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Abstract of the Dissertation

POPULATION MONTE CARLO SAMPLING

FOR HIGH DIMENSIONAL PROBLEMS

by
Bingxin Shen

Doctor of Philosophy
in

Electrical Engineering
Stony Brook University

2011

Many real-world data analysis problems involve estimating unknowns and approxi-

mating their posterior distributions when only partial or inaccurate/noised observations are

available. In most cases, the system models are non-linear and/or non-Gaussian with high

dimensions, where the posterior distributions cannot be obtained analytically. For the last few

decades, many approximation schemes have been proposed to solve this problem. One group of

tools favored in theory and practice are Monte Carlo (MC)-based methods. Population Monte

Carlo (PMC) is one of the methods of the MC family for batch processing of data.

PMC algorithms iterate on a set of samples and weights. The proposal distributions

are updated at each iteration by learning from the performances of the previous proposal dis-

tributions compared to the target distribution. The target distribution is often the a posteriori

distribution of a set of unknowns of interest given observed data and the employed model. The

estimation quality and convergence efficiency rely on many factors including the number and

“quality” of the generated samples.

In problems with a high dimensional state space, the PMC implementation is very

challenging due to the necessity of large numbers of samples. In this thesis the focus is on

researching and advancing the PMC methodology towards its adequate and robust performance

in scenarios of high dimensional systems.

In some of these problems, some of the unknown parameters are conditionally linear

given the remaining parameters. For those cases, marginalized PMC (MPMC) is proposed
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to lower the computational cost by only generating samples of the nonlinear parameters and

marginalizing the remaining linear parameters. This approach is based on the well-known Rao-

Blackwell theorem.

The computational efficiency of the PMC method can be further improved by the use

of a distributed structure. To that end, we propose a novel method referred to as multiple PMC

where the state space of interest is partitioned into several subspaces with lower dimensions

and handled by a set of parallel PMC estimators. Each PMC estimator updates the weights of

the samples and the importance functions, if necessary, using information from the other PMC

estimators.

As with every method that uses importance sampling, the crucial factor for good per-

formance of the method for PMC is the choice of generating functions of the particles. We

also propose an alternative method where the generating functions are alternating condition-

als, thereby mimicking the idea behind Gibbs sampling. With this approach, one can generate

particles in high dimensions more efficiently.

We test and demonstrate the proposed approaches on the classical problem of estimating

the frequencies of multiple sinusoids. The simulation results show the accuracy of the estimates

and the feasibility of the methods. The performances of the proposed methods are compared to

that of other conventional approaches. Computational complexity and convergence properties

are also studied.
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CHAPTER 1

Introduction

1.1 Motivation

Modern science and engineering advancement involves dealing with problems related

to high-dimensional systems. Image retrieval [69, 73], financial tick-by-tick data analysis [32,

41,50], biological data processing [35,40], or weather prediction [26,29] are just few examples

of high dimensional systems of interest (see Figure 1.1).

Figure 1.1: Examples of high dimensional problems.
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Image retrieval deals with searching for images with certain content within a large digital

database [69, 73]. It can be used for security such as face recognition, media retrieval applica-

tion like Google’s image search project, or medical treatment with nuclear magnetic resonance

(NMR) images of a patient. Unlike text data, images form a much more complicated space.

For instance 1011 digital images taken into Google’s image database form an extremely large

state space if no data compression or feature extraction are involved. Traditional processing

procedures cannot handle such large database.

In finance, a typical multi-factor tree (usually the joint product of a number of bino-

mial trees) may involve hundreds of parameters in valuing and analyzing complex instruments,

portfolios and investments [32]. The traditional numerical approaches are usually infeasible or

impossible to deal with high-dimensional integrals in option pricing problems [41, 50].

Data processing is widely used in the biological problems, for instance the development

of molecular diagnostics. However, it is extremely hard to sample and process the information

using traditional methods for large molecular systems, which can have up to 14, 000 atoms [35].

In dealing with biological molecule identification problems [40], one faces difficulties due to

model mismatch and the nature of the biological sequence. The resulting problems represent

inference in high dimensional, highly multimodal spaces,

Many modern geophysical problems, such as weather forecasting [26] are characterized

by extremely high-dimensional systems, and they pose difficult challenges for assimilation of

system information and observations. A typical weather prediction problem may deal with

hundreds of states and involve computations of hundreds of integrals.

Processing and inferring information from the previously described systems involve ad-

ditional challenges and difficulties that traditional signal processing techniques fail to meet.

Therefore, new approaches need to be developed and studied.
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1.1.1 Monte Carlo methods

Many real-world data analysis and signal processing problems involve the estimation of

unknown quantities or parameters from some given observations or measurements [23, 28, 45,

64, 68]. An estimator attempts to approximate the unknown parameters using the observations

and it is desirable to obtain estimators exhibiting optimality and minimum average error. How-

ever, in many situations it is infeasible or impossible to obtain such estimators, especially when

dealing with high-dimensional systems.

A class of computational algorithms which are often used in simulating complex phys-

ical and mathematical systems is the Monte Carlo (MC) family [23, 34, 55, 56, 59, 62]. MC

methods employ repeated random sampling to compute their results.They are especially useful

in studying high-dimensional systems, characterized by significant uncertainty in their inputs,

complicated boundary conditions, non-linearities and non-Gaussianities [23].

MC methods have been applied in many areas of computational mathematics and basi-

cally can be divided into two sub-groups: methods that operate in sequential mode and those

which work in batch mode. The sequential Monte Carlo (SMC) methods [17, 23], also known

as particle filters (PFs), deal with real time applications. Markov chain Monte Carlo (MCMC)

and population Monte Carlo (PMC) belong to the group of batch methods.

In some applications, data estimation needs to be performed online or in real time. In

these cases, observations/measurements are processed in a sequential manner. For data esti-

mation in a linear Gaussian state-space model, it is possible to obtain an analytical solution,

given by the well known and widely used Kalman filter [42, 72]. If the data are modeled as a

partially observed finite Markov chain, it is also possible to derive an exact analytical expres-

sion to compute the posterior distribution, which is known as the hidden Markov model (HMM)

filter [4, 61]. When the system is non-linear and/or non-Gaussian, one can obtain approximate

solutions using grid-based filters [2, 15], or extended Kalman filters [47] or may be Gaussian

sum approximations [2, 49]. However, these methods are extremly difficult to implement and

are computationally too expensive for high dimensional systems. SMC methods constitute an
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important alternative for estimating unknown parameters in such applications. SMC methods

are flexible, easy to implement, parallelisable and applicable in very general settings [16,17,23].

Unlike online data processing that deals with interactive inputs/outputs, batch data pro-

cessing collects input data into batches and processes them in an offline mode. Except in few

special cases, including linear Gaussian state space models, it is infeasible to employ traditional

methods to obtain an analytical estimation solution. One group of tools that has been favored

includes batch mode MC methods such as the MCMC and PMC algorithms [1, 38, 62]. The

research presented in this work focuses on high-dimensional batch mode data processing.

1.1.2 Challenges

Over the last few decades, research has been focused in data gathering and data pro-

cessing methods. The information technology is growing fast and affecting more and more

different aspects of society. Data processing, estimation and prediction methods play a vital

role in the advancement of scientific research, medical investment, engineering development,

and commercial endeavors.

Many real-world problems are described by high dimensional nonlinear and non-Gaussian

complex models where standard computational methods are difficult to implement. MC batch

methods suffer too in their application to this type of problems due to the necessity of gener-

ating very large number of samples as the number of unknowns (dimension) of the problem

increases.

Figure 1.2 shows the CPU computation time on a personal computer of a PMC algorithm

in an example of frequency estimation of sinusoidal signal in noise with increasing dimensional-

ity of the vector of unknown parameters (i.e. the number of unknown frequencies). The number

of iterations and the number of samples used per parameter were fixed. From the figure, it is

clear that as the dimension of parameters to be estimated increases, the corresponding CPU time

increases exponentially. In fact, the PMC algorithm needs more iterations to converge which

further increases the computational cost and lengthens the convergence time. Figure 1.3 shows
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Figure 1.2: CPU time cost for a traditional PMC algorithm vs. dimensionality of the system.

the number of iterations required by the PMC method with increasing dimensionality of the

vector of parameters. It can be observed that the PMC algorithm needs a very large amount of

iterations to reach a similar level of accuracy as the dimension increases.

In high dimensional applications, the computational cost increases exponentially and the

applicability of these methods becomes questionable. Therefore, dealing with problems related

to high dimensional spaces is an important area of research.

1.2 Batch Monte Carlo methodologies

Batch data processing collects input data into batches and processes them without strict

deadlines for completing the processing.
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Figure 1.3: Number of iterations required by a traditional PMC method vs dimensionality of
the system.

1.2.1 Markov-chain Monte Carlo vs. population Monte Carlo sampling

Within the MC methodology, MCMC sampling is a class of algorithms for sampling

from probability distributions based on constructing a Markov chain towards the target distri-

bution [1]. The states/samples follow a random walk in the state space and the likelihoods

are computed to determine the acceptance or rejection of these new states/samples, shown as

in Figure 1.4. The states/samples of the chains after a number of steps/iterations are used to

construct an approximation of the target distribution. The most common application of MCMC

algorithms is to numerically calculate multi-dimensional integrals. However, the main prob-

lems related to the application of MCMC algorithms are the choice of the unknown number of

drawn samples to claim convergence [62]; the selection of appropriate initial conditions that
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will lead the chain to converge to the distribution [54, 62]; and the parallel implementation of

the algorithm [1].

Figure 1.4: The MCMC method.

An alternative to MCMC sampling is the PMC algorithm, which does not need tests for

convergence if samples are drawn from good proposal distributions. PMC methods are inspired

from particle systems and were introduced to handle and approximate rapidly changing target

distributions like those found in signal and image processing [23, 33]. The PMC methodology

primarily handles fixed but complex target distributions by building a sequence of increasingly

better proposal distributions.

The PMC algorithm produces a set of samples at each iteration that are used for the

representation of vector of parameters. The iterative structure allows for adaptivity and conver-

gence towards the target distribution. PMC algorithms have been applied to a number of fields,

such as scientific computing [55], statistical physics [38], statistical sciences [62], and image

rendering [51].

As shown in Figure 1.5, at each iteration the set of random samples are drawn from

a family of proposal distributions, called importance functions (IFs) or proposal distributions.

A weight for each sample is calculated according to the importance criterion. Finally resam-

pling is carried out before moving to the next iteration to avoid degeneracy of the samples [63].
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Figure 1.5: The PMC method.

At the end, the samples from all the iterations are used to form unbiased estimates of sum-

mations/integrals under that distribution. PMC sampling is an adaptive algorithm, since the

proposal distribution is updated at each iteration by learning from the performance of the previ-

ous proposal distributions compared to the target one. The PMC algorithm is presented in detail

in Section 2.2.

PMC sampling has similarities but also differences with respect to MCMC sampling [38].

Both methods are useful tools for the calculation of multi-dimensional summations/integrals.

MCMC is easy to implement, however, since the algorithm draws samples and moves them

around the equilibrium distribution in relatively small steps, it might take a long time to explore

the space of interest [62]. PMC employs the resampling/reweighting frame, which updates the

weights by learning from previous proposals and target distributions. The advantage of PMC

sampling over MCMC sampling is that the scheme is unbiased at every iteration and therefore

can be stopped at any time. PMC sampling is also more robust than MCMC sampling on the

initialization of parameters [10]. For these reasons, in this work we focus on the PMC method

and devise variants of its standard implementation to improve its performance and applicability

in high dimensional scenarios.
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1.2.2 State-of-art

The PMC methodology was originally summarized and named by Iba in [38]. The

algorithm was first applied for the calculation of the elements of an inverse matrix developed

by von Neumann and others [25, 34].Another reference of the PMC algorithm is Metropolis

and Ulam [56], where a solver of the Schrödinger equation by random walkers is proposed.

According to [14], one of the earliest studies of simple algorithm in statistical science is found

in [36].
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paper on Population Monte Carlo

Figure 1.6: Research papers on PMC.

Since the publication of [38], there has been an increasing interest and ongoing research

on the topic. A comparison of PMC and MCMC sampling was published in [10]. There are

36 research papers citing [38], 88 papers citing [10], and 311 papers on the topic of the PMC
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algorithm or its application between years 2000 and 2010 (see Figure 1.6). An overview of

the general PMC algorithm via computation of the products of non-negative sparse matrices is

given in [10, 38, 55].

The robustness regarding initialization of the PMC algorithm is shown in [10]. The

PMC algorithm based on iterated and adaptive importance sampling for static models was pro-

posed. Models were based on a static setting where the target distribution did not change/evolve

over time. PMC algorithms were also shown to be progressively adapted to a target distribu-

tion with a diminishing Kullbak divergence in [21]. In [10], analysis of the ion channel model

of Hodgson is illustrated using an importance sampling scheme based on a hidden Markov

representation, and the comparison of PMC and MCMC is provided.

A PMC scheme is applied to missing data problems in [12]. Instead of using a constant

IF or a sequence of IFs, other IFs that depend on both the iteration and the sample index are

proposed. Advantages of the new PMC scheme are also illustrated for problems of settings

of increasing difficulty, where the missing part can not be simulated or approximated through

completion devices. A comparison with MCMC for missing data problems is presented. PMC

sampling has better performance than the MCMC method in an example with the stochastic

volatility model.

The PMC algorithm was applied to reduce the asymptotic variance for the function of

interest in [22]. Variance reduction has always been a critical issue of MC methods. In [22],

a set of IFs is iteratively optimized to minimize asymptotic variance. An example of computa-

tion of the price of a European option in the Cox-Ingersoll-Ross model is used to explain the

implementation of the proposed iterative scheme.

