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Abstract of the Dissertation

Multidimensional Simulations of Convection Preceding a Type I
X-ray Burst

by

Christopher Michael Malone

Doctor of Philosophy

in

Physics

Stony Brook University

2011

Type I X-ray bursts are thermonuclear explosions on the surfaces of neutron stars that

can be used to determine the mass and radius of the underlying neutron star and hence

help constrain the equation of state for dense matter. Particularly important is our

physical understanding of how a localized, subsonic burning front ignites and spreads,

the state of the material in which the burning front propagates, and the extent to which

heat released from reactions expands the photosphere of the neutron star. Multidimen-

sional simulation of low Mach number astrophysical flows, such as the propagation of

a flame or the slow convective turnover, in such systems have been rather restricted

in the past; fully compressible hydrodynamics algorithms have a time step size that

is constrained by the propagation of acoustic waves, which can be neglected in low
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Mach number flows of this type.

This thesis presents results of multidimensional, plane-parallel simulations of the con-

vection preceding ignition in a Type I X-ray burst. I use a low Mach number hydro-

dynamics code, MAESTRO, based on a low Mach number approximation that filters

acoustic waves from the system allowing for a larger time step size while retaining

the important compressible features, such as expansion from local heating and com-

position change. This allows for performing long-term evolution of the system and

characterizing the effects of convection on the atmosphere. In particular, the simula-

tions presented here suggest that the convection dredges up some of the underlying

56Fe neutron star material into the atmosphere, which may affect any subsequent sub-

sonic burning front as well as the color correction factor used to infer the underlying

neutron star’s mass and radius.
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CHAPTER 1

X-RAY BURSTS

For excellent overviews and a complete historical background, please see the following x-ray

burst review articles: Lewin & Joss (1981); Lewin et al. (1993); Bildsten (2000); Strohmayer &

Bildsten (2006). Here, I introduce some of the more salient features pertaining to this dissertation.

I also discuss some of the reasons why one should care about x-ray bursts in the first place. At the

end of this chapter, I outline the remainder of this dissertation.

1.1 A Brief Historical Background

Cosmic x-ray astronomy began with the launch of the Uhuru satellite in 1970. There had

previously been balloon-borne instruments or detectors attached to sounding rockets, but Uhuru

was the first satellite dedicated to x-ray astronomy. Uhuru surveyed the entire sky and catalogued

over 300 x-ray sources, with its two proportional counters sensitive to photons in the 2-20 keV

energy range (Forman et al., 1978). One such source, 4U 1820-30 near the center of globular

cluster NGC 6624, was later observed by Grindlay and Heise (1975) to exhibit “two intense x-ray

bursts” with sharp (. 1 s) rise times, peak luminosities & 20 times the quiescent luminosity, and

exponential-like decays over ∼ 10 s. At about the same time, Belian, Conner and Evans (1976)

reported on observations of 10 very brief x-ray “count-rate enhancements” with luminosities &
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15σ above the background signal, originating from somewhere in the constellation Norma.

There were several ideas regarding what could be causing these short bursts of x-rays. For 4U

1820-30, Grindlay and Gursky (1976) attempted to explain the decay time of the outbursts via

Compton scattering of the primary x-rays within a hot gas in equilibrium surrounding the x-ray

source. The parameters derived for the hot gas implied a compact object with a mass M ∼ 103M�

— a black hole. Canizares (1976) showed that the surrounding gas need not be in equilibrium,

and that relaxing this assumption does not necessitate the need for a supermassive compact x-ray

source. The following year, several bursts were observed that were well-fit by a cooling blackbody

source of size comparable to a neutron star (e.g., Swank et al., 1977; Hoffman et al., 1977).

At about the same time, there was a proposal that favored a neutron star environment for an

x-ray burst of thermonuclear origin. Building upon the work of Hansen and van Horn (1975),

Maraschi and Cavaliere (1977) — and independently Woosley and Taam (1976) — started to relate

the observed x-ray burst properties to the results of simple calculations of thermonuclear burning

in an accreted atmosphere on the surface of a neutron star. The ratio of energy released from

accretion to rest mass energy is ∼ GM/Rc2 ≈ 20% for a neutron star of mass M = 1.4M� and

radius R = 10 km; this same ratio for nuclear burning is . 0.7%. The disparity in efficiency of

energy release implies that the neutron star must act as a “storage battery” for enough accreted

nuclear fuel (∼ 1022 g) until conditions are met to explosively burn the material and produce an

observable luminosity above that of the accretion luminosity (Woosley & Taam, 1976).

1.1.1 X-ray Burst Taxonomy

The nuclear origin concept for x-ray bursts worked well except for one source, MXB1730-335,

which was discovered (Lewin et al., 1976) just prior to the Woosley and Taam paper of 1976.

MXB1730-335, later dubbed “The Rapid Burster,” exhibited thousands of bursts per day. For
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such a high cadence of outbursts under the nuclear origin idea, The Rapid Burster would need a

very high accretion rate and, hence, a very large persistent accretion luminosity, which was not

observed.

In late 1977, The Rapid Burster was observed to emit x-ray outbursts similar to all other ob-

served x-ray bursts in addition to its eponymous outbursts. Two types of x-ray bursts were then

proposed to exist: Type I bursts are those associated with thermonuclear flashes, while the rapid

Type II bursts are thought to be due to instabilities in the accretion disk, which dump material onto

the surface of the neutron star on short timescales (Hoffman et al., 1978). For the remainder of

this dissertation — when I use the terms x-ray burst (hereafter XRB), burst, outburst, etc. — I will

only be concerned with thermonuclear, Type I x-ray bursts.

1.2 A More Modern Look

The basic XRB paradigm takes place in a mass-transferring, low-mass X-ray binary (LMXB)

system in which the neutron star’s companion has filled its Roche lobe and is dumping H- and/or

He-rich material onto the surface of the neutron star. Depending on the accretion rate and com-

position, there are several burning regimes that will trigger an XRB (see Bildsten (2000) for an

overview). The general idea is that a column of accreted material — or heavier-element ash from

prior stable burning of accreted material — builds up until the temperature sensitivity of the energy

generation rate at the base of the layer exceeds that of the local cooling rate and a thin-shell thermal

instability forms. The instability eventually causes a runaway of unstable burning, resulting in an

outburst. The energy released during the outburst is not enough to unbind the star, and it is unlikely

— given the high surface gravity — that a significant fraction of the accreted material is ejected.

While returning back to its quiescent state, the neutron star may resume accreting material from its

companion, and the process can begin anew.
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One-dimensional hydrodynamic studies reproduce many of the observable features of XRBs

such as burst energies (∼ 1039 erg), rise times (seconds), durations (10’s – 100’s of seconds), and

recurrence times (hours to days) (Woosley & Weaver, 1984; Taam et al., 1993; Heger et al., 2007a).

By construction, however, one-dimensional models assume that the fuel is burned uniformly over

the surface of the star, which is highly unlikely given the large disparity between the thermaliza-

tion and burning timescales of the accreted material (Shara, 1982). Furthermore, the Rossi X-ray

Timing Explorer satellite observed coherent oscillations in the lightcurves of ∼ 20 outbursts from

LMXB systems (first by Strohmayer et al., 1996; more recently by Altamirano et al., 2010 and ref-

erences therein). The asymptotic evolution of the frequency of such oscillations suggests they are

modulated by the neutron star spin frequency (Muno et al., 2002). Oscillations observed during the

rising portion of an outburst lightcurve are therefore indicative of a spreading burning front being

brought in and out of view by stellar rotation. Additionally, oscillations observed during the decay

phase of the burst are thought to be caused by unstable surface modes that may depend critically

on the local heating and cooling rates during the burst (Narayan & Cooper, 2007, and references

therein). The manner in which the burning front spreads and propagates throughout the accreted

atmosphere is not well known, and a proper multidimensional modeling of the conditions in the

atmosphere prior to outburst is needed (e.g. Fryxell & Woosley, 1982b).

Prior to the actual outburst, the burning at the base of the ignition column drives convection

throughout the overlying layers and determines the state of the material in which the burning front

will propagate. One-dimensional simulations of XRBs usually attempt to parameterize the con-

vective overturn and mixing using astrophysical mixing-length theory (Böhm-Vitense, 1958) or

through various diffusive processes (see Heger et al. 2000 for a thorough discussion). Recent mul-

tidimensional simulations of stellar convection (see Arnett et al., 2009, and references therein),

however, show a large discrepancy in, for example, the velocity of a typical convective eddy when

compared to one-dimensional models in the case of stellar evolution codes that use mixing-length
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theory. Indeed, there has recently been an effort put forth in the astrophysical community, the so-

called Convection Algorithms Based on Simulations, or CABS, to derive from multidimensional

simulations a more physically motivated prescription for handling convection in one dimension

(Arnett et al., 2008). To date, such methods have not propagated into the XRB-simulation com-

munity and a proper treatment of convection, without assumptions, requires simulation in multiple

dimensions.

Multidimensional simulations of any aspect of XRBs, however, have hitherto been rather re-

strictive. A burning front can propagate either supersonically as a detonation or subsonically as

a deflagration. Full hydrodynamic XRB detonation models in the spirit of Fryxell & Woosley

(1982a) or Zingale et al. (2001) require a thick (∼ 100 m) accreted helium layer. Such deep layers

are only produced by very low accretion rates, which are inconsistent with the majority of rates in-

ferred from observations of XRBs, and therefore the burning front in most XRBs likely propagates

as a deflagration. Deflagration models are difficult to compute with standard compressible hydro-

dynamics codes due to the long integration times required. One possible solution is to eliminate the

effect of acoustic waves in the system, allowing the time step to be controlled by the fluid velocity,

rather than the sound speed. Such a method can be derived using low Mach number asymptotics;

classic examples of low Mach number approaches include the incompressible, anelastic (Ogura &

Phillips, 1962) and Boussinesq (Boussinesq, 1903) approximations. To this end, Spitkovsky et al.

(2002) used a simple, shallow-water, two-layer, incompressible fluid to model the vertical structure

of a deflagration front and showed how rotation coupled with convection may play an important

role in regulating the spread of the front over the surface of the neutron star.
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1.3 Why Care About X-ray Bursts?

X-ray bursts provide an excellent laboratory for studying combustion and flame propagation

under extreme, semi-degenerate conditions. From a nuclear physics standpoint, they are one of the

few possible locations for the rapid proton, or rp-process (Wallace & Woosley, 1981), burning — a

series of proton captures and β+ decays along the proton-rich side of nuclear stability — that can

produce heavy elements up to 110Te (e.g. Schatz, 2011, and references therein). Furthermore, type

I X-ray bursts are possibly the most frequent thermonuclear explosions in the universe and provide

a large amount of observational data that can be used to determine the properties of matter near

the surface of a neutron star. To make meaningful inferences about these properties from observa-

tional data, however, we must have a proper theoretical understanding of the bursting phenomena

(Bhattacharyya, 2010).

During the outburst of some XRBs, the luminosity can reach (and sometimes exceed) a critical

limit, called the Eddington luminosity, where the radiation pressure exerts a force on the atmo-

sphere greater than the gravitational pull. The atmosphere lifts off the surface of the neutron star;

such bursts are called photospheric-radius expansion (PRE) bursts. Observationally, this expansion

is inferred from the spectral softening — evolution towards lower energies — of the lightcurve dur-

ing the burst. As the photosphere expands, the blackbody temperature as observed at the Earth,

decreases, reaches a minimum, and then increases as the photosphere contracts. At “touch down,”

the photosphere is thought to have returned to the stellar radius and the blackbody temperature

reaches a maximum before decreasing slowly due to cooling. At touch down, the flux is thought

to be close to the Eddington flux. Furthermore, because the system is no longer expanding or

contracting, the normalized emitting area A = Fbb,∞/σSBT 4
bb,∞ — where Fbb,∞ and Tbb,∞ are the

blackbody flux and temperature as observed at the Earth, and σSB is the Stefan-Boltzmann con-

stant — after touch down remains relatively constant. By comparing the observed flux at touch
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down with the normalized area after touch down, along with some estimate of the distance to and

atmospheric composition of the source, one can obtain independent measures for both the mass

and radius of the underlying neutron star (Steiner et al., 2010, e.g.). This information of mass and

radius can then be used along with the Tolman-Oppenheimer-Volkov equations, which determine

relativistic stellar structure, to rule out some of the highly uncertain, myriad equations of state that

exist for cold dense matter (see Lattimer & Prakash, 2004; Lattimer, 2007, for example).

1.4 Roadmap of this Dissertation

As this dissertation is concerned with numerical hydrodynamics simulations of XRBs, in Chap-

ter 2 I give a brief introduction to simple hydrodynamics, finite volume methods, and low Mach

number approximations. In Chapter 3, I describe the low Mach number approximation algorithm,

MAESTRO, used for this work. XRBs would not exist without thermonuclear burning, so I give

a very brief introduction to reactions and reaction networks in Chapter 4. In Chapters 5 and 6,

I present the difficulties and results of performing two-dimensional simulations of various x-ray

burst models. Finally, in Chapter 7 I summarize what has been accomplished during this disserta-

tion as well as provide direction for future research in the field.
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CHAPTER 2

HYDRODYNAMICS

In this Chapter, I will give a brief flavor of some hydrodynamics to help motivate the need for

the low Mach number approximation method described in Chapter 3. Portions of this discussion

have been adopted from LeVeque’s excellent book Finite Volume Methods for Hyperbolic Problems

(LeVeque, 2002), as well as from parts of Doug Swesty’s superb graduate course on numerical

radiation hydrodynamics taught in the Spring of 2011 at Stony Brook University.

2.1 Some Basic Equations

The equations of hydrodynamics are essentially conservation laws for mass, momentum, and

energy. Mathematically, (the differential form of) conservation laws can take on the form of con-

stant coefficient, homogeneous hyperbolic systems of equations

∂q
∂ t

+A∇ ·q = 0 (2.1)

where q is an n-vector and A is an n× n coefficient matrix. For this system to be considered

hyperbolic, the eigenvalues of A must be real and the eigenvectors of A must be non-trivial and

linearly independent. A consequence of this is that q can be decomposed into n independently
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travelling waves propagating with speeds equal to the eigenvalues.

2.1.1 The Advection Equation

As a simple example, we will consider the one-dimensional wave, or advection equation with

constant speed:
∂q
∂ t

+ c
∂q
∂x

= 0, (2.2)

where c is the propagation speed. On an infinite spatial domain, this equation is an initial value

problem with an analytic solution q(x, t) = q0(x− ct) for given initial condition q(x,0) = q0(x).

The solution simply advects to the right (for c > 0) at speed c. Along the lines x− ct = const.,

called the characteristic curves, the solution remains constant; stated differently, information about

the system propagates along these lines at speed c.

For a finite spatial domain, a≤ x≤ b, this problem becomes an initial boundary value problem,

and values for q at one of the boundaries, q(a, t) = qa(t) or q(b, t) = qb(t), needs to be specified

along with the initial condition q0(x). If c > 0, then the characteristic curves are incoming at a

and outgoing at b. From a physical standpoint, this means that q within the domain can only be

affected by the q flowing into the domain at point a; mathematically, this means that for a stable

numerical method of solution — roughly, a method whose global error does not grow with time —

one must only use the incoming boundary condition (Gustafsson et al., 1972).

2.1.2 The Euler Equations for a Polytropic Gas

More generally, conservation laws are written in integral form relating the time rate of change

of the total q in some volume V to the net flux through the surface, S, out of the volume:

∂

∂ t

∫
V

q(x, t) dV =−
∫

S
F(x,q, t) ·dS, (2.3)
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where F is the flux vector and dS = ndS, with n being the outward normal vector to surface S.

Applying the divergence theorem to 2.3, which assumes F is smooth, results in

∫
V

[
∂q
∂ t

+∇ ·F
]

dV = 0. (2.4)

The choice of volume element over which to evaluate the integral is arbitrary, and therefore this

equation must hold for all V and we have a differential form of the conservation law reminiscent

of 2.1,
∂q
∂ t

+∇ ·F = 0. (2.5)

Note that the one-dimensional advection equation, 2.2, is a special case where F(x,q, t) = cq(x, t)ex

where ex is the unit vector in the x-direction.

For a gas, the conservation law for mass, the continuity equation, can be written as

∂ρ

∂ t
+∇ · (ρU) , (2.6)

where ρ is the mass density and U is the fluid velocity. Neglecting viscous and body forces, the

conservation laws for linear momentum, the momentum equations, are

∂ (ρU)
∂ t

+∇ · [(ρU)U+ p] = 0, (2.7)

where p is the pressure of the gas. If we assume, for simplicity, that the gas behaves according to

a polytropic equation of state, where p = p(ρ) = Kργ with K and γ constants, then the nonlinear
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system of equations — the Euler equations for a polytropic gas — is closed

∂

∂ t

 ρ

ρU

+∇ ·

 ρU

ρUU+ p(ρ)

= 0. (2.8)

This system is said to be in conservative form, and looks similar to 2.5. It is instructive to take this

equation out of conservative form to relate to the hyperbolicity discussion in the previous sections.

