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Abstract of the Dissertation
Using Growth Mixture Modeling to identify loci associated with the progression of disease
by
TONG SHEN

Doctor of Philosophy

in
Applied Mathematics and Statistics
(Statistics)
Stony Brook University

2011

In a genome-wide association study (GWAS) for a longitudinal gaawe trait, the trait
is measured at multiple time points. GWAS is the examinatiomayker loci to identify loci

associated with the progression of the quantitative trait.

| use two models, a single locus model and a multi locus modeimidate a
longitudinal quantitative trait. | use the growth mixture model@i1) method to assign each
member of a sample into one of a small number of trajectory grdtaesclinically important
trajectory group is the one with fastest progression. The Bayesisterior probability (BPP) of
being in the clinically important group is used as a quantitataie trtest for association with
marker loci. | also use the modal BPP in the association testparidrm a case/control

association analysis. Finally, | compare these methods with thengemty table method. |



evaluate the empirical type | error and empirical power usinllj simulations and power

simulations.

The principal results are that: (1) Both the BPP method and m&finBthod maintain
the correct type | error rate, but the empirical null repectiate is increasing less than the
nominal rate as the nominal type | error rate increases. (2) Both the BPP ah@Ri®adaethods
have very high power to detect the disease locus in the singenoadel. (3) Both the BPP and
modal BPP methods have significant power to detect the disease tbe multi locus model.
The powers of detecting a specific locus are proportional to mifede dtequency (MAF) of
loci. (4) Both the BPP and modal BPP methods are better thasotitegency table method
with regard to the empirical power and the power of the BPP éenisity equal to the power of

the modal BPP.
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Chapter 1 Introduction

1.1 Empirical issues

1.1.1 Adolescent Idiopathic Scoliosis (AlS)

Adolescent Idiopathic Scoliosis (AIS) is the most common spinal méforn children,
affecting about 1-3% of children worldwitfe Patients with AIS may have one shoulder higher
than the other, and their clothes may no longer fit correctly. Someeeseases of scoliosis can
lead to diminished lung capacity, which can then put pressure on thehedead to restriction
of physical activitied Figure 1.1 is a schematic of the disease. | focus on methoddlisgices

derived from research on AlS.



Figure 1.1 Adolescent Idiopathic Scoliosis (AlS)

Normal spine (left) — Scoliosis (right)

1.1.2 Diagnosisof AIS

In practice, AlS is diagnosed using standing posteroantedag@phs of the full spine
to assess lateral curvature with the Cobb angle mé&th@tie Cobb angle is the angle between
two lines, drawn perpendicular to the upper endplate of the uppermost vertebrae involved and t

lower endplate of the lowest vertebrae involved, as shown in Figire 1.2



Figure 1.2 Definition of Cobb angle in AIS

Mast tilted
vertebra
above apex

Apex

Mast tilted
vertebra
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1.1.3 Etiology of AIS

The etiology of AIS is still unknown, but it is believed to be miattorial, including
complex genetic factors. Single Nucleotide Polymorphism (Shdtkers that are significantly
associated with AIS have been identified from Genome-Wide Asgnti&tudy (GWAS)
research®. Although the genetic model of AIS is complicated, an autosomal dominant
inheritance model is generally accepteBome studies also show an evidence of an X-linked

susceptibility in AIS°.



1.1.4 Genetic studiesof AIS

Genetic studies of the progression of AIS are clinically impartafter examining how
the genetic factors affect the progression of disease and howlisigdual’'s genetic inheritance
affects the body’s response to drugs, physicians may beapledcribe drugs tailor-made for
individuals in the future. Compared with the traditional therapy, tokvidual customized
therapy may enhance both the efficacy and safety of treatrheB#sly prediction of maximal

severity may allow earlier intervention, which may be more effective.

1.2 Longitudinal Genome-Wide Association studies

1.2.1 Genetic mapping

Many quantitative traits or human diseases are controllegdxife loci. When the trait
is a quantitative measure such as body mass index (BMI), thasaré called quantitative trait
loci (QTL). Genetic mapping can offer evidence that a diseassritted from parent to child is
linked to the QTL. Statistical methods for genetic mapping have deexloped using two main
approaches: linkage analysis and association analysis. Lirk#ge tendency for loci and other
genetic markers to be inherited together because of thetrdimggear one another on the same
chromosome. In the process of meiosis, because there is somagmssi of DNA when the
chromosomes segregate, alleles on the same chromosome can beedepad go to different

daughter cells. Generally, in the same chromosome, the propaliliecombination fraction



between two loci near each other is very low. Thus, a low recatibn fraction means the two
loci are near each other. Linkage analysis can help find the pmsition of human disease loci

relative to known genetic markers.

Association analysis, also known as association mapping or linkagpiiitsgum (LD)
mapping, is a method which is based on linkage disequilibrium to dhedguantitative traits
and genetic polymorphisms. LD is the association between twosdibelated near each other on
a chromosome, such that they are inherited together more freqtlentlyxpected by chance,
which decays by recombination distance. So LD will be observedebattwo loci if they are in
tight linkage. If we observe LD between candidate loci and martkens,we can claim that they

are nearly located near each other.

1.2.2 Genome-Wide Association Study

In human genetics, a genome-wide association study (GWAS8)egamination of locus
variations on a genome to discover loci that have associationgwligease. As of December
2010, over 1200 human GWASs have examined over 200 diseases and traits. 4QB0O0SNP

associations have been fodhd

1.2.3 Longitudinal GWAS



Longitudinal studies use repeated observations of variables of inbeestime. Fields
such as psychology, sociology and medical research make extassiwé longitudinal studies.
In genetics, there are a number of longitudinal GWAR those studies, quantitative traits are
measured at fixed time points. Then an association analysiskagé analysis is conducted to
detect the quantitative trait loci (QTL) in the genome. For exempsearchers have found
evidence for a disease locus influencing blood pressure on chromosomend 7augnome
scart”. GWAS analysis can also be used to detect interactions ethedngitudinal traits and

environment>®

Wu and colleagué&®*® propose a mapping strategy, call functional mapping, which
integrates the mathematical aspects of biological procassea statistical mapping framework
for QTL mapping. The model is constructed within the traditional imam-likelihood
framework implemented with the expectation-maximization (ENorithm. A biologically
meaningful growth curve, the logistic growth curve, is employed to hiode-specific genetic
values. An autoregressive model is used to structure the residiaceacovariance matrix
among different time points. Because of a reduced number of parsieieg estimated and the
incorporation of biological principles, the functional mapping model displagseased
statistical power to detect QTL. Later, Wu and colleagues gkreerthe functional mapping
framework to more general models of time dependence of resitNials research group applies

functional mapping model to QTL mapping of traits describing trees, as veeil 48/ study®.



1.3 Growth Mixture Modeling

Growth Mixture Modeling (GMM) is a method that can classifyerbgeneous
participants into discrete subgroups. GMM also describes the lomgityakttern in each sub-
populatio’. GMM applies mixture analysis methods to estimate the numbérajefctory
components and to estimate the probability that a trait varisid @s a genotype) affects the
probability of trajectory component membership. The procedure allawfdrolling for time-

varying covariates (TVC) as well.

In 1999, Bengt Muthen and Kerby Sheéfdenopose a model that combines the
features of conventional growth modeling and latent class growth mgddiheir research
discusses a longitudinal study using a random coefficient modsséssthe influence of latent
growth trajectory class membership on the probability of a bimdsgase outcome. It is
motivated by a study concerned with the longitudinal development oy ldrenking and its
relation to alcohol dependence. In their paper, the EM algorithmsad for estimation. They
analyze the influence of membership in different growth curvesekfor heavy drinking from

ages 18 to 25.

Later in 2000, Bengt Muthen and Linda K. Mutheive a brief overview of new
methods that integrate variable- and person-centered analysesiable-centered approach,
such as regression analysis, factor analysis, and structuralioequabdeling, focuses on
relationships among variables. A person-centered approach, such tes ahaysis, finite

mixture analysis, latent class analysis, and latent transamatyses, focuses on relationships

7



among individuals. The goal is to group individuals into categories, eacbf eviech contains
individuals who are similar to each other and different from individuatgher categories. The
methods that they discuss include latent class analysis, ted@sition analysis, latent class
growth analysis, growth mixture modeling, and general growth neixtaoodeling. Growth
mixture modeling (GMM) is based on conventional growth modeling and cesbhe features
of latent class growth analysis (LCGA). Conventional growth moge&stimates a mean growth
curve under the assumption that all individuals in the sample comeafrsimgle population.
Individual variation around the mean growth curve is captured by timagion of the growth
factor variances. LCGA estimates a mean growth curve for dash. No individual variation
around the mean growth curves is allowed. As a result, theigaria the growth factors within
each class is assumed to be zero. However, GMM estimatesgnoseh curves for each class
and captures individual variation around these growth curves by theatish of growth factor
variances for each class. GMM can also be incorporated into a geaosral latent variable
framework that allows combinations of the models mentioned above. Shifarred to as

general growth mixture modeling (GGMM). It is the statistical frawon used in M-plus.

In 2002, Bengt Muth@ret al. present a novel application of growth mixture modeling
to preventive intervention trials in which individuals are randomized intervention and
control groups and measured repeatedly before and after thefstatintervention. They apply
four analyses, two of which are GMM. Comparison of models witlemifft numbers of classes,
however, is accomplished by a Bayesian information criterion)(Bl@e larger the BIC value,
the better the model. They conclude that the growth mixture modelangowerful analytic tool

when applied to randomized trials as well as to non-experimental research.



Daniel S. Naginproposes a method to analyze developmental trajectories in 1999. It
IS a semi-parametric, group-based approach for identifying disengroups of individual
trajectories within the population and for profiling the charactesisif group members. It can
handle three data types—count, binary, and psychometric scale data.ca&pabilities are
demonstrated in their model: the capability to identify distincgveups of trajectories; the
capability to estimate the proportion of the population following each sajectory group; the
capability to relate group membership probability to individual atteristics and
circumstances; the capability to use the group membership prabaliit other purposes such
as creating profiles of group members. They also discussirtyortant issues in model
selection: determination of the optimal number of groups in the reidod the determination of
the appropriate order of the polynomial used to model each groumgsttry). Here “order”

refers to the degree of the polynomial used to model the group’s trajectory.

In 2001, Daniel S. Nagin and Richard E. Trembldgmonstrate a group-based
method for joining developmental trajectories of distinct but thexaigtirelated behaviors. This
method will aid the analysis of comorbidity and heterotypic continliitg.based on the method
Nagin proposed in 1999. First, the statistical model underlyingshmation of a group-based
trajectory model for a single behavior is summarized; then, theoagprused to link two
univariate models to form a joint model is described. They obtaie thegor outputs: the form
of the trajectory of distinctive subpopulations for both measuremeietss¢he probability of
membership in each such trajectory group; the joint probability of nrsimpein trajectory
groups across behaviors. They apply the model to two examples:theredsta from research in
physical aggression and hyperactivity in children; the othéndsdata from study of criminal

behavior. Nagin et al. introduce a new SAS procedure that analgnggudinal data



(developmental trajectories) by fitting a mixture model. The JR#ocedure will be discussed

later.

GMM has been applied in alcohol use studies and smoking behavior. dtudied
colleague¥’ examine developmental trajectories in adolescent alcohol usingwisec GMM.
Alcohol use typically begins in adolescence. The research almmitohuse suggests distinct
developmental periods depending on age. It is assumed that odseates of change of
adolescent alcohol use are not homogeneous but consist of subgroups thatférare growth
patterns and social, family and individual influence systems. &l. etescribe their model using
the framework for GMM proposed by Muthen in 1999. They examine didtajectories from
middle school to high school in the development of alcohol use. Two subgrotiageotories
are reported. They also analyze the influences of backgrourabhes;i such as middle school

entry and midpoint time-invariant predictors.

Colder et & apply GMM to identify trajectories of adolescent smoking. In their
article, discrete patterns of smoking are identified on the lofdesvel of smoking. Analyses
reveal considerable heterogeneity in how smoking unfolded over time duliohgscence. They
show that compared with the traditional growth models, GMM has morerptawidentify

subpopulations on the basis of distinct growth trajectories.

There has been increasing interest in using GMM to identify the SNHRatadsoith a
longitudinal quantitative trait. In Genetics Analysis Workshop 16, Clearg?® examine the
properties of GMM to find longitudinal QTL. She studies the trajgcimodel's Bayesian
posterior probability and tests the association with 17 SNPs on HGmamosome (HC) 22.

Kerner and Muthef! apply GMM to longitudinal data of blood pressure in Framingham heart

10



study. They test SNPs on HC 8 for association with the classbership probabilities. Both
studies find GMM to be a useful tool to detect subgroups in het@ogse populations in

GWAS.

1.4 Analysis software

There are two computer programs to perform GMM on longitudinal dataisQne SAS

TRAJ procedure, and the other is M-plus.

141 SASTRAJ procedure

The SAS Trajectory Procedure (Proc TYajf= fits a discrete mixture model to
longitudinal data. The model groups data trajectories, with diffgrarameter values for each
component. Components may identify distinct subpopulations. Proc Tragtssgianlongitudinal
regression model for each component group within the population. The fatus focedure is
on group membership and identifying distinct subgroups within the populatids. FFROC
TRAJ analysis reports the estimated frequency of each tvgjegroup, the t-statistic and the
maximum likelihood estimates (MLES)f the trajectory group parameters, the Bayesian
posterior probability (BPP) that each subject is member of eapbctory component and
Bayesian information criterion (BIC) for model selection. Thadei which has the largest BIC
value and at least 10 subjects estimated to be in each trgjeotaponent is often reported as

the best model in actual studies.

