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Abstract of the Thesis

Strange Stars in the MIT Bag Model

by

Charlotte Mielke

Master of Arts

in

Physics

Stony Brook University

2011

We study strange stars under the assumption of the strange matter hypothesis, using
an MIT bag model to describe strange matter. We find that a 1.97M� star (as recently
measured) is generally possible in the context of the bag model, although it places restrictions
on the bag model’s parameters. Furthermore, limits for the central pressure and energy
density are obtained.
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1 Introduction
The structure of a neutron star and its mass are determined by the underlying equation
of state, but to date QCD has not been able to provide an equation that is valid for all
densities and temperatures. With a typical radius of only 15 km and a mass of 1.5M�,
neutron stars are among the densest objects in our universe, and it is not clear whether
perturbation theories can be applied under these extreme conditions, where densities by far
exceed the nuclear saturation density n = 0.16 fm−3. Exotic types of matter such as strange
matter, hyperons or kaon condensates have therefore been proposed to exist in the core of
neutron stars, and the precise measurement of neutron star masses and radii is required
to determine which of these conjectures is correct. In this sense, neutron stars are natural
testing laboratories for matter under extreme pressures and densities.

A direct consequence of General Relativity is that there must be a maximum mass that no
neutron star can exceed without collapsing into a black hole. The precise measurement of
large neutron stars is therefore especially important, because it may rule out some equations
of state that do not allow these masses and place severe restrictions on others, thereby
helping us to gain more insight in the structure of matter under extreme pressures. Accurate
measurements for neutron star masses are possible for pulsars in binary systems (mostly with
another neutron star or a white dwarf) that are edge-on or have large eccentricities and large
sin(ω), where ω is the longitude of periastron. However, this only applies to very few pulsars
in binaries. Less accurate measurements are possible for X-ray binaries. As a result of these
difficulties, there are only very few accurately measured neutron star masses (for a list see
[19]). Therefore, the measurement of a (1.97M ± 0.04)M� pulsar, as reported in 2010 by
Demorest et al. [8], is very exciting, as this by far exceeds the mass of the heaviest of the
previously known neutron stars, (1.667± 0.021)M� [29]), setting tight constraints on possible
equations of state and thermodynamic quantities in neutron stars. The black widow pulsar
might even have a mass of 2.4M� [28], although this remains to be confirmed.
This thesis mainly focuses on the hypothetical existence of stable strange stars, i.e. stars

that are made of u−, d− and s−quarks. We use the MIT bag model to describe this kind of
matter. The main goal of this thesis is to obtain restrictions on the properties of the bag
model in the light of the recent mass measurements.
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1.1 Structure of the thesis
In the first chapter, we introduce the Tolman-Oppenheimer-Volkov (TOV) equations, the
equations for hydrostatic equilibrium in General Relativity, which govern a neutron star’s
structure. There are only very few analytic solutions to the TOV equations that fulfill basic
requirements to physical stars, and we discuss one of them (the Buchdahl solution) in detail.
We also dedicate some time to the incompressible fluid solution, which - although clearly
unphysical - illustrates some features of relativistic stars. Since all other calculations in this
thesis have to be numerical, we shortly describe the method that was used.
The second chapter is dedicated to the MIT bag model and the theoretical motivation

for the existence of strange stars. After shortly touching on the classic MIT bag model as
proposed by Chodos et al. [5], we discuss recent corrections for QCD, the strange quark
mass and color superconductivity that lead to the equation of state that is used throughout
this thesis. We then review the strange matter hypothesis by Witten [30] and analyze its
implications on the parameters in the MIT bag model. Other models of strange quark matter
are briefly mentioned as well.
In the third chapter, we want to explore how the maximum mass predicted by the MIT

bag model depends on its parameters, especially in the light of the constraints that arise
from the 1.97M� star. We also analyze how the maximum mass scales with the bag model
parameters.

The fourth chapter discusses thermodynamic properties that are relevant in neutron stars,
such as pressure and energy density. It can be shown that the 1.97M� star also places
restrictions on these quantities.
Finally, there is a short summary of the results.
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2 The Tolman-Oppenheimer-Volkov Equations

2.1 The TOV equations
Any stable star must be in hydrostatic equilibrium, i.e. there must be a balance between
the thermal pressure and gravity, and the structure of a star is mainly determined by this
requirement. The Newtonian equations for hydrostatic equilbrium

dp

dr
= −m(r)ρ(r)

r2 , (2.1)
dm

dr
= 4πr2ρ(r), (2.2)

where r is the radius, m(r) is the enclosed gravitational mass, p(r) is the pressure and ρ(r) is
the density at a given radius, become invalid for very compact objects such as neutron stars.
Here, we must resort to General Relativity, and we replace the ρ by the energy density ε/c2.
Furthermore, in the following equations, we set G = c = 1. The equations for hydrostatic
equilibrium in General Relativity are the Tolman-Oppenheimer-Volkov (TOV) equations,
which are given by

dp

dr
= −(ε+ p)m+ 4πr3p

r(r − 2m) , (2.3)

dm

dr
= 4πr2ε. (2.4)

The equations can be derived from the Einstein equations assuming a general static, spherically
symmetric metric

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (2.5)

where

λ = −ln
(

1− m(r)
r

)
, (2.6)

ν ′(r) = 2p(r)
ε(r) + p(r) . (2.7)
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The prime denotes a derivative with respect to r. On the boundary of the star, a solution
must match the Schwarzschild solution [23], i.e.

eν = e−λ = 1− 2M
R
. (2.8)

A solution to the TOV equation that could describe a physical star must fulfill certain
criteria: For a star of radius R we must require that the pressure vanishes on the boundary
r = R. For stars that are bound only by gravity, the energy density also has to vanish at
the surface. Hypothetical self-bound stars could have a finite energy density at the surface,
however [10]. Generally, pressure and energy density have to decrease monotonically as a
function of r.

If we require causality (i.e. that the speed of sound be smaller than the speed of light), it
is possible to show that no neutron star can have a mass that is larger than 3.2M� [27]. Also,
any specific equation of state ε(r) has a maximum mass. Heavier stars are not stable and
will collapse into black holes [19]. One goal of this thesis is to determine the maximum mass
for the MIT bag model equation of state and analyze its dependence on the bag model’s
parameters in light of the recent measurement of a 1.97M� neutron star [8].