A factored sampling method named condensation was applied to robot vision in [39].

The method was employed to interpret static images. A PMC approach to analyze complex traits

was presented in [7]. It can help plant geneticists and breeders in exploiting the marker and phe-

notypic data on pedigreed populations as available from ongoing breeding programs. The PMC
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method was also combined with sequential Monte Carlo chain particle and its effectiveness was

illustrated over an example for object tracking in video sequences [5].

The PMC algorithm was applied to a detection system of aerosol-released threats out-

doors [3], where it characterized the uncertainty associated with the threat and optimized the

detector placement scheme.

PMC sampling was used to improve the motif discovery methods [6] which play pivotal

roles in deciphering the genetic regulatory codes in protein sequences. It was shown that PMC

method overcame the conventional Expectation Maximization (EM) method’s main drawback

of being trapped in local optima. In another application, PMC sampling was used in micro simu-

lations in heavy demography data processing [74], where it was able to extract more information

than any other traditional method.

1.3 Contributions

As stated along this chapter, high dimensional state space makes the PMC implementa-

tion very challenging due to the necessity of very large amounts of samples and the correspond-

ing heavy computation cost. In fact, the PMC algorithm needs not only many more samples but

also many more iterations to converge in such cases.

In some of the high dimensional problems, part of the unknown parameters are condi-

tionally linear given the remaining parameters. The marginalized PMC (MPMC) is proposed

to lower the computational cost by only generating samples of the nonlinear parameters and

marginalizing the remaining linear parameters [8]. This approach is based on the well-known

Rao-Blackwell theorem [11].

The computational efficiency of the PMC method can be further improved by the use of

a distributed structure [66]. In this thesis, we propose a novel method referred to as Multiple

PMC (MultiPMC) where the state space of interest is partitioned into several subspaces with

lower dimensions and handled by a set of parallel PMC estimators. Each PMC estimator updates

the weights of the samples and the IFs, and if necessary, uses information from the other PMC

11



estimators. A similar structure used for sequential Monte Carlo methods applied to the problem

of target tracking can be found in [19]. A related approach to ours is the one from [24], where

the intended application is in speaker recognition. A finite mixture of Gaussians is decomposed

into subproblems, which are easier to work with. Then missing data are introduced, and samples

are drawn from posteriors. We note, however, that drawing directly from posteriors is often

infeasible. In this thesis, we employ the PMC algorithm to make the generation of samples

easy.

In all cases discussed above, the IFs update along with iteration number and sample

index. However, for simplicity and easy implementation, only Gaussian distributions are used

as proposal functions. In almost all applications, a good set of initial samples and proposal

functions are important for good performance. In this dissertation we explore these issues and

test the effects of different proposal functions on the convergence of estimates.

In particular, we propose that the generating functions be alternating conditionals, thereby

mimicking the idea behind Gibbs sampling [31]. With this approach, it is expected, that one

can efficiently generate particles in high dimensions [20]. We demonstrate the performance of

the proposed approach on the problem of frequency estimation of multiple sinusoids.

In summary, in this work we contribute to the advancement of PMC sampling for high

dimensional systems by introducing the following innovations:

• marginalized PMC, which lowers the dimension of the unknown spaces by marginaliza-

tion of the linear parameters and therefore decreases the computational cost;

• multiple PMC, which partitions the high dimensional space of unknowns into lower

dimensional spaces and handles the subproblems with a set of parallel PMC estimators

and therefore improves accuracy and reduces complexity;

• Gibbs PMC, which efficiently generates samples/particles according to alternating con-

ditionals and achieves better performance.
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1.4 Thesis organization

The remaining of this document is organized as follows. Chapter 2 states the mathe-

matical formulation of the problem and describes in detail the standard PMC; and Chapter 3

explained how to choose IFs. The proposed variants, named marginalized PMC, multiple PMC,

and Gibbs PMC algorithms are presented in Chapter 4, 5 and 6, respectively. Theoretical is-

sues related to computational complexity of the algorithms is discussed in Chapter 7. Several

examples are used to compare the implementation of the studied and proposed algorithms in

Chapter 8. Simulation results and performance analysis are also discussed. Finally, Chapter 9

concludes the dissertation with some final thoughts and future work.
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CHAPTER 2

Population Monte Carlo algorithms

PMC algorithms are a group of statistical methods based on adaptive importance sam-

pling. They generates samples from proposal distributions that are updated at each iteration by

learning from the performances of the previous proposal distributions compared to the target

distribution. The target distribution is often the a posteriori distribution of a set of unknowns of

interest given observed data and the employed model.

2.1 Mathematical formulation of the problem

We observe a set of data y which are modeled according to

y = h(x, v) (2.1)

where y ∈ Rdy×1 (or Cdy×1) is a vector of observations, x ∈ Rdx×1 is a vector of unknowns,

v ∈ Rdv×1 (orCdv×1) is a noise vector with a known parametric distribution (typically dv = dy),

and h : Rdx ×Rdv → Rdy (or h : Rdx ×Cdv → Cdy ) is a known function of the unknowns and

the noise.

Note that for additive noise case, the general model can be rewritten as

y = h(x) + v. (2.2)

For simplicity and easiness in the explanation of the proposed algorithms we constrained

this work to the additive noise case. Extension to other types of noise may be devised.

For the unknowns, we assume that we have the a priori distribution π(x), and that given

the noise probability distribution, we can write the conditional distribution p(y|x). Given the

observation vector y, π(x), and p(y|x), we want to compute the posterior distribution p(x|y),
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which can be written as

p(x|y) ∝ p(y|x)π(x) (2.3)

where ∝ symbolizes proportionality. We refer to p(x|y) as our target distribution. In some

cases, we may not be interested in the complete posterior of x, and instead, only in the posterior

of some subset of x.

Example:

Consider an example of estimating a set of real sinusoids in noise. The model

y = h(x) + v (2.4)

where the observation y ∈ Rdy×1 is a dy × 1 vector, and can be written as

yt =
K∑
k=1

ak cos(2πfkt) + bk sin(2πfkt) + vt,

t = 1, 2, ..., dy

The unknown parameter x ∈ R3K×1 vector, whereK is the number of sinusoids to be estimated.

The parameters ak and bk are the amplitudes of the cosine and sine components, respectively,

of the k-th sinusoid whose frequency is fk. The function h(·) is a nonlinear function of the

parameters in x; and v ∈ Rdy×1 is a white Gaussian noise vector with a covariance matrix Cv.

2.2 The PMC algorithm

The PMC algorithm approximates a stationary target distribution by an iterative sam-

pling procedure. The underlying principle of PMC is importance sampling [23, 68]. The

importance sampling has primarily been used for numerical integration and later in particle

filtering [23]. In estimation theory, a standard problem is the estimation of unknowns given the
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observations and the problem model. The objective is often to get the point estimates of the

unknowns or to provide their posterior distributions.

Let the unknowns be a vector denoted by x, and the observations be a vector presented

by y. A commonly used point estimator is the minimum mean-square error estimator (MMSE),

which is defined as

ηx =

∫
xp(x|y)dx (2.5)

where p(x|y) is the posterior of x. If we can draw samples from the posterior,

x(m) ∼ p(x|y), m = 1, 2, ...,M

whereM is the total number of independently drawn samples, then we can compute the integral

in equation (2.5) according to classical Monte Carlo integration by

η̂x '
1

M

M∑
m=1

x(m). (2.6)

This estimate will converge to the true value by the strong law of large numbers [37,45]. More-

over, for large M one can expect
η̂x − ηx
ση̂x

∼ N (0, 1)

where

ση̂x =

√√√√ 1

M

M∑
m=1

(x(m) − η̂x)2.

However, samples usually can not be drawn directly from the posterior p(x|y) in prac-

tice. Alternatively, samples can be generated from another probability distribution q(x), called

16



importance function, and the estimate is computed as

ηx =

∫
xp(x|y)dx

=

∫
x
p(x|y)

q(x)
q(x)dx

' 1

M

M∑
m=1

x(m)p(x(m)|y)

q(x(m))
.

When q(x) satisfies some conditions, it can be shown that by the strong law of large numbers,

this estimate also converges to the true mean of the posterior [13, 60].

The above approximation is often modified to

ηx '
M∑
m=1

w(m)x(m) (2.7)

where w(m) denotes the weight of sample x(m), i.e.,

w(m) ∝ p(x(m)|y)

q(x(m))
(2.8)

and
M∑
m=1

w(m) = 1. (2.9)

Here we remark that the goal of PMC is much more ambitious than simply obtaining point

estimates. With PMC one approximates the posterior distribution of the vector of unknowns x

given the set of observations y, i.e., p(x|y). This distribution contains all the possible informa-

tion about x and from it, one can obtain the MMSE, the maximum a posteriori (MAP), or other

point estimates.

PMC employs an iterated and adaptive importance sampling scheme. It also uses resam-

pling as do particle filtering methods to prevent sample degeneration [23, 28], where samples

with small weights are most likely removed and ones with large weights are replicated.
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The resampling method [30,63] is an extension of the importance sampling method that

convert a set of weighted samples
{

x(m),w(m)
}

to a set of unweighted samples
{

x̃(m)
}

.

The goal of resampling is to eliminate the samples/particles with low weights while dis-

tributing more particles in more probable target regions. The decision of resampling can be

made based on many methods/rules [11]. The most standard and efficient approach is multino-

mial sampling from x(m) with probabilities proportional to the importance weights w(m). We

replace the weighted samples

{
x(m)

}
=
{
x(1), x(2), ..., x(M)

}
with unweighted samples {

x̃(m)
}

=
{
x̃(1), x̃(2), ..., x̃(M)

}
where

x̃(i) = x(li), 1 ≤ i ≤M

and the {(m)} follows the multinomial distribution

{
x(1), x(2), , ..., x(M),

}
∝M(M, w(1), w(2), ..., w(M))

i.e.,

p(li = k|x(1), x(2), ..., x(M)) ∝ w(k), 1 ≤ i ≤M, 1 ≤ k ≤M.

Figure 2.1 shows two simple examples of sampling, weighting and resampling proce-

dures. The solid black curve represents the target distribution and the dashed red line represents

the proposal, i.e. IF. If one samples from the IF of a uniform distribution (i. e. the proposal in

the upper example), after weighting and resampling, the new set of samples will approximate

the target distribution. If one samples from the IF which is the same as the target distribution

(i.e. the proposal in the lower example), the set of samples will get equally weights and the new
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Figure 2.1: Examples of sampling, weighting and resampling.

set is the same as the original one. The whole set of samples approximate the target distribution

as well. These two simple example shows the idea of the sampling, weighting and resampling.

After all, the PMC method can be summarized as follows. Let j denote the iteration

number, j = 1, 2, ..., J , and let m represent the index of the particle, m = 1, 2, ...,M .

Algorithm for PMC:

Step 1. Choose an importance function q(m)
j (x);

Step 2. Draw samples x(m)
j from q

(m)
j (x);

Step 3. Compute the weights of the samples by
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w̃
(m)
j =

p(x(m)
j |y)

q
(m)
j (x(m)

j )
; (2.10)

Step 4. Normalize the weights according to

w
(m)
j =

w̃
(m)
j

ΣM
k=1w̃

(k)
j

; (2.11)

Step 5. Resample the samples according to their weights;

Step 6. If more iterations are needed, set j = j + 1, and go back to step 1;

Step 7. At the end, obtain the MMSE estimate from all available samples by

x̃ =

∑J
j=1

∑M
m=1w

(m)
j x(m)

j∑J
j=1

∑M
m=1w

(m)
j

.

Each iteration of the PMC algorithm produces a set of samples approximately simulated

from the target distribution but the iterative structure allows for adaptivity toward the target

distribution. Since the validation is based on importance sampling principles, dependence on

the past samples can be arbitrary and the approximation to the target is unbiased at each iteration

and does not require convergence times nor stopping rules [27]. The PMC algorithm therefore

can be stopped at each iteration as the sampling is statistically unbiased. Note that all available

weighted samples (from all available iterations) are used to approximate the posterior p(x|y).

Example:

Consider an example of estimating a bimodal distribution in noise. We had 10 observations

from

y ∼ 0.375N (θ1, σ
2
1) + 0.625N (θ2, σ

2
2)
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where θ1 = 0.24, θ2 = 0.265 and σ2
2 = σ2

1 = 0.002. The objective is to estimate θ1 and θ2 and

to approximate the bimodal distribution. The prior of these two modes are θ1 ∼ N (0, 5) and

θ2 ∼ N (0, 5).

Figure 2.2: Approximation of a bimodal distribution.

We used 5, 000 samples per iteration when implementing the PMC algorithm to this

simple example. We used normal distributions as IFs and we draw samples

x(m)
j ∼ N (x(m)

j−1, 0.002)

Figure 2.2 shows the approximations along iterations. From the approximated distribution, one

can easily get the point estimates for θ1 and θ2.

Note that, a total number of 500, 000 samples were generated when applying the stan-

dard PMC to estimate the above two-dimensional problem. As the dimension of the parameter

space increases, the use of PMC becomes challenging because it requires generation of a large

number of samples. Other techniques will be introduced in this work to improve the PMC

sampling efficiency or lower the dimension of the space of unknowns.
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CHAPTER 3

Importance Functions

PMC algorithm is a statistical method and is used for generation of samples approxi-

mately from a target distribution. The method is iterative in nature and is based on the principle

of importance sampling [59, 63].

