

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Incentive Mechanisms for Peer-to-Peer Streaming

A Dissertation Presented

by

Vinay Pai

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

May 2011

Copyright by
Vinay Pai

2011

Stony Brook University

The Graduate School

Vinay Pai

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Dr. Erez Zadok — Dissertation Advisor
Associate Professor, Computer Science Department

Dr. Michael A. Bender — Chairperson of Defense
Associate Professor, Computer Science Department

Dr. Rob Johnson
Assistant Professor, Computer Science Department

Dr. Martin Farach-Colton
Professor, Computer Science Department,

Rutgers, The State University of New Jersey

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Dissertation

Incentive Mechanisms for Peer-to-Peer Streaming
by

Vinay Pai

Doctor of Philosophy
in

Computer Science

Stony Brook University

2011

The increasing popularity of high-bandwidth Internet connections has enabled new applica-
tions like the online delivery of high-quality audio and video content. Conventional server-client
approaches place the entire burden of delivery on the content provider’s server, making these
services expensive to provide. Apeer-to-peerapproach allows end users to reduce the burden
on the service provider by contributing bandwidth by uploading data they have downloaded to
other clients. However, the success of a peer-to-peer system hinges on resources contributed by
participants. Unfortunately, studies have shown that end users are often reluctant to contribute
resources to the system without a concrete incentive to do so. Our thesis is that a robust in-
centive mechanism is necessary to encourage nodes to contribute resources to the system, and
a receiver-driven architecture with a pairwise incentive mechanism allows for great flexibility,
simplicity, robustness, and performance.

The popular file sharing software BitTorrent is widely used,and includes an incentive mech-
anism that aims to tie the quality of service a node receives to the amount of resources it con-
tributes. Their incentive mechanism ispairwise, in that nodes only rely on direct first-hand
observations eliminating the need for complex distributedalgorithms. However, studies have
shown that flaws in BitTorrent’s incentive mechanism make itvulnerable to gaming. We present
SWIFT, our alternative incentive mechanism for BitTorrent-like file sharing applications, and
experimentally show that it is more resistant to gaming, while retaining the benefits of a pair-
wise mechanism.

Having validated pairwise incentive mechanisms, we turn toour main goal of live stream-
ing. Pairwise mechanisms rely on a bi-directional flow of data between nodes so that nodes may
directly penalize neighbors that do not upload data to them.Therefore, traditional tree-based
live streaming systems are not amenable to pairwise incentives. We address this with Chainsaw,
our peer-to-peer live streaming system based on an unstructured mesh network. Through exten-
sive experimental evaluation we demonstrate that Chainsawis able to support high-bandwidth
streams to a large number of simultaneous receivers with lowpacket-loss rates over a wide range
of network sizes and other system parameters.

We then build on Chainsaw and present Token Stealing, our pairwise incentive mechanism
for peer-to-peer streaming. Through detailed experimental evaluation, we show that our algo-
rithm offers good service to all participants in the networkwhen the system is resource-rich.

iii

When the system is resource-constrained, however, nodes that contribute resources receive sig-
nificantly better service than those that do not.

Thus, we show that our system is versatile and scalable, offering excellent performance
across a wide range of system parameters and network conditions, with a robust incentive mech-
anism that promotes resource-rich conditions by encouraging nodes to contribute as much band-
width to the system as they are able.

iv

Contents

1 Introduction 1
1.1 Peer-to-Peer Model .. 1

1.1.1 Need for an Incentive Mechanism 3
1.2 Our Approach . 3
1.3 Evaluation Methodology .. . 5
1.4 Contributions . 5
1.5 Outline . 6

2 Background 7
2.1 Multicast . 7
2.2 Peer-to-Peer Systems .. . 8

2.2.1 Peer-to-Peer File Sharing .. . 8
2.2.2 Peer-to-Peer Streaming .. 8

2.3 Network Topology . 9
2.3.1 Tree Networks . 9
2.3.2 Mesh Networks . 10

2.4 Incentive Mechanisms .. 10
2.4.1 Reputation-Based Systems .. 11
2.4.2 Tit-for-Tat Pairwise Systems 11

2.5 Multimedia Coding .11
2.5.1 Video Compression . 11
2.5.2 Erasure Coding . 12
2.5.3 Layered Codecs . 12
2.5.4 Fine Granularity Scalability 13

3 SWIFT: Economic Incentives for File Sharing 15
3.1 Introduction .15

3.1.1 The File Trading Model . 15
3.1.2 Trading Strategies . 16

3.2 Analysis . 18
3.2.1 Bounds on Incentives to Defect .. 18
3.2.2 Paranoid Traders vs. Periodic Risk-Takers 19
3.2.3 Incentives to Prevent Free-Riding 19

3.3 Experimental Results .. . 19
3.3.1 Download vs. Upload Rates . 20

v

3.3.2 Paranoid Traders vs. Periodic Risk-takers 20
3.3.3 Effect of Non-Cooperative Peers 21
3.3.4 Incentives to Prevent Free-Riding 22
3.3.5 Case for Non-Zeroβ . 22

3.4 Conclusions . 23

4 Chainsaw: Incentives-Compatible P2P Multicast 24
4.1 Design Goals . 24

4.1.1 Compatibility with Pairwise Incentive Mechanisms 24
4.1.2 Support Large Numbers of Simultaneous Participants 25
4.1.3 Drive Packet Loss to Zero . 25
4.1.4 Quick Startup Time . 25
4.1.5 Robust to Network Conditions .. 25

4.2 Protocol Design .25
4.2.1 Network Topology . 25
4.2.2 Membership Server . 26
4.2.3 Data Dissemination . 26
4.2.4 Seeding Strategy . 28
4.2.5 Buffer Management . 28
4.2.6 Startup Strategy . 28

5 Token Stealing: Incentive Mechanism for P2P Multicast 30
5.1 Design Goal . 30
5.2 Attempts to Adapt SWIFT to Chainsaw 31

5.2.1 Naı̈ve SWIFT Algorithm . 31
5.2.2 Compensating for Trading Imbalances 32
5.2.3 Lessons Learned: Need for a Different Approach 33

5.3 Bandwidth Allocation Strategy 34
5.4 Token Stealing Algorithm 34

5.4.1 Which Bucket First? . 35
5.4.2 Analysis . 36

5.5 How Our Algorithm Prevents Gaming 37
5.5.1 Misreporting Information .. . 37
5.5.2 Selectively Connecting to High-Bandwidth Nodes 37
5.5.3 Sybil Attacks . 37
5.5.4 Uploading Bogus Data . 38

6 Experimental Evaluation 39
6.1 Simulation Model .39
6.2 Overview of Experiments .. . 41
6.3 Performance of a Typical Network 42
6.4 Scalability with Network Size 46
6.5 Scalability with Stream Rate 47
6.6 Effect of Packet Size .. 47
6.7 Robustness to Churn .49

vi

6.8 Effect of Network Latency .. . 51
6.9 Effect of the Number of Neighbors 53
6.10 Token Stealing in a Resource-Rich System 55
6.11 Resource-Constrained Systems 56

6.11.1 The Need for an Incentive Mechanism 57
6.11.2 Resource-Constrained Systems with Token Stealing Enabled 60
6.11.3 Steady-State Behavior .. 63

6.12 Change in Resource Availability 66
6.12.1 Resource-Constrained Network Becomes Resource-Rich 66
6.12.2 Resource-Rich Network Becomes Resource-Constrained 67

6.13 Change in Node Behavior .. . 68
6.13.1 Fake ADSL Nodes Become Altruistic 68
6.13.2 Altruistic Nodes Become Selfish 69

6.14 Stabilization Time 70
6.15 Selective Connection 72
6.16 Range of Upload Rates .. 74
6.17 Prototype Implementation on PlanetLab 76

6.17.1 System with All Altruistic Nodes 76
6.17.2 Resource-Constrained Systems 77

7 Related Work 79
7.1 Peer-to-Peer Systems .. . 79
7.2 File Transfer Protocols 80
7.3 Streaming and Multicast .. . 81

7.3.1 Tree-Based Approaches . 81
7.3.2 Multi-Tree Protocols .82
7.3.3 Mesh-Based Protocols . 82

7.4 Incentive Mechanisms and Resource Allocation 84
7.4.1 File Sharing Protocols .84
7.4.2 Streaming Protocols . 85

8 Conclusions 86

9 Limitations and Future Work 88
9.1 Network and OS Level Gaming Attacks 88
9.2 Malicious Attacks .. 89

9.2.1 Attacks Against the Membership Server 89
9.2.2 Attacks Against the Seed .89
9.2.3 Attacks Against Other Peers .. 90

9.3 Performance Improvements 90
9.3.1 Network Topology . 90
9.3.2 Initial Packet Loss . 90
9.3.3 Reducing Overhead . 91

9.4 Micropayments as an Alternative to Uploading 91
9.5 Transition Between File Sharing and Streaming 91

vii

Bibliography 92

viii

List of Figures

1.1 Client-Server vs. Peer-to-Peer Model 2
1.2 Ideal Load on Server in Client-Server vs. Peer-to-Peer Model 2

2.1 Simple Tree-Based Network and Some of Its Drawbacks 9
2.2 Mesh-Based Network .10
2.3 Quality vs. Loss Rate for Various Types of Multimedia Encodings 13

3.1 Download Rate as a Function of a Node’s Upload Rate 20
3.2 Download Rates of Paranoid Traders vs. Periodic Risk-Takers 21
3.3 Download Rates of Non-Cooperating Peers 21
3.4 The Need for Non-Zero Largesse Rate 23

4.1 Data Dissemination Protocol 27

6.1 The Simulation Model .40
6.2 Performance of a Typical Network (800 Nodes) 44
6.3 Performance of a Typical Network (8,000 Nodes) 45
6.4 Scalability with Network Size 46
6.5 Scalability with Stream Rate 48
6.6 Effect of Packet Size .. 49
6.7 Robustness to Churn .50
6.8 Effect of Network Latency .. . 52
6.9 Effect of the Number of Neighbors (800 Nodes) 53
6.10 Effect of the Number of Neighbors (8,000 Nodes) 54
6.11 Token Stealing in a Resource-Rich System 56
6.12 Resource-Constrained System with Token Stealing Disabled 58
6.13 Resource-Constrained System with Fake ADSL Nodes withToken Stealing Dis-

abled . 60
6.14 Resource-Constrained System with Token Stealing Enabled 61
6.15 Resource-Constrained System with Fake ADSL Nodes withToken Stealing En-

abled . 63
6.16 Initial Download Rates on Joining a Resource-Starved System 64
6.17 Steady-State Packet Loss Rate 65
6.18 Resource-Constrained Network Becomes Resource-Rich. 67
6.19 Resource-Rich Network Becomes Resource-Constrained. 68
6.20 Fake ADSL Nodes Become Altruistic 69

ix

6.21 Altruistic Nodes Become Selfish 70
6.22 Stabilization Time (800 Nodes) 71
6.23 Stabilization Time (8,000 Nodes) 72
6.24 Range of Upload Rates .. 75
6.25 Performance of System with All Altruistic Nodes on PlanetLab 77
6.26 Performance of System with ADSL Nodes on PlanetLab 77

x

List of Tables

1.1 Key Differences Between File Sharing and Live Streaming. 4

3.1 Parameter Values for Common Peer Behaviors 17
3.2 Download Rates of Free-Riders and Traders 22

6.1 Summary of Experimental Evaluation 41
6.2 Upload and Download Capacities of Altrustic, ADSL and Fake ADSL Nodes . 57
6.3 Gaming the System via Selective Connection 73

xi

Acknowledgments

First and foremost, I thank Alexander Mohr, my advisor for the first five years of graduate
school. Beginning with my very first day of grad school when I took his advanced networking
course, he has been a great mentor and inspiration. He has always been amazingly accessible;
there was never a time when I couldn’t knock on his office door if I needed guidance or ad-
vice. Alex has always been a source of great ideas and pointedme towards new and interesting
approaches, while giving me the freedom to pursue my ideas independently. His insightful ques-
tions often helped me clarify my own ideas and ultimately made me a much better researcher. I
also thank Alex for making the time for regular meetings and offering his continued input even
after he left Stony Brook University.

I thank Erez Zadok, who graciously took over as my advisor after Alex left the university.
Erez has provided me with great guidance over the past three years, as well as earlier in my
graduate career. His input has helped further enhance my research and writing skills, and helped
me cover the last mile.

I also thank Michael Bender for innumerable useful discussions over the years, which often
got my thinking out of a rut and helped me solve problems I had been stuck on. His insight and
enthusiasm have been an inspiration and a guiding force, andhelped shape my research career
in many subtle ways.

I thank Michael Bender, Rob Johnson, and Martin Farch-Colton for serving on my defense
committee, as well as R. Sekar and Tzi-Cker Chieuh who servedon my RPE committee. Their
input at various stages of the PhD program has been invaluable.

I thank the anonymous reviewers of all the papers I submittedover the years. Their com-
ments have vastly improved the quality of my research and helped me identify flaws, discover
interesting new directions, and express myself more clearly in my writing.

I thank Sean Callanan, Amit Bhargava, Karthik Shanmugasundaram, Karthik Tamilmani,
Josef Sipek, and Justin Seyster who have been great friends through most of my time at Stony
Brook. Having these people around during late night sessions with looming deadlines (and the
occasional late night movie session) made all the difference. Numerous other lab-mates past and
present also gave me valuable input and participated in useful discussions over the years. For
this, I thank Vinay Sambhamurthy, Kapil Kumar, Ritesh Maheshwari, Shweta Jain, Nithin Raju,
Sandra Tinta, Aarthi Andrade, Hari Krishnan, Aditya Kashyap, Puja Gupta, Akshat Aranya,
Avishay Traeger, Rick Spillane, Adam Martin, D.J. Dean, Vasily Tarasov.

I thank Sam Yagan, Chris Coyne and Maxwell Krohn, the founders of OkCupid.com who
have supported me financially for the past year through the Strategic Partnership of Industry and
Research (SPIR) program, and have been incredibly understanding of my absence from work
during busy times.

Finally, I thank my parents. They have always been supportive, encouraging, and above
all loving. They have always held me to the highest standardswithout ever making me feel

xii

pressured to go in directions I did not want to, and have undoubtedly played a huge role in
shaping who I am today. Indeed, growing up in a household withtwo PhDs made going to
graduate school almost seem like the obvious choice rather than the intimidating experience it
might have been otherwise.

xiii

Chapter 1

Introduction

Today, a large majority of people in the United States have broadband Internet connections.
According to research conducted by the Pew Research Center in 2009, 77% of families in the
United States had broadband Internet connections at home [44].

Consumer-grade services such as DSL, Cable, and fiber-to-the-home are now capable of
supporting bandwidth-intensive applications like high-quality audio and video, including DVD-
quality (4Mbps) streams. In fact, many connections are evencapable of supporting HDTV-
quality (20Mbps) streams.

However, the bandwidth cost of supporting large numbers of clients at those data rates is
prohibitive. For example, Google’s popular video sharing website YouTube spent over $360
million on bandwidth in 2009 [60], which prevented that division of the company from turning
a profit despite (1) substantial advertising revenue, (2) the great popularity of its service, and (3)
the fact that most videos are only offered at a lower quality.

This problem is further exacerbated in the case oflive streaming applications, because they
must provision for the demands of large numbers of simultaneous viewers when a popular pro-
gram is broadcasted. Popular events like the 2010 FIFA WorldCup can attract large numbers
of viewers and would place a significant burden on the contentprovider’s network. This is in
contrast to traditional over-the-air broadcasts where thecost to the content provider is relatively
constant, but increased viewership can bring in increased advertising revenue.

The peer-to-peer model allows viewers to share the burden bycontributing bandwidth, thus
making it more economical to support large numbers of viewers at high quality levels. This
would open up new opportunities for both commercial contentproducers and individuals who
would be able to focus their resources on producing quality content, and reach wide audiences.

1.1 Peer-to-Peer Model

The main reasons for the high bandwidth cost of the traditional client-server model is the fact
that every client is directly supported by the provider’s servers. This places the entire band-
width burden on the content provider’s network. While this burden might be distributed via
commercial content distribution networks like Akamai [91], the cost is still borne by the content
provider.

The cost to the provider rises linearly with number of viewers, since it must send a complete

1

copy of the data stream to every viewer. The cost of the bandwidth and hardware required to
support those viewers can quickly become prohibitive.

S

C1

AB AB

C2

(a) Client-Server Model

S

C1 C2

A B

A

B

(b) Peer-to-Peer Model (Ideal)

Figure 1.1: In the client-server model, the server must sendall data to every node. In the peer-
to-peer model, peers exchange data among each other, keeping the load on the server low. In
the ideal case the server only needs to transmit a single copyof each packet, regardless of the
number of clients.

An alternative to the client-server model is the peer-to-peer model. In this model, clients
connect not only to the provider’s servers, but also to some or all of the other clients who
are viewing the same content. This allows clients to contribute bandwidth to the system by
uploading data to other clients who wish to receive the same content.

In the ideal case, peers, on average, contribute as much bandwidth to the system as they
consume, and thus pose no net drain on the system’s resources. In this ideal case, the bandwidth
demand on the content provider remains constant regardlessof the number of clients viewing
the content. This would allow the cost to the provider to remain independent of the number of
viewers, much as it does for traditional broadcast technologies

Number of Users

B
an

dw
id

th
 a

t S
er

ve
r

(a) Client-Server Model
Number of Users

B
an

dw
id

th
 a

t S
er

ve
r

(b) Peer-to-Peer Model (Ideal)

Figure 1.2: In the client-server model, the load on the server increases linearly with the number
of clients. In an ideal peer-to-peer system, however, the load on the server remains constant.

Our goal is to build a robust, scalable system for live media streaming. The live streaming
model will support applications like high-quality online radio and TV stations.

2

1.1.1 Need for an Incentive Mechanism

Unfortunately, studies have shown that participants in peer-to-peer networks often try to gain
benefit from the system without contributing resources in return. The analogous problem in
society has been well studied by economists [7, 49, 61, 74], and is known asfree-riding. One
of the key reasons for free-riding is a lack of a concrete incentive to contribute. For example,
Sariou et al. [84] have estimated that 20–40% of Napster users and up to 70% of Gnutella users
shared little or no content. Huberman and Adar [2] found thatnearly 50% of responses are
returned by only 1% of hosts and that nearly 98% of the responses were returned by 25% of the
sharing hosts.

An incentive mechanism provides nodes with a concrete incentive to contribute resources to
the system by offering better performance to nodes that contribute bandwidth than those that do
not. Therefore, we argue that in order to build a robust peer-to-peer streaming system, we must
also develop a robust incentive mechanism.

1.2 Our Approach

A major inspiration for our work is BitTorrent [19], a popular system that solves the analogous
problem of peer-to-peerfile sharing. BitTorrent is commonly used to distribute large files like
CD images. In addition to a file transfer mechanism, BitTorrent provides an incentive mecha-
nism.

BitTorrent nodes simply measure the rate at which each of thepeers it is connected to uploads
data to it. The node thenchokes(i.e., stops sending data to) all but the top few of its peers.This
approach has the key benefit of simplicity, since nodes only rely on first-hand observations to
implement this algorithm.

However, this mechanism has been shown to be relatively easyto cheat [46, 75]. In Chap-
ter 3, we present SWIFT, an alternative incentive mechanismfor BitTorrent-like networks that
addresses many of the problems with BitTorrent’s incentivemechanism. This shows that while
BitTorrent’s particular mechanism may be flawed, it is possible for a simple algorithm that de-
pends only on first-hand observations to be effective.

At first glance, file sharing and live streaming might seem to be nearly identical problems.
However, there are key differences that prevent direct application of file sharing incentive mech-
anisms to live streaming systems. The key differences between file sharing and live streaming
applications are summarized in Table 1.1.

• With file sharing systems, the entire file is available ahead of time; in live streaming, it
may be generated on-the-fly (as with a live sporting event, for example).

• With file sharing, different clients can download entirely different parts of the file while
live streaming clients must all download the same data with asmall buffer on the order
of seconds to allow for reordering. This synchronization requirement adds additional
challenges.

• File sharing applications have no target speed, since the file can always be downloaded
faster. Therefore, there is no concept of spare capacity. Incontrast, streaming applica-
tions are limited by the rate of the source stream. If peers are willing to contribute more

3

File Sharing Live Streaming
Source Data Source node has the entire

file ahead of time
Data may be generated on-
the-fly

Client Synchronization Not needed Yes, within a relatively small
window of tolerance

Target Download SpeedFaster the better Equal to the stream rate
Data Useful to Peers Forever Only for a short time
Result of slow speed File downloads slowly, but

remains useful
Disruptions in viewing, or
degraded quality

Table 1.1: Key differences between file sharing and live streaming systems

bandwidth than the stream rate, the system may have spare capacity. This spare capacity
may be exploited to accommodate nodes that are unable to upload data quickly, so long
as other altruistic nodes upload enough data to make up the deficit.

• Partial data downloaded in a file sharing application can always be uploaded to other
clients since they must assemble the complete file. However,clients in live streaming
applications typically have no use for data transmitted in the distant past.

• Limited bandwidth in a file sharing system will still allow the client to download the
complete file, even if it takes longer. In a streaming system,however, it will result in
either degraded quality or even a complete disruption of service, depending on how the
source material is encoded.

As a result of these differences, we cannot directly apply either BitTorrent’s incentive mecha-
nism or our improved SWIFT mechanism to a live streaming application. Therefore, we must
design a new mechanism with live streaming in mind. However,we seek to retain the simplicity
and elegance of those file sharing systems, and rely solely onlocal decisions based on first-hand
observations.

Due to the need for synchronization, traditional peer-to-peer streaming systems are based on
multicast trees, with the source node at the root. Every participant propagates data it receives
from its parent to its descendants. This creates parent-child relationships between nodes, making
it difficult to apply pairwise incentive mechanisms becausedata only flows in one direction
between any given pair of interacting nodes.

Therefore, we designed Chainsaw, a peer-to-peer based on anunstructured mesh network.
As with BitTorrent and SWIFT, there is no hierarchy between nodes, as a node may download
certain packets from a neighbor while sending others to the same neighbor. This makes the net-
work amenable to pairwise incentives. Moreover, Chainsaw achieves this goal while providing
excellent performance. Through simulation, we demonstrate that Chainsaw is able to support a
large number of nodes with low packet loss, low delay, low overhead, and an excellent resilience
to churn (i.e., continuous arrival and departure of nodes).We discuss the design of Chainsaw in
Chapter 4.

In Chapter 5, we present Token Stealing, an incentive mechanism built on top of Chainsaw.
Token Stealing is a straightforward extension of the standard token bucket algorithm, and fills
our desired goal of simplicity.

4

We show that our algorithm preferentially directs bandwidth to nodes that contribute upload
bandwidth to the system, offering them good performance. Moreover, our algorithm also takes
advantage of any surplus capacity that may exist to support nodes that are unable to upload data
at the stream rate. However, when the system is resource-constrained, nodes that contribute
resources to the system see significantly superior performance. This gives nodes an incentive
to contribute as much bandwidth as they are capable of, and discourages them from artificially
limiting their upload bandwidth.

1.3 Evaluation Methodology

We built a high-performance discrete-event simulator in C++ to implement our system. The
simulator implemented all aspects of our protocol and allowed us to investigate various aspects
of network performance in a controlled environment.

Beginning with a conservative base setup, we systematically evaluated different aspects and
parameters by varying one network or system parameter at a time. We demonstrate that the
Chainsaw streaming protocol supports high bandwidth streaming with low packet loss rates,
low delay, and quick startup times. We show that the system scales well with size and stream
rate, and is robust to churn (i.e., nodes leaving and joiningthe system). We show that the system
is stable and efficient across a wide range of network and system parameters and therefore does
not require careful tuning to work.

We also demonstrate that the Token Stealing algorithm achieves our goal of giving lower
packet loss rates to nodes that contribute bandwidth in resource-rich systems, while taking ad-
vantage of altruistic nodes to give low packet loss rates to all nodes whenever possible. We show
that the system reacts quickly to changes in node behavior aswell as system-wide resource avail-
ability.

Finally, we built a native prototype implementation of our system, and used it to perform ex-
periments on the PlanetLab [18] testbed. Although the limited resources and control offered by
PlanetLab nodes did not allow us to replicate all simulator experiments, we were able to demon-
strate good performance for most nodes in the system in the resource-rich case, and improved
performance for nodes that upload more data in the resource-constrained case. The performance
characteristics are similar to those obtained in our simulations, thus helping validate our simu-
lation results.

1.4 Contributions

The key contributions of this dissertation are as follows:

• We designed SWIFT [89], an improved incentive mechanism forBitTorrent-like file shar-
ing systems. We conducted experimental evaluation of this system to demonstrate that
pairwise incentives, while simple, can be effective.

• We designed Chainsaw [72], a mesh-based live streaming application which offers high
performance and scalability, and has bi-directional relationships between peers, making it
amenable to pairwise incentive mechanisms.

5

• We conducted an extensive experimental evaluation of our streaming protocol to demon-
strate performance and scalability, as well as the effects of the various network parameters.

• Our initial paper on Chainsaw [72] has been well received by the community, with over
250 citations. Duijkers et al. [26] have used Chainsaw as a basis for an experimental video
streaming application and conducted further evaluation inaddition to our own. Biskupsi et
al. [8] have proposed an extension of our protocol to furtherimprove performance through
changes to the network topology.

• We designed the Token Stealing algorithm [73], a simple but effective pairwise incentive
mechanism for our mesh-based live streaming system.

• We conducted an extensive experimental evaluation of the incentive mechanism to demon-
strate its effectiveness in various situations as well as changing network conditions and
node behaviors.

1.5 Outline

The outline of this dissertation is as follows. In Chapter 2 we discuss background information.
In Chapter 3 we present the SWIFT incentive mechanism for BitTorrent-like file sharing appli-
cations. In Chapter 4, we describe the Chainsaw incentive-compatible mesh-based streaming
protocol. In Chapter 5 we present the Token Stealing incentive mechanism for live streaming
applications. In Chapter 6 we present experimental results. In Chapter 7 we present related
work. In Chapter 9 we present future directions of research.Finally, in Chapter 8, we conclude.

6

Chapter 2

Background

In this chapter, we discuss background material in other multicast and peer-to-peer approaches.
Furthermore, we also discuss multimedia (i.e., video and audio) codecs. Although our stream-
ing protocol is application-agnostic, video streaming is one of the most popular live streaming
applications, and an application for our system.

In Section 2.1, we discuss IP multicast. In Section 2.2 we discuss high level concepts related
to peer-to-peer file sharing and streaming. In Section 2.3 wediscuss various network topologies
commonly used in peer-to-peer networks. In Section 2.4 we discuss the need for incentive mech-
anisms and common approaches. Finally, in Section 2.5 we discuss video encoding technologies
and how they may be applied to peer-to-peer streaming.

2.1 Multicast

Traditional network system design is based on the client-server model where resources of in-
terest are placed at a centralized server, and are transmitted to clients on request. Widely used
protocols such as HTTP [32] and FTP [77] use this approach, and it forms the core of the Web
today.

However, popular content might be requested thousands or even millions of times by clients,
placing a heavy burden on the server. Whereas the technical problem can be addressed by
distributing the load using load-balancers, mirrors, and content distribution networks (CDNs),
the cost is ultimately borne by the content provider, and canbe prohibitive.

In contrast, traditional radio and television broadcasts bear a fixed cost to the provider to
provide service to a given area regardless of the number of receivers tuning in. Such broadcast
mechanisms rely on the presence of a shared medium (the electromagnetic spectrum, in the
case of over-the-air broadcasts), which is not present in wide-area networks such as the Internet.
Note that while wireless networking technologies such as 802.11 (i.e., WiFi), and cellular data
services do use electromagnetic broadcasts, they are packet networks intended to provide point-
to-point links between a router and the end device, and are not comparable to radio and television
broadcasts.

IP Multicast [22] is an extension to the Internet Protocol which allows the creation ofmul-
ticast groupsthat individual hosts could subscribe to. Packets addressed to a multicast group
would be transmitted by underlying routers to all hosts subscribed to that group without requir-

7

ing the content provider to transmit multiple copies of their content. However, IP Multicast relies
on wide scale implementations by the underlying network providers, who have been reluctant to
enable IP multicast due to concerns about scalability and potential for abuse.

Peer-to-peer technology is an analogous network built at the application level by participants
in the network as anoverlay, allowing application-level support for similar functionality with-
out relying on widespread adoption by network providers. Peer-to-peer systems are also often
referred to asoverlay networksor application-level multicast.

2.2 Peer-to-Peer Systems

In this section we provide a broad overview of peer-to-peer systems in general, in order to place
our work in context.

2.2.1 Peer-to-Peer File Sharing

Some of the earliest peer-to-peer networks to gain wide acceptance were built around file shar-
ing, to allow users to easily locate and share images, music,and other content. Napster [31], one
of the first, relied on a central server to index all the content and help participants locate the files
they wanted. Actual files remained on the end users’ computers. Other networks like Gnutella
decentralizedthe system further by eliminating the indexing server altogether and instead rout-
ing searches through other peers.

In both Napster and Gnutella, files located were downloaded directly from the peer hosting
it, which could place a significant burden on peers that hosted popular files. Other networks like
e-Donkey as well as later versions of Napster and Gnutella allowed clients to download portions
of the file from different peers if several clients had the same file.

BitTorrent [19] further improved the situation by allowingpeers withpartsof a large file to
exchange pieces of that file with each other in order to assemble a complete file, thus greatly
improving the speed of downloads in cases where only a few peers had complete copies but
several were actively downloading it.

2.2.2 Peer-to-Peer Streaming

File sharing networks operate on the assumption that the filebeing shared is available in its
entirety, and participants in the network seek to obtain it.Furthermore, the file may not be
downloaded in order, and is thus often unusable until the entire download is complete.