11



1.4.2 M-plus software

M-plus is another statistical modeling program that provideesarchers with a flexible
tool to analyze longitudinal data. M-plus takes a multivarippg@ach to growth modeling. This
approach allows flexible modeling of relationships between the outceows as correlated
residuals over time and regressions among the outcomes over tiples Mses the principle of
maximum likelihood estimation and employs the EM algorithm for imeation. M-plus
program provides three measures of each model: Akaike informaitenion (AIC); BIC; a
sample-size adjusted BIC (ABIC). Researchers often usad@tboose the best model. M-plus
provides estimates of probabilities of class membership for iedochdual. For example, in a
five-class solution, five probabilities are estimated for eadividual in the data, where each
estimates the likelihood that an individual is a member of one aldkses. For each individual,
these probabilities sum to 1.0. Ideally, for each individual, one of tredmbilities would be

very high and the others very low, indicating little ambiguity about class mehiper

1.4.3 Comparison of thetwo procedures

M-plus specifies latent GMM in the context of a general stirat equation model. This
allows considerable flexibility in model specification. HoweverpMs uses full information
maximum likelihood imputation (FIML) to deal with missing datacémtrast, Proc Traj in SAS

allows for the inclusion of cases with missing data and spatdit of a variety of distributions

12



for the observed variables but does not permit specification of latmdbles. In growth
modeling, M-plus uses random effects to capture individual differemceevelopment. In

contrast with the M-plus model, there is no random effect capability withinrtieeTiPaj model.

In each procedure, heterogeneous longitudinal data is clasgitiedaifew discrete
growth trajectory groups such that there is an estimated propdbdit an individual belongs to
a particular trajectory group. This probability is called theeB&égn posterior probability (BPP).
Both programs report the estimated coefficients of the polynamapdctory functions, their
corresponding t-statistics and p-values, the MLE of the trajegroup parameters, the AIC and

the BIC for a specified number of trajectory groups.

One major difference between the programs is the treatmemitloh-class variability.
Since the SAS TRAJ procedure assumes no variation in growth gtaramvithin each class,
any individual deviations from the class mean trajectoriesttaieuted to random error. M-plus,
however, allows for within-class variation in individual trajeaerithat is, the coefficients of
the M-plus model are random. For example, in SAS TRAJ, one of feettny groups in my

research is modeled as
Yoy = B+ Bt — 025)+ 5, ,

here,o refers to the specific individual, refers to the trajectory group andrefers to the time

point. The intercepts, and slopep, are fixed, and the individual variatiog,,, in this

trajectory group is attributed to random error. In M-plus, the parasngteand g, are modeled

as random. That is, they differ among individuals in the samectivayegroup. In the fixed

effects model (growth factor variances and covariance equaldd, 2stimation of parameters is
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easier, and time to convergence is faster. Muthen (2004) has tmagdkat use of both
approaches may be useful. For example, he suggests using ther smoplel group-based
trajectory approach as a first step to identify the numberagdctory groups and cut points on
the growth factors. Then researchers can use more complaraadovariance constraints in a

growth mixture model.

1.44 PLINK software

PLINK (Appendix 1l) is a whole genome association analysis tqoldesigned to
perform a range of basic, large-scale analyses in a computhtieffadient manner. | used

PLINK to test the association between the quantitative trait and 1498 SNPs on chremd8som
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Chapter 2 Methodology

2.1 Sample usedin theanalysis

The Framingham heart study (FHS)which started in 1948, aims to identify the
common factors or characteristics that contribute to cardiovasdisease (CVD). FHS recruits
a large group of participants from the town of Framingham, Mhssatts. The Genetic
Analysis Workshop (GAW 16) simulated dataset includes a total of 6,d&ipants with
actual genotype data from the FHS. The participants are in 936 geslidistributed among 3
generations with the 187 singleton subjects; that is, participantgetaded to any other

participant.

My study focuses on the 1599 genetically unrelated participants oK% | first
include those who married into the pedigree and the 187 singletonsl Neid, a “family tree”
for each pedigree and choose the first generation participanty dre genotyped. In this case, |

exclude all of their children and grandchildren. If the first ggmed participants are in the
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second generation, then | choose one at random and | exclude all afhitdrien. If the first
genotyped participants are in the third generation, then | chooss cax@dom. The distribution
of the 1599 unrelated participants extracted from FHS is shown ire Talbl Appendix |

contains the participant IDs of the 1599 unrelated participants.

Table 2.1 Distribution of the sample by generation

Generation Frequency Percentage
First generation 260 16.6
Second generation 436 27.4
Third generation 160 10.0
Participants who married-in 556 34.9
Singletons 187 11.1

2.2 Genotypesused in the analysis

In my study, | use the genotype data from chromosome 13 for the 1598cajine

unrelated individuals in the FHS. There are 1498 SNP markers on Chromosome 13.
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For the single-locus association analysis, | choose two SNkersasn chromosome 13

listed in Table 2.2, as the simulated disease loci. Table 2.2 shev&\P ID, base pair, major

allele, minor allele, MAF, Hardy-Weinberg Equilibrium (HWE}te-value and missing rate.

The null hypothesis of HWE test is that the SNP is in HWEhB@tthe SNP markers are

apparently in HWE from the table. The missing rate indicderoportion of missing SNPs in

1599 unrelated participants. The SNP markers | studied have miete tfquency (MAF)

close to 0.5 and 0.15, respectively. | study the two loci separatelyelhas other markers on

chromosome 13. | use the normalized disequilibrium coefficiBhtto measure Linkage

Disequilibrium (LD). For the two loci in Table 2.)'= 0.046.

Table 2.2 SNP markers on chrl3 used as disease loci in singlefsagsation analysis

SNP Base-Pair Major Minor MAF HWE test | Missing
Allele Allele p-value rate
rs4133063 39205119 C T 0.49 0.68 0.0044
rs7990928 91893219 C A 0.15 0.42 0.0037

For the multi-locus association analysis, | select ten SNRarsaon chromosome 13

listed in Table 2.3, as the simulated disease loci. All the ®NiRers are in HWE based on the

chi-square goodness of fit test. They are rare variant loci, Mt less than 0.05. The

measurements of LD are shown in Table 2.4. The association telstes-@@e shown in Table
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2.5. SNP rs17090361 is highly associated with SNP rs16943207; SNP rs7331979yis highl

associated with SNP rs12863734.

Table 2.3 SNP markers on chrl3 used as disease loci in multi-locumtgs@mnalysis

SNP Base-Pair Major Minor MAF HWE test | Missing
Allele Allele p-value rate

rs9599854 71021185 T C 0.026 1 0.0013
rs9542756 71309666 T C 0.038 0.33 0.0038
rs9543107 72217237 C T 0.016 1 0.0006
rs17090361 73186500 T C 0.050 0.72 0.0013
rs9593132 75293621 C T 0.048 1 0.0006

rs5352 77373231 C T 0.012 1 0
rs7331979 78836214 T G 0.033 0.22 0.03R5
rs12863734 85268572 G A 0.015 1 0.0025
rs9522610 89110831 C T 0.026 0.44 0.02R5
rs16943207 89144779 C G 0.031 1 0.0088
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Table 2.4 Normalized disequilibrium coefficiebt of ten disease loci in multi-locus model

D: rs9599854 rs9542756 rs954310fY rs5352 rs12863734  rs9522610 1516943207
9599854 | NA | 0.017 | 1** 0.078 0511 0.157  0.0(
19542756 [ 0,017 | NA 1%+ 0.082 0.003 0.01p 0.00
rs9543107 | %k 1% NA 1* 0.023| 0.787
170903610 0,715 | 1** | 0.581 0.029 0.059 0.014 0.037
19593132 | 0,132 | 0.065| 0.481 0.986 0.0p4 0.622 0.457
rs5352 0.078 | 0.082] 1* NA 0.020 0 0.041L
7331979 | Q%% | 0.998% | 1** 1 0.007| 0.688 0.868
s12863734 0511 | 0.003| 0.007 0.020 NA  0.072 o0J67
9522610 | 0157 | 0.016| 0.023 0 0072 NA 0579
516943207 0.007 | 0.001| 0.787 0.041 0.y67 0579

Notes: The normalized disequilibrium coefficientshaf indicate the two SNPs are in linkage diseipailim.
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Table 2.5 Correlation coefficient p-values of ten disease loci iti-foaus model

association

test p-value

rs9599854

rs9542756

rs954310f

rs17090361

rs9593

132

rs535)

rs733

1979

rs12

863734 rs

522610 1916943207

rs9599854

0.8392

0.3464

0.8702

0.864

4

0.44

24

0.4¢

D1

0.5

803 0.

D164 0/9988

rs9542756

0.8392

0.129

0.5278

0.416

0.88

0.27

79

0.4

13 0.7

(341 0.9622

rs9543107

0.3464

0.129

0.3418

0.452

0.85

07

0.0¢

)74

0.5

616 O.

3485 0,5488

rs17090361

0.8702

0.5278

0.3418

0.438

4

0.90

92

0.8

148

0.9

566 O

A0BO7

rs9593132

0.8644

0.416

0.4524

0.4384

0.90

0.63

388

0.4

057 0.

5481 06218

rs5352

0.4624

0.8855

0.8507

0.9092

0.90

51

1

0.4

103

0.6

384 0.

D416 0[7445

rs7331979

0.491

0.2279

0.0974

0.8148

0.63

0.4]

103

0.0291

0.685

0.2734

rs12863734

0.5803

0.413

0.5616

0.956/6

0.495

0.63

384

0.0

P91 1

441 07319

rs9522610

0.9164

0.7341

0.848%

0.4754

0.64

0.94

116

0.6

0.4

141 1

01923

rs16943207

0.9988

0.9622

0.5488

0.007

0.62

0.74

145

0.2

734 0.7

(319 O

1923 1
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2.3 Simulated longitudinal phenotype

The longitudinal phenotype is simulated based on the data describipgoression of
AIS provided by Carol Wise, M.D. There are 334 Adolescent Idiop&bdaiosis (AIS) study
participants in the data used here. The quantitative longitudinableaigthe Cobb angle. A
Proc Traj analysis identifies three linear trajectory grdapshis data. In my simulation study, |
specify a linear growth mixture model with the longitudinaljettory functions for each

individual w as follows:

50,i(w)=1
fi(uy =150+ 28t — 025),i(w)=2 wheret = 025 04,055 0.7,085];
50+ 56(t — 025),i(w)=3

When i(w) =1, the individual w is in the constant trajectory group{w)=2 indicates the

individual w is in the intermediate increase trajectory gro'l(pvv)=3 indicates the individual

w is in the fast increase trajectory group. The sltopjectory parameters are roughly equal to

those estimated from Wise data. Sing), describes the Cobb angle of each individual, which

should be a non-negative value, | set the interepe 50 so thaf; . is positive.

For each replicate, | randomly select 700 individuaithout replacement from the
sampling set of 1599 unrelated (independent) indiais. Then I divide the individuals into three
trajectory groups; that is, the constant trajectgup, the intermediate increase trajectory group
and the fast increase trajectory group. The dliocaules for both null simulations and power

simulations are described below.
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2.3.1 Generation of null ssmulation data

2.3.1.1 Null smulation |

The probability of each individual being in anytbe trajectory groups is 1/3 for each

group. Thus, for each of the 700 individuals ireplicate, | creatd , a randorrU(O;L) number.

If U s%, then the individual is in the constant trajectaroup; if %<U g%, then the

individual is in the intermediate trajectory grou’rp%<u <1, then the individual is in the fast

trajectory group.

2.3.1.2 Null smulation Il

2.3.1.2.1 Penetrance matrix

In the null simulation Il model and the single Isconodel (described below), | use the
penetrance matrixX to define the allocation rule; that is, the relasbip between disease SNP

genotype and trajectory group membership. Forectsd individuady, let the penetrance matrix

X = (X, )=Pr(i(@)=i|j(0)=])i=1..6 j= 0,1.

22



Here, the valugj represents the number of copies of the minor adletbe disease locus,
where the locus has two alleles. Thyss 0,1, 2 refers to major homozygote, heterozygote and

minor homozygote, respectively. The valuepresents the trajectory group (TG), whé&es
the number of trajectory groups for the simulatathdin my study, | se6=3. That is, all the

individuals are divided into three trajectory greupm matrix form, we have:

2.3.1.2.2 Allocation rule for null simulation Il

The probability of each individual being in onetbé trajectory groups is determined by
HWE proportions and the penetrance matrix. If th&FAMor a SNP is denoted by, then for an

arbitrary individuako,

Pr(j(@)=0)) ( ¢
Y=|Pr(j(w)=1) |=| 2pq]|,
Pr(j(0)=2)) ( P’

whereq is the major allele frequency ang=1- p.

The penetrance matrix is given by
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1-p 3p/4 p/4
= p/2 1-p p/2].

pl4 3p/4 I-p

Thus, the probability of each individual belongsatspecific trajectory group is given by:

1-p p/2 p/a)\ @
=X'Y=|3p/4 1-p 3p/4|| 2q|.
pl4 pl2 1-p )| P’

In this null simulation, | generate a random numfibem the uniform distribution on the

interval (0,1) for every individual. If the randamymber is in
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(0.0]= (0.~ p)o* + ppat + pp? /4]
then this individual is in group 1, the constaajectory group. If the random number is in
(1-y. ) =(1-(po/ 4+ ppa+(L-p) p°) .3,

then this individual is in group 3, the fast in@edrajectory group. Otherwise, the individual is

in the intermediate increase trajectory group.

2.3.2 Generation of power simulation data

The longitudinal data for power simulations are eyated based on the selected

individual's real genotype. | examine both singleddls model and multi-locus model.

