Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.
(C) All Rights Reserved by Author.

Using Growth Mixture Modeling to identify loci associated with the progression of disease

A Dissertation Presented
by

TONG SHEN

to

The Graduate School
in Partial Fulfillment of the

Requirements
for the Degree of Doctor of Philosophy
in

Applied Mathematics and Statistics

(Statistics)

Stony Brook University

August 2011

TONG SHEN

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend acceptance of this dissertation.

Stephen Finch, Professor Stony Brook University, Department of Applied Math and Statistics

Nancy Mendell, Professor
Stony Brook University, Department of Applied Math and Statistics

Wei Zhu, Deputy Chair, Professor
 Stony Brook University, Department of Applied Math and Statistics

Derek Gordon, Associate Professor Rutgers University, Department of Genetics

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

Abstract of the Dissertation
 Using Growth Mixture Modeling to identify loci associated with the progression of disease

by
TONG SHEN
Doctor of Philosophy
in
Applied Mathematics and Statistics
(Statistics)
Stony Brook University
2011

In a genome-wide association study (GWAS) for a longitudinal quantitative trait, the trait is measured at multiple time points. GWAS is the examination of marker loci to identify loci associated with the progression of the quantitative trait.

I use two models, a single locus model and a multi locus model, to simulate a longitudinal quantitative trait. I use the growth mixture modeling (GMM) method to assign each member of a sample into one of a small number of trajectory groups. The clinically important trajectory group is the one with fastest progression. The Bayesian posterior probability (BPP) of being in the clinically important group is used as a quantitative trait. I test for association with marker loci. I also use the modal BPP in the association test and perform a case/control association analysis. Finally, I compare these methods with the contingency table method. I
evaluate the empirical type I error and empirical power using null simulations and power simulations.

The principal results are that: (1) Both the BPP method and modal BPP method maintain the correct type I error rate, but the empirical null rejection rate is increasing less than the nominal rate as the nominal type I error rate increases. (2) Both the BPP and modal BPP methods have very high power to detect the disease locus in the single locus model. (3) Both the BPP and modal BPP methods have significant power to detect the disease loci in the multi locus model. The powers of detecting a specific locus are proportional to minor allele frequency (MAF) of loci. (4) Both the BPP and modal BPP methods are better than the contingency table method with regard to the empirical power and the power of the BPP is essentially equal to the power of the modal BPP.

To Joey and my parents with all my love

Table of Contents

List of Figures viii
List of Tables ix
List of Abbreviations xi
Chapter 1 Introduction 1
1.1 Empirical issues1
1.1.1 Adolescent Idiopathic Scoliosis (AIS) 1
1.1.2 Diagnosis of AIS 2
1.1.3 Etiology of AIS 3
1.1.4 Genetic studies of AIS 4
1.2 Longitudinal Genome-Wide Association studies 4
1.2.1 Genetic mapping 4
1.2.2 Genome-Wide Association Study 5
1.2.3 Longitudinal GWAS5
1.3 Growth Mixture Modeling 7
1.4 Analysis software 11
1.4.1 SAS TRAJ procedure. 11
1.4.2 M-plus software 12
1.4.3 Comparison of the two procedures 12
1.4.4 PLINK software 14
Chapter 2 Methodology 15
2.1 Sample used in the analysis 15
2.2 Genotypes used in the analysis 16
2.3 Simulated longitudinal phenotype 21
2.3.1 Generation of null simulation data 22
2.3.2 Generation of power simulation data 25
2.4 Group separation 31
2.5 Methods for testing the association of longitudinal phenotypes with genotype data 31
2.5.1 Method I: Using Bayesian Posterior Probability (BPP) as phenotype in the association test 31
2.5.2 Method II: Using modal BPP in the association test. 32
2.5.3 Method III: Post hoc contingency table test 32
2.6 The factorial design 33
2.6.1 Disease loci 33
2.6.2 Genetic model 33
2.6.3 Separation of groups 34
2.6.4 Data transformation 34
2.7 Definitions of empirical type I error rate and empirical power 34
2.7.1 Empirical type I error rate 34
2.7.2 Empirical power 35
Chapter 3 Results 36
3.1 Null distribution 36
3.1.1 Null Simulation I 36
3.1.2 Null Simulation II 40
3.2 Simulated Power Results 52
3.2.1 Single locus model 52
3.2.2 Multi-locus model 65
Chapter 4 Conclusions and discussions 73
References 76
Appendix 79
I. IDs of 1599 unrelated participants 79
II. PLINK 85

List of Figures

Figure 1.1 Adolescent idiopathic scoliosis (AIS) 2
Figure 1.2 Definition of Cobb angle in AIS 3
Figure 3.1 Proportion of replicates for which the number of SNP markers within 10 markers of the disease SNP locus are in the top 5%, top 10% and top 25% of chromosome 13 markers by the number of significant SNP markers57
Figure 3.2 Power of Procedure by MAF of Locus in Multigenic Model, Normally Distributed Data, for selectedtarget levels of significance68
Figure 3.3 Power of Procedure by MAF of Locus in Multigenic Model, Data Square of Normally Distributed Data, for selected target levels of significance69

List of Tables

Table 2.1 Distribution of the sample by generation 16
Table 2.2 SNP markers on chr 13 used as disease loci in single-locus association analysis 17
Table 2.3 SNP markers on chr 13 used as disease loci in multi-locus association analysis 18
Table 2.4 Normalized disequilibrium coefficient D^{\prime} of ten disease loci in multi-locus model. 19
Table 2.5 Correlation coefficient p-values of ten disease loci in multi-locus model 20
Table 2.6 Distribution of variable score 29
Table 2.7 Variance of genotype over the variance of score in multi-locus model. 30
Table 3.1 Empirical type I error rate and its 95% confidence interval for chromosome 13 scoliosis data (null modelI).38
Table 3.2 ANOVA table for empirical type I error rate using null model I. 39
Table 3.3 Empirical type I error rate and its 95% confidence interval for chromosome 13 scoliosis data (null modelII).41
Table 3.4 ANOVA table of empirical type I error rate using null model II. 44Table 3.5 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the target SNPlocus are in the top 5%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (null model II) usingBPP method.46Table 3.6 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the target SNPlocus are in the top 5%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (null model II) usingmodal BPP method48Table 3.7 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the target SNPlocus are in the top 5%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (null model II) usingcontingency table method50
Table 3.8 Empirical power to detect association of disease SNP on chromosome 13 with scoliosis data (single-locusmodel)53
Table 3.9 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the disease SNPlocus are in the top 5%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (single-locus model)using BPP method.59
Table 3.10 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the disease SNP locus are in the top 5%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (single-locus model) using model BPP method.

Table 3.11 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the disease SNP locus are in the top 5%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (single-locus model) using contingency table method.

Table 3.12 Power Simulation to detect the association of disease SNP on chromosome 13 with scoliosis data (multilocus model)

Table 3.13 ANOVA table of empirical power using multi-locus model. . 71

Table 3.14 P-values of Cochran's test and McNemar's test when comparing the three methods in multi locus model.

List of Abbreviations

AIC: Akaike information criterion;

AIS: adolescent idiopathic scoliosis;
ANOVA: analysis of variance;
BIC: Bayesian information criterion;
BMI: body mass index;
BPP: Bayesian posterior probability;
CT: contingency table;
CVD: cardiovascular disease;
EM: expectation-maximization;
FHS: Framingham heart study;
FIML: full information maximum likelihood imputation;
GAW: genetic analysis workshop;
GMM: growth mixture modeling;
GWAS: genome-wide association study;
HC: human chromosome;
HWE: Hardy-Weinberg equilibrium;

LCGA: latent class growth analysis;
LD: linkage disequilibrium;
MAF: minor allele frequency;

MLE: maximum likelihood estimates;
QTL: quantitative trait loci;
SNP: single nucleotide polymorphism;
TG: trajectory group;
TVC: time-varying covariates;

Acknowledgments

I would like to thank my advisor, Professor Stephen Finch, for the exciting topics suggested, for interesting discussions and for his guidance and continuous support.

I would like to thank my dissertation committee members, Professor Derek Gordon, Professor Nancy Mendell, and Professor Wei Zhu for sharing their valuable experience and insights. It is my great honor to have them on my dissertation committee.

I would like to thank all my friends in the department for all their support and help.

Chapter 1 Introduction

1.1 Empirical issues

1.1.1 Adolescent Idiopathic Scoliosis (AIS)

Adolescent Idiopathic Scoliosis (AIS) is the most common spinal deformity in children, affecting about $1-3 \%$ of children worldwide ${ }^{1.2}$. Patients with AIS may have one shoulder higher than the other, and their clothes may no longer fit correctly. Some severe cases of scoliosis can lead to diminished lung capacity, which can then put pressure on the heart and lead to restriction of physical activities ${ }^{3}$. Figure 1.1 is a schematic of the disease. I focus on methodological issues derived from research on AIS.

Figure 1.1 Adolescent Idiopathic Scoliosis (AIS)

1.1.2 Diagnosis of AIS

In practice, AIS is diagnosed using standing posteroanterior radiographs of the full spine to assess lateral curvature with the Cobb angle method ${ }^{4,5}$. The Cobb angle is the angle between two lines, drawn perpendicular to the upper endplate of the uppermost vertebrae involved and the lower endplate of the lowest vertebrae involved, as shown in Figure 1.2^{6}.

Figure 1.2 Definition of Cobb angle in AIS

1.1.3 Etiology of AIS

The etiology of AIS is still unknown, but it is believed to be multi-factorial, including complex genetic factors. Single Nucleotide Polymorphism (SNP) markers that are significantly associated with AIS have been identified from Genome-Wide Association Study (GWAS) research ${ }^{7,8}$. Although the genetic model of AIS is complicated, an autosomal dominant inheritance model is generally accepted ${ }^{9}$. Some studies also show an evidence of an X-linked susceptibility in AIS ${ }^{10}$.

1.1.4 Genetic studies of AIS

Genetic studies of the progression of AIS are clinically important. After examining how the genetic factors affect the progression of disease and how an individual's genetic inheritance affects the body's response to drugs, physicians may be able to prescribe drugs tailor-made for individuals in the future. Compared with the traditional therapy, the individual customized therapy may enhance both the efficacy and safety of treatments ${ }^{11}$. Early prediction of maximal severity may allow earlier intervention, which may be more effective.

1.2 Longitudinal Genome-Wide Association studies

1.2.1 Genetic mapping

Many quantitative traits or human diseases are controlled by specific loci. When the trait is a quantitative measure such as body mass index (BMI), these loci are called quantitative trait loci (QTL). Genetic mapping can offer evidence that a disease transmitted from parent to child is linked to the QTL. Statistical methods for genetic mapping have been developed using two main approaches: linkage analysis and association analysis. Linkage is the tendency for loci and other genetic markers to be inherited together because of their location near one another on the same chromosome. In the process of meiosis, because there is some crossing over of DNA when the chromosomes segregate, alleles on the same chromosome can be separated and go to different daughter cells. Generally, in the same chromosome, the probability of recombination fraction
between two loci near each other is very low. Thus, a low recombination fraction means the two loci are near each other. Linkage analysis can help find the rough position of human disease loci relative to known genetic markers.

Association analysis, also known as association mapping or linkage disequilibrium (LD) mapping, is a method which is based on linkage disequilibrium to study the quantitative traits and genetic polymorphisms. LD is the association between two alleles located near each other on a chromosome, such that they are inherited together more frequently than expected by chance, which decays by recombination distance. So LD will be observed between two loci if they are in tight linkage. If we observe LD between candidate loci and markers, then we can claim that they are nearly located near each other.

1.2.2 Genome-Wide Association Study

In human genetics, a genome-wide association study (GWAS) is an examination of locus variations on a genome to discover loci that have associations with a disease. As of December 2010, over 1200 human GWASs have examined over 200 diseases and traits. Almost 4000 SNP associations have been found ${ }^{12}$.

1.2.3 Longitudinal GWAS

Longitudinal studies use repeated observations of variables of interest over time. Fields such as psychology, sociology and medical research make extensive use of longitudinal studies. In genetics, there are a number of longitudinal GWAS ${ }^{13}$. In those studies, quantitative traits are measured at fixed time points. Then an association analysis or linkage analysis is conducted to detect the quantitative trait loci (QTL) in the genome. For example, researchers have found evidence for a disease locus influencing blood pressure on chromosome 17 using a genome scan ${ }^{14}$. GWAS analysis can also be used to detect interactions between the longitudinal traits and environment ${ }^{15,16}$.

Wu and colleagues ${ }^{17,18,19}$ propose a mapping strategy, call functional mapping, which integrates the mathematical aspects of biological processes into a statistical mapping framework for QTL mapping. The model is constructed within the traditional maximum-likelihood framework implemented with the expectation-maximization (EM) algorithm. A biologically meaningful growth curve, the logistic growth curve, is employed to model time-specific genetic values. An autoregressive model is used to structure the residual variance-covariance matrix among different time points. Because of a reduced number of parameters being estimated and the incorporation of biological principles, the functional mapping model displays increased statistical power to detect QTL. Later, Wu and colleagues generalize the functional mapping framework to more general models of time dependence of residuals. Wu's research group applies functional mapping model to QTL mapping of traits describing trees, as well as an HIV study ${ }^{20}$.

1.3 Growth Mixture Modeling

Growth Mixture Modeling (GMM) is a method that can classify heterogeneous participants into discrete subgroups. GMM also describes the longitudinal pattern in each subpopulation ${ }^{21}$. GMM applies mixture analysis methods to estimate the number of trajectory components and to estimate the probability that a trait variable (such as a genotype) affects the probability of trajectory component membership. The procedure allows for controlling for timevarying covariates (TVC) as well.

In 1999, Bengt Muthen and Kerby Shedden ${ }^{22}$ propose a model that combines the features of conventional growth modeling and latent class growth modeling. Their research discusses a longitudinal study using a random coefficient model to assess the influence of latent growth trajectory class membership on the probability of a binary disease outcome. It is motivated by a study concerned with the longitudinal development of heavy drinking and its relation to alcohol dependence. In their paper, the EM algorithm is used for estimation. They analyze the influence of membership in different growth curve classes for heavy drinking from ages 18 to 25 .

Later in 2000, Bengt Muthen and Linda K. Muthen ${ }^{23}$ give a brief overview of new methods that integrate variable- and person-centered analyses. A variable-centered approach, such as regression analysis, factor analysis, and structural equation modeling, focuses on relationships among variables. A person-centered approach, such as cluster analysis, finite mixture analysis, latent class analysis, and latent transition analyses, focuses on relationships
among individuals. The goal is to group individuals into categories, each one of which contains individuals who are similar to each other and different from individuals in other categories. The methods that they discuss include latent class analysis, latent transition analysis, latent class growth analysis, growth mixture modeling, and general growth mixture modeling. Growth mixture modeling (GMM) is based on conventional growth modeling and combines the features of latent class growth analysis (LCGA). Conventional growth modeling estimates a mean growth curve under the assumption that all individuals in the sample come from a single population. Individual variation around the mean growth curve is captured by the estimation of the growth factor variances. LCGA estimates a mean growth curve for each class. No individual variation around the mean growth curves is allowed. As a result, the variation in the growth factors within each class is assumed to be zero. However, GMM estimates mean growth curves for each class and captures individual variation around these growth curves by the estimation of growth factor variances for each class. GMM can also be incorporated into a more general latent variable framework that allows combinations of the models mentioned above. This is referred to as general growth mixture modeling (GGMM). It is the statistical framework used in M-plus.

In 2002, Bengt Muthen ${ }^{24}$ et al. present a novel application of growth mixture modeling to preventive intervention trials in which individuals are randomized into intervention and control groups and measured repeatedly before and after the start of the intervention. They apply four analyses, two of which are GMM. Comparison of models with different numbers of classes, however, is accomplished by a Bayesian information criterion (BIC). The larger the BIC value, the better the model. They conclude that the growth mixture modeling is a powerful analytic tool when applied to randomized trials as well as to non-experimental research.

Daniel S. Nagin ${ }^{25}$ proposes a method to analyze developmental trajectories in 1999. It is a semi-parametric, group-based approach for identifying distinctive groups of individual trajectories within the population and for profiling the characteristics of group members. It can handle three data types-count, binary, and psychometric scale data. Four capabilities are demonstrated in their model: the capability to identify distinctive groups of trajectories; the capability to estimate the proportion of the population following each such trajectory group; the capability to relate group membership probability to individual characteristics and circumstances; the capability to use the group membership probabilities for other purposes such as creating profiles of group members. They also discuss two important issues in model selection: determination of the optimal number of groups in the mixture and the determination of the appropriate order of the polynomial used to model each group's trajectory. Here "order" refers to the degree of the polynomial used to model the group's trajectory.

In 2001, Daniel S. Nagin and Richard E. Tremblay ${ }^{26}$ demonstrate a group-based method for joining developmental trajectories of distinct but theoretically related behaviors. This method will aid the analysis of comorbidity and heterotypic continuity. It is based on the method Nagin proposed in 1999. First, the statistical model underlying the estimation of a group-based trajectory model for a single behavior is summarized; then, the approach used to link two univariate models to form a joint model is described. They obtain three major outputs: the form of the trajectory of distinctive subpopulations for both measurement series; the probability of membership in each such trajectory group; the joint probability of membership in trajectory groups across behaviors. They apply the model to two examples: one is the data from research in physical aggression and hyperactivity in children; the other is the data from study of criminal behavior. Nagin et al. introduce a new SAS procedure that analyzes longitudinal data
(developmental trajectories) by fitting a mixture model. The TRAJ procedure will be discussed later.

GMM has been applied in alcohol use studies and smoking behavior studies. Li and colleagues ${ }^{27}$ examine developmental trajectories in adolescent alcohol using piecewise GMM. Alcohol use typically begins in adolescence. The research about alcohol use suggests distinct developmental periods depending on age. It is assumed that onset and rates of change of adolescent alcohol use are not homogeneous but consist of subgroups that have different growth patterns and social, family and individual influence systems. Li et al. describe their model using the framework for GMM proposed by Muthen in 1999. They examine distinct trajectories from middle school to high school in the development of alcohol use. Two subgroups or trajectories are reported. They also analyze the influences of background variables, such as middle school entry and midpoint time-invariant predictors.

