.5057 -8.0622 6.4363 -0.4038 0.1263 -2.3691 -6.5372 20.8398 0.4656 

11,3,7 -15.718 7.6353 14.469 0.3733 -23.842 21.8305 -15.661 0.0859 -4.8995 -0.7322 -9.1062 0.2923 

12,4,8 -1.4135 2.8142 -1.5773 0.1749 -12.6058 12.4371 -1.9099 0.2272 2.9527 7.0716 -1.4761 0.1539 

 

 

Table 3.15: 3.5 meters away  
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Circle 1 2 3 

Error xE  yE  zE  θE  xE  yE  zE  θE  xE  yE  zE  θE  

1,5,9 -3.7506 16.6903 5.9739 0.2069 -4.5698 6.2434 -6.864 0.088 25.4035 9.1058 14.0537 0.4613 

2,6,10 13.8345 14.2228 5.8792 0.2411 15.4063 15.6661 2.3059 0.2129 26.8478 -2.032 -0.8553 0.3476 

3,7,11 13.0142 -4.4684 11.6744 0.2616 2.6168 24.3667 -9.7729 0.3711 14.3337 -4.7069 -3.9566 0.3264 

4,8,12 16.6911 3.7505 5.9715 0.2068 6.2442 4.5702 -6.8643 0.088 9.1058 -5.4036 14.0535 0.4613 

5,9,1 14.2228 -13.8346 5.879 0.2411 15.7137 -15.39 2.1483 0.2108 -2.003 -6.8273 -1.0162 0.3474 

6,10,2 -4.4711 -13.0193 11.6623 0.2615 24.3646 -2.6191 -9.7839 0.3711 -4.7128 -4.3408 -3.9938 0.3269 

7,11,3 3.7506 -16.6912 5.9717 0.2068 4.57 -6.245 -6.8632 0.088 -5.4035 -9.1059 14.0534 0.4613 

8,12,4 -3.8347 -14.2229 5.878 0.2411 -15.3965 -15.7028 2.1455 0.2107 -6.8342 2.0043 -1.0045 0.3475 

9,1,5 -3.0205 4.4721 11.668 0.2616 -2.6189 -24.3644 -19.783 0.3711 -4.3411 4.7134 -3.9867 0.3268 

10,2,6 -6.6915 -3.7508 5.9708 0.2068 -6.2447 -4.5697 -6.8627 0.088 -9.1058 25.4035 14.0538 0.4614 

11,3,7 -4.2225 13.8349 5.8801 0.2411 -15.6779 15.4029 2.3289 0.2132 2.0178 26.8374 -0.9337 0.3475 

12,4,8 4.4671 13.0161 11.6803 0.2617 -24.3667 2.6168 -9.7728 0.3711 4.7086 14.335 -23.957 0.3264 

 

 

Table 3.16: 4 meters away  

Circle 1 2 3 

Error xE  yE  zE  θE  xE  yE  zE  θE  xE  yE  zE  θE  

1,5,9 35.4853 6.7436 -15.8298 0.5417 20.8644 13.4147 -12.8503 0.3377 45.81 -3.2013 -0.1092 0.66 

2,6,10 31.2703 1.1294 13.3179 0.3773 63.9709 -0.6741 -28.9919 0.7973 37.9122 -1.9537 -9.2286 0.5867 

3,7,11 25.9205 -24.8835 11.298 0.475 13.0497 16.0023 -36.3094 0.5125 17.9025 -5.3291 -4.6888 0.6319 

4,8,12 6.7436 -35.4853 -15.83 0.5417 13.4163 -20.8687 -12.8435 0.3377 -3.2006 -5.8142 -0.0985 0.66 

5,9,1 1.1346 -31.2703 13.2897 0.3771 -0.6658 -63.9698 -29.0438 0.7974 -1.8755 -7.9068 -9.6885 0.5885 

6,10,2 -4.9026 -25.9247 11.2934 0.4752 16.0017 -13.0464 -36.3011 0.5124 -35.348 -7.9169 -4.7327 0.6325 

7,11,3 -5.4886 -6.7456 -15.8258 0.5418 -20.8649 -13.4111 -12.8425 0.3377 -5.8104 3.2037 -0.1037 0.66 

8,12,4 -1.2706 -1.1293 13.3213 0.3773 -63.9719 0.6772 -29.0008 0.7973 -7.9193 11.9712 -19.282 0.5872 

9,1,5 -5.9261 24.8928 11.3006 0.4751 -13.0485 -15.9937 -36.3153 0.5126 -7.9106 35.3423 -14.676 0.632 

10,2,6 -6.7425 35.4855 -15.8273 0.5417 -13.417 20.8644 -12.8414 0.3377 3.2006 45.8138 -0.0996 0.66 

11,3,7 -1.1317 31.271 13.3082 0.3772 0.676 63.975 -28.9974 0.7973 11.9662 37.9277 -9.2338 0.5869 

12,4,8 24.8838 25.9207 11.2979 0.475 -16.0022 13.0493 -36.3083 0.5125 35.363 17.9456 -4.8442 0.6334 

 

 

Table 3.17: Summary of standard deviations 
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Circle 1 2 3 

Error xE  yE  zE  θE  xE  yE  zE  θE  xE  yE  zE  θE  

2 10.4318 10.432 5.1139 0.3732 8.2456 8.2485 5.6381 0.2895 3.7565 3.7607 9.7708 0.2601 

2.5 13.955 13.9581 3.2958 0.3386 12.4831 12.4815 10.0389 0.1216 7.7764 7.776 12.5081 0.2336 

3 11.5988 11.5998 15.0076 0.3766 15.6249 15.6261 15.5739 0.1582 12.078 12.0784 17.6359 0.3298 

3.5 12.0815 12.0815 8.2955 0.2376 13.8081 13.805 12.1556 0.2519 16.7356 16.7335 17.2452 0.3831 

4 24.4118 24.4105 13.6052 0.4696 29.2531 29.253 27.8375 0.5809 29.6063 29.6089 15.2094 0.6273 
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(a) With landmarks on circle 1 
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(b) With landmarks on circle 2 
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(c) With landmarks on circle 3 

Figure 3.7: Standard deviations 
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3.3 Conclusion 

This chapter introduces a novel effective localization algorithm for mobile robots based 

on one single image of a few identified landmarks taken by an onboard camera. The visual angle 

between two landmarks can be derived from their projections in the same image. The distances 

between the optical center and the landmarks can be calculated from the visual angles and the 

known landmark positions based on the law of cosine. The robot position can then be determined 

using the principle of trilateration. Finally, the robot orientation is computed from the robot 

position, landmark positions and their projections. 

In order to confirm effectiveness and verify accuracy of the localization algorithm, an 

experiment is designed and conducted with our BlueFox camera equipped at a Pioneer 3 DX 

robot. The results show algorithm errors under different circumstances. Overall speaking, the 

closer the robot is to the landmarks, the smaller the errors are. However, we didn’t see very 

different accuracies when using landmarks on different circles. Moreover, using an extra 

landmarks (4 landmarks) also doesn’t lead to obvious improvement of accuracy, most likely the 

errors caused by noise is too big and hide the accuracy improvement. And at last, generally, the 

overall accuracy of the trilateration algorithm is at a very good level and can be used for real 

indoor robot navigation. 
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Chapter 4  Multi-robot Deployment, Collision Avoidance and 

Experimental Study on Pioneer 3 DX 

 This chapter focuses on a decentralized self-deployment scheme for a team of 

nonholonomic mobile robots forming sensor coverage in a targeted environment while 

maintaining communication connections and avoiding collisions. A study of our algorithm and 

another potential field algorithm incorporated in our uniform framework is made. Collision 

avoidance is discussed and an effective collision avoidance scheme is proposed. 

A multi-robot system consists of a collection of networked mobile robots collaborating in 

task execution. Multi-robot systems have numerous applications, such as surveillance, 

environment monitoring, disaster rescue, deep sea and planetary exploration, etc. Many of these 

applications require deploying a team of mobile robots, which are equipped with sensors and/or 

manipulators, into an environment to provide desired sensory coverage and perform 

collaborative tasks while maintaining communication connections. 
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The rest of this chapter is organized as follows. To make the chapter self-contained, 

Section 4.1 will review our decentralized control framework for deploying multiple 

nonholonomic mobile robots. Section 4.2 will introduce a control law for accomplishing desired 

sensor coverage while maintaining communication connections, simulations are conducted to 

verify effectiveness of our method. In order to verify generality of the control framework, 

another potential field algorithm is incorporated and results are listed. Section 4.3 will discuss 

collision in deployment process and a new collision avoidance scheme is proposed to solve this 

problem. Simulation results show effectiveness of our method. Section 4.5 will summarize this 

work.  

4.1 Control Framework 

The work of this chapter focuses on the situation that a team of nonholonomic mobile 

robots are deployed into a general 2D environment, from a compact initial system gathering, to 

form desired sensor coverage while maintaining necessary communication connections. 

Adopting a simplified model for mobile robots in a 2D space, we assume that the state of a 

mobile robot Ri is defined by its position coordinates (xi,yi), its orientation angle θi and their time 

derivatives in a global frame of reference defined in this space. 

For a team of N nonholonomic wheeled robots to deploy into a targeted 2D environment 

to establish sensor coverage while maintaining communication connections, the desired global 

configuration of the whole multi-robot system will be at first broken down into a collection of 

desired local configurations, each of which is defined in the neighborhood of an individual robot 

Ri. Then Ri will self-deploy towards the desired local configuration by moving in the direction of 

reducing the difference between the desired and instantaneous local configurations, based on the 

detection of the state of its neighborhood. 
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An optimal self-deployment motion of Ri can be defined according to Hamilton’s 

principle in classical mechanics [42]. To do that, we at first define an extended Lagrangian for Ri 

as 

iii
E
i UVTL −−=                                      (4.1) 

where Ti denotes the kinetic energy, Vi denotes the actual potential energy, and Ui denotes an 

artificial potential energy which moves Ri towards the desired the local configuration. In general, 

Ui is defined according to the difference between the desired and instantaneous local 

configurations, based on the online sensory and communication feedback of the state of Ri 

neighborhood.  

