

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Rbuff: Improving congestion in sensor networks

under event-driven and burst data traffic

A Thesis presented
by

Abhay Ravi Chandran

to
The Graduate School

in Partial Fulfillment of the
Requirements

For the degree of

Master of Science
in

Computer Engineering

Stony Brook University
May 2011

Stony Brook University

The Graduate School

Abhay Ravi Chandran

We, the thesis commitee for the above candidate for the
Master of Science degree, hereby recommend

acceptance of this thesis

Professor Harbans Dhadwal
Associate Professor

Department of Electrical and Computer Engineering

Professor Alex Doboli
Associate Professor

Department of Electrical and Computer Engineering

Professor Jennifer Wong Ma
Assistant Professor

Department of Computer Science

This thesis is accepted by the Graduate School

Lawrence Martin
Dean of Graduate School

ii

Abstract of the Thesis

Rbuff: Improving congestion in sensor networks under

event-driven and burst data traffic

by

Abhay Ravi Chandran

Master of Science

in

Computer Engineering

Stony Brook University

2011

Advancements in sensor and MEMS technology have enabled high resolution, high

data-rate, and complex sensors which enhance the application domain of sensor

networks. In addition, these sensors enable sensor networks to capture high quality

data with more precision. While increased storage capacities on sensor nodes have

previously enabled sensor networks to store and forward data leisurely, many emerging

sensor network applications, such as seismic monitoring, real-time object localization

and tracking, or pervasive health monitoring, require real-time reporting of this high

resolution, event-driven data. The existing communication and radio stack in sensor

iii

network operating systems were designed for simple packet handling; however they

fail under high data-rate and burst traffic. In this work, we propose a modified

communication stack which includes a receive buffer (RBuff) to handle burst traffic

more efficiently, reducing traffic congestion. We present a theoretical analysis on

the optimal buffer size based on the properties of the expected burst traffic within

the network. In addition, we address the dual scenario; we present analysis to

determine the maximum burst size and wait time given a limited fixed buffer size.

Experimental analysis on single-hop, multi-hop forwarding trees, and random network

deployments demonstrates a 50% increased packet reception rate under burst traffic

of the optimally sized RBuff over the existing single packet slot within the Contiki

operating system. Additionally, we show that a fixed buffer implementation with pre-

determined burst sizes and wait times also provide better results than the single buffer

implementation. We demonstrate how a modest buffered approach improves packet

reception in event and burst traffic scenarios and aids in reducing overall network

energy consumption by reducing collisions.

iv

Contents

List of Figures vii

Acknowledgement ix

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Overview . 5

2 Background of OS 7

2.1 Operating System Basics . 7

2.2 Sensor Operating System Characteristics 10

2.3 Tiny OS . 13

2.4 Contiki OS . 14

2.4.1 Rime . 16

2.4.2 Chameleon . 18

2.4.3 Contiki Radio stack . 20

3 Rbuff Approach 22

3.1 Issues With Existing Radio Stacks . 22

v

3.2 Rbuff . 25

3.3 Implementation . 27

4 Buffer and Time Interval Analysis 29

4.1 Buffer Analysis . 29

4.2 Burst Size determination . 34

4.2.1 Bursts due to events . 35

4.2.2 Burst from forwarding nodes 37

4.2.3 Example Network . 41

4.3 Wait time analysis . 42

4.3.1 Lower nodes and leaf nodes 42

4.3.2 Higher level nodes . 44

5 Experimental Results 45

5.1 Experimental Setup . 45

5.1.1 Physical motes . 45

5.1.2 Simulation . 46

5.2 Optimum Buffer Results . 47

5.2.1 Single Hop Test . 47

5.2.2 Multi-hop Test . 49

5.3 Fixed Buffer Results . 52

5.3.1 Experimental Setup . 52

5.3.2 Latency . 54

5.3.3 Collisions . 55

5.3.4 Packet loss with varying burst size 57

5.3.5 Burst Rate performance . 59

vi

5.3.6 Packet loss with varying application processing time 60

5.4 Random Network Test . 62

6 Related Work 66

7 Conclusion 71

Bibliography 73

vii

List of Figures

2.1 The list of differences between Sensor and Real-time Operating Systems 10

2.2 Characteristics of a sensor based operating system 10

2.3 TinyOS radio stack for receiving packets 15

2.4 Rime in Contiki . 16

2.5 Chameleon in Contiki . 18

2.6 Contiki radio stack for receiving packets 19

3.1 Drawback of current Contiki radio stack implementation 23

3.2 Contiki radio stack Rbuff implmentation 24

3.3 Packet receiving using a Rbuff with size B. Rbuff allocates a empty slot for

the incoming packet at the tail; processed slot is released at the head. . . . 27

4.1 Node L forwards the bursty traffic from n children nodes. 30

4.2 Worst case time series of burst traffic to Node L from n children nodes. 31

4.3 Sporadic burst and how they are assumed. 33

4.4 Bursty traffic. 36

4.5 Buffer representation. 37

4.6 Optimum way of buffering. 39

4.7 An example of how optimum burst size can be obtained. 41

viii

5.1 Optimal buffer size against SL. x -axis is the fraction, denoting SL

relative to the burst rate. 49

5.2 Packet reception ratio for different buffer sizes (in single-hop network

test.) . 50

5.3 Unbalanced tree topology . 51

5.4 Packet reception ratio for different buffer sizes (in the multi-hop

unbalanced tree topology) . 52

5.5 The test setup for fixed buffer, consisting of 8 nodes in an unbalanced

tree. 53

5.6 Table showing latency for different burst rate for single and multi-

buffered approach. 55

5.7 The traffic between two events when single buffer is used. 56

5.8 The traffic between two events when fixed-buffer is used. 56

5.9 Number of collisions in both cases . 57

5.10 Packet loss versus the burst size in percentage 58

5.11 Packet loss versus the burst rate . 60

5.12 Packet loss versus the application processing time 61

5.13 A random network topology. 63

5.14 Buffer behavior in the random network with respect to different burst

traffic . 64

ix

Acknowledgement

I believe that research can be viewed as a path for finding a solution

to a well defined problem by the power of man, mind and machine. Through this

thesis, I have been given the freedom and opportunity to do research.

I sincerely thank my advisor, Professor Jennifer Wong from the Computer

Science Department and Professor Harbans Dhadwal from the Electrical and

Computer Engineering Department for their willingness to support me and allow

me to present my research work through this thesis. I thank them for the motivation,

encouragement and guidance they have constantly provided without which, this work

would not have been possible.

I am also grateful to Professor Alex Doboli for serving on my thesis

committee and reviewing it.

I would like to convey my thanks to Mr. Hui Kang, who has helped

me out during the course work of my thesis and assisted me in my research work.

A special thanks goes to my parents for supporting me unconditionally in the past

years.

I would finally like to thank everyone who have believed in my abilities

and more importantly those who have challenged them.

x

Chapter 1

Introduction

Sensor Networks continues to be an emerging field in Computer

Science and Engineering. The main driving force behind the research and development

efforts is the myriad of applications for which sensor networks can be applied and

the advancements in hardware technology continue to facilitate enhanced sensor

and pervasive systems. MEMS and silicon advancements have enabled the creation

of smaller and increasingly complex sensor devices which can be embedded into

environments. Additionally, wireless technology has pervaded successfully, leading to

higher bandwidth communications and lower power operation. These factors enable

sensors to be deployed anywhere, including the most inhospitable environments, and

retrieve information which would otherwise would not be available or observable.

Sensor networks have been applied to a large variety of application areas such as

medical sensing [1], [2], environmental sensing [3],[4],[5], scientific studies [6],[7],[8],

automobile sensors [9], pervasive computing and for social networking [10], [11],[12].

For example with the help of remote monitoring in the Health Sciences field,

doctors are able to remotely and constantly monitor their patients in terms of

1

vital signs and exercise for example. In the case of automobiles, enhanced sensor

technologies have helped in reducing of casualties. Sensors are used to detect tire

pressure, flow speed, fuel injection etc in cars. Wireless implementation of these

sensors have enabled the reduction in the use of wires to interconnect the sensors.

Energy efficiency is improved in power distribution grid by studying the usage levels

among customers using remotely deployed sensors [13].

All of these applications of sensor networks have been successful and resulted

in working and beneficial systems, however a large number of engineering problems

plagued engineers in order to complete development. In addition, there are many

engineering and software related challenges which still remain to be addresses. In

addition, with each application area and new application of sensor networks additional

challenges arise. For example, despite being widely addressed, power efficiency and

battery lifetime continues to remain a major issue in sensor networks.

Another major issue is wireless communication bandwidth in high density sensor

deployments. High densities, lead to high collision rates, which result in high

retransmission rates which are a power drain. Any form of packet loss whether

through collision or congestion, will eventually increase energy requirements of the

sensors and worsen energy efficiency.

1.1 Motivation

In this thesis we try to improve data reliability and scalability by focusing on the

issue of communication congestion. We find congestion is a very prominent problem

in sensor networks because of the nature of the type of observation phenomena.

Since sensor networks constantly provide data feedback, events which trigger data

2

aggregation tend to cause multiple sensors to respond to the same event. In such

cases large amounts of data are sent simultaneously through the network to fixed

sink/collection nodes. In many cases, the nature of this data is bursty. We therefore

experience a type of congestion termed popularly as the funneling effect. This leads

to packets being dropped since the sink receiver is overloaded simply because it

cannot process the packets quickly enough. This entire system is not isolated to

this form of congestion alone. We would also experience congestion and packet loss if

an application developed takes a large amount of time to process received packets and

blocks reception of other packets. These packets which arrive in very short periods

and large bursts are lost. As a result, the senders will have to resend their data packets

when they do not get an acknowledgement for the packet they sent. The situation

compounds if the depth of the communication tree is high. If this retransmission is

repeated several times, we will spend a large amount of energy to successfully send

only a few packets. Such high ratio of energy cost per packet is not acceptable in this

energy scarce sensor system.

Most sensor operating systems (such as Tiny OS or Contiki) contain a memory

element to hold a single packet only at the network layer of the communication

stack. Moreover they perform direct call backs to the application without an

execution break. This implies that packet reception rate is dependent on the type of

application developed by the user. Packet loss is guaranteed if the user burns CPU

cycles performing time consuming tasks and ignoring received packet bursts. This is

acceptable design if we are receiving sporadic packets or low rate data streams where

a single packet buffer would suffice to retain each packet. Since the packet has to be

processed completely for the next packet to be received a direct call to the application

is also justified. But if we are to handle high data burst rates which are achievable

3

with high resolution and complex sensors and the funneling problem described earlier

we must isolate the reception process into two separate processes and incorporate a

multiple buffer based concept.

We can illustrate with a real world example, which makes use of data intensive

applications where burst traffic can be very high. In [14], the author proposes using

sensor networks to perform visualization on urban traffic monitoring. Such monitoring

will involve a large amount of processing, as the author mentions the analysis of

images and video data for visualization of the data in a way that can be made easily

intelligible. Further more transport of such data will involve transmission of large

amount of data, which is predominantly image and video based.

Example of one simple system that makes use of this kind of monitoring is a

traffic violation monitoring system. Such system might use cameras to detect cars

passing through a signal intersection. The data from these systems are collected and

processed by wireless sensor nodes. We can assume that for busy intersections the

frequency of cars can average at around 20 to 30 seconds per car. All cars observed

have the image processed for better visualization of the information. A high amount

of processing time is involved for each image captured before it is forwarded to the

traffic observation station. Also since images are being sent, there is a large amount

of packet traffic. These occur at instances when images are captured. This kind

of a scenario provides an ideal situation where a buffer based implementation could

provide a better performance over a non-buffered approach.