2.3.2.1 Single-locus association

The penetrance matriX is given by

o Y 0,
X=| 24 1-p 4 |.
% Va0

where p€[0,]. In my study, | setp=0.1and 0.4. | call the model withp = 0.1the ‘high

penetrance locus model’ and the model witk 0.4 the ‘low penetrance locus model’.
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2.3.2.1.1 High penetrance

The high penetrance matriX is given by:

09 0075 0.025
X=/ 005 09 005
0.025 0.075 09

For this model, in row one of the matrix, individgiawith major homozygote genotype

(j(a)) =0) are in the constant trajectory group with probigh.9, in the intermediate increase

group with probability 0.075 and in the fast in@earoup with probability 0.025. In row two of

the matrix, individuals with heterozygote genotme(a)):l) are in the intermediate increase

group with probability 0.9, in the constant trag@gtgroup with probability 0.05 and in the fast

increase group with probability 0.05. In row threé the matrix, individuals with minor

homozygote genotypej(a))=2) are in the fast increase group with probabilit9,dn the

constant trajectory group with probability 0.025an the intermediate group with probability

0.075.

2.3.2.1.2 Low penetrance

The low penetrance matrix is given by:
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06 03 0.
X=/02 06 0.2.
0.1 03 0.

This matrix indicates that in the first row, aniwidual with major homozygote genotype
is in the constant trajectory group (trajectoryugrd) with probability 0.60, in the intermediate
group (trajectory group 2) with probability 0.3®dain the fast increase group (trajectory 3) with
probability 0.10. For an individual with heterozygaenotype (the second row), an individual is
in the intermediate trajectory group with probdkild.60, in the fast increase trajectory group
with probability 0.20, and in the constant trajegtgroup with probability 0.20. For an
individual with minor homozygote genotypes (thedhiow), an individual is in the fast increase
trajectory group with probability 0.60, in the imeediate trajectory group with probability 0.30,

and in the constant group with probability 0.10.

2.3.2.1.3 Other parameter settings

In each particular trajectory group, an individgabhenotype follows the normal

distribution at each time point. | set the standdesiiation o at each time point to be 4 or 8.

That is, the quantitative trait at each time p?ﬁ@;),t for individual w is:

Yo = fin + N(0,02)i = 123.
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50+ N(0,0%)i(w)=1
Thus, Y., =150+ 28t — 025)+ N(0,52 }i(w)
50+ 56(t — 025)+ N(0,5%).i(w)

The generated data above are linearly related dctithe variable. The other model |

examined is that the value seen is the squareedirtbarly generated value.

2.3.2.2 Multi-locus association

| also include a multi-locus model in my study. Tinedel has ten disease loci, each of
which has MAF<0.05For each disease locus, | create the variableish#te count of the

number of minor alleles; that is,

0, if the SNP has 0 minor allel
cnt =< 1, if the SNP has 1 minor allel.
2, if the SNP has 2 minor allel

Thus, an individualw has a vector:

(cnt,,,.cnt,, L ,cnty,, ).

la)’

For example, an individual who has minor homozyguwteSNP5 and SNP7, has heterozygote on

SNP 10, and has major homozygote on the othersiselPs, has vector

(0,0,0,0,2,0,2,0,0).
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The variablescoreis the sum of the ten counts:

10
score, = Y cnt, .
i=1

For the individual abovescore=5. The model is that if an individual’s score reater than or
equal to 3, then the individual is in the fast ease trajectory group; if the score is 2, then this
individual is in the intermediate increase trajegtgroup; if the score is 0 or 1, then the
individual is in the constant trajectory group. eTdlistribution ofscore of unrelated individuals

is in Table 2.6. The mean afcore is 0.588 and the standard deviation is 0.745héf fast
increase trajectory group is the clinically impottgroup, then in this model, the prevalence of

the disease is around 2%.

Table 2.6 Distribution of variablecore

score | Frequency
(%)
0 54.78
1 33.65
2 9.63
3 1.88
4 0.06
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For the ten disease loci, | further calculatevagance of genotype over the variance of

Var (genotype)

SCOre: ar(score) .

They are displayed in Table 2.7.

Table 2.7 Variance of genotype over the variancscof € in multi-locus model

SNP Base-Pair MAF | Var(genotype)
ar (score)

rs9599854 71021185 0.026 0.086
rs9542756 71309666 0.038 0.141
rs9543107 72217237 0.016 0.052
rs17090361 73186500 0.050 0.184
rs9593132 75293621 0.048 0.161
rs5352 77373231 0.012 0.044
rs7331979 78836214 0.033 0.098
rs12863734 85268572 0.015 0.063
rs9522610 89110831 0.026 0.084
rs16943207 89144779 0.031 0.108
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2.4 Group separation

After generating the simulated longitudinal dataséd the SAS PROC TRAJ to classify
the heterogeneous longitudinal data into threedtajy groups. The procedure can also report
the BPP and BIC of the model. For some of the capdis, the trajectory curve failed to
converge. In these replicates, no estimated paeametill be reported. Thus, | delete these
replicates and do not include them when calculatimegtype | error rate and empirical power.

The failure rate of each parameter settings willdgorted in Chapter 3.

2.5 Methods for testing the association of longitudinal phenotypes with
genotype data

| apply the SAS TRAJ procedure to the simulatedjiralinal phenotype data. For each
of the replicates, | set the number of trajectaiqu@s to 3. The trajectory group with the largest
slope is identified as the clinically important gp The SAS TRAJ procedure estimates the BPP
that each subject belongs to each group. Spedyfiche BPP that each subject belongs to the

fast increase trajectory group (clinically impottgnoup) is used as a quantitative trait.

2.5.1 Method I: Using Bayesian Posterior Probability (BPP) as phenotypein the
association test

| use the BPP of the clinically important group aagjuantitative trait in PLINK. The

association between each SNP on chromosome 13 hendjuantitative trait is reported.
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Additionally, PLINK reports SNP identifier, baseHpaNald test statistic and the asymptotic p-

value for the test.

2.5.2 Method I1: Using modal BPP in the association test

| create a dummy variable, which is 1 if modal BB the clinically important group,
and is O if otherwise. Then | use this variablgé&sform a case/control association analysis in
PLINK. The basic allelic test chi-square and itgnagtotic p-value is reported in the PLINK

output.

2.5.3 Method I11: Post hoc contingency table test

| classify a subject as belonging to the clinicatlyportant trajectory group when the
subject’'s modal BPP is the clinically important gpo The row variable in the contingency table
is whether or not the subject is classified inte thinically important group. The subject is
simultaneously in one of three genotypes: major dmygote, heterozygote and minor
homozygote for each SNP analyzed. That is, the tgpas are the column variables in the
contingency table. The contingency table test oflependence between genotype and
membership in the clinically important group is dise test for association with a SNP. For each
SNP, we have a chi-square statistic and the canepg asymptotic p-value. For some

replicates with small sample size (<5) in the fastease group, | use Fisher’s exact test instead.
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2.6 Thefactorial design

2.6.1 Diseaseloci

For the single-locus association study, | use tedto simulate the disease loci, one with

MAF near 0.5 and the other with MAF near 0.15.

For the multi-locus association study, | use tem, leach of which has MAF<0.05.

2.6.2 Genetic model

For the single-locus study, the genetic model indd by the penetrance matriX .

There are two settings for this factor:

0.9 0.075 0.02
high penetranceX =| 0.05 0.9 0.05|) and
0.025 0.075 0.9

06 0.3 0.
low penetranceX =| 0.2 0.6 0.2).
0.1 03 O.

For the multi-locus study, the genetic model isirdaf by the variablecnt and

scoredescribed above.
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2.6.3 Separation of groups

The standard deviation of an individual time measwento is set to be 4 and 8. That is,

for the low variance setting,

50+ N(016),i(w)=1

Y, () =150+ 28(t — 025)+ N(016),i(w) = 2
50+ 56(t — 025)+ N(016),i(w)=3
For the high variance setting,
50+ N(064),i(w)=1
Y, (). =150+ 28(t - 025)+ N(064),i(w) =2
50+ 56(t — 025)+ N(064),i(w)=3

2.6.4 Datatransformation

There are two settings for this factor. The onéirggis that the data are linearly related
to the time variable. The other is that the datthéssquare of data linearly related to time. That

is, the value seen is the square of the lineamggeed value.

2.7 Definitions of empirical type | error rate and empirical power

2.7.1 Empirical typel error rate

Type | error rate is defined as
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a = Pr{reject H |H, is true)
In null simulations where trajectory group assigniseare not correlated with an individual's
genotype, the empirical type | error rate is defimes the proportion of replicates in which the
target SNPs are significant. For example, if inud @f 1000 replicates, a target SNP association
test p-value is significant among the top 0.5% SN{Palues on one chromosome, then the

empirical type | error rate of this target SNP void 0.004.

2.7.2 Empirical power

The power is defined as
power = Pr{reject H,|H, is true)
In power simulations where the trajectory groupgaseents are dependent on an individual’s
genotype, empirical power is defined as the proporf replicates in which the disease SNP is
detected. For example, if in 800 out of 1000 regtbs, a disease SNP p-value is in the top 0.5%

of SNP p-values on one chromosome, then the panaetect this disease SNP will be 80%.
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Chapter 3 Results

3.1 Null distribution

3.1.1 Null Smulation |

Table 3.1 showed the empirical type | error rate id95% confidence interval for target
SNP detection using the model with three equi-potdb&rajectory components unrelated to any
locus. A confidence interval in bold did not cont#ie targetr . As a increased, the number of
intervals not containing the target increased. That is, true type | error rate wase@asing

below o as o increased. The failure rate of the TRAJ model sfaswvn in Table 3.1.

Next, | reported an analysis of variance test efé¢mpirical type | error rate as dependent
variable with five independent variables: the irdiic variable of whether or not the data was

normal (denoted bNORMAL ), the value of sigma (denoted I3/GMA), the MAF (denoted by
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MAF ), the target for each method and the three methods. Here,dhable NORMAL had
two levels: the value of O indicated the data wasmally distributed at each time point and the
value of 1 indicated the data was the square ahalby distributed data. The variabld GMA
had two levels: 4 and 8. The variable MAF had thesels: 0.49, 0.15 and 0.05. Nomiral had
four levels: 0.005, 0.01, 0.05 and 0.10. The véeidMETHOD had three levels: BPP method,
modal BPP method and contingency table method.anlaéysis of variance table (ANOVA) was
shown in Table 3.2. The variablddORMAL, MAF and o were significant. The regression

model was that:

empiricaltypel error= 0.0045+ 0.0014) + 0.0023+ 0.0009) x (NORMAL = 0)
—0.0066+ 0.0019)x (MAF = 005)+ 0.0681+ 0.0013x (o = 0.1)  with
+0.0037+ 0.0013x (& = 001)+ 0.0333+ 0.0013x (o = 005)

R* = 096.

There were no significant differences among thbseet methods with regard to the empirical

type | error rate.
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Table 3.1 Empirical type | error rate and its 958aftdence interval for chromosome 13 scoliosis data

Null Model 1: Three equiprobable trajectories

Significance Level 0=0.005 0=0.01 0=0.05 0=0.10 Failure
Method BPP Modal CT BPP| Modal CT BPP  Modal CT BRP odil CT rate (%)
Normal | Sigma| MAF
No: 8 |=049] 0.005 | 0.004 | 0.006 | 0.012 | 0.012 | 0.01 | 0.045 | 0.044 | 0.05 | 0.08 | 0.083| 0.08 0
Normal +0.004 | £0.004| £0.006| £0.007 | £0.007 | +£0.008 | £0.013| +0.013| £0.02 | £0.017 +0.017| +0.024
Squared =0.15| 0.006 | 0.008 | 0.006 | 0.011 | 0.01 | 0.012 | 0.041 | 0.045 | 0.038 | 0.078 | 0.087 | 0.062

+0.005 | £0.005| £0.006| £0.006 | £0.006 | £0.009 | £0.012| +0.013) £0.017| £0.01¢ £0.017] 40.02
<0.05| 0.003 0.003 | 0.003 | 0.006 | 0.006 | 0.006 | 0.032 | 0.033 0.03 0.069 | 0.068 0.06
+0.003 | £0.003| £0.003 | £0.005| £0.005| £0.006 | +£0.01 | 40.01) 40.013 +0.01¢ +0.01( £0.02

4 [ =0.49] 0.005 | 0.005 | 0.006 | 0.009 | 0.01 | 0.012 | 0034 | 0035 | 003 | 0.066 | 0.072 | 0.056 0.3
+0.004 | £0.004| +£0.006| £0.006| £0.006| +0.009 | +£0.011 #0.01| +0.013 +0.013 #0.01( #0.02
=0.15| 0.006 | 0.006 | 0.004 | 0.008 | 0.008 | 0.008 | 0.047 | 0.049 | 0.038 | 0.087 | 0.09 | 0.084
+0.005 | £0.005| +0.004| +0.005| +0.005| +0.008 | +0.013 | +0.013| +£0.017| +0.017 +0.018| +0.024
<0.05| 0.004 | 0.004 | 0.003 | 0.007 | 0.007 | 0.005 | 0.032 | 0.033 | 0.03 | 0.069 | 0.069 | 0.064
+0.004 | £0.004| +0.003 | $£0.005| +0.005| +0.005| +0.011 40.01{ 40.013 +0.01¢ 40.01( 40.02