3.1 How to choose importance functions

The idea of PMC is to apply the importance sampling iteratively, that is, to obtain a

approximation of a target distribution, in our case a posterior p(x|y), iteratively. Suppose that

one starts sampling from a proposal/IF q1(x)

x
(m)
1 ∼ q1(x).

These samples x(m)
1 from the support of a discrete random measure

χ1 =
{
x
(m)
1 , w

(m)
1

}M
m=1

where w1(m) are the normalized weights associated to the samples

w
(m)
1 ∝ p(x(m)

1 |y)

q1(x(m)
1 )

where
M∑
m=1

w
(m)
1 = 1.

Once the first random measure χ1 is obtained, based on its support one can construct a better

importance function q2(x) followed by the generation of a new set of samples x(m)
2 from it

and association of new weights w(m)
2 to the samples. Thereby, one obtains χ2 and continues
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to construct in a similar fashion χ3, χ4, and so on. Note that, all available samples (x)
(m)
j ,

j = 1, 2, ..., J are used to construct χJ+1 from which one proposes qJ+1(x). These random

measures χj approximate the target distribution p(x|y) and can be used for computing estimates

of integrals under that distribution.

3.2 Importance functions with single transition kernel

The standard PMC implements the importance sampling using normal distribution with

a single-kernel proposal. Initially one samples from a proposal/IF q1(x)

x
(m)
1 ∼ q1(x)

followed by weighting and resampling stated as in Chapter 2. In each later iteration, a new

sample x(m)
j is draw from a normal distribution

x(m)
j ∼ q

(m)
j (x) = N (x(m)

j−1, v)

where v is a constant variance.

The performance of the PMC algorithm relies on the choice of the variance v of the

transition kernel. It might take a long time for the PMC sampler to approach the target area with

a relative small variance. However, small variance helps to better explore the details around the

target area. To improve the sampling efficiency, one might be interested in the study of dynamic

variance or multiple variances.
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3.3 Importance functions with multiple transition kernels

In this work, we used a scheme of multiple IFs (i.e. multiple transition kernels) to

adaptively improve the sampling efficiency. In each iteration, a new sample x(m)
j is draw from

x(m)
j ∼ N (x(m)

j−1, vn), n ∈ {1, 2, ..., N}

where {v1, v2, ..., vN} are a set of pre-selected varicances. Between different iterations, the al-

gorithm can change the structure of the transition kernels to ensure that the subsequent sampling

procedure is carried out more efficiently. An algorithm to adaptively choose transition kernels

was proposed in [21] and it shown that the asymptotic variance of the estimates decreased by

applying the proposed scheme. A fixed number of pre-selected transition kernels was used

in [9]. The efficiency of the algorithm were demonstrated by an example with the posterior be-

ing a mixture Gaussian distribution. It was shown that the produced samples by the algorithm

accurately approximates the distribution.

In this work, we propose and use multiple IFs as follows. Assume that the total number

of iterations was J , and the total number of samples per iteration was M . At initial iteration

j = 1, the IF q(m)
j (x) was chosen as follows.

For one problem of sinusoids in noise, we used complex normal distributions for un-

knowns with initial mean at x0, which is obtained by Yule-Walker methods [67] (other prepro-

cessing methods also available), and variance that was randomly chosen from a set of multiple

transition kernels [9]

vx = [vx,1, vx,2, ..., vx,N ]>.

At initial step, each variance was selected with probability of αx,d = 1
N

, with d = 1, 2, , ..., N .

For example, if we use five transition kernels for an unknown frequency who has prior

as x ∼ U [0, 1], it could be

vx = σx
2 × [12, 0.12, 0.012, 0.0012, 0.00012]>
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with a constant σx2 = 0.52. The transition kernel with the largest variance makes the samples

easily explore the whole range of the frequency at any time; while the other transition kernels

allow more detailed exploration in the space of the unknown frequency as the samples moving

towards the target area.

Initially, each variance was selected with probability of αx,d = 1
5
, with d = 1, 2, , ..., 5.

Then the algorithm with multiple IFs iterate as follows:

1. At iteration j = 1, we used complex normal distributions as IFs for the unknowns x(m),

with mean at x0 and variance randomly chosen from vx randomly with probability of

αx,d = 1
5
. At iteration j > 1, we used complex normal distributions as IFs for the

unknowns x(m), with mean at x (m)
j−1 and variance that was randomly chosen from vx with

probability of updated αx,d.

2. Draw samples x(m)
j from q

(m)
j (x).

3. Compute the weights of the samples by

w̃
(m)
j ∝

p(x(m)
j |y)

q
(m)
j (x(m)

j )
;

4. Normalize the weights according to

w
(m)
j =

w̃
(m)
j

ΣM
k=1w̃

(k)
j

.

5. Resample the samples according to their weights.

6. Update αx,d with d = 1, 2, , ..., N

αx,d =
M∑
m=1

w
(m)
j Id

(
v
(m)
x,j = vx,d

)
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where Id
(
v
(m)
x,j = vx,d

)
is an indication function

Id
(
v
(m)
x,j = vx,d

)
=

 1, when v
(m)
x,j = vx,d

0, when v
(m)
x,j 6= vx,d

.

In order to keep every variance valid after each iteration, re-scaling was employed to αx,d

to ensure that the minimum weight for each available variance is 1
4N

.

Example:

Consider an example of estimating a sinusoid in noise. We had dy = 20 observations from

yt = a cos(2πft+ φ) + vt,

t = 1, 2, ..., 20.

The unknown parameter x = [a, φ, f ] = [1, 0, 0.5] is a 3×1 vector, where ak is the amplitude of

the cosine, φ is the phase and f is the frequency, respectively. The white Gaussian noise vector

v ∈ R20×1 has known covariance matrix Cv = σ2
vI, where I ∈ R20×20 is an identity matrix.

We applied the standard PMC and the PMC with multiple IFs to this estimation problem.

The standard PMC used IFs as

q(x)
(m)
j ∼ N (x(m)

j−1, 0.0052)

with a constant variance for all samples. The PMC with multiple IFs used a set of pre-selected

variances as

v = [v1, v2, ..., v5] = 0.52 × [12, 0.12, 0.012, 0.0012, 0.00012]>
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Figure 3.1: Performance of standard PMC and the PMC with multiple IFs.

and the IFs are

q(x)
(m)
j ∼ N (x(m)

j−1, vn), n ∈ {1, 2, ..., 5}.

Both methods used 500 samples for each iteration and the results are shown in Figure 3.1. It

took much less iterations for the PMC with multiple IFs to reach the target area.

The above example shows that the multiple choices of IFs with adaptive weights helps

the PMC algorithms to explore the space of unknowns more efficiently.
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CHAPTER 4

Marginalized Population Monte Carlo algorithms

The PMC methods are of great interest in many non-linear problems where standard

computational methods are difficult to implement. However, when the dimension of the param-

eter space increases, the use of PMC is also challenging due to the requirement of generation

of a large number of samples. In many high-dimensional problems, some of the unknown pa-

rameters are conditionally linear given the remaining parameters. By marginalizing part of the

unknowns, MPMC algorithm is expected to lower the computational complexity.

4.1 Mathematical formulation of the problem

We assume that the model of the data is

y = h(xn) + A(xn)xl + v (4.1)

where the observation vector is y ∈ Rdy×1 and the unknown parameter vector is x ∈ Rdx×1. The

vector x is composed of nonlinear parameters xn ∈ Rdxn×1 and linear parameters xl ∈ Rdxl×1,

where dx = dxn + dxl , and the prior density of x is given by p(xn, xl). As in (2.2), h(·)

is a nonlinear function of the parameters xn; A(xn) is a matrix of functions of the nonlinear

parameter xn and has dimension dy×dxl; and v is a dy×1 noise vector with a known probability

distribution p(v).

Example:

Consider the problem of frequency estimation of sinusoids in noise. A modified version of the

model is given by:

y = h(x) + v = A(xn)xl + v
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More specifically,

yt =
K∑
k=1

ak cos(2πfkt) + bk sin(2πfkt) + vt

t = 1, 2, ..., dy

The unknown vector of parameters is x ∈ R3K×1, which is composed of nonlinear parameters

xn ∈ RK×1 and linear parameters xl ∈ R2K×1, where K is the number of sinusoids. The

parameters ak and bk are the amplitudes of the cosine and sine components, respectively, of the

k-th sinusoid whose frequency is fk. The function h(·) is a nonlinear function of x; A(xn) ∈

Rdy×2K is a matrix of functions of the nonlinear parameters xn; and v ∈ Rdy×1 is a white

Gaussian noise vector with covariance matrix Cv.

The parameters to be estimated are x = [xl; xn], where

xl = [a1, b1, a2, b2, ..., aK , bK ]T

xn = [f1, f2, ..., fK ]T .

The prior of the amplitudes and the frequencies are considered independent, i.e.,

p(x) = p(xl, xn) = p(xl)p(xn).

4.2 The MPMC algorithm

MPMC employs a scheme where PMC is only applied to the nonlinear parameters, while

the linear parameters are integrated out (marginalized) [8]. This approach is analogous to the

well-known Rao-Blackwell (RB) theorem used in particle filtering/sequential Monte Carlo [11].

Previous work on this subject can be found in [12], where RB was applied to marginalization

of missing data through numerical integration. In this work, we consider the general problem

of having conditionally linear parameters, assume certain structure of distributions that allow

for analytical integration and apply sampling only for the nonlinear parameters of the model.

We argue that the MPMC method deals with lower dimension of space of unknowns than PMC,
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therefore it can construct new proposals much more easily. We expect that the marginalization

can achieve an improved computational efficiency.

Figure 4.1: PMC and MPMC samplers.

As shown in Figure 4.1, in the PMC algorithm, PMC sampling is applied to the whole

unknown vector x = [xn, xl]; in the MPMC algorithm, PMC sampling is only applied to the

nonlinear paratmeters xn and the linear ones xl are handled by other analytical methods, for in-

stance MMSE estimator. Specifically, at iteration j, one only generates samples of the nonlinear

parameters, x(m)
n,j . The corresponding weights to these samples are

w
(m)
n,j ∝

p(x(m)
n,j |y)

q
(m)
n,j (x(m)

n,j )
. (4.2)

The numerator p(x(m)
n,j |y) is the marginalized posterior of xn, which satisfies

p(x(m)
n,j |y) ∝

∫
p(y|xl, x(m)

n,j )p(xl, x
(m)
n,j )dxl. (4.3)

Based on x(m)
n,j , one can simply use the MMSE criterion to estimate the corresponding xl.

The proposed MPMC algorithm is summarized as follows. Let j denote the iteration

number, j = 1, 2, ..., and let m denote the index of the particle, m = 1, 2, ...,M .

Algorithm for MPMC:

Step 1. Choose an importance function q(m)
n,j (xn,j);
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Step 2. Draw samples x(m)
n,j from q

(m)
n,j (xn,j);

Step 3. Based on x(m)
n,j , use the MMSE criterion to estimate the corresponding xl;

Step 4. Compute the weights of the samples by

w̃
(m)
n,j =

p(x(m)
n,j |y)

q
(m)
n,j (x(m)

n,j )
; (4.4)

Step 5. Normalize the weights according to

w
(m)
n,j =

w̃
(m)
n,j

ΣM
k=1w̃

(k)
n,j

; (4.5)

Step 6. Resample the samples according to their weights;

Step 7. If more iterations are needed, set j = j + 1, and go back to step 1;

Step 8. At the end, obtain the MMSE estimate of the nonlinear parameters from all avail-

able samples by

x̃n =

∑J
j=1

∑M
m=1w

(m)
n,j x(m)

n,j∑J
j=1

∑M
m=1w

(m)
n,j

.

The estimate of the linear parameters x̃l can be obtained using the MMSE criterion. Note

that all available weighted samples (from all iterations) are used to approximate the pos-

terior p(x|y).
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CHAPTER 5

Multiple Population Monte Carlo algorithms

The computational efficiency of the PMC method can be further improved by the use of a

distributed structure [66]. We propose a novel method referred to as Multiple PMC (MultiPMC)

where the state space of interest is partitioned into several subspaces with lower dimensions and

handled by a set of parallel PMC samplers [19, 24]. Each PMC sampler updates the weights of

the samples and the importance functions, if necessary, using information from the other PMC

samplers. A similar structure used for sequential Monte Carlo methods applied to the problem

of target tracking can be found in [19]. A related approach to ours is the one from [24], where

the intended application is in speaker recognition. A finite mixture of Gaussians is decomposed

into subproblems, which are easier to work with. Then missing data are introduced, and samples

are drawn from posteriors. We note, however, that drawing directly from posteriors is often

infeasible. Here, we employ PMC algorithms to make the generation of samples easy.

The partitioning of the state often depends on the problem [52]. By decomposing the

original problem, one can considerably reduce the computational complexity. In the next section

we apply the idea of multiple samplers to the standard PMC, then we merge the concept of

multiple samplers with MPMC to come up with a more simplified scheme.

5.1 Multiple PMC

We will further assume that the model in equation (2.2) can be partitioned into K sub-

problems as follows:

y =
K∑
k=1

hk(xk) + v (5.1)

where [x1, x2, ..., xK ] forms the unknown vector x in the general model described by (2.2).1

1Equation (5.1) represents only one particular case where MultiPMC can be applied.
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Example:

Take again the problem of estimating a set of sinusoids in noise. The problem can be modeled

as

yt =
K∑
k=1

Ãke
i2πfkt + vt, t = 1, 2, ..., dy

where i =
√
−1; Ãk = Ake

iφk ∈ C is the complex amplitudes of the k-th component whose

frequency is fk ∈ [0, 1], and vt is white Gaussian noise. The parameters to be estimated are

x = [Ã1, f1, ..., ÃK , fK ], a 3K-dimension vector of unknowns. Assume that we know the total

number of sinusoidsK. The problem can be easily decomposed asK subproblems and handled

by K PMC samplers, where the k-th sampler will target the unknowns xk = [Ãk, fk] of dimen-

sion 3.

