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Abstract of the Dissertation 

Using Growth Mixture Modeling to identify loci associated with the progression of disease 

by 

TONG SHEN 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Statistics) 

Stony Brook University 

2011 

 

In a genome-wide association study (GWAS) for a longitudinal quantitative trait, the trait 

is measured at multiple time points. GWAS is the examination of marker loci to identify loci 

associated with the progression of the quantitative trait. 

            I use two models, a single locus model and a multi locus model, to simulate a 

longitudinal quantitative trait. I use the growth mixture modeling (GMM) method to assign each 

member of a sample into one of a small number of trajectory groups. The clinically important 

trajectory group is the one with fastest progression. The Bayesian posterior probability (BPP) of 

being in the clinically important group is used as a quantitative trait. I test for association with 

marker loci. I also use the modal BPP in the association test and perform a case/control 

association analysis. Finally, I compare these methods with the contingency table method. I 
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evaluate the empirical type I error and empirical power using null simulations and power 

simulations. 

The principal results are that: (1) Both the BPP method and modal BPP method maintain 

the correct type I error rate, but the empirical null rejection rate is increasing less than the 

nominal rate as the nominal type I error rate increases. (2) Both the BPP and modal BPP methods 

have very high power to detect the disease locus in the single locus model. (3) Both the BPP and 

modal BPP methods have significant power to detect the disease loci in the multi locus model. 

The powers of detecting a specific locus are proportional to minor allele frequency (MAF) of 

loci. (4) Both the BPP and modal BPP methods are better than the contingency table method 

with regard to the empirical power and the power of the BPP is essentially equal to the power of 

the modal BPP.  
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Chapter 1   Introduction 
 

1.1   Empirical issues 

 

1.1.1   Adolescent Idiopathic Scoliosis (AIS) 

 

Adolescent Idiopathic Scoliosis (AIS) is the most common spinal deformity in children, 

affecting about 1-3% of children worldwide1.2. Patients with AIS may have one shoulder higher 

than the other, and their clothes may no longer fit correctly. Some severe cases of scoliosis can 

lead to diminished lung capacity, which can then put pressure on the heart and lead to restriction 

of physical activities3. Figure 1.1 is a schematic of the disease. I focus on methodological issues 

derived from research on AIS. 
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Figure 1.1 Adolescent Idiopathic Scoliosis (AIS) 

 

 

1.1.2   Diagnosis of AIS 

 

In practice, AIS is diagnosed using standing posteroanterior radiographs of the full spine 

to assess lateral curvature with the Cobb angle method4,5. The Cobb angle is the angle between 

two lines, drawn perpendicular to the upper endplate of the uppermost vertebrae involved and the 

lower endplate of the lowest vertebrae involved, as shown in Figure 1.26.  
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Figure 1.2 Definition of Cobb angle in AIS 

 

 

1.1.3   Etiology of AIS 

 

The etiology of AIS is still unknown, but it is believed to be multi-factorial, including 

complex genetic factors. Single Nucleotide Polymorphism (SNP) markers that are significantly 

associated with AIS have been identified from Genome-Wide Association Study (GWAS) 

research7,8. Although the genetic model of AIS is complicated, an autosomal dominant 

inheritance model is generally accepted9. Some studies also show an evidence of an X-linked 

susceptibility in AIS10. 
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1.1.4   Genetic studies of AIS 

 

Genetic studies of the progression of AIS are clinically important. After examining how 

the genetic factors affect the progression of disease and how an individual’s genetic inheritance 

affects the body’s response to drugs, physicians may be able to prescribe drugs tailor-made for 

individuals in the future. Compared with the traditional therapy, the individual customized 

therapy may enhance both the efficacy and safety of treatments11. Early prediction of maximal 

severity may allow earlier intervention, which may be more effective. 

 

1.2   Longitudinal Genome-Wide Association studies 
 

1.2.1   Genetic mapping 

 

Many quantitative traits or human diseases are controlled by specific loci. When the trait 

is a quantitative measure such as body mass index (BMI), these loci are called quantitative trait 

loci (QTL). Genetic mapping can offer evidence that a disease transmitted from parent to child is 

linked to the QTL. Statistical methods for genetic mapping have been developed using two main 

approaches: linkage analysis and association analysis. Linkage is the tendency for loci and other 

genetic markers to be inherited together because of their location near one another on the same 

chromosome. In the process of meiosis, because there is some crossing over of DNA when the 

chromosomes segregate, alleles on the same chromosome can be separated and go to different 

daughter cells. Generally, in the same chromosome, the probability of recombination fraction 
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between two loci near each other is very low. Thus, a low recombination fraction means the two 

loci are near each other. Linkage analysis can help find the rough position of human disease loci 

relative to known genetic markers. 

Association analysis, also known as association mapping or linkage disequilibrium (LD) 

mapping, is a method which is based on linkage disequilibrium to study the quantitative traits 

and genetic polymorphisms. LD is the association between two alleles located near each other on 

a chromosome, such that they are inherited together more frequently than expected by chance, 

which decays by recombination distance. So LD will be observed between two loci if they are in 

tight linkage. If we observe LD between candidate loci and markers, then we can claim that they 

are nearly located near each other. 

 

1.2.2   Genome-Wide Association Study 

 

In human genetics, a genome-wide association study (GWAS) is an examination of locus 

variations on a genome to discover loci that have associations with a disease. As of December 

2010, over 1200 human GWASs have examined over 200 diseases and traits. Almost 4000 SNP 

associations have been found12. 

 

 

1.2.3   Longitudinal GWAS 
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Longitudinal studies use repeated observations of variables of interest over time. Fields 

such as psychology, sociology and medical research make extensive use of longitudinal studies. 

In genetics, there are a number of longitudinal GWAS13. In those studies, quantitative traits are 

measured at fixed time points. Then an association analysis or linkage analysis is conducted to 

detect the quantitative trait loci (QTL) in the genome. For example, researchers have found 

evidence for a disease locus influencing blood pressure on chromosome 17 using a genome 

scan14. GWAS analysis can also be used to detect interactions between the longitudinal traits and 

environment15,16. 

Wu and colleagues17,18,19 propose a mapping strategy, call functional mapping, which 

integrates the mathematical aspects of biological processes into a statistical mapping framework 

for QTL mapping. The model is constructed within the traditional maximum-likelihood 

framework implemented with the expectation-maximization (EM) algorithm. A biologically 

meaningful growth curve, the logistic growth curve, is employed to model time-specific genetic 

values. An autoregressive model is used to structure the residual variance-covariance matrix 

among different time points. Because of a reduced number of parameters being estimated and the 

incorporation of biological principles, the functional mapping model displays increased 

statistical power to detect QTL. Later, Wu and colleagues generalize the functional mapping 

framework to more general models of time dependence of residuals. Wu’s research group applies 

functional mapping model to QTL mapping of traits describing trees, as well as an HIV study20. 

 



 

7 

 

 

1.3   Growth Mixture Modeling  

 

             Growth Mixture Modeling (GMM) is a method that can classify heterogeneous 

participants into discrete subgroups. GMM also describes the longitudinal pattern in each sub-

population21. GMM applies mixture analysis methods to estimate the number of trajectory 

components and to  estimate the probability that a trait variable (such as a genotype) affects the 

probability of trajectory component membership. The procedure allows for controlling for time-

varying covariates (TVC) as well. 

               In 1999, Bengt Muthen and Kerby Shedden22 propose a model that combines the 

features of conventional growth modeling and latent class growth modeling. Their research 

discusses a longitudinal study using a random coefficient model to assess the influence of latent 

growth trajectory class membership on the probability of a binary disease outcome. It is 

motivated by a study concerned with the longitudinal development of heavy drinking and its 

relation to alcohol dependence. In their paper, the EM algorithm is used for estimation. They 

analyze the influence of membership in different growth curve classes for heavy drinking from 

ages 18 to 25. 

                 Later in 2000, Bengt Muthen and Linda K. Muthen23 give a brief overview of new 

methods that integrate variable- and person-centered analyses. A variable-centered approach, 

such as regression analysis, factor analysis, and structural equation modeling, focuses on 

relationships among variables. A person-centered approach, such as cluster analysis, finite 

mixture analysis, latent class analysis, and latent transition analyses, focuses on relationships 
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among individuals. The goal is to group individuals into categories, each one of which contains 

individuals who are similar to each other and different from individuals in other categories. The 

methods that they discuss include latent class analysis, latent transition analysis, latent class 

growth analysis, growth mixture modeling, and general growth mixture modeling. Growth 

mixture modeling (GMM) is based on conventional growth modeling and combines the features 

of latent class growth analysis (LCGA). Conventional growth modeling estimates a mean growth 

curve under the assumption that all individuals in the sample come from a single population. 

Individual variation around the mean growth curve is captured by the estimation of the growth 

factor variances. LCGA estimates a mean growth curve for each class. No individual variation 

around the mean growth curves is allowed. As a result, the variation in the growth factors within 

each class is assumed to be zero. However, GMM estimates mean growth curves for each class 

and captures individual variation around these growth curves by the estimation of growth factor 

variances for each class. GMM can also be incorporated into a more general latent variable 

framework that allows combinations of the models mentioned above. This is referred to as 

general growth mixture modeling (GGMM). It is the statistical framework used in M-plus. 

                In 2002, Bengt Muthen24 et al. present a novel application of growth mixture modeling 

to preventive intervention trials in which individuals are randomized into intervention and 

control groups and measured repeatedly before and after the start of the intervention. They apply 

four analyses, two of which are GMM. Comparison of models with different numbers of classes, 

however, is accomplished by a Bayesian information criterion (BIC). The larger the BIC value, 

the better the model. They conclude that the growth mixture modeling is a powerful analytic tool 

when applied to randomized trials as well as to non-experimental research. 
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               Daniel S. Nagin25 proposes a method to analyze developmental trajectories in 1999. It 

is a semi-parametric, group-based approach for identifying distinctive groups of individual 

trajectories within the population and for profiling the characteristics of group members. It can 

handle three data types—count, binary, and psychometric scale data. Four capabilities are 

demonstrated in their model: the capability to identify distinctive groups of trajectories; the 

capability to estimate the proportion of the population following each such trajectory group; the 

capability to relate group membership probability to individual characteristics and 

circumstances; the capability to use the group membership probabilities for other purposes such 

as creating profiles of group members. They also discuss two important issues in model 

selection: determination of the optimal number of groups in the mixture and the determination of 

the appropriate order of the polynomial used to model each group’s trajectory. Here “order” 

refers to the degree of the polynomial used to model the group’s trajectory. 

               In 2001, Daniel S. Nagin and Richard E. Tremblay26 demonstrate a group-based 

method for joining developmental trajectories of distinct but theoretically related behaviors. This 

method will aid the analysis of comorbidity and heterotypic continuity. It is based on the method 

Nagin proposed in 1999. First, the statistical model underlying the estimation of a group-based 

trajectory model for a single behavior is summarized; then, the approach used to link two 

univariate models to form a joint model is described. They obtain three major outputs: the form 

of the trajectory of distinctive subpopulations for both measurement series; the probability of 

membership in each such trajectory group; the joint probability of membership in trajectory 

groups across behaviors. They apply the model to two examples: one is the data from research in 

physical aggression and hyperactivity in children; the other is the data from study of criminal 

behavior. Nagin et al. introduce a new SAS procedure that analyzes longitudinal data 
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(developmental trajectories) by fitting a mixture model. The TRAJ procedure will be discussed 

later.  

              GMM has been applied in alcohol use studies and smoking behavior studies. Li and 

colleagues27 examine developmental trajectories in adolescent alcohol using piecewise GMM. 

Alcohol use typically begins in adolescence. The research about alcohol use suggests distinct 

developmental periods depending on age. It is assumed that onset and rates of change of 

adolescent alcohol use are not homogeneous but consist of subgroups that have different growth 

patterns and social, family and individual influence systems. Li et al. describe their model using 

the framework for GMM proposed by Muthen in 1999. They examine distinct trajectories from 

middle school to high school in the development of alcohol use. Two subgroups or trajectories 

are reported. They also analyze the influences of background variables, such as middle school 

entry and midpoint time-invariant predictors.    

              Colder et al.28 apply GMM to identify trajectories of adolescent smoking. In their 

article, discrete patterns of smoking are identified on the basis of level of smoking. Analyses 

reveal considerable heterogeneity in how smoking unfolded over time during adolescence. They 

show that compared with the traditional growth models, GMM has more power to identify 

subpopulations on the basis of distinct growth trajectories. 

               There has been increasing interest in using GMM to identify the SNPs associated with a 

longitudinal quantitative trait. In Genetics Analysis Workshop 16, Chang et al.29 examine the 

properties of GMM to find longitudinal QTL. She studies the trajectory model’s Bayesian 

posterior probability and tests the association with 17 SNPs on Human Chromosome (HC) 22. 

Kerner and Muthen30 apply GMM to longitudinal data of blood pressure in Framingham heart 
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study. They test SNPs on HC 8 for association with the class membership probabilities. Both 

studies find GMM to be a useful tool to detect subgroups in heterogeneous populations in 

GWAS. 

 

1.4   Analysis software 
 

There are two computer programs to perform GMM on longitudinal data. One is the SAS 

TRAJ procedure, and the other is M-plus.  

 

1.4.1   SAS TRAJ procedure 

 

The SAS Trajectory Procedure (Proc Traj)31,32,33 fits a discrete mixture model to 

longitudinal data. The model groups data trajectories, with different parameter values for each 

component. Components may identify distinct subpopulations. Proc Traj estimates a longitudinal 

regression model for each component group within the population. The focus of this procedure is 

on group membership and identifying distinct subgroups within the population. SAS PROC 

TRAJ analysis reports the estimated frequency of each trajectory group, the t-statistic and the 

maximum likelihood estimates (MLEs) of the trajectory group parameters, the Bayesian 

posterior probability (BPP) that each subject is member of each trajectory component and 

Bayesian information criterion (BIC) for model selection. The model which has the largest BIC 

value and at least 10 subjects estimated to be in each trajectory component is often reported as 

the best model in actual studies. 
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1.4.2   M-plus software 

 

M-plus is another statistical modeling program that provides researchers with a flexible 

tool to analyze longitudinal data. M-plus takes a multivariate approach to growth modeling. This 

approach allows flexible modeling of relationships between the outcomes such as correlated 

residuals over time and regressions among the outcomes over time. M-plus uses the principle of 

maximum likelihood estimation and employs the EM algorithm for maximization. M-plus 

program provides three measures of each model: Akaike information criterion (AIC); BIC; a 

sample-size adjusted BIC (ABIC). Researchers often use BIC to choose the best model. M-plus 

provides estimates of probabilities of class membership for each individual. For example, in a 

five-class solution, five probabilities are estimated for each individual in the data, where each 

estimates the likelihood that an individual is a member of one of the classes. For each individual, 

these probabilities sum to 1.0. Ideally, for each individual, one of these probabilities would be 

very high and the others very low, indicating little ambiguity about class membership.  