In our work we try to reduce and handle the congestion and pack drops in

high burst data scenarios by introducing the Rbuff packet buffer. We propose two

approaches: (i) a theoretical optimal Rbuff size based on anticipated data burst sizes

and network configuration and (ii) the dual problem: maximal data burst size and

4

application blocking time given a set Rbuff size based on hardware memory limits.

We implemented the proposed Rbuff on the Contiki operating system. We

implement the separation of the Rime Radio Stack (of Contiki) from the networking

channel and application. This ensures that when packet reception occurs, multiple

packets can be stored before the application begins processing the information.

Through experimentation, we find that the addition of the Rbuff reduces congestion

and improves performance by up to 50 percent.

1.2 Thesis Overview

In Chapter 2 we provide an overview of sensor operating systems. We highlight

the working of Tiny OS and Contiki Operating systems. We discuss the characteristics

of the operating systems and how they differ from each other. We also discuss the

radio stack design and the packet handling procedures.

Chapter 3 provides a detailed overview of the problem with the current packet

reception implementation in sensor operating systems. We discuss how bursty traffic

will result in packet loss when addressed with application intensive processing. We

then introduce the concepts of Rbuff. We provide a detailed explanation of the

improvements it provides and how it has been implemented.

Chapter 4 deals with the theoretical analysis of our problem. It presents analysis

for determining the optimal buffer size based on characteristics of the burst data

traffic. We then tackle the dual of the problem and derive the burst size and wait

times from a fixed buffer size.

All the results obtained through testing are discussed in Chapter 5. We use our

theoretical model derived from Chapter 4 to model our experiments and obtain the

5

results from the model.

In Chapter 6 we mention prior related work. We discuss the contemporary work

in this field and mention how our result is different from their work before we conclude

our work in Chapter 7.

6

Chapter 2

Background of OS

In this chapter we first discuss the operating system basics and then we discuss

the TinyOS and Contiki operating systems. We end our discussion with the radio

stack of Contiki.

2.1 Operating System Basics

There has been increasing complexity of application requirement and need for

timely response based on input from sensing systems. The timeliness can ensure life

or result in death and mean the difference between millions of dollars in expenditure.

Consider the various attributes, sensors in a typical health care unit might measure

and how they must intertwine the information into wireless signals to inform the

doctor in a timely manner to respond to a critical patient. Similarly consider the

criticality of response of a tsunami warning system trying to warn us of an impending

tsunami. We must realize that most of these sensor systems operate independently,

secured by a limited set of resources (memory, battery, inaccuracy of sensors) and

7

face rough conditions. If the system has to manage these resources carefully it must

be able to control how they are utilized. This exemplifies the need for a sensible

light operating system which can provide the resource management. Operating

systems in these device do more than just manage the resources, they also help

make programming the devices much simpler, abstracted and enable module based

development which can help push early market release for appliances that are time

critical in the market.

In simple terms, an operating system is a system software that manages various

resources of the system and ensures programs are executed correctly and in a timely

fashion while abstracting lower level details of the hardware. The program can be

any code which twiddles with the sensing systems to obtain meaningful information

in the case of a sensor network. Operating systems are very common in large

personal computer, servers and mainframes. They are not considered important in

smaller embedded devices. With the rise of the mobile phone market, the operating

system based design has gained more precedence. Since mobile phones have become

extremely complicated, there is a need to manage multiple applications being run on

the phone and orchestrating that with the basic functionality of the phone to receive

and initiate phone calls. We find that some applications in a mobile phone might be

more important than others and receive precedence when executing. Such systems

are said to be real-time in nature and the operating systems are generally flexible

and capable of scheduling application tasks on the fly. Such systems consume a large

amount of memory incorporating a scheduler program and kernel space.

Conditions such as the wide range of sensor network applications, the variety

of hardware configurations and constraints, and data collection latency constraints,

to name a few, require that sensor networks and sensor systems be structured

8

and designed differently than traditional operating systems. Most of these sensor

systems operate independently, secured by a limited set of resources (memory, battery,

inaccuracy of sensors), and face rough environmental conditions. If the system has

to manage these resources carefully it must be able to control how these resources

are utilized. This exemplifies the need for a sensible light operating system which

can provide the resource management. Operating systems in these device do more

than just manage the resources, they also help make programming the devices much

simpler, abstracted, and enable module-based development which can help push early

market release for devices that are time critical in the market.

The most important feature of the operating systems (OS) is that it must be light

weight. Memory itself is a constrained resource. But nonetheless the OS should be

able to perform resource allocation and abstraction for the user programs. The radio

stack for example must not have heavy cluttering of headers and error prediction and

should implement basic error recovery for least amount of processing time. Sensor

OSs will not have heavy real-time schedulers and do not generally allow preemption.

They do however allow thread based execution and simple scheduling on a first-come

first-serve basis. Unlike real-time systems which generally give each user a process

space and unique memory for each application, sensor Oss make different threads

share common process space. For example, real-time OSs generally range from 100

KB to 10-12 MB in space, while sensor OSs roughly occupy around 10-30 KB at most.

Figure 2.1 provides a list of main differences between sensor and real-time OSs.

9

Figure 2.1: The list of differences between Sensor and Real-time Operating Systems

Figure 2.2: Characteristics of a sensor based operating system

2.2 Sensor Operating System Characteristics

A number of sensor network operating systems have been proposed by the

research community. The most popular OSs are TinyOS from UC Berkeley, Contiki

from the Swedish Institute of Computer Science, Mantis from the University of

10

Colorado Boulder [15], and Nano rk from Carnegie Melon University [16]. Most of

the operating systems are free open source software, are built on the same principles,

and are implemented on similar low power hardware platforms.

Four of the main system components are:

Size: As sensor nodes are made of simple hardware, the amount of memory

(ROM and RAM) available for them is limited. Most sensor nodes use have flash

program memory and are limited to around 32-64 KB and around 4 KB of RAM.

Operating systems developed are also limited in size to with-in 30 KB at most. These

operating systems are hence termed “lightweight”. This means that in the attempt

to reduce operating system sizes, the functionality of the sensor operating systems

generally are stripped down versions of their larger counterparts.

Energy Efficiency: Energy efficiency is a very important aspect of sensor design

due to limited battery life. Most sensor operating systems allow energy efficiency by

putting the micro-controller to sleep when the operating system is not executing any

operation. Similarly the sensor is awoken from sleep when a task gets scheduled or an

interrupt due to a message arrives. The most energy intensive component of a sensor

node is the radio which is switch off until a send is required or a periodic receive is

to be performed. TinyOS and Contiki make use of special MAC protocols which use

a duty cycled radio scheme which helps reduce energy efficiency.

Radio Stack: What sets apart real-time operating systems from sensor

operating systems is the radio stack. All sensor operating systems must support

a wireless radio stack. Most modern sensor OSs support IPv6 and IPv4 at the

network layer. The radio stack has to be simple and lightweight and capable of

powerful abstraction of the radio functionality. For example the TinyOS radio

stack is segmented into multiple layers. It contains the driver layer which handles

11

radio hardware, a MAC layer which handles the collision and energy efficient radio

operations, a message reception layer which ensures that the message is received with

acknowledgement, a powerful network layer which can use IPv6, etc. Errors in the

packet are detected by simple CRC codes. Since the radio stack is simplistic complex

error detection or encryption techniques are not utilized. Most sensors use the Zigbee

physical radio protocol.

Driver Abstraction: What makes application development in sensor OS easy

is the abstraction of the lower level functions. Most sensor operating systems enable

sending and receiving without the need for users to know the underlying concept of the

OS or the radio stack. In Contiki for example we can achieve reliable communication

using a specific channel called “rudolph”. The beauty of this channel is that by

using the constructs of the channel, the user can send packets between two sensor

nodes and not worry about whether the packet was received or not. A system of

acknowledgement based communication is setup between the nodes. A failed send is

returned if the receiver does not acknowledge after a timeout period. This kind of

abstraction helps make the software more reliable and efficient. Probably the most

important form of abstraction is the abstraction of the driver level software. Most

sensor operating systems abstract away the hardware level detail of the radio, sensors,

serial communication (USB, SPI) and LEDs. These features of the system are made

accessible through the use of wrapper functions available at higher application layers.

Event based and Threaded: Most sensor operating systems are required to

process non-blocking applications and are event driven. They do not allow preemption

among different threads. Although a very basic form of preemption using interrupts

is still enabled. It is very important that the application is non-blocking. Blocking

programs might lead to the overuse of CPU resources and also result in packet loss.

12

Tiny OS supports non-blocking programs only and will lose packets if an application

blocks the CPU even though an event will be flagged for execution of the packet read.

Generally complicated processing must be broken into blocks of code which can be

executed separately. Most sensor operating systems support threading. Although

multi-threading is very hard to achieve, a single threaded environment is supported

which supports a loose kind of multi-threading using interrupts.

2.3 Tiny OS

TinyOS is a very popular open source Linux-based sensor OS. It is one of the

first sensor OS developed. It was proposed in 1999 in the University of California

at Berkeley in the sensor research group with collaboration from Intel research and

Crossbow technologies. TinyOS is written in nesC which is a dialect of C. It is an

event-driven operating system. It is non pre-emptive and does allow pre-emption.

Applications developed must be non-blocking in nature. This means they cannot

execute for long periods of time. TinyOS is extremely lightweight and can fit into most

small micro-controller memory. TinyOS has inbuilt support for Texas Instruments

MSP430 family, Atmel’s Atmega128, Atmega128L, and Atmega1281, and the Intel

px27ax processors. TinyOS also supports Zigbee standard radio and has support

for the Texas Instruments/ChipCon CC1000 and CC2420, the Infineon TDA5250,

the Atmel RF212 and RF230, and the Semtech XE1205 radios. TinyOS supports

threading using TOSThreads library.

Among all the components on a sensor mote, the wireless radio accounts for

a large portion of the energy cost, because the mote needs to exchange data with

other motes during most of its lifetime. The radio driver layer of TinyOS is shown

13

in Figure 2.3. On receiving a packet on the physical radio, the radio driver sends

an interrupt signal to MAC layer through a SPI bus. The MAC layer is responsible

for checking FCF information and the destination address of the received packet.

Other functionalities can be added after this step such as auto retransmission and

acknowledgement. Next, if the packet is a routing packet, it is passed to the network

layer which defines the routing behavior of the network. Otherwise, the data contained

in the packet will finally be passed to the application layer for some specific purpose.

Unlike most network interface cards (NIC) for a desktop or server, the radio

device (e.g., CC2420) on the mote does not have a cache to buffer multiple packets

under high network traffic. In addition, each component passes the pointer to the

other one in a split-phase call mechanism, which means that the pointer can not

be modified until the associated data are processed by the upper layer. Combining

these two characteristics, the single pointer of TinyOS’s radio driver can not support

high network traffic, resulting in performance degradation in terms of packet loss.

Furthermore the application cannot be blocking; if the application is blocking the

blocking time will result in packet loss.