One way to put 2.8 into a constant coefficient form similar to 2.1 is to use the primitive vari-

ables: ρ, U, p. These variables are more physically intuitive, and putting the system in this form

will allow us to easily learn something about the characteristics. To do this, we will expand the

derivatives such as

∇ · (ρU) = ρ∇ ·U+U ·∇ρ, (2.9)

and form a pressure equation by using the continuity equation, 2.6, and the equation of state rela-

tionship p′= Kγργ−1ρ ′ where the prime notation means a derivative (see Section 14.7 of LeVeque,

2002, for example). The resulting system of equations in one dimension is

∂

∂ t


ρ

U

p

+


U ρ 0

0 U 1/ρ

0 γ p U

 · ∂

∂x


ρ

U

p

= 0. (2.10)

The adiabatic speed of sound in a gas is defined by cs = (∂ p/∂ρ)1/2 at constant entropy; for the

polytropic equation of state, this gives cs = (pγ/ρ)1/2. The eigenvalues of the coefficient matrix in

2.10 are then: U, U ± cs — information can advect with the fluid or propagate as acoustic waves

relative to the fluid motion. Fluids that permit finite-speed acoustic waves are called compressible

fluids. Note, again, these equations are not in conservative form — velocity, U , and pressure, p,

are not conserved quantities.
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2.2 Short Description of Numerical Solution

In order to solve the coupled, nonlinear equations of hydrodynamics numerically, we must

discretize the problem, which involves breaking the domain of the problem into a grid of zones

or cells, and then solving the conservation laws for each zone. Furthermore, we must discretize

the problem in time — we break the evolution of the system into a series of small time steps. In

the remainder of this dissertation, unless otherwise stated, we will use the notation qn
i to associate

some value of q in the ith grid zone at time t = tn.

We could use finite difference methods, where qn
i denotes the value of q at point xi: qn

i ≈

q(xi, tn). Such methods are fairly straight-forward to generate, using Taylor series expansions to

approximate the derivatives in 2.5. For example, using Taylor expansions for q about xi,

q(x, t) = qi +
∂q
∂x

∣∣∣∣
x=xi

(x− xi)+
1
2

∂ 2q
∂x2

∣∣∣∣
x=xi

(x− xi)
2 + . . . , (2.11)

and likewise expanding in time, one can create the very simple — and unstable for c > 0 — explicit

forward-time, forward-space method

qn+1
i = qn

i −
(

c∆t
∆x

)(
qn

i+1−qn
i
)
+O

(
∆t1,∆x1) . (2.12)

Here, ∆t is the time step size, and the notation O
(
∆t1,∆x1)means the method is first order accurate

in space and time — while determining the derivatives, the Taylor series terms of order ∆x and ∆t,

or higher, were neglected.
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2.2.1 Finite Volume Methods

Alternatively, for a two-dimensional finite volume method we say that qn
i, j is associated with

the spatial average of q over the (i, j)th grid zone at time tn

qn
i, j ≈

1
∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

q(x,y, tn) dxdy, (2.13)

where ∆x∆y is the area of the (i, j)th cell with ∆x = xi+1/2
− xi−1/2

and ∆y = x j+1/2
− x j−1/2

the grid

spacing in the x and y directions, respectively. Figure 2.1 shows an example two-dimensional,

uniform grid where the cell centers are indicated with integer indices while cell edges are denoted

by half-integer indices.

The advantage of using the finite volume approach over the finite difference approach is that

the variables we are storing — the qi, j’s — are essentially the terms on the left-hand side of the

integral form of the conservation law 2.3. For example, Equation 2.3 applied to the (i, j)th cell of

Figure 2.1 gives

∂qi, j

∂ t
=

1
∆x∆y

[∫ y j+1/2

y j−1/2

(
Fx,i−1/2

−Fx,i+1/2

)
dy+

∫ xi+1/2

xi−1/2

(
Fy, j−1/2

−Fy, j+1/2

)
dx

]
, (2.14)

where Fx,i = F(xi,y,q, t) · ex and Fy, j = F(x,y j,q, t) · ey are the fluxes through the cell edges. In-

tegrating this in time from tn to tn+1 gives the basic form of a finite volume method for a two-

dimensional conservation law on a uniform cartesian grid

qn+1
i, j = qn

i, j +
∆t
∆x

(
F

n+1/2
x,i−1/2, j−F

n+1/2
x, j+1/2, j

)
+

∆t
∆y

(
F

n+1/2
y,i, j−1/2

−F
n+1/2
y,i, j+1/2

)
, (2.15)

where the flux functions, F , are approximations to an average flux along an edge of a cell during
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i, ji−1, j i+1, j

i, j +1

i, j−1

i+ 1
2 , ji− 1

2 , j i, j + 1
2

i, j− 1
2

Figure 2.1: Example of a two-dimensional cartesian grid structure showing the locations of integer
and half-integer indices used in finite volume methods.

a time step (c.f. Chapter 19 of LeVeque, 2002)

F
n+1/2
x,i−1/2, j =

1
∆t∆y

∫ tn+1

tn

∫ y j+1/2

y j−1/2

Fx,i−1/2
dydt (2.16)

F
n+1/2
y,i, j−1/2

=
1

∆t∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

Fy, j−1/2
dxdt. (2.17)

The flux functions 2.16 and 2.17 are typically unknown, but are constructed from the values of qn

surrounding the edge of interest. The manner in which these fluxes are reconstructed determines

the order of accuracy for the method.

Godunov (1959) proposed a finite volume method where the flux functions are based on solu-
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tions to the Riemann problem at cell edges. To set up the Riemann problem (in one dimension)

at the edge xi−1/2
, the profile of q(x, t) needs to be reconstructed within the (i−1)th and ith zones.

Figure 2.2 shows this reconstruction process. In red is the (unknown) analytic function that needs

reconstructed. The circles at cell centers are the qn
i — the average of the analytic function over

the ith zone — given by Equation 2.13. The black lines show Godunov’s original method of using

a piecewise constant reconstruction function, which results in a first-order accurate method. The

Riemann problem at xi−1/2
for this reconstruction is then the hyperbolic equation with initial left

and right states given by the (black-labeled) qi−1/2,L and qi−1/2,R, respectively.

To achieve a higher-order Godunov method, such as what is used in the MAESTRO code, a

higher-order reconstruction of q(x, t) is needed. The blue lines in Figure 2.2 show an example of a

piecewise linear reconstruction and the accompanying left and right states for the Riemann prob-

lem at xi+1/2
using this reconstruction. Higher-order reconstructions use values of q in neighboring

cells to determine the profile — for example, in Figure 2.2, the piecewise linear reconstruction

in the ith cell uses the values of qi and qi+1 to determine the slope of the line. Other higher-

order reconstructions use different combinations of neighboring points to generate the piecewise

reconstruction function. Ideally, one would like the reconstructed value of qi+1/2
to lie between the

cell-centered values qi and qi+1 to not introduce any local extrema that may grow with evolution

of the system. A general reconstruction that satisfies Equation 2.13, does not automatically satisfy

qi ≤ qi+1/2
≤ qi+1, especially near sharp discontinuities in the initial data.. To enforce this con-

straint, one invokes a slope limiter, which restricts the slopes of the reconstruction to ensure that

the algorithm is monotonicity-preserving and does not introduce oscillations (see Section 6.7 of

LeVeque (2002), for example).
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xi−2 xi−1 xi xi+1 xi+2

qi−1/2,R

qi−1/2,L

qi+1/2,R

qi+1/2,L

Figure 2.2: Example reconstruction of a function (red) using piecewise constant values (black) or
a piecewise linear function (blue). The labeled points, q∗,L and q∗,R, show the various edge states
used in the Riemann solve for the fluxes in a Godunov method; the color of the label relates to the
reconstruction method.

2.2.2 The CFL Condition

Up until now, we have not said anything about any restrictions placed upon the time step size.

One might ask: “if I am interested in the evolution of the system from t = t0 through some later

time t = tend, why not take a single time step of size ∆t = tend− t0 and be done with it?”

In 1928, Courant, Friedrichs, and Lewy discovered a necessary condition — the so called CFL

condition — for convergence of an explicit numerical method, in the limit of ∆t and ∆x go to zero:

the domain of dependence of the original partial differential equation must be contained within the

numerical domain of dependence of the method (Courant et al., 1928). The domain of dependence

for a hyperbolic partial differential equation is essentially the set of points along the characteristic
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curves that could affect the solution given the fact that information propagates at a finite speed. As

an example, consider the one-dimensional advection equation of 2.2. The characteristic curves for

this equation are the lines x− ct = 0; the domain of dependence at some point xp and time tp is

then the point xp− ctp.

The numerical domain of dependence obviously depends on the choice of numerical method.

If we apply the finite volume method from 2.15 to the advection equation of 2.2, realizing that the

flux is simply F = cqex then we get

qn+1
i = qn

i +
c∆t
∆x

(
qn

i−1/2
−qn

i+1/2

)
. (2.18)

For simplicity, let us define qn
i+1/2

= 1/2
(
qn

i+1 +qn
i
)
. Therefore, numerically, the only points that can

affect the solution of qi in a single time step — {qi−1,qi,qi+1}— are within xi−∆x≤ x≤ xi +∆x.

If we take n = tp/∆t time steps to reach time tp, then the only points which can affect the solution

at xp —
{

qp−n,qp−n+1, . . . ,qp+n−1,qp+n
}

— are within xp− n∆x ≤ x ≤ xp + n∆x. For the CFL

condition to be satisfied and the method to be stable, we must have xp−n∆x≤ xp−ctp ≤ xp +n∆x

or ∣∣∣∣c∆t
∆x

∣∣∣∣≤ 1. (2.19)

The ratio |c∆t/∆x| ≡ αCFL is called the Courant or CFL number. Again, the CFL condition is a

necessary condition for stability, and, in practice for such a method, a CFL number of no greater

than about αCFL ∼ 0.9 is used. Therefore, in practice the time step size is usually restricted by

∆t . αCFL
∆x
c

, (2.20)

even for a right-hand side of 2.19 that is not equal to one.
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2.3 Low Mach Number Approximation

For a system of equations such as the Euler equations, the CFL condition restricts the time step

size by the maximum characteristic speed, U + cs, where U = |U| is the magnitude of the velocity

vector. Note that if the Mach number, M≡U/cs, is small (� 1) — as is the case for the convection

and burning occurring in XRBs — then the CFL restriction on the time step is entirely dominated

by the propagation of sound waves

∆t . αCFL
∆x

cs (1+M)
≈ αCFL

∆x
cs

, for M� 1. (2.21)

In low Mach number fluid flow, these sound waves may not be important, and the CFL condition

may be overly restrictive for efficiently evolving the system.

To overcome this restriction, different forms of the so-called low Mach number approximation

methods have been developed. These methods tend to filter the acoustic waves from the system,

thus allowing the CFL time step to be restricted by the dynamics of the fluid rather than the propa-

gation of sound waves. A classic example is the incompressible fluid, which has the constraint

∇ ·U = 0 (2.22)

that doesn’t allow for any form of compressibility effects along a streamline. Another example

is the anelastic approximation (Ogura & Phillips, 1962), which allows for large-scale background

stratification of ρ and p, but assumes that the thermodynamic perturbations about this background

are small. The anelastic approximation appears as the constraint

∇ · (ρ0U) = 0, (2.23)
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where ρ0 is the background density profile. More complex methods that filter the acoustics but

allow more compressible effects can be constructed.

More recently, Lin et al. (2006) developed and applied a low Mach number approximation

method to the problem of convective burning at the base of an accreted layer in an XRB sys-

tem. Their method, however, was first-order accurate in space and time and did not allow for the

evolution of the hydrostatic base state, a feature that is needed to capture the expansion of the at-

mosphere in response to heating. Furthermore, Lin et al. did not model the surface of the accreted

layer, which is vital to understanding bursts that exhibit photospheric radius expansion; such bursts

are crucial in determining the stellar properties of neutron stars (see Section 1.3 and Steiner et al.,

2010, and references therein).
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CHAPTER 3

MAESTRO

In this Chapter, I give an overview of the low Mach number approximation method of the

MAESTRO code used for the simulations comprising this dissertation. A series of papers (see

Almgren et al. (2006a) — henceforth Paper I, Almgren et al. (2006b) — henceforth Paper II,

Almgren et al. (2008) — henceforth Paper III, and Zingale et al. (2009) — henceforth Paper IV)

describe the derivation of the low Mach number equation set, its algorithmic implementation, and

the initial application to convection in a white dwarf preceding a Type Ia supernova. Here, I will

describe the most recent version of the algorithm as outlined in our paper Nonaka et al. (2010)

— henceforth Paper V. For the XRB problem, I am only concerned with the upper . 20 m of

atmosphere on a ∼ 10 km radius neutron star. Therefore, I use a plane-parallel atmosphere with

x the horizontal coordinate and r the radial coordinate, which is how I will describe the algorithm

below.

At the start of this dissertation work, the core of the MAESTRO algorithm had already been

developed. My role was to take the lead on applying MAESTRO to the XRB problem, improv-

ing problem-specific aspects of the code to make such simulations meaningful, and validating the

applicability of MAESTRO to this problem. Applying the code to flows under the extreme condi-

tions found in a neutron star atmosphere really tested the limits of the MAESTRO algorithm. This
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stressing of the code tended to discover unforeseen issues, the resolution of which lead towards

a more robust algorithmic development and a deeper understanding of the low Mach number ap-

proximation method used in the code. Another of my roles involved implementing and validating

the microphysics (e.g. the reaction networks described in section 4.4) that is used in MAESTRO for

the XRB problem.

3.1 The Equations

The fully compressible equations for a non-viscous, reacting astrophysical fluid are

∂ (ρXk)
∂ t

+∇ · (ρXkU) = ρω̇k, (3.1)

∂ (ρU)
∂ t

+∇ · (ρUU)+∇p = −ρger, (3.2)

∂ (ρE)
∂ t

+∇ · (ρUE + pU) = ∇ · (kth∇T )−ρg(U · er)+ρHnuc, (3.3)

where as before ρ,U, and p are the mass density, velocity vector, and pressure respectively. Xk and

ω̇k are the mass fraction and production rate of the kth species, g(r) is the radial-dependent gravi-

tational acceleration, E = e+ 1/2U ·U is the total specific energy with e the specific internal energy,

kth is the thermal conductivity, T is the temperature, and Hnuc is the specific energy generation rate

from nuclear reactions. The set of equations is closed by an equation of state

p = p(ρ,T,Xk) . (3.4)

Note that the equation of continuity, 2.6, is contained within Equation 3.1 because the density can

be defined as ρ = ∑i ρXi, and likewise ∑i ω̇i = 0.

In the low Mach number method presented here, we prefer to work in terms of specific enthalpy,
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h = e + p/ρ , instead of total specific energy. Using low Mach number asymptotics (see Paper I)

the total pressure, p(x,r, t), is decomposed into a one-dimensional base state pressure, p0(r, t), and

a perturbational, or dynamic, pressure, π(x,r, t), such that |π|/p0 = O(M2), with M the Mach

number. The one-dimensional base state density, ρ0(r, t), is in hydrostatic equilibrium (HSE) with

the base state pressure such that ∇p0 = −ρ0ger. With these modifications, Equations 3.2 and 3.3

become

∂U
∂ t

= −U ·∇U− 1
ρ

∇π− (ρ−ρ0)
ρ

ger, (3.5)

∂ (ρh)
∂ t

= −∇ · (ρhU)+
Dp0

Dt
+ρHnuc +∇ · (kth∇T ), (3.6)

where D/Dt = (∂/∂ t +U ·∇) is the Lagrangian derivative. The constraint imposed by the equation

of state, 3.4, is re-expressed as a divergence constraint on the velocity field (see Paper III), analo-

gous to the divergence constraints (2.22 and 2.23) of the low Mach number methods described in

Section 2.3:

∇ · (β0U) = β0

(
S− 1

Γ1 p0

∂ p0

∂ t

)
, (3.7)

where β0 is a density-like variable,

β0(r, t) = ρ(0, t)exp
(∫ r

0
α

∂ p0

∂ r′
dr′
)

. (3.8)

Here, we define for convenience α ≡
(
Γ1 p0

)−1 with Γ1(r) = (d ln p/d lnρ)s , where the subscript

s means the derivative is taken at constant entropy. The overline notation denotes a lateral average

φ(r, t) =
∫

φ(x,r, t) dx∫
dx

, (3.9)

where the integration is taken over the entire domain width. The expansion term, S, accounts for
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local compressibility effects resulting from nuclear burning, compositional changes, and thermal

conduction:

S = σHnuc +−σ ∑
k

ξkω̇k +
1

ρ pρ
∑
k

pXkω̇k +
σ

ρ
∇ · (kth∇T ), (3.10)

where ξk ≡ (∂h/∂Xk)ρ,T,(X j, j 6=k), pρ ≡ (∂ p/∂ρ)T,Xk
, pXk ≡ (∂ p/∂Xk)T,ρ,(X j, j 6=k) and

σ ≡ pT /(ρcp pρ) with pT ≡ (∂ p/∂T )
ρ,Xk

, and cp ≡ (∂h/∂T )p,Xk
.