Colder et al. ${ }^{28}$ apply GMM to identify trajectories of adolescent smoking. In their article, discrete patterns of smoking are identified on the basis of level of smoking. Analyses reveal considerable heterogeneity in how smoking unfolded over time during adolescence. They show that compared with the traditional growth models, GMM has more power to identify subpopulations on the basis of distinct growth trajectories.

There has been increasing interest in using GMM to identify the SNPs associated with a longitudinal quantitative trait. In Genetics Analysis Workshop 16, Chang et al. ${ }^{29}$ examine the properties of GMM to find longitudinal QTL. She studies the trajectory model's Bayesian posterior probability and tests the association with 17 SNPs on Human Chromosome (HC) 22. Kerner and Muthen ${ }^{30}$ apply GMM to longitudinal data of blood pressure in Framingham heart
study. They test SNPs on HC 8 for association with the class membership probabilities. Both studies find GMM to be a useful tool to detect subgroups in heterogeneous populations in GWAS.

1.4 Analysis software

There are two computer programs to perform GMM on longitudinal data. One is the SAS TRAJ procedure, and the other is M-plus.

1.4.1 SAS TRAJ procedure

The SAS Trajectory Procedure (Proc Traj) ${ }^{31,32,33}$ fits a discrete mixture model to longitudinal data. The model groups data trajectories, with different parameter values for each component. Components may identify distinct subpopulations. Proc Traj estimates a longitudinal regression model for each component group within the population. The focus of this procedure is on group membership and identifying distinct subgroups within the population. SAS PROC TRAJ analysis reports the estimated frequency of each trajectory group, the t-statistic and the maximum likelihood estimates (MLEs) of the trajectory group parameters, the Bayesian posterior probability (BPP) that each subject is member of each trajectory component and Bayesian information criterion (BIC) for model selection. The model which has the largest BIC value and at least 10 subjects estimated to be in each trajectory component is often reported as the best model in actual studies.

1.4.2 M-plus software

M-plus is another statistical modeling program that provides researchers with a flexible tool to analyze longitudinal data. M-plus takes a multivariate approach to growth modeling. This approach allows flexible modeling of relationships between the outcomes such as correlated residuals over time and regressions among the outcomes over time. M-plus uses the principle of maximum likelihood estimation and employs the EM algorithm for maximization. M-plus program provides three measures of each model: Akaike information criterion (AIC); BIC; a sample-size adjusted BIC (ABIC). Researchers often use BIC to choose the best model. M-plus provides estimates of probabilities of class membership for each individual. For example, in a five-class solution, five probabilities are estimated for each individual in the data, where each estimates the likelihood that an individual is a member of one of the classes. For each individual, these probabilities sum to 1.0 . Ideally, for each individual, one of these probabilities would be very high and the others very low, indicating little ambiguity about class membership.

1.4.3 Comparison of the two procedures

M-plus specifies latent GMM in the context of a general structural equation model. This allows considerable flexibility in model specification. However, M-plus uses full information maximum likelihood imputation (FIML) to deal with missing data. In contrast, Proc Traj in SAS allows for the inclusion of cases with missing data and specification of a variety of distributions
for the observed variables but does not permit specification of latent variables. In growth modeling, M-plus uses random effects to capture individual differences in development. In contrast with the M-plus model, there is no random effect capability within the Proc Traj model.

In each procedure, heterogeneous longitudinal data is classified into a few discrete growth trajectory groups such that there is an estimated probability that an individual belongs to a particular trajectory group. This probability is called the Bayesian posterior probability (BPP). Both programs report the estimated coefficients of the polynomial trajectory functions, their corresponding t-statistics and p-values, the MLE of the trajectory group parameters, the AIC and the BIC for a specified number of trajectory groups.

One major difference between the programs is the treatment of within-class variability. Since the SAS TRAJ procedure assumes no variation in growth parameters within each class, any individual deviations from the class mean trajectories are attributed to random error. M-plus, however, allows for within-class variation in individual trajectories; that is, the coefficients of the M-plus model are random. For example, in SAS TRAJ, one of the trajectory groups in my research is modeled as

$$
Y_{i(\omega), t}=\beta_{0}+\beta_{1}(t-0.25)+\varepsilon_{i(\omega), t},
$$

here, ω refers to the specific individual, i refers to the trajectory group and t refers to the time point. The intercept β_{0} and slope β_{1} are fixed, and the individual variation $\varepsilon_{i(\omega), t}$ in this trajectory group is attributed to random error. In M-plus, the parameters β_{0} and β_{1} are modeled as random. That is, they differ among individuals in the same trajectory group. In the fixed effects model (growth factor variances and covariance equal to zero), estimation of parameters is
easier, and time to convergence is faster. Muthen (2004) has suggested that use of both approaches may be useful. For example, he suggests using the simpler model group-based trajectory approach as a first step to identify the number of trajectory groups and cut points on the growth factors. Then researchers can use more complex variance/covariance constraints in a growth mixture model.

1.4.4 PLINK software

PLINK (Appendix II) is a whole genome association analysis toolset, designed to perform a range of basic, large-scale analyses in a computationally efficient manner. I used PLINK to test the association between the quantitative trait and 1498 SNPs on chromosome 13.

Chapter 2 Methodology

2.1 Sample used in the analysis

The Framingham heart study (FHS) ${ }^{34}$, which started in 1948, aims to identify the common factors or characteristics that contribute to cardiovascular disease (CVD). FHS recruits a large group of participants from the town of Framingham, Massachusetts. The Genetic Analysis Workshop (GAW 16) simulated dataset includes a total of 6,476 participants with actual genotype data from the FHS. The participants are in 936 pedigrees distributed among 3 generations with the 187 singleton subjects; that is, participants not related to any other participant.

My study focuses on the 1599 genetically unrelated participants of the FHS. I first include those who married into the pedigree and the 187 singletons. Next, I build a "family tree" for each pedigree and choose the first generation participants if any are genotyped. In this case, I exclude all of their children and grandchildren. If the first genotyped participants are in the
second generation, then I choose one at random and I exclude all of their children. If the first genotyped participants are in the third generation, then I choose one at random. The distribution of the 1599 unrelated participants extracted from FHS is shown in Table 2.1. Appendix I contains the participant IDs of the 1599 unrelated participants.

Table 2.1 Distribution of the sample by generation

Generation	Frequency	Percentage
First generation	260	16.6
Second generation	436	27.4
Third generation	160	10.0
Participants who married-in	556	34.9
Singletons	187	11.1

2.2 Genotypes used in the analysis

In my study, I use the genotype data from chromosome 13 for the 1599 genetically unrelated individuals in the FHS. There are 1498 SNP markers on Chromosome 13.

For the single-locus association analysis, I choose two SNP markers on chromosome 13 listed in Table 2.2, as the simulated disease loci. Table 2.2 shows the SNP ID, base pair, major allele, minor allele, MAF, Hardy-Weinberg Equilibrium (HWE) test p-value and missing rate. The null hypothesis of HWE test is that the SNP is in HWE. Both of the SNP markers are apparently in HWE from the table. The missing rate indicates the proportion of missing SNPs in 1599 unrelated participants. The SNP markers I studied have minor allele frequency (MAF) close to 0.5 and 0.15 , respectively. I study the two loci separately, as well as other markers on chromosome 13. I use the normalized disequilibrium coefficient D^{\prime} to measure Linkage Disequilibrium (LD). For the two loci in Table 2.2, $D^{\prime}=0.046$.

Table 2.2 SNP markers on chr 13 used as disease loci in single-locus association analysis

SNP	Base-Pair	Major	Minor	MAF	HWE test	Missing
Allele	Allele		p-value	rate		
rs4133063	39205119	C	T	0.49	0.68	0.0044
rs7990928	91893219	C	A	0.15	0.42	0.0037

For the multi-locus association analysis, I select ten SNP markers on chromosome 13 listed in Table 2.3, as the simulated disease loci. All the SNP markers are in HWE based on the chi-square goodness of fit test. They are rare variant loci, with MAF less than 0.05 . The measurements of LD are shown in Table 2.4. The association test p-values are shown in Table
2.5. SNP rs17090361 is highly associated with SNP rs16943207; SNP rs7331979 is highly associated with SNP rs12863734.

Table 2.3 SNP markers on chr 13 used as disease loci in multi-locus association analysis

SNP	Base-Pair	Major	Minor	MAF	HWE test	Missing
rs9599854	71021185	T	Allele		p-value	rate
rs9542756	71309666	T	C	0.038	0.33	0.0038
rs9543107	72217237	C	T	0.016	1	0.0006
rs17090361	73186500	T	C	0.050	0.72	0.0013
rs9593132	75293621	C	T	0.048	1	0.0006
rs5352	77373231	C	T	0.012	1	0
rs7331979	78836214	T	G	0.033	0.22	0.0325
rs12863734	85268572	G	A	0.015	1	0.0025
rs9522610	89110831	C	T	0.026	0.44	0.0225
rs16943207	89144779	C	G	0.031	1	0.0088

Table 2.4 Normalized disequilibrium coefficient D^{\prime} of ten disease loci in multi-locus model

D^{\prime}	rs9599854	rs9542756	rs9543107	rs17090361	rs9593132	rs5352	rs7331979	rs12863734	rs9522610	rs16943207
rs9599854	NA	0.017	$1^{* *}$	0.715	0.132	0.078	$1^{* *}$	0.511	0.157	0.007
rs9542756	0.017	NA	$1^{* *}$	$1^{* *}$	0.065	0.082	0.998^{*}	0.003	0.016	0.001
rs9543107	$1^{* *}$	$1^{* *}$	NA	0.581	0.481	$1^{* *}$	$1^{* *}$	0.007	0.023	0.787
rs17090361	0.715	$1^{* *}$	0.581	NA	0.008	0.029	0.008	0.059	0.014	0.037
rs9593132	0.132	0.065	0.481	0.008	NA	0.986^{*}	0.017	0.064	0.622	0.457
rs5352	0.078	0.082	$1 * *$	0.029	0.986^{*}	NA	$1 * *$	0.020	0	0.041
rs5331979	$1^{* *}$	0.998^{*}	$1^{* *}$	0.008	0.017	$1^{* *}$	NA	0.007	0.688	0.868

Notes: The normalized disequilibrium coefficients with * indicate the two SNPs are in linkage disequilibrium.

Table 2.5 Correlation coefficient p-values of ten disease loci in multi-locus model

association test p-value	rs9999854	rs9542756	r95943107	rs17090361	rs9993132	rs5352	rs7331979	rs12863734	rs9522610	rs16943207
rs9599854	1	0.8392	0.3464	0.8702	0.8644	0.4624	0.491	0.5803	0.9164	0.9988
${ }_{\text {rs9542756 }}$	0.8392	1	0.129	0.5278	0.416	0.8855	0.2279	0.413	0.7341	0.9622
rs9543107	0.3464	0.129	1	0.3418	0.4524	0.8507	0.0974	0.5616	0.8485	0.5488
rsi7090361	0.8702	0.5278	0.3418	1	0.4384	0.9092	0.8148	0.9566	0.4754	0.007
rs9593132	0.8644	0.416	0.4524	0.4384	1	0.9051	0.6388	0.4957	0.6481	0.6218
${ }^{\text {r 5 3 3 } 2}$	0.4624	0.8855	0.8507	0.9092	0.9051	1	0.4103	0.6384	0.9416	0.7445
rs7331979	0.491	0.2279	0.0974	0.8148	0.6388	0.4103	1	0.0291	0.685	0.2734
rs 12863734	0.5803	0.413	0.5616	0.9566	0.4957	0.6384	0.0291	1	0.441	0.7319
rs9522610	0.9164	0.7341	0.8485	0.4754	0.6481	0.9416	0.685	0.441	1	0.1923
rs16943207	0.9988	0.9622	0.5488	0.007	0.6218	0.7445	0.2734	0.7319	0.1923	1

2.3 Simulated longitudinal phenotype

The longitudinal phenotype is simulated based on the data describing the progression of AIS provided by Carol Wise, M.D. There are 334 Adolescent Idiopathic Scoliosis (AIS) study participants in the data used here. The quantitative longitudinal variable is the Cobb angle. A Proc Traj analysis identifies three linear trajectory groups for this data. In my simulation study, I specify a linear growth mixture model with the longitudinal trajectory functions for each individual w as follows:

$$
f_{i(\omega), t}=\left\{\begin{array}{c}
50, i(\omega)=1 \\
50+28(t-0.25), i(\omega)=2 \\
50+56(t-0.25), i(\omega)=3
\end{array} \text { where } t=0.25,0.4,0.55,0.7,0.85,1 ;\right.
$$

When $i(w)=1$, the individual w is in the constant trajectory group; $i(w)=2$ indicates the individual w is in the intermediate increase trajectory group; $i(w)=3$ indicates the individual w is in the fast increase trajectory group. The slope trajectory parameters are roughly equal to those estimated from Wise data. Since $f_{i(\omega), t}$ describes the Cobb angle of each individual, which should be a non-negative value, I set the intercept to be 50 so that $f_{i(\omega), t}$ is positive.

For each replicate, I randomly select 700 individuals without replacement from the sampling set of 1599 unrelated (independent) individuals. Then I divide the individuals into three trajectory groups; that is, the constant trajectory group, the intermediate increase trajectory group and the fast increase trajectory group. The allocation rules for both null simulations and power simulations are described below.

2.3.1 Generation of null simulation data

2.3.1.1 Null simulation I

The probability of each individual being in any of the trajectory groups is $1 / 3$ for each group. Thus, for each of the 700 individuals in a replicate, I create U, a random $U(0,1)$ number. If $U \leq \frac{1}{3}$, then the individual is in the constant trajectory group; if $\frac{1}{3}<U \leq \frac{2}{3}$, then the individual is in the intermediate trajectory group; if $\frac{2}{3}<U \leq 1$, then the individual is in the fast trajectory group.

2.3.1.2 Null simulation II

2.3.1.2.1 Penetrance matrix

In the null simulation II model and the single locus model (described below), I use the penetrance matrix X to define the allocation rule; that is, the relationship between disease SNP genotype and trajectory group membership. For a selected individual ω, let the penetrance matrix

$$
X=\left(x_{j+1, i}\right)=\operatorname{Pr}(i(\omega)=i \mid j(\omega)=j), i=1 \ldots, G, j=0,1,2 .
$$

Here, the value j represents the number of copies of the minor allele at the disease locus, where the locus has two alleles. Thus, $j=0,1,2$ refers to major homozygote, heterozygote and minor homozygote, respectively. The value i represents the trajectory group (TG), where G is the number of trajectory groups for the simulated data. In my study, I set $G=3$. That is, all the individuals are divided into three trajectory groups. In matrix form, we have:

$$
X=\left(x_{j+1, i}\right)=\left(\begin{array}{c}
\operatorname{Pr}(i(\omega)=1 \mid j(\omega)=0) \mathrm{L} \operatorname{Pr}(i(\omega)=G \mid j(\omega)=0) \\
\operatorname{Pr}(i(\omega)=1 \mid j(\omega)=1) \mathrm{L} \operatorname{Pr}(i(\omega)=G \mid j(\omega)=1) \\
\operatorname{Pr}(i(\omega)=1 \mid j(\omega)=2) \mathrm{L} \operatorname{Pr}(i(\omega)=G \mid j(\omega)=2)
\end{array}\right) .
$$

2.3.1.2.2 Allocation rule for null simulation II

The probability of each individual being in one of the trajectory groups is determined by HWE proportions and the penetrance matrix. If the MAF for a SNP is denoted by p, then for an arbitrary individual ω,

$$
Y=\left(\begin{array}{l}
\operatorname{Pr}(j(\omega)=0) \\
\operatorname{Pr}(j(\omega)=1) \\
\operatorname{Pr}(j(\omega)=2)
\end{array}\right)=\left(\begin{array}{c}
q^{2} \\
2 p q \\
p^{2}
\end{array}\right),
$$

where q is the major allele frequency and $q=1-p$.

