

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Localization and Motion Coordination

Among Multiple Collaborating Mobile Robots

A Dissertation Presented

by

Xionghui Lu

in Partial fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

May 2011

 ii

Abstract

Localization and Motion Coordination
Among Multiple Collaborating Mobile Robots

By

Xionghui Lu

Doctor of Philosophy

in

Mechanical Engineering

Stony Brook University

2011

 This dissertation mainly addresses the problem of multi-robot motion coordination,

including deployment algorithm and some other important issues in the deployment process, for

example, localization and collision avoidance.

 The first part of this dissertation is mainly about calibration and motion tests on the

pioneer 3 DX mobile robot platform we are going to use. A pioneer 3 DX mobile robot has two

driving wheels and one passive castor, and is a typical nonholonomic system. Due to

nonholonomic constraint, the mobile robot has no nonzero side speed. In order to nicely control

the robot and obtain its accurate running state, a motion calibration is necessary before serious

experimental study. Three calibration parameters are adjusted manually until a well calibrated

accuracy of motion is obtained. After calibration, a series of motion tests are conducted and the

robot’s capability of following commands is verified. Linear, rotational tests and a mixture of

both movements are conducted in order, and the results show that the robot follows commands

satisfactorily. The tests also provide some guides for our further experiments.

 iii

 Though encoder reading from robot is very accurate once the robot is well calibrated, due

to accumulative error in encoders, a global localization solution is desirable. In the second part, a

localization algorithm based on single camera is proposed and followed by an error analysis. The

algorithm is based on trilateration and pinhole camera model. Error analysis indicates that the

algorithm has very high accuracy of localization.

 In the next part, we discuss multi-robot deployment, which is a major of our work. A

second order control method is proposed with our control frame work. This control framework

belongs to the category of potential field methods. Compared with traditional deployment

method that are based on position or velocity control, second order control is advantageous in

making robots’ movements smooth and natural. Besides, it is naturally incorporated in our

control frame, which is originated from Hamilton’s principle. By carefully designing the

definition of artificial potential energy, the robots will move and be deployed automatically.

 Another issue in robot deployment is collisions during the process. In order to address

this issue, collision avoidance schemes are proposed. The first collision avoidance scheme firstly

determines relative movement between two robots. If the distance is below the setting dangerous

distance and moreover they are still moving closer, the collision avoidance scheme will be

triggered. The method used in our collision avoidance is to increase resistant force acting on

robots to slow them down immediately. The second collision avoidance scheme calculate each

robot’s position in the whole team based on local neighbors’ information, and then spread out the

robots layer by layer-outer robots move firstly and inner robot move once enough space is left

out. This scheme aims to reduce collisions, eliminate unnecessary movements and save power.

 iv

 The simulation results and experiments on Pioneer 3 DX mobile robots show that the

deployment algorithm works well and the collision avoidance scheme can effectively reduce

collisions during the deployment process.

 The last part of our work is a collaboration work we have done with IBM, and the

objective of the work is to provide moving power for their current Mobile Measurement

Technology (MMT), which is used to scan and get thermal map of data centers for power

management purpose. By using a PatrolBot mobile robot, a Bumblebee camera, a wireless router

and a laptop, the upgraded system did a successfully scanning of IBM’s Southbury data center

with an operator controlling MMT remotely. The new system saves labor and time, and is more

convenient to operate compared with the old MMT.

 In the future, more work is on the way for the above several topics. Firstly, a sensor

fusion method based on encoder and vision is desirable to obtain more accurate localization

performance. Secondly, a more advanced and detailed study of collision avoidance is required to

get a comprehensive understanding of collision avoidance. Thirdly, for MMT, a better user

interface and more reliable localization method is also to be developed.

 v

Table of Contents

LIST OF FIGURES ... VII
LIST OF TABLES .. X

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION ... 1
1.2 RELATED WORKS .. 3

1.2.1 Localization Based on Trilateration .. 3
1.2.2 Multi Robot Deployment .. 5

1.3 OBJECTIVES .. 8
1.4 DISSERTATION STRUCTURE ... 9

CHAPTER 2 ROBOT MOTION CALIBRATION AND MOTION TESTS 11

2.1 INTRODUCTION OF PIONEER 3 DX MOBILE ROBOT ... 12
2.2 ROBOT CALIBRATION.. 13
2.3 LINEAR MOTION TEST .. 15
2.4 ROTATIONAL MOTION TEST .. 18
2.5 MIXED TEST INVOLVING BOTH LINEAR AND ANGULAR MOVEMENTS .. 20
2.6 DELAY OF RESPONSE IN BEGINNING OF MOVEMENTS ... 23
2.7 CONCLUSION ... 24

CHAPTER 3 SINGLE CAMERA LOCALIZATION ALGORITHM USING TRILATERATION

AND ITS EXPERIMENTAL STUDY .. 26

3.1 LOCALIZATION ALGORITHM ... 27
3.1.1 Visual Angle Estimation ... 28
3.1.2 Position Estimation .. 29
3.1.3 Orientation Estimation ... 30

3.2 ERROR ANALYSIS.. 32
3.2.1 Camera Calibration Using Matlab Toolbox .. 34
3.2.2 Pictures Taken From Different Distances .. 35
3.2.3 True Positions and Orientations of Robot .. 37
3.2.4 Robot’s Estimated Position and Orientation Using Our Localization Algorithm 40

3.3 CONCLUSION ... 48

CHAPTER 4 MULTI-ROBOT DEPLOYMENT, COLLISION AVOIDANCE AND

EXPERIMENTAL STUDY ON PIONEER 3 DX ... 49

4.1 CONTROL FRAMEWORK .. 50
4.2 STUDY OF TWO KINDS OF POTENTIAL FIELD FORCES ... 53

4.2.1 Control Laws .. 53
4.2.2 Initial Robots Generation ... 55
4.2.3 Neighborhood Definition ... 56
4.2.4 Other Physical Constraints .. 57
4.2.5 Simulation Results .. 58
4.2.6 Real Experiment ... 63

 vi

4.2.7 Conclusion ... 66
4.3 COLLISION AVOIDANCE SCHEME I – SLOWING DOWN .. 67

4.3.1 Results for Holonomic Robots .. 70
4.3.2 Results for Nonholonomic Robots .. 77
4.3.3 Real Experiment for Nonholonomic Robots ... 82

4.4 COLLISION AVOIDANCE SCHEME II – LAYER BY LAYER SPREADING OUT + SLOWING DOWN 88
4.4.1 Results for Holonomic Robots .. 91
4.4.2 Results for Nonholonomic Robots .. 94
4.4.3 Energy Consumption Saving with Layer by Layer Spreading Out ... 97

4.5 CONCLUSION ... 99

CHAPTER 5 ROBOTIZATION OF MMT .. 100

5.1 MOTIVATION AND OLD MMT ... 100
5.1.1 Requirements and Objectives of MMT ... 100
5.1.2 Implementation ... 104

5.2 ROBOTIC MMT ... 107
5.2.1 System Structure ... 109
5.2.2 RMMT Platform ... 109
5.2.3 Operator’s Console .. 113

5.3 HARDWARE COMPONENTS OF RMMT .. 116
5.3.1 Data Acquisition Triggering .. 118
5.3.2 Encoder Pulses Mimicking ... 118

5.4 RESULTS ... 120
5.5 CONCLUSION AND FUTURE WORK .. 123

CHAPTER 6 FUTURE WORK ... 125

BIBLIOGRAPHY ... 128

 vii

List of Figures

Figure 2.1: Pioneer 3 DX Mobile Robot ..12

Figure 2.2: Physical components of Pioneer 3 DX ..13

Figure 2.3: Real velocity VS setting velocity, Real acceleration VS calculated acceleration and
accumulated average acceleration. ...17

Figure 2.4: Setting acceleration VS accumulated average acceleration.17

Figure 2.5: Setting rotational velocity and acceleration VS calculated velocity and acceleration.
 ..19

Figure 2.6: Setting acceleration VS accumulated average acceleration.19

Figure 2.7: Linear velocity and acceleration comparison ..20

Figure 2.8: Angular velocity and acceleration comparison ...21

Figure 2.9: Trajectory comparison in mixed test ...22

Figure 2.10: Response delay at beginning of movements ...24

Figure 3.1: Pinhole camera model ...27

Figure 3.2: Check board pattern printed together with three circles32

Figure 3.3: Pictures used in camera calibration ...34

Figure 3.4: Radiuses of three circles ..36

Figure 3.5: Four photos of the pattern are taken from five different distances36

Figure 3.6: Standard deviations ...43

Figure 3.7: Standard deviations ...47

Figure 4.1: Final deployment and average distances, ...60

Figure 4.2: Final deployment and average distances, ..61

Figure 4.3: Final deployment and average distances, ..62

Figure 4.4: Experiment 1 ..64

Figure 4.5: Experiment 2 ...65

Figure 4.6: Experiment 3 ...66

Figure 4.7: Collision detection ...69

Figure 4.8: Deployment simulation with control law (4.7) only73

Figure 4.9: Deployment simulation with control law (4.8) only74

 viii

Figure 4.10: Deployment simulation with control law (4.7) and (4.19)75

Figure 4.11: Deployment simulation with control law (4.8) and (4.19)76

Figure 4.12: Deployment simulation with control law (4.7) only78

Figure 4.13: Deployment simulation with control law (4.8) only79

Figure 4.14: Deployment simulation with control laws (4.7) and (4.19)80

Figure 4.15: Deployment simulation with control laws (4.8) and (4.19)81

Figure 4.16: Initial deployment of robots ..83

Figure 4.17: After 2 minutes ..84

Figure 4.18: After 4 minutes ..84

Figure 4.19: After 6 minutes ..85

Figure 4.20: Initial distribution ..86

Figure 4.21: Distribution after 1000 steps ...86

Figure 4.22: Distribution after 2000 steps ...87

Figure 4.23: Final distribution, 3200 steps ..87

Figure 4.24: Convergence of average distances ..87

Figure 4.25: All four neighbors locate in the same semi-circle ...89

Figure 4.26: Layer of Depth when maximum sector angle equals to PI90

Figure 4.27: Layer of Depth when maximum sector angle equals to 1.2*PI90

Figure 4.28: Deployment simulation with control law (4.7) and layer by layer spreading out
strategy ..92

Figure 4.29: Deployment simulation with control law (4.8) and layer by layer spreading out
strategy ..93

Figure 4.30: Deployment simulation with control law (4.7) and layer by layer spreading out +
slowing down ..95

Figure 4.31: Deployment simulation with control law (4.8) and layer by layer spreading out +
slowing down ..96

Figure 5.1: Typical equipment placement in data centers ...101

Figure 5.2: IBM MMT sensing cart ...104

Figure 5.3: Interface Box ...105

Figure 5.4: Handler ..105

Figure 5.5: Temperature sensor ...106

Figure 5.6: Tmapr interface ...106

Figure 5.7: New MMT under work ..107

Figure 5.8: Functional diagram of the onboard RMMT software111

 ix

Figure 5.9: Sensor cart localized in the data center ...114

Figure 5.10: Feedback from onboard camera ..115

Figure 5.11: Mechanical integration between MMT and robot116

Figure 5.12: User Interface ..117

Figure 5.13: NI USB 6501 ...118

Figure 5.14: Encoder pulses ...119

Figure 5.15: Images from environment-attached cameras ..121

Figure 5.16: Flowchart of the data center scanning process ..122

Figure 5.17: Maps of temperatures at 0.5 (upper) and 4.5 (lower) feet above the ground123

 x

List of Tables

Table 3.1: Real relative position and orientation of robot when 2 meters away37

Table 3.2: Real relative position and orientation of robot when 2.5 meters away38

Table 3.3: Real relative position and orientation of robot when 3 meters away38

Table 3.4: Real relative position and orientation of robot when 3.5 meters away39

Table 3.5: Real relative position and orientation of robot when 4 meters away39

Table 3.6: 2 meters way ...40

Table 3.7: 2.5 meters way ..40

Table 3.8: 3 meters way ...41

Table 3.9: 3.5 meters way ..41

Table 3.10: 4 meters way ...42

Table 3.11: Summary of standard deviations ..42

Table 3.12: 2 meters away ...44

Table 3.13: 2.5 meters away ..44

Table 3.14: 3 meters away ...45

Table 3.15: 3.5 meters away ..45

Table 3.16: 4 meters away ...46

Table 3.17: Summary of standard deviations ..46

Table 4.1: Number of collisions when n=1 ..60

Table 4.2: Number of collisions when n=2 ..61

Table 4.3: Number of collisions when n=3 ..62

Table 4.4: Rate of convergence ...76

Table 4.5: Rate of convergence ...81

Table 4.6: Rate of convergence ...93

Table 4.7: Rate of convergence ...96

Table 4.8: Energy consumption comparison ...98

Table 5.1: Movement meaning of encoder pulses ...120

 1

Chapter 1 Introduction

Robots have been employed more and more widely in various applications, for example,

security surveillance, environment monitoring, space exploration, disaster rescue, and etc. They

are replacing human beings doing boring, dirty and dangerous work.

Traditionally, industrial applications focused more on single robot. In contrast, multi-

robot system is a relative new topic. However, due to multi robot system’s superior capabilities

over single robot, it has shown greater and greater potential in a lot of applications.

In this dissertation, we proposed a decentralized deployment algorithm for multi robot

system, introduced a global localization method based on single camera and two collision

avoidance schemes to eliminate collisions during deployment process.

1.1 Motivation

Robots have been taking over many work from human being in the past a few decades,

this trend will keep going in future.

As a matter of fact, traditional applications focused more on single robot. In contrast,

multi-robot system is a relative new topic. However, multi robot system shows superior

capabilities over single robot, for example, multi-robot system has wider environment probe

capability, and it is more robust to external interruptions and internal failures, more importantly,

with good coordination, multi-robot system is able to get job done more efficiently. As a result, it

 2

has shown greater and greater potential in a lot of applications, such as planetary exploration,

disaster rescue, environment surveillance, etc.

In study of multi-robot system, multi-robot deployment is a fundamental problem. It is

the starting point for more advance applications of multi robot system and not surprisingly has

attracted a lot of industrial and academic attention. Our research aims to formulate a distributed

method for multiple robots deployment and verify it using our Pioneer 3 DX robot platform.

The first unique of our work is that it determines a robot’s motion merely based on

limited information acquired from self-equipped devices and local neighbors, while centralized

control method requires global information, which is not accessible in many real applications.

Due to this characteristic, distributed systems rely more on collaboration between all members

rather than putting all eggs in the same basketball and all commands come from a single leader.

Equally importantly, it requires lower computation ability for each member, making system more

cost-effective. The other point of our job is, compared with most traditional multi robot

deployment algorithms based on position and velocity control, our method goes directly to

second order control – acceleration control. Acceleration control makes implementation of

algorithms in specific hardware platforms simple and straightforward, and it makes movement

smooth and natural. In a word, decentralized second order control in multi robot deployment

summarizes our major work.

During deployment process, two issues need to be addressed: localization and collision

avoidance. Usually, given initial positions and orientations, self-equipped encoders are able to

calculate a robot’s positions and orientations based on history movements. However,

accumulative errors limit encoders’ usability in demanding applications and a global localization

method is desirable. In our work, using a single camera, a localization algorithm based on

 3

trilateration is proposed to provide a more accurate global localization solution. The second issue,

collision avoidance, is solved by two schemes we proposed. These two schemes fit our control

frame in that they use local information and eliminate collisions via second order control.

Another job of us is to upgrade IBM’s old MMT (Mobile Measurement Technology) and

power it with a mobile robot. Their current MMT is used to monitor temperature and moisture in

data centers. It doesn’t have moving capability and completely rely on human being. Our

objective is to integrate their current measuring ability with mobile robot’s moving capability,

therefore in the future operator can remotely control the new MMT and eventually it can move,

measure and upload data totally on itself. This would save a lot of labor and reduce cost

significantly.

1.2 Related Works

1.2.1 Localization Based on Trilateration

The principle behind trilateration is to use distances from at least three different

landmarks to determine object’s current position and orientation. This method, essentially, is

equivalent to finding intersection points between three or more spheres. Manolakis[1][2]

proposed closed-form solution to trilateration problems. Coope[3] further proposed two ways of

solving trilateration problems, one is based on Gaussian elimination and the other applies

orthogonal decomposition and transformation. A nonlinear least-square optimization method for

obtaining approximate results is proposed in this chapter. Thomas and Ros[4] introduced a

general formulation for the closed-form solution based on Cayley-Menger determinant defined

by constructive geometric argument. Fang[5] proved that trilateration problem could be

simplified by defining the problem according to a frame.

 4

Many applications have been developed based on the principle of trilateration. The

Global Positioning System (GPS) uses trilateration to locate a receiver based on the travel

distances of radio frequency signals from the satellites [6]. It provides a powerful tool for

outdoor mobile robot localization and navigation [7]. In indoor environments, some localization

systems have been developed, such as SpotOn [8], Active Badge [9], Active bat [9], Cricket [11],

based on radio frequency [7], infrared [8], and ultrasound [9, 10] signals respectively. Recently,

Zhou et al. have also introduced a new indoor localization method for mobile robots based on the

laser-activated RFID landmarks [12].

Triangulation, instead of using distance measurements, uses bearing measurements

among references to locate an object. The basic idea of triangulation is that in a plane containing

the references and object, the object is located at the intersection of the circles each of which is

determined by two references and the bearing between them. Cohen compared four solution

methods for triangulation, i.e. iterative search, geometric triangulation, geometric circle

intersection and Newton-Raphson iterative method, and showed that geometric circle

intersection is the most robust one among them [13]. Betke and Gurvits presented a position

estimation algorithm using the complex numbers representation of the landmarks [14]. The main

advantage of this algorithm is the linear time complexity with respect to the number of

landmarks and the robustness to the noisy input. Shimshoni also presented an algebraic solution

by applying several transformations to the linear system of equations which are defined by

triangulation constraints [15]. He showed that these transformations indeed improved accuracy.

Sutherland and Thompson discovered that the position error is influenced by both the input

bearing error and the distribution of landmarks [16].

 5

Vision sensors are widely used to measure the bearings. The structured features, such as

doors and wall corners, are extracted from images. The 2D bearings of landmarks can be

recovered from vertical edges. Muñoz and Gonzalez developed a 2D landmark-based

triangulation algorithm in which the bearings are derived from a single image [17]. Other

systems utilizing the bearing measurements for localization can be found in [14, 18-20].

1.2.2 Multi Robot Deployment

Due to advantages of second order control, it becomes basis of our deployment algorithm.

The deployment algorithm works seamlessly with the collision avoidance under a global control

frame we proposed, which is based on Hamilton’s principle. This principle applies to not only

classic mechanics but also classic fields, like electromagnetic and gravitational fields. In our case,

this principle states that dynamics of robots could be determined by a variational problem for a

function based on its Lagrangian, which contains all physical information of the robot and the

forces acting on it. By carefully defining artificial energy for the robot, which is considered part

of the Lagrangian, the robots would move automatically to meet our deployment requirement.

This second order and natural control algorithm also owns another advantage in that it is

a distributed control law. Many traditional multiple robots deployment methods depend on a

central command center, which collects data from robots and sends commands back after a

calculation based on complex algorithms. This command center could be either one of the robots

or a separate computing unit [21, 22]. Though effective in a stable environment, due to its high

communication complexity, it is slow in response to abrupt changes in the system and

environment. Moreover, it demands high processing power for the leader, and is vulnerable to

failure of the leader. In contrast, decentralized control allows individual robots to behave

 6

according to local information and achieves global goals by following distributed control laws,

which can be highly adaptive to environment changes and individual failure. Recognizing its

advantages, the research on multi-robot deployment has been largely leaning towards

decentralized control.

For the concept of artificial potential/force field, it has been widely adopted in

decentralized deployment control. For multi-target observation, Parker defined a distributed

control law in terms of force fields attractive for nearby targets and repulsive for nearby robots,

weighted by the probability of target existence and not being observed [22,23]. For large system

deployment, Reif and Wang proposed a “social potential field” method to reflect social behaviors

such as clustering and escorting [24]. To deploy a mobile sensor network in an unknown

environment from a compact initial configuration, Howard et al. defined a potential field in

which each node is repelled by both obstacles and other nodes [25]. To maximize the sensor

coverage while maintaining the number of connected neighbors, Poduri and Suktame used the

repulsive forces among nodes to improve their coverage and the attractive forces to prevent the

nodes from losing connectivity [26]. Popa et al. also defined an attractive force to maintain inter-

node connections [27]. Ji and Egerstedt presented an approach based on weighted graph

Laplacians and the edge-tension function to control multi-agent rendezvous and formation while

maintaining communication connections [28]. Moreover, for deploying mobile sensor networks

to approach an isometric grid, Lam and Liu defined a force field based on the difference between

current and ideal local configurations [29]. To cover a moving target, Jenkin and Dudek

formulated the problem as a global energy minimization task over the entire collective in which

each robot moves in the gradient descent direction of its local estimate of the global energy [30].

In addition, event-driven schemes were presented by Butler and Rus to deploy mobile sensors

 7

toward the distribution of the sensed events [31]. With the intention to reduce the communication

complexity, Tan defined the potential field for each robot based on only its one-hop neighbors of

the Delaunay triangulation [32].

Besides potential/force field methods, Cortes et al. showed that an optimal coverage of

multiple mobile sensors is provided by the centroidal Voronoi partition where each sensor is

located at the centroid of its Voronoi cell, and presented a gradient decent algorithm to move

sensors towards the centroidal Voronoi configurations [33]. A similar method was adopted in

[34], and a slightly different method based on the r-limited Voronoi partition was presented in

[35]. Schwager et al. proposed an adaptive decentralized controller to drive a team of networked

robots to the estimated centroids of their Voronoi regions while improving sensory distribution

over time [36].