2.2 Details of the numerical integrations

2.2.1 Integrating the TOV equations
Given an equation of state and a value for the central pressure pc we can integrate the TOV
equations numerically. For this, we use a fourth order Runge-Kutta method. Because the
TOV equations are singular at the center of the star (m = r = 0), we use an incompressible
fluid (ε ≡ ε(0)) as an approximation for small r, since there is an analytic solution in this
case (see section 2.3.1). The integration stops when the pressure becomes negative, since we
need p > 0 inside a star to prevent matter from falling towards the center due to gravitation.
This method can be improved by making the steps smaller as the integration approaches

the surface of the star. Before each step of the integration, we calculate

pt = pn + p′n · δ (2.9)

where δ is the step size and p′n is the slope at pn as given by the TOV equations. If pt > 0,
then pn+1 will also be positive, so we have not yet reached the surface of the star, and we
keep δ unchanged. If pt < 0, then we have to adjust the step size by setting

δ = − pn
2p′n

. (2.10)

The routine breaks when the step size is smaller than a given value. In this way, we can get
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as close to the stellar surface as we want and thus obtain very accurate results. The problem
is that it is impossible to know beforehand how many steps the routine has to execute to
reach the desired level of accuracy. Of course, even without adjusting the step size, it is not
clear from the beginning what the radius of the star will be, therefore, the number of steps
can only be estimated before the integration, for example by using the equation of state for
the incompressible fluid as an approximation (see section 2.3.1).

2.2.2 Modifications to the TOV equations
To avoid the problems explained above, the TOV equations can be modified [25] by introducing
a new variable

dh = dµ

µ
= dp

ε+ p
(2.11)

and treating m(h) and r2(h) as the dependent variables. The TOV equations are then given
by

dr2(h)
dh

= −2r2 r − 2m
m+ 4πpr3 , (2.12)

dm

dh
= −4πεr3 r − 2m

m+ 4πpr3 , (2.13)

and they have to be integrated from the center h(pc) = hc to the surface h(p = 0) = 0 of the
star. At the center of the star (hc − h small), a power series expansion is possible [25]:

r2(h) = 3(hc − h)
2π(3pc + εc)

, (2.14)

m(h) = 4
π
εcr

3, (2.15)

and it is used in the first step of the integration because both numerator and denominator tend
to zero for r,m→ 0. Generally, 100 steps (or equivalently a step size of hc/100) are sufficient.
Because of these advantages, this is the method that will be used for the integrations in the
following sections.

2.2.3 Finding the maximum mass
The maximum mass for a specific equation of state is a question of central importance. For
both methods, we can calculate mass and radius for a given central pressure (or equivalently
hc). By iterating over different central pressures, we can obtain the mass versus radius
relationship for any given equation of state. Of course, the above method only calculates
discrete mass-radius pairs. Therefore, after calculating 30− 100 data pairs (depending on the
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complexity of the equation of state), we apply a polynomial fit to the pairs in the environment
of the largest mass. We then determine the maximum of said polynomial. Since the mass
versus radius relationships for the equations of state discussed here are smooth, this simple
method is sufficiently accurate. The calculation of more data pairs does not change the
results appreciably.

2.2.4 Constants
To make the integration more accurate, we avoid the use of constants in the process. All
results are therefore in units of km and can be converted to physical units via

1km = 1.50 · 10−3

√
fm−3

MeV , (2.16)

1M� = 1.477 km. (2.17)

2.3 Analytic solutions to the TOV equations
There are only very few known analytic solutions to the TOV equations that fulfill the above
requirements for gravitationally bound stars: the Tolman VII solution, the Buchdahl solution
and the Narai 4 solution [20]. If we do not require the energy density to vanish at the surface,
an infinite number of analytic solutions exists. In the following sections, we want to further
examine the incompressible fluid solution (ε(h) = const) and the Buchdahl solution. Also,
we will briefly touch on the Tolman VII solution.

2.3.1 The incompressible fluid
The easiest solution is the incompressible fluid with ε(r) = a where a is a constant. Obviously,
this solution does not satisfy all the above criteria because the energy density does not vanish
on the surface. Solving the TOV equations leads to

m(r) = 4π
3 εr3, (2.18)

p(r) = 3β
4πR2

√
1− 2β −

√
1− 2β(r/R)2√

1− 2β(r/R)2 − 3
√

1− 2β
, (2.19)

where M and R denote the mass and radius of the star, respectively, and β = M/R. The
central pressure is given by

pc = 3β
4πR2

√
1− 2β − 1

1− 3
√

1− 2β . (2.20)
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Another reason why this solution is unphysical is that the sound speed c =
√

∂p
∂ε

is infinite.
Nevertheless, it is interesting because it illustrates a general feature of General Relativity:

The central pressure of the star becomes infinite if β < 4/9. It is possible to show that this
limit is valid for any equation of state [12]. For more realistic models, we expect β < 1/3
[18], [11]. Note that β < 1/2 (i.e. the radius is larger than the Schwarzschild radius) is in
any case required by General Relativity, otherwise the star would collapse into a black hole.
We use the modified TOV equations 2.13 for the integration. In this case

h(p) =
p∫

0

dp′

ε(p′) + p′
= ln (p+ a) (2.21)

⇒ p(h) = eh − a. (2.22)

ε(p) is independent of p and therefore ε(h) is also independent of h. Figure 2.1 shows the
calculated mass-radius relationship.

For comparison, we also integrate the Newtonian equations 2.2 in this case. The result for
m(r) remains unchanged, and we arrive at

dp

dr
= −4

3πrε
2 (2.23)

⇒ p(r) = 2
3πR

2ε2
(

1− r2

R2

)
= pc

(
1− r2

R2

)
, (2.24)

where the central pressure of the star is given by

pc = 3β2

8πR2 . (2.25)

The solution (equation 2.24) is the first term in a power series expansion in β of equation
2.20, the next term being

3β3

4πR2

(
1− r2

R2

)
, (2.26)

which means that the central pressure is always larger for General Relativity. Figure 2.2
shows the distance from the star’s center versus pressure relation for both theories.

2.3.2 The Tolman VII solution
Another equation of state that has an analytic solution is

ε = εc

(
1− r

R2

)
. (2.27)
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Figure 2.1: Mass versus radius relation for the incompressible fluid with ε = 0.001. The
continuous line represents the analytic solution, the data points are the numerical integra-
tion.

It is known as the Tolman VII solution and requires β < 0.3868 for a finite central density
and β < 0.2698 for causality [17]. The Tolman VII solution is of particular interest because
it might set an upper limit for the central density for a given mass for any realistic equation
of state [20]. Specifically, the central density is given by [20]

εc = 8.18 GeV
fm3 ·

(
M�
M

)2
, (2.28)

so Mmax > 1.97M� requires εc < 2.108 GeV/fm3.

2.3.3 The Buchdahl solution
The Buchdahl solution is another analytic solution to the TOV equations [17]. The equation
of state is given by

ε = 12√p∗p− 5p. (2.29)
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Figure 2.2: Distance from the star’s center versus pressure relation for the incompressible
fluid for Newtonian theory (dashed line) and General Relativity (solid line) with β = 0.2 and
R = 10km.