Yes 8 |=0.49] 0.002 | 0.005 | 0.002 | 0.008 | 0.01 | 0.007 | 0.043 | 0.039 | 0.048 | 0.081 | 0.08 | 0.082 12.2
+0.003 | £0.005| £0.004| £0.006| £0.006 | +0.007 | £0.013| £0.013| £0.02 | £0.02 | £0.01{ £0.026
=0.15| 0.002 | 0.003 | 0.002 | 0.007 | 0.004 | 0.005 | 0.023 | 003 | 003 | 006 | 006 | 0.06
+0.003 | £0.003| +0.004| $0.005| 40.004 +0.006 | +0.01 | 40.01{ +0.01¢ +0.01¢ #0.01( +0.02]
<0.05| 0.003 | 0.003 | 0.003 | 0.006 | 0.006 | 0.007 | 0.033 | 0.032 | 0.028 | 0.061 | 0.06 | 0.062
+0.004 | £0.003| +0.005| +0.005| +0.005| +0.007 | +0.013 +0.01] +0. 013 +0.01¢ +0.01( +0.02]

4 | =0.49] 0.004 | 0.004 | 0.006 | 0.008 | 0.007 | 0.01 | 0.045 | 0.046 | 0.044 | 0.074 | 0.073 | 0.086 3
+0.004 | £0.004| +0.007 | $0.005| +0.005| +0.009 | +0.013 | +0.013| +0.018| +0.01¢ #0.01] +0.025
=0.15| 0.001 | 0.002 | 0.002 | 0.003 | 0.003 | 0.004 | 0.038 | 0.04 | 0.042 | 0.078 | 0077 | 0.08
40.002| +0.003| +£0.004| +0.003 +0.003 +0.006 | £0.012| +0.012| +0.018| +0.017 $0.01] +0.024
<0.05| 0.003 | 0.003 | 0.003 | 0.006 | 0.006 | 0.006 | 0.032 | 0.03 | 0031 | 0.068 | 0.067 | 0.061
+0.003 | £0.003| £0.005| £0.005| £0.005| £0.007 | £0.011 £0.01| +0. 014 +0.01¢ #0.01( 0.02]

Notes: The confidence intervals in bold indicate plarameter settings wherés not contained in the respective confidencervate
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Table 3.2 ANOVA table for empirical type | erroteausing null model |

Variable source DF Mean square F value Pr>F
NORMAL 1 0.00019136 6.29 0.0133
S GMA 1 0.00001344 0.44 0.5074
MAF 2 0.00056355 18.52 <.0001
a 3 0.03607492 1185.48 <.0001
METHOD 2 0.00002347 0.77 0.4645
Error 134 0.00003043
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3.1.2 Null Simulation |1

Table 3.3 showed the empirical type | error rate i1 95% confidence interval using the
second null model, which set the trajectory freqies to Hardy Weinberg values and
penetrance matrix values (the penetrance coeffigeerdenoted byPENE ) as described in
Chapter 2. Here, the variabRENE had two levels: high penetrance and low penetrafice
failure rates of the TRAJ model using three methwdee the same and they were shown in the

first table of Table 3.3.

Table 3.4 showed the ANOVA table of empirical tyiperror. The variablesNORMAL

and SGMA were significant. The variable is highly significant. The regression model was

empiricaltypel error= 0.0021+ 0.0012)+ 0.0031+ 0.0007)x (NORMAL = 0)
+0.0016+ 0.0007)x (SGMA = 4)+ 0.0681+ 0.0010)x (a = 0.1) with
+0.0036+ 0.0010x ( = 001)+ 0.0331+ 0.0010)x (o = 005)

R* =0.968.

The BPP and modal BPP had different empirical tygeror rates o = 0.0004). The
empirical type | error rate for the modal BPP metheas greater than the error rate using BPP
method. Overall, the Modal BPP empirical type loerrate was closer to the target. The
empirical type | error rate of the contingency &abiethod was essentially the same as that of

that modal BPP method.
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Table 3.3 Empirical Type | error rate and 95% odafice interval for chromosome 13 scoliosis dataguBPP method

Null Model 2: Hardy Weinberg Distribution for Trajery Groups

Normal | MAF Penetrance | o a = 0.005 a = 0.01 a = 0.05 o =0.10 Failure rate (%)
Model OBS | 95% Cl OBS| 95% Cl OBS| _95% Cl OBY _ 95%Ci
No— MAF=0.4 | High o — g| 0005 | (0.001,.009)[ 0.008 (0.002,0.013 0.039 (@@R51) | 0.076 | (0.059,0.092) 0
Normal | 9 Penetrance o = 4| 0003 [ (0,0.006) 0.006] (0.001,0.011) 0040 (0.0P8D. | 0.078 | (0.061,0.095) 0
Squared Low o — g| 0003 | (0,0.006) 0.004| (0,0.008) 0.044 | (0.031,0.057) | 0.083] (0.066,0.100) 0
Penetrance o = 4| 0005 | (0.001,0.009)[ 0.007  (0.002,0.012 0.038 @MR50) | 0.075 | (0.059,0.091) 01
MAF=0.1 | High o — g| 0007 | (0.002,0.012)[ 0.01d (0.004,0.016 0.037(0.025,0.049) | 0.061 | (0.046,0.076) 0
4 Penetrance — 4| 0004 | (0,0.008) 0.006] (0.001,0.011) 0.039  (0.02BD. | 0.069 | (0.053,0.085) 0
Low o — g| 0004 | (0,0.008) 0.006] (0.001,0.011)] 0.036 (0.0B&®. | 0.076 | (0.059,0.092) 0
Penetrance — 4| 0.002 | (0,0.005) 0.005| (0.001,0009) | 0.029 | (0.018,0.039) | 0.068 | (0.052,0.084) 0
Yes MAF=0.4 | High — g| 0003 | (0,0.006) 0.007| (0.002,0.012) 0.027(0.017,0.037) | 0.053 | (0.039,0.067) 27.8
9 Penetrance o — 4| 0004 | (0,0.008) 0.009] (0.003,0.015) 0.033(0.022,0.044) | 0.067 | (0.051,0.082) 0.2
Low g = g 0001 | (0,0.003) 0.003 | (0,0.006) 0.025 | (0.0150.035) | 0.052 | (0.038,0.066) 27.4
Penetrance o — 4| 0003 | (0,0.006) 0.008] (0.002,0.013) 0.039  (0.02BD. | 0.075 | (0.059,0.091) 1.8
MAF=0.1 | High o — g| 0005 | (0.001,.009)[ 0.008 (0.002,0.013 0.039 @@R51) | 0.077 | (0.06,0.093) 0
4 Penetrance _ 4| 0004 [ (0,0.008) 0.006] (0.001,0.011) 0.038  (0.026@ | 0.070 | (0.054,0.086) 0.1
Low o — g| 0002 | (0,0.005) 0.004| (0,0.008) 0.027 | (0.017,0.037) | 0.069 | (0.053,0.085) 0
Penetrance o = 4| 0003 | (0,0.006) 0.007| (0.002,0.012) 0.03[1(0.020,0.042) | 0.072 | (0.056,0.088) 0

Notes: The confidence intervals in bold indicate plarameter settings wherés not contained in the respective confidencervate
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Table 3.3 (continued) Empirical Type | error ratel 5% confidence interval for chromosome 13 ss@idata using Modal BPP method

Null Model 2: Hardy Weinberg Distribution for Trajery Groups

Normal | MAF Penetrance | ¢ a = 0.005 a = 0.01 a = 0.05 o= 0.10
Model OBS | 95% CI OBS| 95% CI OBS 95% CI OBS 95% CI
No: MAF=0.4 | High s =48 | 0.005| (0.001,0.009) 0.010 (0.004,0.016) 0.049 (0.036,0.p62) 0.@Wr@62,0.096)
Normal |9 Penetrance | ; = 4 | 0.003| (0,0.006) 0.00Y (0.002,0.01R2) 0.045 (0.032,0.058) Q.083 (0.066,(
Squared Low =48 | 0.003| (0,0.006) 0.00Y (0.002,0.01P) 0.046 (0.033,0.059) Q.085 (0.068,(
Penetrance =4 [ 0.007| (0.002,0.012) 0.007 (0.002,0.012) 0.042 (0.029,0.054) 0.@@51,0.095)
MAF=0.1 | High o =48 | 0.005| (0.001,0.009) 0.009 (0.003,0.015) 0.03@.025,0.049) | 0.063| (0.048,0.078)
4 Penetrance =4 | 0.004| (0,0.008) 0.008 (0.002,0.018) 0.042 (0.029,0.054) Q.0F958,0.09)
Low g=4g | 0.002| (0,0.005) 0.009 (0.003,0.015) 0.03®.024,0.047) | 0.067| (0.051,0.082)
Penetrance | ; = 4 | 0.002| (0,0.005) 0.005(0.001,0.009) | 0.034| (0.023,0.045) | 0.070| (0.054,0.086)
Yes MAF=0.4 | High g=2a | 0.004| (0,0.008) 0.007 (0.002,0.01p) 0.02®.016,0.036) | 0.046| (0.033,0.059)
9 Penetrance =4 [ 0.005| (0.001,0.009) 0.008 (0.002,0.013) 0.036.024,0.046) | 0.070| (0.054,0.086)
Low o =48 | 0.001| (0,0.003) 0.003| (0,0.006) 0.030] (0.019,0.041) | 0.056| (0.042,0.07)
Penetrance | ; = 4 | 0.004| (0,0.008) 0.008 (0.002,0.018) 0.040 (0.028,0.052) 0Q.07.06,0.093)
MAF=0.1 | High =28 | 0.004| (0,0.008) 0.006 (0.001,0.011) 0.043 (0.03,0.085) 0.083 (0.066,C
4 Penetrance | ; = 4 | 0.004| (0,0.008) 0.00Y (0.002,0.01p) 0.042 (0.029,0.054) Q.0U8B57,0.089)
Low =48 | 0.002| (0,0.005) 0.006 (0.001,0.011) 0.02D.017,0.037) | 0.069| (0.053,0.085)
Penetrance | ; = 4 | 0.004| (0,0.008) 0.007 (0.002,0.01P) 0.030.024,0.046) | 0.073]| (0.057,0.089)

Notes: The confidence intervals in bold indicate plarameter settings wherés not contained in the respective confidencervate
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Table 3.3(continued) Empirical Type | error ratel &% confidence interval for chromosome 13 scididata using contingency table method

Null Model 2: Hardy Weinberg Distribution for Trajery Groups

Normal | MAF Penetrance | ¢ a = 0.005 a = 0.01 o = 0.05 =010
Model OBS | 95% CI OBS| 95% CI OBS 95% CI OBS 95% CI
No— MAF=0.4 | High =28 | 0.003| (0,0.006) 0.010 (0.004,0.016) 0.043 (0.030,0.056) 0Q.0UF.R56,0.088)
Normal |9 Penetrance | ; = 4 | 0.002| (0,0.005) 0.006 (0.001,0.010) 0.03®.024,0.048) | 0.084| (0.067,0.101
Squared Low =48 | 0.002| (0,0.005) 0.008 (0.002,0.014) 0.040 (0.028,0.052) 0Q.0@063,0.097)
Penetrance | ; = 0.003| (0,0.006) 0.009 (0.003,0.015) 0.042 (0.029,0.054) Q.085 (0.068,(
MAF=0.1 | High g = 0.003| (0,0.006) 0.008 (0.002,0.014) 0.034.023,0.045) | 0.072| (0.056,0.088)
4 Penetrance | ; = 0.002| (0,0.005) 0.008 (0.002,0.014) 0.043 (0.030,0.056) 0Q.07.660,0.092)
Low g=2a | 0.004| (0,0.008) 0.007Y (0.002,0.01p) 0.039 (0.027,0.051) 0Q.0FH59,0.091)
Penetrance | ; — 4 | 0.001| (0,0.003) 0.005| (0.001,0.009) | 0.032| (0.021,0.043) | 0.059| (0.044,0.074)
Yes MAF=0.4 | High =28 | 0.004| (0,0.008) 0.008 (0.002,0.014) 0.030.019,0.040) | 0.061 | (0.046,0.076)
9 Penetrance | ; = 4 | 0.005| (0,0.009) 0.009 (0.003,0.015) 0.034.023,0.045) | 0.072| (0.056,0.088)
Low =28 | 0.002| (0,0.005) 0.005(0.001,0.009) | 0.031| (0.020,0.042) | 0.057| (0.042,0.071)
Penetrance | ; = 4 | 0.002| (0,0.005) 0.009 (0.003,0.015) 0.041 (0.029,0.053) 0.07.660,0.092)
MAF=0.1 | High =248 | 0.004| (0,0.008) 0.00Y (0.002,0.01p) 0.038 (0.026,0.050) Q.0U861,0.095)
4 Penetrance | ; — 4 | 0.003| (0,0.006) 0.007 (0.002,0.01P) 0.030.024,0.046) | 0.069| (0.053,0.085)
Low =48 | 0.002| (0,0.005) 0.005(0.001,0.009) | 0.035] (0.024,0.046) | 0.071| (0.055,0.087)
Penetrance | ; = 4 | 0.003| (0,0.006) 0.008 (0.002,0.014) 0.030.019,0.041) | 0.075] (0.059,0.091)

Notes: The confidence intervals in bold indicate parameter settings wherés not contained in the respective confidencervate
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Table 3.4 ANOVA table of empirical type | erroreaising null model Il