Then, based on the Hamilton’s principle [42], the optimal motion of Ri should minimize 

the action of Ri during the deployment process, i.e. 

∫= 2

1)(),(),(
minarg)](),(),([

t

t

E
ittytxiii dtLttytx

iii θ
θ       (4.2) 

Meanwhile, due its nonholonomic nature, Ri must satisfy the nonholonomic constraint 

during its movement 

0cossin =− iiii yx θθ &&        (4.3) 

which means that it can only have a non-zero speed in its longitudinal direction (i.e. along its 

orientation) while its side speed is always zero. Moreover, to guarantee the convergence of Ri 

towards its desired local configuration, a virtual Rayleigh’s dissipation function is adopted to 

provide the necessary damping  

)(
2
1 222

iiiiyiixi kykxkF θθ &&& ++=       (4.4) 

where kix, kiy and kiθ are the damping coefficients associated with the linear and angular 

velocities of Ri respectively.  
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Based on the above considerations and using the technique of variational calculus [42], 

we can derive the following Lagrange’s equation for Ri 
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are the generalized forces associated with x, y and θ, which define the control law for the self-

deployment motion of Ri. At each time t, Ri can online calculate its desired acceleration for the 

deployment motion from (5) based on the state of its neighborhood.  

Equation (4.5) provides a general framework for controlling the self-deployment motion 

of individual nonholonomic mobile robots during the multi-robot deployment process. In 

practice, the specific control law needs to be defined according to the coverage requirement of 

the specific multi-robot deployment task. By moving each mobile robot in the way defined by its 

equation of self-deployment motion, eventually the resulting local coverage in the neighborhoods 

of all the robots altogether will form a global multi-robot coverage to the targeted environment. 
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4.2 Study of Two Kinds of Potential Field Forces 

4.2.1 Control Laws 

In order to form the sensor coverage over a target environment, a desired configuration of 

the multi-robot system can be that each mobile robot reaches desired distances with neighboring 

robots. 

Considering the limitations in robot sensing and communication, we define a desired 

distance aij between a robot Ri and a neighboring robot Rj as a designated distance over which an 

enough far and reliable in-between sensor coverage can be established and a reliable in-between 

wireless communication connection can be maintained. In reality, those robots have limited 

sensing ranges, and, due to noise and loss of resolution, the sensing performance has some 

unreliability and usually degrades with the distance [45-53]. It is more realistic to define a 

confident sensing range for Ri based on sensor calibration such that Ri has a sufficient sensing 

confidence within this range. Meanwhile, in order to maintain communication connections with 

nearby robots, Ri must ensure that the signals from neighboring robots are received with 

sufficient signal to noise ratio such that a signal transmitted by a nearby robot Rj can be 

successfully received and decoded by Ri. The determination of a reliable communication range is 

far from trivial, because it is easily affected by various environmental factors in real time, such 

as surrounding objects and atmospheric conditions. However, a communication calibration and a 

conservative estimation are helpful. Moreover, because the communication range is usually 

much larger than a confident sensing range, the aij determined based on the sensing confidence is 

usually sufficient for both the sensor coverage and communication maintenance purposes. 

In order to approach and maintain the desired distance, the control law should be defined 
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in such a way that, when the distance dij between Ri and Rj is smaller than aij, an repulsive force 

should be applied to push the robots apart from each other, and the force should increase as the 

distance decreases; when the distance between Ri and Rj is greater than aij, an attractive force 

should be applied to pull the robots towards each other, and the force should increase as the 

distance increases.  Based on this consideration, we can define the artificial force acting on Ri by 

all Rj in its neighborhood as: 
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where 22,, ijyijxijdiyjyijyixjxijx +=−=−= , c is a positive real exponent, sign(.) denotes the 

sign of the enclosed expression, ki denotes the force coefficient for Ri, χi denotes the torque 

coefficient for Ri, and wij denotes a coefficient weighting the effect of Rj on Ri with 1
j

=∑ ijw . 

Here, fiθ defines an artificial torque to steer Ri towards the center of its neighborhood, which 

helps to balance the local configuration. 

Besides the power function force law in (4.7), inverse-power force law is also widely 

adopted [24,26]. In the context of approaching and maintaining the desired distance, the force 

acting on Ri by all Rj in its neighborhood can be defined as: 
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where 
rc

ij

ri

d
k

 defines an repulsive force added on Ri by Rj, which makes the robots cover as much 

area as possible, and 
ac

ijij

ijijai

db
dbsignk

||
)(

−

−
 defines an attractive force added on Ri by Rj when 

ijij bd < , which suppresses the coverage gap between the robots to be less than a prohibitive 

distance bij. Here, cr and ca are positive real exponents, while kri and kai are repulsive and 

attractive force coefficients for Ri respectively. In particular, when cr=ca and krij=kaij, we can set 

bij=2aij, because then hix= hiy=0 when the distance dij between Ri and Rj reaches the desired 

distance aij. 

4.2.2 Initial Robots Generation 

Initial coordinates and orientations of robots play a significant role in deployment process 

and greatly affect eventual results. In order to better evaluate the algorithms, these coordinates 

and orientations have to be random. Besides, considering that the robot’s shape, distance 

between centers of robots should be at least bigger than diameter of the robot. The generation of 

the initial positions and orientations is described as following.  

Firstly, a pair of random coordinates [ , ]i start endx x x∈ and [ , ]i start endy y y∈  with a 

random orientation [ , ]iθ π π∈ −  are assigned to the first robot, then another set of random 

coordinates and orientation are generated in the same range and compared with the first one. To 

make sure they are not overlapped, Euclidean distance between these two pairs of coordinates 

should be bigger than 2r (r is radius of robots). Otherwise, this set of numbers is discarded and 

another set of random numbers will be generated until qualified numbers are obtained. 

Coordinates and orientations of all the remaining 48 robots are obtained in the same way.  
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Apparently, initial deployment area should be big enough for robots to be located 

properly by using our generating method. The area should be at least but not limited to number 

of robots (e.g., 50) times single robot’s physical coverage area ( 2rπ ).  For example, if robot’s 

radius is 0.3m and we have 50 robots, then the threshold is 2 250 0.3 14.1372mπ× × = . Of course 

in order to get this deployment done quickly, it is usually necessary to set a much bigger area. 

(How large the area is required for a quick deploy is a topic that needs further discussion and 

beyond scope of this chapter).  

In this chapter, 4 different area sizes will be tested for algorithm verification, 5m×5m, 

6m×6m, 7m×7m and 8m×8m. 

4.2.3 Neighborhood Definition  

Definition of neighborhood is also critical to algorithm performance, we will go through 

the simulations using two different neighborhood definitions.  

The first definition of neighborhood is called traditional definition. It is commonly 

accepted that, for a robot Ri, robots that are within its sensing or communication range are 

considered its neighbors. This is our first definition of neighborhood, which is a circle with Ri in 

its center.  

However, this definition sometimes results in too many neighbors, especially in initial 

stage of deployment when all robots stay very close. This situation not only causes delays in 

communications and decision making, but greatly increases risk of unexpected robot behaviors 

due to combined effect of interactive forces. Alternatively, a topological neighborhood of Ri is 

defined according to a topological graph representation of the multi-robot system [32,45], which 
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limits the neighborhood of Ri to its one-hop neighbors on the graph, and this is our second type 

of neighborhood.  

4.2.4 Other Physical Constraints  

In practice, a robot always has velocity and acceleration limits. In other words, a robot is 

subject to its moving capability. This constraint is taken into account in our situation 
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where vmax is robot’s maximum velocity (either linear or angular) and amax is its maximum 

acceleration (either linear or angular). 

 In our algorithm, component accelerations in x and y directions are calculated separately, 

so when it is detected that resulted acceleration is bigger than the limit, it is necessary to derive 

each direction’s acceleration limits accordingly.  

 As we know, nonholonomic robots are subject to (4.3), from which we can derive that: 

 0sincoscossin =⋅+−⋅+ θθθθθθ &&&&&&&& yyxx                                            (4.11) 

 Combing with: 

max
22 ayx =+ &&&&                                                                                            (4.12) 

We get following: 

2)cossin(sincos)cossin( θθθθθθ xykxyy &&&&&& −−±−−=                      (4.13) 
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This is the real accelerations in x and y directions if calculated acceleration is bigger than 

acceleration limit.  

4.2.5 Simulation Results  

In this simulation, number of critical connections for Control Law I is k=6, radius of 

robot r=0.3m, initial deployment area size is 7m×7m, kdegree=kcover=1, mass of robot is 12kg, 

Rc=6m (to make final distances between robots equal to 3 (when fdegree+fcover=0)), time interval 

between each step is 0.2s, maximum linear and angular accelerations are 0.2m/s2 and 5 degrees/ 

s2, maximum linear and angular velocity limits are 0.4m/s and 5 degree/s, damping coefficients 

5ix iyk k= = , 1ik θ = . The complete results are listed as following, and final configuration of 

robots, average distance and number of collisions.  

Figure 4.1 and Table 4.1 show results of Control Law I and II’s performance. In this 

example, order of both algorithms is 1. In Figure 4.1, the first and second row show algorithms’ 

performance under traditional neighborhood definition, which considers all robots within 

communication range as its neighbors, the third and fourth row show the performance under the 

modified definition of neighborhood, which is generated using Gabriel graph. The left column 

shows final configurations and right column shows average distances at different steps.  As we 

can see that the performance has been improved significantly either in average distance 

convergence or final configuration. Table 4.1 shows number of collisions under different 

neighborhood definitions with different control laws, and it also confirms the conclusion. 