Here, p∗ is a constant. Obviously, we must require that

√
p∗ >

5
12
√
p, (2.30)

otherwise ε < 0. Figure 2.3a shows the equation of state for p∗ = 0.001 km−2. Another
requirement is that the speed of sound

c2
s = 1

∂ε/∂p
=
(

6
√
p∗
p
− 5

)−1

(2.31)

be smaller than the speed of light. This implies p∗ > p. Furthermore, we need c2
s > 0, so

√
p∗ >

5
6
√
p (2.32)

There is an implicit relation between M and R which is given by

R = (1− β)
√

π

288p∗(1− 2β) . (2.33)

9



.
A series expansion in β gives

R = 1
√
p
·
(√

π

288 +
√

π

1152β
2 +O(β3)

)
, (2.34)

which means that an increase in mass will result in only a small increase in radius.
Equation 2.33 can be written as a quadratic equation in M :

M2 +M
(
−2R + 2 ∗ 288p∗

π
R3
)

+R2 − 288p∗
π

R4 = 0, (2.35)

which has a (real) solution if and only if

R >

√
π

288p∗
. (2.36)

Consequently, there is a minimum radius for the Buchdahl solution that depends on p∗.
The central pressure and energy density are given by [17]:

pc = 36p∗β2, (2.37)
εc = 72p∗β(1− 5β/2). (2.38)

The requirement p∗ > pc that results from causality therefore implies that

β <
1
6 . (2.39)

However, ε > 0 already requires β < 2/5. Because of these limits, the Buchdahl solution
not only has a minimum radius, but there is also a maximum radius for any p∗: Since
(1− β)/

√
1− 2β increases monotonically for 0 < β < 2/5 (see figure 2.4), the requirement

of β < 2/5 means that R . 0.14√
p∗
, and for β < 1/6, we even have R . 0.10√

p∗
. So the Buchdahl

solution is only applicable to a very narrow range of radii. A direct consequence is that

Mmax <
1
6R <

0.02
√
p∗
. (2.40)
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For the numerical integration, we need

h(p) =
p∫

0

dp

12√p∗p− 4p = −1
2 ln

(
1−

√
p

3√p∗

)
(2.41)

⇒ p(h) = 9p∗(1− e−2h). (2.42)

ε(h) can be obtained using equation 2.29. Figure 2.3b shows the results of the integration for
h = 0.6 and figure 2.5 shows the mass versus radius relationship.

(a) Equation of state for the Buch-
dahl solution for p∗ = 0.001 km−2 =
755.86 MeV

fm3

(b) Enclosed mass versus distance from
the center for p∗ = 0.001 km−2, resulting
in a star with M = 0.79M� and R =
3.72 km

Figure 2.3: The Buchdahl solution.
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Figure 2.4: Equation 2.33 for p∗ = 0.001 km−2
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Figure 2.5: Mass versus radius relation for the Buchdahl solution with p∗ = 0.001 km−2.
The continuous line represents the analytic solution, the data points are the numerical inte-
gration. Note the minimum radius Rmin = 3.30 km from equation 2.36, and the maximum
radius (using β < 2/5) is Rmax = 4.23 km, resulting in a maximum mass of about 1.05M�.
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3 The MIT bag model and quark stars
The structure of any compact star crucially depends on the equation of state. Therefore, this
chapter gives a brief introduction to the MIT bag model which is mainly used throughout
the thesis. We then shortly discuss the strange matter hypothesis and its implications in the
bag model. Finally, there is a short discussion of other hadron models.

3.1 The classic MIT bag model
The bag model provides a phenomenological description of hadrons. Essentially, the bag
model assumes that the quarks are confined to a sphere of a certain radius (the bag), inside
of which they are treated as massless free particles. The idea stems from the fact that single
quarks have never been observed. It is necessary to intodruce a bag constant, which can be
interpreted as the vacuum pressure on the bag surface that stabilizes the system. Radius and
mass of the nucleus can then be expressed as

R =
(2.04N

4πB

)1/4
, (3.1)

M = 4
3(4πB)1/4(2.04N)3/4, (3.2)

where N is the number of quarks in the bag and B is the above-mentioned bag constant.
Experimentally known masses can then be used to fit B. Although the results are generally
in agreement with experimental data [15], there is a wide range of possible values for B [9],
[3].
To solve the TOV equations, it is necessary to derive the equation of state for the bag

model [31]. The baryon density in a neutron star is very high, therefore we need to consider
a relativistic degenerate quark gas. The number of states within the momentum interval
[p,p+ dp] in a volume V is given by

gqV

(2π)3 4πp2dp. (3.3)

Here, gq is the degeneracy number of the quark gas. It is given by

gq = 3 · 2 ·
{

2 for nonstrange matter
3 for strange matter (3.4)

14



Equation 3.3 can be integrated and divided by V to give the quark number density

nq = gq
6π2µ

3
q. (3.5)

Likewise, we can obtain the energy density, where the bag constant enters to account for the
vacuum pressure on the bag:

εq = gq
24π2µ

4
q +B (3.6)

and the pressure

pq = gq
24π2µ

4
q −B. (3.7)

Note that there is a transition to quark-gluon plasma when pq = 0. At that point, the inward
bag pressure is no longer able to balance the outward pressure from the degenerate quark gas,
resulting in deconfinement of the quark matter. Here, the transition will occur for a baryon
density of

nB = 1
3nq = 4

3

(
gq

24π2

)1/4
B3/4. (3.8)

3.2 The bag model equation of state
A somewhat more sophisticated quark matter equation of state can be obtained by a power
series expansion in the quark chemical potential µ [2]:

p = 3
4π2a4µ

4 − 3
4π2a2µ

2 −Beff (3.9)

The quartic coefficient is given by a4 = 1− c where c represents QCD corrections. For free
noninteracting quarks we expect c = 0 or a4 = 1. Otherwise

a4 = 1− 2αc
π

(3.10)

where αc is the QCD coupling [9]. Perturbative calculations find a4 ≈ 0.63, but it is not clear
whether this is accurate in the context of compact stars [2].

The effective bag constant Beff accounts for the free energy contribution that is independent
of µ. In the following chapters, we will consider Beff as a mere parameter. In the context of
hybrid stars, it may be more reasonable to fix the density ρt at which the transition from
nuclear matter to quark matter occurs [2] and take the effective bag constant as dependent
on a4, a2 and ρt.
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The quadratic coefficient a2 arises because of the strange quark mass and color supercon-
ductivity. Specifically, it is given by

a2 = m2
s − 4∆2 (3.11)

where ms is the strange quark mass and ∆ is the pairing gap that arises for color flavor
locked (CFL) matter. The meaning of a2 can be explained as follows [2]: The free energy of
unpaired quark matter is given by

Ωunp = 3
π2

∑
i=u,d,s

√
µ2

i−m
2
i∫

0

dpp2(
√
p+m2

i − µi) +Beff . (3.12)