It should be noted here that the original derivation of the form of α in Paper I assumed the

system was in chemical equilibrium. I have since derived the form of α that relaxes this assumption

and incorporates the effects of chemical potential. This derivation, along with an explanation of

when this new non-equilibrium definition of α is important, can be found in Appendix A.

To capture the base state evolution, the velocity field is decomposed into a one-dimensional

base state velocity, w0(r, t), and a local velocity, Ũ(x,r, t), that governs the local dynamics

U(x,r, t) = w0(r, t)er + Ũ(x,r, t), (3.11)

with

w0(r, t) = U · er, (3.12)

and therefore Ũ · er = 0. Each term in the decomposition gets its own version of the velocity

equation, 3.5, and constraint equation, 3.7. As in Paper II, a one-dimensional base state enthalpy,

(ρh)0, is defined as the average of the full enthalpy, (ρh). The evolution of the base state density

and enthalpy are then obtained by averaging Equations 2.6 and 3.6, respectively. The evolution of

the base state pressure is given by the base state density evolution and the HSE constraint.

Thermal conduction was not present in Paper V, so a semi-implicit discretization for this term

was developed for use in the pure 4He accreting XRBs discussed in Chapter 5. I implemented into
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MAESTRO a diffusion test problem, which is described in Appendix B.

Another addition to the MAESTRO algorithm from Paper V is the use of a “volume discrepancy”

correction. Because Equation 3.7 is a linearization of the nonlinear constraint imposed by the

equation of state, the thermodynamic pressure, pEOS = p(ρ,h,Xk), may drift from the base state

pressure, p0, (Pember et al., 1998). To correct for this drift, Equation 3.7 is augmented with a term

that drives the thermodynamic pressure back to that of the base state:

∇ · (β0U) = β0

(
S− 1

Γ1 p0

∂ p0

∂ t
− f

Γ1 p0

p0− pEOS

∆t

)
, (3.13)

where f is the volume discrepancy correction factor and 0 ≤ f ≤ 1. In Section 5.2.4, we explore

the effectiveness of this term at keeping the overall solution in thermodynamic equilibrium.

To summarize, the low Mach number equation set used in MAESTRO is given by Equations 3.1,

3.5, 3.6, and 3.13. As mentioned in Section 2.3, one key advantage of using a low Mach number

approach is the increase of allowable time step size, which enables long-time integration. Stan-

dard compressible hydrodynamics codes for astrophysical applications, such as CASTRO (Almgren

et al., 2010) or FLASH (Fryxell et al., 2000), evolve a fully compressible equation set, i.e., the Eu-

ler equations, which allows for the formation and propagation of shocks. Our low Mach number

equation set does not contain acoustic waves, and therefore MAESTRO is able to take time steps

constrained by the maximum fluid velocity, rather than the maximum sound speed. As an exam-

ple, if the maximum Mach number of the flow is M ∼ 0.01, — which is common (see, e.g. Figure

5.16) — we will obtain a factor of 1/M ∼ 100 increase in time step size compared to a standard

compressible approach. In fact, I first started working on the XRB simulations using the FLASH

code. I quickly realized that such calculations using a compressible hydrodynamics code were in-

feasible, due to the CFL-restricted time step size, which was on the order of nanoseconds! Another

advantage of a low Mach number method is that the overall HSE of the state can be guaranteed by
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the inclusion of a base state in HSE in the low Mach number equation set, thereby removing the

difficulties of maintaining HSE commonly found in compressible hydrodynamics codes.

The equation of state used in the simulations presented in this dissertation was the general stel-

lar equation of state of Timmes & Swesty (2000). This EOS contains contributions from an ideal

gas of nuclei, radiation, and an electron-positron gas with an arbitrary degree of degeneracy and

relativity. Conductivities are calculated using Frank Timmes’s publicly available conductivity rou-

tine, which includes contributions from radiation and electron conduction processes as explained

in Timmes (2000).

3.2 The Algorithm

Mathematically, MAESTRO solves a system of advection-reaction-diffusion equations with the

equation of state formulated as an elliptic constraint on the velocity. MAESTRO uses a higher-order

Godunov method to discretize the advective terms, Strang-splitting to couple the reaction terms

to the advective terms, and a semi-implicit treatment of the diffusion terms. The diffusion term

and the divergence constraint are formulated as linear systems which are solved iteratively using

a multigrid technique. The evolution of the one-dimensional base state density is also computed.

The base state density represents the average state of the atmosphere, and is coupled to the base

state pressure via HSE. The base state density has its own evolution equation that computes the ex-

pansion of the atmosphere due to heating and is discretized using a higher-order Godunov method.

MAESTRO is second-order accurate in space and time.

To enforce the divergence constraint on the velocity field, Equation 3.7 (or 3.13), MAESTRO

uses projection methods. To illustrate how a projection operator works, consider an incompressible

25



fluid. The divergence constraint for an incompressible fluid is, from Equation 2.22

∇ ·U = 0.

The time evolution of the velocity field is governed by the momentum equation, the solution of

which need not satisfy the incompressible divergence constraint. In its simplest incarnation, a

projection method relies on the fact that any vector field can be decomposed into a divergence-free

vector field and the gradient of a scalar field:

U = Ud +∇φ , (3.14)

where ∇ ·Ud = 0 and therefore

∇
2
φ = ∇ ·U. (3.15)

Given the incompresible fluid divergence constraint, what we want to do is project the velocity

field solution of the momentum equation, U, onto a divergence-free vector field, Ud . This can be

accomplished by solving Equation 3.15 for φ and then rearranging Equation 3.14

Un+1 = Ud = U−∇φ . (3.16)

For the divergence constraint used in MAESTRO, Equation 3.7, the situation is complicated by a

non-zero right-hand side. Nevertheless, the same approach applies: solve an elliptic equation for a

scalar field, the gradient of which can be subtracted from the provisional velocity field to construct

a velocity field that satisfies the divergence constraint. MAESTRO uses a multigrid solver for the

solution of the elliptic equation — see Appendix B of Paper III for details on the exact form of the

projection operator.
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To begin a two-dimensional, plane-parallel simulation, a one-dimensional model is mapped

laterally across the simulation domain. The evolution of this model through a single time step

proceeds in a predictor-corrector fashion, solving for the full state quantities
(

Ũ,ρ,X ,T,h
)

and

base state quantities (w0,ρ0,(ρh)0, p0) at the new time. Experience has shown that the slope-

limiters are more effective when perturbational quantities, denoted as ρ ′ ≡ ρ−ρ0 and ρh′ ≡ ρh−

(ρh)0, are advanced instead of the base state. Evolution equations for perturbational quantities can

be obtained by subtracting the base state evolution equations from the full state equations. The

perturbational quantities are predicted to cartesian edges to calculate fluxes for the conservative

update of the base state quantities.

In the predictor phase of the algorithm, a provisional, time-centered expansion term, S, is

calculated and used to construct provisional advective velocities, which are forced to satisfy the

divergence constraint via a projection operator. Using these velocities, cell edge-predicted per-

turbational quantities are constructed for use in a conservative update of the full and base states,

yielding a preliminary estimate of the solution at the new time step. The corrector phase of the

algorithm uses this preliminary solution to improve the time-centered expansion and advective

velocity terms, which in turn are used to construct the final solution vector.

3.2.1 Handling Low Density Regions

In the atmosphere of a neutron star, the density spans several orders of magnitude over a short

distance, and special care is needed in these regions. Due to conservation of momentum, large

velocities in the upper atmosphere, which do not affect the solution in the higher-density region,

may be generated. Unfortunately, these large velocities reduce the efficiency of MAESTRO method

by reducing the allowable time step size. The first technique used to address this problem is the

utilization of a cutoff density, ρcutoff, which is the value the density is fixed at outside the star.
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The second technique is the use of an anelastic cutoff density, ρanelastic, below which we determine

β0 by keeping the ratio β0/ρ0 constant in the divergence constraint in order to minimize spurious

wave generation. Full implementation details for the cutoff densities are described in Appendix

A.5 of Paper V. For the simulations in this dissertation, I use ρcutoff = ρanelastic = 104 g cm−1.

The third technique adopted for the low density region is sponging (or damping), which is

used to reduce gravity waves at the surface of the star. This technique is commonly used in the

atmospheric modeling community as lateral boundary conditions of limited area simulations (see,

for example, Kesel & Winninghoff 1972; Perkey & Kreitzberg 1976) as well as upper boundary

conditions to reduce wave reflection off of sharp gradients in the atmospheric structure (see, for

example, Durran & Klemp 1983; Durran 1990; Chen et al. 2005). In addition, the sponging tech-

nique in MAESTRO has successfully been used in the study of convection in the cores of white

dwarfs (Paper IV). Full details for the sponge implementation in MAESTRO can be found in Papers

III and IV, but in summary, the velocity is augmented with a forcing term, which effectively damps

the velocity so that Unew→ Unew ∗ fdamp. In the XRB simulations of Chapters 5 and 6, I use the

following formulation for the sponge:

fdamp =



1, r ≤ rsp,

1
2

(
1− fdamp,min

)
cos
[
π

(
r−rsp

rtp−rsp

)]
+ 1

2

(
1+ fdamp,min

)
, rsp < r ≤ rtp,

fdamp,min, rtp < r,

(3.17)

where rsp is the radius at which ρ0 = 25ρcutoff, rtp is the radius at which ρ0 = ρcutoff, and fdamp,min =

0.01 .1 Note that as the system evolves it is free to expand, thus changing the location of the density

cutoffs and, consequently, the location and extent of the sponge. The inclusion of a sponge layer

1Note that the form of this sponge is similar to that presented in Section 4.3.1 of Paper III but with κ∆t = 1 at each
time step.
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does not strictly conserve kinetic energy in the sponged region; however, the material above the

surface of the star is at a relatively low density compared to the material in the convective region,

and therefore the total amount of energy non-conservation is small. Furthermore, as shown in

Figure 4 of Paper III, the inclusion of a sponge layer in the low density region of a simulation does

not affect the dynamics of the flow in the convective region of interest.
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CHAPTER 4

THERMONUCLEAR REACTION NETWORKS

In this Chapter, I outline — from a simulation point of view — some of the important aspects of

thermonuclear reactions and reaction networks. I discuss some of the important reaction rates for

XRBs, as well as some of the reaction networks I have implemented into MAESTRO. For a more

indepth discussion of thermonuclear reactions and the nuclear physics involved, see Clayton’s

classic book on stellar evolution (Clayton, 1983). For a more modern view of reaction networks,

see either Dave Arnett’s book on supernovae (Arnett, 1996) or Frank Timmes’s paper on network

integration (Timmes, 1999) and excellent set of notes (and references therein) online at

http://cococubed.asu.edu/talk_pages/nnpss.shtml.

Throughout the remainder of this dissertation, we will use the words “species”, “isotope”, and

“nuclei” interchangeably.

4.1 Basics of Thermonuclear Reactions

Consider a gas of various types of particles in thermodynamic equilibrium. Consider a reaction

where the ith particle collides with the jth producing the two particles k and l; such a reaction can

be written as

i+ j −→ k + l, (4.1)
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or i( j,k)l for short. We define the cross section of the reaction, σ , to be

σ =
# of reactions / particle j / s

incident flux of i’s
. (4.2)

Note that the incident flux depends on the relative velocity, v, between the ith and jth particles, and

therefore the cross section is a function of the relative velocity, σ = σ(v). The relative velocity

between the two particles will have some distribution, φ(v). We can then, using 4.2, write the total

number of reactions per unit volume per second between particle i and j as

ri, j =
∫

∞

0
n jσ(v)nivφ(v)︸ ︷︷ ︸

flux term

dv = nin j〈vσ(v)〉i, j, (4.3)

where ni is the number density of particle i, and the angled brackets denote the average over the

distribution (c.f. Section 4.2 of Clayton, 1983). Equation 4.3 gives the total reaction rate per unit

volume for reaction 4.1. Note that the product nin j is equal to the total number of unique pairs

of particles to react; therefore, if the ith and jth particles are identical particles, the total number

of pairs is
(
n2

i /2!
)
, and 4.3 needs to be modified. The same type of modification for reactions

involving three identical particles, such as the 3–α rate, need to be used, but there the coefficient

is (1/3!) instead of (1/2!) (e.g. Section 4.1 Arnett, 1996). This reaction then gives rise to changes

in the number density of each of the reactants and products of the form

ṅi = −ri, j

ṅ j = −ri, j

ṅk = ri, j

ṅl = ri, j, (4.4)
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where the dot notation means the full time derivative. In practice, we calculate the changes in the

molar fractions, Yi, which are related to the mass fractions

Yi =
ni

ρNA
=

Xi

Ai
, (4.5)

where Ai is the mass number — the sum of protons and neutrons — for isotope i, and NA is

Avogadro’s number. Using this notation, the system of ordinary differential equations (ODEs) 4.4

can be written as

Ẏi = −YiYjρ〈NAvσ〉i, j

Ẏ j = −YiYjρ〈NAvσ〉i, j

Ẏk = YiYjρ〈NAvσ〉i, j

Ẏl = YiYjρ〈NAvσ〉i, j. (4.6)

If instead of 4.1 we were dealing with a general reaction of the form

αi+β j←→ γk +δ l (4.7)

where α,β ,γ, and δ were the stoichiometric coefficients of the reaction, with all species being

unique, we would have the following system of ODEs:

Ẏi = −αYiYjρ〈NAvσ〉i, j +αYkYlρ〈NAvσ〉k,l

Ẏj = −βYiYjρ〈NAvσ〉i, j +βYkYlρ〈NAvσ〉k,l

Ẏk = γYiYjρ〈NAvσ〉i, j− γYkYlρ〈NAvσ〉k,l

Ẏl = δYiYjρ〈NAvσ〉i, j−δYkYlρ〈NAvσ〉k,l. (4.8)
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A nuclear reaction network consists of a set of reactions of the form 4.7 describing the general

evolution of the species via a system of ODEs similar to 4.8, but with contributions from every

reaction included on the right-hand side of the ODEs.

All of the detailed information about quantum mechanical tunneling probabilities, nuclear res-

onances, degeneracy, etc. are all contained in the averaging of 〈vσ〉i, j. Some nuclear physics exper-

iments are designed around obtaining values for this quantity for a particular reaction. Most of the

rates used in the networks in MAESTRO are from the Caughlan and Fowler paper, which is a large

compilation of 〈NAvσ〉’s as functions of temperature for various nuclear reactions (Caughlan &

Fowler, 1988). There are also online repositories, such as the JINA Reaclib database (Cyburt et al.,

2010), which catalogues both experimental and theoretical rates; most of the “suggested rates”

from the Reaclib database for the reactions we consider here are actually the rates of Caughlan and

Fowler.

In an astrophysical setting, the gas of nuclei is embedded inside a dense gas of electrons, as the

overall charge of the plasma is neutral. Each nucleus, then, is surrounded by a cloud of electrons,

the net effect of which is to decrease the Coulomb barrier between two nuclei. The reduction of this

barrier causes an increase in the probability that the two nuclei will interact via tunneling and boosts

the overall reaction rate above that of the laboratory reaction rate (Clayton, 1983, Section 4.8).

This screening enhancement manifests itself by applying a multiplicative factor to the laboratory

reaction rate. In MAESTRO we currently use an admittedly dated screening routine for both the

weak and strong screening regimes (based on Graboske et al., 1973; Alastuey & Jancovici, 1978;

Itoh et al., 1979).
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4.2 Solving Reaction Networks In MAESTRO

The solution to a reaction network over some time step is equivalent to solving the first-order,

nonlinear system

Ẏ = f(Y) (4.9)

where the vector Y contains all the species. Furthermore, to avoid instabilities with the solution,

an energy, entropy, or temperature equation should be solved simultaneously (see Mueller, 1986,

for example); we choose to evolve a temperature equation because it will give us more consistent

evaluation of the rates, which are explicit functions of temperature.1 To further complicate things,

the system of ODEs is stiff — one measure of stiffness is that the ratio of the real part of the

maximum eigenvalue to the real part of the minimum eigenvalue of the Jacobian matrix, J ≡

∂ f(Y)/∂Y, is very large (Timmes, 1999). Interpreted physically, the stiffness of the Jacobian is an

indication that some species is/are changing significantly faster than some other species.

