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Abstract of the Dissertation

Incentive Mechanisms for Peer-to-Peer Streaming
by

Vinay Pai

Doctor of Philosophy
in
Computer Science

Stony Brook University

2011

The increasing popularity of high-bandwidth Internet cections has enabled new applica-
tions like the online delivery of high-quality audio and g@content. Conventional server-client
approaches place the entire burden of delivery on the copterider’'s server, making these
services expensive to provide. geer-to-peerapproach allows end users to reduce the burden
on the service provider by contributing bandwidth by uplogdiata they have downloaded to
other clients. However, the success of a peer-to-peermysteges on resources contributed by
participants. Unfortunately, studies have shown that essgtsuare often reluctant to contribute
resources to the system without a concrete incentive to daOao thesis is that a robust in-
centive mechanism is necessary to encourage nodes toledatresources to the system, and
a receiver-driven architecture with a pairwise incentivechranism allows for great flexibility,
simplicity, robustness, and performance.

The popular file sharing software BitTorrent is widely usaakl includes an incentive mech-
anism that aims to tie the quality of service a node receiweghd amount of resources it con-
tributes. Their incentive mechanism pairwisg in that nodes only rely on direct first-hand
observations eliminating the need for complex distribua&gbrithms. However, studies have
shown that flaws in BitTorrent’s incentive mechanism makeiiberable to gaming. We present
SWIFT, our alternative incentive mechanism for BitTorréke file sharing applications, and
experimentally show that it is more resistant to gaming,levietaining the benefits of a pair-
wise mechanism.

Having validated pairwise incentive mechanisms, we turauomain goal of live stream-
ing. Pairwise mechanisms rely on a bi-directional flow obda¢tween nodes so that nodes may
directly penalize neighbors that do not upload data to th&herefore, traditional tree-based
live streaming systems are not amenable to pairwise in@ntiVe address this with Chainsaw,
our peer-to-peer live streaming system based on an unsteacinesh network. Through exten-
sive experimental evaluation we demonstrate that Chainsalle to support high-bandwidth
streams to a large number of simultaneous receivers witlpamket-loss rates over a wide range
of network sizes and other system parameters.

We then build on Chainsaw and present Token Stealing, owwviz& incentive mechanism
for peer-to-peer streaming. Through detailed experimevauation, we show that our algo-
rithm offers good service to all participants in the netwarken the system is resource-rich.



When the system is resource-constrained, however, nodesdhtribute resources receive sig-
nificantly better service than those that do not.

Thus, we show that our system is versatile and scalabletimgfexcellent performance
across a wide range of system parameters and network caomg]itvith a robust incentive mech-
anism that promotes resource-rich conditions by encongagodes to contribute as much band-
width to the system as they are able.
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Chapter 1

Introduction

Today, a large majority of people in the United States hawadipand Internet connections.
According to research conducted by the Pew Research Cen2®00, 77% of families in the
United States had broadband Internet connections at hothe [4

Consumer-grade services such as DSL, Cable, and fibeetbetime are now capable of
supporting bandwidth-intensive applications like highatity audio and video, including DVD-
quality (4Mbps) streams. In fact, many connections are eapable of supporting HDTV-
quality (20Mbps) streams.

However, the bandwidth cost of supporting large numberdiehts at those data rates is
prohibitive. For example, Google’s popular video sharingpbsite YouTube spent over $360
million on bandwidth in 2009 [60], which prevented that gdiain of the company from turning
a profit despite (1) substantial advertising revenue, @ptieat popularity of its service, and (3)
the fact that most videos are only offered at a lower quality.

This problem is further exacerbated in the casévafstreaming applications, because they
must provision for the demands of large numbers of simutiae&iewers when a popular pro-
gram is broadcasted. Popular events like the 2010 FIFA Woudp can attract large numbers
of viewers and would place a significant burden on the comgemtider’s network. This is in
contrast to traditional over-the-air broadcasts wherets to the content provider is relatively
constant, but increased viewership can bring in increadeedrtising revenue.

The peer-to-peer model allows viewers to share the burdeoblyibuting bandwidth, thus
making it more economical to support large numbers of vievegrhigh quality levels. This
would open up new opportunities for both commercial conpgntiucers and individuals who
would be able to focus their resources on producing quatititent, and reach wide audiences.

1.1 Peer-to-Peer Model

The main reasons for the high bandwidth cost of the tradafictient-server model is the fact
that every client is directly supported by the providersvees. This places the entire band-
width burden on the content provider's network. While thisden might be distributed via
commercial content distribution networks like Akamai [9thle cost is still borne by the content
provider.

The cost to the provider rises linearly with number of viesyasince it must send a complete



copy of the data stream to every viewer. The cost of the badttivand hardware required to
support those viewers can quickly become prohibitive.

WA

(a) Client-Server Model (b) Peer-to-Peer Model (Ideal)

Figure 1.1: In the client-server model, the server must sdéindata to every node. In the peer-
to-peer model, peers exchange data among each other, gdbpitoad on the server low. In
the ideal case the server only needs to transmit a single abggch packet, regardless of the
number of clients.

An alternative to the client-server model is the peer-terpaodel. In this model, clients
connect not only to the provider’'s servers, but also to somalloof the other clients who
are viewing the same content. This allows clients to coateétbandwidth to the system by
uploading data to other clients who wish to receive the saméesnt.

In the ideal case, peers, on average, contribute as muchwimthdo the system as they
consume, and thus pose no net drain on the system’s resolir¢kss ideal case, the bandwidth
demand on the content provider remains constant regarofeébe number of clients viewing
the content. This would allow the cost to the provider to renmiadependent of the number of
viewers, much as it does for traditional broadcast techyieto

Bandwidth at Serve
Bandwidth at Serve

Number of Users Number of Users
(a) Client-Server Model (b) Peer-to-Peer Model (Ideal)

Figure 1.2: In the client-server model, the load on the sanareases linearly with the number
of clients. In an ideal peer-to-peer system, however, thd tm the server remains constant.

Our goal is to build a robust, scalable system for live metti@asning. The live streaming
model will support applications like high-quality onlinedio and TV stations.



1.1.1 Need for an Incentive Mechanism

Unfortunately, studies have shown that participants irm-peg@eer networks often try to gain
benefit from the system without contributing resources tarre The analogous problem in
society has been well studied by economists [7, 49, 61, i#,imknown adree-riding One
of the key reasons for free-riding is a lack of a concretentige to contribute. For example,
Sariou et al. [84] have estimated that 20-40% of Napstesus®t up to 70% of Gnutella users
shared little or no content. Huberman and Adar [2] found tiesirly 50% of responses are
returned by only 1% of hosts and that nearly 98% of the resgowere returned by 25% of the
sharing hosts.

An incentive mechanism provides nodes with a concrete ineeto contribute resources to
the system by offering better performance to nodes thatibomé bandwidth than those that do
not. Therefore, we argue that in order to build a robust pegreer streaming system, we must
also develop a robust incentive mechanism.

1.2 Our Approach

A major inspiration for our work is BitTorrent [19], a populsystem that solves the analogous
problem of peer-to-pedile sharing BitTorrent is commonly used to distribute large files like
CD images. In addition to a file transfer mechanism, BitTiorgrovides an incentive mecha-
nism.

BitTorrent nodes simply measure the rate at which each gfébes it is connected to uploads
data to it. The node therhokeqi.e., stops sending data to) all but the top few of its pe€hnss
approach has the key benefit of simplicity, since nodes allyan first-hand observations to
implement this algorithm.

However, this mechanism has been shown to be relativelyteadyeat [46, 75]. In Chap-
ter 3, we present SWIFT, an alternative incentive mechafsrBitTorrent-like networks that
addresses many of the problems with BitTorrent’s incentigehanism. This shows that while
BitTorrent’s particular mechanism may be flawed, it is polesfor a simple algorithm that de-
pends only on first-hand observations to be effective.

At first glance, file sharing and live streaming might seemeambarly identical problems.
However, there are key differences that prevent directiegobn of file sharing incentive mech-
anisms to live streaming systems. The key differences letite sharing and live streaming
applications are summarized in Table 1.1.

¢ With file sharing systems, the entire file is available ahefatihee; in live streaming, it
may be generated on-the-fly (as with a live sporting evengfample).

¢ With file sharing, different clients can download entirelffetent parts of the file while
live streaming clients must all download the same data wimall buffer on the order
of seconds to allow for reordering. This synchronizatioquieement adds additional
challenges.

¢ File sharing applications have no target speed, since thedih always be downloaded
faster. Therefore, there is no concept of spare capacitgoihtrast, streaming applica-
tions are limited by the rate of the source stream. If peersaditing to contribute more

3



File Sharing Live Streaming

Source Data Source node has the entirddata may be generated op-
file ahead of time the-fly

Client Synchronization| Not needed Yes, within a relatively smal

window of tolerance

Target Download SpeedFaster the better Equal to the stream rate

Data Useful to Peers | Forever Only for a short time

Result of slow speed | File downloads slowly, but Disruptions in viewing, or
remains useful degraded quality

Table 1.1: Key differences between file sharing and liveasiiag systems

bandwidth than the stream rate, the system may have spaaeitya his spare capacity
may be exploited to accommodate nodes that are unable tadigiata quickly, so long
as other altruistic nodes upload enough data to make up flegtde

e Partial data downloaded in a file sharing application caragéme uploaded to other
clients since they must assemble the complete file. Howelients in live streaming
applications typically have no use for data transmittedhendistant past.

e Limited bandwidth in a file sharing system will still allowékclient to download the
complete file, even if it takes longer. In a streaming systhawever, it will result in
either degraded quality or even a complete disruption ofiser depending on how the
source material is encoded.

As a result of these differences, we cannot directly apglyeeiBitTorrent’s incentive mecha-
nism or our improved SWIFT mechanism to a live streamingiappbn. Therefore, we must
design a new mechanism with live streaming in mind. Howeawnerseek to retain the simplicity
and elegance of those file sharing systems, and rely soldtycahdecisions based on first-hand
observations.

Due to the need for synchronization, traditional peergefstreaming systems are based on
multicast treeswith the source node at the root. Every participant profesgdata it receives
from its parent to its descendants. This creates pareltt+@tationships between nodes, making
it difficult to apply pairwise incentive mechanisms becadsata only flows in one direction
between any given pair of interacting nodes.

Therefore, we designed Chainsaw, a peer-to-peer based mmsémictured mesh network.
As with BitTorrent and SWIFT, there is no hierarchy betweedes, as a node may download
certain packets from a neighbor while sending others todheesneighbor. This makes the net-
work amenable to pairwise incentives. Moreover, Chainsavieaes this goal while providing
excellent performance. Through simulation, we demorestrat Chainsaw is able to support a
large number of nodes with low packet loss, low delay, lowbegad, and an excellent resilience
to churn (i.e., continuous arrival and departure of nod@&) discuss the design of Chainsaw in
Chapter 4.

In Chapter 5, we present Token Stealing, an incentive mesmalouilt on top of Chainsaw.
Token Stealing is a straightforward extension of the steshttzken bucket algorithm, and fills
our desired goal of simplicity.



We show that our algorithm preferentially directs bandWitdt nodes that contribute upload
bandwidth to the system, offering them good performancereldeer, our algorithm also takes
advantage of any surplus capacity that may exist to supposthat are unable to upload data
at the stream rate. However, when the system is resourcdraored, nodes that contribute
resources to the system see significantly superior perfmceaThis gives nodes an incentive
to contribute as much bandwidth as they are capable of, awduliages them from artificially
limiting their upload bandwidth.

1.3 Evaluation Methodology

We built a high-performance discrete-event simulator int@a implement our system. The
simulator implemented all aspects of our protocol and addws to investigate various aspects
of network performance in a controlled environment.

Beginning with a conservative base setup, we systematieadlluated different aspects and
parameters by varying one network or system parameter ate tWe demonstrate that the
Chainsaw streaming protocol supports high bandwidth stz with low packet loss rates,
low delay, and quick startup times. We show that the systeatesavell with size and stream
rate, and is robust to churn (i.e., nodes leaving and joitiegystem). We show that the system
is stable and efficient across a wide range of network an@syparameters and therefore does
not require careful tuning to work.

We also demonstrate that the Token Stealing algorithm aekieur goal of giving lower
packet loss rates to nodes that contribute bandwidth irureserich systems, while taking ad-
vantage of altruistic nodes to give low packet loss ratedl tmaes whenever possible. We show
that the system reacts quickly to changes in node behavieekhas system-wide resource avail-
ability.

Finally, we built a native prototype implementation of oystem, and used it to perform ex-
periments on the PlanetLab [18] testbed. Although the &thiesources and control offered by
PlanetLab nodes did not allow us to replicate all simulaxpegiments, we were able to demon-
strate good performance for most nodes in the system in sweiree-rich case, and improved
performance for nodes that upload more data in the resa@agstrained case. The performance
characteristics are similar to those obtained in our sitraria, thus helping validate our simu-
lation results.

1.4 Contributions

The key contributions of this dissertation are as follows:

e We designed SWIFT [89], an improved incentive mechanisnBftforrent-like file shar-
ing systems. We conducted experimental evaluation of §gtes to demonstrate that
pairwise incentives, while simple, can be effective.

e We designed Chainsaw [72], a mesh-based live streamingcapph which offers high
performance and scalability, and has bi-directional refeships between peers, making it
amenable to pairwise incentive mechanisms.
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e We conducted an extensive experimental evaluation of oeasting protocol to demon-
strate performance and scalability, as well as the effd¢tseo/arious network parameters.

e Our initial paper on Chainsaw [72] has been well receivedhgydommunity, with over
250 citations. Duijkers et al. [26] have used Chainsaw assli@r an experimental video
streaming application and conducted further evaluati@dufition to our own. Biskupsi et
al. [8] have proposed an extension of our protocol to furimgrove performance through
changes to the network topology.

e We designed the Token Stealing algorithm [73], a simple Hattve pairwise incentive
mechanism for our mesh-based live streaming system.

e We conducted an extensive experimental evaluation of ttenitive mechanism to demon-
strate its effectiveness in various situations as well asmgimg network conditions and
node behaviors.

1.5 Outline

The outline of this dissertation is as follows. In Chapter@discuss background information.
In Chapter 3 we present the SWIFT incentive mechanism fordBient-like file sharing appli-
cations. In Chapter 4, we describe the Chainsaw incentivepatible mesh-based streaming
protocol. In Chapter 5 we present the Token Stealing ingemtiechanism for live streaming
applications. In Chapter 6 we present experimental resitt<Chapter 7 we present related
work. In Chapter 9 we present future directions of resedrainlly, in Chapter 8, we conclude.



Chapter 2

Background

In this chapter, we discuss background material in othetioast and peer-to-peer approaches.
Furthermore, we also discuss multimedia (i.e., video aricgwodecs. Although our stream-
ing protocol is application-agnostic, video streamingng of the most popular live streaming
applications, and an application for our system.

In Section 2.1, we discuss IP multicast. In Section 2.2 weudis high level concepts related
to peer-to-peer file sharing and streaming. In Section 2.8is@iss various network topologies
commonly used in peer-to-peer networks. In Section 2.4 seudis the need for incentive mech-
anisms and common approaches. Finally, in Section 2.5 wesks/ideo encoding technologies
and how they may be applied to peer-to-peer streaming.

2.1 Multicast

Traditional network system design is based on the cliervesenodel where resources of in-
terest are placed at a centralized server, and are traedruticlients on request. Widely used
protocols such as HTTP [32] and FTP [77] use this approadhjtdorms the core of the Web
today.

However, popular content might be requested thousandsorraitlions of times by clients,
placing a heavy burden on the server. Whereas the technighlepgn can be addressed by
distributing the load using load-balancers, mirrors, aodtent distribution networks (CDNSs),
the cost is ultimately borne by the content provider, andm&prohibitive.

In contrast, traditional radio and television broadcastarta fixed cost to the provider to
provide service to a given area regardless of the numbeicefvers tuning in. Such broadcast
mechanisms rely on the presence of a shared medium (theoshegnetic spectrum, in the
case of over-the-air broadcasts), which is not presentdiesarea networks such as the Internet.
Note that while wireless networking technologies such & BD(i.e., WiFi), and cellular data
services do use electromagnetic broadcasts, they aretpastiorks intended to provide point-
to-point links between a router and the end device, and dreomaparable to radio and television
broadcasts.

IP Multicast [22] is an extension to the Internet Protocolskhallows the creation ahul-
ticast groupsthat individual hosts could subscribe to. Packets adddetssa multicast group
would be transmitted by underlying routers to all hosts stibed to that group without requir-



ing the content provider to transmit multiple copies of tlee@intent. However, IP Multicast relies
on wide scale implementations by the underlying network/iol@rs, who have been reluctant to
enable IP multicast due to concerns about scalability abenpial for abuse.

Peer-to-peer technology is an analogous network builiesagplication level by participants
in the network as anverlay, allowing application-level support for similar functiality with-
out relying on widespread adoption by network providerserRe-peer systems are also often
referred to a®verlay networker application-level multicast

2.2 Peer-to-Peer Systems

In this section we provide a broad overview of peer-to-pgstesns in general, in order to place
our work in context.

2.2.1 Peer-to-Peer File Sharing

Some of the earliest peer-to-peer networks to gain widepaanee were built around file shar-
ing, to allow users to easily locate and share images, maisitother content. Napster [31], one
of the first, relied on a central server to index all the conéenl help participants locate the files
they wanted. Actual files remained on the end users’ compu@ther networks like Gnutella

decentralizedhe system further by eliminating the indexing server adtbgr and instead rout-

ing searches through other peers.

In both Napster and Gnutella, files located were downloadiedtty from the peer hosting
it, which could place a significant burden on peers that liggtgular files. Other networks like
e-Donkey as well as later versions of Napster and Gnutdtevad clients to download portions
of the file from different peers if several clients had the gdite.

BitTorrent [19] further improved the situation by allowipgers withpartsof a large file to
exchange pieces of that file with each other in order to askeambomplete file, thus greatly
improving the speed of downloads in cases where only a fewsgdesl complete copies but
several were actively downloading it.

2.2.2 Peer-to-Peer Streaming

File sharing networks operate on the assumption that théddileg shared is available in its
entirety, and participants in the network seek to obtainFtrthermore, the file may not be
downloaded in order, and is thus often unusable until thieeedbwnload is complete.

These assumptions do not hold for a wide range of streamiplicafions such as video
broadcasts. In live streaming applications, viewers eixfzeuiew the content soon after they
join the network, rather than waiting for a lengthy downldadomplete. Moreover, playback
Is expected to continue smoothly without interruption.

In order to allow the viewer to consume content as it is dowdéml, the data must be received
in order. The use of buffering allows a small amount of reeoirtty to be tolerated, on the
order of a few seconds. Moreover, content must be deliveradaatively steady rate within
tolerances offered by the buffer, or else the playback wdwalee to be paused to allows the
network to catch up.



We believe that one of the key factors driving BitTorrentspplarity is the great simplicity
of the protocol which has lead to a wide range of implemeoitatiacross numerous platforms.
Therefore, we consider simplicity to be a major design gmagddition to addressing all the
challenges posed by high-performance peer-to-peer singam

We describe a number of other related peer-to-peer stregsgstems and contrast them to
our own in Chapter 7.

2.3 Network Topology

A key consideration in a peer-to-peer network is the topplofjthe network. Peer-to-peer
streaming networks can be broadly classified into treeébasd mesh-based approaches.

2.3.1 Tree Networks

The goal of a streaming protocol is to deliver data in ordemfthe source to all the participants
in the network. These requirements naturally lend thenesdly a tree-based approach.

A tree-based system arranges the participants in a netwoaktiee rooted at the source
node. The source node transmits data to the nodes it is ctahiec(i.e., its children), who in
turn transmit it to their children, and so on. This approackes for trivial routing of data, as
well as easy in-order delivery.

7 interior nodes are
responsible for all
the data upload

Failed nodes affect
all descendent
nodes in the tree

8 leaf nodes upload no data at all

Figure 2.1: An example of a simple tree-based network, antesaf its drawbacks. A minority
of nodes are responsible for all the data upload. This probWeuld be further exacerbated in
higher degree trees. Failed nodes high up in the tree altebear descendants.

However, a simple tree-based network has a number of distatyes, as illustrated in Fig-
ure 2.1. A majority of the nodes in a balanced tree are ledkgpi.e., nodes with no children,
so the burden is only shared by a fraction of nodes (the iatarades). Moreover, when an
interior node leaves the network or becomes unresponsivts descendants are affected until
the tree is repaired, which might lead to wide-scale disomgt(albeit temporary).

A number of innovative solutions have been proposed to tpesklems by constricting
multiple trees [11], or periodically reconstructing trg69]. We discuss these works in more
detail and contrast them to our own work in Chapter 7.
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2.3.2 Mesh Networks

An alternative approach is the mesh topology based on moerglenetwork graphs than trees.
As shown in Figure 2.2, a mesh-based network addresses m#mgy problems of a tree-based
network. As there are several paths between any given nadiased node has a limited impact
on other nodes. Moreover, since different packets can tdafaraht routes, the upload burden
can be distributed more fairly among nodes.

limited impact,
as several
paths exist

~
~ao
~
~

.
.
-
-’
.
.
.
.
e
-

Figure 2.2: An example of a network based on a random graphb.lddd is distributed more
fairly, and single node failures do not partition the netivas many alternate paths exist between
any two nodes.

Bullet, an early mesh-based system continued to rely oneaasethe primary data dis-
semination pathway, but allowed for alternative paths toifelata not delivered by the main
tree [51]. In 2005, we proposed Chainsaw [72], one of the $iraming systems suitable for
high-performance applications to eliminate the tree elytin favor of a random graph. While
gossip-based protocol that use an unstructured meshaxisiebefore either Bullet or Chain-
saw were proposed, those systems lead to significant dtgli@msmissions, and are not suit-
able for high-bandwidth streaming application. We descabr protocol in detail in Chapter 4.
We discuss Bullet and gossip protocols, as well as a numbateyhative systems proposed by
a number of other authors, and contrast them to our on workap@r 7.

2.4 Incentive Mechanisms

Peer-to-peer networks rely on resources contributed bycpeants. However, participants are
often selfish and avoid contributing resources if they camd, leading to poor performance.
An incentive mechanism is a mechanism built into the netwbék penalizes participants
that do not contribute enough resources to the network, endrds those that do contribute.
The penalty may be reduced performance, or complete erdfiim the network.
Incentive mechanisms can broadly be classified into rejputétased systems, and pairwise
tit-for-tat systems.
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2.4.1 Reputation-Based Systems

Reputation bases systems are incentive mechanisms whemwes rcontribution over time is
monitored and that information is shared with other pgrtiaits in the network to enable them
to reward or penalize a given participant, as appropriatepuRation-based systems have the
advantage of taking a node’s long-term behavior into actaaswell as the possibility of a
system-wide view [48, 69].

However, reputation systems often rely on a centralizedeseor on distributed algorithms
to propagate information about node behaviors throughwusystem. In order to be effective,
two key challenges must be addressed. Firstly, a partitipaust not be able to falsify its
reputation either by assuming another participant’s ithgrdr by easily creating a new identity
to avoid being penalized for past bad behavior. Secondlistalulited reputation systems must
be resilient to collusion and false reporting since nodés wa information relayed to them
through third parties.

2.4.2 Tit-for-Tat Pairwise Systems

An alternative model is the pairwise, or tit-for-tat apprbavhere participants rely on first-
hand observations. A participant that receives good serfé@., fast downloads) from a peer
can reward that node by offering it good service in return. avise system is a often far
simpler to design and analyze than a reputation-basednsydie to a reliance on first-hand
observations [19, 53].

However, a tit-for-tat approach is only possible in systevhere there is anutualexchange
of services. This the case in file sharing systems (like Birt), but not in tree-based streaming
approaches where nodes have a parent-child relationstligata only flows down the tree.

Our streaming protocol, Chainsaw, is mesh-based, with aahtlow of data between nodes
Therefore, it is amenable to a pairwise reputation systertHapter 5 we present Token Steal-
ing, a simple yet effective pairwise incentive mechanism.