These assumptions do not hold for a wide range of streaming applications such as video
broadcasts. In live streaming applications, viewers expect to view the content soon after they
join the network, rather than waiting for a lengthy downloadto complete. Moreover, playback
is expected to continue smoothly without interruption.

In order to allow the viewer to consume content as it is downloaded, the data must be received
in order. The use of buffering allows a small amount of re-ordering to be tolerated, on the
order of a few seconds. Moreover, content must be delivered at a relatively steady rate within
tolerances offered by the buffer, or else the playback wouldhave to be paused to allows the
network to catch up.

8

We believe that one of the key factors driving BitTorrent’s popularity is the great simplicity
of the protocol which has lead to a wide range of implementations across numerous platforms.
Therefore, we consider simplicity to be a major design goal,in addition to addressing all the
challenges posed by high-performance peer-to-peer streaming.

We describe a number of other related peer-to-peer streaming systems and contrast them to
our own in Chapter 7.

2.3 Network Topology

A key consideration in a peer-to-peer network is the topology of the network. Peer-to-peer
streaming networks can be broadly classified into tree-based and mesh-based approaches.

2.3.1 Tree Networks

The goal of a streaming protocol is to deliver data in order from the source to all the participants
in the network. These requirements naturally lend themselves to a tree-based approach.

A tree-based system arranges the participants in a network in a tree rooted at the source
node. The source node transmits data to the nodes it is connected to (i.e., its children), who in
turn transmit it to their children, and so on. This approach makes for trivial routing of data, as
well as easy in-order delivery.

7 interior nodes are

responsible for all

the data upload

8 leaf nodes upload no data at all

Failed nodes affect

all descendent

nodes in the tree

! !

! ! ! !

Figure 2.1: An example of a simple tree-based network, and some of its drawbacks. A minority
of nodes are responsible for all the data upload. This problem would be further exacerbated in
higher degree trees. Failed nodes high up in the tree affect all their descendants.

However, a simple tree-based network has a number of disadvantages, as illustrated in Fig-
ure 2.1. A majority of the nodes in a balanced tree are leaf-nodes, i.e., nodes with no children,
so the burden is only shared by a fraction of nodes (the internal nodes). Moreover, when an
interior node leaves the network or becomes unresponsive, all its descendants are affected until
the tree is repaired, which might lead to wide-scale disruptions (albeit temporary).

A number of innovative solutions have been proposed to theseproblems by constricting
multiple trees [11], or periodically reconstructing trees[69]. We discuss these works in more
detail and contrast them to our own work in Chapter 7.

9

2.3.2 Mesh Networks

An alternative approach is the mesh topology based on more general network graphs than trees.
As shown in Figure 2.2, a mesh-based network addresses many of the problems of a tree-based
network. As there are several paths between any given nodes,a failed node has a limited impact
on other nodes. Moreover, since different packets can take different routes, the upload burden
can be distributed more fairly among nodes.

Failed nodes have

limited impact,

as several

paths exist

Figure 2.2: An example of a network based on a random graph. The load is distributed more
fairly, and single node failures do not partition the network as many alternate paths exist between
any two nodes.

Bullet, an early mesh-based system continued to rely on a tree as the primary data dis-
semination pathway, but allowed for alternative paths to fetch data not delivered by the main
tree [51]. In 2005, we proposed Chainsaw [72], one of the firststreaming systems suitable for
high-performance applications to eliminate the tree entirely in favor of a random graph. While
gossip-based protocol that use an unstructured mesh existed well before either Bullet or Chain-
saw were proposed, those systems lead to significant duplicate transmissions, and are not suit-
able for high-bandwidth streaming application. We describe our protocol in detail in Chapter 4.
We discuss Bullet and gossip protocols, as well as a number ofalternative systems proposed by
a number of other authors, and contrast them to our on work in Chapter 7.

2.4 Incentive Mechanisms

Peer-to-peer networks rely on resources contributed by participants. However, participants are
often selfish and avoid contributing resources if they can avoid it, leading to poor performance.

An incentive mechanism is a mechanism built into the networkthat penalizes participants
that do not contribute enough resources to the network, and rewards those that do contribute.
The penalty may be reduced performance, or complete exclusion from the network.

Incentive mechanisms can broadly be classified into reputation-based systems, and pairwise
tit-for-tat systems.

10

2.4.1 Reputation-Based Systems

Reputation bases systems are incentive mechanisms where a node’s contribution over time is
monitored and that information is shared with other participants in the network to enable them
to reward or penalize a given participant, as appropriate. Reputation-based systems have the
advantage of taking a node’s long-term behavior into account, as well as the possibility of a
system-wide view [48, 69].

However, reputation systems often rely on a centralized server, or on distributed algorithms
to propagate information about node behaviors throughout the system. In order to be effective,
two key challenges must be addressed. Firstly, a participant must not be able to falsify its
reputation either by assuming another participant’s identity, or by easily creating a new identity
to avoid being penalized for past bad behavior. Secondly, a distributed reputation systems must
be resilient to collusion and false reporting since nodes rely on information relayed to them
through third parties.

2.4.2 Tit-for-Tat Pairwise Systems

An alternative model is the pairwise, or tit-for-tat approach where participants rely on first-
hand observations. A participant that receives good service (e.g., fast downloads) from a peer
can reward that node by offering it good service in return. A pairwise system is a often far
simpler to design and analyze than a reputation-based system due to a reliance on first-hand
observations [19, 53].

However, a tit-for-tat approach is only possible in systemswhere there is amutualexchange
of services. This the case in file sharing systems (like BitTorrent), but not in tree-based streaming
approaches where nodes have a parent-child relationship and data only flows down the tree.

Our streaming protocol, Chainsaw, is mesh-based, with a mutual flow of data between nodes
Therefore, it is amenable to a pairwise reputation system. In Chapter 5 we present Token Steal-
ing, a simple yet effective pairwise incentive mechanism.

2.5 Multimedia Coding

The Chainsaw streaming protocol is application-agnostic,and merely provides a high perfor-
mance data-dissemination protocol. However, it is useful to consider the system with a target
application in mind. Our protocol naturally lends itself tothe popularvideo streamingappli-
cation, so we briefly discuss video encoding technology, andhow video transmission may be
affected by network characteristics.

2.5.1 Video Compression

Digital video consists of a series of images that are displayed in succession, typically at rates
between 24 and 60 frames per second. Raw video would be extremely large in storage or
bandwidth requirement, so video is typically stored and transmitted in a compressed format.
Video compression algorithms are known ascodecs, short for coder/decoder. MPEG [38] and
H.264 [98] are examples of video codecs in popular use today.

11

Video codecs are typicallylossy, i.e., they sacrifice some fine detail in order to reduce the
data needed to encode a given frame. In addition, video codecs typically do not encode frames
independently, but take advantage of the fact that large portions of the scene typically do not
change from frame to frame. This allows for further reductions in data size.

Many video codecs allow a given source video to be encoded at anumber of different quality
levels by adjusting the amount of detail that is discarded during compression. Moreover, the size
of the stream can be adjusted by scaling the video down to reduce the image size. This allows
multiple versions of a given source video to be created that are suitable for different network
bandwidths.

However, due to the nature of the compressed data, small corruption or gaps in data caused
by packet loss in the network layer can lead to a severe degradation in the quality of the decoded
video. Furthermore, the interdependency between frames means that a momentary disruption
may cause visual distortions that last several seconds. Therefore, packet loss rates of even a few
percent may be intolerable when dealing with video streams.

2.5.2 Erasure Coding

Erasure coding is a type offorward error correcting codethat is commonly used with a num-
ber of types of network transmissions including video transmission. Erasure coding allows the
receiver of a transmission to recover from one or more missing packets in the stream. These
packets may be missing either because they were never delivered by the network, or they were
delivered in a corrupted state, and discarded. The technique is calls forward error correcting be-
cause the sender includes redundant information in the original transmission, and does not rely
on retransmission requests from the receiver. This is advantageous in situations like broadcasts
where a back channel to request retransmissions are either unavailable or impractical.

With erasure coding, the stream is divided into packets. Every group ofm packets is then
encoded into a set ofn packets wheren > m. The mathematical relation between the encoded
packets allows the original packets to be recovered ifanyset ofm of then packets are available.
Thus, erasure coding allows the original stream to be recovered intact so long as at no more than
n−m packets are lost or corrupted in transmission, allowing formore robustness.

Reed-Solomon Codes [97] are a commonly used method of erasure coding. An alternate
algorithm known as Tornado Codes [9] offers far higher performance than Reed-Solomon codes,
but requires slightly more thanm packets on average to decode each group.

The combination of video encoding algorithm and erasure coding determines how much
packet loss rate can be tolerated, and the resulting loss rate vs. perceived quality curve. Fig-
ure 2.3 shows a qualitative comparison of various techniques.

2.5.3 Layered Codecs

Layered codecs are an alternative to creating entirely separate streams for different bandwidth
levels. In a layered codec, the video is encoded as abase layerand one or moreenhancement
layers. Receiving the base layer allows the recipient to decode a relatively coarse version of
the video. The video may be progressively refined by including successive enhancement layers
during the decoding process.

12

Packet Loss Rate

Q
u
a
li
ty

(a) Monolithic Codes
Packet Loss Rate

Q
u
a
li
ty

(b) Monolithic Codes With Erasure Coding

Packet Loss Rate

Q
u
a
li
ty

(c) Layered Codes With Unequal Loss Protection
Packet Loss Rate

Q
u
a
li
ty

(d) Fine Granularity Scalability

Figure 2.3: Quality of the decoded video as a function of packet loss rates for various video
encoding methods.

Layered codecs allow for added flexibility. Participants that are unable to receive the highest
quality video due to bandwidth limitations may still be ableto receive a lower quality one by
discarding some or all of the enhancement layers. Moreover,layered codecs can be combined
with erasure coding using a technique calledunequal loss protection[65, 101] to ensure that
later enhancement layers are more likely to be lost than the base layer or earlier enhancement
layers for any given level of packet loss, thus maximizing the expected quality of the received
video. Codecs without layering are known asmonolithiccodes.

2.5.4 Fine Granularity Scalability

Fine granularity scalability [54] is a further improvementover layered codecs. There is a limit
to the number of enhancement layers a video may be divided into, and an enhancement layer is
generally only useful when received in its entirety along with the base layer and all the enhance-
ment layers below it. Therefore, with layered codecs, the received quality is a step function of
the number of packets received.

Fine Granularity Scalability (FGS) allows for a smoother size/quality curve by allowing a

13

continuousenhancement layer where incremental additions remain useful and lead to improved
quality.

To summarize, videos with monolithic encodings suffer rapid degradation with increasing
packet loss and are quickly rendered unusable. With erasurecoding, a certain amount of packet
loss can be tolerated, but the same rapid degradation results once the packet loss rate exceeds the
amount of redundancy added by the erasure coding. Layered codecs with simple erasure coding
would suffer the same fate as earlier layers are just as likely to get corrupted, but with unequal
loss protection, however, base layers and lower enhancement layers are more protected, leading
to a series of steps. Finally, fine granularity scalability allows for a smooth quality vs. data size
trade-off.

Our protocol is application-agnostic and the issue of content encoding is orthogonal to our
work. Therefore, we do not implement the techniques described in this section. Instead, we
consider the packet loss rate to be a key figure of merit, and assume that a practical application
would use techniques like unequal loss protection, or fine granularity scalability in encoding the
video, and that a lower packet loss rate leads to higher perceived quality for the user.

14

Chapter 3

SWIFT: Economic Incentives for File
Sharing

File sharing is the one of the most dominant peer-to-peer applications today. Whereas the first
peer-to-peer systems like Napster and Kazaa focused on the problem of searching for content,
BitTorrent has emerged as the dominant filedistributionsystem. This system is designed for
the large-scale dissemination of big files, typically hundreds of megabytes to a few gigabytes
in size. Files are broken up into chunks calledpacketsor pieces, and nodes assemble the target
file by acquiring and exchanging various pieces from different participants in the system. This
technique is calledswarming.

Although our ultimate goal is to build a robust live streaming application, we begin by study-
ing the file sharing model in order to establish swarming as a viable technique for large-scale
data dissemination, and pairwise incentives as a robust mechanism to incentivise participants to
contribute resources to the system.

In this chapter, we first describe the file trading model. We then parametrize node behavior,
and describe various strategies participants may adopt. Wethen propose a desired default behav-
ior for nodes that promotes system stability, and experimentally show that rational self-interested
nodes have little incentive to deviate from the specified behavior.

3.1 Introduction

3.1.1 The File Trading Model

Although early file sharing networks such as Napster and Gnutella only allowed peers to down-
load entire files from a single peer only, more recent networks like BitTorrent allow for finer
granularity. Files are broken down into packets (or pieces)and a peer can download different
packets from different neighbors. Such a mechanism is useful, because a peer can exploit the
resources of multiple neighbors simultaneously, and thus obtain the file quicker.

Certain kinds of content can easily attract large numbers ofdownloaders in a short period
of time. A peer-to-peer network can significantly speed up distribution. For example, it was
observed in the BitTorrent [20] network that for the first three days after the release of the
RedHat 9.0 ISO, there were always more than 2,500 peers simultaneously downloading that

15

1.6GB file, with a peak of 4,400 peers [37].
A similar example occurs when software vendors release a large patch or update. For ex-

ample, when Microsoft releases a new security patch of service update, millions of computers
running the Windows operating system will all be interestedin obtaining that update as quickly
as possible. As evidenced in 2004 by the spread of the Witty worm [85] less than 24 hours after
a patch was produced for the vulnerability it exploited, these machines should obtain patches as
quickly as possible. In this case, peer-to-peer networks may be able to provide the update more
quickly than a farm of dedicated servers, because of the large numbers of recipients involved. A
robust incentive mechanism gives participants a reason to contribute upload bandwidth in order
to speed up their own downloads and reduce their window of vulnerability.

In our system, we assume that a file is broken into packets of equal size and that the au-
thenticity of each packet can be verified by a scheme such as a cryptographic hash or Merkle
tree [64]. Our model is pull-based in that peers advertise the packets that they have; other peers
then request specific packets from them. We further assume that the file sharing network has
some mechanism in place for peers to discover fellow peers and join the system.

In SWIFT, we call peers who exchange packets astraders. A trader’s main objective is
to obtain a complete copy of the file as quickly as possible. Rather than negotiate a packet-for-
packet trade as in a barter system, we assume each trader maintains a credit (a pairwise currency)
for every peer to which it is connected. When the host receives and verifies a packet from a peer,
the host increases the credit rating of that peer in proportion to the size of the received packet.
Similarly, when a host fulfills a remote peer’s request, the host decreases the credit rating of the
peer by the size of that packet. A remote peer’s request is satisfied only if it has accumulated
credit greater than or equal to the requested packet’s size.

In our current implementation, the pairwise currency is only used to reconcile current trading
imbalances, not for tracking long-term node behavior. The accounting could be extended across
multiple sessions to trade different files, but this is not critical to the working of our system.

In the next section, we introduce three different trading strategies and discuss which to
choose.

3.1.2 Trading Strategies

We parametrize the behavior of peers based on how they extendcredit to their neighbors. For
every byte a peer receives, it extends the senderα bytes of credit in return. We callα the
repayment ratio. In addition, it expends a fractionβ of its total upload capacityUmax on largesse
by uniformly distributing free credit to allN of its neighbors. Finally, a peer also extends every
neighborγ bytes of one-time credit the first time they interact.

The maximum number of bytesuAB(t) that peerA is willing upload to its neighborB at
time t, having receiveddAB(t) fromB, is given by the equation:

uAB(t) = αdAB(t) +
βUmax

NA

t + γ. (3.1)

Note that timet here is meant to represent wall-clock time and not a tit-for-tat mechanism in
which time is divided into rounds.

Free-riders, who do not upload, have repayment ratioα, largesse rateβ, and one-time free
creditγ of zero. Distributors, who have no interest in downloading,haveβ = 1 and spend all

16

Peer Behavior α β γ

Free Rider 0 0 0
Paranoid Trader 1 0 0

One-time Risk-taking Trader 1 0 1
Periodic Risk-taking Trader 1 0 < β ≤ 1 1

Distributor N/A 1 1

Table 3.1: A summary of the values of the parameters for some common peer behaviors.

their upload bandwidth on distributing packets to their neighbors. Traders who are mainly mo-
tivated by their desire to download a file as quickly as possible lie between these two extremes.
Based on their choice of parameters, we classify them as paranoid traders, one-time risk-taking
traders, or periodic risk-taking traders. The various strategies and the parameters they use are
summarized in Table 3.1.

Paranoid traders

Paranoid traders are reciprocative players that wait untilthey receive a valid packet from a peer
before offering to send an equal amount back. They have repayment ratioα = 1 and never give
out free credit (β = 0, γ = 0). This conservative strategy ensures that they will never upload
more to a peer than they receive from it and thus will never be taken advantage of.

One-time risk-takers

Another strategy is for a peer to extend one packet of free credit to a peer the first time it is
encountered to encourage them to trade. However, there is a chance that the peer will never
receive a packet in return, so we call these traders one-timerisk-takers. They setα andγ to 1,
andβ to 0.

Periodic risk-takers

Finally, some traders may be willing to give out free packetsperiodically. These traders dedicate
a fractionβ > 0 of their upload bandwidth giving out free packets to their neighbors. We call
this type of free creditlargesse.

The choice of a strategy

Table 3.1 summarizes the values ofα, β andγ for the different types of peers that we have
described. It is clear that if the system consists solely of paranoid traders, everyone will wait for
their neighbors to make the first move and the system will be deadlocked.

At first glance, it would appear that one-time risk taking is sufficient to break the deadlock
by giving peers a basis to start trading. However, we show through simulation in Section 3.3 that
one-time risk-taking does not completely eliminate the deadlock. A peer that is not connected
to a distributor will receive free packets from its neighbors when it first joins. However, it is

17

possible that it will acquire packets that none of its other neighbors are interested in, and will
then be unable to trade and make further progress.

The one-shot free credit is also insufficient because of the peer identification problem. Al-
lowing a peer to choose its identity will make the system susceptible to a Sybil attack [25]. One
way to alleviate this problem is to use the IP address of a peeras its identifier. However, when
there are many peers behind a Network Address Translator (NAT), all of them use the same IP
address, so only one would receive the one-time free credit and bootstrap into the file sharing
network, leaving the others to starve. On the other hand, a periodic risk-taker could distribute
the IP’s share of the largesse equally to each instance behind a NAT so that all of them are able
to join the system.

Finally, if transport across the network is unreliable or subject to corruption, perfect account-
ing is not guaranteed. For instance, a peer may upload a packet and bill its neighbor for it, but
the packet fails the cryptographic checksum and the peer receives no credit for it. The peer
may then be stranded with no packets to trade and no credit with any of its peers, resulting in
starvation.

Adopting the periodic risk-taking strategy increases the possibility of wasting upload band-
width on free riders. We show in the next two sections, via mathematical analysis and simula-
tion, that the advantages of this variant of Tit-for-tat [5]outweigh this potential drawback while
maintaining robustness against a wide range of competing strategies.

3.2 Analysis

Let us now consider a homogeneous file trading system ofN peers with upload and download
capacities ofUmax = Dmax. Given a default strategy of periodic risk-taking, we analyze how
that strategy interacts with others.

3.2.1 Bounds on Incentives to Defect

The bounds on the incentive for peers who wish to maximize their download rates to defect from
the periodic risk-taking strategy can be made arbitrarily small. Consider the case of a mixed
network of rational peers and periodic risk-takers. Letσ be the fraction of periodic risk-takers
in the system, each of which contributes a fractionβ of their upload bandwidth as largesse. If
the share ratio of a peer is defined as the ratio of bytes uploaded to bytes downloaded, then the
share ratio of periodic risk-takersrperiodic is given by

rperiodic =
1

(1− β) + βσ

and the share ratio of rational tradersrrational by

rrational = 1− βσ

Whenβ = 0.1, then in the extreme case of one rational peer among many periodic risk-
takers, the greedy trader’s share ratio is approximately 1.1. Similarly, in the other extreme of one
periodic risk-taker among legions of rational peers, the risk-taker’s share ratio is approximately
0.9. Clearly, these bounds can be made arbitrarily close to one by decreasingβ.

18

3.2.2 Paranoid Traders vs. Periodic Risk-Takers

To show that a weak Nash equilibrium [41] can exist between paranoid traders and periodic risk-
takers, we assume for simplicity that there areN peers in the system and that they each have
the same upload and download capacitiesC. We also assume that each peer uses fair queuing
among its neighbors to share its upload bandwidth.

We observe that paranoid traders will only trade with periodic risk-takers, as two paranoid
traders will never risk a packet on each other. Thus, a paranoid trader will trade withσN periodic
risk-takers, while a periodic risk-taker will trade withN − 1 peers.

If we assume the largesse rateβ is sufficiently small, then each connection’s capacity will
be limited by the fair rate of C

N−1
that periodic risk-takers assign to each connection. Periodic

risk-takers then achieve upload and download rates of(N − 1)(C
N−1

) = C, whereas paranoid
traders achieve rates of(σN)(C

N−1
) = σC (asN → ∞). Takingβ into account and assuming

the worst-case scenario in which none of the largesse is repaid, the download rate of periodic
risk-takers falls to(1 − β)C. Paranoid traders will download more quickly than periodicrisk-
takers whenσ > 1 − β and download less quickly whenσ < 1 − β, so the system attains a
weak Nash equilibrium point with respect to download speedswhenσ = 1 − β. For smallβ,
the equilibrium point is a network consisting almost entirely of periodic risk-takers.

3.2.3 Incentives to Prevent Free-Riding

Consider now a system consisting of a fractionσ of periodic risk-takers and a fraction1− σ of
free-riders. Each free-rider will be able to download at a rate of βC

N−1
from each of theσN risk-

takers, which results in a total download rate for the free-rider ofβσC (asN → ∞). Although
free-riders can achieve share ratios of zero, they will download at a rate much lower than the
risk-takers. For example, ifσ = 0.5 andβ = 0.1, they will download at a rate only 5% that of
the risk-takers. Furthermore, as the number of free-ridersincrease, the incentive to become a
risk-taker increases.

3.3 Experimental Results

We built a discrete-time simulator for our system. The simulator was implemented in nearly
2,000 lines of C codes, and allowed us to simulate networks with a desired set of parameters
for each node. It produced a detailed trace of the experimental run allowing us measure the
performance of each node and gain insights into the working of the network.

The simulator distributes bandwidth evenly between all connections and assumes that the
bottleneck is always at the end-hosts’ connection to their ISP. Download capacity, upload ca-
pacity, repayment ratioα, largesse rateβ, and the one-time free creditγ can be set on a per-link
basis. In practice, we used the same values ofα andβ for all links originating from a given node,
while using a random value ofγ to avoid synchronization artifacts when all peers accumulate
enough largesse to download a packet simultaneously. We ranall of our experiments with a
single seed and 100 peers who want to download the file. In eachexperiment we report average
rates after the system has achieved a steady state.

19

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

D
ow

nl
oa

d
R

at
e

(k
B

/s
ec

)

Upload Capacity (kB/sec)

Risk Takers

Figure 3.1: The download rate obtained by a peer as function of its upload capacity. Every “x”
represents one peer. The diagonal line representsx = y.

While a 100 node network is relatively small, our goal in designing SWIFT is to study the
feasibility of an effective incentive mechanism based on a pairwise algorithm in order to design
a robust peer-to-peer streaming system. In our evaluation of our streaming system, later in this
dissertation, we analyze much larger networks, including anetwork with over 100,000 nodes.

3.3.1 Download vs. Upload Rates

In our first experiment we show that peers have a strong incentive to upload as much as they
can. All 100 peers used repayment ratioα = 1, largesse rateβ = 0.01, and a random one-time
free creditγ between 1 and 2. All peers had download capacities of 100 kB/sec, but upload
capacities were uniformly limited to values between 1 and 100 kB/sec. The topology used was
a complete graph and the file had 100,000 packets.

Figure 3.1 shows the resulting download rates obtained by peers as a function of their upload
capacity, with the straight line representing equal uploadand download rates. It is evident that
periodic risk-takers with upload capacities less than 94 kB/sec receive download rates compara-
ble to their upload capacity, with most peers receiving slightly more than they upload because of
the free packets they receive from the seed. In SWIFT, peers clearly have incentives to set high
upload rates.

Peers with upload capacity greater than 94 kB/sec operate below slightly capacity. Our
analysis indicates that this degradation is an artifact of the random packet picking strategy that
we employed in our simulator. The problem would be mitigatedif the packet picking algorithm
were to take into account the frequency of packets in the system, with a bias towards rarer ones,
similar to the rarest-first algorithm used by BitTorrent [19].

3.3.2 Paranoid Traders vs. Periodic Risk-takers

In Section 3.2.2 we claimed that in a mixed network of paranoid traders and periodic risk-takers,
the risk-takers download faster. We modified the previous experiment to demonstrate that claim
by changing half the peers into paranoid traders who did not upload a packet unless they first

20

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

D
ow

nl
oa

d
R

at
e

(k
B

/s
ec

)

Upload Capacity (kB/sec)

Risk Takers
Paranoid Traders

Figure 3.2: The download rate obtained by a peer by paranoid traders and periodic risk-takers
as a function of their upload capacity. The diagonal line representsx = y. Paranoid traders are
unable to utilize all their upload capacity.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
vg

. d
ow

nl
oa

d
ra

te
 (

kB
/s

ec
)

α of non-cooperative peers

β=0.1
β=0.01

Figure 3.3: The average download rate received by non-cooperating peers as a function of their
repayment ratioα.

received one.
Figure 3.2 shows the resulting download rates obtained by peers as a function of their up-

load capacity. The average download rate of paranoid traders was 28.5 kB/sec, whereas the
average download rate of risk-takers was 50.5 kB/sec. We noticed that the paranoid traders
traded with only with the risk-takers and thus downloaded ata much slower rate, as predicted in
Section 3.2.2.

3.3.3 Effect of Non-Cooperative Peers

Our third experiment studied the behavior of non-cooperative peers that use repayment ratios
α other than the default value of 1. As claimed in our analysis in Section 3.2.1, we show that
a peer has very little incentive to deviate from the default behavior. Once again, we used a
complete graph. Half of the peers were obedient and usedα = 1.0 whereas the remaining half
used values uniformly distributed between from 0 and 0.99. In the first run all peers used a

21

Peer Behavior Download Rate
Free-Rider 6 kB/sec

Periodic Risk-Taker 50 kB/sec
Seed N/A

Table 3.2: Mean download rates of the various classes of nodes in a system with one seed, 50
free-riders and 50 periodic risk-takers.

largesse rateβ = 0.1 whereas in the second run they usedβ = 0.01. All peers had an upload
and download capacity of 100 kB/sec.

As shown in Figure 3.3, the download rate received by non-cooperative peers was much less
than 100 kB/sec for peers with small values ofα, but rose sharply asα approached 1. When
β = 0.1, non-cooperative peers must still upload about 90% of what they receive in order to
saturate their download link. Withβ = 0.01, the effect is more pronounced: non-cooperative
peers must use a repayment ratioα very close to 1 to saturate their download link. Selfish peers
are quickly penalized for their non-cooperative behavior.

3.3.4 Incentives to Prevent Free-Riding

In Section 3.2.3, we showed analytically that free-riders download at a much slower rate com-
pared to periodic risk-takers. To demonstrate this, we ran an experiment of 100 peers with half
of the peers free-riding and the other half being periodic risk-takers with upload capacity of 100
kB/sec,α = 1, β = 0.1, andγ set randomly between 1 and 2.

Table 3.2 summarizes the download rates received by the various classes of nodes. We ob-
served that the free-riders downloaded at only 6 kB/sec, whereas the periodic risk-takers down-
loaded at 50 kB/sec. Of the 6 kB/sec that free-riders received, 1 kB/sec was received from the
seed, whereas 5 kB/sec was received from periodic risk-takers as predicted in Section 3.2.3.

3.3.5 Case for Non-Zeroβ

It is quite clear that having bothβ = 0 andγ = 0 will deadlock the system as no peer other than
a seed will ever upload a packet. However, in this experimentwe now demonstrate that a simple
one-time credit is not sufficient to solve this problem, evenwhen no packets are corrupted or
lost in the network, and no peers leave the system till the endof the experiment.

We created a random graph with one seed, 100 other peers and anaverage node degree of
20. All peers have upload and download capacities of 100 kB/sec. We allowed the simulation to
run for 30 second to achieve steady state and report average speeds over the next 60 seconds. In
one run all peers usedβ = 0 and in the other they usedβ = 0.01.

Figure 3.4 shows the distribution of peers receiving various download speeds. In the absence
of largesse, half the peers had download rates of zero and were deadlocked. These are peers that
are not directly connected to the seed and no longer have packets that their neighbors were
interested in trading for. Since these peers never again receive a free packet, they will never
reach completion.

The dark bars show the resulting distribution when everyonerisks just 1% of their bandwidth

22

0 (0−10] (10−20] (20−30] (30−40] (40−50] (50−60] (60−70] (70−80] (80−90] (90−100]
0

5

10

15

20

25

30

35

40

45

50

Download Rate (kB/sec)

N
um

be
r

of
 P

ee
rs

Largesse rate β = 0.00
Largesse rate β = 0.01

Figure 3.4: Distribution of peers by their download rate in two experiments. One, shown in gray,
usedβ = 0 and the other, shown in black, usedβ = 0.01.

giving away free credit. Giving away this small among of freecredit completely eliminates
deadlocks. Moreover, with everyone making progress, peersare more likely to be able to trade
with their neighbors, thereby increasing overall downloadspeeds. With largesse, about a third
of the peers were able to download at over 90% of their download capacity as compared to about
2% without. This shows that having all peers risk a small fraction of their bandwidth on giving
away free packets not only improves overall system performance, but is also likely to bring a
high return-on-investment for the peers themselves.