Moreover, diffusion-based schemes were also proposed for dynamic coverage of

bounded environments, including random diffusion [37], gas diffusion [38], and fluid diffusion

[39]. In addition, Jung and Sukhatme presented a region-based method in which the robots are

deployed according to a compromise between robot densities and target densities in all the

regions with a consideration of robot travel distances, and robots are positioned inside a region

optimally to cover all the targets [40].

Although decentralized multi-robot deployment control has received a lot of attention,

existing methods mostly focus on general schemes. Very limited consideration has been given to

practical issues arising in realistic multi-robot deployment processes, such as the constraints in

kinematics, dynamics and communications and the problem of collision avoidance. For instance,

the nonholonomic constraint arising in wheeled robots has been largely ignored by assuming

holonomic drive [25] or using the simple unicycle model [33,34]. This decoupling between the

 8

high-level control law and the implementation layer may cause unexpected results or even

failures in realistic multi-robot deployment processes.

Targeting the robust implementation in realistic multi-robot systems, in a recent work

[41], we proposed a decentralized deployment control framework, which integrates the concept

of artificial potential field with Hamilton’s principle [42] of the classic mechanics to generate the

control law for robot self-deployment motion. It naturally incorporates the nonholonomic

constraints arising in wheeled robots. Built on our previous work, this chapter will present a

control law for reliably establishing desired sensor coverage and maintain communication

connections in an environment from a compact initial multi-robot gathering, and particularly

address the issue of collision avoidance during the deployment process. This system depends

heavily on this central commander, and is very vulnerable to environment interruptions. Once the

central commander fails, the whole system is unable to work at all. Besides, since the robots’

movements totally depend on commands from central unit, it would don’t know their next step

once they lose communications.

1.3 Objectives

This dissertation focuses on proposing a decentralized multi-robot deployment algorithm

based on second order control and addressing collisions and localization issue in the deployment

process. Our work is summarized as following:

1) Calibrate robots and test their motion capability;

2) Propose a global localization algorithm based on single camera;

3) Propose a distributed multiple mobile robot deployment algorithm exclusively for

nonholonomic robots;

4) Address collisions among robots during multi robots deployment;

 9

5) Collaborate with IBM and upgrade their current data center monitoring system to be mobile

robot powered.

1.4 Dissertation Structure

Chapter 2 makes a brief introduction of the robots we are going to use and describes steps

of motion calibration, which guarantees nice control of robots and accurate feedback of robots’

running state, like velocity. Besides, a series of motion tests are done to verify motion capability

of the robot, to evaluate how well the velocity and acceleration read from encoders follow our

settings. For a well calibrated robot, velocity read from encoders are very close to robot’s actual

velocity, so to some extent that the tests reflect how accurately the robots execute commands.

The results would give us a good guide for further serious experiments.

In chapter 3, a localization method based on single camera is introduced and followed by

an experiment to analyze its accuracy. The method depends on single camera feedback and use

trilateration in calculation, which is the same mechanism used in GPS.

Chapter 4 proposes a distributed algorithm for multiple robots deployment and further

discusses collision avoidance in deployment process. The decentralized algorithm falls into

category of potential field method and conducts second order control, which leads to natural and

smooth movements of robots. For collision avoidance in deployment, two schemes are proposed.

In Chapter 5, by cooperating with IBM Watson Research Center, a PartolBot mobile

robot is integrated with their mobile measurement system, which is used to monitor temperature

and other thermal data of data centers. Instead of depending on being pushed around the big data

centers by human operators, the new system is able to be operated remotely and collects data in a

more convenient way.

 10

Chapter 6 gives the conclusions based on work we have done and list the work we are

going to do in the future.

 11

Chapter 2 Robot Motion Calibration and Motion Tests

It has a long way to go from computer simulations to real experiments because real

experiments have a lot of uncertainties that simulations are unable to forecast or follow. For

example, in simulations, distance that the robot moves in a certain period of time is exactly equal

to velocity multiplied by time interval, which is not the case in real experiment. Besides, delay of

command execution is not taken into account in simulations. In fact, in real experiments, robots

can’t even maintain absolute constant velocities, and slow response time of wheel motors

sometimes undermines algorithm performance significantly. A lot of experiments have

illustrated that even given the same initial settings, robots’ movements were still slightly

different in the same environment. In a word, real experiment involves numerous hardware

implementation details, which result in noises and uncertainties. Therefore, simulations can

never replace real experiment and a successful algorithm should bear tests with real hardware in

real environment, and this is an inevitable step to serious applications in real life.

In our work, Pioneer 3 DX mobile robots (Figure 2.1) are chosen to be our experimental

platform, which are commercially available from MobileRobots Inc.. This chapter is mainly

about their motion capability test.

 12

Figure 2.1: Pioneer 3 DX Mobile Robot

This chapter is organized as followed. Firstly, in order to better control robot and obtain

accurate motion state of robot, the robot needs to be calibrated. After that, a series of motion tests

are conducted to verify its moving ability and accuracy. A linear, rotational movement test and

mixture of both are conducted. As a result, in the end of this chapter, we illustrated that

calibrated robots run accurately and follows commands well. The tests also provide some

programming guides for our later experiments.

2.1 Introduction of Pioneer 3 DX Mobile Robot

 Pioneer 3 DX weights 9 kg (20 pounds with one battery) with height of 21.5 cm and

width of 38cm [43], and it has two differential driving wheels and one passive castor. In front

and rear body the robots are equipped with 8 sonar sensors respectively, (see Figure 2.2). Besides,

the robot is upgradable for more powerful capabilities. For example, equipment of arms can help

manipulate things, laser scanners are able to detect environment layout, camera’s feedback can

be used to observe environment and helps robot make smarter moving decisions.

Just like most of other commercially available robots, the robot uses client-server

working mode. The microcontroller handles all low-level details and converts all high level

 13

commands to low level executable commands, like driving wheels rotate and reading data from

every sensor, encoders and sonar sensors, to name a few. An onboard computer is attached with

Pioneer 3 DX mobile robot via RS 232. Program running on PC communicates with the robot

constantly and tells it its next action.

Figure 2.2: Physical components of Pioneer 3 DX

The bridge between high level and low level control is ARIA, which stands for Advanced

Robotics Interface for Application. It is a C++ based open source development library that

insulates users from low level details and helps users to focus on high level algorithm

development and verification. With hundreds of well designed functions, users could give simple

commands directly to robot and read back usable data from sensors. It makes controlling of robot

much easier and reliable. Moreover, ARIA also reserves necessary interfaces for potential

extensional devices, like arms and cameras.

2.2 Robot Calibration

 In order to nicely control robot and obtain robot’s running state, a robot calibration is

needed before being used in real experiments and applications. A robot needs a new calibration

 14

once it is moved to a new environment, or the old environment has just experienced any kind of

change. For example, the floor is just polished, or an air conditioner is just replaced. Changes of

environment lead to changes of some physical parameters, including tire pressure of robots,

which results in small change of tire’s diameter and friction coefficient with ground. Besides, for

the same reason, regular inspection of robot’s tire pressure is necessary. However, calibration

doesn’t guarantee absolute accuracy of robots’ motion, instead, it manages to improve robots’

performance as high as possible.

Fortunately the calibration is not very hard for Pioneer 3 DX. Robot’s moving accuracy

could be adjusted by three parameters stored in microcontroller’s flash memory. These

parameters are DriftFactor, RevCount and Ticksmm.

The first one, DriftFactor, controls robot’s drift in linear movements. Robots usually drift

to right or left side after travelling a certain distance. DriftFactor controls moving consistency

between two wheels and makes sure robot wouldn’t drift to either side. Since DriftFactor affects

both RevCount and Ticksmm, it needs to be adjusted at first place.

The way of adjusting DriftFactor is simple. We use a demo program to make robot move

forward 1 meter straightly and observe which side the robot has drifted to. If it drifts to right side,

reduce value of DriftFactor and vice versa. The same principle of adjustment applies to

RevCount and Ticksmm.

RevCount is the differential number of encoder ticks for a 180-degree rotation, and

apparently it is related to accuracy of rotational movement. Similarly, Ticksmm is number of

encoder ticks for every millimeter the wheels rotate, and it is related to accuracy of translational

movement.

The calibration of RevCount and Ticksmm is very similar to that of DriftFactor . A demo

 15

program is used to command robot move 1 meter forward and then its actual moving distance is

measured. If the actual distance is less than meter, then we should decrease value of Ticksmm,

otherwise, we increase it. Eventually, a proper Ticksmm is obtained. RevCount can be calibrated

either before or after calibration of Ticksmm. With the demo program, and given initial direction

of zero, robot is asked to rotate 180 degrees, and its actual rotation angle tells me to increase or

decrease Ticksmm.

After the calibration, our records indicate that linear motion error could be limited to less

than 1cm per 3 meters, rotational error is less than 0.9 degree per 180 degree. To sum, with

proper choose of the three values, the robot moves with very good accuracy, more importantly,

velocity reading from encoder (via ARIA) is trustable and usable in our later experiments.

2.3 Linear Motion Test

 After robot calibration is done, a series of motion tests are conducted to further verify

moving performance of robots. These tests are mainly used to evaluate robot’s moving capability

and accuracy. In this section, linear motion tests try to verify robot’s capability of moving

forward in high accuracy without drifting to either side,

To do these tests, three programs are written. In the program, robot is commanded to do 5

movements in sequence, each movement lasts 4 seconds. Firstly, robot accelerates from speed of

0 to 40 mm/s in 4s (means acceleration is 10 2/ smm), and then decelerates back to zero (at -10

2/ smm), then stays stationary for 8s before repeating the acceleration and deceleration process

one more time.

During the whole test, real velocities and setting velocities are recorded for later

comparison. The real velocities of robot are based on constant reading using function getVel()

 16

from ARIA (for a well calibrated robot, its actual velocity is very close to velocity that is read

from encoders, and we assume that it is the actual velocity).

Actual accelerations are calculated by deriving actual velocity over time. In our case,

dividing velocity change by according time period leads to average acceleration during this small

slice of time. These accelerations are also compared with setting accelerations.

From Figure 2.3 and unsurprisingly, setting velocities and acceleration are very smooth

since they are set manually, and actual velocities and accelerations fluctuate seriously mainly due

to noises and response delay.

In order to compare actual acceleration with setting acceleration in a more reasonable and

clear way, a third variable named accumulated average acceleration is taken into account, which

is calculated in this way.

sc

sc
r tt

vva
−
−

= (2.1)

cv is current actual velocity, sv is the actual velocity at beginning of this period, ct and st

record current moment and the beginning time of this period. A locally amplified image of

accumulated acceleration and setting acceleration is displayed in Figure 2.4. As we can see that

the accumulated acceleration approaches the setting acceleration closer and closer along with

time.

 17

Figure 2.3: Real velocity VS setting velocity, Real acceleration VS calculated acceleration and
accumulated average acceleration.

Figure 2.4: Setting acceleration VS accumulated average acceleration.

0 0.5 1 1.5 2 2.5

x 10
4

0

10

20

30

40

50

time(ms)

V
el

oc
ity

(m
m

/s
)

Linear Velocity

Actual V(encoder reading)
Calculated V

0 0 5 1 1 5 2 2 5
-1000

-500

0

500

1000

A
cc

el
er

at
io

n(
m

m
/s

2)

Linear Acceleration

Setting a
Calculated a
Accumulated average a

 18

2.4 Rotational Motion Test

 The second test mainly focuses on robot’s rotational performance. It is to verify how well

the robot’s real rotation follows the command. The whole process consists of 7 stages and

basically the same as the linear test. Each stage lasts 4 seconds. During the first period, robot

rotates and accelerates to 40 deg/s (CCW in top-down view) in 4s, and decelerates from 40 deg/s

to -40 deg/s (CW) in 4s, then accelerates again to a larger velocity of 80 deg/s(CCW) in 4s and

slows down to 40 deg/s(CCW), then speeds to 80 deg/s and back to static, then decelerates to -40

deg/s. The whole process lasts 28 seconds.

Figure 2.5 shows how real rotational velocity follows setting velocity. As what we did in

linear test, accumulated average angular acceleration is calculated and compared with setting

acceleration. The results are shown in Figure 2.6. The results are not surprising as they are

consistent with results we got in last section. The actual rotation doesn’t follow the commands

strictly, but on average, the two are matched in a good level. At beginning of the test, there is a

lag between them and this phenomenon will be discussed later.

 19

Figure 2.5: Setting rotational velocity and acceleration VS calculated velocity and acceleration.

Figure 2.6: Setting acceleration VS accumulated average acceleration.

0 0.5 1 1.5 2 2.5 3

x 10
4

-50

0

50

100

time(ms)

A
ng

ul
ar

 v
el

oc
ity

(d
eg

/s
)

Angular Velocity

Actual V(encoder reading)
Calculated V

0 0.5 1 1.5 2 2.5 3

x 10
4

-400

-200

0

200

400

time(ms)

A
cc

el
er

at
io

n(
de

g/
s2)

Setting a
Calculated a
Accumulated average a

 20

2.5 Mixed Test Involving both Linear and Angular Movements

 The third test takes linear and angular movements together. The test consists of 6 stages.

As we can see from Figure 2.7 and Figure 2.8 that the robot firstly moves forward and reach

velocity of 80 mm/s in 4s and then slows down to static in the following 4s. Then, it keeps

position and accelerates to rotational velocity of 40 deg/s and slows down to static. After this,

another round of translational movement is repeated.

0 0.5 1 1.5 2 2.5

x 10
4

-20

0

20

40

60

80

time(ms)

V
el

oc
ity

(m
m

/s
)

Linear Velocity

Actual V(encoder reading)
Calculated V

0 0.5 1 1.5 2 2.5

x 10
4

-500

0

500

time(ms)

A
cc

el
er

at
io

n(
m

m
/s

2)

Linear Acceleration

Setting a
Calculated a
Accumulated average a

Figure 2.7: Linear velocity and acceleration comparison

 21

0 0.5 1 1.5 2 2.5

x 10
4

-10

0

10

20

30

40

50

time(ms)

A
ng

ul
ar

 v
el

oc
ity

(d
eg

/s
)

Angular Velocity

Actual V(encoder reading)
Calculated V

0 0.5 1 1.5 2 2.5

x 10
4

-200

-100

0

100

200

time(ms)

A
cc

el
er

at
io

n(
de

g/
s2)

Angular Acceleration

Setting a
Calculated a
Accumulated average a

Figure 2.8: Angular velocity and acceleration comparison

Figure 2.9 displays two trajectories of the robot, one trajectory is the actual trajectory,

which based on reading via ARIA function (we actually measured the real trajectory and it is

almost the same as the trajectory read from encoders). The other is trajectory calculated based on

real time velocity integration over time. Distance travelled at every command cycle is:

2
)(cyclees

c
tvv

d
+

= (2.2)

where sv and ev are actual velocities of robot at beginning and end of the running cycle,

cyclet represents time interval of the cycle.

Figure 2.9 shows that real trajectory is very different from ideal trajectory, which we

believe is caused by accumulated velocity error due to response delay and noises. Actually, from

Pioneer 3 DX’s design philosophy, the movement of robot is more based on position and

 22

direction control, and robot keep adjusting moving velocities based on encoder reading feedback.

From our other tests, the robot is much better at positioning control, which is based on

continuous reading from encoder and makes robots’ movement very accurate. To sum up, if we

control robot by controlling its velocity or acceleration, position and direction information

calculated from integration of velocity is not reliable, and reading from encoders is more

accurate and trustable.

0 0.5 1 1.5 2 2.5

x 10
4

-200

0

200

time:ms

x(
m

m
)

x coordinate comparison

X, provided by API
X, Calculated from velocity

0 0.5 1 1.5 2 2.5

x 10
4

-400
-200

0
200
400

time:ms

y(
m

m
)

y coordinate comparison

Y, provided by API
Y, Calculated from velocity

0 0.5 1 1.5 2 2.5

x 10
4

-200

0

200

time:ms

θ(
de

g)

Heading angle comparison

θ, provided by API

θ, Calculated from velocity

-200 -150 -100 -50 0 50 100 150
-400

-200

0

200

y(mm)

x(
m

m
)

Trajectory comparison

Robot trajectory, provided by API
Robot trajectory, calculated from velocity and heading

Figure 2.9: Trajectory comparison in mixed test

 23

2.6 Delay of Response in Beginning of Movements

As we have noticed earlier from the three tests that there was always a delay of response

in the beginning of movement. In Figure 2.3, Figure 2.5 and Figure 2.7, we can clearly see the

delays, whose lasting time varies every time. In the first test, it lasts around 480ms, in the second

test, it lasts around 1.8s, and 2.1s for the third tests. The delays are amplified and displayed in

Figure 2.10. The delays, in our mind, are due to a variety of factors. Firstly, the initializations of

programs, including high level program we wrote and the low level firmware, make part of the

delays. Secondly, initialization of hardware also takes time. Thirdly, the design philosophy of

Pioneer 3 DX robots doesn’t promise to give extremely high accurate velocity output, instead, its

philosophy puts high accuracy of position and orientation displacement at its highest priority and

this is understandable since so far most robot experiments are based on position and angle

control.

The experiments illustrate the existence of the delay at beginning of experiments and the

solution, as we found out, is to give an empty standing command. The command leaves some

time for the robots to release the delays.

 24

Figure 2.10: Response delay at beginning of movements

2.7 Conclusion

In order to obtain a robot with accurate moving capability, a Pioneer 3 DX mobile robot

is carefully calibrated and the calibrated robot achieves very good level of moving accuracy

thereafter. The position and orientation of a calibrated robot based on encoder reading is

trustable in later experiments that last short period of time.

 25

After the calibration, a sequence of three tests is conducted to verify robot’s linear and

rotational moving capability and accuracy. The results show that robot’s actual velocity and

acceleration follow setting parameters satisfactorily.

Besides, delay of response exists and varies from time to time and the solution is to give

an empty motion command at beginning of movements. Partial cause of the delays is that

commands take time to reach low level microcontroller and wheel motors based on PID control

always have a delay of response.

The work we have done in this chapter provides some guides for our further experiments.

For application of algorithm in Pioneer 3 DX, our second order control calculates desired

accelerations other than velocities or positions. However, in Pioneer 3’s design philosophy,

setting acceleration doesn’t make robot move, it is just a value stored in microcontroller’s flash

memory to control how fast velocity increases. In order to make robot follow desired

acceleration, command velocity (which is either bigger or less than current velocity) need to be

set and sent to motor controller continuously. This applies to both angular and linear acceleration

control.

Finally, accuracy of position and orientation of a well calibrated robot doesn’t last very

long time due to encoders’ accumulative error. To solve this problem a global localization

method is desirable. Actually, a method based on single camera will be introduced and discussed

in next chapter.

 26

Chapter 3 Single Camera Localization Algorithm Using

Trilateration and Its Experimental Study

 Localization is a fundamental problem in robotics, especially in robot navigation field. It

takes advantages of various kinds of sensory devices and algorithms to calculate and improve

accuracy of robot’s current position and orientations. A lot of work has been done in this field,

and generally they can be divided into several categories. In the first category, encoders of

wheels could be used to calculate distance offset that each wheel has travelled and calculate

robot’s current position and orientation from robot’s initial positions and orientations. However,

this method can’t avoid accumulative error and can’t be used in position accuracy demanding

areas. The second one is use artificial landmarks for references, for example, for mobile robots,

some magnetic lanes is embedded in the floor and robot can detect magnetic field and thus

determine its current position. Recently, methods based on camera feedback are attracting more

and more people’s attention due to its enriched information of environment. Our lab proposed a

method based on trilateration that calculate robot’s position and orientation based on single

image of identified landmarks which is equipped on top of the robot.

 The main benefits of using single camera over stereo vision system are as following.

Firstly, from cost perspective, stereo vision system doubles the budget compared with single

camera. It is a lot of money if dozens of robots to be equipped. Secondly, for location based on

landmarks, stereo vision system always requires landmark matching before calculating

 27

localizations. Thirdly, stereo vision system usually requires more computing power since it has

much more image processing compared with algorithm based on single camera.

This chapter is organized as followed. In the first part, the trilateration algorithm is

described in details. After that, an experiment is described and conducted under different

circumstances to verify accuracy of the algorithm. Experimental results are listed in tables and

drawn in figures. The conclusions are on the last section.

3.1 Localization Algorithm

 The localization algorithm is to be introduced in this section. The visual angle between

two landmarks can be calculated from their projections in the same image. By using perspective

geography, the constraints could be written into a group of equations, distances from optical

center to landmarks could be calculated thereafter and eventually position of optical center could

be calculated using trilateration. The robot’s orientation is then computed based on the camera

model and landmark positions.

Figure 3.1: Pinhole camera model

 28

3.1.1 Visual Angle Estimation

Based on the pinhole camera model (Figure 3.1), P represents the optical center, xyz

denotes the camera frame, UV denotes the image plane, and C denotes the image center of UV.

In principle, the optical axis PC is perpendicular to the plane UV, and the length of PC is the

focal length f . In addition, Li, where)3,2,1(=i , denotes the ith landmark with a known

position defined in the world frame XYZ, and li denotes the projection of Li in UV.

The camera model follows the principle of perspective projection. A detailed description

of camera parameters and estimation algorithms can be found in a computer vision book such as

[44]. A standard calibration toolbox can also be found at

“http://www.vision.caltech.edu/bouguetj/calib_doc/”.

Assuming that the camera is fixed on the mobile robot, robot positioning is equivalent to

finding the position of the optical center)',,(zyxP = . Besides, the optical axis PC (Figure 3.1) is

chosen to represent the robot orientation in our method. We assume that the image center C and

focal length f are known (in practice they can be obtained from camera calibration), and:

fPC =|||| ,)'(vu ccC −= ,)',(111 vu lll = ,)',(222 vu lll = ,)',(333 vu lll = ,)',,(1111 zyxL = ,

)',,(2222 zyxL = ,)',,(3333 zyxL =

In the image frame, all the lengths are measured in the unit of pixel. Since PC is

perpendicular to the image plane UV,

22

222

)()(||||

)()(||||

jvivjuiuji

vivuiui

llllll

clclfPl

−+−=

−+−+=
 (3.1)

where)3,2,1(=i ,)3,2,1(=j and ji ≠ .