 

1.4.3   Comparison of the two procedures 

 

M-plus specifies latent GMM in the context of a general structural equation model. This 

allows considerable flexibility in model specification. However, M-plus uses full information 

maximum likelihood imputation (FIML) to deal with missing data. In contrast, Proc Traj in SAS 

allows for the inclusion of cases with missing data and specification of a variety of distributions 
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for the observed variables but does not permit specification of latent variables. In growth 

modeling, M-plus uses random effects to capture individual differences in development. In 

contrast with the M-plus model, there is no random effect capability within the Proc Traj model. 

In each procedure, heterogeneous longitudinal data is classified into a few discrete 

growth trajectory groups such that there is an estimated probability that an individual belongs to 

a particular trajectory group. This probability is called the Bayesian posterior probability (BPP). 

Both programs report the estimated coefficients of the polynomial trajectory functions, their 

corresponding t-statistics and p-values, the MLE of the trajectory group parameters, the AIC and 

the BIC for a specified number of trajectory groups.  

One major difference between the programs is the treatment of within-class variability. 

Since the SAS TRAJ procedure assumes no variation in growth parameters within each class, 

any individual deviations from the class mean trajectories are attributed to random error. M-plus, 

however, allows for within-class variation in individual trajectories; that is, the coefficients of 

the M-plus model are random. For example, in SAS TRAJ, one of the trajectory groups in my 

research is modeled as  

( ) ( ) ( ) titi tY ,10, 25.0 ωω εββ +−+= , 

here, ω refers to the specific individual, i  refers to the trajectory group and t  refers to the time 

point. The intercept 0β  and slope 1β  are fixed, and the individual variation ( ) ti ,ωε  in this 

trajectory group is attributed to random error. In M-plus, the parameters 0β  and 1β  are modeled 

as random. That is, they differ among individuals in the same trajectory group. In the fixed 

effects model (growth factor variances and covariance equal to zero), estimation of parameters is 
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easier, and time to convergence is faster. Muthen (2004) has suggested that use of both 

approaches may be useful. For example, he suggests using the simpler model group-based 

trajectory approach as a first step to identify the number of trajectory groups and cut points on 

the growth factors. Then researchers can use more complex variance/covariance constraints in a 

growth mixture model. 

 

1.4.4   PLINK software 

 

PLINK (Appendix II) is a whole genome association analysis toolset, designed to 

perform a range of basic, large-scale analyses in a computationally efficient manner. I used 

PLINK to test the association between the quantitative trait and 1498 SNPs on chromosome 13.  
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Chapter 2   Methodology 
 

2.1   Sample used in the analysis 
 

The Framingham heart study (FHS)34, which started in 1948, aims to identify the 

common factors or characteristics that contribute to cardiovascular disease (CVD). FHS recruits 

a large group of participants from the town of Framingham, Massachusetts. The Genetic 

Analysis Workshop (GAW 16) simulated dataset includes a total of 6,476 participants with 

actual genotype data from the FHS. The participants are in 936 pedigrees distributed among 3 

generations with the 187 singleton subjects; that is, participants not related to any other 

participant.  

My study focuses on the 1599 genetically unrelated participants of the FHS. I first 

include those who married into the pedigree and the 187 singletons. Next, I build a “family tree” 

for each pedigree and choose the first generation participants if any are genotyped. In this case, I 

exclude all of their children and grandchildren. If the first genotyped participants are in the 
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second generation, then I choose one at random and I exclude all of their children. If the first 

genotyped participants are in the third generation, then I choose one at random. The distribution 

of the 1599 unrelated participants extracted from FHS is shown in Table 2.1. Appendix I 

contains the participant IDs of the 1599 unrelated participants. 

 

Table 2.1 Distribution of the sample by generation 

Generation Frequency Percentage 

First generation 260 16.6 

Second generation 436 27.4 

Third generation 160 10.0 

Participants who married-in 556 34.9 

Singletons 187 11.1 

 

 

 

2.2   Genotypes used in the analysis 
 

In my study, I use the genotype data from chromosome 13 for the 1599 genetically 

unrelated individuals in the FHS. There are 1498 SNP markers on Chromosome 13.  
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For the single-locus association analysis, I choose two SNP markers on chromosome 13 

listed in Table 2.2, as the simulated disease loci. Table 2.2 shows the SNP ID, base pair, major 

allele, minor allele, MAF, Hardy-Weinberg Equilibrium (HWE) test p-value and missing rate. 

The null hypothesis of HWE test is that the SNP is in HWE. Both of the SNP markers are 

apparently in HWE from the table. The missing rate indicates the proportion of missing SNPs in 

1599 unrelated participants. The SNP markers I studied have minor allele frequency (MAF) 

close to 0.5 and 0.15, respectively. I study the two loci separately, as well as other markers on 

chromosome 13. I use the normalized disequilibrium coefficient 'D  to measure Linkage 

Disequilibrium (LD). For the two loci in Table 2.2, 046.0'=D . 

 

Table 2.2 SNP markers on chr13 used as disease loci in single-locus association analysis 

SNP Base-Pair Major 

Allele 

Minor 

Allele 

MAF HWE test 

p-value 

Missing 

rate 

rs4133063 39205119 C T 0.49 0.68 0.0044 

rs7990928 91893219 C A 0.15 0.42 0.0037 

 

For the multi-locus association analysis, I select ten SNP markers on chromosome 13 

listed in Table 2.3, as the simulated disease loci. All the SNP markers are in HWE based on the 

chi-square goodness of fit test. They are rare variant loci, with MAF less than 0.05. The 

measurements of LD are shown in Table 2.4. The association test p-values are shown in Table 
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2.5. SNP rs17090361 is highly associated with SNP rs16943207; SNP rs7331979 is highly 

associated with SNP rs12863734. 

 

Table 2.3 SNP markers on chr13 used as disease loci in multi-locus association analysis 

SNP Base-Pair Major 

Allele 

Minor 

Allele 

MAF HWE test 

p-value 

Missing 

rate 

rs9599854 71021185 T C 0.026 1 0.0013 

rs9542756 71309666 T C 0.038 0.33 0.0038 

rs9543107 72217237 C T 0.016 1 0.0006 

rs17090361 73186500 T C 0.050 0.72 0.0013 

rs9593132 75293621 C T 0.048 1 0.0006 

rs5352 77373231 C T 0.012 1 0 

rs7331979 78836214 T G 0.033 0.22 0.0325 

rs12863734 85268572 G A 0.015 1 0.0025 

rs9522610 89110831 C T 0.026 0.44 0.0225 

rs16943207 89144779 C G 0.031 1 0.0088 

 



 

19 

 

Table 2.4 Normalized disequilibrium coefficient 'D of ten disease loci in multi-locus model 

'D  rs9599854 rs9542756 rs9543107 rs17090361 rs9593132 rs5352 rs7331979 rs12863734 rs9522610 rs16943207 

rs9599854 NA 0.017 1** 0.715 0.132 0.078 1** 0.511 0.157 0.007 

rs9542756 0.017 NA 1** 1** 0.065 0.082 0.998* 0.003 0.016 0.001 

rs9543107 1** 1** NA 0.581 0.481 1** 1** 0.007 0.023 0.787 

rs17090361 0.715 1** 0.581 NA 0.008 0.029 0.008 0.059 0.014 0.037 

rs9593132 0.132 0.065 0.481 0.008 NA 0.986* 0.017 0.064 0.622 0.457 

rs5352 0.078 0.082 1** 0.029 0.986* NA 1** 0.020 0 0.041 

rs7331979 1** 0.998* 1** 0.008 0.017 1** NA 0.007 0.688 0.868 

rs12863734 0.511 0.003 0.007 0.059 0.064 0.020 0.007 NA 0.072 0.767 

rs9522610 0.157 0.016 0.023 0.014 0.622 0 0.688 0.072 NA 0.579 

rs16943207 0.007 0.001 0.787 0.037 0.457 0.041 0.868 0.767 0.579 NA 

Notes: The normalized disequilibrium coefficients with * indicate the two SNPs are in linkage disequilibrium. 
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Table 2.5 Correlation coefficient p-values of ten disease loci in multi-locus model 

association 

test p-value 

rs9599854 rs9542756 rs9543107 rs17090361 rs9593132 rs5352 rs7331979 rs12863734 rs9522610 rs16943207 

rs9599854 1 0.8392 0.3464 0.8702 0.8644 0.4624 0.491 0.5803 0.9164 0.9988 

rs9542756 0.8392 1 0.129 0.5278 0.416 0.8855 0.2279 0.413 0.7341 0.9622 

rs9543107 0.3464 0.129 1 0.3418 0.4524 0.8507 0.0974 0.5616 0.8485 0.5488 

rs17090361 0.8702 0.5278 0.3418 1 0.4384 0.9092 0.8148 0.9566 0.4754 0.007 

rs9593132 0.8644 0.416 0.4524 0.4384 1 0.9051 0.6388 0.4957 0.6481 0.6218 

rs5352 0.4624 0.8855 0.8507 0.9092 0.9051 1 0.4103 0.6384 0.9416 0.7445 

rs7331979 0.491 0.2279 0.0974 0.8148 0.6388 0.4103 1 0.0291 0.685 0.2734 

rs12863734 0.5803 0.413 0.5616 0.9566 0.4957 0.6384 0.0291 1 0.441 0.7319 

rs9522610 0.9164 0.7341 0.8485 0.4754 0.6481 0.9416 0.685 0.441 1 0.1923 

rs16943207 0.9988 0.9622 0.5488 0.007 0.6218 0.7445 0.2734 0.7319 0.1923 1 
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2.3   Simulated longitudinal phenotype 
 

The longitudinal phenotype is simulated based on the data describing the progression of 

AIS provided by Carol Wise, M.D. There are 334 Adolescent Idiopathic Scoliosis (AIS) study 

participants in the data used here. The quantitative longitudinal variable is the Cobb angle. A 

Proc Traj analysis identifies three linear trajectory groups for this data. In my simulation study, I 

specify a linear growth mixture model with the longitudinal trajectory functions for each 

individual w  as follows: 

( )

( )
( ) ( )
( ) ( )

;1,85.0,7.0,55.0,4.0,25.0     where

3 ,25.05650

2 ,25.02850

1 ,50

, =








=−+

=−+

=

= t

it

it

i

f ti

ω
ω

ω

ω  

When ( ) 1i w = , the individual w  is in the constant trajectory group; ( ) 2i w =  indicates the 

individual w  is in the intermediate increase trajectory group; ( ) 3i w =  indicates the individual 

w  is in the fast increase trajectory group. The slope trajectory parameters are roughly equal to 

those estimated from Wise data. Since ( ) tif ,ω describes the Cobb angle of each individual, which 

should be a non-negative value, I set the intercept to be 50 so that ( ) tif ,ω  is positive.  

For each replicate, I randomly select 700 individuals without replacement from the 

sampling set of 1599 unrelated (independent) individuals. Then I divide the individuals into three 

trajectory groups; that is, the constant trajectory group, the intermediate increase trajectory group 

and the fast increase trajectory group.  The allocation rules for both null simulations and power 

simulations are described below. 
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2.3.1   Generation of null simulation data 
 

2.3.1.1   Null simulation I 

 

The probability of each individual being in any of the trajectory groups is 1/3 for each 

group. Thus, for each of the 700 individuals in a replicate, I createU , a random ( )1,0U  number. 

If 
3

1
≤U , then the individual is in the constant trajectory group; if 

3

2

3

1
≤<U , then the 

individual is in the intermediate trajectory group; if 1
3

2
≤<U , then the individual is in the fast 

trajectory group.  

 

2.3.1.2   Null simulation II 

 

2.3.1.2.1   Penetrance matrix 

 

In the null simulation II model and the single locus model (described below), I use the 

penetrance matrix X to define the allocation rule; that is, the relationship between disease SNP 

genotype and trajectory group membership. For a selected individualω , let the penetrance matrix  

( ) ( ) ( )( )1, Pr | , 1..., , 0,1,2j iX x i i j j i G jω ω+= = = = = = . 
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Here, the value j represents the number of copies of the minor allele at the disease locus, 

where the locus has two alleles. Thus, 0,1,2j =  refers to major homozygote, heterozygote and 

minor homozygote, respectively. The value i represents the trajectory group (TG), where G is 

the number of trajectory groups for the simulated data. In my study, I set 3G = . That is, all the 

individuals are divided into three trajectory groups. In matrix form, we have:  

( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1,

Pr 1| 0 Pr | 0

Pr 1| 1 Pr | 1

Pr 1| 2 Pr | 2

j i

i j i G j

X x i j i G j

i j i G j

ω ω ω ω

ω ω ω ω

ω ω ω ω
+

 = = = =
 

= = = = = = 
  = = = = 

L

L

L

. 

 

2.3.1.2.2 Allocation rule for null simulation II 

 

The probability of each individual being in one of the trajectory groups is determined by 

HWE proportions and the penetrance matrix. If the MAF for a SNP is denoted by p , then for an 

arbitrary individual ω,  

( )( )
( )( )
( )( )

2

2

Pr 0

Pr 1 2

Pr 2

j q

Y j pq

pj

ω

ω

ω

 =  
   

= = =   
    =   

, 

where q  is the major allele frequency and pq −=1 .  

The penetrance matrix is given by  
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( )
11 12 13

1, 21 22 23

31 32 33

j i

x x x

X x x x x

x x x
+

 
 = =  
 
 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

Pr 1 0 Pr 2 0 Pr 3 0

Pr 1 1 Pr 2 1 Pr 3 1

Pr 1 2 Pr 2 2 Pr 3 2

i j i j i j

i j i j i j

i j i j i j

ω ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

 = = = = = =
 
 = = = = = = =
 
 = = = = = = 

1 3 4 4

2 1 2

4 3 4 1

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

− 
 = − 
 − 

.  

Thus, the probability of each individual belongs to a specific trajectory group is given by: 

( )( )
( )( )
( )( )

Pr 1

Pr 2

Pr 3

i

i

i

ω

ω

ω

 =
 

= = 
  = 

 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )

Pr 1 0 Pr 0 Pr 1 1 Pr 1 Pr 1 2 Pr 2

Pr 2 0 Pr 0 Pr 2 1 Pr 1 Pr 2 2 Pr 2

Pr 3 0 Pr 0 Pr 3 1 Pr 1 Pr 3 2 Pr 2

i j j i j j i j j

i j j i j j i j j

i j j i j j i j j

ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω

 = = = + = = = + = = =
 
 = = = + = = = + = = =
 
 = = = + = = = + = = = 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( )( )
( )( )
( )( )

Pr 1 0 Pr 1 1 Pr 1 2 Pr 0

Pr 2 0 Pr 2 1 Pr 2 2 Pr 1

Pr 2Pr 3 0 Pr 3 1 Pr 3 2

i j i j i j j

i j i j i j j

ji j i j i j

ω ω ω ω ω ω ω

ω ω ω ω ω ω ω

ωω ω ω ω ω ω

 = = = = = =  =   = = = = = = = =      == = = = = =   
2

2

1 2 4

3 4 1 3 4 2

4 2 1

T

q

X Y pq

p

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

 − 
  = = −   

  −  

.  