3.4 Conclusions

In this chapter, we studied incentive mechanisms for file sharing networks in order to build a
platform for our work on incentives for live streaming systems. We outlined the file sharing
model, and described various strategies that a node may adopt with regard to sharing it upload
bandwidth. We also presented SWIFT, an incentive model for file sharing systems.

We argue that an overall upload to download ratio close to 1 isessential for system stability
and prescribed the desired default behavior for nodes; we show that nodes have little incentive
to deviate from the prescribed default parameters. We experimentally demonstrated that nodes
that limit their upload bandwidth are penalized by their peers, and suffer a corresponding drop in
their download bandwidth. Nodes are unable to free-ride thesystem without severely degrading
their own download rates.

Thus, we have demonstrated an effective incentive mechanism that relies solely on local
information, but promotes system-wide stability by incentivising nodes to contribute as much
bandwidth to the system as they consume.

In Chapter 4 we describe Chainsaw, our streaming protocol based on an unstructured mesh
network, with a similar request-response protocol that is amenable to pairwise incentives. In
Chapter 5 we present the Token Stealing algorithm, our pairwise incentive mechanism for peer-
to-peer streaming.

23

Chapter 4

Chainsaw: Incentives-Compatible P2P
Multicast

Traditional tree-based streaming protocols create a parent-child relationship between nodes. On
any link in the system, data flows in only one direction (i.e.,from the parent to the child). This
lack of reciprocal transfer makes it impossible to apply pairwise incentives.

Therefore, we adapt the simple request-response protocol used in SWIFT (and other unstruc-
tured file transfer protocols like BitTorrent) for streaming. In this chapter we present Chainsaw,
and show it to be robust, and have good performance.

4.1 Design Goals

Our aim is to design a robust incentives-compatible peer-to-peer streaming protocol for appli-
cations like live audio and video. In order to give users a satisfactory experience, we need to
provide a consistent, high quality data stream, with a quickramp up time.

From the content provider’s perspective, a good system mustbe scalable and robust to churn
and other network conditions.

4.1.1 Compatibility with Pairwise Incentive Mechanisms

We have argued that an concrete incentive mechanism is essential in order to encourage nodes to
contribute bandwidth to the system, thus promoting system scalability and performance. More-
over, apairwise incentive mechanism is desirable, because of its simplicity and reliance on
direct observation rather than information provided by third parties.

In Chapter 3, we have shown that a pairwise incentive mechanism can be effective. In
this chapter, we show that with a few enhancements, a pull-based system can provide a high
performance transport layer for streaming, while remaining compatible with pairwise incentives.
In Chapter 5, we present the Token Stealing algorithm, our pairwise incentive mechanism for
peer-to-peer streaming, based on the streaming protocol presented in this chapter.

24

4.1.2 Support Large Numbers of Simultaneous Participants

We aim to support distribution of content to large numbers ofsimultaneous participants. There-
fore, an important goal is scalability with size. We show that our system is able to scale to large
numbers of simultaneous participants, while still providing excellent performance.

4.1.3 Drive Packet Loss to Zero

Most multimedia codecs are highly sensitive to corrupted/missing data. The loss of even a small
fraction of packets in an MPEG stream can cause severe distortion in the decoded video. While
these effects can be mitigated by either relying on codecs that support graceful degradation, or
with erasure coding as described in Section 2.5, both of these approaches come at the cost of an
overhead in bandwidth.

A low packet loss rate allows a stream to be encoded with a lower level of redundancy,
reducing the bandwidth overhead. Dedicating less bandwidth to redundancy allows us to support
a higher quality stream for users with a given Internet connection speed.

4.1.4 Quick Startup Time

In order to facilitate browsing or “channel surfing” the media must begin to play within a few
seconds at most. It would be completely unacceptable for a television set to take 30 seconds to
switch channels.

4.1.5 Robust to Network Conditions

In a typical peer-to-peer network, nodes join and leave the system continuously. Therefore, our
system must be robust to churn, and degrade gracefully with increasing levels of churn.

4.2 Protocol Design

We built a request-response based high-bandwidth data dissemination protocol called Chainsaw.
Our protocol draws upon gossip-based protocols and BitTorrent. Like BitTorrent, we divide data
into a series of packets with unique sequence numbers. The key difference between Chainsaw
and BitTorrent is that whereas BitTorrent is designed to distribute a fixed-length file, there is
a potentially infinite sequence of packets in Chainsaw. We donot require strictly sequential
transmission of data, but allow reordering within a slidingwindow of sequence numbers.

4.2.1 Network Topology

Like BitTorrent, Gnutella and most Gossip-based protocols, Chainsaw is built on an unstructured
random graph topology. This topology has the advantage of being flexible, easy to build and
maintain, and robust to churn. A node that wishes to join the system must merely connect to a
set of randomly chosen nodes in the system. We call the set of nodes a given node is connected
to its neighbors.

25

A node may obtain a list of random neighbors in several ways. Ahighly decentralized
solution would be to start with one node discovered through out-of-band means (for example,
by word of mouth, or from a list of long-lived hosts running onwell known addresses) and
doing a random walk from there. Random graphs are expander graphs with high probability,
so one may reach any node in the system with uniform probability in a logarithmic number of
hops [43].

4.2.2 Membership Server

In our implementation we opt for the simpler centralized solution as used in BitTorrent. Nodes
in the system periodically announce their existence to amembership server, which keeps track
of all the nodes in the network. When a node needs new neighbors to connect to, it requests a
list of random nodes from the membership server.

Although our implementation uses a single, central membership server, we do not consider
this to be a major limitation for three main reasons:

1. A membership server only needs to maintain very minimal information about nodes in the
system, for example, the IP address and port. Therefore, even with millions of nodes in
the system, the memory requirements are modest.

2. Nodes merely need to announce their presence to the membership server periodically.
With a million nodes in the system sending keep-alive messages every 60 seconds with a
50-byte message, the bandwidth needed is only 6.67 Mbits/sec, which is available even
from consumer-grade broadband connections.

3. It would be easy to extend the scheme to multiple membership servers which periodically
exchange information with each other to balance the load out. The membership server is
only used to find a random set of neighbors, so minor inconsistencies between instances
is not a significant problem.

4.2.3 Data Dissemination

New data is injected into the system by a special node called the seed. The seed generates a
series of packets with monotonically increasing sequence numbers. In general, multiple seeds
can be supported with no changes to the protocol. Different seeds would only need to ensure that
their sequence numbers are synchronized and all packets injected with a given sequence number
are identical. The protocol can also be extended to support multiple channels or many-to-many
multicast applications by replacing the sequence number with a 〈stream-id, sequence #〉 tuple.
In this dissertation, however, we limit ourselves to a single channel system supplied by a single
seed node.

Chainsaw’s receiver-driven architecture eliminates the need for complex distributed routing
algorithms. When a node receives a packet, it announces the availability of that packet to its
neighbors by sending themNOTIFY messages. The availability information for a given packet
is only of interest to a neighbor if that neighbor does not already have the packet. Therefore,
nodes do not sendNOTIFY messages to neighbors who have already announced availability of
that packet.

26

NOTIFY

B

A

C
D

(a) Node A broadcastsNOTIFY messages to its
neighbors

REQUEST

A

B

C
D

(b) Node B requests the packet from Node A

PACKET

A

B

C
D

(c) Node A sends the packet to Node B
NOTIFY NOTIFY

A

B

C
D

(d) Node B broadcastsNOTIFY messages to all
neighbors except Node A

Figure 4.1: Chainsaw uses a receiver driven request-response protocol. A node that receives
a new packet broadcastsNOTIFY messages to its neighbors, who may then request the packet.
Upon receipt of the packet, the node in turn will then broadcast availability of that packet to
other neighbors.

As sequence numbers are small compared to the size of TCP/IP and other headers, it is
wasteful to send aNOTIFY message as soon as a packet is received each time. Therefore,for
each peer, we gather sequence numbers and send them togetherin one bulk message everymin-
notify-intervalseconds. In our experiments we used a delay of 0.5 seconds, since that value
would result in a payload size greater than the estimated size of TCP/IP headers in our setup.
Longer delays bring diminishing returns in terms of overhead reduction.

For every neighbor, a node maintains a list ofdesired packets—packets the node needs to
acquire, that the neighbor has available. A node normally picks a random packet from the list
to request; but as discussed in Section 4.2.6, it may use a different strategy in the startup phase,
shortly after joining the system. Having picked a sequence number, the node requests that packet
from its neighbor via aREQUESTpacket.

Nodes mark packets that have been requested from a neighbor to avoid wasting bandwidth
by downloading multiple copies of the same packet. However,if a neighbor does not respond to
a request after a specific timeout interval has passed, the packet is unmarked so that it may be
requested from other neighbors.

On receiving a request from a neighbor, nodes may respond either by sending the data for
that packet or with aNAK message, if they do not have enough bandwidth to satisfy the request.
In addition, they may decline to fulfill a request from a givenneighbor as determined by our
Token Stealing incentive algorithm that we will describe inChapter 5.

A node that receives aNAK message from a neighbor due to a lack of credit would most
likely get aNAK again if it made another request too quickly. This might result in delays and

27

overhead as a node repeatedly requests packets from a given neighbor when it could request that
packet from other neighbors instead. A fixed back-off interval would require fine-tuning based
on many factors. To avoid this, we use anadaptivesystem. Every node calculates aninter-
request interval(IRR) for each of its neighbors. This is the minimum intervalof time that elapse
between making two consecutive requests from a given neighbor. Nodes start at an arbitrary
positive value of IRR and adapt the interval based on a multiplicative-increase, multiplicative-
decrease (MIMD) strategy. When a node successfully receives a packet, it decreases IRR by
multiplying it with a value between0 and1, and when it receives a NAK, it increases the value
of IRR by multiplying it with a value greater than1. Since the MIMD algoritm is merely an
optimization for the requesting node, the MIMD parameters do not need to be tuned with great
precision. In our implementation, we used values of0.9 (i.e., a10% reduction) and1.5 (i.e., a
50% increase) respectively.

4.2.4 Seeding Strategy

When the seed creates a new packet, no other node in the network has a copy of that packet. We
take advantage of this fact to reduce the propagation delay for packets with aSeed-Pushstrategy.
When a seed generates a new packet, it immediately forwards it to a subset of its neighbors, and
sets aPushTTLon the packet. Neighbors who received a pushed packet decrement the value of
PushTTL and immediately forward the packet to one random neighbor.

This strategy ensures that new packets quickly propagate toa set of nodes in the system.
Ideally the value ofPushTTL is comparable to the diameter of the network, ensuring that
newly created packets are scattered well throughout the system and can spread quickly from
there.

When a packet is newly created, it is rare in the system, so theprobability of a node receiving
duplicate pushes is quite low. Thus, the expected value of bandwidth wasted on duplicate packets
received due to the Seed Push algorithm is low.

4.2.5 Buffer Management

Whenever a node receives a packet, either by a push or in response to a request from its neighbor,
it adds the packet to its buffer. Whenever there is a contiguous block of packets at the start of the
buffer, those packets areemitted(i.e., passed up to the application layer and removed from the
buffer). Packets that have been emitted are calledold packets. A node retains a certain number
of recently emitted packets in order to serve requests made by its neighbors.

When a packet is added to the buffer, a node sets a timeout on that packet forMaxBufferTime.
Once that timeout expires, all packets with lower sequence numbers are emitted immediately and
those that have not been received yet are considered lost.

Lost packets can lead to disruption in the media stream, and should be avoided as far as
possible. Packet loss rate is the primary metric we use in gaging the performance of our system.

4.2.6 Startup Strategy

As discussed in Section 4.1, one of our important design goals is to enable a new node that
joins the system to begin playback as quickly as possible. Wedesigned a startup strategy to help

28

achieve this goal.
When a node joins the system and starts connecting to neighbors, each neighbor will send

the node a send a lists of packets available for download. Thenode must decide which sequence
number to start downloading from. The range of packets available may be quite large, because
the node’s neighbors may not be precisely synchronized, andmay offer a substantial number of
old packets to its neighbors. The only limit to the range of packets available to a node is the
amount of memory that the node’s neighbors are willing to spend storing old packets.

Chainsaw’s receiver-driven architecture means that the node has the flexibility to decide
where in the range of available packets to begin downloading. Viewers who missed the start of
a program may have the opportunity to “go back in time” a few minutes.

However, in our implementation, we assume that the goal is toreceive data as current as
possible. In achieving this goal, there is a trade-off between currency and the probability of
“hiccups” in starting up because the very newest packets have not propagated to most neighbors.
To avoid this situation, a node looks for a sequence ofn consecutive packets withm or more
sources each. In our experiments we looked for a sequence of 10 consecutive packets with 2 or
more sources. We avoid packets with single sources, to avoidstartup problems because of errant
nodes, or nodes with limited upload capacity.

Having decided on the sequence number to start from, the nodediscards all information it
has received about packets prior to that sequence number, and entersLINEAR mode. In this
mode, the node always picks the packet with the lowest sequence number when deciding on a
packet to request from each neighbor. This allows the node toramp up quickly and pass up a
block of data to the application layer. Once the node has played back a sequence ofp packets,
the node entersNORMAL mode, in which it starts requesting packets at random, as described in
Section 4.2.3. In our experiments we setp to be equal to one second’s worth of data.

In Section 6.3 we demonstrate experimentally that this startup strategy allows most nodes in
the network to start playback within a few seconds.

Summary

In this chapter we presented Chainsaw, a pull-based peer-to-peer streaming network on top of an
unstructured topology. The unstructured pull-based mechanism provides a bidirectional flow of
data between pairs of interacting nodes: in general, a node will both send packets to, and receive
packets from a given neighbor. This property makes the system amenable to pairwise incentive
mechanisms, because a node may penalize a neighbor that doesnot upload data to it by refusing
to answer that neighbor’s request for packets.

Next, in Chapter 5, we present Token Stealing, an incentive mechanism for live streaming
applications that takes advantage of this fact. In Chapter 6we present detailed experimental
results that show that the Chainsaw protocol supports high-bandwidth streaming with low packet
loss and delay, and is highly scalable and resistant to churn.

29

Chapter 5

Token Stealing: Incentive Mechanism for
P2P Multicast

In Chapter 4 we presented the design for a robust and effective live streaming protocol based on
an unstructured network. In this chapter, we expand on that design and incorporate an incentive
mechanism.

At first glance, one might assume that the same incentive mechanism as used in SWIFT
will be effective for streaming, because the Chainsaw protocol is quite similar to the pull-based
mechanism used in SWIFT. However, as we explain in Section 5.2, there are key differences
between file sharing and live streaming as a result of a need toachieve a target bandwidth, and
the limited time window over which data packets remain useful. We present our Token Stealing
algorithm, our incentive mechanism for live streaming thatovercomes these constraints.

In Section 5.1 we present our design goals. In Section 5.2 we explain the key differences
that make incentive mechanisms designed for file sharing systems unsuitable for live streaming
applications. In Section 5.3 we explain how a bandwidth allocation strategy instead of a strict
tit-for-tat approach can help prevent under-utilization of resources. In Section 5.4 we describe
our Token Stealing bandwidth allocation algorithm. Finally, in Section 5.5 we discuss possible
strategies that selfish nodes may use to game the system, and how we can defeat those strategies.

5.1 Design Goal

A peer-to-peer network relies on bandwidth contributed by its participants. While there are
often a number ofaltruistic nodes that will contribute resources willingly, many do not. We
therefore wish to provide a concrete incentive for nodes to contribute at least as much bandwidth
as they consume, thus imposing no net resource drain on the system. We provide this incentive
by preferentially directing bandwidth at nodes who contribute the most, thus improving their
performance.

A secondary goal is to take advantage of excess bandwidth provided by altruistic nodes to
support nodes that are unable to contribute resources to thesystem, for example, nodes con-
nected via an asymmetric DSL connection which offers a significantly lower upload capacity
than download capacity. However, if there are not enough altruistic nodes to make up the re-
source deficit created by the non-contributors, we wish to ensure that the contributors get signifi-

30

cantly better performance. In Section 6.11 we show through simulations that our Token Stealing
algorithm is able to achieve these goals.

5.2 Attempts to Adapt SWIFT to Chainsaw

We designed the Chainsaw streaming protocol to be receiver-driven and compatible with pair-
wise incentive mechanisms like our SWIFT protocol presented in Chapter 3. Therefore, we
initially attempted to adapt the tit-for-tat scheme used inSWIFT to our Chainsaw live streaming
protocol, and enforce a fair balance of trade between every pair of interacting nodes.

Although our this attempt was unsuccessful, we present a summary of our findings because
they provide insight into key differences between the dynamics of file sharing and live streaming
applications, and illustrate the need for a different approach.

5.2.1 Näıve SWIFT Algorithm

In SWIFT, every node maintainscredit for each of its neighbors and honors packets requests
only when the neighbor has enough credit. Whenever it receives a packet from a neighbor, the
node extends itα packets worth of credit. In addition, trading is jump-started by initializing
neighbors withγ packets worth of credit instead of zero, and deadlocks are avoided by period-
ically extending nodes a small fractionβ of their total upload capacity in credit every second,
regardless of data received from it.

So long as nodes consistently upload data to their neighbors, they will keep earning credit
with their neighbors and be able to download packets from them. Nodes that do not upload will
soon deplete their credit with their neighbors and not be able to download from them anymore,
except for small trickle of free credit they receive from their neighbors in the form ofβ.

Although SWIFT was very effective at ensuring fairness in file-transfer applications, we
found that mechanism to perform very poorly when applied to live streaming. In our simulations
we found that over time, a large fraction of nodes started to suffer severe (> 50%) packet loss
even in a system where every node tried to upload as much as their capacity allowed. This was
caused by small imbalances between nodes (e.g., due to different delay characteristics, distance
from seed, number of neighbors) being amplified by an undesired positive-feedback loop.

Consider a pair of nodes A and B, where A is closer to the seed than B. In this situation,
Node A is likely to receive new packets before Node B. As a result, Node B will have fewer
opportunities to upload packets to Node A, resulting in a netloss of credit over time. Eventually,
Node B will run out of credit with Node A and will no longer ableto download from that node.
This puts Node B at a significant disadvantage because Node A was most likely a source of
packets of interest to Node B’s other neighbors, given it proximity to the seed. Therefore, the
loss of node A as a trading partner puts node B in a less favorable position to trade with the rest
of its partners. This creates a positive feedback loop wherea slight disadvantage is ultimately
amplified to the point where a node is unable to earn enough credit to avoid packet loss.

31

5.2.2 Compensating for Trading Imbalances

We evaluated two strategies for correcting these trading imbalances. First, we implemented a
system where nodes attempted to correct imbalances they encountered by allocating bandwidth
to neighbors they had the most trade deficit with before othernodes, regardless of the order in
which they received packet requests. We also evaluated a strategy where nodes that were at
an advantage intentionally attempted to reduce the number of packets it uploaded in order to
improve its trade balance with its neighbors.

Preferential Uploading

We found that nodes ran out of credit because they were unableto upload enough packets to
some of their neighbors to maintain a stable supply of credit. Therefore, we implemented a
system where nodes that were running out of credit with neighbors prioritized requests from
those neighbors and satisfied them as quickly as possible. Quickly satisfying existing requests
will generally result in more requests for packets from thatneighbor.

Counterintuitively, this strategy made the problemworseover time. Some nodes, such as
nodes that were closer to the seed nodes were at an advantage with respect to most of their
neighbors. This led to a race among their neighbors to uploadas quickly as possible to the
advantaged node. This created a new positive feedback loop where advantaged nodes were
put at an increasingly greater advantage by neighbors aggressively uploading packets to them.
Eventually, the neighbors that lost the race ran out of credits as they did in the naı̈ve tit-for-tat
system.

Advantaged Nodes Back Off

Our next approach was to have advantaged nodes attempt to proactively reduce the amount of
data they upload to give other nodes an opportunity to uploaddata and earn credit. By default,
nodes sendNOTIFY messages to all their neighbors when they receive a new packet in order to
enable them to request that packet. Nodes that are closer to the seed will often receive packets
before any of their neighbors, resulting in several requests for those packets. We compensated
for this effect by reducing the number ofNOTIFY messages sent by nodes when they detected
that they had large amounts of unused credit with most of their neighbors.

Every node kept track of its mean upload-to-download ratio with its neighbors, which we
called thebalance ratio. Nodes with balance ratios below 1 continued to employ the default
behavior of notifying every neighbor of new packets in orderto maximize their chances of
receiving packet requests and improving their balance ratio. However, as the balance-ratio in-
creased above 1, nodes linearly reduced the number of neighbors notified. This ensured that
the advantaged nodes did not receive a large number of requests for new packets, thus giving
other, less advantaged nodes an opportunity to earn credit by uploading those packets after they
received them.

This algorithm is beneficial to the advantaged nodes, disadvantaged nodes, and the system
as a whole. The advantaged nodes benefit by being relieved of some of the burden of uploading
packets. The disadvantaged nodes benefit by having more opportunities to upload packets to
their neighbors and earn credit. The overall amount of upload bandwidth in the system is gener-

32

ally not reduced because some of the burden of uploading packets is shifted from the advantaged
to the disadvantaged nodes.

This algorithm was effective in correcting imbalances in initial experiments with small, uni-
form networks with no churn. However, in experiments with more realistic scenarios, we found
that this algorithm was insufficient to prevent the cascading failures we observed before. We
were unable to compensate for larger imbalances without throttling the advantaged nodes down
to the point of causing significant system-wide performancedegradation.

5.2.3 Lessons Learned: Need for a Different Approach

As a result of insights gained in these studies, we concludedthat a SWIFT-like tit-for-tat ap-
proach was unsuitable for live streaming, and a different approach was needed for three key
reasons.

Firstly, in a live streaming system, packets have a limited useful lifetime because nodes are
only interested in a small window of data at any given time. Ingeneral, older packets are nei-
ther useful for playback nor as trading commodities becauseall participants are approximately
synchronized. A packet in a file sharing network, the other hand, remains useful as a trading
commodity until every node in the network has obtained a copy. If new nodes join continuously,
packets always remain useful, and a node will ultimately be able to trade them for other packets
and make progress towards assembling the complete file.

We found that the limited useful life of packets makes systems that enforce strict pairwise
equality unstable. A node may tend to receive packets slightly later on average than other nodes
as a result of its connection speed, network latency or position in the network. As a result, this
node may often be unable to upload packets to its neighbors even if it is willing to because its
neighbors would already have obtained those packets from other sources. The node will even-
tually run out of credit with its neighbors and get locked out. Unlike the file sharing network,
a small largesse rate will not help alleviate this problem, because the node will not be able to
trade the largesse to obtain a net positive flow of credit, andthe node effectively gets locked out
of the system. Once this happens, a different node is now the slowest node, and eventually gets
locked out too. This eventually leads to vastly reduced system performance.

Secondly, in a live streaming system, data must be downloaded at an average rate equal to
the stream rate, or it will lead to degraded user experience (either through repeated re-buffering,
or packet loss). With a file sharing network, on the other hand, slower download speeds, while
undesirable, still contribute to the node’s ultimate goal of acquiring the file being traded.

Finally, peers in a file sharing network attempt to download the file as quickly as they can.
The ideal download rate is infinity. Although peers have a higher download capacity than upload
capacity, there is no spare capacity in the system, because every bit of available bandwidth could
be used to improve the download speed of some participant. With a streaming system, however,
the ideal rate is equal to the rate at which the source generates new data (i.e., thestream rate).
As a result, altruistic nodes who contribute more bandwidththan they consume contribute to
surplus system capacity. This surplus can be used to supportnodes that are unable to contribute
upload bandwidth at the full stream rate.

Whereas the first two differences pose additional challenges compared to file sharing net-
works, the third offers an opportunity to relax the need for strict pairwise fairness and take
advantage of any surplus capacity in the system.

33

5.3 Bandwidth Allocation Strategy

In order to overcome the challenges posed by live streaming,we shifted our focus from the strict
pairwise fairness used in SWIFT to a bandwidthallocationstrategy. Instead of limiting upload
rates, nodes allocate their upload capacity between competing neighbors based on the amount of
data they receive from those neighbors. This permits effective utilization of any surplus capacity
that may exist in the system as a result of altruistic nodes, promoting system performance and
stability.

By utilizing all available resources, we maximize the number of participants that can be
supported. Excess bandwidth provided by altruistic nodes can be leveraged to forgive nodes
with low upload rates so long as the system remains resource-rich. When there is insufficient
bandwidth to support all nodes in the system, however, nodeswith high upload rates receive
much higher bandwidth than the low-bandwidth nodes.

This behavior gives nodes an incentive to contribute as muchupload bandwidth to the sys-
tem as they are capable of. Users of the system would be encouraged to increase their upload
rates, for example, by relaxing artificial constraints on upload bandwidth, or by closing other
applications that consume upload bandwidth.

5.4 Token Stealing Algorithm

Our Token Stealing algorithm builds on the standardtoken bucketmodel [90] commonly used to
regulate bandwidth flow in networking applications and routers. Our Token Stealing algorithm
sets up local markets at every node where neighbors compete for the node’s upload capacity.
When the demand for bandwidth at a node exceeds the node’s upload capacity, neighbors that
have been uploading the most data to the node receive preferred service. This constraint is
relaxed when there is enough bandwidth to fulfill all requests.

Standard Token Bucket Algorithm

The token bucket algorithm works by having a virtual bucket into which tokens are added pe-
riodically. Whenever a packet is transmitted, an equivalent number of tokens must be removed
from the bucket—packets may only be transmitted when there are a sufficient number of tokens
available in the bucket. Thus, the overall bandwidth can be controlled by controlling the rate at
which tokens are added to the bucket.

The number of tokens that may accumulate in the bucket is limited to some maximum value
to prevent a large number of tokens from accumulating duringperiods of low demand and caus-
ing a large burst during a subsequent period of high demand. The basic token bucket algorithm
only ensures that the overall bandwidth does not exceed a specified limit.

Our Extension: Token Stealing

Our Token Stealing algorithm is a straightforward extension of the token bucket algorithm. Ev-
ery node maintains a standard token bucket that we refer to asthe shared bucketinto which
tokens are added periodically, at a rate equivalent to the node’s upload capacity. In addition, the

34

node maintains a separate bucket for each of its neighbors. We refer to these asprivate buckets.
Whenever a node receives a packet from one of its neighbors, it removes tokens from the shared
bucket and transfers them to that neighbor’s private bucket. This has the effect of reserving a
portion of the node’s upload bandwidth to repay the neighborfor the packets it has uploaded.

Like the shared bucket, private buckets are limited in size.This prevents neighbors from
reserving large amounts of bandwidth that they never utilize (for example, because they are
connected to other nodes with large upload capacities). Tokens that overflow the private buckets
are returned to the shared bucket.

A neighbor may download a packet so long as there are enough tokens between the shared
and private buckets. The maximum number of bytesBi a neighbori may download at any given
time is:

Bi = min(Pi, S +
N∑

k=0

Pk)

whereS is the number of bytes in the shared bucket,Pi is the number of bytes in neighbori’s
bucket andN is the total number of neighbors.

Note that unlike the standard token bucket algorithm, the number of tokens in the shared
bucket may go negative with Token Stealing because of transfers to private buckets. In this case,
it is necessary to check to total number of bytes in all private buckets to prevent the overall
upload rate from exceeding the rate of addition of tokens to the shared bucket (i.e., the node’s
upload capacity).

If the number of bytes available to the neighbor is greater than the size of the packet re-
quested, the node deducts the appropriate number of tokens,and transmits the packet. The
algorithm used to deduct the tokens from the shared and private buckets is discussed in Sec-
tion 5.4.1. If the neighbor has insufficient tokens available to satisfy the request, the node sends
a NAK message.

As discussed in Section 4.2.3, on receiving a packet orNAK message, nodes adjust the rate
at which they request packets from their neighbors based on an MIMD strategy. It has been
shown [3] that MIMD strategies lead to unfair allocation of bandwidth in situations where con-
gestion signals (NAK messages in this case) are synchronous. It is highly likely that nodes with
similar contribution levels (number of tokens in their private buckets) run out of available tokens
simultaneously leading to synchronous congestion signals.

To mitigate this, we use a scheme similar to the Random Early Detection [33] congestion
avoidance scheme used by IP routers to avoid congestion in TCP traffic. When the number of
available bytes falls below a certain thresholdT , we deny the request with a NAK message with
probabilityp even if the neighbor has sufficient tokens available. The value of p is zero then
Bi ≥ T and linearly increases to1 asBi goes to0. This probabilistic signaling does not reduce
the upload rate in the long run compared to deterministicNAKs, but it ensures that different
neighbors that are close to exhausting their credits are denied at slightly different times, thus
preventing undesirable synchronization between neighbors.

5.4.1 Which Bucket First?

The question of which bucket to deduct tokens from when a neighbor requests a packet is inter-
esting. One may choose to deduct tokens from the private bucket first and dip into the shared

35

bucket only if there are not enough tokens in the private bucket, or one may use up tokens from
the shared bucket first.

In our experiments we found that the both strategies give theneighbors that upload (and
therefore have tokens in their private buckets) an advantage, but that advantage is considerably
greater in the latter case. When tokens are deducted from theprivate buckets first, neighbors that
upload do not compete in the market for shared tokens unless their private buckets are empty.
This makes it easier for neighbors that do not upload to receive a portion of the bandwidth.

When tokens are deducted from the shared bucket first, all neighbors compete equally in
the market for shared tokens before dipping into their private buckets, which act as a reserve.
This amplifies the priority given to the neighbors that upload the most packets to the node.
Therefore, the strategy we choose is to deduct tokens from the shared bucket first and only dip
into the private bucket when the shared bucket is empty.

5.4.2 Analysis

With our Token Stealing algorithm, the total upload capacity of the node is still limited by the
rate at which tokens are added to the token bucket (i.e., the upload bandwidth limit). However,
unlike a simple token bucket system where all neighbors havean equal opportunity to use up
tokens from the bucket, our Token Stealing algorithm favorsneighbors that upload the most
packets to the node.

