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Abstract of the Dissertation

MOMENT PROPAGATION METHODS FOR STOCHASTIC SIMULATION

OF COMPLEX BIOCHEMICAL SYSTEMS

by

Vibha Mane

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2011

We are interested in predicting the time dependent behavior of biochemical networks

such as interaction between proteins. These networks are represented by a system of chemical

reactions. In the forward problem, we have knowledge of all the reactions and the associated

rate constants. We want to determine the joint probability density of the populations of all

the molecular species at any time instant.

The given biochemical system is a discrete state, continuous time Markov process,

and the time evolution of its probability density function is described by the chemical

master equation (CME). We want to obtain the solution of the master equation in complex

biochemical systems with a large number of species and reactions. Analytical solutions of the

chemical master equation for first and second order reactions have only been obtained for

select cases with a few species and reactions. Another approach to solving the problem is
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to approximate the CME with the Fokker-Planck equations. But this would require solving

partial differential equations with a large number of variables.

The present state of the art approaches for stochastic simulation of such systems are

based on Monte Carlo methods. One such popular method is the Stochastic Simulation

Algorithm (SSA) derived by Gillespie in 1976. Several authors have developed accelerated

versions of the SSA such as the Next Reaction Method and the τ -leap methods, in order to

reduce the computation time of SSA. The Monte Carlo methods provide approximations of

the complete distribution, but they require simulations of many realizations of the Markov

process and many time steps. Hence their computation times are prohibitively long for very

complex systems.

Methods for modeling the biochemical networks based on moment propagation is a

relatively unexplored area. We propose a new method for propagating the first two moments

of the joint probability distribution of the number of molecules. In many systems, the

distribution can be approximated as Gaussians and therefore computing the first two

moments is sufficient. Simulation results show that our method yields accurate results for

first order and second order reactions. Compared with the Monte Carlo methods, our method

yields significant savings in computation time. Compared with other moment propagation

methods, the recursive expressions in our method can be implemented by specifying rate

constants and stoichiometries, without having to derive or solve any differential equations.

Whereas other moment propagation methods with similar accuracy have been demonstrated

for a few species, we demonstrate our method for complex biochemical systems with hundreds

of species.
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Chapter 1

Introduction

1.1 Introduction

Molecular and systems biologists aim to develop a better understanding of complex

interactions in biological systems. These include interactions between DNA, RNA and

proteins in a gene regulatory system, enzyme-substrate interactions in metabolic pathways

and interactions between proteins in cell signaling pathways. We start the modeling of a

biological process by representing it with a system of chemical reactions. We next apply a

computational model to predict the behavior of the system. In the deterministic framework,

we have a set of reaction rate equations with the state variable being the concentration

of molecular species. The deterministic approach adequately models many macroscopic

systems. The underlying assumption in this approach is that the molecular populations

are very large and can be approximated as continuously varying quantities. However, in

intracellular biochemical reactions molecular populations of some species are very small, and

the deterministic approach fails to predict the system behavior quantitatively or qualitatively.

It is well known that gene expression is a random phenomenon due to fluctuations in

transcription, translation, and degradation of proteins and messenger RNA. This has been

experimentally observed by Novick et al. [56], and has been described by Arkin and many

others [2], [52], [53], [60]. Stochasticity in gene expression can give rise to phenotypically

distinct subgroups with genetically identical cells [42].

In the stochastic framework, the state variable is a random vector representing the

number of molecules of each species. Given the initial state of the system, the reaction
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model and the associated rate constants, we want to obtain the joint probability mass function

(PMF) of the state of the system at any later time. The time evolution of this joint PMF

is described by the chemical master equation (CME), a differential-difference equation [25],

[76]. In the analytical approach, the probability generating function is employed to transform

the master equation into a partial differential equation (PDE) [54], [55]. Another approach

is to utilize the Laplace transform to transform the master equation into a system of linear

equations [46]. The analytical solution of the master equation has been obtained for select

cases, with very few species and this will be described in Chapter 2. In the continuous

stochastic formulation, the evolution of the joint probability density function (PDF) of the

state of the system is described by the stochastic differential equation (SDE) such as the

Fokker-Planck equation or the Langevin equation [28], [76].

The stochastic simulation algorithm (SSA), which is a Monte Carlo-based method was

first introduced by Doob in 1945 [12], and derived by Gillespie in 1976 for the biochemical

reaction system [22]. In this method, we generate many realizations of the stochastic process

using random sampling, and average over these realizations to obtain the PMF of the state

of the system. However, the SSA simulates only one reaction per time step, and hence it is

not scalable with the population of molecular species, number of species or the number of

reactions. Several authors have developed accelerated versions of the SSA such as the τ -leap

methods [9], [27], [58], [75]. The Monte Carlo methods will be discussed in Chapter 3.

Quite often, we are interested in the lower order moments of the PMF, such as the means

and the covariance. In the moment propagation method, we trace a few lower order moments

of the joint PMF of the state of the system. In 1995, Gillespie used the propagator function

of a Markov process to derive moment evaluation equations [24]. In 2005, Hespanha et al.

[38] and Singh et al. [67] presented a Stochastic Hybrid Systems (SHS) method to compute

the first few moments of the state vector. In 2007, Gómez-Uribe et al. proposed a Mass

Fluctuation Kinetics (MFK) method and obtained differential equations to estimate the

means, variances and the covariances [32], [33]. These methods are evaluated in Chapter 6.

In the proposed method, a moment propagation method, our goal was to compute

the evolution of the first two moments of the state vector for very large systems. We

have utilized conditional expectation relations of random variables, Markovian property of

the biochemical system, and expressions for simple reactions to build a general recipe for

complex systems. We have demonstrated that the proposed method can be implemented
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very easily by specifying rate constants and stoichiometries, without having to derive or

solve any differential equations [50], [51]. The method is presented in Chapter 4, for first

order reactions and Chapter 5 for second order reactions. Its comparison with the Monte

Carlo methods and other moment propagation methods is provided in Chapter 6.

In the remainder of this chapter, we describe some biology examples where the stochastic

simulation of molecular populations will be an additional tool to help comprehend such

problems. Some of these examples are simulated in this research. We also discuss the

deterministic method and introduce the stochastic approach.

1.2 Chemical Reactions

A chemical reaction such as

ν11S1 + ν12S2
k1−→ ν13S3 + ν14S4 (1.1)

states that ν11 molecules of type S1 react with ν12 molecules of type S2 to form ν13 molecules

of type S3 and ν14 molecules of type S4 [71]. The coefficients ν11, ν12, ν13, and ν14 are called

stoichiometric coefficients of the reaction. In an elementary reaction, the above reaction

occurs in a single step. In this report, a reaction written as in equation (1.1) will indicate

an elementary reaction. The reaction rate tells us how fast a reaction takes place.

The rate equation relates the reaction rate to the concentration of reactants. For the

chemical reaction in (1.1), the rate equation is

r = k1 [S1]ν11 [S2]ν12 (1.2)

where r is the reaction rate, k1 is temperature dependent reaction coefficient, and [S1] and [S2]

are the concentrations of the reactants S1 and S2, respectively. The units of concentration

are mole litre−1 or mole l−1. We also refer to the reaction coefficient k1 as reaction constant

or rate constant, although it may be time dependent in the computational models described

henceforth.

For elementary reactions, we define reaction order as the sum of the powers of the

concentrations in the reaction rate. The reactions are categorized as zeroth, first or second

order reactions. Reactions of order three or more are very rare and may be modeled as a
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sequence of second order reactions [30].

In the zeroth order reaction

ø
k1−→ S1

the reaction rate is independent of the concentration of the reactants and therefore for

modeling purposes there are no reactants. Its rate equation is given by

r = k1

and the units of the reaction constant k1 are sec−1 mole litre−1.

In the first order reaction

S1
k2−→ S2

the reaction rate is proportional to the concentration of only one reactant, namely S1, and

the rate equation is

r = k2[S1].

The units of the reaction constant k2 are sec−1.

In the second order reaction

S1 + S2
k3−→ S3

the reaction rate is proportional to the product of the concentration of two reactants, namely

S1 and S2 and the rate equation is

r = k3[S1][S2].

The units of the reaction constant k3 are sec−1/(mole litre−1). For a reaction of order n, the

units of reaction constant are given by sec−1/
(
mole litre−1

)n−1
.
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1.3 Applications

1.3.1 Example - Viral Kinetics

Srivastava et al. described a simplified model of intracellular viral infection, where a

single virus infects its host cell [73]. The infection process includes transcription, translation,

genome replication, assembly and virus release. It is characterized by the following six

reactions:

R1 : DNA
c1−→ mRNA (1.3a)

R2 : mRNA
c2−→ DNA+mRNA (1.3b)

R3 : mRNA
c3−→ Pr +mRNA (1.3c)

R4 : mRNA
c4−→ ø (1.3d)

R5 : Pr
c5−→ ø (1.3e)

R6 : DNA+ Pr
c6−→ V r. (1.3f)

The authors studied the viral nucleic acids, namely DNA and mRNA and the viral

structure proteins (denoted by Pr in the above reactions). The DNA can either transcribe

into an mRNA (reaction R1) or it may be packaged into structural proteins to form progeny

virus (denoted by V r in reaction R6). The mRNA molecule is used as a template to duplicate

the DNA (reaction R2) and also translate to protein (reaction R3). In reactions R4 and R5,

the mRNA and the protein molecules are degraded, respectively.

1.3.2 Example - Gene Regulatory Network

Gene expression is a complex process consisting of transcription of a gene into an

mRNA and its translation into a protein [1]. Each of the transcription and translation

processes consist of a multitude of elementary reactions, and therefore cannot be modeled

as instantaneous reactions. Roussel el al. and Ribeiro et al. modeled the gene expression

process in a single step, using time delays [63], [65]

RNAP (t) + Prom(t) −→ RNAP (t+ τ1) + Prom(t+ τ2) +K × Pr(t+ τ3), (1.4)
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where RNAP is the RNA polymerase enzyme which binds to the promotor site to initiate

gene transcription, Prom is the promotor site, Pr is the resultant protein created from the

translation of mRNA, K is the number of copies of protein created in the process and τ1,

τ2 and τ3 are the times required for each of the resultant products to become available. A

gene regulatory network consists of transcription factors and target genes which interact

with each other to determine the level of mRNA and proteins created. Kierzek et al. and

Ramsey et al. have performed stochastic modeling of gene regulatory networks using the

SSA [44], [59].

1.4 Computational Models

Various modeling approaches for biochemical networks are discussed in several texts [5],

[15], [78] and review papers [11], [17], [31]. The modeling approach we choose depends on the

level of detail required, time scales, molecular populations, the complexity of the reaction

system and so forth [5]. The deterministic Boolean models require synchronous updating

and are not suitable for reactions with considerably different timescales [17]. The stochastic

Petri nets are a graphical representation of the biochemical networks, and allow qualitative

analysis of the reaction model [34], [61]. The most pervasive approaches are the Monte

Carlo-based approaches such as the SSA and the τ -leap methods to reduce the computation

times of the SSA.

We will now describe the deterministic approach, the stochastic approach using the

chemical master equation and the stochastic approximation such as the Fokker-Planck and

the Langevin equation.

1.4.1 Deterministic Approach

In the deterministic approach, the state variable is the concentration of all the molecular

species. These concentrations are continuous variables. From the reaction system, we obtain

a system of coupled ordinary differential equations (ODEs), with one equation per molecular

species. We will also refer to these as reaction rate equations (RREs).
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Example - A First Order Reaction

For the first order reaction

S1
k2−→ S2 (1.5)

we have the following system of equations:

d[S1]

dt
= −k2[S1]

d[S2]

dt
= k2[S1].

Example - A Second Order Reaction

For the second order reaction

S1 + S2
k3−→ S3 (1.6)

we have the following system of equations:

d[S1]

dt
= −k3[S1][S2]

d[S2]

dt
= −k3[S1][S2]

d[S3]

dt
= k3[S1][S2].

Example - A Reversible First Order Reaction

For the reversible reaction

S1

k1


k2

S2

we have the following system of equations:

d[S1]

dt
= −k1[S1] + k2[S2]

7



d[S2]

dt
= k1[S1]− k2[S2].

In complex systems, the above reaction rate equations, together with the initial conditions,

can be solved numerically using the Euler method or the Runge-Kutta method.

In the deterministic framework we assume that the number of molecules are sufficiently

high so that the discrete changes of molecular populations may be approximated by

continuous changes in the concentration. However, as discussed in Section 1.1, under

certain conditions, the deterministic approach will produce incorrect values for the molecular

concentrations. We now give two examples comparing the deterministic method with the

SSA. As mentioned earlier, SSA is a Monte Carlo-based method and it will be described

in detail in Chapter 3. The stochastic parameters used in these examples are defined in

Section 1.4.2. In the first example, the stochastic averages agree with the deterministic

values. In the second example, the stochastic method produces a pronounced oscillatory

behavior which is not predicted by the deterministic method.

Example - Deterministic Competing Reactions

Consider the following reaction system:

R1 : S1 + S2
k1−→ S3 (1.7a)

R2 : S1 + S4
k2−→ S5. (1.7b)

The RREs were solved using the Euler method. The initial concentrations were [S1] =

1000 molecules l−1, [S2] = 1000 molecules l−1 and [S4] = 2000 molecules l−1. The reaction

constants were k1 = 0.001 sec−1/(molecules l−1), k2 = 0.001 sec−1/(molecules l−1) and plots

were generated until time t = 1.0 sec. We set the volume V = 1 l. The initial number of

molecules were X1(t= 0) = 1000, X2(t= 0) = 1000 and X4(t= 0) = 2000. The stochastic

rate constants, to be defined in Section 1.4.2, were c1 = 0.001 sec−1, c2 = 0.001 sec−1. In the

deterministic method, ∆t = 0.01 sec and in the SSA method the results were averaged over

5 realizations. Figure 1.1 shows that the simulation results using the deterministic method

compare well with the averages obtained using the SSA algorithm.
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Figure 1.1: In the Competing Reaction system, simulation results using the deterministic
method (solid line) compare well with the averages obtained using the SSA method (dashed
line).
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Example - Deterministic Lotka Reactions

In this example, we show that the results using the deterministic method do not agree

with the averages obtained using the stochastic method. The Lotka reactions represent

a predator-prey model proposed by Lotka in 1925 [48] and Volterra in 1930 [77] to study

population dynamics

R1 : S1
k1−→ 2S1 (1.8a)

R2 : S1 + S2
k2−→ 2S2 (1.8b)

R3 : S2
k3−→ S3. (1.8c)

In this model, the prey S1 feeds on food with constant supply and reproduces (reaction

R1), and the predator S2 feeds on the prey S1 and reproduces (reaction R2). Reaction R3

indicates the decline of the predator due to natural causes. The reaction rate equations are

d[S1]

dt
= k1[S1]− k2[S1][S2] (1.9a)

d[S2]

dt
= k2[S1][S2]− k3[S2]. (1.9b)

The steady-state solution obtained by setting

d[S1]

dt
= 0 (1.10a)

d[S2]

dt
= 0 (1.10b)

gives S1ss = k3/k2 and S2ss = k1/k2. That is, if we start with the initial values S1 = S1ss and

S2 = S2ss, then these values will remain constant. However, the simulations in Figure 1.2

using the SSA method show that the populations of S1 and S2 exhibit oscillatory behavior,

with a rise in prey population followed by a rise in predator population [23]. The parameters

used for these simulations were [S1] = 1000 molecules l−1, [S2] = 1000 molecules l−1, k1 =

10 sec−1/(molecules l−1), k2 = 0.01 sec−1/(molecules l−1) and k3 = 10 sec−1/(molecules l−1).
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Figure 1.2: In Lotka reactions, the SSA method produces oscillatory behavior for the
predator and the prey populations, whereas the deterministic values remain constant with
time.
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1.4.2 Stochastic Approach

In the stochastic approach, we want to determine the probability that the number of

molecules of the species is in a given range. We define our biochemical system as a spatially

homogeneous mixture of N molecular species S1, S2, . . ., SN inside a fixed volume V. The

species interact through M reaction channels R1, R2, . . . RM . The state of the system is

specified by the random vector X(t) =
(
X1(t) X2(t) . . . XN(t)

)T
, where T indicates the

vector transpose and Xi(t), i = 1, 2 . . . N , is the number of molecules of species Si at time

instant t. Let x(t) be an observation of the random vector X(t), where x(t) =
(
x1(t) x2(t)

. . . xN(t)
)T

. Define l successive time indices t0 < t1 < . . . tl, and let P (x(tl)) denote the

joint probability mass function (PMF) of X(t) at any time tl. The following argument also

holds for continuous-state Markov process with P (x(tl)) being the joint probability density

function (PDF). Let Pl|(0,1,...,l−1)(·) denote the conditional PMF at time tl given its PMF at

times t0, t1, . . . , tl−1 and Pl|l−1(·) denote the conditional PMF at time tl given its PMF at

time tl−1. Then X(t) is a discrete-state continuous-time stochastic process with the Markov

property

Pl|(0,1,...,l−1)(X(tl) = x(tl)|X(t0) = x(t0),X(t1) = x(t1) . . . ,X(tl−1) = x(tl−1))

= Pl|l−1(X(tl) = x(tl)|X(tl−1) = x(tl−1)). (1.11)

That is, conditional on the present state, the future state is independent of the past states.