2.4 Contiki OS

Contiki is an open source event based operating systems meant for memory

constrained systems such as sensor networks and embedded systems. The operating

system has been developed by Adam Dunkel from the Swedish Institute of Computer

Science. The OS has normal memory foot print of about 2KB of RAM and 40KB of

ROM. The low memory foot print makes it very efficient in terms of memory. It is an

event-based operating system which means that the operating system runs processes

14

Figure 2.3: TinyOS radio stack for receiving packets

based on events which occur in the system (such as timers, interrupts, button presses,

etc).

The basic unit of the Contiki OS is its proto-thread based architecture. The

proto-thread provides both the flexibility and multitasking nature of normal thread

based applications and also encompasses the low memory consuming properties of

event-based systems. The OS supports power management and sleep modes and

also allows power measurement. It also provides a number of tools to simulate the

15

Figure 2.4: Rime in Contiki

operation of the application before being ported onto other platforms. Currently the

OS supports the T-mote sky, Mica Z platforms and the native Linux platform. It has

a radio protocol stack called ”Rime” which provides short range radio communication

in Zigbee. The operating system is one of the very few which provides a complete

robust IPv6 and IPv4 stack. It features a running browser capable of sending TCP/IP

and UDP packets.

In our work we have used the Contiki operating system for experimental analysis.

In the following subsections, we provide a detailed explanation of the Contiki radio

stack.

2.4.1 Rime

The main feature of the Contiki OS which is most relevant to this work is the

radio communication mechanism. The radio operates on Zigbee or 802.15.4 standard.

16

The radio is named as the “Rime low-power radio networking stack” and provides

number of features for Zigbee based communication. The Rime model is shown below

in Figure 2.4.

The Rime features a working network, MAC and physical driver software for

supported platforms. The OS completely abstracts the sending and receiving of the

packets to a set of high level API calls. The type of transmission can also be selected

from the upper layer by declaring only the required type of connection. The various

types of connections supported are,

1. Single-hop broadcast (broadcast)

2. Single-hop unicast (unicast)

3. Reliable single-hop unicast (runicast)

4. Best-effort multi-hop unicast (multihop)

5. Hop-by-hop reliable multi-hop unicast (rmh)

6. Best-effort multi-hop flooding (netflood)

7. Reliable multi-hop flooding (trickle)

8. Hop-by-hop reliable data collection tree routing (collect)

9. Hop-by-hop reliable mesh routing (mesh)

10. Best-effort route discovery (route-disovery)

11. Single-hop reliable bulk trans fer (rudolph0)

12. Multi-hop reliable bulk transfer (rudolph1)

All the 12 different types of network connections are provided by a basic kind

of connection called ”Anonymous Broadcast based Connection” (or abc). The

anonymous broadcast connection is a simple broadcast protocol where the identity

17

Figure 2.5: Chameleon in Contiki

of the sender is not sent and information is broadcast to all nearby nodes. All other

connections are built upon the basic framework of the abc broadcast and hence use

the same set of call back functions from the lower layers. The Rime only abstracts

the transmission of data but does not handle the header and CRC addition to the

packet. In Contiki the header addition and CRC calculations are separated from the

actual data transmission by splitting the bit level operations into another module.

This is called as the Chameleon module.

2.4.2 Chameleon

The ”Chameleon” module handles the bit level header additions. It adds the

relevant header information and calculates the CRC to the data and attaches this

information to the data being sent. On reception the data is unpacked from the

18

Figure 2.6: Contiki radio stack for receiving packets

header and the data is forwarded to the upper application layers. The chameleon

model is as show in Figure 2.5

Confining the lower layer operations into distinct modules serves a very useful

purpose in making the development of the application only focus on the protocol and

data dissemination technique and not on how the packet is sent and the headers are

built. These also help in confining the changes to these specific modules thus making

Contiki development much easier to understand and implement.

19

2.4.3 Contiki Radio stack

The Figure 2.6 shows how the reading and sending of packets are performed. The

figure represents the entire flow of packet data up and down the Rime stack. Incoming

packets are stored into Radio FIFO to be processed by the radio cc2420 driver. The

following occur during an event of an incoming packet (numbered appropriately in

the figure in purple)

1. Radio driver is interrupted by the radio. The OS is woken up from sleep mode

and the receive packet process is put into the queue to be executed in order.

2. The process is executed and the process calls a call back function to the Xmac

module which again calls back the Rime module to initiate a packet read. The rest

of the process is executed sequentially without any break in execution.

3. Rime calls Xmac to read the incoming packet. Xmac in-turn calls the radio driver

to read the data from the FIFO. The data is read and the data read is put into the

packet buffer. The packet buffer is a buffer 160 bytes in size and packet size is 128

bytes with a 32 byte header. It can store only one packet.

4. The information is checked for CRC in chameleon modules and the headers are

removed to only expose the data part of the packet.

5. It passes to the application through the abc module and other connection modules

and calls a call back function in the application. The call back function can be used

to read the data from the packet buffer. As mentioned earlier all steps from 2 to 5

are executed consecutively. Step 5 produces the greatest amount of latency in the

packet read as it is completely dependent on application developed.

The following occur during an event of an outgoing packet (numbered

20

appropriately in orange).

1. Application copies data into the packet buffer. It then calls APIs to send the

data in the packet buffer.

2. The connection modules and abc module call the chameleon module which attaches

relevant CRC and header to the data in the packet buffer.

3. The data is then sent to Xmac through the rime. The Xmac checks if previous

data is being sent. If it is being sent it stops the current packet and puts it into a

queue to be sent later by Xmac. When the packet is ready to be sent it sends the

packet to cc2420 driver. The queuing prevents loss of outgoing packet when the radio

is busy sending another packet.

4. The driver sends the data to the radio and it is sent by the radio to the destination.

The radio stacks of Contiki and Tiny OS are quite similar. They operate on a

similar architecture. Most of the Contiki radio model has been derived from TinyOS

but the radio stack has improved enhanced. Once again the problem in Contiki is the

non-blocking requirement of the application program. We see the packet buffer can

hold only one packet at a time. This does not cater to bursty data traffic and packet

loss due to application blocking.

21

Chapter 3

Rbuff Approach

In the previous chapter we discussed how the radio stack in Contiki and TinyOS

have been developed. We will now highlight the issues with this implementation

under event-driven burst traffic resulting in packet loss. Then we discuss the Rbuff

design and implementation in Contiki and TinyOS.

3.1 Issues With Existing Radio Stacks

Most sensor network applications leverage on bursty traffic to enable low duty

cycle operation. However, during a single cycle sensor traffic can be extremely bursty

in nature. Most commonly applications are event-driven and as a result large amounts

of data are generated at multiple nodes in a short period of time which must be

transferred to a collection center, generally a large single fixed nodes called a sink.

As mentioned earlier this leads to the funneling effect. As data gets funneled, a large

number of packets will be sent together in quick succession. This can cause congestion

within the network and lead to packet drops. What is also noticed in such networks

22

Figure 3.1: Drawback of current Contiki radio stack implementation

is that the sending of data is very random, due to random event occupancies, and

are separated by long time intervals of minimal or no network activity. The main

issue in the current sensor operating systems implementation is that there has been

no mechanism developed which can actually hold these packets which are produced

in such short periods or bursts. For example we find that in the case of of the current

implementation in Contiki, a burst rate of 64 pkts/sec leads to a packet drop of up

to 50%. The problem substantiates the need for buffering the network stack used in

sensor networks.

Additionally, both Contiki and TinyOS are structured around a non-blocking

principle. Since these operating systems don’t allow pure pre-emption, the system

as a whole is vulnerable to highly bursty traffic. The blocking of an application

23

Figure 3.2: Contiki radio stack Rbuff implmentation

can lead to clogging of the sensor node’s resources. When incoming packets are not

processed quickly and stored they will be lost when the application layer blocks. This

is a major reason why the current design fails. With only space to hold one packet,

we are forced to process the packet before we allow reception of other packets at

the higher communication layers. Handing the control to an application can have

disastrous consequences if, the application blocks for too long.

Clustered packet traffic can also lead to large amounts of collision. Since we have

many nodes trying to send together and nodes higher in the forwarding tree forwarding

on the packets they have received, we experience a large amount of collisions in the

network. Higher collisions can further accentuate the packet loss and lead to greater

energy consumption.

Figure 3.1 shows the typical Contiki radio stack and how the current design will

24

affect the reception of packets in bursty conditions. If multiple packets arrive then

handling one packet at a time can prove costly. If the packet buffer size were increased

to accommodate more than one packet then this problem can be reduced and packet

reception can be improved. If multiple packets can be stored into the packet buffer

and if the packets are processed in groups during low or no traffic times then packet

loss can be reduced considerably.

Consider the figure 3.2 with the changed implementation. Although it looks

straight forward, the packet read is not done simultaneously from the radio driver.

The packet is read one at a time and reaches the application layer. But the application

layer does not process the packet until the buffer is full. Hence with no application

overhead involved the buffer can be filled in quick succession making the FIFO empty

for the next set of packets to arrive. Though some time overhead is incurred during

packet processing, we assume that this processing happens during the radio silence

period. Once the buffer is full or when no more packets are received within a stipulated

time the content of the packet buffer is processed and the process repeats.

3.2 Rbuff

We have deigned a new communication stack by modifying the existing principles

and adding features to address the event-driven burst traffic environment. The

primary insight behind our design is that we store each incoming packet in a buffer

before it is processed by a lengthy application. We explain how we estimate a

suitable buffer size based on the model derived in the next section. We call the

new communication stack Rbuff.

Different data structures for holding packets can be used by Rbuff. We currently

25

use a simple variant of FIFO queue that we found to work well in practice: we

implement the FIFO queue as a circular array, like a ring. The ring buffer is a fairly

standard lock-less data structure for producer-consumer communications. Figure 3.3

illustrates the structure of the Rbuff, which has a buffer size of B. It has three main

components: head and tail pointers as the consumer and producer, and the buffer

itself.

The buffer is initialized by setting both the head and tail pointer to the Bth slot.

When an incoming packet generates an interrupt, the tail of Rbuff is checked by the

radio driver to see if there is enough space ahead of the packet being processed. If

there is, the slot is allocated to hold this packet and the low level radio driver is freed

to receive the next incoming packet immediately. The tail pointer is then decremented

by one space. The task of processing the incoming packets in Rbuff is usually deferred

to facilitate concurrency of the whole system. The other end reads the packet from

the head pointer. After processing the packet, the caller then removes the packet

from the buffer and decrements the head pointer. The buffer slots in between the

head and tail are occupied by packets already received, but not processed.

The operations of allocating and releasing a slot are represented by the following

equations.

tail = (tail − 1) mod B (3.1)

head = (head− 1) mod B, (3.2)

where B is the capacity of the Rbuff. Thus, testing of buffer overflow and availability

relies on the relative position of the head and tail pointer. If the head and tail point

26

Figure 3.3: Packet receiving using a Rbuff with size B. Rbuff allocates a empty slot for
the incoming packet at the tail; processed slot is released at the head.

to the same index, the buffer is empty. If the tail is one slot before the head pointer,

the buffer is full.

3.3 Implementation

The proposed receive buffer is implemented as a separate component in both

TinyOS and Contiki operating systems, which use different programming strategies.

TinyOS is purely event-driven and non-blocking, while Contiki uses a sequential code

structure that allows for blocking functions. In each case, Rbuff is added in between

the MAC layer and the network layer. Thus, the message pointer to hold the next

incoming packet is returned by the Rbuff component, instead of the upper layers.