Figure 5.1: PMC and multiple PMC samplers.

Once the problem is partitioned, we assign each unknown vector xk a PMC sampler,

shown in Figure 5.1. The sample generation/propagation and resampling step of each PMC

sampler can be implemented as the algorithm stated in Section 2.2. The key question is the

weight updating of the samples for xk based on the other PMC samplers. Ideally, the weight

33



update w̃(m)
k,j should be carried out by

w̃
(m)
k,j =

p(x(m)
k,j |x−k,j, y)

q
(m)
k,j (x(m)

j )
(5.2)

where x−k,j contains the true values of all unknowns except xk,j . This form of update requires

the knowledge of x−k,j , which is not available. Here we propose to implement the updates as

w̃
(m)
k,j =

p(x(m)
k,j |x̃−k,j, y)

q
(m)
k,j (x(m)

k,j )
(5.3)

where x̃−k,j are the most recent estimated values of all the unknowns except xk,j

x̃−k,j = x̃ \ x̃k,j = [x̃>1,j, x̃
>
2,j, ..., x̃

>
k−1,j, x̃

>
k+1,j, ..., x̃

>
K,j]

>

and

x̃k,j =
M∑
m=1

w
(m)
k,j x(m)

k,j (5.4)

where w(m)
k,j is the normalized weight.

If the estimations from (5.4) are not available yet, another possibility is to use

x̃k,j−1 =
M∑
m=1

w
(m)
k,j−1x

(m)
k,j−1. (5.5)

In each iteration, the PMC samplers use the exchanged estimates to compute their

weights in an alternating way. For good performance of the method, we propose that in each

iteration the implementation order of the PMC samplers is selected randomly. Note that the ex-

changing information among the PMC samplers is not limited to the estimates. Suppose all the

samples/particles in one of the subspace form up a distribution with multiple modes, this very

PMC sampler should provide all these modes to the rest samplers instead of only one estimate.

In other words, if the samples/particles in one of the subspace has several clusters, this PMC

sampler should deliver at least efficient information one estimate from each cluster to the rest

PMC samplers.
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Let j denote the iteration number, j = 1, 2, ..., k denote the k-th PMC sampler, and m

represent the index of the particle in each sampler, m = 1, 2, ...,M . At the j-th iteration, the

MultiPMC method can be summarized as follows.

Algorithm for multiple PMC:

Step 1. Randomly choose the order of PMC samplers. Let the order be l1, l2, ..., lk, ..., lK .

Step 2. For the lk-th PMC sampler, choose the importance function q
(m)
lk,j

(x(m)
lk,j

), m =

1, 2, ...,M ; and draw samples x(m)
lk,j

from q
(m)
lk,j

(x(m)
lk,j

);

Step 3. Compute the weights of the samples by

w̃
(m)
lk,j

=
p(x(m)

lk,j
|x̃−lk , y)

q
(m)
lk,j

(x(m)
lk,j

)

Step 4. Normalize the weights according to

w
(m)
lk,j

=
w̃

(m)
lk,j

ΣM
k=1w̃

(m)
lk,j

; (5.6)

Step 5. Resample the samples according to their weights;

Step 6. Obtain the most recent estimated values for the lk-th sampler by

x̃k,j =
M∑
m=1

w
(m)
k,j x(m)

k,j ;

Step 7. When all K samplers finish the above steps and if more iterations are needed, let j

equal (j + 1) and go back to step 1;

Step 8. At the end, the estimated parameters are
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x̃j = [x̃>1,j, x̃
>
2,j, ..., x̃

>
K,j]

>. Note that all available weighted samples (from all samplers

and all iterations) are used to approximate the posterior p(x|y).

5.2 Multiple MPMC

The distributed structure of multiple samplers can also be applied to the MPMC meth-

ods, shown in Figure 5.2.

Figure 5.2: MPMC and multiple MPMC samplers.

If we modify (4.1) for a model of type (5.1), we can write

y =
K∑
k=1

(hk(xk,n) + Ak(xk,n)xk,l) + v, (5.7)

where [x1,n, x1,l, x2,n, x2,l, ..., xK,n, xK,l] form the unknown vector x in the general model de-

scribed by (4.1).
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Example:

Consider the example of estimating the set of sinusoids in noise:

yt =
K∑
k=1

Ãke
i2πfkt + vt, t = 1, 2, ..., dy

where Ãk ∈ C is the complex amplitude of the k-th component whose frequency is fk ∈ [0, 1],

and vt is white Gaussian noise. The parameters to be estimated are x = [Ã1, f1, ..., ÃK , fK ]

of dimension3K. Assume that we know the total number of sinusoids K. The problem can

be easily decomposed as K subproblems and handled by K PMC samplers, where the k-th

sampler will target the unknowns xk = [Ãk, fk] of dimension 3. Note that the k-th frequency

fk constitutes a nonlinear parameter, and the k-th complex amplitude Ãk is conditionally linear

parameters.

Assume that we know the total number of sinusoids K. The problem can be easily

decomposed as K subproblems and handled by K MPMC samplers, where the k-th sampler

targets the nonlinear parameter xk,n = fk of dimension 1.

We assign each unknown vector xk,n an MPMC sampler, and use the MMSE crite-

rion to estimate the corresponding marginalized linear unknowns xk,l. The sample genera-

tion/propagation and resampling step of each MPMC sampler can be implemented in the usual

way. The proposed weight update is implemented by

w̃
(m)
k,n,j =

p(x(m)
k,n,j|x̃−k,n, y)

q
(m)
k,n,j(x(m)

k,n,j)
(5.8)

where x̃−k,n represents the most recent estimated values of all nonlinear unknowns except xk,n,

i.e.,

x̃−k,n = x̃n \ x̃k,n = [x̃>1,n, x̃
>
2,n, ..., x̃

>
k−1,n, x̃

>
k+1,n, ..., x̃

>
K,n]>
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and

x̃k,n =
M∑
m=1

w
(m)
k,n,jx

(m)
k,n,j. (5.9)

If the estimate in equation (5.9) is not available yet, one can use

x̃k,n =
M∑
m=1

w
(m)
k,n,j−1x(m)

k,n,j−1. (5.10)

The implementation order of each MPMC sampler is randomized at each iteration as

before. Let j denote the iteration number, j = 1, 2, ..., let k denote the k-th MPMC sampler,

and let m represent the index of the particle in each sampler, m = 1, 2, ...,M . At the j-th

iteration the MultiMPMC method can be summarized as follows.

Algorithm for multiple MPMC:

Step 1. Randomly choose the order of MPMC samplers. Let the order be l1, l2, ..., lk, ..., lK .

Step 2. For the lk-th MPMC sampler, choose the importance function q(m)
lk,n,j

(x(m)
lk,n,j

), m =

1, 2, ...,M ; and draw nonlinear samples x(m)
lk,n,j

from q
(m)
lk,n,j

(x(m)
lk,n,j

);

Step 3. Compute the weights of the samples by

w̃
(m)
lk,n,j

=
p(x(m)

lk,n,j
|x̃−lk,n, y)

q
(m)
lk,n,j

(x(m)
lk,n,j

)

Step 4. Normalize the weights according to

w
(m)
lk,n,j

=
w̃

(m)
lk,n,j

ΣM
k=1w̃

(m)
lk,n,j

; (5.11)

Step 5. Resample the samples according to their weights;
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Step 6. Obtain the most recent estimated values for the lk-th sampler by

x̃k,n =
M∑
m=1

w
(m)
k,n,jx

(m)
k,n,j

and use the MMSE criterion to obtain the estimated values of the linear parameters x̃k,l;

Step 7. If necessary, move to the (j + 1)-th iteration when all K samplers finish the above

steps.

Step 8. At the end, the estimate of the nonlinear parameters are

x̃n = [x̃>1,n, x̃
>
2,n, ..., x̃

>
K,n]>

and the estimate of the linear parameters x̃l are obtained by the MMSE method. Note that

all available weighted samples (from all samplers and all iterations) are used to approxi-

mate the posterior p(x|y).
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CHAPTER 6

Population Monte Carlo a la Gibbs sampling

The key principle for constructing the approximations with any of the previously de-

scribed PMC algorithms is importance sampling, which is a technique for estimating properties

of a particular distribution with samples generated from a different distribution.

As with every method that uses importance sampling, the crucial factor for good per-

formance of the method is the choice of generating functions of the particles. We propose that

the generating functions be alternating conditionals, thereby mimicking the idea behind Gibbs

sampling [31]. With this approach, it is expected, that one can generate particles in high dimen-

sions more efficiently. Figure 6.1 shows a simple example of generation of a two-dimensional

particle C from particle A with standard sampling and Gibbs sampling. The traditional way

samples in a two dimensional space, and it sample particle C from A directly with the knowl-

edge of the joint distribution. The Gibbs approach samples with known constraints (usually

from the marginal distributions of each dimension of the unknowns) alternatingly, first sam-

pling particle B from A and then sampling particle C from B. We expect to get samples of

better “quality” with this proposed Gibbs PMC sampler.

Figure 6.1: Standard sampling vs Gibbs sampling.
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Gibbs sampling is an algorithm for generation of particles that represent samples from

the joint probability distribution of two or more unknowns [31]. The particles have equal

weights and they approximate the joint distribution or are used for computing integrals un-

der the joint distribution. Gibbs sampling belongs to the larger class of MCMC methods and is

often used for Bayesian inference [30].

In MCMC methods, at iteration j, we generate M particles. The m-th particle of x,

x(m)
j = [x

(m)
1,j , x

(m)
2,j , · · · , x

(m)
dx,j

]>

is constructed as follows: we draw x
(m)
k,j ∼ qj(xk), k = 1, 2, · · · , dx, where q(xk) is a proposal

function [30]. We either accept/reject these proposals individually in parallel MCMC sampling

or we reject the complete x(m)
j globally. Gibbs sampling is a special type of MCMC sampling

where each x(m)
k,j is sampled from a conditional distribution q(xk|x−k,∗), where x−k,∗ is the vector

of all the parameters in x except for xk and the remaining conditioning parameters are at their

current values (i.e., we use the last drawn values for the conditioning parameters).

Irrespectively of which MCMC approach we use, we have issues with convergence as-

sessment. This problem, however, can be completely put away if we introduce importance

sampling. In other words, if a particle x(m) is obtained from q(x), but we want it to come from

p(x), then we need to assign the particle an importance weight given by

w̃(m) =
p(x(m))

q(x(m))
. (6.1)

The weights and the particles form a random measure, χ = {x(m), w(m)}Mm=1, where the w(m)s

are normalized weights and M denotes the total number of samples. Here we reiterate that in

PMC, we implement the generation of particles in iterations. For example, in iteration one, we

get the random measure χ1, in iteration two, the random measure χ2 and so on. The objective is

that, as we proceed with iterations, we improve the accuracy of the approximation. To that end,

for obtaining better generating functions, one can use the approximations from the previous
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iterations. One way of exploiting the previous iteration is to employ resampling (another oper-

ation that is common in particle filtering) [18]. That is, we construct new generating functions

by using particles from the previous iteration that are picked based on their weights.

Here we propose a general approach for constructing generating functions for the PMC

method [20]. We draw the particles of particular unknowns from a conditional distribution,

where the conditioning is on the remaining unknowns. We basically mimic the Gibbs sam-

pling idea, where as explained, we replicate the same steps except that our conditionals are not

obtained from the target distribution. Note that in PMC, we assume that we cannot generate

from the conditionals of the target distribution, and therefore we work with a different joint

distribution, but one that allows for easy drawing of particles.

We now describe the specific steps of the proposed scheme. In iteration j = 0, we

initialize the particle streams by drawing them from the prior π(x). We draw M particles, and

to each of them we assign the weights according to

w̃
(m)
0 = p(y|x(m)

0 ). (6.2)

We assume now that at iteration j − 1, we have the particles and the weights χj−1 =

{x(m)
j−1, w

(m)
j−1}Mm=1. We also recall that x(m)

j−1 = [x
(m)
1,j−1, x

(m)
2,j−1, · · · , x

(m)
dx,j−1]

>. The particles in the

j−th iteration are obtained as follows:

Algorithm for Gibbs PMC:

Step 1. Randomly choose the order of generation of the parameters in

x(m)
j = [x

(m)
1,j , x

(m)
2,j , · · · , x

(m)
dx,j

]>. Let the order be l1, l2, · · · , ldx .

Step 2. For m = 1, 2, · · · ,M , choose a particle for conditioning based on the normalized

weights of the particles. Let the selected particle be with index λm. Then generate new
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particles according to

x
(m)
l1,j
∼ ql1,j

(
xl1|x

(λm)
l2,j−1, x

(λm)
l3,j−1, · · · , x

(λm)
ldx ,j−1

)

for n = 2, 3, · · · , dx − 1,

x
(m)
ln,j
∼ qln,j

(
xln|x

(m)
l1,j
, · · ·x(m)

ln−1,j
, x

(λm)
ln+1,j−1 · · · , x

(λm)
ldx ,j−1

)

and

x
(m)
ldx ,j
∼ qldx ,j

(
xldx |x

(m)
l1,j
, x

(m)
l2,j
, · · · , x(m)

ldx−1,j

)
.

Step 3. Compute the weights of the samples by

w̃
(m)
j =

p
(

y|x(m)
j

)
∏dx

n=1 qln(x
(m)
ln

)
.