Applying the law of cosine to the triangle i jl Pl , we obtain

 29

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⋅

−+
=∠ −

||||||||2
||||||||||||

cos
222

1

ji

jiji
ji PlPl

llPlPl
Pll (3.2)

Moreover, in the pinhole camera model, the visual angle between landmarks i and j,

ji PLL∠ , is the same angle between their projections, ji Pll∠ . For the convenience of expression,

we define 212112 PllPLL ∠=∠=φ as the visual angle between landmarks 1 and 2. Visual angles 13φ

and 23φ are defined similarly.

3.1.2 Position Estimation

Applying the law of cosine to the triangles 21PLL , 31PLL ,and 32PLL respectively, we

have

0||||||||||||cos2||||||||

0||||||||||||cos2||||||||

0||||||||||||cos2||||||||

2
323223

2
3

2
2

2
313113

2
3

2
1

2
212112

2
2

2
1

=−⋅−+

=−⋅−+

=−⋅−+

LLPLPLPLPL

LLPLPLPLPL

LLPLPLPLPL

φ

φ

φ

 (3.3)

where |||| ji LL denotes the known distance between landmarks i and j,

222)()()(|||| jijijiji zzyyxxLL −+−+−= , and |||| iPL denotes the unknown distance between P and

Li.

Newton’s method [46] is used to compute |||| iPL in Equ.3. Once the distances |||| iPL are

obtained, the optical center can be located by solving a trilateration problem,

2
3

2
3

2
3

2
3

2
2

2
2

2
2

2
2

2
1

2
1

2
1

2
1

||||)()()(

||||)()()(

||||)()()(

PLzzyyxx

PLzzyyxx

PLzzyyxx

=−+−+−

=−+−+−

=−+−+−

 (3.4)

Both closed and iterative form solutions are available [1-4].

To sum up, the distances between the optical center and the landmarks are calculated

from the visual angles and landmark positions using the law of cosine, and the robot position is

 30

estimated by trilateration. During this procedure, only the landmark positions and projections are

used as input. No direct distance measurement is required.

A further inspection on (3-3) and (3-4) reveals the geometric meaning of this problem.

Substituting (3-4) into (3-3), we can formulate a system of equations.

])()()([

])()()][()()()[(cos
222

2222222

jijijijijiji

jjjiiiij

zzyyxxzzzyyyxxxzyx

zzyyxxzzyyxx

++++−+−+−++=

−+−+−−+−+−φ
 (3.5)

3.1.3 Orientation Estimation

In a 3D environment, an orientation can be represented by a directional vector. Since the

camera is fixed on the mobile robot, finding the robot orientation is equivalent to finding the

camera orientation. Therefore, the optical axis is chosen to represent the robot orientation.

In the world frame XYZ , The lines PC and iPL can be expressed as following

Line PC:
z

p

y

p

x

p

p
zz

p
yy

p
xx −

=
−

=
−

 (3.6)

Line PLi:
pi

p

pi

p

pi

p

zz
zz

yy
yy

xx
xx

−

−
=

−

−
=

−

−
 (3.7)

where (), ,p p px y z ′ is the estimated robot position P (the position of the camera optical center),

(), ,i i ix y z ′ is the global position of landmark iL , and (), ,x y zp p p ′ is the directional vector of

PC which needs to be determined.

Corresponding to (3-6) and (3-7), the angle between PC and PLi satisfies the following

relationship:

222222
1

)()()(

)()()(
cos

pipipizyx

pizpiypix
ic

zzyyxxppp

zzpyypxxp

−+−+−++

−+−+−
= −φ (3.8)

 31

By normalizing the directional vector PC , we have 2 2 2 1x y zp p p+ + = , and (3-8) can

be rewritten as:

222
1

)()()(

)()()(
cos

pipipi

pizpiypix
ic

zzyyxx

zzpyypxxp

−+−+−

−+−+−
= −φ (3.9)

On the other hand, we can calculate icφ in camera’s frame:

||||
cos)

||||||||2
||||||||||||(cos 1

222
1

ii

ii
ic PL

f
PCPL

CLPCPL −− =
⋅

−+
=φ (3.10)

where we have used the facts that 222)()(|||| vivuiui clclfPL −+−+= , fPC =|||| , and

22)()(|||| vivuiui clclcL −+−= . The quantities liu, liv, cu and cv can be obtained directly from the

image while f can be obtained from camera calibration.

According to (3-9) and (3-10), we have

222

222

)()(

)()()(
)()()(

vivuiu

pipipi
pizpiypix

clclf

zzyyxxf
zzpyypxxp

−+−+

−+−+−
=−+−+− (3.11)

The solution of (3-11), with)3,2,1(=i , can be written in the following matrix form:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+−+

−+−+−

−+−+

−+−+−

−+−+

−+−+−

⋅
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−−−
−−−
−−−

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

−

2
3

2
3

2

2
3

2
3

2
3

2
2

2
2

2

2
2

2
2

2
2

2
1

2
1

2

2
1

2
1

2
1

1

333

222

111

)()(

)()()(

)()(

)()()(

)()(

)()()(

vvuu

ppp

vvuu

ppp

vvuu

ppp

ppp

ppp

ppp

z

y

x

clclf

zzyyxxf

clclf

zzyyxxf

clclf

zzyyxxf

zzyyxx
zzyyxx
zzyyxx

p
p
p

PC (3.12)

which gives the direction of the optical axis PC (equivalent to the robot orientation).

 32

3.2 Error Analysis

 In order to verify real experimental error of the algorithm, an experiment is carried out.

The general objective of this experiment is to verify algorithm accuracy under different

circumstances, for example, how accuracy changes with different distances from robot to

landmarks, how distribution of landmarks affects overall accuracy is also studied.

The most difficult part in most experiments is that it is impossible to get true values that

the data generated from algorithm can be compared with. In most cases, instead, an experiment is

designed to obtain the data that is mostly equal to the true values.

 In our experiment, a check board pattern, which is commonly used in camera calibration,

is used to obtain robot’s ideal position and orientation with respect to the pattern coordinate

system (which the world frame is attached with).

Figure 3.2: Check board pattern printed together with three circles

 33

Another objective of the experiment is to test accuracy with robot placed at different

directions of those landmarks but with absolute the same distance from the pattern, only in this

way do the results really reflect accuracy changes with different directions. The intuitive way of

doing this is to manually place robot to different directions of the pattern. However, once robot is

moved, it is impossible to keep the robot the same distance from the pattern. Therefore, another

experiment design came into our mind, that is, is it possible that we rotate the pattern instead of

moving robot? A second thought reminds us that this scheme also has a problem, that is, it is

very hard to make pattern rotate absolutely with respect to its center. Eventually, we designed

our current experiment. Three concentric circles are drawn in the same board with check board

pattern, and each circle has 12 landmarks on it (Figure 3.2). Instead of moving robot after every

test, different groups of landmarks are used every time. Moreover, by using different groups of

landmarks, the board doesn’t need to rotate itself. For example, in the first test, landmark 1, 5,

and 9 are used, and the first group of results are obtained. Then the second group of landmarks

with 2, 6 and 10 is taken into calculation to mimic the situation that the board has just rotate 30

degrees. Therefore, without moving robot or board, the whole tests could be done smoothly and

with high reliability.

 To sum up, the experiment is conducted in this order. Firstly, 40 pictures from different

angles are taken for camera calibration using Matlab camera calibration toolbox. Camera’s

intrinsic parameters, which include camera’s focal length, principal points, are obtained.

Secondly, pictures of the check board pattern are taken when robot is placed at different

distances. Thirdly, based on previously obtained intrinsic parameters and with help of Matlab’s

calibration toolbox, robot’s position and orientation can be calculated and they are assumed to be

 34

true. Finally, robot (optical center of the camera)’s position and orientation is calculated from our

localization algorithm based on landmarks. The two groups of data are compared.

3.2.1 Camera Calibration Using Matlab Toolbox

From Figure 3.3, 40 pictures are taken from different angles. By manually marking four

corners of the pattern, the Matlab calibration toolbox is able to calculate camera’s intrinsic

parameters. The more pictures are used, the more accurate the results are. In our case, 40 pictures

are taken and used. The calibration parameters are listed as following:

Figure 3.3: Pictures used in camera calibration

Focal length: fc=[1627.6, 1629.9],

Principal point: cc=[333.9088, 246.3799],

Skew coefficient, 0=cα

 35

Distortion coefficients, kc= [-0.3350, -0.2882, 0.0007, -0.0012, 0],

Focal length uncertainty, errorcf , = [1.1486, 1.1069],

Principal point uncertainty, errorcc , =[1.9374, 1.5782],

Skew coefficient uncertainty, 0, =errorcα ,

Distortion coefficients uncertainty, =[0.0084,0.1936,0.0002,0.0002,0],

Image size: 640×480.

3.2.2 Pictures Taken From Different Distances

As we know that on each circle there are 12 evenly distributed points (Figure 3.2). The

basic idea behind this experiment is to use check board pattern for calculation of transform

matrix between pattern frame and camera frame, therefore we can obtain robot’s ideal position

and orientation. The results are then compared with what is obtained using our localization

algorithm based on landmarks. By using different groups of landmarks (each group has 3

landmarks from the same circle), images of the pattern are taken with robot placed at different

distances from the pattern, algorithm errors from different distances with different groups of

landmarks can be obtained and compared.

Design radiuses of circles are 250mm, 300mm and 350mm (Figure 3.4). However, due to

print error, the real radiuses are 244mm, 292.8mm and 341.6mm. Since length error is evenly

distributed and each check board grid is still exactly the same size (48.8mm×48.8mm), it doesn’t

affect our algorithm if we take the real values in our calculation.

 36

Figure 3.4: Radiuses of three circles

Initial vertical distance from the board to floor is approximately 2200mm, the camera is

around 700mm above the ground.

It is noted that when pictures are being taken, pixel of the center of circles should be

located in the principal point, only in this way can we assume that the pattern’s center remain the

same distance to camera’s optical center, no matter which group of landmarks is used. This

requirement is satisfied by marking principle points in images and make sure center of the

pattern match that point.

Figure 3.5: Four photos of the pattern are taken from five different distances

 37

3.2.3 True Positions and Orientations of Robot

As we mentioned earlier that true positions and orientations of the robot at different

distances are calculated by using Matlab camera calibration toolbox.

Table 3.1: Real relative position and orientation of robot when 2 meters away

Landmarks used x (mm) y (mm) z (mm) θ (Direction Vector)

1,5,9 -132.8737 -1493.7066 1549.2967 [0.0604,0.6932,-0.7182]

2,6,10 -861.9253 -1227.151 1549.2967 [0.3989,0.5701,-0.7182]

3,7,11 -1360.0247 -631.7813 1549.2967 [0.6305,0.2943,-0.7182]

4,8,12 -1493.7066 132.8737 1549.2967 [0.6932,-0.0604,-0.7182]

5,9,1 -1227.151 861.9253 1549.2967 [0.5701,-0.3989,-0.7182]

6,10,2 -631.7813 1360.0247 1549.2967 [0.2943,-0.6305,-0.7182]

7,11,3 132.8737 1493.7066 1549.2967 [-0.0604,-0.6932,-0.7182]

8,12,4 861.9253 1227.151 1549.2967 [-0.3989,-0.5701,-0.7182]

9,1,5 1360.0247 631.7813 1549.2967 [-0.6305,-0.2943,-0.7182]

10,2,6 1493.7066 -132.8737 1549.2967 [-0.6932,0.0604,-0.7182]

11,3,7 1227.151 -861.9253 1549.2967 [-0.5701,0.3989,-0.7182]

12,4,8 631.7813 -1360.0247 1549.2967 [-0.2943,0.6305,-0.7182]

 38

Table 3.2: Real relative position and orientation of robot when 2.5 meters away

Landmarks used x (mm) y (mm) z (mm) θ (Direction Vector)

1,5,9 -236.0603 -2240.5663 1519.9805 [0.0859,0.825,-0.5586]

2,6,10 -1324.7174 -1822.3572 1519.9805 [0.4869,0.6716,-0.5586]

3,7,11 -2058.4175 -915.8489 1519.9805 [0.7574,0.3382,-0.5586]

4,8,12 -2240.5663 236.0603 1519.9805 [0.825,-0.0859,-0.5586]

5,9,1 -1822.3572 1324.7174 1519.9805 [0.6716,-0.4869,-0.5586]

6,10,2 -915.8489 2058.4175 1519.9805 [0.3382,-0.7574,-0.5586]

7,11,3 236.0603 2240.5663 1519.9805 [-0.0859,-0.825,-0.5586]

8,12,4 1324.7174 1822.3572 1519.9805 [-0.4869,-0.6716,-0.5586]

9,1,5 2058.4175 915.8489 1519.9805 [-0.7574,-0.3382,-0.5586]

10,2,6 2240.5663 -236.0603 1519.9805 [-0.825,0.0859,-0.5586]

11,3,7 1822.3572 -1324.7174 1519.9805 [-0.6716,0.4869,-0.5586]

12,4,8 915.8489 -2058.4175 1519.9805 [-0.3382,0.7574,-0.5586]

Table 3.3: Real relative position and orientation of robot when 3 meters away

Landmarks used x (mm) y (mm) z (mm) θ (Direction Vector)

1,5,9 -255.7185 -2771.846 1506.1401 [0.0794,0.876,-0.4757]

2,6,10 -1607.3817 -2272.6298 1506.1401 [0.5068,0.7189,-0.4757]

3,7,11 -2528.3483 -1164.4643 1506.1401 [0.7984,0.3692,-0.4757]

4,8,12 -2771.846 255.7185 1506.1401 [0.876,-0.0794,-0.4757]

5,9,1 -2272.6298 1607.3817 1506.1401 [0.7189,-0.5068,-0.4757]

6,10,2 -1164.4643 2528.3483 1506.1401 [0.3692,-0.7984,-0.4757]

7,11,3 255.7185 2771.846 1506.1401 [-0.0794,-0.876,-0.4757]

8,12,4 1607.3817 2272.6298 1506.1401 [-0.5068,-0.7189,-0.4757]

9,1,5 2528.3483 1164.4643 1506.1401 [-0.7984,-0.3692,-0.4757]

10,2,6 2771.846 -255.7185 1506.1401 [-0.876,0.0794,-0.4757]

11,3,7 2272.6298 -1607.3817 1506.1401 [-0.7189,0.5068,-0.4757]

12,4,8 1164.4643 -2528.3483 1506.1401 [-0.3692,0.7984,-0.4757]

 39

Table 3.4: Real relative position and orientation of robot when 3.5 meters away

Landmarks used x (mm) y (mm) z (mm) θ (Direction Vector)

1,5,9 -222.962 -3319.2174 1502.1583 [0.0601,0.9099,-0.4105]

2,6,10 -1852.6995 -2763.0456 1502.1583 [0.507,0.7579,-0.4105]

3,7,11 -2986.0076 -1466.518 1502.1583 [0.818,0.4029,-0.4105]

4,8,12 -3319.2174 222.962 1502.1583 [0.9099,-0.0601,-0.4105]

5,9,1 -2763.0456 1852.6995 1502.1583 [0.7579,-0.507,-0.4105]

6,10,2 -1466.518 2986.0076 1502.1583 [0.4029,-0.818,-0.4105]

7,11,3 222.962 3319.2174 1502.1583 [-0.0601,-0.9099,-0.4105]

8,12,4 1852.6995 2763.0456 1502.1583 [-0.507,-0.7579,-0.4105]

9,1,5 2986.0076 1466.518 1502.1583 [-0.818,-0.4029,-0.4105]

10,2,6 3319.2174 -222.962 1502.1583 [-0.9099,0.0601,-0.4105]

11,3,7 2763.0456 -1852.6995 1502.1583 [-0.7579,0.507,-0.4105]

12,4,8 1466.518 -2986.0076 1502.1583 [-0.4029,0.818,-0.4105]

Table 3.5: Real relative position and orientation of robot when 4 meters away

Landmarks used x (mm) y (mm) z (mm) θ (Direction Vector)

1,5,9 -223.0791 -3899.0654 1472.9688 [0.0519,0.9351,-0.3505]

2,6,10 -2142.7249 -3265.1501 1472.9688 [0.5125,0.7839,-0.3505]

3,7,11 -3488.2292 -1756.3405 1472.9688 [0.8358,0.4227,-0.3505]

4,8,12 -3899.0654 223.0791 1472.9688 [0.9351,-0.0519,-0.3505]

5,9,1 -3265.1501 2142.7249 1472.9688 [0.7839,-0.5125,-0.3505]

6,10,2 -1756.3405 3488.2292 1472.9688 [0.4227,-0.8358,-0.3505]

7,11,3 223.0791 3899.0654 1472.9688 [-0.0519,-0.9351,-0.3505]

8,12,4 2142.7249 3265.1501 1472.9688 [-0.5125,-0.7839,-0.3505]

9,1,5 3488.2292 1756.3405 1472.9688 [-0.8358,-0.4227,-0.3505]

10,2,6 3899.0654 -223.0791 1472.9688 [-0.9351,0.0519,-0.3505]

11,3,7 3265.1501 -2142.7249 1472.9688 [-0.7839,0.5125,-0.3505]

12,4,8 1756.3405 -3488.2292 1472.9688 [-0.4227,0.8358,-0.3505]

 40

3.2.4 Robot’s Estimated Position and Orientation Using Our Localization

Algorithm

Camera calibration parameters are imported to our program and rectified images are

input. The positions and orientations of the robot are calculated with robot placed at different

distances and different groups of landmarks are used. It doesn’t have enough space to list all data

here, the comparison results, which refers to inconsistency at x, y z axis and angle, are listed

from Table 3.6 to 3.10. Standard deviations of these errors are also listed in Table 3.11 and draw

in Figure 3.6. Experimental study using 4 landmarks are also conducted and the results are

shown in from Table 3.12 to Table 3.17, Figure 3.7 draws the standard deviations.

Table 3.6: 2 meters way
Circle 1 2 3

Error
xE

(mm)

yE

(mm)

zE

(mm)

θE

(degree)

xE

(mm)

yE

(mm)

zE

(mm)

θE

(degree)

xE

(mm)

yE

(mm)

zE

(mm)

θE

(degree)

1,5,9 2.3589 0.5639 2.3523 0.12095 16.123 1.8182 -1.072 0.50949 10.916 -6.5477 -11.831 0.48561

2,6,10 5.4365 1.6032 1.3473 0.20598 2.8041 -5.8212 -2.3867 0.21998 7.7278 -2.3149 2.1165 0.25956

3,7,11 1.6336 14.138 2.14 0.39564 -6.9758 5.1213 -8.5319 0.27524 -15.995 -6.0953 -18.167 0.69636

4,8,12 -8.2808 0.55243 -11.255 0.34783 -4.0289 1.6254 -9.0608 0.20948 -7.8789 -1.6559 -15.071 0.44005

5,9,1 -0.6911 -2.3248 2.3523 0.12095 -6.4868 -14.872 -1.072 0.50949 -11.129 -6.18 -11.831 0.48561

6,10,2 -1.3298 -5.5097 1.3473 0.20598 -6.4433 0.48212 -2.3867 0.21998 -5.8687 -5.5351 2.1165 0.25956

7,11,3 11.427 -8.4838 2.14 0.39564 7.9231 3.4806 -8.5319 0.27524 2.7186 16.899 -18.167 0.69636

8,12,4 4.6188 6.8952 -11.255 0.34783 3.4221 2.6764 -9.0608 0.20948 2.5054 7.6513 -15.071 0.44005

9,1,5 -1.6678 1.7609 2.3523 0.12095 -9.6361 13.054 -1.072 0.50949 0.2122 12.728 -11.831 0.48561

10,2,6 -4.1066 3.9065 1.3473 0.20598 3.6392 5.339 -2.3867 0.21998 -1.8592 7.8499 2.1165 0.25956

11,3,7 -13.061 -5.6543 2.14 0.39564 -0.94726 -8.6019 -8.5319 0.27524 13.276 -10.804 -18.167 0.69636

12,4,8 3.662 -7.4476 -11.255 0.34783 0.60681 -4.3018 -9.0608 0.20948 5.3735 -5.9953 -15.071 0.44005

Table 3.7: 2.5 meters way

Circle 1 2 3

Error xE yE zE θE xE yE zE θE xE yE zE θE

 41

1,5,9 -8.0787 5.7478 9.3783 0.30631 0.21915 2.7175 -6.8621 0.06908 9.7288 2.1814 -2.4295 0.21974

2,6,10 7.2372 2.8902 -1.0217 0.1396 3.3917 0.52986 -8.5322 0.15313 0.6158 -2.6668 0.93699 0.06668

3,7,11 12.063 -6.958 -6.5385 0.29515 -1.9442 13.985 -2.4959 0.28204 -8.2195 13.626 -11.423 0.42614

4,8,12 2.5461 8.111 3.9832 0.20101 1.3882 -2.2092 -6.6392 0.10511 -1.4439 6.6614 -11.635 0.26146

5,9,1 9.0171 4.1225 9.3783 0.30631 2.2438 -1.5485 -6.8621 0.06908 -2.9752 -9.5161 -2.4295 0.21974

6,10,2 -1.1156 -7.7128 -1.0217 0.1396 -1.237 -3.2023 -8.5322 0.15313 -2.6175 0.80003 0.93699 0.06668

7,11,3 -12.057 -6.9676 -6.5385 0.29515 13.083 -5.3087 -2.4959 0.28204 15.91 0.30537 -11.423 0.42614

8,12,4 5.7513 -6.2605 3.9832 0.20101 -2.6073 -0.0976 -6.6393 0.10511 6.4909 -2.0802 -11.635 0.26146

9,1,5 0.93837 -9.8703 9.3783 0.30631 -2.463 -1.1689 -6.8621 0.06908 -6.7536 7.3347 -2.4295 0.21974

10,2,6 -6.1216 4.8225 -1.0217 0.1396 -2.1547 2.6724 -8.5322 0.15313 2.0016 1.8668 0.93698 0.06668