In this null simulation, I generate a random number from the uniform distribution on the 

interval (0,1) for every individual. If the random number is in  
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( ] ( )( ],41,0,0 22 ppqq ρρρθ ++−=
 

then this individual is in group 1, the constant trajectory group. If the random number is in  

( ) ( )( )( )2 21 ,1 1 4 1 ,1q pq pψ ρ ρ ρ− = − + + − , 

then this individual is in group 3, the fast increase trajectory group. Otherwise, the individual is 

in the intermediate increase trajectory group.  

 

2.3.2   Generation of power simulation data 

 

The longitudinal data for power simulations are generated based on the selected 

individual’s real genotype. I examine both single-locus model and multi-locus model. 

 

2.3.2.1   Single-locus association 

 

The penetrance matrix X is given by 

31 4 4

12 2
3 14 4

X

ρ ρρ

ρ ρρ

ρ ρ ρ

 − 
 

= − 
 
 −
 

, 

where [ ]0,1ρ∈ . In my study, I set 0.1ρ = and 0.4. I call the model with 1.0=ρ the ‘high 

penetrance locus model’ and the model with 4.0=ρ the ‘low penetrance locus model’. 
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2.3.2.1.1 High penetrance  

The high penetrance matrix  X  is given by:   

















=

9.0075.0025.0

05.09.005.0

025.0075.09.0

X  

For this model, in row one of the matrix, individuals with major homozygote genotype 

( ( ) 0j ω = ) are in the constant trajectory group with probability 0.9, in the intermediate increase 

group with probability 0.075 and in the fast increase group with probability 0.025. In row two of 

the matrix, individuals with heterozygote genotype ( ( ) 1j ω = ) are in the intermediate increase 

group with probability 0.9, in the constant trajectory group with probability 0.05 and in the fast 

increase group with probability 0.05. In row three of the matrix, individuals with minor 

homozygote genotype (( ) 2j ω = ) are in the fast increase group with probability 0.9, in the 

constant trajectory group with probability 0.025 and in the intermediate group with probability 

0.075.  

 

2.3.2.1.2 Low penetrance  

 

The low penetrance matrix is given by:  
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0.6 0.3 0.1

0.2 0.6 0.2

0.1 0.3 0.6

X

 
 =  
 
 

. 

This matrix indicates that in the first row, an individual with major homozygote genotype 

is in the constant trajectory group (trajectory group 1) with probability 0.60, in the intermediate 

group (trajectory group 2) with probability 0.30, and in the fast increase group (trajectory 3) with 

probability 0.10. For an individual with heterozygote genotype (the second row), an individual is 

in the intermediate trajectory group with probability 0.60, in the fast increase trajectory group 

with probability 0.20, and in the constant trajectory group with probability 0.20. For an 

individual with minor homozygote genotypes (the third row), an individual is in the fast increase 

trajectory group with probability 0.60, in the intermediate trajectory group with probability 0.30, 

and in the constant group with probability 0.10.  

 

2.3.2.1.3 Other parameter settings 

 

In each particular trajectory group, an individual’s phenotype follows the normal 

distribution at each time point. I set the standard deviation σ  at each time point to be 4 or 8. 

That is, the quantitative trait at each time point( ),i tY ω for individual w is:   

( ) ( ) ( ) 3,2,1,,0 2
,, =+= iNfY titi σωω . 
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Thus, ( )

( ) ( )
( ) ( ) ( )
( ) ( ) ( )








=+−+

=+−+

=+

=

3,,025.05650

2,,025.02850

1,,050

2

2

2

,

ωσ
ωσ

ωσ

ω

iNt

iNt

iN

Y ti . 

 

The generated data above are linearly related to the time variable. The other model I 

examined is that the value seen is the square of the linearly generated value. 

 

2.3.2.2   Multi-locus association 

  

I also include a multi-locus model in my study. The model has ten disease loci, each of 

which has MAF<0.05. For each disease locus, I create the variable that is the count of the 

number of minor alleles; that is,  

0,  if the SNP has 0 minor allele;

1,  if the SNP has 1 minor allele;

2,  if the SNP has 2 minor alleles.

cnt




= 



. 

Thus, an individual ω has a vector:   

( )1, 2, 10,, , ,cnt cnt cntω ω ωL . 

For example, an individual who has minor homozygote on SNP5 and SNP7, has heterozygote on 

SNP 10, and has major homozygote on the other disease SNPs, has vector  

( )0,0,0,0,2,0,2,0,0,1. 
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The variable score is the sum of the ten counts:  

10

,
1

i w
i

score cntω
=

=∑ . 

For the individual above, score =5. The model is that if an individual’s score is greater than or 

equal to 3, then the individual is in the fast increase trajectory group; if the score is 2, then this 

individual is in the intermediate increase trajectory group; if the score is 0 or 1, then the 

individual is in the constant trajectory group.  The distribution of score of unrelated individuals 

is in Table 2.6. The mean of score  is 0.588 and the standard deviation is 0.745. If the fast 

increase trajectory group is the clinically important group, then in this model, the prevalence of 

the disease is around 2%. 

Table 2.6 Distribution of variable score  

score  Frequency 

(%) 

0 54.78 

1 33.65 

2 9.63 

3 1.88 

4 0.06 
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 For the ten disease loci, I further calculate the variance of genotype over the variance of 

score : )(
)(

scoreVar
genotypeVar . They are displayed in Table 2.7. 

 

Table 2.7 Variance of genotype over the variance of score in multi-locus model 

SNP Base-Pair MAF 
)(

)(
scoreVar

genotypeVar  

rs9599854 71021185 0.026 0.086 

rs9542756 71309666 0.038 0.141 

rs9543107 72217237 0.016 0.052 

rs17090361 73186500 0.050 0.184 

rs9593132 75293621 0.048 0.161 

rs5352 77373231 0.012 0.044 

rs7331979 78836214 0.033 0.098 

rs12863734 85268572 0.015 0.063 

rs9522610 89110831 0.026 0.084 

rs16943207 89144779 0.031 0.108 
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2.4 Group separation 
 

After generating the simulated longitudinal data, I used the SAS PROC TRAJ to classify 

the heterogeneous longitudinal data into three trajectory groups. The procedure can also report 

the BPP and BIC of the model. For some of the replicates, the trajectory curve failed to 

converge. In these replicates, no estimated parameters will be reported. Thus, I delete these 

replicates and do not include them when calculating the type I error rate and empirical power. 

The failure rate of each parameter settings will be reported in Chapter 3.  

 

2.5   Methods for testing the association of longitudinal phenotypes with 
genotype data 
 

I apply the SAS TRAJ procedure to the simulated longitudinal phenotype data. For each 

of the replicates, I set the number of trajectory groups to 3. The trajectory group with the largest 

slope is identified as the clinically important group. The SAS TRAJ procedure estimates the BPP 

that each subject belongs to each group. Specifically, the BPP that each subject belongs to the 

fast increase trajectory group (clinically important group) is used as a quantitative trait. 

 

2.5.1   Method I: Using Bayesian Posterior Probability (BPP) as phenotype in the 
association test 
 

I use the BPP of the clinically important group as a quantitative trait in PLINK. The 

association between each SNP on chromosome 13 and the quantitative trait is reported. 
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Additionally, PLINK reports SNP identifier, base-pair, Wald test statistic and the asymptotic p-

value for the test.  

 

2.5.2   Method II: Using modal BPP in the association test 

 

I create a dummy variable, which is 1 if modal BPP is in the clinically important group, 

and is 0 if otherwise. Then I use this variable to perform a case/control association analysis in 

PLINK. The basic allelic test chi-square and its asymptotic p-value is reported in the PLINK 

output.  

 

2.5.3   Method III: Post hoc contingency table test 

 

I classify a subject as belonging to the clinically important trajectory group when the 

subject’s modal BPP is the clinically important group. The row variable in the contingency table 

is whether or not the subject is classified into the clinically important group. The subject is 

simultaneously in one of three genotypes: major homozygote, heterozygote and minor 

homozygote for each SNP analyzed. That is, the genotypes are the column variables in the 

contingency table. The contingency table test of independence between genotype and 

membership in the clinically important group is used to test for association with a SNP. For each 

SNP, we have a chi-square statistic and the corresponding asymptotic p-value. For some 

replicates with small sample size (<5) in the fast increase group, I use Fisher’s exact test instead.  
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2.6   The factorial design 
 

2.6.1   Disease loci 

 

For the single-locus association study, I use two loci to simulate the disease loci, one with 

MAF near 0.5 and the other with MAF near 0.15. 

For the multi-locus association study, I use ten loci, each of which has MAF<0.05. 

 

2.6.2   Genetic model 
 

For the single-locus study, the genetic model is defined by the penetrance matrix X . 

There are two settings for this factor:  

high penetrance (

0.9 0.075 0.025

0.05 0.9 0.05

0.025 0.075 0.9

X

 
 =  
 
 

) and 

 low penetrance (

0.6 0.3 0.1

0.2 0.6 0.2

0.1 0.3 0.6

X

 
 =  
 
 

). 

For the multi-locus study, the genetic model is defined by the variable cnt and 

score described above. 
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2.6.3   Separation of groups 

 

The standard deviation of an individual time measurement σ  is set to be 4 and 8. That is, 

for the low variance setting, 

( )

( ) ( )
( ) ( ) ( )
( ) ( ) ( )








=+−+

=+−+

=+

=

3,16,025.05650

2,16,025.02850

1,16,050

,

ω
ω

ω

ω

iNt

iNt

iN

Y ti  

For the high variance setting,  

( )

( ) ( )
( ) ( ) ( )
( ) ( ) ( )








=+−+

=+−+

=+

=

3,64,025.05650

2,64,025.02850

1,64,050

,

ω
ω

ω

ω

iNt

iNt

iN

Y ti  

 

2.6.4   Data transformation 
 

There are two settings for this factor. The one setting is that the data are linearly related 

to the time variable. The other is that the data is the square of data linearly related to time. That 

is, the value seen is the square of the linearly generated value.  

 

2.7   Definitions of empirical type I error rate and empirical power 
 

2.7.1   Empirical type I error rate 
 

Type I error rate is defined as 



 

35 

 

( ) trueis  Pr 00 HHreject=α  

In null simulations where trajectory group assignments are not correlated with an individual’s 

genotype, the empirical type I error rate is defined as the proportion of replicates in which the 

target SNPs are significant. For example, if in 4 out of 1000 replicates, a target SNP association 

test p-value is significant among the top 0.5% SNP p-values on one chromosome, then the 

empirical type I error rate of this target SNP will be 0.004.  

 

2.7.2   Empirical power  
 

The power is defined as  

( ) trueis  Pr 10 HHrejectpower =  

In power simulations where the trajectory group assignments are dependent on an individual’s 

genotype, empirical power is defined as the proportion of replicates in which the disease SNP is 

detected. For example, if in 800 out of 1000 replicates, a disease SNP p-value is in the top 0.5% 

of SNP p-values on one chromosome, then the power to detect this disease SNP will be 80%. 
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Chapter 3   Results 
 

3.1   Null distribution 
 

3.1.1   Null Simulation I 

 

Table 3.1 showed the empirical type I error rate and its 95% confidence interval for target 

SNP detection using the model with three equi-probable trajectory components unrelated to any 

locus. A confidence interval in bold did not contain the target α . As α  increased, the number of 

intervals not containing the target α  increased. That is, true type I error rate was increasing 

below α as α  increased. The failure rate of the TRAJ model was shown in Table 3.1. 

Next, I reported an analysis of variance test of the empirical type I error rate as dependent 

variable with five independent variables: the indicator variable of whether or not the data was 

normal (denoted by NORMAL ), the value of sigma (denoted by SIGMA ), the MAF (denoted by 
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MAF ), the target α  for each method and the three methods. Here, the variable NORMAL  had 

two levels: the value of 0 indicated the data was normally distributed at each time point and the 

value of 1 indicated the data was the square of normally distributed data. The variable SIGMA  

had two levels: 4 and 8. The variable MAF had three levels: 0.49, 0.15 and 0.05. Nominal α  had 

four levels: 0.005, 0.01, 0.05 and 0.10. The variable METHOD  had three levels: BPP method, 

modal BPP method and contingency table method. The analysis of variance table (ANOVA) was 

shown in Table 3.2. The variables NORMAL , MAF  and α  were significant. The regression 

model was that: 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )05.00013.00333.001.00013.00037.0

1.00013.00681.005.00011.00066.0

00009.00023.00014.00045.0error I  typeempirical

=×±+=×±+

=×±+=×±−

=×±+±=

αα
αMAF

NORMAL

 with 

96.02 =R . 

There were no significant differences among those three methods with regard to the empirical 

type I error rate.  
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Table 3.1 Empirical type I error rate and its 95% confidence interval for chromosome 13 scoliosis data  

Null Model 1: Three equiprobable trajectories  

Significance Level α=0.005 α=0.01 α=0.05 α=0.10 Failure 
rate (%) Method BPP Modal CT BPP Modal CT BPP Modal CT BPP Modal CT 

Normal Sigma MAF 

No: 
Normal 
Squared  

8 =0.49 0.005 

 

0.004 

 

0.006 

 

0.012 

 

0.012 

 

0.01 

 

0.045 

 

0.044 0.05 

 
0.08 0.083 0.08 

 

0 

=0.15 0.006 

 

0.008 

 

0.006 

 

0.011 

 

0.01 

 

0.012 

 

0.041 

 

0.045 0.038 

 
0.078 0.087 0.062 

 
<0.05 0.003 

 

0.003 

 

0.003 

 

0.006 

 

0.006 

 

0.006 

 
0.032 

 
0.033 0.03 0.069 0.068 0.06 

 
4 =0.49 0.005 

 
0.005 

 
0.006 

 
0.009 

 
0.01 

 
0.012 

 
0.034 0.035 0.03 0.066 0.072 0.056 

 
0.3 

=0.15 0.006 

 

0.006 

 

0.004 

 

0.008 

 

0.008 

 

0.008 

 

0.047 

 

0.049 0.038 

 
0.087 0.09 0.084 

 
<0.05 0.004 

 

0.004 

 

0.003 

 

0.007 

 

0.007 

 

0.005 

 
0.032 0.033 0.03 0.069 0.069 0.064 

Yes 8 =0.49 0.002 

 

0.005 

 

0.002 

 

0.008 

 

0.01 

 

0.007 

 

0.043 

 

0.039 0.048 

 

0.081 

 
0.08 0.082 

 

12.2 

=0.15 0.002 

 

0.003 

 

0.002 

 

0.007 

 
0.004 0.005 

 
0.023 

 
0.03 0.03 0.06 0.06 0.06 

<0.05 0.003 

 

0.003 

 

0.003 

 

0.006 

 

0.006 

 

0.007 

 
0.033 0.032 0.028 0.061 0.06 0.062 

4 =0.49 0.004 
 

0.004 
 

0.006 
 

0.008 
 

0.007 
 

0.01 
 

0.045 
 

0.046 0.044 
 

0.074 0.073 0.086 
 

3 

=0.15 0.001 
 

0.002 

 

0.002 

 
0.003 0.003 0.004 

 

0.038 

 

0.04 0.042 

 
0.078 0.077 0.08 

 
<0.05 0.003 

 

0.003 

 

0.003 

 

0.006 

 

0.006 

 

0.006 

 
0.032 0.03 

 
0.031 0.068 0.067 0.061 

Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.  
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Table 3.2 ANOVA table for empirical type I error rate using null model I 

Variable source DF Mean square F value Pr>F 

NORMAL  1 0.00019136 6.29 0.0133 

SIGMA  1 0.00001344 0.44 0.5074 

MAF  2 0.00056355 18.52 <.0001 

α  3 0.03607492 1185.48 <.0001 

METHOD  2 0.00002347 0.77 0.4645 

Error 134 0.00003043   
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3.1.2   Null Simulation II 

 

Table 3.3 showed the empirical type I error rate and its 95% confidence interval using the 

second null model, which set the trajectory frequencies to Hardy Weinberg values and 

penetrance matrix values (the penetrance coefficient is denoted by PENE ) as described in 

Chapter 2. Here, the variable PENE  had two levels: high penetrance and low penetrance. The 

failure rates of the TRAJ model using three methods were the same and they were shown in the 

first table of Table 3.3. 