2.5 Multimedia Coding

The Chainsaw streaming protocol is application-agnostic merely provides a high perfor-
mance data-dissemination protocol. However, it is usefddnsider the system with a target
application in mind. Our protocol naturally lends itselfttee popularvideo streamingppli-
cation, so we briefly discuss video encoding technology, leowd video transmission may be
affected by network characteristics.

2.5.1 Video Compression

Digital video consists of a series of images that are disgalap succession, typically at rates
between 24 and 60 frames per second. Raw video would be eslfrdarge in storage or
bandwidth requirement, so video is typically stored andgnaitted in a compressed format.
Video compression algorithms are knowncaslecs short for coder/decoder. MPEG [38] and
H.264 [98] are examples of video codecs in popular use today.
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Video codecs are typicallipssy i.e., they sacrifice some fine detail in order to reduce the
data needed to encode a given frame. In addition, video sagipeally do not encode frames
independently, but take advantage of the fact that largeégmsr of the scene typically do not
change from frame to frame. This allows for further redutsion data size.

Many video codecs allow a given source video to be encodedatder of different quality
levels by adjusting the amount of detail that is discardethgicompression. Moreover, the size
of the stream can be adjusted by scaling the video down tacecthe image size. This allows
multiple versions of a given source video to be created thasaitable for different network
bandwidths.

However, due to the nature of the compressed data, smallptarn or gaps in data caused
by packet loss in the network layer can lead to a severe datjpadn the quality of the decoded
video. Furthermore, the interdependency between framassnhat a momentary disruption
may cause visual distortions that last several secondsefidre, packet loss rates of even a few
percent may be intolerable when dealing with video streams.

2.5.2 Erasure Coding

Erasure coding is a type ébrward error correcting codehat is commonly used with a num-
ber of types of network transmissions including video traission. Erasure coding allows the
receiver of a transmission to recover from one or more mgsperckets in the stream. These
packets may be missing either because they were never elifsg the network, or they were
delivered in a corrupted state, and discarded. The technsoalls forward error correcting be-
cause the sender includes redundant information in thénatitansmission, and does not rely
on retransmission requests from the receiver. This is ddgaous in situations like broadcasts
where a back channel to request retransmissions are eitheailable or impractical.

With erasure coding, the stream is divided into packets.rfegeoup ofm packets is then
encoded into a set of packets where > m. The mathematical relation between the encoded
packets allows the original packets to be recoveredyfset ofm of then packets are available.
Thus, erasure coding allows the original stream to be reecMatact so long as at no more than
n — m packets are lost or corrupted in transmission, allowingrore robustness.

Reed-Solomon Codes [97] are a commonly used method of erasding. An alternate
algorithm known as Tornado Codes [9] offers far higher penfance than Reed-Solomon codes,
but requires slightly more than packets on average to decode each group.

The combination of video encoding algorithm and erasurangpdetermines how much
packet loss rate can be tolerated, and the resulting loss/satperceived quality curve. Fig-
ure 2.3 shows a qualitative comparison of various techrsique

2.5.3 Layered Codecs

Layered codecs are an alternative to creating entirelyraggpatreams for different bandwidth
levels. In a layered codec, the video is encoded lbasz layerand one or morenhancement
layers Receiving the base layer allows the recipient to decoddatively coarse version of
the video. The video may be progressively refined by inclgdinccessive enhancement layers
during the decoding process.
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Figure 2.3: Quality of the decoded video as a function of pad#iss rates for various video

(d) Fine Granularity Scalability

encoding methods.

Layered codecs allow for added flexibility. Participantstthre unable to receive the highest
quality video due to bandwidth limitations may still be abdereceive a lower quality one by
discarding some or all of the enhancement layers. Moretasggred codecs can be combined
with erasure coding using a technique calietequal loss protectiof65, 101] to ensure that
later enhancement layers are more likely to be lost than déise kayer or earlier enhancement
layers for any given level of packet loss, thus maximizing éixpected quality of the received

video. Codecs without layering are knownraenolithiccodes.

2.5.4 Fine Granularity Scalability

Fine granularity scalability [54] is a further improvemaver layered codecs. There is a limit
to the number of enhancement layers a video may be dividedantd an enhancement layer is
generally only useful when received in its entirety alongwihe base layer and all the enhance-
ment layers below it. Therefore, with layered codecs, tioeived quality is a step function of

the number of packets received.
Fine Granularity Scalability (FGS) allows for a smootheresguality curve by allowing a

13



continuousnhancement layer where incremental additions remainlesed lead to improved
quality.

To summarize, videos with monolithic encodings suffer dagiégradation with increasing
packet loss and are quickly rendered unusable. With erasdliag, a certain amount of packet
loss can be tolerated, but the same rapid degradationgeswde the packet loss rate exceeds the
amount of redundancy added by the erasure coding. Layedstsavith simple erasure coding
would suffer the same fate as earlier layers are just ag/likefjet corrupted, but with unequal
loss protection, however, base layers and lower enhanddayems are more protected, leading
to a series of steps. Finally, fine granularity scalabilitgvas for a smooth quality vs. data size
trade-off.

Our protocol is application-agnostic and the issue of auné@coding is orthogonal to our
work. Therefore, we do not implement the techniques desdrib this section. Instead, we
consider the packet loss rate to be a key figure of merit, aswhaes that a practical application
would use techniques like unequal loss protection, or fiaagjarity scalability in encoding the
video, and that a lower packet loss rate leads to higher pextguality for the user.
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Chapter 3

SWIFT: Economic Incentives for File
Sharing

File sharing is the one of the most dominant peer-to-pedlicgtions today. Whereas the first
peer-to-peer systems like Napster and Kazaa focused orrdb&em of searching for content,
BitTorrent has emerged as the dominant éllstribution system. This system is designed for
the large-scale dissemination of big files, typically hwettdr of megabytes to a few gigabytes
in size. Files are broken up into chunks calfetketsor pieces and nodes assemble the target
file by acquiring and exchanging various pieces from difieggarticipants in the system. This
technique is calledwarming

Although our ultimate goal is to build a robust live streagapplication, we begin by study-
ing the file sharing model in order to establish swarming ashble technique for large-scale
data dissemination, and pairwise incentives as a robudtanem to incentivise participants to
contribute resources to the system.

In this chapter, we first describe the file trading model. Vintharametrize node behavior,
and describe various strategies participants may adopth&epropose a desired default behav-
ior for nodes that promotes system stability, and expertaigrshow that rational self-interested
nodes have little incentive to deviate from the specifiechlv@ir.

3.1 Introduction

3.1.1 The File Trading Model

Although early file sharing networks such as Napster and €lautnly allowed peers to down-
load entire files from a single peer only, more recent netwdikke BitTorrent allow for finer
granularity. Files are broken down into packets (or pieees) a peer can download different
packets from different neighbors. Such a mechanism is Ydefuause a peer can exploit the
resources of multiple neighbors simultaneously, and thagio the file quicker.

Certain kinds of content can easily attract large numbedoafnloaders in a short period
of time. A peer-to-peer network can significantly speed wgtrdtiution. For example, it was
observed in the BitTorrent [20] network that for the firstardays after the release of the
RedHat 9.0 ISO, there were always more than 2,500 peerstaimealusly downloading that
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1.6GB file, with a peak of 4,400 peers [37].

A similar example occurs when software vendors releasege patch or update. For ex-
ample, when Microsoft releases a new security patch of sempdate, millions of computers
running the Windows operating system will all be interestedbtaining that update as quickly
as possible. As evidenced in 2004 by the spread of the Wittyn§85] less than 24 hours after
a patch was produced for the vulnerability it exploited stnenachines should obtain patches as
quickly as possible. In this case, peer-to-peer networkslmaable to provide the update more
quickly than a farm of dedicated servers, because of the laugnbers of recipients involved. A
robust incentive mechanism gives participants a reasoartribute upload bandwidth in order
to speed up their own downloads and reduce their window aferability.

In our system, we assume that a file is broken into packets udlesize and that the au-
thenticity of each packet can be verified by a scheme such agtographic hash or Merkle
tree [64]. Our model is pull-based in that peers advertisgttkets that they have; other peers
then request specific packets from them. We further assuatdfta file sharing network has
some mechanism in place for peers to discover fellow peatgoamthe system.

In SWIFT, we call peers who exchange packetdraders A trader's main objective is
to obtain a complete copy of the file as quickly as possibleh&ahan negotiate a packet-for-
packet trade as in a barter system, we assume each tradéaimaancredit (a pairwise currency)
for every peer to which it is connected. When the host resaavel verifies a packet from a peer,
the host increases the credit rating of that peer in propott the size of the received packet.
Similarly, when a host fulfills a remote peer’s request, thstliecreases the credit rating of the
peer by the size of that packet. A remote peer’s requestisfisdtonly if it has accumulated
credit greater than or equal to the requested packet’s size.

In our current implementation, the pairwise currency iyarded to reconcile current trading
imbalances, not for tracking long-term node behavior. Tdemanting could be extended across
multiple sessions to trade different files, but this is ndtaal to the working of our system.

In the next section, we introduce three different tradimgtegies and discuss which to
choose.

3.1.2 Trading Strategies

We parametrize the behavior of peers based on how they egtedd to their neighbors. For
every byte a peer receives, it extends the sendbytes of credit in return. We call the
repayment ratioln addition, it expends a fractighof its total upload capacity,,..., onlargesse
by uniformly distributing free credit to alV of its neighbors. Finally, a peer also extends every
neighbory bytes of one-time credit the first time they interact.

The maximum number of bytes,z(t) that peerA is willing upload to its neighboiB at
timet, having received 45(t) from B, is given by the equation:

B Um(ll’
Ny

Note that timet here is meant to represent wall-clock time and not a tittédmechanism in
which time is divided into rounds.

Free-riders, who do not upload, have repayment ratitargesse ratg, and one-time free
credity of zero. Distributors, who have no interest in downloadimaye3 = 1 and spend all

UAB(t) = OszB(t) + t+ . (3.1)
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Peer Behavior

o B gl

Free Rider 0 0 0
Paranoid Trader 1 0 0
One-time Risk-taking Trader 1 0 1
Periodic Risk-taking Trader 1 |0<f5<1|1
Distributor N/A 1 1

Table 3.1: A summary of the values of the parameters for sameron peer behaviors.

their upload bandwidth on distributing packets to theighéiors. Traders who are mainly mo-
tivated by their desire to download a file as quickly as pdedie between these two extremes.
Based on their choice of parameters, we classify them aspiar&raders, one-time risk-taking
traders, or periodic risk-taking traders. The varioustsgi@s and the parameters they use are
summarized in Table 3.1.

Paranoid traders

Paranoid traders are reciprocative players that wait thi} receive a valid packet from a peer
before offering to send an equal amount back. They have nepalyratioo = 1 and never give
out free credit § = 0, v = 0). This conservative strategy ensures that they will neyévad
more to a peer than they receive from it and thus will neveaker advantage of.

One-time risk-takers

Another strategy is for a peer to extend one packet of freditcte a peer the first time it is
encountered to encourage them to trade. However, therehsrece that the peer will never
receive a packet in return, so we call these traders onertgkeakers. They set and~ to 1,
andj to 0.

Periodic risk-takers

Finally, some traders may be willing to give out free packetsodically. These traders dedicate
a fractiong > 0 of their upload bandwidth giving out free packets to theighbors. We call
this type of free credilargesse

The choice of a strategy

Table 3.1 summarizes the valuesaf 5 and~ for the different types of peers that we have
described. Itis clear that if the system consists solelyapfpoid traders, everyone will wait for
their neighbors to make the first move and the system will laelldeked.

At first glance, it would appear that one-time risk takinguffisient to break the deadlock
by giving peers a basis to start trading. However, we shoauilin simulation in Section 3.3 that
one-time risk-taking does not completely eliminate thedii®zk. A peer that is not connected
to a distributor will receive free packets from its neighbarhen it first joins. However, it is
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possible that it will acquire packets that none of its otheighbors are interested in, and will
then be unable to trade and make further progress.

The one-shot free credit is also insufficient because of ge entification problem. Al-
lowing a peer to choose its identity will make the system spsble to a Sybil attack [25]. One
way to alleviate this problem is to use the IP address of a aeds identifier. However, when
there are many peers behind a Network Address TranslatoFNé of them use the same IP
address, so only one would receive the one-time free craditaotstrap into the file sharing
network, leaving the others to starve. On the other handyiage risk-taker could distribute
the IP’s share of the largesse equally to each instance daiWAT so that all of them are able
to join the system.

Finally, if transport across the network is unreliable dsjsat to corruption, perfect account-
ing is not guaranteed. For instance, a peer may upload a tpac#eoill its neighbor for it, but
the packet fails the cryptographic checksum and the peeivest no credit for it. The peer
may then be stranded with no packets to trade and no creditamig of its peers, resulting in
starvation.

Adopting the periodic risk-taking strategy increases tbespility of wasting upload band-
width on free riders. We show in the next two sections, viaheaatatical analysis and simula-
tion, that the advantages of this variant of Tit-for-tat §difweigh this potential drawback while
maintaining robustness against a wide range of competiategies.

3.2 Analysis

Let us now consider a homogeneous file trading systers pkeers with upload and download
capacities ol/,,.. = D,.... Given a default strategy of periodic risk-taking, we amaljrow
that strategy interacts with others.

3.2.1 Bounds on Incentives to Defect

The bounds on the incentive for peers who wish to maximize tleesvnload rates to defect from

the periodic risk-taking strategy can be made arbitranhak. Consider the case of a mixed
network of rational peers and periodic risk-takers. &die the fraction of periodic risk-takers

in the system, each of which contributes a fractibaf their upload bandwidth as largesse. If
the share ratio of a peer is defined as the ratio of bytes uetbaabytes downloaded, then the
share ratio of periodic risk-takerg,i.q:. IS given by

1
Tperiodic = 74 AN o
periedie = (1= B) + Bo

and the share ratio of rational tradefS;;... by
T'rational = 1- 50-

When s = 0.1, then in the extreme case of one rational peer among mangderisk-
takers, the greedy trader’s share ratio is approximatélySimilarly, in the other extreme of one
periodic risk-taker among legions of rational peers, tek-taker’s share ratio is approximately
0.9. Clearly, these bounds can be made arbitrarily closeédy decreasing.
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3.2.2 Paranoid Traders vs. Periodic Risk-Takers

To show that a weak Nash equilibrium [41] can exist betweearzd traders and periodic risk-
takers, we assume for simplicity that there afepeers in the system and that they each have
the same upload and download capacitiesWe also assume that each peer uses fair queuing
among its neighbors to share its upload bandwidth.

We observe that paranoid traders will only trade with padoitk-takers, as two paranoid
traders will never risk a packet on each other. Thus, a pataraaer will trade withr V periodic
risk-takers, while a periodic risk-taker will trade witth — 1 peers.

If we assume the largesse rdteas sufficiently small, then each connection’s capacity will
be limited by the fair rate o;vi_l that periodic risk-takers assign to each connection. Bigrio
risk-takers then achieve upload and download rates\of- 1)(=) = C, whereas paranoid
traders achieve rates ¢f N)(=;) = oC (@sN — oo). Taking$ into account and assuming
the worst-case scenario in which none of the largesse isdiefhee download rate of periodic
risk-takers falls to'1 — 5)C. Paranoid traders will download more quickly than periaik&-
takers whenr > 1 — g and download less quickly when < 1 — /3, so the system attains a
weak Nash equilibrium point with respect to download speeldsnc = 1 — 5. For smallg,
the equilibrium point is a network consisting almost efyik periodic risk-takers.

3.2.3 Incentives to Prevent Free-Riding

Consider now a system consisting of a fractioaf periodic risk-takers and a fractidn— o of
free-riders. Each free-rider will be able to download atte L'Ef% from each of ther V risk-
takers, which results in a total download rate for the fidefrof 5oC' (asN — o0). Although
free-riders can achieve share ratios of zero, they will doaah at a rate much lower than the
risk-takers. For example, f = 0.5 and = 0.1, they will download at a rate only 5% that of
the risk-takers. Furthermore, as the number of free-riden®ase, the incentive to become a
risk-taker increases.

3.3 Experimental Results

We built a discrete-time simulator for our system. The satad was implemented in nearly
2,000 lines of C codes, and allowed us to simulate networkis avidesired set of parameters
for each node. It produced a detailed trace of the expermhenh allowing us measure the
performance of each node and gain insights into the workirigeonetwork.

The simulator distributes bandwidth evenly between allnemtions and assumes that the
bottleneck is always at the end-hosts’ connection to tt&f#. Download capacity, upload ca-
pacity, repayment ratio, largesse ratg, and the one-time free credijtcan be set on a per-link
basis. In practice, we used the same valuesaridg for all links originating from a given node,
while using a random value of to avoid synchronization artifacts when all peers accuteula
enough largesse to download a packet simultaneously. Walkah our experiments with a
single seed and 100 peers who want to download the file. In@gmériment we report average
rates after the system has achieved a steady state.
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Figure 3.1: The download rate obtained by a peer as funcfids apload capacity. Every “x”
represents one peer. The diagonal line represestg).

While a 100 node network is relatively small, our goal in desng SWIFT is to study the
feasibility of an effective incentive mechanism based oaiayise algorithm in order to design
a robust peer-to-peer streaming system. In our evaluafionrcsstreaming system, later in this
dissertation, we analyze much larger networks, includingtavork with over 100,000 nodes.

3.3.1 Download vs. Upload Rates

In our first experiment we show that peers have a strong ineetd upload as much as they
can. All 100 peers used repayment ratie= 1, largesse ratg = 0.01, and a random one-time
free credity between 1 and 2. All peers had download capacities of 100ekBisut upload
capacities were uniformly limited to values between 1 andl KB/sec. The topology used was
a complete graph and the file had 100,000 packets.

Figure 3.1 shows the resulting download rates obtained bsspes a function of their upload
capacity, with the straight line representing equal uplaad download rates. It is evident that
periodic risk-takers with upload capacities less than 9%4&Breceive download rates compara-
ble to their upload capacity, with most peers receivingdhgmore than they upload because of
the free packets they receive from the seed. In SWIFT, péeasly have incentives to set high
upload rates.

Peers with upload capacity greater than 94 kB/sec operabevistightly capacity. Our
analysis indicates that this degradation is an artifachefrandom packet picking strategy that
we employed in our simulator. The problem would be mitigatéide packet picking algorithm
were to take into account the frequency of packets in theesyswith a bias towards rarer ones,
similar to the rarest-first algorithm used by BitTorrent][.19

3.3.2 Paranoid Traders vs. Periodic Risk-takers

In Section 3.2.2 we claimed that in a mixed network of pardmi@ders and periodic risk-takers,
the risk-takers download faster. We modified the previoyeament to demonstrate that claim
by changing half the peers into paranoid traders who did ptiad a packet unless they first
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Figure 3.2: The download rate obtained by a peer by paranaitts and periodic risk-takers
as a function of their upload capacity. The diagonal linegespnts: = y. Paranoid traders are
unable to utilize all their upload capacity.
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Figure 3.3: The average download rate received by non-catpg peers as a function of their
repayment ratia.

received one.

Figure 3.2 shows the resulting download rates obtained byspas a function of their up-
load capacity. The average download rate of paranoid tsattes 28.5 kB/sec, whereas the
average download rate of risk-takers was 50.5 kB/sec. Weatbthat the paranoid traders
traded with only with the risk-takers and thus downloadeal miuch slower rate, as predicted in
Section 3.2.2.

3.3.3 Effect of Non-Cooperative Peers

Our third experiment studied the behavior of hon-coopeggbeers that use repayment ratios
« other than the default value of 1. As claimed in our analysiSection 3.2.1, we show that
a peer has very little incentive to deviate from the defaehdvior. Once again, we used a
complete graph. Half of the peers were obedient and usedl.0 whereas the remaining half
used values uniformly distributed between from 0 and 0.99the first run all peers used a
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Peer Behavior Download Rate
Free-Rider 6 kB/sec
Periodic Risk-Takel 50 kB/sec
Seed N/A

Table 3.2: Mean download rates of the various classes ofsioda system with one seed, 50
free-riders and 50 periodic risk-takers.

largesse rat@ = 0.1 whereas in the second run they usee- 0.01. All peers had an upload
and download capacity of 100 kB/sec.

As shown in Figure 3.3, the download rate received by norpemative peers was much less
than 100 kB/sec for peers with small valuesogfbut rose sharply as approached 1. When
B = 0.1, non-cooperative peers must still upload about 90% of wiey teceive in order to
saturate their download link. With = 0.01, the effect is more pronounced: non-cooperative
peers must use a repayment ratigery close to 1 to saturate their download link. Selfish peers
are quickly penalized for their non-cooperative behavior.

3.3.4 Incentives to Prevent Free-Riding

In Section 3.2.3, we showed analytically that free-rideswload at a much slower rate com-
pared to periodic risk-takers. To demonstrate this, we reexperiment of 100 peers with half
of the peers free-riding and the other half being periodik-takers with upload capacity of 100
kB/sec,a = 1, § = 0.1, and~ set randomly between 1 and 2.

Table 3.2 summarizes the download rates received by theusdasses of nodes. We ob-
served that the free-riders downloaded at only 6 kB/secredsethe periodic risk-takers down-
loaded at 50 kB/sec. Of the 6 kB/sec that free-riders redeive&B/sec was received from the
seed, whereas 5 kB/sec was received from periodic riskgasepredicted in Section 3.2.3.

3.3.5 Case for Non-Zeros

It is quite clear that having both = 0 and~ = 0 will deadlock the system as no peer other than
a seed will ever upload a packet. However, in this experimemow demonstrate that a simple
one-time credit is not sufficient to solve this problem, ewdren no packets are corrupted or
lost in the network, and no peers leave the system till theoéige experiment.

We created a random graph with one seed, 100 other peers aawvti@ge node degree of
20. All peers have upload and download capacities of 100dd/M/e allowed the simulation to
run for 30 second to achieve steady state and report avepagesover the next 60 seconds. In
one run all peers usedl= 0 and in the other they useti= 0.01.

Figure 3.4 shows the distribution of peers receiving vagidownload speeds. In the absence
of largesse, half the peers had download rates of zero areldeadlocked. These are peers that
are not directly connected to the seed and no longer haveefsathat their neighbors were
interested in trading for. Since these peers never agagiveea free packet, they will never
reach completion.

The dark bars show the resulting distribution when everymks just 1% of their bandwidth
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Figure 3.4: Distribution of peers by their download ratemo experiments. One, shown in gray,
useds = 0 and the other, shown in black, uséd= 0.01.

giving away free credit. Giving away this small among of fiedit completely eliminates
deadlocks. Moreover, with everyone making progress, persnore likely to be able to trade
with their neighbors, thereby increasing overall downlspdeds. With largesse, about a third
of the peers were able to download at over 90% of their dovehtapacity as compared to about
2% without. This shows that having all peers risk a smalltfoercof their bandwidth on giving
away free packets not only improves overall system perfag@abut is also likely to bring a
high return-on-investment for the peers themselves.

3.4 Conclusions

In this chapter, we studied incentive mechanisms for filegishanetworks in order to build a
platform for our work on incentives for live streaming syate We outlined the file sharing
model, and described various strategies that a node may aitbgegard to sharing it upload
bandwidth. We also presented SWIFT, an incentive modelllosfiaring systems.

We argue that an overall upload to download ratio close toeksential for system stability
and prescribed the desired default behavior for nodes; we $ihat nodes have little incentive
to deviate from the prescribed default parameters. We @xpeatally demonstrated that nodes
that limit their upload bandwidth are penalized by theireand suffer a corresponding drop in
their download bandwidth. Nodes are unable to free-ridesyiséem without severely degrading
their own download rates.

Thus, we have demonstrated an effective incentive meamatiiat relies solely on local
information, but promotes system-wide stability by in@é@stng nodes to contribute as much
bandwidth to the system as they consume.

In Chapter 4 we describe Chainsaw, our streaming protog@dan an unstructured mesh
network, with a similar request-response protocol thaimem@able to pairwise incentives. In
Chapter 5 we present the Token Stealing algorithm, our psgrimcentive mechanism for peer-
to-peer streaming.
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Chapter 4

Chainsaw: Incentives-Compatible P2P
Multicast

Traditional tree-based streaming protocols create a patel relationship between nodes. On
any link in the system, data flows in only one direction (ifteam the parent to the child). This
lack of reciprocal transfer makes it impossible to apply\wese incentives.