Step 4. Normalize the weights according to

w
(m)
j =

w̃
(m)
j

ΣM
k=1w̃

(k)
j

; (6.3)

Step 5. Resample the samples according to their weights;

Step 6. If more iterations are needed, set j = j + 1, and go back to step 1.

Step 7. At the end, obtain the estimated values from all available samples by

x̃ =

∑J
j=1

∑M
m=1w

(m)
j x(m)

j∑J
j=1

∑M
m=1w

(m)
j

.

Note that all available weighted samples (from all samplers and all iterations) are used to

approximate the posterior p(x|y).
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The computed weights are stored as they were obtained by the last expression. They are

normalized at the end of the algorithm with the weights of the particles from all the iterations in

order to get the best possible approximation of the distribution of interest. However, the weights

from Step 3 are also separately normalized before restarting the next iteration, so that one can

use the normalized weights . The method can stop at any iteration.

We note that if we cannot generate x(m)
0 from π(x), we can use a convenient generating

function q(x), and therefore the initial weights of the particles are

w̃
(m)
0 =

p(y|x(m)
0 )

q(x(m)
0 )

. (6.4)

Example:

Consider an example of estimating a bivariate normal distribution. We had 4 observations from

y ∼ N (x,C) = N


 θ1

θ2

 ,

 1 ρ

ρ 1




The unknown parameter x = [θ1, θ2]
T = [0, 0]T, and ρ = 0.8 is known.

We applied the standard PMC and the Gibbs sampling to this problem. Both meth-

ods used 4 samples per iteration and 500 iterations. The initial 4 samples are point (−1,−1),

(−1, 1), (1,−1), and (1, 1). The results are shown in Figure 6.2. As seen it took less iterations

for the Gibbs sampler to reach the target area. The quality of samples generated by the Gibbs

methods are better than the standard PMC.
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Figure 6.2: (a) The bivariate normal distribution; (b) PMC sampling: (i) first 10 iterations, (ii)
500 iterations, (iii) second half of samples; (c) Gibbs sampling: (i) first 10 iterations, (ii) 500
iterations, (iii) second half of samples.
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CHAPTER 7

Numerical complexity

7.1 Summary

Consider the example of estimating a set of complex sinusoids in noise, where the prob-

lem is modeled as:

yt =
K∑
k=1

Ãke
i2πfkt + vt, t = 1, 2, ..., dy

where Ãk ∈ C is the complex amplitudes of the k-th component whose frequency is fk ∈ [0, 1],

and vt is white Gaussian noise. The parameters to be estimated are x = [Ã1, f1, ..., ÃK , fK ] with

dimension 3K (note that Ãk has a real and an imaginary component). Assume that we know the

total number of sinusoids K. The problem can be easily decomposed as K subproblems and

handled by K PMC samplers, where the k-th sampler will target the unknowns xk = [Ãk, fk]

with dimension 3. Note that the k-th frequency fk constitutes a nonlinear parameter, and the

k-th complex amplitude Ãk is conditionally linear parameters.

algorithm PMC MPMC multiple PMC multiple MPMC
type of

samplers used PMC MPMC PMC MPMC
number of

samplers used 1 1 K K
dimension of

space 3K K 3 1
parameters for
which samples x = [Ã1, f1, xn xk xk,n

are generated ..., ÃK , fK ] = [f1, ..., fK ] = [Ãk, fk] = fk

summary 1 sampler 1 sampler K sampler K sampler
3K parameters K parameters 3 parameters 1 parameters

Table 7.1: Dimension of parameter space explored by variant PMC algorithms.

46



The dimension of the space of unknowns considered by each of the discussed PMC

algorithm is shown in Table 7.1. As seen, MPMC reduces the dimension of space from the

original 3K to K. The distributed structure further brings down the dimension of the problem

and therefore decrease the computational cost.

As discussed in Chapter 6, the proposed Gibbs PMC is intednded to generate better

“quality” particles from the alternating conditionals, and therefore should further improve the

efficiency of PMC algorithms in high dimensional applications.

7.2 Numerical complexity

The computational complexities of PMC, MPMC, MultiPMC and MultiMPMC are ex-

plored in this section with the example presented in Section 7.1. The number of floating-point

operations (flops) for each algorithm are obtained from a theoretical point of view. A flop is

defined as one addition, subtraction, multiplication, or division of two floating-point numbers.

However, there are certain operations in the algorithms that can not be simply or easily mea-

sured in flops, for example, the cost of generating random numbers, resampling samples, and

calculating nonlinear functions. However, it is still possible to evaluate the absolute time that

each algorithm requires. For instance, the computational complexities of generating samples

and resampling are proportional to the number of samples used for that purpose. These will be

referred to as the equivalent flop complexity [43].

Table 7.2: Complexity of PMC

step flops/EF
choose IF dx(M − 5) + dx ·M · c2
sample generation dx ·M · c3
weight computation 3c1 + c5 + 2c8 + d3y + 4d2y + 2dy + d3x + 4d2x + 6dx
weight normalization 2M − 1
resampling M · logM
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Table 7.3: Complexity of MPMC

step flops/EF
choose IF dxn(M − 5) + dxn ·M · c2
sample generation dxn ·M · c3
calculation of xl using MMSE M · c6
weight computation M · [3(4dxn + c1) + 2 + c5]
weight normalization 2M − 1
resampling M · logM

Table 7.4: Operations involved in the PMC and MPMC implementations

EF computation notes
c1 exp(·) nonlinear function
c2 · ∼ U [a, b] generating random number
c3 · ∼ N (µ, σ2) generating random number
c4 comparison nonlinear function
c5 h(·) nonlinear function in equation (2.2) and (4.1)
c6 MMSE nonlinear function
c7 A(·) nonlinear function in equation (4.1)
c8

√
· nonlinear function

The complexity from a single iteration of PMC algorithm is shown in Table 7.2. The

computational costs of the general and main steps are calculated based on a problem as in (2.2):

y = h(x) + v

with dy observations and dx unknowns and employing M samples/particles at each iteration.

The complexity from a single iteration of MPMC algorithm is shown in Table 7.3. The com-

putational costs are evaluated based on an equivalent problem as in (4.1) with dy observations,

dxn nonlinear unknowns, dxl linear unknowns, and M samples/particles at each iteration. The

equivalent flops ci, i = 1, 2, ..., 8 are explained in Table 7.4. For the sinusoid example

above,the estimated coefficients are c1 = 1, c2 = 2, c3 = 5, c4 = 1, c5 = dy(K + 3 + c1),

c6 = 30, c7 = dy(K + 1), and c8 = 1 (on a Dell Optiplex 360 with 32-bit operating system,
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Inter dual 2.40-GHz CPU, and 4-GB memory). Note that, the complexity of MultiPMC and

MultiMPMC can be easily evaluated when treated as several PMCs and MPMCs, respectively.

Figure 7.1: Computational complexity vs number of sinusoids.

The numerical complexities of standard PMC, MPMC, multiple PMC and multiple

MPMC algorithms from one iteration are shown in Figure 7.1. The analyzed problem consists

of estimating frequencies, amplitudes and phases of K sinusoids. We used dy = 25, dx = 3K,

and for MPMC dxn = K and dxl = 2K. Each sampler had a total of 200 ·K samples/particles

at each iteration.

As shown in the figure, as the dimension of the unknowns increases, the complexity is

decreased when the linear parameters are marginalized. In other words, for a given compu-

tational complexity cost, more samples can be used in MPMC than in the general PMC. By

marginalizing the linear parameters, we can choose either to decrease the complexity and there-

fore increase the efficiency of the algorithm, or increase the number of samples and therefore

increase the accuracy of the methods.

The advantages of MultiPMC and MultiMPMC are also shown is Figure 7.1. For the

standard PMC method, the computational complexity increase exponentially as the number of
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dimensions goes up. The MPMC method is more efficient as it marginalizes the nonlinear

parameter and decreases dimension of the space of unknowns. Moreover, the distributed struc-

tures partition the problem into smaller dimensional subproblems, and breaks the exponential

increase in complexity into linear like increase.

Figure 7.2: Computational complexity vs number of samples.

The numerical complexities of the algorithms from one iteration vs. the number of the

samples used are shown in Figure 7.2. We used dy = 25, K = 20, dx = 3K, and for MPMC

dxn = K and dxl = 2K. We used a total number of samples/particles from 100 ·K to 600 ·K

for each sampler. As shown in the figure, as the number of the samples used increases, the

complexity basically increases linearly for each sampler. From the figure we can conclude

that MPMC is more computational efficient than the standard PMC sampler. The distributed

structure has lowest computational cost. Note that, all the discussion in this chapter are based

on the numerical computation complexity. In the next chapter we will show by simulation that

the multiple MPMC can be both efficient and accurate at the same time.
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CHAPTER 8

Computer simulations

The proposed methods were tested on the problem of frequency estimation of multiple

sinusoids. Simulation results showed the accuracy of the estimates and the feasibility of the

methods. The new proposed PMC algorithms showed remarkable improvement with respect to

other conventional approaches.

8.1 Example I: Estimation of frequencies of multiple real sinusoids

A problem of frequency estimation of real sinusoids in noise is demonstrated in this

section. The PMC and MPMC algorithms were applied to solve the problem. Both methods

were compared regarding the performance and the complexity.

8.1.1 The problem

The model considered for this first experiment follows the expression

y = h(x) + v = A(xn)xl + v (8.1)

where the observation vector is y ∈ Rdy×1 and the unknown parameter vector is x ∈ Rdx×1. The

vector x is composed of nonlinear parameters xn ∈ Rdxn×1 and linear parameters xl ∈ Rdxl×1,

where dx = dxn + dxl , and the prior density of x is given by p(xn, xl). As in (2.2), h(·)

is a nonlinear function of the parameters xn; A(xn) is a matrix of functions of the nonlinear

parameter xn and has dimension dy×dxl; and v is a dy×1 noise vector with a known probability

distribution p(v).
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More specifically, the above model was written as

yt =
K∑
k=1

ak cos(2πfkt) + bk sin(2πfkt) + vt

t = 1, 2, ..., dy

where ak and bk were the amplitudes of the cosine and sine components, respectively, of the

k-th sinusoid whose frequency was fk; and vt was a white Gaussian noise.

The parameters to be estimated are x = [xl; xn], where

xl = [a1, b1, a2, b2, ..., aK , bK ]T

xn = [f1, f2, ..., fK ]T .

The prior of the amplitudes and the frequencies are considered independent, i.e.,

p(x) = p(xl, xn) = p(xl)p(xn).

For the prior of the frequencies, a constant over the region 0 < f1 < f2 < ... < fK < 0.5 was

adopted. A zero-mean Gaussian distribution was proposed as the prior for the amplitudes.

In the experiment, we had dy = 20 observations with K = 2 sinusoids generated ac-

cording to the described model. The state x had six dimensions

x = [a1, b1, a2, b2, f1, f2]

= [2 cos(π/6), 2 sin(π/6), 2 cos(−π/5), 2 sin(−π/5), 0.24, 0.24 + δ]

where δ = 1
2dy

. Note that δ represented the difference between two frequencies and was two

times smaller than the resolution of the classical periodogram. The priors used for amplitudes

were zero-mean Gaussian distributions

a1, b1, a2, b2 ∼ N (0, 5).

The priors for frequency were uniform distributions
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f1, f2 ∼ U [0, 0.5] with constraint f1 < f2.

The noise was drawn from the distribution

v ∼ N (0, σv),

and the value of the variance was defined by using the Signal-to-Noise Ratio (SNR) as follows

SNR = A2

2σ2 ,

where SNR was measured in dB, A was the amplitude of the sinusoid, and σ2 was the noise

power.

8.1.2 Validation of PMC sampler

An amount of M = 1, 000 particles were generated from a initial set of IFs. The initial

proposed IF for the amplitudes were zero-mean Gaussian distributions, with predetermined

variance vector v = 2× [12, 0.12, 0.012, 0.0012, 0.00012]. The initial IFs for the frequencies had

preselected means at the maximum value of the fast Fourier transformation (FFT) of observation

y, and predetermined variance vector as v = 0.2 × [12, 0.12, 0.012, 0.0012, 0.00012]. At the

initial step, for each parameter, amplitude or frequency, a variance from the available five was

assigned randomly to a particle with probability of 1
5
. After each iteration, the weights of the

available variances for each parameter were updated separately according to the performance

of the particles as stated in 3.3. Updated IFs had means located at the previous particles and

variance coming from the predetermined variance vector with updated weights. In order to keep

every variance valid after each iteration, re-scaling was employed to ensure that the minimum

weight for a single variance was 0.05.

Two runs of results are shown in Figure 8.1 and Figure 8.2, one with good initial IFs for

the frequency components and the other with bad initial IFs. The true values of states were

x = [a1, b1, a2, b2, f1, f2] = [1.7321, 1, 1.6180,−1.1756, 0.24, 0.265].
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Figure 8.1: Example 1: Estimates vs iterations using the PMC algorithm with good initial IFs.
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Figure 8.2: Example 2: Estimates vs iterations using the PMC algorithm with bad initial IFs.
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As seen, PMC sampler is robust and is able to move the samples towards the true value of the

unknowns with good or bad initial IFs. However, it takes up to 50 iterations to bring the samples

close to the true values of the unknowns and therefore the efficiency needs to be improved.

8.1.3 Validation of MPMC sampler

The unknown parameters were separated into linear and nonlinear components

xl = [a1, b1, a2, b2] = [2 cos(π/6), 2 sin(π/6), 2 cos(−π/5), 2 sin(−π/5)],

xn = [f1, f2] = [0.24, 0.24 + δ],

where δ = 1
2dy

.