Table 3.4 showed the ANOVA table of empirical type I error. The variables NORMAL  

and SIGMA  were significant. The variable α is highly significant. The regression model was 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )05.00010.00331.001.00010.00036.0

1.00010.00681.040007.00016.0

00007.00031.00012.00021.0error I  typeempirical

=×±+=×±+

=×±+=×±+

=×±+±=

αα
αSIGMA

NORMAL

with 

968.02 =R . 

The BPP and modal BPP had different empirical type I error rates ( 0004.0=p ). The 

empirical type I error rate for the modal BPP method was greater than the error rate using BPP 

method. Overall, the Modal BPP empirical type I error rate was closer to the target α . The 

empirical type I error rate of the contingency table method was essentially the same as that of 

that modal BPP method. 
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Table 3.3 Empirical Type I error rate and 95% confidence interval for chromosome 13 scoliosis data using BPP method 

Null Model 2: Hardy Weinberg Distribution for Trajectory Groups  

Normal 
 

MAF Penetrance 
Model 

σ 
    Failure rate (%) 

OBS 95% CI OBS 95% CI OBS 95% CI OBS 95% CI 
No—
Normal 
Squared 

MAF=0.4
9 

High 
Penetrance  

0.005 (0.001,0.009) 0.008 (0.002,0.013) 0.039 (0.027,0.051) 0.076 (0.059,0.092) 0 

 
0.003 (0,0.006) 0.006 (0.001,0.011) 0.040 (0.028,0.052) 0.078 (0.061,0.095) 0 

Low 
Penetrance  

0.003 (0,0.006) 0.004 (0,0.008) 0.044 (0.031,0.057) 0.083 (0.066,0.100) 0 

 
0.005 (0.001,0.009) 0.007 (0.002,0.012) 0.038 (0.026,0.050) 0.075 (0.059,0.091) 0.1 

MAF=0.1
4 

High 
Penetrance  

0.007 (0.002,0.012) 0.010 (0.004,0.016) 0.037 (0.025,0.049) 0.061 (0.046,0.076) 0 

 
0.004 (0,0.008) 0.006 (0.001,0.011) 0.039 (0.027,0.051) 0.069 (0.053,0.085) 0 

Low 
Penetrance  

0.004 (0,0.008) 0.006 (0.001,0.011) 0.036 (0.024,0.050) 0.076 (0.059,0.092) 0 

 
0.002 (0,0.005) 0.005 (0.001,0.009) 0.029 (0.018,0.039) 0.068 (0.052,0.084) 0 

Yes MAF=0.4
9 

High 
Penetrance  

0.003 (0,0.006) 0.007 (0.002,0.012) 0.027 (0.017,0.037) 0.053 (0.039,0.067) 27.8 

 
0.004 (0,0.008) 0.009 (0.003,0.015) 0.033 (0.022,0.044) 0.067 (0.051,0.082) 0.2 

Low 
Penetrance  

0.001 (0,0.003) 0.003 (0,0.006) 0.025 (0.015,0.035) 0.052 (0.038,0.066) 27.4 

 
0.003 (0,0.006) 0.008 (0.002,0.013) 0.039 (0.027,0.051) 0.075 (0.059,0.091) 1.8 

MAF=0.1
4 

High 
Penetrance  

0.005 (0.001,0.009) 0.008 (0.002,0.013) 0.039 (0.027,0.051) 0.077 (0.06,0.093) 0 

 
0.004 (0,0.008) 0.006 (0.001,0.011) 0.038 (0.026,0.050) 0.070 (0.054,0.086) 0.1 

Low 
Penetrance 

 
0.002 (0,0.005) 0.004 (0,0.008) 0.027 (0.017,0.037) 0.069 (0.053,0.085) 0 

 
0.003 (0,0.006) 0.007 (0.002,0.012) 0.031 (0.020,0.042) 0.072 (0.056,0.088) 0 

Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval. 
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Table 3.3 (continued) Empirical Type I error rate and 95% confidence interval for chromosome 13 scoliosis data using Modal BPP method 

Null Model 2: Hardy Weinberg Distribution for Trajectory Groups 

Normal 
 

MAF Penetrance 
Model 

σ     
OBS 95% CI OBS 95% CI OBS 95% CI OBS 95% CI 

No: 
Normal 
Squared 

MAF=0.4
9 

High 
Penetrance 

 0.005 (0.001,0.009) 0.010 (0.004,0.016) 0.049 (0.036,0.062) 0.079 (0.062,0.096) 

 0.003 (0,0.006) 0.007 (0.002,0.012) 0.045 (0.032,0.058) 0.083 (0.066,0.1) 
Low 
Penetrance 

 0.003 (0,0.006) 0.007 (0.002,0.012) 0.046 (0.033,0.059) 0.085 (0.068,0.102) 

 0.007 (0.002,0.012) 0.007 (0.002,0.012) 0.042 (0.029,0.054) 0.078 (0.061,0.095) 
MAF=0.1
4 

High 
Penetrance 

 0.005 (0.001,0.009) 0.009 (0.003,0.015) 0.037 (0.025,0.049) 0.063 (0.048,0.078) 

 0.004 (0,0.008) 0.008 (0.002,0.013) 0.042 (0.029,0.054) 0.074 (0.058,0.09) 
Low 
Penetrance 

 0.002 (0,0.005) 0.009 (0.003,0.015) 0.036 (0.024,0.047) 0.067 (0.051,0.082) 

 0.002 (0,0.005) 0.005 (0.001,0.009) 0.034 (0.023,0.045) 0.070 (0.054,0.086) 
Yes MAF=0.4

9 
High 
Penetrance 

 0.004 (0,0.008) 0.007 (0.002,0.012) 0.026 (0.016,0.036) 0.046 (0.033,0.059) 

 0.005 (0.001,0.009) 0.008 (0.002,0.013) 0.035 (0.024,0.046) 0.070 (0.054,0.086) 
Low 
Penetrance 

 0.001 (0,0.003) 0.003 (0,0.006) 0.030 (0.019,0.041) 0.056 (0.042,0.07) 

 0.004 (0,0.008) 0.008 (0.002,0.013) 0.040 (0.028,0.052) 0.077 (0.06,0.093) 
MAF=0.1
4 

High 
Penetrance 

 0.004 (0,0.008) 0.006 (0.001,0.011) 0.043 (0.03,0.055) 0.083 (0.066,0.1) 

 0.004 (0,0.008) 0.007 (0.002,0.012) 0.042 (0.029,0.054) 0.073 (0.057,0.089) 
Low 
Penetrance 

 0.002 (0,0.005) 0.006 (0.001,0.011) 0.027 (0.017,0.037) 0.069 (0.053,0.085) 

 0.004 (0,0.008) 0.007 (0.002,0.012) 0.035 (0.024,0.046) 0.073 (0.057,0.089) 
Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.  
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Table 3.3(continued) Empirical Type I error rate and 95% confidence interval for chromosome 13 scoliosis data using contingency table method 

Null Model 2: Hardy Weinberg Distribution for Trajectory Groups  

Normal 
 

MAF Penetrance 
Model 

σ     
OBS 95% CI OBS 95% CI OBS 95% CI OBS 95% CI 

No—
Normal 
Squared 

MAF=0.4
9 

High 
Penetrance 

 0.003 (0,0.006) 0.010 (0.004,0.016) 0.043 (0.030,0.056) 0.072 (0.056,0.088) 

 0.002 (0,0.005) 0.006 (0.001,0.010) 0.036 (0.024,0.048) 0.084 (0.067,0.101) 
Low 
Penetrance 

 0.002 (0,0.005) 0.008 (0.002,0.014) 0.040 (0.028,0.052) 0.080 (0.063,0.097) 

 0.003 (0,0.006) 0.009 (0.003,0.015) 0.042 (0.029,0.054) 0.085 (0.068,0.102) 
MAF=0.1
4 

High 
Penetrance 

 0.003 (0,0.006) 0.008 (0.002,0.014) 0.034 (0.023,0.045) 0.072 (0.056,0.088) 

 0.002 (0,0.005) 0.008 (0.002,0.014) 0.043 (0.030,0.056) 0.076 (0.060,0.092) 
Low 
Penetrance 

 0.004 (0,0.008) 0.007 (0.002,0.012) 0.039 (0.027,0.051) 0.075 (0.059,0.091) 

 0.001 (0,0.003) 0.005 (0.001,0.009) 0.032 (0.021,0.043) 0.059 (0.044,0.074) 
Yes MAF=0.4

9 
High 
Penetrance 

 0.004 (0,0.008) 0.008 (0.002,0.014) 0.030 (0.019,0.040) 0.061 (0.046,0.076) 

 0.005 (0,0.009) 0.009 (0.003,0.015) 0.034 (0.023,0.045) 0.072 (0.056,0.088) 
Low 
Penetrance 

 0.002 (0,0.005) 0.005 (0.001,0.009) 0.031 (0.020,0.042) 0.057 (0.042,0.071) 

 0.002 (0,0.005) 0.009 (0.003,0.015) 0.041 (0.029,0.053) 0.076 (0.060,0.092) 
MAF=0.1
4 

High 
Penetrance 

 0.004 (0,0.008) 0.007 (0.002,0.012) 0.038 (0.026,0.050) 0.078 (0.061,0.095) 

 0.003 (0,0.006) 0.007 (0.002,0.012) 0.035 (0.024,0.046) 0.069 (0.053,0.085) 
Low 
Penetrance 

 0.002 (0,0.005) 0.005 (0.001,0.009) 0.035 (0.024,0.046) 0.071 (0.055,0.087) 

 0.003 (0,0.006) 0.008 (0.002,0.014) 0.030 (0.019,0.041) 0.075 (0.059,0.091) 
Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.  
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Table 3.4 ANOVA table of empirical type I error rate using null model II 

Variable source DF Mean square F Value Pr>F 

NORMAL  1 0.00045942 17.47 <.0001 

SIGMA  1 0.00012192 4.64 0.0326 

MAF  1 0.00001813 0.69 0.4074 

α  3 0.04793349 1823.23 <.0001 

PENE  1 0.00005105 1.94 0.1652 

METHOD  2 0.00003032 1.15 0.3179 

Error 182 0.00002629   
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Table 3.5, Table 3.6 and Table 3.7 showed the proportion of replicates (1000 replicates 

per setting) for which the number of SNP markers within 10 markers of the target SNP locus 

were in the top 5%, top 10% or top 25% of markers on chromosome 13, using BPP method, 

modal BPP method and contingency table method respectively, using the second null model 

(Hardy Weinberg model). For example, on Table 3.5, there were 46.6% of the replicates for 

which no SNP markers within 10 markers of the target SNP locus were in the top 5% of the 

markers on the whole chromosome, under the parameter setting 0=NORMAL , 49.0=MAF , 

0=PENE , and 8=SIGMA  and using the BPP method. Similarly, 47.5% of the replicates for 

which only 1 or 2 out of 10 SNP markers were in the top 10% of all the markers on chromosome 

13 under the same parameter setting and using BPP method. The mean was calculated as:  

( )iiMEAN
i

Pr
20

0
×=∑ =

, 

 Here, i =Number of SNP markers within 10 markers of disease SNP. Among the independent 

variables: NORMAL , MAF , PENE , and SIGMA  , MEAN  was correlated with 

( )05.<pNORMAL  and ( )05.<pMAF . The independent variables PENE , SIGMA  were not 

associated with the dependent variable. The results obtained from the three methods were 

essentially the same. 
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Table 3.5 Proportion of replicates (%) for which the number of SNP markers within 10 markers of the target SNP locus are in the top 5%, top 10% or top 25% of 
markers on chromosome 13 for scoliosis data (null model II) using BPP method 

Normal 
 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

No: 
Normal 
Squared 

0.49 High  5 46.6 47.5 5.6 0.3 0 0 0 0 0 0.82 0.90 
10 24.3 52 21 2.5 0.2 0 0 0 0 1.57 1.81 
25 3.1 25.2 38.5 23.9 7.7 1.4 0.2 0 0 3.77 4.02 

 5 45.9 49.4 4.6 0.1 0 0 0 0 0 0.79 0.81 
10 21.9 57.4 18.1 2.5 0.1 0 0 0 0 1.54 1.60 
25 2.7 27.2 38.2 22.9 8.2 0.8 0 0 0 3.68 3.66 

Low  5 47.3 47.5 4.9 0.2 0.1 0 0 0 0 0.79 0.89 
10 22.2 56.2 18.8 2.4 0.4 0 0 0 0 1.58 1.75 
25 1.7 24.9 39.8 24.5 7.8 1.1 0.2 0 0 3.81 3.70 

 5 49.85 45.74 4 0.4 0 0 0 0 0 0.73 0.82 
10 25.03 55.05 17.72 1.9 0.2 0.1 0 0 0 1.49 1.73 
25 3.6 26.63 38.54 23.53 6.4 1.2 0.1 0 0 3.64 3.76 

0.14 High  5 48 47.7 4.1 0.2 0 0 0 0 0 0.76 0.78 
10 22.6 57.4 18.2 1.7 0.1 0 0 0 0 1.51 1.54 
25 2.7 22.9 40.1 25.3 8.3 0.7 0 0 0 3.81 3.63 

 5 47.9 47.3 4.8 0 0 0 0 0 0 0.76 0.78 
10 24.6 56.7 16.6 1.9 0.2 0 0 0 0 1.46 1.55 
25 4.1 26.6 39.7 23.4 5.2 0.8 0.2 0 0 3.57 3.55 

Low  5 49.8 46.1 4.1 0 0 0 0 0 0 0.71 0.74 
10 23.7 56.6 17 2.5 0.2 0 0 0 0 1.49 1.63 
25 3 26.2 38.1 23.3 8.3 1 0.1 0 0 3.75 3.89 

 5 52.4 44.3 3.3 0 0 0 0 0 0 0.65 0.65 
10 24 57.2 18 0.8 0 0 0 0 0 1.44 1.38 
25 3 24.5 40.3 25.7 5.8 0.7 0 0 0 3.71 3.39 
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Table 3.5 (continued) 

Normal 
 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

Yes 0.49 High  5 66.8 32 1.1 0.1 0 0 0 0 0 0.43 0.70 
10 51.7 41.3 6.9 0.1 0 0 0 0 0 0.81 1.01 
25 32.7 30.2 27 8.4 1.7 0 0 0 0 1.99 1.85 

