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Abstract of the Thesis

Bloch Oscillations of a BEC: Competition between
Mean-Field Interactions and Disorder

by

Matthias Guido Vogt

Master of Arts

in

Physics

Stony Brook University

2011

This thesis experimentally investigates Bloch oscillations of a Rubidium-

87 Bose-Einstein condensate in an disordered optical lattice. The disorder is

created by superposing an additional, incommensurate optical lattice to the

main lattice. Individually, collisional mean-field interactions between atoms as

well as disorder both lead to a damping of the oscillations. However, we observe

a competition between the two contributions, which results in an effective

reduction of the disorder-induced damping due to mean-field interactions. This

observation is consistent with an interaction-induced screening of the potential.
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Chapter 1

Introduction

Bose-Einstein condensation was first theoretically described by Satyendra Nath

Bose and Albert Einstein in 1924/1925 [1, 2]. However, an experimental real-

ization was impossible at this time.

An important aspect towards this realization was the idea of laser cooling

[3–5] and its development towards cooler temperatures, most notably sub-

Doppler cooling [6, 7]. With the help of laser cooling it was possible to cool

down atoms far enough into the micro-Kelvin range to trap them in an optical

or magnetic trap, where they could be cooled further by evaporative cooling.

The first Bose-Einstein condensates were experimentally produced 70

years after their theoretical prediction. In 1995 the groups of Eric Cornell and

Carl Wieman [8] and of Wolfgang Ketterle [9] independently and unequivo-

cally demonstrated BECs consisting of Rubidium-87 and Sodium-23 atoms,

respectively.

The condensate state of bosons reveals a whole new field of research

opportunities such as the examination of vortices [10] or solitons [11]. Another
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interesting area is the research on Bose-Einstein condensates in optical lattices

[12–15]. A spectacular example is the superfluid to Mott insulator transition

[16], in which the gas becomes strongly interacting.

In optical lattices, interactions already play an important role for single-

particle effects such as Bloch oscillations [15, 17–19], which are the focus of

the present work. These Bloch oscillations can be damped due to atom-atom

interactions within the condensate [20, 21] or because of disorder in the lat-

tice [22–24]. However, when both, interactions and disorder, are present si-

multaneously, competing effects between interactions and disorder can occur

[22, 25, 26]. Repulsive interactions can screen the disordered potential of the

optical lattice [27, 28] and weaken the effect of the disorder. This thesis gives a

basic introduction to this issue and describes the first experimental observation

of screening of disorder.
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Chapter 2

Basics

In this chapter I will give a general introduction to the topic of Bose-Einstein

condensates (BECs). Furthermore I describe the principle of optical lattices

and how an external force leads to Bloch oscillations (BOs) of a BEC.

2.1 Bose-Einstein condensation (BEC)

As long as the distance between particles is large compared to their de Broglie

wavelength, they can be approximated as being point-like (classical descrip-

tion). If the density of particles n = N/V , where N is the number of atoms

and V is the volume, increases, so that the distance between them can no

longer be assumed to be much greater than the de Broglie wavelength, this

approximation is not valid anymore, and quantum mechanical effects have to

be taken into account. At temperature T , the (thermal) de Broglie wavelength
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of atoms in a gas is given by [29]

λT =

√
2π~2
mkT

. (2.1)

Here, ~ is the reduced Planck constant, m is the mass of the atom, k is the

Boltzmann constant.

In the case of bosons, the wave function of a system of identical particles

will be symmetric when particles are interchanged.

As can be seen in (2.1), the de Broglie wavelength increases with decreas-

ing temperature. When the wavelength is large enough that the individual

waves start to overlap, Bose-Einstein condensation occurs. This is the case

when λ3T is of the same order as the reversed density n−1

λ3T ∼ n−1. (2.2)

In this state a macroscopic fraction of the particles is in the lowest quantum

state and macroscopic quantum effects play a role. The dimensionless quantity

ρ = nλ3T is defined as the phase-space density [30]; in free space the critical

value is ρ = 2.612.

For temperatures between this transition point and absolute zero there

will be a mixture of non-condensed thermal atoms and those in the condensed

state of a BEC (see figure 2.1). A pure BEC will appear when the temperature

approaches zero.

In the case of alkali atoms 1 this phase transition happens typically at

1Rubidium-87 was used in the later described experiments.
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around 100 nK. An increase in density also increases the transition tempera-

ture.

A very detailed introduction of the subject can be found in [29] and [31].

2.1.1 Non-interacting gas

For now I will neglect interactions between the particles and only look at

non-interacting gases [29]. The influence of interactions will be taken into

consideration in section 2.1.2.

Density of states

In three dimensional phase space, one free particle occupies

(∆x ∗∆px)(∆y ∗∆py)(∆z ∗∆pz) = (2π~)3. (2.3)

In momentum space, the volume of those momenta p that are smaller than a

certain momentum p0 is described by a sphere with radius p0. Considering the

energy E = p20/2M , one obtains

4

3
πp30 =

4

3
π(2mE)3/2. (2.4)

Therefore, the number of states with energies smaller than E

G(E) =
V 4

3
(2mE)3/2

(2π~)3
(2.5)

is just the total volume divided by the volume of a single particle.
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The number of states between energies E and E+dE can now be obtained

by using the derivative of G(E)

dG(E)

dE
dE = g(E)dE , (2.6)

where g(ε) is the density of states

g(E) =
V m3/2

√
2π2~3

√
E . (2.7)

In D dimensions, the result is proportional to E (D2 −2). It is independent of the

energy in 2 dimensions.

While this is the density of free particles, I will now discuss the case

of harmonically trapped particles. Hence, consider the case of a harmonic

oscillator potential with oscillation frequencies ωi

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2). (2.8)

The energy levels of this potential are

E(nx, ny, nz) = (nx +
1

2
)~ωx + (ny +

1

2
)~ωy + (nz +

1

2
)~ωz, (2.9)

with non-negative integers ni.

In order to simplify the calculations, consider the case where energies

are large compared to the ground state (~ωi), thus ni >>
1
2
. Also the ni may

be replaced by continuous variables Ei = ~ωini. This reduces equation 2.9 to
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E = Ex + Ey + Ez. The number of states is then [29]

G(E) =
1

(~ω)3

∫ E
0

dEx
∫ E−Ex
0

dEy
∫ E−Ex−Ey
0

dEz =
E3

6(~ω)3
, (2.10)

with ω = (ωxωyωz)
1/3. The density of states in the case of a 3 dimensional

harmonic trap is therefore

g(E) =
E2

2(~ω)3
(2.11)

and

g(E) =
ED−1

(D − 1)!(~ω)3
(2.12)

in D dimensions.

Critical temperature

The Bose distribution function describes the number of particles in a certain

energy state E

f(E) =
1

e(E−µ)/kBT − 1
. (2.13)

Here, µ is the chemical potential, kB is the Boltzmann constant and T is the

temperature. For large energies E , it can be approximated by the Boltzmann

distribution f(E) ≈ e−(E−µ)/kBT .