As discussed in Section 4, solving the integral in Equation (4.3) is the key step for

implementation of the MPMC algorithm. In this example, it can be readily shown that

p(x(m)
n,j |y) ∝

exp(−1
2
yT (Cv + AjCxlA

T
j )−1y)

|Cv + AjCxlA
T
j |

1
2

, (8.2)

where Cv = σvI, and Cxl = 5I.

At each iteration in MPMC, samples of nonlinear parameters were generated according

to the IF, and then linear parameters were determined via MMSE [45]. An amount of M =

1, 000 particles for the nonlinear parameters were generated with initial Gaussian distributions,

where the means were preselected at the maximum frequency of the FFT of the observations y,

and the frequency predetermined variance vector was v = 0.2×[12, 0.12, 0.012, 0.0012, 0.00012].

At the initial step, for each nonlinear/frequency parameter, a variance from the available five

was assigned randomly to a particle with probability of 1
5
, as stated in 3.3. After each iteration,

the weights of available variances for each parameter were updated separately according to the

performance of the particles. Updated importance functions had means located at the previous

particles and variance coming from the predetermined variance vector with updated weights. In

order to keep every variance valid after each iteration, re-scaling was employed to ensure that

the minimum weight for a single variance was 0.05.
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Figure 8.3: Example 3: Estimates vs iterations using the MPMC algorithm with good initial
IFs..
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Figure 8.4: Example 4: Estimates vs iterations using the MPMC algorithm with bad initial IFs..
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The performance of two realization of MPMC sampler with good and bad initial IFs are

shown in Figure 8.3 and Figure 8.4. The true values of states were

xl = [a1, b1, a2, b2] = [1.7321, 1, 1.6180,−1.1756],

xn = [f1, f2] = [0.24, 0.265].

MPMC sampler is both robust and efficient. It moves the samples towards the true values

within only a few iterations regardless the proposals, much faster than the PMC. It required

less computations as it marginalized two-third of the unknowns. Furthermore, the quantified

comparisons between these two algorithms are presented in the next section.

8.1.4 Comparisons between PMC and MPMC sampler

The performance of the algorithms to this problem was quantified by using the mean

square error (MSE) of the parameters to be estimated, which was calculated as

MSE =
1

K

K∑
k=1

(x̂k − x)2, (8.3)

where k represented the k-th run of the algorithm, x̂k denoted the estimates obtained in k-th

run, and x was the true value of the state. All the MSE plots were averaged over K = 10 runs

for both methods.

Figures 8.5 depicts the MSE vs SNR using both algorithms with 100 iterations, averaged

over 1,000 runs. As seen in the Figure, with 100 iterations, the MPMC performs better when

the SNR ranges from 2dB to 10dB. For the frequency parameters, the MPMC provide accurate

estimates even at low SNRs. For example, MPMC has lower MSE with SNR=4dB than the

PMC does at SNR=10dB.

All in all, the MPMC required less computations, which is an advantage in a high-

dimensional system. The MPMC is more robust and starts with a set of initial estimates close to

their real values. Besides, the MPMC has the advantage of better performance at lower SNRs.
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8.2 Example II: Estimation of frequencies of one complex sinusoid

The PMC and MPMC algorithms were tested in a problem of frequency estimation of

sinusoids in noise, and the results showed their convergence to the Cramér-Rao lower bound.

8.2.1 The problem

In this section, the model described in previous section was employed:

y = h(x) + v (8.4)

where the observation vector is y ∈ Rdy×1 and the unknown parameter vector is x ∈ Rdx×1. The

vector x is composed of nonlinear parameters xn ∈ Rdxn×1 and linear parameters xl ∈ Rdxl×1,

where dx = dxn + dxl , and the prior density of x is given by p(xn, xl). As in (2.2), h(·)

is a nonlinear function of the parameters xn; A(xn) is a matrix of functions of the nonlinear

parameter xn and has dimension dy×dxl; and v is a dy×1 noise vector with a known probability

distribution p(v).

More specifically, in this section we consider

yt = Ãke
i(2πf1t) + vt, t = 1, 2, ..., dy (8.5)

where Ã1 ∈ C was the complex amplitude of the frequency f1 ∈ [0, 1], and vt was white

Gaussian noise. The parameters to be estimated are x = [Ã1, f1] with dimension 3 (note that Ã1

has a real and imaginary component).
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8.2.2 Cramér-Rao lower bound

Consider the data model in Equation 8.5 in complex white Gaussian noise (CWGN).

The parameter vt is a CWGN process with variance σ2. The parameter vector to be estimated is

x = [Ã1, f1, ..., ÃK , fK ]

and it can be rewritten as

x = [A1, φ1, f1, ..., AK , φK , fK ]

note that all parameters in this vector are real and Ãk = Ake
iφk . The Fisher information matrix

is calculated as [45]

[I(x)]ij =
2

σ2
[

dy∑
t=1

∂y∗t
∂xi

∂yt
∂xj

] (8.6)

where [I(x)]ij is the (i, j) element of [I] matrix, xi is the ith parameter to be estimated in x, and

y∗t is the conjugate transpose of yt. The CRLB is found as the (i, i) position of the inverse of

the Fisher information matrix

var(x̂i) ≥ [I−1(x)]ij. (8.7)

Take one frequency component with unknown amplitude and phase as an example,

where

yt = A1e
i(2πf1t+φ1) + vt, t = 1, 2, ..., dy

and the parameter vector to be estimated is

x = [A1, φ1, f1].
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The partial derivatives are calculated as

∂yt
∂x1

= ∂yt
∂A1

= exp[j(2πf1t+ φ1)]

∂yt
∂x2

= ∂yt
∂φ1

= jA · exp[j(2πf1t+ φ1)]

∂yt
∂x3

= ∂yt
∂f1

= j2πt · exp[j(2πf1t+ φ1)].

The Fisher information matrix is

I(x) =
2

σ2


dy 0 0

0 dy · A2 A2
∑dy

t=1 2πt

0 A2
∑dy

t=1 2πt A2
∑dy

t=1(2πt)
2

 .

Upon inversion we have

var(Â1) ≥ σ2

2dy

var(φ̂1) ≥ σ2(2dy−1)
A2dy(dy+1)

var(f̂1) ≥ 6σ2

(2π)2A2dy(d2y−1)
.

Note that for complex data the SNR is defined as SNR = A2

σ2 , and the bounds reduce to

var(Â1) ≥ σ2

2dy

var(φ̂1) ≥ (2dy−1)
SNR·dy(dy+1)

var(f̂1) ≥ 6
(2π)2·SNR·dy(d2y−1)

.
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8.2.3 Validation of PMC sampler with an example of one frequency with

known amplitude and phase

In the first step experiment, we had dy = 20 observations with K = 1 sinusoids gen-

erated according to the model described. In this step we treated Ã1 = 1 as known parameters.

The state x had only one dimension

x = [f1],

The complex noise were drawn from the distribution

v ∼ N (0, σv),

or equivalently

real(v) ∼ N (0, σv√
2
), and imag(v) ∼ N (0, σv√

2
),

and the value of the variance was defined by using the SNR as follows

SNR = A2

σv2
,

where SNR was measured in dB, A was the amplitude of the sinusoid, and σ2 was the noise

power.

An amount of M = 500 particles were generated from an initial importance function.

The initial IFs for frequency had preselected means at the maximum value of the FFT of ob-

servation y, and used multiple-kernel IFs as stated in Chapter 3. The predetermined variance

vector was v = σ0 × [12, 0.12, 0.012, 0.0012, 0.00012].

At the initial step, for the frequency, a variance from the available five was randomly

assigned to a particle with probability of 1
5
. After each iteration, the weights of available vari-

ances for each parameter were updated separately according to the performance of the particles.

Updated IFs had means located at the previous particles and variance coming from the pre-

determined variance vector with updated weights. In order to keep every variance valid after
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Figure 8.6: Estimated f with different predetermined σ0 vectors.
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Figure 8.7: 10 log10(1/MSE) vs. SNR for 1 fixed frequency estimated using the PMC algo-
rithm.

each iteration, re-scaling was employed to ensure that the minimum weight for a each available

variance was 0.05.

The parameter σ0 for the predetermined variance vector was proposed as 1, 0.1, and

0.01, respectively. A set of estimation vs. iteration is shown in Figure 8.6. All three plots

came from the same set of observations, where f1 = 0.5, dy = 20, SNR = 5. As seen, with

larger σ0 the estimation results vibrate and with smaller σ0 the results curve moves smoother,

however, the estimated results are within comparable level. For simplicity σ0 = 0.1 is used for

one-frequency estimation in this report. For the next steps, for multi-frequencies problem, σ0

for each component might need to be determined with a more adaptive procedure. This might

be explored as part of the future work.

8.2.3.1 Validation of PMC sampler with an example of one fixed frequency

Observations were generated by a fixed frequency value f1 = 0.5, with complex ampli-

tude Ã1 = 1.More specifically
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yt = Ã1e
i(2πf1t) + vt, t = 1, 2, ..., dy,

where in each run, dy = 20 observations were employed.

The performance of the algorithm to this problem was quantified based on the MSE of

the parameters to be estimated, which was calculated as in 8.17. The performance of PMC

sampler in term of 10 log10(1/MSE) is plotted along SNR and compared with the CRLB [45],

shown as in Figure 8.7. All the points on the plot were averaged over R = 500 runs for each

SNR from −5 to 10. In each run, PMC was applied using 500 particles and 50 iterations. It can

be concluded from this plot that PMC performed well for solving this problem and achieved the

CRLB for the range of SNR ≥ −1.

8.2.3.2 Validation of PMC sampler with an example of one frequency from a uniform

distribution

Figure 8.8: 10 log10(1/MSE) vs. SNR for one frequency with uniform distribution estimated
using the PMC algorithm.
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The one-frequency problem with fixed frequency in the previous subsection is extended

to frequency drawn from a given distribution in this part. The parameter f1 is randomly selected

from a uniform distribution as

f1 ∼ U [0, 1]. (8.8)

Then observations are obtained with this selected f1 using

yt = Ã1e
i(2πf1t) + vt, t = 1, 2, ..., dy

where the complex amplitude Ã1 = 1, and observation number dy = 20.

Figure 8.8 depicts the 10 log10(1/MSE) of estimates by MPMC sampler vs SNR and

compared with CRLB [45]. Each point on the plot was averaged over 500 runs, using 500

particles and 50 iterations for each run. In each single run, instead of using fixed f1 to generate

the observations, f1 was drawn from f1 ∼ U [0, 1]. It is shown that PMC performs well and

achieves the CRLB for the range of SNR ≥ −1.

Note that for a single frequency estimation problem, the CRLB is independent from the

value of the frequency f1. As shown in Figures 8.7 and 8.8, there is no difference between

posterior CRLB (PCRLB) and CRLB for a single frequency with the same known amplitude

and phase.

8.2.4 Comparison of PMC and MPMC sampler with an example of one

frequency

Observations were generated by fixed frequency value f1 = 0.5, with a complex ampli-

tude Ã1 = 1. More specifically

yt = Ã1e
i2πf1t + vt, t = 1, 2, ..., dy,

where frequency f1 was the nonlinear parameter, and complex amplitude Ã1 was the linear

parameter; in each run, dy = 20 observations were employed.

PMC and MPMC were applied to estimate these two parameters f1 and Ã1, respectively.

The prior for Ã1 used in MPMC was
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Ã1 ∼ N (0,
√

5),

and Ã1 was complex.

Equation 8.17 was employed to evaluate the performance of PMC and MPMC algo-

rithms for this problem. Figure 8.9 shows the 10log10(1/MSE) of estimates vs SNR for PMC

and MPMC algorithms respectively. Each point on the plot was averaged over 500 runs, and for

each run 500 particles and 50 iterations were used for estimation. As seen in the figures, with

50 iterations both PMC and MPMC perform well and achieve the CRLB [45] in the range from

SNR of −1 to 10.

As shown in Figures 8.10, both the PMC and the MPMC converge to CRLB as the

number of iterations increases. However, the PMC needs at least 20 iterations to get close to

CRLB, while the MPMC only takes 5 iterations to achieve the bound. The main advantage of

the MPMC over the PMC is the fast convergence to the estimates.

The MPMC also requires less computations in generation of samples which makes it

more computational efficient when compared to the traditional PMC, as shown in Figures 8.11.

For both the PMC and the MPMC, their performances converge to CRLB as the number of

particles/samples increases. To estimate two complex unknowns, the PMC takes 300 particles

to achieve the bound. While the MPMC marginalize the linear parameter Ã1, it only needs 200

particles to hit on the bound. The MPMC requires less iterations and less samples/particles to

converge to the CRLB. Therefore the MPMC has less computational complexity.

8.3 Example III: Estimation of frequencies of multiple complex sinusoids

with unknown amplitude and phase

8.3.1 The problem

For this experiment the problem was modeled as

yt =
K∑
k=1

Ãke
i(2πfkt) + vt, t = 1, 2, ..., dy, (8.9)
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where Ãk ∈ C are the complex amplitudes of the k-th component whose frequency is fk ∈

[0, 1], and vt is white Gaussian noise. The parameters to be estimated are x = [Ã1, f1, ..., ÃK , fK ]

with dimension 3K. Assume that we know the total number of sinusoids K. The problem can

be easily decomposed as K subproblems and handled by K PMC samplers, where the k-th

sampler will target the unknowns xk = [Ãk, fk] with dimension 3.

8.3.2 Comparison of PMC and MPMC sampler with an example of two

frequencies

The problem of frequency estimation is considered in this section to compare the per-

formance of the MPMC and other traditional approaches.