 5 51.5 43.69 4.71 0.1 0 0 0 0 0 0.72 0.89 
10 23.65 58.62 15.83 1.7 0.2 0 0 0 0 1.45 1.21 
25 2.3 27.16 40.28 23.45 5.51 1.2 0.1 0 0 3.61 1.86 

Low  5 73.7 24.4 1.9 0 0 0 0 0 0 0.36 0.69 
10 53.5 39.7 6.2 0.6 0 0 0 0 0 0.77 1.04 
25 32.7 33.1 24.9 8.3 1 0 0 0 0 1.86 1.78 

 5 51.02 44.4 4.38 0.2 0 0 0 0 0 0.69 0.87 
10 27.39 53.26 17.32 2.03 0 0 0 0 0 1.44 1.26 
25 3.97 27.7 39.72 22.5 4.79 1.32 0 0 0 3.51 1.91 

0.14 High  5 50.1 44.5 5.2 0.2 0 0 0 0 0 0.75 0.91 
10 25.2 53 19.1 2.5 0.2 0 0 0 0 1.49 1.31 
25 2.2 24.5 38.4 26.2 7.3 1.4 0 0 0 3.83 1.93 

 5 48.85 46.44 4.7 0 0 0 0 0 0 0.74 0.88 
10 24.42 54.85 18.72 2 0 0 0 0 0 1.51 1.27 
25 2.6 25.23 40.44 24.63 6.6 0.4 0.1 0 0 3.68 1.82 

Low  5 51.9 43.9 3.9 0.3 0 0 0 0 0 0.69 0.89 
10 24 56.2 17.9 1.7 0.2 0 0 0 0 1.47 1.26 
25 2.6 26.2 39.3 24.2 6.4 1.3 0 0 0 3.69 1.89 

 5 51.4 44.4 4.2 0 0 0 0 0 0 0.69 0.86 
10 25.5 55.5 17.1 1.7 0.2 0 0 0 0 1.44 1.24 
25 2.6 26.5 38.7 24.3 6.2 1.7 0 0 0 3.74 1.94 
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Table 3.6 Proportion of replicates (%) for which the number of SNP markers within 10 markers of the target SNP locus are in the top 5%, top 10% or top 25% of 
markers on chromosome 13 for scoliosis data (null model II) using Modal BPP method 

Normal 
 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

No 0.49 High  5 49.9 43.9 5.9 0.3 0 0 0 0 0 0.76 0.95 
10 22.9 54.4 20.6 1.9 0.2 0 0 0 0 1.56 1.31 
25 3.6 24.8 39.5 24.3 6.2 1.4 0.2 0 0 3.71 1.98 

 5 47.4 48.7 3.8 0.1 0 0 0 0 0 0.76 0.88 
10 23.1 58.3 16.5 2.1 0 0 0 0 0 1.48 1.23 
25 3.5 28.3 38.2 21.7 7.7 0.6 0 0 0 3.56 1.91 

Low  5 50 45.8 4 0.2 0 0 0 0 0 0.73 0.88 
10 24.6 56.6 16.8 1.8 0.2 0 0 0 0 1.47 1.25 
25 1.6 25.5 40.6 24.3 6.5 1.4 0.1 0 0 3.76 1.89 

 5 50.65 45.54 3.4 0.4 0 0 0 0 0 0.69 0.87 
10 26.83 54.55 16.41 1.9 0.3 0 0 0 0 1.42 1.28 
25 3.5 29.03 38.74 21.82 5.8 1 0.1 0 0 3.53 1.91 

0.14 High  5 45.4 49.1 5.3 0.2 0 0 0 0 0 0.81 0.92 
10 21.2 57.9 18.7 2.2 0 0 0 0 0 1.56 1.25 
25 2.1 22.4 38.1 28.2 8.1 1.1 0 0 0 3.91 1.88 

 5 45.6 49 5.4 0 0 0 0 0 0 0.81 0.9 
10 23.2 56.7 17.9 2.1 0.1 0 0 0 0 1.52 1.25 
25 3.8 25.1 39.5 24.1 6.5 0.9 0.1 0 0 3.67 1.9 

Low  5 48 47 4.8 0.2 0 0 0 0 0 0.76 0.9 
10 22.1 57.8 17.1 3 0 0 0 0 0 1.56 1.3 
25 2.5 24.4 36.2 26.9 8.2 1.7 0.1 0 0 3.87 2.01 

 5 48.8 47.3 3.8 0.1 0 0 0 0 0 0.72 1.11 
10 22.4 57.4 18.9 1.3 0 0 0 0 0 1.52 1.21 
25 2.3 22.9 39.8 28 6.5 0.5 0 0 0 3.82 1.84 
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Table 3.6 (continued) 

Normal 
 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

Yes 0.49 High  5 68.2 30.8 1 0 0 0 0 0 0 0.41 0.68 
10 51.7 40.8 7.3 0.2 0 0 0 0 0 0.79 1.00 
25 32.8 31 27.1 7.9 1.2 0 0 0 0 1.92 1.79 

 5 53.71 42.48 3.71 0.1 0 0 0 0 0 0.67 0.86 
10 25.65 58.12 14.53 1.5 0.2 0 0 0 0 1.38 1.19 
25 2.3 27.65 41.69 22.35 5.21 0.8 0 0 0 3.52 1.81 

Low  5 76.2 22.3 1.5 0 0 0 0 0 0 0.32 0.65 
10 54.5 38.6 6.5 0.4 0 0 0 0 0 0.74 1.00 
25 33.4 34.1 24.7 6.3 1.5 0 0 0 0 1.81 1.76 

 5 52.95 42.97 4.07 0 0 0 0 0 0 0.66 0.84 
10 29.12 53.56 15.58 1.73 0 0 0 0 0 1.36 1.24 
25 4.28 28.62 41.14 20.16 4.68 1.12 0 0 0 3.42 1.87 

0.14 High  5 48.7 45.7 5.5 0.1 0 0 0 0 0 0.79 0.93 
10 20.6 57.3 19.6 2.4 0.1 0 0 0 0 1.56 1.28 
25 1.7 22.7 39.3 26.4 8.2 1.6 0.1 0 0 3.90 1.92 

 5 47.15 47.94 4.9 0 0 0 0 0 0 0.77 0.90 
10 22.22 55.95 19.22 2.5 0.1 0 0 0 0 1.58 1.29 
25 2.8 23.53 39.74 25.63 7.61 0.6 0.1 0 0 3.79 1.87 

Low  5 49.6 46.1 3.9 0.4 0 0 0 0 0 0.73 0.90 
10 23.2 55.5 19.3 1.5 0.5 0 0 0 0 1.54 1.31 
25 2.5 23.1 40.9 24.2 7.8 1.3 0.2 0 0 3.83 1.92 

 5 48.7 46.4 4.9 0 0 0 0 0 0 0.74 0.87 
10 23.3 55.8 18.9 1.8 0.2 0 0 0 0 1.51 1.26 
25 2.4 24.9 38.1 26.2 6.3 2.1 0 0 0 3.83 1.95 
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 Table 3.7 Proportion of replicates (%) for which the number of SNP markers within 10 markers of the target SNP locus are in the top 5%, top 10% or top 25% of 
markers on chromosome 13 for scoliosis data (null simulation II) using contingency table method 

Normal 
 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

No: 
Normal 
Squared 

0.49 High  5 45.9 48.2 5.9 0 0 0 0 0 0 0.93 0.94 
10 21 58 18.7 2 0.2 0.1 0 0 0 1.66 1.65 
25 2.2 23.5 41 25.3 6.2 1.5 0.3 0 0 3.82 3.84 

 5 44.24 52.15 3.5 0.1 0 0 0 0 0 0.91 0.80 
10 20.22 59.06 18.81 1.8 0.1 0 0 0 0 1.65 1.51 
25 1.9 24.83 42.34 23.93 6.2 0.6 0.2 0 0 3.71 3.47 

Low  5 45.55 49.75 4.6 0.1 0 0 0 0 0 0.91 0.88 
10 21.82 58.05 18.72     1.3 0.1 0 0 0 0 1.60 1.47 
25 1.4 24.23 39.54 25.83 8.21 0.8 0 0 0 3.86 3.64 

 5 51.35 44.94 3.7 0 0 0 0 0 0 0.80 0.82 
10 25.63 54.25 17.42 2.4 0.3 0 0 0 0 1.58 1.76 
25 1.4 30.13 42.54 20.33 4.6 1 0.1 0 0 3.51 3.34 

0.14 High  5 46.75 48.55 4.3 0.4 0 0 0 0 0 0.90 0.93 
10 22.12 58.86 17.32 1.5 0.2 0 0 0 0 1.59 1.49 
25 2.3 24.03 41.64 24.22 6.6 1.2 0 0 0 3.76 3.63 

 5 49.39 47.16 3.45 0 0 0 0 0 0 0.83 0.80 
10 24.04 58.21 16.43 1.21 0.1 0 0 0 0 1.52 1.43 
25 2.94 28.29 43.51 19.58 4.77 0.91 0 0 0 3.47 3.36 

Low  5 51.9 44.1 4 0 0 0 0 0 0 0.80 0.84 
10 25.9 55.5 16.2 2.2 0.2 0 0 0 0 1.53 1.65 
25 2.5 28.2 41.2 21.1 6.3 0.7 0 0 0 3.56 3.53 

 5 50 46.4 3.6 0 0 0 0 0 0 0.82 0.81 
10 24.6 58 17 0.4 0 0 0 0 0 1.49 1.30 
25 2.6 27.7 42.1 23.4 3.8 0.4 0 0 0 3.50 3.11 
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Table 3.7 (continued) 

Normal 
 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

Yes 0.49 High  5 66.6 32.3 0.8 0.3 0 0 0 0 0 0.53 0.64 
10 52.1 41.6 6.2 0.1 0 0 0 0 0 0.85 1.01 
25 34 31.7 25 7.9 1.4 0 0 0 0 1.89 3.38 

 5 50.7 46.29 3.01 0 0 0 0 0 0 0.80 0.77 
10 25.03 60.14 13.33 1.4 0.1 0 0 0 0 1.45 1.35 
25 2.4 28.98 39.71 22.62 5.19 1 0.1 0 0 3.56 3.61 

Low  5 69.9 28 2.1 0 0 0 0 0 0 0.49 0.64 
10 52.8 41.2 5.7 0.3 0 0 0 0 0 0.83 1.02 
25 31.5 33.2 25.5 8.6 1.2 0 0 0 0 1.95 3.33 

 5 53.48 42.56 3.96 0 0 0 0 0 0 0.78 0.84 
10 24.85 55.15 18.62 1.38 0 0 0 0 0 1.55 1.52 
25 4 30.26 40.69 20.64 3.23 1.18 0 0 0 3.37 3.45 

0.14 High  5 48.2 46.7 4.9 0.2 0 0 0 0 0 0.88 0.93 
10 26.5 54.5 17.1 1.8 0.1 0 0 0 0 1.52 1.60 
25 2.5 24.3 38.6 26.1 7.2 1.3 0 0 0 3.81 3.84 

 5 47.16 48.09 4.74 0 0 0 0 0 0 0.89 0.87 
10 24.04 56.06 18.19 1.7 0 0 0 0 0 1.57 1.54 
25 2.3 27.4 39.5 23.2 6.2 1.4 0 0 0 3.67 3.77 

Low  5 52.9 45.3 1.8 0 0 0 0 0 0 0.74 0.69 
10 25.2 57 16.6 1.2 0 0 0 0 0 1.50 1.42 
25 2.9 26.1 40.2 24.1 5.6 1.1 0 0 0 3.65 3.63 

 5 53.5 42.6 3.9 0 0 0 0 0 0 0.77 0.83 
10 25.8 57.3 16.2 0.7 0 0 0 0 0 1.46 1.34 
25 2.8 27.7 37.7 24 6.4 1.4 0 0 0 3.67 3.91 
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3.2   Simulated Power Results  
 

3.2.1   Single locus model 
 

Table 3.8 showed the simulated power to detect the disease locus associated with the 

progression of disease in a single-locus model. All the three methods had very high power 

( %100≈power ) to detect the disease locus for each setting of MAF , SIGMA , PENE  and 

NORMAL . The failure rates of the TRAJ procedure using the three methods are the same and 

they are shown in the first table of Table 3.8. 
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Table 3.8 Empirical power to detect association of disease SNP on chromosome 13 with scoliosis data (single locus model) using BPP method 

Normal 
 

MAF Penetrance 
Model 

σ 
    Failure rate (%) 

OBS 95% CI OBS 95% CI OBS 95% CI OBS 95% CI 
No: 
Normal 
Squared 

MAF=0.4
9 

High 
Penetrance  

1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0 

 
1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0 

Low 
Penetrance 

 
1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0 

 
1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0 

MAF=0.1
4 

High 
Penetrance 

 
1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0 

 
1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1.6 

Low 
Penetrance 

 
1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0 

 
0.999 (0.994,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0 

Yes MAF=0.4
9 

High 
Penetrance  

0.999 (0.994,1) 0.999 (0.994,1) 0.999 (0.994,1) 1 (0.995,1) 1.0 

 
1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0.2 

Low 
Penetrance  

0.993 (0.98,0.997) 0.993 (0.98,0.997) 0.993 (0.98,0.997) 0.994 (0.985,0.998) 18.4 

 
1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0.2 

MAF=0.1
4 

High 
Penetrance  

1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0 

 
1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0.8 

Low 
Penetrance  

0.997 (0.99,0.999) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0 

 
1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0 

Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.  
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Table 3.8 (continued) Empirical power to detect association of disease SNP on chromosome 13 with scoliosis data (single-locus model) using Modal BPP 
method 

Normal  
 

MAF Penetrance 
Model 

σ     
OBS 95% CI OBS 95% CI OBS 95% CI OBS 95% CI 

No: 
Normal 
Squared 

MAF=0.4
9 

High 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Low 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
MAF=0.1
4 

High 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Low 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Yes MAF=0.4

9 
High 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Low 
Penetrance 

 0.994 (0.985,0.998) 0.994 (0.985,0.998) 0.994 (0.985,0.998) 0.994 (0.985,0.998) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
MAF=0.1
4 

High 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Low 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval.  
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Table 3.8 (continued) Empirical power to detect association of disease SNP on chromosome 13 with scoliosis data (single-locus model) using contingency table 
method 

Normal  
 

MAF Penetrance 
Model 

σ     
OBS 95% CI OBS 95% CI OBS 95% CI OBS 95% CI 

No: 
Normal 
Squared 

MAF=0.4
9 

High 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Low 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
MAF=0.1
4 

High 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Low 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Yes MAF=0.4

9 
High 
Penetrance 

 0.998 (0.992,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Low 
Penetrance 

 0.994 (0.985,0.998) 0.994 (0.985,0.998) 0.996 (0.988,0.999) 0.997 (0.989,0.999) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
MAF=0.1
4 

High 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Low 
Penetrance 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 

 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 
Notes: The confidence intervals in bold indicate the parameter settings where α is not contained in the respective confidence interval. 
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Tables 3.9, 3.10 and 3.11 showed the proportion of replicates for which the number of 

SNP markers within 10 markers of the disease SNP locus were in the top 5%, top 10% or top 

25% of markers on chromosome 13 using BPP method, modal BPP method and contingency 

table method, respectively using the power simulation model. The proportions were ‘drifting 

right’ in tables 3.9, 3.10 and 3.11 (compared to tables 3.5, 3.6 and 3.7), indicating the clustering 

phenomena of the markers around the disease locus. That is, the markers around the disease 

locus had much higher probability to rank in the top 5%, 10% and 25% among all the loci on 

chromosome 13.  