Variable source DF Mean square F Value Pr>F
NORMAL 1 0.00045942 17.47 <.0001
SGMA 1 0.00012192 4.64 0.0326
MAF 1 0.00001813 0.69 0.4074

a 3 0.04793349 1823.23 <.0001
PENE 1 0.00005105 1.94 0.1652
METHOD 2 0.00003032 1.15 0.3179

Error 182 0.00002629
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Table 3.5, Table 3.6 and Table 3.7 showed the ptiopoof replicates (1000 replicates
per setting) for which the number of SNP markerthiwi 10 markers of the target SNP locus
were in the top 5%, top 10% or top 25% of markerscboromosome 13, using BPP method,
modal BPP method and contingency table method c&spb/, using the second null model
(Hardy Weinberg model). For example, on Table #h&re were 46.6% of the replicates for
which no SNP markers within 10 markers of the taigP locus were in the top 5% of the
markers on the whole chromosome, under the pararseteng NORMAL =0, MAF = 049,
PENE =0, and SGMA =8 and using the BPP method. Similarly, 47.5% of iéyaicates for
which only 1 or 2 out of 10 SNP markers were intthyg 10% of all the markers on chromosome

13 under the same parameter setting and using Bfttoch The mean was calculated as:
20 . .
MEAN =" ixPri),

Here, i =Number of SNP markers within 10 markers of diseas®. Among the independent
variables: NORMAL,MAF ,PENE, and SGMA , MEAN was correlated with
NORMAL(p < 05) and MAF(p < 05). The independent variableBENE , SGMA were not
associated with the dependent variable. The resfitained from the three methods were

essentially the same.
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Table 3.5 Proportion of replicates (%) for whick tumber of SNP markers within 10 markers of thgeiasSNP locus are in the top 5%, top 10% or tcih 2%
markers on chromosome 13 for scoliosis data (natehll) using BPP method

Normal | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP Mean |SD
Model (%) 0 1-2 3-4 5-6 7-8 9-10f 11-12 13-14 15-20
No: 0.49 High =8| b 46.6 47.5 5.6 0.3 0 0 0 0 0 0.82 0.90
Normal 10 | 24.3 52 21 2.5 0.2 0 0 0 0 157 181
Squared 25 3.1 25.2 38.5 23.9 7.7 1.4 0.2 0 0 3.y7  4]02
g=4| 5 45.9 49.4 4.6 0.1 0 0 0 0 0 0.79 0.81
10 | 21.9 57.4 18.1 2.5 0.1 0 0 0 0 1.54 160
25 2.7 27.2 38.2 22.9 8.2 0.8 0 0 0 3.68 3/66
Low =8| 5 47.3 47.5 4.9 0.2 0.1 0 0 0 0 0.79 0.89
10 | 22.2 56.2 18.8 2.4 0.4 0 0 0 0 158 1.5
25 1.7 24.9 39.8 24.5 7.8 1.1 0.2 0 0 3.81  3J70
cg=4| 5 | 49.85| 45.74 4 0.4 0 0 0 0 0 0.73 0.82
10 | 25.03| 55.05] 17.72 1.9 0.2 0.1 0 0 0 149 1173
25 3.6 26.63| 38.54 235 6.4 1.2 0.1 0 ¢ 364 376
0.14 High g=8| 5 48 47.7 4.1 0.2 0 0 0 0 0 0.76 0.78
10 | 22.6 57.4 18.2 1.7 0.1 0 0 0 0 151 154
25 2.7 22.9 40.1 25.3 8.3 0.7 0 0 0 3.81 3)63
g=4| 5 47.9 47.3 4.8 0 0 0 0 0 0 0.76 0.78
10 | 24.6 56.7 16.6 1.9 0.2 0 0 0 0 146 165
25 4.1 26.6 39.7 23.4 5.2 0.8 0.2 0 0 3.67 3|55
Low g=81| 5 49.8 46.1 4.1 0 0 0 0 0 0 071 0.74
10 | 237 56.6 17 2.5 0.2 0 0 0 0 149 163
25 3 26.2 38.1 23.3 8.3 1 0.1 0 0 3.75 3.89
cg=4| 5 52.4 44.3 3.3 0 0 0 0 0 0 0.656 0.65
10 24 57.2 18 0.8 0 0 0 0 0 144 1.38
25 3 24.5 40.3 25.7 5.8 0.7 0 0 0 3.71 339

46



Table 3.5 (continued)

Normal | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP Mean | SD
Model (%) 0 1-2 3-4 5-6 7-8 9-10| 11-12 13-] 15-20
Yes 0.49 High |s=8] 5 66.8 32 1.1 0.1 0 0 0 0 0 0.43 0,70
10 51.7 41.3 6.9 0.1 0 0 0 0 0 0.81 1/01
25 32.7 30.2 27 8.4 1.7 0 0 0 0 1.99 185
g=4| 5 51.5 43.69 4.71 0.1 0 0 0 0 0 0.72 0/89
10 | 23.65| 58.62] 15.83 1.7 0.2 0 0 0 0 145 121
25 2.3 27.16| 40.28 23.45 5.5] 1.2 0.1 0 ¢ 3|61 .86
Low g=81] 5 73.7 24.4 1.9 0 0 0 0 0 0 0.36 0,69
10 53.5 39.7 6.2 0.6 0 0 0 0 0 0.77 104
25 32.7 33.1 24.9 8.3 1 0 0 0 0 1.86 1,78
g=4| 5 51.02 44.4 4.38 0.2 0 0 0 0 0 0.69 0,87
10 | 27.39| 53.26|] 17.32 2.03 0 0 0 0 0 144 1.26
25 3.97 27.7 39.72 22.5 4.74 1.3p 0 0 Qg 351 1.91
0.14 High g=8| 5 50.1 44.5 5.2 0.2 0 0 0 0 0 0.75 0/91
10 25.2 53 19.1 2.5 0.2 0 0 0 0 1.49 131
25 2.2 24.5 38.4 26.2 7.3 1.4 0 0 0 3.83 1.93
cg=4| 5 | 4885| 46.44 4.7 0 0 0 0 0 0 0.74 0|88
10 | 24.42| 54.85 18.72 2 0 0 0 0 0 151 1.27
25 2.6 25.23| 40.44 24.63 6.6 0.4 0.1 0 g 3/68 1.82
Low g=8| 5 51.9 43.9 3.9 0.3 0 0 0 0 0 0.9 089
10 24 56.2 17.9 1.7 0.2 0 0 0 0 1.47 1126
25 2.6 26.2 39.3 24.2 6.4 1.3 0 0 0 3.69 1.89
g=4] 5 51.4 44.4 4.2 0 0 0 0 0 0 0.69 0,86
10 25.5 55.5 17.1 1.7 0.2 0 0 0 0 1.44 124
25 2.6 26.5 38.7 24.3 6.2 1.7 0 0 0 3.74 1.94
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Table 3.6 Proportion of replicates (%) for whicke tumber of SNP markers within 10 markers of thgeiasSNP locus are in the top 5%, top 10% or tdih 2%
markers on chromosome 13 for scoliosis data (natehll) using Modal BPP method

Normal | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP Mean | SD
Model (%) 0 1-2 3-4 5-6 7-8 9-10| 11-12 13-14 15-20
No 0.49 High g=8| 5 49.9 43.9 5.9 0.3 0 0 0 0 0 0.76 0.95
10 | 22.9 54.4 20.6 1.9 0.2 0 0 0 0 1.5 131
25 3.6 24.8 39.5 24.3 6.2 1.4 0.2 0 0 3./1 198
g=4] 5 47.4 48.7 3.8 0.1 0 0 0 0 0 0.76 0.8B8
10 | 23.1 58.3 16.5 2.1 0 0 0 0 0 1.48 123
25 3.5 28.3 38.2 21.7 7.7 0.6 0 0 0 3.56 1|91
Low g=8| 5 50 45.8 4 0.2 0 0 0 0 0 0.73 0.88
10 | 24.6 56.6 16.8 1.8 0.2 0 0 0 0 1.47 1/25
25 1.6 25.5 40.6 24.3 6.5 1.4 0.1 0 0 3./6 1.89
s=4| 5 | 50.65| 45.54 3.4 0.4 0 0 0 0 0 0.69 0,87
10 | 26.83| 54.55 16.41 1.9 0.3 0 0 0 0 142 128
25 3.5 29.03| 38.74 21.8i 5.8 1 0.1 0 0 353 1091
0.14 High g=8| 5 45.4 49.1 5.3 0.2 0 0 0 0 0 0.81 0.2
10 | 21.2 57.9 18.7 2.2 0 0 0 0 0 156 125
25 2.1 22.4 38.1 28.2 8.1 1.1 0 0 0 3.91 1i88
g=4| 5 45.6 49 5.4 0 0 0 0 0 0 08L 09
10 | 23.2 56.7 17.9 2.1 0.1 0 0 0 0 152 1/25
25 3.8 25.1 39.5 24.1 6.5 0.9 0.1 0 0 367 1.9
Low g=8| 5 48 47 4.8 0.2 0 0 0 0 0 076 09
10 | 22.1 57.8 17.1 3 0 0 0 0 0 156 1|3
25 2.5 24.4 36.2 26.9 8.2 1.7 0.1 0 0 3.87 201
cg=4| b 48.8 47.3 3.8 0.1 0 0 0 0 0 0.72 111
10 | 224 57.4 18.9 1.3 0 0 0 0 0 152 1p21
25 2.3 22.9 39.8 28 6.5 0.5 0 0 0 3.82 1/84

48



Table 3.6 (continued)

Normal | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP MeziD
Model (%) 0 1-2 3-4 5-6 7-8 9-10 11-12  13-14  15-20
Yes 0.49 High |s=8] 5 68.2 30.8 1 0 0 0 0 0 0 0.41 0.68
10 51.7 40.8 7.3 0.2 0 0 0 0 0 0.79 1/00
25 32.8 31 27.1 7.9 1.2 0 0 0 0 1.92 1}79
g=4| 5 53.71| 42.48 3.71 0.1 0 0 0 0 0 0.67 0[86
10 | 25.65| 58.12| 14.53 1.5 0.2 0 0 0 0 138 1.19
25 2.3 27.65| 41.69 22.3% 5.21 0.4 0 0 Qg 3|52 1.81
Low g=81] 5 76.2 22.3 15 0 0 0 0 0 0 0.32 0.5
10 54.5 38.6 6.5 0.4 0 0 0 0 0 0.74 1)00
25 33.4 34.1 24.7 6.3 1.5 0 0 0 0 1.81 176
g=4| 5 52.95| 42.97 4.07 0 0 0 0 0 0 0.66 0/84
10 | 29.12| 53.56] 15.5§ 1.73 0 0 0 0 0 136 1.24
25 | 4.28 28.62| 41.14 20.16 4.68 1.12 0 d Q 3142 1.87
0.14 High g=8| 5 48.7 45.7 5.5 0.1 0 0 0 0 0 0.79 093
10 20.6 57.3 19.6 2.4 0.1 0 0 0 0 1.56 1,28
25 1.7 22.7 39.3 26.4 8.2 1.6 0.1 0 0 300 1.92
cg=4| 5 | 4715| 47.94 4.9 0 0 0 0 0 0 0.77 0J90
10 | 22.22| 55.95| 19.22 2.5 0.1 0 0 0 0 158 1.29
25 2.8 23.53| 39.74 25.63 7.61 0.4 0.1 Q ( 3179 1.87
Low =8| b 49.6 46.1 3.9 0.4 0 0 0 0 0 0.73 090
10 23.2 55.5 19.3 1.5 0.5 0 0 0 0 1.54 131
25 2.5 23.1 40.9 24.2 7.8 1.3 0.2 0 0 383 192
g=4] 5 48.7 46.4 4.9 0 0 0 0 0 0 0.74 0.87
10 23.3 55.8 18.9 1.8 0.2 0 0 0 0 1.51 1/26
25 2.4 24.9 38.1 26.2 6.3 2.1 0 0 0 3.83 195
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Table 3.7 Proportion of replicates (%) for whiclk tumber of SNP markers within 10 markers of thgetaSNP locus are in the top 5%, top 10% or tdkh 25
markers on chromosome 13 for scoliosis data (mmllkation 11) using contingency table method

Normal | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP Mean |SD
Model (%) 0 1-2 3-4 5-6 7-8 9-10f 11-12 13-14 15-20
No: 0.49 High =8| b 45.9 48.2 5.9 0 0 0 0 0 0 093 0.94
Normal 10 21 58 18.7 2 0.2 0.1 0 0 0 1.66 1.65
Squared 25 2.2 23.5 41 25.3 6.2 15 0.3 0 0 3.82 384
g=4| 5 | 44.24| 5215 3.5 0.1 0 0 0 0 0 0.91 0.80
10 | 20.22| 59.06/ 18.81 1.8 0.1 0 0 0 0 165 1)51
25 1.9 24.83| 42.34 23.98 6.2 0.4 0.2 0 ¢ 371 347
Low =8| 5 | 45.55| 49.75 4.6 0.1 0 0 0 0 0 0.91 0.88
10 | 21.82| 58.05 18.72 1.3 0.1 0 0 0 0 160 147
25 14 24.23| 39.54 25.83 8.21 0.8 0 0 d 386 364
s=4| 5 | 51.35| 4494 3.7 0 0 0 0 0 0 0.80 0.82
10 | 25.63| 54.25] 17.42 2.4 0.3 0 0 0 0 1.68 1|76
25 1.4 30.13| 4254 20.38 4.6 1 0.1 0 Qg 351 3134
0.14 High cg=8| 5 | 46.75| 4855 4.3 0.4 0 0 0 0 0 0.90 0.93
10 | 22.12| 58.86] 17.32 15 0.2 0 0 0 0 1.59 149
25 2.3 24.03| 41.64 24.2P 6.6 1.2 0 0 G 376 3163
s=4| 5 | 49.39| 47.16] 3.45 0 0 0 0 0 0 0.83 0.80
10 | 24.04| 58.21] 16.43 1.21 0.1 0 0 0 0 162 1}43
25 | 294 | 28.29] 4351 1958 4.77 0.9 G d ( 3147  3.36
Low g=8| 5 51.9 44.1 4 0 0 0 0 0 0 0.80 0.84
10 | 25.9 55.5 16.2 2.2 0.2 0 0 0 0 1.53 165
25 2.5 28.2 41.2 21.1 6.3 0.7 0 0 0 3.56 353
cg=4| 5 50 46.4 3.6 0 0 0 0 0 0 0.82 0.81
10 | 24.6 58 17 0.4 0 0 0 0 0 149 1.30
25 2.6 27.7 42.1 23.4 3.8 0.4 0 0 0 3.50 3/11
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Table 3.7 (continued)