To efficiently and stably solve this stiff system of ODEs, we use the double precision form of

the VODE package (Brown et al., 1989). The VODE solver uses an implicit, multistep, Backward

Differentiation Formula method, which typically solves the system to fifth order. The fact that the

method is implicit implies some form of iterative scheme for solving the nonlinear system. The

iterative scheme used is a modified Newton iteration, which involves evaluation of the Jacobian

matrix J. VODE is intelligent enough to adaptively decrease its step size or drop order in regions

of computational difficulty to help ensure convergence.

At the end of the burn step, VODE gives the updated composition vector Y. If there are no weak

1Note that in MAESTRO, at the end of the burn step we throw out any changes in temperature. The temperature is
updated via an EOS call using either the pressure or enthalpy after they have been updated.
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reactions, then the specific energy generation rate is simply

Hnuc = ∑
i

∆Xiqi

∆t
, (4.10)

where ∆Xi is the change in mass fractions over the burn step, and qi is the binding energy per gram

of isotope i. If there are weak reactions, then neutrinos can carry away some fraction of the energy.

In this case, an energy equation is also integrated to keep track of the neutrino loss rate at each step

in VODE’s multistep procedure. Furthermore, the production rates used in the species equation,

3.1, are given by

ω̇i =
∆Xi

∆t
. (4.11)

4.3 Important Reactions for XRBs

Depending on the composition of the accreted material and the accretion rate, various reactions

could dominate the burning and energy release (Bildsten, 2000, for example). For the case of a

pure 4He accreting system — such as 4U 1820-30 — considered in Chapter 5, the dominant

burning mode is via the 3–α reaction 2α (α,γ)12 C. Further α–chain reactions can occur, but the

majority of the energy is liberated in the 3–α reaction. Furthermore, this burning tends to happen

rapidly as there are no slow, weak reactions, and as a result the local luminosity can quickly reach

— and sometimes exceed — the Eddington limit, giving rise to PRE bursts (see the discussion in

Section 1.3).

For systems that accrete a solar-like composition, the nuclear reaction path is a bit more in-

volved. At the high temperatures reached during an XRB (T & 108 K), most hydrogen burns

to helium via the temperature-independent, hot, β -decay-limited CNO cycle of Fowler & Hoyle

(1965) shown in Figure 4.1. Helium burns mostly from the 3–α reaction, but at high enough
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Figure 4.1: Diagram of the hydrogen-burning hot CNO cycle.

temperatures, further α–chain reactions occur. For temperatures T & 5× 108 K, the α-capture

reactions 15O (α,γ) 19Ne and 18Ne (α, p) 21Na occur more quickly than the β -decay reactions

of 15O and 18Ne, respectively, causing the hydrogen burning to break out of the hot CNO cycle

and begin burning along the rp-process of Wallace & Woosley (1981). From the long sequence of

proton captures and β -decays, the rp-process produces elements far beyond the iron group.

4.4 Networks Added to MAESTRO

This section will cover some of the reaction networks I have added to the MAESTRO code, in

part, for studying XRBs.

4.4.1 dvode_test network

This network is not actually based on a physical reaction network, but merely sets up a stiff

system to test the solution of VODE method and its various tolerances. The system to be solved is
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the simple reaction a←→ b where the reaction rates are ra,b ≡ α and rba ≡ β :

d
dt

 Ya

Yb

=

 −α β

α −β

 ·
 Ya

Yb

 . (4.12)

Given the initial condition Yb(t = 0) = 0, this system has an analytic solution of the form

Yb

Ya
=

e(α+β )t−1
α

β
e(α+β )t +1

, (4.13)

and tends toward a steady state solution of (Yb/Ya) = (α/β ). Note that the matrix in Equation

4.12 is the Jacobian matrix, J, described in Section 4.2 for this reaction network. In that section,

I described stiffness as a ratio of maximum to minimum eigenvalues. That method does not work

here because one eigenvalue is zero and the other is positive. Using the physical interpretation of

stiffness described in Section 4.2, I can set the stiffness of the system by fixing the ratio of the

reaction rates to be a large number; for this test I set (α/β ) = 2×1015.

Figure 4.2 shows the time evolution of Yb/Ya using a first-order explicit forward Euler method,

a first-order implicit backward Euler method, the VODE solver, and the analytic solution. All of the

methods tend towards the steady state solution, but the VODE solution follows the analytic solution

the closest. Furthermore, the forward Euler method is very unstable for this stiff system, and wild

oscillations and even negative numbers appear in the solution. The dvode_test network acts as

an important unit test for the VODE solver, and provides assurance for all the other networks that

utilize this solver.
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Figure 4.2: Evolution of the simple reaction network given by Equation 4.12. The Xs denote a
first-order forward Euler method, the boxes a first-order backward Euler method, the circles the
VODE solver method, and the analytic solution is the solid line.

4.4.2 triple_alpha and fushiki_lamb networks

For a pure 4He accreting system discussed in Chapter 5, I implemented two variations of a

3–α burning network. The triple_alpha network uses the rates as compiled in Caughlan &

Fowler (1988) with screening handled as described in Section 4.1. The fushiki_lamb reaction

network, on the other hand, is based on a three-body S-matrix calculation of the 3–α reaction of

Fushiki & Lamb (1987b). The S-matrix calculation uses experimental values for the widths of the

nuclear states, and it includes screening effects in the interaction potential. Figure 4.3 shows a com-

parison between these two networks for the instantaneous energy generation rate in a pure 4He gas

— results from triple_alpha are shown as solid lines and the fushiki_lamb results are
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Figure 4.3: A comparison between the instantaneous energy generation rate for the
triple_alpha and fushiki_lamb reaction networks used in MAESTRO. The solid lines
are calculations with the triple_alpha network while the dashed lines are from the
fushiki_lamb network; the color of the line indicates the temperature.

the dashed lines. The color of the line is related to the temperature at which the burning took place.

Note that the triple_alpha network includes the reverse reaction 12C + γ −→ 34He , while

the fushiki_lamb network does not because this reaction was not calculated in the Fushiki and

Lamb paper. For the XRB problem, the density range is towards the far left
(
log [ρ] . 6.8 g cm−3)

of the plot, and the temperature range is log [T ] & 8.0 K. In this regime, the screening is weak

and therefore the differences in screening methods between the two networks should not be sig-

nificant, as is shown in the Figure. Nevertheless, there are several orders of magnitude difference

in energy generation rate between the two networks at higher densities and/or lower temperatures,

which is consistent with what other researchers have found (F. X. Timmes, 2007; private commu-
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nication). With no obvious explanation for the differences, and because the rate of Fushiki and

Lamb is not widely accepted in catalogues, such as the JINA Reaclib database, we choose to use

the triple_alpha network over that of the fushiki_lamb for the calculations presented in

Chapter 5.

4.4.3 hotcno and approx8 networks

For the case of mixed H/He bursts, we need a more involved network, as described in Section

4.3. To this end I have modified Frank Timmes’s public hot CNO and rp breakout network2 to work

with MAESTRO and the VODE solver. This hotcno reaction network consists of 21 species and 52

reactions, including all of those from Figure 4.1, plus the β -limited reactions of the normal CNO

cycle, a couple of α-chain reactions, and some approximations to burn up through 56Ni. Even in

two dimensions, carrying 21 species in a network makes the solution of 4.9 very time consuming.

Therefore, for the calculations of Chapter 6 we use Frank Timmes’s publicly available aprox8

network,3 which approximates hydrogen, helium, and carbon burning with only 8 species. This

network was again modified and renamed the approx8 network in MAESTRO. Unfortunately,

this network does not hot CNO cycle or rp process burning, but it is much more tractable in a

multidimensional simulation.

2Source code available here: http://cococubed.asu.edu/codes/burn7/hotcno.tbz
3Source code available here: http://cococubed.asu.edu/codes/burn7/aprox8.tbz
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CHAPTER 5

TWO-DIMENSIONAL SIMULATION OF A

PURE 4HE BURST SOURCE

This chapter is based on the Malone et al. (2011) paper describing convection driven by he-

lium burning in a pure 4He layer accreted on top of a 56Fe neutron star with a trace abundance

(10−10) of 12C. A pure 4He accretor was chosen both because the corresponding nuclear reaction

network, triple_alpha, is simple compared to the slow, β -decay-limited burning processes

in bursts involving H (see Chapter 4), and because ultra-compact XRB sources are possible pure

4He accretors (4U 1820-30, for example; Cumming 2003).

5.1 Initial Models

To begin a simulation, a one-dimensional initial model of the accreted layer on the surface

of a neutron star is needed. This model should be in both hydrostatic and thermal equilibrium.

As mentioned at the beginning of Chapter 3, a plane-parallel geometry is assumed — that is, the

gravitational acceleration, g, is assumed constant throughout the domain.

There are several approaches to one-dimensional model generation in the literature. In our

approach, we begin with a semi-analytic initial model and then augment the model to account
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for convective cooling. We also discuss proper mapping of the one-dimensional model to our

multidimensional framework.

5.1.1 Semi-analytic Models

The semi-analytic approach to model generation involves integration of the heat equation and

an entropy equation,

dT
dy

=
3κF

4acT 3 (5.1)

dF
dy

= 0, (5.2)

where c is the speed of light, a the radiation constant, κ the opacity (including radiative and con-

ductive contributions), T the temperature, F the outward heat flux and dy = −ρdr with y(r) the

column-depth (see Cumming & Bildsten 2000 for details of this method). Note that (5.1) can give

a thermal profile that is superadiabatic, which would be convectively unstable — in practice, the

thermal gradient is restricted to be dT/dy≤ (dT/dy)s where the subscript s means along an adia-

bat. Also note that for simplicity, equation (5.2) neglects any compressional heating contributions

from the accretion itself and assumes the accreted material is not burning during the accretion

phase — this is a steady-state configuration. There is, however, an outward heat flux from pyc-

nonuclear reactions deep within the neutron star crust; we approximate this flux as a constant value

throughout the accreted layer, F = 200 keV per nucleon. The integration starts at the top of the

4He atmosphere (arbitrarily at ytop = 103 g cm−2) where a radiative zero solution is assumed, and

continues until the thin shell instability condition (Fushiki & Lamb, 1987a),

dε3α

dT
>

dεcool

dT
, (5.3)
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is reached at y = ybase. The local cooling rate is typically approximated from (5.1) and (5.2) as

εcool ≈
acT 4

3κy2 . (5.4)

When (5.3) is attained, the composition for y > ybase is switched to 56Fe and integration of (5.1)

and (5.2) resumes until a thick enough substrate is formed such that ybase is sufficiently far from

the bottom of the computational domain, y(r = 0) = 1012 g cm−2 in our studies.

The approximation, (5.4), works well in one dimension because the only efficient way the

system can cool (neglecting weak reactions) is via conduction and radiation, which enter through

the opacity. When more spatial dimensions are added to the system and there is heating from

below from nuclear reactions, the fluid is free to overturn and cool via convection. Now we have

a situation where the local multidimensional cooling rate, εcool, multi-d = εcool + εconv, exceeds the

initial approximation and (5.3) may no longer be satisfied. Therefore, such a semi-analytic model

is no longer close to runaway and to evolve the system in multiple dimensions until (5.3) is reached

is intractable even with the advantages of a low Mach number approximation code.

5.1.2 Kepler-supplemented Models

One way to overcome the difficulties with evolving the model described in the previous sec-

tion in multiple dimensions is to explicitly include an effective convective cooling term in the

approximation to the local cooling given by equation (5.4). This effective convective cooling can

be included via mixing-length theory typically found in stellar evolution codes. Using the semi-

analytic model described above as initial conditions, the one-dimensional stellar evolution code,

Kepler (Weaver et al., 1978), was used to construct the remainder of the underlying neutron star

with Rns = 10 km and Mns = 1.87M� (Woosley, 2010; private communication). The system is then

allowed to evolve in one dimension whereupon nuclear burning heats the base of the layer, and the
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convection prescription develops a well-mixed and nearly adiabatic region of 12C ash overlying the

4He base. This results in a model that is much closer to satisfying the thermal instability criterion,

(5.3), when mapped into multiple dimensions.

It should be noted here that the opacities used in MAESTRO (from Timmes, 2000) are not the

same as those used in Kepler. However, as the system evolves towards ignition, the dominant

contribution to the local cooling comes from convection, and the role of thermal conduction is

decreased. Even during the early-time simulations considered in this paper, the role of conduction

is unclear — see Section 5.2.2. Furthermore, it is likely that the different methods give opacities

that agree to within a factor of ∼ 2 (see discussion in Heger et al., 2007b).

5.1.3 Mapping to Multiple Dimensions

The data from Kepler are given in a Lagrangian (mass) coordinate system and we need to

convert them to an Eulerian (physical) coordinate system for use in MAESTRO. We use a procedure

similar to that found in Zingale et al. (2002) to ensure our initial model is in HSE. Given the density,

temperature, and composition from the Kepler evolution, we call the equation of state to get the

pressure. We then discretize the HSE equation and solve for the non-uniform Eulerian grid spacing

corresponding to the Lagrangian grid points,

ri = ri−1−
1
g

pi− pi−1
1/2(ρi +ρi−1)

, (5.5)

where r is the radial coordinate, p the pressure, and ρ the density. We set r1 = 0 to complete the de-

scription of the grid. The transition from the pure 56Fe neutron star (at rtrans) to the 4He atmosphere

(at rtrans+1) is a step function as a result of the initial Lagrangian data. Such sharp transitions can

be a source of numerical noise and oscillations as the solution evolves on an Eulerian grid. To

minimize the numerical noise, we smooth the interface by adding n uniformly distributed coordi-
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nate points between rtrans and rtrans+1. The temperature at these new points is linearly interpolated

between Ttrans and Ttrans+1. Then X(4He) and X(12C) at the new points are filled with a tanh profile:

φi = α tanh
(

ri− rc

ϕ

)
+φc (5.6)
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Figure 5.1: Kepler-supplemented cold (solid lines) and hot (dashed lines) models as described
in the text. Energy release from nuclear burning at the base of the 4He layer has caused the tem-
perature to rise. The cold model is evolved to a peak Tbase = 3.67× 108 K and the hot model
is evolved to a peak Tbase = 5.39× 108 K. The black vertical lines indicate the location of the
anelastic cutoff while the grey vertical lines indicate the location of the beginning of our sponge
forcing term for each of the models (see Section 3.2.1).
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where α = (φtrans+1−φtrans)/2, rc = (rtrans + rtrans+1)/2, φc = (φtrans +φtrans+1)/2 and ϕ is a

parameter to set the smoothness. X(56Fe) is then found from the constraint ∑k Xk = 1, and p and

ρ are found by using an iterative Newton-Raphson technique with the equation of state and (5.5)

at these new points. This smoothed model is then linearly interpolated onto a completely uniform

grid, with ri = ri−1 +∆r, and is again put into HSE using (5.5) and the equation of state. Values of

n = 50 and ϕ = 3 were used to smooth the models presented in this work.

Figure 5.1 shows the result of this procedure for two models that were evolved in Kepler

until the base of the 4He atmosphere had reached a temperature of 3.67×108 K (solid line, here-

after referred to as the cold model) and 5.39× 108 K (dotted line, hereafter referred to as the

hot model). The density at the base of the 4He layer for the cold model is 1.4×106 g cm−3 and
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Figure 5.2: Initial sponge profile for the cold model where rsp = 680 cm and rtp = 844 cm.
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is 1.2×106 g cm−3 for the hot model. For comparison, the initial model of Lin et al. (2006) had

a base temperature and density of 2×108 K and 4×106 g cm−3, respectively. The black and grey

vertical lines correspond to the edge of the sponging term described in Section 3.2.1; the sponge

profile for the cold model is shown in Figure 5.2. The cold model has a peak in 12C production

around r = 382 cm (i.e., the base of the 4He layer in both models) that appears smoothed in the

more evolved hot model. Both models, however, have an extended region of well-mixed 12C that

extends to r = 624 cm (r = 812 cm) for the cold (hot ) model. These initial models contain

no multidimensional velocity information from the Kepler simulations. We therefore make no

assumptions about the nature of the convection when the models are mapped into multiple dimen-

sions in MAESTRO.