Therefore, we adapt the simple request-response protsedlin SWIFT (and other unstruc-
tured file transfer protocols like BitTorrent) for streaminn this chapter we present Chainsaw,
and show it to be robust, and have good performance.

4.1 Design Goals

Our aim is to design a robust incentives-compatible pegreter streaming protocol for appli-
cations like live audio and video. In order to give users #&kattory experience, we need to
provide a consistent, high quality data stream, with a quackp up time.

From the content provider’s perspective, a good system baustalable and robust to churn
and other network conditions.

4.1.1 Compatibility with Pairwise Incentive Mechanisms

We have argued that an concrete incentive mechanism isted&eorder to encourage nodes to
contribute bandwidth to the system, thus promoting systatability and performance. More-
over, apairwise incentive mechanism is desirable, because of its simplanitd reliance on
direct observation rather than information provided bydiparties.

In Chapter 3, we have shown that a pairwise incentive meshagian be effective. In
this chapter, we show that with a few enhancements, a padaystem can provide a high
performance transport layer for streaming, while rema@miompatible with pairwise incentives.
In Chapter 5, we present the Token Stealing algorithm, ouwvse incentive mechanism for
peer-to-peer streaming, based on the streaming protoesépted in this chapter.
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4.1.2 Support Large Numbers of Simultaneous Participants

We aim to support distribution of content to large numbersiwiultaneous participants. There-
fore, an important goal is scalability with size. We showt thiar system is able to scale to large
numbers of simultaneous participants, while still pronglexcellent performance.

4.1.3 Drive Packet Loss to Zero

Most multimedia codecs are highly sensitive to corruptes#éing data. The loss of even a small
fraction of packets in an MPEG stream can cause severetilistan the decoded video. While
these effects can be mitigated by either relying on codestsstipport graceful degradation, or
with erasure coding as described in Section 2.5, both otthpproaches come at the cost of an
overhead in bandwidth.

A low packet loss rate allows a stream to be encoded with arlésvel of redundancy,
reducing the bandwidth overhead. Dedicating less bantiwidtedundancy allows us to support
a higher quality stream for users with a given Internet cotine speed.

4.1.4 Quick Startup Time

In order to facilitate browsing or “channel surfing” the meedaust begin to play within a few
seconds at most. It would be completely unacceptable fdegiseon set to take 30 seconds to
switch channels.

4.1.5 Robustto Network Conditions

In a typical peer-to-peer network, nodes join and leave ylséesn continuously. Therefore, our
system must be robust to churn, and degrade gracefully natieasing levels of churn.

4.2 Protocol Design

We built a request-response based high-bandwidth datardisation protocol called Chainsaw.
Our protocol draws upon gossip-based protocols and BeéhoriLike BitTorrent, we divide data
into a series of packets with unique sequence numbers. Thdifterence between Chainsaw
and BitTorrent is that whereas BitTorrent is designed taritiste a fixed-length file, there is
a potentially infinite sequence of packets in Chainsaw. Weaalorequire strictly sequential
transmission of data, but allow reordering within a slidmgdow of sequence numbers.

4.2.1 Network Topology

Like BitTorrent, Gnutella and most Gossip-based protqcfminsaw is built on an unstructured
random graph topology. This topology has the advantage ioflféexible, easy to build and
maintain, and robust to churn. A node that wishes to join jistesn must merely connect to a
set of randomly chosen nodes in the system. We call the setd#fsna given node is connected
to itsneighbors
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A node may obtain a list of random neighbors in several wayshighly decentralized
solution would be to start with one node discovered througtfhof-band means (for example,
by word of mouth, or from a list of long-lived hosts running aell known addresses) and
doing a random walk from there. Random graphs are expandphgwith high probability,

so one may reach any node in the system with uniform prolalilia logarithmic number of
hops [43].

4.2.2 Membership Server

In our implementation we opt for the simpler centralizeduioh as used in BitTorrent. Nodes
in the system periodically announce their existence teeanbership servewhich keeps track
of all the nodes in the network. When a node needs new neighltbaonnect to, it requests a
list of random nodes from the membership server.

Although our implementation uses a single, central mentiygserver, we do not consider
this to be a major limitation for three main reasons:

1. A membership server only needs to maintain very mininfarmation about nodes in the
system, for example, the IP address and port. Therefore, with millions of nodes in
the system, the memory requirements are modest.

2. Nodes merely need to announce their presence to the memybeaerver periodically.
With a million nodes in the system sending keep-alive messagery 60 seconds with a
50-byte message, the bandwidth needed is only 6.67 Muitsigach is available even
from consumer-grade broadband connections.

3. Itwould be easy to extend the scheme to multiple membeeshivers which periodically
exchange information with each other to balance the loadTh# membership server is
only used to find a random set of neighbors, so minor incogrsists between instances
is not a significant problem.

4.2.3 Data Dissemination

New data is injected into the system by a special node cdtiedded The seed generates a
series of packets with monotonically increasing sequenicebers. In general, multiple seeds
can be supported with no changes to the protocol. Differeeds would only need to ensure that
their sequence numbers are synchronized and all packetsedjwith a given sequence number
are identical. The protocol can also be extended to suppdtipte channels or many-to-many

multicast applications by replacing the sequence numbir aistream-idsequence ¥tuple.

In this dissertation, however, we limit ourselves to a stgfiannel system supplied by a single
seed node.

Chainsaw’s receiver-driven architecture eliminates tedfor complex distributed routing
algorithms. When a node receives a packet, it announcesvéil@tality of that packet to its
neighbors by sending thenoTIFY messages. The availability information for a given packet
is only of interest to a neighbor if that neighbor does no¢adly have the packet. Therefore,
nodes do not sendOTIFY messages to neighbors who have already announced avsilabil
that packet.
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Figure 4.1: Chainsaw uses a receiver driven request-respmmotocol. A node that receives

a new packet broadcast©TIFY messages to its neighbors, who may then request the packet.
Upon receipt of the packet, the node in turn will then broatieaailability of that packet to
other neighbors.

As sequence numbers are small compared to the size of TCRdPtaer headers, it is
wasteful to send aOTIFY message as soon as a packet is received each time. Thefefore,
each peer, we gather sequence numbers and send them togetheibulk message evenyin-
notify-intervalseconds. In our experiments we used a delay of 0.5 secomds, thiat value
would result in a payload size greater than the estimateddfiZ CP/IP headers in our setup.
Longer delays bring diminishing returns in terms of ovethesduction.

For every neighbor, a node maintains a listdekired packets-packets the node needs to
acquire, that the neighbor has available. A node normattikspa random packet from the list
to request; but as discussed in Section 4.2.6, it may usdeaatit strategy in the startup phase,
shortly after joining the system. Having picked a sequengelyer, the node requests that packet
from its neighbor via ®EQUESTpacket.

Nodes mark packets that have been requested from a neighbwoid wasting bandwidth
by downloading multiple copies of the same packet. Howekameighbor does not respond to
a request after a specific timeout interval has passed, tleps unmarked so that it may be
requested from other neighbors.

On receiving a request from a neighbor, nodes may respohedréity sending the data for
that packet or with aiAK message, if they do not have enough bandwidth to satisfyetigest.

In addition, they may decline to fulfill a request from a givegighbor as determined by our
Token Stealing incentive algorithm that we will describeCimapter 5.

A node that receives BAK message from a neighbor due to a lack of credit would most

likely get aNAK again if it made another request too quickly. This might leisudelays and
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overhead as a node repeatedly requests packets from a giggatbar when it could request that
packet from other neighbors instead. A fixed back-off iraémwould require fine-tuning based
on many factors. To avoid this, we use adaptivesystem. Every node calculates imter-
request interva(IRR) for each of its neighbors. This is the minimum interoflime that elapse
between making two consecutive requests from a given nerghiodes start at an arbitrary
positive value of IRR and adapt the interval based on a migiéifve-increase, multiplicative-
decrease (MIMD) strategy. When a node successfully resavpacket, it decreases IRR by
multiplying it with a value betweef and1, and when it receives a NAK, it increases the value
of IRR by multiplying it with a value greater thah Since the MIMD algoritm is merely an
optimization for the requesting node, the MIMD parametersidt need to be tuned with great
precision. In our implementation, we used value$ .6f(i.e., al0% reduction) and .5 (i.e., a
50% increase) respectively.

4.2.4 Seeding Strategy

When the seed creates a new packet, no other node in the kédtaga copy of that packet. We
take advantage of this fact to reduce the propagation defgyeickets with &eed-Pushktrategy.
When a seed generates a new packet, it immediately forwataa subset of its neighbors, and
sets aPushTTLon the packet. Neighbors who received a pushed packet deotehe value of
PushTTL and immediately forward the packet to one randomhioeir.

This strategy ensures that new packets quickly propagateset of nodes in the system.
Ideally the value ofPushTTL is comparable to the diameter of the network, ensuring that
newly created packets are scattered well throughout thersyand can spread quickly from
there.

When a packet is newly created, it is rare in the system, sprtitgbility of a node receiving
duplicate pushes is quite low. Thus, the expected valuerafwalth wasted on duplicate packets
received due to the Seed Push algorithm is low.

4.2.5 Buffer Management

Whenever a node receives a packet, either by a push or inmespma request from its neighbor,
it adds the packet to its buffer. Whenever there is a contigidock of packets at the start of the
buffer, those packets ammitted(i.e., passed up to the application layer and removed fram th
buffer). Packets that have been emitted are calldgackets A node retains a certain number
of recently emitted packets in order to serve requests mads beighbors.

When a packet is added to the buffer, a node sets a timeouabpabket foMaxBufferTime
Once that timeout expires, all packets with lower sequenceaers are emitted immediately and
those that have not been received yet are considered lost.

Lost packets can lead to disruption in the media stream, hadld be avoided as far as
possible. Packet loss rate is the primary metric we use imgdge performance of our system.

4.2.6 Startup Strategy

As discussed in Section 4.1, one of our important designsgisalo enable a new node that
joins the system to begin playback as quickly as possibled®¥eggned a startup strategy to help
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achieve this goal.

When a node joins the system and starts connecting to naighésach neighbor will send
the node a send a lists of packets available for downloadndbde must decide which sequence
number to start downloading from. The range of packets alvidImay be quite large, because
the node’s neighbors may not be precisely synchronizediaaydoffer a substantial number of
old packets to its neighbors. The only limit to the range afleds available to a node is the
amount of memory that the node’s neighbors are willing tangjtoring old packets.

Chainsaw’s receiver-driven architecture means that trde s the flexibility to decide
where in the range of available packets to begin download#igvers who missed the start of
a program may have the opportunity to “go back in time” a fewuneés.

However, in our implementation, we assume that the goal i®e¢eive data as current as
possible. In achieving this goal, there is a trade-off betweurrency and the probability of
“hiccups” in starting up because the very newest packets hat/propagated to most neighbors.
To avoid this situation, a node looks for a sequence cbnsecutive packets with. or more
sources each. In our experiments we looked for a sequendeaifrisecutive packets with 2 or
more sources. We avoid packets with single sources, to avaitlip problems because of errant
nodes, or nodes with limited upload capacity.

Having decided on the sequence number to start from, the disdards all information it
has received about packets prior to that sequence numhkeerdarsLINEAR mode. In this
mode, the node always picks the packet with the lowest seguammber when deciding on a
packet to request from each neighbor. This allows the nodernp up quickly and pass up a
block of data to the application layer. Once the node hasepldack a sequence pipackets,
the node entersORMAL mode, in which it starts requesting packets at random, agidesd in
Section 4.2.3. In our experiments we peb be equal to one second’s worth of data.

In Section 6.3 we demonstrate experimentally that thidgigtestrategy allows most nodes in
the network to start playback within a few seconds.

Summary

In this chapter we presented Chainsaw, a pull-based pgegenstreaming network on top of an
unstructured topology. The unstructured pull-based mashaprovides a bidirectional flow of
data between pairs of interacting nodes: in general, a ndtieoth send packets to, and receive
packets from a given neighbor. This property makes the syateenable to pairwise incentive
mechanisms, because a node may penalize a neighbor thatataggoad data to it by refusing
to answer that neighbor’s request for packets.

Next, in Chapter 5, we present Token Stealing, an incentigelranism for live streaming
applications that takes advantage of this fact. In Chaptee present detailed experimental
results that show that the Chainsaw protocol supports bagtdwidth streaming with low packet
loss and delay, and is highly scalable and resistant to churn
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Chapter 5

Token Stealing: Incentive Mechanism for
P2P Multicast

In Chapter 4 we presented the design for a robust and efédotey streaming protocol based on
an unstructured network. In this chapter, we expand on #&igd and incorporate an incentive
mechanism.

At first glance, one might assume that the same incentive amesim as used in SWIFT
will be effective for streaming, because the Chainsaw altis quite similar to the pull-based
mechanism used in SWIFT. However, as we explain in Sectidntbere are key differences
between file sharing and live streaming as a result of a neadHhieve a target bandwidth, and
the limited time window over which data packets remain uséfte present our Token Stealing
algorithm, our incentive mechanism for live streaming thatrcomes these constraints.

In Section 5.1 we present our design goals. In Section 5.2xpkai@ the key differences
that make incentive mechanisms designed for file sharingsysunsuitable for live streaming
applications. In Section 5.3 we explain how a bandwidthcaition strategy instead of a strict
tit-for-tat approach can help prevent under-utilizatidmesources. In Section 5.4 we describe
our Token Stealing bandwidth allocation algorithm. Fipalh Section 5.5 we discuss possible
strategies that selfish nodes may use to game the systenparvdehcan defeat those strategies.

5.1 Design Goal

A peer-to-peer network relies on bandwidth contributed tisyparticipants. While there are
often a number o#ltruistic nodes that will contribute resources willingly, many do.nbYe
therefore wish to provide a concrete incentive for nodestdribute at least as much bandwidth
as they consume, thus imposing no net resource drain on stensyWe provide this incentive
by preferentially directing bandwidth at nodes who conitgbthe most, thus improving their
performance.

A secondary goal is to take advantage of excess bandwidthdaa by altruistic nodes to
support nodes that are unable to contribute resources teytem, for example, nodes con-
nected via an asymmetric DSL connection which offers a &aamtly lower upload capacity
than download capacity. However, if there are not enoughiatic nodes to make up the re-
source deficit created by the non-contributors, we wish smenthat the contributors get signifi-
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cantly better performance. In Section 6.11 we show throughlations that our Token Stealing
algorithm is able to achieve these goals.

5.2 Attempts to Adapt SWIFT to Chainsaw

We designed the Chainsaw streaming protocol to be recdmnssn and compatible with pair-
wise incentive mechanisms like our SWIFT protocol presgmeChapter 3. Therefore, we
initially attempted to adapt the tit-for-tat scheme use8WIFT to our Chainsaw live streaming
protocol, and enforce a fair balance of trade between evanopinteracting nodes.

Although our this attempt was unsuccessful, we present arsuynof our findings because
they provide insight into key differences between the dyicarof file sharing and live streaming
applications, and illustrate the need for a different appho

5.2.1 Nave SWIFT Algorithm

In SWIFT, every node maintaingedit for each of its neighbors and honors packets requests
only when the neighbor has enough credit. Whenever it reseavpacket from a neighbor, the
node extends itv packets worth of credit. In addition, trading is jump-stdrby initializing
neighbors withy packets worth of credit instead of zero, and deadlocks ayelast by period-
ically extending nodes a small fractighof their total upload capacity in credit every second,
regardless of data received from it.

So long as nodes consistently upload data to their neightiaeg will keep earning credit
with their neighbors and be able to download packets froomthHdodes that do not upload will
soon deplete their credit with their neighbors and not be &bHownload from them anymore,
except for small trickle of free credit they receive fromitheeighbors in the form of.

Although SWIFT was very effective at ensuring fairness ie-filansfer applications, we
found that mechanism to perform very poorly when applied/mdtreaming. In our simulations
we found that over time, a large fraction of nodes startediffessevere £ 50%) packet loss
even in a system where every node tried to upload as much iasapacity allowed. This was
caused by small imbalances between nodes (e.g., due teedifféelay characteristics, distance
from seed, number of neighbors) being amplified by an uneégositive-feedback loop.

Consider a pair of nodes A and B, where A is closer to the seaa Bh In this situation,
Node A is likely to receive new packets before Node B. As altedlode B will have fewer
opportunities to upload packets to Node A, resulting in dost of credit over time. Eventually,
Node B will run out of credit with Node A and will no longer aliie download from that node.
This puts Node B at a significant disadvantage because NodasAmwst likely a source of
packets of interest to Node B'’s other neighbors, given ikjpnity to the seed. Therefore, the
loss of node A as a trading partner puts node B in a less falopaisition to trade with the rest
of its partners. This creates a positive feedback loop whesigght disadvantage is ultimately
amplified to the point where a node is unable to earn enougtit¢ceavoid packet loss.
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5.2.2 Compensating for Trading Imbalances

We evaluated two strategies for correcting these tradingalences. First, we implemented a
system where nodes attempted to correct imbalances theymeteced by allocating bandwidth

to neighbors they had the most trade deficit with before atloeles, regardless of the order in
which they received packet requests. We also evaluateche@yr where nodes that were at
an advantage intentionally attempted to reduce the numbeackets it uploaded in order to

improve its trade balance with its neighbors.

Preferential Uploading

We found that nodes ran out of credit because they were utahipload enough packets to
some of their neighbors to maintain a stable supply of cred@ierefore, we implemented a
system where nodes that were running out of credit with regh prioritized requests from
those neighbors and satisfied them as quickly as possibleki@satisfying existing requests
will generally result in more requests for packets from tigighbor.

Counterintuitively, this strategy made the problamrseover time. Some nodes, such as
nodes that were closer to the seed nodes were at an advanthgespect to most of their
neighbors. This led to a race among their neighbors to updsaduickly as possible to the
advantaged node. This created a new positive feedback |b@pewadvantaged nodes were
put at an increasingly greater advantage by neighbors sgjgety uploading packets to them.
Eventually, the neighbors that lost the race ran out of tseal they did in the naive tit-for-tat
system.

Advantaged Nodes Back Off

Our next approach was to have advantaged nodes attemptactipedy reduce the amount of
data they upload to give other nodes an opportunity to uplizéd and earn credit. By default,
nodes sendioTIFY messages to all their neighbors when they receive a new pacieder to
enable them to request that packet. Nodes that are clodee seed will often receive packets
before any of their neighbors, resulting in several requfstthose packets. We compensated
for this effect by reducing the number 8DTIFY messages sent by nodes when they detected
that they had large amounts of unused credit with most of tieghbors.

Every node kept track of its mean upload-to-download ratii s neighbors, which we
called thebalance ratio Nodes with balance ratios below 1 continued to employ tHaudie
behavior of notifying every neighbor of new packets in orttermaximize their chances of
receiving packet requests and improving their balance.réfiowever, as the balance-ratio in-
creased above 1, nodes linearly reduced the number of raigiotified. This ensured that
the advantaged nodes did not receive a large number of nsgeesew packets, thus giving
other, less advantaged nodes an opportunity to earn credjilbading those packets after they
received them.

This algorithm is beneficial to the advantaged nodes, deatdged nodes, and the system
as a whole. The advantaged nodes benefit by being relievenia of the burden of uploading
packets. The disadvantaged nodes benefit by having moretaopjties to upload packets to
their neighbors and earn credit. The overall amount of uplmendwidth in the system is gener-
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ally not reduced because some of the burden of uploadingpaiskshifted from the advantaged
to the disadvantaged nodes.

This algorithm was effective in correcting imbalances iti@hexperiments with small, uni-
form networks with no churn. However, in experiments withreneealistic scenarios, we found
that this algorithm was insufficient to prevent the cascgdailures we observed before. We
were unable to compensate for larger imbalances withoatttimg the advantaged nodes down
to the point of causing significant system-wide performastegradation.

5.2.3 Lessons Learned: Need for a Different Approach

As a result of insights gained in these studies, we conclildada SWIFT-like tit-for-tat ap-
proach was unsuitable for live streaming, and a differepr@gch was needed for three key
reasons.

Firstly, in a live streaming system, packets have a limiteeful lifetime because nodes are
only interested in a small window of data at any given timegémeral, older packets are nei-
ther useful for playback nor as trading commodities becallggarticipants are approximately
synchronized. A packet in a file sharing network, the otherdhaemains useful as a trading
commodity until every node in the network has obtained a ctimyew nodes join continuously,
packets always remain useful, and a node will ultimatelylile to trade them for other packets
and make progress towards assembling the complete file.

We found that the limited useful life of packets makes systémat enforce strict pairwise
equality unstable. A node may tend to receive packets $itdter on average than other nodes
as a result of its connection speed, network latency oripasi the network. As a result, this
node may often be unable to upload packets to its neighbers i€t is willing to because its
neighbors would already have obtained those packets froer gburces. The node will even-
tually run out of credit with its neighbors and get locked.ounlike the file sharing network,
a small largesse rate will not help alleviate this probleetgause the node will not be able to
trade the largesse to obtain a net positive flow of credit,thadhode effectively gets locked out
of the system. Once this happens, a different node is nowldaest node, and eventually gets
locked out too. This eventually leads to vastly reducedesygterformance.

Secondly, in a live streaming system, data must be downtbatlan average rate equal to
the stream rate, or it will lead to degraded user experiegitiegf through repeated re-buffering,
or packet loss). With a file sharing network, on the other halwver download speeds, while
undesirable, still contribute to the node’s ultimate gdaaguiring the file being traded.

Finally, peers in a file sharing network attempt to downldaelfile as quickly as they can.
The ideal download rate is infinity. Although peers have d&brglownload capacity than upload
capacity, there is no spare capacity in the system, becaasglst of available bandwidth could
be used to improve the download speed of some participarnih &\§treaming system, however,
the ideal rate is equal to the rate at which the source gexsenstwv data (i.e., thetream rate.
As a result, altruistic nodes who contribute more bandwtttdn they consume contribute to
surplus system capacity. This surplus can be used to suppadets that are unable to contribute
upload bandwidth at the full stream rate.

Whereas the first two differences pose additional challemmgenpared to file sharing net-
works, the third offers an opportunity to relax the need fivics pairwise fairness and take
advantage of any surplus capacity in the system.
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5.3 Bandwidth Allocation Strategy

In order to overcome the challenges posed by live streamiaghifted our focus from the strict
pairwise fairness used in SWIFT to a bandwidtlocationstrategy. Instead of limiting upload
rates, nodes allocate their upload capacity between camgpetighbors based on the amount of
data they receive from those neighbors. This permits eéffeatilization of any surplus capacity
that may exist in the system as a result of altruistic nodesnpting system performance and
stability.

By utilizing all available resources, we maximize the numbgkparticipants that can be
supported. Excess bandwidth provided by altruistic nodeshe leveraged to forgive nodes
with low upload rates so long as the system remains resaigice\When there is insufficient
bandwidth to support all nodes in the system, however, nedldshigh upload rates receive
much higher bandwidth than the low-bandwidth nodes.

This behavior gives nodes an incentive to contribute as nupbbad bandwidth to the sys-
tem as they are capable of. Users of the system would be eageuito increase their upload
rates, for example, by relaxing artificial constraints otoad bandwidth, or by closing other
applications that consume upload bandwidth.

5.4 Token Stealing Algorithm

Our Token Stealing algorithm builds on the standaidan buckemodel [90] commonly used to
regulate bandwidth flow in networking applications and eosit Our Token Stealing algorithm
sets up local markets at every node where neighbors competbd node’s upload capacity.
When the demand for bandwidth at a node exceeds the nodeadipapacity, neighbors that
have been uploading the most data to the node receive méfearvice. This constraint is
relaxed when there is enough bandwidth to fulfill all reqaest

Standard Token Bucket Algorithm

The token bucket algorithm works by having a virtual buckeo iwhich tokens are added pe-
riodically. Whenever a packet is transmitted, an equiviabeimber of tokens must be removed
from the bucket—packets may only be transmitted when thera aufficient number of tokens
available in the bucket. Thus, the overall bandwidth candrgrolled by controlling the rate at
which tokens are added to the bucket.