µu, µd and µs denote the u−, d− and s−quark chemical potentials, respectively. mi denote the
quark masses, but in the following the u− and d−quarks are considered massless. Effectively,
there is only one independent chemical potential: Two are fixed by the condition of chemical
equilibrium which is maintained by the weak interaction processes

d↔ u+ e+ ν̄e, (3.13)
s↔ u+ e+ ν̄e, (3.14)

s+ u↔ u+ d, (3.15)

specifically

µd = µs = µu + µe ≡ µ, (3.16)

where µe is the electron chemical potential.
Furthermore, bulk matter must be electrically neutral, which requires

2
3nu −

1
3nd −

1
3ns − ne = 0, (3.17)

and this fixes another chemical potential. Using these conditions, we can obtain a series
expansion in µ/ms for the electron chemical potential ms/µ, assuming that ms < µ:

µe = m2
s

4µ −
m4
s

48µ3 +O

(
m6
s

µ5

)
. (3.18)

If we substitute this in the expression for the free energy of unpaired matter (equation 3.12),
we obtain the free energy for neutral, unpaired bulk matter:

Ωneut
unp = −3a4

4π2µ
4 + 3µ2m2

s

4π . (3.19)

16



Terms of higher order in ms/µ have been omitted. It can be shown that this series converges
rapidly, even if ms is not much smaller than µ, but this does not work for charged unpaired
matter [2].

In CFL matter, the number densities of the quarks are required to be equal, and this lowers
the free energy to [2]

ΩCFL = Ωunp −
3

4π2∆
2µ2. (3.20)

Combining these two equations yields a2 = m2
s − 4∆2.

3.3 Solving the TOV equations for the MIT bag model
First, consider a2 = 0 (thus neglecting the strange quark mass and superconductivity). In
this case,

ε = ∂p

∂µ
µ− p = 9a4

4π2 +Beff , (3.21)

so this equation of state is given by

ε(p) = 3p+ 4Beff , (3.22)

independent of a4. This gives

h(p) = 1
4 ln (4p+Beff) (3.23)

⇒ p(h) = 1
4(e4h −Beff). (3.24)

The shape of the M −R curve can be seen in figure 3.1.
For the case including a2, the energy density is given by

ε = 9a4

4π2µ
4 − 3a2

4π2µ
2 +Beff (3.25)

and the number density is given by

n = 3a4

π2 µ
3 − 3a2

2π2µ. (3.26)
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Figure 3.1: The M − R relationship for the bagmodel for B1/4
eff = 155 MeV, a2 = 0 MeV2.

Here, the value of a4 does not influence the equation of state (see text). In this case, Mmax ≈
2.55 km = 1.72M�.

The relations can be obtained via

n = ∂p

∂µ
, (3.27)

ε = nµ− p. (3.28)

Figure 3.2 shows the µ versus pressure and energy density relationships. Note that the
pressure-energy density relation appears to be linear, even if a2 is included (see figure 3.3).
This is easily understood by expressing the energy density in terms of the pressure

ε = 3p+ 4Beff +
a2(3a2 +

√
9a2

2 + 48a4(Beff + p)π2)
4a4π2 (3.29)

= 3p+ 4Beff +

√
3(Beff + p)a2
√
a4π

+O(a2
2) (3.30)

and one sees that the additional term is rather small and furthermore depends weakly on p.
If a2 = (0 MeV)2, the slope is 3 and the axis intersection is Beff , independent of a4.
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To solve the TOV equations in the case, we first have to calculate the value µ0 that
corresponds to µ at p = 0 for each set of parameters a4, a2 and Beff . This does not pose
any problems because p(µ) is a quadratic equation in µ2. From this we use equation 2.11 to
obtain

µ(h) = µ0e
h. (3.31)

Equations 3.9 and 3.25 are then used to determine p(h) and ε(h).
Figure 3.4 shows the relation between the enclosed mass and the distance from a star’s

center for different values of hc. Each of these lines ends at the surface of the star. For
these parameters, hc = 0.452 leads to the maximum mass (1.88M�). This corresponds to a
central pressure of 195.44 MeV/fm3. Accordingly, hc = 0.6 (equivalent to a central pressure
of 387.24 MeV/fm3) does not yield a stable configuration. Figure 3.5 shows the pressure
and energy density versus distance from the star’s center relation. Here, the the dotted
and the dashed lines represent the maximum mass configuration for the given parameters.
Again, the end of a line denotes the center of the star. Note that the energy density does not
vanish at the surface of the star, but it can be calculated by substituting µ0 in equation 3.25.
Interestingly, the energy density function is very similar for (i) B1/4

eff = 145 MeV and hc = 0.6
and (ii) B1/4

eff = 165 MeV and hc = 0.471, although the maximum masses are very different:
1.82M� for (i) and 1.48M� for (ii).

(a) µ− p relation (b) µ− ε relation

Figure 3.2: MIT bag model equation of state with Beff = (140 MeV)2 for a4 = 1.0,
a2 = 0.0 MeV2 (solid line), a4 = 0.6, a2 = (100 MeV)2 (dotted line) and a4 = 0.6,
a2 = −(100 MeV)2 (dashed line).
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Figure 3.3: Pressure versus energy density relation for the MIT bag model (lines same as in
figure 3.2)
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Figure 3.4: Enclosed mass versus distance from the center relationship for the MIT bag
model with a4 = 0.6, a2 = (100 MeV)2, B1/4

eff = 145 MeV. The different curves depict different
values of hc, and they end at the surface of the star. For the solid line hc = 0.452, for the
dotted line hc = 0.6 and for the dashed line hc = 0.2.

(a) µ− p relation (b) µ− ε relation

Figure 3.5: Pressure and energy density versus distance from the center relation for the
MIT bag model. a4 = 0.6 and a2 = (100 MeV)2 for all lines For the solid line hc = 0.6
and the dotted line hc = 0.452), B1/4

eff = 145 MeV. For the dashed line hc = 0.471 and
B

1/4
eff = 165 MeV.
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3.4 Strange or quark stars
It has been proposed by Witten that strange matter instead of 56Fe might be the true
ground state of matter [30] (the so-called "‘strange matter hypothesis"’). There are generally
two possibilities for this to occur in neutron stars [14]: Strange matter could be stable at
very large pressures. In this case, we expect a first-order transition at some density. It is
also possible that there is a mixed phase, or there might be multiple transitions between
strange and hadronic matter if there is a region in which the equation of state for strange and
hadronic matter are very similar, resulting in a star that has several layers of both kinds of
matter [2]. The question is whether the density in the core of a neutron star is large enough
to allow the transition. As lattice QCD is not well understood at neutron star densities, this
question remains unanswered to date. The other possibility is that quark matter in bulk is
already stable and bound by the strong interaction at zero pressure. Here, using the MIT
bag model, it is possible to obtain a parameter window (the parameters being a4, a2 and
Beff) within which bulk strange matter is stable at zero pressure [9]. This would be possible
if it had an energy per baryon that is less than 930 MeV. On the other hand, nonstrange
matter needs to have an energy per baryon higher than 934 MeV, otherwise atomic nuclei
would not be stable [9]. These two requirements put constraints on the allowed values for the
bag constant and a2. These constraints have been analyzed by Farhi and Jaffe [9] and their
calculations shall be explained here.
Given an equation of state p(µ) (as in the bag model), the number density is given by

n = ∂p

∂µ
. (3.32)