5.2 Results of Pure 4He–burning Simulations

We describe below the results of mapping the Kepler-supplemented models into MAESTRO

in two dimensions, (x, r), and the system’s subsequent evolution. Section 5.2.1 describes the

resolution requirements needed to properly resolve the burning layer. In Section 5.2.2 we show

how the inclusion of thermal diffusion affects the nuclear burning layer and its location. We show

in Section 5.2.3 how utilizing a time-dependent base state allows us to capture the expansion of the

atmosphere due to heating. Section 5.2.4 shows how including a volume discrepancy correction

keeps the base state thermally consistent with the equation of state. Finally we discuss the extent

and evolution of the convective region in Section 5.2.5.

To map the one-dimensional model into MAESTRO, we copy laterally across the domain such

that φ(x,r, t = 0) = φone-d(r) for each variable φ in the model. In the following analysis, the

subscript “max” refers to the maximum value of a quantity in the computational domain at a given

time step. In two dimensions, we define the average as a function of radius,〈φ〉 = 〈φ〉(r, t), of a
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quantity φ by

〈φ〉mj =
1
N

N

∑
i=1

φ
m
i, j (5.7)

where φ m
i, j = φ(xi,r j, tm) and N is the total number of grid zones in the lateral, x, direction at height

r j at time tm.

The boundary conditions for all simulations are periodic in the x-direction to mimic a laterally

extended convection region. The upper r boundary is outflow to allow for free expansion of the

atmosphere. The lower r boundary of dense neutron star material is set to a wall with no normal

flow. To solve the thermal diffusion contribution at the upper and lower boundaries, we impose

the Neumann condition dh/dn = 0, where n is the outward facing normal vector; the enthalpy

boundary conditions are periodic in the lateral directions. We note that the upper and lower domain

boundaries are sufficiently far from the burning layer so that they do not affect the dynamics of the

convection. An advective CFL number of 0.7 was used in all of our simulations.

As previously mentioned, we do not obtain any multidimensional velocity information from

the Kepler models; our system is initially static. For convection to begin, the symmetry of the

system must, therefore, be broken. This can be accomplished either by placing a small perturba-

tion at the base of the 4He layer or by allowing numerical noise from the multigrid solver to seed

the convective cells. For the simulations presented here, neither approach is advantageous over

the other, both giving quantitatively similar steady-state convective flow fields; we utilize both

approaches in our studies and when perturbing, we place a small (∆T/T = 10−5) Gaussian tem-

perature perturbation laterally centered at height r = 384 cm to break the initial symmetry of the

problem.
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5.2.1 Resolution Requirements

To date, the only other paper in the literature regarding multidimensional simulations of XRBs

as deflagrations (Lin et al., 2006) used a finest resolution of 5 cm zone−1. They presented multi-

dimensional results at 5, 7.5, and 10 cm zone−1 resolutions and remarked that there is a “tendency

toward convergence with increasing resolution” based on the time to reach the peak energy genera-

tion rate. It is important to note that our initial models are different from those of Lin et al. (2006).

In particular, their models only considered two species — the accreted layer was pure 4He and the

underlying neutron star was composed entirely of 12C. This caused their models to have a smaller

jump in mean molecular weight across the neutron star/accreted layer boundary compared to our

models. Furthermore, the initial conditions for their multidimensional studies were from the re-

sults of a one-dimensional diffusional-thermal code that evolved the system through several bursts.

These differences from our method of initial model generation give the Lin et al. (2006) models an

extended (∼ 100 cm) thermal peak compared to our narrow (∼ 10 cm) peak (compare our Figure

5.1 to their Figure 2).

The burning layer at the base of the accreted material is very thin; high resolution is required

to properly model this region. The peak of the thermal profile for the hot model is broader than

the corresponding peak in the cold model. Consequently, the burning layer in the hot model is

thicker than that of the cold model — we therefore focus our study of resolution requirements

on the more restrictive of the two, the cold model. The top panel of Figure 5.3 shows the 〈Hnuc〉

profile at t = 1 ms for simulations of the cold model using the same resolutions as in the Lin et al.

(2006) study. Even at this early time there is a 25% spread in the peak value of 〈Hnuc〉 for these

resolutions. The bottom panel shows the same profile but at several higher resolutions. The peak

value of 〈Hnuc〉 for the 4 cm zone−1 simulation is comparable to the peak values in the top panel,

but we only see numerical convergence of the peak value as we go to higher spatial resolution. In
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Figure 5.3: Average of Hnuc as a function of height for the cold model at various resolutions
at t = 1 ms. Note that the vertical axes of the inset plots are in a logarithmic scale. For clarity,
the top panel shows simulations which use the same resolutions as in the Lin et al. (2006) study
and the bottom panel shows more resolved simulations. The peak of the profile at 0.5 cm zone−1

resolution is qualitatively similar to the peak of the profile at 0.25 cm zone−1 resolution.

addition, the shape of the profile near peak converges with increasing resolution; the 0.25 and 0.5

cm zone−1 resolution simulations look qualitatively similar. We therefore claim that the burning

layer is not properly resolved in our models unless a resolution of 0.5 cm zone−1, or finer, is used.

It is important to note that even though our initial models differ, this resolution requirement is an

order of magnitude higher than what has been previously presented in the literature and therefore
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Figure 5.4: Effects of under-resolving convection for the cold model. Plotted is the 12C mass
fraction after 10 ms of evolution for various resolutions: a) 0.5, b) 2, c) 4, and d) 7.5 cm zone−1.
Each figure shows the same region of physical space and has dimensions 256 cm × 1024 cm.
The coarse resolution simulations show an extended convective zone and a significant amount of
convective undershoot.

significantly increases the computational cost of our XRB simulations.

Under-resolving the burning layer artificially boosts the energy generation rate, which in turn

over-drives convection. Figure 5.4 shows a close-up of the 12C mass fraction after 10 ms of evo-

lution of the cold model at 0.5 (a), 2 (b), 4 (c), and 7.5 cm zone−1 (d) resolutions. The base

of the burning layer is located in the bottom-most green region (just below the magenta) in panel
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a. All four simulations give a well-mixed carbon region above the burning layer; the extent of

the convective zone increases with decreasing resolution with the 7.5 cm zone−1 simulation’s con-

vective zone extending 30% further than the 0.5 cm zone−1 simulation’s convective zone. The

amount of convective undershoot — the tendency of material to penetrate below the burning layer

— is much more sensitive to resolution. The 0.5 cm zone−1 simulation shows very little evidence

of undershooting while the 7.5 cm zone−1 simulation has an undershoot region that is larger in

physical extent than its corresponding convective region above the burning layer. For all of the

studies described below, we use a resolution of 0.5 cm zone−1 in the burning layer.

5.2.2 Effects of Thermal Diffusion on the Burning Layer

As explained in Section 1.2, the burning front during an XRB likely propagates as a subsonic

flame, the speed of which is regulated by the rate of thermal diffusion across the front. At the

resolution required to resolve the thin burning layer (see previous section) it is currently intractable

to evolve the system from our initial conditions to flame ignition. We can, however, investigate the

effects of thermal diffusion on the stable burning that occurs in the burning layer. Here we focus

on the hot model instead of the cold model because it has the larger thermal gradient — and

hence diffusive heat flux — at the base of the accreted layer. For this simulation, we use the new

adaptive mesh refinement (AMR) capability in MAESTRO (Nonaka et al., 2010), using two levels

of refinement and ensuring that the entire convective region is at the finest level of refinement with

resolution 0.5 cm zone−1. Figure 5.5 shows these effects in (Hnuc)max (solid lines) and the location

of this maximum (dashed lines) as a function of time at early times both with (green) and without

(blue) thermal diffusion. We note that the location of (Hnuc)max is always at the finest level of

refinement. The (Hnuc)max evolution is similar for both cases with the magnitude in general being

slightly larger for the case of no diffusion. The initial spike in (Hnuc)max at t ≈ 0.25 ms is due to the
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Figure 5.5: Evolution of (Hnuc)max (solid lines) and its vertical location (dashed lines) as a function
of time for the hot model both with (green) and without (blue) thermal diffusion.

fact that, initially, there is no established fluid flow that can advect away the energy released from

nuclear reactions (see the discussion in Section 5.2.5). Over the next 3 ms, the location of (Hnuc)max

for both simulations moves radially inward at a rate of ∼ 2.9×103 cm s−1. Around t = 3.25 ms,

the inward radial progression of the location of (Hnuc)max for the simulation with no diffusion

significantly slows to ∼ 900 cm s−1. For the remainder of the simulation, the case with thermal

diffusion shows no such slowdown — heat transported radially inward via diffusion expands the

lower boundary of the convective zone, which mixes fresh fuel to slightly deeper layers. By the

end of the simulations, the case that included diffusion had an (Hnuc)max that occurred ∼ 4 cm

deeper within the atmosphere than in the case without diffusion. It should be noted that the typical

standard deviation in the location of (Hnuc)max for the case without diffusion is of order 2 cm; this
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suggests that perhaps thermal diffusion plays a role in regulating the location of maximum nuclear

burning, but further evolution is needed to make statistically significant claims.

5.2.3 Expansion of Base State due to Heating

Having a dynamical base state allows us to capture the large-scale expansion of the atmosphere

due to heating from nuclear reactions. This differs from the work by Lin et al. (2006), which had a

time-independent base state and did not model the top of the accreted atmosphere due to numerical

complications with their algorithm. Figure 5.6 shows the ratio of the base state density to that of

the initial (t = 0) base state density profile near the surface of the atmosphere for the cold model.

We define the surface to be where ρ0 = ρcutoff. The vertical dashed lines represent the location

of the surface for each time-value. After 26.6 ms of evolution, the base state has responded to

heating from nuclear reactions approximately 4.5 m below the surface by expanding 3.5 cm. The

lower Mach number flow in the cold model compared to the hot model allows for longer-term

evolution of the system and therefore larger expansion of the atmosphere.

The extent of the expansion is rather small at these early times. However, as the system pro-

gresses towards outburst the energy generation and, therefore, the rate of expansion increases. As

the system expands, the p0 profile changes, which can affect the dynamics in the convective re-

gion. Additionally, as the atmosphere expands, the burning layer becomes less degenerate, which

may be important for the nucleosynthesis during the outburst. Furthermore, a proper modeling of

this expansion during the peak of a PRE burst model may help pinpoint the location of the pho-

tosphere with respect to the stellar radius at touchdown, a quantity that plays an important role in

using XRBs to measure the mass and radius of the underlying neutron star (Steiner et al., 2010, for

example).
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Figure 5.6: Expansion of the base state due to heating. Plotted is the ratio of base state den-
sity, ρ0, to the initial (t = 0) base state density, ρ0,init, near the surface of the atmosphere for the
cold model. We define the surface to be where ρ = ρcutoff and it is represented by the vertical
dashed lines. The base state has expanded 3.5 cm in 26.6 ms of evolution.

5.2.4 Effects of the Volume Discrepancy Term

In Section 3.1 we explained that the thermodynamic pressure may drift from the base state

pressure. To correct for this drift, we introduced the volume discrepancy term in equation (3.13),

which drives the thermodynamic pressure towards the base state pressure. We focus our attention

here on the hotmodel because it shows a more dramatic drift of the thermodynamic pressure from

the base state pressure. Figure 5.7 shows the volume discrepancy term in action by examining the

percent difference between the base state and thermodynamic pressures as a function of time for

various values of f for the hot model. The top panel shows the maximum value whereas the
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Figure 5.7: Effects of the volume discrepancy factor as characterized by the percent difference
between the thermodynamic pressure as given by the equation of state, pEOS, and the base state
pressure, p0, for the hot model. The top panel shows the maximum value whereas the bottom
panel shows the average value of the percent difference in the computational domain. Note the
different vertical scales between the two plots

bottom panel shows the average value of this percent difference; both the peak and average values

show the same trend for a given value of f . After the initial adjustment of the system, the average

drift for the case of no volume discrepancy correction ( f = 0) increases approximately linearly

at ∼ 0.1% per ms of evolution. Including the correction term restricts the temporal- and spatial-

averaged value of the drift to . 0.02%.
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Figure 5.8: Closeup of the O(1) spike in the maximum value of the f = 0.3 drift as seen in the top
panel of Figure 5.7. The top panel shows the drift value and its location in the domain; the bottom
panel shows the maximum energy generation rate. The large amount of energy released from the
burning spike causes the thermodynamic pressure to differ from the hydrostatic base state pressure
and therefore a spike in the drift.

For nonzero f , the oscillatory behavior in the drift is due to the fact that the system may slightly

over-correct the thermodynamic pressure in a given time step and then recover in the next step. A

larger value of f causes a stronger driving of the drift, which tends to be more oscillatory. In

addition, a larger value of f appears to be correlated with larger spikes in the drift. The top panel

of Figure 5.8 shows a closeup of the O(1) error seen in the f = 0.3 curve in Figure 5.7. The
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location of the maximum drift is also plotted in the top panel; the large spike in the drift occurs just

below the burning layer at r = 366.25 cm. The bottom panel of Figure 5.8 shows the corresponding

maximum energy generation rate, which also contains a spike that is coincident with the spike in

the drift — a large deposit of energy on a short timescale causes the thermodynamic pressure to

get out of sync with the hydrostatic base state pressure. The increase in the energy generation

rate is due to a fluid parcel rich in 4He fuel being brought into a region of high temperature via

the turbulent convection. The duration of this transient behaviour is very short: nine time steps

or ∼ 6.4× 10−7 s. The selection of an appropriate non-zero value for f is a problem-specific

endeavor, but the chosen value has little effect on the dynamics of the convective flow field. For

the simulations presented below we use a volume discrepancy correction value of f = 0.3, which is

based on the results of several test runs and past experience with comparing the results to the f = 0

case. We will continue to study if and how the chosen value of f affects the long term development

of the convective field for this specific problem.

5.2.5 Convective Dynamics

The adiabatic excess, ∆∇, — with

∆∇ = ∇−∇s, (5.8)

where the actual thermal gradient is

∇ =
∂ lnT/∂ r
∂ ln p/∂ r

and the adiabatic thermal gradient is ∇s = (d lnT/d ln p)s with the subscript s meaning along an

adiabat — is used to gauge the evolution of the convective zone for the Schwarzschild instability

criterion. Under this criterion, a fluid element is unstable to thermally driven convection when
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∆∇ > 0 and is stable for ∆∇ < 0. The first term in (5.8) is calculated using finite differences of

the temperature and pressure profiles along the radial direction. The second term in (5.8) depends

solely on the thermodynamics of the equation of state. It is related to the second adiabatic exponent,

Γ2 (see Cox & Giuli (1968) Chapter 9):

Γ2−1
Γ2

=
(

d lnT
d ln p

)
s
. (5.9)

All three of the adiabatic exponents are related:

Γ1

Γ3−1
=

Γ2

Γ2−1
, (5.10)

where Γ3−1 = (d lnT/d lnρ)s and Γ1 was defined in Section 3.1. Writing the equation of state as

p = p(ρ,T ) and expanding the differential d p, we find the relation

Γ3−1 =
Γ1−ρ pρ/p

T pT /p
(5.11)

along an adiabat. Our equation of state only returns Γ1, but combining this with (5.10) and (5.11)

allows us to solve for the adiabatic thermal gradient and hence the adiabatic excess.

Figure 5.9 shows the early evolution of ∆∇ for the cold model. Each plot covers the spatial

range (0 cm≤ x≤ 256 cm, 350 cm≤ r≤ 700 cm) to focus on the convective region. The stripes in

the initial conditions, Figure 5.9(a), are due to small interpolation errors from mapping the initial

data onto the two-dimensional grid. The initial adjustment of the system seen in Figure 5.9(b)

causes a mixing of stable (blue) and unstable (red) fluid elements. This transient adjustment phase

occurs for two reasons: 1) the initial conditions were based on a parameterization of convection

in one dimension and the system now needs to adjust to a two-dimensional convective zone, and

2) the initial perturbation does not have an established convection zone and the system needs a
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(a) t = 0 ms (b) t = 0.4 ms (c) t = 0.8 ms

(d) t = 5 ms (e) t = 7.5 ms (f) t = 10 ms

Figure 5.9: Colormap plot of the evolution of the adiabatic excess, ∆∇, in the convective region
for the cold model.

short amount of time to build up a flow pattern associated with the perturbation. This results in

mixing that produces a region that is marginally convective (∆∇∼ 0; white) with localized pockets

of stable and unstable fluid elements as seen in Figure 5.9(c). At later times, these pockets further

localize into vortices whose circulation gives rise to roughly circular regions of nonzero adiabatic

excess — with one hemisphere that is stable and the other which is unstable — that are advected
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(a) t = 18.5 ms (b) t = 20.5 ms (c) t = 23 ms

(d) t = 25 ms (e) t = 26 ms (f) t = 28 ms

Figure 5.10: Same as Figure 5.9 but at later times. The boxes show the location of a single feature
that, once formed, lasts for the remainder of the simulation.

with the flow before dispersing into the ambient medium on subconvective timescales, ∼ 10−4

s. The vortices are always associated with an adiabatic excess pattern that has an unstable (red)

bottom and a stable (blue) top unless two vortices are merging and interacting, in which case the

stability distribution becomes skewed.