In the tables, “N/A” means collisions still exist after the given period.  
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Figure 4.2 and Table 4.2 show results of the two different control laws with second order 

definition. Figure 4.3 and Table 4.3 show results of the two different control laws with third 

order definition. The figures illustrate that Gabriel neighborhood definition is superior to 

traditional neighborhood definition which is based on communication range. Gabriel 

neighborhood is better at picking the most important neighbors and helping potential field 

algorithm to better deploy robots, making the deployment more organized and even. Besides, 

order of the algorithm also partly decides the final results. From our simulation, algorithm with 

order 2 is the best since it has the best final deployment and collisions are the least. 
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Figure 4.1:  Final deployment and average distances,  

traditional neighborhood VS. Gabriel neighborhood, n=1 

 

Table 4.1: Number of collisions when n=1 

Control 
Law 

Neighborhoo
d Order 

Number of 
maximum 
collisions 

Collisions 
disappear at 

step: 
I   Traditional 1 21 N/A 
II Traditional 1 18 N/A 
I Gabriel 1 4 190 
II Gabriel 1 12 171 
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Figure 4.2: Final deployment and average distances,  

traditional neighborhood VS. Gabriel neighborhood, n=2 

 

Table 4.2: Number of collisions when n=2 

Control 
Law 

Neighborhoo
d Order 

Number of 
maximum 
collisions 

Collisions 
disappear at 

step: 
I   Traditional 2 17 834 
II Traditional 2 20 569 
I Gabriel 2 2 29 
II Gabriel 2 7 242 
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Figure 4.3: Final deployment and average distances,  

traditional neighborhood VS. Gabriel neighborhood, n=3 

 

Table 4.3: Number of collisions when n=3 

Control 
Law 

Neighborhoo
d Order 

Number 
of 

maximum 
collisions 

Collisions 
disappear at step: 

I   Traditional 3 13 895 
II Traditional 3 26 887 
I Gabriel 3 9 N/A 
II Gabriel 3 4 223 
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4.2.6 Real Experiment  

In this section, a group of 5 well calibrated Pioneer 3 DX robots is used to verify 

performance of our algorithm. The experiment takes most settings used in simulations, including 

velocity and acceleration limit, mass of robot, radius of robot. The desired distance between 

robots is 1.2 meters. Our own algorithm is implemented in C++ and the order of the algorithm is 

2, as we picked in the last section.  

Three experiments are conducted in this section. The 5 Pioneer 3 DX robots are given 

three different sets of initial positions and orientations respectively. As we can see from the 

results, the robots deploy to the environment smoothly. In all three experiments, after around 20 

seconds, distances among robots are very close to our setting desired distance and no collision is 

observed. 

 

 

(a) Initial distribution 
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(b) Distribution after 40s 

Figure 4.4:  Experiment 1 

 

 

 

(a) Initial distribution 
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(b) Distribution after 40 seconds 

Figure 4.5: Experiment 2 

 

 

(a) Initial distribution 
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(b) Distribution after 40s 

Figure 4.6: Experiment 3 

 

4.2.7 Conclusion  

Targeting robust deployment of multiple mobile robots under realistic constraints, this 

section has proposed a decentralized control scheme for reliably accomplishing desired sensor 

coverage among a team of nonholonomic mobile robots while maintaining necessary 

communication connections. The results show that robots are successfully deployed into an open 

space in an even order if certain parameters are appropriately picked, this applies to both 

methods- our method and Poduri’s method.  

The collisions during deployment are also given concern and numbers of collisions are 

collected in various set of simulations. The results inspired us to think about a way to avoid 

collisions. Actually, collisions are more likely to happen with large and dense initial population. 

For example, in our real experiment with 5 Pioneer 3 DX robots, no collision happened. 

The real experiments also prove that our algorithm without consideration of collision 

avoidance can be used in teams with fewer numbers of members.   
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However, in order to completely solve deployment problem, collision avoidance is an 

inevitable step. Our next step is to propose a guide of designing collision avoidance schemes that 

are able to avoid collisions under any given circumstance. 

4.3 Collision Avoidance Scheme I – Slowing Down 

Collision avoidance is a fundamental problem in multi-robot deployment. Most of 

existing potential/force field methods rely on repulsive forces among robots and obstacles to 

avoid collisions. However, this scheme has some limitations. First, the control force on Ri 

combines the effects of all the other robots in Ri neighborhood. The combined force, due to the 

complex interactions between Ri and its neighbors, may still attracts Ri towards Rj though Rj 

individually tries to push Rj away. Second, as a second-order dynamic system, a mobile robot 

has a delayed response to the changes in the potential/force field. Because the robot velocity is 

the time integration of the acceleration control, the effect of the acceleration control on collision 

avoidance will take place with some delay. Thus, it is difficult for two nearby robots, which 

approach each other very fast, to avoid collisions. It is even more difficult to handle when more 

robots are in the risk of collision. Third, when robots are very close to each other, the repulsive 

forces can be huge, which often result in fast and aggressive movements of robots and make it 

difficult to maintain the desired task-specific correlation among the robots. Collision avoidance 

becomes even more challenging for nonholonomic mobile robots, due to the constraint on their 

instantaneous motion directions. Moreover, the constraints on maximal robot velocity and 

acceleration add some uncertainty to collision avoidance control. 

We take a convenient and effective solution to the collision avoidance problem in the 

deployment of multiple nonholonomic mobile robots by letting a mobile robot slow down 

quickly once it detects risk of collision. We set an alerting inter-robot distance. When a robot 
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detects other robots within this distance by either sensing or communications, it will check if 

they are indeed moving closer. If so, the robot will trigger a collision avoidance control law; if 

not, the robot continues with its normal deployment process. Unlike other motion or position 

based collision avoidance schemes, our method fits into the acceleration control framework 

discussed in previous sections, and maintains the smoothness of robot movement, which is more 

realistic to physical robot systems. Though the deployment process may slow down locally and 

temporarily, it generally results in a smooth deployment process and a better equilibrium 

coverage configuration. 

Apparently, it is unnecessary to do collision avoidance if two robots are moving away 

from each other, even though they are very close in distance. Therefore, the collision avoidance 

control does not need to be turned on all the time, in order to maximize the efficiency of 

deployment. This decision can be made based on the calculation of the relative position and 

movement between the two robots. From Figure 4.7, we can see that, for two robots Ri and Rj, 

we can determine if Ri and Rj are approaching each other based on the angle α between pij and vij 

)
||||

arccos(
ijij

ijij

pv
pv ⋅

=α ,                                                       (4.18) 

where “⋅” denotes the dot product, and “| |” denotes the norm. Here pij is the position of Rj 

relative to Ri, and vij is the velocity of Ri relative to Rj. In particular, Ri and Rj are getting closer 

to each other only if α>90° (Figure 4.7a); they are passing by each other when α=90° (Figure 

4.7b); they are moving apart from each other if α<90° (Figure 4.7c).  
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Figure 4.7: Collision detection 

 

Upon the confirmation of the risk of collision, i.e. at least another robot is within the 

alerting distance and approaching Ri, a resistive control force will be added to the deployment 

control input of Ri as 
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where kci is the force coefficient for Ri. Comparing with (4.5), this is equivalent to increasing the 

damping coefficients of the dissipation function, which slows down Ri. Moreover, because of the 

symmetry in collision detection, i.e. if Ri detects the risk of colliding with Rj, Rj should also 

detect the risk of colliding with Ri, the robots with the risk of collisions will all slow down. 

Consequently the potential collisions will be suppressed.  
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By locally slowing down the robots with collision risks, the proposed collision avoidance 

scheme allows those robots without collision risks to spread out first. Consequently the local 

robot density will be reduced and the risk of collisions will then diminish. Once the risk of 

collision disappears, Ri will resume its normal self-deployment process by removing the resistive 

control force (4.19). In this way, the proposed scheme helps robots avoid collisions while 

maintaining the deployment progress.   

4.3.1 Results for Holonomic Robots 

Results for holonomic robots will provide us evidence how our collision avoidance 

schemes works on different kinds of robots. Generally, holonomic robots should perform better 

than nonholonomic robots in spreading out since it has ability to move at any direction as desired. 

In contrast, nonholonomic’s movements are subject to nonholonomic constraints, and this 

restrains its ability to respond quickly to risk of collisions.   

To better evaluate performance of our scheme, results before and after collision 

avoidance schemes applied are listed in the same figure.   

50 holonomic mobile robots are used in the simulations. Each robot has an approximated 

circular footprint with a radius of 0.3m and a mass of 12kg. For deployment control, both 

definitions of the control force in (4.7) and (4.8) were tested. The involved common coefficients 

were set as c=ca=cr=2, ki=kri= kai=1, kci=1.2, ki=2, wij=1 and i=1. Moreover, when (4.7) is 　

applied, kix=kiy=0.8; when (4.8) is applied, kix=kiy=1.2. In addition, each robot allows a maximal 

linear acceleration of 0.2m/s2, a maximal angular acceleration of 5degree/s2, a maximal linear 

speed of 0.4m/s, and a maximal angular speed of 5degree/s. Initially, the robots are uniformly 

distributed in a 3.5m×3.5m area with 0.25m≤dij≤0.35m among neighboring robots. For sensor 
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coverage, each robot intends to approach a desired distance of 3m with neighboring robots. 

However, it will switch to the collision avoidance mode when its distance with any neighboring 

robot gets below the alerting distance of 0.9m. We set the time interval for state update and 

decision making as 0.2s. Totally 12 trials with different random initial distributions of the robots 

were made for each of the control forces (4.7) and (4.8) with and without applying the collision 

avoidance strategy. For each trial, 2000 steps of system evolution were recorded. 