Whenever a neighbor uploads a packet to a node, the node reserves tokens for that neighbor’s
use. Every packet the neighbor uploads to a node increases the chances that the neighbor will
be able to download a packet in the future.

If all neighbors upload equally, all private buckets will have the same number of tokens in
them, which gives all neighbors equal priority. However, a neighbor that does not upload will
not have tokens in its private bucket and will be limited to competing with other neighbors for
tokens from the shared bucket.

Whether or not the non-uploading neighbor succeeds in downloading depends on the total
supply and demand at that node:

Node has excess upload capacity

If the node has more than enough upload capacity to fulfill thedemand of all of its neighbors,
the shared bucket will have tokens in it and the neighbor thatdoes not upload will still be able
to download. This ensures that a node’s upload capacity is utilized as much as possible.

It is possible for a few nodes, known asfree-riders, to try to leach off the system by selec-
tively connecting to nodes with excess capacity. This strategy will work so long as the number
of free-riders is small. If a large number of nodes attempt toleach off the system, they will
compete among each other for tokens from the shared token bucket. This makes the effect of
free-riders self-limiting.

Node has limited upload capacity

If the node does not have enough capacity to satisfy all requests, most of the tokens will be
moved to the private buckets of the neighbors that do upload,and the shared bucket will gener-

36

ally be empty. As a result, the neighbors that upload will be able to use the tokens from their
private buckets to download packets, but nodes that do not upload will be forced to compete for
the scarce tokens from the shared bucket.

5.5 How Our Algorithm Prevents Gaming

In this section, we briefly discuss various ways in which nodes may attempt to game the sys-
tem, and explain why those attempts would be largely unsuccessful, and not compromise the
scalability or stability of the system.

5.5.1 Misreporting Information

Our system does not rely on nodes to report any information about themselves other than the
availability of packets. This makes it difficult for malfunctioning or selfish nodes to gain an
unfair advantage over their neighbors by lying about their upload rates.

A node may announce the availability of packets it does not have, but this does not confer
any advantage, because their neighbors will not move any tokens to their private buckets until
requests are fulfilled. As we discuss in Section 5.5.4, a nodethat attempts to earn private tokens
by uploading fake data will easily be discovered.

5.5.2 Selectively Connecting to High-Bandwidth Nodes

A node may attempt to game the system by selectively connecting to high bandwidth nodes. It
might seem that this strategy will allow the node to gain morethan its fair share of the bandwidth
provided by that node. However, in a resource-constrained system, the shared bucket will typi-
cally be empty. The amount of bandwidth received by a node will be dominated by the private
credit it receives for uploading data to that node.

In Section 6.15 we experimentally demonstrate this fact, and show that there is no perfor-
mance gained by nodes adopting this strategy whether just a few nodes adopt it or a vast majority.

5.5.3 Sybil Attacks

A Sybil Attack [24] is an attack where a node attempts to improve its performance by assuming
many identities in the system. This might allow a node to, forexample, escape consequences
for its bad behavior.

However, our system does not rely on building long-term reputations for nodes. Instead,
every node is judged by its peers on its recent upload rates. If a node builds up tokens in its
private bucket by uploading rapidly for a while, those tokens will soon be depleted if it stops
uploading. This lack of long-term memory renders Sybil attacks against our system ineffective.
An attacker would gain little by assuming several identities in the system, and would be better
off pooling upload resources into a single identity in orderto gain the most private tokens with
its neighbors.

37

5.5.4 Uploading Bogus Data

A node may attempt to gain an unfair advantage by advertisingpackets it does not actually
possess, and uploading bogus data if those packets are requested by neighbors. This will, of
course, cost a node upload bandwidth, but a node may attempt to do so either out of a malicious
desire to harm the system, or to minimize its delay by earningprivate tokens from its neighbors.

This problem can be solved by using cryptographic techniques to authenticate the data they
received from neighbors. BitTorrent solves this problem bydistributing cryptographic hashes of
the individual pieces of the file in the.torrent file. Unfortunately, this solution cannot be used
with a streaming application, because the number of packetsis potentially infinite.

Instead, the seed can digitally sign packets on the fly as it injects them into the network,
and attach the digital signature to every data packet. The public key needed to verify the signa-
tures may either be distributed to nodes in a metadata file analogous to the.torrent file, or by
a certificate server. For example, the DSA algorithm specified in the FIPS 140-2 [70] standard
produces 320 bit signatures, which amounts to a modest 4% overhead if the stream uses 1,000
byte packets. The DSA algorithm also does not require excessive CPU resources. In a test us-
ing the OpenSSL [92] implementation of DSA under Ubuntu Linux 10.10 on a dual-core AMD
Athlon 4400+ at 2.3 GHz, we were able to perform 5,619SIGN and 4,916VERIFY operations
per second. At 25 packets per second, this would result in an CPU load of under 0.5%.

Summary

In this chapter, we argued for a different incentive model for live streaming application than the
strict tit-for-tat approach advocated for file sharing applications. We presented the Token Steal-
ing bandwidth allocation algorithm that gives nodes an incentive to contribute as much upload
bandwidth as they can, while forgiving nodes (like ADSL) nodes when other altruistic nodes
make up the deficit by uploading more than their fair share. Wediscussed various strategies
selfish nodes may attempt, and how those strategies can be defeated.

Next, in Chapter 6 we present extensive experimental results that demonstrate the effective-
ness of our Token Stealing algorithm.

38

Chapter 6

Experimental Evaluation

In this chapter we present detailed experimental evaluation of both the basic Chainsaw stream-
ing protocol and the Token Stealing algorithm with a discrete-event simulator. We also built a
prototype implementation of our system to validate our simulation model.

In Section 6.1 we describe our simulator model along with theparameters of the experiment.
In Section 6.2 we provide a more detailed overview of the experimental results presented in this
chapter. In Section 6.3 we study the performance of a system with reasonable default parameters
which serves as the basis for other experiments in this chapter. In Section 6.4 we demonstrate
that our system scales well with increasing network size. InSection 6.5 we demonstrate scala-
bility with increasing bandwidth, whereas in Section 6.6 weevaluate the effect of changing the
packet size while keeping the bandwidth constant. In Section 6.7 we demonstrate robustness
to churn. In Section 6.8 we show that our system performs wellover a wide range of network
latencies. In Section 6.9 we study the effect of network graph degree.

In Section 6.10, we evaluate the effect of our Token Stealingalgorithm in a resource-rich
system, whereas we study progressively resource-starved systems in a series of experiments in
Section 6.11. In Section 6.12 we show that the system copes well with changes in resource
availability. In Section 6.13 we demonstrate that the system also reacts quickly to changes in
an individual node’s upload rates, and nodes are promptly rewarded for increasing their upload
rates and penalized for decreasing them. In Section 6.14 we show that the time taken to respond
to changes in node behavior can be adjusted by varying the private bucket limit parameter.

In Section 6.15 we evaluate a possible strategy that could beattempted to game the system
in order to gain an unfair advantage by taking advantage of altruistic nodes, and show that this
strategy does not benefit the selfish nodes.

In Section 6.16 we study a more realistic scenario where upload rates fall into a range of
values rather than a few distinct classes of parameters. Finally, in Section 6.17 we validate our
simulation results by presenting results from experimentsperformed with a prototype imple-
mentation on the PlanetLab testbed.

6.1 Simulation Model

We built a high-performance discrete event simulator in order to enable us to simulate large
networks with a diverse range of parameters. The code is highly optimized and scalable, while

39

accurately simulating the application layer protocol. Ourlargest experiment had a mean network
size of over 100,000 nodes, with about 1.8 million nodes participating over the course of the
experiment, having about 14.2 billion messages routed between them. That experiment ran over
the course of two weeks and consumed 14 gigabytes of memory. Smaller experiments, with a
few thousand nodes required under a gigabyte of memory and only a few hours of CPU time,
thus enabling us to run many experiments and study a vast range of system parameters, within a
reasonable amount of time.

On the whole, the experiments presented in this chapter represent the analysis of 62 gigabytes
of raw experimental results gathered from over 400 individual network simulations and more
than 4,000 hours of CPU time. Over the course of these experiments, we simulated more than
22 million nodes, with about 21 trillion messages exchangedbetween them, representing nearly
1.1 petabytes of network traffic.

The simulator consists of over 2,700 lines of C++ code, and features a highly flexible XML-
based configuration system to allows us to tweak every parameter of the system as desired, and
specify a wide range of network and node behaviors without writing additional code. Figure 6.1
shows a block diagram of our simulator. For scalability and speed, our simulation operates at
the level of application-level messages rather than TCP/IPpackets.

Application Logic

Neighbor

State

...

Buffer

State

Shared Bucket

First-Hop Network Logic

(Bandwidth-Limited)

Messaging

Interface

Send Queue

Receive Queue

Internet Logic

(Latency-Limited)

Node Logic

...

Experiment

Controller

Config File

(XML)

Timers

ReportingSpawn

&

Kill

Nodes

Handles all

message arrival

and timer

events

Last event

event fired

marks current

virtual time

Event Core

(Priority Queue)

(Notify, Request etc.)

Figure 6.1: The simulation model: Nodes have independent upload and download queues. These
queues are limited by bandwidth. The network core is considered to be adequately provisioned
and congestion-free, thus solely limited by latency.

Every node in the network represents one Internet host. Every node has independent up-
stream and downstream queues which represent a user’s connection to their Internet Service
Provider (the first hop). The bandwidth limits can be set independently on the two queues.
Since the links from a consumer to the ISP’s local point-of-presence (POP) tend to be short, we
neglect the latency on these links.

40

Section Network Characteristic
6.3 Base system: Basis for remaining experiments
6.4 Network size varying from 25 to over 100,000 nodes
6.5 Stream rate (bandwidth)
6.6 Packet size
6.7 Mean node lifetime (churn rate)
6.8 Inter-node network latency
6.9 Number of neighbors (graph degree)
6.10 Token Stealing Enabled?
6.11 Fraction of ADSL nodes (resource availability)
6.12 Changes in resource availability
6.13 Changes in node upload rates
6.14 Stabilization time: private bucket limit
6.15 Attempt to game the system through selective connection
6.16 A system with a range of upload rates
6.17 Prototype implementation on PlanetLab

Table 6.1: Summary of experimental evaluation. We begin with a typical system configuration,
and use that as a basis for further experiments by systematically varying each parameter one at
a time. In addition, we study strategies that may be attempted to game the system.

Having traversed the upstream link, packets reach the “Internet cloud” which represents the
core of the Internet. Studies have shown that the backbone links on the Internet typically are
well provisioned and delays are dominated by the speed of light [34]. Therefore, in our simu-
lation we assume that the core of the network is adequately provisioned and has a significantly
higher capacity than the edge. A packet’s traversal time through the core is solely limited by la-
tency. Once it arrives at the destination node’s downstreamlink, propagation time is once again
determined by bandwidth.

Although we use a somewhat simplified network model, we do notsimplify the application-
level protocol in any way. Nodes are logically isolated fromeach other, and can only gain
information about other nodes through application-level messages. We simulate all aspects of
the protocol described in Chapters 4 and 5.

6.2 Overview of Experiments

In this chapter, we systematically study every aspect of theChainsaw mesh-based streaming
system, as well as the Token Stealing incentive mechanism. Table 6.1 shows a summary of the
experiments evaluation we performed, and the sections in which we present the results.

First in Section 6.3, we demonstrate that Chainsaw accomplishes the primary goal of deliv-
ering a live stream to a large number of simultaneous clientswith very low packet loss rates.
We do this by running an experiment where we pick reasonable values for all parameters and
measure the performance of a dynamic network with an averageof 800 nodes. Through this
experiment, we also show demonstrate that we meet the secondary goals of quick startup time,
low delay, and low overhead. In order to provide a second point of reference, we repeat this

41

experiment with ten times as many nodes (i.e., 8,000 nodes).
Then in Sections 6.3 through 6.9, we show that our system is stable and performs well across

a wide range of network and system parameters. We use our initial experiment as a basis for
systematically studying every parameter by running a series of experiments where we vary a
single aspect of the system and study its effects. We focus onour primary performance metric,
packet loss rate, but also present graphs for delay or overhead as needed to help explain the
packet loss rate curves we observed. As before, we repeat allexperiments with both 800 and
8,000 node networks.

Next, in Sections 6.10 through 6.16, we move away from resource-rich networks to resource-
constrained networks where there is insufficient cumulative upload bandwidth to support all
clients in the system with no packet loss. In these experiments, we show that our Token Stealing
algorithm plays its part in fairly allocating the availablebandwidth to nodes that contribute
resources to the system. We also show that our Token Stealingalgorithm adapts quickly to
varying network resource availability conditions, and to various ways in which selfish nodes
may attempt to game the system through strategic behavior.

Finally, in Section 6.17 we present results from experiments performed on the PlanetLab
testbed, using our prototype implementation. We show that we obtain similar results with the
prototype implementation as we do with our simulations, thus validating our simulator.

6.3 Performance of a Typical Network

In this section we demonstrate that Chainsaw offers low packet loss, low delay, quick startup,
and acceptable bandwidth overhead, by studying a network with reasonable default values. This
setup forms the basis of the remaining experiments in this chapter, as we systematically vary
isolated aspects of the system to study their effects.

We simulated a 200kbps stream which is comparable to moderate quality video streams
(such as those offered by YouTube), as well as high-quality audio streams (many radio stations
offer 128kbps or 160kbps MP3 streams). We divide the stream into 1,000 byte packets, giving a
rate of 25 packets/sec. We individually vary and study the effects of stream rate and packet size
in Sections 6.5 and 6.6 respectively.

In this experiment we assumed that the system is well provisioned with altruistic nodes who
contribute more bandwidth to the system than the stream rate, and all nodes have sufficient
upload and download capacity. We study several aspects of resource-constrained systems later,
in Sections 6.11 through 6.16.

We set the node upload and download bandwidth to twice the stream rate, or 400kbps. The
seed node is responsible for quickly injecting new packets into the system. In addition to an-
swering normal packet requests, the seed must also push copies of each packet to its neighbors.
In order to reduce the chance of a node leaving the system after receiving a packet but before
passing it on to other nodes, it must push at least two copies.Moreover, since the seed always
has packets available to it that no other node does, it is likely to service more requests than other
nodes. Due to these extra bandwidth demands, we set the seed’s upload bandwidth higher, at six
times the stream rate (twice the requests as other nodes, plus two copies of each packet pushed
preemptively), or 1.2Mbps. It does not seem unreasonable toassume that the publisher of a
stream will provide higher bandwidth than a typical participant.

42

In addition to actual stream data (i.e., the payload), nodesmust transmit and receive con-
trol traffic such as packet availability data (NOTIFY messages) and packet requests (REQUEST

messages). Moreover, like any other application, we incur additional overhead from TCP/IP
headers. In our system we use the same connection for both data and control traffic. Therefore,
nodes must set aside some portion of their bandwidth for control traffic. Since the BitTorrent
documentation suggests setting the upload rate at 80% of theraw upload capacity [23], leaving
20% for control traffic and other overhead, we use the same value. Thus the maximum upload
rate for the seed was 960kbps while that of the non-seed nodeswas 320kbps. For brevity, when
we use the termupload ratein this chapter we refer to this value rather than the raw upstream
capacity. We experimentally show that the actual overhead is much lower (about 7%) with this
setup, so the 20% margin is quite conservative.

We set the latency between nodes to 100ms (200ms round-trip). This is an extremely pes-
simistic value, comparable to the transit time between nodes across the world. By contrast,
typical round-trip time between Internet hosts in nearby cities tends to be on the order of 25ms
and the round trip time between New York and California is on the order of 100ms. We study
the effect of different values of network latency in Section6.8.

We began the experiment with only the seed node, and then added other nodes to the system.
Non-seed nodes then joined the system with a standard Poisson arrival process with a mean
inter-arrival time of 125ms. The seed node had an infinite lifetime and remained in the system
for the entire duration of the experiment, while other nodeshad a mean lifetime of 100 seconds
with an exponential distribution. This results in a mean network size of 800 (100sec / 125ms).

We consider a mean lifetime of mean lifetime of 100 seconds tobe very conservative; the
Web analytics company comScore has found that the average length of videos watched on the
Web is 228 seconds [21]. Moreover, although the exact valueswe used for lifetime and network
size are somewhat arbitrary, we systematically vary each ofthese parameters to study the effects
of network size in detail in Section 6.4, and mean node lifetime in Section 6.7. Additionally,
we repeated each experiment with a mean inter-arrival time of 12.5ms to give a network size of
8,000 nodes, in order to provide a second point of comparisonwith respect to scalability.

Every node connected to 20 neighbors. This is comparable to the default values used in other
networks like Gnutella and BitTorrent, which use a similar network topology. We study varying
network degree (i.e., number of neighbors) in Section 6.9.

We ran the experiment for a total of 30 minutes of simulated time, and started gathering
data once the system size reached its steady state, about fiveminutes (simulated time) into the
run. Nodes do not report packet loss until the packet requests time out, so nodes with very short
lifetimes may report artificially low loss rates. Therefore, in the interest of being conservative,
we disregard results from nodes with lifetimes under 10 sec.Whereas this experiment studies
the network in a steady state, we also study dynamic network behavior later in this chapter by
varying network characteristics over time in Section 6.12,and varying node characteristics over
time in Section 6.13.

In order to provide a second point of comparison, we also repeated every experiment with
a network 10 times the size of the previous setup, or 8,000 nodes. Comparing the two results
reinforces the fact that our system scales well with networksize.

Figure 6.2a shows the distribution of packet loss rates of nodes in the network. Of the 11,070
nodes who participated in the system over the course of the experiment, 10,949 (98.9%) nodes

43

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25

F
ra

ct
io

n
of

 N
od

es

Packet Loss Rate (%)

(a) Cumulative Distribution of Packet loss rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5

F
ra

ct
io

n
of

 N
od

es

Mean Delay (sec)

(b) Cumulative Distribution of Mean Delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

F
ra

ct
io

n
of

 N
od

es

Startup Delay (sec)

(c) Cumulative Distribution of Startup Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

F
ra

ct
io

n
of

 N
od

es

Overhead (%)

(d) Cumulative Distribution of Overhead

Figure 6.2: Cumulative distribution of packet loss rate, mean delay, startup time and overhead
in a typical network (800 nodes).

had perfect delivery and did not lose a single packet. The remaining nodes lost between 1 and
4 packets over the course of the entire experiment, for a system-wide average packet loss rate
of only 0.0005%. Figure 6.3a shows the corresponding graph for the experiment with 8,000
nodes. Once again, we find that a large majority of nodes suffer no packet loss at al. Of the
108,619 nodes who participated in this system, 107,924 (99.4%) suffered no packet loss, and
the system-wide packet loss rate was 0.0003%.

Figure 6.2b shows the distribution of mean delay as measuredfrom the time a packet is
generated by the seed to the time a node receives it. Mean delays are distributed on a narrow
bell curve with a mean of 1.80 seconds. Over 95% of the values are between 1.75 sec and
1.90 sec. The highest mean delay experienced by any node in the system was 2.007 seconds.
The long tail between 1.23 and 1.7 sec is caused by the few nodes that are close to or directly
connected to the seed, and thus receive packets very quickly. This means that most nodes do not
lag far behind the seed. When the network size was increased to 8,000 nodes, the mean delay
increased to 2.69 sec, as seen in Figure 6.3b. This increase is because the mean distance to the
seed increased from 2.23 (log20800) to 3 (log208000) as a result of the increased network size
with a constant degree of 20.

44

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
ra

ct
io

n
of

 N
od

es

Packet Loss Rate (%)

(a) Cumulative Distribution of Packet loss rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5

F
ra

ct
io

n
of

 N
od

es

Mean Delay (sec)

(b) Cumulative Distribution of Mean Delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

F
ra

ct
io

n
of

 N
od

es

Startup Delay (sec)

(c) Cumulative Distribution of Startup Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

F
ra

ct
io

n
of

 N
od

es

Overhead (%)

(d) Cumulative Distribution of Overhead

Figure 6.3: Cumulative distribution of packet loss rate, mean delay, startup time and overhead
in a typical network (8,000 nodes).

Figure 6.2c shows the distribution of startup times of nodesin the network. The startup time
measures the shortest time after joining a network that the node could begin playback and avoid
“re-buffering” events. A vast majority of nodes (9,815, or 88.7%) had startup times of under
a second. The system-wide mean was only 0.80 seconds. This implies that nodes are able to
being play back soon after joining the system and do not have to spend a long time waiting
for the buffer to fill up, making for a good user experience. Aswith the mean delay, the mean
startup time increased as a result of an increased number of hops to the seed when the network
was expanded to 8,000 nodes. As seen in Figure 6.3c, the mean startup time for the larger
network was 1.06 seconds.

Figure 6.2d shows the distribution of overhead. The overhead includes all non-data traffic
received by a node, including notify messages, packet request messages, and per-packet over-
head (such as headers). The mean overhead is only 6.7%, with avast majority (over 90%) of
nodes having overhead between 6 and 10%. We do not expect increased network size to have a
significant impact on overhead, since nodes only communicate with other nodes in their vicinity,
and there is no global control traffic. As expected, Figure 6.3d shows that the overhead remained
essentially unchanged with the 8,000 node network, at 6.8%.

45

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 25 100 400 1600 6400 25600 102400

P
ac

ke
t L

os
s

R
at

e
(%

)

Mean Network Size - log scale

(a) Packet Loss Rate

 0

 1

 2

 3

 4

 5

 25 100 400 1600 6400 25600 102400

M
ea

n
D

el
ay

 (
se

c)

Mean Network Size - log scale

(b) Mean Delay

Figure 6.4: Performance of the system with varying network size. Figure (a) shows the packet
loss rate as a function of the network size. Packet loss ratesdo not increase significantly even
when the size of the network grows by nearly four orders of magnitude, with a loss rate under
0.0006% even with 102,400 nodes. Figure (b) shows the mean delay as a function of network
size. Mean delay increase logarithmically with network size, resulting in the observed small
increase in packet loss rate.

This experiment shows that our system is able to achieve the main goals of low packet loss
rates as well as secondary goals of low delay and quick startup time, and low overhead. For the
remainder of this chapter, we focus on packet loss rates as the primary performance metric, and
provide other measurements as needed to fully explain the observed performance characteristics.

6.4 Scalability with Network Size

In this experiment, we demonstrate that Chainsaw scales well with network size. We started
with the same basic setup as the network used in Section 6.3, but adjusted the node arrival rate
to vary the expected network size in 2x increments. We ran a series of simulations with mean
network sizes ranging from 25 to 102,400. Figure 6.4 shows the mean packet loss rates and
mean delay as a function of network size. Note that the X-axishas a logarithmic scale.

In the smallest experiment, we have a graph that is almost fully connected, because the ex-
pected network size is 25 nodes, and nodes maintain 20 neighbors. Most nodes are directly
connected to the seed, and all nodes receive some fraction ofdata very quickly via seed push.
Therefore, the packet loss rate was nearly zero: in fact onlya single node lost one packet over
the course of that 30 minute experiment. With larger networksizes, the packet loss rates climbed
slightly, but remained very low: between 0.0004% and 0.0006%, or about one in 200,000 pack-
ets.

The mean delay exhibits nearly perfect logarithmic growth,ranging from 0.72 sec to 3.23
sec. The logarithmic growth in delay is to be expected. Nodesmaintain a constant degree;
therefore the diameter of the graph grows logarithmically with the size of the network. The
number of hops needed for packets to reach nodes farthest from the seed is equal to the diameter
of the graph. Therefore, logarithmic growth in delay is precisely what would be expected.

46

Note that even though we use a five second timeout, that does not imply that the system will
fail when the delay exceeds five seconds. Packet timeouts aredetermined in relation to other
packets received by the node, whereas the mean delay plottedhere is a measure of delay from
the time a node generates the packet to the time a node receives it.

This experiment demonstrates that our system scales extremely well with network sizes.
Although our main focus is to demonstrate that our network scales well to large network sizes,
the fact that the system shows good performance at small network sizes is also significant. This
implies that our system works well even with only a few users and does require adoption by
a large number of users to provide good performance, thus simplifying the problem of gaining
adoption by end users.

At 102,400 nodes, the aggregate bandwidth delivered to the system is 20.46 Gbps. Serving
that bandwidth with a conventional client-server model would be impossible without a large
dedicated datacenter or a content-distribution network like Akamai [91]—the total bandwidth
demand would require a dedicated OC-768 [39], which is normally used by major ISPs back-
bones [4]. The peer-to-peer model, however, allows the seedto use a mere 960kbps of bandwidth
which is easily available in consumer-grade connections, while requiring viewers to contribute
no more bandwidth than is available from typical consumer broadband connections.

6.5 Scalability with Stream Rate

In this experiment, we demonstrate that Chainsaw scales well with increasing stream rates. Start-
ing with the base setup described in Section 6.3, we increased the stream rate by keeping the
packet size constant, but increasing the number of packets injected by the seed per second.
We also proportionally increased every node’s upload and download capacity. This experiment
studies the ability of the system to route a large number of packets within the desired time
constraints.

We study the complementary experiment where we change the number of packets per second
without altering the overall bandwidth in Section 6.6.

Figure 6.5 shows packet loss rates and mean delay as a function of stream rate. Once again,
the X axis has a logarithmic scale. We find that the mean delay and packet loss rates both go
down as the data rate increases. This seems counter-intuitive at first, but is explained by the fact
that nodes have increased bandwidth, but a constant packet size. As a result, individual packets
propagate more quickly through the network, resulting in lower mean delay.

Packet loss in a resource-rich network are caused by random fluctuations causing packets to
be delayed beyond the deadline (five seconds, in this case). The quicker propagation time gives
nodes more opportunities to request each individual packetbefore the timeout, thus lowering the
chance that an individual packet will be delayed beyond the deadline. Therefore, we observe
lower mean packet loss as well.

6.6 Effect of Packet Size

In this experiment, we study the effect of varying packet sizes while keeping overall bandwidth
constant, by adjusting the number of packets per second accordingly. This is in contrast to the

47

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 6.25 12.5 25 50 100

P
ac

ke
t L

os
s

R
at

e
(%

)

Stream Rate (packets/sec) - log scale

(a) Packet loss rate (800 nodes)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 6.25 12.5 25 50 100

M
ea

n
D

el
ay

 (
se

c)

Stream Rate (packets/sec) - log scale

(b) Mean delay (800 nodes)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 6.25 12.5 25 50 100

P
ac

ke
t L

os
s

R
at

e
(%

)

Stream Rate (packets/sec) - log scale

(c) Packet loss rate (8,000 nodes)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 6.25 12.5 25 50 100

M
ea

n
D

el
ay

 (
se

c)

Stream Rate (packets/sec) - log scale

(d) Mean delay (8,000 nodes)

Figure 6.5: Performance of the system with varying stream rate. Figures (a) and (b) show the
packet loss rate and mean delay for the 800 node network. Figures (c) and (d) show the corre-
sponding graphs with an 8,000 node network. Higher raw bandwidth leads to lower propagation
delay, which in turn lowers packet loss rate with increasingstream rate. The vertical line marks
the base system data point, with a stream rate of 25 packets/sec.

previous experiment in Section 6.5, where we kept the packetsize constant to adjust bandwidth.
As we are keeping the overall stream rate constant, unlike Section 6.5, we do not alter the nodes’
upload and download capacities in this experiment.

Figure 6.6 show the packet loss rates and overhead as a function of packet size. Much of
the control traffic in the form of packet notifications, packet requests, etc. is incurredper packet
regardless of the size of the payload. In order to maintain the stream rate (bytes/sec) we must
increase the number of packets per second with smaller packets, and decrease the number of
packets per second with larger packets. Therefore, the overhead (i.e., the ratio of overhead bytes
to payload bytes) is very high for small packets and much lower for large packets.

Higher overhead increases the probability of temporary congestion where too much band-
width is taken up by control traffic, leading to insufficient bandwidth available to service data
requests. Therefore we observed higher packet loss rates with 250 byte packets, 1.5% with the
800 node network, and 0.8% with the 8,000 node network.

48

 0

 0.5

 1

 1.5

 2

 250 500 1000 2000 4000

P
ac

ke
t L

os
s

R
at

e
(%

)

Packet Size (bytes) - log scale

(a) Packet loss rate (800 nodes)

 0

 5

 10

 15

 20

 250 500 1000 2000 4000

O
ve

rh
ea

d
(%

)

Packet Size (bytes) - log scale

(b) Overhead (800 nodes)

 0

 0.5

 1

 1.5

 2

 250 500 1000 2000 4000

P
ac

ke
t L

os
s

R
at

e
(%

)

Packet Size (bytes) - log scale

(c) Packet loss rate (8,000 nodes)

 0

 5

 10

 15

 20

 250 500 1000 2000 4000

O
ve

rh
ea

d
(%

)

Packet Size (bytes) - log scale

(d) Overhead (8,000 nodes)

Figure 6.6: Performance of the system with varying packet sizes, with a constant stream rate.
Figures (a) and (b) show the packet loss rate and overhead forthe 800 node network, and Figures
(c) and (d) show the corresponding graphs for the 8,000 node network. The vertical line marks
the base system point with a packet size of 1,000 bytes.

Larger packets have two effects. Firstly, larger packets take longer to transmit and receive,
slowing down their propagation to the periphery of the network (i.e., nodes that are farthest
from the seed). Furthermore, fewer packets per second leadsto decreased parallelism since
fewer neighbors are uploading packets at any time. This reduces the effective degree of the
network, and increases the impact of any individual neighbor leaving the network or suffering
temporary congestion. Therefore, we observed a slight increase in packet loss rate with larger
packet sizes.

6.7 Robustness to Churn

In this section, we demonstrate the robustness of our systemto churn, the rate at which nodes
enter and leave the system. A high rate of churn may be problematic for networks that need to
propagate routing information or form propagation trees.