Figure 3.1 showed the proportion of replicates by the number of significant SNPs. That 

is, the x-axis was the number of the SNPs which were in the top 5% (figure (a)), top 10% (figure 

(b)) and top 25% (figure (c)) of the markers on chromosome 13. The y-axis was the proportion of 

replicates in which the number of significant markers was as given. For the null simulations 

(false positive), the number of significant markers was most likely 0, 1 or 2, while for the single 

locus power simulations, the number of significant markers was mostly 7 and above. This figure 

showed the clustering phenomenon of significant SNP markers around the disease SNP. For both 

disease SNPs at low MAF level and high MAF level, a few significant SNPs were clustering 

around the disease SNP. My study also showed that for high MAF level disease SNPs, there 

were more significant SNP markers around the loci. 
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Figure 3.1 Proportion of replicates for which the number of SNP markers within 10 markers of the disease SNP 
locus were in the top 5% (figure(a)), top 10% (figure(b)) and top 25% (figure(c)) of chromosome 13 by the number 
of significant SNP markers (parameter setting: no normal square transformation, MAF=0.49, high penetrance model 

and 8=σ ) 
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Table 3.9 Proportion of replicates (%) for which the number of SNP markers within 10 markers of the disease SNP locus were in the top 5%, top 10% or top 25% 
of markers on chromosome 13 for scoliosis data (single-locus model) using BPP method 

Normal 
 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

No 0.49 High  5 0 0 0.1 6.4 45.5 42.8 5.1 0.1 0 8.39 1.31 
10 0 0 0 2.0 22.7 56.6 17.6 1.1 0 9.36 1.36 
25 0 0 0 0 2.3 31.5 46.2 18.4 1.6 11.21 1.52 

 5 0 0 0 6.2 41.8 44.8 7.0 0.2 0 8.56 1.34 
10 0 0 0 1.4 19.5 54.5 22.5 2.1 0 9.58 1.41 
25 0 0 0 0.1 2.1 24.2 51.1 19.4 3.1 11.43 1.51 

Low  5 0 0 13.4 47.5 31.1 7.5 0.5 0 0 6.18 1.57 
10 0 0 4.2 29.8 41.7 19.5 4.6 0.1 0.1 7.34 1.77 
25 0 0 0.5 5.1 25.2 36.8 24.2 6.8 1.4 9.61 2.06 

 5 0 0 13.5 46.9 32.2 7.1 0.3 0 0 6.19 1.53 
10 0 0 3.3 29.0 41.6 21.6 4.1 0.4 0 7.40 1.74 
25 0 0 0.2 4.0 22.9 37.3 26.7 8.4 0.5 9.76 1.96 

0.14 High  5 0 65.0 30.7 3.8 0.5 0 0 0 0 2.23 1.16 
10 0 38.0 45.7 14.0 1.9 0.4 0 0 0 3.12 1.47 
25 0 5.9 27.8 38.2 20.4 7.1 0.5 0.1 0 5.46 1.97 

 5 0 2.84 54.07 39.33 3.66 0.1 0 0 0 4.37 1.15 
10 0 1.42 25.3 54.88 16.57 1.83 0 0 0 5.34 1.39 
25 0 0.2 3.56 24.7 39.64 27.03 4.27 0.51 0.1 7.58 1.83 

Low  5 0 74.9 23.8 1.3 0 0 0 0 0 1.96 0.97 
10 0 45.7 42.3 11.4 0.5 0.1 0 0 0 2.83 1.33 
25 0 5.8 31.0 38.9 19.3 4.4 0.6 0 0 5.24 1.88 

 5 0 74.2 25.1 0.7 0 0 0 0 0 1.95 0.93 
10 0 45.8 44.7 8.8 0.6 0.1 0 0 0 2.79 1.28 
25 0 5.8 33.5 41.6 14.8 3.8 0.4 0.1 0 5.07 1.81 
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Table 3.9(continued) 

Normal 
 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

Yes 0.49 High  5 0 0.1 0 9.6 45.15 40.7 4.35 0.1 0 8.29 1.39 
10 0 0 0.1 1.31 23.94 55.56 17.57 1.51 0 9.38 1.41 
25 0 0 0.1 0.1 2.72 29.8 46.57 18.49 2.23 11.23 1.61 

 5 0 0 0.1 5.1 43.8 46.3 4.5 0 0.2 8.52 1.38 
10 0 0 0 1.1 21.6 57.9 17.9 1.3 0.2 9.47 1.42 
25 0 0 0 0 2.2 29.6 47.8 18.1 2.3 11.28 1.61 

Low  5 0 0.12 27.12 55.36 14.3 3.08 0 0 0 5.36 1.41 
10 0 0 10.85 46.24 32.55 8.63 1.73 0 0 6.39 1.64 
25 0 0 0.99 14.92 38.1 31.69 12.58 1.48 0.25 8.40 1.91 

 5 0 0 22 52.4 21.9 3.2 0.3 0 0.2 5.68 1.61 
10 0 0 8.1 39.2 37.4 13.1 2 0 0.2 6.77 1.8 
25 0 0 0.8 9.3 31.9 34.9 18.3 4 0.8 9.01 2.11 

0.14 High  5 0 78.6 20.4 1 0 0 0 0 0 1.89 0.93 
10 0 48.1 42.4 8.9 0.6 0 0 0 0 2.72 1.26 
25 0 7.5 35.2 39.1 15 3.2 0 0 0 4.93 1.78 

 5 0 67.3 26.5 5.1 0.3 0 0 0 0.8 2.35 2.05 
10 0 41.9 41.9 12.9 2.2 0.3 0 0 0.8 3.15 2.19 
25 0 5.5 27.8 39.2 20.2 5.4 1.1 0 0.8 5.52 2.4 

Low  5 0 79.6 19.3 1.1 0 0 0 0 0 1.83 0.89 
10 0 50.2 42 7.2 0.6 0 0 0 0 2.64 1.25 
25 0 7.8 38 35.6 15.2 3.2 0.2 0 0 4.86 1.83 

 5 0 79.5 19.1 1.4 0 0 0 0 0 1.87 0.92 
10 0 48.7 41.9 8.7 0.7 0 0 0 0 2.71 1.27 
25 0 7 35.8 40 13.5 3.3 0.4 0 0 4.92 1.78 
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Table 3.10 Proportion of replicates (%) for which the number of SNP markers within 10 markers of the disease SNP locus were in the top 5%, top 10% or top 
25% of markers on chromosome 13 for scoliosis data (single-locus model) using Modal BPP method 

Normal 
 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

No 0.49 High  5 0 0 0.1 8.4 51.1 36.7 3.7 0 0 8.17 1.3 
10 0 0 0 2.3 27.2 54.4 15.0 1.1 0 9.19 1.39 
25 0 0 0 0 3.8 32.8 45.6 16.5 1.3 11.10 1.52 

 5 0 0 0 7.7 44.8 41.5 5.8 0.2 0 8.43 1.34 
10 0 0 0 1.6 22.2 54.7 20.2 1.3 0 9.45 1.39 
25 0 0 0 0.1 2.4 26.1 50.8 17.9 2.7 11.33 1.52 

Low  5 0 0 16.9 48.7 28.5 5.5 0.4 0 0 5.99 1.52 
10 0 0 3.9 33.4 41.1 18.4 2.8 0.3 0.1 7.16 1.74 
25 0 0 0.3 6.4 26.3 37.5 22.9 5.6 1.0 9.45 2.05 

 5 0 0 14.5 50 29.8 5.5 0.2 0 0 6.05 1.48 
10 0 0 4.0 32 40.9 19.3 3.4 0.4 0 7.24 1.71 
25 0 0 0.2 4.6 23.8 38.8 24.7 7.4 0.5 9.65 1.96 

0.14 High  5 0 66.8 28.6 4.2 0.4 0 0 0 0 2.21 1.17 
10 0 37.2 44.8 15.6 2.2 0.2 0 0 0 3.13 1.48 
25 0 5.1 28.8 37.5 20.9 6.2 1.4 0.1 0 5.47 2.0 

 5 0 2.74 47.36 45.53 4.26 0.1 0 0 0 4.54 1.16 
10 0 1.32 21.35 57.11 18.4 1.73 0.1 0 0 5.46 1.38 
25 0 0.2 3.05 23.68 41.05 26.93 4.57 0.41 0.1 7.63 1.8 

Low  5 0 74.7 23.8 1.4 0.1 0 0 0 0 1.99 0.96 
10 0 43.9 43.6 11.2 1.2 0.1 0 0 0 2.89 1.36 
25 0 4.9 32.1 40.2 17.5 4.7 0.6 0 0 5.25 1.85 

 5 0 72.9 26 1.1 0 0 0 0 0 1.99 0.95 
10 0 42.9 46.6 10 0.5 0 0 0 0 2.87 1.28 
25 0 5.7 31.7 41.5 16.7 4.1 0.3 0 0 5.18 1.82 
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Table 3.10 (Continued) 

Normal 
 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

Yes 0.49 High  5 0 0 0 12.74 50.25 33.67 3.24 0.1 0 8.05 1.35 
10 0 0 0 1.92 30.33 51.46 14.96 1.31 0 9.17 1.43 
25 0 0 0 0.1 3.44 32.86 44.39 16.88 2.33 11.13 1.61 

 5 0 0 0.1 6.6 46.6 43.2 3.3 0 0.2 8.36 1.36 
10 0 0 0 1.3 24.4 57.1 16 1 0.2 9.35 1.42 
25 0 0 0 0 2.5 30.8 47.2 17.3 2.2 11.21 1.62 

Low  5 0 0.12 29.59 55.73 12.58 1.97 0 0 0 5.22 1.33 
10 0 0.12 12.83 48.21 30.21 7.27 1.36 0 0 6.23 1.60 
25 0 0 1.61 16.53 38.85 31.57 9.25 2.09 0.12 8.26 1.94 

 5 0 0 24 53.2 20 2.3 0.3 0 0.2 5.57 1.55 
10 0 0 8.7 40.3 37.6 11.7 1.5 0 0.2 6.67 1.76 
25 0 0 0.9 10.6 34.4 32.5 17.4 3.4 0.8 8.87 2.10 

0.14 High  5 0 76.4 22.8 0.8 0 0 0 0 0 1.93 0.92 
10 0 47.6 41.6 10.3 0.5 0 0 0 0 2.77 1.28 
25 0 6.7 32.8 40.2 15.8 4.3 0.2 0 0 5.07 1.81 

 5 0 66 27.6 5.3 0.3 0 0 0 0.8 2.38 2.06 
10 0 38.9 44 13.3 2.7 0.3 0 0 0.8 3.23 2.21 
25 0 5.5 26.2 39.6 20.7 6.1 1.1 0 0.8 5.62 2.40 

Low  5 0 77.3 21.6 1.1 0 0 0 0 0 1.85 0.90 
10 0 48.2 44.1 7.1 0.6 0 0 0 0 2.68 1.26 
25 0 8.2 34.2 38.3 16.7 2.3 0.3 0 0 4.95 1.78 

 5 0 77.1 20.8 2.1 0 0 0 0 0 1.93 0.96 
10 0 46.5 43.4 9.2 0.9 0 0 0 0 2.77 1.29 
25 0 6.4 35.1 39.1 15.2 3.6 0.6 0 0 5.03 1.80 
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Table 3.11 Proportion of replicates (%) for which the number of SNP markers within 10 markers of the disease SNP locus were in the top 5%, top 10% or top 
25% of markers on chromosome 13 for scoliosis data (single-locus model) using contingency table method 

Normal 
 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

No 0.49 High  5 0 0 0.4 10.2 51.6 34.9 2.9 0 0 8.09 1.98 
10 0 0 0.1 2.1 29 55.9 12.1 0.8 0 9.10 1.99 
25 0 0 0 0.1 4.9 35.4 42.8 15.7 1.1 10.95 2.73 

 5 0 0 0 7.2 46.9 43.3 2.6 0 0 8.33 1.75 
10 0 0 0.1 1.8 24 53.8 19.1 1.2 0 9.37 2.22 
25 0 0 0 0.1 3.3 29 48.8 16.4 2.4 11.21 2.68 

Low  5 0 0 17.4 50.3 26.8 5.2 0.3 0 0 5.91 2.54 
10 0 0 3.6 35.2 41.2 17.5 2.2 0.3 0 7.11 2.99 
25 0 0 0.2 6.2 27.4 39.8 20.1 5.4 0.9 9.36 4.13 

 5 0 0 14.7 49.4 30.9 4.9 0.1 0 0 6.03 2.37 
10 0 0 3.9 32.2 43 17.4 3.3 0.2 0 7.19 3.11 
25 0 0 0.1 4.5 26.1 37.5 24.3 7.1 0.4 9.59 4.04 

0.14 High  5 0 64.9 30.7 4.1 0.3 0 0 0 0 2.29 1.36 
10 0 36.6 46.7 14.7 1.9 0.1 0 0 0 3.14 2.26 
25 0 3.8 28.7 40.2 20.8 5.5 0.9 0.1 0 5.47 3.85 

 5 0 1.9 48.27 46.12 3.69 0.01 0 0 0 4.53 1.45 
10 0 1.11 22.13 56.75 18.21 1.71 0.1 0 0 5.45 2.09 
25 0 0.15 3.74 24.75 40.27 26.17 4.48 0.35 0.07 7.57 3.58 

Low  5 0 76.3 22.9 0.6 0.2 0 0 0 0 1.99 0.84 
10 0 44.8 42.7 10.6 1.6 0.3 0 0 0 2.89 2.22 
25 0 5.7 31.6 40.3 17.3 4.6 0.5 0 0 5.20 3.69 

 5 0 71.4 27.6 1 0 0 0 0 0 2.09 0.91 
10 0 42.1 47.5 10.1 0.3 0 0 0 0 2.87 1.74 
25 0 5.5 31.6 42.6 16.2 3.9 0.2 0 0 5.14 3.36 
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Table 3.11 (continued) 

Box-
Cox 

 

MAF Penetrance 
Model 

σ Top 
(%) 

Number of SNP markers within 10 markers of disease SNP Mean SD 
0 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20 

Yes 0.49 High  5 0 0 0 12.06 51.76 33.28 2.83 0.07 0 8.04 1.99 
10 0 0 0 1.54 31.29 51.57 14.41 1.17 0 9.14 2.15 
25 0 0 0 0.06 3.12 34.09 45.3 15.3 2.13 11.08 2.66 

 5 0 0 0 6.3 47.2 43.7 2.4 0.3 0.1 8.37 1.79 
10 0 0 0 1.2 25.6 56.8 15.6 0.7 0.1 9.29 1.94 
25 0 0 0 0 1.6 31.3 47.1 17.6 2.4 11.26 2.54 