The number of tokens that may accumulate in the bucket isdahib some maximum value
to prevent a large number of tokens from accumulating dysgrgpds of low demand and caus-
ing a large burst during a subsequent period of high demahe ba@sic token bucket algorithm
only ensures that the overall bandwidth does not exceedcdifiggdimit.

Our Extension: Token Stealing

Our Token Stealing algorithm is a straightforward extensibthe token bucket algorithm. Ev-
ery node maintains a standard token bucket that we refer tbesshared buckeinto which
tokens are added periodically, at a rate equivalent to the’saipload capacity. In addition, the
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node maintains a separate bucket for each of its neighbarset®r to these gwrivate buckets
Whenever a node receives a packet from one of its neighboesnoves tokens from the shared
bucket and transfers them to that neighbor’s private buckbis has the effect of reserving a
portion of the node’s upload bandwidth to repay the neiglitwothe packets it has uploaded.

Like the shared bucket, private buckets are limited in sikRis prevents neighbors from
reserving large amounts of bandwidth that they never eti{fibor example, because they are
connected to other nodes with large upload capacities)ed®that overflow the private buckets
are returned to the shared bucket.

A neighbor may download a packet so long as there are enokghsdetween the shared
and private buckets. The maximum number of byBes neighbor may download at any given
time is:

N
B, =min(P;, S+ > P)
k=0
whereS is the number of bytes in the shared buckétis the number of bytes in neighbds
bucket andV is the total number of neighbors.

Note that unlike the standard token bucket algorithm, thaler of tokens in the shared
bucket may go negative with Token Stealing because of ean b private buckets. In this case,
it is necessary to check to total number of bytes in all pevatickets to prevent the overall
upload rate from exceeding the rate of addition of tokenséoshared bucket (i.e., the node’s
upload capacity).

If the number of bytes available to the neighbor is greatantthe size of the packet re-
quested, the node deducts the appropriate number of tokedstransmits the packet. The
algorithm used to deduct the tokens from the shared andtprimackets is discussed in Sec-
tion 5.4.1. If the neighbor has insufficient tokens avagdbl satisfy the request, the node sends
aNAK message.

As discussed in Section 4.2.3, on receiving a packeiaxs message, nodes adjust the rate
at which they request packets from their neighbors basechavI¥MD strategy. It has been
shown [3] that MIMD strategies lead to unfair allocation afnolwidth in situations where con-
gestion signalsNAK messages in this case) are synchronous. It is highly likelyiodes with
similar contribution levels (number of tokens in their @rtig buckets) run out of available tokens
simultaneously leading to synchronous congestion signals

To mitigate this, we use a scheme similar to the Random Eaebg@ion [33] congestion
avoidance scheme used by IP routers to avoid congestion khtiiadfic. When the number of
available bytes falls below a certain thresh@dldwe deny the request with aad message with
probability p even if the neighbor has sufficient tokens available. Theesalf p is zero then
B; > T and linearly increases tbas B; goes td). This probabilistic signaling does not reduce
the upload rate in the long run compared to deterministg s, but it ensures that different
neighbors that are close to exhausting their credits areedeat slightly different times, thus
preventing undesirable synchronization between neighbor

5.4.1 Which Bucket First?

The question of which bucket to deduct tokens from when ahiEigrequests a packet is inter-
esting. One may choose to deduct tokens from the privateebdickt and dip into the shared
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bucket only if there are not enough tokens in the private btjak one may use up tokens from
the shared bucket first.

In our experiments we found that the both strategies givengighbors that upload (and
therefore have tokens in their private buckets) an advantag that advantage is considerably
greater in the latter case. When tokens are deducted fropritrage buckets first, neighbors that
upload do not compete in the market for shared tokens urtessgrivate buckets are empty.
This makes it easier for neighbors that do not upload to veaeportion of the bandwidth.

When tokens are deducted from the shared bucket first, ajhbers compete equally in
the market for shared tokens before dipping into their peimickets, which act as a reserve.
This amplifies the priority given to the neighbors that upldhe most packets to the node.
Therefore, the strategy we choose is to deduct tokens fremstiared bucket first and only dip
into the private bucket when the shared bucket is empty.

5.4.2 Analysis

With our Token Stealing algorithm, the total upload capaoitthe node is still limited by the
rate at which tokens are added to the token bucket (i.e.,dgload bandwidth limit). However,
unlike a simple token bucket system where all neighbors laavequal opportunity to use up
tokens from the bucket, our Token Stealing algorithm faveegghbors that upload the most
packets to the node.

Whenever a neighbor uploads a packet to a node, the nodeess$ekens for that neighbor’s
use. Every packet the neighbor uploads to a node increasehémces that the neighbor will
be able to download a packet in the future.

If all neighbors upload equally, all private buckets wilMeathe same number of tokens in
them, which gives all neighbors equal priority. Howeveregghbor that does not upload will
not have tokens in its private bucket and will be limited tongting with other neighbors for
tokens from the shared bucket.

Whether or not the non-uploading neighbor succeeds in dmdihg depends on the total
supply and demand at that node:

Node has excess upload capacity

If the node has more than enough upload capacity to fulfilldi@and of all of its neighbors,
the shared bucket will have tokens in it and the neighbordbat not upload will still be able
to download. This ensures that a node’s upload capacityligaat as much as possible.

It is possible for a few nodes, known &ise-riders to try to leach off the system by selec-
tively connecting to nodes with excess capacity. This agnatvill work so long as the number
of free-riders is small. If a large number of nodes attempetxh off the system, they will
compete among each other for tokens from the shared tokewebuthis makes the effect of
free-riders self-limiting.

Node has limited upload capacity

If the node does not have enough capacity to satisfy all tguenost of the tokens will be
moved to the private buckets of the neighbors that do upla@ad the shared bucket will gener-
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ally be empty. As a result, the neighbors that upload will bke &0 use the tokens from their
private buckets to download packets, but nodes that do noadpvill be forced to compete for
the scarce tokens from the shared bucket.

5.5 How Our Algorithm Prevents Gaming

In this section, we briefly discuss various ways in which rogey attempt to game the sys-
tem, and explain why those attempts would be largely unsstak and not compromise the
scalability or stability of the system.

5.5.1 Misreporting Information

Our system does not rely on nodes to report any informati@uiathemselves other than the
availability of packets. This makes it difficult for malfuinening or selfish nodes to gain an
unfair advantage over their neighbors by lying about thpload rates.

A node may announce the availability of packets it does neéhlut this does not confer
any advantage, because their neighbors will not move armgnwto their private buckets until
requests are fulfilled. As we discuss in Section 5.5.4, a tivateattempts to earn private tokens
by uploading fake data will easily be discovered.

5.5.2 Selectively Connecting to High-Bandwidth Nodes

A node may attempt to game the system by selectively conmetdi high bandwidth nodes. It
might seem that this strategy will allow the node to gain nmbam its fair share of the bandwidth
provided by that node. However, in a resource-constraigstés, the shared bucket will typi-
cally be empty. The amount of bandwidth received by a nodebgidominated by the private
credit it receives for uploading data to that node.

In Section 6.15 we experimentally demonstrate this faad, strow that there is no perfor-
mance gained by nodes adopting this strategy whether jest addes adopt it or a vast majority.

5.5.3 Sybil Attacks

A Sybil Attack [24] is an attack where a node attempts to imprits performance by assuming
many identities in the system. This might allow a node to,example, escape consequences
for its bad behavior.

However, our system does not rely on building long-term tafpons for nodes. Instead,
every node is judged by its peers on its recent upload rafes.ndde builds up tokens in its
private bucket by uploading rapidly for a while, those takevill soon be depleted if it stops
uploading. This lack of long-term memory renders Sybil@taagainst our system ineffective.
An attacker would gain little by assuming several idendiiie the system, and would be better
off pooling upload resources into a single identity in ortbegain the most private tokens with
its neighbors.
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5.5.4 Uploading Bogus Data

A node may attempt to gain an unfair advantage by advertisaukets it does not actually
possess, and uploading bogus data if those packets arestedury neighbors. This will, of
course, cost a node upload bandwidth, but a node may atterdptdo either out of a malicious
desire to harm the system, or to minimize its delay by earpimgte tokens from its neighbors.

This problem can be solved by using cryptographic techridqo@uthenticate the data they
received from neighbors. BitTorrent solves this problendisgributing cryptographic hashes of
the individual pieces of the file in théorrentfile. Unfortunately, this solution cannot be used
with a streaming application, because the number of packetstentially infinite.

Instead, the seed can digitally sign packets on the fly agatts them into the network,
and attach the digital signature to every data packet. Théqkey needed to verify the signa-
tures may either be distributed to nodes in a metadata filogoas to thetorrentfile, or by
a certificate server. For example, the DSA algorithm spetifighe FIPS 140-2 [70] standard
produces 320 bit signatures, which amounts to a modest 4%heae if the stream uses 1,000
byte packets. The DSA algorithm also does not require ek@&U resources. In a test us-
ing the OpenSSL [92] implementation of DSA under Ubuntu xii®.10 on a dual-core AMD
Athlon 4400+ at 2.3 GHz, we were able to perform 5,&18N and 4,916VERIFY operations
per second. At 25 packets per second, this would result inRdn I8ad of under 0.5%.

Summary

In this chapter, we argued for a different incentive modelif@ streaming application than the
strict tit-for-tat approach advocated for file sharing agadions. We presented the Token Steal-
ing bandwidth allocation algorithm that gives nodes an mtige to contribute as much upload
bandwidth as they can, while forgiving nodes (like ADSL) aedvhen other altruistic nodes
make up the deficit by uploading more than their fair share. ddeussed various strategies
selfish nodes may attempt, and how those strategies can dueelef

Next, in Chapter 6 we present extensive experimental iethdt demonstrate the effective-
ness of our Token Stealing algorithm.
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Chapter 6

Experimental Evaluation

In this chapter we present detailed experimental evaloatidoth the basic Chainsaw stream-
ing protocol and the Token Stealing algorithm with a disere@tent simulator. We also built a
prototype implementation of our system to validate our $aton model.

In Section 6.1 we describe our simulator model along withpdm@meters of the experiment.
In Section 6.2 we provide a more detailed overview of the grpental results presented in this
chapter. In Section 6.3 we study the performance of a systémr@asonable default parameters
which serves as the basis for other experiments in this ehajst Section 6.4 we demonstrate
that our system scales well with increasing network sizeSdation 6.5 we demonstrate scala-
bility with increasing bandwidth, whereas in Section 6.6evaluate the effect of changing the
packet size while keeping the bandwidth constant. In Sedi@ we demonstrate robustness
to churn. In Section 6.8 we show that our system performs awadl a wide range of network
latencies. In Section 6.9 we study the effect of network yrdggree.

In Section 6.10, we evaluate the effect of our Token Steadiggrithm in a resource-rich
system, whereas we study progressively resource-staygteinss in a series of experiments in
Section 6.11. In Section 6.12 we show that the system cop#smitie changes in resource
availability. In Section 6.13 we demonstrate that the syst#so reacts quickly to changes in
an individual node’s upload rates, and nodes are prompirgneed for increasing their upload
rates and penalized for decreasing them. In Section 6.14ow that the time taken to respond
to changes in node behavior can be adjusted by varying thatetucket limit parameter.

In Section 6.15 we evaluate a possible strategy that couldtbepted to game the system
in order to gain an unfair advantage by taking advantagetnfisiic nodes, and show that this
strategy does not benefit the selfish nodes.

In Section 6.16 we study a more realistic scenario whereadptates fall into a range of
values rather than a few distinct classes of parameterallfim Section 6.17 we validate our
simulation results by presenting results from experim@et$ormed with a prototype imple-
mentation on the PlanetLab testbed.

6.1 Simulation Model

We built a high-performance discrete event simulator ineoitd enable us to simulate large
networks with a diverse range of parameters. The code idyhagtiimized and scalable, while
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accurately simulating the application layer protocol. @ugest experiment had a mean network
size of over 100,000 nodes, with about 1.8 million nodesigpgting over the course of the
experiment, having about 14.2 billion messages routeddmtthem. That experiment ran over
the course of two weeks and consumed 14 gigabytes of memorgllé&® experiments, with a
few thousand nodes required under a gigabyte of memory alydadiew hours of CPU time,
thus enabling us to run many experiments and study a vast @rgystem parameters, within a
reasonable amount of time.

Onthe whole, the experiments presented in this chaptezsept the analysis of 62 gigabytes
of raw experimental results gathered from over 400 indialdetwork simulations and more
than 4,000 hours of CPU time. Over the course of these expatsnwe simulated more than
22 million nodes, with about 21 trillion messages excharggd/een them, representing nearly
1.1 petabytes of network traffic.

The simulator consists of over 2,700 lines of C++ code, aatufes a highly flexible XML-
based configuration system to allows us to tweak every pdesrogthe system as desired, and
specify a wide range of network and node behaviors withoitingradditional code. Figure 6.1
shows a block diagram of our simulator. For scalability apeesl, our simulation operates at
the level of application-level messages rather than TCpdlikets.

[
] Event Core
Node Logic (Priority Queue)
First-Hop Network Logic
(Bandwidth-Limited)
[ Send Queue — Internet Logic
A (Latency-Limited) |[€
* Handles all
| Receive Queue | message arrival
and timer
Messaging < > events
Interface
(Notify, Request etc.) v Experiment Last event
Application Logic <e—— Controller event fired
marks current
irtual time
Spawn || Reporti vi
Shared Bucket ‘ & eporting
Kill >
Nodes Timers
Buffer Neighbor
State State D Config File
L (XML)

Figure 6.1: The simulation model: Nodes have independdotd@and download queues. These
queues are limited by bandwidth. The network core is comsdi® be adequately provisioned
and congestion-free, thus solely limited by latency.

Every node in the network represents one Internet host. yawvede has independent up-
stream and downstream queues which represent a user'satiomt their Internet Service
Provider (the first hop). The bandwidth limits can be set paelently on the two queues.
Since the links from a consumer to the ISP’s local point4afsgnce (POP) tend to be short, we
neglect the latency on these links.
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Section | Network Characteristic
6.3 Base system: Basis for remaining experiments
6.4 Network size varying from 25 to over 100,000 nodes
6.5 Stream rate (bandwidth)
6.6 Packet size
6.7 Mean node lifetime (churn rate)
6.8 Inter-node network latency
6.9 Number of neighbors (graph degree)
6.10 | Token Stealing Enabled?
6.11 | Fraction of ADSL nodes (resource availability)
6.12 | Changes in resource availability
6.13 | Changes in node upload rates
6.14 | Stabilization time: private bucket limit
6.15 | Attempt to game the system through selective connegtion
6.16 | A system with a range of upload rates
6.17 | Prototype implementation on PlanetLab

Table 6.1: Summary of experimental evaluation. We begih witypical system configuration,
and use that as a basis for further experiments by systeatigtvarying each parameter one at
a time. In addition, we study strategies that may be attedmjotgame the system.

Having traversed the upstream link, packets reach therfietecloud” which represents the
core of the Internet. Studies have shown that the backbaks 6n the Internet typically are
well provisioned and delays are dominated by the speed loff [85}]. Therefore, in our simu-
lation we assume that the core of the network is adequatelyiggponed and has a significantly
higher capacity than the edge. A packet’s traversal timauidpn the core is solely limited by la-
tency. Once it arrives at the destination node’s downstiggdmpropagation time is once again
determined by bandwidth.

Although we use a somewhat simplified network model, we dsmoplify the application-
level protocol in any way. Nodes are logically isolated freach other, and can only gain
information about other nodes through application-leveksages. We simulate all aspects of
the protocol described in Chapters 4 and 5.

6.2 Overview of Experiments

In this chapter, we systematically study every aspect ofGhainsaw mesh-based streaming
system, as well as the Token Stealing incentive mechaniale .1 shows a summary of the
experiments evaluation we performed, and the sections ichwie present the results.

First in Section 6.3, we demonstrate that Chainsaw accshmgsithe primary goal of deliv-
ering a live stream to a large number of simultaneous cliefits very low packet loss rates.
We do this by running an experiment where we pick reasonaddlees for all parameters and
measure the performance of a dynamic network with an avesb§60 nodes. Through this
experiment, we also show demonstrate that we meet the sagogoals of quick startup time,
low delay, and low overhead. In order to provide a secondtpfineference, we repeat this
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experiment with ten times as many nodes (i.e., 8,000 nodes).

Then in Sections 6.3 through 6.9, we show that our systemaldesand performs well across
a wide range of network and system parameters. We use oial gxperiment as a basis for
systematically studying every parameter by running a safeexperiments where we vary a
single aspect of the system and study its effects. We focusioprimary performance metric,
packet loss rate, but also present graphs for delay or ozdras needed to help explain the
packet loss rate curves we observed. As before, we repesx@riments with both 800 and
8,000 node networks.

Next, in Sections 6.10 through 6.16, we move away from resouch networks to resource-
constrained networks where there is insufficient cumuatipload bandwidth to support all
clients in the system with no packet loss. In these experispare show that our Token Stealing
algorithm plays its part in fairly allocating the availaddandwidth to nodes that contribute
resources to the system. We also show that our Token Stedljogithm adapts quickly to
varying network resource availability conditions, and &rigus ways in which selfish nodes
may attempt to game the system through strategic behavior.

Finally, in Section 6.17 we present results from experirmgrd@rformed on the PlanetLab
testbed, using our prototype implementation. We show tleablatain similar results with the
prototype implementation as we do with our simulationssthalidating our simulator.

6.3 Performance of a Typical Network

In this section we demonstrate that Chainsaw offers low @ldss, low delay, quick startup,
and acceptable bandwidth overhead, by studying a netwdhkreasonable default values. This
setup forms the basis of the remaining experiments in thepten, as we systematically vary
isolated aspects of the system to study their effects.

We simulated a 200kbps stream which is comparable to madepslity video streams
(such as those offered by YouTube), as well as high-qualitiastreams (many radio stations
offer 128kbps or 160kbps MP3 streams). We divide the streaonli,000 byte packets, giving a
rate of 25 packets/sec. We individually vary and study tifecés of stream rate and packet size
in Sections 6.5 and 6.6 respectively.

In this experiment we assumed that the system is well pravési with altruistic nodes who
contribute more bandwidth to the system than the stream aa# all nodes have sufficient
upload and download capacity. We study several aspectsofiree-constrained systems later,
in Sections 6.11 through 6.16.

We set the node upload and download bandwidth to twice tlearstrate, or 400kbps. The
seed node is responsible for quickly injecting new packets the system. In addition to an-
swering normal packet requests, the seed must also pusésanipgach packet to its neighbors.
In order to reduce the chance of a node leaving the systemratteiving a packet but before
passing it on to other nodes, it must push at least two copeseover, since the seed always
has packets available to it that no other node does, it ilyltkeservice more requests than other
nodes. Due to these extra bandwidth demands, we set the sgdotid bandwidth higher, at six
times the stream rate (twice the requests as other nodestwducopies of each packet pushed
preemptively), or 1.2Mbps. It does not seem unreasonabéssame that the publisher of a
stream will provide higher bandwidth than a typical pagaoit.
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In addition to actual stream data (i.e., the payload), nadest transmit and receive con-
trol traffic such as packet availability dataqTIFy messages) and packet requestBQUEST
messages). Moreover, like any other application, we inddiiteonal overhead from TCP/IP
headers. In our system we use the same connection for b@faddtcontrol traffic. Therefore,
nodes must set aside some portion of their bandwidth forrabtraffic. Since the BitTorrent
documentation suggests setting the upload rate at 80% o&thepload capacity [23], leaving
20% for control traffic and other overhead, we use the samevarhus the maximum upload
rate for the seed was 960kbps while that of the non-seed neae820kbps. For brevity, when
we use the ternupload ratein this chapter we refer to this value rather than the rawrepst
capacity. We experimentally show that the actual overhgadiich lower (about 7%) with this
setup, so the 20% margin is quite conservative.

We set the latency between nodes to 100ms (200ms round-Tiip$ is an extremely pes-
simistic value, comparable to the transit time between s@goss the world. By contrast,
typical round-trip time between Internet hosts in nearhigsitends to be on the order of 25ms
and the round trip time between New York and California is loe érder of 100ms. We study
the effect of different values of network latency in Sect@a8.

We began the experiment with only the seed node, and theml adller nodes to the system.
Non-seed nodes then joined the system with a standard Rogsswal process with a mean
inter-arrival time of 125ms. The seed node had an infinitififie and remained in the system
for the entire duration of the experiment, while other nddad a mean lifetime of 100 seconds
with an exponential distribution. This results in a meawmek size of 800 (100sec / 125ms).

We consider a mean lifetime of mean lifetime of 100 secondsetoery conservative; the
Web analytics company comScore has found that the averagthlef videos watched on the
Web is 228 seconds [21]. Moreover, although the exact valgaessed for lifetime and network
size are somewhat arbitrary, we systematically vary eatihesfe parameters to study the effects
of network size in detail in Section 6.4, and mean node fifetin Section 6.7. Additionally,
we repeated each experiment with a mean inter-arrival tii &ms to give a network size of
8,000 nodes, in order to provide a second point of compaxstinrespect to scalability.

Every node connected to 20 neighbors. This is comparabletddfault values used in other
networks like Gnutella and BitTorrent, which use a similatwork topology. We study varying
network degree (i.e., number of neighbors) in Section 6.9.

We ran the experiment for a total of 30 minutes of simulatetetiand started gathering
data once the system size reached its steady state, abontifivees (simulated time) into the
run. Nodes do not report packet loss until the packet requiesé out, so nodes with very short
lifetimes may report artificially low loss rates. Therefomethe interest of being conservative,
we disregard results from nodes with lifetimes under 10 $®hereas this experiment studies
the network in a steady state, we also study dynamic netwelkador later in this chapter by
varying network characteristics over time in Section 6] varying node characteristics over
time in Section 6.13.

In order to provide a second point of comparison, we alsoatsgkevery experiment with
a network 10 times the size of the previous setup, or 8,00@snoGomparing the two results
reinforces the fact that our system scales well with netveirk.

Figure 6.2a shows the distribution of packet loss rates désan the network. Of the 11,070
nodes who participated in the system over the course of therement, 10,949 (98.9%) nodes
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Figure 6.2: Cumulative distribution of packet loss rateamédelay, startup time and overhead
in a typical network (800 nodes).

had perfect delivery and did not lose a single packet. Thaiimy nodes lost between 1 and
4 packets over the course of the entire experiment, for &systide average packet loss rate
of only 0.0005%. Figure 6.3a shows the corresponding graplthie experiment with 8,000
nodes. Once again, we find that a large majority of nodes rsnffigpacket loss at al. Of the
108,619 nodes who participated in this system, 107,9241¢9Psuffered no packet loss, and
the system-wide packet loss rate was 0.0003%.

Figure 6.2b shows the distribution of mean delay as meaduoed the time a packet is
generated by the seed to the time a node receives it. Meaysdmia distributed on a narrow
bell curve with a mean of 1.80 seconds. Over 95% of the valvedetween 1.75 sec and
1.90 sec. The highest mean delay experienced by any node syttem was 2.007 seconds.
The long tail between 1.23 and 1.7 sec is caused by the fewsrtbdéare close to or directly
connected to the seed, and thus receive packets very qguidklymeans that most nodes do not
lag far behind the seed. When the network size was increase®®0 nodes, the mean delay
increased to 2.69 sec, as seen in Figure 6.3b. This incredseause the mean distance to the
seed increased from 2.2B§»,800) to 3 (0g208000) as a result of the increased network size
with a constant degree of 20.
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Figure 6.3: Cumulative distribution of packet loss rateamédelay, startup time and overhead
in a typical network (8,000 nodes).

Figure 6.2c shows the distribution of startup times of nadéke network. The startup time
measures the shortest time after joining a network thatdle iwould begin playback and avoid
“re-buffering” events. A vast majority of nodes (9,815, &.B%) had startup times of under
a second. The system-wide mean was only 0.80 seconds. Tpliesnthat nodes are able to
being play back soon after joining the system and do not havapénd a long time waiting
for the buffer to fill up, making for a good user experience. Wi the mean delay, the mean
startup time increased as a result of an increased numbepsftb the seed when the network
was expanded to 8,000 nodes. As seen in Figure 6.3c, the nerampstime for the larger
network was 1.06 seconds.