Using equation 2.13 and the density of states, one can determine the

number of atoms that are in an excited state

Nex =

∫ ∞
0

dEg(E)f(E). (2.14)
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In order to determine the critical temperature, which is the highest tempera-

ture at which some atoms are in the lowest quantum state (in a ”‘BEC-state”’),

one looks at the point where all atoms are in an excited state. Consequently

one sets µ = 0 to obtain the greatest possible value of equation 2.14 and sets

it equal to the total atom number. This way the critical temperature can be

derived, depending on the kind of potential that is used and its dimensionality.

For a three dimensional harmonic oscillator, the critical temperature is [29]

Tc =
~ωN1/3

kB[ζ(3)]1/3
, (2.15)

where N is the total number of atoms and ζ is the zeta function (ζ(3) = 1.202).

Condensate fraction

For temperatures below the critical temperature, one can also calculate the

number of excited atoms Nex = N( T
Tc

)α, with α depending on the potential.

By subtracting this number from the total atom number, one obtains the

number of condensate atoms. For a three-dimensional harmonic oscillator

(α = 3) it is

N0 = N

[
1−

(
T

Tc

)3
]
. (2.16)

For a rectangular box potential the power is α = 3/2.

These are some basic parameters that can be derived without regarding

the effects of interacting bosons. The next chapter will show some properties

that are based on or influence by atom-atom interactions.
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2.1.2 Weakly interacting gas, Gross-Pitaevskii equation

So far, interactions between particles have been neglected. Because of their

influence on several of the BEC’s properties, such as its shape [32], they have

to be taken into consideration. For zero temperature, a scattering length that

is much shorter than the spacing between particles, and high atom numbers

in the condensate, Gross and Pitaevskii independently derived a nonlinear

Schrödinger equation in 1961

i~
∂Φ(r, t)

∂t
=

[
− ~2

2m
∆2 + Vext(r) + g |Φ(r, t)|2

]
Φ(r, t). (2.17)

A derivation and more detailed explanation of the Gross-Pitaevskii (GPE)

equation can be found in [29].

The GPE is of similar appearance as the Schrödinger equation. The first

term on the right side describes the kinetic energy, the second term stands

for external potentials and the third covers interactions between particles. It

contains the coupling constant g, which in turn depends on the scattering

length a 2

g =
4π~2a
m

. (2.18)

The time-independent GPE can be found by substituting the time deriva-

tive on the left hand side of the equation by the chemical potential µ

i~
∂Φ(r, t)

∂t
→ µΦ(r). (2.19)

2The scattering length can both be positive or negative corresponding to a repulsive or
attractive atom-atom interaction. In the case of rubidium the scattering length is positive.
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In contrast to the Schrödinger equation, the eigenvalue is not generally

the energy of an individual particle. Only in the case of no interactions the

chemical potential is equal to the energy of the single particles.

Thomas-Fermi approximation

Let us consider the GPE in its time-independent form now and compare the

kinetic energy to the interaction energy. It turns out [32] that the ratio of

interaction energy to kinetic energy depends on the parameter Na/aho, where

aho is the length of the harmonic oscillator trap.

For repulsive interactions, which means a > 0, a large enough number of

atoms N leads to an interaction energy that is much greater than the kinetic

energy. In that case the kinetic term can be simply neglected, which leads to

the Thomas-Fermi approximation

µΦ(r) = [Vext(r) + gn(r)] Φ(r), (2.20)

where n(r) = |Φ(r)|2.

When the atom number is in the already experimentally realized order

of about 105 or larger, there is hardly a difference between the Thomas-Fermi

approximation and the more accurate description that includes the kinetic

term [32].

Solving this equation for n and integrating, one gets the total number

of atoms. By solving for µ now one obtains an expression for the chemical

10



potential [29]

µ =

(
152/5

2

)(
Na

aho

)2/5

~ω, (2.21)

where ω = (ωxωyωz)
1/3 is the geometric mean of the three oscillator frequencies

ωi.

Figure 2.1: 1D cut through the density profile of a Bose-Einstein condensate: The
x-axis is in units of the Thomas-Fermi radius, the y-axis is in arbitrary units. The
plots are the sum of a Gauss distribution (blue curve, describes the thermal particles)
and a Thomas-Fermi distribution (red curve, describes the condensate). (a) Here,
the temperature is just below the critical temperature TC . There is still a large
cloud of thermal particles. (b) Due to the low temperature most of the particles are
in a BEC-state.

Using the condition at the boundary of the cloud V (r) = µ together

with equations (2.21) and (2.8) leads to the often used Thomas-Fermi radius

[29, 31]

RTF = (RxRyRz)
1/3 = 151/5

(
Na

aho

)1/5

aho. (2.22)

The Thomas-Fermi radius is a measure of the BEC’s size.
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2.2 Optical Lattices

2.2.1 Atoms in the presence of a laser field

When an atom is exposed to a laser field, it is affected by the oscillating electric

field of the laser beam. Due to the ac Stark shift, the atom’s energy levels are

shifted by [13, 29]

∆E = −1

2
α(ω)

〈
E2(r, t)

〉
t
. (2.23)

The electric field is denoted by E and α(ω) is the atomic polarizability, which

depends on the frequency ω of the electric field. The brackets 〈〉t indicate the

time average of the electric field E .

The resulting potential affecting the atom is [29]

V = −1

2
Re[α(ω)]

〈
E2(r, t)

〉
t
, (2.24)

where Re[α(ω)] is the real part of α(ω).

1D lattice

Let us assume a lattice consisting of two counterpropagating beams as shown

in figure 2.2. Both have the same frequency, amplitude and polarization. This

results in a standing wave with an electric field

E = E0ei(kx−wt) + E0ei(−kx−wt) = 2E0e−iwt cos(kx). (2.25)

12



d

k -k

mirror

V0

laser

soure

Figure 2.2: An optical lattice created by two counterpropagating laser beams with
wave vector k and −k: In this picture a laser beam is reflected into itself by a mirror,
which creates a standing wave with period d and depth V0.

By time-averaging the squared electric field, one obtains the potential

V = V0 cos2(kx) = V0 cos2(
πx

d
), (2.26)

where d = π/k = λ/2 is the lattice spacing and V0 is the lattice depth. The

lattice depth linearly depends on the atoms’ polarizability and the intensity of

the laser. It is often given in units of the recoil energy

ER =
(~k)2

2m
, (2.27)

which is the energy that an atom gains when absorbing a lattice photon.

For an arbitrary angle between both beams the lattice spacing and the

potential become [29]

d =
2π

|k1 − k2|
=

λ

2 sin(θ/2)
(2.28)
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and

V = V0 cos [(k1 − k2)r + δ1 − δ2] , (2.29)

where θ is the angle between the two beams and δ1−δ2 is their phase difference.

By varying the angle θ one can control the period of the lattice and achieve

values of λ/2 and higher.

A moving lattice can be created by using two beams with different fre-

quencies. The direction of that movement is determined by k1 − k2 and the

magnitude is [29]

v =
ω1 − ω2

|k1 − k2|
. (2.30)

If the frequency difference ω1−ω2 changes with time, the lattice is accelerated.