Observations were generated by two fixed frequency values f1 = 0.5 and f2 = 0.52,

with complex amplitudes Ã1 = 1 and Ã2 = 1eiπ/4. More specifically

yt = Ã1e
i(2πf1t) + Ã2e

i(2πf2t) + vt, t = 1, 2, ..., dy,

where in each run, dy = 25 observations were employed. Note that f1 and f2 were the nonlinear

parameters, and Ã1, and Ã2 were the linear parameters.

The MPMC was applied to estimate the unknown parameters, where Ã1, and Ã2 were

marginalized while f1 and f2 are estimated using PMC. The prior for Ã1 and Ã2 used are

A1e
iφ1 , A2e

iφ2 ∼ N (0,
√

5),

and A1,φ1, A2 and φ2 were complex.

The performance of the MPMC to this problem in terms of 10 log10(1/MSE) is shown

in Figures 8.12. Each point was averaged over 500 runs of simulations. In each run,M = 1, 000

samples and J = 50 iterations were used. As seen in the figure, the MPMC performed well

and achieved the CRLB [45] in the range from SNR of 0 to 10. This result is comparable to

a maximum likelihood estimator (MLE) and mean likelihood frequency estimator (MLLFE)

stated in [46], shown in Figure 8.13.
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The MPMC, the MLE and the MLLFE all achieved the CRLB. However, the compu-

tational complexity varies a lot. As mentioned in [46], using MLE for this problem needs a

grid search for the nonlinear parameters which is difficult to implement and computational ex-

pensive. The MLLFE improves the efficiency by using a modified mean likelihood estimator.

Though the MLLFE uses the concepts of importance sampling to obtain the mean likelihood

estimate without the computation of multidimensional integrals. It still requires computation of

two integrals and implementation of Golden search of one inverse of integral for each realiza-

tion of the frequency. It requires generation of 2000 frequency realizations to achieve the CRLB

for two sinusoids. The MPMC is computationally less expensive than the other two methods

but performs as well.

8.3.3 Comparison of PMC, MPMC, multiple PMC, and multiple MPMC

sampler with an example of three frequencies

The problem of frequency estimation of complex sinusoids in noise is considered in this

section to show the performance of the distributed PMC algorithms. The model of the problem

is

yt =
K∑
k=1

Ãke
i(2πfkt) + vt, t = 1, 2, ..., dy, (8.10)

where 0 < f1 < f2 < ... < fK < 1; Ãk are the complex amplitude of the k-th frequency

component; and vt is white complex Gaussian noise. The parameters to be estimated are x =

[Ã1, f1, ..., ÃK , fK ], and therefore the space of unknowns has dimension 3K. Note that fk

denoted the k-th frequency and constituted a nonlinear parameter, and Ãk were the k-th complex

amplitude and were conditionally linear parameters.

The complex noise was drawn from the distribution

vt ∼ CN (0, σ2
v),

or equivalently

real(vt) ∼ N (0, σ
2
v

2
), and imag(vt) ∼ N (0, σ

2
v

2
),
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and the value of the variance was defined by using the signal-to-noise ratio (SNR)

SNR = 1− log10
A2

k

σv2
,

where SNR was measured in dB, Ak was the amplitude of the signal, and σ2
v was the noise

power.

Assume that we know the total number of sinusoids K. The total number of iterations

used was J , and the total number of samples per iteration was M . At initial iteration j = 1, the

IF q(m)
j (x) was chosen as follows for complex amplitudes Ã and frequencies f, where x was con-

sisted by Ã and f. We used complex normal distributions for amplitudes Ãk, k = 1, 2, ..., K,

with initial mean at 0 and variance randomly chosen from a set of multiple transition kernels [9]:

vÃ = [vA,1, vA,2, ..., vA,5]
> = σÃ

2 × [12, 0.12, 0.012, 0.0012, 0.00012]>

with σÃ
2 = 0.52. At initial step, each variance was selected with probability of αAk,d = 1

5
,

with k = 1, 2, ..., K and d = 1, 2, , ..., 5. We used truncated normal distributions [48] for

frequencies fk, k = 1, 2, ..., K, with initial mean at estimated obtained by the Yule-Walker

method [67] or by periodogram and variance randomly chosen from

vf = [vf,1, vf,2, ..., vf,5]
> = σf

2 × [12, 0.12, 0.012, 0.0012, 0.00012]>

with σf 2 = 0.12. At initial step, each variance was selected with probability of αfk,d = 1
5
, with

k = 1, 2, ..., K and d = 1, 2, , ..., 5. The IF for each frequency fk was truncated as not

smaller than the samples value of fl with l < k and 0, and not greater than the samples value of

fl with l > k and 1.

Then the algorithm iterated as follows:

1. Draw samples x(m)
j from q

(m)
j (x). Note that we took random order to draw samples of

frequencies.

2. Compute weights of the samples
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w̃
(m)
j ∝

p(x(m)
j |y)

q
(m)
j (x(m)

j )∏K
k=1 c

(m)
k,j

; (8.11)

where c(m)
k,j = Φ(

b−µ(m)
fk,j

σ
(m)
fk,j

) − Φ(
b−µ(m)

fk,j

σ
(m)
fk,j

) when the normal distribution was truncated by

[a, b]. Note Φ( ) was the cumulative distribution function of normal distribution.

3. Normalize the weights:

w
(m)
j =

w̃
(m)
j

ΣM
k=1w̃

(k)
j

. (8.12)

4. Update αAk,d and αfk,d, with k = 1, 2, ..., K and d = 1, 2, , ..., 5:

αAk,d =
M∑
m=1

w
(m)
j Id

(
v
(m)
Ak,j

= vA,d

)
(8.13)

αfk,d =
M∑
m=1

w
(m)
j Id

(
v
(m)
fk,j

= vf,d

)
. (8.14)

In order to keep every variance valid after each iteration, re-scaling was employed to

αAk,d and αfk,d to ensure that the minimum weight for each available variance is 0.05.

5. Obtain the estimates using MAP

x̂ = max
x

p(x|y) ∝ max
x

p(y|x)p(x), (8.15)

or using MMSE

x̂ =

∑j
t=1

∑M
m=1 x(m)

t w
(m)
t∑j

t=1

∑M
m=1w

(m)
t

. (8.16)

6. Resample the samples according to their weights.
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7. At iteration j > 1, the IF q
(m)
j (x) for complex amplitudes Ã and frequencies f were

updated as:

(a) We used complex normal distributions for amplitudes Ãk, with mean at A(m)
k,j−1 and

variance randomly chosen from vÃ randomly with probability of αAk,d.

(b) We used truncated normal distributions for frequencies fk, with mean at f(m)
k,j−1 and

variance randomly chosen from vf with probability of αfk,d. The IF for each fre-

quency fk was truncated as not smaller than the samples value of fl with l < k and

0, and not greater than the samples value of fl with l > k and 1.

We had dy = 25 observations with K = 3 sinusoids generated according to the model

above. Observations were generated using three frequencies f1 = 0.2, f2 = 0.5, and f3 = 0.52,

with amplitudes Ã1 = 1, Ã2 = 1, and Ã3 = 1eiπ/3. MPMC and MultiMPMC were applied to

estimate parameters in this 9-dimensional problem. The prior for Ãk used for the MPMC and

MultiMPMC was

Ãk ∼ CN (0, 5).

The performances of the methods for estimation of the parameters of the third sinusoid

are shown as Figure 8.14 and 8.15. The performances of the algorithms to this problem were

quantified based on the MSE of the parameters to be estimated, given by 8.17. All the points

on the plot were averaged over R = 500 runs with 1 to 20 iterations and with SNR = 5. In

each run, M = 600 samples were generated from an initial importance function for PMC and

MPMC, and Mk = 200 for each estimator, which sums up to M = 600 total samples, when

implementing the MultiPMC and MultiMPMC algorithms. It can be concluded from the plots

that MultiPMC and MultiMPMC performed more accurately and converged much faster.

The performances of the proposed methods in terms of the MSE of the estimated fre-

quencies for various values of SNR are shown in Figure 8.17. All the points on the plot are

averaged over R = 500 runs with sample size of M = 600 and iteration number of J = 20.
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The methods were also compared with the MUltiple SIgnal Classification (MUSIC) algorithm,

which estimated the pseudospectrum of the observations using Schmidt’s eigenspace analysis

method [65]. The conventional MUSIC algorithm performs similarly with the proposed meth-

ods at low SNRs, but does not improve with SNR as do the PMC methods. The proposed

methods perform well, and their MSEs converge to the CRBL as the SNR increases.

Additionally, Figure 8.16 displays the cumulative distribution functions (CDFs) of the

marginalized posteriors of the nonlinear parameters approximated by PMC, MPMC, MultiPMC

and MultiMPMC algorithms. The CDFs show that the marginalized posterior of the frequencies

has jumps around the true values of the frequencies.

The efficiencies of resampling of MultiPMC, MPMC, and MultiMPMC were also stud-

ied. Resampling rate along iterations can be represented using effective sample size (ESS),

as

ESSj =
M∑
m=1

[(w
(m)
j )2]−1,

where j denoted the iteration number, j = 1, 2, ...; and m represented the index of the particle,

m = 1, 2, ..., M . ESS is the equivalent number of independent samples, which would provide

the same information as the M -size sample set [53,55]. The ESSs of the proposed methods for

SNR=5 are shown in Figure 8.18. All the points on the plot were averaged over R = 500 runs

for iteration number of 1 to 30 with SNR = 5. In each run, an amount of M = 600 samples

were generated at each iteration for PMC and MPMC, which provides each unknown frequency

M = 200 samples; Mk = 200 samples were generated for each estimator at each iteration when

implementing the MultiPMC and MultiMPMC algorithms. It can be concluded from the figure

that ESS of the MultiPMC and the MultiMPMC increases faster than the other two; also the

MPMC and the MultiMPMC have higher ESS as the iterations increase and therefore are more

efficient when using resampling.
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8.3.4 Robustness of MPMC and multiple MPMC sampler with an exam-

ple of three frequencies

The problem of frequency estimation of complex sinusoids in noise is considered in this

section to show the robustness of the distributed MPMC algorithms. The model of the problem

is the same as in 8.10. We had dy = 25 observations with K = 3 sinusoids generated according

to the model. Observations were generated using three frequencies f1 = 0.2, f2 = 0.5, and

f3 = 0.5 + ∆f , with amplitudes Ã1 = 1, Ã2 = 1, and Ã3 = 1eiπ/3. The frequencies f2 and

f3 are close to each other with a difference of ∆f . MPMC and MultiMPMC were applied to

estimate parameters in this 9-dimensional problem with different values of ∆f . The prior for

Ãk used for the MPMC and MultiMPMC was

Ãk ∼ CN (0, 5).

We define a estimate estimate as an outlier when a frequency component was more than

∆ = 0.1 apart from the real value, shown as in Figure 8.19.

The performances of the MPMC and multiple MPMC in term of outlier rate for estima-

tion of the frequencies are shown as Figure 8.20. The outlier rate is based on R = 500 runs

with 1 to 20 iterations and with SNR = 5. In each run, M = 600 samples were generated from

an initial importance function for the MPMC sampler; and Mk = 200 for each estimator, which

sums up to M = 600 total samples, when implementing the MultiMPMC algorithm. It can be

concluded from the plot that MultiMPMC performed more robust as the ∆f decreased.

The performances of the MPMC and multiple MPMC algorithms to this problem were

quantified based on the MSE of the parameters to be estimated, given by 8.17. All the points

on the plot were generated from the above R = 500 runs after dropping the outliers. It can be

concluded from the plots that even among the good estimates (non outlier), the multiple MPMC

algorithm performed more accurately and more robust to a small ∆f .
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8.3.5 Comparison of MPMC and Gibbs MPMC sampler with an example

of ten frequencies

We apply the Gibbs MPMC to a ten frequency problem, where each of the conditionals

is a truncated Gaussian centered at the selected particle from the previous iteration. The condi-

tioning parameters were used for deciding the truncation points of the Gaussian. For example,

if the frequency fk,j needed to be generated, we used as a generating function the truncated

Gaussian centered at f (m)
k,j−1 with cutoff points f (m)

k−1,∗, and f (m)
k+1,∗, where the ∗ stands for the most

recent sample of fk−1 and fk+1, respectively.1 The importance of this choice is demonstrated in

the experimental results shown below.

We tested the method by conducting simulations as follows. We simulated dy = 25

observations with K = 10 sinusoids, whose frequencies were f1 = 0.2, f2 = 0.3, f3 = 0.32,

f4 = 0.5, f5 = 0.52, f6 = 0.7, f7 = 0.75, f8 = 0.8, f9 = 0.82, and f10 = 0.9, with amplitudes

ak = 1, for k = 1, 2, ..., 10, and phases φk = 0, for k = 1, ..., 4, 6..., 10 and φ5 = π/4,

respectively. The value of the noise power was defined by using the signal-to-noise ratio (SNR)

SNR = 10 log10
a2k
σ2
v

measured in dB.

For comparisons, we employed the MPMC method, which also uses the truncated Gaus-

sians with the same centers but with truncating points obtained in the previous iteration only

(so, they are not the most recent drawings). We also found the CRLBs for the frequencies of

interest. When implementing the algorithms, we used the Yule-Walker method for getting the

initial estimates [44].

The performance of the algorithms was quantified in terms of the mean square error

(MSE) given by

MSE(fk) =
1

R

R∑
r=1

(f̂k(r)− fk)2 (8.17)

1Note that when k = 1, the lower cutoff point is 0, and when k = K the upper cutoff point is 1.
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where R represents the number of realizations, f̂k(r) denotes the estimate obtained in the r-th

run, and fk is the true value of the frequency.