Figure 5.10 shows ∆∇ for the same simulation as in Figure 5.9 but at later times. The boxes
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in these plots outline a single long-lived vortex that forms around t = 18.5 ms, Figure 5.10(a),

and lasts throughout the remainder of the simulation. Formation of this vortex is correlated with

the formation of stronger filamentary structures, which are clearest in Figures 5.10(d), 5.10(e) and

5.10(f). These filaments appear to wrap around the solitary vortex and restrict the main formation

of smaller vortices to the lower boundary of the convective region.

Another way to quantify the convective region is to look at the ratio ∇/∇s. From (5.8) we see

that the system is unstable to convection under the Schwarzschild criterion when ∇/∇s > 1. The

Schwarzschild criterion, however, does not consider the effects of composition gradients that may

help stabilize the material against convection; for this we need to consider the Ledoux criterion for

instability

∇−∇L > 0, (5.12)

where the Ledoux thermal gradient is (see, for example, Kippenhahn & Weigert (1994))

∇L = ∇s−∑
i

∂ lnXi/∂ r
∂ ln p/∂ r

and the second term above is evaluated via finite differences of the composition and pressure

profiles. As with the Schwarzschild criterion, one can look at the ratio ∇/∇L, which is greater than

unity if the material is unstable to Ledoux convection. Figure 5.11(a) shows the above ratios for the

average thermal gradients for the initial configuration (left) and after the system has evolved for t =

23.5 ms (right); the black line is for the case of Schwarzschild criterion convection, while the red

line is for Ledoux convection. The dashed horizontal line marks the boundary for stability against

convection. Where the curves lie above this line, the configuration is unstable; when convection is

efficient, the curves should lie very near the horizontal line. For both the initial condition and at

late times, the Schwarzschild curve and the Ledoux curve are well matched except near the edges

of the convective region where composition gradients cause the two curves to deviate slightly. This
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Figure 5.11: Analysis of the extent of the convective region. Panel (a) shows the convective profiles
for both the Schwarzschild and Ledoux instability criteria at two different times. Panel (b) shows
the extent of the convective region as a function of time as determined by both instability criteria.
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deviation is most noticeable in the initial configuration at the upper boundary where there is a sharp

jump in composition, which was not smoothed (see Figure 5.1). Of interest in the plot at t = 23.5

ms is the feature at r = 450 cm, which has an unstable bottom and a stable top; this is consistent

with the vortices in Figures 5.9 and 5.10, which had red bottoms and blue tops. We define the edge

of the convective region to be where ∇/∇s, ∇/∇L = 0.75. This particular value of 0.75 was chosen

to be sufficiently small enough to rule out false positives from strong pockets of stability from, for

example, vortices within the convective region, but also large enough to rule out any fluctuations

at the boundaries due to overshoot. Figure 5.11(b) shows in grey the extent of the convective

region as a function of time with respect to the full domain for both the Schwarzschild (left) and

Ledoux (right) instability criteria. The horizontal dashed lines mark the initial location of the

lower and upper boundaries. The overall expansion of the upper boundary for the Schwarzschild

(Ledoux) criterion is 32.0 (29.5) cm in 30 ms of evolution; the lower boundary expands downward

by 9.5 (6.0) cm in the same time. At late times, the upper boundary of the convective region has a

much smoother composition transition than the lower boundary, therefore, the Schwarzschild and

Ledoux criteria are much better matched at the upper boundary than the lower. Nevertheless, both

the Ledoux and Schwarzschild criteria yield similar results when used to determine the extent of

the convective region. In terms of column-depth, the convective zone after 30 ms of evolution

spans the region 2.2×107 g cm−2 . y . 2.6×108 g cm−2 for both instability criteria.

For comparison, Figures 5.12 and 5.13 show the 12C mass fraction with velocity vectors for

the same simulation and at the same times as in Figures 5.9 and 5.10, respectively. These figures

clearly show the association of vortices with the circular regions of nonzero adiabatic excess seen

in Figures 5.9 and 5.10. The initial adjustment of the system causes mixing that smooths the slight

over-abundance of 12C at the base of the accreted layer present in the initial model (see Figure

5.1). At late times, the convective region is very well-mixed, and the 12C mass fraction is nearly

laterally homogeneous. Furthermore, the circulation pattern associated with the long-lived vortex
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Figure 5.12: Colormap plot of 12C mass fraction with velocity vectors for the same region and
times as shown in Figure 5.9.

outlined in Figure 5.10 has grown to a large fraction of the convective zone and is self-interacting

because of the periodic boundary conditions. The tendency of the system to form a single dominant

vortex from smaller vortices is a feature of two-dimensional simulations. In three dimensions, the

turbulent energy cascade moves from large to small scales; large vortical structures break down

into smaller structures that are eventually dissipated by viscous effects. In two dimensions, as is

the case here, the turbulent energy cascade is reversed — small vortical structures merge together
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Figure 5.13: Colormap plot of 12C mass fraction with velocity vectors for the same region and
times as shown in Figure 5.10.

to form a single dominant vortex.

The circulation is counter-clockwise for the large, long-lived vortex; this causes a region with

positive x-velocity below and a region of negative x-velocity above the vortex center. The positive

x-velocity region extends all the way to the lower convective boundary where it causes shearing

66



0 200 400 600 800 1000
r (cm)

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

�X( Fe)�

10
-1

10
0

10
1

t (ms)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

to
ta

l 
5
6
Fe

 m
a
ss

 f
o
r 
3
8
3
.7
5

�r�635
.2
5
 c

m
 (

g
)

Figure 5.14: Plots showing the 56Fe enrichment of the convective region. The left panel shows the
evolution of the average 56Fe mass fraction starting from the initial model distribution (solid thick
line) and ending after 30 ms of evolution (dashed line); the thin grey lines show the evolution at the
intermediate times shown in Figures 5.9 and 5.10. The right panel shows the total mass of 56Fe in
the convective region as a function of time. Note the log scale of the horizontal axis in the right
plot.

of the 4He /12C-rich region with the underlying 56Fe region. Consequently, Figure 5.14 shows

that some of the underlying 56Fe neutron star material is churned up into the convective region

where it is mixed with the rest of the convective material. The left panel shows average 56Fe mass

fraction profiles starting with the initial model abundance (thick solid line) through t = 30 ms

(thick dashed line); the intermediate thin solid lines show profiles at the times used in Figures 5.9

and 5.10. By t = 5 ms, the 56Fe is fairly well-mixed in the convective region. The right panel

shows the total mass of 56Fe in the region defined by the initial convective zone. The greatest

growth in the total mass occurs, as expected, in the initial adjustment (t . 0.6 ms) and then flattens

until large enough structures form such that there is sufficient shearing occurring at the base of the
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convective boundary. There is only a slight increase in the growth rate for the 56Fe mass around

t = 18.5 ms where the long-lived vortex first appears. This is due to the fact, mentioned above,

that as the system evolves it goes from many small vortices to a few large, dominant vortices. It is

only when the circulation pattern of a particular vortex is large enough to strongly interact with the

lower convection boundary that we get the shearing and enrichment of the convective region; this

occurs around t ∼ 5 ms. The addition of 56Fe to the convective region has a small but noticeable

effect on the conductivity; for example, a displacement of ∼ 1% 4He for 56Fe near the base of the

accreted layer, with all other things being constant, gives a ∼ 4% decrease in conductivity. This

change in conductivity could play an important role in adjusting the flame speed once ignited.
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Figure 5.15: Plot of the maximum Hnuc in the cold model simulation as a function of time. The
inset plot shows the early adjustment phase associated with Figures 5.9(b) and 5.9(c). The spikes
are similar to that seen in the bottom panel of Figure 5.8, and are caused by the rapid burning of
fresh fuel as it is brought into the burning layer by the turbulent convection.
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Figure 5.16: Plot of the maximum Mach number in the cold model simulation as a function of
time. The slow convective flow justifies the use of a low Mach number approximation method.

Figure 5.15 shows the evolution of the maximum value of Hnuc throughout the duration of the

cold model simulation. The inset plot shows the early adjustment phase mentioned above. The

initial jump in Hnuc is due to the fact that there is no well established flow field that can efficiently

advect away the energy released from reactions. Once the convective zone is well established,

the energy generation rate relaxes before making its steady climb. We note that we have not yet

achieved runaway — the rise in energy generation rate is still linear. This climb is temporarily

interrupted by a couple of spikes similar to those seen in Figure 5.8 when fresh fuel is advected to

a relatively hot region and burned quickly. Although well organized at later times, the convective

fluid flow is slow with respect to the sound speed. Figure 5.16 shows the maximum Mach number

in the computational domain as a function of time; this value never exceeds 0.08 in our simulation.

The average value of the Mach number in the convective region rarely exceeds ∼ 0.02 during our

30 ms simulation.
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5.3 Conclusions

We have described some of the challenges and important concepts to keep in mind when

performing multidimensional simulations of XRBs. The major results for this study of pure

4He accretors, can be summarized as follows:

• To get a system that is much closer to thermal instability in multiple dimensions, the semi-

analytic one-dimensional models should augment the local cooling rate estimate, (5.4), to

include cooling due to convection.

• Properly resolving the burning layer using the initial models considered here requires a spa-

tial resolution of 0.5 cm zone−1, which is an order of magnitude higher than what has

been presented in the literature for multidimensional models (Lin et al., 2006). It should

be noted that our initial models differ in the underlying neutron star’s composition — their

12C opposed to our 56Fe — and their models were evolved in one dimension through several

bursts before being mapped into multiple dimensions.

• Under-resolving the burning layer leads to dramatic convective undershoot and the burning

tends to die out.

• At the early times simulated here, the inclusion of thermal diffusion has little effect on the

maximum energy generation rate, but does perhaps affect the depth at which this maximum

occurs.

• The MAESTRO algorithm we use allows us to capture the expansion of the atmosphere due

to heating, which will be important in the modeling of PRE burst sources.

• The average thermal gradient in the convective region is nearly adiabatic but there are local-

ized pockets and filamentary structures that are either super- or sub-adiabatic.

70



• The strong convection interacts with and churns up the underlying neutron star material,

which slightly alters the conductivity of the convective region.

The initial selection of a value to use for the volume discrepancy term in our simulations was

based on experience with other applications. As we showed in Section 5.2.4, the value used for the

long duration simulation in this paper, f = 0.3, may not the optimal choice for the XRB problem.

Further investigation is required to determine which factors affect the appropriate value of f , and

to determine if the spikes in the drift of the thermodynamic pressure from the base state pressure

are simply numerical artifacts of a poor choice of f .

The width of the computational domain used in our simulations is adequate for the early evo-

lution of the system; the size of any individual convective cell is initially small with respect to the

width of the domain. As the system evolves and the convection becomes more established, the

cells grow in size. The nature of vorticity in two dimensions is such that the smaller vortices merge

to form a single vortex. In our simulations the cells grow to become a significant fraction of the

domain width and the flow becomes dominated by a single vortex that interacts with itself through

the periodic boundary conditions. By selecting a wider computational grid, we could delay the for-

mation of a single, dominant vortex. Ideally the computational domain should be several pressure

scale-heights wide so that we should form multiples of these convective cells that dominate the

flow for an extended period of time before merging into a single vortex. Given our strict resolution

requirements, such a setup was computationally infeasible.
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CHAPTER 6

TWO-DIMENSIONAL SIMULATION OF A

MIXED H/HE BURST SOURCE

In this chapter, I describe my ongoing study of thermonuclear burning and convection in a

mixed H/He accreting XRB system. As this study is still very much a work-in-progress, I will

present the material in a heuristic fashion.

The start of my XRB dissertation research began by studying a system that had accreted pure

4He (Chapter 5). As stated previously, the idea behind starting with a pure 4He system was that

these should be “easy” to simulate, mainly because of the simple reaction network required (Sec-

tion 4.3). Incidentally, these simulations turned out to be computationally more expensive than

we previously imagined due to the high resolution required to resolve the burning layer (Section

5.2.1).

The bulk of the energy release in an XRB system with unstable 1H-burning comes from reac-

tions that are much less temperature-sensitive than the 3–α reaction. Therefore, the peak of the

burning layer in a 1H-burning XRB should be more extended than for a 4He-burning, requiring less

resolution. We would have a larger network to solve for each zone, but we should have fewer zones

compared to the pure 4He system studied in Chapter 5. In addition, by applying higher resolution
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Figure 6.1: The mixed H/He burst models. The solid lines show the original Lagrangian data from
Kepler provided by Alex Heger. The dashed lines show this model smoothed (see Section 5.1.3)
and put into HSE with our EOS.

only where it was needed using the multilevel aspect of MAESTRO outlined in Paper V, which was

not fully implemented at the beginning of the studies of Chapter 5, we thought we might end up

with a simulation that had a computational cost less than or equal to that of the pure 4He system.
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6.1 Mixed H/He Initial Models

From our studies of a pure 4He burst source, we knew that we needed an initial model that

somehow contained an approximation to the cooling aspects of convection (see Section 5.1.1).

During the excellent meeting “X-ray Bursts and Burst Oscillations,” held at the Lorentz Center on

the campus of the Universiteit Leiden, we approached Alex Heger about our need for new initial

models. Within the hour, Alex graciously supplied me with approximately 3,000(!) output files

from the evolution of a solar-composition-accreting XRB source using the Kepler code. These

files followed the evolution of the system through three burst cycles.

From the models provided by Alex, I selected an initial model file that was ∼ 0.3 s before
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Figure 6.2: Closeup of the species in the smoothed region of Figure 6.1. Solid lines show the
original Kepler data, while the dashed lines show our smoothed reconstruction.
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the time when the temperature at the base of the accreted layer begins to significantly increase.

Applying the same smoothing technique described in Section 5.1.3, I mapped the Lagrangian

Kepler data into MAESTRO. Figure 6.1 shows both the original Kepler model (solid lines)

and the smoothed model, which is in HSE with our EOS (dashed lines). The black and gray verti-

cal lines are the boundaries of the sponge term of Equation 3.17. To see the smoothing in action,

Figure 6.2 shows a closeup of Figure 6.1 on the smoothed region. Here, we also plot the total CNO

mass fraction, X(CNO) = X(12C)+ X(14N)+ X(16O), scaled to be of the same order as the 1H ,

4He , 56Ni mass fractions.

6.2 Issues with the Initial Model

When I first started running the model shown in Figure 6.1, I noticed odd oscillations in the

temperature near the smoothed transition region. The oscillations tended to grow as the system

was evolved, regardless of choice of reaction network hotcno or approx8. Figure 6.3 shows a

closeup of such an oscillation after 0.1 ms of evolution in a simulation that used the same parame-

ters as the simulations presented in Section 5.2.5 for a pure 4He burst model.

What was so different about this model compared to the pure 4He models that would cause bad

numerical behavior? The temperature at the base of this mixed model is ∼ 40% higher than that of

the hot model of Chapter 5, but the hot CNO cycle — the main source of energy generation for

this model — is not temperature-sensitive (Fowler & Hoyle, 1965) and therefore physically, the

nuclear burning is probably not the source of the oscillations.

Numerically, however, there could be something that is causing the solution to behave in an

unstable manner. One of the first tests we used to determine if the oscillations were caused by

numerics was to run the same simulation but vary the advective CFL number, while keeping ∆x

fixed. Figure 6.4 shows the results of this test for the same simulation and at the same time as in
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Figure 6.3: Closeup of a temperature oscillation near the base of the accreted layer after 0.1 ms of
evolution. Such oscillations tend to grow out of control with evolution.

Figure 6.3, but with the value αCFL changed from the default value of 0.7. Interestingly, we find

that the amplitude of the oscillations decreases with decreasing CFL number. This result seemed to

suggest that there was somehow a decoupling between the hydrodynamics and the thermonuclear

burning.
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Figure 6.4: The effects of varying the CFL number for the mixed model. The αCFL = 0.7 curve is
the same as that in Figure 6.3.

6.3 Attempting Spectral Differed Corrections

Operator-split methods, such as that of Strang, are designed to break a complex problem into

several more tractable problems. Take, for example, the enthalpy equation, 3.6,

∂ (ρh)
∂ t

=−∇ · (ρhU)+
Dp0

Dt
+ρHnuc +∇ · (kth∇T ).