Figure 6.2d shows the distribution of overhead. The ovetheeudes all non-data traffic
received by a node, including notify messages, packet stquessages, and per-packet over-
head (such as headers). The mean overhead is only 6.7%, wétst anajority (over 90%) of
nodes having overhead between 6 and 10%. We do not expeeagea network size to have a
significant impact on overhead, since nodes only commusigah other nodes in their vicinity,
and there is no global control traffic. As expected, FiguBel&hows that the overhead remained
essentially unchanged with the 8,000 node network, at 6.8%.

45



0.001 5

0.0008 4

0.0006

L —t—
0.0004 +- —
/ —
0.0002 / .

0
25 100 400 1600 6400 25600 102400 25 100 400 1600 6400 25600 102400
Mean Network Size - log scale Mean Network Size - log scale

(a) Packet Loss Rate (b) Mean Delay

Mean Delay (sec)

Packet Loss Rate (%)

Figure 6.4: Performance of the system with varying netwa&.sFigure (a) shows the packet
loss rate as a function of the network size. Packet loss date®t increase significantly even
when the size of the network grows by nearly four orders of mitage, with a loss rate under
0.0006% even with 102,400 nodes. Figure (b) shows the mdag ds a function of network
size. Mean delay increase logarithmically with networlesigesulting in the observed small
increase in packet loss rate.

This experiment shows that our system is able to achieve Hie goals of low packet loss
rates as well as secondary goals of low delay and quick gtdrhe, and low overhead. For the
remainder of this chapter, we focus on packet loss ratesegsiimary performance metric, and
provide other measurements as needed to fully explain therebd performance characteristics.

6.4 Scalability with Network Size

In this experiment, we demonstrate that Chainsaw scaldswitél network size. We started
with the same basic setup as the network used in Section@.adpisted the node arrival rate
to vary the expected network size in 2x increments. We ramriassef simulations with mean
network sizes ranging from 25 to 102,400. Figure 6.4 showsnlean packet loss rates and
mean delay as a function of network size. Note that the X4{aassa logarithmic scale.

In the smallest experiment, we have a graph that is almdgtdohnected, because the ex-
pected network size is 25 nodes, and nodes maintain 20 reghilost nodes are directly
connected to the seed, and all nodes receive some fractidatafvery quickly via seed push.
Therefore, the packet loss rate was nearly zero: in fact arsiyngle node lost one packet over
the course of that 30 minute experiment. With larger netvgim&s, the packet loss rates climbed
slightly, but remained very low: between 0.0004% and 0.0006r about one in 200,000 pack-
ets.

The mean delay exhibits nearly perfect logarithmic growéimging from 0.72 sec to 3.23
sec. The logarithmic growth in delay is to be expected. Nadamtain a constant degree;
therefore the diameter of the graph grows logarithmicalithwhe size of the network. The
number of hops needed for packets to reach nodes farthestli®seed is equal to the diameter
of the graph. Therefore, logarithmic growth in delay is ety what would be expected.
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Note that even though we use a five second timeout, that daés ply that the system will
fail when the delay exceeds five seconds. Packet timeoutdedeemined in relation to other
packets received by the node, whereas the mean delay plateds a measure of delay from
the time a node generates the packet to the time a node redeive

This experiment demonstrates that our system scales esfiresell with network sizes.
Although our main focus is to demonstrate that our netwogtescwell to large network sizes,
the fact that the system shows good performance at smalbnlesizes is also significant. This
implies that our system works well even with only a few userd does require adoption by
a large number of users to provide good performance, thugligging the problem of gaining
adoption by end users.

At 102,400 nodes, the aggregate bandwidth delivered toytsters is 20.46 Gbps. Serving
that bandwidth with a conventional client-server model lddoe impossible without a large
dedicated datacenter or a content-distribution netwdk Akamai [91]—the total bandwidth
demand would require a dedicated OC-768 [39], which is nbynused by major ISPs back-
bones [4]. The peer-to-peer model, however, allows the teeesk a mere 960kbps of bandwidth
which is easily available in consumer-grade connectiotslewequiring viewers to contribute
no more bandwidth than is available from typical consumeatlband connections.

6.5 Scalability with Stream Rate

In this experiment, we demonstrate that Chainsaw scaldswtklincreasing stream rates. Start-
ing with the base setup described in Section 6.3, we incdetisestream rate by keeping the
packet size constant, but increasing the number of packgtsted by the seed per second.
We also proportionally increased every node’s upload amehtttad capacity. This experiment
studies the ability of the system to route a large number ck@s within the desired time
constraints.

We study the complementary experiment where we change thbenof packets per second
without altering the overall bandwidth in Section 6.6.

Figure 6.5 shows packet loss rates and mean delay as a fuonfstream rate. Once again,
the X axis has a logarithmic scale. We find that the mean deldypacket loss rates both go
down as the data rate increases. This seems countervataitfirst, but is explained by the fact
that nodes have increased bandwidth, but a constant pazke®s a result, individual packets
propagate more quickly through the network, resulting wdomean delay.

Packet loss in a resource-rich network are caused by randetodktions causing packets to
be delayed beyond the deadline (five seconds, in this cake)qdicker propagation time gives
nodes more opportunities to request each individual pdmfere the timeout, thus lowering the
chance that an individual packet will be delayed beyond #edtine. Therefore, we observe
lower mean packet loss as well.

6.6 Effect of Packet Size

In this experiment, we study the effect of varying packe¢siwhile keeping overall bandwidth
constant, by adjusting the number of packets per seconddingty. This is in contrast to the
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Figure 6.5: Performance of the system with varying stream reigures (a) and (b) show the
packet loss rate and mean delay for the 800 node networkrdsda) and (d) show the corre-
sponding graphs with an 8,000 node network. Higher raw badtthheads to lower propagation
delay, which in turn lowers packet loss rate with increasitngam rate. The vertical line marks
the base system data point, with a stream rate of 25 packets/s

previous experiment in Section 6.5, where we kept the patketconstant to adjust bandwidth.
As we are keeping the overall stream rate constant, unlikBde6.5, we do not alter the nodes’
upload and download capacities in this experiment.

Figure 6.6 show the packet loss rates and overhead as adumdtpacket size. Much of
the control traffic in the form of packet notifications, pacieuests, etc. is incurrguer packet
regardless of the size of the payload. In order to maintarstheam rate (bytes/sec) we must
increase the number of packets per second with smaller {s|acked decrease the number of
packets per second with larger packets. Therefore, thénegdr(i.e., the ratio of overhead bytes
to payload bytes) is very high for small packets and much tdardlarge packets.

Higher overhead increases the probability of temporarngestion where too much band-
width is taken up by control traffic, leading to insufficiergrimlwidth available to service data
requests. Therefore we observed higher packet loss rate2%0 byte packets, 1.5% with the
800 node network, and 0.8% with the 8,000 node network.
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Figure 6.6: Performance of the system with varying packatssiwith a constant stream rate.
Figures (a) and (b) show the packet loss rate and overhe#uf800 node network, and Figures
(c) and (d) show the corresponding graphs for the 8,000 netieank. The vertical line marks
the base system point with a packet size of 1,000 bytes.

Larger packets have two effects. Firstly, larger packets tanger to transmit and receive,
slowing down their propagation to the periphery of the nekuM@.e., nodes that are farthest
from the seed). Furthermore, fewer packets per second teadscreased parallelism since
fewer neighbors are uploading packets at any time. Thiscesithe effective degree of the
network, and increases the impact of any individual neigtéaving the network or suffering

temporary congestion. Therefore, we observed a sligheass in packet loss rate with larger
packet sizes.

6.7 Robustnessto Churn

In this section, we demonstrate the robustness of our systexdmurn, the rate at which nodes
enter and leave the system. A high rate of churn may be pratierior networks that need to
propagate routing information or form propagation trees.
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Figure 6.7: Performance of the system with varying levelstairn. We varied mean node
lifetimes, and adjusted the mean inter-arrival to mainthe mean network size of 800 and
8,000, respectively, and Figures (a) and (b) show the pdokstrate and mean delay for the
800 node network, and Figures (c) and (d) show the correspgrgtaphs for the 8,000 node
network. Packet loss rates increase only modestly evenwsithshort average node lifetimes.
The vertical line marks the base system point with a mean hiediene of 100 sec.

Nodes in the base system of Section 6.3 had a mean lifetimeé®$&conds. We simulated
networks with longer lifetimes, as networks with lifetimeslow as 25 seconds. This represents
an extreme situation with highly ephemeral participants.otder to keep the network size
constant, we adjusted the mean inter-arrival rate to cosgierior varying lifetimes.

In our protocol implementation, in an effort to be consemegtwe simulated the worst case
behavior where nodes abruptly leave the system withoufymagi their neighbors of their intent,
or disconnecting gracefully. A node might have outstandatgiests from its neighbor, but will
leave them unfulfilled as it leaves the network, requiring tieighbor to find a new source for
that packet. In a more well-behaved implementation, nodghtringer for a few seconds and
service outstanding packet requests while refusing topaauew requests, which will lead to
even better performance than our worst-case implementatio

Figure 6.7 shows packet loss rates and mean delay as a furaftimean node lifetime.
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Lower lifetimes indicate increasing levels of churn. Sujfes (a) and (b) show the packet
loss rate and mean delay, respectively, as a function of gemode lifetime for the 800 node
network. Sub-figures (c) and (d) show the correspondinghgrdpr the 8,000 node network.
Note that the X-axis has a logarithmic scale.

We find that while an extreme level of churn does adversegcathe system, the packet loss
rate remains very low, under 0.001% in both cases. The iser@gpacket loss rate is primarily
caused by nodes suddenly losing neighbors. With increagiogn, it becomes increasingly
common for a node to request a packet from a neighbor only\e treat neighbor leave the
system before fulfilling the request. On rare occasions, whil leave the node with no more
sources of that packet, leaving the node unable to obtaimp#cket.

When a node’s neighbor leaves the system without fulfillingatstanding request, the node
must then request that packet from another neighbor aféhiér times out, or detects that it has
been disconnected from the neighbor. Issuing a new requodsivaiting for the new neighbor
to respond leads to additional round-trip delays, leadirsmall increase in delay with shorter
node lifetimes. However, even with an extremely short méatirhe of 25 seconds, the delay
does not increase significantly. With the 800 node netwdr&, mean delay increased from
1.96 sec for the base system with a mean node lifetime of 10@s203 sec with a mean node
lifetime of 25 sec. With the 8,000 node network, the meanydelereased from 2.69 sec for the
base system to 2.77 sec with a mean node lifetime of 25 sec.

This experiment shows that Chainsaw is highly robust torchewren in the extreme situation
where nodes linger only for very short periods of time, andastvcase implementation where
nodes abruptly leave the network, leaving their neighboeguests unfulfilled. A practical
system would have even better performance than demortsirathis worst-case experiment
for two reasons. Firstly, in a real implementation, nodesiididikely leave the network more
gracefully. Secondly, extremely short mean node lifetirags unlikely to arise in practice.
We consider even the default value of 100 seconds to be quiteecvative because we expect
viewers to linger much longer on average for common apptinatlike video streaming.

6.8 Effect of Network Latency

In this experiment, we evaluate the effect of network lageiice time taken by packets the
traverse the network from one node to another. Note that fee te one waylatency, rather
than the round-trip delay reported by common network diagjadools likepi ng.

As mentioned in Section 6.3, we use an extremely pessimiatice of 100ms one-way
latency for the base system. In this experiment, we variech#twork latency in logarithmic
steps from 12.5ms (comparable to typical Internet tralygiétto a host in a nearby city), to
400ms, which is quite pessimistic even for satellite linksJong intercontinental terrestrial
links—the propagation delay for radio waves to a satelfitgeostationary orbit is 120ms.

Figure 6.8 shows packet loss rates and mean delay as a fuoét@twork latency. The X
axis has a logarithmic scale for both graphs, while the Y &ais a linear scale for the delay
graph and logarithmic for the packet loss graph.

We observe that increasing network latency leads to both@ease in packet delay, which
leads to a higher packet loss rate. However, even with adatein400ms, we observed packet
loss rates under 1% in both the 800 and 8,000 node networks.
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Figure 6.8: Performance of the system with varying intedlenetwork latency. Figures (a) and
(b) show the packet loss rate and mean delay for the 800 ndaderke while Figures (c) and
(d) show the corresponding graphs for the 8,000 node netwlskexpected, higher network
latency leads to increased propagation delay, which leakligiher packet loss. Packet loss rates
remain under 1% even with a very high 400ms latency in eadctlon. The vertical line marks
the base system point with a latency of 100ms.

Note that the increase in packet delagub-linear—while we increased the network latency
by a factor of 32, from 12.5ms to 400ms, the mean delay ineceé®m 1 sec to 5 sec. This
result might seem counter-intuitive and one might expedheal increase. However, some
delays are mitigated due to pipelining effects—nodes Wit transmit a request for the next
packet from a given neighbor while it is in the process of doading another data packet from
that neighbor, thus avoiding the latency penalty for th@sdgacket request.

Increasing delay with a constant cut-off time does lead tonarease in packet loss as it is
not possible to sustain a low lag behind the seed over a maoitinetwork with high network
delay. For instance, if temporary congestion or the depadtia neighbor prevents a node from
receiving the packet from the neighbor it originally recieésit from, it will take several round
trips for the node to detect that fact, request the packet fraother neighbor, and receive the
packet. With a high network latency, and a relatively low tageout of 5 sec, there is little
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Figure 6.9: Performance of the system with varying numbeeafhbors, i.e., graph degree with
the 800 node network. At low graph degrees, the high dianoétédre graph drives packet loss
rates higher. At higher degrees, increasing overhead masedaigher packet loss rate. Note
that packet loss rates remain relatively low, under 0.2%#t bxtremes. The vertical line marks
the base system point with 20 neighbors.

margin for rerouting or other delays, leading to the obsg:rmerease in packet loss.

This experiment demonstrates that the network is able toatpeuite effectively, with
packet loss rates under 1%, even under challenging conditiith a one-way network latency
of 400ms, which is a highly pessimistic value even for neksatistributed globally. In a real
world implementation, we would expect to see significardlyeér delays.

6.9 Effect of the Number of Neighbors

In the base system, we have used a network degree of 20. Teatig node in the system main-
tained connections to 20 neighbors. In this experiment, twdysthe effect of this parameter.
We varied the network degree from 5 to 50 in increments of five.

Figure 6.9 shows packet loss rates, mean delay, and ovesikesfdinction of network degree
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Figure 6.10: Performance of the system with varying numlberegyhbors, i.e., graph degree
with the 8,000 node network. At low graph degrees, the higtméiter of the graph drives
packet loss rates higher. At higher degrees, increasindhead may cause higher packet loss
rate. Note that packet loss rates remain relatively low,earid25% at both extremes. The
vertical line marks the base system point with 20 neighbors.

and Figure 6.10 shows the corresponding experiment witb08rdes. In both the 800 and
8,000 node network we observed that packet loss rates dnerhigth very low graph degree,
and then rapidly fall very close to zero. As we continue to@ase graph degree, the packet loss
rate starts to climb gradually.

This behavior is explained by the opposing effects observidt delay and overhead graphs
in sub-figures (b) and (c), respectively. When the graphetegrvery low, i.e., nodes connect to
a very small number of nodes, the network has a very high demmiéor example, with an 800
node network with degree 5, a majority of nodes will be 4 hopayafrom the seed. Therefore
packets will take longer to reach nodes on the periphergingato longer delays and higher
packet loss. With the 8,000 node network, a majority of nadéde 6 hops away, so this effect
is even more pronounced. We observed packet loss rates4%0Mxh the 800 node network,
and 0.23% with the 8,000 node network.

Higher network degree (i.e., more neighbors) brings dighimg returns, but increasing cost.
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Nodes must broadcast packet availability notifications/grgneighbor they are connected to,
and will receive notifications from every neighbor. Thisdedo a linear increase in the amount
of control traffic (i.e., overhead). The increase in ovedha&ao contributes to a small increase in
delay as packet requests and transmission get queued bwitification messages. Therefore,
as we increased the network degree to 50, we observed tHagtpass rates increased gradually
to 0.15% with the 800 node network, and 0.10% with the 8,0@Encetwork.

Between the two extremes, we observed a wide range of nethagilees where the packet
loss rates were extremely low, under 0.0001%. This wideeahgws that the network is stable
and does not need to be tuned with great precision to acloevedcket loss rates. Furthermore,
while packet loss rate at the two extremes was higher thapabieet loss rate in the sweet spot
towards the center of the graph, it remained quite low on aolake scale, under 0.25% in all
cases. Moreover, a practical implementation would be abiedasure the amount of overhead
traffic they are incurring and reduce the number of neightieg connected to in order to stay
out of the extremes with higher packet loss rates.

6.10 Token Stealing in a Resource-Rich System

In this section, we compare the performance of the systeim thvé& Token Stealing algorithm
disabled, to the base system described in Section 6.3. Tdle§this experiment is to demon-
strate that the Token Stealing algorithm does not imposeafarpgance penalty on a resource
rich system, i.e., when all nodes in the system are altougstd contribute at least upload band-
width as the stream rate.

Figure 6.11 shows the cumulative distribution of packes lcates and mean delay with
the Token Stealing algorithm disabled, and enabled for Hia¢h800 and 8,000 node cases.
As with our previous experiments, we observe that the pdosstrates are very low, with a
system-wide mean of only 0.0004% in the 800 node experimetfit With the Token Stealing
algorithm disabled and enabled. Enabling the Token Stgaligorithm actually resulted in a
slight improvement in the mean delay from to 2.01 with Tokésafing disabled to 1.96 with
the algorithm enabled.

We observed very similar results with the larger, 8,000 nogtevork. Once again, the packet
loss rate was very low, with a system-wide average of 0.00@048tout Token Stealing and
0.0003% with Token Stealing enabled. As before, enablirfgfdtealing resulted in a slight
improvement in mean delay with the mean value dropping fro80 2vith Token Stealing dis-
abled to 2.69 sec with the algorithm enabled.

At first glance, these results might seem counter-intuityee might expect the imposition
of additional constraints to reduce the performance of yiséeesn. However, the Token Stealing
algorithm does not restrict uploads the way a tit-for-tagteyn would, but merely redistributes
it among various neighbors. In a tit-for-tat system, a nodg teave a portion of its upload ca-
pacity unutilized if it does not receive a comparable amaidinlownload bandwidth. However,
Token Stealing merely adjusts the priority of neighboresponse to their download bandwidth,
and will not leave upload capacity unutilized if there is quigte demand. In fact, it encourages
packets to take more efficient paths by giving preferentedtment to nodes that upload more
data.

Thus we show that the Token Stealing algorithm not only dassdegrade performance
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Figure 6.11: Performance of a resource-rich system withvatitbut Token Stealing enabled.
In this experiment all nodes are altruistic. Figures (a) @r)dhow the cumulative distributions
of packet loss rates and mean delay for the 800 node netwondkFgures (c) and (d) show
the corresponding graphs for the 8,000 node network. ThHenmeance of the network in the
resource-rich case very similar with Token Stealing erchbewithout.

by imposing additional constraints, but may lead to sligltter performance through more
efficient routing of packets.

6.11 Resource-Constrained Systems

In this section, we move from resource-rich systems whdraales are altruistic (i.e., are
willing to contribute more upload bandwidth to the systerarthihe stream rate) to resource-
constrained systems where some nodes are unable or ugwidlioontribute as much upload
bandwidth as the stream rate.

In this series of experiments, we introduce nodes to theesystith limited upload ca-
pacity. For brevity, we refer to these as ADSL nodes, becawsenodel their behavior after
consumer Asymmetric DSL connections which typically o#iesignificantly lower upload rates
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Node Type Capacity as Fraction of Stream Rate
Upload Rate | Raw Upstream | Raw Downstream
Altruistic 1.6 2 2
ADSL 0.32 0.4 2
Fake ASDL 0.32 2 2

Table 6.2: Upload and download capacities of Altrustic, AD&hd Fake ADSL nodes. Al-

truistic nodes have a raw upload and download capacity dqualice the stream rate, and a
maximum upload rate (in terms of data packets) equal to 80%eofaw upload rate, i.e., 1.6
times the stream rate. ADSL nodes have the same downloaditygapmut an upload capacity

only 1/5 that of the altruistic nodes. Fake ADSL nodes haeesdime upload and download
capacity as altruistic nodes, but artificially limit thepload rate to that of the ADSL nodes.

than download rates. Itis common for such connections te hamtio of about 1:5 (for instance,
2 Mbps up and 10 Mbps down), so we used the same ratio, andesaptbad rate of ADSL
nodes to 20% that of the altruistic nodes in this series oéarents. As before, the altruistic
nodes have an upload capacity 1.6 times the stream rateefoherthe ADSL nodes had an
upload rate 0.32 times the stream rate. Recall that the dphta refers to the amount of data
packets a node is willing to upload, not the raw line bandWwidlte also introduce a second class
of nodes called Fake ADSL nodes that have the same raw uphlgatity as Altruistic nodes
but artificially limit their upload capacity to resemble tA®SL nodes. Table 6.2 summarizes
the parameters used by the three classes of nodes.

In this section, we first demonstrate the need for an incemtiechanism by disabling our
incentive mechanism, the Token Stealing algorithm. We tla@nan identical series of experi-
ments with the Token Stealing algorithm enabled, demoiisgrghat despite its simplicity, our
incentive mechanism fulfills our goals of providing a strangentive for nodes to contribute
upload bandwidth to a system, when the system is resourtgtrained, while accommodating
all nodes while resource-rich.

6.11.1 The Need for an Incentive Mechanism

We ran a series of simulations with different fractions of @iDnodes, starting with all altruistic
nodes, and increasing the fraction to 80% ADSL nodes, in 1@&@ments. We achieved the
desired ratio of the two types of nodes by introducing ADSH aitruistic nodes via separate
Poisson processes, with the mean inter-arrival rates @dius produce the desired ratio. As
before, we ran one series of experiments with the expectatisiae of the network maintained
at 800, and another with the mean total size maintained 808,0

Every node regardless of its upload capacity attempts tont@ad the complete stream.
Therefore, bandwidth demanded from the system by every mdgqual to the stream rate.
On the other hand, the supply of bandwidth contributed tosrstem varies between the two
classes of nodes. If we consider the stream rate to be onghmiipload bandwidth, or supply
contributed by nodes is 0.32 for ADSL nodes, and 1.6 for AD®des. The overall ratio of
bandwidth supply to demand in the system is therefore:
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Figure 6.12: Performance with varying fraction of ADSL nedeth the Token Stealing algo-
rithm disabled. As the system becomes resource-constiaiaeh ADSL and altruistic nodes
suffer increasing packet loss. With the Token Stealing ritlgm disabled, there is very little
difference between the performance of the two classes dsod

supply

demand
wherez is the fraction of ADSL nodes in the system. The supply becewual to demand
atx = 0.47. Therefore, when the system has fewer than 47% of ADSL ndbessystem is
resource-rich, and the systems becomes progressivelyroesoonstrained beyond that.

Figure 6.12 shows the packet loss rates and mean delay afiexped by ADSL and altru-
istic nodes, as a function of the fraction of ADSL nodes ingkistem. As before, we repeated
the experiment for both 800 and 8,000 node networks.

With 0% ADSL nodes, the setup is, of course, identical to ilh&ection 6.3, and the packet
loss rates are very close to zero. Moreover, all nodes inftes see very low packet loss rates
with 10-40% ADSL nodes in the system. The altruistic nodesurader 0.25% for packet loss
rates both the 800 and 8,000 node networks, while the ADSlesiatbout 0.9% with the 800
node network, and 1.9% with the 8,000 node network. Recatlttie system is resource-rich,

=0.32z + 1.6(1 — 2) (6.1)
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so long as there are under 47% ADSL nodes in the system, therparked by the solid vertical
line in the graphs.

In the region of the graph with 50-80% ADSL nodes, the paaket tates for both classes
of nodes increased rapidly, but there was very little défere between the packet loss rates
of the two classes of nodes, just 1-3%. This small differéaagnlikely to provide a strong
incentive for nodes to contribute upload bandwidth to theteay, thus demonstrating the need
for an incentive mechanism.