11,3,7 0.00553 13.926 -6.5385 0.29515 -11.139 -8.6761 -2.4959 0.28204 -7.6906 -13.931 -11.423 0.42614

12,4,8 -8.2973 -1.8505 3.9832 0.20101 1.2191 2.3068 -6.6393 0.10511 -5.047 -4.5812 -11.635 0.26146

Table 3.8: 3 meters way

Circle 1 2 3

Error xE yE zE θE xE yE zE θE xE yE zE θE

1,5,9 8.2371 17.013 -4.5953 0.19698 12.778 6.3152 -6.9821 0.28376 29.126 9.0809 -20.716 0.6598

2,6,10 -6.1736 10.969 0.11138 0.23224 13.422 9.9015 -8.8295 0.15535 10.572 -3.2921 -3.4803 0.22778

3,7,11 19.159 10.081 -1.4253 0.22004 18.467 -0.3134 0.79374 0.29121 10.072 3.1388 -23.418 0.29212

4,8,12 4.2165 -0.3756 -14.214 0.18638 11.798 -9.6742 -22.481 0.30452 10.552 -13.581 -38.6 0.5902

5,9,1 10.615 -15.64 -4.5953 0.19698 -0.92003 -14.224 -6.9821 0.28376 -6.6989 -29.765 -20.716 0.6598

6,10,2 12.586 -0.13777 0.11138 0.23224 1.8642 -16.574 -8.8295 0.15535 -8.1371 -7.5098 -3.4803 0.22778

7,11,3 0.84885 -21.633 -1.4253 0.22004 -9.505 -15.836 0.79374 0.29121 -2.3179 -10.292 -23.418 0.29212

8,12,4 -2.4335 -3.4638 -14.214 0.18638 -14.277 -5.3802 -22.481 0.30452 -17.037 -2.3484 -38.6 0.5902

9,1,5 -18.852 -1.373 -4.5953 0.19698 -11.858 7.9087 -6.9821 0.28376 -22.427 20.684 -20.716 0.6598

10,2,6 -6.4122 -10.831 0.11138 0.23224 -15.286 6.6727 -8.8295 0.15535 -2.4351 10.802 -3.4803 0.22778

11,3,7 -18.31 11.552 -1.4253 0.22004 -8.9622 16.15 0.79374 0.29121 -7.7544 7.1535 -23.418 0.29212

12,4,8 -1.7829 3.8394 -14.214 0.18638 2.4792 15.054 -22.481 0.30452 6.4849 15.929 -38.6 0.5902

Table 3.9: 3.5 meters way

Circle 1 2 3

 42

Error xE yE zE θE xE yE zE θE xE yE zE θE

1,5,9 -15.657 35.633 8.0942 0.49878 -15.125 12.533 1.522 0.30135 11.026 19.234 -12.48 0.17405

2,6,10 0.98953 7.8926 -11.697 0.13627 7.1639 23.291 0.87403 0.23166 -11.823 28.841 5.8916 0.48857

3,7,11 23.753 32.36 16.289 0.60536 12.79 37.184 -4.6346 0.4921 11.939 16.611 -29.687 0.35372

4,8,12 12.252 3.5262 -11.335 0.11326 20.426 4.9037 -15.578 0.1209 26.624 -9.8499 -7.997 0.16266

5,9,1 38.687 -4.2573 8.0942 0.49878 18.417 6.8317 1.522 0.30135 11.144 -19.166 -12.48 0.17405

6,10,2 6.3405 -4.8033 -11.697 0.13627 16.588 -17.849 0.87402 0.23165 30.889 -4.1812 5.8916 0.48857

7,11,3 16.149 -36.751 16.289 0.60536 25.807 -29.668 -4.6346 0.4921 8.4162 -18.645 -29.687 0.35372

8,12,4 -3.0724 -12.374 -11.335 0.11326 -5.9665 -20.142 -15.578 0.1209 -21.842 -18.132 -7.997 0.16266

9,1,5 -23.031 -31.375 8.0942 0.49878 -3.2919 -19.365 1.522 0.30135 -22.17 -0.0685 -12.48 0.17405

10,2,6 -7.33 -3.0894 -11.697 0.13627 -23.752 -5.4411 0.87402 0.23166 -19.066 -24.66 5.8916 0.48857

11,3,7 -39.901 4.3902 16.289 0.60536 -38.597 -7.5157 -4.6346 0.4921 -20.355 2.034 -29.687 0.35372

12,4,8 -9.1799 8.8478 -11.335 0.11326 -14.46 15.238 -15.578 0.1209 -4.7818 27.982 -7.997 0.16266

Table 3.10: 4 meters way

Circle 1 2 3

Error xE yE zE θE xE yE zE θE xE yE zE θE

1,5,9 35.073 -17.65 7.132 0.51387 44.934 -6.2662 1.0455 0.65838 8.3944 5.0895 -1.5009 0.12583

2,6,10 20.153 -23.231 1.1207 0.4291 -34.588 -10.785 37.562 0.46747 2.7996 -28.096 10.936 0.28589

3,7,11 2.5609 -19.555 11.884 0.31389 14.556 13.667 -17.75 0.16439 -32.19 23.335 -17.126 0.59922

4,8,12 -7.7941 -27.202 4.5052 0.42811 -23.244 20.012 63.927 0.77213 -24.828 -35.116 -1.3092 0.57307

5,9,1 -32.822 -21.549 7.132 0.51387 -27.893 -35.78 1.0455 0.65838 0.2105 -9.8145 -1.5009 0.12583

6,10,2 -30.195 -5.8377 1.1207 0.4291 7.954 35.346 37.562 0.46747 -25.732 11.623 10.936 0.28589

7,11,3 -18.216 7.5599 11.884 0.31389 4.5576 -19.439 -17.75 0.16439 36.304 16.21 -17.126 0.59922

8,12,4 -19.661 20.351 4.5052 0.42811 28.953 10.124 63.927 0.77213 -17.998 39.06 -1.3092 0.57307

9,1,5 -2.2513 39.2 7.132 0.51387 -17.04 42.047 1.0455 0.65838 -8.6048 4.725 -1.5009 0.12583

10,2,6 10.042 29.068 1.1207 0.4291 26.634 -24.561 37.562 0.46747 22.932 16.472 10.936 0.28589

11,3,7 15.655 11.996 11.884 0.31389 -19.114 5.7726 -17.75 0.16439 -4.1135 -39.545 -17.126 0.59922

12,4,8 27.455 6.8512 4.5052 0.42811 -5.7084 -30.136 63.927 0.77213 42.825 -3.9433 -1.3092 0.57307

Table 3.11: Summary of standard deviations

Circle 1 2 3

 43

Error
xE

(mm)

yE

(mm)

zE

(mm)

θE

(degree)

xE

(mm)

yE

(mm)

zE

(mm)

θE

(degree)

xE

(mm)

yE

(mm)

zE

(mm)

θE

(degree)

2 9.5183 9.5183 4.8343 0.35139 11.302 11.302 9.2476 0.44897 4.5412 4.5412 8.2613 0.25596

2.5 13.937 13.937 6.8697 0.35906 13.378 13.378 12.712 0.24136 9.8258 9.8258 13.506 0.29804

3 11.825 11.825 17.319 0.41932 15.921 15.921 17.774 0.26521 11.991 11.991 18.029 0.33762

3.5 12.681 12.681 16.877 0.35495 16.419 16.419 21.316 0.33417 18.942 18.942 21.47 0.46989

4 25.944 25.944 25.902 0.5624 31.528 31.528 27.579 0.55922 31.721 31.721 17.936 0.67912

1 2 3 4 5
5

10

15

20

25

30

x

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
5

10

15

20

25

30

y

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
0

10

20

30

z

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5

0.35

0.4

0.45

0.5

0.55

0.6

θ

S
ta

nd
ar

d
de

vi
at

io
n:

(d
eg

re
e)

(a) With landmarks on circle 1

1 2 3 4 5
10

15

20

25

30

35

x

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
10

15

20

25

30

35

y

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
5

10

15

20

25

30

z

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

θ

S
ta

nd
ar

d
de

vi
at

io
n:

(d
eg

re
e)

(b) With landmarks on circle 2

1 2 3 4 5
0

10

20

30

40

x

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
0

10

20

30

40

y

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
5

10

15

20

25

z

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

θ

S
ta

nd
ar

d
de

vi
at

io
n:

(d
eg

re
e)

(c) With landmarks on circle 3

Figure 3.6: Standard deviations

 44

Besides 3 landmarks, error analysis with 4 landmarks is conducted and the results are

listed in the following tables.

Table 3.12: 2 meters away

Circle 1 2 3

Error xE yE zE θE xE yE zE θE xE yE zE θE

1,5,9 -1.758 10.3451 -7.8924 0.1053 -5.1218 5.7323 0.502 0.1962 -2.7477 1.1181 -2.613 0.0819

2,6,10 -9.4911 13.5189 0.3281 0.4289 0.2328 14.244 3.6386 0.3753 -8.0938 0.1095 -3.0529 0.3532

3,7,11 -2.4012 16.2551 4.0071 0.472 0.2533 12.0821 -9.0388 0.2681 2.0772 2.4702 10.4478 0.2675

4,8,12 10.3451 1.7581 -7.8926 0.1053 5.732 5.1222 0.5006 0.1962 1.1181 2.7479 -2.6131 0.0819

5,9,1 13.5189 9.4918 0.3272 0.4289 14.2384 -0.244 3.6427 0.3753 0.1072 8.1008 13.0681 0.3536

6,10,2 16.2551 2.401 4.0074 0.472 12.0798 -0.252 -9.046 0.2681 2.4712 -2.0762 10.4475 0.2675

7,11,3 1.7581 -10.3451 -7.8926 0.1053 5.1219 -5.7324 0.502 0.1962 2.7481 -1.1178 -2.6144 0.0819

8,12,4 9.4904 -13.519 0.3295 0.4289 -0.2494 -14.2533 3.681 0.3762 8.0849 -0.1129 -3.0299 0.3526

9,1,5 2.4009 -16.2551 4.0074 0.472 -0.2529 -12.0825 -9.0388 0.2681 -2.0767 -2.4709 10.4497 0.2675

10,2,6 -0.3451 -1.7582 -7.8927 0.1053 -5.7322 -5.1218 0.5018 0.1962 -1.118 -2.7477 -2.6132 0.0819

11,3,7 -3.5185 -9.4914 0.3268 0.4289 -14.2432 0.2396 3.6443 0.3754 -0.1077 -8.1016 -3.0645 0.3535

12,4,8 -6.2549 -2.4013 4.0063 0.472 -12.08 0.2499 -9.0489 0.2681 -2.4697 2.077 10.4487 0.2675

Table 3.13: 2.5 meters away

Circle 1 2 3

 45

Error xE yE zE θE xE yE zE θE xE yE zE θE

1,5,9 4.7172 16.6581 2.3244 0.2588 0.7631 12.1048 -8.5656 0.0146 -5.6797 10.8691 -0.5018 0.1695

2,6,10 -1.301 25.1231 4.9753 0.4822 10.0576 18.8214 -3.0027 0.0846 -3.1164 8.1503 -8.3763 0.2903

3,7,11 9.6413 11.98 1.6002 0.2117 18.2163 -0.7453 -7.6984 0.1924 9.9699 -6.061 -1.4574 0.2248

4,8,12 16.6582 -4.7172 2.3237 0.2588 12.1049 -0.7625 -8.5656 0.0146 10.867 5.6754 -0.4945 0.1695

5,9,1 25.1228 1.3013 4.9743 0.4822 18.8236 -10.0465 -13.045 0.0843 8.1539 3.1143 -8.3216 0.2895

6,10,2 11.9605 -9.6463 1.5584 0.2109 -0.7491 -18.217 -7.7151 0.1924 -6.082 -9.9782 -1.5015 0.2256

7,11,3 -4.7172 -16.6581 2.3243 0.2588 -0.7622 -12.1039 -8.5686 0.0145 5.6757 -0.8673 -0.4963 0.1695

8,12,4 1.301 -25.1231 4.9753 0.4822 -10.0576 -18.8214 -3.0027 0.0846 3.1164 -8.1503 -8.3763 0.2903

9,1,5 -9.6468 -11.9596 1.5551 0.2108 -18.2167 0.747 -7.7051 0.1924 -9.9695 6.077 -1.5085 0.2255

10,2,6 -6.6582 4.717 2.3245 0.2588 -12.105 0.7628 -8.568 0.0145 -10.867 -5.6754 -0.4944 0.1695

11,3,7 -25.122 -1.3011 4.9741 0.4822 -18.8222 10.0505 -3.0264 0.0844 -8.1514 -3.1167 -8.3723 0.2903

12,4,8 -1.9448 9.6506 1.5305 0.2103 0.7496 18.2166 -7.7218 0.1924 6.0728 9.9725 -1.4829 0.2252

Table 3.14: 3 meters away

Circle 1 2 3

Error xE yE zE θE xE yE zE θE xE yE zE θE

1,5,9 9.2554 16.6739 21.5476 0.5057 6.4364 8.0622 -0.4032 0.1263 -6.536 12.3671 20.8448 0.4657

2,6,10 7.632 15.7263 14.4388 0.3729 21.8249 23.846 -5.6884 0.0856 -0.7341 24.901 -9.0946 0.2923

3,7,11 2.8173 11.4115 -1.6223 0.1747 12.4404 12.5993 -21.953 0.2278 7.0791 -2.9651 -1.5461 0.155

4,8,12 16.6736 -9.2552 21.5474 0.5057 8.0622 -6.4361 -0.4038 0.1263 12.369 6.5313 20.8488 0.4657

5,9,1 15.7184 -7.6352 14.4698 0.3733 23.8453 -21.8246 -15.681 0.0856 24.905 0.7406 -9.1654 0.2929

6,10,2 11.4128 -2.8143 -1.604 0.1748 12.5917 -12.4507 -1.9659 0.2278 -2.9675 -7.0874 -1.5112 0.1545

7,11,3 -9.2555 -16.674 21.5478 0.5057 -6.4363 -8.0623 -0.4039 0.1263 6.5365 -2.3686 20.8391 0.4656

8,12,4 -7.633 -15.7195 14.4235 0.3726 -21.827 -23.8448 -5.6891 0.0856 0.7441 -4.9073 -9.1508 0.2929

9,1,5 -2.816 -11.4117 -1.6135 0.1748 -12.4423 -12.5982 -1.9542 0.2278 -7.0791 2.9651 -1.5463 0.155

10,2,6 -16.674 9.2554 21.5477 0.5057 -8.0622 6.4363 -0.4038 0.1263 -2.3691 -6.5372 20.8398 0.4656

11,3,7 -15.718 7.6353 14.469 0.3733 -23.842 21.8305 -15.661 0.0859 -4.8995 -0.7322 -9.1062 0.2923

12,4,8 -1.4135 2.8142 -1.5773 0.1749 -12.6058 12.4371 -1.9099 0.2272 2.9527 7.0716 -1.4761 0.1539

Table 3.15: 3.5 meters away

 46

Circle 1 2 3

Error xE yE zE θE xE yE zE θE xE yE zE θE

1,5,9 -3.7506 16.6903 5.9739 0.2069 -4.5698 6.2434 -6.864 0.088 25.4035 9.1058 14.0537 0.4613

2,6,10 13.8345 14.2228 5.8792 0.2411 15.4063 15.6661 2.3059 0.2129 26.8478 -2.032 -0.8553 0.3476

3,7,11 13.0142 -4.4684 11.6744 0.2616 2.6168 24.3667 -9.7729 0.3711 14.3337 -4.7069 -3.9566 0.3264

4,8,12 16.6911 3.7505 5.9715 0.2068 6.2442 4.5702 -6.8643 0.088 9.1058 -5.4036 14.0535 0.4613

5,9,1 14.2228 -13.8346 5.879 0.2411 15.7137 -15.39 2.1483 0.2108 -2.003 -6.8273 -1.0162 0.3474

6,10,2 -4.4711 -13.0193 11.6623 0.2615 24.3646 -2.6191 -9.7839 0.3711 -4.7128 -4.3408 -3.9938 0.3269

7,11,3 3.7506 -16.6912 5.9717 0.2068 4.57 -6.245 -6.8632 0.088 -5.4035 -9.1059 14.0534 0.4613

8,12,4 -3.8347 -14.2229 5.878 0.2411 -15.3965 -15.7028 2.1455 0.2107 -6.8342 2.0043 -1.0045 0.3475

9,1,5 -3.0205 4.4721 11.668 0.2616 -2.6189 -24.3644 -19.783 0.3711 -4.3411 4.7134 -3.9867 0.3268

10,2,6 -6.6915 -3.7508 5.9708 0.2068 -6.2447 -4.5697 -6.8627 0.088 -9.1058 25.4035 14.0538 0.4614

11,3,7 -4.2225 13.8349 5.8801 0.2411 -15.6779 15.4029 2.3289 0.2132 2.0178 26.8374 -0.9337 0.3475

12,4,8 4.4671 13.0161 11.6803 0.2617 -24.3667 2.6168 -9.7728 0.3711 4.7086 14.335 -23.957 0.3264

Table 3.16: 4 meters away

Circle 1 2 3

Error xE yE zE θE xE yE zE θE xE yE zE θE

1,5,9 35.4853 6.7436 -15.8298 0.5417 20.8644 13.4147 -12.8503 0.3377 45.81 -3.2013 -0.1092 0.66

2,6,10 31.2703 1.1294 13.3179 0.3773 63.9709 -0.6741 -28.9919 0.7973 37.9122 -1.9537 -9.2286 0.5867

3,7,11 25.9205 -24.8835 11.298 0.475 13.0497 16.0023 -36.3094 0.5125 17.9025 -5.3291 -4.6888 0.6319

4,8,12 6.7436 -35.4853 -15.83 0.5417 13.4163 -20.8687 -12.8435 0.3377 -3.2006 -5.8142 -0.0985 0.66

5,9,1 1.1346 -31.2703 13.2897 0.3771 -0.6658 -63.9698 -29.0438 0.7974 -1.8755 -7.9068 -9.6885 0.5885

6,10,2 -4.9026 -25.9247 11.2934 0.4752 16.0017 -13.0464 -36.3011 0.5124 -35.348 -7.9169 -4.7327 0.6325

7,11,3 -5.4886 -6.7456 -15.8258 0.5418 -20.8649 -13.4111 -12.8425 0.3377 -5.8104 3.2037 -0.1037 0.66

8,12,4 -1.2706 -1.1293 13.3213 0.3773 -63.9719 0.6772 -29.0008 0.7973 -7.9193 11.9712 -19.282 0.5872

9,1,5 -5.9261 24.8928 11.3006 0.4751 -13.0485 -15.9937 -36.3153 0.5126 -7.9106 35.3423 -14.676 0.632

10,2,6 -6.7425 35.4855 -15.8273 0.5417 -13.417 20.8644 -12.8414 0.3377 3.2006 45.8138 -0.0996 0.66

11,3,7 -1.1317 31.271 13.3082 0.3772 0.676 63.975 -28.9974 0.7973 11.9662 37.9277 -9.2338 0.5869

12,4,8 24.8838 25.9207 11.2979 0.475 -16.0022 13.0493 -36.3083 0.5125 35.363 17.9456 -4.8442 0.6334

Table 3.17: Summary of standard deviations

 47

Circle 1 2 3

Error xE yE zE θE xE yE zE θE xE yE zE θE

2 10.4318 10.432 5.1139 0.3732 8.2456 8.2485 5.6381 0.2895 3.7565 3.7607 9.7708 0.2601

2.5 13.955 13.9581 3.2958 0.3386 12.4831 12.4815 10.0389 0.1216 7.7764 7.776 12.5081 0.2336

3 11.5988 11.5998 15.0076 0.3766 15.6249 15.6261 15.5739 0.1582 12.078 12.0784 17.6359 0.3298

3.5 12.0815 12.0815 8.2955 0.2376 13.8081 13.805 12.1556 0.2519 16.7356 16.7335 17.2452 0.3831

4 24.4118 24.4105 13.6052 0.4696 29.2531 29.253 27.8375 0.5809 29.6063 29.6089 15.2094 0.6273

1 2 3 4 5
10

15

20

25

x

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
10

15

20

25

y

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
0

5

10

15

20

z

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
0.2

0.3

0.4

0.5

θ

S
ta

nd
ar

d
de

vi
at

io
n:

(d
eg

re
e)

(a) With landmarks on circle 1

1 2 3 4 5
5

10

15

20

25

30

x

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
5

10

15

20

25

30

y

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
5

10

15

20

25

30

z

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

θ

S
ta

nd
ar

d
de

vi
at

io
n:

(d
eg

re
e)

(b) With landmarks on circle 2

1 2 3 4 5
0

10

20

30

x

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
0

10

20

30

y

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
8

10

12

14

16

18

z

S
ta

nd
ar

d
de

vi
at

io
n:

(m
m

)

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

θ

S
ta

nd
ar

d
de

vi
at

io
n:

(d
eg

re
e)

(c) With landmarks on circle 3

Figure 3.7: Standard deviations

 48

3.3 Conclusion

This chapter introduces a novel effective localization algorithm for mobile robots based

on one single image of a few identified landmarks taken by an onboard camera. The visual angle

between two landmarks can be derived from their projections in the same image. The distances

between the optical center and the landmarks can be calculated from the visual angles and the

known landmark positions based on the law of cosine. The robot position can then be determined

using the principle of trilateration. Finally, the robot orientation is computed from the robot

position, landmark positions and their projections.

In order to confirm effectiveness and verify accuracy of the localization algorithm, an

experiment is designed and conducted with our BlueFox camera equipped at a Pioneer 3 DX

robot. The results show algorithm errors under different circumstances. Overall speaking, the

closer the robot is to the landmarks, the smaller the errors are. However, we didn’t see very

different accuracies when using landmarks on different circles. Moreover, using an extra

landmarks (4 landmarks) also doesn’t lead to obvious improvement of accuracy, most likely the

errors caused by noise is too big and hide the accuracy improvement. And at last, generally, the

overall accuracy of the trilateration algorithm is at a very good level and can be used for real

indoor robot navigation.