This provides an alternative to accelerating the BEC in the lattice itself [14,

15, 19].

Two- and three-dimensional lattices

Optical lattices of two- or three dimensions can be achieved by using more

than two laser beams with wave vectors ki. For two dimensions at least two

independent differences ki − kj produced by at least 3 beams are required.

Accordingly, a three-dimensional lattice calls for at least 4 laser beams [29].

The most common approach in experiments, however, is to simply use

one pair of counterpropagating laser beams for every dimension, where all

pairs are orthogonal to the others. The influence of six different beams can

lead to non-trivial interference patterns. This allows further adjustment of the

lattice properties to the experimental needs. In order to get a simpler setup,

14



however, interferences between the three axes are often avoided with the help

of a frequency offset of some tens of MHz. This can be achieved by using

an acousto-optic modulator (AOM). Interference effects between the different

directions are then shifting much faster than the atoms are oscillating and

are therefore negligible (see [13]). The resulting three-dimensional potential

of three independent, orthogonal pairs of beams is

V (r) = V0(cos2(kx) + cos2(ky) + cos2(kz)). (2.31)

Further control of the lattice can be gained by adding even more beams,

or adjusting the polarization and phases of the beams. Likewise the polar-

ization can also be used to create state-dependent lattices by controlling the

angle between the polarization vectors of two beams. For more details on

state-dependent lattices see [33, 34].

2.2.2 Band structure

After introducing optical lattices, I will now discuss in what way they will

affect the atoms in them. The principle is the same as for electrons in ionic

lattices known from solid-state physics.

Consider the case of a particle moving in a periodic potential V (r) (equa-

tion 2.31). The corresponding Schrödinger equation is

Hψ =

(
− ~2

2m
∇2 + V (r)

)
ψ = εψ. (2.32)
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The eigenstates of this equation have the form [35]

ψ(r) = u(r)eiqr, (2.33)

where q is the quasimomentum and u(r) has the same periodicity as the lattice

potential V (r). Equation 2.33 is normally denoted as Bloch’s theorem after

Felix Bloch, though in the one-dimensional case it was first derived by Floquet

[35].

In order to solve equation 2.33, one can use an ansatz of describing

the wave function and the potential ψ in Fourier series that have the same

periodicity as the lattice. This leads to an infinite system of linear equations.

If one limits the series to N terms, one gets a N(2N + 1)-dimensional system

of linear equations and 2N + 1 eigenenergies [13].

The eigenenergies are influenced by the lattice potential V0. For a low

potential V0 << ER, their structure resembles that of a free particle, while for

larger potentials there are gaps between the energy bands that increase with

increasing V0 (figure 2.3).

In special cases, as in the limit of very weak or very strong potentials,

an approximation of the eigenenergy can be found analytically. In the weak

potential limit it is [13]

E(q̃)

ER
= q̃2 ±

√
4q̃2 +

s2

16
, (2.34)

with q̃ = q/k − 1 and the dimensionless parameter s = V0/ER. Recall that k

is the wave vector of the laser beams that form the optical lattice and q is the

16



Figure 2.3: Band structure: (a) for a relatively shallow lattice potential V0 = ER the
gap between the first and the second band is small, similar to the free particle case,
with no energy gaps at the end. (b) In the case of a deeper lattice V0 = 10×ER, the
gap between the first and the second energy band is significantly broader. [Thanks
to Bryce Gadway for providing a module for the calculation of the band structure.]
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quasimomentum of the wave function. In case of the minus sign one gets the

lowest band and plus sign gives the first excited band.

The analytical result for the limit of deep lattices is [36]

E(q)

ER
= 3
√
s− 2

J

ER
cos(qd), (2.35)

J =
4√
π
ERs

3/4e−2
√
s. (2.36)

J is the tunneling energy between the energy bands and d is the lattice spacing.

Other values of importance are the group velocity vg and the effective

mass meff of the BEC’s wave packet [13]

vg =
1

~
∂E(q)

∂q
, (2.37)

meff = ~2
(
∂2E(q)

∂q2

)−1
. (2.38)

2.3 Bloch oscillations

Let us consider the influence of a time-independent force F on the Bose-

Einstein condensate in an optical lattice, while neglecting effects of interactions

between the constituent particles for now. The force can be generated by ac-

celerating the lattice, which will cause an acceleration of the BEC in the rest

frame of the lattice. Alternatively, for a vertical oriented lattice the gravi-

tational force 3 F = mg can be used. In the presence of a one-dimensional

3This method was used in the experiments described later.
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lattice, the resulting Hamiltonian is

Ĥ =
p̂2

2m
+ V0 cos2(kx) + Fx. (2.39)

At the beginning, the atoms are in the center of the lowest energy band

(see figure 2.3). The external force F then accelerates them until they reach

the edge of the Brillouin zone. Because of the band gap at this point, the atoms

cannot get into the next higher band. As they cannot get to the higher band

they will be reflected to the other end of the zone through Bragg reflection of

the de Broglie waves at the lattice potential. Like that they will oscillate back

and forth between the two edges. Accordingly, there is also an oscillation of

the velocity (equation 2.37).

I will now look closer at the quasimomentum ~q. Due to the constant

external force it changes as

~
∂q

∂t
= F (r, t). (2.40)

After a time of ∆t the wave vector q will have changed by F ×∆t/~. Because

we have the periodic lattice potential, after a change of 2π/d the BEC will be

in the same state as before. The time it takes, denoted as Bloch period, is

TB =
2π~
Fd

. (2.41)
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2.3.1 Landau-Zener tunneling

Whenever the atom is at the edge of the Brillouin zone there is a chance of

tunneling from the lowest band to the first excited band. The chance depends

on the energy uncertainty of the atoms associated with their passing through

the zone edge and therefore on the external accelerating force and the band

gap. The population of atoms in the lowest band decays exponentially with

an estimated decay time of [18]

τ = ~/Γ, (2.42)

where

Γ = aFe−b/F . (2.43)

Here, a and b are constants that depend on the energy bands.

In order to avoid this tunneling effect, it is thus necessary to use a

relatively weak force, or to increase the energy gaps between the bands by

using deep enough lattice potentials.
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Chapter 3

Interactions and disorder

3.1 Effect of interactions, mean-field

In chapter 2.3 interactions between atoms during Bloch oscillations have been

neglected. Effectively this corresponds to a case of only a single particle. In

this chapter I will take the influence of interactions into consideration.

3.1.1 Effective potential

For dilute systems the Gross-Pitaevskii equation (GPE) (equation 2.17) is a

reasonable basis for calculations. Choi and Niu have used a one-dimensional

GPE in [14] and applied dimensionless variables x̃ = 2kx, t̃ = ~
m

4k2t, Φ̃ =

Φ/
√
n0 and Ṽ0 = m

~2
(

1
4k2

)
V0, with n0 being the density of the BEC to arrive

at the equation

i
∂Φ̃

∂t̃
= −1

2

∂2Φ̃

∂x̃2
+ Ṽ0 cos(x̃)Φ̃ + C|Φ̃|2Φ̃. (3.1)
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An important variable in this equation is the nonlinear coupling strength 1

[14, 15]

C =
πn0a

k2 sin2(θ/2)
, (3.2)

where θ is the angle between the laser beams that generate the optical lattice.