It might seem surprising that there is any difference at etieen the ADSL and altruistic
nodes at all with no incentive mechanism. However, recait th this experiment the ADSL
nodes had a lower line speed compared to the altruistic noe&siting in slower propagation
of data and control traffic, increasing delays. We observégure 6.12 that the ADSL nodes
on average had delays about half a second longer in the 8@netaiork, and nearly a second
more in the 8,000 node network. This longer delay incredseid tendency towards packet loss
slightly, explaining the slight difference in packet loasas.

To further illustrate this point, we ran another series gbeziments with a modification
to the parameters of the ADSL nodes, that we refer to as “FdB8LA nodes. While these
nodes still set their upload rates (i.e., maximum data wplate) to 0.32 of the stream rate—
same as the ADSL nodes, they have a line speed equal to thistatnodes, and would thus
not be encumbered by slower propagation times for their dathcontrol packets. This class
represents selfish nodes who have the physical capacitylbadiplata at the stream rate or
higher, but unlike the altruistic nodes, they choose totliheir upload rates.

Figure 6.13 shows the results of this experiment. As withetkgeriment with real ADSL
nodes, we plot the packet loss rates, and mean delay of kedbed of nodes as a fraction of
the percentage of non-altruistic nodes (Fake ADSL, in thseg. Once again, we repeated the
series of experiments with both 800 and 8,000 node networks.

As before, we observe that the packet loss rates are verydowallf nodes in the 0—40%
range, while the system as a whole is resource-rich. Inifia¢his range, the packet loss rates
are even lower than in the previous experiment—under 0.1%dth classes of nodes in both
the 800 and 8,000 node experiments. This is because thetpalciethe Fake ADSL nodes do
upload propagate to their neighbors much faster due to tjfeehiline speed compared to the
real ADSL nodes.

In the resource constrained range, however, we observéhhnilake ADSL nodes actually
performed slightly better than the altruistic nodes. Aitgb the difference in packet loss rates
between the two classes of nodes is small, under 1% with betsrhaller and larger network,
this is an highly undesirable outcome. In this scenaridjstehodes savbetter performance
than the altruistic nodes.

As before, this difference is explained by the delay graprsub-figures (b) and (d) for the
800 and 8,000 node networks, respectively. Whereas the A2kt nodes have the same line
speed as the altruistic nodes, they spend much less of dradwbdth on uploading data packets,
and thus are able to transmit packet requests and otheottmaffic more quickly, resulting in
lower delay. As before, this lower delay translates to lopacket loss rates. Once again, we
observe similar results with both the 800 and 8,000 node oré&iy

Although the difference in packet loss rates between theaisiic nodes and Fake ADSL
nodes is small, if at all there was an incentive created bydifierence in packet loss rates, it
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Figure 6.13: Performance of the system with varying fracted Fake ADSL nodes with the
Token Stealing algorithm disabled. Fake ADSL nodes havedhee physical capacity as the al-
truistic nodes, but are selfish restrict and their uploaglsred masquerade as ADSL nodes. With
their high bandwidth connection relatively unencumbengdjploading data to their neighbors,
the Fake ADSL nodes actually see slightly lower packet lasssrand mean delays than the
altruistic nodes—a highly undesirable outcome.

would be to be selfish rather than altruistic. Clearly, thiscome is highly undesirable from the
overall system’s point of view, thus demonstrating the rfeedn explicit and effective incentive
mechanism.

6.11.2 Resource-Constrained Systems with Token Stealingn&bled

In Section 6.11.1, we demonstrated the need for an incenteehanism. In this section, we
repeat the same series of experiments with the Token Sgealgorithm re-enabled in order
to show that our incentive mechanism does, in fact, provioldes with a strong incentive to
contribute upload bandwidth to the network.

As before, we first ran a series of experiments with a varyiagtion of ADSL nodes whose
upstream line speed limits their ability to contribute wgaldoandwidth to the system (i.eeal
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Figure 6.14: Performance with varying fraction of ADSL nedeth the Token Stealing algo-
rithm enabled. While the system is resource-rich, both ARS&H altruistic nodes suffer low
packet loss rates. When the system becomes resourceainadirthough, altruistic nodes suf-
fer much lower packet loss rates than the ADSL nodes.

ADSL nodes).

Figure 6.14 shows the packet loss rates and mean delay exped by ADSL and altruistic
nodes, as a function of the fraction of ADSL nodes in the systAs before, we repeated the
experiment for both 800 and 8,000 node networks.

Itis useful to compare Figure 6.14 to Figure 6.12, the reqaflour previous experiment with
the Token Stealing algorithm disabled. As before, in thewese-rich 0-40% range, all nodes
experienced low packet loss rates. In fact, the altruistidas experienced even better service
than before, with packet loss rates under 0.1%. While dligtegraded compared the altruistic
nodes, the ADSL nodes also received better service in tloeires-rich network with the Token
Stealing algorithm. The ADSL nodes had a 0.8% packet logs800 node network, and 1.2%
in the 8,000 node network, compared to 0.9% and 1.9%, raspbgiwith the Token Stealing
algorithm disabled. This reaffirms our findings in Sectioh06 where our Token Stealing algo-
rithm leads to a small improvement in overall network parfance in the resource-rich network
by routing around bottlenecks, preferentially sendingkpteto neighbors who are more likely
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to upload those packets to other nodes.

The key difference though, is in the 50-80% range where theesybecomes progressively
more resource-constrained. With the Token Stealing algorenabled, there is a significant
difference between the performance of ADSL and altruistides when the system is resource-
constrained. The packet loss rates of the altruistic nogl@sins low, even as we increase the
fraction of ADSL nodes, and the system becomes increasieghyurce-constrained. At the 80%
mark, there is only enough upload capacity in the systemltidi &v.6% of the demand, but the
altruistic nodes only suffer a packet loss rate of 6.8% ir8@ node network, and 10.6% in the
8,000 node network.

In contrast, the ADSL nodes experience a rapid increasedkepéoss rates in the resource-
constrained cases. At the 80% mark, they suffer packet biss of 57.4% in the 800 node
network, and 57.6% in the 8,000 node network. Thus, the AD&les see six to eight times the
packet loss rates that the altruistic nodes see in the dgvesource-constrained case. In fact,
even at the point where the system is only slightly resoomestrained, at the 50% ADSL node
mark, with 96% capacity, the ADSL nodes experience a visitdeease packet loss rates—over
higher 10%.

This shows that our incentive mechanism is accommodatidgoéfers good service to all
nodes regardless of their upload rates so long as the systeesaurce-rich due to altruistic
nodes who make up the deficit created by ADSL nodes. Howevernwhe number of ADSL
nodes increases to the point where the system is resounstramed, the altruistic nodes expe-
rience significantly better service (i.e., lower packeslses).

Next ran a series of experiments analogous to the previgusriexent, with ADSL nodes
replaced by Fake ADSL nodes. Recall that the Fake ADSL nodesi@des with the same
physical connections as the altruistic nodes that chooke slfish by artificially limiting their
upload rates to that of the ADSL nodes.

Figure 6.15 shows the result of this experiment. Figures(a) (b) show the packet loss
rates and mean delay experienced by the altruistic nodesfake ADSL nodes for the 800
node network, while Figures (c) and (d) show the correspandjraphs for the 8,000 node
network.

As before, in the 0—-40% range, while the system is resoucte-all nodes duffer very low
packet loss rates, well under 0.1% for both classes of nadésth the 800 and 8,000 node
networks.

However, in the resource-constrained region with 50-80%e REDSL nodes, there is a
significant difference in the packet loss rates seen by tledasses of nodes. As with the
experiment with the real ADSL nodes, the altruistic noddteswnly modest packet loss rates
around 10% even with a large fraction of Fake ADSL nodes irstfstem.

In stark contrast to the results in Figure 6.13 though, tke RDSL nodes have significantly
higher packet loss rates than the altruistic nodes. With 8% ADSL nodes in the system,
they have a packet loss rate of 55.6% in the 800 node netwark&12% in the 8,000 network,
virtually identical to the packet loss rates seen by theA&6L nodes in the experiment.

Clearly, this creates a highly undesirable situation fahlibe real and fake ADSL nodes
in resource constrained systems. Real ADSL nodes might ane much of a alternative if
their physical connections do not allow them to contributzrenbandwidth to the system, and
they might leave the system while it is resource-constrjitieis improving the overall ratio of
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Figure 6.15: Performance with varying fraction of Fake AD&ides with the Token Stealing
algorithm enabled. Fake ADSL nodes have the same physipatitg as the altruistic nodes,
but selfishly restrict their upload rates to masquerade aSIABodes. Once the system be-
comes resource-constrained, the Fake ADSL nodes suffeh imgber packet loss rates than
the altruistic nodes and would be incentivized to removeattiécial cap on their upload rate.

supply to demand. Fake ADSL nodes do have a choice, and maycbemged to remove the
artificial limits on their upload capacity in order to redubeir packet loss rate, and improve the
quality of service they receive. In either case, the sdlrgsted response of nodes improves the
overall ratio of supply to demand in the system, thus benegfitie system as a whole.

6.11.3 Steady-State Behavior

Although the difference in packet loss rates for the twos#asof nodes is significant, and the
6—8% packet loss rates suffered by altruistic nodes is guii@| and easily corrected by erasure
coding and other techniques, the lifetime average packstdoffered by nodes does not tell the
whole story.

Recall that in order to maintain more realistic conditiakour experiments were performed
with a dynamic network with nodes constantly joining and/ieg the system. When a new node
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Figure 6.16: When a new node joins the network, it has no egjout with its neighbors re-

gardless of its intended behavior, ADSL or altruistic. Bothes of nodes initially have low

download rates, thus high packet-loss rates. Altruistidesoquickly ramp up their download
rates close to the stream rate, whereas ADSL nodes remaar G688 of the stream rate. Fig-
ure (a) shows the download rate as a fraction of stream rad®& and Altruistic nodes as a
function of the time since joining the network in the 800 no@éwork, while Figure (b) shows
the corresponding graph for the 8,000 node network.

joins the system and connects to other nodes as its neighthose neighbors do not have an
immediate way to determine whether the newly connected likely to contribute upload
bandwidth or not. In our system, nodes only rely on first-halogkervations rather than long-term
reputations or information obtained from other nodes.

Therefore, newly joined nodes are initially treated the sdytheir neighbors regardless of
whether they are an ADSL or altruistic node. However, as tigad data to their neighbors,
or do not, in case of ADSL nodes, their neighbors learn anplomes to their behavior, leading
to better or worse service to those nodes. To be more premsdy joined nodes initially have
no tokens in their private buckets and must compete with@dles for shared bucket tokens,
which will be scarce in a resource-constrained network. &l altruistic nodes will soon
begin to accumulate credits in their private bucket as thH#gio packets and upload them to
other neighbors. ADSL nodes, on the other hand, will accateuinuch fewer credits in their
private buckets and will continue to compete for scarceeshhucket tokens.

To illustrate this behavior, we analyzed the behavior ofradividual altruistic and ADSL
node in the resource-constrained experiment with 80% AD&les.

Figure 6.16 shows the download rate (as a fraction of theustnate) of altruistic nodes
compared to ADSL nodes as a function of the time they joinedgtwork, with the 800 node
network in sub-figure (a) and 8,000 node network in sub-figioyeWe observe that both ADSL
and altruistic nodes initially had low download rates, a kifinaction of the stream rate. This
leads to high packet loss rates for both classes of nodes imitial few seconds after they join
the system.

Altruistic nodes initially have no data to upload to theingi#ors despite a willingness
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Figure 6.17: Packet loss rates for ADSL and altruistic naaes function of the fraction of
ADSL nodes in the network. Figure (a) shows the results fer830 node network, while
Figure (b) shows the corresponding graph for the 8,000 netieark. The steady state packet
loss rate is the packet loss rate experienced by nodes tiagléte first 30 seconds when nodes
are still ramping up their download rates.

to do so. However, as they acquire packets and upload therihéo neighbors, their upload
rate quickly ramps up. In fact, their rate briefly exceeds%Q@s they upload enough data to
build up credit, and then rapidly download missing packetslitup their buffer. Their packet
loss rate eventually settles down to a value just under 1@@%¥sistent with the low (but non-
zero) packet loss rates observed in Section 6.11.2 forigtitrtnodes in a severely resource-
constrained network with 80% ADSL nodes.

ADSL nodes also see a ramp up in their download rate in theféwsseconds after joining
because they do upload some data to their neighbors, atlzeiate much lower than the stream
rate. Unlike the altruistic nodes though, the ADSL nodey amnage to ramp up their download
rate to around 45—-47% of the stream rate. Again, this is sterdi with the packet loss rate we
observed for ADSL nodes in our previous experiments.

Since both ADSL and altruistic nodes suffer higher packes lates in the initial period after
they join, we computed theteady statpacket loss rate for nodes in the network by disregarding
the first 30 seconds of packet loss for every node, and plthedesults in Figure 6.17. Once
again, sub-figure (a) shows the results for the 800 node mietwubnile sub-figure (b) shows the
corresponding graph for the 8,000 node network.

In the steady state, altruistic nodes suffer a packet lassafaunder 2% in the 800 node
network, and under 5% in the 8,000 node network even when §d¥%emodes in the system
are ADSL nodes.

Thus, we show that the Token Stealing algorithm offers goadigpmance to all nodes in
the system when the system is resource-rich, i.e., the gpplandwidth exceeds the demand.
However, when the system is resource-constrained, nodesdhtribute the most resources see
the best performance. This behavior tends to drive the sygieards higher supply to demand
ratios either by encouraging low capacity nodes to leaveystem, or by raising artificial caps
on upload rates, and contributing more resources to thersyst
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6.12 Change in Resource Availability

In our experiments so far, we have studied systems in ste¢athy; svhere the fraction of ADSL
nodes in the system does not change over the course of themgpes (other than small random
fluctuations). In practice, one might expect the mix of naeshange over time.

A robust incentive mechanism should be able to react to amngresource availability.
If a formerly resource-rich network becomes resource-raimed, the network should react
accordingly and transition from offering all nodes low patloss rates to ensuring that altruistic
nodes receive low packet-loss rates at the expense of AD&sa&imilarly, if enough altruistic
nodes join the system (or ADSL nodes leave) to make a resaantgtrained system resource-
rich, the system should take advantage of that fact quiaktlyetfer improved performance to
the remaining ADSL nodes who were suffering high packet tatss.

6.12.1 Resource-Constrained Network Becomes ResourcecRi

In this experiment we begin with a network with 80% ADSL nodesesource-constrained state.
Starting at the 900 second mark, we transition the systemtoveving the inverse proportion
of nodes—20% ADSL nodes and 80% altruistic nodes, makirgsurce-rich.

Abruptly changing the behavior of a large number of nodekéstystem to achieve the new
distribution would be contrived and unrealistic. Recadittthe network in our systemdynamic
and nodes are constantly joining and leaving. The ADSL atrdislic nodes are drawn from
independent Poisson processes to maintain the expectecatahe desired level. We bring
about the change in resource availability by altering thamater-arrival rates of the Poisson
processes to cause four times as many altruistic nodesrtdheisystem on average as ADSL
nodes in any time period. Since all nodes have a mean lifetini®0 seconds, this gradually
leads to the desired outcome of 20% ADSL and 80% altruistéeapthe inverse of the initial
distribution. The transition is nearly complete in aboud4@conds, at the 1,300 second mark.

Figure 6.18a shows the packet loss rate over time for botB@enode network, and Fig-
ure 6.18b shows the corresponding result for the 8,000 netieonk. In both figures, the top
graph shows the proportion of ADSL and altruistic nodes 3t wint in time, while bottom
graph shows the packet loss rates of the two classes of notles@rresponding point in time.

As in our previous experiments, with the system in its ihit@source-starved state, the
ADSL nodes suffer very high packet loss rates, around 57%etre altruistic nodes suffered
much lower packet loss rates, around 5%.

Once the transition towards a more resource-rich statenbagthe 900 second mark, the
system immediately began to take advantage of the additiph@ad bandwidth available, and
both the altruistic and ADSL nodes began to see lower paokstiates. At the 1,032 second
mark, the fraction of ADSL nodes fell under 47% and the sydtamsitioned to being resource-
rich, at the point designated by the vertical line. Althougtvould be theoretically possible
for all ADSL nodes to have a 0% packet loss rate, the systemotiperfectly ideal, and the
ADSL nodes still had a 22% packet loss rate in the 800 nodearktand 25% in the 8,000
node network at that point. However, the packet loss ratARBL nodes fell under 1% in both
the 800 and 8,000 node network at the point with about 40% AD&les in the system, when
the ratio of supply to demand was 109%.
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Figure 6.18: Packet loss rates of altruistic and ADSL nodes time, as a resource-rich system
gradually becomes resource-constrained. The systemd&dm80% ADSL and 20% altruistic
nodes. Starting at the 900 second mark, it transitions avére inverse distribution. The top
graph in each figure shows the proportion of nodes, while i one shows the packet loss
rates. The solid vertical line denotes the break even pdierevsupply=demand.

This shows that our system is able to take advantage of addltresources as they become
available, and offer low packet loss rates to all nodes insjrsgem once the system becomes
resource-rich. Therefore, as the incentive mechanismueages individual nodes to contribute
more bandwidth to the system, the system is able to take tatyaof those resources quickly,
leading to improved performance.

6.12.2 Resource-Rich Network Becomes Resource-Constrath

In this experiment, we ran the complementary experimengreithe system was initially resource-
rich, but became resource constrained as altruistic nadethe system and were replaced by
ADSL nodes.

Analogous to the previous experiment, we started the exyaerti with the Poisson generators
setto create a resource-rich network with 80% altruistaasy and 20% ADSL nodes, and began
to transition the system to the inverse distribution bemigmt the 900 second mark.

Figure 6.19a shows the packet loss rate over time for botB@beand Figure 6.19b shows
the corresponding figure for the 8,000 node networks. In bgthries, the top graph shows the
relative proportion of altruistic and ADSL nodes in the gystat a given point in time, while the
bottom graph shows the packet loss rates of the two classesdef at the corresponding point
in time.

As expected, initially both altruistic and ADSL nodes haegywlow packet loss rates since
the system is resource-rich. As the system becomes resconstrained, the ADSL nodes
experience a rapid increase in packet loss rates, whiledtieploss rate for the altruistic nodes
remains relatively low.

This experiment demonstrates that the system respondsovetianges in resource avail-
ability, and that the packet loss rates of the two classeodés are determined by resource
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Figure 6.19: Packet loss rates of altruistic and ADSL nodes time, as a resource-constrained
system gradually becomes resource-rich. The system be&gm20% ADSL and 80% altruistic
nodes. Starting at the 900 second mark, it transitions avére inverse distribution. The top
graph in each figure shows the proportion of nodes, while it one shows the packet loss
rates. The solid vertical line denotes the break even pdierevsupply=demand.

availability at any point in time, regardless of the histofyhow the system got to that state.
This is an important property, because it shows that ouesystdapts well to changes in net-
work conditions.

6.13 Change in Node Behavior

In Section 6.11, all nodes in the system were configured &csal behavior model (altruistic,
ADSL, or Fake ADSL) and maintain that behavior throughoet ¢burse of their participation
in the experiment. In Section 6.11.2 we argued that thereiffee in packet loss rates between
the altruistic and ADSL nodes would encourage nodes to aser¢heir upload rates in order to
improve their performance.

Therefore, itis important that former ADSL nodes that img@their upload rates and change
their behavior to be similar to the altruistic nodes are kjyicewarded with lower packet loss
rates. On the other hand, if an altruistic nodes reducesltsad rate, it should quickly see an
increase in packet loss rate to a level similar to that seesthr ADSL nodes.

6.13.1 Fake ADSL Nodes Become Altruistic

In this first experiment, we have a resource-constraine@sywith 80% ADSL nodes as before.
We also introduced a small number of Fake ADSL nodes to theesysdenoted bypecial
nodes. As before, these represent nodes who have suffiejgatity, but limit their upload rates
and masquerade as ADSL nodes.

However, unlike the normal ADSL nodes, the special nodegply change their behavior
at the 1,200 second mark. They increase their upload ratetohnthat of the altruistic nodes.
These nodes represent the situation where a node decidaméwe an artificial cap on upload
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Figure 6.20: ADSL nodes can improve their performance byeiasing their upload rate. “Spe-
cial” nodes initially act as Fake ADSL nodes, but change tgitic nodes at the 1,200 second
mark. On increasing their upload rate, the special nodeklyusee an improvement in perfor-
mance (i.e., decrease in packet loss rate).

rate in order to receive better performance. As before, weated the experiment with both
800 and 8,000 node networks.

Figure 6.20 shows the packet loss rate for the special ned#sthe normal altruistic and
ADSL nodes for comparison. Before the 1,200 second markpkeial nodes have the same
low upload rate as the ADSL nodes, and therefore suffer e $agh packet loss rate, around
55-60% as the rest of the ADSL nodes.

However, at the 1,200 second mark they increase their uplitad to match the altruistic
nodes, and their neighbors begin to react immediatelyr gaaiket loss rates begin fall. In about
30 seconds, the special nodes have a low packet loss ratpacalote to the remaining altruistic
nodes: around 2% in the 800 node network, and 6% in the 8,006 network.

This shows that the Token Stealing algorithm allows a fotyneelfish node to quickly re-
gain good performance and low packet loss rates when thegase their upload rate. One
can imagine a GUI client where a user receiving poor qualifg® pauses another application
competing for upload bandwidth, or removes and artificig, @nd notices an immediate im-
provement in video quality, thus encouraging the user gatint of self-interest to behave in a
way that benefits the system.

6.13.2 Altruistic Nodes Become Selfish

In this section, we study the complementary situation, wherset of altruistic nodes in a
resource-constrained system abruptly change their behand reduce their upload rate to that
of the ADSL nodes, in essence turning into Fake ADSL nodes.

As with Section 6.13.1, we begin with a resource-constrhgystem with 80% ADSL nodes,
and introduce a class of special nodes. In this experimeatspecial nodes initially join the
network as altruistic nodes, and limit their upload ratehat 1,200 second mark. Once again,
we repeated the experiment with 800 and 8,000 node networks.
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Figure 6.21: Altruistic nodes cannot exploit their repiaiatindefinitely. The “Special’ nodes
initially act as altruistic nodes, but reduce their uploaterto that of the ADSL nodes at the
1,200 second mark. Their packet loss rate rapidly incretasttge same level as the rest of the
ADSL nodes.

Figure 6.21 shows the packet loss rate for the special ned#sthe normal altruistic and
ADSL nodes for comparison. Before the 1,200 second markpkeial nodes have the same
high upload rate as the altruistic nodes, and therefore tawd performance with a packet loss
rate around 1-2%.

However, at the 1,200 second mark they decrease their upédesl to match the ADSL
nodes. As observed before, their neighbors begin to reatisachange immediately, and in
about 30 seconds their performance is identical to thatehtérmal ADSL nodes, with a high
packet loss rate of 55-60%.

This shows that the Token Stealing algorithm does not allodes to establish a good rep-
utation and exploit that reputation to avoid uploading datthe network in the future. Nodes
monitor their neighbors’ behavior constantly, and rapigigict to changes. In order to maintain
low packet loss rates, nodes must continue to exhibit aticubehavior and contribute upload
bandwidth to the system.

6.14 Stabilization Time

In Section 6.11, we showed that in a resource-constraingesy all nodes are initially treated
the same and even nodes that are willing to upload data wfkrspackets loss initially until
their neighbors observe and react to their altruistic bemalzikewise, a node that increases or
decreases its upload rate will not be rewarded or penalized few seconds. We refer to this
period as thetabilization time

A short stabilization time is valuable from a user expereestandpoint—a user that causes
the upload rate to decrease below the stream rate (for mestanthrottling it, or starting another
application that competes for bandwidth) should quickly aeeduction in quality of the stream
so they observe the connection between the two events etlgyitio not understand the tech-
nical details. Similarly, allowing more upload bandwidtiosld result in a prompt increase in
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Figure 6.22: Stabilization time is the time for a node th&ral its behavior from altruistic to

ADSL (or vice versa) to see a complete transition in packes late. This time is governed by
the Private Bucket Limit. Lower limits allow quicker tratisns. The vertical line marks the
default value of the Private Bucket Limit (5,000).

quality.