The aforementioned Markov process is completely determined by an initial state P0(x(t0))

and a one-step transition probability Pl|l−1(X(tl) = x(tl)|X(tl−1) = x(tl−1)). We want to

determine the time evolution of the joint probability mass function P (x(t)) of X(t). (We

will also denote this probability function with P (x, t)). This is described by the master

equation and its general form is given by [26], [76]:

dP (x, t)

dt
=
∑
x′

[Ux′xP (x′, t)− Uxx′P (x, t)] , (1.12)

where Ux′x is the transition probability from state x′ to state x and Uxx′ is the transition

probability from state x to x′. It is a gain-loss equation for the probability of the state

X = x.
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Next, we will define reaction parameters which will give a characterization of a reaction

system. Consider the following reactions:

R1 : ø −→ S1 (1.13a)

R2 : S1 −→ S2 (1.13b)

R3 : 2S1 −→ S2 (1.13c)

R4 : S1 + S2 −→ S3. (1.13d)

Let cm be the stochastic rate constant for the reaction Rm. In the deterministic framework,

the unknown quantities are the molecular concentrations and in the stochastic framework, the

state variables are the number of molecules. For the four reactions in (1.13), the stochastic

and the deterministic rate constants are related by:

c1 = k1nAV (1.14a)

c2 = k2 (1.14b)

c3 = k3/(nAV/2) (1.14c)

c4 = k4/(nAV), (1.14d)

where nA is the Avogadro number. The units of cm are sec−1 for the four reactions. The

reaction probabilities are constant for zeroth order reaction, proportional to the number

of molecules for first order reactions and proportional to the product of the number of

molecules for the second order reactions. Let hm(x, t) be the number of distinct molecular

combinations for reaction Rm and define reaction propensity to be am(x, t) ≡ cmhm(x, t).

Then the probability that an Rm reaction will take place in an infinitesimal time interval dt

is given by am(x, t)dt, for the system in state x. For the four reactions in (1.13), hm(x, t) is

given by:

h1(x, t) = 1 (1.15a)

h2(x, t) = x1(t) (1.15b)

h3(x, t) = x1(t)(x1(t)− 1)/2 (1.15c)

h4(x, t) = x1(t)x2(t). (1.15d)
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We also define νmi to be the stoichiometry of species Si in reaction Rm. Therefore,

νm =
(
νm1 νm2 . . . νmN

)
is the state-change vector for reaction Rm, and for the four

reactions in (1.13), the stoichiometries are given by:

ν11 = 1 (1.16a)

ν21 = −1 ν22 = 1 (1.16b)

ν31 = −2 ν32 = 1 (1.16c)

ν41 = −1 ν42 = −1 ν43 = 1. (1.16d)

Using the above description, the general form of the chemical master equation (CME)

is expressed as:

dP (x, t)

dt
=

M∑
m=1

[am(x− νm, t)P (x− νm, t)− am(x, t)P (x, t)] , (1.17)

where M is the total number of reactions in the system.

Example - Master Equation, Competing Reactions

A derivation of the master equation is given in [25] and [76]. We will derive the master

equation for the system of competing second order reactions (1.7) which we reproduce here:

R1 : S1 + S2
c1−→ S3 (1.18a)

R2 : S1 + S4
c2−→ S5. (1.18b)

If we track all five species, N = 5, X(t) =
(
X1(t) X2(t) X3(t) X4(t) X5(t)

)T
, P (x, t) is

its joint PMF, and the number of reaction channels M = 2. Consider the time interval

(t, t+∆t) and let o(∆t) represent terms that go to zero with ∆t faster than ∆t. We use the

following axioms:

• The probability of exactly one reaction S1 + S2 −→ S3 in the time interval (t, t+∆t)

is given by c1x1x2∆t+ o(∆t). The probability of exactly one reaction S1 + S4 −→ S5

in the time interval (t, t+∆t) is given by c2x1x4∆t+ o(∆t).
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• The probability that no reaction will occur in the system in the time interval (t, t+∆t)

is (1− c1x1x2∆t− c2x1x4∆t) + o(∆t).

• The probability of more than one reaction in the time interval (t, t+∆t) is o(∆t).

Hence we obtain the following balance equation:

P (x1, x2, x3, x4, x5, t+∆t) = (1− c1x1x2∆t− c2x1x4∆t)P (x1, x2, x3, x4, x5, t) +

c1(x1 + 1)(x2 + 1)∆tP (x1 + 1, x2 + 1, x3 − 1, x4, x5, t) +

c2(x1 + 1)(x4 + 1)∆tP (x1 + 1, x2, x3, x4 + 1, x5 − 1, t) +

o(∆t). (1.19)

We rearrange the terms, divide by ∆t, and take the limit as ∆t −→ 0. All the terms of the

form o(∆t)/dt vanish and we obtain the following differential-difference equation:

dP (x1, x2, x3, x4, x5, t)

dt
= −c1x1x2P (x1, x2, x3, x4, x5, t)− c2x1x4P (x1, x2, x3, x4, x5, t) +

c1(x1 + 1)(x2 + 1)P (x1 + 1, x2 + 1, x3 − 1, x4, x5, t) +

c2(x1 + 1)(x4 + 1)P (x1 + 1, x2, x3, x4 + 1, x5 − 1, t). (1.20)

At time t = 0, let the number of S1, S2 and S4 molecules be α1, α2 and α4, respectively.

We can also describe this system with three variables, for example (X1, X2, X4), and rewrite

the above equation

dP (x1, x2, x4, t)

dt
= −c1x1x2P (x1, x2, x4, t)− c2x1x4P (x1, x2, x4, t) +

c1(x1 + 1)(x2 + 1)P (x1 + 1, x2 + 1, x4, t) +

c2(x1 + 1)(x4 + 1)P (x1 + 1, x2, x4 + 1, t). (1.21)

In Chapter 2, we will discuss various techniques for solving the master equation analytically.
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1.4.3 Stochastic Approximation

The time evolution of a continuous stochastic process X(t) is described by the integral

equation [57].

X(t) = X(0) +

∫ t

0

b(X(s), s)ds+

∫ t

0

u(X(s), s)dW(s), (1.22)

where b(·) is a drift coefficient, u(·) is a diffusion coefficient and W(·) is a Wiener process,

which is a continuous stochastic process with independent increments such that

• E (W(t) = 0).

• For 0 < t1 < t2, W(t2) − W(t1) has the distribution N (0, t2 − t1), where N (µ, σ2)

denotes a normal random variable with mean µ and variance σ2.

The ds-integral in (1.22) is a Reimann integral and the dW(s)-integral is an Itō integral [45],

[57]. The corresponding differential equation

dX(t) = b(X(t), t)dt+ u(X(t), t)dW(t), (1.23)

with the initial condition X(t=0) = X(0), is known as stochastic differential equation (SDE).

The Langevin equation and the Fokker-Planck equation are forms of SDE.

Langevin Equation

The Langevin equation is a stochastic differential equation for the state of the system

X(t). For the biochemical system described above, the chemical Langevin equation (CLE)

is derived by Gillespie [26], [28]

dXi(t) =
M∑
m=1

νmiam(X, t)dt+
M∑
m=1

νmi
√
am(X, t)dWmi(t) i = 1 . . . N, (1.24)

where we have set am(x, t) ≡ am(X, t). For the above CLE to be valid, the macroscopically

infinitesimal time increment dt must satisfy the following two conditions:

1. dt be small enough that none of the propensity functions am(·) changes appreciably in

this time
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2. dt be large enough that the number of times each Rm reaction takes place is much

greater than one.

One method of solution of the Langevin equation is to use the Euler approximation and

generate realizations of the stochastic process in (1.24). Several other methods of solution

are discussed in Kloeden and Platen [45].

Fokker-Planck Equation

For the Langevin equation in (1.24), there is an equivalent Fokker-Planck equation

(FPE) for the PDF P (x, t) of X(t) [28]

∂P (x, t)

∂t
= −

N∑
i=1

∂

∂xi

[
M∑
m=1

νmiam(x, t)P (x, t)

]
+

1

2

N∑
i=1

∂2

∂x2
i

[
M∑
m=1

ν2
miam(x, t)P (x, t)

]
+

N∑
i,j=1
i<j

∂2

∂xi∂xj

[
M∑
m=1

νmiνmjam(x, t)P (x, t)

]
.

(1.25)

Example - Fokker-Planck Equation, Competing Reactions

We track three species, S1 S2 and S4, N = 3 and the number of reactions M = 2, with

reaction propensities (omitting the t’s),

a1(x) = c1x1x2 (1.26a)

a2(x) = c2x1x4. (1.26b)
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The FPE is

∂P (x, t)

∂t
= − ∂

∂x1

[(−1)c1x1x2P (x, t) + (−1)c2x1x4P (x, t)]

− ∂

∂x2

[(−1)c1x1x2P (x, t)] − ∂

∂x4

[(−1)c2x1x4P (x, t)]

+
∂2

∂x1∂x2

[c1x1x2P (x, t)] +
∂2

∂x1∂x4

[c2x1x4P (x, t)] . (1.27)

The Fokker-Planck equation can also be derived as an approximation of the master

equation [76]. The FPE is a parabolic partial differential equation (PDE), and it is an N -

dimensional equation for N molecular species. A numerical solution of the master equation

is very difficult as the state space grows exponentially with the number of variables. Elf and

Sjöberg present numerical solutions of the CME and the FPE using finite difference method

[14], [70]. For the master equation, the authors use an N -dimensional grid of size xmax in

each dimension, with grid points at x = 0, 1 . . . xmax and step size ∆x = 1. The total number

of grid points is approximately xNmax. The Fokker-Planck equation is solved on a coarser grid

with step size ∆x > 1 and the number of grid points less than xNmax. The authors compare

the efficiency of the numerical solution of the Fokker-Planck equation with the SSA, and

conclude that for N > 4 the SSA would be more efficient.
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Chapter 2

Master Equation Approach

2.1 Introduction

In the stochastic approach for modeling the biochemical reactions, we obtain the PMF

(or PDF) of the state of the system. The problem may be addressed in several ways,

including analytical solution of the master equation, Monte Carlo methods and the moment

propagation methods. We give a brief review of the analytical approach.

In 1954 Rényi presented a first treatment of the stochastic analysis of the second order

reaction S1 + S2 −→ S3. He gave a recursive expression for the Laplace transform of the

distribution [15], [62]. In 1958, Bartholomay derived a stochastic model of the first order

reaction S1 −→ S2, obtained the master equation and the distributions of the molecular

populations with time, and also the limiting forms of the distributions and the standard

deviation [3]. In his 1963 and 1967 papers, McQuarrie made use of the probability generating

function to transform the master equation, a differential-difference equation, into a PDE, and

obtained closed form expressions for a few first order reactions and the irreversible second

order reaction S1 +S2 −→ S3 [54], [55]. In 1964, Ishida studied some second order reactions

and obtained expressions for the probability generating functions, which were expressed as

Jacobi polynomials for the reaction S1+S2 −→ S3 and Legendre polynomials for the reaction

2S1 −→ S2 [40]. In 2000 Laurenzi employed the Laplace transform to transform the master

equation into a system of linear equations and solved the reversible second order reaction

S1 + S2 ←→ S3 [46]. In 2005, Zhang et al. used Laplace transform to solve some first order

reaction systems and obtained the molecular distributions as convolution of multinomials
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[79]. In 2007, Jahnke et al. obtained solution of the CME for first order reactions. These

solutions are expressed as convolution of multinomial and Poisson distributions, with time-

dependent parameters obtained as solutions of the reaction rate equations [41]. In this

chapter, we present the results of McQuarrie and Zhang et al.

2.2 Method of Probability Generating Function

We review McQuarrie’s results for the case of irreversible first order reactions, and give

the expressions for a few other cases. We will utilize some of these results in the proposed

method.