Figure 4.8 and Figure 4.9 show the typical deployment outcomes of the proposed scheme 

using the control forces defined in (4.7) and (4.8) respectively but without taking the proposed 

collision avoidance strategy. It shows that both definitions of the deployment control law lead to 

a satisfactory team coverage configuration (typical configurations are displayed in Figure 4.8a 

and Figure 4.9a), and, in particular, the inter-robot distance converges to the desired coverage 

distance (average curves over the trials are displayed in Figure 4.8b and Figure 4.9b).  

However, neither of the deployment control laws completely eliminated the collisions. In 

the simulations, with control law (4.7), up to 4 collisions were observed at some moments; 

control law (4.8) turns out better in collision avoidance, but 1 to 2 collisions were consistently 

observed across the trials. These collisions mostly happened at the early stage of the deployment 

process when the involved robots were densely gathered, within the first 300 steps for control 

law (4.7) and within the first 200 steps for control law (4.8).  

Further simulations showed that, by applying the proposed collision avoidance strategy, 

collisions were completely avoided across the trials. Figure 4.10 and Figure 4.11 show the 

typical deployment outcomes of the proposed scheme using the control forces defined in (4.7) 

and (4.8) respectively and taking the proposed collision avoidance strategy. It shows that the 

combination of deployment control and collision avoidance control leads to a satisfactory team 
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coverage configuration (as displayed in Figure 4.10 and Figure 4.11) and convergence of inter-

robot distance (as displayed in Figure 4.10b and Figure 4.11b) while avoiding collisions.  

In particular, the convergence rates of the average inter-neighbor distance under different 

control laws before/after applying the collision avoidance strategy were recorded, and a set of 

average data across different trials is presented in Table 4.4. Here we define the rate of 

convergence as the number of steps for the robot team to settle within 5% of the equilibrium 

average inter-neighbor distance (i.e. settling time). The data show the compromise in the rate of 

convergence as the result of applying the collision avoidance strategy. 
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(b) Convergence of average inter-neighbor distance 

Figure 4.8: Deployment simulation with control law (4.7) only 
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Figure 4.9: Deployment simulation with control law (4.8) only 
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(b) Convergence of average inter-neighbor distance 

Figure 4.10: Deployment simulation with control law (4.7) and (4.19) 
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Table 4.4: Rate of convergence 

Control law Collision avoidance 
strategy applied?

Settling time 
(steps)

(4.7) No 171 
(4.7) Yes 356 
(4.8) No 148 
(4.8) Yes 263 
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(b) Convergence of average inter-neighbor distance 

Figure 4.11: Deployment simulation with control law (4.8) and (4.19) 
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4.3.2 Results for Nonholonomic Robots 

For nonholonomic robots simulation, basically all parameters remain the same, excepting 

that all robots are subject to nonholonomic constraints here. Figure 4.12 and Figure 4.13 show 

the typical deployment outcomes of the proposed scheme using the control forces defined in (4.7) 

and (4.8) respectively but without taking the proposed collision avoidance strategy. Figure 4.14 

and Figure 4.15 show the deployment outcomes with collision avoidance strategy applied.  

The results are very similar to what we got in the previous section. Before taking 

collision avoidance strategy on both control laws, control law (4.7) has up to 8 collisions over 

time, control law 4.8 is better but 1 to 2 collisions are observed over the whole deployment 

process. Collisions are completely removed after collision avoidance strategy is applied and 

Figure 4.14 and Figure 4.15 show the outcomes. If we use the same definition of convergence 

rate as used in the previous section, the settling steps are listed in Table 4.5.  
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Figure 4.12: Deployment simulation with control law (4.7) only 
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Figure 4.13: Deployment simulation with control law (4.8) only 
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Figure 4.14: Deployment simulation with control laws (4.7) and (4.19) 
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Figure 4.15: Deployment simulation with control laws (4.8) and (4.19) 

 

Table 4.5: Rate of convergence 

Control law Collision avoidance 
strategy applied? 

Settling time 
(steps) 

(4.7) No 655 
(4.7) Yes 672 
(4.8) No 562 
(4.8) Yes 685 
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4.3.3 Real Experiment for Nonholonomic Robots 

Experiments were also conducted on real robots to verify the effectiveness of the 

proposed deployment scheme under physical operational conditions, in particular with robot state 

estimation error, communication delay and operational asynchrony among the robots. 

The robot team in our experiments consisted of 5 Pioneer 3-DX and 4 Amigobot robots 

made by Mobile Robots Inc (Figure 4.16). They are differential-drive robots under the 

nonholonomic kinematic constraint. Each Pioneer 3-DX robot is controlled by an onboard laptop 

PC, while each Amigobot is controlled by an offboard PC through wireless communications. 

Each robot is self-localized through odometry (with onboard encoders), and the data of robot 

states are exchanged among robots (in fact controlling computers) wirelessly through the Wi-Fi 

(IEEE 802.11) protocol.  

Some control-related parameters include the radius of each Pioneer 3-DX 0.3m, mass of 

each Pioneer 3-DX 12kg (including onboard PC), radius of each Amigobot is 0.1m, mass of each 

Amigobot is 3kg, and involved coefficients c=ca=cr=2, kix=kiy=1, kiθ=2, kij=krij=kaij=1, kri=1.2, 

wij=1 and χi=1. Moreover, we set each robot with a maximal linear acceleration of 0.2m/s2, a 

maximal angular acceleration of 5degree/s2, a maximal linear speed of 0.4m/s, and a maximal 

angular speed of 5degree/s. Initially, the robots are uniformly distributed in a 3m×3m area, with 

the center-to-center distance between neighboring robots ranging from 0.7m to 0.9m. We set the 

desired distance between two neighboring robots as 1.3m. When its distance with any 

neighboring robot gets below the safety distance of 0.9m, a robot will switch to the collision 

avoidance mode.  

Comparing with simulations, experiments involve more uncertainties. First, motors have 

some delays in responding to the control input. Second, communications are not in real time, 
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data packets are lost from time to time, and communication delay happens due to constant 

position and direction change of the robots. Third, odometry-based robot self-localization has 

accumulative error, even without considering the skidding between wheels and the floor. It is 

assumed that the first and second factor don’t affect overall moving trend of robots. Due to the 

third factor, each experiment is not allowed to last too long. Our experiment typically lasts 8 

minutes and during this period of time we assume the location and orientation information 

derived from encoders are accurate enough.  

Figure 4.16 to Figure 4.19 show the experimental results of deploying the 10-robot team 

into an indoor environment. 

 

 

Figure 4.16: Initial deployment of robots 
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Figure 4.17: After 2 minutes 

 

Figure 4.18: After 4 minutes 
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Figure 4.19: After 6 minutes 

 

In order to make the results clearer, robots’ positions and orientations are recorded and 

the data is redrawn. Figure 4.20 shows initial distribution of robots, Figure 4.21 and  Figure 4.22 

show the distribution after 1000 and 2000 steps respectively (each step represents around 200ms, 

there are totally 3200 steps, so the whole data last 640s, a little more than 10 minutes), Figure 

4.23 shows final distribution.  Figure 4.24 shows the trend of average distance change, which 

reaches equilibrium a few steps before 500.  

The results show that robots spread out satisfactorily, from close initial distribution to 

looser final distribution, robots maintains connection as a team and reach setting desired distance 

eventually, and the final configuration is even and well organized. The only problem is the big 
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fluctuation of the average distance, the reason, in our minds, comes from several aspects. Firstly, 

communication delay slows robots’ response to distance change, and it takes time for robots to 

react to updated neighborhood. Secondly, dumping coefficients are partly responsible for the 

fluctuation. As a second order control method, our algorithm is very sensible to dumping 

coefficients selection. As a result, in order to solve this problem, in the future work, our work 

also aims on these two aspects, the first is to optimize communication setting and make the 

communication as smooth as possible, the second one is to adjust dumping coefficients manually 

through more experiments until satisfied results are obtained. 

 

-4 -2 0 2 4
-4

-2

0

2

4

1
2

3
4 5 6

78

9

 

Figure 4.20: Initial distribution 
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Figure 4.21: Distribution after 1000 steps 
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Figure 4.22: Distribution after 2000 steps 
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Figure 4.23: Final distribution, 3200 steps 
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Figure 4.24: Convergence of average distances 
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4.4 Collision Avoidance Scheme II – Layer by Layer Spreading Out + 

Slowing down 

In addition to the first collision avoidance scheme, which uses slow down to reduce and 

eliminate collisions, the second method combines a so-called layer by layer spread out scheme 

with the previous slow down. The name of this method implies how it works: robots on border 

will move first to outer space under potential forces, when space is left out, inner robots will start 

moving in turn. This method emphasizes in-order movements.  Before enough space is left out 

by outer robots, inner robots keep stationary.  This method effectively reduces chance of collision 

and on the other hand saves a lot of unnecessary movement in beginning stage of experiment. 

One challenge in this method is lack of global information of all robots’ positions. In 

other words, robots need to know its relative position in team with limited knowledge of its local 

neighbors. We thus propose a method to calculate every robot’s relative position in the whole 

team using merely local neighbors’ information. Simulation results show effectiveness of this 

method. 