The penetrance matrix is given by

$$
\begin{gathered}
X=\left(x_{j+1, i}\right)=\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \\
=\left(\begin{array}{rll}
\operatorname{Pr}(i(\omega)=1 \mid j(\omega)=0) & \operatorname{Pr}(i(\omega)=2 \mid j(\omega)=0) & \operatorname{Pr}(i(\omega)=3 \mid j(\omega)=0) \\
\operatorname{Pr}(i(\omega)=1 \mid j(\omega)=1) & \operatorname{Pr}(i(\omega)=2 \mid j(\omega)=1) & \operatorname{Pr}(i(\omega)=3 \mid j(\omega)=1) \\
\operatorname{Pr}(i(\omega)=1 \mid j(\omega)=2) & \operatorname{Pr}(i(\omega)=2 \mid j(\omega)=2) & \operatorname{Pr}(i(\omega)=3 \mid j(\omega)=2)
\end{array}\right) \\
=\left(\begin{array}{ccc}
1-\rho & 3 \rho / 4 & \rho / 4 \\
\rho / 2 & 1-\rho & \rho / 2 \\
\rho / 4 & 3 \rho / 4 & 1-\rho
\end{array}\right) .
\end{gathered}
$$

Thus, the probability of each individual belongs to a specific trajectory group is given by:

$$
\begin{aligned}
& (\operatorname{Pr}(i(\omega)=1 \mid j(\omega)=0) \operatorname{Pr}(j(\omega)=0)+\operatorname{Pr}(i(\omega)=1 \mid j(\omega)=1) \operatorname{Pr}(j(\omega)=1)+\operatorname{Pr}(i(\omega)=1 \mid j(\omega)=2) \operatorname{Pr}(j(\omega)=2) \\
& \operatorname{Pr}(i(\omega)=2 \mid j(\omega)=0) \operatorname{Pr}(j(\omega)=0)+\operatorname{Pr}(i(\omega)=2 \mid j(\omega)=1) \operatorname{Pr}(j(\omega)=1)+\operatorname{Pr}(i(\omega)=2 \mid j(\omega)=2) \operatorname{Pr}(j(\omega)=2) \\
& \operatorname{Pr}(i(\omega)=3 \mid j(\omega)=0) \operatorname{Pr}(j(\omega)=0)+\operatorname{Pr}(i(\omega)=3 \mid j(\omega)=1) \operatorname{Pr}(j(\omega)=1)+\operatorname{Pr}(i(\omega)=3 \mid j(\omega)=2) \operatorname{Pr}(j(\omega)=2)) \\
& =\left(\begin{array}{lll}
\operatorname{Pr}(i(\omega)=1 \mid j(\omega)=0) & \operatorname{Pr}(i(\omega)=1 \mid j(\omega)=1) & \operatorname{Pr}(i(\omega)=1 \mid j(\omega)=2) \\
\operatorname{Pr}(i(\omega)=2 \mid j(\omega)=0) & \operatorname{Pr}(i(\omega)=2 \mid j(\omega)=1) & \operatorname{Pr}(i(\omega)=2 \mid j(\omega)=2) \\
\operatorname{Pr}(i(\omega)=3 \mid j(\omega)=0) & \operatorname{Pr}(i(\omega)=3 \mid j(\omega)=1) & \operatorname{Pr}(i(\omega)=3 \mid j(\omega)=2)
\end{array}\right)\left(\begin{array}{l}
\operatorname{Pr}(j(\omega)=0) \\
\operatorname{Pr}(j(\omega)=1) \\
\operatorname{Pr}(j(\omega)=2)
\end{array}\right) \\
& =X^{T} Y=\left(\begin{array}{ccc}
1-\rho & \rho / 2 & \rho / 4 \\
3 \rho / 4 & 1-\rho & 3 \rho / 4 \\
\rho / 4 & \rho / 2 & 1-\rho
\end{array}\right)\left(\begin{array}{c}
q^{2} \\
2 p q \\
p^{2}
\end{array}\right) \text {. }
\end{aligned}
$$

In this null simulation, I generate a random number from the uniform distribution on the interval $(0,1)$ for every individual. If the random number is in

$$
(0, \theta]=\left(0,(1-\rho) q^{2}+\rho p q+\rho p^{2} / 4\right\}
$$

then this individual is in group 1, the constant trajectory group. If the random number is in

$$
(1-\psi, 1)=\left(1-\left(\rho q^{2} / 4+\rho p q+(1-\rho) p^{2}\right), 1\right)
$$

then this individual is in group 3, the fast increase trajectory group. Otherwise, the individual is in the intermediate increase trajectory group.

2.3.2 Generation of power simulation data

The longitudinal data for power simulations are generated based on the selected individual's real genotype. I examine both single-locus model and multi-locus model.

2.3.2.1 Single-locus association

The penetrance matrix X is given by

$$
X=\left(\begin{array}{ccc}
1-\rho & 3 \rho / 4 & \rho / 4 \\
\rho / 2 & 1-\rho & \rho / 2 \\
\rho / 4 & 3 \rho / 4 & 1-\rho
\end{array}\right)
$$

where $\rho \in[0,1]$. In my study, I set $\rho=0.1$ and 0.4 . I call the model with $\rho=0.1$ the 'high penetrance locus model' and the model with $\rho=0.4$ the 'low penetrance locus model'.

2.3.2.1.1 High penetrance

The high penetrance matrix X is given by:

$$
X=\left(\begin{array}{ccc}
0.9 & 0.075 & 0.025 \\
0.05 & 0.9 & 0.05 \\
0.025 & 0.075 & 0.9
\end{array}\right)
$$

For this model, in row one of the matrix, individuals with major homozygote genotype $(j(\omega)=0)$ are in the constant trajectory group with probability 0.9 , in the intermediate increase group with probability 0.075 and in the fast increase group with probability 0.025 . In row two of the matrix, individuals with heterozygote genotype $(j(\omega)=1)$ are in the intermediate increase group with probability 0.9 , in the constant trajectory group with probability 0.05 and in the fast increase group with probability 0.05 . In row three of the matrix, individuals with minor homozygote genotype $(j(\omega)=2)$ are in the fast increase group with probability 0.9 , in the constant trajectory group with probability 0.025 and in the intermediate group with probability 0.075 .

2.3.2.1.2 Low penetrance

The low penetrance matrix is given by:

$$
X=\left(\begin{array}{lll}
0.6 & 0.3 & 0.1 \\
0.2 & 0.6 & 0.2 \\
0.1 & 0.3 & 0.6
\end{array}\right)
$$

This matrix indicates that in the first row, an individual with major homozygote genotype is in the constant trajectory group (trajectory group 1) with probability 0.60 , in the intermediate group (trajectory group 2) with probability 0.30 , and in the fast increase group (trajectory 3) with probability 0.10 . For an individual with heterozygote genotype (the second row), an individual is in the intermediate trajectory group with probability 0.60 , in the fast increase trajectory group with probability 0.20 , and in the constant trajectory group with probability 0.20 . For an individual with minor homozygote genotypes (the third row), an individual is in the fast increase trajectory group with probability 0.60 , in the intermediate trajectory group with probability 0.30 , and in the constant group with probability 0.10 .

2.3.2.1.3 Other parameter settings

In each particular trajectory group, an individual's phenotype follows the normal distribution at each time point. I set the standard deviation σ at each time point to be 4 or 8 . That is, the quantitative trait at each time point $Y_{i(\omega), t}$ for individual w is:

$$
Y_{i(\omega), t}=f_{i(\omega), t}+N\left(0, \sigma^{2}\right), i=1,2,3 .
$$

$$
\text { Thus, } Y_{i(\omega), t}=\left\{\begin{array}{c}
50+N\left(0, \sigma^{2}\right), i(\omega)=1 \\
50+28(t-0.25)+N\left(0, \sigma^{2}\right), i(\omega)=2 . \\
50+56(t-0.25)+N\left(0, \sigma^{2}\right), i(\omega)=3
\end{array} .\right.
$$

The generated data above are linearly related to the time variable. The other model I examined is that the value seen is the square of the linearly generated value.

2.3.2.2 Multi-locus association

I also include a multi-locus model in my study. The model has ten disease loci, each of which has MAF <0.05. For each disease locus, I create the variable that is the count of the number of minor alleles; that is,

$$
c n t=\left\{\begin{array}{l}
0, \text { if the SNP has } 0 \text { minor allele; } \\
1, \text { if the SNP has } 1 \text { minor allele; } \\
2, \text { if the SNP has } 2 \text { minor alleles. }
\end{array}\right.
$$

Thus, an individual ω has a vector:

$$
\left(c n t_{1, \omega}, c n t_{2, \omega}, \mathrm{~L}, c n t_{10, \omega}\right)
$$

For example, an individual who has minor homozygote on SNP5 and SNP7, has heterozygote on SNP 10, and has major homozygote on the other disease SNPs, has vector

$$
(0,0,0,0,2,0,2,0,0,1) .
$$

The variable score is the sum of the ten counts:

$$
\text { score }_{\omega}=\sum_{i=1}^{10} c n t_{i, w} .
$$

For the individual above, score $=5$. The model is that if an individual's score is greater than or equal to 3 , then the individual is in the fast increase trajectory group; if the score is 2 , then this individual is in the intermediate increase trajectory group; if the score is 0 or 1 , then the individual is in the constant trajectory group. The distribution of score of unrelated individuals is in Table 2.6. The mean of score is 0.588 and the standard deviation is 0.745 . If the fast increase trajectory group is the clinically important group, then in this model, the prevalence of the disease is around 2%.

Table 2.6 Distribution of variable score

score	Frequency $(\%)$
0	54.78
1	33.65
2	9.63
3	1.88
4	0.06

For the ten disease loci, I further calculate the variance of genotype over the variance of score: $\operatorname{Var}($ genotype $) / \operatorname{Var}($ score $)$. They are displayed in Table 2.7.

Table 2.7 Variance of genotype over the variance of score in multi-locus model

SNP	Base-Pair	MAF	Var(genotype)/Var(score)
rs9599854	71021185	0.026	0.086
rs9542756	71309666	0.038	0.141
rs9543107	72217237	0.016	0.052
rs17090361	73186500	0.050	0.184
rs9593132	75293621	0.048	0.161
rs5352	77373231	0.012	0.044
rs7331979	78836214	0.033	0.098
rs12863734	85268572	0.015	0.063
rs9522610	89110831	0.026	0.084
rs16943207	89144779	0.031	
			0.108

2.4 Group separation

After generating the simulated longitudinal data, I used the SAS PROC TRAJ to classify the heterogeneous longitudinal data into three trajectory groups. The procedure can also report the BPP and BIC of the model. For some of the replicates, the trajectory curve failed to converge. In these replicates, no estimated parameters will be reported. Thus, I delete these replicates and do not include them when calculating the type I error rate and empirical power. The failure rate of each parameter settings will be reported in Chapter 3.

2.5 Methods for testing the association of longitudinal phenotypes with genotype data

I apply the SAS TRAJ procedure to the simulated longitudinal phenotype data. For each of the replicates, I set the number of trajectory groups to 3 . The trajectory group with the largest slope is identified as the clinically important group. The SAS TRAJ procedure estimates the BPP that each subject belongs to each group. Specifically, the BPP that each subject belongs to the fast increase trajectory group (clinically important group) is used as a quantitative trait.

2.5.1 Method I: Using Bayesian Posterior Probability (BPP) as phenotype in the association test

I use the BPP of the clinically important group as a quantitative trait in PLINK. The association between each SNP on chromosome 13 and the quantitative trait is reported.

Additionally, PLINK reports SNP identifier, base-pair, Wald test statistic and the asymptotic pvalue for the test.

2.5.2 Method II: Using modal BPP in the association test

I create a dummy variable, which is 1 if modal BPP is in the clinically important group, and is 0 if otherwise. Then I use this variable to perform a case/control association analysis in PLINK. The basic allelic test chi-square and its asymptotic p-value is reported in the PLINK output.

2.5.3 Method III: Post hoc contingency table test

I classify a subject as belonging to the clinically important trajectory group when the subject's modal BPP is the clinically important group. The row variable in the contingency table is whether or not the subject is classified into the clinically important group. The subject is simultaneously in one of three genotypes: major homozygote, heterozygote and minor homozygote for each SNP analyzed. That is, the genotypes are the column variables in the contingency table. The contingency table test of independence between genotype and membership in the clinically important group is used to test for association with a SNP. For each SNP, we have a chi-square statistic and the corresponding asymptotic p-value. For some replicates with small sample size (<5) in the fast increase group, I use Fisher's exact test instead.

2.6 The factorial design

2.6.1 Disease loci

For the single-locus association study, I use two loci to simulate the disease loci, one with MAF near 0.5 and the other with MAF near 0.15 .

For the multi-locus association study, I use ten loci, each of which has MAF <0.05.

2.6.2 Genetic model

For the single-locus study, the genetic model is defined by the penetrance matrix X. There are two settings for this factor:
high penetrance $\left(X=\left(\begin{array}{ccc}0.9 & 0.075 & 0.025 \\ 0.05 & 0.9 & 0.05 \\ 0.025 & 0.075 & 0.9\end{array}\right)\right.$) and
low penetrance $\left(X=\left(\begin{array}{lll}0.6 & 0.3 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.3 & 0.6\end{array}\right)\right.$.

For the multi-locus study, the genetic model is defined by the variable cnt and score described above.

2.6.3 Separation of groups

The standard deviation of an individual time measurement σ is set to be 4 and 8 . That is, for the low variance setting,

$$
Y_{i(\omega), t}=\left\{\begin{array}{c}
50+N(0,16), i(\omega)=1 \\
50+28(t-0.25)+N(0,16), i(\omega)=2 \\
50+56(t-0.25)+N(0,16), i(\omega)=3
\end{array}\right.
$$

For the high variance setting,

$$
Y_{i(\omega), t}=\left\{\begin{array}{c}
50+N(0,64), i(\omega)=1 \\
50+28(t-0.25)+N(0,64), i(\omega)=2 \\
50+56(t-0.25)+N(0,64), i(\omega)=3
\end{array}\right.
$$

2.6.4 Data transformation

There are two settings for this factor. The one setting is that the data are linearly related to the time variable. The other is that the data is the square of data linearly related to time. That is, the value seen is the square of the linearly generated value.
2.7 Definitions of empirical type I error rate and empirical power

2.7.1 Empirical type I error rate

Type I error rate is defined as

$$
\alpha=\operatorname{Pr}\left(\text { reject } H_{0} \mid H_{0} \text { is true }\right)
$$

In null simulations where trajectory group assignments are not correlated with an individual's genotype, the empirical type I error rate is defined as the proportion of replicates in which the target SNPs are significant. For example, if in 4 out of 1000 replicates, a target SNP association test p-value is significant among the top 0.5% SNP p-values on one chromosome, then the empirical type I error rate of this target SNP will be 0.004 .

2.7.2 Empirical power

The power is defined as

$$
\text { power }=\operatorname{Pr}\left(\text { reject } H_{0} \mid H_{1} \text { is true }\right)
$$

In power simulations where the trajectory group assignments are dependent on an individual's genotype, empirical power is defined as the proportion of replicates in which the disease SNP is detected. For example, if in 800 out of 1000 replicates, a disease SNP p-value is in the top 0.5% of SNP p-values on one chromosome, then the power to detect this disease SNP will be 80%.

Chapter 3 Results

3.1 Null distribution

3.1.1 Null Simulation I

Table 3.1 showed the empirical type I error rate and its 95% confidence interval for target SNP detection using the model with three equi-probable trajectory components unrelated to any locus. A confidence interval in bold did not contain the target α. As α increased, the number of intervals not containing the target α increased. That is, true type I error rate was increasing below α as α increased. The failure rate of the TRAJ model was shown in Table 3.1.

Next, I reported an analysis of variance test of the empirical type I error rate as dependent variable with five independent variables: the indicator variable of whether or not the data was normal (denoted by NORMAL), the value of sigma (denoted by SIGMA), the MAF (denoted by

MAF), the target α for each method and the three methods. Here, the variable NORMAL had two levels: the value of 0 indicated the data was normally distributed at each time point and the value of 1 indicated the data was the square of normally distributed data. The variable SIGMA had two levels: 4 and 8. The variable MAF had three levels: $0.49,0.15$ and 0.05 . Nominal α had four levels: $0.005,0.01,0.05$ and 0.10 . The variable $M E T H O D$ had three levels: BPP method, modal BPP method and contingency table method. The analysis of variance table (ANOVA) was shown in Table 3.2. The variables NORMAL, MAF and α were significant. The regression model was that:

$$
\begin{aligned}
\text { empirical type I error } & =0.0045(\pm 0.0014)+0.0023(\pm 0.0009) \times(N O R M A L=0) \\
& -0.0066(\pm 0.0011) \times(M A F=0.05)+0.0681(\pm 0.0013) \times(\alpha=0.1) \quad \text { with } \\
& +0.0037(\pm 0.0013) \times(\alpha=0.01)+0.0333(\pm 0.0013) \times(\alpha=0.05)
\end{aligned}
$$

$$
R^{2}=0.96
$$

There were no significant differences among those three methods with regard to the empirical type I error rate.

Table 3.1 Empirical type I error rate and its 95% confidence interval for chromosome 13 scoliosis data
Null Model 1: Three equiprobable trajectories

Signi	ance L			$\alpha=0.005$			$\alpha=0.01$			$\alpha=0.05$			$\alpha=0.10$		Failure rate (\%)
Method			BPP	Modal	CT										
Normal	Sigma	MAF													
No: Normal Squared	8	$=0.49$	0.005	0.004	0.006	0.012	0.012	0.01	0.045	0.044	0.05	0.08	0.083	0.08	0
			± 0.004	± 0.004	± 0.006	± 0.007	± 0.007	± 0.008	± 0.013	± 0.013	± 0.02	± 0.017	± 0.017	± 0.024	
		$=0.15$	0.006	0.008	0.006	0.011	0.01	0.012	0.041	0.045	0.038	0.078	0.087	0.062	
			± 0.005	± 0.005	± 0.006	± 0.006	± 0.006	± 0.009	± 0.012	± 0.013	± 0.017	± 0.016	± 0.017	± 0.02	
		<0.05	$\begin{gathered} 0.003 \\ \pm 0.003 \end{gathered}$	$\begin{gathered} 0.003 \\ \pm 0.003 \end{gathered}$	$\begin{gathered} 0.003 \\ \pm 0.003 \end{gathered}$	$\begin{gathered} 0.006 \\ \pm 0.005 \end{gathered}$	$\begin{gathered} 0.006 \\ \pm 0.005 \end{gathered}$	$\begin{gathered} 0.006 \\ \pm 0.006 \end{gathered}$	$\begin{gathered} 0.032 \\ \pm 0.01 \end{gathered}$	$\begin{gathered} 0.033 \\ +0.01 \end{gathered}$	$\begin{gathered} 0.03 \\ +0.013 \end{gathered}$	$\begin{gathered} 0.069 \\ +0.01 d \end{gathered}$	$\begin{gathered} 0.068 \\ +0.01 \end{gathered}$	$\begin{gathered} 0.06 \\ \pm 0.02 \end{gathered}$	
	4	$=0.49$	0.005	0.005	0.006	0.009	0.01	0.012	0.034	0.035	0.03	0.066	0.072	0.056	0.3
			± 0.004	± 0.004	± 0.006	± 0.006	± 0.006	± 0.009	± 0.011	± 0.01	$\pm 0.01=$	± 0.015	± 0.01	± 0.02	
		$=0.15$	0.006	0.006	0.004	0.008	0.008	0.008	0.047	0.049	0.038	0.087	0.09	0.084	
			± 0.005	± 0.005	± 0.004	± 0.005	± 0.005	± 0.008	± 0.013	± 0.013	± 0.017	± 0.017	± 0.018	± 0.024	
		<0.05	0.004	0.004	0.003	0.007	0.007	0.005	0.032	0.033	0.03	0.069	0.069	0.064	
			± 0.004	± 0.004	± 0.003	± 0.005	± 0.005	± 0.005	± 0.011	± 0.01	$\pm 0.01:$	± 0.016	± 0.01	± 0.02 ?	
Yes	8	$=0.49$	0.002	0.005	0.002	0.008	0.01	0.007	0.043	0.039	0.048	0.081	0.08	0.082	12.2
			± 0.003	± 0.005	± 0.004	± 0.006	± 0.006	± 0.007	± 0.013	± 0.013	± 0.02	± 0.02	± 0.01	± 0.026	
		$=0.15$	0.002	0.003	0.002	0.007	0.004	0.005	0.023	0.03	0.03	0.06	0.06	0.06	
			± 0.003	± 0.003	± 0.004	± 0.005	± 0.004	± 0.006	± 0.01	± 0.01	± 0.010	± 0.016	± 0.01	$\pm 0.02 \%$	
		<0.05	0.003	0.003	0.003	0.006	0.006	0.007	0.033	0.032	0.028	0.061	0.06	0.062	
			± 0.004	± 0.003	± 0.005	± 0.005	± 0.005	± 0.007	± 0.012	± 0.01	$\pm 0.01:$	± 0.016	± 0.01	± 0.027	
	4	$=0.49$	0.004	0.004	0.006	0.008	0.007	0.01	0.045	0.046	0.044	0.074	0.073	0.086	3
			± 0.004	± 0.004	± 0.007	± 0.005	± 0.005	± 0.009	± 0.013	± 0.013	± 0.018	± 0.016	± 0.01	± 0.025	
		$=0.15$	0.001	0.002	0.002	0.003	0.003	0.004	0.038	0.04	0.042	0.078	0.077	0.08	
			± 0.002	± 0.003	± 0.004	± 0.003	± 0.003	± 0.006	± 0.012	± 0.012	± 0.018	± 0.017	± 0.01	± 0.024	
		<0.05	0.003	0.003	0.003	0.006	0.006	0.006	0.032	0.03	0.031	0.068	0.067	0.061	
			± 0.003	± 0.003	± 0.005	± 0.005	± 0.005	± 0.007	± 0.011	± 0.01	± 0.010	± 0.016	± 0.01	$\pm 0.02 \%$	

Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.