2.2.1 Irreversible First Order Reactions

For the first order reaction

S1
c1−→ S2, (2.1)

the master equation is

dP (x1, t)

dt
= c1(x1 + 1)P (x1 + 1, t)− c1x1P (x1, t), (2.2)

where X1(t) is the number of molecules of S1 at time t. Let α1 be the initial number of S1

molecules. We use the probability generating function of X1(t)

G(s, t) =
∞∑

x1=0

P (x1, t)s
x1 , x1 ∈ N0, (2.3)

where N0 is the set of natural numbers with zero. The above sum is defined for those values

of s for which the sum converges. Utilizing (2.3) in (2.2) yields the PDE

∂G(s, t)

∂t
= c1(1− s)∂G(s, t)

∂s
(2.4)

with the initial condition

G(s, t = 0) = sα1 . (2.5)
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We rewrite (2.4) as
∂G(s, t)

∂t
+ c1(s− 1)

∂G(s, t)

∂s
= 0. (2.6)

This is an equation of the form

e1(s, t)
∂G(s, t)

∂t
+ e2(s, t)

∂G(s, t)

∂s
= 0, (2.7)

and its characteristic equation is [4]

ds

dt
=
e2(s, t)

e1(s, t)
. (2.8)

Its solution curves e3(s, t) = A, where A is an arbitrary constant, give the characteristic

curves of the PDE. We next make a transformation from the (s, t) coordinate system to the

(v, w) coordinate system

v = e3(s, t) w = s (2.9)

so that w is constant on each curve and the PDE (2.6) becomes an ODE. The characteristic

equation of (2.6) is
ds

dt
= c1(s− 1). (2.10)

Integrating, we obtain

(s− 1) = Aec1t. (2.11)

The characteristic curves are given by

(s− 1)e−c1t = A. (2.12)

Applying the transformation of variables

v = (s− 1)e−c1t w = s u(v, w) = G(s, t) (2.13)

to (2.6), we obtain
∂u

∂w
= 0. (2.14)
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That is, u is only a function of v = (s − 1)e−c1t. Applying the initial condition (2.5), gives

the solution

G(s, t) = (1 + (s− 1)e−c1t)α1 . (2.15)

Utilizing the expressions for the first and the second moments

E (X1(t)) =
∂G
∂s

∣∣∣∣
s=1

(2.16a)

E
(
X2

1 (t)
)

=
∂2G
∂s2

∣∣∣∣
s=1

+
∂G
∂s

∣∣∣∣
s=1

, (2.16b)

we have for the mean and the variance of X1(t)

µ1(t) ≡ E (X1(t)) = α1e
−c1t (2.17)

σ2
1(t) ≡ E

(
X2

1 (t)
)
− E2 (X1(t)) = α1e

−c1t (1− e−c1t). (2.18)

2.2.2 Parallel First Order Reactions

Consider the parallel first order reactions

R1 : S1
c1−→ S2 (2.19a)

R2 : S1
c2−→ S3. (2.19b)

Let X1(t) and X2(t) be the number of molecules of S1 and S2, respectively, and let α1 and

α2 be the initial number of S1 and S2 molecules, respectively. For the probability generating

function of P (x1, x2, t),

G(s1, s2, t) =
∞∑

x1=0

∞∑
x2=0

P (x1, x2, t)s
x1
1 s

x2
2 (2.20)

we have the following expression from [55]:

G(s1, s2, t) =

[
c1s2 + c2 − (c1s2 + c2 − C1s1) e−C1t

C1

]α1

sα2
2 , (2.21)
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where C1 = c1 + c2. For the mean and the variance of X1(t) and X2(t), we have

µ1(t) = α1e
−C1t (2.22)

σ2
1(t) = α1e

−C1t
(
1− e−C1t

)
(2.23)

µ2(t) = α2 +
c1α1

C1

(
1− e−C1t

)
(2.24)

σ2
2(t) =

c1α1

C1

(
1− e−C1t

) [
1−

c1

(
1− e−C1t

)
C1

]
. (2.25)

2.2.3 Irreversible Second Order Reactions

For the second order reaction

S1 + S2
c1−→ S3, (2.26)

let X1(t) and X2(t) be the number of S1 and S2 molecules, respectively, at time t. Let

α1 = X1(0) and β12 = X2(0)−X1(0). We track one species and the master equation is

dP (x1, t)

dt
= c1(x1 + 1)(β12 + x1 + 1)P (x1 + 1, t)− c1x1(β12 + x1)P (x1, t). (2.27)

Using the probability generating function gives the PDE

∂G(s, t)

∂t
= c1s(1− s)

∂2G(s, t)

∂s2
+ c1(β12 + 1)(1− s)∂G(s, t)

∂s
. (2.28)

This equation is solved using separation of variables and we have the following expressions

for the first and second factorial moments of X1(t) [55]:

E (X1(t)) =

α1∑
n=1

(2n+ β12)Γ (α1 + 1)Γ (α1 + β12 + 1)

Γ (α1 − n+ 1)Γ (α1 + β12 + n+ 1)
Υn(t) (2.29)

E (X1(t)(X1(t)−1)) =

α1∑
n=1

(n−1)(n+ β12 + 1)(2n+ β12)Γ (α1 + 1)Γ (α1 + β12 + 1)

Γ (α1 − n+ 1)Γ (α1 + β12 + n+ 1)
Υn(t). (2.30)
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In the above equations, Γ (·) is the gamma function defined by

Γ (n) =

∫ ∞
0

xn−1e−xdx (2.31)

and

Υn(t) = exp {−n(n+ β12)c1t} . (2.32)

2.3 Method of Laplace Transform

In this method, Laplace transforms are employed to transform the master equation into

a set of linear equations which are easier to handle.

2.3.1 First Order Reactions

We now present the method of Zhang et al. for computing the distributions of first order

reactions [79]. This approach makes use of the fact that in a first order reaction system each

molecule reacts independently of the others. Starting with one molecule from one source,

the transition probabilities to other states are derived. Subsequently, the authors arrived

at the distributions arising from several molecules and several sources by summing up the

contribution from each. Several examples, including a chain reaction with several species,

were presented.

The system has N molecular species S1, S2, . . ., SN , M reaction channels R1, R2, . . .

RM and its state is specified by the random vector X(t). For the reactions

Rm : Si
cm−→ Sj, m = 1, . . . ,M, (2.33)

an N ×N matrix D is defined as follows:

dii = −Ci (2.34a)

dij = cm, i 6= j, (2.34b)

where Ci is the sum of all the rate constants in which species Si is a source.
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One Source

First consider one source Si with one molecule. The injection of the molecule into

the system is modeled by a source probability density function fi(t). For example, if the

molecule is injected at time t = 0, the source probability density is fi(t) = δ(t), where δ(t)

is the Dirac delta function. At a later time t, the molecule will be in any one of the states

Sj, j = 1, 2 . . . N , with probability pij(t) satisfying the condition

N∑
j=1

pij(t) = 1. (2.35)

The probabilities pij(t) are determined by solving the following system of first-order

differential equations:
dp

dt
= Dp + f, (2.36)

where

p =


pi1(t)

pi2(t)

.

.

piN(t)

 , f =


0

.

fi(t)

.

0

 . (2.37)

The Laplace Transform of (2.36) gives

sP = DP + F, (2.38)

where P and F denote the Laplace transforms of p and f, respectively. Therefore P is obtained

by solving

P = (sI − D)−1 F. (2.39)

The inverse Laplace transform of P gives the required probabilities, and the joint distribution

of
(
X1(t) X2(t) . . . XN(t)

)
is the categorical distribution

P (x1, x2 . . . , xN , t) =
N∏
j=1

(pij(t))
xj . (2.40)
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Next, suppose that αi molecules of Si are injected into the system. Since each molecule

reacts independently of the others, we have αi independent trials each with N possible

outcomes X1(t), X2(t), . . . and XN(t). The probabilities of these outcomes are pi1(t), pi2(t),

. . . and piN(t), respectively, and the resulting distribution is multinomial

P (x1, x2, . . . , xN , t) =
αi!

x1!x2! . . . xN !
(pi1(t))x1 (pi2(t))x2 . . . (piN(t))xN , (2.41)

where x1 + x2 + . . . xN = αi. The marginal of any one species is the binomial distribution

P (xj, t) =
αi!

xj! (αi − xj)!
(pij(t))

xj (1− pij(t))αi−xj , j = 1, 2 . . . N. (2.42)

Several Sources

If there are several independent sources, then the marginal probability density of a

species is given by a convolution of binomials from each source. So for example, if we have

two sources Si and Sk with initial number of molecules αi and αk, respectively, then the

resulting distribution is

P (xj, t) =
αi!

(xj)! (αi − xj)!
(pij(t))

xj (1− pij(t))αi−xj

⊗ αk!

(xj)! (αk − xj)!
(pkj(t))

xj (1− pkj(t))αk−xj

j = 1, 2 . . . N, (2.43)

where
∑N

j=1 pij(t) = 1 and
∑N

j=1 pkj(t) = 1. We now present some examples.

Example - Reversible First Order Reaction

Consider the reactions

R1 : S1
c1−→ S2 (2.44a)

R2 : S2
c2−→ S1, (2.44b)
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with one source S1 consisting of α1 molecules. For each S1 molecule, we have the following

system of equations: dp11(t)

dt
dp12(t)

dt

 =

(
−c1 c2

c1 −c2

) (
p11(t)

p12(t)

)
+

(
δ(t)

0

)
. (2.45)

Taking the Laplace transform of the above equation, and solving for P gives

P =


s+ c2

s (s+ c1 + c2)
c1

s (s+ c1 + c2)

 . (2.46)

The inverse Laplace transform of the above expression yields the following one molecule

probabilities:

p11(t) =
1

c1 + c2

(
c2 + c1e

−(c1+c2)t
)

(2.47a)

p12(t) =
c1

c1 + c2

(
1− e−(c1+c2)t

)
. (2.47b)

With α1 initial molecules of S1, the distributions of X1(t) and X2(t) are given by

P (xj, t) =
α1!

xj! (α1 − xj)!
(p1j(t))

xj (1− p1j(t))
α1−xj , j = 1, 2. (2.48)

Example - Three Species

Consider the reactions

R1 : S1
c1−→ S2 (2.49a)

R2 : S2
c2−→ S3, (2.49b)
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with one source S1 consisting of α1 molecules. Once again, for each S1 molecule, we have

the following system of equations:
dp11(t)

dt
dp12(t)

dt
dp13(t)

dt

 =

 −c1 0 0

c1 −c2 0

0 c2 0


 p11(t)

p12(t)

p13(t)

 +

 δ(t)

0

0

 . (2.50)

Using the above method yields the following one molecule probabilities:

Case i c1 6= c2

p11(t) = e−c1t (2.51a)

p12(t) =
c1

c2 − c1

(
e−c1t − e−c2t

)
(2.51b)

p13(t) = 1− c2

c2 − c1

e−c1t +
c1

c2 − c1

e−c2t. (2.51c)

Case ii c1 = c2

p11(t) = e−c1t (2.52a)

p12(t) = c1te
−c1t (2.52b)

p13(t) = 1− e−c1t − c1te
−c1t. (2.52c)

With α1 initial molecules of S1, the distributions of X1(t), X2(t) and X3(t) are given by

(2.42), with i = 1 and N = 3.
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Chapter 3

Monte Carlo Methods

3.1 Introduction

The SSA method generates complete realizations of the Markov process X(t), and it

was formulated for biochemical reaction systems by Gillespie in 1976 [22], [23]. A form of

this method was introduced by Doob in 1945 [12]. In this method, the system evolves one

reaction at a time, and uses two samples, one each, to determine the time to next reaction

and the index of next reaction, respectively. The marginal densities and other statistics

are inferred from the generated realizations. However, simulating only one reaction per

time step is a major drawback of the SSA algorithm. If some molecular population is very

large, the time to next reaction is very small and this renders the algorithm too slow to be

useful. There are two different formulations of the SSA, namely, the direct method and the

first reaction method. Gibson et al. modified the first reaction method to produce the next

reaction method. In this method, the time to next reaction is sampled separately for each

reaction, and the next reaction to be executed is the one with the smallest such time [20].

All of the samples are utilized, and this method scales better than SSA with the number of

reactions. Cao et al. proposed an optimization of the direct method and compare it with

the next reaction method [7]. Both the SSA and the next reaction methods are exact, as

the trajectories generated by these methods would be the same as those generated from the

solution of the master equation.

Numerous approximate methods have been established to reduce the computation time.

In the τ -leap algorithm introduced by Gillespie, one steps through time in intervals large
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enough to contain several firings of each reaction channel [27]. Each reaction channel fires

independently of the others, with the number of such firings exhibiting Poisson distribution.

However, the range of Poisson random variable varies from zero to infinity, and can cause

negative molecular populations in the τ -leap method. Tian et al. [75] and Chatterjee et al.

[9] proposed τ -leap methods in which the reaction channels fire from a binomial distribution.

Pettigrew et al. developed a multinomial τ -leap method, which is an extension of the

binomial τ -leap method, and increases the speed by partitioning a large reaction network

into smaller groups [58]. Slepoy et al. proposed a method to reduce the computation time for

very large reaction networks [72]. They use a method called composition and rejection, for

faster computation of the index to next reaction. Their algorithm assumes that the average

number of coupling between reactions does not grow as the size of the reaction network

grows. In this chapter, we will describe the SSA and the τ -leap algorithm proposed by Tian

et al.

3.2 Stochastic Simulation Algorithm

In this section, we recount the stochastic simulation algorithm [22], [23]. We have a

system of N molecular species S1, S2, . . ., SN distributed uniformly inside a fixed volume V.

The number of non-reactive molecular collisions occur much more frequently than reactive

molecular collisions. The mixture is in thermal equilibrium, so that the collisions occur

randomly. The species interact through M reaction channels R1, R2, . . . RM . The state of

the system is specified by the random vector X(t). As described in Section 1.4.2, hm(x, t) is

the number of distinct molecular combinations for reaction Rm and the reaction propensity

is defined by am(x, t) ≡ cmhm(x, t). Then the probability that an Rm reaction will take

place in an infinitesimal time interval dt is given by am(x, t)dt, for the system in state x.

The algorithm then generates samples of the following events:

• The time to next reaction.

• The index of next reaction.

Let P (τ, k) denote the next reaction probability density, where τ is the time to next

reaction and k is the index of next reaction. Then P (τ, k)dτ gives the probability that the

30



next reaction will occur in time dτ , and it will be the reaction Rk. P (τ, k) takes the form

P (τ, k) = ak(x, t) e
−a0(x,t) τ , τ > 0, k = 1, 2, . . .M (3.1)

where

a0(x, t) =
M∑
m=1

am(x, t). (3.2)

Marginalizing P (τ, k), with respect to k, gives the PDF of τ

P1(τ) = a0(x, t) e−a0(x,t) τ , τ > 0, (3.3)

an exponential distribution with parameter a0(x, t). Again, marginalizing P (τ, k), with

respect to τ , gives the index of next reaction with probability

Prob(k = m) =
am(x, t)

a0(x, t)
. (3.4)

Therefore τ is sampled from the exponential distribution (3.3) and the index k is sampled

from the categorical distribution, with M possible outcomes, and probabilities a1/a0, a2/a0

. . ., aM/a0 .

3.2.1 SSA Implementation

Given the reaction stoichiometries, reaction constants, the initial number of molecules

X(t=0), the stopping time Ts and the number of simulations, the algorithm is implemented

as follows:

For each simulation, perform the following initialization and recursion:

Initialization

• Set the initial time t=0 and the molecular populations to the given initial values.

• Compute the values of hm(x, t) and am(x, t), m = 1 . . .M .

• Compute the value of a0(x, t).

Recursion
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Repeat the following steps until stop time t=Ts is reached:

• Generate a random number τ from distribution P1(τ).

• Generate a random number m from the multinomial distribution with probabilities

a1/a0, a2/a0 . . ., aM/a0. This gives the reaction Rm to be executed.

• Update the molecular populations of all the species affected by the reaction Rm.

• Update am(x, t) and a0(x, t).

• Advance the time to t+ τ .

Each simulation of the above algorithm generates a realization of the biochemical process

from time t = 0 to time t = Ts. The marginal densities P1(x1, t), P2(x2, t), . . ., PN(xN , t),

moments of X(t) and other statistics can be obtained from these realizations.