The network layer is able to process several or all the incoming packets in Rbuff.

The packet buffer is currently designed to hold a single packet of information

which is extracted from the radio buffer. During the transmission of a data packet

the sent packets are queued if the lower layer (i.e. FIFO) is sending the previous

information. During reception only one packet can be received and be processed at

27

a time. The design has a drawback that if the application spends too much time

handling the received data in the packet buffer, later packets that arrive can be

dropped if the FIFO in the radio driver becomes full. This can occur when there

is a very high amount of congestion in the network or if the data is very long and

contains multiple packets. One way to alleviate the problem is to fetch the next packet

immediately after the application gets the first packet and process the data buffer at

a later stage for the application purpose. We do this using the Rbuff implementation.

To enable this process, the data buffer Rbuff must be made to handle multiple

packets at the same time. Making the packet buffer size greater than one packet

should help reduce the congestion problem. The application should also know or

must be capable of obtaining which buffer its data is located in. It can then process

the information at a later stage avoiding the congestion created from dropping packets

at that given instant.

In Contiki the buffer is implemented in the interface between the network and

MAC layer in our experimental setup. We modify the current ”packetbuffer” module,

which is currently built to handle a single buffer, into a multi-buffer based setup. We

introduced additional APIs to handle multi-buffer scenario which includes the “top

pointer” operation mentioned above. Any packet reception generates a callback to a

receive function in the Contiki’s “rime” layer. In our experiments we made the receive

function (in the rime layer) copy the packet from the received FIFO buffer and copy

it into the packetbuff. The operation was followed by a subsequent increment of the

”top pointer” to the next position. Processing of the packets (for forwarding etc) was

done in a separate process in the application layer called cyclically in set time. This

way we avoided overhead of the application processing.

28

Chapter 4

Buffer and Time Interval Analysis

In this chapter we present the mathematical analysis to derive the buffer size

which is optimal for loss free packet reception. We also further derive a suitable burst

size and wait time for each node given a fixed buffer size for each node in the entire

network.

4.1 Buffer Analysis

In this section, we present theoretical analysis for the selection of the buffer

size in order to achieve a targeted reception ratio under bursty traffic. We present

theoretical analysis for modeling packet forwarding at each node under bursty traffic,

and determine the minimal buffer size at a node, B, required to achieve lossless

forwarding within the forwarding network under worst case.

First, consider a single node L, who has n children as illustrated in Figure 4.1.

When an event occurs, these n children nodes each generate a burst of traffic which

is forwarded to node L. The traffic generated might be due to two reasons: i) the

29

Figure 4.1: Node L forwards the bursty traffic from n children nodes.

child nodes generates the packet due to the detection of an event, or ii) the child node

forwards packets it received from its own children due to events detected locally.

Because the information observed by each node is different due to the node’s

position to the event, the sensor used, or even the storage capacity at the node,

the number of forwarded packets during the burst period will vary. Therefore, let

bi, i = 1, · · · , n denote the number of packets to be transmitted from node i. We can

arrange these children in increasing order based on the number of packets they will

generate. Without loss of generality, we assume their ordering is b1 ≤ b2 ≤ · · · ≤ bn.

In order to determine the maximal buffer size which is required to minimize the

packet loss, we must consider the worst case scenario. Under worst case, all children

nodes begin sending their burst of traffic simultaneously. We must have the buffer

handle this situation by holding the excess packets till the packet can be forwarded

or consumed.

To simplify the analysis, we assume that all nodes i have the same sending rate,

br and let Sj =
∑n

i=j br to denote the total incoming packet rate (sending rate of

the children) of the (n − j + 1) nodes. Because the nodes are sorted by increasing

30

Figure 4.2: Worst case time series of burst traffic to Node L from n children nodes.

burst size and all burst begin simultaneously, Sj represents the packet arriving rate

at L for all children j, · · · , n. For example, node 1 has the smallest burst of traffic to

send, therefore it will finish sending packets first. After node 1 completes, the packet

arriving rate at node L is S2 =
∑n

i=2 br.

On receiving each packet, node L must process the packet and then forward it

to the next node; we use SL to denote the rate of processing and forwarding packets

at node L. Ideally, if SL is greater or equal to Sj, the single buffer slot size is able

to successfully handle the burst traffic from all children. Otherwise, an appropriate

size of Rbuff is required to store the excessive burst packets. Figure 4.2 illustrates a

bursty traffic scenario for n nodes in time series. The nodes are ordered by the packet

burst size (i.e., bi). We denote the end of a burst, as the time ti a node completes

31

sending its packets as shown in Figure 4.2. Consider the period [t0, t1], all children

nodes are sending packets and thus the total number of packets arriving at node L is

N1 = (t1 − t0)
n∑

i=1

br = (t1 − t0)S1. (4.1)

Since node L can process the packet at the rate of SL, the number of excessive packets

which must be buffered at t1 is

E1 = N1 − SL(t1 − t0). (4.2)

The second term in the above equation is the number of packets processed and

forwarded by node L in period [t0, t1]. Since node 1 finished its burst of packets

at t1, the number of packets arriving between t1 and the end of the next shortest

burst t2 is:

N2 = (t2 − t1)
n∑

i=2

br = (t2 − t1)S2. (4.3)

Similarly, the excessive packets at t2 is

E2 = N2 − SL(t2 − t1). (4.4)

In general, the excessive packets is

Ei = Ni − SL(ti − ti−1). (4.5)

To guarantee that the buffer can store all the excessive packets, the buffer size B

needs to be large enough to hold all the excess packets accumulated in each t period

32

Figure 4.3: Sporadic burst and how they are assumed.

until SL ≥ Sj. Without loss of generality, we assume that at time tk, SL ≥ Sk. So

the total number of excessive packets at tk, which is also the optimal buffer size, can

be obtained as

Bopt = E1 + E2 + · · ·+ Ek

= N1 − SL(t1 − t0) +N2 − SL(t2 − t1)+

· · ·+Nk − SL(tk − tk−1)

=
k∑

i=1

Ni − SL(tk − t0). (4.6)

Hence we get the expression to find the optimal buffer size above. The only issue

33

this does not consider is the fact that multiple bursts can occur between a single

burst period of the node taking the longest amount of time to send. We then have

to simplify the case by assuming intermittent small bursts can be assumed similar to

a long burst of average burst rate. If we do so we can simplify the mathematics and

hence use the above equation to find the optimal buffer size based on this.

For example consider Figure 4.3; we see that the burst from node j is sporadic.

We find that it ends a little after time t1 and begins a little before tk again. But for

our simplicity sake we will assume that the burst is of size a little greater than tk so

we can assume it to be one long burst. We thus have found that we can successfully

find the buffer size based on these equations. The buffer sizes obtained are all the

worst case values.

Using this model we can find the ideal buffer size for perfect reception. However,

since memory in sensor devices is a scarce resource, practical implementation of Rbuffs

of these sizes may not be feasible.. This brings us to a very compounding problem

which requires us to engineer a solution which can use fixed buffer sizes but will still

not result in packet drop or will limit the packet drop.

4.2 Burst Size determination

Let us assume we are now only given a fixed buffer size of B. We want to achieve

the minimal packet drop given the constraint on buffer size which can be achieved.

Our goal is to find out what is the maximum number of packets we can send per burst

(burst size per child node) in order to attain optimum packet reception. Firstly, when

we consider a burst we assume that rate of the burst is fixed for all nodes. Secondly, we

consider that the forwarding within the network is sufficiently balanced. This makes

34

sure that the number of levels in the network forwarding tree is as minimal as possible.

This is an important assumption for two reasons. It reduces the number of multi-hop

packets being forwarded and secondly, it reduces the overall energy consumption due

to communication. Thirdly, we assume that each child node has knowledge of the

number of siblings it has.

4.2.1 Bursts due to events

Consider a single node consisting of n children as shown in figure 4.4. Each

child has a burst size of b1, b2, b3 · · · bn. When an event occurs (as shown by the grey

area), all the children nodes start to sense the event and start forwarding bursts. We

are interested in only a single event. Let the parent node receiving the burst have a

buffer of size B. We may find various burst lengths. In addition, we can have multiple

children sending same burst while other children may send longer or shorter bursts.

Devices may require large bandwidth to send data or may need to only piggy-back

the data, within a single packet based on their bandwidth requirements. Determining

the burst size can vary based on classification of the nodes on these factors. Consider

a camera, as an example, sending an image over the network. It will require 2 or 3

packets to send one complete image when compared to a temperature sensor, which

can fill data from multiple events into a single packet. We therefore should distribute

the packet bandwidth among the nodes based on the function they perform.

Each child sends bursts based on the bandwidth it requires. This bandwidth is

dependent on the function the sensor node performs and the amount of information

the node wants to send through the packets. In general we can assume that one node

sends the smallest burst size and represent other bursts as a multiple of the smallest

burst. This way we can solve for the smallest burst and obtain the other set of burst

35

Figure 4.4: Bursty traffic.

sizes.

We can generalize the above condition and represent the total burst size bt which

the buffer must be capable of storing. This can be given by the expression.

bt =
n∑

i=1

bi (4.7)

We represent the burst size of each child in terms of the smallest burst size bl

in the whole network by a ratio ri such that bi = ribl then we can rewrite the above

equation as:

bt = bl

n∑
i=1

ri (4.8)

We note that the above expression is a function of the smallest burst size the parent

receives. Since the buffer must be big enough to hold these burst packets:

36

Figure 4.5: Buffer representation.

B ≥ bt.

Forwarding nodes will have higher amount of traffic because they must cater to bursts

which children forward from lower nodes. This increases the buffer requirement for

such nodes.

4.2.2 Burst from forwarding nodes

Before we look at the expression for deriving burst size, we discuss about

the forwarding technique we will incorporate. The forwarding technique plays an

important part in determining the buffer size. Further more the forwarding technique

we choose helps us reduce buffer requirements. Let us assume we start with a simple

tree based setup as shown in figure 4.5. Let the root node have n children with buffers

sizes of B1, B2, B3 · · ·Bn respectively. The root node will have a buffer size of B. Let

37

Bf be the part of be which will accumulate all the forwarded packets. One simple

way of forwarding would be to forward all the packets from the children to the parent

simultaneously. This means the parent would have to accommodate the packets in

the n buffers B1, B2, B3, · · ·Bn, simultaneously. We have

Bf = B1 +B2 +B3 + · · ·+Bn

Consider nodes in the upper levels of the tree which forward large quantities of data.

This would increase the buffer sizes drastically because you will be fusing packets

from the buffers of all the children. This will waste memory space.

We can also send one packet from buffer of each child, one at a time, wait for

the buffer of the parent, to empty and perform the process again. The issue with

this is that the buffer would be under utilized. We also find, that the time between

two packet forwards will reduce considerably and result in blocking. This behavior

would be similar to a single buffered approach. Better improvement to this would be

to send k packets in each send. This will increase the time between two sends but it

will increase buffer requirement to

Bf = nk

A good optimum solution would be to use as little buffer as possible and also provide

enough time between two forwards so that we can buffer as much of the bursty traffic

as possible. We use a heuristic approach to forward the packets. This is represented

diagrammatically in the figure 4.6. The number of children the node has with a buffer

38

Figure 4.6: Optimum way of buffering.

of size greater than 1 is nb. We achieve a smaller buffer size to capture forwarded

packets by breaking the buffer of the children into several equal segments. We will

consider the number of segments to be equal to the number of children the node has

which have buffers limited to a minimum of 2. If a nodes has only one child we still

consider the buffer of the child as the union of two separate equal segments.