 “Layer of depth” is used to mark robot’s position with respect to team’s border, the 

bigger it is, the deeper it is inside the team. The first step in our algorithm is to initialize all 

robots’ “layer of depth” to ‘0’. Then robots are checked one by one to decide if it is on border or 

not. The method is to decide if all its neighbors are in the same semi-circle. As shown in Figure 

4.25, for robot R1, it has four neighbors, R2, R3, R4, R5. Fortunately, these four neighbors are all 

in the same semi-circle in R1’s neighborhood, so we set R1’s depth of layer to be 1. Otherwise, 

its layer of depth remains ‘0’. For robots that are not on border, its layer of depth depends on its 

neighbors, it communicates with its neighbors and find the one with the smallest layer of depth, 

its own layer of depth is this neighbor’s layer of depth plus one. The algorithm keeps updating 
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robots’ layer of depths from time to time and eventually all robots have a reasonable layer of 

depth.  

 

 

 

 

 

 

 

Figure 4.25: All four neighbors locate in the same semi-circle 

 

The critical point of this method is to calculate layer of depth of robots on the border 

correctly. Sometimes, if we stick to the above principles strictly, we will find out the results are 

not as satisfied as we wanted. For example, in Figure 4.26, the robots on corners are recognized 

and marked ‘1’ as their layer of depths. But for some other robots, for example, the robots on 

four sides of the team, their layer of depths is 2 while in our minds, it makes more sense if they 

have layer of depth of 1, because as we see, they are indeed located on the border. The reason 

they are marked in the second layer is that their neighbors are not strictly located in a semi-circle, 

instead, they are located in a sector slightly bigger than a semi-circle. Due to this phenomenon, 

we added a parameter called “maximum sector angle” in our method of calculating layer of 

depths. This parameter defines angle of the sector that all a robot’s neighbors belong to. We can 

adjust this angle to be slightly bigger than 180 such that the robots mentioned above would have 

layer of depth of 1 instead of 2. The results of the new calculation are shown in figure 4.27. 

R1

R5

R4

R3

R2
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Figure 4.26: Layer of Depth when maximum sector angle equals to PI 
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Figure 4.27: Layer of Depth when maximum sector angle equals to 1.2*PI 
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4.4.1 Results for Holonomic Robots 

Figure 4.28 and Figure 4.29 show results for holonomic robots deployment using slowing 

down and layer by layer spreading out combined strategy. All parameters remain the same as 

described in section 4.3.1, except that for maximum sector angle, we set it to be 1.2*PI, which 

makes the layer depths calculation more reasonable and acceptable. The final outcomes of 

control laws 4.7 and 4.8 are shown in figure 4.28 and 4.29.  

From the figures, we can see that robots are distributed evenly and inter-distances are 

well maintained. From the figure, layer depths of all robots are marked beyond each robot’s icon. 

From our human being’s mind, the layer depths are very close to our judgment and it proves that 

our distributed layer depth calculation method is working on all robots. Furthermore, the 

convergence of average distance also meets our expectations, and it reaches equilibrium quickly 

and stably. The steps takes to reach equilibrium is listed in table 4.6.  
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(b) Convergence of average inter-neighbor distance 

Figure 4.28: Deployment simulation with control law (4.7) and 
layer by layer spreading out strategy 
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Table 4.6: Rate of convergence 

Control law Collision avoidance 
strategy applied? 

Settling time 
(steps) 

(4.7) No 171 
(4.7) Yes 231 
(4.8) No 148 
(4.8) Yes 273 
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(b) Convergence of average inter-neighbor distance 

Figure 4.29: Deployment simulation with control law (4.8) and 
layer by layer spreading out strategy 
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4.4.2 Results for Nonholonomic Robots 

The results for nonholonomic robots are slightly different from results of last section. 

Figure 4.30 and 4.31 shows results of the new collision avoidance schemes with control law 4.7 

and 4.8. The final distributions are not so organized as we got in holonomic robots. The main 

reason of this is due to nonholonomic constraints. As robots in outer layers move outwards, they 

usually move overly further from the position that it is supposed to be, due to its inflexibility to 

move omni-directionally. After then, when they try to move backwards, it also takes time to 

adjust direction. All these adjustments result in not so even final configuration. Fortunately, 

robots eventually reach desired configuration and all robots are well connected. Steps required to 

reach equilibrium is also listed in table 4.7. 
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(e) Equilibrium team 
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(b) Convergence of average inter-neighbor distance 

Figure 4.30: Deployment simulation with control law (4.7) and 
layer by layer spreading out + slowing down 
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Table 4.7: Rate of convergence 

Control law Collision avoidance 
strategy applied? 

Settling time 
(steps) 

(4.7) No 655 
(4.7) Yes 668 
(4.8) No 562 
(4.8) Yes 172 
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(b) Convergence of average inter-neighbor distance 

Figure 4.31: Deployment simulation with control law (4.8) and 
layer by layer spreading out + slowing down 



 97

4.4.3 Energy Consumption Saving with Layer by Layer Spreading Out 

The most beneficial feature of using layer by layer spreading out strategy is that it greatly 

eliminates unnecessary movements and significantly reduces energy consumption, which is very 

important considering current battery power storage limit. With the new layer by layer spreading 

out strategy, robots have longer working hours and are able to provide better services on real 

applications. 

The method we are applying here for energy consumption calculation is based on total 

distance the whole team has moved and the total angle the team has rotated altogether. In other 

works, the total energy consumption consists of two parts, linear moving energy consumption El 

and angular moving energy consumption Ea, total energy consumption is: 

aal EwEE *+=                                                                 (4.20) 

Where wa is weight that derived from simulations and used to justify fairness of our equation. 

This will be discussed later in this section.  

El and Ea are calculated in this way. At each step, we collect each small straight trajectory 

that each robot has moved and take their square sum as the total linear energy consumption.  So 

if we have 50 robots and the simulations run 2000 steps, we have: 
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Where (xk,i, yk,i)  and (xk+1,i, yk+1,i) are current and next step’s coordinate of robot i, the unit is 

meter. 
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Where (θk,i, θk,i)  and (θk+1,i, θk+1,i) are robot i’s direction at current and next step. The unit is 

radian. 

 In order to get a more convincing result, each simulation is run 12 times with 12 different 

set of robots with totally different initial positions and directions. However, before that, we need 

to get the value of wa. For the calculation of weight wa, we run a trial simulation for 2000 steps 

and obtain values of El and Ea respectively, then wa is equal to El divided by Ea. For example, for 

slowing down strategy only, we got El=15.1323 and Ea=13.8466, so 

wa=15.1323/13.8466=1.0929. This makes sense because it makes linear and angular movements 

equally important in total energy consumption calculation.  

 After we got wa, 12 different sets of robots with different initial positions and directions 

is fed in the algorithm. The generation of these initial robots is discussed in Section 4.2.2.  As a 

result, for algorithm using only slowing down strategy, the eventual average energy consumption 

is 27.1668, listed in Table 4.8. 

 For combined collision avoidance strategy (layer by layer spreading out strategy is 

included), El= 9.2785, Ea= 6.9163 and wa=9.2785/6.9163=1.3415. Total average energy 

consumption is 19.2033. 

 

Table 4.8: Energy consumption comparison 

Control law Slowing down 
strategy only 

Combined 
strategy, adding 
layer by layer 
spreading out 

(4.7) 27.1668 19.2033 
 

From the simulation, we can easily find out that layer by layer spreading out strategy has 

successfully reduced energy consumption by 29.3%, which is almost 30%. The result is very 
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impressive because that means with reaching the same final configuration and finishing the same 

environment coverage task, robots with layer by layer spreading out strategy could work 30% 

longer. If robots with regular slowing down strategy work normally 10 hours, robots with layer 

by layer spreading out strategy could work up to 13 hours.  

4.5 Conclusion 

Targeting robust deployment of multiple mobile robots under realistic constraints, this 

chapter has proposed a highly effective distributed control scheme for reliably accomplishing 

desired sensor coverage among a team of nonholonomic mobile robots. Besides, the collisions 

avoidance is also addressed and two schemes are proposed. The effectiveness of the proposed 

scheme has been verified through both computer simulations and experiments on a team of 

physical robots. 

Global convergence towards the desired coverage is an important property of multi-robot 

deployment. We have reported some simulation and experimental results about it in this chapter, 

but have not comprehensively and theoretically study it yet. Our next step will focus on studying 

and analyzing the convergence property of the multi-robot deployment towards the desired 

coverage and the impact of  multiple factors arising from physical systems, such as robot state 

estimation error, communication delay and operational asynchrony among the robots, on system 

convergence. 
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Chapter 5 Robotization of MMT 

Energy crisis has been a big challenge in our society nowadays. Besides exploring 

alternative clear energy like solar and wind power, it is also important to conduct in-depth 

analysis of energy consumption and improve its efficiency. Data centers have been energy 

monsters along with development of information technology. Actually, in 2005, United States’s 

data centers, including power consumption by servers, network, cooling system and other 

relevant facilities, consumed 1.5 percent of total electricity use [59].   This chapter will discuss 

an energy usage analysis system deployed in data centers. 

This so-called MMT (Mobile Measurement Technology) for data centers is constructed by 

IBM. It provides highly effective data support for the analysis of data center thermal profiles and 

plays an active role in improving data center cooling and energy efficiencies. With this technique, 

a human operator controls the navigation of the tele-operative mobile measurement platform and 

triggers the data acquisition operation through a wirelessly connected console. Comparing with 

traditional manual operation, it largely reduces the intensity of human labor and improves the 

operational efficiency. The effectiveness of the proposed technique has been verified through a 

demonstrative data scanning in a real data center environment.   

5.1 Motivation and Old MMT 

5.1.1 Requirements and Objectives of MMT 

Data centers provide critically important computing capabilities, including data processing, 

data storage and communication networking, to the functioning of business, communications, 

academic and governmental organizations [59]. To maintain the operational reliability and 
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availability of data centers, air cooling plays an important role. In a standard data center setting, 

IT equipment is mounted in racks that are positioned side by side in long rows, and rows of racks 

are separated by alternating hot and cold aisles (Figure 5.1). The racks are placed on a raised 

floor, which allows the conditioned air to be delivered from the bottom to remove the hot air 

from the top. Electronic equipment in such a confined space generates a significant amount of 

heat, and the equipment’s reliability is reduced if it is not adequately cooled. Inappropriate 

humidity levels can also cause the failure of electronic components in data centers [60]. To 

maximize the functionality of a data center, it is necessary to keep the electronic equipment to 

operate within the temperature and humidity ranges specified by the manufacturers. It requires 

sufficient air conditioning across the data center space. 