This equation could be rewritten as

∂ (ρh)
∂ t

= (AD) [ρh]+ (R) [ρh] , (6.1)
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where (AD) and (R) can be thought of as the Advection-Diffusion and Reaction operators acting

on ρh, respectively. Note that these operators, in general, depend on the thermodynamic state of the

material, as well as the velocity field. As mentioned in Section 3.2, MAESTRO uses Strang-splitting

to couple the hydrodynamics and nuclear burning. This form of operator splitting is second-order

accurate, and is equivalent to evolving ρh from initial data via the Reaction operator

∂ (ρh)
∂ t

= (R) [ρh] (6.2)

over a step size of 1/2∆t, using the result from that step as initial conditions for evolving with the

Advection-Diffusion operator
∂ (ρh)

∂ t
= (AD) [ρh] (6.3)

over a step size of ∆t, and then using the result from the advection step as inputs into another

reaction step, via Equation 6.2, over a step of size 1/2∆t. If the order of operations of the Advection-

Diffusion and Reaction operators does not matter — i.e. the operators commute — then there is

no additional error introduced in the splitting of the right-hand side of the enthalpy equation (see

Chapter 17 of LeVeque, 2002, for example).

Consider, however, a case where the operators would not commute. Imagine a fluid element in

a high temperature region with strong local velocities — strong enough that the timescale for ad-

vection is comparable to the timescale for nuclear burning — pointed in a direction away from the

high temperature region. Physically, then, the fluid should move away from the high temperature

region before a significant amount of burning has occurred. The Strang-split prescription above,

however, would have the fluid element at rest, vigorously burning because of the high temperature,

then advect away, and burn some more a little less vigorously. The net result may be that too much

burning has occurred, and now the fluid element has followed a slightly different thermodynamic

trajectory. Repeatedly applying this process could then introduce significant errors, even if the
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Figure 6.5: The effects of using the SDC method on the temperature oscillations observed in Figure
6.3. The curve labelled “Strang-split” is the same as the αCFL = 0.7 curve in Figure 6.4. All of the
SDC methods, labelled by the number of iteration steps, also used αCFL = 0.7.

method is formally second-order accurate.

To remedy this in MAESTRO, my collaborators implemented a Spectral Differed Correction

(SDC) method, with initial application to flame-propagation simulations (Nonaka et al.; in prepa-

ration). SDC methods were introduced by Dutt et al. (2000) to reduce splitting errors by applying a

series of correction equations that attempt to couple the split operators. The basic idea is that an es-

timate for the solution at the new time step is determined using an operator-split method, and then

iterative corrections are applied by applying the various operators to updated approximations of the

solution. Practically, this means that the Advection-Diffusion and Reaction operators must know

something about what the other operator is doing. This involved my creating a new reaction net-
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work, cleverly named approx8_SDC, which incorporates enthalpy and species advection source

terms into the right-hand side of ODEs in the network. It should be noted that the SDC method in

MAESTRO does not currently support thermal diffusion, so the remainder of the simulations in this

chapter are run without diffusion.

Recall that the whole reason for going to SDC was to verify our conclusions from the CFL

tests of Section 6.2 — namely that there was a decoupling of the hydrodynamics from the nuclear

reactions. Figure 6.5 shows the result of using the SDC method for the same problem as the

αCFL = 0.7 case as in Figure 6.4, but with thermal diffusion turned off. The label “n_iters” denotes

the number of iterative correction steps used in the SDC method. The first, and most obvious, thing

to note is that using the SDC method did not create much of an improvement — these oscillations

still grow with evolution. It does appear, however, that the SDC algorithm is doing something,

as increasing the number of corrective iterations generally reduces the amplitude of wiggles — at

least up until n_iters= 4. Furthermore, comparing Figures 6.4 and 6.5 shows that diffusion seems

to make things better as well. In any case, the result of this venture into SDC methods, although

not correcting the problem for the mixed XRBs, has added a new method to the MAESTRO code

for use in future problems.

6.4 Using Various Edge Prediction Methods

After all the work involved in setting up the SDC method, we were no closer to solving the

temperature oscillation problem. So, again I blamed the initial model and again I asked: what is

so different about this model compared to the pure 4He models? I described in Section 6.2 that the

temperature was similarly behaved in the two models. The density, on the other hand, does behave

quite differently between the two models at the base of the accreted layer. The solid lines of Figure

6.6 show the density profile, normalized to the density at the base of the layer, for the hot model
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Figure 6.6: Density profiles normalized to the density at the base of the accreted layer (solid lines)
along with the mean molecular weight profiles normalized to the value at the base (dashed lines).
The curve labelled “Pure 4He,” is the hot model of Section 5.1.3. For easy comparison, the
profiles have been shifted so that the base of the accreted layer lies at r = 0.

of Section 5.1.3 (blue) and the model of Figure 6.1 (red). Here, I have defined the base to be the

radius at which

Xfuel =
Xfuel,max

2
, (6.4)

where Xfuel = X
(4He

)
for the pure 4He model and Xfuel = X

(1H
)

for the mixed H/He model. To

facilitate comparison, the models have been shifted so that, in this plot, the base corresponds to

r = 0. Figure 6.6 shows that going from the accreted atmosphere (r > 0) into the neutron star

material (r < 0) results in a significantly larger jump in density for the mixed model compared to
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the hot model. This is mainly due to the disparity in the transition in mean molecular weight,

A = ∑k Xk

∑k (Xk/Ak)
, (6.5)

which is shown as dashed lines in Figure 6.6.

Recall from the discussion of finite volume methods in Section 2.2.1 that slope limiters are

used in higher-order Godunov methods to preserve monotonicity of a solution as it evolves. In

regions with sharp profiles, as is the case for density in Figure 6.6, the limiting is more severe,

and the reconstructed fluxes at cell edges can be significantly altered. I tried a few things, such

as group-limiting the species — applying the same, maximum limiter to all the species – in the

species advection equation, but this did not fix the problem.

As mentioned in Section 3.2, we use the slope-limited reconstruction to extrapolate pertur-

bational quantities to cell edges for the conservative updates of the system. There are, however,

numerous ways to combine perturbational and non-perturbational terms at the edges for a conser-

vative update. For example, the default method of updating (ρXi), and hence ρ , is by predicting

ρ’ and Xi to the edges and then constructing the forcing terms from these values. For the enthalpy

update, the default is to predict (ρh)′ to the edges, and use those values to construct the forcing

terms. As another example, we note that in MAESTRO, the temperature can be determined either

from the thermodynamic pressure or from the enthalpy, and therefore, the enthalpy can be updated

by first predicting temperature to the edges, and then reconstructing enthalpy-related forcing terms

from EOS calls.

In total, I investigated three approaches of edge-prediction for the species/density update and

four methods for the enthalpy update. The 12 possible combinations along with qualitative descrip-

tions of the temperature obtained from the pressure (red) or enthalpy (blue) are shown in Table 6.1.

An amplitude deviation for a “good” method is . 0.5%; for a “so-so” method it is between 0.5%
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Table 6.1: Various edge prediction methods and a qualitative description of the temperature pro-
files determined from the pressure (red) or enthalpy (blue). The quantities listed in column/row
headings are the variables that are predicted to the edge of cells. Figures 6.7 through 6.13 show
the temperature profiles for each row and column of the table.

enthalpy prediction methods

(ρh)′ h T → (ρh)′ T → h
sp

ec
ie

s
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ed
ic
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et

ho
ds

ρ ′,X
bad bad bad bad

bad so-so good good

ρ ′,ρX
good so-so good good

good terrible good bad

ρ,X
good good good good

good good good good

and . 2%; for a “bad” method it is between 2% and . 3%; anything with a deviation greater

than ∼ 3% is considered “terrible. “ The variables listed in the column and row headings are the

variables that are predicted to the edges. Note that for the enthalpy updates, in the case of tem-

perature predicted to the edge, an EOS call is made to get something that relates to the enthalpy.

For completeness, I also show plots of the temperature profiles as determined from the pressure

(red) or enthalpy (blue) for each row (Figures 6.7, 6.8, and 6.9) and column (Figures 6.10, 6.11,

6.12, and 6.13) of Table 6.1. There is quite a large range of behaviours between these different

combinations of edge-prediction methods. In general, it appears that predicting a perturbational

density, ρ ′, exhibits the worst behaviour, regardless of the enthalpy prediction method . Further-

more, predicting the full state density and species separately gives the most robust method, at least

for the mixed H/He XRB problem. This finding is contrary to what was found using MAESTRO

for full-star simulations of convection in a white-dwarf, where predicting perturbational quantities
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resulted in better behaved profiles (Paper IV).

6.5 Current Status

All of the different methods for edge prediction should, in theory, converge to the same solution

as the grid spacing, ∆x, goes to zero. As a sharp transition gets spread over more and more zones,

the slope limiters need to do less limiting in order to preserve monotonicity and the reconstruc-

tion function more closely approximates the true solution. In this limit, the differences in results

between the various edge prediction methods should decrease, with all methods converging to the

same solution. I am currently in the process of running simulations to numerically confirm the

convergence of all the different methods.

For now, however, I have concluded that the proper choice of edge-prediction is problem spe-

cific, and likely depends on the initial model. It should be noted that an alternative way to get rid

of the temperature oscillations was to extremely smooth the initial model profile over a physically

unrealistic length scale. Currently, I have settled on using the combined species prediction (ρ,X)

and enthalpy prediction
(
(ρh)′

)
methods. I have ongoing simulations to confirm that this choice

does not produce oscillations with further evolution, but preliminary studies suggest that this is

the case. Eventually, these simulations will be carried out to long enough timescales to make

comments about the convective dynamics, similar to Section 5.2.5 for the pure 4He burst source.
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Figure 6.7: Results for the temperature as determined from the pressure (red) and enthalpy (blue),
using the species edge-prediction row labelled “ρ ′, X” in Table 6.1 — the labels indicate which
species prediction method was used. Aside from the choice of edge-prediction, the simulation
parameters are the same as those from Figure 6.3.
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Figure 6.8: Results for the temperature as determined from the pressure (red) and enthalpy (blue),
using the species edge-prediction row labelled “ρ ′, ρX” in Table 6.1 — the labels indicate which
species prediction method was used. Aside from the choice of edge-prediction, the simulation
parameters are the same as those from Figure 6.3.
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Figure 6.9: Results for the temperature as determined from the pressure (red) and enthalpy (blue),
using the species edge-prediction column labelled “ρ, X” in Table 6.1 — the labels indicate which
species prediction method was used. Aside from the choice of edge-prediction, the simulation
parameters are the same as those from Figure 6.3.
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Figure 6.10: Results for the temperature as determined from the pressure (red) and enthalpy (blue),
using the enthalpy edge-prediction column labelled “(ρh)′” in Table 6.1 — the labels indicate
which species prediction method was used. Aside from the choice of edge-prediction, the simula-
tion parameters are the same as those from Figure 6.3.
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Figure 6.11: Results for the temperature as determined from the pressure (red) and enthalpy (blue),
using the enthalpy edge-prediction column labelled “h” in Table 6.1 — the labels indicate which
species prediction method was used. Aside from the choice of edge-prediction, the simulation
parameters are the same as those from Figure 6.3.
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Figure 6.12: Results for the temperature as determined from the pressure (red) and enthalpy (blue),
using the enthalpy edge-prediction column labelled “T → (ρh)′” in Table 6.1 — the labels indi-
cate which species prediction method was used. Aside from the choice of edge-prediction, the
simulation parameters are the same as those from Figure 6.3.
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Figure 6.13: Results for the temperature as determined from the pressure (red) and enthalpy (blue),
using the enthalpy edge-prediction column labelled “T → h” in Table 6.1 — the labels indicate
which species prediction method was used. Aside from the choice of edge-prediction, the simula-
tion parameters are the same as those from Figure 6.3.

91



CHAPTER 7

SUMMARY AND FUTURE OUTLOOK

The research comprising this dissertation involved using a novel piece of technology, the

MAESTRO code, to perform realistic, resolved multidimensional simulations of thermonuclear

burning and the subsequent turbulent convection in a low Mach number framework. Lin et al.

(2006) was the only other group in the literature to attempt such simulations, but their results,

according to our simulations of a pure 4He source in Chapter 5, were perhaps under-resolved.

Furthermore, the Lin et al. (2006) numerical method was first-order accurate in space and time

compared to MAESTRO’s second-order accuracy, and it could not capture the expansion of the

base state — as we did in Section 5.2.3 — or model the surface of the atmosphere without numer-

ical problems, which the MAESTRO algorithm avoids by using a sponging technique as described

in Section 3.2.1.

Along the way, I added several reaction networks to the MAESTRO code. I tested the VODE

solver’s ability to handle very stiff systems of equations in Section 4.4.1, and compared two differ-

ent reaction rates for the 3–α reaction in Section 4.4.2. Furthermore, I implemented two of Frank

Timmes’s publicly available reaction networks into the MAESTRO code, and modified them to

evolve the equations in a self-consistent, low Mach number framework. These networks are quite

general, and can be applied to many other problems, thus adding to the capability of MAESTRO.
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In Chapter 5, I described the successful application of the MAESTRO code to an XRB that had

pure 4He accretion. One of the main results of that study was that we find some of heavy-element

neutron star material being dredged up into the atmosphere via the shearing occurring at the lower

boundary of the convective region. This is already an important result, as it suggests that the

opacities in the atmosphere could be significantly different from what is typically assumed when

making inferences about bursts from observations. This will certainly be true if such a polluted

convective zone can reach the photosphere. Our simulations were only run out to t = 30 ms —

a factor of 200 further in time than the compressible detonation studies of Zingale et al. (2001)

— but the edge of the convective region was still expanding, albeit slightly, at the end of our

simulation (see Figure 5.11). If this result holds in three-dimensional simulations, in which the

turbulent energy cascade behaves differently, then some of the assumptions used to infer the mass

and radius of the underlying neutron star may need to be altered. Furthermore, we were not able

to run this model to ignition of a deflagration, the propagation of which would be altered by the

presence of heavy elements that change the conductivity. Given the resolution requirements we

found in Section 5.2.1 for the initial model used here, significantly more computational resources

will be needed to run these simulations out until ignition, or to investigate the three-dimensional

effects.

I discussed simulations of a mixed H/He burst in Chapter 6 , and I presented some of the trials

and tribulations of applying a new algorithm to a new problem, even though the problem at first

glance did not seem all that different. I hope the reader has somewhat of an appreciation for the

months-long “debugging” process involved — I know I certainly do. I say “debugging” in quotes

because, in fact, the issues were not bugs in the code, but rather features of the algorithm. One

advantage of working with a code that is completely novel is that these fun features seem to pop

up in the most odd — and inopportune — places. However, applying several different approaches

towards a solution, such as implementing new methods (SDC in Section 6.3) or using alternate
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numerical methods which are analytically equivalent (edge-prediction methods in Section 6.4),

results in a better understanding of where these features occur and when they are important. Based

on my study of the evolution of the temperature oscillations in the mixed H/He burst model, I think

we have found the correct combination of edge-prediction methods that results in a well-behaved

solution. I am currently running these simulations out further for confirmation.

There is still plenty of research to be performed on the subject of multidimensional simulations

of XRBs as deflagrations. Ideally, I would like to be able to carry out a simulation until ignition in

two dimensions. This may be feasible with MAESTRO’s adaptive mesh refinement (AMR) capa-

bility, which allows for placing more resolution only where it is needed, such as in a thin burning

layer. By selectively refining the simulation in this fashion, the algorithm can spend less compu-

tational time in regions that are not of dynamical importance. This capability was not completely

implemented at the start of the studies presented in Chapter 5, but they are currently being used

with the mixed burst models of Chapter 6. AMR will save even more computer time needed to

solve three-dimensional simulations, which are the next big step in multidimensional simulations

of XRBs.

There are also more interesting physics that can be added to the problem. An obvious choice

is a larger reaction network, but as I alluded to in Chapter 4, the trend in multiple dimensions is

to forgo the detailed physics for a network that is more easily solved. One way around this is to

implement tracer particles that simply advect with the fluid, but carry their thermodynamic history.

One can then post-process these trajectories with a large reaction network to get more detailed

nucleosynthesis. Such tracer particles have been preliminarily implemented into MAESTRO, and I

have helped with some of the early analysis routines for this approach, but more work needs to be

done. In addition to nuclear physics, there are also the effects of rotation and magnetic fields. Neu-

tron stars are typically fast rotators, and the rotation may affect the propagation of a burning front

Spitkovsky et al. (2002). I implemented rotation for planar-geometry problems into MAESTRO,
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but more thought is needed on how to handle boundary conditions in a rotating frame of reference.

Magnetic fields should, in principle, be tedious, but straightforward to implement into MAESTRO.