3.3 Binomial τ-leap Method

In the τ -leap algorithms, the time is divided into contiguous time intervals, and the

system leaps along the time axis, to allow for many reaction events to take place in these

time intervals [27]. We will now recite the τ -leap algorithm proposed by Tian et al. [75].

Once again, we have a uniform mixture of N molecular species S1, S2, . . ., SN , which interact

through M reaction channels R1, R2, . . . RM . Define a parameter Km for the first and second

order reactions as follows:

Rm : S1 −→ S2, Km = x1(t). (3.5a)

Rm : 2S1 −→ S2 , Km =

⌊
x1(t)

2

⌋
. (3.5b)

Rm : S1 + S2 −→ S3, Km = min(x1(t), x2(t)), (3.5c)

where bxc denotes largest integer less than or equal to x.

A time step τ is selected, and the criteria for doing so will be described shortly. At each

time step, and for each reaction channel Rm, m = 1 . . .M , we draw a sample Lm from the
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distribution

bin

(
Km,

am(x, t) τ

Km

)
, (3.6)

where bin (K, p) denotes binomial distribution with K independent trials each of which is

successful with probability p. After sampling from all the channels, the molecular populations

are updated as follows:

x(t+ τ) = x(t) +
M∑
m=1

νmLm. (3.7)

The time step τ must satisfy the condition,

0 ≤ am(x, t) τ

Km

≤ 1. (3.8)

In addition, τ should be consistent with the leap condition which states that no propensity

function must change appreciably in this time [29]. The leap condition is mathematically

formulated as

|am(x, t+ τ)− am(x, t)| ≤ εa0(x, t), m = 1, . . .M, (3.9)

where a0(x, t) is defined in (3.2) and ε is some specified error control parameter. Starting

from the above leap condition, τ is found to be

τ = min
m∈[1,M ]

(
εa0(x, t)

|µτm(x, t)|
,
ε2a2

0(x, t)

σ2
τm(x, t)

)
, (3.10)

where

µτm(x, t) =
M∑

m′=1

ηmm′(x, t)am′(x, t) m = 1, . . . ,M (3.11a)

σ2
τm(x, t) =

M∑
m′=1

η2
mm′(x, t)am′(x, t) m = 1, . . . ,M (3.11b)

ηmm′(x, t) =
N∑
i=1

∂am(x, t)

∂xi
vm′i m,m′ = 1, . . . ,M. (3.11c)
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3.3.1 Simultaneous Sampling

In the above method, if the same species Si undergoes reactions in two reaction channels

Rm and Rm′ , then sample as follows:

• Determine Km and Km′ for the reactions Rm and Rm′ , respectively, from equations

(3.5).

• Generate a sample Lmm′ for the total number of reactions that Si undergoes in channels

Rm and Rm′ That is sample from the distribution

bin

(
Ki,

(am(x, t) + am′(x, t)) τ

Ki

)
(3.12)

under the conditions

Ki = min (Km, Km′) 6= 0 (3.13)

and

0 ≤ (am(x, t) + am′(x, t)) τ

Ki

≤ 1. (3.14)

• Next generate a sample value Lm for the total number of reactions that Si undergoes

in channel Rm. That is sample from

bin

(
Lmm′ ,

am(x, t)

am(x, t) + am′(x, t)

)
. (3.15)

• The number of reactions in channel Rm′ is Lm′ = Lmm′ − Lm.

The authors give an example with twenty two reactions, where the τ -leap method shows

a gain in speed by a factor of fifteen, compared with the SSA for ε = 0.01. Since the SSA

is used as a benchmark by most authors in the accelerated Monte Carlo-based and other

methods, we will compare our proposed method with the SSA for both accuracy and speed.
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Chapter 4

Proposed Method - First Order

Reactions

4.1 Introduction

We propose a method for computing recursively, with time, the first two moments

of the state of the system, and we call it the recursive moment (RM) method [50], [51].

The derivation of our method is based on conditional expectation relations of the random

variables, Markovian properties of the biochemical system and approximations for small time

steps. Our goal is to derive general expressions for very complex systems consisting of a large

number of species and reactions. A second goal is that the expressions be straightforward to

implement.

General expressions for the first order reactions are presented in this chapter and for

the second order reactions are presented in the next chapter. The recipe for the first order

reactions is simpler and can be used for a system consisting of first order reactions and those

second order reactions which may be approximated as first order. The recipe for second

order reactions can be used for systems consisting of both the first and the second order

reactions. We compare the RM method with the SSA for accuracy, and further comparisons

are characterized in Chapter 6.
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4.2 Recursive Moment Method

Recall that we have a spatially homogeneous mixture of N molecular species S1, S2, . . .,

SN inside a fixed volume V. The species interact through M reaction channels R1, R2, . . .

RM . The state of the system is specified by the random vector X(t) =
(
X1(t) X2(t) . . .

XN(t)
)T

, where Xi(t), i = 1, 2 . . . N , is the number of molecules of species Si at time instant

t.

The joint non-central moments of X(t) are given by [8], [74]

γq(t) ≡ γ(q1 q2 ... qN )(t) = E (Xq1
1 (t)Xq2

2 (t) . . . XqN
N (t)) , (4.1)

where q = (q1 q2 . . . qN) ∈ NN and N is the set of positive integers. We will also denote

(Xq1
1 (t)Xq2

2 (t) . . . XqN
N (t)) by Xq(t). The joint central moments of X(t) are given by

γ′
q
(t) ≡ γ′

(q1 q2 ... qN )
(t)

= E ((X1(t)− µ1(t))q1 (X2(t)− µ2(t))q2 . . . (XN(t)− µN(t))qN (t)) , (4.2)

where

µi(t) = E (Xi(t)) , i = 1, . . . N. (4.3)

The order of the moments Q is defined by Q =
∑N

n=1 qn.

Further, let µ(t) denote the mean of X(t) with elements µi(t), i = 1, 2 . . . N , and C(t)

denote the covariance matrix of X(t) with its elements given by

σij(t) = E ((Xi(t)− µi(t)) (Xj(t)− µj(t))) , i, j = 1, . . . N. (4.4)

The diagonal elements of C(t) will be denoted by σ2
i (t). In the proposed method, we will

compute the mean and the covariance matrix of X(t).

In this chapter, we will discuss reactions of the type

Rm : Si
cm−→ Sj, m = 1, . . . ,M (4.5)

consisting of one reactant and one product. For a system consisting of one reaction as in

(4.5), (2.15) shows that the distribution of Xi is binomial, where the probability that a
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molecule of species Si converts to a molecule of species Sj in time ∆t is 1− e−cm∆t, and the

probability that it stays as a molecule of species Si is e−cm∆t.

We choose a time step ∆t between two recursions and the criterion for doing so is

discussed in Section 4.3. An N ×N matrix of transition probabilities P is defined such that

its ij−th element, pij, represents the probability that a molecule of species Si converts to a

molecule of species Sj during ∆t. These elements are given by

pii = e−Ci∆t (4.6a)

pij =
cm
Ci

(1− e−Ci∆t), i 6= j, (4.6b)

where Ci is the sum of all the rate constants in which species Si is a source. These

probabilities are assumed constant during ∆t.

For each molecular species in the system, and at each time step, we obtain expressions

for the first two moments conditioned on the previous time step. We employ the following

relations for conditional expectations [8], [16]:

EU (U) = EZ
(
EU |Z (U |Z)

)
(4.7)

EU |Z
(
U2|Z

)
= var(U |Z) + E2

U |Z (U |Z) (4.8)

EU,V |Z (UV |Z) = cov(U, V |Z) + EU |Z (U |Z)EV |Z (V |Z) , (4.9)

where U , V and Z are random variables, E(·) is the expectation operator, var(·) is the

variance of a random variable and cov(·) indicates the covariance between two random

variables. The subscript of E indicates that the sums (or integrals) are evaluated with

respect to the probability mass function (or probability density function) of that random

variable. These subscripts will be omitted whenever it is clear from the context how the

integrals are evaluated. For example, EU |Z (U |Z) in the above expression is the conditional

expectation of U given Z. Marginalizing (4.8) and (4.9) gives the required second moments

EU
(
U2
)

= EZ
(
EU |Z

(
U2|Z

))
(4.10)

EU,V (UV ) = EZ
(
EU,V |Z (UV |Z)

)
. (4.11)
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We also define covariance and conditional covariance of the random vectors U , V and Z as

follows:

cov (U ,V ) = E (UV )− E (U)E (V ) (4.12)

cov (U ,V |Z) = E (UV |Z)− E (U |Z)E (V |Z) . (4.13)

For the random vector X(t+∆t), we have from relations (4.7) - (4.9)

µ(t+∆t) ≡ EX(t+∆t) (X(t+∆t))

= EX(t)

(
EX(t+∆t) |X(t) (X(t+∆t) |X(t))

)
(4.14)

EX(t+∆t)|X(t)

(
X(t+∆t)XT (t+∆t) |X(t)

)
= cov

(
X(t+∆t),XT (t+∆t) |X(t)

)
+ EX(t+∆t)|X(t) (X(t+∆t) |X(t))EX(t+∆t)|X(t)

(
XT (t+∆t) |X(t)

)
. (4.15)

To evaluate (4.14), we obtain the expression for EX(t+∆t)|X(t) (X(t+∆t) |X(t)) by

summing up the contributions from all the species. This yields

EX(t+∆t)|X(t) (X(t+∆t) |X(t)) = P T X(t) (4.16)

and after taking the expectation EX(t) (·) of the above expression, we obtain

µ(t+∆t) = P T µ(t). (4.17)

We next evaluate (4.15). The second term is

EX(t+∆t)|X(t) (X(t+∆t) |X(t))EX(t+∆t)|X(t)

(
XT (t+∆t) |X(t)

)
= P T X(t)XT (t)P , (4.18)

where we have utilized (4.16). To evaluate the first term in (4.15), we set

R(t) ≡ cov
(
X(t+∆t),XT (t+∆t) |X(t)

)
. (4.19)
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The elements ofR(t) are obtained by utilizing the multinomial distribution approximation as

follows. GivenKm molecules of species Sm at time t, let pm1, pm2, . . . , pmN be the probabilities

that species Sm will become species S1, S2 . . . , SN , respectively. Then the joint probability of

the number of molecules (km1, km2, . . . , kmN) of species S1, S2, . . . SN , respectively, created by

the Km molecules of Sm during the interval (t, t+∆t) is given by the multinomial distribution

f(km1, km2, . . . , kmN) =
Km!

km1!km2! . . . kmN !
pkm1
m1 p

km2
m2 . . . pkmN

mN , (4.20)

where
∑N

i=1 kmi = Km and
∑N

i=1 pmi = 1. From the moment generating function of the

multinomial distribution

MX(t)(ω1, ω2, . . . , ωN−1) =

(
N−1∑
i=1

pmie
ωi + pmN

)Km

, (4.21)

we compute the expectations E (k2
mi) and E (kmikmj) and readily obtain

var(kmi) = Km pmi (1− pmi) (4.22)

cov(kmi, kmj) = −Km pmi pmj. (4.23)

We can also arrive at the above result by noting that the marginal of any random variable

in (4.20) is binomial and the marginal of any two random variables in (4.20) is trinomial.

We assume that in the time interval (t, t + ∆t), the distribution of the population of

each reactant species evolves as multinomial, and contributes to all of its product species.

Using (4.22) and (4.23) and summing up the contributions from all the species yields the

elements of R(t)

rii(t) =
N∑
k=1

Xk(t) pki (1− pki) (4.24a)

rij(t) = −
N∑
k=1

Xk(t) pki pkj i 6= j. (4.24b)
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We will also need the expectation B(t) ≡ EX(t) (R(t)). Its elements are given by

bii(t) =
N∑
k=1

µk(t) pki (1− pki) (4.25a)

bij(t) = −
N∑
k=1

µk(t) pki pkj i 6= j, (4.25b)

and µj(t) = E (Xj(t)). Substituting (4.18) and (4.19) in (4.15) yields

EX(t+∆t)|X(t)

(
X(t+∆t)XT (t+∆t) |X(t)

)
= R(t) + P T X(t)XT (t)P . (4.26)

Marginalizing the above expression gives

E
(
X(t+∆t)XT (t+∆t)

)
= B(t) + P T EX(t)

(
X(t)XT (t)

)
P . (4.27)

The covariance matrix is given by

C(t+∆t) = E
(
X(t+∆t)XT (t+∆t)

)
− µ(t+∆t)µT (t+∆t)

= B(t) + P T EX(t)

(
X(t)XT (t)

)
P − P T µ(t)µT (t)P , (4.28)

where we have utilized (4.17) and (4.27) in the last equality. Therefore, the recursive

expression for the covariance matrix is

C(t+∆t) = B(t) + P T C(t)P . (4.29)

4.2.1 Example - A Simple Reversible Reaction

Consider the following system of reactions:

R1 : S1
c1−→ S2 (4.30a)

R2 : S2
c2−→ S1. (4.30b)
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For reaction R1, the expressions for the mean and the variance of X1(t) due to McQuarrie

are [55]

E (X1(t)) = X1(t=0) e−c1t (4.31)

var (X1(t)) = X1(t=0) e−c1t
(
1− e−c1t

)
. (4.32)

We have analogous expressions for the mean and the variance of X2(t). By summing up

the contributions from reactions R1 and R2, in time interval ∆t, we have the following

expressions for the conditional expectations of X1(t+∆t) and X2
1 (t+∆t):

E (X1(t+∆t) |X1(t), X2(t)) = X1(t) e−c1∆t + X2(t)
(
1− e−c2∆t

)
(4.33)

E
(
X2

1 (t+∆t) |X1(t), X2(t)
)

= X1(t) e−c1∆t
(
1− e−c1∆t

)
+

X2(t) e−c2∆t
(
1− e−c2∆t

)
+

E2 (X1(t+∆t) |X1(t), X2(t)) . (4.34)

After taking the expectations EX1(t),X2(t) (·) of (4.33) and (4.34), we obtain the recursive

expressions for the mean and the variance of the number of S1 molecules

µ1(t+∆t) = µ1(t) e−c1∆t + µ2(t)
(
1− e−c2∆t

)
(4.35)

σ2
1(t+∆t) = E

(
X2

1 (t+∆t)
)
− µ2

1(t+∆t)

= µ1(t) e−c1∆t
(
1− e−c1∆t

)
+ µ2(t) e−c2∆t

(
1− e−c2∆t

)
+ σ2

1(t)
(
e−c1∆t

)2
+ σ2

2(t)
(
1− e−c2∆t

)2

− 2σ1(t)σ2(t) e−c1∆t
(
1− e−c2∆t

)
, (4.36)

where µi(t), i = 1, 2 and σ2
i (t), i = 1, 2 are the means and the variances of species S1 and S2,

respectively.
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4.3 General Expressions and Implementation

In order to implement the RM method, we choose a time step ∆t such that the

probability of each reaction is less than a predefined value. That is

cm∆t ≤ ε, ∀ m = 1, . . .M, (4.37)

where ε is some specified value. Given the reaction stoichiometries, reaction constants, the

initial number of molecules X(t=0) and the stop time Ts, the algorithm is implemented as

follows:

Initialization

• Select the time step as described above.

• Compute the matrix of transition probabilities P as given by the expressions (4.6a)

and (4.6b).