The coupling strength is strongly influenced by the angle θ. A small angle

will lead to a large lattice spacing d = π/ sin(θ/2)k and strong interactions. In

order to minimize the effect of interactions one can use two counterpropagating

(θ = 180◦) beams as shown in figure 2.2, for which sin2(θ/2) = 1 .

The effect of the interaction energy is to influence the potential created

by the lattice. In the potential wells the number of atoms is larger, while in the

regions of high potential energy, there are less atoms. In the case of repulsive

interactions, the atoms will reject each other more strongly the higher the

density of atoms is, which counteracts the effect of the optical lattice. This

principle also plays a role in the screening of a disordered lattice described

later.

The change of the total potential can be approximated by substituting

the lattice potential depth Ṽ0 with a reduced, effective potential depth Veff ,

depending on the coupling strength C [14]

Veff =
Ṽ0

1 + 4C
. (3.3)

This approximation is good as long as the effective potential depth is low

(Veff << 1), i.e. for weak external potentials.

1For rubidium the coupling strength is 2.6× 10−2 [14].
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3.1.2 Strongly interacting Bose gases

The Gross-Pitaevskii equation is valid in the regime of dilute and therefore

weakly interacting Bose gases. Some phenomena that appear for strongly in-

teracting BECs cannot be explained by this description. For completeness

(even though this is not directly relevant for the experiments described be-

low), I will therefore introduce the Bose-Hubbard model, that also considers

quantum correlations between particles.

The derivation starts with the Hamilton operator for bosons in external

potentials [12]

H =

∫
d3rψ�(r)

(
− ~2

2m
∆2 + V0(r) + VT (r)

)
ψ(r)

+
g

2

∫
d3rψ�(r)ψ�(r)ψ(r)ψ(r),

(3.4)

where g is the coupling constant (see equation 2.18) and VT is an external trap-

ping potential like a magnetic trap. The last term on the right side describes

the interaction potential between the atoms. It can be understood similarly

as in the GPE (2.17), where the interaction strength depends on the coupling

constant g and the density |Φ(r, t)|2.

For only one single atom, the eigenstates of this equation are Bloch

states (2.33), which can be described by a superposition of Wannier functions

centered on lattice sites j,

w(r− rj) =
1√
N

∑
q

e−iqrjψq(r), (3.5)
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such that

ψq(r) =
1√
N

∑
j

eiqrjw(r− rj). (3.6)

With the assumption that the energies that occur in the system are small

compared to the transition energy to the second band and that only the ground

states of single wells are populated, the application of ψ(r) =
∑

j biw(r − rj)

in 3.4 leads to [12]

H = −J
∑
〈i,j〉

b�ibj +
∑
i

εin̂i +
1

2
U
∑
i

n̂i(n̂i − 1). (3.7)

In the first term, b�i and bi are the creation and annihilation operators.

They describe the creation and annihilation of atoms in the i-th lattice site.

This term therefore describes the hopping between the different sites with the

hopping matrix element J =
∫
d3rw∗(r− ri)

[
− ~2

2m
∆2 + V0(r

]
w(r− ri).

The operator n̂i = b�ibi counts the number of particles in the lattice site

i and ε =
∫
d3rVT (r)|w(r − ri)|2 ≈ VT (ri) is the influence of the external

potential on an atom in the lattice site i. Hence, the second term describes

the total energy of the system due to the external potential.

The last term in equation 3.7 describes the interaction energy of all the

atoms that are in the same lattice well. The parameter U = g
∫
d3r|w(r)|4 is

the repulsion between two atoms in one lattice site2.

2For 87Rb atoms in a three-dimensional potential with V0 = 22ER the value of the
interaction constant U is about 0.28ER [18].
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Decay and revival of Bloch oscillations

Atom-atom interactions can lead to dynamical instability [37]. When the

condensate is accelerated, its quasimomentum might reach a dynamical un-

stable region. That means that at a certain critical velocity the condensate’s

coherence is lost leading to a complex structure of the wave function [37].

Decoherence causes a decay of Bloch oscillations [18, 21].
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Figure 3.1: Damping of Bloch oscillations: Shown is the development of the momen-
tum (in units of the recoil momentum pR) in time. The atom number is about equal
in both cases, but the trap confinement and therefore the density is higher for b (the
trap is about three times as deep as for a). a) In the case of weaker interactions the
width of the momentum distribution stays small. b) Due to collisions the coherence
of the system decreases with time and the momentum distribution becomes washed
out. The oscillation of the mean momentum is damped strongly.

This decay (see figure 3.1) can be understood in terms of the momentum

distribution of the BEC. Due to collisions, parts of the system are scattered and

different particles have different momenta at the same time, which corresponds

to different oscillation phases. The initially small momentum distribution
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spreads more and more and the amplitude of the mean momentum decreases.

On the other hand for a sufficiently strong external force even periodic

revivals of Bloch oscillations have been predicted for certain conditions. These

revivals are a quantum many-particle effect and based on the finiteness of the

interaction constant U and the atom number [38].

3.2 A disordered lattice

In solid state physics, Bloch oscillations of electrons in crystal structures will

decay in times that are much shorter than an oscillation period. The rea-

son for this are imperfections in the lattice structure like impurity atoms or

phonons that disturb the otherwise periodic potential and lead to scattering

of the electrons. In contrast to this, optical lattices created with laser beams

have a perfectly periodic potential. It is, however, possible to add a con-

trolled disorder potential to the optical lattice in order to analyze its effect on

the damping of Bloch oscillations. The first experimental measurements on

the decay of Bloch oscillations in a disordered lattice have been reported by

Drenkelforth et al. in 2008 [24].

There are several ways to create such a disordered lattice potential. One

possibility is to add a different kind of atoms [39] as impurities. For example

they can be in a different hyperfine state [40] or be of another species, e.g.

fermions [41]. The impurities are trapped in a deep lattice that does not

or only weakly affect the other atoms. If the number of impurity atoms is

low enough that they occupy only some of the lattice sites, they will create
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random potential peaks on which the other atoms are scattered due to atom-

atom collisions.

Because of the scattering, interference effects like interference between

the incident wave and a wave scattered back from a disordered part occur [23]

and the decoherence of the system increases. The decay of the wave function

also leads to a decay of its Bloch oscillations. For very strong disorder, this

can lead to a complete stop of the wave and to a localization of the particles

inside the lattice. The effect is named ”Anderson localization” after P. W.

Anderson, who proposed it for lattices in the context of solid state physics

[42].

A second possibility is to apply an additional, incommensurate lattice of

different wavelength [43]. This setup is referred to as bichromatic lattice and

has been used in the experiments described in 5. I will explain it further in

section 3.2.1.