Using this the energy per baryon can be calculated as follows:

E

1/3 · n = −p+ µn

n
. (3.33)

Equilibrium requires p = 0, so

E/n ≡ ε = 3µ, (3.34)

which then allows to calculate the bag constant for a given energy density and given a4 and
a2 by substituting µ = ε/3 in equation 3.9:

Beff,c = 3
4π2a4

(
ε

3

)4
− 3

4π2a2

(
ε

3

)2
. (3.35)

This means that the bag constant is a quartic function of the energy density and linear in
both a2 and a4.
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For nonstrange (2-flavor) quark matter, the equation of state is

p = 1
2π2a4µ

4 −Beff . (3.36)

ε = 3µ is still valid here, so

Beff,c = 1
2π2a4

(
ε

3

)4
. (3.37)

For ε = 934 MeV, this means Beff ≈ (148 MeV)4 · a4, and as explained above, this sets a
lower limit for the bag constant. For a4 = 0.63, we obtain B1/4

eff ≈ 132 MeV.
The constraints set by the equations 3.35 and 3.37 are shown in figure 3.6.
In their paper, Farhi and Jaffe use a slightly more complicated model. They assume a

Fermi gas model of u−, d−, s−quarks and electrons in chemical equilibrium. As explained
above, under the conditions of chemical equilibrium und charge neutrality, there is only one
independent chemical potential, for example the strange quark chemical potential, which
can be calculated using QCD perturbation theory. However, these modifications do not
change the results appreciably, since the electron chemical potential turns out to be very
small compared to the others. This is because quark matter in bulk contains almost equal
numbers of up, down and strange quarks. Near the surface of a star, however, this is not the
case anymore, and electrons are required for charge neutrality. It is therefore necessary to
take surface effects into account [9].

A viable alternative for the surface of the star is a mixed phase that is not locally neutral,
but still fulfills global charge neutrality. Such a phase would consist of quark nuggets inside
an electron sea and the crust would be about 100 m thick [14].
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Figure 3.6: Constraints on the bag constant and a2 for a4 = 1.0 (solid line) and a4 = 0.63
(dashed line). The vertical lines are the two flavor constraint and sets a lower limit for the
bag constant, the curves are the three flavor constraint. The region between a vertical line
and a curve is the allowed region for stable strange matter for each value of a4. Note that
hybrid stars could still exist right of the curves.

3.5 The maximally compact equation of state
The classic MIT bag model can be generalized by using the following equation of state [19]:

p =
{

0 if ε ≤ ε0
s(ε− ε0) if ε > ε0.

(3.38)

Here, s is the square of the speed of sound since

s = ∂p

∂ε
= c2

s (3.39)

and ε0 is a paramter. In case of the simple bag model presented above, we have s = 1/3 and
ε0 = 4Beff . Apart from the bag model, this generalization also encompasses the so-called
maximally compact equation of state (s = 1). It is of interest because causality requires
s ≤ 1 (i.e. the speed of sound is smaller than the speed of light). Therefore, it is maximally
stiff where ε > ε0 and maximally soft below that limit [22]. This leads to maximally compact
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stars, i.e. the stars with the maximum mean density [19]. Integrating equation 2.11 in this
case yields

p = t−1ε0(eht − 1), (3.40)
ε = t−1ε0(s−1eht + 1), (3.41)

where t = 1 + 1/s. Results for the maximally compact equation of state (and for other choices
s) can be found in [19]. An important result is that the central energy density εmax of the
maximum mass star must be inversely proportional to the square of the maximum mass,
εmaxM

2
max = const. The constant depends on the choice of s and decreases with decreasing s.

Note that the maximum mass star also has the maximum central energy density. Since the
maximally compact equation of state is assumed to be a reasonable approximation for the
possible maximum mass under the assumption of causality, the highest measured maximum
mass (currently (1.97± 0.04)M� [8]) also gives an estimate for the maximum central energy
density in any star [19]. The relationship between the maximum mass and the maximum
central density will be further examined in the following chapters.

3.6 Other models of the nucleon
An obvious extension of the bag model discussed above is to make the bag constant density
dependent [26], for example as suggested in [4]:

B(ρ) = Bas + (B0 −Bas) exp (−βx2), (3.42)

where x = ρ/ρ0 is the normalized baryon number density (ρ0 being the baryon number
density for nuclear matter), Bas = 38 MeV/fm3, B0 = 200 MeV/fm3, β = 0.14. Other
parametrizations are certainly possible (see for example [1], [21]). This generally leads to
a stiffer equation of state and thus to lager masses and radii [26], but the difference is not
significant [2].
Another option are NJL-type models that are mainly useful to describe chiral symmetry

breaking in QCD. However, unlike the MIT bag model, they generally do not model con-
finement, making them applicable only in situations where confinement is not as relevant as
chiral symmetry breaking [3]. Studies using the NJL model find maximum masses around
1.6M� [13].
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4 Dependence of the maximum mass on the
parameters

In this chapter, the dependence of the maximum mass on the three parameters a4, a2 and
Beff in the MIT bag model shall be examined [2], [24], [29].

4.1 Estimates for the parameters
Perturbative calculations for a4 find a4 ≈ 0.63 [2]. However, it is not clear whether perturba-
tion theory is accurate at the densities that are expected to occur in neutron stars.

The quadratic coefficient a2 includes the strange quark mass ms and the pairing gap ∆. As
this can be motivated by an expansion of the electron chemical potential in ms/µ (see section
3.2), which requires ms < µ, we assume that the strange quark mass should be smaller than
300 MeV. Calculations with effective interactions predict ∆ = 10− 100 MeV [2]. As a result,
we expect a2 to be between −4 · (100 MeV)2 and (300 MeV)2. An upper limit for a2 for stable
strange stars is also given by the constraints analyzed in section 3.4. It is 3 · 104 MeV2 for
a4 = 1.0 and smaller for smaller a4.
In the classic MIT bag model, the bag constant is estimated to be about (145 MeV)4 [7].

If the effective bag constant is taken to be dependent on the transition density from nuclear
matter to quark matter, similar values are obtained [2].

4.2 Maximum mass contours
Following Weissenborn et al. [29], we want to obtain an allowed parameter window for a4,
a2 and Beff . This should take into account the conditions on the stability of quark stars
from section 3.4 and permit a 1.97M� star. To do this, we keep one parameter fixed at all
times, while going over a range of parameters for the others. Having calculated a matrix of
maximum masses for the two non-fixed values, we use IDL’s CONTOUR procedure to obtain
contours of fixed maximum mass.