The stabilization time is governed by thavate bucket limiparameter, which is the maxi-
mum number of private bucket tokens a neighbor will allow dento accumulate. As discussed
in Section 5.4, it is undesirable to allow a node to accuneutaiedit indefinitely, so private
buckets are capped at thavate bucket limit

A node that has been uploading data consistently for a lang Wwill most likely have a
private bucket filled near the limit. If it reduces its uploaade to a value below the stream
rate, it will begin to consume those tokens, and will eveltyuiempty out the private bucket and
have the same performance as the remaining ADSL nodes. §hertthe limit, the longer this
transition will take.

We ran a series of experiments similar to the experiment oti@e 6.13.2 where nodes
abruptly changed their upload rates half-way through thpeerment. We varied the values of
private bucket limit beginning with the default value of 5,000 and successidelybling and
halving it to study a range of values from 625 to 40,000. Wesue=d the time it took for a
set of altruistic nodes that change their behavior to mitnecEake ADSL nodes to have their
packet loss rate increase from the low level seen by theigtitumodes to the higher level of the
ADSL nodes. Once again, we repeated our experiment with 86@#00 node networks.

Figure 6.22 shows the stabilization time as a function ofgheate bucket limit. As ex-
pected, the stabilization time increases with a highertland decreases with a lower limit.

It might be tempting to use a very low private bucket limit nder to quickly penalize nodes
that stop being altruistic, or rewards ADSL nodes that iaseetheir upload rates. However,
there is a trade-off. If the private bucket limit is very sinabdes are more likely to be affected
by small random fluctuations in upload rates. If an altraistbde’s private bucket is easily
depleted, it will often be indistinguishable from the nodaeéth a history of selfish behavior.
This might lead it to compete with the ADSL nodes for scarcastt bucket tokens, leading to
higher packet loss rates. Such events benefit the ADSL nbdeause when the altruistic nodes
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Figure 6.23: The stabilization time for the system to reaatttanges in node behavior is deter-
mined by the private bucket limit used by neighbors.

lose their preferred treatment temporarily, that leavesemkens in the shared bucket that they
can compete for on equal terms.

Figure 6.23 shows the packet loss rates of ADSL and altcumsides as a function of the
private bucket limit. As before, the ADSL nodes have sigatffity higher packet loss rates than
the altruistic nodes. However, at the low end of the graggh, @mall limit), the gap between the
two classes of nodes shrinks significantly, as more bant@ivisddiverted from the altruistic to
the ADSL nodes.

It might seem surprising at first glance that although thekgaltoss rate of ADSL nodes
decreases by barely 10% from 5,000 to 625, that leads to agaise of a little over 40% in the
packet loss rate of the altruistic nodes. However, recalititis network has 80% ADSL nodes
and 20% altruistic nodes. Therefore, the ADSL nodes outraurtiie altruistic nodes 4:1, so
every byte uploaded to ADSL nodes on average costs thestitrniodes four bytes.

Even as the packet loss rate of the altruistic nodes fallsaboes close to zero, the packet
loss rate of the ADSL nodes continues to increase with irsimgavalues of therivate bucket
limit. This is because a higher limit allows altruistic nodes geree bandwidth for future use,
so a larger limit will allow larger amounts to be reservedreNé is never redeemed. This leads
to under-utilization of total upload capacity in the netaand is the reason we introduced this
parameter to cap private bucket values.

6.15 Selective Connection

In Section 6.13.2 we showed that nodes that have a historplofding data faster than the
stream rate will not be able to take advantage of their gopdtegion indefinitely, and will
begin to see higher packet loss rates immediately on regdlcer upload rate. Thus, uploading
data rapidly for a little while and then cutting back would be an effective strategy to game
the system.

In this section, we study another method that selfish nodghtnaittempt to use to gain
an unfair advantage while limiting their upload rates. Nodey selectively connect to high-

72



Percentage of Network Size Packet Loss Rate (%)
ADSL-Game Altruistic | ADSL | ADSL-Game

10 800 7.0 57.7 57.5

50 800 6.7 57.1 57.3

90 800 6.8 56.1 57.0

10 8,000 10.7 57.7 57.8

50 8,000 10.0 57.3 57.3

90 8,000 10.5 57.5 57.6

Table 6.3: A fraction of ADSL nodes, denoted by “ADSL-Game®d a strategy of connecting
only to altruistic nodes in an attempt to game the systemaRibgss of whether a small number
of ADSL nodes (10%) or a vast majority (90%) of the ADSL noddsgted this strategy, there
was neither an improvement in their own packet loss ratesamadverse effect on the altruistic
or normal ADSL nodes.

bandwidth nodes in an attempt to take advantage of theirsexcapacity, thus reducing their
packet loss rate compared to other ADSL nodes in a resowmtstrained system. We study
resource-starved system in this section, because any gatategy would be redundant in a
resource-rich system in our model, because all nodes eegeind performance while the system
is resource-rich.

In the resource-constrained system with 80% ADSL nodes, woaiffad 10% of the ADSL
nodes to game the system. They refuse to peer with all nodepeigh-bandwidth (altruistic)
nodes. For brevity, we refer to these nodes that try to gamsytstem as the ADSL-game nodes.

We observed that the strategy is completely ineffective plarformance of the ADSL-game
nodes is identical to that of the rest of the ADSL nodes. TheSAlame nodes had a mean
packet loss rate of 57.5% and the regular ADSL nodes had a peeket loss rate of 57.7%.
Altruistic nodes, on the other hand, had a packet loss rabalgf7.04%.

In order to see if the strategy would be successful if largmlmers of nodes adopt it, or
potentially harmful to altruistic nodes, we ran additioeaperiments with 50% and 90% of
ADSL nodes converted to ADSL-game nodes. Once again, wanagdzséhat the ADSL-game
nodes gain no benefit at all.

As before, we also repeated the experiment with the 8,00@ netivork. Once again, we
observed that the ADSL-game nodes failed to gain an advantgardless of whether 10%,
50%, or 90% of the non-altruistic nodes adopted the strat&tpg results of the experiments
with 10%, 50%, and 90% of ADSL nodes converted to ADSL-gamaesavith both the 800
and 8,000 node networks are summarized in Table 6.3.

The fact that ADSL-game nodes fail to gain an advantage isinexpected. In a resource-
constrained system, altruistic nodes have no unused uglaaacity, so their shared buckets
tend to be empty. The ADSL-game nodes compete with all otbées for the scarce tokens in
the shared bucket and receive no special benefit regardiegsether they are competing with
regular ADSL nodes or other ADSL-game nodes. Moreovenjialic nodes connected to other
altruistic nodes will generally have a supply of tokens igittprivate buckets, thus allowing
them to continue receiving bandwidth.

Even in an extreme case where the ADSL-game nodes managenhfetely surround an
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altruistic node by preventing it from connecting to any ottyges of nodes, the ADSL-game
nodes would not gain an advantage, since the isolatedsdltraode would have no data to offer
without other nodes to receive them from. Such an attack dvoahstitute a denial-of-service
attack rather than a successful gaming of the system. Sticimacdo not benefit self-interested
rational nodes, and is thus outside the scope of the Tokextii®jgrotocol, and is a subject for
future research. We discuss these aspects in further degsiction 9.1.

6.16 Range of Upload Rates

In previous experiments, we used distinct classes of nodbésiigcrete values of upload rates
(i.e., ADSL and Altruistic nodes). Although that setup isyvamenable to systematic study, itis
somewhat contrived; in the real world, upload rates arekahito fall neatly into a few distinct
classes.

In this experiment, we demonstrate that our system workxpsoted even when upload
rates are distributed across a range. Instead of beingnasktg classes, nodes are randomly
assigned upload rates between the 64kbps (the value use®8¥ Aodes) and 320kbps (the
value used by altruistic nodes). In order to allow contramhe overall supply to demand ratio
of the network, we assigned values using the following itistron:

u(z) = a+ bx” (6.2)

wherez is a random variable (0, 1). Using a non-linear function enables us to vary the supply
to demand ratio of the system while maintaining fixed boundghe maximum and minimum
values of upload rates. The mean value of this function is:

b
u=a+ o (6.3)

The values ofi: = 64kbps and = 256kbps, gives us the desired minimum and maximum
value of 64kbps and 320kbps, respectively.

We ran two experiments: one resource rich, with a supply toael ratio of 1.25+ = 1.7,

u = 250kbps), and one resource starved, with a supply to demama 0&0.75 ¢ = 0.35,

u = 150kbps). We ran each scenario once with the Token Stealingitiigodisable, and one
with the algorithm enabled. As before, we repeated eachrempet with an 800 node network,
and an 8,000 node network.

Figure 6.24a shows the packet loss rates of the resourteunid resource-constrained net-
works with 800 nodes, as a function of a upload rate. In thewe®-rich system, all nodes saw
very low levels of packet loss. In the resource-constrasysiem, however, all nodes suffer a
relatively high packet loss rate of 19.6% regardless ofrthpioad rates. Figure 6.24c shows
the corresponding results for the network with 8,000 nod&sce again, we saw very similar
results, with very low packet loss rates in the resource-nietwork, and a higher uniform rate
of 21.5% in the resource-constrained case.

A node would have very little incentive to increase its uploate. In fact, as we observed
before in Figure 6.13, there is a small inverse correlatiemvben upload rate and performance,
i.e., nodes that upload less see somewhat better perfoem&scbefore, this is because nodes
that upload less data leave their upstream bandwidth fremtke packet requests more quickly.
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Figure 6.24: In this experiment, nodes picked upload rates a distribution rather than using
distinct classes. Each graph shows the packet loss ratglmdurate for resource-rich net-
work (Supply/Demand = 1.25), a resource-constrained méh@upply/Demand = 0.75), and
the ideal curve for the resource-constrained case. |de&iepdoss rate for the resource-rich
network is zero for all values. Figure (a) shows the resultgtie 800 node network with the
Token Stealing algorithm disabled, while Figure (b) shdwesgraph with the algorithm enabled.
Figures (c) and (d) show the corresponding graphs for tHa0&hdde network.

With the Token Stealing algorithm enabled, however, thera $trong positive correlation be-
tween upload rate and performance, as desired: nodes tlogidupore data see better perfor-
mance.

Figure 6.24b shows the packet loss rates for the resowheand resource-constrained net-
work with the Token Stealing algorithm enabled. As befane, packet loss rate for all nodes is
very close to zero in the resource-rich case. In the resexronstrained case, however, there is
a clear correlation between the packet loss rate observed@oad rates: the higher the upload
rate, the lower the packet loss rate. The mean system-wickepboss rate was 20.2%. Fig-
ure 6.24d shows the corresponding results with the 8,008 netivork. Once again we observe
very similar results, with packet loss rates near zero ferrdsource-rich network, and similar
correlation between upload rate and packet loss rate ingb@urce-constrained case, with a
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mean of 21.6%.

The dotted line shows the ideal packet loss curve for theureseconstrained case (ideal is
of course zero for all nodes in the resource-rich case).llidedl packet losses would be borne
by nodes that upload less than the stream rate of 200 klutdXg®les that upload less than the
stream rate will suffer a higher packet loss rate, propodido the deficit they create (i.e., the
difference between the stream rate and their upload rat#)odgh it is not perfectly ideal, the
observed curve does closely approximate the ideal curveod® im this system would have a
strong incentive to upload more if they are able to in ordeethuce their own packet loss rate.

6.17 Prototype Implementation on PlanetLab

We built a prototype implementation of our system in C++ idearto validate our simulation
results. The prototype consists of over 5,000 lines of coitle avmuch of the application logic
derived from the simulator, with changes to interface with bperating system’s networking
stack.

In order to validate our simulator, we ran several experisien the PlanetLab [18] testbed.
PlanetLab is a network research testbed with approxim&@lyphysical machines located at
institutions (primarily research universities) around world, and accessible to researchers from
participating institutions.

Although PlanetLab is an invaluable tool for networkingaasch, it is unfortunately a victim
of its success, in some ways. PlanetLab hosts tend to be eawily loaded, and hardware
or network problems are not always addressed promptly Isecdney are remotely managed.
Therefore, at the time of writing, only 380 hosts were adbtéss Moreover, the set of nodes
accessible often varied from one experiment to the nexth@sdstbed is simultaneously shared
by hundreds of researchers, and even hosts a few populaceseiike the CoDeeN [96] and
Coral [36] Content Distribution Networks, nodes tend to hder very heavy load. Typical load
averages tend to be higher than 10, with load averages owgrigdcommon. Most nodes were
also found to be actively swapping most of the time. Thegeftor a time-sensitive application
like live streaming, we consider the PlanetLab experimn® a stress-test rather than a typical
real-life deployment.

In this section, we present the results of our experimen®lanetLab.

6.17.1 System with All Altruistic Nodes

In this experiment we used the same parameters as we did tirois€c3, and attempted to
launch one Chainsaw node on each physical PlanetLab node.

The mean size of the network in this experiment was 350 will3 Bnodes participating
over the course of the run. Figure 6.25 shows the distributiopacket loss rates and startup
times. We found that 3,209 (93%) of the nodes suffered nogidoks at all over the course of
the experiment. The system-wide mean packet loss rate Wa%ol.
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Figure 6.25: Cumulative distribution of packet loss rates”tanetLab.

6.17.2 Resource-Constrained Systems

We then ran a series of experiments with different fractioh#ADSL nodes with the same
parameters as the experiments in Section 6.11. Most Plabetbdes actually have raw upload
capacities higher than we limited their upload rate to. &fare they can be considered to be
Fake ADSL nodes. As before, we repeated the series of expetsnwith the Token Stealing
algorithm disabled.
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Figure 6.26: Performance with varying fractions of ADSL aedn PlanetLab with token steal-
ing enabled and disabled.

Figure 6.26a shows the relative packet loss rates of the A&yl altruistic nodes with the
Token Stealing algorithm disabled. As with the simulatiesults, we find that the difference
in performance seen by the two classes of nodes is small. dMerewe find that altruistic
nodes have slightly higher packet loss rates than the AD$Slesiwhen the system is resource-
constrained.

Figure 6.26b shows the relative packet loss rates of the ABSL altruistic nodes with
the Token Stealing algorithm enabled. In this series of erpants, there is a clear difference
between the performance seen by the two classes of noded. Adites have packet loss rates
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more than twice as high as the altruistic nodes, 58% compar2é%. As before, both classes
of nodes have low packet loss rates while the system is resoiah.

This series of experiments offers further evidence thaTtien Stealing algorithm is capa-
ble of giving much better performance to nodes that contieibandwidth than those that do not
in a resource-constrained system, while giving good peréorce to all nodes in a resource-rich
system, and corroborates our simulation results.

Summary

In this chapter, we presented simulation results that detnate that the Chainsaw streaming
protocol supports high bandwidth streaming with low padkes rates, low delay and quick
startup times. We showed that the system scales well withaszl stream rate, and is robust
to churn. We also demonstrated that the Token Stealingitigoachieves our goal of giving
lower packet loss rates to nodes that contribute bandwidisiource-rich systems, while taking
advantage of altruistic nodes to give low packet loss ratei hodes when possible. We showed
that the algorithm is resistant to gaming, and respondskiyic changes in both an individual
node’s upload rates, and system-wide resource availabtimally, we validated our simulation
results with by repeating some of the experiments with agbtype implementation of PlanetLab,
and demonstrating similar results.
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Chapter 7
Related Work

Peer-to-peer systems have been extensively studied intrgears. In this chapter, we present
related work in file sharing, incentives and streaming te@laur work in context. We begin with
a survey of key peer-to-peer systems in general, and théin@other approaches to streaming
protocols as well as incentive mechanisms.

In Section 7.1 we give a broad overview of research in peg@etr networking. Section 7.2
we describe some of the key file-transfer protocols thatesasvbackground for our work. In
Section 7.3 we describe work on peer-to-peer streaming saday multicast and contrast it
with our own work. Finally, in Section 7.4 we present relateatk on incentive mechanisms for
file sharing as well as streaming.

7.1 Peer-to-Peer Systems

The peer-to-peer revolution was arguably started by thestéaf31] file sharing network. Nap-
ster allowed users to directly share files off of their coneputith other users on the Internet and
was an alternative to more traditional means of sharingesatike FTP and HTTP servers. The
peer-to-peer approach dramatically reduces the load ocehteal server compared to a tradi-
tional server-client approaches because the server amgssinetadata: storage and bandwidth
costs of the files themselves are borne by the end users.

Napster’s network was highly centralized: users sent afifites they wished to share to a
central server which maintained an index of all shared fiekthe users who were sharing them.
Other users could then search the database and contacighmbuser and download the file
directly from them. However, this approach still requirégh#ficant resources from the central
server because it had to process every query by every jpanticon the system. Moreover, this
centralization left Napster legally vulnerable to illegations of its users.

Gossip protocols [28, 29] were modeled after the spread s#adie among a population.
Nodes connected in a random graph sent a message to eitleeraatlandom subset of their
neighbors. The neighbors in turn forwarded the messageetorikighbors excluding the one
they received the message from. This protocol ensured eéiabte delivery of the message to
every node without the need for elaborate routing algorgthm

The Gnutella [40] used a similar principle to build a systeor@decentralized than Napster.
In Gnutella, peers merely used well-known server to loctterpeers and join the system. Hav-
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ing located a small number of participants, peers perforarathdom walk from those neighbors
in order to locate a random set of neighbors to connect tajtieg in an unstructured random
graph. Instead of being directed at a central server, quareze directed at individual nodes
by flooding. Gnutella was tremendously popular with over Hiom unique participants [84],
thus demonstrating the potential of peer-to-peer netwdtksvever, Gnutella also suffered from
scalability concerns because of its flooding approach.

Several researchers focused on Distributed Hash Table8(687, 103] to solve this prob-
lem. Distributed Hash Tables are systems that map keys tevah the same way that regular
hash tables do. However, instead of pointing to values in enomg location, keys in a Dis-
tributed Hash tables help locate the node in the networkabtatally stores the corresponding
value. Thesestructurednetworks made searches more efficient, but were significambire
complex to build, and made join and leave operations morerssipe for the network.

Other researchers focused on making unstructured netwooks scalable. Lv et al. [58]
proposed replacing flooding with random walks to make betserof network resources. This
system was further improved upon by Adamic et al. [1] by diregwalks preferentially at high-
degree nodes, and by Chawathe et al. [14] by explicitly gkiodes’ resource constraints into
account. Kazaa [68] is a commercial network that improvesadlity by directing searches at
well-provisionedsuper-nodes

7.2 File Transfer Protocols

With high-bandwidth Internet connections becoming ultious, a whole range of new applica-
tions have become possible including online distributiblame software packages (ISO images
of Linux distributions, demo and free games, etc.), mowaesl, TV shows.

The data dissemination problem can broadly be classifiedfilettransferand streaming
protocols. The objective of file-transfer protocols is tetdbute a large, finite-length file (or
collection of files) from the distributor to a large numberretipients. In general, different
participants complete the download at different times,thidile is only useful once a complete
copy is obtained. Streaming networks, on the other handi@uheliver a continuous stream of
data to clients. Typical examples of streaming applicati@m online radio and TV stations.

Streaming systems share many of the same challenges asfitder protocols but impose
additional bandwidth and delay constraints. Thereforebagin by studying file transfer proto-
cols before addressing our primary goal of building a sdalahd robust peer-to-peer streaming
system.

BitTorrent [19] is a peer-to-peer file sharing network thas lemerged as one of the most
popular peer-to-peer networks today. Some estimates stige BitTorrent traffic accounts for
35% of all data on the Internet today [93].

The core BitTorrent protocol is very simple. The file beingisgd is broken up into a number
of pieceswhich are assigned sequence numbers. Nodes form an unsgdicandom graph and
exchange piece availability information with their neigidh. Nodes then attempt to assemble
a complete copy of the file by requesting missing pieces frbeir theighbors. Experience
with BitTorrent suggests that it often takes several migdite nodes to achieve full download
speed [99]. Although this delay is not a problem when dowdtiloga large file, a few minutes
delay would be completely unacceptable to users waitinggi Giewing a stream.
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In 2008, Mol et al. [66] proposed and implemented an extensfdhe BitTorrent protocol
that is more suitable for on-demand streaming, along witlew imcentive mechanism. We
discuss the streaming protocol in Section 7.3.3 and thetiveemechanism in Section 7.4.2.

7.3 Streaming and Multicast

In 1988, Deering proposed the Distance-Vector IP Multi€mstiting Protocol (DVMRP) [22],
an extension to the IP protocol to support multicast, i.ee-tb-many transmission. IP multicast
naturally lends itself to applications like streaming [27,63, 81] and large-scale file distri-
bution [10]. In DVMRP, data is delivered from the source te tiecipients by constructing a
tree consisting of the union of unicast paths from each recigo the sender. This tree-based
protocol prevents routing loops and ensures that each paekerses the fewest physical links
necessary to transmit to all recipients.

IP has gained wide acceptance in the research community asdden widely studied;
protocols have been designed to build reliable servicesoprot the best-effort IP Multicast
layer [56, 76, 100]. However, it requires routers to mamtaembership information and vio-
lates their stateless design, increasing complexity imgtevork [83] and leading to scalability
concerns. This, combined with the need for widespreadstrinature-level changes, has pre-
vented the widespread deployment of IP multicast.

In 2000, Chu et al. [16] suggested that many of the deployglasihd scalability concerns
that have prevented wide-scale deployment of inter-dorRikulticast may be mitigated by
moving to an application-layer multicast. In 2004, Srigtuilchai et al. [86] did a measurement
study that found that the network does indeed have enougluness to support large scale
overlay multicast but did not propose specific protocols.

7.3.1 Tree-Based Approaches

Most of the early streaming approaches usté@ebasedpproach similar to the multicast tree
constructed by IP Multicast. These are referred towrlay treesbecause they are a logical
structure constructed on top of the underlying IP network.

In their landmark paper, Chu et al. proposed a system caltelddIystem Multicast (ESM),
based on their algorithm called Narada, an adaptation o-D¥RP at the application layer.
Through experiments and analysis, they show that it is ptessd support multicast at the ap-
plication layer. They went on to build a practical applicatithat has enjoyed a fair degree
of success and has been used to broadcast video from severas déike academic confer-
ences [17,79]. One of the drawbacks of ESM was that it requicgles to maintain state about
every other node in the system, limiting its use to netwoifkeos to a few hundreds of nodes.

Other researchers improved this technique by refining #eedonstruction techniques using
DHTs [13, 35, 42,55, 71, 104]. CoopNet [71] offers anothéeliesting take on multicast where
multicast trees are used to augment the traditional center model. When overloaded, the
server redirects new clients to other clients it has sereedntly, in a model the authors call
Cooperative Networking

There are drawbacks inherent to networks based on simpttagveee. Firstly, the network
is fragile, because there is only one path from any node tsdhece (the root of the tree).
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Therefore, whenever a node leaves the system, all of itseddants are affected. If the node
happens to be near the root, this could include a large dracti the network. The tree must be
repaired quickly to avoid wide-scale disruption. Althougls is also true of IP multicast, nodes
in an IP multicast tree are core Internet routers which tenoet more stable and reliable than
end hosts.

Secondly, load is distributed unfairly. Interior nodes aseally responsible for supporting
multiple children, and thus need to contribute two or maress the bandwidth than they receive
from their parent. Leaf nodes, on the other hands, contribatbandwidth at all. In a balanced
binary tree, for example, half the nodes are leaf nodesjngabe burden of supporting the
entire network on only half the nodes.

Probabilistic Reliable Multicast [6] is an innovative syst that addresses some of the reli-
ability problems of tree-based multicast. In addition te #panning tree, nodes forward data
to a randomly chosen set of peers with small probability. @othat receive these broadcasts
propagate them both upwards toward to root, and to theid@l The authors observe that
the larger the size of a disconnected subtree, the great@rdfbability of some member of that
subtree receiving one of these random broadcasts. Thussitiall overhead (in terms of du-
plicate packets) it is possible to greatly increase thalbdlty of tree-based protocols. Although
this solves the problem of interior nodes disrupting largenhers of descendants, it does not
address the unfairness of the simple tree-based model.