Figure 8.22 shows the MSE of the two algorithms as a function of iterations (the max-

imum number was J = 20 iterations). The SNR was 5 dB, M = 900 particles, and R = 500

runs. At each run, the estimates were obtained from all the particles in the J = 20 iterations.

In the figure, the performance of the novel scheme is denoted by G-MPMC. From the graphs,

it is clear that G-MPMC outperforms the MPMC. The G-MPMC estimates of the unknown

frequencies converge much more quickly to the true values.

In Figure 8.23, we see the MSE for different values of particle size (M was changed

from 300 to 1800 particles), SNR = 5 dB, J = 10 iterations, and R = 500 runs. At each run,

as before, the estimates were obtained from all the particles in the J = 10 iterations. The plots

show that the G-MPMC can achieve the same accuracy with a smaller amount of particles than

the MPMC algorithms, and therefore, it is less computationally expensive.

The MSE for various values of SNR is shown in Figure 8.24. All the points on the plot

were averaged over R = 500 runs with a particle size of M = 900 and for J = 10 iterations.

The proposed method again outperforms the MPMC considerably.

We point out that in all the simulations, we present the results of point estimates. The

particles and their weights provide, however, much more information. They can be used to

compute estimates of other integrals of functions or to simply produce other types of statistical

inference.

outliers outlier rate
MUSIC 278 0.556

Yule-Walker 258 0.516
MPMC (M=900, J=10) 9 0.018

G-MPMC (M=900, J=10) 3 0.006
MPMC (M=900, J=20) 2 0.004

G-MPMC (M=900, J=20) 0 0

Table 8.1: Outliers of different methods.
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Finally, we define a estimate estimate as an outlier when a frequency component was

more than ∆ = 0.1 apart from the real value, shown as in Figure 8.19. Table 8.1 show the

numbers of outliers of the MUSIC ((Multiple Signal Classification) algorithm, the Yule-Walker

method, MPMC method, and the proposed G-MPMC method. All the data were averaged over

R = 500 runs with SNR = 5. As seen, for high dimension problem, neither the Yule-Walker

nor the MUSIC algorithm performs well as the G-MPMC and MPMC methods do.
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Figure 8.9: 10 log10(1/MSE) vs. SNR for one frequency with unknown amplitude and phase
estimated using the PMC and MPMC algorithms.
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Figure 8.10: 10 log10(1/MSE) vs. SNR for one frequency with unknown amplitude and phase
estimated using the PMC and MPMC algorithms with different iterations.
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Figure 8.11: 10 log10(1/MSE) vs. SNR for 1 frequency with unknown amplitude and phase
estimated using the PMC and MPMC algorithms with different numbers of particles.
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Figure 8.12: Performance of the MPMC for two complex sinusoids in AWGN.

Figure 8.13: Performance of the MLLFE for two complex sinusoids in AWGN.
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Figure 8.14: MSE of estimates vs iterations using the PMC, MultiPMC, MPMC, and
MultiMPMC algorithms.
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Figure 8.15: MSE of estimates vs number of samples using the PMC, MultiPMC, MPMC, and
MultiMPMC algorithms.
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Figure 8.16: CDF of frequencies using PMC, MPMC, MultiPMC and MultiMPMC algorithms.
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Figure 8.17: Estimates vs SNR using MPMC, MultiMPMC and MUSIC algorithms.
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Figure 8.19: Definition of an outlier.
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Figure 8.20: Outlier rate of MPMC and multiple MPMC algorithms.
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Figure 8.21: MSE of MPMC and multiple MPMC algorithms after dropping the outliers.
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Figure 8.22: MSE as a function of iteration.
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Figure 8.23: MSE as a function of particle size.
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Figure 8.24: MSE as a function of SNR.
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CHAPTER 9

Conclusions and future work

9.1 Conclusions

PMC is a methodology for approximating joint distributions of unknowns. The approx-

imation is with random measures represented by samples and weights [10]. The method is iter-

ative where at each iteration samples of the unknowns are generated from a known distribution.

These particles are then assigned weights according to the importance sampling principle [63].

The particles and their weights from all the iterations are used for approximation.

The PMC has some resemblance to MCMC methods. However, the samples of PMC,

unlike in MCMC methods, have different weights, and the estimates of integrals under the target

distribution using the samples and the weights are approximately unbiased. The PMC has the

advantage of not requiring asymptotic arguments.

The key principle for constructing the approximations with PMC is importance sam-

pling, which is a technique for estimating properties of a particular distribution with samples

generated from a different distribution. This principle is always employed in the well known

particle filtering methods [18].

The estimation quality and convergence efficiency rely on many factors including the

number of samples and the choice of importance function. The computational complexity of

the PMC algorithm becomes increasingly challenging as the dimension of unknowns increases.

In this work, we proposed several novel PMC algorithms for high-dimensional nonlinear prob-

lems. These new structures are proven to provide accurate performance and computational

efficiency.

In particular, in some problems, we find that some of the unknown parameters are con-

ditionally linear given the remaining parameters. The MPMC has been proposed to lower the

computational cost by only generating samples of the nonlinear parameters and marginalizing
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the remaining linear parameters [8]. The marginalization decreases the dimension of the un-

knowns to be estimate and therefore minimizes the corresponding computational cost. This

approach has shown to be accurate and feasible.

We also propose distributed PMC algorithms, MultiPMC, where the state space of

the system is partitioned into several subspaces of lower dimensions and handled by a set of

marginalized PMC estimators. Partitioning of the original high-dimensional problem is a com-

putationally attractive technique. The multiple structure breaks down the exponential increase

of the computational burden into a linear increase. Indeed, the partitioning estimation algo-

rithms have flexible structure for parallel processing, which will overcome the computational

and storage constraints of a large class of practical applications. Simulation results show the

accuracy and feasibility of the method as well as its improvement with respect to other con-

ventional approaches. The MPMC and MultiPMC have also been combined to reach a more

simplified and still accurate implementation of the PMC.

Another critical issue in applying PMC methods is the choice of generating functions of

the particles. In this work, we also proposed that these functions are alternating conditionals, as

in the case of Gibbs sampling. Thus, the overall proposal function is a product of conditionals,

where the sampling from each conditional is easy. It is expected that with alternating condi-

tionals one can efficiently generate particles in high dimensions. The method was tested on the

problem of frequency estimation of multiple sinusoids. The obtained results show very good

performance of the method.

9.2 Future work

Further study on the theory of the PMC family of algorithms is of great interest. Appli-

cations of PMC algorithms to real problems of high dimensional and complex systems will also

be pursued.
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9.2.1 Theory

9.2.1.1 Systematic partition of the space of unknowns

One future direction of research is to investigate the systematic partitioning of the prob-

lem of interest. How to group the unknowns and how many unknowns to be grouped will be a

main topic of interest. For instance, in a typical weather forecast problem [29], the dimension

of the state-vector in most oceanic and atmospheric models is extremely high, often including

106 and 108 parameters. For such high-dimensional systems, sampling is a challenging compu-

tational task. The use of a proper state partitioning data structure can reduce the dimension of

the data to be processed. Two of the critical issues are how to extract the dependencies among

all the parameters, and how to partition the high-dimensional space of the unknowns.

The formalism of probabilistic graphical models [71] may provide a unifying frame-

work for capturing complex dependencies among random variables, and building large-scale

multivariate statistical models. Graphical models will be of great help in state partition prob-

lems. Exponential family representations [71] will help to simplify and clarify the connections

among the likelihoods, marginal probabilities and joint probabilities in a complicated and high-

dimensional system.

The partition of the space of unknowns should be optimized to achieve the least compu-

tational cost and maximized efficiency. One may also study the parallel implementation of the

distributed PMC algorithms once the problem space is partitioned. How to assign the estimators

to the subspaces can also be a future research topic.

9.2.1.2 Systematic population size

Another future direction is to study the systematic population size for a fixed dimen-

sional problem. Currently there is not any work done on the population size for a given problem.

Most people use the population size based on experiments when implementing the PMC algo-

rithms. However, it might become crucial to determine how many samples are necessary to
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explore the whole space of unknowns as the dimension increases dramatically and computa-

tional cost goes up accordingly.

Another interesting topic is to study the systematic population size along iterations. As

the samples and estimates converge to the target area of the space of unknowns, less samples

will be needed to explore the local area yet maintaining the accuracy. Dynamic population size

scheme will further decrease the computation burden while achieving the same accuracy.

9.2.1.3 Cost-based PMC

The general PMC requires a complete knowledge of the probabilistic distributions of the

measurement noise. However, in some cases this is not available, and therefore the calculation

of the weights when implementing the PMC algorithm is not possible. An alternative PMC

scheme, called cost-based PMC, will be researched.

A cost function will be defined and used instead of the traditional Bayesian weight

update at each iteration. A similar approach has been considered for sensor self-localization

under beacon position uncertainty [70], where costs are described by spatial parametric regions.

One may also refer to [57,58], where cost-reference importance sampling are elaborated in PFs

for MAP symbol detection without explicit estimation of the channel parameters.

9.2.1.4 Nonadditive noise problems

In some real-world problems, the noise is not always additive to the signals. A more

general model of observations is

y = h(x, v), (9.1)

which is the usual case if the noise interfere with the communication devices such as mobile

telephones, paging devices, digital hearing aids and protection devices. These scenarios are also

of interest to explore.
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Note that, one specific case of Equation 9.1 is the multiplicative noise,

y = x · v,

which is a model widely used in image processing [31, 51]. The noise can be converted to an

additive one if taken the natural logarithm on both sides, when x > 0 and v > 0:

lny = lnx + lnv.

Then the algorithms for signals in additive noise would fit for the converted model. For any

other case, other solutions will be devised. Note that, a different noise model does not change

the implementation of the PMC algorithms; it only affects the way the one updates the IFs.

9.2.1.5 Convergence

The convergence of MC algorithms were discussed in [23] and [14]. For a recent study

on the convergence of PMC, one can refer to [21]. If PMC algorithm converges, MPMC also

converges. At this time, we do not have proof for convergence of the multiple PMC algorithms.

Further study will find the conditions when the multiple PMC schemes converge.

9.2.2 Applications

We will also be interested in looking for applications to real problems using PMC and

MPMC. In high dimensional problems when the likelihood function is analytically or com-

putationally intractable, MC methods can provide ways of evaluating posterior distributions.

Some MC methods are applied to specific real-world high-dimensional system and proved to

be effective as presented in the following.
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9.2.2.1 Geophysical problems

Many modern geophysical problems, such as weather forecasting [26], are characterized

by extremely high-dimensional systems and pose difficult challenges for assimilation of system

information and observations. Two MC-based Kalman filters were applied to such problems

in [29] in order to update and forecast the atmospheric states in high-dimensional systems.

The atmospheric state are modeled using a probability density function, with extremely

high-dimensions [29]. Many of the parameters are highly correlated with each other and the

singularity of the covariance matrix makes it difficult to estimate with traditional methods.

However, with the new proposed methods we expect to marginalize this part of the parame-

ters to simplify the problem and meanwhile overcome the computational problem caused by the

singular covariance matrix. The performance might be further improved by proper partition of

the problem space.

9.2.2.2 Finance problems

MC methods are widely used in finance and mathematical finance for the last few

decades. They became an important tool in valuing and analyzing complex instruments, portfo-

lios and investments [32]. MC methods have been extensively used in option pricing for a few

decades [41,50]. There have been a wide variety of MC approaches applied: quasi MC (QMC),

stratification, importance sampling, etc. The importance of MC for option pricing, against other

numerical approaches, is the ability to deal with high-dimensional integrals.

However, there still could be more improvement of the performance. For instance, a

typical multi-factor tree, usually the joint product of a number of binomial trees, expanses

exponentially as iteration goes up [41]. Some part of the tree becomes less correlated or even

isolated from the rest and one may partition this part from the main tree while valuate the whole

trend of the tree. Moreover, under certain conditions, some of the option parameter linearly

depend on the rest. In these cases, one can apply the marginalized algorithm to achieve same

accurate estimation but with much less computational cost.
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9.2.2.3 Biological problems

Shadow Hybrid MC, as a new method for sampling the phase space of large biologi-

cal molecules, is employed in [35] to achieve more efficient sampling for protein sequences.

It improves sampling by allowing larger time steps and system sizes in the molecular estima-

tion. However, [35] uses a general scheme with uniform population size for all sized proteins.

One might want to use a PMC scheme with systematic population size. For instance, a small

sized protein with less parameters needs less samples, while a large sized protein with more

parameters needs more samples to extract the information. One might also want to partition the

space of unknowns/parameters and deal with the protein sequence with multiple samplers and

estimators.

Transcription factor binding site identification problems [40] have faced difficulties due

to model mismatch and the nature of the biological sequence, which results in inference in a high

dimensional, highly multimodal space, and consequently often display only local convergence.

A MC-based method is applied to the problem [40] to improve the performance in this scenario.

The MC element increases the robustness of the algorithm. However, one might expect samples

of better “quality” when using the Gibbs PMC scheme and may achieve better performance

regarding robustness and convergence.

To summarize, there have been many PMC applications in real problems. However, only

the standard PMC schemes have been discussed and employed. One may expect the advantages

of the proposed new members in PMC family. Especially for high-dimensional systems, one

may achieve accuracy and computation efficiency while implementing the proposed algorithms.
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[18] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo, and J. Mı́guez.
Particle filtering. IEEE Signal Processing Magazine, 20(5):19–38, 2003.
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