Normal | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP Mean | SD
Model (%) 0 1-2 3-4 5-6 7-8 9-10 11-12 13-14  15-20
Yes 0.49 High |s=8] 5 66.6 32.3 0.8 0.3 0 0 0 0 0 0.53 0/64
10 52.1 41.6 6.2 0.1 0 0 0 0 0 0.85 1/01
25 34 31.7 25 7.9 14 0 0 0 0 1.89 3|38
g=4| 5 50.7 46.29 3.01 0 0 0 0 0 0 0.80 0|77
10 | 25.03| 60.14| 13.33 1.4 0.1 0 0 0 0 145 1.35
25 2.4 28.98| 39.71 22.62 5.1¢ 1 0.1 0 Q 356 B.61
Low g=81] 5 69.9 28 2.1 0 0 0 0 0 0 0.490 0.p4
10 52.8 41.2 5.7 0.3 0 0 0 0 0 0.83 1]02
25 315 33.2 25.5 8.6 1.2 0 0 0 0 1.95 3.33
g=4| 5 53.48 | 42.56 3.96 0 0 0 0 0 0 0.78 084
10 | 24.85| 55.15| 18.6Z 1.38 0 0 0 0 0 165 152
25 4 30.26| 40.69] 20.64 3.23 1.1 0 0 0 337 3.45
0.14 High g=8| 5 48.2 46.7 4.9 0.2 0 0 0 0 0 0.88 093
10 26.5 54.5 17.1 1.8 0.1 0 0 0 0 1.52 1.60
25 2.5 24.3 38.6 26.1 7.2 1.3 0 0 0 3.81 384
cg=4| 5 | 47.16| 48.09 4.74 0 0 0 0 0 0 0.89 0,87
10 | 24.04| 56.06] 18.19 1.7 0 0 0 0 0 157 154
25 2.3 27.4 39.5 23.2 6.2 1.4 0 0 0 3.67 3.77
Low =8| b 52.9 45.3 1.8 0 0 0 0 0 0 0.74 0,69
10 25.2 57 16.6 1.2 0 0 0 0 0 1.50 1}42
25 2.9 26.1 40.2 24.1 5.6 1.1] 0 0 0 3.65 3.63
g=4] 5 53.5 42.6 3.9 0 0 0 0 0 0 0.77 0,83
10 25.8 57.3 16.2 0.7 0 0 0 0 0 1.46 1/34
25 2.8 27.7 37.7 24 6.4 1.4 0 0 0 3.67 391
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3.2 Simulated Power Results

3.2.1 Singlelocus model

Table 3.8 showed the simulated power to detectdibease locus associated with the
progression of disease in a single-locus model.tAd three methods had very high power
( power ~100%) to detect the disease locus for each settingid, SGMA, PENE and
NORMAL . The failure rates of the TRAJ procedure usingttitee methods are the same and

they are shown in the first table of Table 3.8.
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Table 3.8 Empirical power to detect associatiodiséase SNP on chromosome 13 with scoliosis dimglédocus model) using BPP method

Normal | MAF Penetrance | o o = 0.005 a = 0.01 a = 0.05 o =010 Failure rate (%)
Model OBS | 95%ClI OBS | 95%ClI OBS | 95%ClI O0B$ _ 95% CI
No: MAF=0.4 | High s=g|1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0
Normal | 9 Penetrance
Squared o =41 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0
Low ;=81 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0
Penetrance |~ =" 11 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0
MAF=0.1 | High o=gll (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0
4 Penetrance |~ ~—" 11 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 16
Low o—g|l (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0
Penetrance 5 = 4| 0.999 | (0.994,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0
Yes MAF=0.4 | High o — g 0.999 | (0.994,1) 0.999| (0.994,1) 0.999  (0.994,1) 1| 0.995,1) 1.0
9 Penetrance |~~~ 11 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0.2
Low o — g| 0.993 | (0.98,0.997) | 0.993 | (0.98,0.997) | 0.993 | (0.98,0.997) | 0.994 | (0.985,0.998) 18.4
Penetrance o =41 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0.2
MAF=0.1 | High ;=81 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0
4 Penetrance [~ ~77 17 (0.995,1) (0.995,1) 1 (0.995,1) 1 (0.995,1) 08
Low 5 =g| 0.997 | (0.990.999) |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0
Penetrance [~ — " 17 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 0

Notes: The confidence intervals in bold indicate parameter settings wherés not contained in the respective confidencervate
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Table 3.8 (continued) Empirical power to detecbakision of disease SNP on chromosome 13 with gsiglidata (single-locus model) using Modal BPP

method
Normal | MAF Penetrance | o o = 0.005 = 0.01 a = 0.05 o= 0.10
Model OBS | 95% CI OBS| 95% CI OBS 95% CI OBS 95% CI
No: MAF=0.4 | High o=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Normal | 9 Penetrance | ; = 4 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Squared Low c=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Penetrance =4 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
MAF=0.1 | High g=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
4 Penetrance | ; =4 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Low g=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Penetrance | s — 4 | 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Yes MAF=0.4 | High g=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
9 Penetrance | s — 4 | 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Low =28 | 0.994] (0.985,0.998) | 0.994| (0.985,0.998) | 0.994 | (0.985,0.998) | 0.994 | (0.985,0.998)
Penetrance | ;= 4 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
MAF=0.1 | High c=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
4 Penetrance | ; =4 | 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Low o=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Penetrance | ; — 4 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)

Notes: The confidence intervals in bold indicate plarameter settings wherés not contained in the respective confidencervate
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Table 3.8 (continued) Empirical power to detecbaigion of disease SNP on chromosome 13 with @siglidata (single-locus model) using contingenbieta

method
Normal | MAF Penetrance | o o = 0.005 = 0.01 a = 0.05 o= 0.10
Model OBS | 95% CI OBS| 95% CI OBS 95% CI OBS 95% CI
No: MAF=0.4 | High o=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Normal | 9 Penetrance | ; = 4 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Squared Low c=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Penetrance =4 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
MAF=0.1 | High g=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
4 Penetrance | ; =4 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Low g=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Penetrance | s — 4 | 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Yes MAF=0.4 | High =298 |0.998| (0.992,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
9 Penetrance | s — 4 | 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Low =28 | 0.994] (0.985,0.998) | 0.994| (0.985,0.998) | 0.996 | (0.988,0.999) | 0.997 | (0.989,0.999)
Penetrance | ;= 4 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
MAF=0.1 | High c=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
4 Penetrance | ; =4 | 1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Low o=8 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)
Penetrance | ; — 4 |1 (0.995,1) 1 (0.995,1) 1 (0.995,1) 1 (0.995,1)

Notes: The confidence intervals in bold indicate plarameter settings wherés not contained in the respective confidencervate
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Tables 3.9, 3.10 and 3.11 showed the proportioreplicates for which the number of
SNP markers within 10 markers of the disease SNBslavere in the top 5%, top 10% or top
25% of markers on chromosome 13 using BPP methadiahBPP method and contingency
table method, respectively using the power simotatinodel. The proportions were ‘drifting
right’ in tables 3.9, 3.10 and 3.11 (compared tas 3.5, 3.6 and 3.7), indicating the clustering
phenomena of the markers around the disease ldtwas.is, the markers around the disease
locus had much higher probability to rank in thp &%, 10% and 25% among all the loci on

chromosome 13.

Figure 3.1 showed the proportion of replicates gy mumber of significant SNPs. That
is, the x-axis was the number of the SNPs whiclewethe top 5% (figure (a)), top 10% (figure
(b)) and top 25% (figure (c)) of the markers onorthosome 13. The y-axis was the proportion of
replicates in which the number of significant maskevas as given. For the null simulations
(false positive), the number of significant markesss most likely 0, 1 or 2, while for the single
locus power simulations, the number of significaratrkers was mostly 7 and above. This figure
showed the clustering phenomenon of significant &iitkers around the disease SNP. For both
disease SNPs at low MAF level and high MAF levefew significant SNPs were clustering
around the disease SNP. My study also showed thatifh MAF level disease SNPs, there

were more significant SNP markers around the loci.
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Figure 3.1 Proportion of replicates for which thember of SNP markers within 10 markers of the diseBNP
locus were in the top 5% (figure(a)), top 10% (figfln)) and top 25% (figure(c)) of chromosome 13wy number
of significant SNP markers (parameter setting: aonal square transformation, MAF=0.49, high pemeteamodel

and o = 8)
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B power using BPP method
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Table 3.9 Proportion of replicates (%) for whicke tumber of SNP markers within 10 markers of tiseale SNP locus were in the top 5%, top 10% 02%&p
of markers on chromosome 13 for scoliosis datay(sitocus model) using BPP method

Normal | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP Mean |SD
Model (%) 0 1-2 3-4 5-6 7-8 9-10| 11-12 13-14 15-20
No 0.49 High g=8| 5 0 0 0.1 6.4 45.5 42.8 5.1 0.1 0 8.39 11
10 0 0 0 2.0 22.7 56.6 17.6 1.1 0 9.36 1.86
25 0 0 0 0 2.3 315 46.2 18.4 1.6 1121 152
g=4] 5 0 0 0 6.2 41.8 44.8 7.0 0.2 0 8.56 1.34
10 0 0 0 1.4 19.5 54.5 22.5 2.1 0 9.58 141
25 0 0 0 0.1 2.1 24.2 51.1 19.4 3.1 11/43 151
Low g=8| 5 0 0 13.4 47.5 31.1 7.5 0.5 0 0 6.18 1.57
10 0 0 4.2 29.8 41.7 19.5 4.6 0.1 0.1 7.84  1]77
25 0 0 0.5 5.1 25.2 36.8 24.2 6.8 1.4 9.61 2/06
g=4| 5 0 0 13.5 46.9 32.2 7.1 0.3 0 0 6.19 1.b3
10 0 0 3.3 29.0 41.6 21.6 4.1 0.4 0 740 1[74
25 0 0 0.2 4.0 22.9 37.3 26.7 8.4 0.5 9./6  1/96
0.14 High g=8| 5 0 65.0 30.7 3.8 0.5 0 0 0 0 223 1.16
10 0 38.0 45.7 14.0 1.9 0.4 0 0 0 3.12 147
25 0 5.9 27.8 38.2 20.4 7.1 0.5 0.1 0 546  1/97
g=4| 5 0 2.84 | 54.07) 39.33 3.66 0.1 0 0 0 437 1[15
10 0 1.42 25.3| 54.88 16,57 1.88 0 0 0 584 1]39
25 0 0.2 3.56 24.7| 39.64 27.03 4.27 0.51 0j1 758 1.83
Low g=8| 5 0 74.9 23.8 1.3 0 0 0 0 0 1.96 0.97
10 0 45.7 42.3 114 0.5 0.1 0 0 0 2.83 1833
25 0 5.8 31.0 38.9 19.3 4.4 0.6 0 0 5.24 1,88
cg=4| b 0 74.2 25.1 0.7 0 0 0 0 0 1.95 0.93
10 0 45.8 44.7 8.8 0.6 0.1 0 0 0 279 1.p8
25 0 5.8 33.5 41.6 14.8 3.8 0.4 0.1 0 507 1/81
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Table 3.9(continued)

Normal | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP Mean |SD
Model (%) 0 1-2 3-4 5-6 7-8 9-10| 11-12 13-14 15-20
Yes 0.49 High |s=8] 5 0 0.1 0 9.6 45.15  40.7 4.3% 0.1 0 8.29 1,39
10 0 0 0.1 1.31| 2394 5556 1757 151 ¢ 9/38 141
25 0 0 0.1 0.1 2.72 29.8 46.57 1849 223 1123 161
g=4| 5 0 0 0.1 5.1 43.8 46.3 4.5 0 0.2 8.52 1.B8
10 0 0 0 1.1 21.6 57.9 17.9 1.3 0.2 9.47 142
25 0 0 0 0 2.2 29.6 47.8 18.1 2.3 1128 161
Low g=81] 5 0 0.12 | 27.12| 55.34 14.3 3.08 0 0 0 586 1141
10 0 0 10.85| 46.24 3255 8.63 1.73 0 0 639 164
25 0 0 099 | 1492 38.1 3169 1258 148 0.5 840 191
g=4| 5 0 0 22 52.4 21.9 3.2 0.3 0 0.2 568 1.61
10 0 0 8.1 39.2 37.4 13.1 2 0 0.2 6.77 1|8
25 0 0 0.8 9.3 31.9 34.9 18.3 4 0.8 9.01 211
0.14 High g=8| 5 0 78.6 20.4 1 0 0 0 0 0 189 0.93
10 0 48.1 42.4 8.9 0.6 0 0 0 0 2712 1.26
25 0 7.5 35.2 39.1 15 3.2 0 0 0 493 1.78
g=4| 5 0 67.3 26.5 5.1 0.3 0 0 0 0.8 235 2.05
10 0 41.9 41.9 12.9 2.2 0.3 0 0 0.8 3.15 219
25 0 5.5 27.8 39.2 20.2 5.4 1.1 0 0.8 5.52 2.4
Low =8| b 0 79.6 19.3 1.1 0 0 0 0 0 1.83 0.89
10 0 50.2 42 7.2 0.6 0 0 0 0 264 1.25
25 0 7.8 38 35.6 15.2 3.2 0.2 0 0 486 1.83
g=4] 5 0 79.5 19.1 14 0 0 0 0 0 1.87 0.92
10 0 48.7 41.9 8.7 0.7 0 0 0 0 2711  1.27
25 0 7 35.8 40 13.5 3.3 0.4 0 0 492 178
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Table 3.10 Proportion of replicates (%) for whible humber of SNP markers within 10 markers of ikeake SNP locus were in the top 5%, top 10% or top
25% of markers on chromosome 13 for scoliosis ¢atale-locus model) using Modal BPP method