7.3.2 Multi-Tree Protocols

Some suggested that many of the drawbacks of tree-basedaappes may be mitigated by
buildingmultipletrees. Splitstream [11] is one such system. In Splitstrélaestream is divided
into severaktripes and one overlay tree is built for each stripe. Splitstreapsihe Scribe [12]
overlay multicast system, which itself is based on the R§88] Distributed Hash Table (DHT).

Splitstream mitigates many of the drawbacks of simple br@ged approaches. Nodes join
as an interior node in only one of the trees, while joining &safnode in the rest. This ensures
that all nodes in the system have similar levels of contiilout Although this protocol cannot
prevent packet loss from propagating down an individua,tstripes may be redundant, allow-
ing nodes to recover from packets lost in individual treeglit8ream, however, assumes that
all nodes in the network contribute upload bandwidth at thece rate, and does not tackle the
issue of allocating bandwidth among heterogeneous peawever, further enhancements to
Splitstream might be able to address this limitation thioogpre complex tree structures.

Venkataraman et al. propose Chunkyspread [94, 95], amatiee multi-tree protocol. Un-
like Splitstream, Chunkyspread explicitly takes hetermgris bandwidth constraints into con-
sideration by assigning nodes with more resources asonteoides in more trees. This trades
off some of the fairness aspects of Splitstream for sharestand improved performance. Al-
though their system offers good performance when nodesiboté bandwidth, it offers no
incentive for selfish nodes to do so.

7.3.3 Mesh-Based Protocols

A different approach to multi-tree protocols is to do awayhvirees entirely, and instead con-
struct amesh This is the approach used in our protocol. The key benefit wfeah-based
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approach over tree-based approaches is that there arglagéths from the source to each
node. Therefore, the loss of a single node has little impacthe integrity of the network.
Magharei et al. published a good survey [59] of relevant vawkvell as detailed comparisons
between multi-tree and mesh based approaches.

Gossip or epidemic models are an example of a simple mesd baglticast system [28, 29].
Initially designed to model the spread of infections in ardemic, the same principle can be
used to disseminate information among a group of nodes. assignetwork, nodes forward all
the data they receive to some or all of their neighbors, tlagifhg the network with updates.
Nodes keep track of all data they have seen recently to aeoidisg the same update multiple
times and causing routing loops. Nodes receive all updatgswery high probability, thus
making the system very reliable, but they will mostly likegceive several copies of each packet.
This wastes a lot of bandwidth, making the system unsuit@bleigh bandwidth applications.

Bullet [51] was one of the first mesh-based protocols desidoehigh-bandwidth stream-
ing. Bullet used an overlay tree as the primary path for dathaugmented that with a mesh.
Nodes receive data from their parents, but that data may dmemiplete due to bandwidth or
other constraints. The authors proposed an algorithmccRiESub [50] to identify nodes with
a largely disjoint set of packets. Nodes use the RanSubitigoto identify and receive up-
dates from nodes with a disjoint subset of data in order tanfithissing data. Bullet avoided
per-packet routing decisions through the RanSub algoritdowever, this did result in a large
amount of overhead because the RanSub algorithm is pradiadhibnd nodes inevitably re-
ceived duplicate copies of data. In the Bullet protocolreéhis unlikely to be a bidirectional flow
of data between any given pair of interacting nodes, thusimgak difficult to apply pairwise
incentives.

Bullet is an example of atructuredmesh because the structure is dictated by an algorithm
and data routing is dependent on the structure of the networlalternative is amnstructured
mesh where nodes form a random graph. This approach is colpnmed by file sharing pro-
tocols, including Gnutella, Kazaa, BitTorrent and othérg, early streaming protocols focused
on tree-based and other structured networks in order toliynputing decisions and minimize
delay. However, we showed [72] that with a receiver-drivezhdecture, an unstructured mesh
network can be used to support high-bandwidth streaminig moth low packet loss rates and
low delay. We expanded on that technique, as detailed int€hdp

Biskupsi et al. proposed MeshCast [8], an extension of oairi&aw protocol. They showed
that they were able to achieve lower delay and support higtineam rates by taking node band-
width into consideration while constructing the networkdtogy. The also showed that their
changes did not affect the resilience or other desirableackeristics of the Chainsaw protocol.
In fact, their extension does not conflict with the incentiwechanism we present in Chapter 5,
thus further demonstrating the benefit of decoupling datéimg from network structure.

Coolstreaming/DONet [102] is another streaming proto@ddal on an unstructured mesh.
Although they are also based on a pull-based system likenGaai they have different goals.
Their protocol aims to minimize overhead, at the cost oftgfatime, and control granularity.
Although their approach does support high-bandwidth sireg, is not amenable to pairwise
incentives, which was one of our key goals in developing thai@aw protocol.

In 2008 Mol et al. proposed an extension of the BitTorrentqurol [66] that targets on-
demand streaming. On-demand streaming is a different@mothat the live streaming problem
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we address, in that different viewers may start watchingvargprogram at different times.

On-demand streaming poses different challenges from fieasiing because different viewers
will not be synchronized in time, while the entire prograniiwe available ahead of time. In

their system, peers divide the file into high, medium, andpowarity packets depending on how
soon the packets are needed. When requesting data frorméigitbors, peers pick packets to
request with different probability depending on the cldssgacket falls in. This is a somewhat
different take on the sliding window protocol used in Chaims Since it remains a receiver-
driven architecture, we could apply this buffer managenseiattegy to Chainsaw and possibly
improve performance further. We discuss this and otheriplessnhancements in Chapter 9.

7.4 Incentive Mechanisms and Resource Allocation

Incentive mechanisms are mechanisms designed to diseonoalgs froniree-riding, i.e., tak-
ing advantage of the system without contributing resouircesturn. In this section, we present
a survey of other incentive mechanisms and contrast themtiwit algorithm we presented in
Chapter 5.

Incentive models can broadly be classified into cooperatidenon-cooperative. The coop-
erative model relies on participants to follow the protok@athfully, even when it is detrimen-
tal to their self-interest to do so. A selfish hode may be ablgain an unfair advantage by
misreporting information (upload rates, for instance) pclscumventing the protocol. A non-
cooperative model offers a stronger guarantee either bigiangthe dependence on self-reported
information, or by using various methods (cryptography,eample) to make it impossible to
falsify reporting.

Incentive models can also be orthogonally classified imataion-based systems and pairwise-
systems. In a reputation system, nodes directly or indyreeteive information about their
neighbors from other nodes in the system, and adjust thbavier accordingly. In a pairwise
model, however, nodes rely only on direct observation, Wwignforces a stronger constraint
while using less information. This is the approach we takeunToken Stealing algorithm.

7.4.1 File Sharing Protocols

Incentive mechanisms for file sharing protocols do not resrdly apply directly to streaming,
but are an interesting point of comparison.

In addition to the basic file-transfer protocol, BitTorrei$o specifies an incentive mecha-
nism. BitTorrent clients rank their neighbors by relatiygaad rates andhoke i.e., stop sending
data to all but the top few clients (typically four or so). €lis also randomly unchoke other
neighbors for brief periods to probe for other neighbors wiay by able to upload even faster
given a chance. As a result, nodes that contribute more dfdaadwidth tend to receive faster
downloads.

The BitTorrent algorithm has been studied widely, and manglies have found [20, 52, 78]
that the incentive model works quite well with the unmodifedignt, where the only option
available to strategic clients are tweaking parametess ligload bandwidth and number of
neighbors. However, other researchers have found [3054897 that modified clients can adopt
strategic behavior (without violation of the core protgdoldefeat the incentive mechanism and
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gain an unfair advantage. Piatek et al. argued [75] thateénf®@pnance observed in BitTorrent is
not the result of rational self-interest, but due to altmuend the fact that a majority of users are
not knowledgeable enough to alter their BitTorrent clieAts a social experiment, they released
BitTyrant a strategic BitTorrent client. Their client results inrsfgcantly higher download rates
than other peers with similar upload rates when used in aark&twith unmodified BitTorrent
clients, but greatly degraded overall performance if langembers of peers use their client.

7.4.2 Streaming Protocols

Sung et al. proposed a solution to the bandwidth allocatrablpm with theirContribution-
aware protocol [88]. They used the Taxation system [15] proposghu et al. to classify
nodes in a forest of End System Multicast (ESM) [16] trees pdheling on their bandwidth
contribution levels, nodes are classifieceasitiedin zero or more trees, while they are classified
asexcessnodes in the remaining trees. Entitled nodes may displacessxnodes to ensure
that their demand for bandwidth is satisfied first. Moreoeetjtled nodes may displace other
entitled nodes with lower contribution levels. They shoatttineir protocol succeeds in ensuring
a much-improved level of performance for nodes with hightigbation levels.

Their protocol has the same goal as ours. However, theiesyassumes that nodes are non-
strategic and compute and honestly report their statustakedror excess when participating in
atree, i.e., itis @ooperativesystem.

In their paperConsidering Altruism in Peer-to-Peer Internet Streamjhg] Chu and Zhang
proposed another interesting take on cooperative resailomation for overlay multicast. Their
proposal leverages the fact that some fraction of nodeslangstic, i.e., they willingly con-
tribute resources to the system. They use Multiple-DesorigCodes (MDC) to allow nodes
with limited upload bandwidth to take advantage of the exdesdwidth provided by altruistic
nodes.

BAR Gossip [53] is a gossip-based protocol that ensuresvisgrfairness among partici-
pants in the network, and is resilient to rational and Byirenattacks. However, their model is
aimed at ensuring tit-for-tat fairness, and does not easitgpmmodate nodes with low upload
capacities, even when there are enough nodes with higladipédes to ensure that the system
is resource-rich.

Ngan et al. suggested a reputation-based approach [69htiohted periodically rebuilding
trees, and eliminating nodes that do not contribute baniiwild might be possible to modify
their approach to accommodate ADSL nodes in resource-ysties as we do, but the periodic
rebuilding of trees required by their approach means tret 8ystem cannot be as responsive
as ours without very frequent rebuilding of trees, which ldaesult in a considerable control
traffic overhead.

Give-to-get [66] is the incentive mechanism proposed by Btodl. for their on-demand
streaming adaptation of BitTorrent. This is a simple repoitasystem that ranks neighbors
by how much data they forward to other nodes. They experiatlgniemonstrate that this
protocol works well with up to 20% free-riders in the systekhowever, we believe that this
scheme is weaker than the Token Stealing algorithm becagssmely on information reported
by neighbor of their neighbors (i.e., nodes that are exaettyhops away), thus increasing its
vulnerability to misreporting and collusion.
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Chapter 8

Conclusions

Peer-to-peer networks are an effective mechanism for4secgke distribution of content. This
technique allows recipients to use their upload capacisyfiport other nodes, thus relieving the
burden from the content provider. If every node in the systentributes as much bandwidth to
the system as it consumes, the system can support a largeenofodes with a constant load
on the original distributor (seed). Our thesis is that a sblicentive mechanism is necessary
to encourage nodes to contribute resources to the systaina aeceiver-driven architecture
with a pairwise incentive mechanism allows for great fldiigi simplicity, robustness, and
performance.

We presented SWIFT, an incentive mechanism for file sharetgorks, and showed that
nodes that contribute to the system receive significanttiebperformance than those that do
not. This system promotes system scalability by prevemioges from consuming more re-
sources than they contribute to the system. This systenes@wa foundation for our work on
peer-to-peer streaming.

We presented Chainsaw, a peer-to-peer live streaming qoiob@ased on an unstructured
mesh network. Our protocol is more amenable to pairwiseniives than traditional tree-based
mechanisms. We experimentally showed that this systemostgphpigh-bandwidth data dis-
semination with low packet-loss and low delay. In a typicelwork setup, we observed the
system-wide mean packet loss to be 0.0005%, or about 1 i9Q@0@ackets with a mean delay
of 1.8 seconds. We showed that the system scaled well witkasag network size, with packet
loss rate remaining low even when we increased the netwpeksi two orders of magnitude to
over 100,000 nodes. We also showed that our system was magigtant to churn. Even when a
vast majority of nodes persisted in the network for extrgnstbrt periods of time, with a mean
lifetime of only 25 seconds, packet loss rates stayed 100,0£18% or 1 in 150,000 packets.

We then presented the Token Stealing algorithm, an inae@ntechanism built on top of the
Chainsaw streaming protocol. Our algorithm is simple, tonally on each node and relies only
on direct observation of a neighbor’s upload rates. Thisesdhke algorithm easy to implement,
immune to misreported third-hand information, and recaire additional network resources.

In aresource-constrained system, we showed that the Tdkatrg) algorithm preferentially
directs bandwidth towards altruistic nodes that contebubre upload bandwidth to the system
than they consume. This preferential allocation gives theistic nodes significantly better
performance than the ADSL nodes that contribute less battidwin a simulation with 80%
ADSL nodes and 20% altruistic nodes with a supply-to-denratid of 0.55, the ADSL nodes
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had a packet loss rate of eight times higher than the alicuisdes. This property gives nodes
a concrete incentive to contribute more bandwidth to théesysnodes that artificially capped
their upload bandwidth and masqueraded as ADSL nodes wi&alg temove the cap in order to

reduce their packet loss rate. This action benefits thersyasea whole in addition to benefiting
the node itself.

We showed that an ADSL node that increased its upload ratieetéevel of the altruistic
nodes started receiving reduced packet loss rates quenkéi/had performance indistinguish-
able from other altruistic nodes after 30 seconds. Conlgradormerly altruistic node that
reduced its packet loss rate saw increased packet losshatesonverged to the same level as
other ADSL nodes after 30 seconds. This implies that nodesatagain an unfair advantage
by uploading for a while to gain a good reputation, and thetuceng their upload rate. We
also showed that nodes could not game the system by congseliectively to high-bandwidth
nodes.

We presented results from a prototype implementation wifeements conducted on the
PlanetLab networking testbed. The systems in these expetitshowed similar behavior to
that of our simulation results, thus reinforcing our result

Finally, we discussed various future research directimadding possible performance en-
hancements inspired by other research in the field, and veaysmart possible attacks by ra-
tional, self-interested peers, as well as malicious pe®vs. also discussed the feasibility of
unifying the file sharing, on-demand, and live streaming el®do allow users to seamlessly
switch between the different modes on a given stream, pirayigreat flexibility, and enabling
novel media experiences.
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Chapter 9

Limitations and Future Work

In this chapter we discuss potential future directions. éat®n 9.1, we discuss how selfish
peers may attempt to defeat the Token Stealing incentivénam®em and gain an unfair advan-
tage. In Section 9.2 we discuss ways in which malicious kétacmay try to harm the system
without regard to their own performance. In Section 9.3 westder ideas from other related
research that may be used to improve the performance of sterayfurther. In Section 9.4
we discuss how micropayments might allow nodes with limipbbad capacity to receive good
performance by making small payments in exchange for datzallf in Section 9.5 we dis-
cuss how the Chainsaw and Token Stealing protocols may lemasd to unify file sharing,
on-demand streaming and live streaming.

9.1 Network and OS Level Gaming Attacks

The Token Stealing algorithm does not depend on informagported by other nodes, instead
relying only on direct observation, thus making it immunettacks that involve misreporting
information. In Sections 6.13 and 6.15 we studied ways incvpiarticipants may attempt to
game the system within the Chainsaw and Token Stealing franks by tweaking upload rates
or connection parameters. We showed that it was very hagktbish nodes to cheat the system
by tweaking application-level parameters.

However, further research is needed to determine if lowel lattacks may prove success-
ful. Although an ADSL node cannot achieve an improvementarfgrmance by selectively
connecting to altruistic nodes in a resource-constraigstem, a low-level attack might render
this strategy more fruitful. For example, if the attackerevable to prevent other nodes from
connecting to an altruistic node, it will result in a localgius of upload capacity which the at-
tacker could then exploit. However, denial of service &sauften require considerable amounts
of bandwidth or other resources in order to overwhelm thaigets. Further investigation is
needed to determine if such an attack could be carried obhtless resources than it would take
to simply upload data to that peer in the first place.

Furthermore, and attack against an altruistic node thatened it unable to communicate
with other neighbors competing with the attacker for uplbaddwidth will require a fine bal-
ance between eliminating the competitors for bandwidth igntating the targeted altruistic
node completely. If the attacker disconnected the alicunside from every other neighbor, the
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altruistic node would have no source of data to send to tlaelsdt, rendering its spare upload
capacity useless.

9.2 Malicious Attacks

In this dissertation, we have only considered the case iofvatself-interested peers, i.e., peers
who are primarily interested in receiving content from tlework. Malicious peers, on the
other hand, are peers who are not interested in receivingebbut rather in disrupting the
network and preventing other peers from receiving contéhese are called Denial of Service
(DoS) attacks. An attacker with significant resources ctikédy overwhelm an individual par-
ticipant’s Internet connection with a targeted attack,thig is not a vulnerability of our system
per se. We are primarily interested in attacks which disaulairge fraction of the network, or
prevent large numbers of new participants from joining.

DoS attacks could be carried out against the membershigrses®ed, or against normal
peers. We consider each of these in turn.

9.2.1 Attacks Against the Membership Server

In our current implementation, the membership server isiglsipoint of failure. Without the
membership server, nodes are unable to join the system onéwdneighbors when old ones
leave. However, as mentioned in Section 4.2.2, the memipesshver is not an essential part
of our system, and the drawbacks with our current implentemtaould easily be mitigated.
We could easily incorporate either multiple redundant mersihip servers or eliminate them
entirely by using random walks for peer discovery, as is deitle Gnutella [40].

9.2.2 Attacks Against the Seed

In our current implementation, we have all new packets garedrby a single seed node. Dis-
ruption of this node will prevent any node in the system fraoeiving data. Such an attack
would be analogous an attack against the server in a tradlt@ient-server system. However,
we believe attacks against the seed can be mitigated insdevays.

Firstly, our system does not require just a single seed nodta can be injected simultane-
ously by multiple seeds so long as all packets with a giveneece number are identical, and
packets that comprise the stream are numbered sequenfiaflystream could be communicated
to multiple distributed seeds via a private network (whiah @self be a separate Chainsaw net-
work), and each seed could inject some or all of the packétglie network. Having multiple
redundant seeds will make it harder for an attacker to dishgseed, and also safeguard against
network or hardware failures.

Secondly, it is difficult for an attacker to even determine ithentity of the seed. From the
point of view of its peers, the seed behaves exactly the saraayaother node. It is difficult to
determine whether data is being generated by a node or i§itriply being forwarded. Even a
map of the complete network will not reveal the seed unlessttacker is also able to trace the
complete path of a data packet to its source, which is a fabiechallenge.
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Finally, since TCP connections are bidirectional, the seadbe protected behind a firewall
and make outgoing connections to other peers, while refusiinncoming connections. This
arrangement can guard the seed against many network asgadratayer attacks

9.2.3 Attacks Against Other Peers

It is difficult for attacks against a small number of non-spedrs to cause wide-scale disruption
of the network, because unlike tree-based systems, trereary redundant paths from the seed
to each node. The loss of any given peer has very little impat¢he network at large, since a
large fraction of edges must be disconnected to partitioel&ke@@nnected random graph [43].

Section 6.7 have shown that the system is robust to highdedethurn. Therefore, the
disconnection of a small number of nodes will not have an estveffect on the network as a
whole, and will quickly recover from minor local disruptien

9.3 Performance Improvements

While we have demonstrated that the Chainsaw streamingqoledind Token Stealing incentive
mechanism offer excellent performance over a wide ranga@ipeters, there remains room for
improvement

9.3.1 Network Topology

One of the key properties of our system is that the networkltayy, packet routing decisions,
and the incentive mechanism are decoupled from each othegrefore, we may be able to
improve the performance or robustness of our system fultyhé@mncorporating techniques from
other related research. For example, the buffer and requasagement system proposed by
Mol at al. [66] might help reduce the delay and drive packsslmtes further down by giving
higher priority to packets that are needed sooner (i.ekgia®f lower sequence number).

In resource-constrained systems, we might be able to reaqeacket loss rates of altruistic
nodes closer to zero, and that of the ADSL nodes closer ttvdwgétical ideal by taking resource
constraints and geographical factors into consideratioifevbuilding the network [1, 8, 14, 88].

9.3.2 Initial Packet Loss

In Section 6.11.3 we showed that when nodes join a resoungst@ined system it takes a few
tens of seconds for them to ramp up their bandwidth and eaditdsy uploading data to their
data to upload to its neighbors at first.

We might be able to shorten the ramp-up period by allowinglyeennected nodes to
demonstrate altruistic intent by uploading an equivalembber of data in null or random bytes.
This would only be permitted for a few seconds after a conaeds established in order to
minimize the amount of useless traffic generated.
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9.3.3 Reducing Overhead

In the Chainsaw protocol, nodes must notify their neighlwfravailable packets so that they
may request them. In our implementation this is done naibglgending notification messages
on receiving a new packet. Although we have shown that thes dot lead to an excessive level
of overhead—on the order of 10% in most cases—the overheadidth is problematic for
some setups, such as with very small packets.

We might be able to improve the range of parameters over whiepacket loss rates remain
low by sending notifications more efficiently. For instaneetification messages may by sent in
batches, rather than as individual messages in order toedtie overhead generated per packet
notification. Furthermore, since the list of packets willeof be a contiguous run of sequence
numbers, further savings may be achieved by transmittifigrdinces rather than full sequence
numbers, and other data compression techniques. Suchverpemts will require a careful
balance between the overhead savings and the additiorsgl dalised by delaying notification
messages in order to send batch updates.

9.4 Micropayments as an Alternative to Uploading

We have shown that our incentive mechanism is effectivesiramg that nodes that upload data
at less than the stream rate receive lower performance umrethen the system is resource-
constrained. This means that in effect, participants mégndfind themselves constrained by
their upload capacity rather than download bandwidth. For example, & math a 512 kbps
up/6 Mbps down connection may be unable to join a 2Mbps sti@@drbe forced to settle for a
lower quality, say, 320 kbps stream.

Users who are constrained in this way by the physical linatet of their connections might
be willing to pay to receive better performance. Our Tokesaltg algorithm is a pairwise
mechanism, which is amenable to incorporating a micropaymechanism, as neighbors may
conduct currency transactions with each other in additaihé normal data traffic. In addition
to obtaining private bucket credits the usual way by uplogdiata, a node can purchase credits
by sending a cryptographic token as a proof of payment. Ma(@#&], a company founded in
2010 by the author of this dissertation is building a micgopant platform that would be well
suited to this application.

On receiving proof of payment, the neighbor would transfedis into the node’s private
bucket just as if it had uploaded a packet of data to it. Thisld@llow nodes with surplus
upload capacity to profit from it by offering data to other eedhat are unable to upload data at
the stream rate and would ordinarily suffer from high pad&ss rates. The pairwise nature of
the system makes it easy for individual nodes to set theirpnaes and policy.

9.5 Transition Between File Sharing and Streaming

Our Chainsaw protocol is receiver-driven, i.e., the reeeilecides which packets to receive.
Similar protocols have been used for both file sharing [1PaB@ on-demand streaming [66];
those systems differ primarily in the buffer-managemegoathms used internally by the nodes.
Therefore, it might be possible to unify all three applioas.
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Consider a user who joins a broadcast of a sporting event thigeprogram has already
begun. The user could choose to begin receiving the vergtldiEa, thus viewing the live
coverage but missing out on the previous part of the gameridtively, the user may choose
to watch from the beginning, as in on-demand media. If ddsitlee user could then jump
forward periodically, catching the highlights of the earlcoverage and eventually joining the
live stream. Finally, users with insufficient bandwidth tateh the stream live without packet
loss (i.e., ADSL nodes) could have the option of either wiaitglthe coverage at lower quality or
switching todownload modeand downloading the high-quality media at slower than-tiead:
speed for later viewing. In fact, the application could ea#faw the user the view a low-quality
version live, but fill in the missing packets later to createégh quality archive.

Two key challenges need to be addressed to enable this Ieflekibility. Firstly, nodes
in the Chainsaw streaming protocol rely on the fact that @ljhbors are downloading packets
within the same window. One possible solution would be to ifiyatie network construction
protocol to enable nodes to advertise the range of packeysatte interested in, and peer with
the appropriate set of neighbors interested in the samesraBgcondly, as we have argued
in Section 5.2.3, different incentive mechanisms are ngéalelive streaming and file sharing
applications. Further research is needed to reconcile tthiéerences.
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