Table 3.2 ANOVA table for empirical type I error rate using null model I

Variable source	DF	Mean square	F value	Pr>F
NORMAL	1	0.00019136	6.29	0.0133
SIGMA	1	0.00001344	0.44	0.5074
MAF	2	0.00056355	18.52	$<.0001$
α	3	0.03607492	0.785 .48	$<.0001$
METHOD	2	0.00002347	0.00003043	
Error	134			

3.1.2 Null Simulation II

Table 3.3 showed the empirical type I error rate and its 95% confidence interval using the second null model, which set the trajectory frequencies to Hardy Weinberg values and penetrance matrix values (the penetrance coefficient is denoted by PENE) as described in Chapter 2. Here, the variable PENE had two levels: high penetrance and low penetrance. The failure rates of the TRAJ model using three methods were the same and they were shown in the first table of Table 3.3.

Table 3.4 showed the ANOVA table of empirical type I error. The variables NORMAL and SIGMA were significant. The variable α is highly significant. The regression model was

$$
\begin{aligned}
\text { empirical type I error }= & 0.0021(\pm 0.0012)+0.0031(\pm 0.0007) \times(N O R M A L=0) \\
& +0.0016(\pm 0.0007) \times(S I G M A=4)+0.0681(\pm 0.0010) \times(\alpha=0.1) \quad \text { with } \\
& +0.0036(\pm 0.0010) \times(\alpha=0.01)+0.0331(\pm 0.0010) \times(\alpha=0.05)
\end{aligned}
$$

$$
R^{2}=0.968
$$

The BPP and modal BPP had different empirical type I error rates ($p=0.0004$). The empirical type I error rate for the modal BPP method was greater than the error rate using BPP method. Overall, the Modal BPP empirical type I error rate was closer to the target α. The empirical type I error rate of the contingency table method was essentially the same as that of that modal

BPP method.

Table 3.3 Empirical Type I error rate and 95% confidence interval for chromosome 13 scoliosis data using BPP method
Null Model 2: Hardy Weinberg Distribution for Trajectory Groups

Normal	MAF	Penetrance Model	σ	$\alpha=0.005$		$\alpha=0.01$		$\alpha=0.05$		$\alpha=0.10$		Failure rate (\%)
				OBS	95\% CI							
No- Normal Squared	$\begin{aligned} & \hline \text { MAF }=0.4 \\ & 9 \end{aligned}$	High Penetrance	$a=8$	0.005	(0.001,0.009)	0.008	(0.002,0.013)	0.039	(0.027,0.051)	0.076	(0.059,0.092)	0
			$\sigma=4$	0.003	$(0,0.006)$	0.006	(0.001,0.011)	0.040	(0.028,0.052)	0.078	(0.061,0.095)	0
		Low Penetrance	$\sigma=8$	0.003	(0,0.006)	0.004	(0,0.008)	0.044	(0.031,0.057)	0.083	(0.066,0.100)	0
			$a=4$	0.005	(0.001,0.009)	0.007	(0.002,0.012)	0.038	(0.026,0.050)	0.075	(0.059,0.091)	0.1
	$\begin{aligned} & \text { MAF }=0.1 \\ & 4 \end{aligned}$	High Penetrance	$\sigma=8$	0.007	(0.002,0.012)	0.010	(0.004,0.016)	0.037	(0.025,0.049)	0.061	(0.046,0.076)	0
			$\sigma=4$	0.004	$(0,0.008)$	0.006	(0.001,0.011)	0.039	(0.027,0.051)	0.069	(0.053,0.085)	0
		Low Penetrance	$\sigma=8$	0.004	$(0,0.008)$	0.006	(0.001,0.011)	0.036	(0.024,0.050)	0.076	(0.059,0.092)	0
			$\omega=4$	0.002	$(0,0.005)$	0.005	(0.001,0.009)	0.029	(0.018,0.039)	0.068	(0.052,0.084)	0
Yes	$\begin{aligned} & \text { MAF }=0.4 \\ & 9 \end{aligned}$	High Penetrance	$\sigma=8$	0.003	$(0,0.006)$	0.007	(0.002,0.012)	0.027	(0.017,0.037)	0.053	(0.039,0.067)	27.8
			$\sigma=4$	0.004	(0,0.008)	0.009	(0.003,0.015)	0.033	(0.022,0.044)	0.067	(0.051,0.082)	0.2
		Low Penetrance	$\sigma=8$	0.001	(0,0.003)	0.003	(0,0.006)	0.025	(0.015,0.035)	0.052	(0.038,0.066)	27.4
			$\sigma=4$	0.003	(0,0.006)	0.008	(0.002,0.013)	0.039	(0.027,0.051)	0.075	(0.059,0.091)	1.8
	$\begin{aligned} & \hline \text { MAF }=0.1 \\ & 4 \end{aligned}$	High Penetrance	$\bar{\sigma}=8$	0.005	(0.001,0.009)	0.008	(0.002,0.013)	0.039	(0.027,0.051)	0.077	(0.06,0.093)	0
			$\sigma=4$	0.004	(0,0.008)	0.006	(0.001,0.011)	0.038	(0.026,0.050)	0.070	(0.054,0.086)	0.1
		Low Penetrance	$\sigma=8$	0.002	(0,0.005)	0.004	(0,0.008)	0.027	(0.017,0.037)	0.069	(0.053,0.085)	0
			$\sigma=4$	0.003	$(0,0.006)$	0.007	(0.002,0.012)	0.031	(0.020,0.042)	0.072	(0.056,0.088)	0

Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.

Table 3.3 (continued) Empirical Type I error rate and 95% confidence interval for chromosome 13 scoliosis data using Modal BPP method
Null Model 2: Hardy Weinberg Distribution for Trajectory Groups

Normal	MAF	Penetrance Model	σ	$\alpha=0.005$		$\alpha=0.01$		$\alpha=0.05$		$\alpha=0.10$	
				OBS	95\% CI						
No: Normal Squared	$\begin{aligned} & \text { MAF }=0.4 \\ & 9 \end{aligned}$	High Penetrance	$\sigma=8$	0.005	(0.001,0.009)	0.010	(0.004,0.016)	0.049	(0.036,0.062)	0.079	(0.062,0.096)
			$\sigma=4$	0.003	(0,0.006)	0.007	(0.002,0.012)	0.045	(0.032,0.058)	0.083	(0.066,0.1)
		Low Penetrance	$\sigma=8$	0.003	(0,0.006)	0.007	(0.002,0.012)	0.046	(0.033,0.059)	0.085	(0.068,0.102)
			$a=4$	0.007	(0.002,0.012)	0.007	(0.002,0.012)	0.042	(0.029,0.054)	0.078	(0.061,0.095)
	$\begin{aligned} & \mathrm{MAF}=0.1 \\ & 4 \end{aligned}$	High Penetrance	$\sigma=8$	0.005	(0.001,0.009)	0.009	(0.003,0.015)	0.037	(0.025,0.049)	0.063	(0.048,0.078)
			$\sigma=4$	0.004	(0,0.008)	0.008	(0.002,0.013)	0.042	(0.029,0.054)	0.074	$(0.058,0.09)$
		Low Penetrance	$\sigma=8$	0.002	(0,0.005)	0.009	(0.003,0.015)	0.036	(0.024,0.047)	0.067	(0.051,0.082)
			$\sigma=4$	0.002	(0,0.005)	0.005	(0.001,0.009)	0.034	(0.023,0.045)	0.070	(0.054,0.086)
Yes	$\begin{aligned} & \mathrm{MAF}=0.4 \\ & 9 \end{aligned}$	High Penetrance	$\sigma=8$	0.004	(0,0.008)	0.007	(0.002,0.012)	0.026	(0.016,0.036)	0.046	(0.033,0.059)
			$\sigma=4$	0.005	$(0.001,0.009)$	0.008	(0.002,0.013)	0.035	(0.024,0.046)	0.070	(0.054,0.086)
		Low Penetrance	$\sigma=8$	0.001	(0,0.003)	0.003	(0,0.006)	0.030	(0.019,0.041)	0.056	(0.042,0.07)
			$a=4$	0.004	(0,0.008)	0.008	(0.002,0.013)	0.040	(0.028,0.052)	0.077	(0.06,0.093)
	$\begin{aligned} & \mathrm{MAF}=0.1 \\ & 4 \end{aligned}$	High Penetrance	$\sigma=8$	0.004	(0,0.008)	0.006	(0.001,0.011)	0.043	(0.03,0.055)	0.083	(0.066,0.1)
			$\sigma=4$	0.004	(0,0.008)	0.007	(0.002,0.012)	0.042	(0.029,0.054)	0.073	(0.057,0.089)
		Low Penetrance	$\sigma=8$	0.002	(0,0.005)	0.006	(0.001,0.011)	0.027	(0.017,0.037)	0.069	(0.053,0.085)
			$\sigma=4$	0.004	(0,0.008)	0.007	(0.002,0.012)	0.035	(0.024,0.046)	0.073	(0.057,0.089)

Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.

Table 3.3(continued) Empirical Type I error rate and 95% confidence interval for chromosome 13 scoliosis data using contingency table method
Null Model 2: Hardy Weinberg Distribution for Trajectory Groups

Normal	MAF	Penetrance Model	σ	$\alpha=0.005$		$\alpha=0.01$		$\alpha=0.05$		$\alpha=0.10$	
				OBS	95\% CI						
No- Normal Squared	$\begin{aligned} & \mathrm{MAF}=0.4 \\ & 9 \end{aligned}$	High Penetrance	$\sigma=8$	0.003	(0,0.006)	0.010	(0.004,0.016)	0.043	(0.030,0.056)	0.072	(0.056,0.088)
			$\sigma=4$	0.002	(0,0.005)	0.006	(0.001,0.010)	0.036	(0.024,0.048)	0.084	(0.067,0.101)
		Low Penetrance	$\theta=8$	0.002	(0,0.005)	0.008	(0.002,0.014)	0.040	(0.028,0.052)	0.080	(0.063,0.097)
			$a=4$	0.003	(0,0.006)	0.009	(0.003,0.015)	0.042	(0.029,0.054)	0.085	(0.068,0.102)
	$\begin{aligned} & \mathrm{MAF}=0.1 \\ & 4 \end{aligned}$	High Penetrance	$0=8$	0.003	(0,0.006)	0.008	(0.002,0.014)	0.034	(0.023,0.045)	0.072	(0.056,0.088)
			$\sigma=4$	0.002	(0,0.005)	0.008	(0.002,0.014)	0.043	(0.030,0.056)	0.076	(0.060,0.092)
		Low Penetrance	$\sigma=8$	0.004	(0,0.008)	0.007	(0.002,0.012)	0.039	(0.027,0.051)	0.075	(0.059,0.091)
			$\sigma=4$	0.001	(0,0.003)	0.005	(0.001,0.009)	0.032	(0.021,0.043)	0.059	(0.044,0.074)
Yes	$\begin{aligned} & \mathrm{MAF}=0.4 \\ & 9 \end{aligned}$	High Penetrance	$\sigma=8$	0.004	(0,0.008)	0.008	(0.002,0.014)	0.030	(0.019,0.040)	0.061	(0.046,0.076)
			$\sigma=4$	0.005	(0,0.009)	0.009	(0.003,0.015)	0.034	(0.023,0.045)	0.072	(0.056,0.088)
		Low Penetrance	$\sigma=8$	0.002	(0,0.005)	0.005	(0.001,0.009)	0.031	(0.020,0.042)	0.057	(0.042,0.071)
			$\sigma=4$	0.002	(0,0.005)	0.009	(0.003,0.015)	0.041	(0.029,0.053)	0.076	(0.060,0.092)
	$\begin{aligned} & \mathrm{MAF}=0.1 \\ & 4 \end{aligned}$	High Penetrance	$\sigma=8$	0.004	(0,0.008)	0.007	(0.002,0.012)	0.038	(0.026,0.050)	0.078	(0.061,0.095)
			$\sigma=4$	0.003	(0,0.006)	0.007	(0.002,0.012)	0.035	(0.024,0.046)	0.069	(0.053,0.085)
		Low Penetrance	$\sigma=8$	0.002	(0,0.005)	0.005	(0.001,0.009)	0.035	(0.024,0.046)	0.071	(0.055,0.087)
			$\sigma=4$	0.003	(0,0.006)	0.008	(0.002,0.014)	0.030	(0.019,0.041)	0.075	(0.059,0.091)

Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.

Table 3.4 ANOVA table of empirical type I error rate using null model II

Variable source	DF	Mean square	F Value	Pr $>\mathrm{F}$
NORMAL	1	0.00045942	17.47	$<.0001$
SIGMA	1	0.00012192	4.64	0.0326
MAF	1	0.00001813	0.69	0.4074
α	3	0.04793349	1823.23	$<.0001$
PENE	1	0.00005105	1.94	0.1652
METHOD	2	0.00003032	1.15	0.3179
Error	182	0.00002629		

Table 3.5, Table 3.6 and Table 3.7 showed the proportion of replicates (1000 replicates per setting) for which the number of SNP markers within 10 markers of the target SNP locus were in the top 5%, top 10% or top 25% of markers on chromosome 13 , using BPP method, modal BPP method and contingency table method respectively, using the second null model (Hardy Weinberg model). For example, on Table 3.5, there were 46.6% of the replicates for which no SNP markers within 10 markers of the target SNP locus were in the top 5% of the markers on the whole chromosome, under the parameter setting $N O R M A L=0, M A F=0.49$, $P E N E=0$, and $S I G M A=8$ and using the BPP method. Similarly, 47.5% of the replicates for which only 1 or 2 out of 10 SNP markers were in the top 10% of all the markers on chromosome 13 under the same parameter setting and using BPP method. The mean was calculated as:

$$
\text { MEAN }=\sum_{i=0}^{20} i \times \operatorname{Pr}(i)
$$

Here, $i=$ Number of SNP markers within 10 markers of disease SNP. Among the independent variables: NORMAL,MAF, PENE, and SIGMA , MEAN was correlated with $\operatorname{NORMAL}(p<.05)$ and $\operatorname{MAF}(p<.05)$. The independent variables PENE, SIGMA were not associated with the dependent variable. The results obtained from the three methods were essentially the same.