49

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 25 50 100 200 400

P
ac

ke
t L

os
s

R
at

e
(%

)

Mean Node Lifetime (sec) - log scale

(a) Packet loss rate (800 nodes)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 25 50 100 200 400

M
ea

n
D

el
ay

 (
se

c)

Mean Node Lifetime (sec) - log scale

(b) Mean delay (800 nodes)

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 25 50 100 200 400

P
ac

ke
t L

os
s

R
at

e
(%

)

Mean Node Lifetime (sec) - log scale

(c) Packet loss rate (8,000 nodes)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 25 50 100 200 400

M
ea

n
D

el
ay

 (
se

c)

Mean Node Lifetime (sec) - log scale

(d) Mean delay (8,000 nodes)

Figure 6.7: Performance of the system with varying levels ofchurn. We varied mean node
lifetimes, and adjusted the mean inter-arrival to maintainthe mean network size of 800 and
8,000, respectively, and Figures (a) and (b) show the packetloss rate and mean delay for the
800 node network, and Figures (c) and (d) show the corresponding graphs for the 8,000 node
network. Packet loss rates increase only modestly even withvery short average node lifetimes.
The vertical line marks the base system point with a mean nodelifetime of 100 sec.

Nodes in the base system of Section 6.3 had a mean lifetime of 100 seconds. We simulated
networks with longer lifetimes, as networks with lifetimesas low as 25 seconds. This represents
an extreme situation with highly ephemeral participants. In order to keep the network size
constant, we adjusted the mean inter-arrival rate to compensate for varying lifetimes.

In our protocol implementation, in an effort to be conservative, we simulated the worst case
behavior where nodes abruptly leave the system without notifying their neighbors of their intent,
or disconnecting gracefully. A node might have outstandingrequests from its neighbor, but will
leave them unfulfilled as it leaves the network, requiring the neighbor to find a new source for
that packet. In a more well-behaved implementation, nodes might linger for a few seconds and
service outstanding packet requests while refusing to accept new requests, which will lead to
even better performance than our worst-case implementation.

Figure 6.7 shows packet loss rates and mean delay as a function of mean node lifetime.

50

Lower lifetimes indicate increasing levels of churn. Sub-figures (a) and (b) show the packet
loss rate and mean delay, respectively, as a function of the mean node lifetime for the 800 node
network. Sub-figures (c) and (d) show the corresponding graphs for the 8,000 node network.
Note that the X-axis has a logarithmic scale.

We find that while an extreme level of churn does adversely affect the system, the packet loss
rate remains very low, under 0.001% in both cases. The increase in packet loss rate is primarily
caused by nodes suddenly losing neighbors. With increasingchurn, it becomes increasingly
common for a node to request a packet from a neighbor only to have that neighbor leave the
system before fulfilling the request. On rare occasions, this will leave the node with no more
sources of that packet, leaving the node unable to obtain that packet.

When a node’s neighbor leaves the system without fulfilling an outstanding request, the node
must then request that packet from another neighbor after iteither times out, or detects that it has
been disconnected from the neighbor. Issuing a new request and waiting for the new neighbor
to respond leads to additional round-trip delays, leading to a small increase in delay with shorter
node lifetimes. However, even with an extremely short mean lifetime of 25 seconds, the delay
does not increase significantly. With the 800 node network, the mean delay increased from
1.96 sec for the base system with a mean node lifetime of 100 sec to 2.03 sec with a mean node
lifetime of 25 sec. With the 8,000 node network, the mean delay increased from 2.69 sec for the
base system to 2.77 sec with a mean node lifetime of 25 sec.

This experiment shows that Chainsaw is highly robust to churn, even in the extreme situation
where nodes linger only for very short periods of time, and a worst-case implementation where
nodes abruptly leave the network, leaving their neighbors’requests unfulfilled. A practical
system would have even better performance than demonstrated in this worst-case experiment
for two reasons. Firstly, in a real implementation, nodes would likely leave the network more
gracefully. Secondly, extremely short mean node lifetimesare unlikely to arise in practice.
We consider even the default value of 100 seconds to be quite conservative because we expect
viewers to linger much longer on average for common applications like video streaming.

6.8 Effect of Network Latency

In this experiment, we evaluate the effect of network latency, the time taken by packets the
traverse the network from one node to another. Note that we refer to one waylatency, rather
than the round-trip delay reported by common network diagnostic tools likeping.

As mentioned in Section 6.3, we use an extremely pessimisticvalue of 100ms one-way
latency for the base system. In this experiment, we varied the network latency in logarithmic
steps from 12.5ms (comparable to typical Internet transit type to a host in a nearby city), to
400ms, which is quite pessimistic even for satellite links,or long intercontinental terrestrial
links—the propagation delay for radio waves to a satellite in geostationary orbit is 120ms.

Figure 6.8 shows packet loss rates and mean delay as a function of network latency. The X
axis has a logarithmic scale for both graphs, while the Y axishas a linear scale for the delay
graph and logarithmic for the packet loss graph.

We observe that increasing network latency leads to both an increase in packet delay, which
leads to a higher packet loss rate. However, even with a latency of 400ms, we observed packet
loss rates under 1% in both the 800 and 8,000 node networks.

51

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 12.5 25 50 100 200 400

P
ac

ke
t L

os
s

R
at

e
(%

)

Latency (ms) - log scale

(a) Packet loss rate (800 nodes)

 0

 1

 2

 3

 4

 5

 6

 7

 12.5 25 50 100 200 400

M
ea

n
D

el
ay

 (
se

c)

Latency (ms) - log scale

(b) Mean Delay (800 nodes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 12.5 25 50 100 200 400

P
ac

ke
t L

os
s

R
at

e
(%

)

Latency (ms) - log scale

(c) Packet loss rate (8,000 nodes)

 0

 1

 2

 3

 4

 5

 6

 7

 12.5 25 50 100 200 400

M
ea

n
D

el
ay

 (
se

c)

Latency (ms) - log scale

(d) Mean Delay (8,000 nodes)

Figure 6.8: Performance of the system with varying inter-node network latency. Figures (a) and
(b) show the packet loss rate and mean delay for the 800 node network, while Figures (c) and
(d) show the corresponding graphs for the 8,000 node network. As expected, higher network
latency leads to increased propagation delay, which leads to higher packet loss. Packet loss rates
remain under 1% even with a very high 400ms latency in each direction. The vertical line marks
the base system point with a latency of 100ms.

Note that the increase in packet delay issub-linear—while we increased the network latency
by a factor of 32, from 12.5ms to 400ms, the mean delay increased from 1 sec to 5 sec. This
result might seem counter-intuitive and one might expect a linear increase. However, some
delays are mitigated due to pipelining effects—nodes will often transmit a request for the next
packet from a given neighbor while it is in the process of downloading another data packet from
that neighbor, thus avoiding the latency penalty for the second packet request.

Increasing delay with a constant cut-off time does lead to anincrease in packet loss as it is
not possible to sustain a low lag behind the seed over a multi-hop network with high network
delay. For instance, if temporary congestion or the departure of a neighbor prevents a node from
receiving the packet from the neighbor it originally requested it from, it will take several round
trips for the node to detect that fact, request the packet from another neighbor, and receive the
packet. With a high network latency, and a relatively low lagtimeout of 5 sec, there is little

52

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40 45 50

P
ac

ke
t L

os
s

R
at

e
(%

)

Number of Neighbors

(a) Packet loss rate (800 nodes)

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
D

el
ay

 (
se

c)

Number of Neighbors

(b) Delay (800 nodes)

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45 50

O
ve

rh
ea

d
(%

)

Number of Neighbors

(c) Overhead (800 nodes)

Figure 6.9: Performance of the system with varying number ofneighbors, i.e., graph degree with
the 800 node network. At low graph degrees, the high diameterof the graph drives packet loss
rates higher. At higher degrees, increasing overhead may cause higher packet loss rate. Note
that packet loss rates remain relatively low, under 0.2% at both extremes. The vertical line marks
the base system point with 20 neighbors.

margin for rerouting or other delays, leading to the observed increase in packet loss.
This experiment demonstrates that the network is able to operate quite effectively, with

packet loss rates under 1%, even under challenging conditions with a one-way network latency
of 400ms, which is a highly pessimistic value even for networks distributed globally. In a real
world implementation, we would expect to see significantly lower delays.

6.9 Effect of the Number of Neighbors

In the base system, we have used a network degree of 20. That is, every node in the system main-
tained connections to 20 neighbors. In this experiment, we study the effect of this parameter.
We varied the network degree from 5 to 50 in increments of five.

Figure 6.9 shows packet loss rates, mean delay, and overheadas a function of network degree

53

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40 45 50

P
ac

ke
t L

os
s

R
at

e
(%

)

Number of Neighbors

(a) Packet loss rate (8,000 nodes)

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
D

el
ay

 (
se

c)

Number of Neighbors

(b) Delay (8,000 nodes)

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40 45 50

O
ve

rh
ea

d
(%

)

Number of Neighbors

(c) Overhead (8,000 nodes)

Figure 6.10: Performance of the system with varying number of neighbors, i.e., graph degree
with the 8,000 node network. At low graph degrees, the high diameter of the graph drives
packet loss rates higher. At higher degrees, increasing overhead may cause higher packet loss
rate. Note that packet loss rates remain relatively low, under 0.25% at both extremes. The
vertical line marks the base system point with 20 neighbors.

and Figure 6.10 shows the corresponding experiment with 8,000 nodes. In both the 800 and
8,000 node network we observed that packet loss rates are higher with very low graph degree,
and then rapidly fall very close to zero. As we continue to increase graph degree, the packet loss
rate starts to climb gradually.

This behavior is explained by the opposing effects observedin the delay and overhead graphs
in sub-figures (b) and (c), respectively. When the graph degree is very low, i.e., nodes connect to
a very small number of nodes, the network has a very high diameter. For example, with an 800
node network with degree 5, a majority of nodes will be 4 hops away from the seed. Therefore
packets will take longer to reach nodes on the periphery, leading to longer delays and higher
packet loss. With the 8,000 node network, a majority of nodeswill be 6 hops away, so this effect
is even more pronounced. We observed packet loss rates of 0.04% with the 800 node network,
and 0.23% with the 8,000 node network.

Higher network degree (i.e., more neighbors) brings diminishing returns, but increasing cost.

54

Nodes must broadcast packet availability notifications to every neighbor they are connected to,
and will receive notifications from every neighbor. This leads to a linear increase in the amount
of control traffic (i.e., overhead). The increase in overhead also contributes to a small increase in
delay as packet requests and transmission get queued behindnotification messages. Therefore,
as we increased the network degree to 50, we observed that packet loss rates increased gradually
to 0.15% with the 800 node network, and 0.10% with the 8,000 node network.

Between the two extremes, we observed a wide range of networkdegrees where the packet
loss rates were extremely low, under 0.0001%. This wide range shows that the network is stable
and does not need to be tuned with great precision to achieve low packet loss rates. Furthermore,
while packet loss rate at the two extremes was higher than thepacket loss rate in the sweet spot
towards the center of the graph, it remained quite low on an absolute scale, under 0.25% in all
cases. Moreover, a practical implementation would be able to measure the amount of overhead
traffic they are incurring and reduce the number of neighborsthey connected to in order to stay
out of the extremes with higher packet loss rates.

6.10 Token Stealing in a Resource-Rich System

In this section, we compare the performance of the system with the Token Stealing algorithm
disabled, to the base system described in Section 6.3. The goal of this experiment is to demon-
strate that the Token Stealing algorithm does not impose a performance penalty on a resource
rich system, i.e., when all nodes in the system are altruistic and contribute at least upload band-
width as the stream rate.

Figure 6.11 shows the cumulative distribution of packet loss rates and mean delay with
the Token Stealing algorithm disabled, and enabled for boththe 800 and 8,000 node cases.
As with our previous experiments, we observe that the packetloss rates are very low, with a
system-wide mean of only 0.0004% in the 800 node experiment both with the Token Stealing
algorithm disabled and enabled. Enabling the Token Stealing algorithm actually resulted in a
slight improvement in the mean delay from to 2.01 with Token Stealing disabled to 1.96 with
the algorithm enabled.

We observed very similar results with the larger, 8,000 nodenetwork. Once again, the packet
loss rate was very low, with a system-wide average of 0.0004%without Token Stealing and
0.0003% with Token Stealing enabled. As before, enabling Token Stealing resulted in a slight
improvement in mean delay with the mean value dropping from 2.80 with Token Stealing dis-
abled to 2.69 sec with the algorithm enabled.

At first glance, these results might seem counter-intuitive. One might expect the imposition
of additional constraints to reduce the performance of the system. However, the Token Stealing
algorithm does not restrict uploads the way a tit-for-tat system would, but merely redistributes
it among various neighbors. In a tit-for-tat system, a node may leave a portion of its upload ca-
pacity unutilized if it does not receive a comparable amountof download bandwidth. However,
Token Stealing merely adjusts the priority of neighbors in response to their download bandwidth,
and will not leave upload capacity unutilized if there is adequate demand. In fact, it encourages
packets to take more efficient paths by giving preferential treatment to nodes that upload more
data.

Thus we show that the Token Stealing algorithm not only does not degrade performance

55

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n
of

 N
od

es

Packet Loss Rate (%)

TS Disabled
TS Enabled

(a) Packet loss rate (800 nodes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

F
ra

ct
io

n
of

 N
od

es

Mean Delay (sec)

TS Disabled
TS Enabled

(b) Mean delay (800 nodes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n
of

 N
od

es

Packet Loss Rate (%)

TS Disabled
TS Enabled

(c) Packet loss rate (8,000 nodes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

F
ra

ct
io

n
of

 N
od

es

Mean Delay (sec)

TS Disabled
TS Enabled

(d) Mean delay (8,000 nodes)

Figure 6.11: Performance of a resource-rich system with andwithout Token Stealing enabled.
In this experiment all nodes are altruistic. Figures (a) and(b) show the cumulative distributions
of packet loss rates and mean delay for the 800 node network, and Figures (c) and (d) show
the corresponding graphs for the 8,000 node network. The performance of the network in the
resource-rich case very similar with Token Stealing enabled as without.

by imposing additional constraints, but may lead to slightly better performance through more
efficient routing of packets.

6.11 Resource-Constrained Systems

In this section, we move from resource-rich systems where all nodes are altruistic (i.e., are
willing to contribute more upload bandwidth to the system than the stream rate) to resource-
constrained systems where some nodes are unable or unwilling to contribute as much upload
bandwidth as the stream rate.

In this series of experiments, we introduce nodes to the system with limited upload ca-
pacity. For brevity, we refer to these as ADSL nodes, becausewe model their behavior after
consumer Asymmetric DSL connections which typically offera significantly lower upload rates

56

Node Type
Capacity as Fraction of Stream Rate

Upload Rate Raw Upstream Raw Downstream
Altruistic 1.6 2 2

ADSL 0.32 0.4 2
Fake ASDL 0.32 2 2

Table 6.2: Upload and download capacities of Altrustic, ADSL and Fake ADSL nodes. Al-
truistic nodes have a raw upload and download capacity equalto twice the stream rate, and a
maximum upload rate (in terms of data packets) equal to 80% ofthe raw upload rate, i.e., 1.6
times the stream rate. ADSL nodes have the same download capacity, but an upload capacity
only 1/5 that of the altruistic nodes. Fake ADSL nodes have the same upload and download
capacity as altruistic nodes, but artificially limit their upload rate to that of the ADSL nodes.

than download rates. It is common for such connections to have a ratio of about 1:5 (for instance,
2 Mbps up and 10 Mbps down), so we used the same ratio, and set the upload rate of ADSL
nodes to 20% that of the altruistic nodes in this series of experiments. As before, the altruistic
nodes have an upload capacity 1.6 times the stream rate. Therefore, the ADSL nodes had an
upload rate 0.32 times the stream rate. Recall that the upload rate refers to the amount of data
packets a node is willing to upload, not the raw line bandwidth. We also introduce a second class
of nodes called Fake ADSL nodes that have the same raw upload capacity as Altruistic nodes
but artificially limit their upload capacity to resemble theADSL nodes. Table 6.2 summarizes
the parameters used by the three classes of nodes.

In this section, we first demonstrate the need for an incentive mechanism by disabling our
incentive mechanism, the Token Stealing algorithm. We thenran an identical series of experi-
ments with the Token Stealing algorithm enabled, demonstrating that despite its simplicity, our
incentive mechanism fulfills our goals of providing a strongincentive for nodes to contribute
upload bandwidth to a system, when the system is resource-constrained, while accommodating
all nodes while resource-rich.

6.11.1 The Need for an Incentive Mechanism

We ran a series of simulations with different fractions of ADSL nodes, starting with all altruistic
nodes, and increasing the fraction to 80% ADSL nodes, in 10% increments. We achieved the
desired ratio of the two types of nodes by introducing ADSL and altruistic nodes via separate
Poisson processes, with the mean inter-arrival rates adjusted to produce the desired ratio. As
before, we ran one series of experiments with the expected total size of the network maintained
at 800, and another with the mean total size maintained at 8,000.

Every node regardless of its upload capacity attempts to download the complete stream.
Therefore, bandwidth demanded from the system by every nodeis equal to the stream rate.
On the other hand, the supply of bandwidth contributed to thesystem varies between the two
classes of nodes. If we consider the stream rate to be one unit, the upload bandwidth, or supply
contributed by nodes is 0.32 for ADSL nodes, and 1.6 for ADSL nodes. The overall ratio of
bandwidth supply to demand in the system is therefore:

57

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

R
at

e
(%

)

Fraction of ADSL Nodes (%)

ADSL
Altruistic

Ideal Loss Rate for ADSL

(a) Packet loss rate (800 nodes)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

M
ea

n
D

el
ay

 (
se

c)

Fraction of ADSL Nodes (%)

ADSL Nodes
Altruistic Nodes

(b) Mean delay (800 nodes)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

R
at

e
(%

)

Fraction of ADSL Nodes (%)

ADSL
Altruistic

Ideal Loss Rate for ADSL

(c) Packet loss rate (8,000 nodes)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

M
ea

n
D

el
ay

 (
se

c)

Fraction of ADSL Nodes (%)

ADSL Nodes
Altruistic Nodes

(d) Mean delay (8,000 nodes)

Figure 6.12: Performance with varying fraction of ADSL nodes with the Token Stealing algo-
rithm disabled. As the system becomes resource-constrained, both ADSL and altruistic nodes
suffer increasing packet loss. With the Token Stealing algorithm disabled, there is very little
difference between the performance of the two classes of nodes.

supply

demand
= 0.32x+ 1.6(1− x) (6.1)

wherex is the fraction of ADSL nodes in the system. The supply becomes equal to demand
at x = 0.47. Therefore, when the system has fewer than 47% of ADSL nodes,the system is
resource-rich, and the systems becomes progressively resource-constrained beyond that.

Figure 6.12 shows the packet loss rates and mean delay of experienced by ADSL and altru-
istic nodes, as a function of the fraction of ADSL nodes in thesystem. As before, we repeated
the experiment for both 800 and 8,000 node networks.

With 0% ADSL nodes, the setup is, of course, identical to thatin Section 6.3, and the packet
loss rates are very close to zero. Moreover, all nodes in the system see very low packet loss rates
with 10–40% ADSL nodes in the system. The altruistic nodes had under 0.25% for packet loss
rates both the 800 and 8,000 node networks, while the ADSL nodes about 0.9% with the 800
node network, and 1.9% with the 8,000 node network. Recall that the system is resource-rich,

58

so long as there are under 47% ADSL nodes in the system, the point marked by the solid vertical
line in the graphs.

In the region of the graph with 50–80% ADSL nodes, the packet loss rates for both classes
of nodes increased rapidly, but there was very little difference between the packet loss rates
of the two classes of nodes, just 1–3%. This small differenceis unlikely to provide a strong
incentive for nodes to contribute upload bandwidth to the system, thus demonstrating the need
for an incentive mechanism.

It might seem surprising that there is any difference at all between the ADSL and altruistic
nodes at all with no incentive mechanism. However, recall that in this experiment the ADSL
nodes had a lower line speed compared to the altruistic nodes, resulting in slower propagation
of data and control traffic, increasing delays. We observe inFigure 6.12 that the ADSL nodes
on average had delays about half a second longer in the 800 node network, and nearly a second
more in the 8,000 node network. This longer delay increased their tendency towards packet loss
slightly, explaining the slight difference in packet loss rates.

To further illustrate this point, we ran another series of experiments with a modification
to the parameters of the ADSL nodes, that we refer to as “Fake ADSL” nodes. While these
nodes still set their upload rates (i.e., maximum data upload rate) to 0.32 of the stream rate—
same as the ADSL nodes, they have a line speed equal to the altruistic nodes, and would thus
not be encumbered by slower propagation times for their dataand control packets. This class
represents selfish nodes who have the physical capacity to upload data at the stream rate or
higher, but unlike the altruistic nodes, they choose to limit their upload rates.

Figure 6.13 shows the results of this experiment. As with theexperiment with real ADSL
nodes, we plot the packet loss rates, and mean delay of both classes of nodes as a fraction of
the percentage of non-altruistic nodes (Fake ADSL, in this case). Once again, we repeated the
series of experiments with both 800 and 8,000 node networks.

As before, we observe that the packet loss rates are very low for all nodes in the 0–40%
range, while the system as a whole is resource-rich. In fact,in this range, the packet loss rates
are even lower than in the previous experiment—under 0.1% for both classes of nodes in both
the 800 and 8,000 node experiments. This is because the packets that the Fake ADSL nodes do
upload propagate to their neighbors much faster due to the higher line speed compared to the
real ADSL nodes.

In the resource constrained range, however, we observe thatthe Fake ADSL nodes actually
performed slightly better than the altruistic nodes. Although the difference in packet loss rates
between the two classes of nodes is small, under 1% with both the smaller and larger network,
this is an highly undesirable outcome. In this scenario, selfish nodes sawbetterperformance
than the altruistic nodes.

As before, this difference is explained by the delay graphs in sub-figures (b) and (d) for the
800 and 8,000 node networks, respectively. Whereas the FakeADSL nodes have the same line
speed as the altruistic nodes, they spend much less of their bandwidth on uploading data packets,
and thus are able to transmit packet requests and other control traffic more quickly, resulting in
lower delay. As before, this lower delay translates to lowerpacket loss rates. Once again, we
observe similar results with both the 800 and 8,000 node networks.

Although the difference in packet loss rates between the altruistic nodes and Fake ADSL
nodes is small, if at all there was an incentive created by thedifference in packet loss rates, it

59

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

R
at

e
(%

)

Fraction of Fake ADSL Nodes (%)

Fake ADSL
Altruistic

Ideal Loss Rate for ADSL

(a) Packet loss rate (800 nodes)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

M
ea

n
D

el
ay

 (
se

c)

Fraction of Fake ADSL Nodes (%)

Fake ADSL Nodes
Altruistic Nodes

(b) Mean delay (800 nodes)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

R
at

e
(%

)

Fraction of Fake ADSL Nodes (%)

Fake ADSL
Altruistic

Ideal Loss Rate for ADSL

(c) Packet loss rate (8,000 nodes)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

M
ea

n
D

el
ay

 (
se

c)

Fraction of Fake ADSL Nodes (%)

Fake ADSL Nodes
Altruistic Nodes

(d) Mean delay (8,000 nodes)

Figure 6.13: Performance of the system with varying fraction of Fake ADSL nodes with the
Token Stealing algorithm disabled. Fake ADSL nodes have thesame physical capacity as the al-
truistic nodes, but are selfish restrict and their upload rates to masquerade as ADSL nodes. With
their high bandwidth connection relatively unencumbered by uploading data to their neighbors,
the Fake ADSL nodes actually see slightly lower packet loss rates and mean delays than the
altruistic nodes—a highly undesirable outcome.

would be to be selfish rather than altruistic. Clearly, this outcome is highly undesirable from the
overall system’s point of view, thus demonstrating the needfor an explicit and effective incentive
mechanism.

6.11.2 Resource-Constrained Systems with Token Stealing Enabled

In Section 6.11.1, we demonstrated the need for an incentivemechanism. In this section, we
repeat the same series of experiments with the Token Stealing algorithm re-enabled in order
to show that our incentive mechanism does, in fact, provide nodes with a strong incentive to
contribute upload bandwidth to the network.

As before, we first ran a series of experiments with a varying fraction of ADSL nodes whose
upstream line speed limits their ability to contribute upload bandwidth to the system (i.e.,real

60

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

R
at

e
(%

)

Fraction of ADSL Nodes (%)

ADSL Nodes
Altruistic Nodes

Ideal Loss Rate for ADSL

(a) Packet loss rate (800 nodes)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

M
ea

n
D

el
ay

 (
se

c)

Fraction of ADSL Nodes (%)

ADSL Nodes
Altruistic Nodes

(b) Mean delay (800 nodes)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

R
at

e
(%

)

Fraction of ADSL Nodes (%)

ADSL Nodes
Altruistic Nodes

Ideal Loss Rate for ADSL

(c) Packet loss rate (8,000 nodes)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

M
ea

n
D

el
ay

 (
se

c)

Fraction of ADSL Nodes (%)

ADSL Nodes
Altruistic Nodes

(d) Mean delay (8,000 nodes)

Figure 6.14: Performance with varying fraction of ADSL nodes with the Token Stealing algo-
rithm enabled. While the system is resource-rich, both ADSLand altruistic nodes suffer low
packet loss rates. When the system becomes resource-constrained, though, altruistic nodes suf-
fer much lower packet loss rates than the ADSL nodes.

ADSL nodes).
Figure 6.14 shows the packet loss rates and mean delay experienced by ADSL and altruistic

nodes, as a function of the fraction of ADSL nodes in the system. As before, we repeated the
experiment for both 800 and 8,000 node networks.

It is useful to compare Figure 6.14 to Figure 6.12, the results of our previous experiment with
the Token Stealing algorithm disabled. As before, in the resource-rich 0–40% range, all nodes
experienced low packet loss rates. In fact, the altruistic nodes experienced even better service
than before, with packet loss rates under 0.1%. While slightly degraded compared the altruistic
nodes, the ADSL nodes also received better service in the resource-rich network with the Token
Stealing algorithm. The ADSL nodes had a 0.8% packet loss in the 800 node network, and 1.2%
in the 8,000 node network, compared to 0.9% and 1.9%, respectively, with the Token Stealing
algorithm disabled. This reaffirms our findings in Section 6.10, where our Token Stealing algo-
rithm leads to a small improvement in overall network performance in the resource-rich network
by routing around bottlenecks, preferentially sending packets to neighbors who are more likely

61

to upload those packets to other nodes.
The key difference though, is in the 50–80% range where the system becomes progressively

more resource-constrained. With the Token Stealing algorithm enabled, there is a significant
difference between the performance of ADSL and altruistic nodes when the system is resource-
constrained. The packet loss rates of the altruistic nodes remains low, even as we increase the
fraction of ADSL nodes, and the system becomes increasinglyresource-constrained. At the 80%
mark, there is only enough upload capacity in the system to fulfill 57.6% of the demand, but the
altruistic nodes only suffer a packet loss rate of 6.8% in the800 node network, and 10.6% in the
8,000 node network.

In contrast, the ADSL nodes experience a rapid increase in packet loss rates in the resource-
constrained cases. At the 80% mark, they suffer packet loss rates of 57.4% in the 800 node
network, and 57.6% in the 8,000 node network. Thus, the ADSL nodes see six to eight times the
packet loss rates that the altruistic nodes see in the severely resource-constrained case. In fact,
even at the point where the system is only slightly resource-constrained, at the 50% ADSL node
mark, with 96% capacity, the ADSL nodes experience a visibleincrease packet loss rates—over
higher 10%.

This shows that our incentive mechanism is accommodating and offers good service to all
nodes regardless of their upload rates so long as the system is resource-rich due to altruistic
nodes who make up the deficit created by ADSL nodes. However, when the number of ADSL
nodes increases to the point where the system is resource-constrained, the altruistic nodes expe-
rience significantly better service (i.e., lower packet loss rates).

Next ran a series of experiments analogous to the previous experiment, with ADSL nodes
replaced by Fake ADSL nodes. Recall that the Fake ADSL nodes are nodes with the same
physical connections as the altruistic nodes that choose tobe selfish by artificially limiting their
upload rates to that of the ADSL nodes.

Figure 6.15 shows the result of this experiment. Figures (a)and (b) show the packet loss
rates and mean delay experienced by the altruistic nodes, and Fake ADSL nodes for the 800
node network, while Figures (c) and (d) show the corresponding graphs for the 8,000 node
network.

As before, in the 0–40% range, while the system is resource-rich, all nodes duffer very low
packet loss rates, well under 0.1% for both classes of nodes in both the 800 and 8,000 node
networks.

However, in the resource-constrained region with 50–80% Fake ADSL nodes, there is a
significant difference in the packet loss rates seen by the two classes of nodes. As with the
experiment with the real ADSL nodes, the altruistic nodes suffer only modest packet loss rates
around 10% even with a large fraction of Fake ADSL nodes in thesystem.

In stark contrast to the results in Figure 6.13 though, the fake ADSL nodes have significantly
higher packet loss rates than the altruistic nodes. With 80%Fake ADSL nodes in the system,
they have a packet loss rate of 55.6% in the 800 node network and 56.2% in the 8,000 network,
virtually identical to the packet loss rates seen by the realADSL nodes in the experiment.