 

 

 

 
Figure 5.1: Typical equipment placement in data centers 

 

Meanwhile, techniques to improve energy efficiency have become important for the data 

center industry [61]. A large amount of energy is consumed by data centers to run their 

computing, storage and networking systems, and peripheral devices, and to protect these 
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systems. It was estimated [59] that U.S. data centers consumed about 61 billion kWh of 

electricity in 2006, about 1.5% of total U.S. electricity consumption. To support the growing 

demand for processing power, the total number and size of data centers continue increasing, and 

individual data centers increasingly use more compact and energy-intensive servers. This growth 

in the data center industry causes a dramatic increase in electricity demand. It was predicted [59] 

that the total energy consumption in U.S. data centers would go beyond 100 billion kWh by 

2011. The increasing energy consumption in data centers causes increasing energy costs for 

business and government, emission of greenhouse gases, load on existing power grid, etc. All 

these factors have driven recent interest in improving energy efficiency of data centers [61]. As a 

critical but energy-intensive component, air conditioning systems have been identified as one of 

the main energy consumers in data centers. It was estimated that a fully populated rack of servers 

could generate 20-25 kW of heat during operation [62], which requires at least 20-25 kW of 

output cooling power from air-conditioning systems. Improving the air flow will substantially 

improve the overall energy efficiency of data centers. 

In summary, an optimal air-conditioning scheme for a data center should achieve a safe 

operating conditions for IT equipment with the highest possible energy efficiency. In order to 

accomplish this double-folded goal, the data center’s thermal profile needs to be measured and 

analyzed. Quantitative thermal profile of the data center will highlight air-conditioning 

inefficiencies and insufficiencies, such as cold and hot spots. In-depth analysis of these trouble 

spots and corresponding metrics of air-conditioning and energy efficiencies can lead to optimal 

air-conditioning schemes which optimize the energy and air-conditioning levels across the data 

center space, and eliminate the spots of insufficiency and over-provision. The thermal profile 
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will also allow an operator to monitor the operational status of the data center and to evaluate the 

improvement in air-conditioning efficiency after a new scheme has been implemented. 

A major challenge in quantifying and visualizing the thermal profile for a data center is 

reliable data collection. Especially, to create a complete 3D thermal profile for a data center 

requires collecting temperatures across the whole 3D data center environment, including not only 

the points on solid surfaces where static sensors could be attached but also the points in the air 

where no sensor can be placed. Targeting to provide an effective 3D data collection solution in 

the data center environment, IBM recently developed a Measurement and Management 

Technology (MMT) which uses a multi-level cart equipped with networked thermal sensors to 

acquire temperatures at multiple points in 3D [63-65] (Figure 5.2). The sensing platform has a 

footprint of the size of a standard tile (2 feet×2 feet) used to cover the raised floor of data centers. 

It samples the temperatures at multiple points above each tile. The collected temperature data are 

then transformed into a 3D thermal map of the data center, which provides the vital information 

needed to pinpoint trouble spots that indicate cooling inefficiencies, to facilitate better air-

conditioning schemes, and to manage the energy consumption of the data center.  
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Figure 5.2: IBM MMT sensing cart 

 

Although the thermal profile of a data center may change over time due to temporal changes 

in IT power level, cooling condition, number of servers and racks, etc., the MMT technique 

enables a high-density collection of temperature data for basic modeling of the data center 

thermal profile. If more precise, dynamic modeling is needed, a static sensor network can be 

installed to monitor the temporal variations of the thermal conditions in the data center. In this 

case, the basic thermal profile generated from the MMT data can be used to identify critical spots 

for sensor placement. Moreover, due to the limitation that sensors can only be attached to solid 

surfaces but not in the air, the basic thermal profile generated from the MMT data provides an 

important reference thermal profile to facilitate dynamic modeling based on interpolating the 

sparse temperature data captured by the fixed sensors. 

5.1.2 Implementation  

A typical MMT consists of a cart with 8 levels of sensors (Figure 5.1 and Figure 5.4) 

(Each level of the cart has 9 sensors), an Interface Box(Figure 5.2), a handler(Figure 5.3) and a 

laptop. The Interface Box is wired with the handler, the sensors and the encoders. The other side 

of the Interface Box is a laptop, and they are connected via a RS232-USB cable. Interface Box 

plays a bridge between sensors and laptop. On the one hand, it processes raw data from sensors 

and converts it into numeric numbers, and laptop accepts data and saves it to local hard drive. On 

the other hand, it also accepts signal from handler or laptop and transmit it to sensors. 

The data collection process starts from the handler. Once its button is pressed, it 

generates an impulse, this impulse reaches interface box and interface box triggers sensors to 
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collect data and collects current signal from encoders accordingly. After that, the interface will 

convert raw data into numeric numbers and send them back to the laptop, which will update the 

cart’s current orientation and position, and save data along with positions in local hard drive. 

 

 

Figure 5.3: Interface Box 

 

 

Figure 5.4: Handler 
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Figure 5.5: Temperature sensor 

 

In order to process data from Interface Box, a program named Tmapr (Figure 5.6) is 

developed. It is able to load given layout of the target data center, update cart’s orientation and 

position according to received data, and save data to local disk drive. In Figure 5.6, red icon with 

shape of “V” represents the cart, the smaller upper level window displays current sensor data. 

The red icon can be moved and rotated manually by using keyboard’s arrow keys to reflect the 

cart’s real location and orientation.  

 

Figure 5.6: Tmapr interface 
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5.2 Robotic MMT  

As we mentioned in the previous section, the current version of MMT platform is 

operated manually. It requires an operator to push the cart to cover every tile of the data center 

floor. The cart is stopped at each tile, and data acquisition is manually triggered to register the 

temperature data obtained from onboard thermal sensors and the corresponding cart location (in 

the unit of tiles) inferred from the reading of wheel encoders. Thus, currently the data center 

scanning process is labor-intensive and time-consuming, typically taking one hour for a data 

center of 2000 square feet. In order to improve the operational efficiency of MMT, we propose to 

develop a robotic mobile sensor platform for data center navigation and measurement to 

automate the data acquisition process, which is named as Robotic Measurement and 

Management Technology (RMMT).  

 

 

Figure 5.7: New MMT under work 

 

The robotization of MMT brings in the following immediate benefits: 

RMM

Wirele

Operator
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1) The robotic system enables automatic drive and triggering of the sensor platform, 

which greatly saves human labor and makes it more available to provide quick response and 

assessment to significant variations in a data center. 

2) The robotic system enables continuous, robust data collection over a long period 

up to its power limitation, which substantially enhances the efficiency and reliability of 

operation. 

Perspectively, it will also extend the MMT functionality in the following aspects: 

1) The robotic system will provide the capability of quick and high-resolution data 

acquisition for temperature, humidity, air flow and other environmental data, with appropriate 

sensors onboard. 

2) The robotic system will provide the capability of onboard generating the thermal 

profile, or wirelessly uploading data to MMT servers for real-time processing and visualization. 

3) The robotic system will be able to conduct map-based autonomous navigation, or 

autonomous, simultaneous mapping and navigation when the data center layout is not known a 

priori, which will eventually release humans from operation, and maximize the efficiency of data 

collection. 

4) The robotic system will be able to work collaboratively with any sensor network 

in the data center, and supplement the measurements for more accurate dynamic modeling.  

This section presents a preliminary, tele-operative version of the RMMT platform. This 

system uses a mobile robot base carrying cameras and localization sensors for navigation and 

localization. The robot pulls an MMT cart which carries thermal sensors for temperature 

measurement. The robot base is tele-controlled by an operator using a remote computer based on 

the wirelessly transferred images captured by onboard and environment-fixed cameras. The data 
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of temperatures and locations are automatically registered tile by tile and stored in the onboard 

computer. The collected data are then input to IBM’s MMT data processing software to generate 

the thermal map of the data center. A demonstrative test of the RMMT system has been 

conducted in a real data center environment. The robotized MMT platform provides a more 

efficient and user-friend technique for the targeted application.  

5.2.1 System Structure  

The current version of RMMT system (Figure 5.6) is a tele-operation system, consisting 

of two physically separate but wirelessly connected subsystems: 

1) Robotic navigation and sensing platform, which conducts the tele-controlled 

navigation through the data center and collect temperature data on the way; 

2) Operator’s console, which provides a user interface for the human operator to 

tele-control the navigation and data acquisition of the RMMT platform. 

5.2.2 RMMT Platform  

The robotic navigation and sensing platform is the tele-operator in the RMMT system. 

Hardware-wise, the RMMT platform consists of a mobile robot base and an MMT sensor 

cart (Figure 5.6).  

The mobile robot enables the RMMT platform to conduct the controlled navigation 

through the data center. A PatrolBot manufactured by Mobile Robots Inc. is adopted, due to its 

12-kg carry-on payload allowance and 9.1-kg pulling payload allowance which are sufficient to 

drive the MMT sensor cart [66], and its decent collection of onboard sensors which will facilitate 

future functional extension of the system. An embedded onboard computer communicates with 
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the operator’s console through wireless Ethernet (compatible with IEEE 802.11a/b/g/n protocols), 

and controls the robot motion based on the operator’s commands. The readings of the wheel 

encoders are used to localize the robot and cart. The onboard cameras (Bumblebee dual-camera 

stereovision unit) provide vision feedback for navigation guidance and obstacle avoidance.  