One of the plagues of magnetohydrodynamics simulations is maintaining the divergence constraint

on the magnetic field, ∇ ·B, from Maxwell’s equations. As discussed in Section 3.2, MAESTRO

uses projection operators to satisfy its velocity divergence constraint, which is significantly more

complicated than the magnetic field constraint of Maxwell. In essence, the “machinery” is already

in the code for solving and enforcing such equations — the difficulty will lie in figuring out exactly

how to fold such a constraint into MAESTRO’s predictor-corrector formalism, or even the new SDC

method. I will likely be working on this task during my postdoctoral appointment.
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APPENDIX A

THE EFFECTS OF CHEMICAL POTENTIAL ON

THE CONVENIENCE PARAMETER α

In MAESTRO, things are done in an operator split fashion — the hydro is de-coupled from the
burning. This means that during the hydro parts of the algorithm (where β0 is used), the system
is fixed in chemical equilibrium. For completeness, however, here I describe the effects of the
species’ chemical potentials, which were neglected in the original derivation of β0. Note that
similar terms appear in the calculation of things such as specific heats, which may be important in
the burning step — there appears to be very little about this in the literature, but everyone seems to
assume it makes little difference.

A.1 Derivation of The Convenience Parameter α

In Paper I, α is defined as

α ≡−
(

(1−ρhp)pT −ρcp

ρ2cp pρ

)
(A.1)

where

hp ≡
(

∂h
∂ p

)
T,X

, cp ≡
(

∂h
∂T

)
p,X

, pT ≡
(

∂ p
∂T

)
ρ,X

, pρ ≡
(

∂ p
∂ρ

)
T,X

(A.2)

where the subscript X means holding all Xi constant. In the absence of reactions, the X subscript
can be dropped from all derivatives, and with the use of the equation of state p = p(ρ,T ), α can
be written as α = α(ρ,T ). Such a system without reactions and in thermal equilibrium could
be either a pure system of one species, or a system of many species in chemical (and therefore
thermodynamic) equilibrium. Cox & Giuli (1968) (hereafter CG) call the former type of system
a “simple system” and therefore the latter a “non-simple system” in chemical equilibrium. The
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analysis in Paper I that reduced Equation A.1 to

α =
1

Γ1 p0
(A.3)

used CG’s discussion of the various adiabatic Γ’s. However, their discussion only pertains to
“simple systems” or “non-simple systems” in chemical equilibrium. In general, nuclear reactions
will be important and therefore this analysis needs to be reformed.

Even in the presence of reactions, A.1 can be rewritten as was done in Paper I:

α =− 1
pχρcp

[(
1

ρχρ

−
ρeρ

pχρ

)
pχT

T
− cp

]
, (A.4)

where

χρ ≡
(

∂ ln p
∂ lnρ

)
T,X

χT ≡
(

∂ ln p
∂ lnT

)
ρ,X

.

Following the results of Paper I, we want to find a relation between pχρ and Γ1.
For an equation of state p = p(ρ,T,X) we have

d ln p =
(

∂ ln p
∂ lnρ

)
T,X

d lnρ +
(

∂ ln p
∂ lnT

)
ρ,X

d lnT +∑
i

(
∂ ln p
∂ lnXi

)
ρ,T,(X j, j 6=i)

d lnXi. (A.5)

For brevity, we will shorten the subscript “(X j, j 6= i)” to just “(X j).” We define another logarithmic
derivative

χXi ≡
(

∂ ln p
∂ lnXi

)
ρ,T,(X j)

and therefore
d ln p = χρ d lnρ + χT d lnT +∑

i
χXi d lnXi. (A.6)

From here we get the general statement

∂ ln p
∂ lnρ

= χρ + χT
∂ lnT
∂ lnρ

+∑
i

χXi

∂ lnXi

∂ lnρ
(A.7)
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which must hold for an adiabatic process as well, and therefore we have

Γ1 = χρ + χT (Γ3−1)+∑
i

χXiΓ4,i (A.8)

where we use CG’s definition of Γ1 and Γ3 and introduce a fourth gamma function:

Γ1 ≡
(

∂ ln p
∂ lnρ

)
AD

, Γ3−1≡
(

∂ lnT
∂ lnρ

)
AD

, Γ4,i ≡
(

∂ lnXi

∂ lnρ

)
AD

, (A.9)

where the subscript AD means along an adiabat. We now derive an expression for Γ3.
The first law of thermodynamics can be written as

dQ = dE + pdV −∑
i

µidNi (A.10)

where µi =
(

∂E
∂Ni

)
AD,ρ,(N j, j 6=i)

is the chemical potential; or per unit mass we have

dq = de− p
ρ2 dρ−∑

i
µid
(

ni

ρ

)
= de− p

ρ2 dρ−∑
i

(
∂e
∂Xi

)
ρ,AD,(X j)

dXi

where we have used Xi≡ ρi/ρ = Aini/ρNA and the chemical potential has been replaced with µi =
(Ai/NA)(∂e/∂Xi)ρ,AD,(X j). Using this and expressing the specific internal energy as e = e(ρ,T,X)
we then have

dq = cvdT +

[(
∂e
∂ρ

)
T,X
− p

ρ2

]
dρ +∑

i

[(
∂e
∂Xi

)
ρ,T,(X j)

−
(

∂e
∂Xi

)
ρ,AD,(X j)

]
dXi (A.11)

and (
d lnT
d lnρ

)
AD
≡ Γ3−1 =

1
cvT

[
p
ρ
−
(

∂e
∂ lnρ

)
T,X

+

∑
i

[(
∂e
∂Xi

)
ρ,AD,(X j)

−
(

∂e
∂Xi

)
ρ,T,(X j)

]
XiΓ4,i

]
(A.12)

Now we need to evaluate (∂e/∂ lnρ)T,X . Again using the first law and the fact that ds = dq/T
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is an exact differential (i.e. mixed derivatives are equal) we have(
∂

∂ρ

[cv

T

])
T,X

=

(
∂

∂T

[
1
T

(
∂e
∂ρ

)
T,X
− p

T ρ2

])
ρ,X

1
T

(
∂

∂ρ

(
∂e
∂T

)
ρ,X

)
T,X

=− 1
T 2

(
∂e
∂ρ

)
T,X

+
1
T

(
∂

∂T

(
∂e
∂ρ

)
T,X

)
ρ,X

+
p

T 2ρ2 −
1

T ρ2

(
∂ p
∂T

)
ρ,X

∴

(
∂e

∂ lnρ

)
T,X

=
p
ρ

(1−χT ) , (A.13)

exactly the same result if we were to exclude species information. Simlarly, we can find an expres-
sion for the derivative of energy with respect to composition(

∂

∂Xi

[cv

T

])
ρ,T,(X j)

=

(
∂

∂T

[
1
T

(
∂e
∂Xi

)
ρ,T,(X j)

− 1
T

(
∂e
∂Xi

)
ρ,AD,(X j)

])
ρ,X

1
T

(
∂

∂Xi

(
∂e
∂T

)
ρ,X

)
ρ,T,(X j)

=
1

T 2

[(
∂e
∂Xi

)
ρ,AD,(X j)

−
(

∂e
∂Xi

)
ρ,T,(X j)

]
+

1
T

( ∂

∂T

(
∂e
∂Xi

)
ρ,T,(X j)

)
ρ,X

−

(
∂

∂T

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X


∴

(
∂e
∂Xi

)
ρ,T,(X j)

=
(

∂e
∂Xi

)
ρ,AD,(X j)

−

(
∂

∂ lnT

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X

.

Plugging these back into A.12 we have

Γ3−1 =
1

cvT

 p
ρ

χT +∑
i

(
∂

∂ lnT

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X

XiΓ4,i

 , (A.14)

or

cv =
1

T (Γ3−1)

 p
ρ

χT +∑
i

(
∂

∂ lnT

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X

XiΓ4,i

 . (A.15)
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We can obtain an expression for the specific heat at constant pressure from the enthalpy

cp ≡
(

∂h
∂T

)
p,X

=
(

∂e
∂T

)
p,X
− p

ρ2

(
∂ρ

∂T

)
p,X

=
(

∂e
∂T

)
p,X

+
p

ρ2

(
∂ p
∂T

)
ρ,X

(
∂ρ

∂ p

)
T,X

=
(

∂e
∂T

)
p,X

+
p

ρT
χt

χρ

.

The first term on the right-hand side can be obtained from writing e = e(p,T,X) and p = p(ρ,T,X):

de =
(

∂e
∂ p

)
T,X

d p+
(

∂e
∂T

)
p,X

dT +∑
i

(
∂e
∂Xi

)
p,T,(X j)

dXi

d p =
(

∂ p
∂ρ

)
T,X

dρ +
(

∂ p
∂T

)
ρ,X

dT +∑
i

(
∂ p
∂Xi

)
ρ,T,(X j)

dXi

∴

(
∂e
∂T

)
ρ,X

=
(

∂e
∂ p

)
T,X

(
∂ p
∂T

)
ρ,X

+
(

∂e
∂T

)
p,X

⇒
(

∂e
∂T

)
p,X

= cv−
(

∂e
∂ρ

)
T,X

(
∂ρ

∂ p

)
T,X

(
∂ p
∂T

)
ρ,X

= cv−
pχT

ρT χρ

(1−χT )

and

cp =
p

ρT
χ2

T
χρ

+ cv (A.16)
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Dividing this by A.15 and using the relation between the Γ’s, A.8, we then have

γ ≡
cp

cv
= 1+

p(Γ3−1)
ρ

χ2
T

χρ

 p
ρ

χT +∑
i

(
∂

∂ lnT

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X

XiΓ4,i

−1

= 1+
pχT

(
Γ1−χρ −∑i χXiΓ4,i

)
pχρ χT +ρχρ ∑i

(
∂

∂ lnT

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X

XiΓ4,i

=

pχT Γ1 +∑i

[
ρχρ

(
∂

∂ lnT

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X

Xi− pχT χXi

]
Γ4,i

pχρ χT +ρχρ ∑i

(
∂

∂ lnT

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X

XiΓ4,i

⇒ pχρ =
1

χT γ

pχT Γ1 +∑
i

ρχρ (1− γ)

(
∂

∂ lnT

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X

Xi− pχT χXi

Γ4,i

 .

(A.17)

Plugging A.17 into A.4 and rewriting the partial derivative of e with the help of A.13 we have

α =− 1
pχρcp

[(
1

ρχρ

−
ρeρ

pχρ

)
pχT

T
− cp

]

=
γ

cp

cpχT +
(

ρ

(
∂e

∂ lnρ

)
T,X
− p
)

χ2
T

T ρχρ

pχT Γ1 +∑i

[
ρχρ (1− γ)

(
∂

∂ lnT

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X

Xi− pχT χXi

]
Γ4,i

=
γ

Γ1 pcp


cp−

pχ2
T

T ρχρ

1+∑i

[
ρχρ

pχT
(1− γ)

(
∂

∂ lnT

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X

Xi−χXi

]
Γ4,i
Γ1


=
(

1
Γ1 p

)1+∑
i

ρχρ

pχT
(1− γ)

(
∂

∂ lnT

(
∂e
∂Xi

)
ρ,AD,(X j)

)
ρ,X

Xi−χXi

 Γ4,i

Γ1

−1
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α =
1

Γ1 p

[
1+∑

i

[
ρ2 pρ

ppT
(1− γ)

NA

Ai

(
∂ µi

∂T

)
ρ,X

Xi−χXi

]
Γ4,i

Γ1

]−1

(A.18)

A.2 Recalling The Derivation of Density-like Quantity β 0

Recall from Paper I that β0 was derived from the equation

∇ ·U+αU ·∇p0 = S̃ (A.19)

in such a fashion that we ended up with an equation of the form

∇ · (β0(r)U) = β0S̃. (A.20)

The derivation in Appendix B of Paper I for a β0 that satisfies A.20 automatically assumed α =
(Γ10 p0)

−1. This would have to be modified with the above derivation of α to be correct in a
non-operator split fashion.
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APPENDIX B

THERMAL DIFFUSION TEST PROBLEM

This problem is designed to test the accuracy of our implementation of an implicit solver for
the diffusion of a two-dimensional Gaussian enthalpy pulse. That is, we are only concerned with
the diffusive term in (3.6):

∂ (ρh)
∂ t

= ∇ · (kth∇T ) . (B.1)

To easily compare with an analytic solution (see, for example Swesty & Myra (2009) for an anal-
ogous example for a radiation-hydrodynamics code) we assume the thermal conductivity to be
constant: kth = 107ergKcm−1s−1. We also assume an ideal gas with X(He4) = 0.5,X(C12) =
X(Fe56) = 0.25 and ratio of specific heats γ = 5/3. Furthermore, we are not concerned with any
hydrodynamic motions so we keep the density fixed. We can then express (B.1) in a simpler form:

∂h
∂ t

= D∇
2h, (B.2)

where D = kth/(ρcp) is the diffusion coefficient.
Given the initial conditions for the two-dimensional pulse,

h(r, t = t0) = (hp−h0)× exp

(
−|r− r0|2

4Dt0

)
+h0, (B.3)

where hp, h0, r0 = (x0,y0), and t0 are the peak enthalpy, ambient enthalpy, location of the center
of the peak, and time from which the system has evolved respectively, the analytic solution takes
on the form

h(r, t) =
(
hp−h0

)( t0
t + t0

)
exp

(
−|r− r0|2

4D(t + t0)

)
+h0, (B.4)

where t is the evolved time.
We solve this problem on a Cartesian grid of size 4 cm × 4 cm with the following parameters:

hp = 10.0ergg−1, h0 = 1.0ergg−1, r0 = (2.0cm,2.0cm), t0 = 0.1s, and ρ = 1.0gcm−3. For the
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density and composition used in this test, we obtain a diffusion coefficient of D = 0.32cm2s−1.
Our implicit solve uses a Crank-Nicholson scheme that is second order accurate in space and time.

Figure B.1 shows an example of the initial enthalpy pulse and its evolution through t = 0.4 s
on a 1024× 1024 grid with fixed time step ∆t = 10−3 s. Note that as the pulse expands it begins
to interact with the edges of the computational domain and the symmetry of the Gaussian peak is
broken. Figure B.2 shows the computed average enthalpy as a function of radius (Xs) compared
to the analytic solution (lines) for the same test problem shown in Figure B.1. Again, excepting
boundary effects, the numerical and analytic solutions are well matched.

To check the convergence of the algorithm we ran simulations with various resolutions and
compared the errors. To measure the error in the simulation, we use the L1 norm of the difference
between the analytic and numeric solutions normalized to the L1 norm of the analytic solution,
which we define as ε:

ε
m ≡ ||h(r, tm)−hm||L1

||h(r, tm)||L1

=
∑i, j

∣∣∣h(ri, j, tm)−hm
i, j

∣∣∣
∑i, j |h(ri, j, tm)|

, (B.5)

where h(ri, j, tm) is the analytic solution at ri, j =
(
(xi− x0)2 +(y j− y0)

)1/2 and time tm = m∆t and
hm

i, j is the numeric solution at (xi,y j) and time tm. We further define the convergence rate, α , by
comparing the value of ε at the current resolution to the value of ε at a finer resolution simulation:

α ≡ log2

(
ε

[ε]finer

)
. (B.6)

For our comparisons, we take “finer” to mean a simulation with twice the resolution; to compare
the simulations at the same physical time, the finer simulation must have evolved through twice
the number of time steps as the coarser simulation. If our algorithm truly is second-order accurate
in space and time then α should equal 2. Table B.1 shows the values of ε and the convergence rate
for various resolutions at t = 0.08 s; for α , the norm in the current column is compared to the norm
of the finer resolution simulation in the column to its right. Our values of α agree very well with
the expected value.
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Figure B.1: Time evolution of the diffusion of a two-dimensional Gaussian pulse of enthalpy as
described in the text. The value of time displayed is the evolution time, t. This simulation was run
with a 1024×1024 grid with time step size ∆t = 0.001 s. Excepting edge effects near the domain
boundary, the numerical solution maintains its axisymmetric form about the center of the pulse at
(x,y) = (2.0,2.0).
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Figure B.2: The average of enthalpy as a function of radius from the center, (x,y) = (2.0,2.0),
of a two-dimensional Gaussian pulse. The X’s are data from the numerical solution at the shown
times. The lines represent the analytic solutions as given by (B.4). The numerical solution tracks
the analytic solution very well except when the pulse has diffused enough that it begins to interact
with the boundaries of the computational domain as seen in the inset plot.
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Table B.1: Reduced L1 norms and convergence rate for the diffusion test problem at t = 0.08 s.
128×128 Error 256×256 Error 512×512 Error 1024×1024 Error

∆t = 0.008 s ∆t = 0.004 s ∆t = 0.002 s ∆t = 0.001 s
ε 8.64×10−5 2.16×10−5 5.39×10−6 1.35×10−6

α 2.0012 1.9999 1.9988 —
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