Clearly, this creates a highly undesirable situation for both the real and fake ADSL nodes
in resource constrained systems. Real ADSL nodes might not have much of a alternative if
their physical connections do not allow them to contribute more bandwidth to the system, and
they might leave the system while it is resource-constrained, thus improving the overall ratio of

62

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

R
at

e
(%

)

Fraction of Fake ADSL Nodes (%)

Fake ADSL
Altruistic

Ideal Loss Rate for ADSL

(a) Packet loss rate (800 nodes)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

M
ea

n
D

el
ay

 (
se

c)

Fraction of Fake ADSL Nodes (%)

Fake ADSL Nodes
Altruistic Nodes

(b) Mean delay (800 nodes)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

R
at

e
(%

)

Fraction of Fake ADSL Nodes (%)

Fake ADSL
Altruistic

Ideal Loss Rate for ADSL

(c) Packet loss rate (8,000 nodes)

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

M
ea

n
D

el
ay

 (
se

c)

Fraction of Fake ADSL Nodes (%)

Fake ADSL Nodes
Altruistic Nodes

(d) Mean delay (8,000 nodes)

Figure 6.15: Performance with varying fraction of Fake ADSLnodes with the Token Stealing
algorithm enabled. Fake ADSL nodes have the same physical capacity as the altruistic nodes,
but selfishly restrict their upload rates to masquerade as ADSL nodes. Once the system be-
comes resource-constrained, the Fake ADSL nodes suffer much higher packet loss rates than
the altruistic nodes and would be incentivized to remove theartificial cap on their upload rate.

supply to demand. Fake ADSL nodes do have a choice, and may be encouraged to remove the
artificial limits on their upload capacity in order to reducetheir packet loss rate, and improve the
quality of service they receive. In either case, the self-interested response of nodes improves the
overall ratio of supply to demand in the system, thus benefiting the system as a whole.

6.11.3 Steady-State Behavior

Although the difference in packet loss rates for the two classes of nodes is significant, and the
6–8% packet loss rates suffered by altruistic nodes is quitesmall and easily corrected by erasure
coding and other techniques, the lifetime average packet loss suffered by nodes does not tell the
whole story.

Recall that in order to maintain more realistic conditions,all our experiments were performed
with a dynamic network with nodes constantly joining and leaving the system. When a new node

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140 160 180

D
ow

nl
oa

d
R

at
e

(F
ra

ct
io

n
of

 s
tr

ea
m

 r
at

e)

Time Since Joining (sec)

Altruistic
ADSL

(a) Download rates soon after joining the network
(800 nodes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140 160 180

D
ow

nl
oa

d
R

at
e

(F
ra

ct
io

n
of

 s
tr

ea
m

 r
at

e)

Time Since Joining (sec)

Altruistic
ADSL

(b) Download rates soon after joining the network
(8,000 nodes)

Figure 6.16: When a new node joins the network, it has no reputation with its neighbors re-
gardless of its intended behavior, ADSL or altruistic. Bothtypes of nodes initially have low
download rates, thus high packet-loss rates. Altruistic nodes quickly ramp up their download
rates close to the stream rate, whereas ADSL nodes remain under 50% of the stream rate. Fig-
ure (a) shows the download rate as a fraction of stream rate ofADSL and Altruistic nodes as a
function of the time since joining the network in the 800 nodenetwork, while Figure (b) shows
the corresponding graph for the 8,000 node network.

joins the system and connects to other nodes as its neighbors, those neighbors do not have an
immediate way to determine whether the newly connected nodeis likely to contribute upload
bandwidth or not. In our system, nodes only rely on first-handobservations rather than long-term
reputations or information obtained from other nodes.

Therefore, newly joined nodes are initially treated the same by their neighbors regardless of
whether they are an ADSL or altruistic node. However, as theyupload data to their neighbors,
or do not, in case of ADSL nodes, their neighbors learn and respond to their behavior, leading
to better or worse service to those nodes. To be more precise,newly joined nodes initially have
no tokens in their private buckets and must compete with all nodes for shared bucket tokens,
which will be scarce in a resource-constrained network. However, altruistic nodes will soon
begin to accumulate credits in their private bucket as they obtain packets and upload them to
other neighbors. ADSL nodes, on the other hand, will accumulate much fewer credits in their
private buckets and will continue to compete for scarce shared bucket tokens.

To illustrate this behavior, we analyzed the behavior of an individual altruistic and ADSL
node in the resource-constrained experiment with 80% ADSL nodes.

Figure 6.16 shows the download rate (as a fraction of the stream rate) of altruistic nodes
compared to ADSL nodes as a function of the time they joined the network, with the 800 node
network in sub-figure (a) and 8,000 node network in sub-figure(b). We observe that both ADSL
and altruistic nodes initially had low download rates, a small fraction of the stream rate. This
leads to high packet loss rates for both classes of nodes in the initial few seconds after they join
the system.

Altruistic nodes initially have no data to upload to their neighbors despite a willingness

64

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

S
te

ad
y

S
ta

te
 P

ac
ke

t L
os

s
R

at
e

(%
)

Fraction of ADSL Nodes (%)

ADSL
Altruistic

Ideal Loss Rate for ADSL

(a) Steady state packet loss rates (800 nodes)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

S
te

ad
y

S
ta

te
 P

ac
ke

t L
os

s
R

at
e

(%
)

Fraction of ADSL Nodes (%)

ADSL
Altruistic

Ideal Loss Rate for ADSL

(b) Steady state packet loss rates (8,000 nodes)

Figure 6.17: Packet loss rates for ADSL and altruistic nodesas a function of the fraction of
ADSL nodes in the network. Figure (a) shows the results for the 800 node network, while
Figure (b) shows the corresponding graph for the 8,000 node network. The steady state packet
loss rate is the packet loss rate experienced by nodes neglecting the first 30 seconds when nodes
are still ramping up their download rates.

to do so. However, as they acquire packets and upload them to other neighbors, their upload
rate quickly ramps up. In fact, their rate briefly exceeds 100% as they upload enough data to
build up credit, and then rapidly download missing packets to fill up their buffer. Their packet
loss rate eventually settles down to a value just under 100%,consistent with the low (but non-
zero) packet loss rates observed in Section 6.11.2 for altruistic nodes in a severely resource-
constrained network with 80% ADSL nodes.

ADSL nodes also see a ramp up in their download rate in the firstfew seconds after joining
because they do upload some data to their neighbors, albeit at a rate much lower than the stream
rate. Unlike the altruistic nodes though, the ADSL nodes only manage to ramp up their download
rate to around 45–47% of the stream rate. Again, this is consistent with the packet loss rate we
observed for ADSL nodes in our previous experiments.

Since both ADSL and altruistic nodes suffer higher packet loss rates in the initial period after
they join, we computed thesteady statepacket loss rate for nodes in the network by disregarding
the first 30 seconds of packet loss for every node, and plottedthe results in Figure 6.17. Once
again, sub-figure (a) shows the results for the 800 node network, while sub-figure (b) shows the
corresponding graph for the 8,000 node network.

In the steady state, altruistic nodes suffer a packet loss rate of under 2% in the 800 node
network, and under 5% in the 8,000 node network even when 80% of the nodes in the system
are ADSL nodes.

Thus, we show that the Token Stealing algorithm offers good performance to all nodes in
the system when the system is resource-rich, i.e., the supply of bandwidth exceeds the demand.
However, when the system is resource-constrained, nodes that contribute the most resources see
the best performance. This behavior tends to drive the system towards higher supply to demand
ratios either by encouraging low capacity nodes to leave thesystem, or by raising artificial caps
on upload rates, and contributing more resources to the system.

65

6.12 Change in Resource Availability

In our experiments so far, we have studied systems in steady state, where the fraction of ADSL
nodes in the system does not change over the course of the experiments (other than small random
fluctuations). In practice, one might expect the mix of nodesto change over time.

A robust incentive mechanism should be able to react to changes in resource availability.
If a formerly resource-rich network becomes resource-constrained, the network should react
accordingly and transition from offering all nodes low packet-loss rates to ensuring that altruistic
nodes receive low packet-loss rates at the expense of ADSL nodes. Similarly, if enough altruistic
nodes join the system (or ADSL nodes leave) to make a resource-constrained system resource-
rich, the system should take advantage of that fact quickly and offer improved performance to
the remaining ADSL nodes who were suffering high packet lossrates.

6.12.1 Resource-Constrained Network Becomes Resource-Rich

In this experiment we begin with a network with 80% ADSL nodes, a resource-constrained state.
Starting at the 900 second mark, we transition the system over to having the inverse proportion
of nodes—20% ADSL nodes and 80% altruistic nodes, making it resource-rich.

Abruptly changing the behavior of a large number of nodes in the system to achieve the new
distribution would be contrived and unrealistic. Recall that the network in our system isdynamic
and nodes are constantly joining and leaving. The ADSL and altruistic nodes are drawn from
independent Poisson processes to maintain the expected ratio at the desired level. We bring
about the change in resource availability by altering the mean inter-arrival rates of the Poisson
processes to cause four times as many altruistic nodes to join the system on average as ADSL
nodes in any time period. Since all nodes have a mean lifetimeof 100 seconds, this gradually
leads to the desired outcome of 20% ADSL and 80% altruistic nodes, the inverse of the initial
distribution. The transition is nearly complete in about 400 seconds, at the 1,300 second mark.

Figure 6.18a shows the packet loss rate over time for both the800 node network, and Fig-
ure 6.18b shows the corresponding result for the 8,000 node network. In both figures, the top
graph shows the proportion of ADSL and altruistic nodes at any point in time, while bottom
graph shows the packet loss rates of the two classes of nodes at the corresponding point in time.

As in our previous experiments, with the system in its initial resource-starved state, the
ADSL nodes suffer very high packet loss rates, around 57%, while the altruistic nodes suffered
much lower packet loss rates, around 5%.

Once the transition towards a more resource-rich state began at the 900 second mark, the
system immediately began to take advantage of the additional upload bandwidth available, and
both the altruistic and ADSL nodes began to see lower packet loss rates. At the 1,032 second
mark, the fraction of ADSL nodes fell under 47% and the systemtransitioned to being resource-
rich, at the point designated by the vertical line. Althoughit would be theoretically possible
for all ADSL nodes to have a 0% packet loss rate, the system is not perfectly ideal, and the
ADSL nodes still had a 22% packet loss rate in the 800 node network and 25% in the 8,000
node network at that point. However, the packet loss rate forADSL nodes fell under 1% in both
the 800 and 8,000 node network at the point with about 40% ADSLnodes in the system, when
the ratio of supply to demand was 109%.

66

 0

 20

 40

 60

 80

 100

 300 450 600 750 900 1050 1200 1350 1500 1650

F
ra

ct
io

n
of

 n
od

es
 (

%
) ADSL

Altruistic

 0

 20

 40

 60

 80

 100

 300 450 600 750 900 1050 1200 1350 1500 1650

P
ac

ke
t l

os
s

ra
te

 (
%

)

Time (sec)

(a) Node dist. / Packet Loss Rate (800 nodes)

 0

 20

 40

 60

 80

 100

 300 450 600 750 900 1050 1200 1350 1500 1650

F
ra

ct
io

n
of

 n
od

es
 (

%
) ADSL

Altruistic

 0

 20

 40

 60

 80

 100

 300 450 600 750 900 1050 1200 1350 1500 1650

P
ac

ke
t l

os
s

ra
te

 (
%

)

Time (sec)

(b) Node dist. / Packet Loss Rate (8,000 nodes)

Figure 6.18: Packet loss rates of altruistic and ADSL nodes over time, as a resource-rich system
gradually becomes resource-constrained. The system begins with 80% ADSL and 20% altruistic
nodes. Starting at the 900 second mark, it transitions over to the inverse distribution. The top
graph in each figure shows the proportion of nodes, while the bottom one shows the packet loss
rates. The solid vertical line denotes the break even point where supply=demand.

This shows that our system is able to take advantage of additional resources as they become
available, and offer low packet loss rates to all nodes in thesystem once the system becomes
resource-rich. Therefore, as the incentive mechanism encourages individual nodes to contribute
more bandwidth to the system, the system is able to take advantage of those resources quickly,
leading to improved performance.

6.12.2 Resource-Rich Network Becomes Resource-Constrained

In this experiment, we ran the complementary experiment, where the system was initially resource-
rich, but became resource constrained as altruistic nodes left the system and were replaced by
ADSL nodes.

Analogous to the previous experiment, we started the experiment with the Poisson generators
set to create a resource-rich network with 80% altruistic nodes, and 20% ADSL nodes, and began
to transition the system to the inverse distribution beginning at the 900 second mark.

Figure 6.19a shows the packet loss rate over time for both the800, and Figure 6.19b shows
the corresponding figure for the 8,000 node networks. In bothfigures, the top graph shows the
relative proportion of altruistic and ADSL nodes in the system at a given point in time, while the
bottom graph shows the packet loss rates of the two classes ofnodes at the corresponding point
in time.

As expected, initially both altruistic and ADSL nodes have very low packet loss rates since
the system is resource-rich. As the system becomes resource-constrained, the ADSL nodes
experience a rapid increase in packet loss rates, while the packet loss rate for the altruistic nodes
remains relatively low.

This experiment demonstrates that the system responds wellto changes in resource avail-
ability, and that the packet loss rates of the two classes of nodes are determined by resource

67

 0

 20

 40

 60

 80

 100

 300 450 600 750 900 1050 1200 1350 1500 1650

F
ra

ct
io

n
of

 n
od

es
 (

%
) ADSL

Altruistic

 0

 20

 40

 60

 80

 100

 300 450 600 750 900 1050 1200 1350 1500 1650

P
ac

ke
t l

os
s

ra
te

 (
%

)

Time (sec)

(a) Node Dist. / Packet Loss Rate (800 nodes)

 0

 20

 40

 60

 80

 100

 300 450 600 750 900 1050 1200 1350 1500 1650

F
ra

ct
io

n
of

 n
od

es
 (

%
) ADSL

Altruistic

 0

 20

 40

 60

 80

 100

 300 450 600 750 900 1050 1200 1350 1500 1650

P
ac

ke
t l

os
s

ra
te

 (
%

)

Time (sec)

(b) Node Dist. / Packet Loss Rate (8,000 nodes)

Figure 6.19: Packet loss rates of altruistic and ADSL nodes over time, as a resource-constrained
system gradually becomes resource-rich. The system beginswith 20% ADSL and 80% altruistic
nodes. Starting at the 900 second mark, it transitions over to the inverse distribution. The top
graph in each figure shows the proportion of nodes, while the bottom one shows the packet loss
rates. The solid vertical line denotes the break even point where supply=demand.

availability at any point in time, regardless of the historyof how the system got to that state.
This is an important property, because it shows that our system adapts well to changes in net-
work conditions.

6.13 Change in Node Behavior

In Section 6.11, all nodes in the system were configured to select a behavior model (altruistic,
ADSL, or Fake ADSL) and maintain that behavior throughout the course of their participation
in the experiment. In Section 6.11.2 we argued that the difference in packet loss rates between
the altruistic and ADSL nodes would encourage nodes to increase their upload rates in order to
improve their performance.

Therefore, it is important that former ADSL nodes that increase their upload rates and change
their behavior to be similar to the altruistic nodes are quickly rewarded with lower packet loss
rates. On the other hand, if an altruistic nodes reduces its upload rate, it should quickly see an
increase in packet loss rate to a level similar to that seen byother ADSL nodes.

6.13.1 Fake ADSL Nodes Become Altruistic

In this first experiment, we have a resource-constrained system with 80% ADSL nodes as before.
We also introduced a small number of Fake ADSL nodes to the system, denoted byspecial
nodes. As before, these represent nodes who have sufficient capacity, but limit their upload rates
and masquerade as ADSL nodes.

However, unlike the normal ADSL nodes, the special nodes abruptly change their behavior
at the 1,200 second mark. They increase their upload rate to match that of the altruistic nodes.
These nodes represent the situation where a node decides to remove an artificial cap on upload

68

 0

 20

 40

 60

 80

 100

 600 800 1000 1200 1400 1600 1800

S
te

ad
y

S
ta

te
 P

ac
ke

t L
os

s
R

at
e

(%
)

Time (sec)

ADSL
Altruistic
Special

(a) Packet Loss Rate (800 nodes)

 0

 20

 40

 60

 80

 100

 600 800 1000 1200 1400 1600 1800

S
te

ad
y

S
ta

te
 P

ac
ke

t L
os

s
R

at
e

(%
)

Time (sec)

ADSL
Altruistic
Special

(b) Packet Loss Rate (8,000 nodes)

Figure 6.20: ADSL nodes can improve their performance by increasing their upload rate. “Spe-
cial” nodes initially act as Fake ADSL nodes, but change to altruistic nodes at the 1,200 second
mark. On increasing their upload rate, the special nodes quickly see an improvement in perfor-
mance (i.e., decrease in packet loss rate).

rate in order to receive better performance. As before, we repeated the experiment with both
800 and 8,000 node networks.

Figure 6.20 shows the packet loss rate for the special nodes,with the normal altruistic and
ADSL nodes for comparison. Before the 1,200 second mark the special nodes have the same
low upload rate as the ADSL nodes, and therefore suffer the same high packet loss rate, around
55–60% as the rest of the ADSL nodes.

However, at the 1,200 second mark they increase their uploadrates to match the altruistic
nodes, and their neighbors begin to react immediately: their packet loss rates begin fall. In about
30 seconds, the special nodes have a low packet loss rate, comparable to the remaining altruistic
nodes: around 2% in the 800 node network, and 6% in the 8,000 node network.

This shows that the Token Stealing algorithm allows a formerly selfish node to quickly re-
gain good performance and low packet loss rates when they increase their upload rate. One
can imagine a GUI client where a user receiving poor quality video pauses another application
competing for upload bandwidth, or removes and artificial cap, and notices an immediate im-
provement in video quality, thus encouraging the user acting out of self-interest to behave in a
way that benefits the system.

6.13.2 Altruistic Nodes Become Selfish

In this section, we study the complementary situation, where a set of altruistic nodes in a
resource-constrained system abruptly change their behavior and reduce their upload rate to that
of the ADSL nodes, in essence turning into Fake ADSL nodes.

As with Section 6.13.1, we begin with a resource-constrained system with 80% ADSL nodes,
and introduce a class of special nodes. In this experiment, the special nodes initially join the
network as altruistic nodes, and limit their upload rate at the 1,200 second mark. Once again,
we repeated the experiment with 800 and 8,000 node networks.

69

 0

 20

 40

 60

 80

 100

 600 800 1000 1200 1400 1600 1800

S
te

ad
y

S
ta

te
 P

ac
ke

t L
os

s
R

at
e

(%
)

Time (sec)

ADSL
Altruistic
Special

(a) Packet Loss Rate (800 nodes)

 0

 20

 40

 60

 80

 100

 600 800 1000 1200 1400 1600 1800

S
te

ad
y

S
ta

te
 P

ac
ke

t L
os

s
R

at
e

(%
)

Time (sec)

ADSL
Altruistic
Special

(b) Packet Loss Rate (8,000 nodes)

Figure 6.21: Altruistic nodes cannot exploit their reputation indefinitely. The “Special” nodes
initially act as altruistic nodes, but reduce their upload rate to that of the ADSL nodes at the
1,200 second mark. Their packet loss rate rapidly increasesto the same level as the rest of the
ADSL nodes.

Figure 6.21 shows the packet loss rate for the special nodes,with the normal altruistic and
ADSL nodes for comparison. Before the 1,200 second mark the special nodes have the same
high upload rate as the altruistic nodes, and therefore havegood performance with a packet loss
rate around 1–2%.

However, at the 1,200 second mark they decrease their uploadrates to match the ADSL
nodes. As observed before, their neighbors begin to react tothis change immediately, and in
about 30 seconds their performance is identical to that of the normal ADSL nodes, with a high
packet loss rate of 55–60%.

This shows that the Token Stealing algorithm does not allow nodes to establish a good rep-
utation and exploit that reputation to avoid uploading datato the network in the future. Nodes
monitor their neighbors’ behavior constantly, and rapidlyreact to changes. In order to maintain
low packet loss rates, nodes must continue to exhibit altruistic behavior and contribute upload
bandwidth to the system.

6.14 Stabilization Time

In Section 6.11, we showed that in a resource-constrained system, all nodes are initially treated
the same and even nodes that are willing to upload data will suffer packets loss initially until
their neighbors observe and react to their altruistic behavior. Likewise, a node that increases or
decreases its upload rate will not be rewarded or penalized for a few seconds. We refer to this
period as thestabilization time.

A short stabilization time is valuable from a user experience standpoint—a user that causes
the upload rate to decrease below the stream rate (for instance by throttling it, or starting another
application that competes for bandwidth) should quickly see a reduction in quality of the stream
so they observe the connection between the two events even ifthey do not understand the tech-
nical details. Similarly, allowing more upload bandwidth should result in a prompt increase in

70

 0

 10

 20

 30

 40

 50

 60

 70

 625 1250 2500 5000 10000 20000 40000

S
ta

bi
liz

at
io

n
tim

e
(s

ec
)

Private Bucket Limit (bytes) - log scale

(a) Stabilization Time (800 nodes)

 0

 10

 20

 30

 40

 50

 60

 70

 625 1250 2500 5000 10000 20000 40000

S
ta

bi
liz

at
io

n
tim

e
(s

ec
)

Private Bucket Limit (bytes) - log scale

(b) Stabilization Time (8,000 nodes)

Figure 6.22: Stabilization time is the time for a node that alters its behavior from altruistic to
ADSL (or vice versa) to see a complete transition in packet loss rate. This time is governed by
the Private Bucket Limit. Lower limits allow quicker transitions. The vertical line marks the
default value of the Private Bucket Limit (5,000).

quality.
The stabilization time is governed by theprivate bucket limitparameter, which is the maxi-

mum number of private bucket tokens a neighbor will allow a node to accumulate. As discussed
in Section 5.4, it is undesirable to allow a node to accumulate credit indefinitely, so private
buckets are capped at theprivate bucket limit.

A node that has been uploading data consistently for a long time will most likely have a
private bucket filled near the limit. If it reduces its uploadrate to a value below the stream
rate, it will begin to consume those tokens, and will eventually empty out the private bucket and
have the same performance as the remaining ADSL nodes. The higher the limit, the longer this
transition will take.

We ran a series of experiments similar to the experiment in Section 6.13.2 where nodes
abruptly changed their upload rates half-way through the experiment. We varied the values of
private bucket limit, beginning with the default value of 5,000 and successivelydoubling and
halving it to study a range of values from 625 to 40,000. We measured the time it took for a
set of altruistic nodes that change their behavior to mimic the Fake ADSL nodes to have their
packet loss rate increase from the low level seen by the altruistic nodes to the higher level of the
ADSL nodes. Once again, we repeated our experiment with 800 and 8,000 node networks.

Figure 6.22 shows the stabilization time as a function of theprivate bucket limit. As ex-
pected, the stabilization time increases with a higher limit and decreases with a lower limit.

It might be tempting to use a very low private bucket limit in order to quickly penalize nodes
that stop being altruistic, or rewards ADSL nodes that increase their upload rates. However,
there is a trade-off. If the private bucket limit is very small, nodes are more likely to be affected
by small random fluctuations in upload rates. If an altruistic node’s private bucket is easily
depleted, it will often be indistinguishable from the nodeswith a history of selfish behavior.
This might lead it to compete with the ADSL nodes for scarce shared bucket tokens, leading to
higher packet loss rates. Such events benefit the ADSL nodes,because when the altruistic nodes

71

 0

 20

 40

 60

 80

 100

 625 1250 2500 5000 10000 20000 40000

P
ac

ke
t L

os
s

R
at

e
(%

)

Private Bucket Limit (bytes) - log scale

ADSL
Altruistic

(a) Packet Loss Rate (800 nodes)

 0

 20

 40

 60

 80

 100

 625 1250 2500 5000 10000 20000 40000

P
ac

ke
t L

os
s

R
at

e
(%

)

Private Bucket Limit (bytes) - log scale

ADSL
Altruistic

(b) Packet Loss Rate (8,000 nodes)

Figure 6.23: The stabilization time for the system to react to changes in node behavior is deter-
mined by the private bucket limit used by neighbors.

lose their preferred treatment temporarily, that leaves more tokens in the shared bucket that they
can compete for on equal terms.

Figure 6.23 shows the packet loss rates of ADSL and altruistic nodes as a function of the
private bucket limit. As before, the ADSL nodes have significantly higher packet loss rates than
the altruistic nodes. However, at the low end of the graph (i.e., small limit), the gap between the
two classes of nodes shrinks significantly, as more bandwidth is diverted from the altruistic to
the ADSL nodes.

It might seem surprising at first glance that although the packet loss rate of ADSL nodes
decreases by barely 10% from 5,000 to 625, that leads to an increase of a little over 40% in the
packet loss rate of the altruistic nodes. However, recall that this network has 80% ADSL nodes
and 20% altruistic nodes. Therefore, the ADSL nodes outnumber the altruistic nodes 4:1, so
every byte uploaded to ADSL nodes on average costs the altruistic nodes four bytes.

Even as the packet loss rate of the altruistic nodes falls to values close to zero, the packet
loss rate of the ADSL nodes continues to increase with increasing values of theprivate bucket
limit. This is because a higher limit allows altruistic nodes to reserve bandwidth for future use,
so a larger limit will allow larger amounts to be reserved even if it is never redeemed. This leads
to under-utilization of total upload capacity in the network, and is the reason we introduced this
parameter to cap private bucket values.

6.15 Selective Connection

In Section 6.13.2 we showed that nodes that have a history of uploading data faster than the
stream rate will not be able to take advantage of their good reputation indefinitely, and will
begin to see higher packet loss rates immediately on reducing their upload rate. Thus, uploading
data rapidly for a little while and then cutting back would not be an effective strategy to game
the system.

In this section, we study another method that selfish nodes might attempt to use to gain
an unfair advantage while limiting their upload rates. Nodes may selectively connect to high-

72

Percentage of
ADSL-Game

Network Size
Packet Loss Rate (%)

Altruistic ADSL ADSL-Game
10 800 7.0 57.7 57.5
50 800 6.7 57.1 57.3
90 800 6.8 56.1 57.0
10 8,000 10.7 57.7 57.8
50 8,000 10.0 57.3 57.3
90 8,000 10.5 57.5 57.6

Table 6.3: A fraction of ADSL nodes, denoted by “ADSL-Game” used a strategy of connecting
only to altruistic nodes in an attempt to game the system. Regardless of whether a small number
of ADSL nodes (10%) or a vast majority (90%) of the ADSL nodes adopted this strategy, there
was neither an improvement in their own packet loss rates, nor an adverse effect on the altruistic
or normal ADSL nodes.

bandwidth nodes in an attempt to take advantage of their excess capacity, thus reducing their
packet loss rate compared to other ADSL nodes in a resource-constrained system. We study
resource-starved system in this section, because any gaming strategy would be redundant in a
resource-rich system in our model, because all nodes receive good performance while the system
is resource-rich.

In the resource-constrained system with 80% ADSL nodes, we modified 10% of the ADSL
nodes to game the system. They refuse to peer with all nodes except high-bandwidth (altruistic)
nodes. For brevity, we refer to these nodes that try to game the system as the ADSL-game nodes.

We observed that the strategy is completely ineffective; the performance of the ADSL-game
nodes is identical to that of the rest of the ADSL nodes. The ADSL-game nodes had a mean
packet loss rate of 57.5% and the regular ADSL nodes had a meanpacket loss rate of 57.7%.
Altruistic nodes, on the other hand, had a packet loss rate ofonly 7.04%.

In order to see if the strategy would be successful if large numbers of nodes adopt it, or
potentially harmful to altruistic nodes, we ran additionalexperiments with 50% and 90% of
ADSL nodes converted to ADSL-game nodes. Once again, we observed that the ADSL-game
nodes gain no benefit at all.

As before, we also repeated the experiment with the 8,000 node network. Once again, we
observed that the ADSL-game nodes failed to gain an advantage regardless of whether 10%,
50%, or 90% of the non-altruistic nodes adopted the strategy. The results of the experiments
with 10%, 50%, and 90% of ADSL nodes converted to ADSL-game nodes with both the 800
and 8,000 node networks are summarized in Table 6.3.

The fact that ADSL-game nodes fail to gain an advantage is notunexpected. In a resource-
constrained system, altruistic nodes have no unused uploadcapacity, so their shared buckets
tend to be empty. The ADSL-game nodes compete with all other nodes for the scarce tokens in
the shared bucket and receive no special benefit regardless of whether they are competing with
regular ADSL nodes or other ADSL-game nodes. Moreover, altruistic nodes connected to other
altruistic nodes will generally have a supply of tokens in their private buckets, thus allowing
them to continue receiving bandwidth.

Even in an extreme case where the ADSL-game nodes managed to completely surround an

73

altruistic node by preventing it from connecting to any other types of nodes, the ADSL-game
nodes would not gain an advantage, since the isolated altruistic node would have no data to offer
without other nodes to receive them from. Such an attack would constitute a denial-of-service
attack rather than a successful gaming of the system. Such actions do not benefit self-interested
rational nodes, and is thus outside the scope of the Token Stealing protocol, and is a subject for
future research. We discuss these aspects in further detailin Section 9.1.

6.16 Range of Upload Rates

In previous experiments, we used distinct classes of nodes with discrete values of upload rates
(i.e., ADSL and Altruistic nodes). Although that setup is very amenable to systematic study, it is
somewhat contrived; in the real world, upload rates are unlikely to fall neatly into a few distinct
classes.

In this experiment, we demonstrate that our system works as expected even when upload
rates are distributed across a range. Instead of being assigned to classes, nodes are randomly
assigned upload rates between the 64kbps (the value used by ADSL nodes) and 320kbps (the
value used by altruistic nodes). In order to allow control over the overall supply to demand ratio
of the network, we assigned values using the following distribution:

u(x) = a+ bxγ (6.2)

wherex is a random variable∈ (0, 1). Using a non-linear function enables us to vary the supply
to demand ratio of the system while maintaining fixed bounds on the maximum and minimum
values of upload rates. The mean value of this function is:

ū = a+
b

γ + 1
(6.3)

The values ofa = 64kbps andb = 256kbps, gives us the desired minimum and maximum
value of 64kbps and 320kbps, respectively.