• Set time t=0,

µ(t=0) = X(t=0),

C(t=0) = 0

Recursion

Repeat the following steps until stop time t=Ts is reached:

• Compute the matrix B(t) by employing the expressions (4.25a) and (4.25b).

• Compute µ(t+∆t) by employing expression (4.17).

• Compute C(t+∆t) by employing expression (4.29).

• Advance the time to t+∆t.

4.4 Simulation Results

As described in Section 3.2, the SSA method generates realizations from the exact

distribution. In this section, we compare results from the RM method with the SSA method
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for accuracy and computation time. We track the means and the covariance matrix with

time. In some cases, at a given time t, a normal distribution N (µi(t), σ
2
i (t)) for species

Si, using the mean and the variance computed from the RM method, is compared with the

distribution generated by the SSA method. The timing measurements are done on a machine

called Fermat which consists of an Intel Pentium(R) Dual 2.4 GHz CPU.

4.4.1 Example - Three Species

Consider the reaction system

R1 : S1
c1−→ S2 (4.38a)

R2 : S2
c2−→ S3. (4.38b)

We track all three species, and therefore N = 3 and the number of reactions M = 2. The

state of the system is given by X(t) =
(
X1(t) X2(t) X3(t)

)T
. The model is specified by the

initial number of molecules X(t=0) =
(
10000 500 0

)T
and the reaction constants c1 = 0.1

sec−1 and c2 = 1.0 sec−1. The matrix of transition probabilities is defined by

P =

 e−c1∆t 1− e−c1∆t 0

0 e−c2∆t 1− e−c2∆t

0 0 1

 . (4.39)

B(t) is symmetric and its elements are given by

b11(t) = µ1(t)p11(1− p11)

b12(t) = µ1(t)p11p12

b13(t) = b31(t) = 0

b22(t) = µ1(t)p12(1− p12) + µ2(t)p22(1− p22)

b23(t) = b32(t) = µ2(t)p22p23

b33(t) = µ2(t)p23(1− p23).

By applying equations (4.17) and (4.29) repeatedly, we obtain the mean and the covariance

of all the species from time t=0 sec to t=10 sec. In Figure 4.1, we show the tracking results
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of some of the first two moments of the species. In implementing the methods, ∆t= 0.005

sec for the RM method and the number of realizations is 5, 000 for the SSA method. The

average number of time steps with the SSA method is 12, 721. As seen from the figure, the

estimated moments obtained by the RM and SSA methods are in good agreement.

4.4.2 Complex Example

We now present a complex example with the number of species N = 100 and the

number of reactions M = 200. The reactions are listed in Tables 4.1 and 4.2, and the

reaction parameters are listed in Table 4.3. The initial population X1(t= 0) of the number

of S1 molecules is 2, 000. The initial populations of all the other species are zero. The

time step ∆t in the RM method was selected to be ∆t = 0.001 sec. The average number

of time steps with the SSA method is 30, 663. We compared the results with the SSA for

500 realizations (Figures 4.2 and 4.3) and 2, 000 realizations (Figures 4.4 and 4.5). The SSA

method produces much smoother results with 2, 000 realizations and the results from the

two methods compare well.

Next, we compare the computation time of the RM method with the SSA method with

varying molecular populations. We vary the initial population X1(t= 0) of the number of

S1 molecules from 5, 000 to 30, 000. The initial populations of all the other species are zero.

As seen from (4.37), the time step ∆t of the RM method does not depend on the size of

molecular population, and it is set to ∆t=0.001 sec as indicated above.

For the SSA method, the simulation time depends on the molecular population, as the

time to next reaction has an exponential distribution with an expected value 1/a0 (expression

(3.3)). Therefore, the number of time steps and hence the computation time increases with

the molecular population. The number of realizations required to estimate the means and the

variances also depend on the size of molecular populations. To achieve the same accuracy,

we set the number of realizations equal to the molecular populations. Table 4.4 lists the

computation times from both methods on the Fermat machine. With the SSA method, the

CPU time is linear with the number of realizations. It was measured for a smaller number

of realizations, and estimated for the number of realizations indicated in the table. The

cumulative increase in the SSA CPU time is quadratic in the molecular populations. With

the RM method the CPU time remains constant at 35 sec. We would like to remark that
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the computation time employing the RM method will increase with the number of species

N , as this requires multiplication of matrices of size N . Also for a given number of species,

the computation time with the RM method remains constant as the number of reactions M

increases, whereas it increases with the SSA method.
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S1 −→ S2 S2 −→ S3 S3 −→ S4 S4 −→ S5 S5 −→ S6

S6 −→ S7 S7 −→ S8 S8 −→ S9 S9 −→ S10 S10 −→ S11

S11 −→ S12 S12 −→ S13 S13 −→ S14 S14 −→ S15 S15 −→ S16

S16 −→ S17 S17 −→ S18 S18 −→ S19 S19 −→ S20 S20 −→ S21

S21 −→ S22 S22 −→ S23 S23 −→ S24 S24 −→ S25 S25 −→ S26

S26 −→ S27 S27 −→ S28 S28 −→ S29 S29 −→ S30 S30 −→ S31

S31 −→ S32 S32 −→ S33 S33 −→ S34 S34 −→ S35 S35 −→ S36

S36 −→ S37 S37 −→ S38 S38 −→ S39 S39 −→ S40 S40 −→ S41

S41 −→ S42 S42 −→ S43 S43 −→ S44 S44 −→ S45 S45 −→ S46

S46 −→ S47 S47 −→ S48 S48 −→ S49 S49 −→ S50 S50 −→ S51

S51 −→ S52 S52 −→ S53 S53 −→ S54 S54 −→ S55 S55 −→ S56

S56 −→ S57 S57 −→ S58 S58 −→ S59 S59 −→ S60 S60 −→ S61

S61 −→ S62 S62 −→ S63 S63 −→ S64 S64 −→ S65 S65 −→ S66

S66 −→ S67 S67 −→ S68 S68 −→ S69 S69 −→ S70 S70 −→ S71

S71 −→ S72 S72 −→ S73 S73 −→ S74 S74 −→ S75 S75 −→ S76

S76 −→ S77 S77 −→ S78 S78 −→ S79 S79 −→ S80 S80 −→ S81

S81 −→ S82 S82 −→ S83 S83 −→ S84 S84 −→ S85 S85 −→ S86

S86 −→ S87 S87 −→ S88 S88 −→ S89 S89 −→ S90 S90 −→ S91

S91 −→ S92 S92 −→ S93 S93 −→ S94 S94 −→ S95 S95 −→ S96

S96 −→ S97 S97 −→ S98 S98 −→ S99 S99 −→ S100 S100 −→ S1

Table 4.1: Complex Example, reactions R1 through R100, in left-to-right top-to-bottom order.
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S1 −→ S11 S2 −→ S12 S3 −→ S13 S4 −→ S14 S5 −→ S15

S6 −→ S16 S7 −→ S17 S8 −→ S18 S9 −→ S19 S10 −→ S20

S11 −→ S21 S12 −→ S22 S13 −→ S23 S14 −→ S24 S15 −→ S25

S16 −→ S26 S17 −→ S27 S18 −→ S28 S19 −→ S29 S20 −→ S30

S21 −→ S31 S22 −→ S32 S23 −→ S33 S24 −→ S34 S25 −→ S35

S26 −→ S36 S27 −→ S37 S28 −→ S38 S29 −→ S39 S30 −→ S40

S31 −→ S41 S32 −→ S42 S33 −→ S43 S34 −→ S44 S35 −→ S45

S36 −→ S46 S37 −→ S47 S38 −→ S48 S39 −→ S49 S40 −→ S50

S41 −→ S51 S42 −→ S52 S43 −→ S53 S44 −→ S54 S45 −→ S55

S46 −→ S56 S47 −→ S57 S48 −→ S58 S49 −→ S59 S50 −→ S60

S51 −→ S61 S52 −→ S62 S53 −→ S63 S54 −→ S64 S55 −→ S65

S56 −→ S66 S57 −→ S67 S58 −→ S68 S59 −→ S69 S60 −→ S70

S61 −→ S71 S62 −→ S72 S63 −→ S73 S64 −→ S74 S65 −→ S75

S66 −→ S76 S67 −→ S77 S68 −→ S78 S69 −→ S79 S70 −→ S80

S71 −→ S81 S72 −→ S82 S73 −→ S83 S74 −→ S84 S75 −→ S85

S76 −→ S86 S77 −→ S87 S78 −→ S88 S79 −→ S89 S80 −→ S90

S81 −→ S91 S82 −→ S92 S83 −→ S93 S84 −→ S94 S85 −→ S95

S86 −→ S96 S87 −→ S97 S88 −→ S98 S89 −→ S99 S90 −→ S100

S91 −→ S1 S92 −→ S1 S93 −→ S3 S94 −→ S4 S95 −→ S5

S96 −→ S6 S97 −→ S7 S98 −→ S8 S99 −→ S9 S100 −→ S10

Table 4.2: Complex Example, reactions R101 through R200, in left-to-right top-to-bottom
order.
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0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02

1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03

1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04

1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05

1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06

1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07

1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08

1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09

2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Table 4.3: Complex Example, reaction constants for reactions R1 through R200, in units of
sec−1, in left-to-right top-to-bottom order.
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Initial number of Number of realizations
CPU time

S1 molecules in SSA RM SSA

5,000 5,000 35 sec 2.35 days

10,000 10,000 35 sec 8.9 days

15,000 15,000 35 sec 19.2 days

20,000 20,000 35 sec 36.6 days

25,000 25,000 35 sec 61.1 days

30,000 30,000 35 sec 85.1 days

Table 4.4: Computation times of the RM and the SSA methods, versus the molecular
populations, for the Complex Example given in Section 4.4.2.
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Figure 4.1: Comparison of the results from the RM and the SSA methods for the Three
Species example given in Section 4.4.1. The curves represent the computed means µ2(t) (top
plot), the variances σ2

2(t) (second plot), and the covariances σ2 1(t) (third plot) and σ2 3(t)
(bottom plot). ∆t is .005 sec with the RM method and the number of realizations in the
SSA method is 5, 000.
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Figure 4.2: Comparison of the results from the RM and the SSA methods for the Complex
Example given in Section 4.4.2. The curves represent the computed means µ11(t) (top plot),
the variances σ2

11(t) (second plot), and the covariances σ11,10(t) (third plot) and σ11,12(t)
(bottom plot). ∆t is .0005 sec with the RM method and the number of realizations in the
SSA method is 1, 000.
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Figure 4.3: The normal distribution generated from the RM method (solid line) is compared
with the distribution generated by the SSA method (“noisy” plot), at time t= 10 sec, for
the Complex Example given in Section 4.4.2.
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Figure 4.4: Same example and parameters as in Figure 4.2, except that the number of
realizations in the SSA method is 2, 000.
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Figure 4.5: Same example and parameters as in Figure 4.3, except that the number of
realizations in the SSA method is 2, 000.
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Chapter 5

Proposed Method - Second Order

Reactions

5.1 Introduction

In Chapter 4, we obtained recursive expressions for propagating the first two moments

of the joint distribution of the molecular species. Our results were applied to a complex

system consisting of a hundred species and two hundred reactions. We now want to extend

our method to the more difficult problem of second order reactions. Some issues with the

second order reactions are:

• In first order reactions, the reaction rates are proportional to the number of molecules

of the reactant. In second order reactions, the reaction rates are proportional to the

product of the number of molecules of the reactants. That is, the second order reactions

are nonlinear in propensities.

• The evaluation of the covariance matrix requires computing expectations of third and

higher order cross terms.

• For the second order reaction Si + Sj −→ Sk, the expressions (2.29) for E (X1(t)) and

(2.30) containing E (X2
1 (t)) do not have a simple form as for the first order reaction

Si −→ Sj.
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5.2 The Methodology

Once again, we use the conditional expectation relations as in (4.14) and (4.15)

µ(t+∆t) ≡ EX(t+∆t) (X(t+∆t))

= EX(t)

(
EX(t+∆t) |X(t) (X(t+∆t) |X(t))

)
(5.1)

EX(t+∆t)|X(t)

(
X(t+∆t)XT (t+∆t) |X(t)

)
= cov

(
X(t+∆t),XT (t+∆t) |X(t)

)
+ EX(t+∆t)|X(t) (X(t+∆t) |X(t)) EX(t+∆t)|X(t)

(
XT (t+∆t) |X(t)

)
. (5.2)

For the second order reaction

Rm : Si + Sj
cm−→ Sk, (5.3)

we do not have a simple expression for the transition probabilities of the above reaction.

We use the approximation that in the time interval ∆t, the probability that a molecule of

species Si (or Sj) changes into a molecule of species Sk is cm∆t, and the probability that a

molecule of species Si ( or Sj) remains a molecule of species Si (or Sj) is 1− cm∆t. We also

have reactions of the form

2S1 −→ S2, (5.4)

where the stoichiometry of species S1 is −2 and

S1 + S2 −→ 2S3, (5.5)

where the stoichiometry of species S3 is 2. Therefore, in the following derivations we take

into account vmi, the stoichiometry of species Si in reaction Rm. We define a matrix W of

size M ×N with elements

wmi = vmi(cm∆t), m = 1, 2 . . .M, i = 1, 2 . . . N. (5.6)

We further define a vector H(t) of size M such that its mth element hm(t) is the number

56



of distinct molecular combinations for reaction Rm as described in Section 1.4.2. We obtain

an expression for EX(t+∆t)|X(t) (X(t+∆t) |X(t)) by summing up the contribution for each

species from all the reactions. This gives

EX(t+∆t)|X(t) (X(t+∆t) |X(t)) = X(t) +W T H(t). (5.7)

Taking expectation EX(t) (·) of the above expression and setting G(t) ≡ EX(t) (H(t)), we

obtain

µ(t+∆t) = µ(t) +W T G(t). (5.8)

We next evaluate the recursive expression for the covariance matrix. Utilizing (5.7)

yields the second term in (5.2)

EX(t+∆t)|X(t) (X(t+∆t) |X(t)) EX(t+∆t)|X(t)

(
XT (t+∆t) |X(t)

)
= X(t)XT (t) + X(t)HT (t)W

+ W T H(t)XT (t) + W T H(t)HT (t)W . (5.9)

To evaluate the first term in (5.2) we set

R(t) ≡ cov
(
X(t+∆t),XT (t+∆t) |X(t)

)
, (5.10)

where R(t) is a matrix of size N and its elements are obtained using the multinomial

distribution approximation, as in the case of first order reactions. That is, in the time

interval (t, t+∆t), the reactant species in the reaction channel Rm either remain as reactants

or change into its product species, as specified by the stoichiometries. Further, the reaction

propensities are proportional to hm(t) for second order reactions, and therefore we replace

Km by hm(t) in expressions (4.22) and (4.23). This yields

rii(t) =
M∑
m=1

v2
mi hm(t) pmi (1− pmi) (5.11a)
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rij(t) =
M∑
m=1

vmi vmj hm(t) pmi pmj i 6= j, (5.11b)

where pmi = 1−cm∆t, if species Si is a reactant and pmi = cm∆t if Si is a product in reaction

Rm. Marginalizing the above expression gives the elements of B(t) = EX(t) (R(t))

bii(t) =
M∑
m=1

v2
mi gm(t) pmi (1− pmi) (5.12a)

bij(t) =
M∑
m=1

vmi vmj gm(t) pmi pmj i 6= j, (5.12b)

where gm(t) are the elements of G(t).