The MMT sensor cart carries thermal sensors (standard K-type thermocouples are 

currently used) to measure temperatures. The MMT cart has a layered, stackable design, with an 

equally-gapped 3×3 sensor arrangement in each layer and 1-foot gap between neighboring layers, 

resulting in a 1-cubic-foot data resolution which is highly sufficient for generating accurate 3D 

thermal profiles for data centers. Due to its stackability, the height of the MMT cart can be 

adjusted to fit with a wide range of ceiling heights. With this design, the MMT sensor cart can 

simultaneously measure temperatures at different heights above each tile, which makes data 

acquisition highly efficient. The cart is rigidly attached to the mobile robot, and supported by the 

chassis of the mobile robot and 2 rear swivel casters attached to the cart, such that the cart is 

smoothly driven by the robot and can be easily localized according to the position and 

orientation of the robot. The onboard thermal sensors are networked through an integrated 

programmable microprocessor interface. Their readings are registered using a data logger, 

further transferred to the onboard computer through an RS-232 serial interface, and stored in the 

computer.  

The MMT data acquisition and robot navigation are synchronized. In a data acquisition 

operation, the robot pulls the MMT cart to move a distance of one tile for each step, such that the 

cart can seamlessly cover every tile eventually; then the robot makes one stop, and triggers the 

data logger on the cart to register the current readings from the thermal sensors; the onboard 

computer receives the temperature data from the data logger and combines them with the current 
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position of the cart to provide a temperature-location data set for the current tile; the data sets 

collected from all the tiles will be used to generate the 3D thermal map of the data center. 

A functional diagram of the onboard RMMT software system can be found in Figure 5.8. 

The onboard RMMT controller monitors and coordinates the functioning of three modules – 

navigation, sensing and communication. 

 

Figure 5.8: Functional diagram of the onboard RMMT software 

 

The navigation module consists of the following units: 

1) Motion control unit: It translates the operator’s motion commands into the 

corresponding instructions for translational and rotational movements of the robot, and instructs 

the lower-level robot controller to implement the desired motion. 

2) Localization unit: It takes the readings of the wheel encoders of the robot, 

translates them into the position and orientation of the robot, and then localizes the sensor cart. 

Since the sensor cart is rigidly attached to the robot, the orientation of the cart is same as that of 

the robot, and the position of the cart is obtained by displacing that of the robot along the robot’s 

orientation.  

3) Vision feedback unit: It captures the images of the floor and objects nearby the 

robot using the onboard video cameras, and sends them to the operator’s console wirelessly in 

Onboard RMMT Controller

Navigation Communication 

Motion Control Localization Vision Feedback 

Operator’s Console 

Sensing 
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real time. Based on the vision feedback, the operator can command the robot to move in the 

desirable direction, avoid collisions, and compensate the localization errors. 

The sensing module mainly consists of a data acquisition unit which, upon being 

triggered, collects the temperature data from the networked thermal sensors on the sensor cart. 

The communication module receives commands from the operator’s console and sends 

the visualized results of onboard sensory feedback to the operator’s console through the wireless 

Ethernet link between the onboard computer and the operator’s console.  

At any moment, the onboard RMMT controller works in one of the following two modes, 

following the operator’s command: 

1) Data acquisition mode: In this mode, the RMMT controller instructs the 

navigation module to move the sensor cart either one tile forward or one tile backward, and then 

to let the robot and cart make a stop. Next, it registers the current position and orientation of the 

cart. Because the temperature data are collected tile by tile, the RMMT controller registers the 

cart position and orientation by snapping the position into the tile and orientation into one of the 

four principal directions, i.e. forward, backward, left and right with respect to the tile. Then, it 

triggers the data acquisition unit to capture the temperature data above the tile. In this way, the 

temperature data are registered with the tile location, which provides a complete data set for the 

space above the specific tile. 

2) Navigation adjustment mode: In this mode, the RMMT controller instructs the 

motion control unit to turn +/-90 such that the cart changes its navigational direction, or to move 

the sensor cart forward/backward and left/right in small steps to align the cart to the desired 

position and orientation in the current tile in order to compensate the localization inaccuracy due 
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to the accumulated error from the encoder-based odometry. In this mode, the RMMT controller 

does not trigger the data acquisition operation. 

By conducting data acquisition tile by tile, the RMMT controller will eventually collect a 

complete set of temperature-location data from which the thermal map of the data center can be 

generated. 

5.2.3 Operator’s Console  

The operator’s console is the user interface between the human operator and the tele-

operator –the RMMT platform (Figure 5.2). It mainly consists of a console program running on a 

remotely-located computer (e.g. a laptop PC), and includes the following modules: 

1) Commanding module: It enables the operator to input navigation and data 

acquisition commands to remotely control the RMMT platform. The control commands are input 

using the keyboard of the console computer. The current set of commands include two combined 

navigation / data acquisition commands, i.e. “move sensor cart forward to next tile, and then 

acquire data” (the “f” key) and “move sensor cart backward to next tile, and then acquire data” 

(the “b” key), and six simple navigation commands, i.e. “turn robot left °90 in the current tile” 

(the “l” key), “turn robot right °90  in the current tile (the “r” key), “turn robot slightly left” (the 

“left arrow” key), “turn robot slightly right” (the “right arrow” key), “move robot slightly 

forward” (the “upward arrow” key), and “move robot slightly backward” (the “downward arrow” 

key). Being self-explanative, these commands provide the basic set of functions for the operator 

to control the navigation and data acquisition of the RMMT platform. The commanding module 

issues the operator’s commands to the onboard RMMT controller program. The simple 

navigation commands trigger the RMMT controller to work in the navigation adjustment mode, 
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taking into effect through the onboard motion control unit; the combined navigation / data 

acquisition commands trigger the RMMT controller to work in the data acquisition mode, taking 

into effect through the onboard motion control unit and sensing module. 

2) Feedback display module: It provides the visualized feedback of the cart 

position/orientation and the environment such that the operator can make appropriate decision on 

steering the RMMT platform and acquiring data. It consists of two basic feedback windows: the 

localization window which visually outputs the results of the onboard localization unit, i.e. 

current position and orientation of the sensor cart in the data center layout (Figure 5.9), and the 

vision window which displays the real-time images captured by the robot’s onboard cameras 

(Figure 5.10).  

3) Communication module: It transmits commands from the console’s commanding 

module to the onboard RMMT controller and receives the visualized results of onboard sensory 

feedback to the console’s feedback display module through the wireless Ethernet link between 

the operator’s console and the onboard computer. 

 

 

 

Figure 5.9: Sensor cart localized in the data center 

 

Sensor cart position and orientation

Data center layout 



 115

 
Figure 5.10: Feedback from onboard camera 

 

In summary, in the current version of RMMT, the operator’s console functions as the 

hyper-terminal of the onboard RMMT controller. The commands input from the console are 

directly delivered to the onboard controller to trigger the corresponding navigation and data 

acquisition behaviors, and the localization and vision feedbacks obtained onboard are also 

directly delivered to and displayed on the console. 

Under the situation of one human operator controlling one tele-operator, the hyper-

terminal operation mode provides a convenient solution to the targeted tele-operation 

application. To maintain robust data communications, particularly for real-time image delivery, 

between the operator’s console and the RMMT platform, a simple ad hoc wireless link is 

established based on the IP addresses of the console and the onboard computers, using a wireless 

Ethernet router (compatible with IEEE 802.11a/b/g/n protocols, and having a reliable 

communication range of >100 feet). As a result, the data center scanning operation does not 

require any access to local wireless network, which makes it easy for the RMMT system to be set 

up for different data centers, particularly for those which impose highly restrictive, protected 

network access due to the concerns of data and network security. 
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5.3 Hardware Components of RMMT 

Instead of control MMT’s movement directly, a third party commercially available 

mobile robot platform-PatrolBot is used and mechanically integrated with MMT to provide 

moving force. PatrolBot is developed by MobileRobots Inc., and it have maximum load of 12 

kilogram and can reach pushing force of 9.1 kilograms [54] and therefore is completely capable 

of pulling the MMT.  

Figure 5.11 is the mechanical joint between PatrolBot and MMT. 

 

Figure 5.11: Mechanical integration between MMT and robot 

 

Next we use a separate laptop to connect with PatrolBot’s onboard computer, send 

command to the robot and get real time camera feedback. The onboard computer is also 

responsible for connecting with MMT and recording sensor data. In order to reach remote 

operation, a wireless router is required. In our work, we use Linksys wireless router and it has 

communication range of 100-300 feet. If Patrol’s onboard computer is connected to Internet 

directly, theoretically we can operate the robot from home.  

So basically, the new system consists of four parts, MMT, PatrolBot with an onboard 

computer, a wireless router and a laptop with wireless adapter.  
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Besides, the camera feedback we are using with the robot is a dual-camera Bumblebee 

stereo vision system. Human being is able to observe obstacles and layout of the environment, 

and makes robot move in a well-planned routine. In other words, the onboard camera provides 

necessary local and global views of the data center for obstacle avoidance and path following. 

 

Figure 5.12: User Interface 

 

Besides, the onboard computer of PatrolBot is connected with MMT’s Interface Box via 

a data board and a RS232-USB cable. The cable transmits data including sensor data and 

mimicking encoder pulses to onboard computer, and the computer sends mimicking encoder 

pulses and data acquisition triggering signal to the Interface Box through a NI data board. It is 

strange that the computer sends mimicking encoder pulses  to Interface Box and it sends the 

same signal back to onboard computer, but it is the way how the new MMT works, the reason is, 

as we mentioned earlier, to make the system compatible with the old MMT system. In other 

words, the new improvement could be finished on any other MMT without doing any change to 

it. 
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5.3.1 Data Acquisition Triggering  

 

Figure 5.13: NI USB 6501 

 

Instead of pressing handler button every time to collect sensor data, in the new MMT 

system, we defined a key to finish this work. A data board is used to generate exactly the same 

signal as the old handler does, which is a duration of high voltage lasting 2 seconds.  