Table 3.5 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the target SNP locus are in the top 5%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (null model II) using BPP method

Normal	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
No: Normal Squared	0.49	High	$\sigma=8$	5	46.6	47.5	5.6	0.3	0	0	0	0	0	0.82	0.90
				10	24.3	52	21	2.5	0.2	0	0	0	0	1.57	1.81
				25	3.1	25.2	38.5	23.9	7.7	1.4	0.2	0	0	3.77	4.02
			$\sigma=4$	5	45.9	49.4	4.6	0.1	0	0	0	0	0	0.79	0.81
				10	21.9	57.4	18.1	2.5	0.1	0	0	0	0	1.54	1.60
				25	2.7	27.2	38.2	22.9	8.2	0.8	0	0	0	3.68	3.66
		Low	$\sigma=8$	5	47.3	47.5	4.9	0.2	0.1	0	0	0	0	0.79	0.89
				10	22.2	56.2	18.8	2.4	0.4	0	0	0	0	1.58	1.75
				25	1.7	24.9	39.8	24.5	7.8	1.1	0.2	0	0	3.81	3.70
			$\sigma=4$	5	49.85	45.74	4	0.4	0	0	0	0	0	0.73	0.82
				10	25.03	55.05	17.72	1.9	0.2	0.1	0	0	0	1.49	1.73
				25	3.6	26.63	38.54	23.53	6.4	1.2	0.1	0	0	3.64	3.76
	0.14	High	$\sigma=\mathbf{8}$	5	48	47.7	4.1	0.2	0	0	0	0	0	0.76	0.78
				10	22.6	57.4	18.2	1.7	0.1	0	0	0	0	1.51	1.54
				25	2.7	22.9	40.1	25.3	8.3	0.7	0	0	0	3.81	3.63
			$\sigma=4$	5	47.9	47.3	4.8	0	0	0	0	0	0	0.76	0.78
				10	24.6	56.7	16.6	1.9	0.2	0	0	0	0	1.46	1.55
				25	4.1	26.6	39.7	23.4	5.2	0.8	0.2	0	0	3.57	3.55
		Low	$\sigma=\mathbf{8}$	5	49.8	46.1	4.1	0	0	0	0	0	0	0.71	0.74
				10	23.7	56.6	17	2.5	0.2	0	0	0	0	1.49	1.63
				25	3	26.2	38.1	23.3	8.3	1	0.1	0	0	3.75	3.89
			$\sigma=4$	5	52.4	44.3	3.3	0	0	0	0	0	0	0.65	0.65
				10	24	57.2	18	0.8	0	0	0	0	0	1.44	1.38
				25	3	24.5	40.3	25.7	5.8	0.7	0	0	0	3.71	3.39

Table 3.5 (continued)

Normal	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
Yes	0.49	High	$\sigma=8$	5	66.8	32	1.1	0.1	0	0	0	0	0	0.43	0.70
				10	51.7	41.3	6.9	0.1	0	0	0	0	0	0.81	1.01
				25	32.7	30.2	27	8.4	1.7	0	0	0	0	1.99	1.85
			$\sigma=4$	5	51.5	43.69	4.71	0.1	0	0	0	0	0	0.72	0.89
				10	23.65	58.62	15.83	1.7	0.2	0	0	0	0	1.45	1.21
				25	2.3	27.16	40.28	23.45	5.51	1.2	0.1	0	0	3.61	1.86
		Low	$\sigma=8$	5	73.7	24.4	1.9	0	0	0	0	0	0	0.36	0.69
				10	53.5	39.7	6.2	0.6	0	0	0	0	0	0.77	1.04
				25	32.7	33.1	24.9	8.3	1	0	0	0	0	1.86	1.78
			$\sigma=4$	5	51.02	44.4	4.38	0.2	0	0	0	0	0	0.69	0.87
				10	27.39	53.26	17.32	2.03	0	0	0	0	0	1.44	1.26
				25	3.97	27.7	39.72	22.5	4.79	1.32	0	0	0	3.51	1.91
	0.14	High	$\sigma=8$	5	50.1	44.5	5.2	0.2	0	0	0	0	0	0.75	0.91
				10	25.2	53	19.1	2.5	0.2	0	0	0	0	1.49	1.31
				25	2.2	24.5	38.4	26.2	7.3	1.4	0	0	0	3.83	1.93
			$\sigma=4$	5	48.85	46.44	4.7	0	0	0	0	0	0	0.74	0.88
				10	24.42	54.85	18.72	2	0	0	0	0	0	1.51	1.27
				25	2.6	25.23	40.44	24.63	6.6	0.4	0.1	0	0	3.68	1.82
		Low	$\sigma=8$	5	51.9	43.9	3.9	0.3	0	0	0	0	0	0.69	0.89
				10	24	56.2	17.9	1.7	0.2	0	0	0	0	1.47	1.26
				25	2.6	26.2	39.3	24.2	6.4	1.3	0	0	0	3.69	1.89
			$\sigma=4$	5	51.4	44.4	4.2	0	0	0	0	0	0	0.69	0.86
				10	25.5	55.5	17.1	1.7	0.2	0	0	0	0	1.44	1.24
				25	2.6	26.5	38.7	24.3	6.2	1.7	0	0	0	3.74	1.94

Table 3.6 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the target SNP locus are in the top 5%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (null model II) using Modal BPP method

Normal	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
No	0.49	High	$\sigma=8$	5	49.9	43.9	5.9	0.3	0	0	0	0	0	0.76	0.95
				10	22.9	54.4	20.6	1.9	0.2	0	0	0	0	1.56	1.31
				25	3.6	24.8	39.5	24.3	6.2	1.4	0.2	0	0	3.71	1.98
			$\sigma=4$	5	47.4	48.7	3.8	0.1	0	0	0	0	0	0.76	0.88
				10	23.1	58.3	16.5	2.1	0	0	0	0	0	1.48	1.23
				25	3.5	28.3	38.2	21.7	7.7	0.6	0	0	0	3.56	1.91
		Low	$\sigma=8$	5	50	45.8	4	0.2	0	0	0	0	0	0.73	0.88
				10	24.6	56.6	16.8	1.8	0.2	0	0	0	0	1.47	1.25
				25	1.6	25.5	40.6	24.3	6.5	1.4	0.1	0	0	3.76	1.89
			$\sigma=4$	5	50.65	45.54	3.4	0.4	0	0	0	0	0	0.69	0.87
				10	26.83	54.55	16.41	1.9	0.3	0	0	0	0	1.42	1.28
				25	3.5	29.03	38.74	21.82	5.8	1	0.1	0	0	3.53	1.91
	0.14	High	$\sigma=8$	5	45.4	49.1	5.3	0.2	0	0	0	0	0	0.81	0.92
				10	21.2	57.9	18.7	2.2	0	0	0	0	0	1.56	1.25
				25	2.1	22.4	38.1	28.2	8.1	1.1	0	0	0	3.91	1.88
			$\sigma=4$	5	45.6	49	5.4	0	0	0	0	0	0	0.81	0.9
				10	23.2	56.7	17.9	2.1	0.1	0	0	0	0	1.52	1.25
				25	3.8	25.1	39.5	24.1	6.5	0.9	0.1	0	0	3.67	1.9
		Low	$\sigma=8$	5	48	47	4.8	0.2	0	0	0	0	0	0.76	0.9
				10	22.1	57.8	17.1	3	0	0	0	0	0	1.56	1.3
				25	2.5	24.4	36.2	26.9	8.2	1.7	0.1	0	0	3.87	2.01
			$\sigma=4$	5	48.8	47.3	3.8	0.1	0	0	0	0	0	0.72	1.11
				10	22.4	57.4	18.9	1.3	0	0	0	0	0	1.52	1.21
				25	2.3	22.9	39.8	28	6.5	0.5	0	0	0	3.82	1.84

Table 3.6 (continued)

Normal	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
Yes	0.49	High	$\sigma=8$	5	68.2	30.8	1	0	0	0	0	0	0	0.41	0.68
				10	51.7	40.8	7.3	0.2	0	0	0	0	0	0.79	1.00
				25	32.8	31	27.1	7.9	1.2	0	0	0	0	1.92	1.79
			$\sigma=4$	5	53.71	42.48	3.71	0.1	0	0	0	0	0	0.67	0.86
				10	25.65	58.12	14.53	1.5	0.2	0	0	0	0	1.38	1.19
				25	2.3	27.65	41.69	22.35	5.21	0.8	0	0	0	3.52	1.81
		Low	$\sigma=8$	5	76.2	22.3	1.5	0	0	0	0	0	0	0.32	0.65
				10	54.5	38.6	6.5	0.4	0	0	0	0	0	0.74	1.00
				25	33.4	34.1	24.7	6.3	1.5	0	0	0	0	1.81	1.76
			$\sigma=4$	5	52.95	42.97	4.07	0	0	0	0	0	0	0.66	0.84
				10	29.12	53.56	15.58	1.73	0	0	0	0	0	1.36	1.24
				25	4.28	28.62	41.14	20.16	4.68	1.12	0	0	0	3.42	1.87
	0.14	High	$\sigma=8$	5	48.7	45.7	5.5	0.1	0	0	0	0	0	0.79	0.93
				10	20.6	57.3	19.6	2.4	0.1	0	0	0	0	1.56	1.28
				25	1.7	22.7	39.3	26.4	8.2	1.6	0.1	0	0	3.90	1.92
			$a=4$	5	47.15	47.94	4.9	0	0	0	0	0	0	0.77	0.90
				10	22.22	55.95	19.22	2.5	0.1	0	0	0	0	1.58	1.29
				25	2.8	23.53	39.74	25.63	7.61	0.6	0.1	0	0	3.79	1.87
		Low	$\sigma=8$	5	49.6	46.1	3.9	0.4	0	0	0	0	0	0.73	0.90
				10	23.2	55.5	19.3	1.5	0.5	0	0	0	0	1.54	1.31
				25	2.5	23.1	40.9	24.2	7.8	1.3	0.2	0	0	3.83	1.92
			$\sigma=4$	5	48.7	46.4	4.9	0	0	0	0	0	0	0.74	0.87
				10	23.3	55.8	18.9	1.8	0.2	0	0	0	0	1.51	1.26
				25	2.4	24.9	38.1	26.2	6.3	2.1	0	0	0	3.83	1.95

Table 3.7 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the target SNP locus are in the top 5\%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (null simulation II) using contingency table method

Normal	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
No: Normal Squared	0.49	High	$\sigma=8$	5	45.9	48.2	5.9	0	0	0	0	0	0	0.93	0.94
				10	21	58	18.7	2	0.2	0.1	0	0	0	1.66	1.65
				25	2.2	23.5	41	25.3	6.2	1.5	0.3	0	0	3.82	3.84
			$\sigma=4$	5	44.24	52.15	3.5	0.1	0	0	0	0	0	0.91	0.80
				10	20.22	59.06	18.81	1.8	0.1	0	0	0	0	1.65	1.51
				25	1.9	24.83	42.34	23.93	6.2	0.6	0.2	0	0	3.71	3.47
		Low	$\sigma=\mathbf{8}$	5	45.55	49.75	4.6	0.1	0	0	0	0	0	0.91	0.88
				10	21.82	58.05	18.72	1.3	0.1	0	0	0	0	1.60	1.47
				25	1.4	24.23	39.54	25.83	8.21	0.8	0	0	0	3.86	3.64
			$\sigma=4$	5	51.35	44.94	3.7	0	0	0	0	0	0	0.80	0.82
				10	25.63	54.25	17.42	2.4	0.3	0	0	0	0	1.58	1.76
				25	1.4	30.13	42.54	20.33	4.6	1	0.1	0	0	3.51	3.34
	0.14	High	$\sigma=\mathbf{8}$	5	46.75	48.55	4.3	0.4	0	0	0	0	0	0.90	0.93
				10	22.12	58.86	17.32	1.5	0.2	0	0	0	0	1.59	1.49
				25	2.3	24.03	41.64	24.22	6.6	1.2	0	0	0	3.76	3.63
			$\sigma=4$	5	49.39	47.16	3.45	0	0	0	0	0	0	0.83	0.80
				10	24.04	58.21	16.43	1.21	0.1	0	0	0	0	1.52	1.43
				25	2.94	28.29	43.51	19.58	4.77	0.91	0	0	0	3.47	3.36
		Low	$\sigma=8$	5	51.9	44.1	4	0	0	0	0	0	0	0.80	0.84
				10	25.9	55.5	16.2	2.2	0.2	0	0	0	0	1.53	1.65
				25	2.5	28.2	41.2	21.1	6.3	0.7	0	0	0	3.56	3.53
			$\sigma=4$	5	50	46.4	3.6	0	0	0	0	0	0	0.82	0.81
				10	24.6	58	17	0.4	0	0	0	0	0	1.49	1.30
				25	2.6	27.7	42.1	23.4	3.8	0.4	0	0	0	3.50	3.11

Table 3.7 (continued)

Normal	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
Yes	0.49	High	$\sigma=8$	5	66.6	32.3	0.8	0.3	0	0	0	0	0	0.53	0.64
				10	52.1	41.6	6.2	0.1	0	0	0	0	0	0.85	1.01
				25	34	31.7	25	7.9	1.4	0	0	0	0	1.89	3.38
			$\sigma=4$	5	50.7	46.29	3.01	0	0	0	0	0	0	0.80	0.77
				10	25.03	60.14	13.33	1.4	0.1	0	0	0	0	1.45	1.35
				25	2.4	28.98	39.71	22.62	5.19	1	0.1	0	0	3.56	3.61
		Low	$\sigma=8$	5	69.9	28	2.1	0	0	0	0	0	0	0.49	0.64
				10	52.8	41.2	5.7	0.3	0	0	0	0	0	0.83	1.02
				25	31.5	33.2	25.5	8.6	1.2	0	0	0	0	1.95	3.33
			$\sigma=4$	5	53.48	42.56	3.96	0	0	0	0	0	0	0.78	0.84
				10	24.85	55.15	18.62	1.38	0	0	0	0	0	1.55	1.52
				25	4	30.26	40.69	20.64	3.23	1.18	0	0	0	3.37	3.45
	0.14	High	$\sigma=8$	5	48.2	46.7	4.9	0.2	0	0	0	0	0	0.88	0.93
				10	26.5	54.5	17.1	1.8	0.1	0	0	0	0	1.52	1.60
				25	2.5	24.3	38.6	26.1	7.2	1.3	0	0	0	3.81	3.84
			$\sigma=4$	5	47.16	48.09	4.74	0	0	0	0	0	0	0.89	0.87
				10	24.04	56.06	18.19	1.7	0	0	0	0	0	1.57	1.54
				25	2.3	27.4	39.5	23.2	6.2	1.4	0	0	0	3.67	3.77
		Low	$\sigma=8$	5	52.9	45.3	1.8	0	0	0	0	0	0	0.74	0.69
				10	25.2	57	16.6	1.2	0	0	0	0	0	1.50	1.42
				25	2.9	26.1	40.2	24.1	5.6	1.1	0	0	0	3.65	3.63
			$\sigma=4$	5	53.5	42.6	3.9	0	0	0	0	0	0	0.77	0.83
				10	25.8	57.3	16.2	0.7	0	0	0	0	0	1.46	1.34
				25	2.8	27.7	37.7	24	6.4	1.4	0	0	0	3.67	3.91

3.2 Simulated Power Results

3.2.1 Single locus model

Table 3.8 showed the simulated power to detect the disease locus associated with the progression of disease in a single-locus model. All the three methods had very high power (power $\approx 100 \%$) to detect the disease locus for each setting of MAF, SIGMA, PENE and NORMAL. The failure rates of the TRAJ procedure using the three methods are the same and they are shown in the first table of Table 3.8.

Table 3.8 Empirical power to detect association of disease SNP on chromosome 13 with scoliosis data (single locus model) using BPP method

Normal	MAF	Penetrance Model	σ	$\alpha=0.005$		$\alpha=0.01$		$\alpha=0.05$		$\alpha=0.10$		Failure rate (\%)
				OBS	95\% CI							
No: Normal Squared	$\begin{aligned} & \hline \text { MAF }=0.4 \\ & 9 \end{aligned}$	High Penetrance	$\sigma=8$	1	(0.995, 1)	1	(0.995,1)	1	(0.995, $)$	1	(0.995, $)$	0
			$\sigma=4$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995, $)$	0
		Low Penetrance	$\sigma=8$	1	(0.995, $)$	1	(0.995,1)	1	(0.995, $)$	1	(0.995, $)$	0
			$\sigma=4$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995,1)	1	(0.995,1)	0
	$\begin{aligned} & \hline \text { MAF }=0.1 \\ & 4 \end{aligned}$	High Penetrance	$\sigma=8$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)	0
			$\sigma=4$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995, $)$	1.6
		Low Penetrance	$\sigma=8$	1	(0.995, $)$	1	(0.995,1)	1	(0.995, $)$	1	(0.995, $)$	0
			$\sigma=4$	0.999	(0.994,1)	1	(0.995,1)	1	(0.995,1)	1	(0.995, $)$	0
Yes	$\mathrm{MAF}=0.4$	High Penetrance	$\sigma=8$	0.999	(0.994,1)	0.999	(0.994,1)	0.999	(0.994,1)	1	(0.995, $)$	1.0
			$\sigma=4$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995,1)	0.2
		Low Penetrance	$\sigma=8$	0.993	(0.98,0.997)	0.993	(0.98,0.997)	0.993	(0.98,0.997)	0.994	(0.985,0.998)	18.4
			$\sigma=4$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995, $)$	0.2
	$\begin{aligned} & \mathrm{MAF}=0.1 \\ & 4 \end{aligned}$	High Penetrance	$\sigma=8$	1	(0.995, $)$	1	(0.995,1)	1	(0.995, $)$	1	(0.995,1)	0
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)	0.8
		Low Penetrance	$\sigma=8$	0.997	(0.99,0.999)	1	(0.995,1)	1	(0.995, $)$	1	(0.995,1)	0
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	(0.995, $)$	1	(0.995,1)	0

Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.

Table 3.8 (continued) Empirical power to detect association of disease SNP on chromosome 13 with scoliosis data (single-locus model) using Modal BPP method

Normal	MAF	Penetrance Model	σ	$\alpha=0.005$		$\alpha=0.01$		$\alpha=0.05$		$\alpha=0.10$	
				OBS	95\% CI						
No: Normal Squared	$\begin{aligned} & \mathrm{MAF}=0.4 \\ & 9 \end{aligned}$	High Penetrance	$\sigma=8$	1	$(0.995,1)$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995,1)
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)
		Low Penetrance	$\sigma=8$	1	$(0.995,1)$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)
			$a=4$	1	$(0.995,1)$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)
	$\begin{aligned} & \mathrm{MAF}=0.1 \\ & 4 \end{aligned}$	High Penetrance	$\sigma=8$	1	$(0.995,1)$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)
		Low Penetrance	$\sigma=8$	1	$(0.995,1)$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995,1)
			$a=4$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995,1)
Yes	$\begin{aligned} & \mathrm{MAF}=0.4 \\ & 9 \end{aligned}$	High Penetrance	$\sigma=8$	1	$(0.995,1)$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995,1)
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	(0.995, $)$	1	(0.995,1)
		Low Penetrance	$\sigma=8$	0.994	(0.985,0.998)	0.994	(0.985,0.998)	0.994	(0.985,0.998)	0.994	(0.985,0.998)
			$\sigma=4$	1	$(0.995,1)$	1	(0.995, $)$	1	(0.995, 1)	1	(0.995,1)
	$\begin{aligned} & \mathrm{MAF}=0.1 \\ & 4 \end{aligned}$	High Penetrance	$\sigma=8$	1	$(0.995,1)$	1	$(0.995,1)$	1	$(0.995,1)$	1	$(0.995,1)$
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	(0.995, 1)	1	(0.995,1)
		Low Penetrance	$\sigma=8$	1	(0.995,1)	1	(0.995,1)	1	(0.995, 1)	1	(0.995,1)
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)

Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.