Low  5 0 0.21 29.76 56.72 11.63 1.67 0 0 0 5.19 1.87 
10 0 0.15 12.99 48.15 30.06 7.3 1.35 0 0 6.21 2.90 
25 0 0 1.64 18.09 40.11 30.71 7.67 1.79 0.01 8.10 3.72 

 5 0 0 21.9 52.9 22.2 2.7 0.1 0 0.2 5.64 2.41 
10 0 0 8.9 42 36.7 11.1 1.1 0 0.2 6.59 3.02 
25 0 0 1.3 11.2 35.9 31.3 16.5 3.2 0.6 8.75 4.52 

0.14 High  5 0 74.6 23.4 2 0 0 0 0 0 2.05 0.95 
10 0 48.4 41.9 9.4 0.3 0 0 0 0 2.73 1.77 
25 0 7.4 33.9 40.4 14.5 3.6 0.2 0 0 4.97 3.49 

 5 0 67.3 26.7 5.1 0.2 0 0 0 0.7 2.35 2.61 
10 0 39.6 45.2 12 2.3 0.2 0 0 0.7 3.14 3.38 
25 0 5.6 27 39.8 19.7 6.1 1 0 0.8 5.51 4.90 

Low  5 0 76.5 22.2 1.3 0 0 0 0 0 1.99 0.85 
10 0 47.9 45.2 6.5 0.4 0 0 0 0 2.69 1.58 
25 0 7.9 36.7 36.4 16.5 2.2 0.3 0 0 4.88 3.47 

 5 0 77.6 19.7 2.7 0 0 0 0 0 2.00 0.97 
10 0 46.8 44.5 8.4 0.3 0 0 0 0 2.74 1.68 
25 0 6.5 36.2 38.3 14.9 3.5 0.6 0 0 4.99 3.59 



 

65 

 

  3.2.2   Multi-locus model 
 

Table 3.12 showed the simulated power to detect each locus associated with the 

progression of disease in a multi-locus model. The failure rates using the TRAJ procedure are 0 

in all settings. I fit a generalized linear model to the variables. Here, the simulated power was the 

dependent variable, and MAFNORMAL  , , target α  level and METHOD  were the independent 

variables. In Table 3.13, the variables MAF  and α  level were significant ( 0001.0<p ) in the 

model, but not NORMAL  variable ( 3552.0=p ) or METHOD  variable ( 4688.0=p ). The 

empirical power of the three methods was essentially the same. The regression model was 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )05.08546.22400.4201.08546.29600.23

1.08546.22867.464324.7992.12545579.39673.1power empirical

=×±+=×±+

=×±+×±+±−=

αα
αMAF

 with 71.02 =R . 

I further examined the power controlling for whether or not the data was normally 

distributed (NORMAL =0 or 1). Figure 3.2 displayed three charts, each of which showed the 

power to detect each locus by method when the data was normally distributed (NORMAL =1). 

The horizontal axis was the MAF of a causal SNP. The vertical axis was the power. Each graph 

contained four curves, one for each of the four target alpha levels.  The three charts in Figure 3.2 

were quite similar: the powers were approximately proportional to MAF. That is, the power 

usually increased as MAF increased, except for one SNP with 016.0=MAF . The power strictly 

increased as α  increased. Figure 3.3 contained the results when the data was the square of 

normally distributed values. The patterns were the same as in Figure 3.2. 
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There was a power drop at MAF=0.016 in Figure 3.2, at the SNP rs9543107. In Table 2.4 

in Chapter 2, the SNP rs9543107 was in high linkage disequilibrium with four other SNPs. This 

could be an explanation of the power drop. Another power drop in Figure 3.2 happened at 

MAF=0.033, at the SNP rs7331979. In Table 2.4, the SNP rs7331979 was also in high linkage 

disequilibrium with other three SNPs. In Figure 3.2, for the other SNPs which did not have more 

than two high linkage disequilibrium with other SNPs, the power increased as the MAF 

increased.    

To understand the differences among the three methods, I compared any two paired 

methods using t-test.  From the results, BPP method and Modal BPP method were both 

significantly different from contingency table method with regard to the power comparison 

( 001.0<p ), for both normally distributed data and data that was the square of normally 

distributed data. The power using the BPP method was not significantly different from the power 

using modal assignment method when the data was normally distributed ( 40.0=p ). When the 

data was the square of normally distributed data, the power of the modal BPP was somewhat 

higher than the power using the BPP ( 0165.0=p ).  

I also used the Cochran’s test (or Cochran’s Q test) and McNemar’s test to compare the 

distributions of the detection rate using three methods, which was shown in Table 3.14. For each 

SNP, I set a binary variable  





=
otherwise ,0

methods  theof one using detected is i SNP ,1
iz . 
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Then iz  was measured using three methods. The hypothesis of Cochran’s test was: 

0H : the marginal probability of a positive response was unchanged across the three methods. 

For 70% of the SNPs, the p-values of the Cochran test were small (p<0.05), which indicated that 

the probability of detecting each of the loci using three methods were different. Further, I used 

the McNemar’s test to compare any pair of the methods. The BPP method and the modal BPP 

method were essentially the same with regard to the detection rates. However, for some of the 

loci, comparing the BPP method and modal BPP method with the contingency table method, the 

detection rates were different.                                     
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Figure 3.2 Power of Procedure by MAF of Locus in Multi-locus Model, Normally Distributed Data, for selected target levels of significance 
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Figure 3.3 Power of Procedure by MAF of Locus in Multi-locus Model, Data Square of Normally Distributed Data, for selected target levels of significance 
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Table 3.12 Power Simulation to detect the association of disease SNP on chromosome 13 with scoliosis data (multi-locus model) 

Normal SNP BP MAF α=0.005 α=0.01 α=0.05 α=0.10 
BPP Modal CT BPP Modal CT BPP Modal CT BPP Modal CT 

No: 
Normal 
Squared 

rs9599854 71021185 0.026 12.8 13.6 12.8 42.8 49.2 43.2 72 70.4 69.2 76.4 76.4 76.4 
rs9542756 71309666 0.038 55.2 58 51.6 79.2 82.8 79.2 92.4 92.4 92.4 93.6 94 93.2 
rs9543107 72217237 0.016 2 1.2 0 7.2 6.4 2.8 30 27.2 26 42 38.8 39.2 
rs17090361 73186500 0.051 86.4 87.2 84.8 92.4 92.4 90.4 94.8 95.2 94.4 95.6 95.6 94.8 
rs9593132 75293621 0.048 55.2 58.4 51.6 80 81.6 73.6 91.2 90 88.8 92.4 90.8 90.4 

rs5352 77373231 0.012 11.6 11.2 7.6 36.4 38.8 27.2 76 73.6 72.4 79.2 77.6 77.6 
rs7331979 78836214 0.033 21.2 23.2 32.4 53.6 58 59.2 69.2 67.6 68.4 74.4 71.6 71.6 
rs12863734 85268572 0.015 31.2 32.4 27.2 60.4 64.8 55.2 82.4 79.6 78 84.4 83.6 83.6 
rs9522610 89110831 0.026 44.4 44 33.2 76 77.6 70.4 90.4 89.2 88 92 92.4 90.8 
rs16943207 89144779 0.031 37.2 34.8 30.4 67.2 70.4 58 86 85.6 84 87.6 88.8 86.8 

Yes rs9599854 71021185 0.026 16.4 15.2 12 48 50 40.4 76.8 73.2 71.2 80.8 80 80.4 
rs9542756 71309666 0.038 56.8 60.4 52.4 82.8 90 81.2 98 97.2 96.4 98.4 98.4 97.6 
rs9543107 72217237 0.016 1.6 0.8 0.4 6.8 6 2.4 23.2 24.4 20 35.2 32.4 32.4 
rs17090361 73186500 0.051 89.2 91.6 88 95.2 98.4 96.4 100 99.2 98.4 100 99.6 99.2 
rs9593132 75293621 0.048 58.4 60.8 58.4 80 86 79.2 95.2 94.4 93.2 96.4 96.8 96 

rs5352 77373231 0.012 10 12.4 7.2 32.8 38.4 26.8 66 66 65.2 72.4 72 71.6 
rs7331979 78836214 0.033 26 25.6 35.2 53.6 58 60 76.4 74.8 73.6 80 78.8 79.6 
rs12863734 85268572 0.015 27.6 30 23.6 64 66.8 56 83.2 82.4 81.6 86.4 87.6 87.6 
rs9522610 89110831 0.026 48 46.4 37.2 73.6 81.6 72.4 95.6 95.2 94 97.6 97.6 97.2 
rs16943207 89144779 0.031 37.6 39.6 36 64.8 68 59.2 88 88.4 84 91.2 91.2 88.8 
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Table 3.13 ANOVA table of empirical power using multi-locus model 

Variable source DF Mean square F Value Pr>F 

NORMAL  1 209.81400 0.86 0.3552 

MAF  1 61017.53801 249.60 <.0001 

α  3 26748.84333 109.42 <.0001 

METHOD  2 185.79467 0.76 0.4688 

Error 232 56715.9680   
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Table 3.14   P-values of Cochran’s test and McNemar’s test when comparing the three methods in multi-locus model 

Normal SNP BP MAF 
Cochran test 

McNemar’s test 
BPP vs. Modal BPP vs. CT Modal vs. CT 

No 
Normal 
Squared 

rs9599854 71021185 0.026 0.81 0.77 0.99 0.75 
rs9542756 71309666 0.038 0.01 0.26 0.14 0.009 
rs9543107 72217237 0.016 0.07 0.69 0.99 NA 
rs17090361 73186500 0.051 0.21 0.73 0.45 0.15 
rs9593132 75293621 0.048 0.008 0.15 0.16 0.004 

rs5352 77373231 0.012 0.02 0.78 0.02 0.03 
rs7331979 78836214 0.033 <0.0001 0.38 <0.0001 <0.0001 
rs12863734 85268572 0.015 0.05 0.71 0.13 0.02 
rs9522610 89110831 0.026 <0.0001 0.86 <0.0001 <0.0001 
rs16943207 89144779 0.031 0.008 0.40 0.003 0.05 

Normal 
Squared 

rs9599854 71021185 0.026 0.04 0.70 0.01 0.09 
rs9542756 71309666 0.038 0.003 0.17 0.09 <0.0001 
rs9543107 72217237 0.016 0.10 0.50 0.25 0.99 
rs17090361 73186500 0.051 0.05 0.21 0.63 0.01 
rs9593132 75293621 0.048 0.46 0.34 0.99 0.38 

rs5352 77373231 0.012 0.003 0.26 0.06 <0.0001 
rs7331979 78836214 0.033 <0.0001 0.82 <0.0001 <0.0001 
rs12863734 85268572 0.015 0.006 0.33 0.09 <0.0001 
rs9522610 89110831 0.026 <0.0001 0.58 <0.0001 <0.0001 
rs16943207 89144779 0.031 0.17 0.40 0.52 0.11 

Notes: p-values in bold indicate the significance under confidence level .05.0=α
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Chapter 4   Conclusions and discussions 
 

In this dissertation, I examined three methods: using the BPP as the quantitative trait, 

using the indicator variable that modal BPP was in the clinically important group as the trait, and 

the contingency table method to test the association with the SNPs on chromosome 13.  I 

simulated two genetic models, the single-locus model and the multi-locus model. In the single 

locus model, I assumed that the disease is caused by a single locus, and I studied two disease 

SNPs, with MAF at 0.15 and 0.5 respectively. In the multi-locus model, I assumed that the 

disease is caused equally by ten rare variant SNPs, each with MAF smaller than 0.05. I 

conducted the null simulation and the power simulation and reported the empirical type I error 

rate and empirical power to detect the disease SNPs using the three methods. 

In the null simulations, my study suggested that the empirical type I error rate generally 

held the nominal α  rate when α was small. However, when α  increased (α  near 0.05), there 

was a decrease of the empirical type I error rate below the nominal rate as the nominal rate 
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increased. There were no significant differences among the three methods. Null model I and null 

model II had the similar results. The failure rate of the TRAJ procedure was higher in the 

squared data model than the normal data model. Among the squared data models, those with 

high within group variance had much higher failure rates. 

In power simulations of single-locus model, all the three methods had very high power 

(>99%) to detect the disease SNPs. I also examined ten markers around the disease SNP. All 

methods showed significant power to detect the markers around the locus. This finding might be 

important because instead of locating a specific SNP, we could locate a region on chromosome, 

in which the disease SNP may occur.  

In power simulations of the multi-locus model, the power to detect the disease SNPs was 

generally proportional to the MAF; that is, as the MAF increased, the power usually increased. 

However, if a SNP was in high linkage disequilibrium with many other SNPs, the power to 

detect this SNP would drop substantially. Both the BPP method and modal BPP method were 

significantly better than contingency table method with regard to power. The difference in power 

between BPP method and modal BPP method was not significant. 

In this dissertation, I only examined the genetic factors. For future work, diverse factors, 

like environment factors or other non-genetic covariates, could be considered. Additionally, in 

my study, I set the trajectory group to be three when I run SAS PROC TRAJ. This was because 

generally, the three trajectory group model had the best BIC value. However, it could be 

problematic because in a few cases, a two trajectory group model or a four trajectory group 

model had better BIC value. For future work, one could consider the best model that BIC picked 

and examined how it would affect the empirical type I error rate and the power. Also in my 
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study, I dropped the replicates in which TRAJ model failed to converge. In future study, one 

could examine those replicates.  