 49

Chapter 4 Multi-robot Deployment, Collision Avoidance and

Experimental Study on Pioneer 3 DX

 This chapter focuses on a decentralized self-deployment scheme for a team of

nonholonomic mobile robots forming sensor coverage in a targeted environment while

maintaining communication connections and avoiding collisions. A study of our algorithm and

another potential field algorithm incorporated in our uniform framework is made. Collision

avoidance is discussed and an effective collision avoidance scheme is proposed.

A multi-robot system consists of a collection of networked mobile robots collaborating in

task execution. Multi-robot systems have numerous applications, such as surveillance,

environment monitoring, disaster rescue, deep sea and planetary exploration, etc. Many of these

applications require deploying a team of mobile robots, which are equipped with sensors and/or

manipulators, into an environment to provide desired sensory coverage and perform

collaborative tasks while maintaining communication connections.

 50

The rest of this chapter is organized as follows. To make the chapter self-contained,

Section 4.1 will review our decentralized control framework for deploying multiple

nonholonomic mobile robots. Section 4.2 will introduce a control law for accomplishing desired

sensor coverage while maintaining communication connections, simulations are conducted to

verify effectiveness of our method. In order to verify generality of the control framework,

another potential field algorithm is incorporated and results are listed. Section 4.3 will discuss

collision in deployment process and a new collision avoidance scheme is proposed to solve this

problem. Simulation results show effectiveness of our method. Section 4.5 will summarize this

work.

4.1 Control Framework

The work of this chapter focuses on the situation that a team of nonholonomic mobile

robots are deployed into a general 2D environment, from a compact initial system gathering, to

form desired sensor coverage while maintaining necessary communication connections.

Adopting a simplified model for mobile robots in a 2D space, we assume that the state of a

mobile robot Ri is defined by its position coordinates (xi,yi), its orientation angle θi and their time

derivatives in a global frame of reference defined in this space.

For a team of N nonholonomic wheeled robots to deploy into a targeted 2D environment

to establish sensor coverage while maintaining communication connections, the desired global

configuration of the whole multi-robot system will be at first broken down into a collection of

desired local configurations, each of which is defined in the neighborhood of an individual robot

Ri. Then Ri will self-deploy towards the desired local configuration by moving in the direction of

reducing the difference between the desired and instantaneous local configurations, based on the

detection of the state of its neighborhood.

 51

An optimal self-deployment motion of Ri can be defined according to Hamilton’s

principle in classical mechanics [42]. To do that, we at first define an extended Lagrangian for Ri

as

iii
E
i UVTL −−= (4.1)

where Ti denotes the kinetic energy, Vi denotes the actual potential energy, and Ui denotes an

artificial potential energy which moves Ri towards the desired the local configuration. In general,

Ui is defined according to the difference between the desired and instantaneous local

configurations, based on the online sensory and communication feedback of the state of Ri

neighborhood.

Then, based on the Hamilton’s principle [42], the optimal motion of Ri should minimize

the action of Ri during the deployment process, i.e.

∫= 2

1)(),(),(
minarg)](),(),([

t

t

E
ittytxiii dtLttytx

iii θ
θ (4.2)

Meanwhile, due its nonholonomic nature, Ri must satisfy the nonholonomic constraint

during its movement

0cossin =− iiii yx θθ && (4.3)

which means that it can only have a non-zero speed in its longitudinal direction (i.e. along its

orientation) while its side speed is always zero. Moreover, to guarantee the convergence of Ri

towards its desired local configuration, a virtual Rayleigh’s dissipation function is adopted to

provide the necessary damping

)(
2
1 222

iiiiyiixi kykxkF θθ &&& ++= (4.4)

where kix, kiy and kiθ are the damping coefficients associated with the linear and angular

velocities of Ri respectively.

 52

Based on the above considerations and using the technique of variational calculus [42],

we can derive the following Lagrange’s equation for Ri

0cossin

)())((

cos)())((

sin)())((

,

=−

=
∂
∂

+
∂
−∂

−
∂
−∂

=+
∂
∂

+
∂
−∂

−
∂
−∂

=−
∂
∂

+
∂
−∂

−
∂
−∂

iiii

i
i

i

i

ii

i

ii

iyii
i

i

i

ii

i

ii

ixii
i

i

i

ii

i

ii

yx

fFVTVT
dt
d

f
y
F

y
VT

y
VT

dt
d

f
x
F

x
VT

x
VT

dt
d

θθ
θθθ

θλ

θλ

θ

&&

&&

&&

&&

 (4.5)

where

i

i

i

i
i

i

i

i

i
iy

i

i

i

i
ix

UU
dt
df

y
U

y
U

dt
df

x
U

x
U

dt
df

θθθ ∂
∂

−
∂
∂

=

∂
∂

−
∂
∂

=

∂
∂

−
∂
∂

=

)(

)(

)(

&

&

&

 (4.6)

are the generalized forces associated with x, y and θ, which define the control law for the self-

deployment motion of Ri. At each time t, Ri can online calculate its desired acceleration for the

deployment motion from (5) based on the state of its neighborhood.

Equation (4.5) provides a general framework for controlling the self-deployment motion

of individual nonholonomic mobile robots during the multi-robot deployment process. In

practice, the specific control law needs to be defined according to the coverage requirement of

the specific multi-robot deployment task. By moving each mobile robot in the way defined by its

equation of self-deployment motion, eventually the resulting local coverage in the neighborhoods

of all the robots altogether will form a global multi-robot coverage to the targeted environment.

 53

4.2 Study of Two Kinds of Potential Field Forces

4.2.1 Control Laws

In order to form the sensor coverage over a target environment, a desired configuration of

the multi-robot system can be that each mobile robot reaches desired distances with neighboring

robots.

Considering the limitations in robot sensing and communication, we define a desired

distance aij between a robot Ri and a neighboring robot Rj as a designated distance over which an

enough far and reliable in-between sensor coverage can be established and a reliable in-between

wireless communication connection can be maintained. In reality, those robots have limited

sensing ranges, and, due to noise and loss of resolution, the sensing performance has some

unreliability and usually degrades with the distance [45-53]. It is more realistic to define a

confident sensing range for Ri based on sensor calibration such that Ri has a sufficient sensing

confidence within this range. Meanwhile, in order to maintain communication connections with

nearby robots, Ri must ensure that the signals from neighboring robots are received with

sufficient signal to noise ratio such that a signal transmitted by a nearby robot Rj can be

successfully received and decoded by Ri. The determination of a reliable communication range is

far from trivial, because it is easily affected by various environmental factors in real time, such

as surrounding objects and atmospheric conditions. However, a communication calibration and a

conservative estimation are helpful. Moreover, because the communication range is usually

much larger than a confident sensing range, the aij determined based on the sensing confidence is

usually sufficient for both the sensor coverage and communication maintenance purposes.

In order to approach and maintain the desired distance, the control law should be defined

 54

in such a way that, when the distance dij between Ri and Rj is smaller than aij, an repulsive force

should be applied to push the robots apart from each other, and the force should increase as the

distance decreases; when the distance between Ri and Rj is greater than aij, an attractive force

should be applied to pull the robots towards each other, and the force should increase as the

distance increases. Based on this consideration, we can define the artificial force acting on Ri by

all Rj in its neighborhood as:

)),(atan2(

||)(

||)(

i
j j

ijijijijii

j ij

ijc
ijijijijiijiy

j ij

ijc
ijijijijiijix

yywxxwf

d
y

dadasignkwf

d
x

dadasignkwf

θχθ −−−=

−−=

−−=

∑ ∑

∑

∑

 (4.7)

where 22,, ijyijxijdiyjyijyixjxijx +=−=−= , c is a positive real exponent, sign(.) denotes the

sign of the enclosed expression, ki denotes the force coefficient for Ri, χi denotes the torque

coefficient for Ri, and wij denotes a coefficient weighting the effect of Rj on Ri with 1
j

=∑ ijw .

Here, fiθ defines an artificial torque to steer Ri towards the center of its neighborhood, which

helps to balance the local configuration.

Besides the power function force law in (4.7), inverse-power force law is also widely

adopted [24,26]. In the context of approaching and maintaining the desired distance, the force

acting on Ri by all Rj in its neighborhood can be defined as:

)-),atan2((

)
||

)(
(

)
||

)(
(

jj
iijijijijii

j ij

ij
c

ijij

ijijai
c
ij

ri
ijiy

j ij

ij
c

ijij

ijijai
c
ij

ri
ijix

yywxxwh

d
y

db

dbsignk

d
k

wh

d
x

db

dbsignk

d
k

wh

ar

ar

θχθ −−=

−

−
−=

−

−
−=

∑∑

∑

∑

 (4.8)

 55

where
rc

ij

ri

d
k

 defines an repulsive force added on Ri by Rj, which makes the robots cover as much

area as possible, and
ac

ijij

ijijai

db
dbsignk

||
)(

−

−
 defines an attractive force added on Ri by Rj when

ijij bd < , which suppresses the coverage gap between the robots to be less than a prohibitive

distance bij. Here, cr and ca are positive real exponents, while kri and kai are repulsive and

attractive force coefficients for Ri respectively. In particular, when cr=ca and krij=kaij, we can set

bij=2aij, because then hix= hiy=0 when the distance dij between Ri and Rj reaches the desired

distance aij.

4.2.2 Initial Robots Generation

Initial coordinates and orientations of robots play a significant role in deployment process

and greatly affect eventual results. In order to better evaluate the algorithms, these coordinates

and orientations have to be random. Besides, considering that the robot’s shape, distance

between centers of robots should be at least bigger than diameter of the robot. The generation of

the initial positions and orientations is described as following.

Firstly, a pair of random coordinates [,]i start endx x x∈ and [,]i start endy y y∈ with a

random orientation [,]iθ π π∈ − are assigned to the first robot, then another set of random

coordinates and orientation are generated in the same range and compared with the first one. To

make sure they are not overlapped, Euclidean distance between these two pairs of coordinates

should be bigger than 2r (r is radius of robots). Otherwise, this set of numbers is discarded and

another set of random numbers will be generated until qualified numbers are obtained.

Coordinates and orientations of all the remaining 48 robots are obtained in the same way.

 56

Apparently, initial deployment area should be big enough for robots to be located

properly by using our generating method. The area should be at least but not limited to number

of robots (e.g., 50) times single robot’s physical coverage area (2rπ). For example, if robot’s

radius is 0.3m and we have 50 robots, then the threshold is 2 250 0.3 14.1372mπ× × = . Of course

in order to get this deployment done quickly, it is usually necessary to set a much bigger area.

(How large the area is required for a quick deploy is a topic that needs further discussion and

beyond scope of this chapter).

In this chapter, 4 different area sizes will be tested for algorithm verification, 5m×5m,

6m×6m, 7m×7m and 8m×8m.

4.2.3 Neighborhood Definition

Definition of neighborhood is also critical to algorithm performance, we will go through

the simulations using two different neighborhood definitions.

The first definition of neighborhood is called traditional definition. It is commonly

accepted that, for a robot Ri, robots that are within its sensing or communication range are

considered its neighbors. This is our first definition of neighborhood, which is a circle with Ri in

its center.

However, this definition sometimes results in too many neighbors, especially in initial

stage of deployment when all robots stay very close. This situation not only causes delays in

communications and decision making, but greatly increases risk of unexpected robot behaviors

due to combined effect of interactive forces. Alternatively, a topological neighborhood of Ri is

defined according to a topological graph representation of the multi-robot system [32,45], which

 57

limits the neighborhood of Ri to its one-hop neighbors on the graph, and this is our second type

of neighborhood.

4.2.4 Other Physical Constraints

In practice, a robot always has velocity and acceleration limits. In other words, a robot is

subject to its moving capability. This constraint is taken into account in our situation

max max

max max

, if
, if

c

a c

c

v v v
v v v v

v

>⎧
⎪= − < −⎨
⎪
⎩

 (4.9)

max max

max max

, if a
, if a

c

a c

c

a a
a a a

a

>⎧
⎪= − < −⎨
⎪
⎩

 (4.10)

where vmax is robot’s maximum velocity (either linear or angular) and amax is its maximum

acceleration (either linear or angular).

 In our algorithm, component accelerations in x and y directions are calculated separately,

so when it is detected that resulted acceleration is bigger than the limit, it is necessary to derive

each direction’s acceleration limits accordingly.

 As we know, nonholonomic robots are subject to (4.3), from which we can derive that:

 0sincoscossin =⋅+−⋅+ θθθθθθ &&&&&&&& yyxx (4.11)

 Combing with:

max
22 ayx =+ &&&& (4.12)

We get following:

2)cossin(sincos)cossin(θθθθθθ xykxyy &&&&&& −−±−−= (4.13)

 58

θ
θθθ

sin
cossincos xyyx
&&&&

&&
−+

= (4.14)

This is the real accelerations in x and y directions if calculated acceleration is bigger than

acceleration limit.

4.2.5 Simulation Results

In this simulation, number of critical connections for Control Law I is k=6, radius of

robot r=0.3m, initial deployment area size is 7m×7m, kdegree=kcover=1, mass of robot is 12kg,

Rc=6m (to make final distances between robots equal to 3 (when fdegree+fcover=0)), time interval

between each step is 0.2s, maximum linear and angular accelerations are 0.2m/s2 and 5 degrees/

s2, maximum linear and angular velocity limits are 0.4m/s and 5 degree/s, damping coefficients

5ix iyk k= = , 1ik θ = . The complete results are listed as following, and final configuration of

robots, average distance and number of collisions.

Figure 4.1 and Table 4.1 show results of Control Law I and II’s performance. In this

example, order of both algorithms is 1. In Figure 4.1, the first and second row show algorithms’

performance under traditional neighborhood definition, which considers all robots within

communication range as its neighbors, the third and fourth row show the performance under the

modified definition of neighborhood, which is generated using Gabriel graph. The left column

shows final configurations and right column shows average distances at different steps. As we

can see that the performance has been improved significantly either in average distance

convergence or final configuration. Table 4.1 shows number of collisions under different

neighborhood definitions with different control laws, and it also confirms the conclusion.

In the tables, “N/A” means collisions still exist after the given period.

 59

Figure 4.2 and Table 4.2 show results of the two different control laws with second order

definition. Figure 4.3 and Table 4.3 show results of the two different control laws with third

order definition. The figures illustrate that Gabriel neighborhood definition is superior to

traditional neighborhood definition which is based on communication range. Gabriel

neighborhood is better at picking the most important neighbors and helping potential field

algorithm to better deploy robots, making the deployment more organized and even. Besides,

order of the algorithm also partly decides the final results. From our simulation, algorithm with

order 2 is the best since it has the best final deployment and collisions are the least.

 60

-50 0 50
-50

0

50

0 200 400 600 800 1000
3

3.5

4

4.5

-50 0 50
-50

0

50

0 200 400 600 800 1000
2

4

6

8

-10 0 10

-10

0

10

0 200 400 600 800 1000
1

2

3

4

-10 0 10

-10

0

10

0 200 400 600 800 1000
1

2

3

Figure 4.1: Final deployment and average distances,

traditional neighborhood VS. Gabriel neighborhood, n=1

Table 4.1: Number of collisions when n=1

Control
Law

Neighborhoo
d Order

Number of
maximum
collisions

Collisions
disappear at

step:
I Traditional 1 21 N/A
II Traditional 1 18 N/A
I Gabriel 1 4 190
II Gabriel 1 12 171

 61

-50 0 50
-50

0

50

0 200 400 600 800 1000
3

3.5

4

4.5

-50 0 50
-50

0

50

0 200 400 600 800 1000
3

4

5

6

-10 0 10

-10

0

10

0 200 400 600 800 1000
1

2

3

-10 0 10

-10

0

10

0 200 400 600 800 1000
1

2

3

Figure 4.2: Final deployment and average distances,

traditional neighborhood VS. Gabriel neighborhood, n=2

Table 4.2: Number of collisions when n=2

Control
Law

Neighborhoo
d Order

Number of
maximum
collisions

Collisions
disappear at

step:
I Traditional 2 17 834
II Traditional 2 20 569
I Gabriel 2 2 29
II Gabriel 2 7 242

 62

-50 0 50
-50

0

50

0 200 400 600 800 1000
3

3.5

4

4.5

-50 0 50
-50

0

50

0 200 400 600 800 1000
2

4

6

8

-10 0 10

-10

0

10

0 200 400 600 800 1000
1

2

3

-10 0 10

-10

0

10

0 200 400 600 800 1000
1

1.5

2

2.5

Figure 4.3: Final deployment and average distances,

traditional neighborhood VS. Gabriel neighborhood, n=3

Table 4.3: Number of collisions when n=3

Control
Law

Neighborhoo
d Order

Number
of

maximum
collisions

Collisions
disappear at step:

I Traditional 3 13 895
II Traditional 3 26 887
I Gabriel 3 9 N/A
II Gabriel 3 4 223

 63

4.2.6 Real Experiment

In this section, a group of 5 well calibrated Pioneer 3 DX robots is used to verify

performance of our algorithm. The experiment takes most settings used in simulations, including

velocity and acceleration limit, mass of robot, radius of robot. The desired distance between

robots is 1.2 meters. Our own algorithm is implemented in C++ and the order of the algorithm is

2, as we picked in the last section.

Three experiments are conducted in this section. The 5 Pioneer 3 DX robots are given

three different sets of initial positions and orientations respectively. As we can see from the

results, the robots deploy to the environment smoothly. In all three experiments, after around 20

seconds, distances among robots are very close to our setting desired distance and no collision is

observed.

(a) Initial distribution

 64

(b) Distribution after 40s

Figure 4.4: Experiment 1

(a) Initial distribution

 65

(b) Distribution after 40 seconds

Figure 4.5: Experiment 2

(a) Initial distribution

 66

(b) Distribution after 40s

Figure 4.6: Experiment 3

4.2.7 Conclusion

Targeting robust deployment of multiple mobile robots under realistic constraints, this

section has proposed a decentralized control scheme for reliably accomplishing desired sensor

coverage among a team of nonholonomic mobile robots while maintaining necessary

communication connections. The results show that robots are successfully deployed into an open

space in an even order if certain parameters are appropriately picked, this applies to both

methods- our method and Poduri’s method.

The collisions during deployment are also given concern and numbers of collisions are

collected in various set of simulations. The results inspired us to think about a way to avoid

collisions. Actually, collisions are more likely to happen with large and dense initial population.

For example, in our real experiment with 5 Pioneer 3 DX robots, no collision happened.

The real experiments also prove that our algorithm without consideration of collision

avoidance can be used in teams with fewer numbers of members.

 67

However, in order to completely solve deployment problem, collision avoidance is an

inevitable step. Our next step is to propose a guide of designing collision avoidance schemes that

are able to avoid collisions under any given circumstance.

4.3 Collision Avoidance Scheme I – Slowing Down

Collision avoidance is a fundamental problem in multi-robot deployment. Most of

existing potential/force field methods rely on repulsive forces among robots and obstacles to

avoid collisions. However, this scheme has some limitations. First, the control force on Ri

combines the effects of all the other robots in Ri neighborhood. The combined force, due to the

complex interactions between Ri and its neighbors, may still attracts Ri towards Rj though Rj

individually tries to push Rj away. Second, as a second-order dynamic system, a mobile robot

has a delayed response to the changes in the potential/force field. Because the robot velocity is

the time integration of the acceleration control, the effect of the acceleration control on collision

avoidance will take place with some delay. Thus, it is difficult for two nearby robots, which

approach each other very fast, to avoid collisions. It is even more difficult to handle when more

robots are in the risk of collision. Third, when robots are very close to each other, the repulsive

forces can be huge, which often result in fast and aggressive movements of robots and make it

difficult to maintain the desired task-specific correlation among the robots. Collision avoidance

becomes even more challenging for nonholonomic mobile robots, due to the constraint on their

instantaneous motion directions. Moreover, the constraints on maximal robot velocity and

acceleration add some uncertainty to collision avoidance control.

We take a convenient and effective solution to the collision avoidance problem in the

deployment of multiple nonholonomic mobile robots by letting a mobile robot slow down

quickly once it detects risk of collision. We set an alerting inter-robot distance. When a robot

 68

detects other robots within this distance by either sensing or communications, it will check if

they are indeed moving closer. If so, the robot will trigger a collision avoidance control law; if

not, the robot continues with its normal deployment process. Unlike other motion or position

based collision avoidance schemes, our method fits into the acceleration control framework

discussed in previous sections, and maintains the smoothness of robot movement, which is more

realistic to physical robot systems. Though the deployment process may slow down locally and

temporarily, it generally results in a smooth deployment process and a better equilibrium

coverage configuration.

Apparently, it is unnecessary to do collision avoidance if two robots are moving away

from each other, even though they are very close in distance. Therefore, the collision avoidance

control does not need to be turned on all the time, in order to maximize the efficiency of

deployment. This decision can be made based on the calculation of the relative position and

movement between the two robots. From Figure 4.7, we can see that, for two robots Ri and Rj,

we can determine if Ri and Rj are approaching each other based on the angle α between pij and vij

)
||||

arccos(
ijij

ijij

pv
pv ⋅

=α , (4.18)

where “⋅” denotes the dot product, and “| |” denotes the norm. Here pij is the position of Rj

relative to Ri, and vij is the velocity of Ri relative to Rj. In particular, Ri and Rj are getting closer

to each other only if α>90° (Figure 4.7a); they are passing by each other when α=90° (Figure

4.7b); they are moving apart from each other if α<90° (Figure 4.7c).

 69

Figure 4.7: Collision detection

Upon the confirmation of the risk of collision, i.e. at least another robot is within the

alerting distance and approaching Ri, a resistive control force will be added to the deployment

control input of Ri as

iciriy

icirix

ykf
xkf
&

&

−=
−=

, (4.19)

where kci is the force coefficient for Ri. Comparing with (4.5), this is equivalent to increasing the

damping coefficients of the dissipation function, which slows down Ri. Moreover, because of the

symmetry in collision detection, i.e. if Ri detects the risk of colliding with Rj, Rj should also

detect the risk of colliding with Ri, the robots with the risk of collisions will all slow down.