Other ways are to use speckle patterns [44, 45] or inhomogeneous mag-

netic fields [46, 47]. To create speckle patterns, laser light is either transmitted

through a diffuse medium or reflected from a rough surface [23]. Inhomoge-

neous fields can be found in the vicinity of microchips due to fabrication im-

perfections. Small fluctuations of an inhomogeneous magnetic field close to

the Feshbach resonance (see e.g. [48, 49]) generate spatial fluctuations in the

scattering length that characterizes atomic interactions. Effectively the disor-

der that is achieved in this way is a disorder of the interaction strength, not

of the optical lattice [23].

Because of the disorder, the total external potential affecting the bosons
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is in one dimension

V (x) =
mω2x2

2
+ sER cos2(kx)− Fx+ Vdis(x). (3.8)

The first term stands for the harmonic trap, the second term denotes the

optical lattice with s being the lattice depth in terms of the recoil energy ER

and the third term is due to the external force that accelerates the atoms. The

last term finally is the disorder potential Vdis, which causes a damping of the

Bloch oscillations.

3.2.1 A bichromatic lattice

Combining two optical lattices with different wavelengths creates a bichromatic

lattice with the potential

V (x) = s1ER1cos
2(k1x) + s2ER2cos

2(k2x). (3.9)

The parameters si = Vi/ERi, ERi = h2/(2mλ2i ) and ki = 2π/λi all depend on

the wavelengths of the lattices. The second lattice, described by the second

term in equation 3.9 acts as the disorder potential Vdis.

Because a bichromatic lattice is based on the superposition of two dis-

crete wavelengths, it cannot really be a disordered potential with random im-

purities but will always have a periodic structure. This is called a quasiperiodic

potential. For finite sized systems, however, they are suitable as long as their

wavelengths are approximately incommensurate. Incommensurability means
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Figure 3.2: A tilted bichromatic lattice: The first potential (blue) is the regular
optical lattice. In order to obtain disorder, a second lattice (red) with lower lat-
tice depth and an incommensurate wavelength is added. The accelerating force
needed for Bloch oscillations is provided by gravity. It is a linear gradient. The
orange potential is the tilted bichromatic lattice resulting from a superposition of
all potentials.
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that the ratio of both wavelengths is an irrational number, which is experimen-

tally not feasible because the precision for measuring the wavelength is limited.

But as long as the ratio is far enough from an integer or half-integer [22] that

the periodicity of the bichromatic lattice is greater than the size of the mea-

sured system, the lattice can be considered to be effectively incommensurate

[23].

If the potential depth of the disordering lattice is much smaller than

that of the main lattice, the height of the potential barriers between the wells

can be assumed to be approximately constant. In this case, the main effect

of the second lattice is to induce a non-periodic shift of the potential energy’s

minima [23].

In order to induce Bloch oscillations, an additional external force is

needed. It can be provided by gravity, which then adds the additional po-

tential term VG = mgx to equation 3.9.

3.3 Interplay between disorder and interac-

tions

If applied independently, both atom-atom interactions and disorder cause a

decay of Bloch oscillations. However, if both interactions and disorder are

present simultaneously, the effects might weaken or even annihilate each other

[22, 25]. For a lattice with a fixed amount of disorder, the interaction strength

can be controlled e.g. via Feshbach resonance or the density of the condensate.
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Consider a disordered lattice and noninteracting particles or a very di-

lute condensate with significantly damped Bloch oscillations. When adding

interactions or increasing the density, this can give rise to a screening of the

disordered lattice [25, 27, 28]. The condensate wave function is attracted to

those places of the lattice with lowest energy, i.e. the minima. We recall

that the depth of these wells varies in a disordered lattice. Accordingly, more

atoms assemble in the deeper minima than in the more shallow minima. The

accumulated atoms repel each other because of their repulsive interaction and

the strength of this repulsion depends on the density of the condensate. The

deeper the lattice, the denser the condensate and the stronger is the repulsive

potential caused by atom-atom interactions. On account of this, the deepest

minima are ”cut off”, the lattice becomes a little more shallow and the effects

of disorder are smoothed out [28] (see figure 3.3). Of course this happens not

in one sudden step, but the interplay of interactions and disorder leads to the

disordered potential converging to the screened potential.

The screening leads to a delocalization of the particles in the lattice [26].

Increasing the interaction strength also increases the effect of the dynamical

screening. At first, locally coherent fragments of BEC arise and for further

increase of the strength the entire system reaches a coherent state.

While the coherence of the system is strengthened the damping of Bloch

oscillations is weakened. This works up to a certain point where the influence

of decoherence induced by interactions becomes stronger than the influence of

the dynamical screening. From here, a further increase of interaction strength

will again lead to more damping [22].
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V

Figure 3.3: Schematic illustration of the combined effects of disorder and interac-
tions: On top is a disordered lattice (red) and the repulsive potential caused by
atom-atom interactions (black). The deeper the lattice wells are, the greater is the
number of atoms in it and their interaction strength. This leads to a screened ef-
fective potential, in which the deepest minima are cut off. The disordered lattice is
smoothed out at the bottom.
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In conclusion, it should be possible to counter the effect of a disordered

lattice by tuning the atom-atom interactions. Experimental results of this

procedure are described in chapter 5.
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Chapter 4

Experimental Setup

A detailed description of the experimental steps that lead to the production

of a BEC in our apparatus are described in [50–53].

In brief, 87RB atoms are first slowed down and collected in a magneto-

optical trap (MOT). For that purpose a frequency stabilized diode laser excites

the atoms from the 52S1/2, F = 2 hyperfine state to the 52P3/2, F
′ = 3 state.

Most of the atoms will decay back to the F = 2 state but a few decay over the

F’=2 state into the F=1 state. In order to minimize losses they are pumped

back into the F = 2 state by a repump laser. An extensive introduction on

laser cooling is given in [54].

After the atoms are trapped in the MOT, they are optically pumped

to the |F = 1,mF = −1〉 hyperfine ground state. Subsequently the atoms are

captured in a magnetic quadrupole trap and mechanically transfered into an

ultra-high vacuum (UHV) chamber, where the experiments take place.

The final step is now to cool the atoms down by evaporative cooling to

the order of about 100nK and obtain Bose-Einstein condensation.
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4.1 Optical lattice and dipole trap

In this section I will give a general overview of the optical lattice setup (see 4.1)

that is used in our group. An elaborate description of the lattice configuration

and its properties can be found in [33].

First, there is a three-dimensional lattice, which is created by three or-

thogonal laser beams with their minimum waist focused on the BEC and a

wavelength of 1064nm. Therefore the lasers are far red detuned from any

transitions of 87Rb and the hyperfine states, in which the atoms are, can be

neglected. The 1064nm-lattice is thus state-independent. We note that, for the

experiments described in chapter 5, only a one-dimensional lattice (in vertical

direction) was used.

Two of the beams that span a plane parallel to the ground (xy-plane)

are alternatively used as crossed optical dipole trap (XODT), where each laser

beam can individually form an optical dipole trap (referred to as ODT1 and

ODT2). This XODT is used in the later described experiments. The advantage

of such an optical trap over a magnetic trap is the independence of the atom’s

magnetic state induced by the Zeeman effect. Hence, a strong influence of the

Zeeman effect on the energy is avoided. Also the application of homogeneous

magnetic fields is possible that stands in contradiction to the inhomogeneous

field of a magnetic trap.