In my study, I examined 1498 SNPs on HC13. In future research, one could choose 

another chromosome and examine the SNPs on it. In the multi-locus model, I simulated the 

prevalence of disease to be around 2%. In future research, one could use more disease locus and 

set a different prevalence of disease.  
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Appendix 
 

I. IDs of 1599 unrelated participants 
 

                 9 36 64 65 66 74 92 97 108 128 175 183

 186 190 210 225 279 291 304 306 309 326 339 374

 392 412 418 434 499 510 521 534 571 606 618 620

 626 640 653 660 671 708 718 726 800 801 841 877

 914 972 977 1001 1016 1054 1055 1114 1148 1156 1173 1195

 1196 1239 1241 1248 1252 1278 1281 1285 1293 1295 1296 1302

 1303 1305 1313 1317 1318 1322 1323 1355 1373 1375 1378 1437

 1438 1441 1459 1486 1517 1528 1539 1542 1561 1588 1601 1620

 1639 1655 1660 1673 1713 1738 1743 1754 1770 1780 1803 1804

 1808 1849 1857 1859 1868 1879 1887 1920 1921 1925 1928 1938

 1939 1998 2038 2040 2052 2060 2098 2116 2155 2160 2170 2207

 2212 2232 2242 2253 2257 2277 2294 2301 2313 2334 2337 2340

 2367 2395 2408 2426 2469 2470 2471 2490 2498 2499 2529 2540

 2593 2637 2657 2658 2696 2700 2737 2776 2785 2805 2806 2816

 2843 2862 2864 2905 2920 2945 2947 2970 2975 2981 3017 3058

 3077 3119 3125 3162 3181 3205 3237 3238 3239 3253 3254 3274

 3279 3303 3356 3368 3373 3376 3398 3399 3410 3413 3422 3486

 3492 3516 3527 3550 3567 3610 3623 3634 3637 3655 3676 3715

 3726 3739 3746 3751 3767 3779 3782 3794 3796 3798 3802 3822
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 3827 3852 3858 3871 3877 3880 3889 3900 3928 3946 3982 4027

 4032 4050 4080 4089 4094 4097 4098 4105 4137 4146 4173 4174

 4175 4183 4187 4217 4274 4276 4280 4284 4286 4321 4343 4351

 4370 4379 4384 4393 4404 4416 4420 4423 4433 4440 4442 4464

 4475 4517 4522 4526 4530 4541 4549 4551 4573 4581 4602 4606

 4615 4635 4651 4652 4670 4706 4718 4756 4767 4775 4777 4788

 4790 4810 4831 4837 4839 4841 4847 4854 4859 4875 4903 4926

 4993 5006 5023 5077 5082 5122 5133 5153 5156 5190 5191 5201

 5216 5220 5233 5253 5256 5285 5292 5297 5299 5302 5317 5331

 5335 5342 5352 5355 5357 5397 5400 5403 5449 5493 5513 5533

 5556 5558 5571 5596 5615 5628 5630 5635 5685 5694 5703 5733

 5777 5782 5790 5869 5883 5904 5911 5923 5925 5955 5969 5978

 5986 5990 6001 6002 6017 6019 6052 6056 6060 6102 6126 6127

 6131 6143 6147 6191 6195 6204 6227 6234 6250 6263 6331 6332

 6351 6370 6388 6406 6410 6416 6422 6458 6518 6535 6548 6560

 6561 6566 6586 6616 6636 6654 6731 6742 6757 6766 6785 6788

 6789 6795 6797 6829 6841 6844 6862 6871 6916 6938 6945 6953

 6973 7009 7018 7047 7050 7056 7059 7076 7079 7114 7123 7175

 7197 7229 7249 7270 7322 7326 7345 7360 7368 7379 7395 7402

 7404 7422 7431 7433 7444 7468 7470 7483 7500 7502 7509 7520

 7526 7531 7544 7545 7605 7622 7630 7644 7659 7671 7714 7746

 7747 7775 7781 7802 7827 7853 7890 7913 7930 7939 7961 7969

 8043 8055 8070 8073 8077 8089 8124 8140 8160 8161 8163 8165
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 8177 8182 8194 8211 8216 8221 8228 8230 8231 8235 8260 8283

 8304 8319 8382 8383 8394 8413 8429 8455 8456 8511 8514 8588

 8590 8610 8612 8629 8660 8668 8671 8674 8676 8699 8723 8731

 8743 8760 8774 8796 8828 8870 8888 8903 8909 8912 8958 8963

 8971 8984 9005 9025 9034 9041 9044 9055 9106 9131 9143 9166

 9179 9199 9203 9261 9278 9297 9333 9389 9400 9423 9444 9462

 9467 9506 9518 9524 9544 9547 9555 9558 9585 9589 9609 9620

 9643 9644 9672 9736 9742 9746 9748 9762 9773 9782 9784 9790

 9802 9805 9810 9850 9859 9893 9906 9913 9929 9933 9955 9960

 9976 9980 9992 10010 10011 10014 10060 10066 10111 10137 10163 10167

 10168 10181 10190 10198 10205 10227 10232 10255 10311 10334 10336 10340

 10375 10376 10390 10401 10431 10442 10458 10466 10469 10478 10480 10510

 10513 10537 10538 10543 10552 10557 10599 10613 10614 10617 10652 10655

 10657 10680 10687 10703 10712 10719 10753 10771 10785 10800 10815 10835

 10845 10852 10854 10865 10880 10890 10895 10950 10972 10978 10986 10995

 11017 11040 11041 11078 11081 11100 11107 11119 11159 11211 11216 11243

 11251 11280 11284 11297 11330 11331 11345 11352 11353 11359 11368 11369

 11410 11445 11452 11459 11465 11486 11507 11543 11592 11593 11612 11642

 11649 11663 11682 11693 11696 11735 11745 11761 11778 11786 11802 11806

 11815 11827 11834 11847 11857 11886 11898 11905 11907 11914 11954 11957

 11960 11993 12012 12049 12084 12098 12106 12182 12202 12241 12261 12265

 12274 12303 12335 12347 12365 12383 12394 12416 12417 12428 12431 12439

 12489 12500 12511 12552 12563 12568 12582 12585 12595 12597 12604 12626
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 12627 12642 12675 12722 12735 12773 12775 12776 12800 12802 12806 12819

 12854 12859 12869 12939 12952 12968 12984 13020 13022 13039 13082 13104

 13124 13128 13129 13132 13147 13161 13168 13169 13170 13178 13203 13217

 13219 13303 13310 13315 13323 13324 13331 13336 13349 13354 13389 13394

 13407 13415 13444 13445 13461 13471 13486 13494 13508 13511 13521 13578

 13585 13593 13625 13638 13654 13658 13663 13678 13708 13709 13732 13824

 13864 13890 13894 13920 13926 13959 13982 13983 14012 14014 14030 14037

 14038 14070 14090 14102 14110 14147 14157 14161 14186 14193 14197 14215

 14220 14221 14250 14260 14268 14286 14290 14305 14309 14320 14339 14353

 14396 14402 14428 14462 14492 14506 14522 14564 14632 14663 14675 14702

 14715 14716 14745 14761 14793 14794 14800 14824 14873 14877 14906 14921

 14940 15001 15030 15033 15039 15078 15086 15091 15093 15099 15100 15129

 15149 15154 15160 15179 15193 15229 15239 15241 15246 15275 15289 15304

 15306 15351 15366 15368 15375 15379 15393 15406 15408 15433 15448 15463

 15490 15503 15504 15558 15574 15585 15591 15600 15628 15634 15672 15687

 15767 15781 15810 15811 15844 15851 15858 15862 15881 15886 15910 15931

 15941 15955 15956 15974 16046 16054 16057 16099 16114 16122 16188 16251

 16260 16274 16299 16327 16352 16367 16429 16430 16433 16450 16462 16473

 16490 16514 16515 16518 16526 16529 16532 16575 16604 16619 16623 16630

 16671 16725 16734 16758 16790 16805 16853 16902 16905 16923 16927 16939

 16951 16994 16995 17012 17027 17030 17031 17043 17054 17057 17077 17079

 17100 17113 17117 17142 17147 17182 17240 17251 17254 17259 17274 17275

 17281 17311 17313 17320 17323 17327 17338 17373 17408 17412 17421 17431
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 17441 17448 17458 17474 17493 17508 17516 17529 17532 17542 17583 17600

 17603 17609 17621 17641 17673 17718 17720 17731 17734 17767 17774 17784

 17786 17791 17806 17810 17836 17885 17897 17921 17938 17940 17943 17949

 17951 17960 17973 17986 17995 18005 18008 18038 18055 18080 18085 18107

 18111 18259 18263 18265 18270 18285 18298 18310 18385 18388 18393 18408

 18412 18436 18440 18471 18485 18511 18545 18563 18570 18626 18630 18679

 18687 18701 18714 18719 18737 18751 18753 18771 18786 18825 18903 18906

 18911 18921 18941 18947 18954 18961 18986 18987 19002 19063 19068 19076

 19086 19142 19159 19179 19185 19188 19211 19221 19236 19252 19280 19360

 19374 19378 19385 19387 19391 19393 19407 19443 19452 19455 19470 19477

 19495 19530 19585 19592 19613 19618 19627 19640 19653 19659 19676 19677

 19688 19703 19711 19751 19757 19758 19770 19778 19779 19797 19800 19815

 19832 19840 19876 19902 19930 19946 19965 19974 20023 20063 20089 20095

 20105 20135 20175 20179 20189 20204 20220 20236 20246 20276 20323 20347

 20359 20384 20420 20423 20427 20432 20472 20475 20489 20499 20501 20530

 20562 20581 20601 20602 20609 20617 20644 20678 20697 20746 20774 20780

 20801 20816 20820 20845 20855 20856 20861 20873 20887 20908 20925 20930

 20936 21002 21029 21064 21101 21107 21130 21141 21151 21202 21207 21209

 21213 21216 21224 21237 21254 21291 21335 21340 21408 21438 21444 21478

 21530 21557 21597 21617 21625 21639 21647 21651 21653 21696 21715 21766

 21819 21839 21843 21864 21885 21891 21906 21911 21928 21931 21937 21957

 21984 21994 21999 22005 22006 22012 22017 22041 22046 22068 22070 22116

 22117 22126 22129 22144 22148 22151 22156 22173 22174 22177 22182 22185



 

84 

 

 22249 22257 22268 22295 22312 22319 22320 22349 22360 22415 22427 22455

 22459 22478 22485 22486 22507 22517 22549 22554 22606 22608 22617 22639

 22645 22662 22714 22717 22741 22769 22789 22805 22808 22813 22817 22828

 22847 22896 22902 22915 22948 22953 22958 22970 22994 23007 23030 23058

 23102 23112 23126 23141 23145 23185 23189 23192 23208 23220 23273 23305

 23306 23323 23329 23368 23374 23382 23383 23398 23402 23439 23449 23451

 23472 23474 23546 23549 23562 23576 23579 23583 23616 23640 23662 23669

 23678 23688 23706 23721 23752 23765 23800 23808 23810 23841 23842 23864

 23892 23906 23913 23920 23926 23956 23979 23983 24029 24033 24050 24069

 24086 24096 24098 24125 24136 24148 24159 24163 24164 24204 24215 24230

 24234 24235 24240 24272 24294 24300 24318 24325 24336 24387 24417 24425

 24432 24469 24481 24503 24523 24529 24547 24553 24589 24607 24616 24624

 24666 24730 24788 24790 24797 24811 24816 24845 24847 24857 24873 24890

 24928 24933 24971 24999 25057 25059 25063 25068 25071 25079 25088 25095

 25107 25112 25121 25122 25151 25194 25217 25238 25242 25247 25259 25267

 25284 25290 25297 25335 25358 25391 25417 25419 25443 25480 25484 25491

 25492 25532 25539 25546 25572 25582 25605 25609 25623 25625 25635 25642

 25663 25671 25748 25754 25776 25782 25794 25808 25812 25823 25845 25856

 25861 25881 25932 25952 25961 25980 26017 26021 26030 26047 26071 26110

 26193 26224 26247 26251 26271 26320 26337 26340 26344 26347 26377 26387

 26443 26446 26471 26485 26487 26488 26489 26491 26492 26505 26515 26527

 26533 26580 26582 26657 26675 26684 26693 26705 26708 26725 26766 26782

 26789 26792 26799  
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II.   PLINK 
 

1. Basics 

     PLINK is a command line program written in C/C++. All commands involve typing 
"plink" at the command prompt, followed by a number of options (all starting with "--option") to 
specify the data files/methods to be used. A complete list of all options and output file types is 
given in this link: 

http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml  

To run PLINK, one should start from typing "plink --file mydata" (there is a space before 
the dashes). The data is in two files: in this case, mydata.ped and mydata.map. If the PED and 
MAP files have different names, they can be specified separately, with the command: "plink --
ped mydata.ped --map autosomal.map". 

The PED file contains the demographic and phenotypic information about the subjects. It 
is a white-space (that is, space or tab) delimited file with the columns: 

"Family ID, Individual ID, Paternal ID, Maternal ID, Sex(1=male; 2=female; other=unknown), 
Phenotype". The PED file can have one and only one phenotype, which is given in the sixth 
column. The phenotype can be either a quantitative trait or an indicator (0 or 1) variable.  

If the PED file has some missing fields, one can use a command to indicate which 
columns, if any, are missing. For instance, "--no-fid" indicates there is no Family ID column (the 
first column); "--no-parents" indicates there are no paternal and maternal ID columns (third and 
fourth columns); "--no-sex"indicates there is no sex field (fifth column) and all individuals set to 
have a missing sex code; "--no-pheno" indicates there is no phenotype field (sixth column). 

The MAP file contains the genotype location information. By default, each line of the 
MAP file describes a single marker and must contain exactly 4 columns: 

"chromosome # (1-22, X, Y or 0 if unplaced)", rs # or SNP identifier, Genetic distance 
(morgans), Base-pair position (bp units)" 

If "Genetic distance" is missing in MAP file, one can add a flag: "--map3", that is: "plink --
file mydata --map3" In this case, the three columns in MAP are expected to be "chromosome, rs# 
and Base-Pair".  

 

2. Summary statistics calculated in PLINK: 

(1) Hardy-Weinberg Equilibrium: 
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To test HWE for each SNP, use the option: "plink --file data --hardy". PLINK then 
creates the file: plink.hwe, which has the following format: 

"SNP: SNP identifier; TEST: code indicating sample; A1: minor allele code; A2: major allele 
code; GENO: genotype counts:A1A1/A1A2/A2A2; O(HET): observed heterozygosity; E(HET): 
expected heterozygosity; P: HW p-value." 

Thus, if HW p-value is significant, then we'll conclude that this SNP is not in HWE.  

 

(2) Minor Allele Frequency (MAF): 

To generate a list of MAF for each SNP, one can use the command: "plink --file data --
freq", which will create a file: plink.frq with five columns: "CHR: chromosome; SNP: SNP 
identifier; A1: allele 1 code (minor allele); A2: allele 2 code (major allele); MAF: minor allele 
frequency; NCHROBS: non-missing allele count". 

 

3. Association analysis 

(1) Basic case/control association test: 

To perform a standard case/control association test, one can use the option: "plink --file 
mydata --assoc". PLINK then will generate a file "plink.assoc", which contains the fields: "CHR: 
chromosome; SNP:SNP ID; BP: base-pair; A1: minor allele name; F_A: frequency of this allele 
in cases; F_U: frequency of this allele in controls; A2: major allele name; CHISQ: basic allelic 
test chi-square (1df); P: asymptotic p-value for this test; OR: estimated odds ratio." 

If the p-value is significant, we conclude that this SNP is associated with the disease. In addition, 
if the option "--ci 0.95" is included, then "L95: lower bound of 95% CI for odds ratio" and "U95: 
upper bound of 95% CI for odds ratio" will be appended to the output. 

In my study, I used the Modal BPP (1 as in the fast trajectory group and 0 otherwise) as the 
phenotype, and test the association with the SNPs on chromosome 13. 

 

(2) Quantitative trait association: 

If the phenotype (column 6 of the PED file) is quantitative, the PLINK will automatically 
treat the analysis as a quantitative trait analysis. One can use the same command as for 
case/control association: "plink --file mydata --assoc", which will generate the file "plink.assoc". 
The file has the following fields: 
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"CHR: chromosome; SNP: SNP ID; BP: base-pair; NMISS: # of non-missing genotypes; BETA: 
regression coefficient; SE: standard error; R2: regression r-squared; T: Wald test t-statistic; P: 
Wald test asymptotic p-value." If the p-value is significant, then we conclude that the SNP is 
highly associated with the disease. 

In my study, I used BPP as the quantitative trait, and then tested the association with the 
SNPs on chromosome 13.  