Substituting (5.9) and (5.10) in (5.2), and taking its expectation EX(t) (·) gives the

second moments

E
(
X(t+∆t)XT (t+∆t)

)
= EX(t)

(
X(t)XT (t)

)
+B(t) + EX(t)

(
X(t)HT (t)

)
W

+ W T EX(t)

(
H(t)XT (t)

)
+ W T EX(t)

(
H(t)HT (t)

)
W . (5.13)

From (5.8) and (5.13), we obtain the following recursive expression for the covariance matrix

C(t+∆t) = C(t) +B(t) +
(
EX(t)

(
X(t)HT (t)

)
− µ(t)GT (t)

)
W

+ W T
(
EX(t)

(
H(t)XT (t)

)
−G(t)µT (t)

)
+ W T

(
EX(t)

(
H(t)HT (t)

)
−G(t)GT (t)

)
W , (5.14)

where the fourth term is the transpose of the third term.

58



5.2.1 Example - Simple Reversible Reaction

Consider the reactions

R1 : S1 + S2
c1−→ S3 (5.15a)

R2 : S3
c2−→ S1 + S2. (5.15b)

If we know the initial number of molecules of all the species, then it is sufficient to track

only one species. We will track species, S1, and therefore we have N = 1, M = 2 and

X(t) = X1(t). The stoichiometries of species S1 in reactions R1 and R2 are ν11 = −1 and

ν21 = 1, respectively. The matrices H(t) and W are given by

H(t) =

(
X1(t)X2(t)

X3(t)

)
, W =

(
−c1∆t

c2∆t

)
. (5.16)

The matrix R is of size one, and its element is given by summing up the contributions from

reactions R1 and R2

r11 = X1(t)X2(t)c1∆t (1− c1∆t) +X3(t)c2∆t (1− c2∆t) . (5.17)

Utilizing (5.8) and (5.14) and expanding gives us the following expressions for the

propagation of the mean and the variance of X1(t):

µ1(t+∆t) = µ1(t) − E (X1(t)X2(t)) c1∆t + E (X3(t)) c2∆t (5.18)

σ2
1(t+∆t) = σ2

1(t) + E (X1(t)X2(t)) c1∆t (1− c1∆t)

+ E (X3(t)) c2∆t (1− c2∆t)

+ (c1∆t)
2 (E (X2

1 (t)X2
2 (t)

)
− (E (X1(t)X2(t)))2)

+ (c2∆t)
2 (E (X2

3 (t)
)
− (E (X3(t)))2)

− (2c1∆t)
(
E
(
X2

1 (t)X2(t)
)
− E (X1(t))E (X1(t)X2(t))

)
+ (2c2∆t) (E (X1(t)X3(t))− E (X1(t))E (X3(t)))

− (2c1∆tc2∆t) (E (X1(t)X2(t)X3(t))− E (X1(t)X2(t))E (X3(t))) . (5.19)
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In the above expressions µi(t) = E (Xi(t)), i = 1, 2, 3. In addition, we have the constraints

X1(t)−X2(t) = β12, X1(t)−X3(t) = β13, on the molecular populations. The evaluation of

higher order terms of the form E (X2
1 (t)X2(t)) will be discussed in Section 5.3.

5.2.2 Example - Competing Reactions

For the competing reactions

R1 : S1 + S2
c1−→ S3 (5.20a)

R2 : S1 + S4
c2−→ S5 (5.20b)

we track three species S1, S2 and S4. The number of tracked species N = 3, the number

of reactions M = 2 and X(t) =
(
X1(t) X2(t) X4(t)

)T
. The stoichiometries vectors are

ν1 =
(
−1− 1 0

)
and ν2 =

(
−1 0− 1

)
. The matrices H(t) and W are given by

H(t) =

(
X1(t)X2(t)

X1(t)X4(t)

)
, W =

(
−c1∆t −c1∆t 0

−c2∆t 0 −c2∆t

)
. (5.21)

The matrix

R(t) =

 r11(t) r12(t) r14(t)

r21(t) r22(t) r24(t)

r41(t) r42(t) r44(t)

 , (5.22)

is symmetric and its elements are given by

r11(t) = X1(t)X2(t)c1∆t(1− c1∆t) +X1(t)X4(t)c2∆t(1− c2∆t)

r12(t) = X1(t)X2(t)c1∆t(1− c1∆t)

r14(t) = X1(t)X4(t)c2∆t(1− c2∆t)

r22(t) = X1(t)X2(t)c1∆t(1− c1∆t)

r24(t) = 0

r44(t) = X1(t)X4(t)c2∆t(1− c2∆t).

This example will be continued in Section 5.5.1.
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5.3 Higher Order Joint Moments

In order to evaluate the expression (5.14), we need to compute the expectations of

X(t)HT (t) and H(t)HT (t). These matrices consist of third and higher order terms of the

form X1(t)X2(t)X3(t), X2
1 (t)X2

2 (t) and so forth. In general, the expressions for moments

of order up to Q consist of moments of order greater than Q. This is the moment closure

problem and a suitable approximation has to be constructed. We will utilize the multivariate

normal distribution approximation for each time step ∆t. Gómez-Uribe et al. [32], Goutsias

[35] and Lee et al. [47] have implemented moment closure by setting higher order moment

terms to zero. It is true that for multivariate normal distribution, the central moments of odd

order are zero, and third and higher order cumulants are zero, but the higher order moments

contained in the expressions for computations of second moments (covariance matrix in

(5.14)) are not necessarily third order central moments or third order cumulants. Singh

et al. implemented a moment closure technique and obtained expressions for higher order

moments that are consistent with lognormal distribution [68], [69]. We will compare the

normal and lognormal moment closure expressions for an example presented in [38].

We now derive the moments of multivariate normal distribution, using the moment

generating function [36], [74]. The multivariate normal PDF is defined by

fX(t)(x(t)) =
1

(2π)N/2|C(t)|1/2
exp{−1

2
(x(t)− µ(t))T C−1(t) (x(t)− µ(t))}. (5.23)

Its moment generating function is given by

MX(t) (ω) = exp{µT (t)ω +
1

2
ωT C(t)ω}, (5.24)

where MX(t) (ω) is defined by

MX(t) (ω) = E
(
exp{ωTX(t)}

)
(5.25)

and ω =
(
ω1 ω2 . . . ωN

)
is a vector of size N . Recall from (4.1) that the joint non-central

moments are defined by

γq(t) = E (Xq(t)) . (5.26)
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E (X3
i (t)) µ3

i (t) + 3µi(t)σ
2
i (t)

E (X4
i (t)) µ4

i (t) + 6µ2
i (t)σ

2
i (t) + 3σ4

i (t)

E
(
X2
i (t)Xj(t)

)
2µi(t)σij(t) +

(
µ2
i (t) + σ2

i (t)
)
µj(t)

E (Xi(t)Xj(t)Xk(t)) µi(t)µj(t)µk(t) + σjk(t)µi(t) + σik(t)µj(t) + σij(t)µk(t)

E
(
X2
i (t)X2

j (t)
)

4µi(t)µj(t)σij(t) + µ2
i (t)µ

2
j(t) + µ2

i (t)σ
2
j (t)

+µ2
j(t)σ

2
i (t) + 2σ2

ij(t) + σ2
i (t)σ

2
j (t)

E
(
X2
i (t)Xj(t)Xk(t)

)
µ2
i (t)µj(t)µk(t) + µ2

i (t)σjk(t) + 2µi(t)µj(t)σik(t)

+2µi(t)µk(t)σij(t) + σ2
i (t)µj(t)µk(t) + σjk(t)σ

2
i (t) + 2σij(t)σik(t)

Table 5.1: Higher order expectations expressed in terms of the first and second moments for
the multivariate normal distribution.

These moments are computed by utilizing (5.24) according to:

γq(t) =
∂q1+q2...qN

∂ωq11 ∂ω
q2
2 . . . ∂ωqNN

MX(t)(ω)

∣∣∣∣
ω=0

. (5.27)

The joint moments required for the computation of expectations in X(t)HT (t) and

H(t)HT (t) are listed in Table 5.1.

5.4 Algorithm Implementation

We choose a time step ∆t such that the average number of reactions in each reaction

channel is less than a specified value. For the three types of reactions

R1 : S1 −→ S2 (5.28a)

R2 : 2S1 −→ S2 (5.28b)

R3 : S1 + S2 −→ S3, (5.28c)
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choose a time step ∆t such that it satisfies

c1∆t ≤ ε (5.29a)

x1(t)c2∆t ≤ ε (5.29b)

Km(t)c3∆t ≤ ε, Km(t) = max(x1(t), x2(t)), (5.29c)

where ε is some specified value. Note that the time step maybe updated once every few

recursions. For second order reactions, the time step depends on the molecular populations.

Given the reaction stoichiometries, reaction constants, the initial number of molecules

X(t=0) and the stop time Ts, the algorithm is implemented as follows:

Initialization

• Define the matrices X(t) and H(t), for time t.

• Set time t=0,

µ(t=0) = X(t=0),

C(t=0) = 0.

Recursion

Repeat the following steps until stop time t=Ts is reached:

• Update the step size ∆t as described above.

• Compute the elements of the matrix W as given by (5.6).

• Compute the elements of the matrix R(t) as given by (5.11a) and (5.11b).

• Evaluate the expectations EX(t) (H(t)) and EX(t) (R(t)).

• Evaluate the expectations EX(t)

(
X(t)HT (t)

)
and EX(t)

(
H(t)HT (t)

)
from Table 5.1.

• Compute µ(t+∆t) by employing expression (5.8).

• Compute C(t+∆t) by employing expression (5.14).

• Advance the time to t+∆t.
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5.5 Simulation Results

As with the first order system, we compare the simulation results from the second order

expressions with the SSA, for accuracy and computation time. We track the means and the

covariance matrix with time. We also compare plots of normal distribution N (µi(t), σ
2
i (t)),

for species Si at time t, using the mean and the variance computed from the RM method,

with the distribution generated by the SSA method.

5.5.1 Example - Competing Reactions (continued)

We continue the example from Section 5.2.2. We have

µ(t) =

µ1(t)

µ2(t)

µ4(t)

 C(t) =

 σ2
1(t) σ12(t) σ14(t)

σ21(t) σ2
2(t) σ24(t)

σ41(t) σ42(t) σ2
4(t)

 . (5.30)

In order to compute µ(t + ∆t) and C(t + ∆t), we need to evaluate the expectations

G(t) ≡ EX(t) (H(t)) and B(t) = EX(t) (R(t)). In addition, we need the expectations of

H(t)XT (t), X(t)HT (t) and H(t)HT (t). The expressions for X(t)HT (t) and H(t)HT (t)

are

X(t)HT (t) =


X2

1 (t)X2(t) X2
1 (t)X4(t)

X1(t)X2
2 (t) X1(t)X2(t)X4(t)

X1(t)X2(t)X4(t) X1(t)X2
4 (t)

 (5.31)

H(t)HT (t) =

(
X2

1 (t)X2
2 (t) X2

1 (t)X2(t)X4(t)

X2
1 (t)X2(t)X4(t) X2

1 (t)X2
4 (t)

)
. (5.32)
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The required expectations are evaluated using joint moments of the multivariate normal

distribution as described in Section 5.3. Some of these terms are

E (X1(t)X2(t)) = σ12(t) + µ1(t)µ2(t) (5.33)

E
(
X2

1 (t)X2(t)
)

= 2µ1(t)σ12(t) +
(
µ2

1(t) + σ2
1(t)
)
µ2(t) (5.34)

E
(
X2

1 (t)X4(t)
)

= 2µ1(t)σ14(t) +
(
µ2

1(t) + σ2
1(t)
)
µ4(t) (5.35)

E
(
X1(t)X2

2 (t)
)

= 2µ2(t)σ21(t) +
(
µ2

2(t) + σ2
2(t)
)
µ1(t) (5.36)

E (X1(t)X2(t)X4(t)) = µ1(t)µ2(t)µ4(t) + σ24(t)µ1(t)

+σ14(t)µ2(t) + σ12(t)µ4(t). (5.37)

The expressions for µ(t)GT (t) and G(t)GT (t) are

µ(t)GT (t) =

µ1(t)E (X1(t)X2(t)) µ1(t)E (X1(t)X4(t))

µ2(t)E (X1(t)X2(t)) µ2(t)E (X1(t)X4(t))

µ4(t)E (X1(t)X2(t)) µ4(t)E (X1(t)X4(t))

 (5.38)

G(t)GT (t) =

(
(E (X1(t)X2(t)))2 E (X1(t)X2(t))E (X1(t)X4(t))

E (X1(t)X2(t))E (X1(t)X4(t)) (E (X1(t)X4(t)))2

)
. (5.39)

The simulation results from the RM method were compared with the SSA method for

the following parameters: X1(t = 0) = 10, 000, X2(t = 0) = 4, 000, X4(t = 0) = 1, 000,

c1 = 0.0001 sec−1, c2 = 0.0002 sec−1 and t= 1.0 sec. In the RM method, ∆t= 0.001 sec.

The noisy results from the SSA method in Figure 5.1 are due to insufficient realizations of

1, 000. With 10, 000 realizations in the SSA method (Figure 5.2), the results are less noisy

and the RM method is in very good agreement with the SSA method.

The CPU time with the RM method on the Fermat machine is 0.09 sec and with the

SSA method it is 1529 sec for 10, 000 realizations. For a value of ε = 0.001, we obtain

∆t=0.001 sec at time t=0. As the CPU time with the RM method is very small, we do not

vary the time step during the course of the simulation.
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5.5.2 Example - Dimerising Reaction

In the following reaction

R1 : 2S1 −→ S2, (5.40)

the monomer S1 dimerises to S2. We track species S1, and therefore N = 1, the number of

reactions M = 1 and the state of the system is given by X1(t). We also have

ν11 = −2, w11 = −2c1∆t, h1(t) =
1

2
X1(t) (X1(t)− 1) , (5.41)

and

r11(t) = 2X1(t) (X1(t)− 1) p11 (1− p11), (5.42)

where p11 = 1− c1∆t. The expressions for the first and the second moments are

µ1(t+∆t) = µ1(t) + c1∆tµ1(t)− c1∆tEX(t)

(
X2

1 (t)
)

(5.43)

EX(t+∆t)

(
X2

1 (t+∆t)
)

= E
(
X2

1 (t)
)

+ 2EX(t)

(
X2

1 (t)
)
c1∆t (1− c1∆t)

− 2µ1(t)c1∆t (1− c1∆t)− 2c1∆tE
(
X2

1 (t) (X1(t)− 1)
)

+ (c1∆t)
2E
(
X2

1 (t) (X1(t)− 1)2) . (5.44)

The simulation of this reaction and its comparison with other methods will be depicted in

Chapter 6.