Bf =
B1 +B2 +B3 + · · ·+Bn

max(2, nb)

Bf =

∑n
i=1Bi

max(2, nb)
(4.9)

This implies that we utilize less buffer space if we split the sending of a bulk of packets

into smaller segments. We will however reduce the time between two sends. This can

have the implication that we might be blocking when we receive a packet and end up

losing the packet. We draw a fine balance between the two parameters and try to get

the best optimum solution.

39

Now that we have arrived at an optimum solution for the buffer size we can put

together all the equations we have derived and write the effective buffer size for a

node containing n children and nb children with buffers, in general. We can hence

write this as

B = Bf + bt

B =

∑n
i=1Bi

max(2, nb)
+ bl

n∑
i=1

ri (4.10)

The expression obtained is a function of bl. This is because the values of all buffers

of the children will be a function of bl. Our aim is to find bl so we can calculate the

burst sizes using the ratios. To do this we are given the largest buffer size we can use

as B. We find out the largest buffer size being used in the network, which will be

a function of bl using the analysis described above. By equating the two values and

solving for bl we can obtain the value of the smallest burst size in the network. Using

the bl value we can obtain the respective burst sizes for each node.

We must also take note that leaf nodes don’t need a buffer as they do not receive

any packet. They merely generate packets. We must take care that we ignore leaf

nodes when we are doing the above analysis and consider their buffer size to be 0.

40

Figure 4.7: An example of how optimum burst size can be obtained.

4.2.3 Example Network

An example network which has the burst sizes and buffer sizes represented is

shown in 4.7. Here we use bl to represent the smallest burst. Initially we categorize

all nodes as four different types based on the burst rate or bandwidth they may

require. This process gives us the value of ri which we discussed earlier and makes

the burst size in the entire network a function of bl. We consider ri values to be 1,2,4

and 5 respectively in the above example. By applying the formula at each node we

obtain results for the size of the buffer. We note that each node has the buffer size

and burst size in terms of bl. On observation we find that the highest buffer size we

have consumed is 17bl. We then equate this to the given buffer size of say 15. We

obtain bl to be about 1 packet. The four burst sizes can hence be written as; 1, 2, 4

and 5 packets. Fractions can be rounded off to obtain a generic result.

41

4.3 Wait time analysis

Another parameter which is a function of the Rbuff size is the time the Rbuff

holds packets before we pass the buffer to the application layer for forwarding and

processing. Wait time is only significant for nodes which receive forwarded packets.

The buffer size and wait time are inversely related. If a node has a smaller buffer it

has to process much quicker and hence the time we can wait will be much shorter.

If we increase the buffer size we can handle or backup more packets and hence we

can wait longer to capture more bursts. In our analysis we will divide the approach

into two parts. In the first part we will try to see how we can decide what should

be the wait time that nodes, consisting of only leaf nodes as children, must send,

given a fixed average time between two events. Once we establish the sending times

of the lower nodes we will then proceed to find the time of the upper nodes which

must gradually decrease so that it can accommodate the excess packets that arrive

suddenly.

4.3.1 Lower nodes and leaf nodes

Nodes which are composed of only leaf nodes as children, in the network, will

generally tend to have the least amount of packet and traffic activity. Further more

leaf nodes tend to send data bursts randomly. We hence cannot have a deterministic

time with which these nodes will send. Nodes which contain only leaf nodes however,

receive random inputs but can send data out in a determined fashion. We can hence

forward data in a deterministic fashion. We derive a wait time for such nodes. Let

te be the average time between two events. In most cases the events can be modeled

as a Poisson distribution. We are only interested in catering to one event. A single

42

event will lead to a single burst from all the leaf nodes in the same vicinity. The

bursts are then collected by the buffers and then processed and forwarded. The time

to do this must be such that it completes the forwarding of packets within the time

the next event can possibly occur. Since we are dealing with random event we cannot

pin point the exact time events will occur. We can however model our events and

predict a suitable likelihood for time between two events which will work well for our

purpose. Let us assume this time is denoted as t. The time t is hence the time within

which there is very less likelihood that more than one burst will arrive. Since t is the

maximum time the parent node can incur, it must also include the processing time

of the parent. Let us denote the processing time the parent takes to process a single

packet as tp. Since we have to process B packets of the buffer, in total we will incur

tp.B time to process the packets. Let us call the remaining time as tw.

tw = t− tpB (4.11)

We must now return to the method of forwarding we described in the previous section.

Since the parent itself will form the child to a upper level node, we need to split the

forwarding of the buffered packets into nb parts. Here nb represents the number of

siblings the parent has which have a buffer size greater than zero. This value is

subject to a minimum of value of 2. We need to do this because the forwarding of the

packets in the buffer is done in similar segments. We can evenly distribute between

each burst segment, the time wait as,

43

tw
max(2, nb)

(4.12)

4.3.2 Higher level nodes

The approach to higher level nodes is the same. The main difference will be the

way we choose the value of t. We have to make sure that the value of t is less or equal

to the least time the children take to forward a single burst. In general we can write,

t = min(t1, t2, t3 · · · tn)

We proceed to find waiting time tw and split tw by using the method we mentioned

for lower nodes. We can obtain tw by using the equation (4.12) given above. We

see that firstly, lower nodes send at much slower rates. This rate should be as high

as possible but small enough to capture only one burst at any given moment, with

highest likelihood specified. Secondly we will find that the wait time and burst sizes

are dependent on the number of children. Nodes must forward faster and wait lesser

time when the number of children are more. Thirdly, the buffer size and wait times

are inversely related. If we want to reduce buffer space we reduce the time we wait

and end up processing most of the time and waiting for very little time. If we want

to increase wait times to capture more bursts we have to increase buffer which will

reduce the maximum packet size we can possibly send.

44

Chapter 5

Experimental Results

In this section, we present experimental analysis of the Rbuff approach using

the Contiki OS. We will first present the experimental setup and the platform we

performed our tests on. We performed two specific type of analysis. First, we have

test the optimum Rbuff size and examined average buffer utilization. Then we adjust

the burst rate and sending times for a given fixed Rbuff length. We will show that

we can achieve very good performance in terms of packet reception using any Rbuff.

5.1 Experimental Setup

5.1.1 Physical motes

We briefly describe some features of the TelosB motes. The motes are small

sensor network nodes which run on the MSP430 micro-controller. They have a limited

size of memory in the order of 512 kilobytes and vary for different types. Motes are

equipped with a Zigbee based 802.15.4 radio and have an built-in Texas Instrument

CC2420 radio chip capable of performing the physical layer operations of Zigbee. The

45

CC2420 radio has 128 bytes of buffer space. This space can be used to store incoming

packets.

The motes contain a number of sensors including temperature sensors. They

have in-built LEDs which can be used for debugging purposes. The motes are

programmable through USB. The motes are equipped with flash memory for program

memory. This flash memory can be written a very large number of times. Each mote

has access to SPI bus. Debugging of printed text can be done through the SPI

interface. When a ”printf” statement is used, the mote uses the SPI to send the

characters through the USB to the computer the mote is connected to. This allows

powerful debugging and study of the motes operation.

To get an idea of the physical limitation of the operating systems radio stack on

the mote we will also mention the send and receive times. A single send takes the

order of 8 ms with all the protocol consideration taken into picture. A single receive

will take about 10 to 15 ms to reach the ”rime” layer of the Contiki operating system.

Any higher level processing will depend on the application blocking time.

5.1.2 Simulation

We perform the experiments using the simulation tool bundled with Contiki OS.

The simulator is developed in Java and is able to simulate the exact characteristics

of an MSP430 micro-controller on the TelosB mote. The simulator represents each

mote as a node, display the LED functionalities, simulate a unit disk based radio

environment and also registers collisions occurring in the network and in the radio

environment. The simulator is extremely powerful and can generate random nodes

and simulate real-time operations [17].

We assign each node a unique ID number and use that node ID number to perform

46

routing operations for the packet transmission. We created a code template which

contains a routing table and a set of parameters such as send rate, burst rate, burst

size, and node level to make the entire process generalized. The routing table is used

by each node to figure out the next node to which the packet has to be forwarded.

We use unicasting to forward the packets.

In the experiments we cater to packets lost through collisions by observing the

timeline. The timeline in the Contiki simulator marks collision events and we can use

it to clearly identify packet loss due to collision.

5.2 Optimum Buffer Results

We began our evaluation by measuring the effect of a Rbuff on receiving packets in

a single-hop network, to validate our claims that a optimum large Rbuff can reduce the

packet drop rates considerably. We then evaluated Rbuff performance in a multiple-

hop networks consisting of an unbalanced tree topology.

5.2.1 Single Hop Test

In order to validate the effect of Rbuff in a tightly controlled environment, we

use a straightforward single-hop network topology to study the performance of Rbuff.

The network consists of 5 senders and one receiver. We generate the burst traffic by

letting 5 nodes send a set number of packets (average of 40 packets) in a short period

(50 ms between each packet).

We need to find the optimal buffer size using equation we derived above. We

assume that the number of packets from each sender during the burst period follows

a normal distribution, N (µ, σ). Here we set µ = 10 and σ = 5. The senders transmit

47

packets at a constant rate of 2pps. Since we have 5 senders, the burst rate arriving

at the receiver is 10pps. To mimic a random occurred event, the time when the burst

packets are sent is randomized. Thus, in the worst case all senders are transmitting

packets; thus, (tk−t0) is the whole period to completing the burst traffic, ie.,
∑
N/S1

and S1 = 5× 2pps = 10pps.

In practice, the receiver node usually needs to process and forward the received

packets, which is denoted by SL in equation for optimum buffer. Thus, we can vary

the burst load at the receiver by setting SL as a fraction of the burst arriving rate

(S1).

We plot the optimal buffer size (Bopt) against different values of SL in Figure 5.1.

As shown in the figure, if SL = Si, the optimal buffer size is one as the rate of

processing and forwarding packets at the receiver is fast enough to pull all the

incoming packets from its radio driver. On the contrast, when SL is reduced to

1
10

of the burst rate, it requires a much larger buffer size to handle the excessive

incoming packets.

We compare Rbuff and the existing Contiki’s communication stack under three

burst loads. In addition, to illustrate the effect of the buffer size, we set the actual

buffer size as a fraction of the optimal value, e.g., B = pBopt, p ∈ (0, 1]. The results

are shown in Figure 5.2 with varying p for Rbuff. Even p = 0.5, i.e., we use only half

of the optimal buffer size, Rbuff improves the packet reception percentage by more

than 50% under all the burst sending rates. The gain achieves more than 90%, when

p = 0.8 and p = 0.9. For the optimal Rbuff size, we observe no packet drop rate.