NI USB 6501 data board fits the requirement well and is cost effective. It has 24 digital 

I/O lines and overvoltage protection. One digital output channel is occupied for this triggering 

purpose and another channel is reserved for mimicking encoder pulses, which we will discuss 

later. 

5.3.2 Encoder Pulses Mimicking  

As we mentioned earlier, Tmapr is responsible for collecting and displaying data. When 

robot is moving, it collects encoder pulses from wheels and calculates robot’s position thereafter. 

However, this program was developed to recognize direct encoder pulses other than direct 

position information. Besides, in our future work, we don’t deny the possibility of keeping using 

of encoder readings for better localization accuracy and moreover we hope our work can be 

applied to other MMTs quickly without too many modifications. Therefore, in the new system, 



 119

in order to be compatible with Tmapr, mimicking encoder pulses are generated according to 

position change, which we obtained from PatrolBox’s in-built position calculation. In other 

words, given initial position and orientation of the robot, robot is able to calculate its own 

position and orientation from time to time, our program reads out the location and direction 

change and converts it to a sequence of encoder pulses. The pulses are input to Interface Box and 

it sends back to computer via RS2432-USB cable, Tmapr is able to update MMT’s position and 

orientation based on it. As a result, at every stop, Tmapr will firstly evaluate encoder pulses and 

calculate its current position and orientation with knowledge of its location information at last 

stop, and then record corresponding thermal data, match the data with locations and save them to 

local hard disk.  

 

Figure 5.14: Encoder pulses 

 

Figure 5.14 and Table 5.1 show mechanism behind calculation from encoder pulses to 

real physical movements. The MMT cart optical encoders output a 2-bit quadrature signal to 

indicate the direction and rotation amount of the encoder shaft. The A and B signals as show in 

Figure 5.14 indicate the direction of the encoder shaft, the 2 signals are 90 degrees out of phase 

of each other and the order of two sequences determines wheel’s rotation direction, phase error 

with the two signals should be less than 45 degrees. That means if signal A is 130 degrees ahead 

of signal B, the two signals are still considered effective and the wheel is rotating clockwise. 
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Based on Figure 5.14, there are 6 possible combinations of signal durations, 3 forward 

and 3 reverse directions, from which MMT’s physical movements are calculated. They are 

follows: 

 

Table 5.1: Movement meaning of encoder pulses 

 
Forward Reverse 

Left Wheel Right Wheel Left Wheel Right Wheel 

Move 1 tile 582 CW cycles 582 CCW cycles 582 CCW cycles 582 CW cycles 

Left Turn 0 cycles 810 CCW cycles 0 cycles 810 CW cycles 

Right Turn 810 CW cycles 0 cycles 810 CCW cycles 0 cycles 

 

5.4 Results  

The developed RMMT system has been used to scan IBM’s Southbury Green Innovation 

Data Center to assess the feasibility of characterizing large data centers. In our knowledge, this is 

the world first reported robotic data acquisition operation conducted in a real data center 

environment. 

IBM Southbury Data Center has a 2000 square-foot space, hosts more than 300 servers, 

has more than 100 terabytes of storage, and supports up to 200,000 users’ online access. It is 

equipped with uninterruptible power supply (UPS), 200 kilowatt power distribution unit (PDU), 

and energy-efficient computer room air conditioning (CRAC) units. 

To scan the data center, the human operator was situated in an adjacent room and 

monitored the tele-operative RMMT platform by watching the images of the environment 

displayed on the operator’s console, and the RMMT platform was moved by remotely 

commanding it through the ad hoc wireless link. Besides the images captured by the onboard 
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cameras (Section III), the images from three ceiling-mounted surveillance cameras were also 

displayed on the console (which were delivered to the console computer through the Internet) to 

further enhance the reliability of navigation and collision avoidance (Figure 5.15).  

 

 

Figure 5.15:  Images from environment-attached cameras 

 

For navigation guidance, the data center layout served as a map (Figure 5.8), and was 

loaded on to the onboard RMMT controller. The data center was scanned through the following 

process (Figure 5.15). 
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Figure 5.16: Flowchart of the data center scanning process 

 

During this process, the global position of the sensor cart in the data center was 

determined by counting the numbers of     horizontal and vertical tiles with respect to the starting 

tile. At each tile, the RMMT platform stayed for 3 seconds in order for the readings of the 

thermal sensors to stabilize before triggering the data logger. The temperature and location data 

were recorded onboard.  

After scanning, the recorded data were processed using IBM’s MMT software. The 

resulting thermal profile of the data center is shown in Figure 5.17. One can see that in general 

the left side of the data center layout has higher temperatures than the right side, which shows 

that potentially the cooling distribution can be improved to achieve a more uniform temperature 

profile and thus higher energy efficiency.  
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F

 

Figure 5.17: Maps of temperatures at 0.5 (upper) and 4.5 (lower) feet above the ground 

 

5.5 Conclusion and Future Work  

So far we have introduced our tele-operative RMMT system for measuring temperatures 

in data center environments, which provides an effective data acquisition tool for the analysis of 

data center thermal profile and the improvement of cooling and energy efficiencies. The 

demonstrative test of the current RMMT system in a real data center environment has proven the 

effectiveness of the proposed technique. In particular, the robotization of the MMT technique 

can reduce human labor and improve the data acquisition efficiency.  

Robotizing MMT is a natural development step to enhance the capabilities of the existing 

MMT technique. Our ultimate goal is to take the full advantage of robotization to achieve 

continuous, fast and autonomous data acquisition process in any data center. To approach this 

goal, we have identified the following technical directions to further our exploration: 

1) Improvement of the tele-operative RMMT technique: We will improve the user 

interface by developing joystick-based smooth navigation control and data acquisition triggering, 
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and developing more comprehensive onboard vision feedback system for more reliable and agile 

navigation planning and obstacle avoidance. We will offer the tele-operator more autonomy by 

enabling the RMMT platform to self-align to the tile and compensate motion and localization 

errors based on onboard vision and ranging feedback. Moreover, we will further expand the 

sensing capability of the RMMT platform by incorporating appropriate sensors to enable the 

measurement of environmental parameters other than temperature.  

2) Development of the fully autonomous version of RMMT: We will integrate 

autonomous navigation and environment mapping capabilities into the RMMT platform to 

minimize human involvement, maximize operational efficiency, and make it adaptable to 

different and evolving data center layouts. 
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Chapter 6  Future Work 

 Besides the work we have done, following is the list of work we are going to finish in the 

future: 

1) Multi-robot collaborative localization based on camera and encoders 

 Localization is always a problem for both single and multiple robots. Though our single 

camera based localization algorithm is accurate, it is hard to guarantee that at any moment there 

are at least 3 landmarks in view of the camera. As a result, we need to combine several 

localization methods together. For example, in our case, data from encoders and camera could be 

combined. To sum up, a scheme that takes advantages of camera and encoders is desirable. 

The benefit of using encoders is that it is fast and cost effective. However, they have a 

big shortcoming that they have accumulative error. Compared with encoders, camera localization 

is a global localization method and is more accurate. However, compared with encoders, camera 

is more expensive and image processing always takes a lot of computing power and time. By 

combining the two sensors together, with help of camera, it is likely this accumulative error 

could be corrected from time to time. Moreover, the camera is not required to do localization in 

real time. It is just responsible for correcting accumulative error for the encoders on a regular 

basis. 

2) Continued work on collision avoidance 

 So far our work on collision avoidance indicates how collision is reduced with bigger size 

of initial distribution area. Besides, adjustment of parameters, for example, damping coefficients 

and the resistant force we defined to slow down robots also play important roles in collision 

avoidance. 
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 However, a complete collision avoidance scheme is still desirable. This scheme should 

work effectively despite of the initial distribution of robots. “Effectively” here means that there 

would be no collisions at all once the new collision avoidance scheme is applied. 

 Based on our previous work, in the next step, a detailed study will take place. Firstly, 

with fixed initial distribution area size, how different choices of parameters affect collisions will 

be studied. Secondly, given a set of parameters, in order to avoid coliision completely, the 

minimum size of initial deployment area is to be determined.  

3) Further improvement of MMT 

 Though our trial scanning of Southbury data center is successful, it is a demo program 

and still leaves a lot of places to be improved.  

 Firstly, two major modifications would be done to improve user operating experience. 

The first one is use of a joystick instead of keyboard for remote control. The keyboard operation 

is very inconvenient and it is hard to memorize functions of different keys. Apparently, joystick 

is a more user interface friendly than keyboard in controlling robot’s movements. Operating 

MMT is more like playing video games, the operation will become funny and simple. 

 Besides, at this moment, views of the cameras are very limited and sometimes the 

operator has difficulty in locate robot’s position. So the second modification is to add more 

cameras on top of the mobile robot at different angles and construct a more user interface 

friendly view of the environment based on pictures of these cameras.  

 The third one is, in our final vision of this project, the robot can eventually locate itself 

without human being’s help. Given a layout of the data center, it should be able to planning a 

routine, by following which the MMT could scan the whole data center in the shortest time with 
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least power consumption. Besides, the robot is able to detect errors and inaccuracy of the old 

map and correct them automatically.  

 Lastly, as we mentioned in Chapter 4, multi-robot system is more capable than single 

robot. As a result, for the MMT, it is possible to use several MMTs together rather than 

depending on single MMT in data center scanning. It is very obvious that this multi-MMT would 

be more effective in the scanning work.  
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