5.5.3 Example - Ten Species

We now illustrate an example with the number of species N = 10, the number of

reactions M = 8. The reactions and the rate constants are listed in Table 5.2 and the initial

molecular populations are given in Table 5.3. Results are displayed at time t= 0.5 sec in

Figure 5.3 and at time t=2.0 sec in Figure 5.4. In the RM method, ∆t=0.01 sec, and in the

SSA method 2, 000 realizations were used. The results from the two methods are in good

agreement.
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5.5.4 Example - Viral Kinetics

We simulate the Viral Kinetics example described in Section 1.3.1 [73]. The species

are mRNA, DNA, Pr (protein) and V r (progeny virus). The reactions and the rate

constants are given in Table 5.4. For the reaction constants given in this table, the molecular

populations have the steady state values 20, 200 and 10000 for the species mRNA, DNA

and Pr, respectively. We start simulations with molecular populations of 2, 200 and 10, 000

for mRNA, DNA and Pr, respectively. It takes several days for the mRNA population to

reach its steady state value. The time step in the RM method is 0.0001 day. The simulations

results are displayed in Figures 5.5 and 5.6, at time t= 1.0 day, using 80, 000 and 150, 000

realizations, respectively, in the SSA method. The CPU time on the Fermat machine is

0.8 sec using the RM method. Due to very large variance, the plots from SSA simulations

are very noisy. The simulation times using the SSA method is about 16 hours with 80, 000

realizations and 31 hours with 150, 000 realizations. Figure 5.7 displays the results using the

RM method at time t=20.0 days.

Reaction Reaction Rate(
sec−1

)
S1 + S2 −→ S3 0.001

S1 + S4 −→ S5 0.002

S3 −→ S1 + S2 0.01

S5 −→ S1 + S4 0.01

S5 −→ S6 0.0001

S6 −→ S7 + S8 0.0003

S7 −→ S9 0.05

S8 −→ S10 0.05

Table 5.2: The reactions and rate constants for the Ten Species example in Section 5.5.3.
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Species Initial Population

S1 1000

S2 400

S3 0

S4 200

S5 0

S6 1000

S7 400

S8 500

S9 0

S10 0

Table 5.3: Initial molecular populations for the Ten Species example in Section 5.5.3.

Reaction Reaction Rate(
day−1

)
DNA −→ mRNA 1.0

mRNA −→ DNA + mRNA 0.025

mRNA −→ Pr + mRNA 1000

mRNA −→ ø 0.25

Pr −→ ø 1.9985

DNA + Pr −→ V r 7.5× 10−6

Table 5.4: The reactions and rate constants for the Viral Kinetics example in Section 5.5.4.
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Figure 5.1: Simulation results from the RM (solid line) and the SSA (“noisy” plot) methods
for the Competing Reaction system in Section 5.5.1. The 1, 000 realizations used in the SSA
method are not adequate.
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Figure 5.2: Same example as in Figure 5.1, except that the SSA method utilized 10, 000
realizations, and therefore the plots are less “noisy”.

70



Figure 5.3: Simulation results from the RM (solid line) and the SSA (“noisy” plot) methods,
at time t=0.5 sec, for the Ten Species example described in Section 5.5.3.
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Figure 5.4: Simulation results from the RM (solid line) and the SSA (“noisy” plot) methods,
at time t=2.0 sec, for the Ten Species example described in Section 5.5.3.
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Figure 5.5: Simulation results from the RM (solid line) and the SSA (“noisy” plot) methods,
at time t=1 day, for the Viral Kinetics example described in Section 5.5.4. The number of
realizations in the SSA method is 80, 000.
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Figure 5.6: Same example as in Figure 5.5, except that the SSA method utilized 150, 000
realizations.
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Figure 5.7: Viral Kinetics simulation, using the RM method, at time t=20 days.
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Chapter 6

Simulation and Comparison with

other methods

6.1 Introduction

As described in Chapter 3, the most popular methods of obtaining the time evolution

of the joint probability density in a biochemical system are the Monte Carlo methods, such

as the stochastic simulation algorithm and the τ -leap methods.

The moment propagation methods, in which we trace a few lower order moments of

P (x, t), were briefly introduced by Érdi [15] and van Kampen [76]. In 1992, Gillespie utilized

the propagator of the Markov process to derive the moment evoluation equations. However,

he describes his approximation procedure for moment closure as “lengthy and tedious”

(Appendix C, [24]). The procedure consists of solving several sets of differential equations,

truncated at different orders, and comparing successive solutions. In their 2007 paper,

Gómez-Uribe et al. derived equations to track the means, variances and the covariances,

starting from the CME [32]. They term their equations Mass Fluctuation Kinetics (MFK),

and they present several examples to illustrate their method. In their 2008 paper, the authors

separate the slow and fast reactions to obtain reduced slow and fast CMEs [33]. However,

in evaluating the expressions for the second moments, they ignore the third moments and

therefore their results are not as accurate as the SSA (Figures 2 and 3, [32]). In 2005,

Hespanha et al. [38] and Singh et al. [67] presented a Stochastic Hybrid Systems (SHS)
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method to compute the first few moments of P (x, t), and a moment closure technique to

evaluate the higher order moments that arise in the expressions for these moments. They

illustrate several examples with a few species and reactions. Several other approaches have

been presented, such as the Linear Noise Approximation [43] and utilizing the moment

generating function [21]. Since the SHS method is better developed than the other methods

mentioned above, we will compare the Proposed Method with the SHS.

6.2 Stochastic Hybrid Systems Method

A hybrid system is a dynamical system consisting of discrete and continuous states,

where the continuous state is described by a differential equation and the discrete states

reset the continuous state according to some pre-specified conditions [37], [49]. A stochastic

hybrid system (SHS) is a hybrid system where both the continuous and the discrete states

maybe random [19], [39]. For example, the continuous state maybe described by a stochastic

differential equation and the transitions between the continuous states are triggered by a

Poisson process. We now present the stochastic hybrid system described by Hespanha et

al. and reproduce their results for the evolution of a few lower-order moments. Their work

is based on piecewise deterministic Markov process (PDMP) introduced by Davis [10]. A

PDMP consists of a continuous state described by a deterministic differential equation, and

the transition between continuous states described by a stochastic jump process, with state

dependent transition probabilities. Davis gives a complete characterization of the extended

generator of such processes, which is relevant for computing the necessary expectations.

For the biochemical system defined in Section 4.2 with N molecular species and M

reactions, the SHS consists of the following:

• A hybrid state (X(t),θ(t)), where X(t) : [0,∞) → RN is a stochastic process called

the continuous state, θ(t) : [0,∞)→ Θ is a jump process called the discrete state, RN

denotes the N -dimensional Euclidean space and Θ denotes a discrete set.

• A differential equation which governs X(t)

dX(t)

dt
= g(θ,X, t), g : Θ × RN × [0,∞)→ RN . (6.1)
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• A family of reset maps

φm
(
θ−,X−, t

)
, φm : Θ × RN × [0,∞)→ Θ × RN (6.2)

for the mth reaction defined by the stoichiometry of the species for that reaction. These

maps determine how the continuous states are reset.

• A family of transition intensities

λm (θ,X, t) = cmhm(X, t), λm : Θ × RN × [0,∞)→ [0,∞) (6.3)

for the mth reaction, where cm is the stochastic rate constant and hm(X, t) is the

number of distinct molecular combinations of reaction Rm as defined in Section 1.4.2.

For the above biochemical system, the continuous state evolves as follows:

dX(t)

dt
= 0. (6.4)

This is because the molecular populations change only when there is a reaction, and these

are set by the reset map defined in (6.2).

In a polynomial stochastic hybrid system (pSHS), the reset maps φm (θ,X, t) and the

transition intensities λm (θ,X, t) are all polynomial functions ofX(t). Let the joint moments

about the origin be given by

γq(t) ≡ γ(q1,q2...qN )(t) = E (Xq1
1 (t)Xq2

2 (t) . . . XqN
N (t)) , (6.5)

where q = (q1 q2 . . . qN) ∈ NN and N is the set of positive integers. Recall that the order

of the moments Q is defined by Q =
∑N

n=1 qn. The authors show that the time evolution of

γq(t) is described by

dγq(t)

dt
= E

(
M∑
m=1

(
φq
m (θ,X, t)−Xq(t)

)
λm (θ,X, t)

)
. (6.6)

In the above equation, Xq(t) denotes the monomial Xq1
1 (t)Xq2

2 (t) . . . XqN
N (t).
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6.2.1 Moment Closure

If the biochemical system consists of second order reactions, then the expressions for

moments of order up to Q consists of moments of order greater than Q. The authors

approximate the higher order moments as nonlinear functions of the lower order moments

using a moment closure technique [67], [68]. The results for computing these nonlinear

functions are presented here. For detailed derivations, we refer you to their papers.

Let γ(t) =
(
γq1(t) γq2(t) . . . γqJ (t)

)T
be a vector which contains all moments of

order up to Q and γ̄(t) =
(
γq̄1(t) γq̄2(t) . . . γq̄J′ (t)

)T
be a vector which contains moments

of order greater than Q, required for the evaluation of the moments in γ(t). The sizes of

γ(t) and γ̄(t) are J and J ′, respectively. The time evolution of γ, omitting the t′s, maybe

expressed as
dγ

dt
= V1γ + V2γ̄, (6.7)

where the matrices V1 and V2 are determined from (6.6). The above system is closed by

approximating the elements of γ̄ as nonlinear functions of the elements of γ. Let υ denote

the new approximate system. Then the truncated moment dynamics is given by

dυ

dt
= V1υ + V2ϕ(υ), (6.8)

where ϕ(υ) is the vector of moment closure function. Its elements, denoted by ϕ(υ), are

determined by matching the time derivatives of γ and υ with deterministic initial conditions.

That is

γ(t0) = υ(t0) =⇒ dkγ

dtk

∣∣∣∣
t=t0

=
dkυ

dtk

∣∣∣∣
t=t0

, ∀ k = 1, 2, . . . K, (6.9)

where K is selected to be large enough such that γ remains “close” to υ. The authors

assume that ϕ(υ) have the separable form

ϕ(υ) ≡ ϕ(γ) = (γq1)η1(γq2)η2 . . . (γqJ )ηJ , (6.10)

where γqj , j = 1 . . . J , are the elements of γ and η1, η2, . . . ηJ are determined as described

below. For any two vectors q = (q1, q2 . . . qN) and q̄ = (q̄1, q̄2 . . . q̄N), define(
q

q̄

)
=

(
q1

q̄1

)(
q2

q̄2

)
. . .

(
qN
q̄N

)
. (6.11)
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Then for each element γq̄j′ in γ̄, η1, η2, . . . ηJ are determined from the equations

(
q̄j′

qj

)
=

J∑
n=1

ηn

(
qn
qj

)
∀ j = 1, 2, . . . J. (6.12)

The authors indicate that their moment closure technique, which gives expressions for

higher order moments as functions of lower order moments are consistent with lognormal

distributions (p. 5004 in [69]).

In their earlier papers (Eq. (14) in [38]), the authors maintain that in order to satisfy

the conditions in (6.10) and (6.12), for every moment γqj′ in γ̄, the polynomial
∑∞

i=1 uj′,i x
qi

must belong to the linear subspace generated by the polynomials

∞∑
i=1

uj,i x
qj′−qj+qi , j = 1 . . . J. (6.13)

However, in their recent paper, the authors have dropped the condition in (6.13) [69]. We

illustrate the method with an example.

6.2.2 Example - Dimerising Reaction

Consider the dimerising reaction

R1 : 2S1 −→ S2. (6.14)

The state of the system is X(t) = X1(t). Omitting the t’s, the reset map for the reaction is

φ1 (X) = X1 − 2 and the transition intensity is λ1 (X) = c1
2
X1(X1 − 1).

Let γ = (γ1 γ2)T and γ̄ = (γ3). From (6.6), we obtain the expressions for the time

evolution of γ (
dγ1

dt
dγ2

dt

)
=

(
c1 −c1

−2c1 4c1

) (
γ1

γ2

)
+

(
0

−2c1

) (
γ3
)
. (6.15)
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In addition, we have, for the time evolution of γ3

dγ3

dt
= 4c1γ

1 − 10c1γ
2 + 9c1γ

3 − 3c1γ
4. (6.16)

The expressions in (6.15) and (6.16) do not satisfy the condition in (6.13) as the

polynomial

p3(x) = 4c1x− 10c1x
2 + 9c1x

3 − 3c1x
4 (6.17)

does not belong to the subspace generated by the polynomials

p1(x) = c1x
3 − c1x

4 (6.18)

p2(x) = −2c1x
2 + 4c1x

3 − 2c1x
4. (6.19)

The expressions in (6.15) and (6.16) are modified by dropping the lower order moments(
dγ1

dt
dγ2

dt

)
=

(
c1 −c1

0 4c1

) (
γ1

γ2

)
+

(
0

−2c1

) (
γ3
)
. (6.20)

dγ3

dt
= 9c1γ

3 − 3c1γ
4. (6.21)

The condition in (6.13) is now satisfied.

Further, an expression for γ3 is obtained using the moment closure technique in (6.10)

and (6.12)

γ3 = (γ1)η1(γ2)η2 , (6.22)

where η1 and η2 are obtained by solving the equations

η1 + 2η2 = 3 (6.23)

η2 = 3. (6.24)

This yields η1 = −3 and

γ3 =

(
γ2

γ1

)3

. (6.25)
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6.3 Comparison of the RM Method with the SHS

Method

We now compare the expressions for the evolution of the first two moments from the

RM method with the SHS method. We also compare the simulation results from the two

methods and discuss implementation issues.

6.3.1 First Order Reactions

For the first order reactions, the evolution of moments is closed, that is, the computation

of moments of order up to Q do not require any higher order moments. We compare the

expressions for moments obtained from the RM method with those obtained from the SHS

method.