This confirms our analysis of the optimal Rbuff size, which is large enough to hold

all the excessive packets. The second observation is that for the single buffer case,

the packet reception ratio is increased from around 37% to 18%, while for Rbuff with

48

0	

5	

10	

15	

20	

25	

30	

35	

	
 	
 1/10	
 	
 	
 1/5	
 	
 	
 	
 3/10	
 	
 	
 2/5	
 	
 	
 	
 1/2	
 	
 	
 	
 3/5	
 	
 	
 	
 7/10	
 	
 	
 4/5	
 	
 	
 	
 9/10	
 1	
 	
 	
 	
 	
 	
 	

O
p-

m
al
	
 b
uff

er
	
 s
iz
e	

(B

op
t)	

SL	
 =	
 (
 x	
 bursty	
 rate)	

Figure 5.1: Optimal buffer size against SL. x -axis is the fraction, denoting SL relative
to the burst rate.

all p, the effect of processing and forwarding rate (SL) is reduced as p increases. For

example, when p = 0.5 and 0.8, the differences of drop percentage between SL=1

packet/sec and 4 packets/sec are 25% and 8%, respectively. All the three processing

and forwarding rates have no packet dropped with the optimal Rbuff.

In conclusion, we can see that Rbuff with various p delivers a better performance

than the default Contiki communication stack.

5.2.2 Multi-hop Test

In the second set of experiments, we use an unbalanced tree network topology

to evaluate the performance of Rbuff in the multi-hop environment. The network

topology is shown in Figure 5.3. All nodes, except the leaf nodes and the root,

49

Figure 5.2: Packet reception ratio for different buffer sizes (in single-hop network
test.)

forwards packets to the root. Data packets are sent from the leaf nodes at a constant

rate of 2pps and follows the normal distribution with µ = 6, σ = 3. Since the

burst arriving rates to each intermediate node depends on the number of children, we

calculate the optimal buffer size for the intermediate nodes individually.

As in the previous case, the results of packet reception ratio at the root node for

varying SL and buffer sizes are plotted in Figure 5.4. The results exhibit two similar

patterns as in the single-hop case. First, we find that using half of the optimal buffer

size cant reduce the packet drop rate by around 40%. Second, the Rbuff succeeds in

reducing the packet drop rate as the SL is decreased for each buffer size. However,

the improvement from p = 0.8 to p = 1 in the multi-hop case is less than that of

50

18

17

1116

2

1

12

10

13

4

3

5

8

14

15

6

7

9

Figure 5.3: Unbalanced tree topology

the single-hop case. This is because for the single-hop case, the optimal buffer size is

calculated based on its children, which are the only senders, while the child of the root

in Figure 5.3 aggregate the packets from three paths with different burst sizes. Thus,

the optimal buffer size on the root may not be large enough to hold the excessive

packets from all the senders.

51

Figure 5.4: Packet reception ratio for different buffer sizes (in the multi-hop
unbalanced tree topology)

5.3 Fixed Buffer Results

We have verified the benefits of the fixed Rbuff based approach. Given a fixed

buffer size we can calculate the burst sizes and wait times. In the next set of

experiments we verify, that the fixed buffer approach we described earlier, is more

efficient than a single buffer approach, in conditions where application is blocking and

traffic is bursty.

5.3.1 Experimental Setup

The experimental setup consists of 8 nodes. The 8 nodes are arranged as an

unbalanced tree. Each node sends a fixed burst size represented as a ratio of the

52

Figure 5.5: The test setup for fixed buffer, consisting of 8 nodes in an unbalanced
tree.

smallest burst size (bl). Nodes at level 2 and above have buffers to hold the bursts

generated by their children. We hence calculate the buffer sizes for each node.

In our experiments we selected various parameters for the above network which

we used to derive buffer sizes and the forwarding times. We select buffer sizes of 12,

15 and 18 packets. Considering a burst size of bl we calculate buffer size in terms

of burst size we need to store. The solution for the buffer sizes is in figure 5.5. By

equating this to maximum buffer size we are permitted we find the burst sizes. In

some cases we find that the burst size is a fraction. To represent such burst sizes we

extend and change the wait times of these nodes such that we obtain whole number

values for their burst size.

We also have to find out how many events will occur in total and the interval

53

between these events. The event times are generated by a random Poisson distribution

which has a fixed mean time. We vary the mean time to different values such as 6 and

10 seconds. We also generate ten random intervals which are about the mean times

generated above. We find the wait times for each node based on this event time. For

wait time we consider a value equal to about two-third the average event time. We

further calculate the wait times for level 2 and level 3 nodes based on the wait times

for level 1 nodes. We make use of our model to derive these values.

To make the events localized we trigger the bursts from selected nodes only. The

set of nodes which are selected for being triggered are also random. This simulates the

real world sensor environment. Overall we run several different random combinations

of the localized set and the randomly generated event times. We then average the

results to get the overall performance of the entire network. We perform several

experiments to show that.

5.3.2 Latency

We define latency as the time it takes a single packet to reach its destination

from its source. We consider latency as it is an important factor in the network when

real-time delivery is significant. An application that would require such a real time

requirement is voice.

Latency in our network depends on the wait times. Since we wait to buffer

packets, we do not dispatch the packet immediately and make the packet wait. This

increases the latency in buffered approach. This is not a problem in single buffered

approach, because the packet is immediately forwarded. We can improve latency by

reducing the wait time between processing. This will however increase the chance we

will drop packets due to application blocking.

54

Figure 5.6: Table showing latency for different burst rate for single and multi-buffered
approach.

We perform the experiment by assuming an application processing time of 36

micro seconds. We also assume the time between events is 6 seconds on average. We

generate a Poisson distributed series of random values with this as the mean value.

Experimental results are shown in figure 5.6 show that for higher burst rates

the amount of latency is almost 4 seconds. This is explained as the wait times we

consider is close to around 4 seconds (2
3

of 6 seconds) . At lower nodes we wait for

4 seconds before forwarding the packet to capture at least one event. In the case of

lower burst rates (such as 16 pkts/sec), since we receive lesser packets we forward the

packet earlier. The packet gets forwarded in the wait period it is received in. In later

cases (higher burst rates) the packets are stored for delivery in the next wait time

period as the buffer is filled quickly.

In the case of single buffer approach the packet is immediately sent up the tree.

The latency is very small and in the order of the application processing time. We see

at maximum a latency of about 100 ms.

5.3.3 Collisions

Collisions occur when multiple nodes send simultaneously. When nodes sending

bursts and those nodes forwarding data send almost simultaneously we lose the packet

due to collision and expend more energy sending the packet again. Collisions are very

55

Figure 5.7: The traffic between two events when single buffer is used.

Figure 5.8: The traffic between two events when fixed-buffer is used.

common in bursty traffic because many nodes send data simultaneously.

We observe in the case of single buffer that the traffic is clustered to the time

the event occurs. In the figure 5.7, we observe how packet traffic is sent between

two events. We see that since packets are send immediately to the parent, we see a

distinct band of radio silence separating two sets of events. During this period there

is no packet traffic.

In contrast in our approach by buffered forwarding, produces a more distributed

radio traffic as shown in figure 5.8. We see that the radio silence which existed in

the single buffer cases is filled with areas where packets are being forwarded. We

perform the experiment to measure collision by assuming an application processing

time of 36 micro seconds. We test for burst rates of 16, 32, 64 and 128 pkts/sec. The

result is as shown in figure 5.9

We find that in most cases collision is very high in single buffered implementation

because of the clustering effect we observed above. The distribution of the packets,

the amount of collision in fixed-buffer case is more reduced. We also find that at high

bursts rates the collision loss is smaller. This is because the burst rate becomes very

56

Figure 5.9: Number of collisions in both cases

small compared to the forwarding rate and hence collision between burst packets and

forwarded packets is reduced. We also see increased collision at higher burst rates

in fixed buffer case. This is due to the larger influx of packets and longer processing

time which collide with the next set of bursts. In general fixed buffer implementation

is better at reducing collision than single buffer implementation. Therefore, the

implementation is more energy conservative.

5.3.4 Packet loss with varying burst size

The network we tested on represents a good estimate for burst size in the network

which will provide acceptable packet loss for given constraints in buffer memory. We

however want to study how the network will behave if we increase the burst traffic

without increasing the buffer size.

57

Figure 5.10: Packet loss versus the burst size in percentage

To see how our buffered approach performs over single buffer approach, we try to

increase burst size proportionally. We initially begin with a burst size of 100 percent

of the calculated optimal burst size. We increment the burst size by 125, 150 200 and

300 percent and then see how both the setups perform. We perform the experiment

to measure collision by assuming an application processing time of 36 micro seconds.

We test for burst rate of 64 pkts/sec. The result is as shown in figure5.10 First,

we observe that we experience loss of about 20-30 percent in the most optimal case.

This is because the events occur randomly and tend to occur asynchronous to the

wait time periods. In some cases, nodes end up processing packets when packets are

arriving. Due to the randomness of the network this cannot be avoided. Furthermore

we also lose packets due to the collision we explained earlier.

58

We also find that as burst size increases the amount of loss sustained by the

fixed buffer model is more sharper. In the case of single buffer, the loss is very

drastic initially but later becomes more stable (flatter slope in the graph). In the

fixed buffer implementation the loss rises sharply and tends to become equivalent to

the single buffer case at high burst sizes. This is because in at high burst sizes the

buffer is completely occupied and the nodes behave very similar to the single buffer

implementation.

5.3.5 Burst Rate performance

The purpose of buffering is to handle high burst rate traffic. When traffic burst

rate and the application processing time is large, then the application will drop

packets if only a single buffer is used. We can clearly see that a buffered approach

would improve the performance when burst rate is so high, that the time difference

between two packets arriving is much smaller than the application processing time.

We perform our tests with a fixed application processing time of about 36 ms. We

also keep burst sizes at 100 percent optimum value. We vary the burst rate between

16, 32, 64 and 128 pkts/sec. At around 32 packets per second the time between two

packet arrivals just about coincide with the time it takes to process a single packet.

The result as shown in figure 5.11.

The single buffer approach actually performs better at low burst rates. This is

explained by the lower application processing time compared to the forwarding time.

At 16 pkts/sec two packets are sent with a very large time period of about 60 ms.

Since the application processing time is small (38 ms) the forwarding happens faster

than the burst. Fixed buffer however experiences a slight reduction in performance

as the burst period is very long and results in potential overlap between forwarding

59

Figure 5.11: Packet loss versus the burst rate

of upper nodes and the next burst of the lower nodes.

However as the burst rate rises the we find the single buffer implementation

deteriorate rapidly in terms of packet reception. The fixed buffer however maintains

a stable packet loss at even higher rates. This is due to the buffering of the bursts and

the post processing of the packets. Traditionally application requiring higher burst

rates will also require larger processing time per packet for decoding purposes like in

the case of video. However a single buffer approach would give a better result at high

burst rates, only if the application processing time is very small. This is why single

buffer implementation is less efficient as lowering processing time is difficult at high

burst rates.

5.3.6 Packet loss with varying application processing time

A blocking application can lead to packet drop. When an application is

processing we cannot receive any packets. Because we buffer the packets we are able

60

Figure 5.12: Packet loss versus the application processing time

to hold more packets before application begins execution in our fixed buffer model.

If burst sizes are large and burst rates are high, we encounter very high packet drop

as we have shown in single buffer case. Longer application time has an effect on the

packet loss for single buffer case.

We make the application perform for a longer time and block the processor. We

then test for different application times in both single buffer case and fixed buffer

case. We keep the burst rate at 64 pkts/sec and the burst sizes at 100 percent of the

optimal values. We vary the application times between 20, 24, 36, 75 and 137 ms.

We find the result in figure 5.12

We clearly find that at low application time single buffer model approaches the

multi-buffer model. In fact at lower burst rates and lower application time the single

buffer approach would perform as well or in some cases better than the fixed buffered

approach. As the application time increases the packet loss in the former case begins

increasing. In the case of fixed buffer we see the packet loss virtually remain stable.