Table 3.8 (continued) Empirical power to detect association of disease SNP on chromosome 13 with scoliosis data (single-locus model) using contingency table method

Normal	MAF	Penetrance Model	σ	$\alpha=0.005$		$\alpha=0.01$		$\alpha=0.05$		$\alpha=0.10$	
				OBS	95\% CI						
No: Normal Squared	$\begin{aligned} & \mathrm{MAF}=0.4 \\ & 9 \end{aligned}$	High Penetrance	$\sigma=8$	1	$(0.995,1)$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995,1)
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)
		Low Penetrance	$\sigma=8$	1	$(0.995,1)$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)
			$a=4$	1	$(0.995,1)$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)
	$\begin{aligned} & \mathrm{MAF}=0.1 \\ & 4 \end{aligned}$	High Penetrance	$\sigma=8$	1	$(0.995,1)$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)
		Low Penetrance	$\sigma=8$	1	$(0.995,1)$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995,1)
			$a=4$	1	$(0.995,1)$	1	(0.995, $)$	1	(0.995, $)$	1	(0.995,1)
Yes	$\begin{aligned} & \mathrm{MAF}=0.4 \\ & 9 \end{aligned}$	High Penetrance	$\sigma=8$	0.998	(0.992,1)	1	(0.995, $)$	1	(0.995, $)$	1	(0.995,1)
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	$(0.995,1)$	1	(0.995,1)
		Low Penetrance	$\sigma=8$	0.994	(0.985,0.998)	0.994	(0.985,0.998)	0.996	(0.988,0.999)	0.997	(0.989,0.999)
			$\sigma=4$	1	$(0.995,1)$	1	(0.995, $)$	1	$(0.995,1)$	1	(0.995,1)
	$\begin{aligned} & \mathrm{MAF}=0.1 \\ & 4 \end{aligned}$	High Penetrance	$\sigma=8$	1	$(0.995,1)$	1	$(0.995,1)$	1	$(0.995,1)$	1	$(0.995,1)$
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	(0.995, 1)	1	(0.995,1)
		Low Penetrance	$\sigma=8$	1	(0.995,1)	1	(0.995,1)	1	(0.995, 1)	1	(0.995,1)
			$\sigma=4$	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)	1	(0.995,1)

Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.

Tables 3.9, 3.10 and 3.11 showed the proportion of replicates for which the number of SNP markers within 10 markers of the disease SNP locus were in the top 5%, top 10% or top 25% of markers on chromosome 13 using BPP method, modal BPP method and contingency table method, respectively using the power simulation model. The proportions were 'drifting right' in tables 3.9, 3.10 and 3.11 (compared to tables $3.5,3.6$ and 3.7), indicating the clustering phenomena of the markers around the disease locus. That is, the markers around the disease locus had much higher probability to rank in the top $5 \%, 10 \%$ and 25% among all the loci on chromosome 13.

Figure 3.1 showed the proportion of replicates by the number of significant SNPs. That is, the x -axis was the number of the SNPs which were in the top 5% (figure (a)), top 10% (figure (b)) and top 25% (figure (c)) of the markers on chromosome 13. The y-axis was the proportion of replicates in which the number of significant markers was as given. For the null simulations (false positive), the number of significant markers was most likely 0,1 or 2 , while for the single locus power simulations, the number of significant markers was mostly 7 and above. This figure showed the clustering phenomenon of significant SNP markers around the disease SNP. For both disease SNPs at low MAF level and high MAF level, a few significant SNPs were clustering around the disease SNP. My study also showed that for high MAF level disease SNPs, there were more significant SNP markers around the loci.

Figure 3.1 Proportion of replicates for which the number of SNP markers within 10 markers of the disease SNP locus were in the top 5% (figure(a)), top 10% (figure(b)) and top 25% (figure(c)) of chromosome 13 by the number of significant SNP markers (parameter setting: no normal square transformation, MAF $=0.49$, high penetrance model and $\sigma=8$)

Table 3.9 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the disease SNP locus were in the top 5%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (single-locus model) using BPP method

Normal	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
No	0.49	High	$\sigma=8$	5	0	0	0.1	6.4	45.5	42.8	5.1	0.1	0	8.39	1.31
				10	0	0	0	2.0	22.7	56.6	17.6	1.1	0	9.36	1.36
				25	0	0	0	0	2.3	31.5	46.2	18.4	1.6	11.21	1.52
			$\sigma=4$	5	0	0	0	6.2	41.8	44.8	7.0	0.2	0	8.56	1.34
				10	0	0	0	1.4	19.5	54.5	22.5	2.1	0	9.58	1.41
				25	0	0	0	0.1	2.1	24.2	51.1	19.4	3.1	11.43	1.51
		Low	$\sigma=8$	5	0	0	13.4	47.5	31.1	7.5	0.5	0	0	6.18	1.57
				10	0	0	4.2	29.8	41.7	19.5	4.6	0.1	0.1	7.34	1.77
				25	0	0	0.5	5.1	25.2	36.8	24.2	6.8	1.4	9.61	2.06
			$\sigma=4$	5	0	0	13.5	46.9	32.2	7.1	0.3	0	0	6.19	1.53
				10	0	0	3.3	29.0	41.6	21.6	4.1	0.4	0	7.40	1.74
				25	0	0	0.2	4.0	22.9	37.3	26.7	8.4	0.5	9.76	1.96
	0.14	High	$\sigma=8$	5	0	65.0	30.7	3.8	0.5	0	0	0	0	2.23	1.16
				10	0	38.0	45.7	14.0	1.9	0.4	0	0	0	3.12	1.47
				25	0	5.9	27.8	38.2	20.4	7.1	0.5	0.1	0	5.46	1.97
			$\sigma=4$	5	0	2.84	54.07	39.33	3.66	0.1	0	0	0	4.37	1.15
				10	0	1.42	25.3	54.88	16.57	1.83	0	0	0	5.34	1.39
				25	0	0.2	3.56	24.7	39.64	27.03	4.27	0.51	0.1	7.58	1.83
		Low	$\sigma=8$	5	0	74.9	23.8	1.3	0	0	0	0	0	1.96	0.97
				10	0	45.7	42.3	11.4	0.5	0.1	0	0	0	2.83	1.33
				25	0	5.8	31.0	38.9	19.3	4.4	0.6	0	0	5.24	1.88
			$\sigma=4$	5	0	74.2	25.1	0.7	0	0	0	0	0	1.95	0.93
				10	0	45.8	44.7	8.8	0.6	0.1	0	0	0	2.79	1.28
				25	0	5.8	33.5	41.6	14.8	3.8	0.4	0.1	0	5.07	1.81

Table 3.9(continued)

Normal	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
Yes	0.49	High	$\sigma=8$	5	0	0.1	0	9.6	45.15	40.7	4.35	0.1	0	8.29	1.39
				10	0	0	0.1	1.31	23.94	55.56	17.57	1.51	0	9.38	1.41
				25	0	0	0.1	0.1	2.72	29.8	46.57	18.49	2.23	11.23	1.61
			$\sigma=4$	5	0	0	0.1	5.1	43.8	46.3	4.5	0	0.2	8.52	1.38
				10	0	0	0	1.1	21.6	57.9	17.9	1.3	0.2	9.47	1.42
				25	0	0	0	0	2.2	29.6	47.8	18.1	2.3	11.28	1.61
		Low	$\sigma=8$	5	0	0.12	27.12	55.36	14.3	3.08	0	0	0	5.36	1.41
				10	0	0	10.85	46.24	32.55	8.63	1.73	0	0	6.39	1.64
				25	0	0	0.99	14.92	38.1	31.69	12.58	1.48	0.25	8.40	1.91
			$\sigma=4$	5	0	0	22	52.4	21.9	3.2	0.3	0	0.2	5.68	1.61
				10	0	0	8.1	39.2	37.4	13.1	2	0	0.2	6.77	1.8
				25	0	0	0.8	9.3	31.9	34.9	18.3	4	0.8	9.01	2.11
	0.14	High	$\sigma=8$	5	0	78.6	20.4	1	0	0	0	0	0	1.89	0.93
				10	0	48.1	42.4	8.9	0.6	0	0	0	0	2.72	1.26
				25	0	7.5	35.2	39.1	15	3.2	0	0	0	4.93	1.78
			$a=4$	5	0	67.3	26.5	5.1	0.3	0	0	0	0.8	2.35	2.05
				10	0	41.9	41.9	12.9	2.2	0.3	0	0	0.8	3.15	2.19
				25	0	5.5	27.8	39.2	20.2	5.4	1.1	0	0.8	5.52	2.4
		Low	$\sigma=8$	5	0	79.6	19.3	1.1	0	0	0	0	0	1.83	0.89
				10	0	50.2	42	7.2	0.6	0	0	0	0	2.64	1.25
				25	0	7.8	38	35.6	15.2	3.2	0.2	0	0	4.86	1.83
			$\sigma=4$	5	0	79.5	19.1	1.4	0	0	0	0	0	1.87	0.92
				10	0	48.7	41.9	8.7	0.7	0	0	0	0	2.71	1.27
				25	0	7	35.8	40	13.5	3.3	0.4	0	0	4.92	1.78

Table 3.10 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the disease SNP locus were in the top 5%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (single-locus model) using Modal BPP method

Normal	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
No	0.49	High	$\sigma=8$	5	0	0	0.1	8.4	51.1	36.7	3.7	0	0	8.17	1.3
				10	0	0	0	2.3	27.2	54.4	15.0	1.1	0	9.19	1.39
				25	0	0	0	0	3.8	32.8	45.6	16.5	1.3	11.10	1.52
			$\sigma=4$	5	0	0	0	7.7	44.8	41.5	5.8	0.2	0	8.43	1.34
				10	0	0	0	1.6	22.2	54.7	20.2	1.3	0	9.45	1.39
				25	0	0	0	0.1	2.4	26.1	50.8	17.9	2.7	11.33	1.52
		Low	$\sigma=8$	5	0	0	16.9	48.7	28.5	5.5	0.4	0	0	5.99	1.52
				10	0	0	3.9	33.4	41.1	18.4	2.8	0.3	0.1	7.16	1.74
				25	0	0	0.3	6.4	26.3	37.5	22.9	5.6	1.0	9.45	2.05
			$\sigma=4$	5	0	0	14.5	50	29.8	5.5	0.2	0	0	6.05	1.48
				10	0	0	4.0	32	40.9	19.3	3.4	0.4	0	7.24	1.71
				25	0	0	0.2	4.6	23.8	38.8	24.7	7.4	0.5	9.65	1.96
	0.14	High	$\sigma=8$	5	0	66.8	28.6	4.2	0.4	0	0	0	0	2.21	1.17
				10	0	37.2	44.8	15.6	2.2	0.2	0	0	0	3.13	1.48
				25	0	5.1	28.8	37.5	20.9	6.2	1.4	0.1	0	5.47	2.0
			$\sigma=4$	5	0	2.74	47.36	45.53	4.26	0.1	0	0	0	4.54	1.16
				10	0	1.32	21.35	57.11	18.4	1.73	0.1	0	0	5.46	1.38
				25	0	0.2	3.05	23.68	41.05	26.93	4.57	0.41	0.1	7.63	1.8
		Low	$\sigma=8$	5	0	74.7	23.8	1.4	0.1	0	0	0	0	1.99	0.96
				10	0	43.9	43.6	11.2	1.2	0.1	0	0	0	2.89	1.36
				25	0	4.9	32.1	40.2	17.5	4.7	0.6	0	0	5.25	1.85
			$\sigma=4$	5	0	72.9	26	1.1	0	0	0	0	0	1.99	0.95
				10	0	42.9	46.6	10	0.5	0	0	0	0	2.87	1.28
				25	0	5.7	31.7	41.5	16.7	4.1	0.3	0	0	5.18	1.82

Table 3.10 (Continued)

Normal	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
Yes	0.49	High	$\sigma=8$	5	0	0	0	12.74	50.25	33.67	3.24	0.1	0	8.05	1.35
				10	0	0	0	1.92	30.33	51.46	14.96	1.31	0	9.17	1.43
				25	0	0	0	0.1	3.44	32.86	44.39	16.88	2.33	11.13	1.61
			$\sigma=4$	5	0	0	0.1	6.6	46.6	43.2	3.3	0	0.2	8.36	1.36
				10	0	0	0	1.3	24.4	57.1	16	1	0.2	9.35	1.42
				25	0	0	0	0	2.5	30.8	47.2	17.3	2.2	11.21	1.62
		Low	$\sigma=8$	5	0	0.12	29.59	55.73	12.58	1.97	0	0	0	5.22	1.33
				10	0	0.12	12.83	48.21	30.21	7.27	1.36	0	0	6.23	1.60
				25	0	0	1.61	16.53	38.85	31.57	9.25	2.09	0.12	8.26	1.94
			$\sigma=4$	5	0	0	24	53.2	20	2.3	0.3	0	0.2	5.57	1.55
				10	0	0	8.7	40.3	37.6	11.7	1.5	0	0.2	6.67	1.76
				25	0	0	0.9	10.6	34.4	32.5	17.4	3.4	0.8	8.87	2.10
	0.14	High	$\sigma=8$	5	0	76.4	22.8	0.8	0	0	0	0	0	1.93	0.92
				10	0	47.6	41.6	10.3	0.5	0	0	0	0	2.77	1.28
				25	0	6.7	32.8	40.2	15.8	4.3	0.2	0	0	5.07	1.81
			$\sigma=4$	5	0	66	27.6	5.3	0.3	0	0	0	0.8	2.38	2.06
				10	0	38.9	44	13.3	2.7	0.3	0	0	0.8	3.23	2.21
				25	0	5.5	26.2	39.6	20.7	6.1	1.1	0	0.8	5.62	2.40
		Low	$\sigma=8$	5	0	77.3	21.6	1.1	0	0	0	0	0	1.85	0.90
				10	0	48.2	44.1	7.1	0.6	0	0	0	0	2.68	1.26
				25	0	8.2	34.2	38.3	16.7	2.3	0.3	0	0	4.95	1.78
			$\sigma=4$	5	0	77.1	20.8	2.1	0	0	0	0	0	1.93	0.96
				10	0	46.5	43.4	9.2	0.9	0	0	0	0	2.77	1.29
				25	0	6.4	35.1	39.1	15.2	3.6	0.6	0	0	5.03	1.80

Table 3.11 Proportion of replicates (\%) for which the number of SNP markers within 10 markers of the disease SNP locus were in the top 5%, top 10% or top 25% of markers on chromosome 13 for scoliosis data (single-locus model) using contingency table method

Normal	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
No	0.49	High	$\sigma=\mathbf{8}$	5	0	0	0.4	10.2	51.6	34.9	2.9	0	0	8.09	1.98
				10	0	0	0.1	2.1	29	55.9	12.1	0.8	0	9.10	1.99
				25	0	0	0	0.1	4.9	35.4	42.8	15.7	1.1	10.95	2.73
			$\sigma=4$	5	0	0	0	7.2	46.9	43.3	2.6	0	0	8.33	1.75
				10	0	0	0.1	1.8	24	53.8	19.1	1.2	0	9.37	2.22
				25	0	0	0	0.1	3.3	29	48.8	16.4	2.4	11.21	2.68
		Low	$\sigma=8$	5	0	0	17.4	50.3	26.8	5.2	0.3	0	0	5.91	2.54
				10	0	0	3.6	35.2	41.2	17.5	2.2	0.3	0	7.11	2.99
				25	0	0	0.2	6.2	27.4	39.8	20.1	5.4	0.9	9.36	4.13
			$\sigma=4$	5	0	0	14.7	49.4	30.9	4.9	0.1	0	0	6.03	2.37
				10	0	0	3.9	32.2	43	17.4	3.3	0.2	0	7.19	3.11
				25	0	0	0.1	4.5	26.1	37.5	24.3	7.1	0.4	9.59	4.04
	0.14	High	$\sigma=8$	5	0	64.9	30.7	4.1	0.3	0	0	0	0	2.29	1.36
				10	0	36.6	46.7	14.7	1.9	0.1	0	0	0	3.14	2.26
				25	0	3.8	28.7	40.2	20.8	5.5	0.9	0.1	0	5.47	3.85
			$\sigma=4$	5	0	1.9	48.27	46.12	3.69	0.01	0	0	0	4.53	1.45
				10	0	1.11	22.13	56.75	18.21	1.71	0.1	0	0	5.45	2.09
				25	0	0.15	3.74	24.75	40.27	26.17	4.48	0.35	0.07	7.57	3.58
		Low	$\sigma=\mathbf{8}$	5	0	76.3	22.9	0.6	0.2	0	0	0	0	1.99	0.84
				10	0	44.8	42.7	10.6	1.6	0.3	0	0	0	2.89	2.22
				25	0	5.7	31.6	40.3	17.3	4.6	0.5	0	0	5.20	3.69
			$\sigma=4$	5	0	71.4	27.6	1	0	0	0	0	0	2.09	0.91
				10	0	42.1	47.5	10.1	0.3	0	0	0	0	2.87	1.74
				25	0	5.5	31.6	42.6	16.2	3.9	0.2	0	0	5.14	3.36

Table 3.11 (continued)