In order to use these laser beams as optical lattice, they are reflected

back by a mirror and superposed with the incoming beam to a standing wave.

The intensity of the reflected beams and with it the depth of the lattices can
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Figure 4.1: Three-dimensional view on the lattice configuration: In vertical direction
a bichromatic lattice can be set up by using both the 1064nm and the 785nm beam.
The beams are reflected by a mirror at the bottom. The 1064nm beams in horizontal
direction are used as crossed optical dipole trap. Alternatively they can also form
an three-dimensional optical lattice together with the vertical beam if they are
retroreflected with mirrors.
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be controlled by AOMs, which are placed in front of the mirrors. In particular

this allows to precisely control the speed at which the lattice is ramped up.

If the lattice is ramped up too quickly, the process will disturb the BEC and

induce decoherence. The time it takes until coherence is recovered is about

as long as the tunneling time between the lattice wells but at this point a

considerable amount of the condensate would be lost [13].

The beams in the xy-plane are detuned by 20MHz from each other and by

10MHz from the third beam, which is directed parallel to gravity (z-direction)

[33]. Thus, interference effects between the orthogonal beams are avoided.

In addition to this three-dimensional lattice a one-dimensional lattice

can be added in z-direction. With a wavelength of 785nm it is in between

the D2 (780.2nm) and the D1 (795.0nm) transition line of 87Rb [55]. Because

of this, the hyperfine structure of the atoms is no longer irrelevant, and the

lattice is state-dependent (this feature is used in other experiments done in our

laboratory). Depending on whether the transitions are blue or red detuned the

atoms experience an attractive or repulsive force. This force also depends on

the amount of the detuning. As a consequence of the two different transition

lines there may also be a competition between the attractive force of one line

and a repulsive force of the other one. Ultimately it is even possible that they

cancel out each other, leaving the atoms unaffected.

During the experiments we are operating the atoms in the |F = 1,mF = −1〉

or |F = 2,mF = −2〉 hyperfine states. By controlling the beam polarization

with a λ/4 plate the effect on the two kinds of atoms can be adjusted. Effec-

tively this means that the lattice depth for atoms in different states is control-
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lable. It is possible that one kind is not or only weakly affected by the lattice

while the other one is strongly affected. For the experiments on BOs, where

we operate in the |F = 2,mF = −2〉 hyperfine state, the state-dependence is

not relevant, though.

Kapitza-Dirac diffraction and dipole oscillations

The depth of the lattice can be determined by using Kapitza-Dirac diffraction

[56]. While the BEC is held in the trap, the lattice is switched on for a short

time. The condensate wave function is now diffracted from the lattice and a

picture of the diffraction pattern is taken. The population of the n-th order of

diffraction depends on the lattice depth and the time it was switched on. For

a description of this method see [33, 57].

The trap frequency of the XODT is found by applying dipole oscillations.

The oscillations are induced by a short magnetic pulse that kicks the atoms

out of their rest position in the trap. Hereupon they oscillate inside the trap.

After some time the trap is switched off and after a time of flight (TOF) of

a few milliseconds a picture is taken. The position of the atoms marks their

momentum at the time they were released from the trap. By switching the

trap off at consecutive times one can obtain the trap frequency.

4.2 The route to Bloch oscillations

We start at the point where the atoms are trapped in the crossed optical

dipole trap (XODT) and are in the |1,−1〉 hyperfine state. The two horizontal
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1064nm beams are used for the XODT. As the next step, the atoms are now

transferred with a Landau-Zener sweep (see section 4.2.1) into the |2,−2〉

state. In this state the atoms are fully affected by the 785nm lattice, which is

used as disordering lattice.

In order to compensate for gravity, a magnetic field gradient is added,

which levitates the BEC. Later it is possible to vary the amount and the

direction of the external force that induces Bloch oscillations by adjusting this

gradient.

As the next step, we can tighten or expand the levitated XODT, which

determines the density and thus also the interaction strength. Consecutively,

we now ramp up our lattice adiabatically over a time of 50ms. This ensures

that no nonadiabatic disturbance of the BEC occurs. If we want an incom-

mensurate lattice, we can ramp up both vertical lattices. The wavelengths

used for the experiment were 1064nm and 785.7nm. Otherwise we can use

either of them for an undisturbed optical lattice.

For Bloch oscillations, we now need an external force, which we achieve

by switching off the magnetic field gradient within less than 0.2ms. So, gravity

is the driving force for the oscillations. It creates an energy offset of 0.56ER

between neighboring lattice sites. The corresponding oscillation period is TB ≈

0.88ms.

After some time, in which the atoms oscillate in the optical lattice, the

dipole trap and the lattice are switched off and the atoms are released to a

free fall. After a time of flight of 18 ms, an image of the BEC is taken. Here,

the vertical position is proportional to the velocity of the atoms at the time of
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their release.

By running this sequence for several times and changing the oscillation

time, we get a series of consecutive images. We then calculate the mean

velocity for each image and plot the velocities versus time.

In order to find out how many pixels in the image correspond to the recoil

velocity, one can size the distance between two diffraction peaks. Therefore

two Gaussian distributions are plotted that sit on top of a third one. The

recoil velocity in terms of image pixels can be determined from the distance

between the centers of the first two Gaussian distributions.

4.2.1 Hyperfine-state transfer

Quite generally, an atom can absorb a photon and be transfered to a higher

energy level, if the frequency of the photon coincides with the energy difference

of the two states ω = (E2 − E2)/~. Likewise a photon with that frequency

can stimulate the transition of an atom from the higher state to the lower

state, which causes the emission of a photon. The chance of absorption and

emission is smaller, if the frequency of the photon ω differs from the transition

frequency ω0. This difference ∆ = ω0 − ω is called detuning.

In a coherent driving field the probability of an electron in a two-level

system to be in one state will change over time with the generalized Rabi

frequency

ΩR = (ω2
R + ∆2)1/2, (4.1)

where ωR is the ordinary Rabi frequency at zero detuning.
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Figure 4.2: On top is the experimental image that is taken after TOF. At the bottom
is a plot of the density distribution. The black points are data and the red curve is
a fit consisting of two Gaussian distributions on top of a third Gaussian. The recoil
velocity is determind through the distance between the peaks.

For an atom, which is initially in the ground state E1, the probability to

be in the excited state E2 is

P2 =

(
ωR
ΩR

)2

sin2

(
ΩRt

2

)
. (4.2)

A derivation of this formula can for example be found in [58].

It is thus possible to transfer an electron into an excited state by applying

a pulse with the right frequency for a certain amount of time.

In order to hit the right frequency, it is beneficial to vary the frequency

of the laser pulse over time. This is especially necessary if there are several

atoms in an inhomogeneous magnetic field. Because of the Zeeman effect their

transition varies spatially. This process is called a Landau-Zener sweep. For

our experiments we microwave radiation to drive transitions between hyperfine
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states.
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Chapter 5

Experimental data

In this chapter I will present the results obtained from the experiments.