61

The buffered approach hence stymies the effect of a blocking application. Only at

very large application processing times (which almost near the wait time) the fixed

buffer approach shows increase in packet drop.

5.4 Random Network Test

The last experiment we perform is a large randomly generated network topology,

which is shown in Figure 5.13. The setup consists of 50 nodes and one sink node.

Data from all nodes are routed to the sink node, which is shown in the red circle.

We consider the scenario that there are several interesting events happened at some

random locations in the network. When the nodes around detect the events, they

start to send packets along the forwarding paths to the sink. Forwarding path is

shown as grey line with arrow in the figure.

Note that routing paths from two different source nodes may joint at the same

forwarding nodes as we can see in Figure 5.13.

Each event induces a burst of packets from all nodes around. Like the above

two experiments, we also assume that the burst size of each source node follows a

normal distribution with certain mean and variance. All sending and forwarding

nodes transmit packets at a constant rate of 1 packet per second. We do not choose

a high rate because a high rate would cause a large number of collision due to the

density of the network, and makes it difficult to distinguish from packet drop due to

the inadequate buffer size.

To verify that Rbuff is able to hold excessive packets under burst traffic situations,

we chose to measure the buffer occupancy of each node. The reason is that by

this point, we have already seen that Rbuff can improve the packet drop rate

62

Figure 5.13: A random network topology.

through the previous experiments. We have also seen that a fixed buffer approach

performs better in most cases compared to a single buffer approach. In those more

controlled environments, however, because the burst traffic from the source nodes

are homogeneous in terms of number of forwarding nodes and network topology,

we can expect that the buffer occupancy of each node to be almost the same. In

this random network, because of the randomness of events and the heterogeneous

forwarding paths, it is helpful for us to understand the behavior of Rbuff by measuring

the buffer occupancy of each node in the network.

63

We vary the burst size by setting µ = 6, 8, 10, and σ = 3, 4, 5, respectively. We

repeat each burst size 5 times and calculate the average. The results are shown in

Figure 5.14. In each figure, we plot the occupancy of Rbuff for each node, which we

defined as the percentage of used buffer of the node.

Mean	
 =	
 6	
 Std	
 =3	

0	

20	

40	

60	

80	

100	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	
 30	
 31	
 32	
 33	
 34	
 35	
 36	
 37	
 38	
 39	
 40	
 41	
 42	
 43	
 44	
 45	
 46	
 47	
 48	
 49	
 50	

Bu
ffe

r	

O
cc
up

an
y	

in
	
 %
	

B_opt	
 -­‐	
 0%	

Mean	
 =	
 8	
 Std	
 =4	

0	

20	

40	

60	

80	

100	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	
 30	
 31	
 32	
 33	
 34	
 35	
 36	
 37	
 38	
 39	
 40	
 41	
 42	
 43	
 44	
 45	
 46	
 47	
 48	
 49	
 50	

Bu
ffe

r	

O
cc
up

an
y	

in
	
 %
	

B_opt	

Mean	
 =	
 10	
 Std	
 =5	

0	

20	

40	

60	

80	

100	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	
 26	
 27	
 28	
 29	
 30	
 31	
 32	
 33	
 34	
 35	
 36	
 37	
 38	
 39	
 40	
 41	
 42	
 43	
 44	
 45	
 46	
 47	
 48	
 49	
 50	

Bu
ffe

r	

O
cc
up

an
y	

in
	
 %
	

Node	
 Number	
 	

B_opt	
 -­‐	
 0%	

Figure 5.14: Buffer behavior in the random network with respect to different burst
traffic

We see that the occupancy percentage of each node varies from 0% to around

60%. Nodes, which are neither the source nor on the forwarding path, does not use

the Rbuff, having a 0% occupancy. Otherwise, the occupancy of nodes depends on its

position on the forwarding path. For example, most source nodes have the occupancy

percentage around 20%, while the forwarding nodes have higher percentages as burst

64

traffics aggregate at the forwarding node. It is also interesting to note that nodes

in the case of (µ=10, σ=5) have higher occupancy Rbuff than those in (µ=6, σ=3),

because we have more burst traffics with a larger mean and variance of the number

of packets from the source nodes.

Finally, we observe that the buffer size is over-provisioned as the optimal buffer

size is not fully used. This is because we average the buffer occupancy over a number

of trials. Events occur randomly and it is not necessary for a given node to forward

data to the root all the time. On an average case over multiple runs we will find that

buffer usage is mostly, well below 100 percent and averages at 20 to 30%.

Nonetheless, we believe that the buffer size could be determined either based on

the network traffic in a specific application, or configured at run-time. Both have its

pros and cons. For example, although the run-time configuration of the Rbuff size

does not waste unused memory allocated for Rbuff, it may not be adequate to handle

sudden burst traffic when workload changes drastically. On the other hand, the static

Rbuff is not flexible enough because we need to reprogramming the sensor nodes as

the expected workload changes.

65

Chapter 6

Related Work

Sensor Networks has become a growing field of study in the last decade.

Monitoring and detection has improved thanks to vast advances in sensor technology

and hardware. Volcano monitoring [6],[7],[8] , Habitat monitoring for migratory birds

and animals [3],[4],[5] Wearable Computing [10], [11],[12], Health Monitoring [1], [2],

Intrusion Detection [18],[19] and Industrial Monitoring [13] are some of the common

applications sensor networks find use for in the modern world. As sensor networks

become more popular they are ushering in a new era of computing which is ubiquitous

and pervasive in nature [20],[21]. As these the applications become more complex

demand for data from these networks will increase. With voice and video becoming

available through these sensors, data rates will eventually increase and data sizes to

be transferred will go up drastically. Higher data rates will lead to higher collision,

data loss and congestion. We find that congestion still remains a very serious problem

in the research community. Increasing the number of sensors for sensing will result in

much better resolution and accuracy of data but will inevitably lead to congestion.

It becomes a very prominent issue when data is bursty and large number of nodes

66

try to forward data to a common sink. In [22] the author explains how congestion

is a predominant problem in sensor based systems along with collision. He mentions

a form of congestion control is necessary to improve throughput. A large amount

of research has been dedicated to to finding a solution to the problem of congestion

and improving packet reception rate [23], [24], [25], [26], [27]. One approach to

addressing the problem are MAC layer protocols [28], [29], [30], [31], [32] which try

to provide collision-free communication mechanisms to sensor network application.

Various MAC layer implementations have been proposed. The synchronous protocols

T-MAC [31] and S-MAC [32] allow energy efficiency by synchronizing the wake time

of the nodes. During the period they are awake the packet is sent and recieved and

collision is avoided by the use of RTS and CTS acknowledgement. In T-MAC [31]

the wake period is adaptive, leading to a five fold improvement in performance. Some

of the MAC protocols, such as B-MAC [28], WiseMAC [29] and X-MAC [30], use

asynchronous duty cycle approach to let nodes periodically wake up and communicate

with each other. These protocols achieve energy efficiency under light traffic, while

the long occupancy of the preamble packets until the actual data delivery makes

them inadequate in case of bursty traffic. B-MAC [28] uses Clear channel assessment

to decide if the medium is free for transmission. It also implements a variable Low

Power Listening (LPL) duty cycle. Using this variable duty cycle, the time for which

the radio is switched on, for idle listening, is adjusted. WiseMAC [29] makes use of

the assumption that access points have unrestricted power supply. Thus the access

points regularly wake the nodes from sleep, thus try to reduce amount of energy

consumed and avoid collision. In X-MAC [30] the message preamble is made much

smaller. The initiating preamble is converted to a train of short pulses reducing radio

usage. When the listener wakes up from sleep the header is read and the listener

67

node responds. Some MAC protocols [33, 34] use a receiver-initiated transmission

such that the sender node stays actively silently until it receives the beacon message

from the intended receiver node. This results in reducing the amount of time a pair

of nodes occupy the medium and allow more of the contended data to be sent during

traffic bursts. Another work in which media access based technique is used is [35]. It

tries to provide reliable packet delivery using adaptive rate control. It focuses more on

access control and less on Congestion reduction. Some solutions implement efficient

algorithms and protocols, within the network, which try to avoid congestion. Most

of this is implemented in transport or network layer. In [36] they use three specific

steps to avoid congestion. They propose that i) Congestion is detected using channel

sensing ii) the status of the network is sent back to source termed backpressure iii)

Enables acknowledgements from sink which is used to reduce the rate of the source

to counter the congestion occurring. Their approach is more holistic, characterized

by the way the system as a whole behaves. Many transport layer protocols have also

been developed to reduce congestion such as [37], [23], [24], [27], [38], [25], [26] and

[39]. In [37], they propose congestion control to reduce congestion. They also claim

to reduce the energy expended based on controlling the acknowledgement rate to an

extent where meaningful data from the collective set can be obtained to required

accuracy. The authors in [27], deal with eliminating congestion by leading the data

to areas of lesser activity. The process is called Virtual sinking. A generic TCP based

transport layer protocol using congestion control is used in [24] to reduce congestion.

”Directed diffusion” is used in [23] to improve congestion. Data obtained is tagged

by attributes and caching of the data is done using the attributes based on interests.

Nodes of a particular interest get data of that attribute forwarded to them. Other

nodes having the same interest obtain their data former node’s cached data. In [38]

68

the author tries to use information about the number of downstream and upstream

nodes to reduce congestion. The congestion levels are found out using the buffer levels.

RCRT [25] is a reliable transport protocol, which adaptively detects and controls the

congestion at the sink nodes to avoid congestion collapse. Further, Zhang et al. in [26]

designed a window-less block acknowledgement scheme, called RBC, to address the

congestion and contention of bursty traffic in multi-hop sensor networks. Approach

in [39], uses a moving sink to tackle the congestion problem. By distributing the sink

among differnt nodes they prevent crowding of data towards a single node. The above

improvements are based on the fact that the packet loss is due to wireless medium and

collision [40]. They also do not offer a generic solution to problems in sensor networks

as their approach is specific to a certain protocol. The proposed Rbuff in this paper

is orthogonal to all those approaches, as we consider the incoming packet has already

arrived at the radio driver of the sensor node and the software communication stack

causes the packet drop. The idea of using a buffer to hold ingress packets in the

memory buffer is not new as it appears in Linux and other desktop operating systems

[41]. Some amount of insight into buffer performance and buffer management has

been illustrated in [27]. It gives very detailed explanation of the buffer limits using

mathematical Markov chain simulation. They discuss fairness of the buffer and also

how the size of the buffer can be used to perform congestion control. Our work is

closely related to their findings and adds more weight to a buffer based approach

above MAC layer to capture fast packets and avoid drops due to quick packets. Our

work makes the first attempt to add this idea in the resource constrained sensor OS

for handling bursty traffic. For example, in the Linux kernel, an incoming packet at

the NIC is first placed in a ring buffer, which belongs to the kernel address space.

The used space of the buffer is emptied when the packet is processed by higher layers;

69

incoming packets are dropped if the buffer becomes full. To avoid extra memory

copies, packets remains in the buffer when being processed. Sensor OSs differ from

general-purpose OSs, e.g., no separation between user and kernel space, constrained

memory size. Besides TinyOS and Contiki, there have been many other sensor OSs

dedicated for sensor nodes such as SOS, MantisOS [15], and Nano-rk [16]. Although

they use either the event-driven mode, thread mode, or the combination of both, they

all use the single fixed memory space. As the data rate and burst sizes increase the

single memory buffer model will have much lower throughput. These sensor OSs, with

their current radio stack design, will not be suitable for burst data or high data rates.