Normal | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP MeSD
Model (%) 0| 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-2

No 0.49 High =815 (0 0 0.1 8.4 51.1 36.7 3.7 0 0 8.17 13
10 | O 0 0 2.3 27.2 54.4 15.0 1.1 0 9.19 1.39

25 | 0 0 0 0 3.8 32.8 45.6 16.5 1.3 11.10 1.52

sg=4| 5 |0 0 0 7.7 44.8 41.5 5.8 0.2 0 843 1.34

10 | O 0 0 1.6 22.2 54.7 20.2 1.3 0 945 1.39

25 | 0 0 0 0.1 2.4 26.1 50.8 17.9 2.7 1133 1p2

Low =8| 5 1|0 0 16.9 48.7 28.5 5.5 0.4 0 0 599 152
10 | O 0 3.9 33.4 41.1 18.4 2.8 0.3 0.1 7.16 1[4
25 |10 0 0.3 6.4 26.3 37.5 22.9 5.6 1.0 9.45 2/05

sg=4| 5|0 0 14.5 50 29.8 5.5 0.2 0 0 6.05 1.48

10 | O 0 4.0 32 40.9 19.3 3.4 0.4 0 7.24 171
25 | 0 0 0.2 4.6 23.8 38.8 24.7 7.4 0.5 9.65 196

0.14 High g=8| 5 | 0] 66.8 28.6 4.2 0.4 0 0 0 0 221 117
10 | 0| 37.2 44.8 15.6 2.2 0.2 0 0 0 3.13 1.48

25 | 0| 5.1 28.8 37.5 20.9 6.2 1.4 0.1 0 547 2,0
a=4| 5 | 0| 274 47.36 45.53 4.26 0.1 0 0 0 454 116
10 | 0] 1.32 21.35 57.11 18.4 1.73 0.1 0 0 546 1/38
25 | 0] 0.2 3.05 23.68 41.05 26.93 4.57 0.41 0. 7/63 1.8

Low =8| 5 | 0| 747 23.8 1.4 0.1 0 0 0 0 1.99 0.96

10 | 0] 43.9 43.6 11.2 1.2 0.1 0 0 0 2.89 1.86

25 | 0] 4.9 32.1 40.2 17.5 4.7 0.6 0 0 525 1.85

cg=4| 5 | 0] 729 26 1.1 0 0 0 0 0 199 0.95

10 | 0| 42.9 46.6 10 0.5 0 0 0 0 287 1.28

25 | 0| 5.7 31.7 41.5 16.7 4.1 0.3 0 0 518 1.B2
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Table 3.10 (Continued)

Normal | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP Mean |SD
Model (%) 0 1-2 3-4 5-6 7-8 9-10| 11-12 13-14 15-20
Yes 0.49 High |s=8] 5 0 0 0 12.74| 50.28 33.6f 3.24 0.1 0 8.05 1/35
10 0 0 0 1.92| 3033 5146 1496 131 0 917 143
25 0 0 0 0.1 3.44| 3286 4439 16.88 2.33 1113 161
g=4| 5 0 0 0.1 6.6 46.6 43.2 3.3 0 0.2 8.36 1.36
10 0 0 0 1.3 24.4 57.1 16 1 0.2 9.35 142
25 0 0 0 0 2.5 30.8 47.2 17.3 2.2 1121 162
Low g=81] 5 0 0.12 | 29.59| 55.73 1258 1.97 0 0 0 5p2 1|33
10 0 0.12 | 12.83] 48.21 30.21 7.2F 1.36 d ( 6/23  1.60
25 0 0 1.61| 1653 3885 3157 9.25 2.09 0.12 826 1.94
g=4| 5 0 0 24 53.2 20 2.3 0.3 0 0.2 587 1.55
10 0 0 8.7 40.3 37.6 11.7 1.5 0 0.2 6.67 1[76
25 0 0 0.9 10.6 34.4 32.5 17.4 3.4 0.8 8.87 2]10
0.14 High g=8| 5 0 76.4 22.8 0.8 0 0 0 0 0 1.983 0.92
10 0 47.6 41.6 10.3 0.5 0 0 0 0 217 1.p8
25 0 6.7 32.8 40.2 15.8 4.3 0.2 0 0 507 181
g=4| 5 0 66 27.6 5.3 0.3 0 0 0 0.8 238 2.06
10 0 38.9 44 13.3 2.7 0.3 0 0 0.8 3.23 2p1
25 0 5.5 26.2 39.6 20.7 6.1 1.1 0 0.8 5.62  2/40
Low g=8| 5 0 77.3 21.6 1.1 0 0 0 0 0 1.85 0.90
10 0 48.2 44.1 7.1 0.6 0 0 0 0 2.68 1.26
25 0 8.2 34.2 38.3 16.7 2.3 0.3 0 0 495 1[78
g=4] 5 0 77.1 20.8 2.1 0 0 0 0 0 193 0.96
10 0 46.5 43.4 9.2 0.9 0 0 0 0 217 1.29
25 0 6.4 35.1 39.1 15.2 3.6 0.6 0 0 503 1,80
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Table 3.11 Proportion of replicates (%) for whible humber of SNP markers within 10 markers of ieeake SNP locus were in the top 5%, top 10% or top

25% of markers on chromosome 13 for scoliosis (atale-locus model) using contingency table method

Normal | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP MeSD
Model (%) 0| 1-2 3-4 5-6 7-8 9-10 11-12 13-14 15-20
No 0.49 High sg=81 510 0 0.4 10.2 51.6 34.9 2.9 0 0 8.09 1.98
10 | O 0 0.1 2.1 29 55.9 12.1 0.8 0 9.10 1.99
25 | 0 0 0 0.1 4.9 35.4 42.8 15.7 1.1 1095 273
sg=4| 5 |0 0 0 7.2 46.9 43.3 2.6 0 0 8.33 1.75
10 | O 0 0.1 1.8 24 53.8 19.1 1.2 0 9.37 2.22
25 | 0 0 0 0.1 3.3 29 48.8 16.4 2.4 1121 2.68
Low =8| 5|0 0 17.4 50.3 26.8 5.2 0.3 0 0 591 254
10 | O 0 3.6 35.2 41.2 17.5 2.2 0.3 0 7.11 299
25 | 0 0 0.2 6.2 27.4 39.8 20.1 5.4 0.9 9.836 4,13
sg=4| 5 |0 0 14.7 49.4 30.9 4.9 0.1 0 0 6.03 2.37
10 | O 0 3.9 32.2 43 17.4 3.3 0.2 0 7.19 311
25 | 0 0 0.1 4.5 26.1 37.5 24.3 7.1 0.4 9.59 4.4
0.14 High =8| 5 | 0] 649 30.7 4.1 0.3 0 0 0 0 229 1.36
10 | 0| 36.6 46.7 14.7 1.9 0.1 0 0 0 3.14 2.26
25 | 0| 3.8 28.7 40.2 20.8 5.5 0.9 0.1 0 547 385
g=4| 5 |0] 1.9 48.27 46.12 3.69 0.01 0 0 0 453 145
10 | 0] 1.11 22.13 56.75 18.21 1.71 0.1 0 0 545 2|09
25 | 0] 0.15 3.74 24.75 40.27 26.1] 4.4¢ 0.35 0.07 757 3.58
Low sg=8| 5 | 0] 763 22.9 0.6 0.2 0 0 0 0 1.99 0.84
10 | 0| 44.8 42.7 10.6 1.6 0.3 0 0 0 289 2.22
25 | 0] 5.7 31.6 40.3 17.3 4.6 0.5 0 0 520 3.9
cg=4| 5 |0] 714 27.6 1 0 0 0 0 0 209 0491
10 | 0] 42.1 47.5 10.1 0.3 0 0 0 0 287 1.74
25 | 0| 55 31.6 42.6 16.2 3.9 0.2 0 0 5.14 3.6
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Table 3.11 (continued)

Box- | MAF | Penetrance o Top Number of SNP markers within 10 markers of disease SNP Mean SD
Cox Model (%) 0 1-2 3-4 5-6 7-8 9-10 11-12  13-14  15-20
Yes | 0.49 High |z=8| 5 0 0 0 12.06] 51.7 33.28 2.83 0.077 0 8.04 1|99
10 0 0 0 1.54 31.29 5157 1441 1.17 Qg 9.14  2{15
25 0 0 0 0.06 3.12 34.09 45.3 15.8 2.13 1108 2,66
cg=4| 5 0 0 0 6.3 47.2 43.7 2.4 0.3 0.1 8.37 1.79
10 0 0 0 1.2 25.6 56.8 15.6 0.7 0.1 9.29 1,94
25 0 0 0 0 1.6 31.3 47.1 17.6 2.4 116 254
Low cg=8| 5 0 0.21 29.76| 56.72 11.68 1.67 0 0 0 5.19 1|87
10 0 0.15 12.99| 48.15 30.06 7.3 1.35 q ( 6,21 290
25 0 0 1.64 18.09 40.11 30.71 7.67 1.79 0.p1 810 3.72
g=4| 5 0 0 21.9 52.9 22.2 2.7 0.1 0 0.2 564 241
10 0 0 8.9 42 36.7 11.1 1.1 0 0.2 6.59 3.02
25 0 0 1.3 11.2 35.9 31.3 16.5 3.2 0.6 8./5 4|52
0.14 High g=8| 5 0 74.6 23.4 2 0 0 0 0 0 2056 095
10 0 48.4 41.9 9.4 0.3 0 0 0 0 2.73 1.77
25 0 7.4 33.9 40.4 14.5 3.6 0.2 0 0 497 349
g=4| 5 0 67.3 26.7 5.1 0.2 0 0 0 0.7 235 261
10 0 39.6 45.2 12 2.3 0.2 0 0 0.7 3.14 3.38
25 0 5.6 27 39.8 19.7 6.1 1 0 0.8 551  4.90
Low cg=8| 5 0 76.5 22.2 1.3 0 0 0 0 0 199 0.85
10 0 47.9 45.2 6.5 0.4 0 0 0 0 2.69 1.58
25 0 7.9 36.7 36.4 16.5 2.2 0.3 0 0 4.88 347
g=4| 5 0 77.6 19.7 2.7 0 0 0 0 0 200 0.97
10 0 46.8 44.5 8.4 0.3 0 0 0 0 2.74  1.68
25 0 6.5 36.2 38.3 14.9 3.5 0.6 0 0 499 3559
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3.2.2 Multi-locus model

Table 3.12 showed the simulated power to detech dacus associated with the
progression of disease in a multi-locus model. fHilere rates using the TRAJ procedure are 0
in all settings. | fit a generalized linear modethe variables. Here, the simulated power was the

dependent variable, andORMAL, MAF , targeta level and METHOD were the independent
variables. In Table 3.13, the variablB$AF and « level were significant p < 0.0001) in the
model, but not NORMAL variable (p=0.3552) or METHOD variable (p=0.4688). The

empirical power of the three methods was esseptiadl same. The regression model was

empiricalpower= —1.9673+ 3.5579)+ 125492+ 79.4324)x MAF + 46.2867+ 2.8546)x (o = 0.1)
+23.9600+ 2.8546)x (e = 001)+ 42.2400+ 2.8546)x (o = 005)
with R? = 071.

| further examined the power controlling for whethe not the data was normally
distributed (NORMAL =0 or 1). Figure 3.2 displayed three charts, edctvtoch showed the
power to detect each locus by method when the wlatanormally distributed NORMAL =1).
The horizontal axis was the MAF of a causal SNRe Vértical axis was the power. Each graph
contained four curves, one for each of the fougegtalpha levels. The three charts in Figure 3.2
were quite similar: the powers were approximatalgpprtional to MAF. That is, the power
usually increased as MAF increased, except for@E with MAF = 0.016. The power strictly
increased asx increased. Figure 3.3 contained the results whendiata was the square of

normally distributed values. The patterns werestln@e as in Figure 3.2.
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There was a power drop at MAF=0.016 in Figure 8t2he SNP rs9543107. In Table 2.4
in Chapter 2, the SNP rs9543107 was in high linkdigequilibrium with four other SNPs. This
could be an explanation of the power drop. Anothewer drop in Figure 3.2 happened at
MAF=0.033, at the SNP rs7331979. In Table 2.4,SN rs7331979 was also in high linkage
disequilibrium with other three SNPs. In Figure,3d the other SNPs which did not have more
than two high linkage disequilibrium with other S&{Pthe power increased as the MAF

increased.

To understand the differences among the three msthocompared any two paired
methods using t-test. From the results, BPP methodl Modal BPP method were both
significantly different from contingency table meth with regard to the power comparison
(p<0.001), for both normally distributed data and data thats the square of normally
distributed data. The power using the BPP methaglived significantly different from the power
using modal assignment method when the data wamallgrdistributed (o = 040). When the
data was the square of normally distributed ddtte,gower of the modal BPP was somewhat

higher than the power using the BPP< 0.0165).

| also used the Cochran’s test (or Cochran’s Q tesl McNemar's test to compare the
distributions of the detection rate using threehmds, which was shown in Table 3.14. For each

SNP, | set a binary variable

S - 1, SNPiisdetectedisingoneof themethods
L 0, otherwise '

66



Then z, was measured using three methods. The hypotheSisohran’s test was:

H,: the marginal probability of a positive responseswnchanged across the three methods.