The Bloch oscillations are generally fitted with an approximation of the

velocity function. Specifically, we use the derivative (see equation 2.37) of a

Taylor expansion of the first energy band and a Gaussian decay envelope

v(t) = Ae−
t2

τ2

(
B1 sin(

2πt

TB
+ φ)−B2 sin(

4πt

TB
+ φ) +B3 sin(

6πt

TB
+ φ)

)
,

(5.1)

where A is the amplitude, τ is the decay time, Bi are fixed parameters (B1 =

0.5826, B2 = 0.1506 and B3 = 0.0414), φ is a phase shift, and TB is the

oscillation period. The impact of the parameter B3 is less than a tenth of

the first one (B1). Further elements of the expansion are therefore neglected.

The phase shift may be caused by a possible non-zero initial velocity that

could for example be due to the short time it takes to switch off the gravity

compensating gradient.

The Gaussian envelope fits best for to the experimentally obtained data
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and is justified by the assumption of a linear increase of the momentum dis-

tribution in time that leads to a Gaussian envelope [24, 59].

5.1 Bloch oscillations (BOs) for weak interac-

tions

First, we measured Bloch oscillations up to a time of 31ms, which corresponds

to about 35 oscillations (see figures 5.1 and 5.2, TB ≈ 0.88ms). For this

purpose, we used the 1064nm lattice without disorder and with a relatively

shallow trap. The images were taken from 0 to 3, 6 to 9, 12 to 15, 18 to 21, 24

to 26, and 30 to 31 milliseconds in steps of 0.2ms. The first part (0-3ms) was

repeated three times to gain a higher precision. For each of these images the

mean velocity was determined by averaging over the whole picture. Then we

calculated again the mean of the mean velocities obtained from three images.

The mean velocities are finally plotted versus the time and fitted with

equation 5.1. This is the general procedure that we also used for the following

analyses.

As can be seen in figure 5.1, there is a light decay of the Bloch oscillations.

Because the oscillations are still visible very well at the end, the measurement

over longer times should be possible. The decay time is (32.2± 0.3)ms, which

corresponds to about 36.6 Bloch periods.
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Figure 5.1: Bloch oscillations for weak interactions (µ ≈ 0.1ER): Above are density
plots of the consecutive images, where the oscillation is already clearly visible. The
time evolution goes from left to right and the black bars denote the cuts in the
imaging, where we jumped to later times (see description in the text). One can
nicely see the BEC’s being Bragg reflected at the edge of the Brillouin zone. At the
bottom are plotted the mean velocities in units of the recoil velocity vs the time in
units of the oscillation period (TB ≈ 0.88ms). The solid line is the fit function from
equation 5.1. For a larger picture of the first part see figure 5.2
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Figure 5.2: To help appreciate the quality of the fit to the data points, an extended
view of figure 5.1’s first part is shown here.
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Figure 5.3: Effect of disorder on the lifetime of BOs: On top are the experimental
images that have been taken after a TOF of 18ms. It is noticeable that at later
times in the disordered lattice they are washed out. The plots show data together
with their fit functions (solid lines). The damping rate is considerably increased in
the disordered lattice (0.37T−1B ; compared to 0.11T−1B for sdis = 0ER).
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5.2 Effect of a disordered lattice

In addition to our main optical lattice (s1 = 3, λ1 =1064nm), we applied a

second lattice with lower depth (varying between s2 = 0 and s2 = 1) and a

wavelength (λ2 =785.7nm) that is approximately incommensurate to the one

of our main lattice.

For all the measurements with a disordered lattice, we took three sets of

Bloch oscillations for each disorder depth and each interaction strength. The

single shots were taken in random order to avoid systematic errors that might

arise from drifts of our experimental setup during the runs, although we did

not notice any dependence of that kind. This method assures that we are

insensitive towards trivial damping effects that are based on heating of the

machine or other drifts during the run. We then determined the damping rate

by fitting the function in equation 5.1 to the oscillations and taking the mean

of the three runs.

As is shown in the example in figure 5.3 for weak interactions, an added

disorder leads to a dephasing of the Bloch oscillations. The increased damping

is clearly visible. Also, the image of the BEC becomes washed out after less

than two milliseconds, while the peaks of the non-disorder case are still very

well defined at this time. The damping rate in this example is about 0.11T−1B

and 0.37T−1B for the pure and the disordered lattice, respectively.

The asymmetry of the plot functions is due to the form of the first energy

band. It is bent towards a horizontal position at the egde of the Brillouin zone,

which also leads to the band gaps. This effect increases with increasing lattice

47



depth and leads to symmetric oscillations of the velocity. For shallow lattices,

however, the fact that the energy band is bent just at the edge of the zone

leads to asymmetry of the velocity function that is the derivative of the energy

band with respect to the quasimomentum.

5.2.1 Competition between mean field and disorder

Dependence on the disorder depth

To clarify the dependence of the damping rate on the disorder lattice depth,

we took measurements for several disorder depths. The results are plotted

in figure 5.4 for three different interaction strengths (characterized by the

chemical potential). In all three cases the damping rate seems to depend

linearly on the disorder depth.

Remarkable at this place is the difference of the slope in the weakly

interacting case (µ = 0.07) and for stronger interactions. For zero disorder

depth the damping increases with interaction strength. But when the disorder

is increased, the damping rate of the weakly interacting BEC’s BOs increases

much faster than the other ones. At a disorder depth of around 0.4ER the

damping is even stronger than for stronger interactions.

This is an indication that dynamical screening takes place. It seems that

the stronger interactions diminish the effect of the disorder potential and keep

the damping rate relatively stable while the disorder is increased. Of course

the lack of more data points and more different interaction strengths between

the weak one (µ = 0.07ER) and the higher ones (µ ≥ 0.28ER) does not allow
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Figure 5.4: Damping of BOs in a disordered lattice for varied disorder: When the
disorder depth is increased the damping rate increases also linearly. However, the
slope is much steeper if the atom-atom interactions are very weak (µ = 0.07ER).
The error bars represent the standard deviation resulting from taking the arithmetic
average of three measurements for each point.

to draw assured conclusions at this point. In the next chapter I present the

measurement of damping rates at more different interaction strengths for a

disorder depth of 0.56ER.

Dependence on the chemical potential

We took another series of measurements where we held the disorder depth

constant and varied the interaction strength (figure 5.5). The depth of the

incommensurate lattice was at s2 = 0.56ER, which is in the regime where the

damping rate is smaller for stronger interactions than for very weak interac-

tions (figure 5.4).

Due to the disorder, the minima of the optical lattice are shifted between

0ER and 0.56ER. The average shift is therefore 〈∆E〉 ≈ 0.28ER.
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It is very obvious that the damping rate decreases if interactions are

applied. This goes up to a chemical potential of about µ = 0.26ER. At this

point the damping rate starts to increase for further increase of the interaction

strength. The turning point stands in very good agreement with the average

shift of the optical lattice. Because there are more atoms in the deeper lattice

sites, the interaction strength is also stronger than on average, while in the

more shallow sites it is weaker. Comparing the average values of interaction

and chemical potential is thus a tempting way to explain the position of the

minimum in the damping rate versus interaction strength plot.