Consequently the potential collisions will be suppressed.

vi

Ri

Rj

pij

vj

vi

vij

vi

(a)
(b)

(c)

vj

vj

vi

vij

Ri

Rj

pij

vj

vi

Ri

Rj

pij

vj

vi

vj vij

vij

vij

vij

α
α

α

 70

By locally slowing down the robots with collision risks, the proposed collision avoidance

scheme allows those robots without collision risks to spread out first. Consequently the local

robot density will be reduced and the risk of collisions will then diminish. Once the risk of

collision disappears, Ri will resume its normal self-deployment process by removing the resistive

control force (4.19). In this way, the proposed scheme helps robots avoid collisions while

maintaining the deployment progress.

4.3.1 Results for Holonomic Robots

Results for holonomic robots will provide us evidence how our collision avoidance

schemes works on different kinds of robots. Generally, holonomic robots should perform better

than nonholonomic robots in spreading out since it has ability to move at any direction as desired.

In contrast, nonholonomic’s movements are subject to nonholonomic constraints, and this

restrains its ability to respond quickly to risk of collisions.

To better evaluate performance of our scheme, results before and after collision

avoidance schemes applied are listed in the same figure.

50 holonomic mobile robots are used in the simulations. Each robot has an approximated

circular footprint with a radius of 0.3m and a mass of 12kg. For deployment control, both

definitions of the control force in (4.7) and (4.8) were tested. The involved common coefficients

were set as c=ca=cr=2, ki=kri= kai=1, kci=1.2, ki=2, wij=1 and i=1. Moreover, when (4.7) is 　

applied, kix=kiy=0.8; when (4.8) is applied, kix=kiy=1.2. In addition, each robot allows a maximal

linear acceleration of 0.2m/s2, a maximal angular acceleration of 5degree/s2, a maximal linear

speed of 0.4m/s, and a maximal angular speed of 5degree/s. Initially, the robots are uniformly

distributed in a 3.5m×3.5m area with 0.25m≤dij≤0.35m among neighboring robots. For sensor

 71

coverage, each robot intends to approach a desired distance of 3m with neighboring robots.

However, it will switch to the collision avoidance mode when its distance with any neighboring

robot gets below the alerting distance of 0.9m. We set the time interval for state update and

decision making as 0.2s. Totally 12 trials with different random initial distributions of the robots

were made for each of the control forces (4.7) and (4.8) with and without applying the collision

avoidance strategy. For each trial, 2000 steps of system evolution were recorded.

Figure 4.8 and Figure 4.9 show the typical deployment outcomes of the proposed scheme

using the control forces defined in (4.7) and (4.8) respectively but without taking the proposed

collision avoidance strategy. It shows that both definitions of the deployment control law lead to

a satisfactory team coverage configuration (typical configurations are displayed in Figure 4.8a

and Figure 4.9a), and, in particular, the inter-robot distance converges to the desired coverage

distance (average curves over the trials are displayed in Figure 4.8b and Figure 4.9b).

However, neither of the deployment control laws completely eliminated the collisions. In

the simulations, with control law (4.7), up to 4 collisions were observed at some moments;

control law (4.8) turns out better in collision avoidance, but 1 to 2 collisions were consistently

observed across the trials. These collisions mostly happened at the early stage of the deployment

process when the involved robots were densely gathered, within the first 300 steps for control

law (4.7) and within the first 200 steps for control law (4.8).

Further simulations showed that, by applying the proposed collision avoidance strategy,

collisions were completely avoided across the trials. Figure 4.10 and Figure 4.11 show the

typical deployment outcomes of the proposed scheme using the control forces defined in (4.7)

and (4.8) respectively and taking the proposed collision avoidance strategy. It shows that the

combination of deployment control and collision avoidance control leads to a satisfactory team

 72

coverage configuration (as displayed in Figure 4.10 and Figure 4.11) and convergence of inter-

robot distance (as displayed in Figure 4.10b and Figure 4.11b) while avoiding collisions.

In particular, the convergence rates of the average inter-neighbor distance under different

control laws before/after applying the collision avoidance strategy were recorded, and a set of

average data across different trials is presented in Table 4.4. Here we define the rate of

convergence as the number of steps for the robot team to settle within 5% of the equilibrium

average inter-neighbor distance (i.e. settling time). The data show the compromise in the rate of

convergence as the result of applying the collision avoidance strategy.

 73

-10

-5

0

5

10

(a) Equilibrium team

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1

1.5

2

2.5

3

3.5

(b) Convergence of average inter-neighbor distance

Figure 4.8: Deployment simulation with control law (4.7) only

 74

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

(b) Equilibrium team

0 500 1000 1500 2000
1

1.5

2

2.5

3

3.5

(b) Convergence of average inter-neighbor distance

Figure 4.9: Deployment simulation with control law (4.8) only

 75

-10 -5 0 5 10

-10

-5

0

5

10

 (a) Equilibrium team

0 500 1000 1500 2000
1

1.5

2

2.5

3

3.5

(b) Convergence of average inter-neighbor distance

Figure 4.10: Deployment simulation with control law (4.7) and (4.19)

 76

Table 4.4: Rate of convergence

Control law Collision avoidance
strategy applied?

Settling time
(steps)

(4.7) No 171
(4.7) Yes 356
(4.8) No 148
(4.8) Yes 263

-10 -5 0 5 10

-10

-5

0

5

10

 (a) Equilibrium team

0 500 1000 1500 2000
1

1.5

2

2.5

3

3.5

(b) Convergence of average inter-neighbor distance

Figure 4.11: Deployment simulation with control law (4.8) and (4.19)

 77

4.3.2 Results for Nonholonomic Robots

For nonholonomic robots simulation, basically all parameters remain the same, excepting

that all robots are subject to nonholonomic constraints here. Figure 4.12 and Figure 4.13 show

the typical deployment outcomes of the proposed scheme using the control forces defined in (4.7)

and (4.8) respectively but without taking the proposed collision avoidance strategy. Figure 4.14

and Figure 4.15 show the deployment outcomes with collision avoidance strategy applied.

The results are very similar to what we got in the previous section. Before taking

collision avoidance strategy on both control laws, control law (4.7) has up to 8 collisions over

time, control law 4.8 is better but 1 to 2 collisions are observed over the whole deployment

process. Collisions are completely removed after collision avoidance strategy is applied and

Figure 4.14 and Figure 4.15 show the outcomes. If we use the same definition of convergence

rate as used in the previous section, the settling steps are listed in Table 4.5.

 78

Figure 4.12: Deployment simulation with control law (4.7) only

0 1000 2000 3000 4000
1

1.5

2

2.5

3

3.5
(a) Equilibrium team

(b) Convergence of average inter-neighbor distance

-10 -5 0 5 10

-10

-5

0

5

10

 79

Figure 4.13: Deployment simulation with control law (4.8) only

(b) Convergence of average inter-neighbor distance

(a) Equilibrium team configuration

0 1000 2000 3000 4000
1

1.5

2

2.5

3

3.5

-10 -5 0 5 10

-10

-5

0

5

10

15

 80

Figure 4.14: Deployment simulation with control laws (4.7) and (4.19)

(a) Equilibrium team configuration

(b) Convergence of average inter-neighbor distance

0 1000 2000 3000 4000
1

1.5

2

2.5

3

3.5

-10 -5 0 5 10 15
-15

-10

-5

0

5

10

 81

Figure 4.15: Deployment simulation with control laws (4.8) and (4.19)

Table 4.5: Rate of convergence

Control law Collision avoidance
strategy applied?

Settling time
(steps)

(4.7) No 655
(4.7) Yes 672
(4.8) No 562
(4.8) Yes 685

(a) Equilibrium team

(b) Convergence of average inter-neighbor distance
0 1000 2000 3000 4000

1

1.5

2

2.5

3

3.5

-10 -5 0 5 10

-10

-5

0

5

10

 82

4.3.3 Real Experiment for Nonholonomic Robots

Experiments were also conducted on real robots to verify the effectiveness of the

proposed deployment scheme under physical operational conditions, in particular with robot state

estimation error, communication delay and operational asynchrony among the robots.

The robot team in our experiments consisted of 5 Pioneer 3-DX and 4 Amigobot robots

made by Mobile Robots Inc (Figure 4.16). They are differential-drive robots under the

nonholonomic kinematic constraint. Each Pioneer 3-DX robot is controlled by an onboard laptop

PC, while each Amigobot is controlled by an offboard PC through wireless communications.

Each robot is self-localized through odometry (with onboard encoders), and the data of robot

states are exchanged among robots (in fact controlling computers) wirelessly through the Wi-Fi

(IEEE 802.11) protocol.

Some control-related parameters include the radius of each Pioneer 3-DX 0.3m, mass of

each Pioneer 3-DX 12kg (including onboard PC), radius of each Amigobot is 0.1m, mass of each

Amigobot is 3kg, and involved coefficients c=ca=cr=2, kix=kiy=1, kiθ=2, kij=krij=kaij=1, kri=1.2,

wij=1 and χi=1. Moreover, we set each robot with a maximal linear acceleration of 0.2m/s2, a

maximal angular acceleration of 5degree/s2, a maximal linear speed of 0.4m/s, and a maximal

angular speed of 5degree/s. Initially, the robots are uniformly distributed in a 3m×3m area, with

the center-to-center distance between neighboring robots ranging from 0.7m to 0.9m. We set the

desired distance between two neighboring robots as 1.3m. When its distance with any

neighboring robot gets below the safety distance of 0.9m, a robot will switch to the collision

avoidance mode.

Comparing with simulations, experiments involve more uncertainties. First, motors have

some delays in responding to the control input. Second, communications are not in real time,

 83

data packets are lost from time to time, and communication delay happens due to constant

position and direction change of the robots. Third, odometry-based robot self-localization has

accumulative error, even without considering the skidding between wheels and the floor. It is

assumed that the first and second factor don’t affect overall moving trend of robots. Due to the

third factor, each experiment is not allowed to last too long. Our experiment typically lasts 8

minutes and during this period of time we assume the location and orientation information

derived from encoders are accurate enough.

Figure 4.16 to Figure 4.19 show the experimental results of deploying the 10-robot team

into an indoor environment.

Figure 4.16: Initial deployment of robots

 84

Figure 4.17: After 2 minutes

Figure 4.18: After 4 minutes

 85

Figure 4.19: After 6 minutes

In order to make the results clearer, robots’ positions and orientations are recorded and

the data is redrawn. Figure 4.20 shows initial distribution of robots, Figure 4.21 and Figure 4.22

show the distribution after 1000 and 2000 steps respectively (each step represents around 200ms,

there are totally 3200 steps, so the whole data last 640s, a little more than 10 minutes), Figure

4.23 shows final distribution. Figure 4.24 shows the trend of average distance change, which

reaches equilibrium a few steps before 500.

The results show that robots spread out satisfactorily, from close initial distribution to

looser final distribution, robots maintains connection as a team and reach setting desired distance

eventually, and the final configuration is even and well organized. The only problem is the big

 86

fluctuation of the average distance, the reason, in our minds, comes from several aspects. Firstly,

communication delay slows robots’ response to distance change, and it takes time for robots to

react to updated neighborhood. Secondly, dumping coefficients are partly responsible for the

fluctuation. As a second order control method, our algorithm is very sensible to dumping

coefficients selection. As a result, in order to solve this problem, in the future work, our work

also aims on these two aspects, the first is to optimize communication setting and make the

communication as smooth as possible, the second one is to adjust dumping coefficients manually

through more experiments until satisfied results are obtained.

-4 -2 0 2 4
-4

-2

0

2

4

1
2

3
4 5 6

78

9

Figure 4.20: Initial distribution

-4 -2 0 2 4
-4

-2

0

2

4

Figure 4.21: Distribution after 1000 steps

 87

-4 -2 0 2 4
-4

-2

0

2

4

Figure 4.22: Distribution after 2000 steps

-4 -2 0 2 4
-4

-2

0

2

4

Figure 4.23: Final distribution, 3200 steps

0 500 1000 1500 2000 2500 3000
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 4.24: Convergence of average distances

 88

4.4 Collision Avoidance Scheme II – Layer by Layer Spreading Out +

Slowing down

In addition to the first collision avoidance scheme, which uses slow down to reduce and

eliminate collisions, the second method combines a so-called layer by layer spread out scheme

with the previous slow down. The name of this method implies how it works: robots on border

will move first to outer space under potential forces, when space is left out, inner robots will start

moving in turn. This method emphasizes in-order movements. Before enough space is left out

by outer robots, inner robots keep stationary. This method effectively reduces chance of collision

and on the other hand saves a lot of unnecessary movement in beginning stage of experiment.

One challenge in this method is lack of global information of all robots’ positions. In

other words, robots need to know its relative position in team with limited knowledge of its local

neighbors. We thus propose a method to calculate every robot’s relative position in the whole

team using merely local neighbors’ information. Simulation results show effectiveness of this

method.

 “Layer of depth” is used to mark robot’s position with respect to team’s border, the

bigger it is, the deeper it is inside the team. The first step in our algorithm is to initialize all

robots’ “layer of depth” to ‘0’. Then robots are checked one by one to decide if it is on border or

not. The method is to decide if all its neighbors are in the same semi-circle. As shown in Figure

4.25, for robot R1, it has four neighbors, R2, R3, R4, R5. Fortunately, these four neighbors are all

in the same semi-circle in R1’s neighborhood, so we set R1’s depth of layer to be 1. Otherwise,

its layer of depth remains ‘0’. For robots that are not on border, its layer of depth depends on its

neighbors, it communicates with its neighbors and find the one with the smallest layer of depth,

its own layer of depth is this neighbor’s layer of depth plus one. The algorithm keeps updating

 89

robots’ layer of depths from time to time and eventually all robots have a reasonable layer of

depth.

Figure 4.25: All four neighbors locate in the same semi-circle

The critical point of this method is to calculate layer of depth of robots on the border

correctly. Sometimes, if we stick to the above principles strictly, we will find out the results are

not as satisfied as we wanted. For example, in Figure 4.26, the robots on corners are recognized

and marked ‘1’ as their layer of depths. But for some other robots, for example, the robots on

four sides of the team, their layer of depths is 2 while in our minds, it makes more sense if they

have layer of depth of 1, because as we see, they are indeed located on the border. The reason

they are marked in the second layer is that their neighbors are not strictly located in a semi-circle,

instead, they are located in a sector slightly bigger than a semi-circle. Due to this phenomenon,

we added a parameter called “maximum sector angle” in our method of calculating layer of

depths. This parameter defines angle of the sector that all a robot’s neighbors belong to. We can

adjust this angle to be slightly bigger than 180 such that the robots mentioned above would have

layer of depth of 1 instead of 2. The results of the new calculation are shown in figure 4.27.

R1

R5

R4

R3

R2

 90

-5 0 5
-5

0

5

2

2

4

3

1
1

2

2 3

1

2

33

2
2

2

2

3

1

2

2

1

2

1

2
3

22

3

2

3

3

1

2

2

1

4
1

3

3

3
1

3 4

1

1

1

1

2

1

2

2

4

3

1
1

2

2 3

1

2

33

2
2

2

2

3

1

2

2

1

2

1

2
3

22

3

2

3

3

1

2

2

1

4
1

3

3

3
1

3 4

1

1

1

1

2

1

Figure 4.26: Layer of Depth when maximum sector angle equals to PI

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

2

1

4

3

1
1

2

2 3

1

2

23

2
2

2

1

3

1

2

1

1

1

1

2
2

11

2

2

3

3

1

2

2

1

4
1

3

3

3
1

2 3

1

1

1

1

2

1

2

1

4

3

1
1

2

2 3

1

2

23

2
2

2

1

3

1

2

1

1

1

1

2
2

11

2

2

3

3

1

2

2

1

4
1

3

3

3
1

2 3

1

1

1

1

2

1

Figure 4.27: Layer of Depth when maximum sector angle equals to 1.2*PI

 91

4.4.1 Results for Holonomic Robots

Figure 4.28 and Figure 4.29 show results for holonomic robots deployment using slowing

down and layer by layer spreading out combined strategy. All parameters remain the same as

described in section 4.3.1, except that for maximum sector angle, we set it to be 1.2*PI, which

makes the layer depths calculation more reasonable and acceptable. The final outcomes of

control laws 4.7 and 4.8 are shown in figure 4.28 and 4.29.

From the figures, we can see that robots are distributed evenly and inter-distances are

well maintained. From the figure, layer depths of all robots are marked beyond each robot’s icon.

From our human being’s mind, the layer depths are very close to our judgment and it proves that

our distributed layer depth calculation method is working on all robots. Furthermore, the

convergence of average distance also meets our expectations, and it reaches equilibrium quickly

and stably. The steps takes to reach equilibrium is listed in table 4.6.

 92

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

1

2

3

2

3

2

3
1

1

3
3

2

4

3

1

3

2

1

3

1

2

2
1

2

3
2

2

2
2

1
1

2

3

2

1

1

2

3
1

1

1
1

4

1

1

2
1

12

3

(c) Equilibrium team

0 500 1000 1500 2000
1

1.5

2

2.5

3

3.5

(b) Convergence of average inter-neighbor distance

Figure 4.28: Deployment simulation with control law (4.7) and
layer by layer spreading out strategy

 93

Table 4.6: Rate of convergence

Control law Collision avoidance
strategy applied?

Settling time
(steps)

(4.7) No 171
(4.7) Yes 231
(4.8) No 148
(4.8) Yes 273

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

3

1

23

2

3

2

11

2

3 2

3

2

1

2

1

4
2

1

2

12

1

1

2

3
3

1

2

22

1
1

3

1

1

3

2
1

2 1

3
3

2

1

1

1

2
3

(d) Equilibrium team

0 500 1000 1500 2000
1

1.5

2

2.5

3

3.5

(b) Convergence of average inter-neighbor distance

Figure 4.29: Deployment simulation with control law (4.8) and
layer by layer spreading out strategy

 94

4.4.2 Results for Nonholonomic Robots

The results for nonholonomic robots are slightly different from results of last section.

Figure 4.30 and 4.31 shows results of the new collision avoidance schemes with control law 4.7

and 4.8. The final distributions are not so organized as we got in holonomic robots. The main

reason of this is due to nonholonomic constraints. As robots in outer layers move outwards, they

usually move overly further from the position that it is supposed to be, due to its inflexibility to

move omni-directionally. After then, when they try to move backwards, it also takes time to

adjust direction. All these adjustments result in not so even final configuration. Fortunately,

robots eventually reach desired configuration and all robots are well connected. Steps required to

reach equilibrium is also listed in table 4.7.

 95

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

1

3

2

3

2

2
1

3

2 3

1

1

2
1

1

2 2
3

3

4

11

2

3
2

2
2

1

1 3

1

1
2

1

2 32

2
2

3 1

1 2

2 1
1

3 1
3

2

(e) Equilibrium team

0 500 1000 1500 2000
1

1.5

2

2.5

3

3.5

(b) Convergence of average inter-neighbor distance

Figure 4.30: Deployment simulation with control law (4.7) and
layer by layer spreading out + slowing down

 96

Table 4.7: Rate of convergence

Control law Collision avoidance
strategy applied?

Settling time
(steps)

(4.7) No 655
(4.7) Yes 668
(4.8) No 562
(4.8) Yes 172

-10 0 10
-15

-10

-5

0

5

10

15

(f) Equilibrium team

0 500 1000 1500 2000
1

1.5

2

2.5

3

3.5

(b) Convergence of average inter-neighbor distance

Figure 4.31: Deployment simulation with control law (4.8) and
layer by layer spreading out + slowing down

 97

4.4.3 Energy Consumption Saving with Layer by Layer Spreading Out

The most beneficial feature of using layer by layer spreading out strategy is that it greatly

eliminates unnecessary movements and significantly reduces energy consumption, which is very

important considering current battery power storage limit. With the new layer by layer spreading

out strategy, robots have longer working hours and are able to provide better services on real

applications.

The method we are applying here for energy consumption calculation is based on total

distance the whole team has moved and the total angle the team has rotated altogether. In other

works, the total energy consumption consists of two parts, linear moving energy consumption El

and angular moving energy consumption Ea, total energy consumption is:

aal EwEE *+= (4.20)

Where wa is weight that derived from simulations and used to justify fairness of our equation.

This will be discussed later in this section.

El and Ea are calculated in this way. At each step, we collect each small straight trajectory

that each robot has moved and take their square sum as the total linear energy consumption. So

if we have 50 robots and the simulations run 2000 steps, we have:

])()([2
,,1

2
1999

1
,,1

50

1
ikik

k
ikik

i
l yyxxE −+−= +

=
+

=
∑∑ (4.21)

Where (xk,i, yk,i) and (xk+1,i, yk+1,i) are current and next step’s coordinate of robot i, the unit is

meter.

Similarly,

2
1999

1
,,1

50

1

)(∑∑
=

+
=

−=
k

ikik
i

aE θθ (4.22)

 98

Where (θk,i, θk,i) and (θk+1,i, θk+1,i) are robot i’s direction at current and next step. The unit is

radian.

 In order to get a more convincing result, each simulation is run 12 times with 12 different

set of robots with totally different initial positions and directions. However, before that, we need

to get the value of wa. For the calculation of weight wa, we run a trial simulation for 2000 steps

and obtain values of El and Ea respectively, then wa is equal to El divided by Ea. For example, for

slowing down strategy only, we got El=15.1323 and Ea=13.8466, so

wa=15.1323/13.8466=1.0929. This makes sense because it makes linear and angular movements

equally important in total energy consumption calculation.

 After we got wa, 12 different sets of robots with different initial positions and directions

is fed in the algorithm. The generation of these initial robots is discussed in Section 4.2.2. As a

result, for algorithm using only slowing down strategy, the eventual average energy consumption

is 27.1668, listed in Table 4.8.