Example - Three Species (continued)

Continuing the example presented in Section 4.4.1, we have the reactions

R1 : S1
c1−→ S2 (6.26a)

R2 : S2
c2−→ S3. (6.26b)

The state of the system is X(t) =
(
X1(t) X2(t) X3(t)

)T
. Omitting the t’s, the reset maps

for the two reactions are

φ1 (X) =

 X1 − 1

X2 + 1

X3

 , φ2 (X) =

 X1

X2 − 1

X3 + 1

 . (6.27)

The transition intensities are

λ1 (X) = c1X1, λ2 (X) = c2X2. (6.28)

82



From (6.6), we have the following expression for evaluating moments

dγq

dt
= E

(
c1X1 ((X1 − 1)q1(X2 + 1)q2Xq3

3 −X
q1
1 X

q2
2 X

q3
3 ) +

c2X2 (Xq1
1 (X2 − 1)q2(X3 + 1)q3 −Xq1

1 X
q2
2 X

q3
3 )
)
. (6.29)

We track a total of nine first and second order moments, and therefore J = 9. The

required expressions from the SHS method are

dγ(1,0,0)

dt
= −c1γ

(1,0,0) (6.30)

dγ(0,1,0)

dt
= c1γ

(1,0,0) − c2γ
(0,1,0) (6.31)

dγ(0,0,1)

dt
= c2γ

(0,1,0) (6.32)

dγ(2,0,0)

dt
= c1γ

(1,0,0) − 2c1γ
(2,0,0) (6.33)

dγ(0,2,0)

dt
= c1γ

(1,0,0) + c2γ
(0,1,0) + 2c1γ

(1,1,0) − 2c2γ
(0,2,0) (6.34)

dγ(0,0,2)

dt
= c2γ

(0,1,0) + 2c2γ
(0,1,1) (6.35)

dγ(1,1,0)

dt
= −c1γ

(1,0,0) + c1γ
(2,0,0) − (c1 + c2)γ(1,1,0) (6.36)

dγ(1,0,1)

dt
= −c1γ

(1,0,1) + c2γ
(1,1,0) (6.37)

dγ(0,1,1)

dt
= c1γ

(1,0,1) + c2γ
(0,2,0) − c2γ

(0,1,1) − c2γ
(0,1,0) (6.38)

Applying (4.17) and (4.39), the RM method yields the following expressions for first

moments

µ1(t+∆t) = e−c1∆tµ1(t) (6.39)

µ2(t+∆t) =
(
1− e−c1∆t

)
µ1(t) + e−c2∆tµ2(t) (6.40)

µ3(t+∆t) =
(
1− e−c2∆t

)
µ2(t) + µ3(t). (6.41)
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And from (4.27), the RM method yields the following expressions for the second moments

E
(
X2

1 (t+∆t)
)

= E (X1(t)) e−c1∆t
(
1− e−c1∆t

)
+ E

(
X2

1 (t)
) (
e−c1∆t

)2
(6.42)

E (X1(t+∆t)X2(t+∆t)) = −E (X1(t)) e−c1∆t
(
1− e−c1∆t

)
+ E

(
X2

1 (t)
)
e−c1∆t

(
1− e−c1∆t

)
+ E (X1(t)X2(t)) e−c1∆te−c2∆t. (6.43)

We rewrite (6.33) from the SHS method, replacing the differentials with finite differences

E
(
X2

1 (t+∆t)
)

= E
(
X2

1 (t)
)

+ c1∆tE (X1(t))− 2c1∆tE
(
X2

1 (t)
)
. (6.44)

We also rewrite (6.42) from the RM method, using the Taylor series expansion of e−c1∆t

E
(
X2

1 (t+∆t)
)

u E (X1(t))

(
c1∆t−

3

2
(c1∆t)

2 + . . .

)
+

E
(
X2

1 (t)
(
1− 2c1∆t+ 2(c1∆t)

2
)

+ . . .
)
. (6.45)

The above expression contains additional second and higher order terms in c1∆t, compared

with (6.44), which entails shorter time steps and consequently longer computation times

with the SHS method.

We compare the simulation results obtained by the SHS method with the RM and the

SSA methods, for the same parameters as in Section 4.4.1. The differential equations in the

SHS method were solved using the Euler method. We recapitulate that the initial number

of molecules are X(t=0) =
(
10000 500 0

)T
and the stochastic rate constants are c1 = 0.1

sec−1 and c2 = 1.0 sec−1. The species are tracked from t=0 sec to t=10 sec, with ∆t=0.005

sec for the RM method, ∆t=0.00001 sec for the SHS method and the number of realizations

being 5, 000 for the SSA method. The average number of time steps with the SSA method

is 12, 721. From Figure 6.1, we see that the estimated moments obtained by the RM and

SHS methods are in good agreement. In Figure 6.2, the time step in the SHS method was

changed to ∆t=0.0005, whereas the parameters of the other methods remained unchanged.

With the larger time step, the SHS method does not perform as well.
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6.3.2 Second Order Reactions

For the second order reactions, the computation of moments of order up to Q require

moments of order greater than Q. Therefore, in addition to determining the moment

evolution equations from (6.6), we also require expressions for the higher order moments,

which are evaluated from (6.10) and (6.12). We compare the dimerising reaction example.

6.3.3 Example - Dimerising Reaction (continued)

In the SHS method, we will use expression (6.15) instead of (6.20), as the authors

dropped condition (6.13) in a recent paper [69]. The expressions for the first and the second

moments are

dγ1

dt
= c1γ

1 − c1γ
2 (6.46)

dγ2

dt
= −2c1γ

1 + 4c1γ
2 − 2c1γ

3. (6.47)

Rewriting the above expressions, replacing the differentials with finite differences, yields

µ1(t+∆t) = µ1(t) + c1∆tµ1(t) − c1∆tE
(
X2

1 (t)
)
. (6.48)

E
(
X2

1 (t+∆t)
)

= E
(
X2

1 (t)
)
− 2c1∆tµ1(t)

+ 4c1∆tE
(
X2

1 (t)
)
− 2c1∆tE

(
X3

1 (t)
)
, (6.49)

where the expression for E (X3
1 (t)) is given by (6.25).

In the RM method, we rewrite expression (5.43) for the mean and expand expression

(5.44) for the second moment

µ1(t+∆t) = µ1(t) + c1∆tµ1(t)− c1∆tE
(
X2

1 (t)
)

(6.50)
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E
(
X2

1 (t+∆t)
)

= E
(
X2

1 (t)
)
− 2c1∆tµ1(t)

+ 4c1∆tE
(
X2

1 (t)
)
− 2c1∆tE

(
X3

1 (t)
)

+ 2 (c1∆t)
2 µ1(t)− (c1∆t)

2E
(
X2

1 (t)
)

− (c1∆t)
2E
(
X3

1 (t)
)

+ (c1∆t)
2E
(
X4

1 (t)
)
, (6.51)

where E (X3
1 (t)) and E (X4

1 (t)) are evaluated from

E
(
X3

1 (t)
)

= µ3
1(t) + 3µ1(t)σ2

1(t) (6.52)

E
(
X4

1 (t)
)

= µ4
1(t) + 6µ2

1(t)σ2
1(t) + 3σ4

1(t). (6.53)

Once again, the expression for E (X2
1 (t+∆t)) from the RM method contains additional

terms, compared with the SHS method.

Figure 6.3 compares the simulation results, from the two methods, with the SSA. The

parameters are X1(t = 0) = 1, 500, X2(t = 0) = 0, c1 = 0.002 sec−1 and the simulation is

performed up to time t=1 sec. The number of realizations in the SSA method is 3, 000. In

the RM method ∆t= 0.002 sec. The results from the SHS method compare well with the

SSA with ∆t= 0.0001 sec (top plot), but not with the larger ∆t= 0.002 sec (bottom plot).

This is due to the additional higher order terms in the RM method, and different moment

closure expressions in the two methods. The RM method utilizes the normal distribution

for the moment closure approximation, whereas the moment closure expressions in the SHS

method correspond to lognormal distribution.

6.3.4 Implementation Issues

We now discuss the implementation issues with the SHS method, for examples consisting

of a large number of molecules and species, such as the first order complex example presented

in 4.4.2 and the second order example with ten species presented in 5.5.3.

In order to execute the complex first order example given in Section 4.4.2, with the

number of species N = 100 and the number of reactions M = 200, using the SHS method,

the expression (6.6) for the evolution of moments will consist of 200 terms. Many of these

terms would be zero. Nonetheless, we would require a total of N equations for the first

moments and N(N + 1)/2 equations for the second moments. This gives a total of 5, 150
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equations similar to those in (6.30) through (6.38). This is much more arduous to implement

than the RM method. For a given biochemical system with first order reactions, the RM

method employs expressions (4.6a) and (4.6b) for computing P and (4.25a) and (4.25b) for

computing B(t). The mean and the covariance at each time step are obtained using the

recursive expressions in (4.17) and (4.29).

In order to execute the second order example given in Section 5.5.3, with the number

of species N = 10 and the number of reactions M = 8, using the SHS method, we have

to derive a total of 55 equations, for the evolution of the first and the second moments. In

addition we have to solve the system of equations in (6.12), to determine the expressions for

higher order moments. These are many more additional steps compared to the RM method.

For a given system of second order reactions, the RM method is implemented as described

in Section 5.4. That is, given the reaction network and rate constants, define matrices W ,

X(t) and H(t), compute the higher order expectations utilizing Table 5.1, and compute

µ(t + ∆t) and C(t + ∆t), recursively, by employing expressions (5.8) and (5.14), without

deriving or solving any differential equations.

To recapitulate, the RM method produces the same accuracy as the SHS method,

in fewer time steps, due to additional higher order terms and a different moment

closure technique. The moment closure techniques from various methods require further

investigation. For a given biochemical system, with known reactions and rate constants, the

RM method can be implemented by utilizing the given recursive expressions, whereas the SHS

method requires additional steps or additional software to derive the differential equations,

determine the expressions for higher order moments and solve the resulting equations.
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Figure 6.1: Comparison of the results from the RM, SHS and the SSA methods for the Three
Species example given in Section 6.3.1. The curves represent the computed means µ2(t) (top
plot), the variances σ2

2(t) (second plot), and the covariances σ2 1(t) (third plot) and σ2 3(t)
(bottom plot). ∆t is 0.005 sec with the RM method and 0.00001 sec with the SHS method.
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Figure 6.2: Same example and parameters as in Figure 6.1, except that in the SHS method
∆t= 0.0005 sec. With a larger ∆t, the SHS method does not agree well with the RM and
the SSA methods.
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Figure 6.3: Simulation results from the RM (solid line), the SHS (dotted line) and the SSA
(“noisy” plot) methods for the Dimerising Reaction example described in Section 6.3.3. In
the top plot, ∆t is 0.002 sec in the RM method and 0.0001 sec in the SHS method. When
∆t is changed to 0.002 sec in the SHS method (bottom plot), it doesn’t agree very well with
the SSA.
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Chapter 7

Conclusion and Future Work

In the forward problem of biochemical reaction systems, we have knowledge of all the

reactions and the associated rate constants. We want to determine the joint probability

distribution of the populations of all the molecular species at any time instant. The present

state-of-the-art approaches for stochastic simulation of such systems are based on Monte

Carlo methods, such as the Stochastic Simulation Algorithm (SSA) and its accelerated

versions. The Monte Carlo methods provide approximations of the complete distribution,

but they are computationally infeasible for complex biochemical systems consisting of a large

number of species and reactions.

An alternate approach is to determine the evolution of a few lower order moments with

time. In this dissertation, we presented a new method, called the Recursive Moment (RM)

method, for propagating the first two moments of the joint probability distribution of the

molecular populations in complex biochemical systems. The proposed method is applicable

to very large systems. Compared with the SSA, the RM method yields significant savings

in computation time. In contrast to other moment propagation methods, the recursive

expressions in our method can be implemented by specifying rate constants and reaction

stoichiometries, without having to derive or solve any differential equations.

An important direction for continued work on the RM method includes evaluation of

its numerical accuracy. We would like to be in a position to predict the accuracy of the

proposed method. Therefore, it is important to study the accuracy as a function of various

factors, including the value of the time step, the values of the reaction constants, the types

of reactions, and the population sizes of the species. Ideally, we would like to be able
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to determine upper bounds of performance given a particular set of reactions, molecular

populations, and choices of time step.

There are cases where the distributions of the molecular populations are not unimodal.

More specifically, there may be scenarios where the PMFs may be multimodal, for example,

the bimodal distribution in the Schlögl model [66]. This implies that tracking only the first

two moments will not be sufficient. Thus, it is important to expand the work presented

in the dissertation so that one can track higher order moments. The approach used for

deriving the proposed method is amenable to generalize the method. The goal, however, is

to obtain a procedure that is not cumbersome for execution. Clearly, once we have higher

order moments, we will be able to deduce much more about the joint distribution of the

species.

An important extension of the proposed work is to apply the method in practice. To

that end, simulations of complex metabolic and signaling pathways, such as the cell signaling

pathway in cancer and stem cells as described in [13], are particularly attractive. Since

such pathways are models developed by biologists, it would be interesting to test them

against experimental data. Therefore, developing ways of testing proposed models using the

simulation tools would add considerable value to the analysis.

Finally, in the problem studied here, it was assumed that we have knowledge of the

reaction network and all the rate constants. However, these quantities are usually unknown,

but what is available instead are the time series data of biochemical pathways. Further, it is

difficult to obtain data for all the species sampled at high enough frequencies, and one may

only have observations of a subset of the species. In future work, one would like to examine

statistical techniques for inferring parameters from data in challenging scenarios. The class

of Bayesian methods offer approaches for tackling many difficult problems [6], [18]. With

partially observed data and for systems with a large number of species (high dimension),

computational techniques such as the Markov Chain Monte Carlo (MCMC) can be used to

solve such problems [64].
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[66] F. Schlögl, “On thermodynamics near a steady state,” Zeitschirft für Physik A, vol.

248, no. 5, pp. 446–458, 1971.

[67] A. Singh and J. P. Hespanha, “Models for multi-specie chemical reactions using

polynomial stochastic hybrid systems,” in Proceedings of the 44th IEEE Conference

on Decision and Control and the European Control Conference, 2005, pp. 2969–2974.

[68] A. Singh and J. P. Hespanha, “A derivative matching approach to moment closure

for the stochastic logistic model,” Bulletin of Mathematical Biology, vol. 69, no. 6, pp.

1909–1925, 2007.

[69] A. Singh and J. P. Hespanha, “Stochastic hybrid systems for studying biochemical

processes,” Philosophical Transactions of the Royal Society: A, vol. 368, no. 1930, pp.

4995–5011, 2010.
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Appendix A

Acronyms

CME chemical master equation

FPE Fokker-Planck equation

ODE ordinary differential equation

PDE partial differential equation

PMF probability mass function (discrete random variable)

PDF probability density function (continuous random variable)

MGF moment generating function

MFK mass fluctuation kinetics

RM recursive method

RRE reaction rate equation

SDE stochastic differential equation

SHS stochastic hybrid system

SSA stochastic simulation algorithm
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Appendix B

Notation

am(x, t) reaction propensity in Rm.

αi population of species Si at time t = 0.

α state of the system at time t = 0.

b(·) SDE drift coefficient.

cm stochastic rate constant of reaction Rm.

Ci sum of the stochastic rate constants in which species Si

is a source.

C(t) covariance of X(t)

δ(t) Dirac delta function.

∆t step size of the recursive method.

G(si, t) probability generating function of P (xi, t).

G(s, t) probability generating function of P (x, t).

γq(t) elements of γ(t)

γ′ q(t) elements of γ ′(t)

γ(t) vector of non-central moments

γ ′(t) vector of central moments

Γ (·) Gamma function.

hm(x, t) number of distinct molecular combinations in Rm.

km deterministic rate constant of reaction Rm.
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M number of reactions.

MX(t) (ω) moment generating function of X(t).

µ(t), mean of X(t)

nA Avogadro number

N number of species or the number of tracked species.

N set of positive integers.

N (µ, σ2) normal distribution with mean µ and variance σ2.

νmi stoichiometry of species Si in reaction Rm.

νm stoichiometry vector in reaction Rm.

P (x, t), P (x(t)) pdf or pmf of of X(t).

Pl|l−1(·) conditional pmf of a random vector at time tl given its

pmf at time tl−1.

Q order of the moments in γq(t).

Rm mth reaction, m = 1 . . .M .

R set of real numbers.

Si, Sj ith and jth species, i = 1 . . . N , j = 1 . . . N .

t or tl time index

u(·) SDE diffusion coefficient.

V volume of biochemical reaction system

W(·) Wiener process.

x(t) a realization of X(t).

Xi(t) population of species Si at time t.

X(t) state of the system at time t, with elements Xi(t).
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