Hence, this result strongly suggests that a dynamical screening takes

place. The trend of the plot also is in qualitative agreement with numerical

calculations that have been done previously [22].
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Figure 5.5: Damping of BOs in a disordered lattice (s1 = 3ER, s2 = 0.56ER)versus
interaction strength: Shown are the data points with a parabolic fit (fpar = a(µ −
b)2 + c, where a, b and c are free parameters). The minimum of the parabola is
at µ ≈ 0.26ER. The decrease of the damping at the beginning is indicative of
dynamical screening.
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Chapter 6

Conclusion

We have observed Bloch oscillations of a Rubidium-87 Bose-Einstein conden-

sate in an optical lattice. Furthermore we have seen a damping of these os-

cillations, which is caused by repulsive atom-atom interactions as well as by

disorder in the optical lattice.

A competing effect between interactions and disorder emerges when both

are applied at the same time. The repulsive effect of the interactions works

against the attractive force of the lattice wells and lifts the minima of the

lattice, effectively smoothing the disordered structure of the lattice.

The damping due to disorder is therefore reduced until the interaction

strength is equally strong as the disorder.
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Coherent Transport of Neutral Atoms in Spin-Dependent Optical Lattice

Potentials, Phys. Rev. Lett. 91, 010407 (2003).

[35] Ashcroft and Mermin, Solid State Physics (W. B. Saunders Company,

1976).

[36] W. Zwerger, Mott–Hubbard transition of cold atoms in optical lattices,

J. Opt. B: Quantum Semiclass. Opt. 5, 9 (2003).

[37] M. Modugno, C. Tozzo, and F. Dalfovo, Role of transverse excitations

in the instability of Bose-Einstein condensates moving in optical lattices,

Phys. Rev. A 70, 043625 (2004).

[38] A. R. Kolovsky, H. J. Korsch, and E.-M. Graefe, Bloch oscillations of

Bose-Einstein condensates: Quantum counterpart of dynamical instabil-

ity, Phys. Rev. A 80, 023617 (2009).

57



[39] U. Gavish and Y. Castin, Matter-Wave Localization in Disordered Cold

Atom Lattices, Phys. Rev. Lett. 95, 020401 (2005).

[40] B. Gadway, D. Pertot, J. Reeves, M. Vogt, and D. Schneble, Glassy behav-

ior in a binary atomic mixture, arXiv: 1107.2428v1 [cond-mat.quant-

gas] (2011).

[41] S. Ospelkaus, C. Ospelkaus, O. Wille, M. Succo, P. Ernst, K. Sengstock,

and K. Bongs, Localization of Bosonic Atoms by Fermionic Impurities in

a Three-Dimensional Optical Lattice, Phys. Rev. Lett. 96, 180403 (2006).

[42] P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys.

Rev. 109, 1492 (1958).

[43] L. Fallani, J. E. Lye, V. Guarrera, C. Fort, and M. Inguscio, Ultracold

Atoms in a Disordered Crystal of Light: Towards a Bose Glass, Phys.

Rev. Lett. 98, 130404 (2007).

[44] D. Boiron, C. Mennerat-Robilliard, J.-M. Fournier, L. Guidoni, C. Sa-

lomon, and G. Grynberg, Trapping and cooling cesium atoms in a speckle

field, Eur. Phys. J. D 7, 373 (1999).

[45] P. Horak, J.-Y. Courtois, and G. Grynberg, Atom cooling and trapping

by disorder, Phys. Rev. A 58, 3953 (1998).

[46] H. Gimperlein, S. Wessel, J. Schmiedmayer, and L. Santos, Ultracold

Atoms in Optical Lattices with Random On-Site Interactions, Phys. Rev.

Lett. 95, 170401 (2005).

58



[47] D.-W. Wang, M. D. Lukin, and E. Demler, Disordered Bose-Einstein

Condensates in Quasi-One-Dimensional Magnetic Microtraps, Phys. Rev.

Lett. 92, 076802 (2004).

[48] W. C. Stwalley, Stability of Spin-Aligned Hydrogen at Low Temperatures

and High Magnetic Fields: New Field-Dependent Scattering Resonances

and Predissociations, Phys. Rev. Lett. 37, 1628 (1976).

[49] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-

Kurn, and W. Ketterle, Observation of Feshbach resonances in a

Bose–Einstein condensate, Nature 392, 151 (1998).

[50] D. Pertot, D. Greif, S. Albert, B. Gadway, and D. Schneble, Ver-

satile transporter apparatus for experiments with optically trapped

Bose–Einstein condensates, J. Phys. B: At. Mol. Opt. Phys. 42, 215305

(2009).

[51] S. G. Albert, Cooling, Trapping, and Transport of Atom Clouds in a New

BEC Apparatus, Master’s thesis, Stony Brook University 2007.

[52] D. G. Greif, Evaporative cooling and Bose-Einstein Condensation of Rb-

87 in a moving-coil TOP trap geometry, Master’s thesis, Stony Brook

University 2007.

[53] D. E. Sproles, Laser Spectroscopy and Magneto-Optical Trapping of Ru-

bidium Atoms, Master’s thesis, Stony Brook University 2008.

[54] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping

(Springer, Berlin, 1999).

59



[55] Daniel A. Steck, “Rubidium 87 D Line Data,” available online at

http://steck.us/alkalidata (revision 2.0.1, 2 May 2008).

[56] P. L. Kapitza and P. A. M. Dirac, The reflection of electrons from stand-

ing light waves, Mathematical Proceedings of the Cambridge Philosophical

Society 29, 297 (1933).

[57] B. Gadway, D. Pertot, R. Reimann, M. G. Cohen, and D. Schneble,

Analysis of Kapitza-Dirac diffraction patterns beyond the Raman-Nath

regime, Optics Express, Vol. 17, Issue 21, pp. 19173-19180 (2009) 17,

19173 (2009).

[58] P. W. Milonni and J. H. Eberly, Laser Physics (John Wiley & Sons, Inc.,

Hoboken, New Jersey, 2010).

[59] D. Witthaut, M. Werder, S. Mossmann, and H. J. Korsch, Bloch oscil-

lations of Bose-Einstein condensates: Breakdown and revival, Phys. Rev.

E 71, 036625 (2005).

60


	List of Figures
	Acknowledgements
	Introduction
	Basics
	Bose-Einstein condensation (BEC)
	Non-interacting gas
	Weakly interacting gas, Gross-Pitaevskii equation

	Optical Lattices
	Atoms in the presence of a laser field
	Band structure

	Bloch oscillations
	Landau-Zener tunneling


	Interactions and disorder
	Effect of interactions, mean-field
	Effective potential
	Strongly interacting Bose gases

	A disordered lattice
	A bichromatic lattice

	Interplay between disorder and interactions

	Experimental Setup
	Optical lattice and dipole trap
	The route to Bloch oscillations
	Hyperfine-state transfer


	Experimental data
	Bloch oscillations (BOs) for weak interactions
	Effect of a disordered lattice
	Competition between mean field and disorder


	Conclusion
	Bibliography