 For combined collision avoidance strategy (layer by layer spreading out strategy is

included), El= 9.2785, Ea= 6.9163 and wa=9.2785/6.9163=1.3415. Total average energy

consumption is 19.2033.

Table 4.8: Energy consumption comparison

Control law Slowing down
strategy only

Combined
strategy, adding
layer by layer
spreading out

(4.7) 27.1668 19.2033

From the simulation, we can easily find out that layer by layer spreading out strategy has

successfully reduced energy consumption by 29.3%, which is almost 30%. The result is very

 99

impressive because that means with reaching the same final configuration and finishing the same

environment coverage task, robots with layer by layer spreading out strategy could work 30%

longer. If robots with regular slowing down strategy work normally 10 hours, robots with layer

by layer spreading out strategy could work up to 13 hours.

4.5 Conclusion

Targeting robust deployment of multiple mobile robots under realistic constraints, this

chapter has proposed a highly effective distributed control scheme for reliably accomplishing

desired sensor coverage among a team of nonholonomic mobile robots. Besides, the collisions

avoidance is also addressed and two schemes are proposed. The effectiveness of the proposed

scheme has been verified through both computer simulations and experiments on a team of

physical robots.

Global convergence towards the desired coverage is an important property of multi-robot

deployment. We have reported some simulation and experimental results about it in this chapter,

but have not comprehensively and theoretically study it yet. Our next step will focus on studying

and analyzing the convergence property of the multi-robot deployment towards the desired

coverage and the impact of multiple factors arising from physical systems, such as robot state

estimation error, communication delay and operational asynchrony among the robots, on system

convergence.

 100

Chapter 5 Robotization of MMT

Energy crisis has been a big challenge in our society nowadays. Besides exploring

alternative clear energy like solar and wind power, it is also important to conduct in-depth

analysis of energy consumption and improve its efficiency. Data centers have been energy

monsters along with development of information technology. Actually, in 2005, United States’s

data centers, including power consumption by servers, network, cooling system and other

relevant facilities, consumed 1.5 percent of total electricity use [59]. This chapter will discuss

an energy usage analysis system deployed in data centers.

This so-called MMT (Mobile Measurement Technology) for data centers is constructed by

IBM. It provides highly effective data support for the analysis of data center thermal profiles and

plays an active role in improving data center cooling and energy efficiencies. With this technique,

a human operator controls the navigation of the tele-operative mobile measurement platform and

triggers the data acquisition operation through a wirelessly connected console. Comparing with

traditional manual operation, it largely reduces the intensity of human labor and improves the

operational efficiency. The effectiveness of the proposed technique has been verified through a

demonstrative data scanning in a real data center environment.

5.1 Motivation and Old MMT

5.1.1 Requirements and Objectives of MMT

Data centers provide critically important computing capabilities, including data processing,

data storage and communication networking, to the functioning of business, communications,

academic and governmental organizations [59]. To maintain the operational reliability and

 101

availability of data centers, air cooling plays an important role. In a standard data center setting,

IT equipment is mounted in racks that are positioned side by side in long rows, and rows of racks

are separated by alternating hot and cold aisles (Figure 5.1). The racks are placed on a raised

floor, which allows the conditioned air to be delivered from the bottom to remove the hot air

from the top. Electronic equipment in such a confined space generates a significant amount of

heat, and the equipment’s reliability is reduced if it is not adequately cooled. Inappropriate

humidity levels can also cause the failure of electronic components in data centers [60]. To

maximize the functionality of a data center, it is necessary to keep the electronic equipment to

operate within the temperature and humidity ranges specified by the manufacturers. It requires

sufficient air conditioning across the data center space.

Figure 5.1: Typical equipment placement in data centers

Meanwhile, techniques to improve energy efficiency have become important for the data

center industry [61]. A large amount of energy is consumed by data centers to run their

computing, storage and networking systems, and peripheral devices, and to protect these

Hot

Aisle

Cold

Aisle

Cold

Aisle

 102

systems. It was estimated [59] that U.S. data centers consumed about 61 billion kWh of

electricity in 2006, about 1.5% of total U.S. electricity consumption. To support the growing

demand for processing power, the total number and size of data centers continue increasing, and

individual data centers increasingly use more compact and energy-intensive servers. This growth

in the data center industry causes a dramatic increase in electricity demand. It was predicted [59]

that the total energy consumption in U.S. data centers would go beyond 100 billion kWh by

2011. The increasing energy consumption in data centers causes increasing energy costs for

business and government, emission of greenhouse gases, load on existing power grid, etc. All

these factors have driven recent interest in improving energy efficiency of data centers [61]. As a

critical but energy-intensive component, air conditioning systems have been identified as one of

the main energy consumers in data centers. It was estimated that a fully populated rack of servers

could generate 20-25 kW of heat during operation [62], which requires at least 20-25 kW of

output cooling power from air-conditioning systems. Improving the air flow will substantially

improve the overall energy efficiency of data centers.

In summary, an optimal air-conditioning scheme for a data center should achieve a safe

operating conditions for IT equipment with the highest possible energy efficiency. In order to

accomplish this double-folded goal, the data center’s thermal profile needs to be measured and

analyzed. Quantitative thermal profile of the data center will highlight air-conditioning

inefficiencies and insufficiencies, such as cold and hot spots. In-depth analysis of these trouble

spots and corresponding metrics of air-conditioning and energy efficiencies can lead to optimal

air-conditioning schemes which optimize the energy and air-conditioning levels across the data

center space, and eliminate the spots of insufficiency and over-provision. The thermal profile

 103

will also allow an operator to monitor the operational status of the data center and to evaluate the

improvement in air-conditioning efficiency after a new scheme has been implemented.

A major challenge in quantifying and visualizing the thermal profile for a data center is

reliable data collection. Especially, to create a complete 3D thermal profile for a data center

requires collecting temperatures across the whole 3D data center environment, including not only

the points on solid surfaces where static sensors could be attached but also the points in the air

where no sensor can be placed. Targeting to provide an effective 3D data collection solution in

the data center environment, IBM recently developed a Measurement and Management

Technology (MMT) which uses a multi-level cart equipped with networked thermal sensors to

acquire temperatures at multiple points in 3D [63-65] (Figure 5.2). The sensing platform has a

footprint of the size of a standard tile (2 feet×2 feet) used to cover the raised floor of data centers.

It samples the temperatures at multiple points above each tile. The collected temperature data are

then transformed into a 3D thermal map of the data center, which provides the vital information

needed to pinpoint trouble spots that indicate cooling inefficiencies, to facilitate better air-

conditioning schemes, and to manage the energy consumption of the data center.

 104

Figure 5.2: IBM MMT sensing cart

Although the thermal profile of a data center may change over time due to temporal changes

in IT power level, cooling condition, number of servers and racks, etc., the MMT technique

enables a high-density collection of temperature data for basic modeling of the data center

thermal profile. If more precise, dynamic modeling is needed, a static sensor network can be

installed to monitor the temporal variations of the thermal conditions in the data center. In this

case, the basic thermal profile generated from the MMT data can be used to identify critical spots

for sensor placement. Moreover, due to the limitation that sensors can only be attached to solid

surfaces but not in the air, the basic thermal profile generated from the MMT data provides an

important reference thermal profile to facilitate dynamic modeling based on interpolating the

sparse temperature data captured by the fixed sensors.

5.1.2 Implementation

A typical MMT consists of a cart with 8 levels of sensors (Figure 5.1 and Figure 5.4)

(Each level of the cart has 9 sensors), an Interface Box(Figure 5.2), a handler(Figure 5.3) and a

laptop. The Interface Box is wired with the handler, the sensors and the encoders. The other side

of the Interface Box is a laptop, and they are connected via a RS232-USB cable. Interface Box

plays a bridge between sensors and laptop. On the one hand, it processes raw data from sensors

and converts it into numeric numbers, and laptop accepts data and saves it to local hard drive. On

the other hand, it also accepts signal from handler or laptop and transmit it to sensors.

The data collection process starts from the handler. Once its button is pressed, it

generates an impulse, this impulse reaches interface box and interface box triggers sensors to

 105

collect data and collects current signal from encoders accordingly. After that, the interface will

convert raw data into numeric numbers and send them back to the laptop, which will update the

cart’s current orientation and position, and save data along with positions in local hard drive.

Figure 5.3: Interface Box

Figure 5.4: Handler

 106

Figure 5.5: Temperature sensor

In order to process data from Interface Box, a program named Tmapr (Figure 5.6) is

developed. It is able to load given layout of the target data center, update cart’s orientation and

position according to received data, and save data to local disk drive. In Figure 5.6, red icon with

shape of “V” represents the cart, the smaller upper level window displays current sensor data.

The red icon can be moved and rotated manually by using keyboard’s arrow keys to reflect the

cart’s real location and orientation.

Figure 5.6: Tmapr interface

 107

5.2 Robotic MMT

As we mentioned in the previous section, the current version of MMT platform is

operated manually. It requires an operator to push the cart to cover every tile of the data center

floor. The cart is stopped at each tile, and data acquisition is manually triggered to register the

temperature data obtained from onboard thermal sensors and the corresponding cart location (in

the unit of tiles) inferred from the reading of wheel encoders. Thus, currently the data center

scanning process is labor-intensive and time-consuming, typically taking one hour for a data

center of 2000 square feet. In order to improve the operational efficiency of MMT, we propose to

develop a robotic mobile sensor platform for data center navigation and measurement to

automate the data acquisition process, which is named as Robotic Measurement and

Management Technology (RMMT).

Figure 5.7: New MMT under work

The robotization of MMT brings in the following immediate benefits:

RMM

Wirele

Operator

 108

1) The robotic system enables automatic drive and triggering of the sensor platform,

which greatly saves human labor and makes it more available to provide quick response and

assessment to significant variations in a data center.

2) The robotic system enables continuous, robust data collection over a long period

up to its power limitation, which substantially enhances the efficiency and reliability of

operation.

Perspectively, it will also extend the MMT functionality in the following aspects:

1) The robotic system will provide the capability of quick and high-resolution data

acquisition for temperature, humidity, air flow and other environmental data, with appropriate

sensors onboard.

2) The robotic system will provide the capability of onboard generating the thermal

profile, or wirelessly uploading data to MMT servers for real-time processing and visualization.

3) The robotic system will be able to conduct map-based autonomous navigation, or

autonomous, simultaneous mapping and navigation when the data center layout is not known a

priori, which will eventually release humans from operation, and maximize the efficiency of data

collection.

4) The robotic system will be able to work collaboratively with any sensor network

in the data center, and supplement the measurements for more accurate dynamic modeling.

This section presents a preliminary, tele-operative version of the RMMT platform. This

system uses a mobile robot base carrying cameras and localization sensors for navigation and

localization. The robot pulls an MMT cart which carries thermal sensors for temperature

measurement. The robot base is tele-controlled by an operator using a remote computer based on

the wirelessly transferred images captured by onboard and environment-fixed cameras. The data

 109

of temperatures and locations are automatically registered tile by tile and stored in the onboard

computer. The collected data are then input to IBM’s MMT data processing software to generate

the thermal map of the data center. A demonstrative test of the RMMT system has been

conducted in a real data center environment. The robotized MMT platform provides a more

efficient and user-friend technique for the targeted application.

5.2.1 System Structure

The current version of RMMT system (Figure 5.6) is a tele-operation system, consisting

of two physically separate but wirelessly connected subsystems:

1) Robotic navigation and sensing platform, which conducts the tele-controlled

navigation through the data center and collect temperature data on the way;

2) Operator’s console, which provides a user interface for the human operator to

tele-control the navigation and data acquisition of the RMMT platform.

5.2.2 RMMT Platform

The robotic navigation and sensing platform is the tele-operator in the RMMT system.

Hardware-wise, the RMMT platform consists of a mobile robot base and an MMT sensor

cart (Figure 5.6).

The mobile robot enables the RMMT platform to conduct the controlled navigation

through the data center. A PatrolBot manufactured by Mobile Robots Inc. is adopted, due to its

12-kg carry-on payload allowance and 9.1-kg pulling payload allowance which are sufficient to

drive the MMT sensor cart [66], and its decent collection of onboard sensors which will facilitate

future functional extension of the system. An embedded onboard computer communicates with

 110

the operator’s console through wireless Ethernet (compatible with IEEE 802.11a/b/g/n protocols),

and controls the robot motion based on the operator’s commands. The readings of the wheel

encoders are used to localize the robot and cart. The onboard cameras (Bumblebee dual-camera

stereovision unit) provide vision feedback for navigation guidance and obstacle avoidance.

The MMT sensor cart carries thermal sensors (standard K-type thermocouples are

currently used) to measure temperatures. The MMT cart has a layered, stackable design, with an

equally-gapped 3×3 sensor arrangement in each layer and 1-foot gap between neighboring layers,

resulting in a 1-cubic-foot data resolution which is highly sufficient for generating accurate 3D

thermal profiles for data centers. Due to its stackability, the height of the MMT cart can be

adjusted to fit with a wide range of ceiling heights. With this design, the MMT sensor cart can

simultaneously measure temperatures at different heights above each tile, which makes data

acquisition highly efficient. The cart is rigidly attached to the mobile robot, and supported by the

chassis of the mobile robot and 2 rear swivel casters attached to the cart, such that the cart is

smoothly driven by the robot and can be easily localized according to the position and

orientation of the robot. The onboard thermal sensors are networked through an integrated

programmable microprocessor interface. Their readings are registered using a data logger,

further transferred to the onboard computer through an RS-232 serial interface, and stored in the

computer.

The MMT data acquisition and robot navigation are synchronized. In a data acquisition

operation, the robot pulls the MMT cart to move a distance of one tile for each step, such that the

cart can seamlessly cover every tile eventually; then the robot makes one stop, and triggers the

data logger on the cart to register the current readings from the thermal sensors; the onboard

computer receives the temperature data from the data logger and combines them with the current

 111

position of the cart to provide a temperature-location data set for the current tile; the data sets

collected from all the tiles will be used to generate the 3D thermal map of the data center.

A functional diagram of the onboard RMMT software system can be found in Figure 5.8.

The onboard RMMT controller monitors and coordinates the functioning of three modules –

navigation, sensing and communication.

Figure 5.8: Functional diagram of the onboard RMMT software

The navigation module consists of the following units:

1) Motion control unit: It translates the operator’s motion commands into the

corresponding instructions for translational and rotational movements of the robot, and instructs

the lower-level robot controller to implement the desired motion.

2) Localization unit: It takes the readings of the wheel encoders of the robot,

translates them into the position and orientation of the robot, and then localizes the sensor cart.

Since the sensor cart is rigidly attached to the robot, the orientation of the cart is same as that of

the robot, and the position of the cart is obtained by displacing that of the robot along the robot’s

orientation.

3) Vision feedback unit: It captures the images of the floor and objects nearby the

robot using the onboard video cameras, and sends them to the operator’s console wirelessly in

Onboard RMMT Controller

Navigation Communication

Motion Control Localization Vision Feedback

Operator’s Console

Sensing

 112

real time. Based on the vision feedback, the operator can command the robot to move in the

desirable direction, avoid collisions, and compensate the localization errors.

The sensing module mainly consists of a data acquisition unit which, upon being

triggered, collects the temperature data from the networked thermal sensors on the sensor cart.

The communication module receives commands from the operator’s console and sends

the visualized results of onboard sensory feedback to the operator’s console through the wireless

Ethernet link between the onboard computer and the operator’s console.

At any moment, the onboard RMMT controller works in one of the following two modes,

following the operator’s command:

1) Data acquisition mode: In this mode, the RMMT controller instructs the

navigation module to move the sensor cart either one tile forward or one tile backward, and then

to let the robot and cart make a stop. Next, it registers the current position and orientation of the

cart. Because the temperature data are collected tile by tile, the RMMT controller registers the

cart position and orientation by snapping the position into the tile and orientation into one of the

four principal directions, i.e. forward, backward, left and right with respect to the tile. Then, it

triggers the data acquisition unit to capture the temperature data above the tile. In this way, the

temperature data are registered with the tile location, which provides a complete data set for the

space above the specific tile.

2) Navigation adjustment mode: In this mode, the RMMT controller instructs the

motion control unit to turn +/-90 such that the cart changes its navigational direction, or to move

the sensor cart forward/backward and left/right in small steps to align the cart to the desired

position and orientation in the current tile in order to compensate the localization inaccuracy due

 113

to the accumulated error from the encoder-based odometry. In this mode, the RMMT controller

does not trigger the data acquisition operation.

By conducting data acquisition tile by tile, the RMMT controller will eventually collect a

complete set of temperature-location data from which the thermal map of the data center can be

generated.

5.2.3 Operator’s Console

The operator’s console is the user interface between the human operator and the tele-

operator –the RMMT platform (Figure 5.2). It mainly consists of a console program running on a

remotely-located computer (e.g. a laptop PC), and includes the following modules:

1) Commanding module: It enables the operator to input navigation and data

acquisition commands to remotely control the RMMT platform. The control commands are input

using the keyboard of the console computer. The current set of commands include two combined

navigation / data acquisition commands, i.e. “move sensor cart forward to next tile, and then

acquire data” (the “f” key) and “move sensor cart backward to next tile, and then acquire data”

(the “b” key), and six simple navigation commands, i.e. “turn robot left °90 in the current tile”

(the “l” key), “turn robot right °90 in the current tile (the “r” key), “turn robot slightly left” (the

“left arrow” key), “turn robot slightly right” (the “right arrow” key), “move robot slightly

forward” (the “upward arrow” key), and “move robot slightly backward” (the “downward arrow”

key). Being self-explanative, these commands provide the basic set of functions for the operator

to control the navigation and data acquisition of the RMMT platform. The commanding module

issues the operator’s commands to the onboard RMMT controller program. The simple

navigation commands trigger the RMMT controller to work in the navigation adjustment mode,

 114

taking into effect through the onboard motion control unit; the combined navigation / data

acquisition commands trigger the RMMT controller to work in the data acquisition mode, taking

into effect through the onboard motion control unit and sensing module.

2) Feedback display module: It provides the visualized feedback of the cart

position/orientation and the environment such that the operator can make appropriate decision on

steering the RMMT platform and acquiring data. It consists of two basic feedback windows: the

localization window which visually outputs the results of the onboard localization unit, i.e.

current position and orientation of the sensor cart in the data center layout (Figure 5.9), and the

vision window which displays the real-time images captured by the robot’s onboard cameras

(Figure 5.10).

3) Communication module: It transmits commands from the console’s commanding

module to the onboard RMMT controller and receives the visualized results of onboard sensory

feedback to the console’s feedback display module through the wireless Ethernet link between

the operator’s console and the onboard computer.

Figure 5.9: Sensor cart localized in the data center

Sensor cart position and orientation

Data center layout

 115

Figure 5.10: Feedback from onboard camera

In summary, in the current version of RMMT, the operator’s console functions as the

hyper-terminal of the onboard RMMT controller. The commands input from the console are

directly delivered to the onboard controller to trigger the corresponding navigation and data

acquisition behaviors, and the localization and vision feedbacks obtained onboard are also

directly delivered to and displayed on the console.

Under the situation of one human operator controlling one tele-operator, the hyper-

terminal operation mode provides a convenient solution to the targeted tele-operation

application. To maintain robust data communications, particularly for real-time image delivery,

between the operator’s console and the RMMT platform, a simple ad hoc wireless link is

established based on the IP addresses of the console and the onboard computers, using a wireless

Ethernet router (compatible with IEEE 802.11a/b/g/n protocols, and having a reliable

communication range of >100 feet). As a result, the data center scanning operation does not

require any access to local wireless network, which makes it easy for the RMMT system to be set

up for different data centers, particularly for those which impose highly restrictive, protected

network access due to the concerns of data and network security.

 116

5.3 Hardware Components of RMMT

Instead of control MMT’s movement directly, a third party commercially available

mobile robot platform-PatrolBot is used and mechanically integrated with MMT to provide

moving force. PatrolBot is developed by MobileRobots Inc., and it have maximum load of 12

kilogram and can reach pushing force of 9.1 kilograms [54] and therefore is completely capable

of pulling the MMT.

Figure 5.11 is the mechanical joint between PatrolBot and MMT.

Figure 5.11: Mechanical integration between MMT and robot

Next we use a separate laptop to connect with PatrolBot’s onboard computer, send

command to the robot and get real time camera feedback. The onboard computer is also

responsible for connecting with MMT and recording sensor data. In order to reach remote

operation, a wireless router is required. In our work, we use Linksys wireless router and it has

communication range of 100-300 feet. If Patrol’s onboard computer is connected to Internet

directly, theoretically we can operate the robot from home.

So basically, the new system consists of four parts, MMT, PatrolBot with an onboard

computer, a wireless router and a laptop with wireless adapter.

 117

Besides, the camera feedback we are using with the robot is a dual-camera Bumblebee

stereo vision system. Human being is able to observe obstacles and layout of the environment,

and makes robot move in a well-planned routine. In other words, the onboard camera provides

necessary local and global views of the data center for obstacle avoidance and path following.

Figure 5.12: User Interface

Besides, the onboard computer of PatrolBot is connected with MMT’s Interface Box via

a data board and a RS232-USB cable. The cable transmits data including sensor data and

mimicking encoder pulses to onboard computer, and the computer sends mimicking encoder

pulses and data acquisition triggering signal to the Interface Box through a NI data board. It is

strange that the computer sends mimicking encoder pulses to Interface Box and it sends the

same signal back to onboard computer, but it is the way how the new MMT works, the reason is,

as we mentioned earlier, to make the system compatible with the old MMT system. In other

words, the new improvement could be finished on any other MMT without doing any change to

it.

 118

5.3.1 Data Acquisition Triggering

Figure 5.13: NI USB 6501

Instead of pressing handler button every time to collect sensor data, in the new MMT

system, we defined a key to finish this work. A data board is used to generate exactly the same

signal as the old handler does, which is a duration of high voltage lasting 2 seconds.