Box- Cox	MAF	Penetrance Model	σ	Top (\%)	Number of SNP markers within 10 markers of disease SNP									Mean	SD
					0	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-20		
Yes	0.49	High	$\sigma=8$	5	0	0	0	12.06	51.76	33.28	2.83	0.07	0	8.04	1.99
				10	0	0	0	1.54	31.29	51.57	14.41	1.17	0	9.14	2.15
				25	0	0	0	0.06	3.12	34.09	45.3	15.3	2.13	11.08	2.66
			$\sigma=4$	5	0	0	0	6.3	47.2	43.7	2.4	0.3	0.1	8.37	1.79
				10	0	0	0	1.2	25.6	56.8	15.6	0.7	0.1	9.29	1.94
				25	0	0	0	0	1.6	31.3	47.1	17.6	2.4	11.26	2.54
		Low	$\sigma=8$	5	0	0.21	29.76	56.72	11.63	1.67	0	0	0	5.19	1.87
				10	0	0.15	12.99	48.15	30.06	7.3	1.35	0	0	6.21	2.90
				25	0	0	1.64	18.09	40.11	30.71	7.67	1.79	0.01	8.10	3.72
			$\sigma=4$	5	0	0	21.9	52.9	22.2	2.7	0.1	0	0.2	5.64	2.41
				10	0	0	8.9	42	36.7	11.1	1.1	0	0.2	6.59	3.02
				25	0	0	1.3	11.2	35.9	31.3	16.5	3.2	0.6	8.75	4.52
	0.14	High	$\sigma=8$	5	0	74.6	23.4	2	0	0	0	0	0	2.05	0.95
				10	0	48.4	41.9	9.4	0.3	0	0	0	0	2.73	1.77
				25	0	7.4	33.9	40.4	14.5	3.6	0.2	0	0	4.97	3.49
			$\sigma=4$	5	0	67.3	26.7	5.1	0.2	0	0	0	0.7	2.35	2.61
				10	0	39.6	45.2	12	2.3	0.2	0	0	0.7	3.14	3.38
				25	0	5.6	27	39.8	19.7	6.1	1	0	0.8	5.51	4.90
		Low	$\sigma=\mathbf{8}$	5	0	76.5	22.2	1.3	0	0	0	0	0	1.99	0.85
				10	0	47.9	45.2	6.5	0.4	0	0	0	0	2.69	1.58
				25	0	7.9	36.7	36.4	16.5	2.2	0.3	0	0	4.88	3.47
			$\sigma=4$	5	0	77.6	19.7	2.7	0	0	0	0	0	2.00	0.97
				10	0	46.8	44.5	8.4	0.3	0	0	0	0	2.74	1.68
				25	0	6.5	36.2	38.3	14.9	3.5	0.6	0	0	4.99	3.59

3.2.2 Multi-locus model

Table 3.12 showed the simulated power to detect each locus associated with the progression of disease in a multi-locus model. The failure rates using the TRAJ procedure are 0 in all settings. I fit a generalized linear model to the variables. Here, the simulated power was the dependent variable, and NORMAL, MAF, target α level and METHOD were the independent variables. In Table 3.13, the variables MAF and α level were significant ($p<0.0001$) in the model, but not NORMAL variable $(p=0.3552)$ or $M E T H O D$ variable $(p=0.4688)$. The empirical power of the three methods was essentially the same. The regression model was

$$
\begin{aligned}
\text { empirical power }= & -1.9673(\pm 3.5579)+1254.92(\pm 79.4324) \times M A F+46.2867(\pm 2.8546) \times(\alpha=0.1) \\
& +23.9600(\pm 2.8546) \times(\alpha=0.01)+42.2400(\pm 2.8546) \times(\alpha=0.05)
\end{aligned}
$$

with $R^{2}=0.71$.

I further examined the power controlling for whether or not the data was normally distributed ($N O R M A L=0$ or 1). Figure 3.2 displayed three charts, each of which showed the power to detect each locus by method when the data was normally distributed ($N O R M A L=1$). The horizontal axis was the MAF of a causal SNP. The vertical axis was the power. Each graph contained four curves, one for each of the four target alpha levels. The three charts in Figure 3.2 were quite similar: the powers were approximately proportional to MAF. That is, the power usually increased as MAF increased, except for one SNP with $M A F=0.016$. The power strictly increased as α increased. Figure 3.3 contained the results when the data was the square of normally distributed values. The patterns were the same as in Figure 3.2.

There was a power drop at MAF $=0.016$ in Figure 3.2, at the SNP rs9543107. In Table 2.4 in Chapter 2, the SNP rs9543107 was in high linkage disequilibrium with four other SNPs. This could be an explanation of the power drop. Another power drop in Figure 3.2 happened at MAF=0.033, at the SNP rs7331979. In Table 2.4, the SNP rs7331979 was also in high linkage disequilibrium with other three SNPs. In Figure 3.2, for the other SNPs which did not have more than two high linkage disequilibrium with other SNPs, the power increased as the MAF increased.

To understand the differences among the three methods, I compared any two paired methods using t-test. From the results, BPP method and Modal BPP method were both significantly different from contingency table method with regard to the power comparison ($p<0.001$), for both normally distributed data and data that was the square of normally distributed data. The power using the BPP method was not significantly different from the power using modal assignment method when the data was normally distributed ($p=0.40$). When the data was the square of normally distributed data, the power of the modal BPP was somewhat higher than the power using the $\operatorname{BPP}(p=0.0165)$.

I also used the Cochran's test (or Cochran's Q test) and McNemar's test to compare the distributions of the detection rate using three methods, which was shown in Table 3.14. For each SNP, I set a binary variable

$$
z_{i}=\left\{\begin{array}{c}
1, \mathrm{SNP} \mathrm{i} \text { is detected using one of the methods } \\
0, \text { otherwise }
\end{array} .\right.
$$

Then z_{i} was measured using three methods. The hypothesis of Cochran's test was:
H_{0} : the marginal probability of a positive response was unchanged across the three methods.

For 70% of the SNPs, the p-values of the Cochran test were small ($\mathrm{p}<0.05$), which indicated that the probability of detecting each of the loci using three methods were different. Further, I used the McNemar's test to compare any pair of the methods. The BPP method and the modal BPP method were essentially the same with regard to the detection rates. However, for some of the loci, comparing the BPP method and modal BPP method with the contingency table method, the detection wates were different.

Figure 3.2 Power of Procedure by MAF of Locus in Multi-locus Model, Normally Distributed Data, for selected target levels of significance

Figure 3.3 Power of Procedure by MAF of Locus in Multi-locus Model, Data Square of Normally Distributed Data, for selected target levels of significance

power of contingency table test by MAF of the SNP

Table 3.12 Power Simulation to detect the association of disease SNP on chromosome 13 with scoliosis data (multi-locus model)

Normal	SNP	BP	MAF	$\alpha=0.005$			$\alpha=0.01$			$\alpha=0.05$			$\alpha=0.10$		
				BPP	Modal	CT									
No: Normal Squared	rs9599854	71021185	0.026	12.8	13.6	12.8	42.8	49.2	43.2	72	70.4	69.2	76.4	76.4	76.4
	rs9542756	71309666	0.038	55.2	58	51.6	79.2	82.8	79.2	92.4	92.4	92.4	93.6	94	93.2
	rs9543107	72217237	0.016	2	1.2	0	7.2	6.4	2.8	30	27.2	26	42	38.8	39.2
	rs17090361	73186500	0.051	86.4	87.2	84.8	92.4	92.4	90.4	94.8	95.2	94.4	95.6	95.6	94.8
	rs9593132	75293621	0.048	55.2	58.4	51.6	80	81.6	73.6	91.2	90	88.8	92.4	90.8	90.4
	rs5352	77373231	0.012	11.6	11.2	7.6	36.4	38.8	27.2	76	73.6	72.4	79.2	77.6	77.6
	rs7331979	78836214	0.033	21.2	23.2	32.4	53.6	58	59.2	69.2	67.6	68.4	74.4	71.6	71.6
	rs12863734	85268572	0.015	31.2	32.4	27.2	60.4	64.8	55.2	82.4	79.6	78	84.4	83.6	83.6
	rs9522610	89110831	0.026	44.4	44	33.2	76	77.6	70.4	90.4	89.2	88	92	92.4	90.8
	rs16943207	89144779	0.031	37.2	34.8	30.4	67.2	70.4	58	86	85.6	84	87.6	88.8	86.8
Yes	rs9599854	71021185	0.026	16.4	15.2	12	48	50	40.4	76.8	73.2	71.2	80.8	80	80.4
	rs9542756	71309666	0.038	56.8	60.4	52.4	82.8	90	81.2	98	97.2	96.4	98.4	98.4	97.6
	rs9543107	72217237	0.016	1.6	0.8	0.4	6.8	6	2.4	23.2	24.4	20	35.2	32.4	32.4
	rs17090361	73186500	0.051	89.2	91.6	88	95.2	98.4	96.4	100	99.2	98.4	100	99.6	99.2
	rs9593132	75293621	0.048	58.4	60.8	58.4	80	86	79.2	95.2	94.4	93.2	96.4	96.8	96
	rs5352	77373231	0.012	10	12.4	7.2	32.8	38.4	26.8	66	66	65.2	72.4	72	71.6
	rs7331979	78836214	0.033	26	25.6	35.2	53.6	58	60	76.4	74.8	73.6	80	78.8	79.6
	rs12863734	85268572	0.015	27.6	30	23.6	64	66.8	56	83.2	82.4	81.6	86.4	87.6	87.6
	rs9522610	89110831	0.026	48	46.4	37.2	73.6	81.6	72.4	95.6	95.2	94	97.6	97.6	97.2
	rs16943207	89144779	0.031	37.6	39.6	36	64.8	68	59.2	88	88.4	84	91.2	91.2	88.8

Table 3.13 ANOVA table of empirical power using multi-locus model

Variable source	DF	Mean square	F Value	Pr>F
NORMAL	1	209.81400	0.86	0.3552
$M A F$	1	61017.53801	249.60	$<.0001$
α	3	26748.84333	109.42	$<.0001$
METHOD	2	185.79467	0.76	0.4688
Error	232	56715.9680		

Table 3.14 P-values of Cochran's test and McNemar's test when comparing the three methods in multi-locus model

Normal	SNP	BP	MAF	Cochran test	McNemar's test		
					BPP vs. Modal	BPP vs. CT	Modal vs. CT
No Normal Squared	rs9599854	71021185	0.026	0.81	0.77	0.99	0.75
	rs9542756	71309666	0.038	0.01	0.26	0.14	0.009
	rs9543107	72217237	0.016	0.07	0.69	0.99	NA
	rs17090361	73186500	0.051	0.21	0.73	0.45	0.15
	rs9593132	75293621	0.048	0.008	0.15	0.16	0.004
	rs5352	77373231	0.012	0.02	0.78	0.02	0.03
	rs7331979	78836214	0.033	<0.0001	0.38	<0.0001	<0.0001
	rs12863734	85268572	0.015	0.05	0.71	0.13	0.02
	rs9522610	89110831	0.026	<0.0001	0.86	<0.0001	<0.0001
	rs16943207	89144779	0.031	0.008	0.40	0.003	0.05
Normal Squared	rs9599854	71021185	0.026	0.04	0.70	0.01	0.09
	rs9542756	71309666	0.038	0.003	0.17	0.09	<0.0001
	rs9543107	72217237	0.016	0.10	0.50	0.25	0.99
	rs17090361	73186500	0.051	0.05	0.21	0.63	0.01
	rs9593132	75293621	0.048	0.46	0.34	0.99	0.38
	rs5352	77373231	0.012	0.003	0.26	0.06	<0.0001
	rs7331979	78836214	0.033	<0.0001	0.82	<0.0001	<0.0001
	rs12863734	85268572	0.015	0.006	0.33	0.09	<0.0001
	rs9522610	89110831	0.026	<0.0001	0.58	<0.0001	<0.0001
	rs16943207	89144779	0.031	0.17	0.40	0.52	0.11

[^0]
Chapter 4 Conclusions and discussions

In this dissertation, I examined three methods: using the BPP as the quantitative trait, using the indicator variable that modal BPP was in the clinically important group as the trait, and the contingency table method to test the association with the SNPs on chromosome 13. I simulated two genetic models, the single-locus model and the multi-locus model. In the single locus model, I assumed that the disease is caused by a single locus, and I studied two disease SNPs, with MAF at 0.15 and 0.5 respectively. In the multi-locus model, I assumed that the disease is caused equally by ten rare variant SNPs, each with MAF smaller than 0.05 . I conducted the null simulation and the power simulation and reported the empirical type I error rate and empirical power to detect the disease SNPs using the three methods.

In the null simulations, my study suggested that the empirical type I error rate generally held the nominal α rate when α was small. However, when α increased (α near 0.05), there was a decrease of the empirical type I error rate below the nominal rate as the nominal rate
increased. There were no significant differences among the three methods. Null model I and null model II had the similar results. The failure rate of the TRAJ procedure was higher in the squared data model than the normal data model. Among the squared data models, those with high within group variance had much higher failure rates.

In power simulations of single-locus model, all the three methods had very high power (>99\%) to detect the disease SNPs. I also examined ten markers around the disease SNP. All methods showed significant power to detect the markers around the locus. This finding might be important because instead of locating a specific SNP, we could locate a region on chromosome, in which the disease SNP may occur.

In power simulations of the multi-locus model, the power to detect the disease SNPs was generally proportional to the MAF; that is, as the MAF increased, the power usually increased. However, if a SNP was in high linkage disequilibrium with many other SNPs, the power to detect this SNP would drop substantially. Both the BPP method and modal BPP method were significantly better than contingency table method with regard to power. The difference in power between BPP method and modal BPP method was not significant.

In this dissertation, I only examined the genetic factors. For future work, diverse factors, like environment factors or other non-genetic covariates, could be considered. Additionally, in my study, I set the trajectory group to be three when I run SAS PROC TRAJ. This was because generally, the three trajectory group model had the best BIC value. However, it could be problematic because in a few cases, a two trajectory group model or a four trajectory group model had better BIC value. For future work, one could consider the best model that BIC picked and examined how it would affect the empirical type I error rate and the power. Also in my
study, I dropped the replicates in which TRAJ model failed to converge. In future study, one could examine those replicates.

In my study, I examined 1498 SNPs on HC13. In future research, one could choose another chromosome and examine the SNPs on it. In the multi-locus model, I simulated the prevalence of disease to be around 2%. In future research, one could use more disease locus and set a different prevalence of disease.

References

1. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, and Morcuende JA., 2008, Adolescent Idiopathic Scoliosis. Lancet 371(9623): 1527-37
2. Salehi LB, Mangino M, De Serio S, De Cicco D, Capon F, Semprini S, Pizzuti A, Novelli G, and Dallapiccola B., 2002, Assignment of a locus for autosomal dominant Idiopathic Scoliosis (AIS) to human chromosome 17p11. Human Genetics 111: 401-404
3. http://www.scoliosisassociates.com/subject.php?pn=idiopathic-scoliosis-009
4. Morrissy RT, Goldsmith GS, Hall EC, Kehl D, and Cowie GH., 1990, Measurement of the Cobb angle on radiographs of patients who have scoliosis. Evaluatoin of intrinsic error. Journal of Bone and Joint Surgery. 72: 320-327
5. Wise C, Barnes R, Gillum J, Herring J, Bowcock A, and Lovett M., 2000, Localization of susceptibility to familial idiopathic scoliosis. Spine 25-18: 2372-2380
6. Greiner KA, 2002, Adolescent Idiopathic Scoliosis: Radiologic Decision-making. American Family Physician 65(9): 1817-1823, http://www.aafp.org/afp/2002/0501/p1817.html
7. Qiu XS, Tang NL, Yeung HY, Lee KM, Hung VW, Ng BK, Ma SL, Kwok RH, Qin L, Qiu Y, and Cheng JC, 2007, Melatonin receptor 1B (MTNR1B) locus polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine 32-16: 1748-1753
8. Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J, Weber S, Devroy S, Swaney S, Dobbs M, Morcuende J, Sheffield V, Lovett M, Bowcock A, Herring J, and Wise C, 2007, CHD7 locus polymorphisms are associated with susceptibility to idiopathic scoliosis. American Journal of Human Genetics 80(5): 957-965
9. Ward K, Ogilvie J, Argyle VA, Nelson L, Meade M, Braun J, and Chettier R, 2010, Polygenic Inheritance of Adolescent Idiopathic Scoliosis: A study of extended families in Utah. American Journal of Medical Genetics: 152A-5: 1178-1188
10. Justics CM, Miller NH, Marosy B, Zhang J, and Wilson AF, 2003, Familial idiopathic scoliosis: evidence of an X-linked susceptibility locus. Spine 28(6): 589-94