For 70% of the SNPs, the p-values of the Cochrsiviere small (p<0.05), which indicated that
the probability of detecting each of the loci usthgee methods were different. Further, | used
the McNemar’s test to compare any pair of the nethdhe BPP method and the modal BPP
method were essentially the same with regard tad#iection rates. However, for some of the
loci, comparing the BPP method and modal BPP metitidthe contingency table method, the

detection rates were different.
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CT

Figure 3.2 Power of Procedure by MAF of Locus inlfidlocus Model, Normally Distributed Data, for seted target levels of significance
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power of BPP method by MAF of the SNP

Figure 3.3 Power of Procedure by MAF of Locus inlfidlocus Model, Data Square of Normally DistribdtBata, for selected target levels of significance
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Table 3.12 Power Simulation to detect the assaxiaif disease SNP on chromosome 13 with scoli@gs @nulti-locus model)

Normal SNP BP MAF 2=0.005 a=0.01 a=0.05 =0.10
BPP | Modal| CT BPP | Modal| CT BPP | Modal| CT BPP | Modal| CT

No: rs9599854| 7102118p 0.026 12.8§ 13.6| 12.8] 428 49.2]| 43.2 72| 704| 69.2| 76.4| 76.4| 764
Normal | rs9542756| 71309666 0.038 55.2 58| 51.6| 79.2| 82.8| 79.2| 924 924| 92.4| 93.6 94| 93.2
Squared rs9543107| 7221723]7 0.016 2 1.2 0 7.2 6.4 2.8 30| 27.2 26 42| 38.8] 39.2
rs17090361 73186500 0.051 86.4 87.2| 84.8| 924 92.4| 90.4| 948| 95.2| 944| 95.6| 95.6| 94.8
rs9593132| 752936211 0.048 55.20 58.4| 51.6 80| 81.6| 73.6| 91.2 90| 88.8] 92.4| 90.8| 90.4
rs5352 77373231 0.012 11.6 11.2 76| 36.4| 388| 27.2 76| 73.6| 724| 79.2| 77.6| 77.6
rs7331979| 78836214 0.033 2120 23.2| 32.4| 53.6 58| 59.2| 69.2| 67.6| 684| 744 716| 716
rs12863734 85268572 0.015 31.20 324| 27.2] 604| 64.8| 552| 824 79.6 78| 84.4| 83.6] 83.6
rs9522610| 8911083[ 0.026 44.4 44| 33.2 76| 77.6| 704 90.4| 89.2 88 92| 92.4| 90.8
rs16943207 89144779 0.031 3720 348| 304 67.2] 704 58 86| 85.6 84| 87.6| 88.8] 86.8
Yes rs9599854, 710211850.026 16.4 15.2 12 48 50| 404| 76.8| 73.2| 71.2| 80.8 80| 804
rs9542756| 71309666 0.038 56.8f 60.4| 52.4| 82.8 90| 81.2 98| 97.2| 96.4| 98.4| 984| 97.6
rs9543107| 7221723 0.016 1.6 0.8 0.4 6.8 6 24| 23.2| 244 20| 35.2| 324| 324
rs17090361 73186500 0.051 89.2 91.6 88| 952| 984| 96.4| 100| 99.2] 98.4| 100| 99.6| 99.2
rs9593132| 75293621 0.048 58.4 60.8| 58.4 80 86| 79.2] 95.2] 944| 93.2| 96.4| 96.8 96
rs5352 77373231 0.012 100 124 72| 328 384| 26.8 66 66| 65.2| 724 72| 71.6
rs7331979| 78836214 0.033 26 25.6| 35.2| 53.6 58 60| 76.4| 748| 73.6 80| 78.8| 79.6
rs12863734 85268572 0.015 27.6 30| 23.6 64| 66.8 56| 83.2] 824| 816| 864 87.6| 87.6
rs9522610| 89110831 0.026 48| 46.4| 37.2| 73.6| 816| 724 95.6| 952 94| 97.6| 97.6] 97.2
rs16943207 89144779 0.031 37.60 39.6 36| 64.8 68| 59.2 88| 884 84| 91.2| 91.2| 88.8
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Table 3.13 ANOVA table of empirical power using tilbcus model

Variable source DF Mean square F Value Pr>F
NORMAL 1 209.81400 0.86 0.3552
MAF 1 61017.53801 249.60 <.0001
a 3 26748.84333 109.42 <.0001
METHOD 2 185.79467 0.76 0.4688
Error 232 56715.9680
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Table 3.14 P-values of Cochran’s test and McNé&ntest when comparing the three methods in mattiss model

Normal SNP BP MAF McNemar's test
Cochran test BPP vs. Modal BPP vs. CT Modal vs. CT
No rs9599854| 71021186 0.026 0.81 0.77 0.99 0.75
Normal | rs9542756| 71309666 0.038 0.01 0.26 0.14 0.009
Squared rs9543107| 72217237 0.016 0.07 0.69 0.99 NA
rs17090361 73186500 0.051 0.21 0.73 0.45 0.15
rs9593132| 75293621 0.048 0.008 0.15 0.16 0.004
rs5352 77373231 0.012 0.02 0.78 0.02 0.03
rs7331979| 78836214 0.033 <0.0001 0.38 <0.0001 <0.0001
rs12863734 85268572 0.015 0.05 0.71 0.13 0.02
rs9522610| 89110831 0.026 <0.0001 0.86 <0.0001 <0.0001
rs16943207] 89144779 0.031 0.008 0.40 0.003 0.05
Normal | rs9599854| 71021186 0.026 0.04 0.70 0.01 0.09
Squared rs9542756| 71309666 0.038 0.003 0.17 0.09 <0.0001
rs9543107| 72217237 0.016 0.10 0.50 0.25 0.99
rs17090361 73186500 0.051 0.05 0.21 0.63 0.01
rs9593132| 75293621 0.048 0.46 0.34 0.99 0.38
rs5352 77373231 0.012 0.003 0.26 0.06 <0.0001
rs7331979| 78836214 0.033 <0.0001 0.82 <0.0001 <0.0001
rs12863734 85268572 0.015 0.006 0.33 0.09 <0.0001
rs9522610| 89110831 0.026 <0.0001 0.58 <0.0001 <0.0001
rs16943207] 89144779 0.031 0.17 0.40 0.52 0.11

Notes: p-values in bold indicate the significanoeer confidence levetr = 005.
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Chapter 4 Conclusions and discussions

In this dissertation, | examined three methodsngishe BPP as the quantitative trait,
using the indicator variable that modal BPP watheclinically important group as the trait, and
the contingency table method to test the assooniatith the SNPs on chromosome 13. |
simulated two genetic models, the single-locus rhadd the multi-locus model. In the single
locus model, | assumed that the disease is causedsingle locus, and | studied two disease
SNPs, with MAF at 0.15 and 0.5 respectively. In thelti-locus model, | assumed that the
disease is caused equally by ten rare variant SH&sh with MAF smaller than 0.05. |
conducted the null simulation and the power sinntaind reported the empirical type | error

rate and empirical power to detect the disease $iNiAg the three methods.

In the null simulations, my study suggested thatdempirical type | error rate generally
held the nominakx rate whena was small. However, when increased ¢ near 0.05), there

was a decrease of the empirical type | error raevb the nominal rate as the nominal rate
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increased. There were no significant differencesragrthe three methods. Null model | and null
model Il had the similar results. The failure ratethe TRAJ procedure was higher in the
squared data model than the normal data model. Antlo@ squared data models, those with

high within group variance had much higher failtates.

In power simulations of single-locus model, all theee methods had very high power
(>99%) to detect the disease SNPs. | also exantgreanarkers around the disease SNP. All
methods showed significant power to detect the srariround the locus. This finding might be
important because instead of locating a specifi® SMe could locate a region on chromosome,

in which the disease SNP may occur.

In power simulations of the multi-locus model, ff@ver to detect the disease SNPs was
generally proportional to the MAF; that is, as MAF increased, the power usually increased.
However, if a SNP was in high linkage disequililbniwith many other SNPs, the power to
detect this SNP would drop substantially. Both BRP method and modal BPP method were
significantly better than contingency table metioth regard to power. The difference in power

between BPP method and modal BPP method was moficant.

In this dissertation, | only examined the genedictdrs. For future work, diverse factors,
like environment factors or other non-genetic catas, could be considered. Additionally, in
my study, | set the trajectory group to be threenvhrun SAS PROC TRAJ. This was because
generally, the three trajectory group model had leet BIC value. However, it could be
problematic because in a few cases, a two trajp@osup model or a four trajectory group
model had better BIC value. For future work, onald@onsider the best model that BIC picked

and examined how it would affect the empirical typerror rate and the power. Also in my
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study, | dropped the replicates in which TRAJ mo@dkd to converge. In future study, one

could examine those replicates.

In my study, | examined 1498 SNPs on HC13. In ®ittgsearch, one could choose
another chromosome and examine the SNPs on ihdnmulti-locus model, | simulated the
prevalence of disease to be around 2%. In futwgeareh, one could use more disease locus and

set a different prevalence of disease.
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Appendix

I. 1Dsof 1599 unrelated participants
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1. PLINK

1. Basics

PLINK is a command line program written in @A All commands involve typing
"plink" at the command prompt, followed by a numbépptions (all starting with "--option") to
specify the data files/methods to be used. A cotagist of all options and output file types is
given in this link:

http://pngu.magh.harvard.edu/~purcell/plink/referesttml

To run PLINK, one should start from typing "plinkile mydata” (there is a space before
the dashes). The data is in two files: in this casglata.ped and mydata.map. If the PED and
MAP files have different names, they can be spegiBeparately, with the command: "plink --
ped mydata.ped --map autosomal.map".

The PED file contains the demographic and phenotypormation about the subjects. It
is a white-space (that is, space or tab) delinfitedwvith the columns:

"Family 1D, Individual 1D, Paternal ID, Maternal |[I5ex(1=male; 2=female; other=unknown),
Phenotype”. The PED file can have one and only gimenotype, which is given in the sixth
column. The phenotype can be either a quantitatareor an indicator (0 or 1) variable.

If the PED file has some missing fields, one caa ascommand to indicate which
columns, if any, are missing. For instance, "--ii3-indicates there is no Family ID column (the
first column); "--no-parents” indicates there acepaternal and maternal ID columns (third and
fourth columns); "--no-sex"indicates there is ng Beld (fifth column) and all individuals set to
have a missing sex code; "--no-pheno” indicateretiseno phenotype field (sixth column).

The MAP file contains the genotype location infotima. By default, each line of the
MAP file describes a single marker and must corgaectly 4 columns:

"chromosome # (1-22, X, Y or 0 if unplaced)”, re¥SNP identifier, Genetic distance
(morgans), Base-pair position (bp units)"

If "Genetic distance" is missing in MAP file, onarcadd a flag: "--map3", that is: "plink --

file mydata --map3" In this case, the three columnglAP are expected to be "chromosome, rs#
and Base-Pair".

2. Summary statistics calculated in PLINK:
(1) Hardy-Weinberg Equilibrium:
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To test HWE for each SNP, use the option: "plinide--data --hardy”. PLINK then
creates the file: plink.hwe, which has the follog/fiormat:

"SNP: SNP identifier; TEST: code indicating sampdd;. minor allele code; A2: major allele
code; GENO: genotype counts:A1A1/A1A2/A2A2; O(HE®Bpserved heterozygosity; E(HET):
expected heterozygosity; P: HW p-value."

Thus, if HW p-value is significant, then we'll conde that this SNP is not in HWE.

(2) Minor Allele Frequency (MAF):

To generate a list of MAF for each SNP, one cantbsecommand: "plink --file data --
freq", which will create a file: plink.frg with fie columns: "CHR: chromosome; SNP: SNP
identifier; Al: allele 1 code (minor allele); A2llele 2 code (major allele); MAF: minor allele
frequency; NCHROBS: non-missing allele count”.

3. Association analysis
(1) Basic case/control association test:

To perform a standard case/control association oest can use the option: "plink --file
mydata --assoc". PLINK then will generate a filéirik.assoc", which contains the fields: "CHR:
chromosome; SNP:SNP ID; BP: base-pair; Al: mintal@iname; F_A: frequency of this allele
in cases; F_U: frequency of this allele in contrdl2: major allele name; CHISQ: basic allelic
test chi-square (1df); P: asymptotic p-value fos thst; OR: estimated odds ratio."

If the p-value is significant, we conclude thastBINP is associated with the disease. In addition,
if the option "--ci 0.95" is included, then "L9%ver bound of 95% CI for odds ratio" and "U95:
upper bound of 95% CI for odds ratio” will be apged to the output.

In my study, | used the Modal BPP (1 as in the fegectory group and O otherwise) as the
phenotype, and test the association with the SMRHimmmosome 13.

(2) Quantitative trait association:

If the phenotype (column 6 of the PED file) is qtitive, the PLINK will automatically
treat the analysis as a quantitative trait analySiee can use the same command as for
case/control association: "plink --file mydata s@s’, which will generate the file "plink.assoc".
The file has the following fields:
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"CHR: chromosome; SNP: SNP ID; BP: base-pair; NME8f non-missing genotypes; BETA:
regression coefficient; SE: standard error; R2rasgjon r-squared; T: Wald test t-statistic; P:
Wald test asymptotic p-value." If the p-value ignsficant, then we conclude that the SNP is
highly associated with the disease.

In my study, | used BPP as the quantitative teait] then tested the association with the
SNPs on chromosome 13.
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