Our study shows that independent of the type of Sensor OS we consider, a multi-

buffer based approach at MAC/network level improves the performance (in terms of

packet reception) by up to 50 percent. Hence we find that this approach is a very

good way of reducing congestion in sensor networks which occur due to burst traffic.

70

Chapter 7

Conclusion

Modern day sensing requirements have grown to encompass highly bursty traffic

applications such as video streaming and voice transmission. Such applications require

large amount of processing and also produce a large burst of traffic. In our work we

consider the high data rate requirements of such devices and demonstrate the failure

of existing sensor operating systems in handling such high burst rate traffic.

Our study shows that we can achieve greater reception quality with the help of

multi-packet buffer (Rbuff) over the current single slot implementation. Our model

can be used to obtain a very accurate buffer size that would be required to reduce

packet loss to less than 10 percent. We observe that in most cases, the optimal buffer is

not used completely. Through our experiments, using a buffer of optimal size, we have

shown that we can reduce packet loss significantly, up to 60%. We understand that

memory in such systems is a luxury. Therefore we consider the practical limitations of

a sensor node having limited memory and processing capabilities. We show that, given

a set limited memory constraint on buffer size, we can calculate an ideal burst size

and processing wait time for each node. Experimentation on the Contiki operating

71

system clearly show that in case of such high rate and bursty traffic, a conservative

buffered approach provides superior packet reception when compared to a single buffer

approach. Our experiments show that even in memory limited scenarios the proposed

Rbuff approach performs significantly better at high burst rates and longer application

processing times than the single buffer implementations. We also achieve considerable

reduction in collisions improving the energy efficiency of the network. We observe up

to a 25% improvement in packet reception with a moderate fixed size buffer.

72

Bibliography

[1] Alexandros Pantelopoulos and Nikolaos G. Bourbakis, “A survey on wearable

sensor-based systems for health monitoring and prognosis,” Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, pp. 1

–12, 2010.

[2] S. Rost and H. Balakrishnan, “Memento: A health monitoring system for wireless

sensor networks,” in Sensor and Ad Hoc Communications and Networks, 2006.

SECON ’06. 2006 3rd Annual IEEE Communications Society on, 2006, vol. 2,

pp. 575 –584.

[3] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John

Anderson, “Wireless sensor networks for habitat monitoring,” in Proceedings

of the 1st ACM international workshop on Wireless sensor networks and

applications, 2002, pp. 88–97.

[4] Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael Hamilton, Alan

Mainwaring, and Deborah Estrin, “Habitat monitoring with sensor networks,”

Commun. ACM, pp. 34–40, June 2004.

73

[5] Hanbiao Wang, Deborah Estrin, and Lewis Girod, “Preprocessing in a tiered

sensor network for habitat monitoring,” EURASIP J. Appl. Signal Process., pp.

392–401, January 2003.

[6] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt

Welsh, “Fidelity and yield in a volcano monitoring sensor network,” in USENIX

Symposium on Operating Systems Design and Implementation, 2006, pp. 381–

396.

[7] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and

Matt Welsh, “Fidelity and yield in a volcano monitoring sensor network,”

in Proceedings of the 7th symposium on Operating systems design and

implementation, 2006, pp. 381–396.

[8] Wen-Zhan Song, Renjie Huang, Mingsen Xu, Andy Ma, Behrooz Shirazi, and

Richard LaHusen, “Air-dropped sensor network for real-time high-fidelity

volcano monitoring,” in Proceedings of the 7th international conference on Mobile

systems, applications, and services, 2009, pp. 305–318.

[9] Mitsugu Terada, “Application of zigbee sensor network to data acquisition and

monitoring,” Measurement Science Review, pp. 183–186, January 2009.

[10] Jovanov Martin and Raskovic, “Issues in wearable computing for medical

monitoring applications: a case study of a wearable ecg monitoring device,”

in Wearable Computers, 2000. The Fourth International Symposium, 2000, pp.

43 –49.

[11] Dirk Trossen, Dana Pavel, Glenn Platt, Joshua Wall, Philip Valencia, Corey A.

Graves, Myrna S. Zamarripa, Victor M. Gonzalez, Jesus Favela, Erik L?vquist,

74

and Zsuzsanna Kulcs?, “Sensor networks, wearable computing, and healthcare

applications,” IEEE Pervasive Computing, vol. 6, pp. 58–61, 2007.

[12] James A. Davis, Andrew H. Fagg, and Brian N. Levine, “Wearable computers as

packet transport mechanisms in highly-partitioned ad-hoc networks,” Wearable

Computers, IEEE International Symposium, vol. 0, pp. 141, 2001.

[13] V.C. Gungor and G.P. Hancke, “Industrial wireless sensor networks: Challenges,

design principles, and technical approaches,” Industrial Electronics, IEEE

Transactions on, vol. 56, no. 10, pp. 4258 –4265, 2009.

[14] M Huang, “Visualization of urban transportation data generated by wireless

sensor network using modern approaches,” .

[15] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth, Brian

Shucker, Charles Gruenwald, Adam Torgerson, and Richard Han, “Mantis os: an

embedded multithreaded operating system for wireless micro sensor platforms,”

Mobile and Network Applications, vol. 10, pp. 563–579, 2005.

[16] Anand Eswaran, Anthony Rowe, and Raj Rajkumar, “Nano-rk: An energy-

aware resource-centric rtos for sensor networks,” in IEEE International Real-

Time Systems Symposium, 2005, pp. 256–265.

[17] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam

Dunkels, Thiemo Voigt, Robert Sauter, and Pedro José Marrón, “Cooja/mspsim:

interoperability testing for wireless sensor networks,” 2009, pp. 27:1–27:7.

[18] Ana Paula R. da Silva, Marcelo H. T. Martins, Bruno P. S. Rocha, Antonio A. F.

Loureiro, Linnyer B. Ruiz, and Hao Chi Wong, “Decentralized intrusion detection

75

in wireless sensor networks,” in Proceedings of the 1st ACM international

workshop on Quality of service & security in wireless and mobile networks, 2005,

pp. 16–23.

[19] Chao Gui and Prasant Mohapatra, “Power conservation and quality of

surveillance in target tracking sensor networks,” in Proceedings of the 10th annual

international conference on Mobile computing and networking, 2004, pp. 129–143.

[20] Satyanarayanan, “Pervasive computing: vision and challenges,” Personal

Communications, IEEE, pp. 10 –17, 2001.

[21] Deborah Estrin, David Culler, Kris Pister, and Gaurav Sukhatme, “Connecting

the physical world with pervasive networks,” IEEE Pervasive Computing, vol.

1, pp. 59–69, 2002.

[22] Sameer Tilak, Nael B. Abu-Ghazaleh, Wendi Heinzelman, Sameer Tilak , Nael

B. Abu ghazaleh , and Wendi Heinzelman , “Infrastructure tradeoffs for sensor

networks,” 2002.

[23] Ramesh Govindan Chalermek Intanagonwiwat and Deborah Estrin, “Directed

diffusion: A scalable and robust communication paradigm for sensor networks,”

in Annual International Conference on Mobile Computing and Networking, 2000,

pp. 56 – 67.

[24] S. Venkatesan Yogesh G. Iyer, Shashidhar Gandham, “Tcp: A generic transport

layer protocol for wireless sensor networks,” in International Conference on

Computer Communications and Networks, 2005, pp. 449 – 454.

76

[25] Jeongyeup Paek and Ramesh Govindan, “RCRT: rate-controlled reliable

transport for wireless sensor networks,” in ACM Conference on Embedded

Networked Sensor Systems, 2007, pp. 305–319.

[26] Hongwei Zhang, Anish Arora, Young ri Choi, and Mohamed G. Gouda, “Reliable

bursty convergecast in wireless sensor networks,” in The ACM International

Symposium on Mobile Ad Hoc Networking and Computin, 2005, pp. 266–276.

[27] Andrew T. Campbell Jon Crowcroft Wan, Shane B. Eisenman, “Siphon:

Overload traffic management using multiradio virtual sinks in sensor networks,”

in ACM Conference on Embedded Networked Sensor Systems, 2005, pp. 221 –

235.

[28] Joseph Polastre, Jason Hill, and David Culler, “Versatile low power media access

for wireless sensor networks,” in ACM Conference on Embedded Networked

Sensor Systems, 2004, pp. 95–107.

[29] Amre El-Hoiydi and Jean-Dominique Decotignie, “Low power downlink mac

protocols for infrastructure wireless sensor networks,” in ACM Mobile Networks

and Applications, 2005, pp. 675 – 690.

[30] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han, “X-mac: A

short preamble mac protocol for duty-cycled wireless sensor networks,” in ACM

Conference on Embedded Networked Sensor Systems, 2006, pp. 307–320.

[31] Tijs van Dam and Koen Langendoen, “An adaptive energy efficient mac protocol

for wireless sensor networks,” in ACM Conference on Embedded Networked

Sensor Systems, 2003, pp. 17 – 180.

77

[32] Wei Ye, John Heidemann, and Deborah Estrin, “An energy efficient mac protocol

for wireless sensor networks,” in IEEE International Conference on Computer

Communications, 2002, pp. 1567–1576.

[33] Yanjun Sun, Omer Gurewitz, and David johnson, “RI-MAC: A receiver-initiated

asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless

sensor networks,” in ACM Conference on Embedded Networked Sensor Systems,

2008, pp. 1 – 14.

[34] Prabal Dutta, Stephen Dawson-Haggerty, Yin Chen, Chieh-Jan Liang, and

Andreas Terzis, “Design and evaluation of a versatile and efficient receiver-

initiated link layer for low-power wireless,” in ACM Conference on Embedded

Networked Sensor Systems, 2010, pp. 1 – 14.

[35] Alec Woo and David E. Culler, “A transmission control scheme for media access

in sensor networks,” in Annual International Conference on Mobile Computing

and Networking, 2001, pp. 221 – 235.

[36] Andrew T. Campbell Chieh-Yih Wan, Shane B. Eisenman, “Coda: Congestion

detection and avoidance in sensor networks,” in ACM Conference on Embedded

Networked Sensor Systems, 2003, pp. 266–279.

[37] Ian F. Akyildiz Yogesh Sankarasubramaniam, zgr B. Akan, “ESRT: Event to

sink reliable transport in wireless sensor networks,” pp. 177–188, 2003.

[38] Damla Turgut Mohammad Z. Ahmad, “Congestion avoidance and fairness in

wireless sensor networks,” in Global Telecommunications Conference, 2008.

IEEE GLOBECOM 2008. IEEE, 2008, pp. 1 – 6.

78

[39] Majid I. Khan, Wilfried N. Gansterer, and Gnter Haring, “Congestion avoidance

and energy efficient routing protocol for wireless sensor networks with a mobile

sink,” .

[40] Jerry Zhao and Ramesh Govindan, “Understanding packet delivery performance

in dense wireless sensor networks,” in ACM Conference on Embedded Networked

Sensor Systems, 2003, pp. 1 – 13.

[41] Sandeep Sirpatil, “Implementation of IEEE 802.15.4 protocol stack for Linux,”

2006.

79