4.2.1 a2 fixed
The results for fixed a2 are shown in figure 4.1. The region between the two and the three
flavor line allow stable strange matter. For a2 = (100 MeV)2, these requirements severely
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restrict the allowed region of parameters. The 1.97M� star requires the effective bag constant
to be smaller than (143 MeV)4 and a4 . 0.87. If the black widow pulsar’s mass is confirmed
to be 2.4M� [28], strange stars would have to be ruled out under these assumptions. For
a2 = −(100 MeV)4, a 1.97M� star would be permitted as long as Beff . (150 MeV)2 and
a4 & 0.61. A 2.4M� star, however, would place more severe restrictions on the parameters,
requiring a4 . 0.73 and Beff . (137 MeV)4 where a4 < 0.6. Note that the slope of the
contours changes when a2 becomes negative: This makes sense if we assume that the slope is
a monotonous function of a2 since it must be zero for a2 = 0 (in this case, the maximum mass
does not depend on a4). In conclusion, a larger value of a4 results in a larger maximum mass
if a2 > 0 and it is the other way round for a2 < 0. A larger effective bag constant generally
results in a smaller maximum mass.

4.2.2 a4 fixed
Next, we keep a4 fixed (see figure 4.2). Generally, if a2 increases, the maximum mass will
decrease. As indicated by the small slope in the a4 versus Beff plot, the contours for a4 = 1.0
and a4 = 0.63 differ only minimally. However, the constraints are distinctly different. In
the case of a4 = 1.0, a 1.97M� star requires a2 . 0.4 · 10−4 and Beff & (148 MeV)2. For
a2 = −3 · 104 MeV2 we need Beff . (166 MeV)4 and this value decreases as a2 increases.
Consequently, there is only a very small range of parameters that would be allowed here.
a4 = 1.0 would be ruled out by a 2.4M� star, as we already saw above. a4 = 0.63, however,
permits a broader range of parameters: The three flavor constraint sets the maximum for
B

1/4
eff to be 139− 160 MeV, depending on a2. The minimum is B1/4

eff ≈ 132 MeV. (Note the
limiting values for Beff were already calculated in section 3.4.) A 1.97M� star now requires
Beff . (156 MeV)4. For a 2.4M� star, a2 . 0.4 · 104 MeV2 and Beff . (143 MeV)4.

4.2.3 Beff fixed
Last, we want to keep the effective bag constant fixed. This again leads to straight lines, and
their slopes change sign at a2 = 0 (see figure 4.3) for the same reason as before. Generally, it
is again evident that a4 only has a minor influence on the maximum mass, at least for the
values of a2 that were considered here. Of course, if a2 turns out to be much larger, this
statement would have to be reconsidered. As for the general behavior: An increase in a4
accounts for a smaller maximum mass if a2 > 0 and a higher maximum mass if a2 < 0. A
different bag constant does not change the general appearance of the curves, but again a
higher bag constant results in a higher maximum mass. For Beff = (125 MeV)4, a 1.97M�
star requires a2 . 3.6− 5.7 · 104 MeV2 (depending on a4, 0.6 < a4 < 1.0) and a 2.4M� star
requires a2 . 1.4− 1.8 · 104 MeV2. For Beff = (165 MeV)4, we need a2 . −6 · 104 MeV2 for
1.97M�, so this can be ruled out considering the expected range of parameters for a2.
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(a) a2 = (100MeV )2 (b) a2 = −(100MeV )2

Figure 4.1: Maximum masses in units of solar masses in the MIT bag model as a function
of the effective bag constant Beff and the QCD correction a4 for two different values of a2.
The dotted and dashed lines are the three and two flavor constraints as described in the text.

(a) a4 = 1.0 (b) a4 = 0.63

Figure 4.2: Same as figure 4.1, but with fixed a4. Here, the dashed line is the three flavor
constraint, the other line is the two flavor constraint.
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(a) B1/4
eff = 125 MeV (b) B1/4

eff = 165 MeV

Figure 4.3: Same as figure 4.1, but with fixed Beff .
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4.3 Scaling of the maximum mass with the parameters
For the before-mentioned general equation of state 3.38, we obtain [19]

Mmax ∝
1
√
ε0
, (4.1)

Rmax ∝
1
√
ε0
, (4.2)

with Rmax denoting the radius of the maximum mass star, which is in general not the
largest possible radius. These scaling relations can be deduced as follows [19]: We introduce
dimensionless variables

x = r2ε0, (4.3)
y = m

√
ε0 (4.4)

and write the TOV equations as

∂x

∂h
= − 2x(x1/2 − 2y)

y + 4πx3/2p/ε0
, (4.5)

∂y

∂h
= 2πx1/2 ε

ε0
. (4.6)

It is evident from equation 3.41 that for this equation of state p(h)/ε0 and ε(h)/ε0 are
independent of ε0. Therefore, the results for xmax, ymax and hmax do not depend on ε0. This
explains the scaling relations presented above. The proportionality factors depend on the
choice of s. If s increases, the maximum mass increases as well.
It follows directly that the so-called compactness Rmax/Mmax is a constant for any s,

independent of ε0. It can be argued that the maximally compact equation of state predicts
the minimum compactness of any neutron star [16], [19]. The minimum compactness is then
2.824. The question of the minimum compactness was already discussed in section 2.3.1. The
reasoning presented here explains why β = M/R should be smaller than 1/3 for realistic
equations of state (see section 2.3.1). Requirements set by General Relativity were R/M > 2
(Schwarzschild condition) and R/M > 9/4 = 2.25 (finite central pressure).

Unfortunately, this technique cannot be applied for the MIT bag model equation of state.
Nevertheless, it is possible to obtain some information by keeping two of the parameters fixed
at a time.
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4.3.1 Scaling with Beff

First, we want to determine how the maximum mass scales with the effective bag constant
Beff . For a2 = (0 MeV)2, we know that

Mmax ∝ B
−1/2
eff , Rmax ∝ B

−1/2
eff . (4.7)

However, for different values of a4 and a2, this can no longer be assumed to be true (see
figure 4.4). We choose

Mmax = a

Bb
eff

(4.8)

as an ansatz for the analytic description of the curves and use Mathematica’s FindFit
procedure to determine a and b for different values of a2 and a4. For a2 = (0 MeV)2 we find

Mmax = 1.24
(
εs
Beff

)1/2
M�, (4.9)

where εs = 150 MeV/fm3. This is in agreement with the result found in [19]. For instance,
for a4 = 0.6 and a2 = (100 MeV)2 we find

Mmax = 0.6
(
εs
Beff

)0.47
M� (4.10)

and a4 = 1.0 and a2 = −(100 MeV)2 yields

Mmax = 2.07
(
εs
Beff

)0.52
M�. (4.11)

The dependence of both a and b on a2 appears to be linear in B1/4
eff . A possible next step

would be to obtain a fit for these parameters for different values of a2. Then, another fit
could be applied to the parameters of this fit to determine how they depend on a4. However,
this soon becomes very complicated: A linear fit to a and b depending on a2 means that

Mmax = c1B
1/4
eff + c2

B
c3B

1/4
eff +c4

eff

, (4.12)

where each ci will in turn depend on a4. Thus, this method does not seem to promise to lead
to real insight.