NI USB 6501 data board fits the requirement well and is cost effective. It has 24 digital

I/O lines and overvoltage protection. One digital output channel is occupied for this triggering

purpose and another channel is reserved for mimicking encoder pulses, which we will discuss

later.

5.3.2 Encoder Pulses Mimicking

As we mentioned earlier, Tmapr is responsible for collecting and displaying data. When

robot is moving, it collects encoder pulses from wheels and calculates robot’s position thereafter.

However, this program was developed to recognize direct encoder pulses other than direct

position information. Besides, in our future work, we don’t deny the possibility of keeping using

of encoder readings for better localization accuracy and moreover we hope our work can be

applied to other MMTs quickly without too many modifications. Therefore, in the new system,

 119

in order to be compatible with Tmapr, mimicking encoder pulses are generated according to

position change, which we obtained from PatrolBox’s in-built position calculation. In other

words, given initial position and orientation of the robot, robot is able to calculate its own

position and orientation from time to time, our program reads out the location and direction

change and converts it to a sequence of encoder pulses. The pulses are input to Interface Box and

it sends back to computer via RS2432-USB cable, Tmapr is able to update MMT’s position and

orientation based on it. As a result, at every stop, Tmapr will firstly evaluate encoder pulses and

calculate its current position and orientation with knowledge of its location information at last

stop, and then record corresponding thermal data, match the data with locations and save them to

local hard disk.

Figure 5.14: Encoder pulses

Figure 5.14 and Table 5.1 show mechanism behind calculation from encoder pulses to

real physical movements. The MMT cart optical encoders output a 2-bit quadrature signal to

indicate the direction and rotation amount of the encoder shaft. The A and B signals as show in

Figure 5.14 indicate the direction of the encoder shaft, the 2 signals are 90 degrees out of phase

of each other and the order of two sequences determines wheel’s rotation direction, phase error

with the two signals should be less than 45 degrees. That means if signal A is 130 degrees ahead

of signal B, the two signals are still considered effective and the wheel is rotating clockwise.

 120

Based on Figure 5.14, there are 6 possible combinations of signal durations, 3 forward

and 3 reverse directions, from which MMT’s physical movements are calculated. They are

follows:

Table 5.1: Movement meaning of encoder pulses

Forward Reverse

Left Wheel Right Wheel Left Wheel Right Wheel

Move 1 tile 582 CW cycles 582 CCW cycles 582 CCW cycles 582 CW cycles

Left Turn 0 cycles 810 CCW cycles 0 cycles 810 CW cycles

Right Turn 810 CW cycles 0 cycles 810 CCW cycles 0 cycles

5.4 Results

The developed RMMT system has been used to scan IBM’s Southbury Green Innovation

Data Center to assess the feasibility of characterizing large data centers. In our knowledge, this is

the world first reported robotic data acquisition operation conducted in a real data center

environment.

IBM Southbury Data Center has a 2000 square-foot space, hosts more than 300 servers,

has more than 100 terabytes of storage, and supports up to 200,000 users’ online access. It is

equipped with uninterruptible power supply (UPS), 200 kilowatt power distribution unit (PDU),

and energy-efficient computer room air conditioning (CRAC) units.

To scan the data center, the human operator was situated in an adjacent room and

monitored the tele-operative RMMT platform by watching the images of the environment

displayed on the operator’s console, and the RMMT platform was moved by remotely

commanding it through the ad hoc wireless link. Besides the images captured by the onboard

 121

cameras (Section III), the images from three ceiling-mounted surveillance cameras were also

displayed on the console (which were delivered to the console computer through the Internet) to

further enhance the reliability of navigation and collision avoidance (Figure 5.15).

Figure 5.15: Images from environment-attached cameras

For navigation guidance, the data center layout served as a map (Figure 5.8), and was

loaded on to the onboard RMMT controller. The data center was scanned through the following

process (Figure 5.15).

 122

Figure 5.16: Flowchart of the data center scanning process

During this process, the global position of the sensor cart in the data center was

determined by counting the numbers of horizontal and vertical tiles with respect to the starting

tile. At each tile, the RMMT platform stayed for 3 seconds in order for the readings of the

thermal sensors to stabilize before triggering the data logger. The temperature and location data

were recorded onboard.

After scanning, the recorded data were processed using IBM’s MMT software. The

resulting thermal profile of the data center is shown in Figure 5.17. One can see that in general

the left side of the data center layout has higher temperatures than the right side, which shows

that potentially the cooling distribution can be improved to achieve a more uniform temperature

profile and thus higher energy efficiency.

Position the cart
on the starting tile

Adjust the cart
position and
orientation

Move the cart
to next tile

Trigger data acquisition

End of the lane? No

Move the cart
to next lane

Yes

Is the cart aligned
and centered at the

current tile?

Yes

No

Have all lanes
been covered ?

No

Yes

End

 123

F

Figure 5.17: Maps of temperatures at 0.5 (upper) and 4.5 (lower) feet above the ground

5.5 Conclusion and Future Work

So far we have introduced our tele-operative RMMT system for measuring temperatures

in data center environments, which provides an effective data acquisition tool for the analysis of

data center thermal profile and the improvement of cooling and energy efficiencies. The

demonstrative test of the current RMMT system in a real data center environment has proven the

effectiveness of the proposed technique. In particular, the robotization of the MMT technique

can reduce human labor and improve the data acquisition efficiency.

Robotizing MMT is a natural development step to enhance the capabilities of the existing

MMT technique. Our ultimate goal is to take the full advantage of robotization to achieve

continuous, fast and autonomous data acquisition process in any data center. To approach this

goal, we have identified the following technical directions to further our exploration:

1) Improvement of the tele-operative RMMT technique: We will improve the user

interface by developing joystick-based smooth navigation control and data acquisition triggering,

 124

and developing more comprehensive onboard vision feedback system for more reliable and agile

navigation planning and obstacle avoidance. We will offer the tele-operator more autonomy by

enabling the RMMT platform to self-align to the tile and compensate motion and localization

errors based on onboard vision and ranging feedback. Moreover, we will further expand the

sensing capability of the RMMT platform by incorporating appropriate sensors to enable the

measurement of environmental parameters other than temperature.

2) Development of the fully autonomous version of RMMT: We will integrate

autonomous navigation and environment mapping capabilities into the RMMT platform to

minimize human involvement, maximize operational efficiency, and make it adaptable to

different and evolving data center layouts.

 125

Chapter 6 Future Work

 Besides the work we have done, following is the list of work we are going to finish in the

future:

1) Multi-robot collaborative localization based on camera and encoders

 Localization is always a problem for both single and multiple robots. Though our single

camera based localization algorithm is accurate, it is hard to guarantee that at any moment there

are at least 3 landmarks in view of the camera. As a result, we need to combine several

localization methods together. For example, in our case, data from encoders and camera could be

combined. To sum up, a scheme that takes advantages of camera and encoders is desirable.

The benefit of using encoders is that it is fast and cost effective. However, they have a

big shortcoming that they have accumulative error. Compared with encoders, camera localization

is a global localization method and is more accurate. However, compared with encoders, camera

is more expensive and image processing always takes a lot of computing power and time. By

combining the two sensors together, with help of camera, it is likely this accumulative error

could be corrected from time to time. Moreover, the camera is not required to do localization in

real time. It is just responsible for correcting accumulative error for the encoders on a regular

basis.

2) Continued work on collision avoidance

 So far our work on collision avoidance indicates how collision is reduced with bigger size

of initial distribution area. Besides, adjustment of parameters, for example, damping coefficients

and the resistant force we defined to slow down robots also play important roles in collision

avoidance.

 126

 However, a complete collision avoidance scheme is still desirable. This scheme should

work effectively despite of the initial distribution of robots. “Effectively” here means that there

would be no collisions at all once the new collision avoidance scheme is applied.

 Based on our previous work, in the next step, a detailed study will take place. Firstly,

with fixed initial distribution area size, how different choices of parameters affect collisions will

be studied. Secondly, given a set of parameters, in order to avoid coliision completely, the

minimum size of initial deployment area is to be determined.

3) Further improvement of MMT

 Though our trial scanning of Southbury data center is successful, it is a demo program

and still leaves a lot of places to be improved.

 Firstly, two major modifications would be done to improve user operating experience.

The first one is use of a joystick instead of keyboard for remote control. The keyboard operation

is very inconvenient and it is hard to memorize functions of different keys. Apparently, joystick

is a more user interface friendly than keyboard in controlling robot’s movements. Operating

MMT is more like playing video games, the operation will become funny and simple.

 Besides, at this moment, views of the cameras are very limited and sometimes the

operator has difficulty in locate robot’s position. So the second modification is to add more

cameras on top of the mobile robot at different angles and construct a more user interface

friendly view of the environment based on pictures of these cameras.

 The third one is, in our final vision of this project, the robot can eventually locate itself

without human being’s help. Given a layout of the data center, it should be able to planning a

routine, by following which the MMT could scan the whole data center in the shortest time with

 127

least power consumption. Besides, the robot is able to detect errors and inaccuracy of the old

map and correct them automatically.

 Lastly, as we mentioned in Chapter 4, multi-robot system is more capable than single

robot. As a result, for the MMT, it is possible to use several MMTs together rather than

depending on single MMT in data center scanning. It is very obvious that this multi-MMT would

be more effective in the scanning work.

 128

Bibliography

[1] D. E. Manolakis, “Efficient Solution and Performance Analysis of 3-D Position

Estimation by Trilateration”, IEEE Transactions on Aerospace and Electronic Systems,

32(4): 1239–1248, 1996.

[2] D. E. Manolakis and M. E. Cox, “Effect in Range Difference Position Estimation due to

Stations’ Position Errors”, IEEE Transactions on Aerospace and Electronic Systems,

34(1): 329–334, 1998.

[3] I. D. Coope, “Reliable Computation of the Points of Intersection of n Spheres in Rn”,

The Australian & New Zealand Industrial and Applied Mathematics Journal, 42(E):

C461–C477, 2000.

[4] F. Thomas and L. Ros, “Revisiting Trilateration for Robot Localization”, IEEE

Transactions on Robotics, 21(1): 93–101, 2005.

[5] B. T. Fang, “Trilateration and Extension to Global Positioning System Navigation,” J.

Guidance, Contr., Dynam., 9(6): 715–717, 1986.

[6] A. El-Rabbany, Introduction to GPS: The Global Positioning System. Norwood, MA:

Artech House, 2002.

[7] V. Ashkenazi, D. Park, and M. Dumville, “Robot Positioning and the Global Navigation

Satellite System,” Industrial Robot, 27: 419-426, 2000.

[8] J. Hightower, G. Borriello and R. Want, “SpotON: An Indoor 3D Location Sensing

Technology Based on RF Signal Strength,” UW CSE Technical Report, 2000.

[9] R. Want, A. Hopper, V. Falco, J. Gibbons. “The Active Badge Location System,” ACM

Transactions on Information Systems, 40(1): 91-102, January 1992.

 129

[10] Andy Ward, Alan Jones, and Andy Hopper, “A New Location Technique for the

Active Office,” IEEE Personal Communications, 4(5): 42-47, Oct. 1997.

[11] N. Priyantha, A. Miu, H. Balakrishnan, and S. Teller, “The Cricket Compass for

Context-Aware Mobile Applications,” In Proc. 7th ACM MOBICOM Conf., 1–14,

Rome, Italy, July 2001.

[12] Yu Zhou, Wenfei Liu and Peisen Huang, “Laser-activated RFID-based indoor

localization system for mobile robots”, 2007 IEEE International Conference on Robotics

and Automation, 4600-4605, May, 2007.

[13] Charles Cohen and Frank V. Koss, “A Comprehensive Study of Three Object

Triangulation,” SPIE Conference on Mobile Robots, 1831: 95-106, May 1993.

[14] M. Betke and K. Gurvits, “Mobile Robot Localization Using Landmarks” IEEE

Transaction on Robotics and Automation, 13: 51–263, Apr. 1997.

[15] Ilan Shimshoni, “On Mobile Robot Localization from Landmark Bearings,” IEEE

Transaction on Robotics and Automation, 18: 971–976, Dec. 2002.

[16] K. T. Sutherland and W. B. Thompson, “Inexact Navigation,” 1993 IEEE

International Conference on Robotics and Automation, Atlanta, GA, 1: 1–7, May 1993.

[17] A. J. Muñoz and J. Gonzalez, “Two-dimensional Landmark-based Position

Estimation from A Single Image,” IEEE International Conference on Robotics and

Automation, 3709–3714, 1998.

[18] H. Ishiguro, K. Kato, and M. Barth, “Identifying and Localizing Robots with

Omnidirectional Vision Sensors,” Panoramic Vision: Sensors, Theory, and Application,

New York: Springer-Verlag, 376–391, 2001.

[19] Stephen Se, D. Lowe, and J. Little, “Mobile Robot Localization and Mapping

 130

with Uncertainty Using Scale-invariant Visual Landmarks,” International Journal of

Robotics Research, 21(8):735–758, 2002.

[20] Y. Zou, and K. Chakrabarty, “Sensor Deployment and Target Localization based

on Virtual Forces”, 22nd Annual Joint Conference of the IEEE Computer and

Communications Societies, 2003.

[21] M. Erdmann, and T. Lozano-P~rez, “On Multiple Moving Objects, Technical

Report”, Artificial Intelligence Laboratory, MIT, Cambridge, MA, 1986.

[22] L. Parker, “Cooperative Robotics for Multi-target Observation”, Intelligent

Automation and Soft Computing, 5(1): 5-19, 1999.

[23] L. Parker, “Distributed Algorithms for Multi-robot Observation of Multiple

Moving Targets”, Autonomous Robots, 12: 231-255, 2002.

[24] J. H. Reif, and H. Wang, “Social Potential Fields: A Distributed Behavioral

Control for Autonomous Robots”, Robotics and Autonomous Systems, 27: 171-194,

1999.

[25] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile Sensor Network

Deployment Using Potential Fields: A Distributed, Scalable Solution to The Area

Coverage Problem”, 6th International Conference on Distributed Autonomous Robotic

Systems, 2002.

[26] S. Poduri, and G. S. Sukhatme, “Constrained Coverage for Mobile Sensor

Networks”, 2004 IEEE International Conference on Robotics and Automation, 1: 165-

171, 2004.

[27] D. O. Popa, H. E. Stephanou, C. Helm, and A. C. Sanderson, “Robotic

Deployment of Sensor Networks Using Potential Fields”, 2004 IEEE International

 131

Conference on Robotics and Automation, 1: 642-647, 2004.

[28] M. Ji, and M. Egerstedt, “Distributed Coordination Control of Multi Agent

Systems While Preserving Connectedness”, IEEE Transactions on Robotics, 23(4): 693-

703, 2007.

[29] M. Lam, and Y. Liu, “ISOGRID: An Efficient Algorithm for Coverage

Enhancement in Mobile Sensor Networks”, 2006 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 1458-1463, 2006.

[30] M. Jenkin, and G. Dudek, “The Paparazzi Problem”, 2000 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 3: 2042-2047, 2000.

[31] Z. Butler, and D. Rus, “Event-based Motion Control for Mobile Sensor

Networks”, IEEE Pervasive Computing, 2(4): 34–43, 2003.

[32] J. Tan, “A Scalable Graph Model and Coordination Algorithms for Multi-robot

Systems”, 2005 IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, 1529-1534, 2005.

[33] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage Control for Mobile

Sensing Networks”, IEEE Transactions on Robotics and Automation, 20(2): 243–255,

2004.

[34] J. Tan, N. Xi, W. Sheng, and J. Xiao, “Modeling Multiple Robot Systems for

Area Coverage and Cooperation”, 2004 IEEE International Conference on Robotics &

Automation, 3: 2568-2573, 2004.

[35] Q. Jiang, “An Improved Algorithm for Coordination Control Multi-agent System

based on R-limited Voronoi Partitions”, 2006 IEEE International Conference on

Automation Science and Engineering, 667-671, 2006.

 132

[36] M. Schwager, J. Slotine, and D. Rus, “Decentralized, Adaptive Control for

Coverage with Networked Robots”, 2007 IEEE International Conference on Robotics

and Automation, 3289-3294, 2007.

[37] A. Winfield, “Distributed Sensing and Data Collection via Broken Ad Hoc

Wireless Connected Networks of Mobile Robots”, Distributed Autonomous Robotic

Systems 4, L. Parker, G. Bekey, and J. Barhen, Eds. Springer-Verlag, 4: 273-282, 2000.

[38] W. Kerr, D. Spears, W. Spears, and D. Thayer, “Two Formal Gas Models for

Multi-agent Sweeping and Obstacle Avoidance”, Lecture Notes in Artificial Intelligence,

3228: 111-130, 2005.

[39] M. R. Pac, A. M. Erkmen, and I. Erkmen, “Scalable Self-deployment of Mobile

Sensor Networks: A Fluid Dynamics Approach”, 2006 IEEE/RSJ International

Conference on Intelligent Robotics and Systems, 1445-1451, 2006.

[40] B. Jung, and G. S. Sukhatme, “Tracking Targets Using Multiple Robots: The

Effect of Environment Occlusion”, Autonomous Robots, 13: 191-205, 2002.

[41] Y. Zhou, and J. Tan, “Deployment of Multi-robot Systems under The

Nonholonomic Constraint”, IEEE/ASME International Conference on Advanced

Intelligent Mechatronics, 389-394, 2008.

[42] P. V. Sander, D. Peleshchuk, B. J. Grosz, “A Scalable, Distributed Algorithm for

Efficient Task Allocation”, Proceedings of the First International Joint Conference on

Autonomous Agents and Multiagent Systems, 1191-1198, 2002.

[43] M. I. Shamos F. Preparata, Computational Geometry: An Introduction, Springer-

Verlag, New York, 1985.

[44] H. Goldstein, Classical Mechanics, 2nd edition, Reading, MA: Addison-Wesley,

 133

1980.

[45] Y. Zou and K. Chakrabarty, “Sensor Deployment and Target Localization Based

On Virtual Forces,” INFOCOM 2003: 22nd Annual Joint Conference of the IEEE

Computer and Communications Societies, 2: 1293–1303, 2003.

[46] S. Martinez and F. Bullo, “Optimal Sensor Placement and Motion Coordination

for Target Tracking,” Automatica, 42(4): 661–668, 2006.

[47] B. E. Bishop, “On the Use of Capability Functions for Cooperative Objective

Coverage in Robot Swarms,” 2007 IEEE International Conference on Robotics and

Automation, 2306–2311, 2007.

[48] Y. Wang and Y. Tseng, “Distributed Deployment Schemes for Mobile Wireless

Sensor Networks to Ensure Multilevel Coverage,” IEEE Transactions on Parallel and

Distributed Systems, 19(9): 1280–1294, 2008.

[49] B. Wang, “Sensor Placement for Complete Information Coverage in Distributed

Sensor Networks,” Journal of Circuits, Systems and Computers, 17(4): 627–636, 2008.

[50] J. P. Le Cadre and G. Souris, “Searching Tracks,” IEEE Transactions on

Aerospace and Electronic Systems, 36(4): 1149–1166, 2000.

[51] Y. Zou and K. Chakrabarty, “Uncertainty-aware and Coverage-oriented

Deployment for Sensor Networks,” Journal of Parallel and Distributed Computing, 64(7):

788–798, 2004.

[52] C. Wu, K. Lee, and Y. Chung, “A Delaunay Triangulation based Method for

Wireless Sensor Network Deployment,” Computer Communications, 30(14-15): 2744–

2752, 2007.

[53] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja, “Sensor

 134

Deployment Strategy for Detection of Targets Traversing A Region,” Mobile Networks

and Applications, 8(4): 453–461, 2003.

[54] H. Goldstein, Classical Mechanics, 2nd edition, Reading, MA: Addison-Wesley,

1980.

[55] Pioneer 3 Operations Manual with MobileRobots Exclusive Advanced Robot

Control & Operations Softwares, MobileRobots Inc., 2006.

[56] A.J. Davison and D.W. Murray, “Mobile Robot Localization using Active

Vision,”, In European Conference on Computer Vision, II: 809-825, 1998.

[57] David A. Forsyth and Jean Ponce, “Computer Vision: A Modern Approach,”

Prentice Hall, 20–54, 2002.

[58] R. Fletcher, “Practical Methods of Optimization,” John Wiley & Sons, 2nd

Edition, New York, 1987.

[59] Report to Congress on Server and Data Center Energy Efficiency Public Law

109-431, U.S. Environmental Protection Agency, ENERGY STAR Program, Aug. 2007.

[60] American Society of Heating, Refrigerating and Air Conditioning Engineers,

“Thermal Guidelines for Data Processing Environments”, Atlanta, GA, 2004.

[61] “Data Center Industry Leaders Reach Agreement on Guiding Principles for

Energy Efficiency Metrics”, http://www.energystar.gov/ia/partners/prod_

development/downloads/DataCenters_AgreementGuidingPrinciples.pdf, Feb.1, 2010.

[62] R. Hughes, “Data centers of the future”,

http://www.datacenterjournal.com/News/Article.asp?article_id=319, May 24, 2005.

[63] H. F. Hamann, T. van Kessel, M. Iyengar, J. Chung, W. Hirt, M. Schappert, A.

Claassen, J. Cook, W. Min, Y. Amemiya, V. López, “Uncovering Energy Efficiency

 135

Opportunities in Data Centers”, IBM Journal of Research and Development, 53(3):10:1-

10:12, 2009.

[64] H. F. Hamann, M. Schappert, M. Iyengar, T. van Kessel, A. Claassen. “Methods

and Techniques for Measuring and Improving Data Center Best Practices”, 11th

Intersociety Conference on Thermomechanical Phenomena in Electronic Systems, 1146-

1152, 2008.

[65] H. F. Hamann, “A Measurement-based Method for Improving Data Center

Energy Efficiency”, 2008 IEEE International Conference on Sensor Networks,

Ubiquitous, and Trustworthy Computing, 312-313, 2008.

[66] PatrolBot Operations & Technical Manual, Mobile Robots Inc.