We ran two experiments: one resource rich, with a supply to demand ratio of 1.25 (γ = 1.7,
ū = 250kbps), and one resource starved, with a supply to demand ratio of 0.75 (γ = 0.35,
ū = 150kbps). We ran each scenario once with the Token Stealing algorithm disable, and one
with the algorithm enabled. As before, we repeated each experiment with an 800 node network,
and an 8,000 node network.

Figure 6.24a shows the packet loss rates of the resource-rich and resource-constrained net-
works with 800 nodes, as a function of a upload rate. In the resource-rich system, all nodes saw
very low levels of packet loss. In the resource-constrainedsystem, however, all nodes suffer a
relatively high packet loss rate of 19.6% regardless of their upload rates. Figure 6.24c shows
the corresponding results for the network with 8,000 nodes.Once again, we saw very similar
results, with very low packet loss rates in the resource-rich network, and a higher uniform rate
of 21.5% in the resource-constrained case.

A node would have very little incentive to increase its upload rate. In fact, as we observed
before in Figure 6.13, there is a small inverse correlation between upload rate and performance,
i.e., nodes that upload less see somewhat better performance. As before, this is because nodes
that upload less data leave their upstream bandwidth free tomake packet requests more quickly.

74

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
ac

ke
t L

os
s

R
at

e
(%

)

Upload Rate (kbits/sec)

Ideal for Supply/Demand = 0.75
Supply/Demand = 0.75
Supply/Demand = 1.25

(a) Token Stealing Disabled (800 nodes)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
ac

ke
t L

os
s

R
at

e
(%

)

Upload Rate (kbits/sec)

Ideal for Supply/Demand = 0.75
Supply/Demand = 0.75
Supply/Demand = 1.25

(b) Token Stealing Enabled (800 nodes)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
ac

ke
t L

os
s

R
at

e
(%

)

Upload Rate (kbits/sec)

Ideal for Supply/Demand = 0.75
Supply/Demand = 0.75
Supply/Demand = 1.25

(c) Token Stealing Disabled (8,000 nodes)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
ac

ke
t L

os
s

R
at

e
(%

)

Upload Rate (kbits/sec)

Ideal for Supply/Demand = 0.75
Supply/Demand = 0.75
Supply/Demand = 1.25

(d) Token Stealing Enabled (8,000 nodes)

Figure 6.24: In this experiment, nodes picked upload rates over a distribution rather than using
distinct classes. Each graph shows the packet loss rate vs. upload rate for resource-rich net-
work (Supply/Demand = 1.25), a resource-constrained network (Supply/Demand = 0.75), and
the ideal curve for the resource-constrained case. Ideal packet loss rate for the resource-rich
network is zero for all values. Figure (a) shows the results for the 800 node network with the
Token Stealing algorithm disabled, while Figure (b) shows the graph with the algorithm enabled.
Figures (c) and (d) show the corresponding graphs for the 8,000 node network.

With the Token Stealing algorithm enabled, however, there is a strong positive correlation be-
tween upload rate and performance, as desired: nodes that upload more data see better perfor-
mance.

Figure 6.24b shows the packet loss rates for the resource-rich and resource-constrained net-
work with the Token Stealing algorithm enabled. As before, the packet loss rate for all nodes is
very close to zero in the resource-rich case. In the resource-constrained case, however, there is
a clear correlation between the packet loss rate observed and upload rates: the higher the upload
rate, the lower the packet loss rate. The mean system-wide packet loss rate was 20.2%. Fig-
ure 6.24d shows the corresponding results with the 8,000 node network. Once again we observe
very similar results, with packet loss rates near zero for the resource-rich network, and similar
correlation between upload rate and packet loss rate in the resource-constrained case, with a

75

mean of 21.6%.
The dotted line shows the ideal packet loss curve for the resource-constrained case (ideal is

of course zero for all nodes in the resource-rich case). Ideally, all packet losses would be borne
by nodes that upload less than the stream rate of 200 kbits/sec. Nodes that upload less than the
stream rate will suffer a higher packet loss rate, proportional to the deficit they create (i.e., the
difference between the stream rate and their upload rate). Although it is not perfectly ideal, the
observed curve does closely approximate the ideal curve. A node in this system would have a
strong incentive to upload more if they are able to in order toreduce their own packet loss rate.

6.17 Prototype Implementation on PlanetLab

We built a prototype implementation of our system in C++ in order to validate our simulation
results. The prototype consists of over 5,000 lines of code with a much of the application logic
derived from the simulator, with changes to interface with the operating system’s networking
stack.

In order to validate our simulator, we ran several experiments on the PlanetLab [18] testbed.
PlanetLab is a network research testbed with approximately900 physical machines located at
institutions (primarily research universities) around the world, and accessible to researchers from
participating institutions.

Although PlanetLab is an invaluable tool for networking research, it is unfortunately a victim
of its success, in some ways. PlanetLab hosts tend to be very heavily loaded, and hardware
or network problems are not always addressed promptly because they are remotely managed.
Therefore, at the time of writing, only 380 hosts were accessible. Moreover, the set of nodes
accessible often varied from one experiment to the next. As the testbed is simultaneously shared
by hundreds of researchers, and even hosts a few popular services like the CoDeeN [96] and
Coral [36] Content Distribution Networks, nodes tend to be under very heavy load. Typical load
averages tend to be higher than 10, with load averages over 50quite common. Most nodes were
also found to be actively swapping most of the time. Therefore, for a time-sensitive application
like live streaming, we consider the PlanetLab experimentsto be a stress-test rather than a typical
real-life deployment.

In this section, we present the results of our experiments onPlanetLab.

6.17.1 System with All Altruistic Nodes

In this experiment we used the same parameters as we did in Section 6.3, and attempted to
launch one Chainsaw node on each physical PlanetLab node.

The mean size of the network in this experiment was 350 with 3,431 nodes participating
over the course of the run. Figure 6.25 shows the distribution of packet loss rates and startup
times. We found that 3,209 (93%) of the nodes suffered no packet loss at all over the course of
the experiment. The system-wide mean packet loss rate was 1.62%.

76

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100
F

ra
ct

io
n

of
 N

od
es

Packet Loss Rate(%)

Figure 6.25: Cumulative distribution of packet loss rates on PlanetLab.

6.17.2 Resource-Constrained Systems

We then ran a series of experiments with different fractionsof ADSL nodes with the same
parameters as the experiments in Section 6.11. Most PlanetLab nodes actually have raw upload
capacities higher than we limited their upload rate to. Therefore they can be considered to be
Fake ADSL nodes. As before, we repeated the series of experiments with the Token Stealing
algorithm disabled.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

R
at

e
(%

)

Fraction of ADSL Nodes (%)

ADSL Nodes
Altruistic Nodes

(a) Token Stealing Disabled

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

P
ac

ke
t L

os
s

R
at

e
(%

)

Fraction of ADSL Nodes (%)

ADSL Nodes
Altruistic Nodes

(b) Token Stealing Enabled

Figure 6.26: Performance with varying fractions of ADSL nodes on PlanetLab with token steal-
ing enabled and disabled.

Figure 6.26a shows the relative packet loss rates of the ADSLand altruistic nodes with the
Token Stealing algorithm disabled. As with the simulation results, we find that the difference
in performance seen by the two classes of nodes is small. Moreover, we find that altruistic
nodes have slightly higher packet loss rates than the ADSL nodes when the system is resource-
constrained.

Figure 6.26b shows the relative packet loss rates of the ADSLand altruistic nodes with
the Token Stealing algorithm enabled. In this series of experiments, there is a clear difference
between the performance seen by the two classes of nodes. ADSL nodes have packet loss rates

77

more than twice as high as the altruistic nodes, 58% comparedto 26%. As before, both classes
of nodes have low packet loss rates while the system is resource-rich.

This series of experiments offers further evidence that theToken Stealing algorithm is capa-
ble of giving much better performance to nodes that contribute bandwidth than those that do not
in a resource-constrained system, while giving good performance to all nodes in a resource-rich
system, and corroborates our simulation results.

Summary

In this chapter, we presented simulation results that demonstrate that the Chainsaw streaming
protocol supports high bandwidth streaming with low packetloss rates, low delay and quick
startup times. We showed that the system scales well with size and stream rate, and is robust
to churn. We also demonstrated that the Token Stealing algorithm achieves our goal of giving
lower packet loss rates to nodes that contribute bandwidth in resource-rich systems, while taking
advantage of altruistic nodes to give low packet loss rates to all nodes when possible. We showed
that the algorithm is resistant to gaming, and responds quickly to changes in both an individual
node’s upload rates, and system-wide resource availability. Finally, we validated our simulation
results with by repeating some of the experiments with a prototype implementation of PlanetLab,
and demonstrating similar results.

78

Chapter 7

Related Work

Peer-to-peer systems have been extensively studied in recent years. In this chapter, we present
related work in file sharing, incentives and streaming to place our work in context. We begin with
a survey of key peer-to-peer systems in general, and then outline other approaches to streaming
protocols as well as incentive mechanisms.

In Section 7.1 we give a broad overview of research in peer-to-peer networking. Section 7.2
we describe some of the key file-transfer protocols that serve as background for our work. In
Section 7.3 we describe work on peer-to-peer streaming and overlay multicast and contrast it
with our own work. Finally, in Section 7.4 we present relatedwork on incentive mechanisms for
file sharing as well as streaming.

7.1 Peer-to-Peer Systems

The peer-to-peer revolution was arguably started by the Napster [31] file sharing network. Nap-
ster allowed users to directly share files off of their computer with other users on the Internet and
was an alternative to more traditional means of sharing content like FTP and HTTP servers. The
peer-to-peer approach dramatically reduces the load on thecentral server compared to a tradi-
tional server-client approaches because the server only stores metadata: storage and bandwidth
costs of the files themselves are borne by the end users.

Napster’s network was highly centralized: users sent a listof files they wished to share to a
central server which maintained an index of all shared files and the users who were sharing them.
Other users could then search the database and contact the original user and download the file
directly from them. However, this approach still required significant resources from the central
server because it had to process every query by every participant on the system. Moreover, this
centralization left Napster legally vulnerable to illegalactions of its users.

Gossip protocols [28, 29] were modeled after the spread of disease among a population.
Nodes connected in a random graph sent a message to either allor a random subset of their
neighbors. The neighbors in turn forwarded the message to their neighbors excluding the one
they received the message from. This protocol ensured very reliable delivery of the message to
every node without the need for elaborate routing algorithms.

The Gnutella [40] used a similar principle to build a system more decentralized than Napster.
In Gnutella, peers merely used well-known server to locate other peers and join the system. Hav-

79

ing located a small number of participants, peers performeda random walk from those neighbors
in order to locate a random set of neighbors to connect to, resulting in an unstructured random
graph. Instead of being directed at a central server, queries were directed at individual nodes
by flooding. Gnutella was tremendously popular with over a million unique participants [84],
thus demonstrating the potential of peer-to-peer networks. However, Gnutella also suffered from
scalability concerns because of its flooding approach.

Several researchers focused on Distributed Hash Tables [62, 80, 87, 103] to solve this prob-
lem. Distributed Hash Tables are systems that map keys to values in the same way that regular
hash tables do. However, instead of pointing to values in a memory location, keys in a Dis-
tributed Hash tables help locate the node in the network thatactually stores the corresponding
value. Thesestructurednetworks made searches more efficient, but were significantly more
complex to build, and made join and leave operations more expensive for the network.

Other researchers focused on making unstructured networksmore scalable. Lv et al. [58]
proposed replacing flooding with random walks to make betteruse of network resources. This
system was further improved upon by Adamic et al. [1] by directing walks preferentially at high-
degree nodes, and by Chawathe et al. [14] by explicitly taking nodes’ resource constraints into
account. Kazaa [68] is a commercial network that improves scalability by directing searches at
well-provisionedsuper-nodes.

7.2 File Transfer Protocols

With high-bandwidth Internet connections becoming ubiquitous, a whole range of new applica-
tions have become possible including online distribution of large software packages (ISO images
of Linux distributions, demo and free games, etc.), movies,and TV shows.

The data dissemination problem can broadly be classified into file-transferandstreaming
protocols. The objective of file-transfer protocols is to distribute a large, finite-length file (or
collection of files) from the distributor to a large number ofrecipients. In general, different
participants complete the download at different times, andthe file is only useful once a complete
copy is obtained. Streaming networks, on the other hand, aimto deliver a continuous stream of
data to clients. Typical examples of streaming applications are online radio and TV stations.

Streaming systems share many of the same challenges as file-transfer protocols but impose
additional bandwidth and delay constraints. Therefore, webegin by studying file transfer proto-
cols before addressing our primary goal of building a scalable and robust peer-to-peer streaming
system.

BitTorrent [19] is a peer-to-peer file sharing network that has emerged as one of the most
popular peer-to-peer networks today. Some estimates suggest that BitTorrent traffic accounts for
35% of all data on the Internet today [93].

The core BitTorrent protocol is very simple. The file being shared is broken up into a number
of pieceswhich are assigned sequence numbers. Nodes form an unstructured random graph and
exchange piece availability information with their neighbors. Nodes then attempt to assemble
a complete copy of the file by requesting missing pieces from their neighbors. Experience
with BitTorrent suggests that it often takes several minutes for nodes to achieve full download
speed [99]. Although this delay is not a problem when downloading a large file, a few minutes
delay would be completely unacceptable to users waiting to start viewing a stream.

80

In 2008, Mol et al. [66] proposed and implemented an extension of the BitTorrent protocol
that is more suitable for on-demand streaming, along with a new incentive mechanism. We
discuss the streaming protocol in Section 7.3.3 and the incentive mechanism in Section 7.4.2.

7.3 Streaming and Multicast

In 1988, Deering proposed the Distance-Vector IP MulticastRouting Protocol (DVMRP) [22],
an extension to the IP protocol to support multicast, i.e., one-to-many transmission. IP multicast
naturally lends itself to applications like streaming [27,57, 63, 81] and large-scale file distri-
bution [10]. In DVMRP, data is delivered from the source to the recipients by constructing a
tree consisting of the union of unicast paths from each recipient to the sender. This tree-based
protocol prevents routing loops and ensures that each packet traverses the fewest physical links
necessary to transmit to all recipients.

IP has gained wide acceptance in the research community and has been widely studied;
protocols have been designed to build reliable services on top of the best-effort IP Multicast
layer [56, 76, 100]. However, it requires routers to maintain membership information and vio-
lates their stateless design, increasing complexity in thenetwork [83] and leading to scalability
concerns. This, combined with the need for widespread infrastructure-level changes, has pre-
vented the widespread deployment of IP multicast.

In 2000, Chu et al. [16] suggested that many of the deployability and scalability concerns
that have prevented wide-scale deployment of inter-domainIP Multicast may be mitigated by
moving to an application-layer multicast. In 2004, Sripanidkulchai et al. [86] did a measurement
study that found that the network does indeed have enough resources to support large scale
overlay multicast but did not propose specific protocols.

7.3.1 Tree-Based Approaches

Most of the early streaming approaches used atree-basedapproach similar to the multicast tree
constructed by IP Multicast. These are referred to asoverlay trees, because they are a logical
structure constructed on top of the underlying IP network.

In their landmark paper, Chu et al. proposed a system called End System Multicast (ESM),
based on their algorithm called Narada, an adaptation of theDVMRP at the application layer.
Through experiments and analysis, they show that it is possible to support multicast at the ap-
plication layer. They went on to build a practical application that has enjoyed a fair degree
of success and has been used to broadcast video from several events like academic confer-
ences [17, 79]. One of the drawbacks of ESM was that it required nodes to maintain state about
every other node in the system, limiting its use to networks of tens to a few hundreds of nodes.

Other researchers improved this technique by refining the tree construction techniques using
DHTs [13, 35, 42, 55, 71, 104]. CoopNet [71] offers another interesting take on multicast where
multicast trees are used to augment the traditional client-server model. When overloaded, the
server redirects new clients to other clients it has served recently, in a model the authors call
Cooperative Networking.

There are drawbacks inherent to networks based on simple overlay tree. Firstly, the network
is fragile, because there is only one path from any node to thesource (the root of the tree).

81

Therefore, whenever a node leaves the system, all of its descendants are affected. If the node
happens to be near the root, this could include a large fraction of the network. The tree must be
repaired quickly to avoid wide-scale disruption. Althoughthis is also true of IP multicast, nodes
in an IP multicast tree are core Internet routers which tend to be more stable and reliable than
end hosts.

Secondly, load is distributed unfairly. Interior nodes areusually responsible for supporting
multiple children, and thus need to contribute two or more times the bandwidth than they receive
from their parent. Leaf nodes, on the other hands, contribute no bandwidth at all. In a balanced
binary tree, for example, half the nodes are leaf nodes, placing the burden of supporting the
entire network on only half the nodes.

Probabilistic Reliable Multicast [6] is an innovative system that addresses some of the reli-
ability problems of tree-based multicast. In addition to the spanning tree, nodes forward data
to a randomly chosen set of peers with small probability. Nodes that receive these broadcasts
propagate them both upwards toward to root, and to their children. The authors observe that
the larger the size of a disconnected subtree, the greater the probability of some member of that
subtree receiving one of these random broadcasts. Thus witha small overhead (in terms of du-
plicate packets) it is possible to greatly increase the reliability of tree-based protocols. Although
this solves the problem of interior nodes disrupting large numbers of descendants, it does not
address the unfairness of the simple tree-based model.

7.3.2 Multi-Tree Protocols

Some suggested that many of the drawbacks of tree-based approaches may be mitigated by
buildingmultipletrees. Splitstream [11] is one such system. In Splitstream,the stream is divided
into severalstripes, and one overlay tree is built for each stripe. Splitstream uses the Scribe [12]
overlay multicast system, which itself is based on the Pastry [82] Distributed Hash Table (DHT).

Splitstream mitigates many of the drawbacks of simple tree-based approaches. Nodes join
as an interior node in only one of the trees, while joining as aleaf node in the rest. This ensures
that all nodes in the system have similar levels of contribution. Although this protocol cannot
prevent packet loss from propagating down an individual tree, stripes may be redundant, allow-
ing nodes to recover from packets lost in individual trees. Splitstream, however, assumes that
all nodes in the network contribute upload bandwidth at the source rate, and does not tackle the
issue of allocating bandwidth among heterogeneous peers. However, further enhancements to
Splitstream might be able to address this limitation through more complex tree structures.

Venkataraman et al. propose Chunkyspread [94, 95], an alternative multi-tree protocol. Un-
like Splitstream, Chunkyspread explicitly takes heterogeneous bandwidth constraints into con-
sideration by assigning nodes with more resources as interior nodes in more trees. This trades
off some of the fairness aspects of Splitstream for shorter trees and improved performance. Al-
though their system offers good performance when nodes contribute bandwidth, it offers no
incentive for selfish nodes to do so.

7.3.3 Mesh-Based Protocols

A different approach to multi-tree protocols is to do away with trees entirely, and instead con-
struct amesh. This is the approach used in our protocol. The key benefit of amesh-based

82

approach over tree-based approaches is that there are multiple paths from the source to each
node. Therefore, the loss of a single node has little impact on the integrity of the network.
Magharei et al. published a good survey [59] of relevant workas well as detailed comparisons
between multi-tree and mesh based approaches.

Gossip or epidemic models are an example of a simple mesh-based multicast system [28, 29].
Initially designed to model the spread of infections in an epidemic, the same principle can be
used to disseminate information among a group of nodes. In a gossip network, nodes forward all
the data they receive to some or all of their neighbors, thus flooding the network with updates.
Nodes keep track of all data they have seen recently to avoid sending the same update multiple
times and causing routing loops. Nodes receive all updates with very high probability, thus
making the system very reliable, but they will mostly likelyreceive several copies of each packet.
This wastes a lot of bandwidth, making the system unsuitablefor high bandwidth applications.

Bullet [51] was one of the first mesh-based protocols designed for high-bandwidth stream-
ing. Bullet used an overlay tree as the primary path for data,but augmented that with a mesh.
Nodes receive data from their parents, but that data may be incomplete due to bandwidth or
other constraints. The authors proposed an algorithm called RanSub [50] to identify nodes with
a largely disjoint set of packets. Nodes use the RanSub algorithm to identify and receive up-
dates from nodes with a disjoint subset of data in order to fillin missing data. Bullet avoided
per-packet routing decisions through the RanSub algorithm. However, this did result in a large
amount of overhead because the RanSub algorithm is probabilistic, and nodes inevitably re-
ceived duplicate copies of data. In the Bullet protocol, there is unlikely to be a bidirectional flow
of data between any given pair of interacting nodes, thus making it difficult to apply pairwise
incentives.

Bullet is an example of astructuredmesh because the structure is dictated by an algorithm
and data routing is dependent on the structure of the network. An alternative is anunstructured
mesh where nodes form a random graph. This approach is commonly used by file sharing pro-
tocols, including Gnutella, Kazaa, BitTorrent and others,but early streaming protocols focused
on tree-based and other structured networks in order to simplify routing decisions and minimize
delay. However, we showed [72] that with a receiver-driven architecture, an unstructured mesh
network can be used to support high-bandwidth streaming with both low packet loss rates and
low delay. We expanded on that technique, as detailed in Chapter 4.

Biskupsi et al. proposed MeshCast [8], an extension of our Chainsaw protocol. They showed
that they were able to achieve lower delay and support higherstream rates by taking node band-
width into consideration while constructing the network topology. The also showed that their
changes did not affect the resilience or other desirable characteristics of the Chainsaw protocol.
In fact, their extension does not conflict with the incentivemechanism we present in Chapter 5,
thus further demonstrating the benefit of decoupling data routing from network structure.

Coolstreaming/DONet [102] is another streaming protocol based on an unstructured mesh.
Although they are also based on a pull-based system like Chainsaw, they have different goals.
Their protocol aims to minimize overhead, at the cost of startup time, and control granularity.
Although their approach does support high-bandwidth streaming, is not amenable to pairwise
incentives, which was one of our key goals in developing the Chainsaw protocol.

In 2008 Mol et al. proposed an extension of the BitTorrent protocol [66] that targets on-
demand streaming. On-demand streaming is a different problem that the live streaming problem

83

we address, in that different viewers may start watching a given program at different times.
On-demand streaming poses different challenges from live streaming because different viewers
will not be synchronized in time, while the entire program will be available ahead of time. In
their system, peers divide the file into high, medium, and lowpriority packets depending on how
soon the packets are needed. When requesting data from theirneighbors, peers pick packets to
request with different probability depending on the class the packet falls in. This is a somewhat
different take on the sliding window protocol used in Chainsaw. Since it remains a receiver-
driven architecture, we could apply this buffer managementstrategy to Chainsaw and possibly
improve performance further. We discuss this and other possible enhancements in Chapter 9.

7.4 Incentive Mechanisms and Resource Allocation

Incentive mechanisms are mechanisms designed to discourage nodes fromfree-riding, i.e., tak-
ing advantage of the system without contributing resourcesin return. In this section, we present
a survey of other incentive mechanisms and contrast them with the algorithm we presented in
Chapter 5.

Incentive models can broadly be classified into cooperativeand non-cooperative. The coop-
erative model relies on participants to follow the protocolfaithfully, even when it is detrimen-
tal to their self-interest to do so. A selfish node may be able to gain an unfair advantage by
misreporting information (upload rates, for instance) or by circumventing the protocol. A non-
cooperative model offers a stronger guarantee either by avoiding the dependence on self-reported
information, or by using various methods (cryptography, for example) to make it impossible to
falsify reporting.

Incentive models can also be orthogonally classified into reputation-based systems and pairwise-
systems. In a reputation system, nodes directly or indirectly receive information about their
neighbors from other nodes in the system, and adjust their behavior accordingly. In a pairwise
model, however, nodes rely only on direct observation, which enforces a stronger constraint
while using less information. This is the approach we take inour Token Stealing algorithm.

7.4.1 File Sharing Protocols

Incentive mechanisms for file sharing protocols do not necessarily apply directly to streaming,
but are an interesting point of comparison.

In addition to the basic file-transfer protocol, BitTorrentalso specifies an incentive mecha-
nism. BitTorrent clients rank their neighbors by relative upload rates andchoke, i.e., stop sending
data to all but the top few clients (typically four or so). Clients also randomly unchoke other
neighbors for brief periods to probe for other neighbors whomay by able to upload even faster
given a chance. As a result, nodes that contribute more upload bandwidth tend to receive faster
downloads.

The BitTorrent algorithm has been studied widely, and many studies have found [20, 52, 78]
that the incentive model works quite well with the unmodifiedclient, where the only option
available to strategic clients are tweaking parameters like upload bandwidth and number of
neighbors. However, other researchers have found [30, 47, 75, 89] that modified clients can adopt
strategic behavior (without violation of the core protocol) to defeat the incentive mechanism and

84

gain an unfair advantage. Piatek et al. argued [75] that the performance observed in BitTorrent is
not the result of rational self-interest, but due to altruism and the fact that a majority of users are
not knowledgeable enough to alter their BitTorrent clients. As a social experiment, they released
BitTyrant, a strategic BitTorrent client. Their client results in significantly higher download rates
than other peers with similar upload rates when used in a network with unmodified BitTorrent
clients, but greatly degraded overall performance if largenumbers of peers use their client.

7.4.2 Streaming Protocols

Sung et al. proposed a solution to the bandwidth allocation problem with theirContribution-
awareprotocol [88]. They used the Taxation system [15] proposed by Chu et al. to classify
nodes in a forest of End System Multicast (ESM) [16] trees. Depending on their bandwidth
contribution levels, nodes are classified asentitledin zero or more trees, while they are classified
as excessnodes in the remaining trees. Entitled nodes may displace excess nodes to ensure
that their demand for bandwidth is satisfied first. Moreover,entitled nodes may displace other
entitled nodes with lower contribution levels. They show that their protocol succeeds in ensuring
a much-improved level of performance for nodes with high contribution levels.

Their protocol has the same goal as ours. However, their system assumes that nodes are non-
strategic and compute and honestly report their status as entitled or excess when participating in
a tree, i.e., it is acooperativesystem.

In their paperConsidering Altruism in Peer-to-Peer Internet Streaming[45] Chu and Zhang
proposed another interesting take on cooperative resourceallocation for overlay multicast. Their
proposal leverages the fact that some fraction of nodes arealtruistic, i.e., they willingly con-
tribute resources to the system. They use Multiple-Description Codes (MDC) to allow nodes
with limited upload bandwidth to take advantage of the excess bandwidth provided by altruistic
nodes.

BAR Gossip [53] is a gossip-based protocol that ensures pairwise fairness among partici-
pants in the network, and is resilient to rational and Byzantine attacks. However, their model is
aimed at ensuring tit-for-tat fairness, and does not easilyaccommodate nodes with low upload
capacities, even when there are enough nodes with high-upload rates to ensure that the system
is resource-rich.

Ngan et al. suggested a reputation-based approach [69] thatinvolved periodically rebuilding
trees, and eliminating nodes that do not contribute bandwidth. It might be possible to modify
their approach to accommodate ADSL nodes in resource-rich systems as we do, but the periodic
rebuilding of trees required by their approach means that their system cannot be as responsive
as ours without very frequent rebuilding of trees, which would result in a considerable control
traffic overhead.

Give-to-get [66] is the incentive mechanism proposed by Molet al. for their on-demand
streaming adaptation of BitTorrent. This is a simple reputation system that ranks neighbors
by how much data they forward to other nodes. They experimentally demonstrate that this
protocol works well with up to 20% free-riders in the system.However, we believe that this
scheme is weaker than the Token Stealing algorithm because nodes rely on information reported
by neighbor of their neighbors (i.e., nodes that are exactlytwo hops away), thus increasing its
vulnerability to misreporting and collusion.

85

Chapter 8

Conclusions

Peer-to-peer networks are an effective mechanism for large-scale distribution of content. This
technique allows recipients to use their upload capacity tosupport other nodes, thus relieving the
burden from the content provider. If every node in the systemcontributes as much bandwidth to
the system as it consumes, the system can support a large number of nodes with a constant load
on the original distributor (seed). Our thesis is that a robust incentive mechanism is necessary
to encourage nodes to contribute resources to the system, and a receiver-driven architecture
with a pairwise incentive mechanism allows for great flexibility, simplicity, robustness, and
performance.

We presented SWIFT, an incentive mechanism for file sharing networks, and showed that
nodes that contribute to the system receive significantly better performance than those that do
not. This system promotes system scalability by preventingnodes from consuming more re-
sources than they contribute to the system. This system serves as a foundation for our work on
peer-to-peer streaming.

We presented Chainsaw, a peer-to-peer live streaming protocol based on an unstructured
mesh network. Our protocol is more amenable to pairwise incentives than traditional tree-based
mechanisms. We experimentally showed that this system supports high-bandwidth data dis-
semination with low packet-loss and low delay. In a typical network setup, we observed the
system-wide mean packet loss to be 0.0005%, or about 1 in 200,000 packets with a mean delay
of 1.8 seconds. We showed that the system scaled well with increasing network size, with packet
loss rate remaining low even when we increased the network size by two orders of magnitude to
over 100,000 nodes. We also showed that our system was highlyresistant to churn. Even when a
vast majority of nodes persisted in the network for extremely short periods of time, with a mean
lifetime of only 25 seconds, packet loss rates stayed low, at0.008% or 1 in 150,000 packets.

We then presented the Token Stealing algorithm, an incentive mechanism built on top of the
Chainsaw streaming protocol. Our algorithm is simple, runslocally on each node and relies only
on direct observation of a neighbor’s upload rates. This makes the algorithm easy to implement,
immune to misreported third-hand information, and requires no additional network resources.

In a resource-constrained system, we showed that the Token Stealing algorithm preferentially
directs bandwidth towards altruistic nodes that contribute more upload bandwidth to the system
than they consume. This preferential allocation gives the altruistic nodes significantly better
performance than the ADSL nodes that contribute less bandwidth. In a simulation with 80%
ADSL nodes and 20% altruistic nodes with a supply-to-demandratio of 0.55, the ADSL nodes

86

had a packet loss rate of eight times higher than the altruistic nodes. This property gives nodes
a concrete incentive to contribute more bandwidth to the system; nodes that artificially capped
their upload bandwidth and masqueraded as ADSL nodes would likely remove the cap in order to
reduce their packet loss rate. This action benefits the system as a whole in addition to benefiting
the node itself.