On a different note, plotting Rmax versus Mmax for different values of the parameters shows
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(a) a4 = 1.0 (solid line), a4 = 0.8
(dotted line), a4 = 0.6 (dashed line),
a2 = (100 MeV)2 for all lines

(b) a2 = (0 MeV)2 (solid line),
a2 = (100 MeV)2 (dashed line),
a2 = −(100 MeV)2 (dotted line), a4 = 0.6
for all lines

Figure 4.4: Maximum mass versus effective bag constant relationship for different values of
a4 and a2

Figure 4.5: Fit for the maximum mass versus bag constant relationships for a4 = 1.0 and
a2 = −(100 MeV)2 (dashed line) and a4 = 0.6 and a2 = (100 MeV)2 (solid line). The data
points are the result of the numerical calculation.
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that Rmax ∝Mmax (see figure 4.6). Using

∂Mmax

∂Beff
= dMmax

dRmax

∂Rmax

∂Beff
(4.13)

we conclude that Rmax scales with Beff in the same way as Mmax does.

4.3.2 Scaling with a2

Next, we want to analyze the dependence of Mmax on a2. Here, the relation between Mmax
and a2 appears to be linear in B1/4

eff . Figure 4.7 shows this for different values of a4 and Beff .
Note that the axis intercept is given by equation 4.9. The slope depends on both a4 and Beff ,
though, and it increases as Beff or a4 increase.
A fit for a4 = 1.0 and B

1/4
eff = 165 MeV gives a slope of −5.608 M�/MeV and an axis

intercept of 1.55M� (see figure 4.8), which agrees with equation 4.9.

4.3.3 Scaling with a4

In case of the dependence of the maximum mass on a4, we expect different behavior for a2 > 0
and a2 < 0, as explained above. Figure 4.9 shows the Mmax versus a4 curve for different
values of a2 and Beff . As observed before, the other parameters have a much greater influence
on the maximum mass than does a4. For the parameter range considered here, the difference
between the maximum mass for a4 = 0.6 and a4 = 1.0 is at most about 1%. Of course, the
difference is greater for larger a2. However, even for a2 = ±(300 MeV)2 the difference does
not exceed 15% for realistic values of the bag constant.
For an analytic fit,

Mmax = c1a
2
4 + c2a4 + c3 (4.14)

seems to be a reasonable ansatz, where c1, c2 and c3 are constants that depend on a2 and
Beff . Typical curves for both a2 > 0 and a2 < 0 are shown in figure 4.10, where the fitted
constants are

c1 = −0.038M�, (4.15)
c2 = 0.101M�, (4.16)
c3 = 1.430�, (4.17)

for a2 = (100 MeV)2 and

c1 = 0.039M�, (4.18)
c2 = −0.102M�, (4.19)
c3 = 1.669M�, (4.20)
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Figure 4.6: Rmax versus Mmax for a2 = (100 MeV)2 and a4 = 0.6 (solid line), a2 =
(100 MeV)2 and a4 = 1.0 (dashed), a2 = −(100 MeV)2 and a4 = 0.6 (dotted). B1/4

eff ranges
from 125 MeV to 165 MeV.

(a) a4 = 1.0 (solid line), a4 = 0.8
(dotted line), a4 = 0.6 (dashed line),
a2 = (100 MeV)2 for all lines

(b) Beff = (165 MeV)4 (solid line),
Beff = (145 MeV)4 (dotted line),
Beff = (125 MeV)4 (dashed line),
a4 = 0.6 for all lines

Figure 4.7: Maximum mass versus a2 relationship for different values of a4 and Beff
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Figure 4.8: Dependence of the maximum mass on a2 for a4 = 1.0 and B1/4
eff = 165 MeV.

for a2 = −(100 MeV)2.
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(a) a2 = (100 MeV)2 (solid line),
a2 = (0 MeV)2 (dotted line), a4 =
−(100 MeV)2 (dashed line), Beff =
(145 MeV)4 for all lines

(b) Beff = (150 MeV)4 (solid line),
Beff = (145 MeV)4 (dotted line),
Beff = (140 MeV)4 (dashed line),
a2 = (100 MeV)2 for all lines

Figure 4.9: Maximum mass versus a4 relationship for different values of a2 and Beff

(a) a2 = (100 MeV)2 (b) a2 = −(100 MeV)2

Figure 4.10: Dependence of the maximum mass on a4 for B1/4
eff = 165 MeV.

4.4 Summary
The general dependence of the maximum mass on the parameters can be summarized as
follows

a4 ↑ ⇒
{
Mmax ↑ if a2 > 0
Mmax ↓ if a2 < 0 (4.21)

a2 ↓ ⇒Mmax ↓ (4.22)
Beff ↑ ⇒Mmax ↓ . (4.23)
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A 1.97M� star is generally possible in the context of the MIT bag model. However, it
places severe restrictions on the parameters. For the effective bag constant, a value smaller
than about (150 MeV)4 seems to be necessary, although configurations with a larger bag
constant are possible. a2 is also likely to be close to (0 MeV)2 or smaller, so a large pairing
gap would be required. a4 should be significantly smaller than 1.0. A 2.4M� restricts the
parameters even further, making pure quark stars seem unlikely. This would not rule out the
possibility of quark matter in the cores of hybrid stars, though.

We saw that the influence of a4 on the maximum mass is relatively small compared to the
other parameters for realistic values of a2. However, this is only true for pure quark stars. In
hybrid stars, a4 has a major influence on the density at which the transition from nuclear to
quark matter occurs. This in turn results in significantly higher maximum masses for smaller
a4 [2].
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5 Thermodynamic quantities of quark stars
There are several thermodynamic quantities that are of interest in the physics of neutron
stars: pressure, energy and number density and the chemical potential. All of these quantities
reach their maximum at the center of the maximum mass neutron star. To determine these
maximum values for a specific equation of state, we must therefore first calculate the maximum
mass. Using Newton’s method, we can then determine the corresponding maximum value of
h, which immediately gives us the maximum pressure and energy density. The maximum
chemical potential is given by µmax = µ0e

hmax . The maximum number density is given by [19]

nmax = εmax + pmax

µmax
. (5.1)

5.1 A lower limit for the central energy density
A question of special interest is how large the central energy density in a star can be. Upper
and lower limits to this quantity could eliminate possible equations of state that predict lower
or higher values for the central energy density. An upper limit might furthermore set an
upper limit to the density of cold baryonic matter [20]. Obviously, the central energy density
must be larger than the average density