11. http://www.ornl.gov/sci/techresources/Human_Genome/medicine/pharma.shtml

12. http://en.wikipedia.org/wiki/Genome-wide_association_study
13. Hirschhorn JN, Daly MJ, 2005, Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics 6:95-108
14. Levy D, DeStefano AL, Larson MG, O’Donnell CJ, Lifton RP, Gavras H, Cupples A and Myers RH, 2000, Evidence for a locus influencing blood pressure on chromosome 17. Hypertension 36: 477-483
15. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, Jones CG, Zaitlen NA, Varilo T, Kaakinen M, Sovio U, Ruokonen A, Laitinen J, Jakkula E, Coin L, Hoggart C, Collins A, Turunen H, Gabriel S, Elliot P, McCarthy MI, Daly MJ, Jarelin MR, Freimer NB and Peltonen L, 2009, Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nature Genetics 41(1): 35-46
16. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner BI, Balding DJ, Meyre D, Polychronakos C, and Froguel P, 2007, A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881-885
17. Ma CX, Casella G, and Wu R, 2002, Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 161: 1751-1762
18. Wu R, and Lin M, 2006, Functional mapping-how to map and study the genetic architecture of dynamic complex traits. Nature Reviews Genetics 7:229-237
19. Wu R, Ma CX, Lin M, and Casella G, 2004, A general framework for analyzing the genetic architecture of developmental characteristics. Genetics 166: 1541-1551
20. Wang Z and Wu R, 2004, A statistical model for high-resolution mapping of quantitative trait loci determining HIV dynamics. Statistics In Medicine, 23, 3033-3051
21. Bauer DJ, and Curran PJ, 2003, Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes. Psychological Methods 8(3): 338-363
22. Muthén, B., and Shedden, K., 1999, Finite mixture modeling with mixture outcomes using the EM algorithm, Biometrics, 55, 463-469.
23. Muthén, B., and Muthén, L., 2000, Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24, 882-891.
24. Muthén, B., Brown, C.H., Masyn, K., Jo, B., Khoo, S.T., Yang, C.C., Wang, C.P., Kellam, S., Carlin, J., and Liao, J., 2002, General growth mixture modeling for randomized preventive interventions, Biostatistics, 3, 459-475.
25. Nagin, D., 1999, Analyzing Developmental Trajectories: A Semi-parametric, Groupbased Approach, Psychological Methods, 4, 139-177.
26. Nagin, D. and Tremblay, R E., 2001, Analyzing Developmental Trajectories of Distinct but Related Behaviors: A Group-Based Method, Psychological Methods, 6, 18-34.
27. Li F., Duncan, T. E., and Hops, H., 2001, Examining Developmental Trajectories in Adolescent Alcohol Use Using Piecewise Growth Mixture Modeling Analysis, Journal of Studies on Alcohol and Drugs, 62 (2), 2001.
28. Colder C. R., Mehta P., Balanda K., Campbell R. T., Mayhew K., Stanton W. R., Pentz M. A. and Flay B. R., 2001, Identifying Trajectories of Adolescent Smoking: An Application of Latent Growth Mixture Modeling, Health Psychology, 20 (2), 127-135.
29. Chang SW, Choi SH, Li K, Fleur RS, Huang C, Shen T, Ahn K, Gordon D, Kim W, Wu R, Mendell NR and Finch SJ, 2009, Growth mixture modeling as an exploratory analysis tool in longitudinal quantitative trait loci analysis, BMC Proceedings 3 (Suppl 7): S112
30. Kerner B, and Muthen BO, 2009, Growth mixture modeling in families of the Framingham Heart Study, BMC Proceedings 3 (Suppl 7): S114
31. Jones BL, Nagin DS, and Roeder K, 2001, A SAS procedure based on mixture models for estimating developmental trajectories, Sociological Methods and Research 29(3): 374-393
32. Jones BL, and Nagin DS, 2007, Advances in group-based trajectory modeling and an SAS procedure for estimating them, Sociological Methods and Research 35(4): 542-571
33. Nagin DS, Tremblay RE, 1999, Trajectories of boys' physical aggression, opposition, and hyperactivity on the path to physically violent and nonviolent juvenile delinquency, Child Development 70(5): 1181-1196
34. http://www.framinghamheartstudy.org/

Appendix

I. IDs of 1599 unrelated participants

9	36	64	65	66	74	92	97	108	128	175	183
186	190	210	225	279	291	304	306	309	326	339	374
392	412	418	434	499	510	521	534	571	606	618	620
626	640	653	660	671	708	718	726	800	801	841	877
914	972	977	1001	1016	1054	1055	1114	1148	1156	1173	1195
1196	1239	1241	1248	1252	1278	1281	1285	1293	1295	1296	1302
1303	1305	1313	1317	1318	1322	1323	1355	1373	1375	1378	1437
1438	1441	1459	1486	1517	1528	1539	1542	1561	1588	1601	1620
1639	1655	1660	1673	1713	1738	1743	1754	1770	1780	1803	1804
1808	1849	1857	1859	1868	1879	1887	1920	1921	1925	1928	1938
1939	1998	2038	2040	2052	2060	2098	2116	2155	2160	2170	2207
2212	2232	2242	2253	2257	2277	2294	2301	2313	2334	2337	2340
2367	2395	2408	2426	2469	2470	2471	2490	2498	2499	2529	2540
2593	2637	2657	2658	2696	2700	2737	2776	2785	2805	2806	2816
2843	2862	2864	2905	2920	2945	2947	2970	2975	2981	3017	3058
3077	3119	3125	3162	3181	3205	3237	3238	3239	3253	3254	3274
3279	3303	3356	3368	3373	3376	3398	3399	3410	3413	3422	3486
3492	3516	3527	3550	3567	3610	3623	3634	3637	3655	3676	3715
3726	3739	3746	3751	3767	3779	3782	3794	3796	3798	3802	3822
107											

| 3827 | 3852 | 3858 | 3871 | 3877 | 3880 | 3889 | 3900 | 3928 | 3946 | 3982 | 4027 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4032 | 4050 | 4080 | 4089 | 4094 | 4097 | 4098 | 4105 | 4137 | 4146 | 4173 | 4174 |
| 4175 | 4183 | 4187 | 4217 | 4274 | 4276 | 4280 | 4284 | 4286 | 4321 | 4343 | 4351 |
| 4370 | 4379 | 4384 | 4393 | 4404 | 4416 | 4420 | 4423 | 4433 | 4440 | 4442 | 4464 |
| 4475 | 4517 | 4522 | 4526 | 4530 | 4541 | 4549 | 4551 | 4573 | 4581 | 4602 | 4606 |
| 4615 | 4635 | 4651 | 4652 | 4670 | 4706 | 4718 | 4756 | 4767 | 4775 | 4777 | 4788 |
| 4790 | 4810 | 4831 | 4837 | 4839 | 4841 | 4847 | 4854 | 4859 | 4875 | 4903 | 4926 |
| 4993 | 5006 | 5023 | 5077 | 5082 | 5122 | 5133 | 5153 | 5156 | 5190 | 5191 | 5201 |
| 5216 | 5220 | 5233 | 5253 | 5256 | 5285 | 5292 | 5297 | 5299 | 5302 | 5317 | 5331 |
| 5335 | 5342 | 5352 | 5355 | 5357 | 5397 | 5400 | 5403 | 5449 | 5493 | 5513 | 5533 |
| 5556 | 5558 | 5571 | 5596 | 5615 | 5628 | 5630 | 5635 | 5685 | 5694 | 5703 | 5733 |
| 5777 | 5782 | 5790 | 5869 | 5883 | 5904 | 5911 | 5923 | 5925 | 5955 | 5969 | 5978 |
| 5986 | 5990 | 6001 | 6002 | 6017 | 6019 | 6052 | 6056 | 6060 | 6102 | 6126 | 6127 |
| 6131 | 6143 | 6147 | 6191 | 6195 | 6204 | 6227 | 6234 | 6250 | 6263 | 6331 | 6332 |
| 6351 | 6370 | 6388 | 6406 | 6410 | 6416 | 6422 | 6458 | 6518 | 6535 | 6548 | 6560 |
| 6561 | 6566 | 6586 | 6616 | 6636 | 6654 | 6731 | 6742 | 6757 | 6766 | 6785 | 6788 |
| 6789 | 6795 | 6797 | 6829 | 6841 | 6844 | 6862 | 6871 | 6916 | 6938 | 6945 | 6953 |
| 6973 | 7009 | 7018 | 7047 | 7050 | 7056 | 7059 | 7076 | 7079 | 7114 | 7123 | 7175 |
| 7197 | 7229 | 7249 | 7270 | 7322 | 7326 | 7345 | 7360 | 7368 | 7379 | 7395 | 7402 |
| 7747 | 7775 | 7781 | 7802 | 7827 | 7853 | 7890 | 7913 | 7930 | 7939 | 7961 | 7969 |
| 7404 | 7422 | 7431 | 7433 | 7444 | 7468 | 7470 | 7483 | 7500 | 7502 | 7509 | 7520 |
| 7526 | 7531 | 7544 | 7545 | 7605 | 7622 | 7630 | 7644 | 7659 | 7671 | 7714 | 7746 |
| 8055 | 8070 | 8073 | 8077 | 8089 | 8124 | 8140 | 8160 | 8161 | 8163 | 8165 | |

8177	8182	8194	8211	8216	8221	8228	8230	8231	8235	8260	8283
8304	8319	8382	8383	8394	8413	8429	8455	8456	8511	8514	8588
8590	8610	8612	8629	8660	8668	8671	8674	8676	8699	8723	8731
8743	8760	8774	8796	8828	8870	8888	8903	8909	8912	8958	8963
8971	8984	9005	9025	9034	9041	9044	9055	9106	9131	9143	9166
9179	9199	9203	9261	9278	9297	9333	9389	9400	9423	9444	9462
9467	9506	9518	9524	9544	9547	9555	9558	9585	9589	9609	9620
9643	9644	9672	9736	9742	9746	9748	9762	9773	9782	9784	9790
9802	9805	9810	9850	9859	9893	9906	9913	9929	9933	9955	9960
9976	9980	9992	10010	10011	10014	10060	10066	10111	10137	10163	10167
10168	10181	10190	10198	10205	10227	10232	10255	10311	10334	10336	10340
10375	10376	10390	10401	10431	10442	10458	10466	10469	10478	10480	10510
10513	10537	10538	10543	10552	10557	10599	10613	10614	10617	10652	10655
10657	10680	10687	10703	10712	10719	10753	10771	10785	10800	10815	10835
10845	10852	10854	10865	10880	10890	10895	10950	10972	10978	10986	995
11017	11040	11041	11078	11081	11100	11107	11119	11159	11211	11216	11243
11251	11280	11284	11297	11330	11331	11345	11352	11353	11359	11368	11369
11410	11445	11452	11459	11465	11486	11507	11543	11592	11593	11612	1642
11649	11663	11682	11693	11696	11735	11745	11761	11778	11786	11802	11806
11815	11827	11834	11847	11857	11886	11898	11905	11907	11914	11954	11957
11960	11993	12012	12049	12084	12098	12106	12182	12202	12241	12261	12265
12274	12303	12335	12347	12365	12383	12394	12416	12417	12428	12431	12439
12489	12500	12511	12552	12563	12568	12582	12585	12595	1259	26	26

126271264212675127221273512773127751277612800128021280612819 128541285912869129391295212968129841302013022130391308213104 131241312813129131321314713161131681316913170131781320313217 132191330313310133151332313324133311333613349133541338913394 134071341513444134451346113471134861349413508135111352113578 135851359313625136381365413658136631367813708137091373213824 138641389013894139201392613959139821398314012140141403014037 140381407014090141021411014147141571416114186141931419714215 142201422114250142601426814286142901430514309143201433914353 143961440214428144621449214506145221456414632146631467514702 147151471614745147611479314794148001482414873148771490614921 149401500115030150331503915078150861509115093150991510015129 151491515415160151791519315229152391524115246152751528915304 153061535115366153681537515379153931540615408154331544815463 154901550315504155581557415585155911560015628156341567215687 157671578115810158111584415851158581586215881158861591015931 159411595515956159741604616054160571609916114161221618816251 162601627416299163271635216367164291643016433164501646216473 164901651416515165181652616529165321657516604166191662316630 166711672516734167581679016805168531690216905169231692716939 169511699416995170121702717030170311704317054170571707717079 171001711317117171421714717182172401725117254172591727417275 $\begin{array}{llllllllllllllllll}17281 & 17311 & 17313 & 17320 & 17323 & 17327 & 17338 & 17373 & 17408 & 17412 & 17421 & 17431\end{array}$
$\begin{array}{llllllllllllllllllll}17441 & 17448 & 17458 & 17474 & 17493 & 17508 & 17516 & 17529 & 17532 & 17542 & 17583 & 17600\end{array}$ 176031760917621176411767317718177201773117734177671777417784 177861779117806178101783617885178971792117938179401794317949 179511796017973179861799518005180081803818055180801808518107 181111825918263182651827018285182981831018385183881839318408 184121843618440184711848518511185451856318570186261863018679 186871870118714187191873718751187531877118786188251890318906 189111892118941189471895418961189861898719002190631906819076 190861914219159191791918519188192111922119236192521928019360 193741937819385193871939119393194071944319452194551947019477 194951953019585195921961319618196271964019653196591967619677 196881970319711197511975719758197701977819779197971980019815 198321984019876199021993019946199651997420023200632008920095 201052013520175201792018920204202202023620246202762032320347 203592038420420204232042720432204722047520489204992050120530 205622058120601206022060920617206442067820697207462077420780 208012081620820208452085520856208612087320887209082092520930 209362100221029210642110121107211302114121151212022120721209 212132121621224212372125421291213352134021408214382144421478 215302155721597216172162521639216472165121653216962171521766 218192183921843218642188521891219062191121928219312193721957 219842199421999220052200622012220172204122046220682207022116 221172212622129221442214822151221562217322174221772218222185

222492225722268222952231222319223202234922360224152242722455 224592247822485224862250722517225492255422606226082261722639 226452266222714227172274122769227892280522808228132281722828 228472289622902229152294822953229582297022994230072303023058 231022311223126231412314523185231892319223208232202327323305 233062332323329233682337423382233832339823402234392344923451 234722347423546235492356223576235792358323616236402366223669 236782368823706237212375223765238002380823810238412384223864 238922390623913239202392623956239792398324029240332405024069 240862409624098241252413624148241592416324164242042421524230 242342423524240242722429424300243182432524336243872441724425 244322446924481245032452324529245472455324589246072461624624 246662473024788247902479724811248162484524847248572487324890 249282493324971249992505725059250632506825071250792508825095 251072511225121251222515125194252172523825242252472525925267 252842529025297253352535825391254172541925443254802548425491 254922553225539255462557225582256052560925623256252563525642 256632567125748257542577625782257942580825812258232584525856 258612588125932259522596125980260172602126030260472607126110 261932622426247262512627126320263372634026344263472637726387 264432644626471264852648726488264892649126492265052651526527 265332658026582266572667526684266932670526708267252676626782 267892679226799

II. PLINK

1. Basics

PLINK is a command line program written in C/C++. All commands involve typing "plink" at the command prompt, followed by a number of options (all starting with "--option") to specify the data files/methods to be used. A complete list of all options and output file types is given in this link:

http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml

To run PLINK, one should start from typing "plink --file mydata" (there is a space before the dashes). The data is in two files: in this case, mydata.ped and mydata.map. If the PED and MAP files have different names, they can be specified separately, with the command: "plink -ped mydata.ped --map autosomal.map".

The PED file contains the demographic and phenotypic information about the subjects. It is a white-space (that is, space or tab) delimited file with the columns:
"Family ID, Individual ID, Paternal ID, Maternal ID, Sex(1=male; 2=female; other=unknown), Phenotype". The PED file can have one and only one phenotype, which is given in the sixth column. The phenotype can be either a quantitative trait or an indicator (0 or 1) variable.

If the PED file has some missing fields, one can use a command to indicate which columns, if any, are missing. For instance, "--no-fid" indicates there is no Family ID column (the first column); "--no-parents" indicates there are no paternal and maternal ID columns (third and fourth columns); "--no-sex"indicates there is no sex field (fifth column) and all individuals set to have a missing sex code; "--no-pheno" indicates there is no phenotype field (sixth column).

The MAP file contains the genotype location information. By default, each line of the MAP file describes a single marker and must contain exactly 4 columns:
"chromosome \# (1-22, X, Y or 0 if unplaced)", rs \# or SNP identifier, Genetic distance (morgans), Base-pair position (bp units)"

If "Genetic distance" is missing in MAP file, one can add a flag: "--map3", that is: "plink -file mydata --map3" In this case, the three columns in MAP are expected to be "chromosome, rs\# and Base-Pair".
2. Summary statistics calculated in PLINK:
(1) Hardy-Weinberg Equilibrium:

To test HWE for each SNP, use the option: "plink --file data --hardy". PLINK then creates the file: plink.hwe, which has the following format:
"SNP: SNP identifier; TEST: code indicating sample; A1: minor allele code; A2: major allele code; GENO: genotype counts:A1A1/A1A2/A2A2; O(HET): observed heterozygosity; E(HET): expected heterozygosity; P: HW p-value."

Thus, if HW p-value is significant, then we'll conclude that this SNP is not in HWE.

(2) Minor Allele Frequency (MAF):

To generate a list of MAF for each SNP, one can use the command: "plink --file data -freq", which will create a file: plink.frq with five columns: "CHR: chromosome; SNP: SNP identifier; A1: allele 1 code (minor allele); A2: allele 2 code (major allele); MAF: minor allele frequency; NCHROBS: non-missing allele count".
3. Association analysis
(1) Basic case/control association test:

To perform a standard case/control association test, one can use the option: "plink --file mydata --assoc". PLINK then will generate a file "plink.assoc", which contains the fields: "CHR: chromosome; SNP:SNP ID; BP: base-pair; A1: minor allele name; F_A: frequency of this allele in cases; F_U: frequency of this allele in controls; A2: major allele name; CHISQ: basic allelic test chi-square (1df); P: asymptotic p-value for this test; OR: estimated odds ratio."

If the p-value is significant, we conclude that this SNP is associated with the disease. In addition, if the option "--ci 0.95" is included, then "L95: lower bound of 95\% CI for odds ratio" and "U95: upper bound of $95 \% \mathrm{CI}$ for odds ratio" will be appended to the output.

In my study, I used the Modal BPP (1 as in the fast trajectory group and 0 otherwise) as the phenotype, and test the association with the SNPs on chromosome 13.
(2) Quantitative trait association:

If the phenotype (column 6 of the PED file) is quantitative, the PLINK will automatically treat the analysis as a quantitative trait analysis. One can use the same command as for case/control association: "plink --file mydata --assoc", which will generate the file "plink.assoc". The file has the following fields:
"CHR: chromosome; SNP: SNP ID; BP: base-pair; NMISS: \# of non-missing genotypes; BETA: regression coefficient; SE: standard error; R2: regression r-squared; T: Wald test t-statistic; P: Wald test asymptotic p-value." If the p-value is significant, then we conclude that the SNP is highly associated with the disease.

In my study, I used BPP as the quantitative trait, and then tested the association with the SNPs on chromosome 13.

[^0]: Notes: p -values in bold indicate the significance under confidence level $\alpha=0.05$.