We showed that an ADSL node that increased its upload rate to the level of the altruistic
nodes started receiving reduced packet loss rates quickly,and had performance indistinguish-
able from other altruistic nodes after 30 seconds. Conversely, a formerly altruistic node that
reduced its packet loss rate saw increased packet loss ratesthat converged to the same level as
other ADSL nodes after 30 seconds. This implies that nodes cannot gain an unfair advantage
by uploading for a while to gain a good reputation, and then reducing their upload rate. We
also showed that nodes could not game the system by connecting selectively to high-bandwidth
nodes.

We presented results from a prototype implementation with experiments conducted on the
PlanetLab networking testbed. The systems in these experiments showed similar behavior to
that of our simulation results, thus reinforcing our results.

Finally, we discussed various future research directions,including possible performance en-
hancements inspired by other research in the field, and ways to thwart possible attacks by ra-
tional, self-interested peers, as well as malicious peers.We also discussed the feasibility of
unifying the file sharing, on-demand, and live streaming models to allow users to seamlessly
switch between the different modes on a given stream, providing great flexibility, and enabling
novel media experiences.

87

Chapter 9

Limitations and Future Work

In this chapter we discuss potential future directions. In Section 9.1, we discuss how selfish
peers may attempt to defeat the Token Stealing incentive mechanism and gain an unfair advan-
tage. In Section 9.2 we discuss ways in which malicious attackers may try to harm the system
without regard to their own performance. In Section 9.3 we consider ideas from other related
research that may be used to improve the performance of our system further. In Section 9.4
we discuss how micropayments might allow nodes with limitedupload capacity to receive good
performance by making small payments in exchange for data. Finally, in Section 9.5 we dis-
cuss how the Chainsaw and Token Stealing protocols may be extended to unify file sharing,
on-demand streaming and live streaming.

9.1 Network and OS Level Gaming Attacks

The Token Stealing algorithm does not depend on informationreported by other nodes, instead
relying only on direct observation, thus making it immune toattacks that involve misreporting
information. In Sections 6.13 and 6.15 we studied ways in which participants may attempt to
game the system within the Chainsaw and Token Stealing frameworks by tweaking upload rates
or connection parameters. We showed that it was very hard forselfish nodes to cheat the system
by tweaking application-level parameters.

However, further research is needed to determine if lower level attacks may prove success-
ful. Although an ADSL node cannot achieve an improvement in performance by selectively
connecting to altruistic nodes in a resource-constrained system, a low-level attack might render
this strategy more fruitful. For example, if the attacker were able to prevent other nodes from
connecting to an altruistic node, it will result in a local surplus of upload capacity which the at-
tacker could then exploit. However, denial of service attacks often require considerable amounts
of bandwidth or other resources in order to overwhelm their targets. Further investigation is
needed to determine if such an attack could be carried out with less resources than it would take
to simply upload data to that peer in the first place.

Furthermore, and attack against an altruistic node that rendered it unable to communicate
with other neighbors competing with the attacker for uploadbandwidth will require a fine bal-
ance between eliminating the competitors for bandwidth andisolating the targeted altruistic
node completely. If the attacker disconnected the altruistic node from every other neighbor, the

88

altruistic node would have no source of data to send to the attacker, rendering its spare upload
capacity useless.

9.2 Malicious Attacks

In this dissertation, we have only considered the case of rational self-interested peers, i.e., peers
who are primarily interested in receiving content from the network. Malicious peers, on the
other hand, are peers who are not interested in receiving content but rather in disrupting the
network and preventing other peers from receiving content.These are called Denial of Service
(DoS) attacks. An attacker with significant resources couldlikely overwhelm an individual par-
ticipant’s Internet connection with a targeted attack, butthis is not a vulnerability of our system
per se. We are primarily interested in attacks which disrupta large fraction of the network, or
prevent large numbers of new participants from joining.

DoS attacks could be carried out against the membership server, seed, or against normal
peers. We consider each of these in turn.

9.2.1 Attacks Against the Membership Server

In our current implementation, the membership server is a single point of failure. Without the
membership server, nodes are unable to join the system or findnew neighbors when old ones
leave. However, as mentioned in Section 4.2.2, the membership server is not an essential part
of our system, and the drawbacks with our current implementation could easily be mitigated.
We could easily incorporate either multiple redundant membership servers or eliminate them
entirely by using random walks for peer discovery, as is donewith Gnutella [40].

9.2.2 Attacks Against the Seed

In our current implementation, we have all new packets generated by a single seed node. Dis-
ruption of this node will prevent any node in the system from receiving data. Such an attack
would be analogous an attack against the server in a traditional client-server system. However,
we believe attacks against the seed can be mitigated in several ways.

Firstly, our system does not require just a single seed node.Data can be injected simultane-
ously by multiple seeds so long as all packets with a given sequence number are identical, and
packets that comprise the stream are numbered sequentially. The stream could be communicated
to multiple distributed seeds via a private network (which can itself be a separate Chainsaw net-
work), and each seed could inject some or all of the packets into the network. Having multiple
redundant seeds will make it harder for an attacker to disrupt the seed, and also safeguard against
network or hardware failures.

Secondly, it is difficult for an attacker to even determine the identity of the seed. From the
point of view of its peers, the seed behaves exactly the same as any other node. It is difficult to
determine whether data is being generated by a node or if it issimply being forwarded. Even a
map of the complete network will not reveal the seed unless the attacker is also able to trace the
complete path of a data packet to its source, which is a formidable challenge.

89

Finally, since TCP connections are bidirectional, the seedcan be protected behind a firewall
and make outgoing connections to other peers, while refusing all incoming connections. This
arrangement can guard the seed against many network and transport-layer attacks

9.2.3 Attacks Against Other Peers

It is difficult for attacks against a small number of non-seedpeers to cause wide-scale disruption
of the network, because unlike tree-based systems, there are many redundant paths from the seed
to each node. The loss of any given peer has very little impacton the network at large, since a
large fraction of edges must be disconnected to partition a well-connected random graph [43].

Section 6.7 have shown that the system is robust to high levels of churn. Therefore, the
disconnection of a small number of nodes will not have an adverse effect on the network as a
whole, and will quickly recover from minor local disruptions.

9.3 Performance Improvements

While we have demonstrated that the Chainsaw streaming protocol and Token Stealing incentive
mechanism offer excellent performance over a wide range of parameters, there remains room for
improvement

9.3.1 Network Topology

One of the key properties of our system is that the network topology, packet routing decisions,
and the incentive mechanism are decoupled from each other. Therefore, we may be able to
improve the performance or robustness of our system furtherby incorporating techniques from
other related research. For example, the buffer and requestmanagement system proposed by
Mol at al. [66] might help reduce the delay and drive packet loss rates further down by giving
higher priority to packets that are needed sooner (i.e., packets of lower sequence number).

In resource-constrained systems, we might be able to reducethe packet loss rates of altruistic
nodes closer to zero, and that of the ADSL nodes closer to the theoretical ideal by taking resource
constraints and geographical factors into consideration while building the network [1, 8, 14, 88].

9.3.2 Initial Packet Loss

In Section 6.11.3 we showed that when nodes join a resource-constrained system it takes a few
tens of seconds for them to ramp up their bandwidth and earn credit by uploading data to their
neighbors. A major constraint is the fact that even if it is willing to do so, a node may not have
data to upload to its neighbors at first.

We might be able to shorten the ramp-up period by allowing newly connected nodes to
demonstrate altruistic intent by uploading an equivalent number of data in null or random bytes.
This would only be permitted for a few seconds after a connection is established in order to
minimize the amount of useless traffic generated.

90

9.3.3 Reducing Overhead

In the Chainsaw protocol, nodes must notify their neighborsof available packets so that they
may request them. In our implementation this is done naivelyby sending notification messages
on receiving a new packet. Although we have shown that this does not lead to an excessive level
of overhead—on the order of 10% in most cases—the overhead bandwidth is problematic for
some setups, such as with very small packets.

We might be able to improve the range of parameters over whichthe packet loss rates remain
low by sending notifications more efficiently. For instance,notification messages may by sent in
batches, rather than as individual messages in order to reduce the overhead generated per packet
notification. Furthermore, since the list of packets will often be a contiguous run of sequence
numbers, further savings may be achieved by transmitting differences rather than full sequence
numbers, and other data compression techniques. Such improvements will require a careful
balance between the overhead savings and the additional delay caused by delaying notification
messages in order to send batch updates.

9.4 Micropayments as an Alternative to Uploading

We have shown that our incentive mechanism is effective at ensuring that nodes that upload data
at less than the stream rate receive lower performance in return when the system is resource-
constrained. This means that in effect, participants may often find themselves constrained by
their uploadcapacity rather than download bandwidth. For example, a node with a 512 kbps
up/6 Mbps down connection may be unable to join a 2Mbps streamand be forced to settle for a
lower quality, say, 320 kbps stream.

Users who are constrained in this way by the physical limitations of their connections might
be willing to pay to receive better performance. Our Token Stealing algorithm is a pairwise
mechanism, which is amenable to incorporating a micropayment mechanism, as neighbors may
conduct currency transactions with each other in addition to the normal data traffic. In addition
to obtaining private bucket credits the usual way by uploading data, a node can purchase credits
by sending a cryptographic token as a proof of payment. MuCash [67], a company founded in
2010 by the author of this dissertation is building a micropayment platform that would be well
suited to this application.

On receiving proof of payment, the neighbor would transfer credits into the node’s private
bucket just as if it had uploaded a packet of data to it. This would allow nodes with surplus
upload capacity to profit from it by offering data to other nodes that are unable to upload data at
the stream rate and would ordinarily suffer from high packetloss rates. The pairwise nature of
the system makes it easy for individual nodes to set their ownprices and policy.

9.5 Transition Between File Sharing and Streaming

Our Chainsaw protocol is receiver-driven, i.e., the receiver decides which packets to receive.
Similar protocols have been used for both file sharing [19, 89] and on-demand streaming [66];
those systems differ primarily in the buffer-management algorithms used internally by the nodes.
Therefore, it might be possible to unify all three applications.

91

Consider a user who joins a broadcast of a sporting event after the program has already
begun. The user could choose to begin receiving the very latest data, thus viewing the live
coverage but missing out on the previous part of the game. Alternatively, the user may choose
to watch from the beginning, as in on-demand media. If desired, the user could then jump
forward periodically, catching the highlights of the earlier coverage and eventually joining the
live stream. Finally, users with insufficient bandwidth to watch the stream live without packet
loss (i.e., ADSL nodes) could have the option of either watching the coverage at lower quality or
switching todownload mode, and downloading the high-quality media at slower than real-time
speed for later viewing. In fact, the application could evenallow the user the view a low-quality
version live, but fill in the missing packets later to create ahigh quality archive.

Two key challenges need to be addressed to enable this level of flexibility. Firstly, nodes
in the Chainsaw streaming protocol rely on the fact that all neighbors are downloading packets
within the same window. One possible solution would be to modify the network construction
protocol to enable nodes to advertise the range of packets they are interested in, and peer with
the appropriate set of neighbors interested in the same range. Secondly, as we have argued
in Section 5.2.3, different incentive mechanisms are needed for live streaming and file sharing
applications. Further research is needed to reconcile these differences.

92

Bibliography

[1] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A. Huberman.
Search in power-law networks.Phys. Rev. E, 64(4):046135, Sep 2001.

[2] E. Adar and B.A. Huberman. Free Riding on Gnutella.First Monday, 5(10), Oct 2000.

[3] E. Altman, K. Avrachenkov, and B. Prabhu. Fairness in mimd congestion control algo-
rithms. InProcceedings of the IEEE INFOCOM 2005, 2005.

[4] AT&T. At&t expands new-generation ip/mpls backbone network.
http://www.att.com/gen/press-room?pid=4800&cdvn=news&newsarticleid=24888.

[5] R. Axelrod. The Evolution of Cooperation. Basic Books, 1984.

[6] Suman Banerjee, Seungjoon Lee, Bobby Bhattacharjee, and Aravind Srinivasan. Resilient
multicast using overlays. InSIGMETRICS ’03: Proceedings of the 2003 ACM SIGMET-
RICS international conference on Measurement and modelingof computer systems, pages
102–113, New York, NY, USA, 2003. ACM.

[7] T. C. Bergstrom. ’A fresh look at the rotten kid theorem and other household mysteries’.
Journal of Political Economy, 1989.

[8] Bartosz Biskupski, Raymond Cunningham, Jim Dowling, and René Meier. High-
bandwidth mesh-based overlay multicast in heterogeneous environments. InAAA-IDEA
’06: Proceedings of the 2nd international workshop on Advanced architectures and algo-
rithms for internet delivery and applications, page 4, New York, NY, USA, 2006. ACM.

[9] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A digital
fountain approach to reliable distribution of bulk data. InSIGCOMM ’98: Proceedings
of the ACM SIGCOMM ’98 conference on Applications, technologies, architectures, and
protocols for computer communication, pages 56–67, New York, NY, USA, 1998. ACM.

[10] John W. Byers, Michael Luby, Michael Mitzenmacher, andAshutosh Rege. A digital
fountain approach to reliable distribution of bulk data. InSIGCOMM, pages 56–67, 1998.

[11] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Splitstream:
High-Bandwidth Multicast in Cooperative Environments. InProceedings of the 2003
Symposium on Operating System Principles, 2003.

93

[12] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas
in communications (JSAC), 20(8):1489–1499, 2002.

[13] Yatin Chawathe. Scattercast: an adaptable broadcast distribution framework.Multimedia
Systems, 9(1):104–118, July 2003.

[14] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Mak-
ing gnutella-like p2p systems scalable. InSIGCOMM ’03: Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer com-
munications, pages 407–418, New York, NY, USA, 2003. ACM.

[15] Y. Chu, J. Chuang, and H. Zhang. A case for taxation in peer-to-peer streaming broadcast.
In Proceedings of the ACM SIGCOMM workshop on Practice and theory of incentives in
networked systems, 2004.

[16] Y. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. InMeasurement and
Modeling of Computer Systems, 2000.

[17] Yang Chu, Sanjay Rao, Srinivasan Seshan, and Hui Zhang.Enabling conferencing ap-
plications on the internet using an overlay muilticast architecture. SIGCOMM Comput.
Commun. Rev., 31(4):55–67, 2001.

[18] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.Wawrzoniak, and M. Bow-
man. Planetlab: an overlay testbed for broad-coverage services. SIGCOMM Computer
Communication Review, 2003.

[19] B. Cohen. BitTorrent, 2001. http://www.bitconjurer.org/BitTorrent/.

[20] B. Cohen. Incentives build robustness in BitTorrent.Workshop on Economics of Peer-to-
Peer Systems, Jun 2003.

[21] comScore, Inc. comScore releases august 2010 U.S. online video rankings. com-
Score.com, August 2010. http://www.comscore.com/Press_Events/
Press_Releases/2010/9/comScore_Releases_August_2010_U.S.
_Online_Video_Rankings.

[22] Stephen E. Deering. Multicast routing in internetworks and extended lans. InSIGCOMM,
pages 55–64, 1988.

[23] Brian Dessent. Brian’s bittorrent FAQ & guide.http://www.btfaq.org, 2003.

[24] J. Douceur. The sybil attack, 2002.

[25] J.R. Douceur. The Sybil attack. International Workshop on Peer-to-Peer Sys-
tem(IPTPS’02), Mar 2002.

[26] P.B.J. Duijkers. Performance analysis of chainsaw-based live p2p video streaming. Mas-
ter’s thesis, Delft University of Technology, Delft, The Netherlands, December 2008.

94

[27] Derek L. Eager, Mary K. Vernon, and John Zahorjan. Minimizing bandwidth require-
ments for on-demand data delivery.Knowledge and Data Engineering, 13(5):742–757,
2001.

[28] P. T. Eugster, R. Guerraoui, A. M. Kermarrec, and L. Massoulie. Epidemic information
dissemination in distributed systems.Computer, 37(5):60–67, May 2004.

[29] P. T. Eugster, R. Guerraoui, A. m. Kermarrec, and L. Massouli. From epidemics to dis-
tributed computing.IEEE Computer, 37:60–67, 2004.

[30] Bin Fan, Dah ming Chiu, and John Lui. The delicate tradeoffs in bittorrent-like file
sharing protocol design. InICNP ’06: Proceedings of the Proceedings of the 2006 IEEE
International Conference on Network Protocols, pages 239–248, Washington, DC, USA,
2006. IEEE Computer Society.

[31] Shawn Fanning. Napster. http://www.napster.com/.

[32] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June 1999. Up-
dated by RFCs 2817, 5785.

[33] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoid-
ance.IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[34] Chuck Fraleigh, Sue Moon, Bryan Lyles, Chase Cotton, Mujahid Khan, Deb Moll, Rob
Rockell, Ted Seely, and Christophe Diot. Packet-level traffic measurements from the
sprint ip backbone.IEEE Network, 17:6–16, 2003.

[35] Paul Francis. Yoid: Extending the internet multicast architecture. Technical report, AT&T
Center for Internet Research at ICSI (ACIRI), 2000.

[36] Michael J. Freedman, Eric Freudenthal, and David Mazi`eres. Democratizing content
publication with coral. InNSDI’04: Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation, pages 18–18, Berkeley, CA, USA, 2004.
USENIX Association.

[37] E. Frost. Postmortem [RedHat 9 Binary ISO download on BitTorrent].
http://f.scarywater.net/postmortem/.

[38] Didier Le Gall. Mpeg: A video compression standard for multimedia applications.Com-
munications of the ACM, 34:46–58, 1991.

[39] Lawrence Gasman. Oc-768 and beyond - technology information. Telecommunications,
July 2000.

[40] Gnutella. http://rfc-gnutella.sourceforge.net/.

[41] P. Golle, K. Leyton-Brown, I. Minronov, and M. Lillibridge. Incentives for Sharing in
Peer-to-Peer Networks.Proceedings 3rd ACM Conference on Electronic Commerce (EC-
2001), Oct 2001.

95

[42] David A. Helder and Sugih Jamin. End-host multicast communication using switch-trees
protocols. InCCGRID ’02: Proceedings of the 2nd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, page 419, Washington, DC, USA, 2002. IEEE
Computer Society.

[43] Shlomo Hoory, Nathan Linial, Avi Wigderson, and An Overview. Expander graphs and
their applications.Bulletin of the Americal Mathematical Society, 43(4):439–561, Octo-
ber 2006.

[44] John Horrigan. Home broadband adoption 2009. Technical report, Pew Research Center,
June 2009.

[45] Yang hua Chu and Hui Zhang. Considering altruism in peer-to-peer internet streaming
broadcast. InNOSSDAV ’04: Proceedings of the 14th international workshop on Network
and operating systems support for digital audio and video, pages 10–15, New York, NY,
USA, 2004. ACM.

[46] Seung Jun and Mustaque Ahamad. Incentives in bittorrent induce free riding. InPro-
ceeding of the 2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems,
pages 116–121, New York, NY, USA, 2005. ACM Press.

[47] Seung Jun and Mustaque Ahamad. Incentives in bittorrent induce free riding. In
P2PECON ’05: Proceedings of the 2005 ACM SIGCOMM workshop onEconomics of
peer-to-peer systems, pages 116–121, New York, NY, USA, 2005. ACM.

[48] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-molina. The eigentrust
algorithm for reputation management in p2p networks. InIn Proceedings of the 12th
International World Wide Web Conference (WWW 2003, 2003.

[49] O. Kim and M. Walker. The free rider problem: Experimental evidence.Public Choice,
1984.

[50] D. Kostić, A. Rodriguez, J. Albrecht, A. Bhirud, and A.Vahdat. Using random subsets
to build scalable network services. InProceedings of the 2003 USENIX Symposia on
Internet Technologies and Systems, 2003.

[51] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: high bandwidth data dis-
semination using an overlay mesh. InProceedings of the 2003 Symposium on Operating
System Principles, 2003.

[52] Arnaud Legout, G. Urvoy-Keller, and P. Michiardi. Rarest first and choke algorithms are
enough. InIMC ’06: Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, pages 203–216, New York, NY, USA, 2006. ACM.

[53] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin. BAR gossip. In
Proceedings of the 2006 USENIX Operating Systems Design andImplementation (OSDI),
November 2006.

96

[54] Weiping Li. Overview of fine granularity scalability inmpeg-4 video standard.IEEE
Transactions on Circuits and Systems for Video Technology, 11(3):301–317, March 2001.

[55] J. Liebeherr and M. Nahas. Application-layer multicast with delaunay triangulations. In
Global Telecommunications Conference, 2001. GLOBECOM ’01. IEEE, volume 3, pages
1651–1655 vol.3, 2001.

[56] John C. Lin and Sanjoy Paul. Rmtp: A reliable multicast transport protocol. InIEEE
Journal on Selected Areas in Communications, pages 1414–1424, 1996.

[57] Jiangchuan Liu, Bo Li, and Ya-Qin Zhang. Adaptive videomulticast over the internet.
IEEE MultiMedia, 10(1):22–33, 2003.

[58] Qin Lv, Sylvia Ratnasamy, and Scott Shenker. Can heterogeneity make gnutella scalable.
In In Proceedings of the first International Workshop on Peer-to-Peer Systems, pages 94–
103, 2002.

[59] Nazanin Magharei, Reza Rejaie, and Yang Guo. Mesh or Multiple-Tree: A Comparative
Study of P2P Live streaming. InProceedings of IEEE Infocom, 2007.

[60] Farhad Manjoo. Do you think bandwidth grows on trees? Slate.com, April 2009.
http://www.slate.com/id/2216162.

[61] G. Marwell and R. Ames. Experiments in the provision of public goods: I. resources,
interest, group size, and the free-rider problem.American Journal of Sociology, 1979.

[62] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information system
based on the xor metric. In1st International Peer-to-Peer Symposium (IPTPS 2002),
pages 53–65, 2002.

[63] Steven McCanne, Van Jacobson, and Martin Vetterli. Receiver-driven layered multicast.
In ACM SIGCOMM, volume 26,4, pages 117–130, New York, August 1996. ACM Press.

[64] R. C. Merkle. Protocols for public key cryptography.Proceedings of the IEEE Symposium
on Security and Privacy, Apr 1980.

[65] Alexander Mohr, Eve Riskin, , Richard Ladner, and Richard E. Ladner. Unequal loss
protection: Graceful degradation of image quality over packet erasure channels through
forward error correction.IEEE Journal on Selected Areas in Communications, 18:819–
828, 1999.

[66] J.J.D. Mol, J.A. Pouwelse, M. Meulpolder, D.H.J. Epema, and H.J. Sips. Give-to-get:
Free-riding-resilient video-on-demand in p2p systems. InMultimedia Computing and
Networking 2008, volume 6818. SPIE Vol. 6818, January 2008.

[67] MuCash, Inc. Mucash micropayments platform. http://www.mucash.com/.

[68] Sharman Networks. Kazaa. http://www.kazaa.com/.

97

[69] T. Ngan, D. S. Wallach, and P. Druschel. Incentives-compatible Peer-to-Peer Multicast.
In Proceedings of the Second Workshop on the Economics of Peer-to-Peer Systems, 2004.

[70] National Institute of Standards and Technology. FIPS 140-2; security requirements for
cryptographic modules, November 2002.

[71] Venkata N. Padmanabhan and Kunwadee Sripanidkulchai.The case for cooperative net-
working. In Peer-to-Peer Systems: First International Workshop, IPTPS 2002, pages
178–190, Cambridge, MA, USA, March 2002.

[72] Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay Sambamurthy, and Alexander E.
Mohr. Chainsaw: Eliminating trees from overlay multicast.In in Proc. The 4th Inter-
national Workshop on Peer-to-Peer Systems (IPTPS, pages 127–140, 2005.

[73] Vinay Pai and Alexander E. Mohr. Improving robustness of peer-to-peer streaming with
incentives. InProceedings of the 1st Workshop on the Economics of Networks, 2006.

[74] H. E. Peters, A. S. Unur, J. Clark, and W. D. Schulze. Free-Riding and the Provison of
Public Goods in the Family: A Laboratory Experiment.International Economic Review,
45:283–299, Feb 2004.

[75] Michael Piatek, Tomas Isdal, Thomas Anderson, Arvind Krishnamurthy, and Arun
Venkataramani. Do incentives build robustness in bittorrent? In Proceedings of the
2007 Symposium on Networked Systems Design and Implementation, Cambridge, MA,
April 2007.

[76] Sridhar Pingali, Don Towsley, and James F. Kurose. A comparison of sender-initiated
and receiver-initiated reliable multicast protocols. InIEEE Journal on Selected Areas in
Communications, pages 221–230, 1994.

[77] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), October 1985.
Updated by RFCs 2228, 2640, 2773, 3659, 5797.

[78] Dongyu Qiu and R. Srikant. Modeling and performance analysis of bittorrent-like peer-to-
peer networks. InSIGCOMM ’04: Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer communications, pages 367–378,
New York, NY, USA, 2004. ACM.

[79] Sanjay G. Rao, Kunwadee Sripanidkulchai, Jibin Zhan, and Hui Zhang. Early experi-
ence with n internet broadcast system based on overlay multicast. Inin Proceedings of
USENIX, 2004.

[80] Sylvia Ratnasamy, Paul Francis, Mark Handley, RichardKarp, and Scott Schenker. A
scalable content-addressable network. InSIGCOMM ’01: Proceedings of the 2001 con-
ference on Applications, technologies, architectures, and protocols for computer commu-
nications, volume 31, pages 161–172. ACM Press, October 2001.

[81] R. Rejaie, M. Handley, and D. Estrin. Layered quality adaptation for internet video
streaming, 2000.

98

[82] Antony Rowstron and Peter Druschel. Pastry: Scalable,decentralized object location,
and routing for large-scale peer-to-peer systems.Lecture Notes in Computer Science,
2218:329–??, 2001.

[83] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to end arguments in system design.
Innovations in Internetworking, pages 195–206, 1988.

[84] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer file
sharing systems.Proceedings of Multimedia Computing and Networking, Jan 2002.

[85] C. Shannon and D. Moore. The Spread of the Witty Worm.
http://www.caida.org/analysis/security/witty/, Mar 2004.

[86] Kunwadee Sripanidkulchai, Aditya Ganjam, Bruce Maggs, and Hui Zhang. The fea-
sibility of supporting large-scale live streaming applications with dynamic application
end-points.SIGCOMM Comput. Commun. Rev., 34(4):107–120, 2004.

[87] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internetapplications. InSIGCOMM
’01: Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 149–160, New York, NY, USA, 2001.
ACM.

[88] Yu-Wei Sung, Michael Bishop, and Sanjay Rao. Enabling contribution awareness in an
overlay broadcasting system.SIGCOMM Computer Communications Review, 36(4):411–
422, 2006.

[89] Karthik Tamilmani, Vinay Pai, and Alexander E. Mohr. Incentives-compatible Peer-to-
Peer Multicast. InProceedings of the Second Workshop on the Economics of Peer-to-Peer
Systems, 2004.

[90] Andrew S. Tanenbaum.Computer Networks. Prentice Hall PTR, fourth edition, 2003.

[91] Akamai Technologies. Akamai. http://www.akamai.com/.

[92] The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS. http:://
www.openssl.org, April 2003.

[93] Iain Thomson. New BitTorrent Flows Across the Web, 2005.
http://www.itweek.co.uk/vnunet/news/2126947/bittorrent-flows-across-web.

[94] Vidhyashankar Venkataraman, Paul Francis, and John Cal. Chunkyspread: Multi-tree
unstructured peer-to-peer multicast. Inin Proc. The 5th International Workshop on Peer-
to-Peer Systems, 2006.

[95] Vidhyashankar Venkataraman, Kaouru Yoshida, and PaulFrancis. Chunkyspread: Het-
erogeneous unstructured tree-based peer-to-peer multicast. In ICNP ’06: Proceedings of
the Proceedings of the 2006 IEEE International Conference on Network Protocols, pages
2–11, Washington, DC, USA, 2006. IEEE Computer Society.

99

[96] Limin Wang, Kyoung Soo Park, Ruoming Pang, Vivek Pai, and Larry Peterson. Reliabil-
ity and security in the codeen content distribution network. In ATEC ’04: Proceedings of
the annual conference on USENIX Annual Technical Conference, pages 14–14, Berkeley,
CA, USA, 2004. USENIX Association.

[97] Stephen B. Wicker.Reed-Solomon Codes and Their Applications. IEEE Press, Piscat-
away, NJ, USA, 1994.

[98] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the h.264/avc
video coding standard.IEEE Transactions on Circuits and Systems for Video Technology,
13(7):560–576, July 2003.

[99] Jin wook Seo, Dong kyun Kim, Hyun chul Kim, and Jin wook Chung. The algorithm of
sharing incomplete data in decentralized p2p.International Journal of Computer Science
and Network Security, 7(8), August 2007.

[100] X. Xu, A. Myers, H. Zhang, and R. Yavatkar. Resilient multicast support for continuous-
media applications, 1997.

[101] Tingting Zhang and Youshi Xu. Unequal packet loss protection for layered video trans-
mission.IEEE Transactions of Broadcasting, 45:243–252, 1999.

[102] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Y. S. P. Yum. Coolstream-
ing/DONet: a data-driven overlay network for peer-to-peerlive media stream-
ing. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Com-
puter and Communications Societies., volume 3, pages 2102–2111 vol. 3, 2005.
http://ieeexplore.ieee.org/xpls/absall.jsp?arnumber=1498486.

[103] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and
John D. Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications, 22(1):41–53, January 2004.

[104] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John D. Kubi-
atowicz. Bayeux: An architecture for scalable and fault-tolerant wide-area data dissemi-
nation. InProceedings of NOSSDAV, June 2001.

100