ε̄ = 3M
4πR3 . (5.2)

The largest observed redshift from a neutron star sets a lower limit to M/R. With z = 0.35
[6], this results in [20]

εc > 0.953 GeV
fm3

(
M�
M

)2
. (5.3)

This means that a typical 1.5M� would need to have a central density that is larger than
0.423 GeV/fm3, with the lower limit for the central density decreasing for larger stars.
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5.2 Scaling relations for the general equation of state 3.38
For the before-mentioned general equation of state 3.38, we obtain directly from equations
3.41 and 5.1:

εmax ∝ ε0, (5.4)
pmax ∝ ε0, (5.5)
µmax ∝ µ0, (5.6)

nmax ∝
ε0

µ0
. (5.7)

The quantity εmaxM
2
max is of special interest here. From the relations given above, we

conclude that it is a constant for given s, i.e. it does not depend on ε0. Specifically,

Mmax =
√
c1(s)
εmax

M�, (5.8)

where c1(s) is a constant that depends on s,

c1(1) = 3.034 · (4.09)2 · 150 MeV
fm3 = 7.612 GeV

fm3 , (5.9)

c1(1/3) = 4.826 · (2.48)2 · 150 MeV
fm3 = 4.452 GeV

fm3 . (5.10)

Note that the s = 1 case is very similar to the expression for the Tolman VII solution
(equation 2.28).

If we assume that the maximally compact equation of state gives an upper limit for the
maximum mass, then it would be logical if the corresponding εmax described the largest
possible energy density in any neutron star. Under this assumption, we find

εmax <
(4.09M�
Mmax

)2
· 150 MeV

fm3 (5.11)

as a limit for central energy density. Obviously, this limit will decrease as larger stars are
measured. For example, the newly measured 1.97M� star implies that

εmax < 1.97 GeV
fm3 . (5.12)

For a 2.4M� star, this limit would even have to decrease to

εmax < 1.33 GeV
fm3 . (5.13)
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5.3 An upper limit for the central energy density and pressure
Now, the next question is if there is a similar relation for the bag model from equation 3.9
(i.e. including the a2 term). It is clear that a4 alone will not change the structure of the star
because it does not influence the equation of state. Therefore, we calculate the central energy
density and the maximum mass for different values of the parameters. The results can be
seen in figure 5.1. For each set of data points, a2 was kept fixed while iterating over B1/4

eff
from 100 MeV to 200 MeV. a4 was also kept fixed. The calculation was repeated for different
values of a4, but this does have a significant influence on the results.

We find that even when taking a4 and a2 into account, the equation obtained for the classic
bag model remains valid, i.e.

M2
maxεmax = 4.452 GeV

fm3 M�. (5.14)

Therefore, for Mmax > 1.97M�, the central density of a quark star should satisfy

εmax < 1.147 GeV
fm3 (5.15)

for any set of parameters in the bag model, and for Mmax > 2.4M�

εmax < 0.773 GeV
fm3 . (5.16)

The same analysis can be done for pmaxM
2
max. According to equation 5.7, this is also a

constant in the equation of state from equation 3.38. Thus,

Mmax =
√
c2(s)
εmax

M�, (5.17)

where

c2(1) = 2.034 · (4.09)2 · 150 MeV
fm3 = 5.094 GeV

fm3 , (5.18)

c2(1/3) = 1.275 · (2.48)2 · 150 MeV
fm3 = 1.176 GeV

fm3 . (5.19)

The values used to calculate c2 are again taken from [19]. Figure 5.1 shows the results in this
case. Here, the curve for s = 1/3 still provides a reasonable approximation for the generalized
bag model, independent of the parameters, although the deviation is greater than for the
central energy density.
Now that we know how εmax and pmax depend on Mmax, we can use the scaling relations

found in section 5.7 to determine how εmax and pmax depend on the parameters in the MIT
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Figure 5.1: Central density versus maximum mass for s = 1 (upper curve), s = 1/3 (lower
curve) and the bag model 3.9 (crosses: a2 = (0 MeV)2, stars: a2 = (150 MeV)2, triangles:
a2 = (150 MeV)2, a4 = 1.0).

bag model. For example, we found that Mmax ∝ B−beff , therefore

εmax,pmax ∝ B2b
eff . (5.20)

Also, the maximum central pressure must be proportional to the maximum central density.
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Figure 5.2: Central pressure versus maximum mass relation, lines and data points as in
figure 5.1.
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6 Summary and conclusions
We have studied strange stars under the assumption of the strange matter hypothesis. For
the equation of state, we used an MIT bag model that takes QCD corrections, the strange
quark mass and color superconductivity into account.

We find that the recent measurement of a 1.97M� star cannot rule out the possibility of pure
quark stars, but it does place requirements on the parameters of the bag model. For example,
QCD corrections appear to be necessary, as well as a large pairing gap. We furthermore
expect a bag constant that is smaller than (150 MeV)4. However, all of these requirements
are well within the range of predictions for the parameters from both perturbative calculations
and experiments. This is not longer true if a much larger neutron star were measured: Our
calculations show that a 2.4M� star would set very strict constraints on the parameters that
make a pure quark star seem rather unlikely.
We also found parametrizations for the maximum mass curve depending on each one of

the three parameters. An extension of the method applied here to find a parametrization of
Mmax depending on two or all of the parameters did not appear promising. A different ansatz,
however, might lead to different results. A possible approach would be to first parametrize
the (almost) linear energy density versus pressure relationship depending on the parameters,
and then use ε = c · p+ 3Beff as equation of state, possibly leading to an easy scaling relation
with c.

Our analysis of the central pressure and density versus radius relations showed that these
relations are independent of the bag model’s parameters. With a maximum mass of more
than 1.97M�, it can be concluded that the central energy density in a quark star described
by the MIT bag model cannot be larger than 1.147 GeV/fm3. At this point, an analysis using
other quark matter models such as the NJL model or a model with a density-dependent bag
constant might be in order to determine whether this limit is model-independent.
Furthermore, the analysis could be extended to hybrid stars, i.e. the case where strange

matter is stable at some finite pressure. These stars would consist of a quark core, possibly
a mixed phase and a hadronic crust. The density at which the transition might occur is
uncertain, but a two solar mass star is definitely possible in this context [2]. There are
different possibilities for the equation of state for the nuclear phase: One could use the Akmal-
Pandharipande-Ravenhal equation of state [2] or employ a simple quadratic approximation
[19]. Modifications to the bag model (for example treating the bag constant as dependent on
the transition density) might be in order. It would be interesting to see if the s = 1/3 central
energy density–maximum mass constraint continues to hold in the case of hybrid stars, as
this constraint is much more restrictive than the maximally compact constraint.
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Of course, the observation of heavier neutron stars would set even tighter constraints on
the thermodynamic quantities, so the precise measurement of neutron star masses promises
to remain an exciting field for some years to come.
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